Math in Living C O L O R !! 1.04 Literal Equations

Intermediate Algebra: One Step at a Time, Page 48-50: \#9,10,12,22,27,29,Extras

Dr. Robert J. Rapalje, Retired
Central Florida, USA

See Section 1.04 with explanations, examples, and exercises, coming soon!

P.48. \#9. Solve for $\mathrm{x}: \quad a(x+b)=c(x+d)$.

Solution: First, remove parentheses by the distributive property.

$$
a x+a b=c x+c d
$$

Next, get all the x terms on the left side by subtracting $c x$ from each side. At the same time, subtract $a b$ to each side to get all the non- x terms on the right side of the equation

$$
\begin{array}{r}
a x+a b=c x+c d \\
\frac{c x-a b-c x-a b}{a x-c x=c d-a b}
\end{array}
$$

Now, factor the common factor of x :

$$
x(a-c)=c d-a b
$$

Finally, since the x has been multiplied by $(a-c)$, you must divide both sides of the equation by $(a-c)$.

$$
\begin{aligned}
\frac{x \cdot(a-c)}{(a-c)} & =\frac{c d-a b}{(a-c)} \\
x & =\frac{c d-a b}{a-c}
\end{aligned}
$$

NOTE: Don't be tempted to divide out the a or the c! These are "terms"! Never divide out TERMS--only FACTORS!!
P.48. \#10. Solve for $\mathrm{x}: ~ a(x-b)=c(d-x)$.

Solution: First, remove parentheses by the distributive property.

$$
a x-a b=c d-c x
$$

Next, get all the x terms on the left side by adding $c x$ from each side. At the same time, add $a b$ to each side to get all the non- x terms on the right side of the equation

$$
\begin{aligned}
a x-a b & =c d-c x \\
+c x \neq a b & +a b \neq c x \\
\hline a x+c x & =c d+a b
\end{aligned}
$$

Now, factor the common factor of x :

$$
x(a+c)=c d+a b
$$

Finally, since the x has been multiplied by $(a+c)$, you must divide both sides of the equation by $(a+c)$.

$$
\begin{aligned}
\frac{x \cdot(a+c)}{(a+c)} & =\frac{a b+c d}{(a+c)} \\
x & =\frac{a b+c d}{a+c}
\end{aligned}
$$

NOTE: Don't be tempted to divide out the a or the c! These are "terms"! Never divide out TERMS--only FACTORS!!

P.49. \#12. Solve for $\mathrm{x}: \quad Y-a=m(x-b)$.

Solution: First, remove parentheses by the distributive property.

$$
Y-a=m x-m b
$$

Next, notice that there is only one x term, which is on the right side of the equation. Therefore, you must get the non- x terms all on the left side by adding $m b$ from each side.

$$
\begin{array}{r}
Y-a=m x-m b \\
+m b \quad+m b \\
\hline Y-a+m b=m x
\end{array}
$$

Finally, in order to solve for x,

$$
Y-a+m b=m x
$$

you must divide both sides of the equation by m.

$$
\begin{aligned}
\frac{Y-a+m b}{m} & =\frac{p h x}{\not n} \\
x & =\frac{Y-a+m b}{m}
\end{aligned}
$$

NOTE: Don't be tempted to divide out the m ! The m in the numerator is a "term"! Never divide out TERMS--only FACTORS!!
P. 50. \#22. $\quad C=2 \pi r$, solve for r.

Solution: Since you are solving for r, and the r has been multiplied by 2π, you must "undo" the multiplication, by dividing both sides by 2π :

$$
\begin{aligned}
\frac{C}{2 \pi} & =\frac{2 \pi r}{2 \pi} \\
\frac{C}{2 \pi} & =\frac{2 \pi r}{2 \pi} \\
r & =\frac{C}{2 \pi}
\end{aligned}
$$

$$
\text { P. 50. \#27. } \quad A=\frac{1}{2} b h, \text { solve for } h .
$$

Solution: Since there is a denominator of 2 , multiply both sides by 2 to clear the fraction!

$$
\begin{aligned}
& 2 \cdot A=\not 2 \cdot \frac{1}{22} b h \\
& 2 A=b h
\end{aligned}
$$

Next, remember that you are solving for h, and the h has been multiplied by b. In order to "undo" the multiplication, you must divide both sides by b :

$$
\begin{aligned}
\frac{2 A}{b} & =\frac{\not b \boldsymbol{h}}{\not b} \\
\boldsymbol{h} & =\frac{2 A}{b}
\end{aligned}
$$

$$
\text { P. 50. \#29. } \quad V=\frac{1}{3} \pi r^{2} h, \text { solve for } h .
$$

Solution: Since there is a denominator of 3 , multiply both sides by 3 to clear the fraction!

$$
\begin{aligned}
3 \bullet V & =3 \bullet \frac{1}{3} \pi r^{2} h \\
3 V & =\pi r^{2} h
\end{aligned}
$$

Next, remember that you are solving for h, and the h has been multiplied by π and r^{2}. In order to "undo" the multiplication, you must divide both sides by π and r^{2} :

$$
\begin{aligned}
\frac{3 V}{\pi r^{2}} & =\frac{\pi y^{2} h}{\pi y^{2}} \\
\frac{3 V}{\pi r^{2}} & =h \\
h & =\frac{3 V}{\pi r^{2}}
\end{aligned}
$$

Extra Problem (from Chris).

Solve for X: $\quad a(x-b)=c x+a b$.
Solution: First, remove parentheses by the distributive property.

$$
a x-a b=c x+a b
$$

Next, get all the \mathbf{x} terms on the left side by subtracting $c x$ from each side. At the same time, add $+a b$ to each side to get all the non- x terms on the right side of the equation

$$
\begin{array}{r}
a x-a b=c x+a b \\
-c x+a b-c x+a b \\
\hline a x-c x=\frac{2 a b}{}
\end{array}
$$

Now, factor the common factor of x :

$$
x(a-c)=2 a b
$$

Finally, since the x has been multiplied by $(a-c)$, you must divide both sides of the equation by $(a-c)$.

$$
\begin{aligned}
\frac{x \cdot(a-c)}{(a-c)} & =\frac{2 a b}{(a-c)} \\
x & =\frac{2 a b}{a-c}
\end{aligned}
$$

Extra Problem

Solve for $\mathrm{x}: \quad 1-3 x y=7(5 x z+y)$.
Solution: First, remove parentheses by the distributive property.

$$
1-3 x y=35 x z+7 y
$$

Next, get all the x terms on the right side by adding $3 x y$ from each side. At the same time, subtract $7 y$ from each side to get all the non-x terms on the left side of the equation

$$
\begin{array}{r}
1-3 x y=35 x z+7 y \\
-7 y+3 x y+3 x y-7 y \\
\hline 1-7 y=35 x z+3 x y
\end{array}
$$

Now, factor the common factor of x :

$$
\begin{aligned}
& 1-7 y=35 x z+3 x y \\
& 1-7 y=x(35 z+3 y)
\end{aligned}
$$

Finally, since the \mathbf{x} has been multiplied by $(35 z+3 y)$, you must divide both sides of the equation by $(35 z+3 y)$.

$$
\begin{aligned}
\frac{1-7 y}{(35 z+3 y)} & =\frac{x(35 z+3 y)}{\frac{(35 z+3 y)}{1-7 y}} \\
x & =\frac{1-75+3 y}{35 z+3}
\end{aligned}
$$

NOTE: Don't be tempted to divide out the y ! These are "terms"! Never divide out TERMS--only FACTORS!!

