Math in Living C O L O R !! 1.07 Laws of Exponents

Intermediate Algebra: One Step at a Time, Pages 90-95: \#35, 37, 40, 43, 51, Extra

Dr. Robert J. Rapalje, Retired Central Florida, USA

See Section 1.07 with explanations, examples, and exercises, coming soon!
NOTE: If the Laws of Exponents "Quickies" problems are beating you up, then maybe you could use some additional explanation. Try these links, coming soon, Chapter 1 from Basic Algebra: One Step at a Time:

Basic Algebra Section
 2.12 Laws of Exponents Positive Exponents Coming Soon!
 Basic Algebra Section
 2.13 Laws of Exponents: Zero and Negative Exponents

P. 93 \# 35 .
 $$
\frac{x^{4} x^{-10}}{x^{-6}}
$$

Solution:
The base number for each of these factors is \mathbf{x}. Remember: When you multiply with the same base number, you put down the base number and you ADD exponents:

$$
\begin{aligned}
& \frac{x^{4} x^{-10}}{x^{-6}} \\
& \frac{x^{-6}}{x^{-6}}
\end{aligned}
$$

Now, a number divided by itself is 1 , so the final answer is 1 . However, if you wanted to do so, you could also remember: When you divide with the same base number, you put down the base number and SUBTRACT exponents:

$$
\begin{aligned}
& x^{-6-(-6)} \\
& x^{0} \\
& 1
\end{aligned}
$$

P. 93 \# 37. $\left(2 x^{3}\right)^{4} \circ\left(x^{4} y^{-3}\right)^{2}$

Solution:
Notice that in this exercise, you have products within parentheses raised to a power. The basic law of exponents that applies here is that when you raise a power to a power, you must put down the base number and multiply the exponents.

$$
\begin{gathered}
\left(2 x^{3}\right)^{4} \cdot\left(x^{4} y^{-3}\right)^{2} \\
2^{4} x^{12} \cdot x^{8} y^{-6}
\end{gathered}
$$

Next, you know that when you multiply with the same base number, you put down the base number and you add exponents: $x^{12} \cdot x^{8}=x^{20}$

$$
16 x^{20} y^{-6}
$$

To eliminate a negative exponent, remember that $y^{-6}=\frac{1}{y^{6}}$, so the final answer is

$$
16 x^{20} \cdot \frac{1}{y^{6}} \text { or } \frac{16 x^{20}}{y^{6}}
$$

$$
\text { P. } 94 \text { \# 40. } \quad\left(3 x^{-3} y^{2}\right)^{2} \text { - }\left(2^{-1} x^{4} y^{-5}\right)^{-2}
$$

Solution:
Notice that in this exercise, you have products within parentheses raised to a power. The basic law of exponents that applies here is that when you raise a power to a power, you must put down the base number and multiply the exponents.

$$
\begin{gathered}
\left(3 x^{-3} y^{2}\right)^{2} \bullet\left(2^{-1} x^{4} y^{-5}\right)^{-2} \\
3^{2} x^{-6} y^{4} \circ 2^{2} x^{-8} y^{10}
\end{gathered}
$$

Next, you know that when you multiply with the same base number, you put down the base number and you add exponents: $x^{-6} \circ x^{-8}=x^{-14}$ and $y^{4} \cdot y^{10}=y^{14}$

$$
9 \bullet 4 x^{-14} y^{14}
$$

To eliminate a negative exponent, remember that $x^{-14}=\frac{1}{x^{14}}$, so the final answer is

$$
36 \frac{1}{x^{14}} \circ y^{14} \text { or } \frac{36 y^{14}}{x^{14}}
$$

P. 94 \# 43. $\frac{\left(3 x^{-3} y^{2}\right)^{-2}}{\left(3^{-1} x^{4} y^{-5}\right)^{-2}}$

Solution:
Notice that in this exercise, you have a quotient whose numerator and denominator contain products within parentheses raised to a power. The basic law of exponents that applies here is that when you raise a power to a power, you must put down the base number and multiply the exponents.

$$
\begin{aligned}
& \frac{\left(3 x^{-3} y^{2}\right)^{-2}}{\left(3^{-1} x^{4} y^{-5}\right)^{-2}} \\
& \frac{3^{-2} x^{6} y^{-4}}{3^{2} x^{-8} y^{10}}
\end{aligned}
$$

This fraction can actually be rewritten as three separate fractions:

$$
\frac{3^{-2}}{3^{2}} \bullet \frac{x^{6}}{x^{-8}} \bullet \frac{y^{-4}}{y^{10}}
$$

Next, you know that when you divide with the same base number, you put down the base number and subtract the exponents:

$$
\begin{aligned}
& 3^{-2-2} \cdot x^{6-(-8)} \cdot y^{-4-10} \\
& 3^{-4} \cdot x^{14} \cdot y^{-14}
\end{aligned}
$$

To eliminate a negative exponent, remember that $3^{-4}=\frac{1}{3^{4}} x^{-14}=\frac{1}{x^{14}}$, so the final answer is

$$
\frac{1}{3^{4}} \circ x^{14} \cdot \frac{1}{y^{14}} \text { or } \frac{x^{14}}{81 y^{14}}
$$

P. 95 \# 51. $\frac{x^{3 p+2} x^{4 p-6}}{x^{2 p+4}}$

Solution:

The base number for each of these factors is x. Remember that when you multiply with the same base number, you put down the base number and you add exponents:

$$
\begin{gathered}
\frac{\boldsymbol{x}^{3 p+2} \boldsymbol{x}^{4 p-6}}{\boldsymbol{x}^{2 p+4}} \\
\frac{\boldsymbol{x}^{3 p+2+4 p-6}}{\boldsymbol{x}^{2 p+4}} \\
\frac{\boldsymbol{x}^{7 p-4}}{\boldsymbol{x}^{2 p+4}}
\end{gathered}
$$

Next, remember that when you divide with the same base number, you put down the base number and subtract exponents:

$$
\begin{aligned}
& \boldsymbol{x}^{7 p-4-(2 p+4)} \\
& \boldsymbol{x}^{7 p-4-2 p-4} \\
& \boldsymbol{x}^{5 p-8}
\end{aligned}
$$

Extra Problem from Dave in Australia:
 $$
\frac{7 a^{2 m} \times 3 a^{-n}}{42 a^{5 m-6 n}}
$$

Solution:

The base number for each of these factors is a. First, I recommend that you multiply the 7 times 3 , which is 21 . Remember that when you multiply with the same base number, you put down the base number and you add exponents. This means that you add 2 m plus -n , which is $2 \mathrm{~m}-\mathrm{n}$.

$$
\frac{21 a^{2 m-n}}{42 a^{5 m-6 n}}
$$

Next, divide out the 21 with the 42. Also, remember that when you divide with the same base number, you put down the base number and subtract exponents:

$$
\begin{aligned}
& \frac{21 \boldsymbol{a}^{2 m-n}}{422 a^{5 m-6 n}} \\
& \frac{a^{(2 m-n)-(5 m-6 n)}}{2} \\
& \frac{a^{2 m-n-5 m+6 n}}{2} \\
& \frac{a^{2 m-5 m-n+6 n}}{2} \\
& \frac{a^{-3 m+5 n}}{2} \text { or } \frac{a^{5 n-3 m}}{2} \text { or } \frac{1}{2} a^{5 n-3 m}
\end{aligned}
$$

