Math in Living C O L O R !! 2.10 Polynomials and Synthetic Division

Intermediate Algebra: One Step at a Time, Pages 226-234: 3, 5
Dr. Robert J. Rapalje, Retired
Central Florida, USA

See Section 2.10, with explanations, examples, and exercises, coming soon!

Perform the divisions, using synthetic division.

$$
\text { P. 234. \#3. } \frac{2 x^{3}+5 x^{2}+6 x-2}{x+3}
$$

Solution: First write down the coefficients of the polynomial, which are $25 \quad 6 \quad-2$ and prepare to do synthetic division with -3 .

$$
\begin{array}{r|rrrr}
-3 & \mathbf{2} & \mathbf{5} & \mathbf{6} & -2 \\
& \downarrow & -6 & 3 & -27 \\
\hline & \mathbf{2} & -1 & 9 & -29
\end{array}
$$

Of the resulting numbers $2-1 \quad 9-29$, the last number -29 is the remainder. The first three numbers $2-19$ are the coefficients of the quotient. The quotient always begins with an exponent that is one less than the highest power of the polynomial. The quotient will therefore begin with $2 x^{2}$. The quotient is $2 x^{2}-1 x+9$, and the final answer is

$$
2 x^{2}-x+9-\frac{29}{x+3}
$$

P.234: \#5. $\frac{5 x^{2}+x^{4}-6 x-2}{x-2}$

Solution: First you must re-write the numerator in the correct order-that is write it in descending powers of the variable, and include placeholder zeros for any terms that are missing. Notice that the highest power of x is x^{4}, and there is no x^{3} term.

$$
\frac{x^{4}+0 x^{3}+5 x^{2}-6 x-2}{x-2}
$$

As always with synthetic division. first write down the coefficients of the polynomial, which are $1 \quad 0 \quad 5 \quad-6-2$ and prepare to do synthetic division with 2 .

Of the resulting numbers $\begin{array}{llllll}1 & 2 & 9 & 12 & 22\end{array}$, of course the last number 22 is the remainder, and the first four numbers $10 \begin{array}{lllll}1 & 2 & 9 & 12 & \text { are the coefficients of }\end{array}$ the quotient. Since the quotient always begins with an exponent that is one less than the highest power of the polynomial, the answer begins with x^{3}.

The final answer is $x^{3}+2 x^{2}+9 x+12+\frac{22}{x-2}$.

