Math in Living C O L O R !!

4.01 Absolute Value Equations and Inequalties

Intermediate Algebra: One Step at a Time. Page 306-314: \#25, Extra Problem

Dr. Robert J. Rapalje, Retired

Central Florida, USA

See Section 4.01, with explanations, examples, and exercises, coming soon!

$$
\text { P. 308: \#25. } \quad|x-2|<4
$$

Solution: You know before you ever start this problem that it is a

 BETWEENNESS problem because:1. it has the absolute value sign,
2. it is a " $<$ " or " \leq " symbol, and
3. it is compared to a positive number 4.

Now, you are probably asking, "Between what??" So you need to find the ENDPOINTS.
The endpoints will be at:

$$
\begin{gathered}
x-2=4 \\
+2+2
\end{gathered} \quad \text { and } \quad \begin{aligned}
& x-2=-4 \\
& \hline x=6
\end{aligned} \quad \begin{aligned}
& +2 \\
& x=-2
\end{aligned}
$$

The solution for this inequality is the set of all values of x that are BETWEEN these endpoints, NOT including the endpoints. On a number line, it looks like this:

The final answer in interval notation (from LEFT to RIGHT!) is
$(-2,6)$.

EXTRA PROBLEM

$$
4-7\left|\frac{x}{2}-3\right| \geq-3
$$

First, isolate the absolute value quantity by subtracting 4 from each side:

$$
\begin{gathered}
4-4-7\left|\frac{x}{2}-3\right| \geq-3-4 \\
-7\left|\frac{x}{2}-3\right| \geq-7
\end{gathered}
$$

Next, divide both sides by -7, remembering to reverse the inequality sign:

$$
\frac{-7\left|\frac{x}{2}-3\right|}{-7} \geq \frac{-7}{-7}
$$

You know that it is a BETWEENNESS problem because:

1. it has the absolute value sign,
2. it is a "<" or " \leq " symbol, and

3 . it is compared to a positive number 1 .
Now, you are wondering, "Between what??" So you need to find the ENDPOINTS. The endpoints will be at:

$$
\begin{aligned}
& \frac{x}{2}-3=1 \\
& \frac{x}{2}-3=-1 \\
& \begin{array}{l}
+3+3 \\
\hline \frac{x}{2}=4
\end{array} \\
& \frac{x}{2}=4 \\
& \begin{array}{l}
+3+3 \\
\hline \frac{x}{2}=2
\end{array} \\
& \frac{x}{2}=2
\end{aligned}
$$

Multiply both sides by 2 :

$$
x=8 \quad x=4
$$

The solution for this inequality is the set of all values of x that are BETWEEN these endpoints, and INCLUDING the endpoints. On a number line, it looks like this:

The final answer in interval notation (from LEFT to RIGHT!) is $[4,8]$.

