Math in Living C O L O R !!

1.06 Radicals and Fractional Exponents

Rationalizing Monomial Denominators

College Algebra: One Step at a Time, Page 77-79: \#13, 17, 21, 23, 25, 27.

Dr. Robert J. Rapalje, Retired
Central Florida, USA

See Section 1.06, with explanations, examples, and exercises, coming soon!
P.78. \# 13.

$$
\frac{6}{\sqrt[3]{3}}
$$

Solution: Notice that the denominator has a cube root that is not a perfect cube! The goal, in rationalizing the denominator, is to get a perfect cube for the denominator. In this case, it would be nice to get a denominator like $\sqrt[3]{\mathbf{3}^{3}}$. To do this, you need to multiply numerator and denominator by $\sqrt[3]{3^{2}}$. It looks like this:

$$
\begin{aligned}
& \frac{6}{\sqrt[3]{3}} \cdot \frac{\sqrt[3]{3^{2}}}{\sqrt[3]{3^{2}}} \\
& \frac{6 \sqrt[3]{9}}{\sqrt[3]{3^{3}}} \\
& \frac{6 \sqrt[3]{9}}{3}
\end{aligned}
$$

Divide out the factor of 3 :
Final answer: $\quad 2 \sqrt[3]{9}$
As a check, calculate the value of the problem: $\frac{6}{\sqrt[3]{3}}=4.160167646$
then calculate the value of your answer: $\quad 2 \sqrt[3]{9}=4.160167646$

$$
\text { P. 78. \# 17. } \frac{35}{\sqrt[3]{49}}
$$

Solution: Notice that the denominator has a cube root that is not a perfect cube! The denominator does factor into $\sqrt[3]{7^{2}}$. The goal, in rationalizing the denominator, is to get a perfect cube for the denominator. In this case, it would be nice to get a denominator like $\sqrt[3]{7^{3}}$. To do this, you need to multiply numerator and denominator by $\sqrt[3]{7}$. It looks like this:

$$
\begin{aligned}
& \frac{35}{\sqrt[3]{7^{2}}} \cdot \frac{\sqrt[3]{7}}{\sqrt[3]{7}} \\
& \frac{35 \sqrt[3]{7}}{\sqrt[3]{7^{3}}} \\
& \frac{535 \sqrt[3]{7}}{7}
\end{aligned}
$$

Divide out the factor of 7 :
Final answer: $5 \sqrt[3]{7}$

As a check, calculate the value of the problem: $\frac{35}{\sqrt[3]{49}}=9.564655914 \ldots$
then calculate the value of your answer: $\quad 5 \sqrt[3]{7}=9.564655914 \ldots$

$$
\text { P. 79: \#21. } \quad \frac{12 x^{4} y^{2}}{\sqrt[3]{4 x^{5} y}}
$$

Solution: Notice that the denominator has a cube root that is not a perfect cube! The denominator does contains 4 which is 2^{2}. The goal, in rationalizing the denominator, is to get a perfect cube for the denominator. In this case, it would be nice to get a denominator like $\sqrt[3]{2^{3}}$. Since you already have $\sqrt[3]{2^{2}}$, to get the $\sqrt[3]{2^{3}}$, you need to multiply numerator and denominator by $\sqrt[3]{2}$. As to the variables $x^{5} y$, for perfect cubes, it is necessary to get exponents that are divisible by 3 , such as $x^{6} y^{3}$. Since you already have the $\sqrt[3]{x^{5} y}$, to get the $\sqrt[3]{x^{6} y^{3}}$, you will need to multiply numerator and denominator by $\sqrt[3]{x y^{2}}$. Altogether, it looks like this:

$$
\begin{aligned}
& \frac{12 x^{4} y^{2}}{\sqrt[3]{4 x^{5} y}} \cdot \frac{\sqrt[3]{2 x y^{2}}}{\sqrt[3]{2 x y^{2}}} \\
& \frac{12 x^{4} y^{2} \cdot \sqrt[3]{2 x y^{2}}}{\sqrt[3]{8^{6} y^{3}}}
\end{aligned}
$$

The denominator is (of course!) a perfect cube, so you can simplify this:

$$
\frac{12 x^{4} y^{2} \sqrt[3]{2 x y^{2}}}{2 x^{2} y}
$$

The fraction reduces, so divide out the $2 x^{2} y$.
Final answer: $\quad 6 x^{2} y \sqrt[3]{2 x y^{2}}$
P. 79. \#23. $\frac{40 x y^{2}}{\sqrt[3]{25 x^{2} y^{4}}}$

Solution: Notice that the denominator has a cube root that is not a perfect cube! The denominator does contains 25 which is 5^{2}. The goal, in rationalizing the denominator, is to get a perfect cube for the denominator. In this case, it would be nice to get a denominator like $\sqrt[3]{5^{3}}$. Since you already have $\sqrt[3]{5^{2}}$, to get the $\sqrt[3]{5^{3}}$, you need to multiply numerator and denominator by $\sqrt[3]{5}$. As to the variables $x^{2} y^{4}$, for perfect cubes, it is necessary to get exponents that are divisible by 3 , such as $x^{3} y^{6}$. Since you already have the $\sqrt[3]{x^{2} y^{4}}$, to get the $\sqrt[3]{x^{3} y^{6}}$, you will need to multiply numerator and denominator by $\sqrt[3]{x y^{2}}$. Altogether, it looks like this:

$$
\begin{aligned}
& \frac{40 x y^{2}}{\sqrt[3]{25 x^{2} y^{4}}} \cdot \frac{\sqrt[3]{5 x y^{2}}}{\sqrt[3]{5 x y^{2}}} \\
& \frac{40 x y^{2} \sqrt[3]{5 x y^{2}}}{\sqrt[3]{125 x^{3} y^{6}}}
\end{aligned}
$$

The denominator is (of course!) a perfect cube, so you can simplify this:

$$
\frac{40 x y^{2} \sqrt[3]{5 x y^{2}}}{5 x y^{2}}
$$

The fraction reduces, so divide out the $5 x y^{2}$.
Final answer:

$$
8 \sqrt[3]{5 x y^{2}}
$$

$$
\text { P. 79: 25. } \quad \frac{12 x^{4} y^{2}}{\sqrt[5]{4 x^{2} y^{3}}}=\frac{12 x^{4} y^{2}}{\sqrt[5]{2^{2} x^{2} y^{3}}}
$$

Solution: Notice that the denominator has a fifth root that is not a perfect fifth power! The denominator does contains 4 which is 2^{2}. The goal, in rationalizing this denominator, is to get a perfect fifth power for the denominator. In this case, it would be nice to get a denominator like $\sqrt[5]{2^{5}}$. Since you already have $\sqrt[5]{2^{2}}$, to get the $\sqrt[5]{2^{5}}$, you need to multiply numerator and denominator by $\sqrt[5]{2^{3}}$. As to the variables $x^{2} y^{3}$, for perfect fifth powers, it is necessary to get exponents that are divisible by 5 , such as $x^{5} y^{5}$. Since you already have the $\sqrt[5]{x^{2} y^{3}}$, to get the $\sqrt[5]{x^{5} y^{5}}$, you will need to multiply numerator and denominator by $\sqrt[5]{x^{3} y^{2}}$. Altogether, it looks like this:

$$
\begin{aligned}
& \frac{12 x^{4} y^{2}}{\sqrt[5]{2^{2} x^{2} y^{3}}} \cdot \frac{\sqrt[5]{2^{3} x^{3} y^{2}}}{\sqrt[5]{2^{3} x^{3} y^{2}}} \\
& \frac{12 x^{4} y^{2} \sqrt[5]{2^{3} x^{3} y^{2}}}{\sqrt[5]{2^{5} x^{5} y^{5}}}
\end{aligned}
$$

The denominator is (of course!) a perfect cube, so you can simplify this:

$$
\frac{12 x^{4} y^{2} \sqrt[5]{2^{3} x^{3} y^{2}}}{2 x y}
$$

The fraction reduces, so divide out the $2 x y$.

Final answer:

$$
6 x^{3} y \sqrt[5]{8 x^{3} y^{2}}
$$

P. 79: \#27. $\quad \frac{12 x^{4} y^{2}}{\sqrt[5]{16 x^{4} y^{6}}}=\frac{12 x^{4} y^{2}}{\sqrt[5]{2^{4} x^{4} y^{6}}}$

Solution: Notice that the denominator has a fifth root that is not a perfect fifth power! The denominator contains 16 which is 2^{4}. The goal, in rationalizing this denominator, is to get a perfect fifth power for the denominator. In this case, it would be nice to get a denominator like $\sqrt[5]{2^{5}}$. Since you already have $\sqrt[5]{2^{4}}$, to get the $\sqrt[5]{2^{5}}$, you need to multiply numerator and denominator by $\sqrt[5]{2}$. As to the variables $x^{4} y^{6}$, for perfect fifth powers, it is necessary to get exponents that are divisible by 5 , such as $x^{5} y^{10}$. Since you already have the $\sqrt[5]{x^{4} y^{6}}$, to get the $\sqrt[5]{x^{5} y^{10}}$, you will need to multiply numerator and denominator by $\sqrt[5]{x y^{4}}$. Altogether, it looks like this:

$$
\begin{aligned}
& \frac{12 x^{4} y^{2}}{\sqrt[5]{2^{4} x^{4} y^{6}}} \bullet \frac{\sqrt[5]{2 x y^{4}}}{\sqrt[5]{2 x y^{4}}} \\
& \frac{12 x^{4} y^{2} \sqrt[5]{2 x y^{4}}}{\sqrt[5]{2^{5} x^{5} y^{10}}}
\end{aligned}
$$

The denominator is (of course!) a perfect cube, so you can simplify this:

$$
\frac{12 x^{4} y^{2} \sqrt[5]{2 x y^{4}}}{2 x y^{2}}
$$

The fraction reduces, so divide out the $2 x y^{2}$.

Final answer:

$$
6 x \sqrt[3]{2 x y^{4}}
$$

