Math in Living C O L O R !! 2.08 Algebra of Functions, Composite Functions Piecewise Functions

College Algebra: One Step at a Time, Pages 296-302: 7a), b), c), 8a, b), c), Extra, 12 Pages 303-305: 1, 4, 8

Dr. Robert J. Rapalje, Retired
Central Florida, USA

See Section 2.08 with explanations, examples, and exercises, coming soon!

NOTE: In this section, there are TWO very important concepts:

$$
\text { 1. Substitution } \quad \text { 2. Simplification }
$$

The first step is usually not hard, and the second step sometimes is easy. But then again, the second step can be VERY difficult. Don't be intimidated!!

Page 298: 7a) Find $f[g(x)]$, given $f(x)=\frac{2 x+3}{4 x}$ and $g(x)=x^{2}-3 x+6$
Step 1: Substitution: $\quad f(x)=\frac{2(x)+3}{4(x)}$

$$
f[g(x)]=\frac{2\left(x^{2}-3 x+6\right)+3}{4\left(x^{2}-3 x+6\right)}
$$

Step 2: Simplification: $f[g(x)]=\frac{2\left(x^{2}-3 x+6\right)+3}{4\left(x^{2}-3 x+6\right)}$

$$
f[g(x)]=\frac{2 x^{2}-6 x+12+3}{4\left(x^{2}-3 x+6\right)}
$$

7a) Final answer: $\quad f[g(x)]=\frac{2 x^{2}-6 x+15}{4\left(x^{2}-3 x+6\right)}$

Page 298: 7b) Find $g[f(x)]$ where $f(x)=\frac{2 x+3}{4 x}$ and $g(x)=x^{2}-3 x+6$
Step 1: Substitution: $\quad g[x]=(x)^{2}-3(x)+6$

$$
g[f(x)]=\left(\frac{2 x+3}{4 x}\right)^{2}-3\left(\frac{2 x+3}{4 x}\right)+6
$$

Step 2: Simplification: $g[f(x)]=\left(\frac{2 x+3}{4 x}\right)^{2}-3\left(\frac{2 x+3}{4 x}\right)+6$

$$
g[f(x)]=\left(\frac{4 x^{2}+12 x+9}{16 x^{2}}\right)-\frac{3}{1}\left(\frac{2 x+3}{4 x}\right)+\frac{6}{1}
$$

Before going any further, the LCD is $16 x^{2}$, so multiply numerator and denominator of the second fraction by $4 x$, and the third "fraction" by $16 x^{2}$. Hang on! This one might get ugly!

$$
\begin{aligned}
& g[f(x)]=\left(\frac{4 x^{2}+12 x+9}{16 x^{2}}\right)-\frac{3}{1} \bullet \frac{4 x}{4 x} \cdot\left(\frac{2 x+3}{4 x}\right)+\frac{6}{1} \bullet \frac{16 x^{2}}{16 x^{2}} \\
& g[f(x)]=\frac{\left(4 x^{2}+12 x+9\right)-12 x(2 x+3)+6 \bullet 16 x^{2}}{16 x^{2}} \\
& g[f(x)]=\frac{4 x^{2}+12 x+9-24 x^{2}-36 x+96 x^{2}}{16 x^{2}}
\end{aligned}
$$

7b) Final answer: $\quad g[f(x)]=\frac{76 x^{2}-24 x+9}{16 x^{2}}$
Solution: 7c) Find $f[f(x)]$, where $f(x)=\frac{2 x+3}{4 x}$
Step 1: Substitution: $\quad f(x)=\frac{2(x)+3}{4(x)}$

$$
\begin{aligned}
f[f(x)] & =\frac{2 f(x)+3}{4 f(x)}, \text { where } f(x)=\frac{2 x+3}{4 x} \\
f[f(x)] & =\frac{2\left(\frac{2 x+3}{4 x}\right)+3}{4\left(\frac{2 x+3}{4 x}\right)}
\end{aligned}
$$

Page 298: 7c) continued
Step 2: Simplification: $f[f(x)]=\frac{2\left(\frac{2 x+3}{4 x}\right)+3}{4\left(\frac{2 x+3}{4 x}\right)}$
Of course, this is a complex fraction, which can be tricky. Method I or Method II? Let's try Method II. The LCD for the entire fraction is $4 x$, so multiply numerator and denominator of the complex fraction by $4 x$.

$$
\begin{aligned}
& f[f(x)]=\frac{\frac{4 x}{1} \cdot\left[2\left(\frac{2 x+3}{4 x}\right)+3\right]}{\frac{4 x}{1} \cdot\left[4\left(\frac{2 x+3}{4 x}\right)\right]} \\
& f[f(x)]=\frac{\left[\frac{4 x}{1} \cdot 2\left(\frac{2 x+3}{4 x}\right)+\frac{4 x}{1} \cdot 3\right]}{\frac{4 x}{1} \cdot\left[4\left(\frac{2 x+3}{4 x}\right)\right]}
\end{aligned}
$$

Now THAT'S UGLY!! But it cleans up nicely! ALL these ugly fractions divide out, leaving this:

$$
\begin{aligned}
& f[f(x)]=\frac{\left[\frac{4 x}{1} \cdot 2\left(\frac{2 x+3}{4 x}\right)+\frac{4 x}{1} \cdot 3\right]}{\frac{4 x}{1} \cdot\left[4\left(\frac{2 x+3}{4 x}\right)\right]} \\
& f[f(x)]=\frac{2(2 x+3)+12 x}{4(2 x+3)} \\
& f[f(x)]=\frac{4 x+6+12 x}{4(2 x+3)} \\
& f[f(x)]=\frac{16 x+6}{4(2 x+3)} \\
& f[f(x)]=\frac{2(8 x+3)}{4(2 x+3)}
\end{aligned}
$$

7c) Final answer: $\quad f[f(x)]=\frac{8 x+3}{2(2 x+3)}$

Page 298: 8 a) Find $f[g(x)]$ where $f(x)=\frac{3 x-2}{4 x}$ and $g(x)=5 x^{2}-2 x$
Step 1: Substitution: $\quad f(x)=\frac{3(x)-2}{4(x)}$

$$
f[g(x)]=\frac{3\left(5 x^{2}-2 x\right)-2}{4\left(5 x^{2}-2 x\right)}
$$

Step 2: Simplification: $f[g(x)]=\frac{3\left(5 x^{2}-2 x\right)-2}{4\left(5 x^{2}-2 x\right)}$
8a) Final answer: $\quad f[g(x)]=\frac{15 x^{2}-6 x-2}{4 x(5 x-2)}$
Page 298: 8b) Given $f(x)=\frac{3 x-2}{4 x}$ and $g(x)=5 x^{2}-2 x$, find $g[f(x)]$.
Step 1: Substitution:

$$
\begin{aligned}
g[x] & =5(x)^{2}-2(x) \\
g[f(x)] & =5\left(\frac{3 x-2}{4 x}\right)^{2}-2\left(\frac{3 x-2}{4 x}\right)
\end{aligned}
$$

Step 2: Simplification: $g[f(x)]=\frac{5}{1}\left(\frac{3 x-2}{4 x}\right)^{2}-\frac{2}{1}\left(\frac{3 x-2}{4 x}\right)$

$$
g[f(x)]=\frac{5}{1}\left(\frac{9 x^{2}-12 x+4}{16 x^{2}}\right)-\frac{2}{1}\left(\frac{3 x-2}{4 x}\right)
$$

Before going any further, the LCD is $16 x^{2}$, so multiply numerator and denominator of the last fraction by $4 x$. Hang on! This one might get ugly!

8b) Final answer: $\quad g[f(x)]=\frac{21 x^{2}-44 x+20}{16 x^{2}}$

Page 298: 8c) Find $f[f(x)]$, where $f(x)=\frac{3 x-2}{4 x}$ and $g(x)=5 x^{2}-2 x$ Step 1: Substitution: $\quad f(x)=\frac{3(x)-2}{4(x)}$

$$
\begin{aligned}
f[f(x)] & =\frac{3 f(x)-2}{4 f(x)}, \text { where } f(x)=\frac{3 x-2}{4 x} \\
f[f(x)] & =\frac{3\left(\frac{3 x-2}{4 x}\right)-2}{4\left(\frac{3 x-2}{4 x}\right)}
\end{aligned}
$$

Step 2: Simplification:
Of course, this is a complex fraction, which can be tricky. Method I or Method II? Let's try Method II. The LCD for the entire fraction is $4 x$, so multiply numerator and denominator of the complex fraction by $4 x$.

$$
\begin{aligned}
& f[f(x)]=\frac{\frac{4 x}{1} \cdot\left[3\left(\frac{3 x-2}{4 x}\right)-2\right]}{\frac{4 x}{1} \cdot\left[4\left(\frac{3 x-2}{4 x}\right)\right]} \\
& f[f(x)]=\frac{\left[\frac{4 x}{1} \cdot 3\left(\frac{3 x-2}{4 x}\right)-\frac{4 x}{1} \cdot 2\right]}{\frac{4 x}{1} \cdot\left[4\left(\frac{3 x-2}{4 x}\right)\right]}
\end{aligned}
$$

Now THAT'S UGLY!! But it cleans up nicely! ALL these ugly fractions divide out, leaving this:

$$
\begin{aligned}
& f[f(x)]=\frac{\left[\frac{4 x}{1} \cdot 3\left(\frac{3 x-2}{4 x}\right)-\frac{4 x}{1} \cdot 2\right]}{\frac{4 x}{1} \cdot\left[4\left(\frac{3 x-2}{4 x}\right)\right]} \\
& f[f(x)]=\frac{3(3 x-2)-8 x}{4(3 x-2)}
\end{aligned}
$$

8c) Final answer: $\quad f[f(x)]=\frac{9 x-6-8 x}{4(3 x-2)}=\frac{x-6}{4(3 x-2)}$

Composite Functions
 (also known as Composition of Functions)

Using the notation of higher math, the notation is sometimes written

$$
\begin{aligned}
& f[g(x)]=(f \circ g)(x) \\
& g[f(x)]=(g \circ f)(x)
\end{aligned}
$$

Extra Application (from Soledad at Brevard Community College).

The function to convert Fahrenheit to Celsius is given by:

$$
C(f)=5 / 9(f-32)
$$

The function to convert Celsius to Kelvin is given by:

$$
K(C)=C+273.15
$$

a) Find a composite function that represents temperature on the Kelvin scale in terms of degrees Fahrenheit. That is, find K o $\mathrm{C}(\mathrm{f})$

$$
K(C)=C+273.15 \text { and } C(f)=\frac{5}{9}(f-32)
$$

$K \circ(C(f))=K[C(f)]=\frac{5}{9}(f-32)+273.15$
b) Convert 0 degrees Fahrenheit to Kelvin using your composite function. If $f=\mathbf{0}$, then

$$
K \circ(C(0))=\frac{5}{9}(0-32)+273.15=\frac{-160}{9}+273.15 \approx 255.37
$$

c) Convert 100 degrees \mathbf{F} to Kelvin using your composite function.

Solution: If $f=100$, then

$$
\begin{aligned}
& K \circ(C(100))=\frac{5}{9}(100-32)+273.15 \\
& K \circ(C(100))=\frac{5}{9}(68)+273.15=\frac{340}{9}+273.15 \approx 310.93
\end{aligned}
$$

Page 301: 12. $f(x)=\frac{3 x-4}{x}$ and $g(x)=x^{2}+4 x-8$
Solution:
First find:

$$
\begin{array}{ll}
f(-4)=\frac{\text { and }}{} & g(-4)= \\
f(-4)=\frac{3(-4)-4}{(-4)} & \\
f(-4)=\frac{-16}{-4} & \\
f(-4)=4 & g(-4)=16-16-8 \\
&
\end{array}
$$

12a) $(f+g)(-4)$ $f(-4)+g(-4)$
$4+(-8)$
-4
c) $(f \bullet g)(-4)$
$f(-4) \bullet g(-4)$
4 - (-8)
-32
b) $(f-g)(-4)$
$f(-4)-g(-4)$
$4-(-8)$
12
d) $(f / g)(-4)$
$\frac{f(-4)}{g(-4)}$

$$
\begin{gathered}
\frac{4}{(-8)} \\
-\frac{1}{2}
\end{gathered}
$$

f) $(g \circ f)(-4)$ $g[f(-4)]$ where $f(-4)=4$
$g[4]=4^{2}+4 \bullet 4-8$
$g[4]=16+16-8$
$(g \circ f)(-4)=g[4]=24$

Page 301: 12 continued) $f(x)=\frac{3 x-4}{x}$ and $g(x)=x^{2}+4 x-8$
g) $(g \circ g)(-4)$
h) $\quad(f \circ f)(-4)$
$g[g(-4)]$ where $g(-4)=-8$
$g[-8]=(-8)^{2}+4 \bullet(-8)-8$
$g[-8]=64-32-8$
$(g \circ g)(-4)=g[-8]=24$

$$
f[f(-4)] \text { where } f(-4)=4
$$

$$
f[4]=\frac{3(4)-4}{(4)}
$$

$f[4]=\frac{8}{4}$
$(f \circ f)(-4)=f[4]=2$
(x^{2} if $x \geq 0 \quad$ (call this category 1)
Page 303: \#1. $f(x)=\{$

$$
(x-3 \quad \text { if } x<0 \quad \text { (call this category } 2 \text {) }
$$

Solution:

a) $f(2)=$ \qquad This means that $x=2$, which means that x is in category 1 , since $x \geq 0$.

$$
f(2)=2^{2}
$$

$$
f(2)=4
$$

b) $f(-2)=$ This means that $x=-2$, which means that x is in category 2 , since $x \leq 0$.
$f(-2)=-2-3$
$f(-2)=-5$
c) $f(-8)=$
$f(-8)=-8-3$
$f(-8)=-11$
d) $f(8)=$ \qquad This means that $x=8$, which means that x is in category 1 , since $x \geq 0$.
$f(8)=8^{2}$
$f(8)=64$
e) $f(0)=$ \qquad This means that $x=0$, which means that x is in category $\mathbf{1}$, since $x \geq 0$.
$f(0)=0^{2}$
$f(0)=0$
f) $f(-25)=$ \qquad This means that $x=-25$, which means that x is in category 2 , since $x \leq 0$.
$f(-25)=-25-3$
$f(-25)=-28$
Page 304: \#4. $f(x)=\left\{\begin{array}{cll}x^{2} & \text { if } x \leq-2 & \text { (call this category 1) } \\ 3 & \text { if }-2<x \leq 0 & \text { (call this category 2) } \\ -2 x & \text { if } x>0 & \text { (call this category } 3 \text {) }\end{array}\right.$

Solution:

a) $f(2)=\ldots \quad$ This means that $x=2$, which means that x is in category 3 , since $x>0$.

$$
f(2)=-2 \cdot 2
$$

$$
f(2)=-4
$$

b) $f(-2)=\ldots \quad$ This means that $x=-2$, which means that x is in category 1 , since $x \leq-2$. $f(-2)=(-2)^{2}$ $f(-2)=4$
c) $f(-8)=\ldots \quad$ This means that $x=-8$, which means that x is in category $\mathbf{1}$, since $x \leq-2$. $f(-8)=(-8)^{2}$ $f(-8)=64$
d) $f(8)=$ \qquad This means that $x=8$, which means that x is in category 3 , since $x>0$. $f(8)=-2 \cdot(8)$ $f(8)=-16$
e) $f(0)=\ldots$ This means that $x=0$, which means that x is in category 2 , since $-2<x \leq 0$. $f(0)=3$
f) $f(-13)=\ldots$ This means that $x=-13$, which means that x is in category 1 , since $x \leq-2$. $f(-13)=(-13)^{2}$ $f(-13)=169$
Page 305: \#8. $f(x)=\left\{\begin{array}{lll}-x^{2}+5 & \text { if } x<-3 & \text { (call this category 1) } \\ 6-5 x & \text { if }-3 \leq x<2 & \text { (call this category 2) } \\ -3-2 x & \text { if } x \geq 2 & \text { (call this category 3) }\end{array}\right.$

Solution:

a) $\boldsymbol{f}(2)=\quad$ This means that $x=2$, which means that x is in category 3 , since $x \geq 2$.

$$
f(2)=-3-2(2)
$$

$$
f(2)=-3-4
$$

$$
f(2)=-7
$$

b) $f(-3)=\ldots$ This means that $x=-3$, which means that x is in category 2 , since $-3 \leq x<2$.
$f(-3)=6-5(-3)$
$f(-3)=6+15$
$f(-3)=21$
c) $f(-5)=\ldots \quad$ This means that $x=-5$, which means that x is in category $\mathbf{1}$, since $x<-3$.
$f(-5)=-(-5)^{2}+5$
$f(-5)=-25+5$
$f(-5)=-20$
d) $f(8)=$ \qquad This means that $x=8$, which means that x is in category 3 , since $x \geq 2$.
$f(8)=-3-2(8)$
$f(8)=-3-16$
$f(8)=-19$
e) $\boldsymbol{f}(0)=\ldots$ This means that $x=0$, which means that x is in category 2 , since $-3 \leq x<2$.
$f(0)=6-5(0)$
$f(0)=6$
f) $f(-8)=\ldots$ This means that $x=-8$, which means that x is in category 1 , since $x<-3$.
$f(-8)=-(-8)^{2}+5$
$f(-8)=-64+5$
$f(-8)=-59$

