Math in Living C OLOR !!

2.03 The Parabola

College Algebra: One Step at a Time, Page 219-228: \#37, 43, 46, 47, 68, 71, 72, 75

Dr. Robert J. Rapalje, Retired Central Florida, USA

See Section 2.03, with explanations, examples, and exercises, coming soon!

General Explanation

There are quite a number of different explanations and presentations that can be made for graphing parabolas. In the analytic geometry explanation, usually found in a Precalculus or Calculus course, the parabola is defined to be the set of all points that are equally distant from a given point called the focal point and a given line, which is called the directrix of the parabola.

By contrast, and for simplicity in lower math courses, a parabola can be explained in terms of simple graphs of equations in the form of $y=x^{2}, y=-x^{2}$, $x=y^{2}$, or $x=-y^{2}$. In the more general case, equations in the form $y=a x^{2}+b x+c$ and $x=a y^{2}+b y+c$ can be shown to represent graphs of parabolas.

$$
\begin{aligned}
& \text { For } y=a x^{2}+b x+c, \text { the parabola will open up if a is positive } \\
& \text { down if } a \text { is negative. } \\
& \text { For } x=a y^{2}+b y+c, \text { the parabola will open right if } a \text { is positive } \\
& \text { left if } a \text { is negative. }
\end{aligned}
$$

There are several different ways to explain and graph parabolas in this form. You can just make a table of values and plot points. I don't recommend thisit's too tedious and mechanical. You can also graph by finding an intercept (the easiest and a very important point to graph!) and the vertex of the parabola by completing the square. For the past 20 years or so, in my book College Algebra: One Step at a Time, I explained parabolas by this method. However, I think it might be easier find the vertex of a parabola by using a simple formula that is easy to derive and remember.

For a parabola in the form $y=a x^{2}+b x+c$, the vertex will have as its x coordinate $x=\frac{-b}{2 a}$. This is not a new formula. It actually comes from the quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, where the radical is zero. After you find the x-coordinate of the vertex, then you just substitute this value of x into the original equation, and solve for y to find the y-coordinate of the vertex. Remember, the vertex consists of TWO coordinates, both x and y. You must find BOTH of them.

It is also a good idea to find the y-intercept. This is both an easy point and an important point to graph, since it indicates where the graph crosses the y-axis. It is also very easy to find, since you just let $x=0$, and solve for y in the original equation.

For an equation of a parabola in the form $x=a y^{2}+b y+c$, the vertex will have as its y coordinate $y=\frac{-b}{2 a}$. Then substitute this value of y back into the original equation to find the x coordinate. Don't forget, you must find BOTH coordinates, and when you give ordered pair notation (x, y), you must always put the x coordinate first

It is also a good idea to find the x-intercept. This is both an easy point and an important point to graph, since it indicates where the graph crosses the x-axis. It is also very easy to find, since you just let $y=0$, and solve for x in the original equation.

Parabola Summary

$$
\begin{gathered}
y=a x^{2}+b x+c-\text { Opens UP } \quad \text { if } a>0 \\
-\quad-\text { Opens DOWN if } a<0 \\
\text { Vertex is at } x=\frac{-b}{2 a} \\
x=a y^{2}+b y+c-\text { Opens RIGHT if } a>0 \\
\quad-\text { Opens LEFT } \quad \text { if } a<0 \\
\text { Vertex is at } y=\frac{-b}{2 a}
\end{gathered}
$$

$$
\text { P. 222. \# 37. } y=3 x^{2}-18 x+24
$$

Solution: Before you ever start the problem, you know from the fact that the equation is in the form $y=x^{2}$, that it is a PARABOLA, and it opens UP! It should be very easy to graph, if you can find the VERTEX and the y-intercept.

Of course, the easiest point to find is the y-intercept, which is where $x=0$, and therefore ${ }^{y=24}$. This is the point $(0,24)$.

There are many ways to find the vertex, but perhaps the easiest way is to know that the vertex will be at $x=\frac{-b}{2 a}$, where $a=3$ and $b=-18$. Therefore

$$
x=\frac{-b}{2 a}=\frac{-(-18)}{2 \cdot 3}=\frac{18}{6}=3
$$

To find the y-coordinate, substitute $\boldsymbol{x}=\mathbf{3}$ back into the original equation for y .

$$
\begin{aligned}
& y=3 x^{2}-18 x+24 \\
& y=3(3)^{2}-18(3)+24 \\
& y=27-54+24 \\
& y=-3
\end{aligned}
$$

Therefore the vertex is $(3,-3)$.
Sketch the graph by locating these two points, $(3,-3)$ and ${ }^{(0,24)}$, and draw a parabola from the vertex at ${ }^{(3,-3)}$, opening UP, and passing through ${ }^{(0,24)}$.

P. 228. \# 43. $y=-3 x^{2}-18 x+24$

Solution: From the fact that the equation is in the form $y=-x^{2}$, you know that it is a PARABOLA, and it opens DOWN! Knowing this, you can sketch the graph, if you can find the VERTEX and the y-intercept.

Of course, the easiest point to find is the y-intercept, which is where $x=0$, and therefore $y=24$. This is the point $(0,24)$

There are many ways to find the vertex, but perhaps the easiest way is to know that the vertex will be at $x=\frac{-b}{2 a}$, where $a=-3$ and $b=-18$. Therefore

$$
x=\frac{-b}{2 a}=\frac{-(-18)}{2(-3)}=\frac{18}{-6}=-3
$$

To find the y-coordinate, substitute $x=-3$ back into the original equation for y.

$$
\begin{aligned}
& y=-3 x^{2}-18 x+24 \\
& y=-3(-3)^{2}-18(-3)+24 \\
& y=-27+54+24 \\
& y=51
\end{aligned}
$$

Therefore the vertex is $(-3,51)$.
Sketch the graph by locating these two points, $(-3,51)$ and $(0,24)$, and draw a parabola from the vertex $(-3,51)$, opening DOWN, and passing through $(0,24)$.

P. 228. \# 46. $y=4 x^{2}+4 x+12$

Solution: You know from the fact that the equation in the form $y=x^{2}$, that this is a PARABOLA, and it opens UP! Knowing this, it should be very easy to graph, if you can find the VERTEX and the y-intercept.

Of course, the easiest point to find is the y-intercept, which is where $x=0$, and therefore $y=12$. This is the point $(0,12)$

There are many ways to find the vertex, but perhaps the easiest way is to know that the vertex will be at $x=\frac{-b}{2 a}$, where $a=4$ and $b=4$. Therefore

$$
x=\frac{-b}{2 a}=\frac{-(4)}{2(4)}=\frac{-4}{8}=-\frac{1}{2}
$$

To find the y-coordinate, substitute $x=-\frac{1}{2}$ back into the original equation for y.

$$
\begin{aligned}
& y=4 x^{2}+4 x+12 \\
& y=4\left(-\frac{1}{2}\right)^{2}+4 \cdot\left(-\frac{1}{2}\right)+12 \\
& y=4 \cdot \frac{1}{4}+4 \cdot\left(-\frac{1}{2}\right)+12 \\
& y=11
\end{aligned}
$$

Therefore the vertex is $\quad\left(-\frac{1}{2}, 11\right)$.
Sketch the graph by locating these two points, $\left(-\frac{1}{2}, 11\right)$ and $(0,12)$, and draw a parabola from the vertex at $\left(-\frac{1}{2}, 11\right)$, opening UP, and passing through $(0,12)$.

$$
\text { P. 228. \# 47. } y=2 x^{2}-2 x-8
$$

Solution: Since the equation in the form of $y=x^{2}$, you know it is a PARABOLA, and it opens UP! Knowing this, it should be very easy to graph, if you can find the VERTEX and the y-intercept.

Of course, the easiest point to find is the y-intercept, which is where $x=0$, and therefore $y=-8$. This is the point $(0,-8)$

There are many ways to find the vertex, but perhaps the easiest way is to know that the vertex will be at $x=\frac{-b}{2 a}$, where $a=2$ and $b=-2$. Therefore

$$
x=\frac{-b}{2 a}=\frac{-(-2)}{2(2)}=\frac{2}{4}=\frac{1}{2}
$$

To find the y-coordinate, substitute $x=\frac{1}{2}$ back into the original equation for y.

$$
\begin{aligned}
& y=2 x^{2}-2 x-8 \\
& y=2\left(\frac{1}{2}\right)^{2}-2\left(\frac{1}{2}\right)-8 \\
& y=2 \bullet \frac{1}{4}-1-8 \\
& y=\frac{1}{2}-9=-8.5
\end{aligned}
$$

Therefore the vertex is $(0.5,-8.5)$.
Sketch the graph by locating these two points, $(0.5,-8.5)$ and $(0,-8)$, and draw a parabola from the vertex at $(0.5,-8.5)$, opening UP, and passing through $(0,-8)$.

$$
\text { P. 228. \# 68. } \quad x=2 y^{2}-3 y+1
$$

Solution: Since this is an equation in the form of $x=y^{2}$, you know that it is a PARABOLA, and it opens to the RIGHT! Knowing this, you can sketch the graph, if you can find the VERTEX and the x-intercept.

Of course, the easiest point to find is the x-intercept, which is where $y=0$, and therefore $x=1$. This is the point $(1,0)$

There are many ways to find the vertex, but perhaps the easiest way is to realize that the vertex will be at $y=\frac{-b}{2 a}$, where $a=2$ and $b=-3$. Therefore

$$
y=\frac{-b}{2 a}=\frac{-(-3)}{2(2)}=\frac{3}{4}
$$

To find the x -coordinate, substitute $y=\frac{3}{4}$ back into the original equation for x .

$$
\begin{aligned}
& x=2 y^{2}-3 y+1 \\
& x=2\left(\frac{3}{4}\right)^{2}-3 \cdot \frac{3}{4}+1 \\
& x=2 \bullet \frac{9}{16}-\frac{9}{4}+1 \\
& x=\frac{9}{8}-\frac{18}{8}+\frac{8}{8}=-\frac{1}{8}
\end{aligned}
$$

Therefore the vertex is $\left(-\frac{1}{8}, \frac{3}{4}\right)$.
Sketch the graph by locating these two points, $\left(-\frac{1}{8}, \frac{3}{4}\right)$ and (1,0), and draw a parabola from the vertex at $\left(-\frac{1}{8}, \frac{3}{4}\right)$, opening RIGHT, and passing through $(1,0)$.

ALTERNATE SOLUTION--Completing the Square Method

P. 228. \# 68. $x=2 y^{2}-3 y+1$

Solution: As before, you know that since the equation in the form of $x=y^{2}$, it is a PARABOLA, and it opens to the RIGHT! Knowing this, if you can find the VERTEX and the x-intercept, you can sketch the graph.

Of course, the easiest point to find is the x-intercept, which is where $y=0$, and therefore $x=1$. This is the point $(1,0)$

In order to find the vertex by the completing the square method, you must have the coefficient of y^{2} to be 1 by factoring out the $2--$ even if fractions result:

$$
x_{-}=2\left(y^{2}-\frac{3}{2} y+\ldots\right)+1
$$

You must complete the square to fill in the blank space within the parentheses by taking half of the $-\frac{3}{2}$, which is $-\frac{3}{4}$, and squaring in order to obtain $\frac{9}{16}$. Then you placed a $\frac{9}{16}$ in the parentheses on the right side of the equation, but you that $\frac{9}{16}$ was actually multiplied times the 2 that was outside the parentheses. Therefore, you must add $2 \bullet \frac{9}{16}$, or $\frac{9}{8}$ to the left side of the equation. It should look like this:

$$
\begin{aligned}
x _ & =2\left(y^{2}-\frac{3}{2} y+\ldots\right)+1 \\
x+2 \cdot \frac{9}{16} & =2\left(y^{2}-\frac{3}{2} y+\frac{9}{16}\right)+1 \\
x+\frac{9}{8} & =2\left(y-\frac{3}{4}\right)^{2}+1
\end{aligned}
$$

To be continued next page!!

P. 228: \#68 continued.

$$
x+\frac{9}{8}=2\left(y-\frac{3}{4}\right)^{2}+1
$$

Next subtract 1 from each side:

$$
\begin{aligned}
x+\frac{9}{8}-1 & =2\left(y-\frac{3}{4}\right)^{2}+1-1 \\
x+\frac{1}{8} & =2\left(y-\frac{3}{4}\right)^{2}
\end{aligned}
$$

From this form of the equation, you can see that the vertex (i.e., what zeros out the x term and what zeros out the y term) is $x=-\frac{1}{8}$ and $y=\frac{3}{4}$. The vertex is therefore the point $\left(-\frac{1}{8}, \frac{3}{4}\right)$.
As before, sketch the graph by locating these two points, $\left(-\frac{1}{8}, \frac{3}{4}\right)$ and $(1,0)$, and draw a parabola from the vertex at $\left(-\frac{1}{8}, \frac{3}{4}\right)$, opening LEFT, and passing through (1,0).

$$
x=2 y^{2}-3 y+1
$$

$$
\text { P. 228. \# 71. } x=-y^{2}-6 y-5
$$

Solution: You know that, since the equation in the form of $x=-y^{2}$, this is a PARABOLA, and it opens to the LEFT! You can graph it, if you find the VERTEX and the x -intercept.

Of course, the easiest point to find is the x-intercept, which is where $y=0$, and therefore $x=-5$. This is the point $(-5,0)$

There are many ways to find the vertex, but perhaps the easiest way is to know that the vertex will be at $y=\frac{-b}{2 a}$, where $a=-1$ and $b=-6$. Therefore

$$
y=\frac{-b}{2 a}=\frac{-(-6)}{2(-1)}=-3
$$

To find the x -coordinate, substitute $\mathrm{y}=-\mathbf{3}$ back into the original equation for x .

$$
\begin{aligned}
& x=-y^{2}-6 y-5 \\
& x=-(-3)^{2}-6(-3)-5 \\
& x=-9+18-5=4
\end{aligned}
$$

Therefore the vertex is $(4,-3)$.
Sketch the graph by locating these two points, $(4,-3)$ and $(-5,0)$, and draw a parabola from the vertex at $(4,-3)$, opening LEFT, and passing through $(-5,0)$. This is how it looks on the graphing calculator:

$$
x=-y^{2}-6 y-5
$$

P. 228. \# 72. $x=y^{2}+8 y+12$

Solution: Since this equation in the form of $x=y^{2}$, it is a PARABOLA that opens to the RIGHT! Find the VERTEX and the x-intercept to sketch the graph.

Of course, the easiest point to find is the x-intercept, which is where $y=0$, and therefore $x=12$. This is the point $(12,0)$

There are many ways to find the vertex, but perhaps the easiest way is to know that the vertex will be at $y=\frac{-b}{2 a}$, where $a=1$ and $b=8$. Therefore

$$
y=\frac{-b}{2 a}=\frac{-(8)}{2(1)}=-4
$$

To find the x -coordinate, substitute $\mathrm{y}=-\mathbf{4}$ back into the original equation for x .

$$
\begin{aligned}
& x=y^{2}+8 y+12 \\
& x=(-4)^{2}+8(-4)+12 \\
& x=16+(-32)+12=-4
\end{aligned}
$$

Therefore the vertex is $(-4,-4)$.
Sketch the graph by locating these two points, $(-4,-4)$ and $(12,0)$, and draw a parabola from the vertex at ($-4,-4$), opening RIGHT, and passing through $(12,0)$.

This is how it looks on the graphing calculator:

$$
x=y^{2}+8 y+12
$$

$$
\text { P. 228. \# 75. } \quad x=4 y^{2}+6 y+3
$$

Solution: Since this equation in the form $x=y^{2}$, it is a PARABOLA that opens to the RIGHT! Knowing this, you can sketch the graph using the VERTEX and the x-intercept.

Of course, the easiest point to find is the x-intercept, which is where $y=0$, and therefore $x=3$. This is the point $(3,0)$
To find the vertex, use the formula $y=\frac{-b}{2 a}$, where $a=4$ and $b=6$. Therefore,

$$
y=\frac{-b}{2 a}=\frac{-(6)}{2(4)}=-\frac{6}{8}=-\frac{3}{4}
$$

To find the x -coordinate, substitute $y=-\frac{3}{4}$ back into the original equation for x .

$$
\begin{aligned}
& x=4 y^{2}+6 y+3 \\
& x=4\left(\frac{-3}{4}\right)^{2}+6\left(\frac{-3}{4}\right)+3 \\
& x=4 \bullet \frac{9}{16}-\frac{18}{4}+3 \\
& x=\frac{9}{4}-\frac{18}{4}+\frac{12}{4}=\frac{3}{4} .
\end{aligned}
$$

Therefore the vertex is at $\left(\frac{3}{4}, \frac{-3}{4}\right)$.
Sketch the graph by locating these two points, $\left(\frac{3}{4}, \frac{-3}{4}\right)$ and $(3,0)$, and draw a parabola from the vertex at $\left(\frac{3}{4}, \frac{-3}{4}\right)$, opening RIGHT, and passing through $(3,0)$.

$$
x=4 y^{2}+6 y+3
$$

