Math in Living COLOR !! 2.10 Inverse Functions

College Algebra: One Step at a Time, Pages 324-332: \#5, 6, 7, 11, 14
Dr. Robert J. Rapalje, Retired
Central Florida, USA

See Section 2.10, with explanations, examples, and exercises, coming soon!
P. 326. \# 5. Show that $f(x)$ and $f^{-1}(x)$ are inverse functions of one another.

$$
f(x)=\frac{x+4}{x} \quad f^{-1}(x)=\frac{4}{x-1}
$$

Solution:
First find $f\left[f^{-1}(x)\right]$.

$$
\begin{aligned}
f[J u n k] & =\frac{(J u n k)+4}{(J u n k)} \\
f\left[f^{-1}(x)\right] & =\frac{\left(f^{-1}(x)\right)+4}{\left(f^{-1}(x)\right)} \\
f\left[f^{-1}(x)\right] & =f\left[\frac{4}{x-1}\right]=\frac{\left(\frac{4}{x-1}\right)+4}{\left(\frac{4}{x-1}\right)}
\end{aligned}
$$

This is a complex fraction, which can be simplified by a couple of different methods. I think it works nicely if you multiply numerator and denominator by the LCD which is $x-1$. It may help to think of this as $\frac{(x-1)}{1}$.

$$
f\left[f^{-1}(x)\right]=\frac{\frac{(x-1)}{(x-1)}}{\frac{(x)}{1} \cdot\left[\left(\frac{4}{x-1}\right)+4\right]}\left[\left(\frac{4}{x-1}\right)\right]
$$

To be continued next page!!

P. 326: \#5 continued.

$$
\begin{aligned}
& f\left[f^{-1}(x)\right]=\frac{\left[\frac{(x-1)}{1} \cdot\left(\frac{4}{x-1}\right)+\frac{(x-1)}{1} \cdot 4\right]}{\left[\frac{(x-1)}{1} \cdot\left(\frac{4}{x-1}\right)\right]} \\
& f\left[f^{-1}(x)\right]=\frac{[4+4(x-1)]}{[4]} \\
& f\left[f^{-1}(x)\right]=\frac{[4+4 x-4]}{[4]} \\
& f\left[f^{-1}(x)\right]=\frac{4 x}{4}=x
\end{aligned}
$$

For the second part, you must find $f^{-1}[f(x)]$
Recall that $\quad f(x)=\frac{x+4}{x} \quad f^{-1}(x)=\frac{4}{x-1}$

Now

$$
\begin{aligned}
& f^{-1}[\text { Junk }]=\frac{4}{(\text { Junk })-1} \\
& f^{-1}[f(x)]=\frac{4}{(f(x))-1} \\
& f^{-1}\left[\frac{x+4}{x}\right]=\frac{4}{\left(\frac{x+4}{x}\right)-1} \\
& f^{-1}\left[\frac{x+4}{x}\right]=\frac{4}{\left(\frac{x+4}{x}\right)-1}
\end{aligned}
$$

To be continued next page!!

P. 326: \#5 continued.

This is also a complex fraction, which can be simplified by a couple of different methods. Again, I think it works nicely if you multiply numerator and denominator by the LCD which is $\frac{x}{1}$.

$$
f^{-1}[f(x)]=\frac{\frac{x}{1}}{\frac{x}{1}} \cdot \frac{4}{\left[\left(\frac{x+4}{x}\right)-1\right]}
$$

$$
f^{-1}[f(x)]=\frac{\frac{x}{1} \circ 4}{\left[\frac{x}{1} \circ\left(\frac{x+4}{x}\right)-\frac{x}{1} \cdot 1\right]}
$$

$$
f^{-1}[f(x)]=\frac{4 x}{[x+4-x]}
$$

$$
f^{-1}[f(x)]=\frac{4 x}{4}=x
$$

P. 327. \# 6. Show that $f(x)$ and $f^{-1}(x)$ are inverse functions of one another.

$$
f(x)=\frac{x}{x-4} \quad f^{-1}(x)=\frac{4 x}{x-1}
$$

Solution:
First find $\quad f\left[f^{-1}(x)\right]$.

$$
\begin{aligned}
& f[\text { Junk }]=\frac{(\text { Junk })}{(\text { Junk })-4} \\
& f\left[f^{-1}(x)\right]=\frac{\left(f^{-1}(x)\right)}{\left(f^{-1}(x)\right)-4} \\
& f\left[f^{-1}(x)\right]=\frac{\left(\frac{4 x}{x-1}\right)}{\left(\frac{4 x}{x-1}\right)-4}
\end{aligned}
$$

This is a complex fraction, which can be simplified by a couple of different methods. I think it works nicely if you multiply numerator and denominator by the LCD which is $x-1$. It may help to think of this as $\frac{(x-1)}{1}$.

$$
\begin{aligned}
& f\left[f^{-1}(x)\right]=\frac{\frac{(x-1)}{1} \cdot\left[\left(\frac{4 x}{x-1}\right)\right]}{\frac{(x-1)}{1} \cdot\left[\left(\frac{4 x}{x-1}\right)-4\right]} \\
& f\left[f^{-1}(x)\right]=\frac{\left[\frac{(x-1)}{1} \bullet\left(\frac{4 x}{x-1}\right)\right]}{\left[\frac{(x-1)}{1} \cdot\left(\frac{4 x}{x-1}\right)-4 \bullet \frac{(x-1)}{1}\right]} \\
& f\left[f^{-1}(x)\right]=\frac{[4 x]}{[4 x-4 x+4]} \\
& f\left[f^{-1}(x)\right]=\frac{4 x}{4}=x
\end{aligned}
$$

For the second part, you must find $f^{-1}[f(x)]$

Recall that

$$
f(x)=\frac{x}{x-4} \quad f^{-1}(x)=\frac{4 x}{x-1}
$$

Now

$$
\begin{aligned}
f^{-1}[\text { Junk }] & =\frac{4(\text { Junk })}{(J u n k)-1} \\
f^{-1}[f(x)] & =\frac{4(f(x))}{(f(x))-1} \\
f^{-1}[f(x)] & =\frac{4\left(\frac{x}{x-4}\right)}{\left(\frac{x}{x-4}\right)-1}
\end{aligned}
$$

This is also a complex fraction, which can be simplified by a couple of different methods. Again, I think it works nicely if you multiply numerator and denominator by the LCD which is $\frac{x-4}{1}$.

$$
\begin{aligned}
f^{-1}[f(x)] & =\frac{\frac{x-4}{1} \cdot \frac{4\left(\frac{x}{x-4}\right)}{\frac{x-4}{1}} \cdot\left(\frac{x}{x-4}\right)-1}{1} \cdot 4\left(\frac{x}{x-4}\right) \\
f^{-1}[f(x)] & =\frac{\frac{x-4}{x-4}}{\frac{1}{1} \cdot\left(\frac{x}{x-4}\right)-1 \bullet \frac{x-4}{1}} \\
f^{-1}[f(x)] & =\frac{4 x}{x-x+4} \\
f^{-1}[f(x)] & =\frac{4 x}{4}=x
\end{aligned}
$$

P. 327. \# 7. Show that $f(x)$ and $f^{-1}(x)$ are inverse functions of one another.

$$
f(x)=\frac{x^{3}-8}{4} \quad f^{-1}(x)=\sqrt[3]{4 x+8}
$$

Solution:
First find

$$
\begin{aligned}
& f\left[f^{-1}(x)\right] . \\
& f[\text { Junk }]=\frac{(\text { Junk })^{3}-8}{4} \\
& f\left[f^{-1}(x)\right]=\frac{\left(f^{-1}(x)\right)^{3}-8}{4} \\
& f\left[f^{-1}(x)\right]=\frac{(\sqrt[3]{4 x+8})^{3}-8}{4} \\
& f\left[f^{-1}(x)\right]=\frac{4 x+8-8}{4} \\
& f\left[f^{-1}(x)\right]=\frac{4 x}{4}=x
\end{aligned}
$$

For the second part, you must find $f^{-1}[f(x)]$
Recall that

$$
f(x)=\frac{x^{3}-8}{4} \quad f^{-1}(x)=\sqrt[3]{4 x+8}
$$

Now

$$
\begin{aligned}
& f^{-1}[\text { Junk }]=\sqrt[3]{4(\text { Junk })+8} \\
& f^{-1}[f(x)]=\sqrt[3]{4 f(x)+8} \\
& f^{-1}[f(x)]=\sqrt[3]{4\left(\frac{x^{3}-8}{4}\right)+8} \\
& f^{-1}[f(x)]=\sqrt[3]{4\left(\frac{x^{3}-8}{4}\right)+8} \\
& f^{-1}[f(x)]=\sqrt[3]{x^{3}-8+8} \\
& f^{-1}[f(x)]=\sqrt[3]{x^{3}}=x
\end{aligned}
$$

Page 328. \# 11. Find $f^{-1}(x)$ for $\quad f(x)=\frac{5 x+3}{2}$

Solution: Let $y=\frac{5 x+3}{2}$
Step 1: Interchange the x and $\mathrm{y}: \quad x=\frac{5 y+3}{2}$
Step 2: \quad Solve for y !
Multiply both sides by $2: \quad 2 x=5 y+3$
Subtract 3

$$
2 x-3=5 y
$$

Divide both sides by 5: $\quad \frac{2 x-3}{5}=y$
Therefore,

$$
f^{-1}(x)=\frac{2 x-3}{5}
$$

Page 329. \# 14. Find $f^{-1}(x)$ for

$$
y=\frac{3 x+4}{5 x}
$$

Solution: Let $y=\frac{3 x+4}{5 x}$
Step 1: Interchange the x and $y: \quad x=\frac{3 y+4}{5 y}$
Step 2: Solve for y !
Multiply both sides by $5 y$: $\quad 5 x y=3 y+4$
Get y terms on left side: $\quad 5 x y-3 y=4$
Factor out the y :

$$
y(5 x-3)=4
$$

Divide both sides by $5 \mathrm{x}-3: \quad y=\frac{4}{5 x-3}$
Therefore, $f^{-1}(x)=\frac{4}{5 x-3}$

