\qquad

SHOW ALL WORK ON THIS TEST OR ON SEPARATE PAPER. Circle answers. TURN IN ALL WORKSHEETS. CALCULATORS ARE PERMITTED ON THIS TEST.

1. Graph the equations:
a) $y=-\frac{3}{2} x-2$

$$
\text { slope }=
$$

$$
y \text {-int }=
$$

\qquad

b) $4 x-3 y=12$

$$
\begin{array}{r}
x \text {-int }= \\
y \text {-int }= \\
\text { slope }=
\end{array}
$$

\qquad
2. Given the points $(8,-6)$ and $(-2,-4)$, find:
a) midpoint
b) slope
c) distance
3. Find the equation of the line (in $y=m x+b$ form) passing through ($8,-1$) and (4,2).

In $4-5$, find the equation of the line $(y=m x+b$ form) that passes through $(3,-5)$ and is
4. parallel to $5 x-4 y=10$.
5. perpendicular to $5 x-4 y=10$.

In 6 - 9, solve the systems of equations. Show work algebraically!
6. $3 x+7 y=6$
$2 x+3 y=-1$
7. $5 y-3 x=34$
$x=7-2 y$
8. $\begin{aligned} & 9 x-4 y=2 \\ & 2 x+5 y=-29\end{aligned}$
9. $4 x-2 y=8$
$y=2 x+4$
10. Graph the intersection of

$$
\begin{aligned}
& y \leq 3 x+3 \\
& y>-x-3
\end{aligned}
$$

11. Graph the union of

$$
\begin{aligned}
& 3 x+y>-6 \\
& 2 x-5 y \geq-10
\end{aligned}
$$

12. If $f(x)=\frac{x-2}{x+6}$
a) $f(2)=$
b) $\mathbf{f}(-2)=$
c) $\mathbf{f}(6)=$
d) $\mathbf{f}(-\mathbf{6})=$
e) $f($ Junk $)=$

In 13-14, find the domain (interval notation when appropriate):
13a) $y=\frac{x^{2}-4}{x^{2}-5 x-6}$
b) $y=x^{2}-9$
14a) $y=\sqrt{36-9 x}$
b) $y=\frac{4-6 x}{x}$

In 15-16, find the domain and range of each of the following graphs. Determine whether each is a function or not a function.
15.

16.

Domain: \qquad

Range: \qquad
Domain: \qquad

Range: \qquad

Function?
\qquad
Function? \qquad

INTER ALG. EXAM $4 H^{*}$ Solutions

3a) $(8,-1)(4,2)$

$$
\begin{aligned}
& m=\frac{2-(-1)}{4-8}=-\frac{3}{4} \\
& y=m x+b \\
& 2=-\frac{3}{4}+b+b \\
& +3+3 \\
& 5=b \\
& y=-\frac{3}{4} x+5
\end{aligned}
$$

$6^{2}(3 x+7 y=6)$
$-3(2 x+3 y=-1)$
$-6 x-9 y=3$

a)

$$
\begin{aligned}
& 4 x-3 y=12 \\
& \text { int }=(y=0) x=3) \\
& \text { yint: }(x=0)(y=-4) \\
& \frac{-3 y}{-3}=-4 x+12 \\
& y=\frac{4}{3} x-4 \\
& m=4 / 3
\end{aligned}
$$

4. $(3,-5)$
$5 x-4 y=10$

5. $(8,-6)(-2,-4)$
a)

$$
\begin{gathered}
x=\frac{8+(-2)}{2}=3 \\
y=\frac{-6+(-4)}{2}=-5 \\
(3,-5)
\end{gathered}
$$

B)

$$
\begin{aligned}
m=\frac{-4-(-6)}{-2-8} & =\frac{2}{-10} \\
& =-\frac{1}{5}
\end{aligned}
$$

$$
-4 y=-5 x+10
$$

c)

$$
y=\frac{5}{4} x-\frac{5}{2}
$$

$$
\begin{aligned}
d & =\sqrt{10^{2}+2^{2}} \\
& =\sqrt{104} \\
& =2 \sqrt{26} 0210.22
\end{aligned}
$$

5. $m_{\perp}=-\frac{4}{5}$

$$
\begin{aligned}
y & =m x+b \\
4(-5) & =\frac{45}{4}(3)+b
\end{aligned}
$$

$$
y=m x+b
$$

$$
\begin{aligned}
& -20=15+4 b . \\
& -15=-15
\end{aligned}
$$

$$
\frac{-15-15}{-35}=4 b .
$$

$6 x+14 y=12$

$$
\begin{gathered}
5 y=15 \\
3=3 \\
3 x+21=6 \\
3 x=-15 \\
x=-5 \\
(-5,3)
\end{gathered}
$$

$$
\begin{aligned}
& 5 \\
& 5 \\
& 5
\end{aligned}
$$

$$
f=\frac{-35}{4} \quad y=\frac{5}{4} x-\frac{35}{4}
$$

7. $5 y-3 x=34$

$$
x=7-2 y
$$

$$
5 y-3(7-2 y)=34
$$

$$
5 y-21+6 y=34
$$

$$
11 y-21=34
$$

$$
11 y=55
$$

$$
y=5
$$

10.

$$
\begin{aligned}
& y \leq 3 x+3 \\
& \text { 4int }=3 \\
& m=\frac{3}{1}
\end{aligned}=
$$

solid line
Belons

11. $3 x+y>-6$
8. ${ }^{5} 9 x-4 y=2$

$$
\frac{y=-5}{y-5}
$$

$$
(-2,-5)
$$

12. $f(x)=\frac{x-2}{x+6}$
a) $f(2)=\frac{2-2}{2+6}=\frac{0}{8}=0$
(a) $f(-2)=\frac{-2-2}{-2+6}=\frac{-4}{4}=-1$
c) $f(6)=\frac{6-2}{6+6}=\frac{4}{12}=\frac{1}{3}$
d) $f(-6)=\frac{-6-2}{6+6}=\frac{-8}{0}=$ (nded e) $f($ Tunk $) \frac{-\operatorname{Tan} \ell-2}{\operatorname{Tan} \ell+6}$

$$
\begin{aligned}
& 4 \frac{2 x+5 y=-29}{45 x-20 y=10} \\
& \begin{array}{l}
8 x+20 y=-16 \\
53 x=-106
\end{array} \\
& x=-2 \\
& 9(-2)-4 y=2 \\
& -4 y=20
\end{aligned}
$$

9.

$$
\begin{gathered}
4 x-2 y=8 \\
y=2 x+4 \\
4 x-2(2 x+4)=8 \\
4 x-4 x-8=8 \\
-8=8 \\
\text { No Solton } \\
\text { farallel inies }
\end{gathered}
$$

$$
y=\frac{x^{2}-4}{x^{2}-5 x-6}
$$

(3a) $x^{2}-5 x-6 \neq 0$

$$
(x-6)(x+1)=10
$$

$D=$ all $x \neq 6,-1$
-6) $y=x^{2}-9$
$D=$ allveal x $(-\infty, \infty)$
14a) $y=\sqrt{36-9 x}$
$D=36-9 x \geqslant 0$ $-9 x \geqslant-36$
$x \leqslant+4$
$(-\infty, 4]$
b) $y=\frac{4-6 x}{x}$ $D=$ all $x \neq 0$

$$
\begin{gathered}
x y \\
-076 \\
-270
\end{gathered}
$$

Ta leabove

$$
2 x-5 y \geq-10
$$

solution = All shached areas.
15. $D=[-4, \infty)$
$R=(-\infty, \infty)$
$1 F$? No

$$
16 D:(-\infty, \infty)
$$

$$
F ? N o
$$

$$
R=(-\infty,-3] \cup[3, \infty)
$$

