\qquad

SHOW ALL WORK ON THIS TEST OR ON SEPARATE PAPER. Circle answers. TURN IN ALL WORKSHEETS. CALCULATORS ARE REQUIRED ON THIS TEST.

1. Given the points $(4,-3)$ and $(-2,-7)$, find: (2 points each)
a) slope
b) midpoint
c) distance

In $2-3$, find the equation in $y=m x+b$ form (5 points each)
2. of a line between $(4,-3)$ and $(-2,-7)$.
3. Find the equation of the perpendicular bisector of the line segment between $(4,-3)$ and $(-2,-7)$.

In $4-5$, sketch the graphs. Find the vertex. (4 points each)
4. $y=(x+4)^{2}-2$
5. $x=(y+4)^{2}-2$

In 6 - 8, find the vertex (show work or explain how you did it!), and sketch the graph. (4 each)
6. $y=x^{2}-6 x+5$
7. $y=-2 x^{2}+12 x+5$
8. $x=-y^{2}+8 y-4$

In 9-10: (5 points each)
9. Find the center and radius by completing the square. Sketch. $x^{2}+y^{2}-10 x+4 y+20=0$
10. Find the equation of a circle whose center is at $(-4,6)$ and passing through $(5,3)$.
11. Find the domain (give interval notation when appropriate). (2 points each part)
a) $y=\frac{x^{2}-9}{x^{2}-5 x-36}$
b) $y=\frac{x^{2}-4}{\sqrt{5-x}}$
c) $y=\sqrt{4+5 x}$
d) $x y+6 y=4$
12. Given the equation $y=\sqrt{25-x^{2}}$
13. Given the equation: $y=-\sqrt{x^{2}-36}$

(2 points each part)
a) Domain:
b) Range:
c) Function?
c) Function?
14. Let $f(x)=\frac{4-3 x}{2 x}$
(2 points each part)
a) $f(0)=$
15. Let $f(x)=\frac{x-4}{2 x}$ and $g(x)=x^{2}-4$
(4 points each part)
a) find $\mathrm{f}[\mathrm{g}(x)]$ and simplify.
b) $f(4)=$
c) $f(2 x-7)=$
b) find $g[f(x)]$ and simplify.
16. Let $\mathrm{f}(x)=x^{2}-4 x$ and $g(x)=2 x-4$

$$
\int x^{2}-6 \quad \text { if } x \leq-3
$$ (1 point each part)

a) $(f+g)(-1)=$
c) $(f \circ g)(-1)=$
b) $(\mathbf{f}-\mathrm{g})(-\mathbf{1})=$
c) $(f \circ g)(-1)=$
d) $(\mathbf{f} / \mathrm{g})(-1)=$
a) $\mathrm{f}(5)$
b) $\mathrm{f}(-5)$
e) $(\mathbf{f} \circ \mathrm{g})(-1)=$
f) $(\mathrm{g} \circ \mathrm{f})(-\mathbf{1})=$
e) $\mathbf{f}(4)$
f) $\mathbf{f}(\mathbf{3 . 9 9 9})$
17. $f(x)= \begin{cases}7 & \text { if }-3<x<4\end{cases}$
$(-3 x+4$ if $x \geq 4$

In 18-19, 4 points each
18. $f(x)=3 x-4$ and $f^{-1}(x)=\frac{1}{3} x+\frac{4}{3}$
19. Given $f(x)=\frac{2 x}{4 x+3}$, find $\mathrm{f}^{-1}(x)$.

Show by finding $f\left[f^{-1}(x)\right]=x$ that $f(x)$ and $f^{-1}(x)$ are inverse functions.

COLLEGE ALGEBRA EXAM $2 P G$ Solutions

1. $(4,-3)(-2,-7) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x,} \quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
a) $m=\frac{-7-(-3)}{-2-4}$
b) midpt

$$
\text { c) } \begin{aligned}
d & =\sqrt{6^{2}+4^{2}} \\
& =\sqrt{36+16}=\sqrt{52}=2 \sqrt{13}
\end{aligned}
$$

3. midpt $=(1,-5)$

$$
\begin{aligned}
& m=\frac{2}{3}, m_{1}=-\frac{3}{2} \\
& y=m x+6 \\
& 2-5=-\frac{3}{2}(1)+l \\
& -10=-3+2 b \\
& -7=2 l \\
& b=-7 / 2=-\frac{3}{2} x-\frac{7}{2}
\end{aligned}
$$

7. $y=-2 x^{2}+12 x+5$

Parabola Opens Down
vertex $x=\frac{-l}{2 a}=\frac{-12}{-4}=3$

10. radius $=$ distance

$$
\begin{gathered}
r=\sqrt{9^{2}+3^{2}}=\sqrt{90} \\
c(-4+6) r^{2}=90 \\
(x+4)^{2}+(y-6)^{2}=90
\end{gathered}
$$

4. $y=(x+4)^{2}-2$
5. $x=(y+4)^{2}-2$

$$
x=-4
$$

$$
y=-4
$$

8. $x=-y^{2}+8 y-4$

Parabola opens Left.
vertex $y=\frac{-6}{2 a}=\frac{-8}{-2}=4$

11a) $y=\frac{x^{2}-9}{x^{2}-5 x-36}$ - $y=\frac{x^{2}-4}{\sqrt{5-x}}$
c) $y=\sqrt{4+5 x}$ $(x-9)(x+4)$
$D=$ all $x \neq 9,-4$
12. $y=\sqrt{25-x^{2}}$
a) $D=[-5,5$
b) $12=[0,5]$
c) $E=\frac{?}{5}$
58)

$$
\begin{aligned}
& g[f(x)]=\left(\frac{x-4}{2 x}\right)^{2}-4 \\
= & \frac{x^{2}-8 x+16}{4 x^{2}}-\frac{4}{1.4 x^{2}} \\
= & \frac{-15 x^{2}-8 x+16}{4 x^{2}}
\end{aligned}
$$

16.

$$
f(x)=x^{2}-4 x \quad \vec{e}(x)=2 x-4
$$

$f(-1)=5 \quad g(-1)=-6$
a) $5+-6-1$ 6) $5-(-6)=$
c) $5 \cdot(-6)=(-30$ d)
19. Continued

$$
y(4 x-2)=-3 x \quad y=\frac{-3 x}{4 x-2}=+(6)=36+24
$$

a) $c=-(-\infty,-6$
13. $y=-\sqrt{x^{2}-36}$
$x \leq 5$
$(-\infty, 5)$
14. $f(x)=\frac{x>}{[-4 / 5}$
$\frac{4-3 x}{2 x}$
a) $f(0)$ Undef.
$5-x>0$
$4+5 x \geqslant 0$
$5 x \geqslant-4$
$17-3(5)+4=-11$
b) $(-5)^{2}-6=19$
c) $f(0)=$
b) $R=(-\infty, 0$
c) $F=$ ges
e) $(f \circ g)(-1)$ f) $(g \circ f)(-1)$ $f[g(-1)]$
$g[f(-1)]$ (11) $f[-6]$
$g[5]$
d) $(-3)^{2}-6=(3)$
e) $-3(4)+4=-8$
6. $y=x^{2}-6 x+5$

Paratala Qpens lys.
Vertex $x=\frac{-6}{2 a}=\frac{6}{2}=$:
$\frac{y=-4}{\frac{V(3,-4)}{y \operatorname{in} t=}(0,5)} \overbrace{-4}^{\frac{V}{2}}+$
9. $x^{2}+y^{2}-10 x+4 y+20=0$
$x^{2}-10 x+25+y^{2}+4 y+4=-20$

$$
\frac{(x-5)^{2}+(y+2)^{2}}{(c(5,-2) r=3}=9
$$

$$
+25+4
$$

$x y+6 y=4$
Solwe for y :"

$$
\begin{aligned}
& y(x+6)=4 \\
& y=\frac{4}{x+6}
\end{aligned}
$$

$D=a(l x \neq-b$
15a) $f(x)=\frac{x-4}{2 x}$

$$
\text { 6) } \begin{array}{rl}
f(4)=\frac{4-12}{8}=-1 & g(x)=x^{2}-4 \\
\text { c) } f & f(2 x-7)=\frac{4-3(2 x-7)}{2(2 x-7)} \quad f[g(x)]=\frac{x^{2}-4-4}{2\left(x^{2}-4\right)} \\
& =\frac{4-6 x+3)}{2(2 x-7)}=\frac{25-6 x}{2(2 x-7)}=\frac{x^{2}-8}{2\left(x^{2}-4\right)}
\end{array}
$$

18. $f\left[f^{-1}(x)\right]$
$=3\left(\frac{1}{3} x+\frac{4}{3}\right)-4$
$=x+4-4$
19. $y=\frac{2 x}{4 x+3} y=f(x)$ f) $f(3999)-7 \quad 4 x y+3 x=2 y$ $4 x y-2 y=-3 x$
