\qquad

SHOW ALL WORK ON THIS TEST OR ON SEPARATE PAPER. Circle answers. TURN IN ALL WORKSHEETS. CALCULATORS ARE REQUIRED ON THIS TEST.

1. Given the points $(5,-3)$ and $(-3,7)$, find:
a) slope
b) midpoint
c) distance

In $\mathbf{2 - 3}$, find the equation in $\mathbf{y}=\mathbf{m x}+\mathrm{b}$ form
2. of a line with slope $-\frac{5}{4}$ and passing through $(-6,5)$
3. Find the equation of the perpendicular
bisector of the line segment between $(5,-3)$ and $(-3,7)$

In 4 - 6, sketch the graphs. If they are parabolas, find the vertex.
4. $y+2=(x-4)^{2}$
5. $y+2=-(x-4)^{2}$
6. $x+2=-(y-4)^{2}$

In 7 - 8, find the vertex (show work or explain how you did it!), and sketch the graph.
7. $y=-2 x^{2}+12 x-5$
8. $x=y^{2}+8 y-4$

\qquad
9. Find the center and radius by completing the square. Sketch.

$$
x^{2}+y^{2}-8 x-6 y+21=0
$$

10. Find the equation of a circle whose center is at $(8,-3)$ and passing through $(2,3)$.

11. Find the domain (give interval notation when appropriate).
a) $y=\frac{x^{2}-25}{\sqrt{x}}$
b) $y=\frac{x^{2}-9}{x^{2}-16}$
c) $y=\sqrt{4-5 x}$
d) $x y=6 y-4$
12. Given the equation $y=-\sqrt{x^{2}-49}$
13. Given the graph:

a) Domain:
a) Domain:
b) Range:
b) Range:
c) Function?
c) Function?
14. Let $f(x)=\frac{4-3 x}{x-4}$
15. Let $f(x)=\frac{x-4}{2 x}$ and $g(x)=x^{2}-x$
a) $f(0)=$
a) find $\mathrm{f}[\mathrm{g}(x)]$ and simplify.
b) $f(4)=$
c) $f(3 x-7)=$
b) find $\mathrm{g}[\mathrm{f}(x)]$ and simplify.
16. Let $\mathrm{f}(x)=x^{2}+4 x$ and $\mathrm{g}(x)=-2 x-6$
a) $(f+g)(-2)=$
b) $(f-g)(-2)=$
c) $(\mathbf{f \circ g})(-2)=$
d) $(\mathbf{f} / \mathrm{g})(-2)=$
e) $(f \circ g)(-2)=$
f) $(\mathrm{g} \circ \mathrm{f})(-2)=$
$\int x^{2}-4$ if $x \leq-3$
17. $f(x)= \begin{cases}6 & \text { if }-3<x<4\end{cases}$
$(-2 x+5 \quad$ if $x \geq 4$
18. Given $f(x)=\frac{x}{3 x-5}$, find $\mathrm{f}^{-1}(x)$.
a) $f(5)$
b) $f(-5)$
c) $\mathbf{f}(\mathbf{3})$
d) $\mathrm{f}(-3)$
e) $\mathbf{f}(\mathbf{4})$
f) $\mathrm{f}(\mathbf{3 . 9 9 9})$

COLLEGE ALGEBRA EXAM 2 yG solutions

1. $(5,-3)(-3,7)$
a) $m=\frac{y_{2}-y_{1}}{x_{2}-x}$

$$
=\frac{7-(-3)}{-3-5}
$$

6) midpt $=$

$$
\text { 2. } m=-\frac{5}{4}(-6,5)
$$

c) $d=\sqrt{8^{2}+10^{2}}$

$$
=\frac{10}{-8}=-\frac{5}{4}
$$

$$
\begin{gathered}
x=\frac{5+(-3)}{2}=1 \\
y=\frac{-3+7}{2}=2 \\
(1,2)
\end{gathered}
$$

3. $(5,-3)(-3,7)$

See \#1!
midpt $=(1,2)$

$$
m=-5 / m_{1}=4 / 5
$$

$$
y=m x+b
$$

$$
z=\frac{4}{5}(1)+6
$$

$$
10=4+5 \cdot 6
$$

$$
\begin{aligned}
& 10=4+36 \\
& 6=568=65
\end{aligned}
$$

$$
y=4 / 5 x+6 / 5
$$

4. $y+2=(x-4)^{2}$

Pinable Quens v
7. $y=-2 x^{2}+12 x-5$

Pantale Qsens Drin

6.

8. $x=y^{2}+8 y-4$

Anable Quono Right

$$
\begin{aligned}
& x+2=- \\
& v(-2,4)
\end{aligned}
$$

opens Left

9.

$$
\begin{aligned}
& x^{2}-8 x+1+y^{2}-6 y+=-21 \\
& x^{2}-8 x+16+y^{2}-6 y+9=-21+16+9 \\
& (x-4)^{2}+(y-3)^{2}=4
\end{aligned}
$$

circle center $(4,3) \quad r=2$
/la) $y=\frac{x^{2}-5}{\sqrt{x}}$
b) $y=\frac{x^{2}-9}{x^{2}-16}$
e)

$$
\begin{array}{cc}
y=\sqrt{4-5 x} & \text { d) } x y=6 y-4 \\
4-5 x \geqslant 0 & x y-6 y=-4 \\
-5 x \geq-4 & y(x-6)=-4 \\
x \leq 4 / 5 & y=-4 \\
x=(-\infty, 4 / 5 & x-2 x=0
\end{array}
$$

10. $c(8,-3)$ thengh $(2,3)$

$$
\begin{aligned}
& r(8,-3) \\
& r=\sqrt{6^{2}+6^{2}}=\sqrt{72} r^{2}=72 \\
& (x-8)^{2}+(y+3)^{2}=72
\end{aligned}
$$

$$
\frac{x>0}{(1:(0, \infty)} \quad=-a 0 x \neq \pm 4
$$

12. $y=-\sqrt{x^{2}-49}$

13. $f(x)=x^{2}+4 x \quad g(x)=-2 x-6$

17a) $f(5)=-2(5)+5$
$f(-2)=-4 \quad g(-2)=-2$
Cat $3=-5$
a) $(f+g)(-2) \quad(f-g)(-2)$

$$
6) f(-5)=(-5)^{2}-4
$$

$\cot 1=21$
c) $(f g)(-2)$
$(-4)(-2)=$
e) $f[g(-2)]$
$f[-2]=-4$
d) $(f / 4)(-2)$
c) $f(3)=6$
$\frac{-4}{-2}=2$
Cat 2
d) $f(-3)=(-3)^{2}-4$
18. $f(x)=\frac{x}{3 x-5}$

15, $f(x)=\frac{x-4}{2 x} \quad g(x)=x^{2}-x$
a) $f(0)=\frac{4}{4}=-1$
a) $f[g(x)]=\frac{()-4}{2()}$
2) $f(4)$ undef
c)

$$
\begin{aligned}
f(3 x-7) & =\frac{4-3(3 x-7)}{(3 x-7)-4} \\
& =\frac{9 x+25}{3 x-11}
\end{aligned}
$$ $\begin{aligned} &=\frac{x^{2} x-4}{2\left(x^{2}-x\right)} \\ &=\left(\frac{x^{2}-x-4}{2 x(x-1)}\right. \\ & \text { \& } g[f(x)]=\left(x^{2}-()\right. \\ &=\left(\frac{x-4}{2 x}\right)^{2}-\left(\frac{x-4}{2 x}\right)\end{aligned}$

$$
\begin{aligned}
& g[f(-2)] \\
& g[-4]=2
\end{aligned}
$$

$$
\cot 1=5
$$

$$
\begin{aligned}
\text { e) } f(4) & =-2(4)+5 \\
\text { cat } 2 & =-3
\end{aligned}
$$

$$
\operatorname{cat} 3=-3
$$

$$
\begin{equation*}
\text { C) } f\left(\frac{399}{2}\right. \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& y=\frac{x}{3 x-5} f(x)=\frac{x^{2}-8 x+1 / 5}{4 x^{2}}-\frac{3 x(2 x-4}{2 x-2 x} \\
& x=\frac{y}{3, y-5} f^{-1}(x)=\frac{\left.x^{2}-8 x+16-2 x^{2}+8\right)}{4 x^{2}} \\
& 3 x y-5 x=y=\frac{-x^{-2}+16}{4 x^{2}} \tag{8}\\
& 3 x y-y=5 x \\
& y(3 x-1)=5 x \tag{-2}\\
& y=\frac{5 x}{3 x-1}=f^{-1}(x)
\end{align*}
$$

4. $f(x)=\frac{4-3 x}{x-4}$
