\qquad
SHOW ALL WORK ON THIS TEST OR ON SEPARATE PAPER. Circle answers. TURN IN ALL WORKSHEETS. CALCULATORS ARE REQUIRED ON THIS TEST.

In 1-9, solve for the unknown:

1. $\log _{5} 125=x$
2. $\log _{3} \frac{1}{81}=x$
3. $\log _{5} 1=x$
4. $\log _{5} 5 \sqrt{5}=x$
5. $\log _{9} x=\frac{3}{2}$
6. $\log _{5} x=-1$
7. $\log _{b} 16=2$
8. $\log _{8} 4=x$
9. $\log _{b} 8=-3$

In 10-14, simplify completely:
10. $e^{\ln x}=$ \qquad 11. $\ln e^{2 y}=$
12. $\ln \left(\frac{1}{e}\right)=$
13. $\log _{b} \sqrt{\mathbf{b}}=$ \qquad
14. $\log _{3} 9 \sqrt{3}=$ \qquad
15. $\log _{b} \frac{1}{\sqrt[3]{b}}=$ \qquad

In 16-21, use your calculator (round to nearest hundredth or give scientific notation):
16. $\mathbf{e}^{-7}=$ \qquad
17. $\ln 6+\ln 100$
18. $\ln \left(e^{5}+e^{7}\right)$
19. $6 \mathrm{e}^{20}+9 \mathrm{e}^{30}$
20. $\quad \log _{3} 75$
21. $-2 \ln 8+6 \ln 75$

In 22-25, solve for x (Give exact values--you may use "ROOT" to check!):
22. $27^{x+4}=9^{x-2}$
23. $12^{x}=8^{x+4}$
24. $\log _{5} x=\log _{5}(x+4)-2$
25. $\log _{2} x+\log _{2}(x+2)=3$
26. The population of a rabbit farm is given by $y=50 e^{0.035 t}$, where t is in years.
a) Estimate the population
b) How long will it take the population in 24 years. to reach 1000?
27. The population of a city in 1975 was 30,000 . In 1978 , the population was $\mathbf{3 9 , 0 0 0}$.
a) Assuming that $y=y_{0} e^{k t}$, find the value of k.
b) Use this value of k to predict the population of the city in 2005.
c) How many years does it take the population to double?

1. $\log _{5} 125=x$ 2. $\log _{3} \frac{1}{81}=x$
2. $\log _{5} 1=x$
3. $\log _{5} 5 \sqrt{5}=x$

$$
\begin{gathered}
5^{x}=125 \\
x=3
\end{gathered}
$$

$$
\begin{aligned}
& 3^{x}=\frac{1}{81} \\
& x=-4
\end{aligned}
$$

$$
5^{x}=1
$$

$$
5^{x}=5 \sqrt{5}=5^{1} \cdot 5^{1 / 2}
$$

$x=0$

$$
5^{x}=5^{3 / 2}
$$

$$
x=3 / 2
$$

5. $\log _{9} x=3 / 2$

$$
9^{3 / 2}=x
$$

6.
7. $\log _{6} 16=28 \cdot \log _{8} 4=x$

$$
x=(\sqrt{9})^{3}=27
$$

$$
\begin{aligned}
& \log _{5} x=-1 \\
& 5^{-1}=x \\
& x=1 / 5 a .2
\end{aligned}
$$

$$
\begin{array}{lc}
b^{2}=16 & 8^{x}=4 \\
f=4 & \left(2^{3}\right)^{x}=2^{2}
\end{array}
$$

14. $\log _{3} 9 \sqrt{3}$
15. $\ln e^{2 y}=2 y$
16. $e^{\ln x}=$
($2-7-4$)
17. $\log _{6} 8=-3$

$$
23 x=23 x=2
$$

$$
\frac{1}{b^{8}}=\frac{8}{1}
$$

$b^{3}=1 / 8(t-1 / 2$
12. $\ln \frac{1}{e}=\ln e^{-1}=-1$
13. $\log _{6} \sqrt{6}=\log _{6} a^{1 / 2}=(1 / 2)$

$$
=\log _{3} 3^{2}-3^{1 / 2}
$$

$$
\begin{align*}
& =\log _{3} 3^{2}-3^{1 / 2}=\log _{6} 8^{-1 / 3} \\
& =\log _{3} 3^{8 / 2}=-1 / 2
\end{align*}
$$

$16 . e^{-7}\left(9.12 \times 10^{-4}\right)$
$0.000912)$
17. $\ln 6+\ln 100(a \ln 600)$ 18. $\ln \left(e^{5}+e^{7}\right)=7.13$ $=6.40$ (No shortent!)
19. $6 e^{20}+9 e^{30} \quad 20 \cdot \frac{\ln 75}{\ln 3}=3.93$
$=\left(9.62 \times 10^{13}\right.$
21. $-2 \ln 8+6 \operatorname{h} 75=21.75$
24. $\log _{5} x-\log _{5}(x+4)=-2$
22. $27^{x+4}=9^{x-2}$
23. $12^{x}=7^{x+4}$

$$
\begin{gathered}
\left(3^{3}\right)^{x+4}=\left(3^{2}\right)^{x-2} \\
3 x+12=2 x-4 \\
x=-16
\end{gathered}
$$

$\log _{2} x(x+2)=3$
$x(\rho / 2-x \ln 7=4 \ln 7$

$$
\begin{aligned}
& 2^{3}=x^{2}+2 x \\
& 0=x^{2}+2 x-8 \\
& 0=(x+4)(x-2) \\
& x=-4
\end{aligned}
$$

$$
\begin{gathered}
\ln 12 x=\ln (x+4) \\
x \ln 12=(x+4) \ln 7 \\
x \ln 12=x \ln 7+4 \ln 7 \\
x \ln 12-x \ln 7=4 \ln 7
\end{gathered}
$$

25:

Reject!
mithes log of nagative.)

$$
\begin{aligned}
& x=\left(\frac{4 h 7}{(h-h 7)} \approx 14.44\right. \\
& 26 a) y=50 e^{(03.5)(24)} \\
& =50 e^{.84}=1115.83
\end{aligned}
$$

b) $\frac{1000}{50}=\frac{50 e^{.035 t}}{50}$

$$
\begin{aligned}
& 20=e^{20}=\ln e^{.035 t}=0.035 t \\
& t=\frac{\ln 20}{0.03 e}=85.59400
\end{aligned}
$$

