COLLEGE ALGEBRA EXAM 4 KG

NAME \qquad
SHOW ALL WORK ON THIS TEST OR ON SEPARATE PAPER. Circle answers. TURN IN ALL WORKSHEETS. CALCULATORS ARE REQUIRED ON THIS TEST.

In 1 - 9, solve for the unknown:

1. $\log _{5} 125=\mathrm{X}$
2. $\log _{3} \mathrm{X}=-1$
3. $\log _{10} 0.001=X$
4. $\log _{b} 8=-2$
5. $\log _{6} 6 \sqrt{ } 6=x$
6. $\log _{5} \mathrm{X}=1 / 2$
7. $\log _{10} X=0$
8. $\log _{10} 0=X$
9. $\log _{b} 3=3$

In 10 - 14, simplify completely:
$10 . \ln \left(e^{10 x}\right)=$ \qquad 11. $\log _{3} \frac{1}{3^{5}}=$ \qquad 12. $e^{\ln x}=$ \qquad
13. $\log _{10} \sqrt{10}=$ \qquad 14. $\log _{b} \sqrt[5]{b}=$ \qquad

In 15 - 20, use your calculator (round to nearest hundredth or give scientific notation):

15a) $\log _{10} 29,800=$ \qquad 16a) $\log _{10} 2.85 \times 10^{-6}$ 17a) $e^{32}=$ \qquad
b) $\quad \ln 29,800=$ \qquad b) $\ln 2.85 \times 10^{-6}=$ \qquad b) $e^{-2}=$ \qquad
18. $\ln \left(e^{7}+e^{7}\right)=\quad$ 19. $\frac{\ln 8+\ln 6}{\ln 8-\ln 6}=\quad$ 20. $\log _{4} 24=$

In 21-24, solve for x using the method of logarithms (use your graphing calculator to check the answers!):
21. $8^{x}=4000$
22. $9^{(x-3)}=4^{(5-x)}$
23. $\log _{3} 15+\log _{3} x-\log _{3}(X+4)=224 \cdot \log _{2}(X)+\log _{2}(X+2)=3$
25. The population of a city is given by $Y=5000 e^{0.04 t}$, where t is in years.
a) Estimate the population
in 15 years.
b) How long will it take for the population to double?
26. The population of a city in 1995 was 24,000 . In 1998, the population was 70,000.
a) Assuming that $Y=Y_{0} e^{k t}$, find the value of k.
b) Use this value of k to
predict the population of the city in 2003.

COLLEGE ALGEBPA EXAM $4 \times$ solutions

1. $\log _{2} 16=c$
2.

$$
2^{x}=16
$$

$$
x=4
$$

$$
\text { 2. } \begin{gathered}
\log _{3} x=-3 \\
3^{-3}=x \\
x=\frac{1}{2 x}
\end{gathered}
$$

6. $\log _{3} x=\frac{1}{2}$

$$
\begin{aligned}
& 3^{1 / 2}=x \\
& x=\sqrt{3}
\end{aligned}
$$

7. $\log _{10} x=0$
$10^{\circ}=x \quad$ 8. $\log 100=x$

$$
1=x
$$

$10 \cdot e^{\ln 7 y}=$
$=74$
11. $\log _{5} \sqrt[5]{5}$

$$
=\log _{5} 5^{1 / 5}=1 / 5
$$

3.

$\log _{8} 4=x$
$8 x=4$
$2^{3 x}=2^{2}$
$3 x=2$
$x=2 / 3$
4.

$$
\begin{array}{ll}
\log _{6} 9=-2 & 5 . \\
\log _{6} \sqrt{6}=x \\
a^{-2}=9 & 6^{x}=\sqrt{6} \\
\frac{1}{6^{2}}=9 & 6^{x}=6^{1 / 2} \\
\frac{t^{2}}{1}=\frac{1}{9} & x=1 / 3
\end{array}
$$

$$
\begin{aligned}
& b= \pm \frac{1}{3} \\
& b=1 / 2
\end{aligned}
$$

(usecalculato ()
undefined)
12. $\ln e^{\prime}=(1)$
13.
$\log _{18} 10^{-12}$ $=-12$
14. $\log _{\pi} \frac{1}{\sqrt[3]{6}}=\log _{6} 6^{-1 / 3}$

15a) 4,30
16a) -5.60
17a) 1.59×10^{15}
18. 12.86

$$
=-1 / 3
$$

6) 9.89
(A) -16.36
A) 0.05
19. $\log _{5} 125 \sqrt[3]{5}$

$$
=\log _{5} 5^{3} \cdot 5^{1 / 3}
$$

$$
=\log _{5} 5^{10 / 3}=
$$

22. $7^{x-5}=21^{x}$

$$
\begin{aligned}
& \ln 7^{x-5}=\ln 21^{x} \\
& (x-5) \ln 7=x \ln 21 \\
& x \ln 7-5 \ln 7=x \ln 21 \\
& x \ln 7-x \ln 21=5 \ln 7 \\
& x(\ln 7-\ln 21)=5 l 7 \\
& x=\frac{5 l l}{\ln 7-\ln 21}=-8.86
\end{aligned}
$$

25a) $y=50 e^{0.05 t}$

$$
y=50 e^{0.05(20)}
$$

$$
=50 \mathrm{e}^{\prime}=136
$$

b) Triplad $y=150$ $150=50 e^{0.05 t}$ $3=e^{0.05 t}$
20. $\log _{8} 12=\frac{2}{2} 12$
$a \log _{8} 12=x$

$$
8^{x}=12
$$

$h 8^{x}=\ln 12$
$x \ln 8=$ h 12

$$
x=\frac{Q_{n} / 2}{\ln 8}=1.19
$$

23. $\log _{3} x+\log _{3}(x+8)=2$
$\log _{3} x(x+8)=2$
24. $10^{x}=500$

$$
\begin{aligned}
& \ln 1 x^{x}=\ln 500 \\
& x \ln 10=\ln 500 \\
& x=\frac{\ln 50}{\ln 10}
\end{aligned}
$$

$=2.70$

$$
3^{2}=x^{2}+8 x
$$

Rej.

$$
\begin{gathered}
26 a) y=y_{0} e^{k t} \\
\frac{80,100}{50,000}=\frac{50000 e^{f(3)}}{5000} \\
=\frac{3 k}{1,6}
\end{gathered}
$$

$\ln 3=\ln e^{0.05 t}$
$1.6=e^{3 k}$ $\ln 3=0.05 t \quad \ln 1.6=\ln e^{3 k}=3 R \quad 175,102$

$$
\begin{aligned}
t=\frac{\ln 3}{0.05} \approx 21.97 \mathrm{gas} & =\frac{21.6}{3} \\
& =0.15661
\end{aligned}
$$

$$
=0.156607876 \ldots
$$

$$
\begin{aligned}
& \text { 24. } \log _{5} x=\log _{5}(x+4)+\text { : } \\
& \log _{5} x-\log _{5}(x+4)=2 \\
& \log _{5} \frac{x}{x+4}=2 \\
& \frac{5^{2}}{1}=\frac{x}{x+4} \\
& 25 x+100=x \\
& 24 x=-100
\end{aligned}
$$

b) $y=50,000 e^{(6)}$
$y=50,000 e^{8(h}$

