NAME

Show all work on separate paper. Turn in ALL worksheets.

R^2

(Problems are 5 points each, unless multiple parts-- 2 each part)

Find the domain and range for $f(x) = \frac{16}{x^2 - 4}$. 1.

[Hint: Use a graphing calculator to find the range!]

- 2. Solve for x (explain or describe your method). $2x^5 + 8x^4 = 24x^3.$
- If $f(x) = \frac{x+8}{x-1}$ and $g(x) = \sqrt{x}$, find f(g(x)) and g(f(x)). 3.
- If $f(x) = x^2$, find $\frac{f(x+h) f(x)}{h}$, $h \neq 0$. 4.
- If $f(x) = \frac{1}{r}$, find $\frac{f(x+h) f(x)}{h}$, $h \neq 0$. 5.
- Find the equation of the line (in form y=mx+b) passing through (-1,3) and 6. (2,-5).
- Given: $f(x) = \begin{cases} 2x-4 & \text{if } x \le 2 \\ -x+4 & \text{if } x > 2 \end{cases}$, find 7.
 - a) f(0) b) f(2) c) f(3) d) f(-2).

- Given: $f(x) = \begin{cases} 2x-4 & \text{if } x \le 2 \\ -x+4 & \text{if } x > 2 \end{cases}$
 - a) $\lim_{x\to 2^{-}} f(x)$ b) $\lim_{x\to 2^{+}} f(x)$ c) $\lim_{x\to 2} f(x)$
 - d) Sketch the graph.
- Find $\lim_{x\to 0} \frac{x^2-x}{x^2+x}$. 9.
- Find $\lim_{x\to 5} \frac{x^3 25x}{x^2 6x + 5}$. 10.

11. Given: $f(x) = \frac{|x|}{x}$

- a) $\lim_{x\to 0^-} f(x)$ b) $\lim_{x\to 0^+} f(x)$ c) $\lim_{x\to 0} f(x)$
- d) Sketch the graph.

In 12–13, find f'(x) using the limit definition of the derivative, $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$.

- 12. $f(x) = x^2 5x$.
- 13. $f(x) = \frac{5}{x}$
- 14. Find f'(x) for $f(x) = \frac{5}{x}$ by the "shortcut" method (i.e., the power rule).
- 15. Find f'(x) for $f(x) = 6\sqrt{x} + \frac{12}{\sqrt[3]{x}}$ by the "shortcut" method.
- 16. If $f(x) = \frac{16}{\sqrt{x}} + 8\sqrt{x}$, find f(16) and f'(16)

In 17 - 20, the cost function for a company that produces x units per week is given by C(x) = 180 x + 16,000, and the revenue is given by $R(x) = -2x^2 + 660x$.

- 17. Find an equation for profit P(x).
- 18. Find the company's break even points (where profit = 0).
- 19. Find the company's marginal revenue and marginal profit functions.
- 20. Find the number of units that should be produced in order to maximize profit and find the maximum profit.

MAC 2233 EXAM IC Solutions $2.2x^{5}+8x^{4}=24x^{3}$ 1. $f(x) = \frac{16}{x^2 4}$ D: $ael x \neq \pm 2$ $R = (-\infty, -4] \cup (0, \infty)$ 2x5+8x4-24x3=0 $f[GCN] = \frac{\sqrt{x} + 8}{\sqrt{x} - 1}$ 2x3(x2+4x-12)=0 $2x^{3}(x+6)(x-2)=0$ 8 [P(X)] = \[\frac{72+8}{2-1} X=0 x=-6 X=2 Ouadratic Eq. Solved by factoring, Calculator methods also apply! 4. F(x)=x2 F(x+h)=(x+h)2 f(x+h)-f(x) = x+2xh+h-x 5, f(x)= x f(x+h)= x+h 6. (-1,3) (2,-5) f(x+h)-f(x)=(x+h-x)=h $m = \frac{-5-3}{2-(-1)} = \frac{-8}{3}$ = K(2x+h) 4=mx+6. $=\frac{\cancel{x-x-h}}{\cancel{x(x+h)}}\cdot\frac{1}{h}$ = (2x+h) 3=-8(-1)+6. 7,8, f(x)={2x-4 &x=2 -x+4 &x>2 9=8+36 13-6 (9=3x+3) 7 a) f(0)=-4 8a) lim = 9. li x(x-1) = 2: x-1 x+0 x(x+1) = 2: x+1 X+>2" B) f(2) = 0 c) +(3) = 1 d) f(-2)=-8 c) li = DNE 12. +(x)= x25x +(x+h)=(x+h)=5(x+h) 10. le (x-5)(x+5)
(x-5)(x-1) 11. F(X)= X C) L' DNE lin = x42xh+h2-3k-5h-x7-3k a) li = -= 5.10 = (25) ling (2x+h-5) = 2x+1/5 Ali = 1 14. f(x)=5x-1 $(5. f(x) = 6x^{1/2} + 12x^{-1/3})$ = (2x-5)13. F(X)= \(\frac{5}{2} \) f(X+h) = \(\frac{5}{X+h} \) f(x)=-5x-2 lin (5 - 5) = h li x(x+h) h 16. F(X)= 16 + 8 VX = 16 x 3 8 x 2 li x(x+1) / = (5) F(16) = 16 +816 = 16+84 Also use calculators = 4+32 +36 f(x) = -8x = 4x -1/2 17. P(x)= R(x)-C(x) =(-2x2+660x)-(180x+16000) f'(16) = -8.16 3/2 + 4-16/2 =-2x2+660x-180x-16000 =-8.64+4.4=1-8(3) P(x) = -2x + 480x - 16000 Also calulators = [2 " [[a | c] -2(x=240x+8000)=0 (x-200)(x-40)=0 41=-2x2+480x-16100 der 1, 6x), 7, 16 ENTER (x-200) x=40) Extend window x=06,500 or 1000 (0.87) 14. (MR(X)=R'=-4X+660) -2(120) + 480(120) -1600C (MPCX) = P = LAX LARD OL