CALCULUS I EXAM 4 A ${\bf R}^2$ NAME SHOW ALL WORK ON SEPARATE PAPER. Justify and circle all answers. Where calculators are used, describe window, procedures, etc.

1. Evaluate the integral:
$$\int \frac{x^3+3}{x^2} dx 1$$

2. Find
$$y = f(x)$$
 if $f''(x) = x + 2$, $f'(0) = 3$, $f(0) = -1$

3. Use the formulas to find
$$\lim_{n\to\infty}\sum_{i=1}^n (1+\frac{2i}{n})^2(\frac{2}{n})$$
 2

- 4. Use a calculator method to find the area under the graph $y=1-x^2$ over [-1, 1]. Explain the method and the steps used to find area.
- 5a) Use a geometric formula to find the value of $\int_{-3}^{3} \sqrt{9-x^2} \, dx$ 3. Draw a figure, give exact value.
- b) Use the "calc" function of the calculator to find the approximate area. (Use this as a check!)

6. Given
$$\int_0^{10} f(x)dx = 64$$
, $\int_4^{10} f(x)dx = 35$, and $\int_0^{10} g(x)dx = 76$.
Find: a) $\int_0^4 f(x)dx$ b) $\int_{10}^0 f(x)dx$ 8 c) $\int_0^{10} [2f(x) - g(x)]dx$ 9.

8. Given
$$F(x) = \int_{3}^{x} \sqrt{t^2 + 4} dt \, 11$$
, find F'(x).

9. Find the average value of $f(x) = \sin x$ on $[0,\pi]$. [Hint: Use $f(c) = \frac{1}{b-a} \int_a^b F(x) dx$ 12 unless you know a better way.]

- 10. Draw a sketch, use the calculator and find the area under the curve for $\int_0^4 x \sqrt{x^2+4} dx$ 13 using:
 - a) Left rectangles with n = 4
 - b) Right rectangles with n = 4
 - c) Trapezoidal Rule with n = 4
 - d) Simpson's Rule with n/2 = 4
 - e) Simpson's Rule with n = 4
 - f) Trapezoidal Rule with n = 20.
 - g) "Calc", "fnint" function of the calculator.
- 11. Find the exact area (in radical form) of $\int_0^4 x \sqrt{x^2 + 4} dx$ 14 by "algebraic integration."
- In 12 14, evaluate the integrals.
- 12. $\int x^2 \sqrt{4-x^3} dx$ 15

13. $\int \sin^3 x \cos x dx = 16$

 $14. \qquad \int \frac{(1+\sqrt{x})^3}{\sqrt{x}} dx \ 17$