CALCULUS I EXAM 3 A \mathbf{R}^{2}
NAME
SHOW ALL WORK ON SEPARATE PAPER. Justify and circle all answers. Where calculators are used, describe window, procedures, etc.

1. Find all critical numbers for $f(x)=3 x^{4}-12 x^{2}$

Find the maximum and minimum values (if they exist) of $f(x)$ on $[-1,2$).
2. Given $f(x)=10-\frac{16}{x}$ in $[2,8]$, find all values of c that satisfy the Mean Value Theorem, $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

In 3-4,find all critical numbers, intervals increasing/decreasing, relative maximum/minimum points, points of inflection (if any), intervals concave up/down, vertical asymptotes, vertical tangents, sketch the graph.
3. Use the graphing calculator $f(x)=\frac{x^{2}-2 x+1}{x+1}$
4. Use first and second derivative tests $f\left(\neq 3 x^{3}-2 x^{2}\right.$.
5. Given the table:

\boldsymbol{x}		$-\mathbf{2}$		$\mathbf{- 1}$		$\mathbf{0}$		$\mathbf{1}$	
\boldsymbol{f}		∞		$\mathbf{1}$		$\mathbf{0}$		$\mathbf{1}$	
\boldsymbol{f}^{\prime}	-	∞	-	-	-	$\mathbf{i n f}$	+	$\mathbf{0}$	-
$\boldsymbol{f}^{\prime \prime}$	-	∞	+	$\mathbf{0}$	-	∞	-	-	-

$\lim _{x \rightarrow-\infty} f(x)=0$ and $\lim _{x \rightarrow \infty} f(x)=-\infty$
Sketch the graph.
Identify critical points, relative max and mins, points of inflection, asymptotes, and vertical tangents.
6. Find each of the following limits:
a) $\lim _{x \rightarrow \infty} \frac{2 x^{3}-6 x^{2}+5}{3+5 x^{3}}$
b) $\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{\left(x^{2}+1\right)}}$
7. Use algebraic methods to find the exact value of the limit: $\lim _{x \rightarrow \infty}\left(2 x-\sqrt{4 x^{2}+3 x}\right) \cdot 8$
8. Use Newton's Method to find the root of $f(x)=-x^{3}+3 x^{2}-x+1.9$ Draw a sketch, give the x values. Is $x=1$ a good initial value? Why or why not?
9. Given $10 f(x)=x^{2}-2 x-3$, find $d f$ and Δf when $x=2$ and $\Delta x=0.1$.
10. The sum of two numbers is 60. Find the numbers such that the product of the first times the cube of the second is a maximum.
11. A farmer has 160 feet of fencing to enclose 2 adjacent rectangular pens. What dimensions should be used for each pen so that the enclosed area will be a maximum?

CALCULUS I EXAM BA

$$
\text { 1. } \begin{aligned}
f(x) & =3 x^{4}-12 x^{2} \\
f^{\prime}(x) & =12 x^{3}-24 x \\
& =12 x\left(x^{2}-2\right)=0
\end{aligned}
$$

Critical numbers : $x=0, \pm \sqrt{2}$
Interval $[-1,2)$

$$
\begin{aligned}
& f(-1)=3-12=-9 \\
& f(2)=3 \cdot 16-12 \cdot 4=0 \\
& f(0)=0 \text { max } \\
& f(\sqrt{2})=3 \cdot 2-12 \cdot 2=-18 \text { min. }
\end{aligned}
$$

2.

$$
\left.\begin{array}{rlrl}
f(x) & =10-16 x^{-1},[2,8] & f(a)=f(8) & =10-16 \cdot \frac{1}{8} \\
& =8 \\
f^{\prime}(x) & =16 x^{-2} & & f(a)=f(2)
\end{array}=10-16 \cdot \frac{1}{2}\right)
$$

$$
16 x^{-2}=\frac{8-2}{8-2}=1
$$

$$
\frac{16}{x^{2}}=1
$$

$$
x^{2}=16
$$

$$
x= \pm 4
$$

4.

$$
\begin{gathered}
x= \pm 4 \\
\text { On/9 } x=4 \text { is in }[2,8]
\end{gathered}
$$

$$
\begin{aligned}
f(x) & =3 x^{2 / 3}-2 x \\
f^{\prime}(x) & =3 \cdot \frac{2}{3} x^{-1 / 3}-2 \\
& =2 x^{-1 / 3}-2 \\
& =\frac{2}{\sqrt[3]{x}}-2 \\
& =\frac{2-2 \sqrt[3]{x}}{\sqrt[3]{x}} \\
f^{\prime}(x) & =0 \text { at } x=1 \\
f^{\prime}(x) & =\infty \text { at } x=0
\end{aligned}
$$

$f(0)=0$ vertical Tangent
Critical Nos : $x=0,1$

$$
f^{\prime \prime}(x)=-\frac{2}{3} x^{-4 / 3}
$$

$f^{\prime}: \quad-\infty+0-$

Incr $=(0,1)$
Deck $=(-\infty, 0) \cup(1, \infty)$
Concave Don $(-\infty, 0) \cup(0, \infty)$
No points of in flection.

Ga)

$$
\lim _{x \rightarrow \infty} \frac{\left(2 x^{3}-6 x^{2}+5\right) \frac{1}{x^{3}}}{\left(3+5 x^{3}\right)} \frac{1 x^{3}}{\left(x^{3}\right.}
$$

3.

Asymp: $x=-1$
Critical Nos: $x=1,-3$
Rel Max $(-3,-8)$
Rel min $(1,0)$
concavellp: $(-1, \infty)$
Concave Down $=(-\infty,-1)$
Incr: $(-\infty,-3) \cup(1, \infty)$
Deer $=(-3,-1) \cup(-1,1)$
5. Critical pts $=x=0,1$

Rel max: $(1,1)$
Rel min $=(0,0)$
Pt inflectim $=(-1,1)$
Asymptote: $x=-2$
Vertical tan at $(0,0)$
$\lim _{x \rightarrow+\infty}\left(2 x-\sqrt{4 x^{2}+3 x}\right)$
$=\infty-\infty$
$\left.\frac{\left(2 x-\sqrt{4 x^{2}+3}\right.}{1}\right) \frac{2 x+\sqrt{4 x^{2}+3 x}}{2 x+\sqrt{4 x^{2}+3 x}}$

$$
\text { b) } \begin{aligned}
\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}+1}} & =\frac{4 x^{2}-\left(4 x^{2}+3 x\right)}{2 x+\sqrt{4 x^{2}+3 x}} \\
=\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}\left(1+1 / x^{2}\right)}} & =\frac{-3 x}{2 x+\sqrt{x^{2}(4+3 / x)}} \\
& =\lim _{x \rightarrow-\infty} \frac{x}{|x|} \cdot \frac{2}{\sqrt{1+1 / x^{2}}} \\
=-1.2=-2 & \lim _{x \rightarrow \infty} \frac{-3 x}{2 x+x \sqrt{4+3 / x}} \\
& =\lim _{x \rightarrow \infty} \frac{-3}{2+\sqrt{4+3 / x}} \\
& =\frac{-3}{2+2}=-\frac{3}{4}
\end{aligned}
$$

PROG NWT2 IEN (Enter Fentrin)
8.

$$
f(x)=-x^{3}+3 x^{2}-x+1
$$

$$
f^{\prime}(x)=-3 x^{2}+6 x-1
$$

Initial $x=0,1$ do not work.

$$
x=2
$$

$$
x=5
$$

$$
x=3,82608695652
$$

$$
x=3.14671901374
$$

$$
x=2,84232627714
$$

$$
x=2.77284763644
$$

$$
x=2.76430139744
$$

$$
x=2.7692923543
$$

$$
x=2.76929235424
$$

$1 /$.

Primary Equation $A=x y$.
Secondary $F_{z}=3 x+2 y=160$

$$
\begin{aligned}
& 2 y=160-3 x \\
& y=\frac{160-3 x}{2}
\end{aligned}
$$

$$
\begin{aligned}
A= & x\left(\frac{160-3 x}{2}\right) \\
= & 80 x-\frac{3}{2} x^{2} \\
A^{\prime}= & 80-3 x=0 \\
& 80=3 x
\end{aligned}
$$

$$
x=80 / 3 \mathrm{ft} .
$$

$$
y=\frac{160-80}{2}=40 \mathrm{ft}
$$

$f(x)=x^{2}$ DR
(Enter fanstini)
9. $f(x)=x^{2}-2 x-3 \quad f(2.1)=(2-1)^{2}-2(2,1)-$

$$
f^{\prime}(x)=2 x-2
$$

Diff

$d f=0.2$
$\Delta f=0.21$

$$
\begin{aligned}
d f & =f^{\prime}(x) \cdot d x \\
& =2(0.1)=0.2
\end{aligned}
$$

10.

$$
\begin{aligned}
& \Delta f=f(x+\Delta x)-f(x) \\
&=-2-9-(-3)
\end{aligned}
$$

$$
\begin{aligned}
& f=f(x+2 x-f(x) \\
&=-2.79-(-3)=0.21
\end{aligned}
$$

at $x=1$ st mo $; y=2$ nd no.
Primary egriation: $P=x \cdot y^{3}$
secondary of =

$$
\begin{aligned}
& P(x)=x(60-x)^{3} \quad y=60-x \\
& P^{\prime}(x)=x \cdot 3(60-x)^{2}(-1)+(60-x)^{3} \cdot 1 \\
&=(60-x)^{2}(-3 x+60-x)=0 \\
& x=60 \quad-4 x+60=0 \\
& y=0 \quad 4 x=60 \\
& \operatorname{Re} / \mathrm{min} . \quad x=15
\end{aligned}
$$

-OR-

$$
\begin{aligned}
& P(x, y)=x-y^{3} \\
& P(y)=(60-y) y^{3} \quad x=60 \\
& P(y)=60 y^{3}-y^{4} \\
& P^{\prime}(y)=180 y^{2}-4 y^{3} \\
& 4 y^{2}(45-y)=0 \\
& y=0 \quad y=45 \\
& x=60 \quad x=15 \\
& \text { min. }
\end{aligned}
$$

