Show all work on separate paper. Turn in ALL worksheets. When you use the calculator, say so, and explain what you did.

1. Find the maximum and minimum values of the function (if they exist):
a) $f(x)=3 x^{4}-4 x^{3}$ on $[-1,2]$.
b) $f(x)=x^{2}-2 x \quad$ on (0,2).
c) $f(x)=\frac{x}{x-2} \quad$ on $\quad[1,4)$.
2. Find the values of c for which the Mean Value Theorem applies, or explain why the theorem does not apply.
a) $f(x)=3 x^{4}-4 x^{3}$ on $[-1,1]$.
b) $f(x)=\frac{1}{x-3}$ on $[0,6]$.
3. Evaluate the limits:
a) $\lim _{x \rightarrow \infty} \frac{x}{|x|}$
b) $\lim _{x \rightarrow-\infty} \frac{x}{x \mid}$
c) $\lim _{x \rightarrow \infty} \frac{c}{x}$
d) $\lim _{x \rightarrow \infty} \frac{-x^{3}+x^{2}+4}{3 x^{3}+4 x-1}$
e) $\lim _{x \rightarrow \infty} \frac{-x^{3}+x^{2}+4}{3 x^{2}+4 x-1}$
f) $\lim _{x \rightarrow \infty} \frac{-x^{3}+x^{2}+4}{3 x^{4}+4 x-1}$
4. Given $f^{\prime}(x)=\frac{x^{2}+2 x-3}{(x+1)^{2}}$, use the first derivative test to find all critical values, identify \boldsymbol{x} coordinates of relative maximum and minimum points, and give intervals in which the graph is increasing and decreasing.
5. Given $f(x)=\frac{x}{x^{2}+1}, f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}, f "(x)=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}$, find the $x-$ coordinates of all points of inflection. Give intervals in which the graph is concave up and concave down. What conditions are necessary to have a point of inflection?

In 6-7, sketch the graphs, find \boldsymbol{x} and \boldsymbol{y} intercepts, horizontal and vertical tangents, vertical asymptotes, and $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. Describe your window.
6. Sketch the graph of $f(x)=\frac{x^{2}-2 x+4}{x-2}$
7. Sketch the graph of $f(x)=\frac{x}{x^{2}+1}$.
8. Given $f(x)=-x^{3}+5$, set up a formula to find the root by Newton's Method. Beginning with $x=1$, draw a sketch (or an outline of steps) to illustrate how Newton's Method works, and give a list of \boldsymbol{x} values leading to the root. If you used a calculator method or program, describe what you did.
9. Given $f(x)=x^{2}-4 x+6$, find $\Delta \mathrm{f}$ and df when $\boldsymbol{x}=5$ and $\Delta \boldsymbol{x}=\boldsymbol{d x}=0.1$.
10. A farmer plans to fence a rectangular garden adjacent to a river. The garden must contain 1250 square feet. What dimensions would require the least amount of fencing if no fence is required along the river. How many feet of fence are needed?
11. Equal squares are to be cut from each corner of a piece of tin measuring 6 meters by 6 meters, and the edges are then turned up to form a box with no lid. What are the dimensions of the box with maximum volume, and what is the volume of the box?

CALCULUS I EXAM 3 B Solutions
(a)

$$
\begin{aligned}
f(x)= & 3 x^{4}-4 x^{3}[-1,2] \\
f^{\prime}(x)= & 12 x^{3}-12 x^{2}=0 \\
& 12 x^{2}(x-1)=0 \\
& x=0 \quad x=1 \\
f(0)= & 0 \\
f(1)= & -1 \text { MIN } \\
f(-1)= & 7 \\
f(2)= & 16 \text { MAX }
\end{aligned}
$$

aa)

$$
12 c^{3}-12 c^{2}+4=0
$$

$$
3 c^{3}-3 c^{2}+1=0
$$

Root: © $c-.475$ with $(-1,1)$
*) The of the mean does not apply since $f(x)$ is not continuerus Asymptote at $x=3$ within $[0,6]$
4. $f^{\prime}(x)=\frac{x^{2}+2 x-3}{(x+1)^{2}}=\frac{(x+3)(x-1)}{(x+1)^{2}}$
critical values: $f^{\prime}(x)=0 \approx \infty$ when $f(x)$ is defined.
critical values $x=-3, x=1$
Note: $f(x)$ is probably nt defined

$$
\begin{aligned}
& \text { Note: } f(x) \text { is probably at } x=-1 \\
& x=-3-1 \quad 1 \\
& f^{\prime}:+0-\infty-0+ \\
& \text { Ma } x \\
& \text { Rel max at } x=-3 \text { R iN } \\
& \text { Increasing }=(-\infty,-3) \cup(1, \infty) \\
& \text { Decreasing: } \quad(-3,-1) \cup(-1,1)
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=3 x^{4}-4 x^{3} \text { on }[-1,1] \\
& f^{\prime}(x)=12 x^{3}-12 x^{2} \\
& f(a)=f(1)=-1 \\
& f^{\prime}(c)=12 c^{3}-12 c^{2} \\
& f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \\
& 12 c^{3}-12 c^{2}=-4 \\
& f(a)=f(-1)=7 \\
& \frac{f(b)-f(a)}{b-a}=\frac{-1-7}{1-(-1)}
\end{aligned}
$$

C) $f(x)=\frac{x}{x-2}$

Asump bo te at $x=2$ within the interval.

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}}=-\infty \\
& \lim _{x \rightarrow 2^{+}}=+\infty
\end{aligned}
$$

No MAX; NOMIN

Ba) $\lim _{x \rightarrow \infty} \frac{x}{|x|}=\lim _{x \rightarrow \infty} \frac{x}{x}=1$
b) $\lim _{x \rightarrow \infty} \frac{x}{|x|}=\lim _{x \rightarrow-\infty} \frac{x}{-x}=-1$
c) $\lim _{x \rightarrow \infty} \frac{c}{x}=0$
d) $\lim _{x \rightarrow \infty}\left(-\frac{\left.x^{3}+x^{2}+4\right) \cdot \frac{1}{x^{3}}}{\left(3 x^{3}+4 x-1\right) \frac{1}{x^{3}}}\right.$

$$
=\lim _{x \rightarrow \infty} \frac{-1+1 / x^{10}+4 / x^{31}}{3+4 / x^{2} \frac{1}{4} x^{70}}=-\frac{1}{3}
$$

$$
\text { e) } \begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\left(-x^{3}+x^{2}+4\right) 1 / x^{2}}{\left(3 x^{2}+4 x-1\right)} 1 / x^{2} \\
& =\lim _{x \rightarrow \infty} \frac{-x+1+4 / x^{20}}{3+4 / x^{2}-1 / x^{20}}=-\infty
\end{aligned}
$$

$$
\text { f) } \lim _{x \rightarrow \infty} \frac{\left(-x^{3}+x^{2}+4\right)}{\left(3 x^{4}+4 x-1\right) \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}}
$$

$$
=\lim _{x \rightarrow \infty} \frac{-1+1 / x^{70}+4 x^{3}}{-3 x+4 / x^{3}-1 / x^{3}}
$$

$$
=\lim _{x \rightarrow \infty} \frac{-1}{-3 x} \rightarrow 0
$$

$$
\text { 5. } \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}=0
$$

$$
x=0, \quad x= \pm \sqrt{3}
$$

$$
\begin{array}{cccc}
x & -\sqrt{3} & 0 & \sqrt{3} \\
f & -\frac{\sqrt{3}}{13} & 0 & \frac{\sqrt{3}}{10} \\
f^{\prime \prime} & -0 & 0 & -0
\end{array}
$$

Pts of Inflection: $\left(-\sqrt{3},-\frac{\sqrt{3}}{10}\right)(0,0)$ and $(\sqrt{3}, \sqrt{3}, 10)$

$$
\begin{array}{ccc}
& x=0 \quad x= \pm \sqrt{3} \\
x \quad-\sqrt{3} & 0 & \sqrt{3} \\
f & -\frac{\sqrt{3}}{10} & 0 \\
f^{\prime} & -\frac{\sqrt{3}}{10} \\
f^{\prime \prime} & 0 & 0
\end{array}
$$

Pts of Inflection: $(-\sqrt{3},-\sqrt{6})(0,0)\left(\sqrt{3}, \frac{\sqrt{3}}{10}\right)$
Concave up: $(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty))$
Concare Down: $(-\infty,-\sqrt{3}) \cup(0, \sqrt{3}))$
Ptof Inflec: $f(x)$ emust exist
(2) $f^{\prime \prime}(x)=0$ on undefined.
(3) Concavity changes

8

$$
\begin{aligned}
& f(x)=-x^{3}+5 \\
& f^{\prime}(x)=-3 x^{2} \\
& x_{n+1}=x_{n}-\frac{f(x)}{f^{\prime}(x)}
\end{aligned}
$$

No Xintercepts.
Yint: $(0,-2)$
Howin tangents:

x int, yint $=(0,0)$
Hoing tangento:

$$
\left(1, \frac{x}{3}\right)(-1,-1 / 2)
$$

No vertical asymp, on
vartical langent

$$
\lim _{x \rightarrow \infty}=0 \lim _{x \rightarrow-\infty}=0
$$

Bogin at $x=1 ;$ go to $f(1)=4$ on the rmpl;
Dren ternge of line; follow tangat the to xeares
$x_{2}=$ xintereest of thenge of line. G_{0} क $f\left(x_{2}\right)$.
Drow tongent line; tangent line traicip
$x_{3}=x$ irepecent of tengest ine. $x_{n} \rightarrow$ root
xvar $\left.-\left(-x^{3}+5\right)\right]\left[\left(3 x^{2}\right)\right.$ ETO Evar ENTER

$$
\begin{aligned}
& \text { NOTE: RONT of } f(x)=-x^{3}+5=0 \\
&-x^{3}=-5 \\
& x^{3}=5 \\
& x=\sqrt[3]{5}
\end{aligned}
$$

9. $f(x)=x^{2}-4 x+6$

$$
x=5 \quad \Delta x=d x=0.1
$$

$$
f(5)=11 \quad f(5.1)=1161
$$

$$
\begin{aligned}
\Delta f & =f(x+\Delta x)-f(x) \\
& =11.6 \mid-11=0.61
\end{aligned}
$$

$$
\begin{array}{rlr}
V=x(6-2 x)^{2} & 2-\frac{1250}{x^{2}}=0 \\
=x\left(36-24 x+4 x^{2}\right) & 2=\frac{1250}{x^{2}} \\
=36 x-24 x^{2}+4 x^{3} & 2 x^{2}=1252 \\
V^{\prime}=36-48 x+12 x^{2}=0 & x^{2}=625 \\
12\left(3-4 x+x^{2}\right)=0 & x=25+f t y=\frac{1250}{25} \\
(3-x)(x-1)=0 & F=2 x+y=50+t \\
x=3 & x=1 & =2(25)+50=1.4^{2}=16 \mathrm{~m}^{3}
\end{array}
$$

10.

$$
\begin{aligned}
& 1.86167800454 \\
& 1.72200188006 \\
& 1.7100597366 \\
& 1.70997595078 \\
& 1.70997594668
\end{aligned}
$$

EN

$$
f^{\prime}(x)=2 x-4
$$

$$
d f=f^{(x)} d x
$$

$$
f^{\prime}(5)=10-4=6
$$

$$
\begin{aligned}
& \text { Fence }=2 x+y \\
& F=2 x+1
\end{aligned}
$$

$$
F=2 x+1250 x^{-1}
$$

$$
y=\frac{1250}{x}
$$

$$
=6(.1)=0.6
$$

$$
F^{\prime}=2-1250 x^{-2}=0
$$

$$
\begin{aligned}
& F^{\prime}= 2-1250 x^{-2}= \\
& 2-\frac{1250}{x^{2}}=0
\end{aligned}
$$

