SHOW ALL WORK ON SEPARATE PAPER. Justify and circle all answers. Where calculators are used, describe window, procedures, etc. Gold Sheet, Supplement to Gold Sheet, Trig Sheet, Chapter 6 Fomula Sheet are allowed.

1. Give the set-up to find the area of the region above the X-axis, bounded by $Y=X-2$ and $X=Y^{2}$ a) using vertical slices
b) using horizontal slices;
c) calculate the easiest way.
2. Find the area bounded by $y=\frac{4 \ln x}{x}, y=0$, and $x=5$. Give exact value. Check with calculator.
3. Find the volume of the solid obtained by rotating the region bounded by $y=x^{3}, y=0$, and $x=2$ about the x axis. Give a setup for a) disk method; b) shell method; c) solve easiest way.
4. Find the volume of the solid obtained by rotating the region bounded by $y=x^{3}, y=0$, and $x=2$ about the y axis. Give a setup for a) disk method; b) shell method; c) solve easiest way.
5. Find the arclength of the curve $y=\ln \left(x+\sqrt{x^{2}-1}\right)$ from $\mathbf{x}=3$ to $x=5$, given that $y^{\prime}=\frac{1}{\sqrt{x^{2}-1}}$. a) Use the calculator to find the decimal value; b) Integrate to obtain exact value.
6. Find the surface area obtained by rotating the curve $x=\frac{y^{2}}{4}-\frac{1}{2} \ln y$ from $\mathrm{y}=1$ to $\mathrm{y}=2$ about the x -axis.
7. Find the center of mass of the region shown in the graph:
8. Find the center of mass of the region: $y=4-x^{2}, y=0, x=0$. (Use calculator to evaluate the integrals.)
9. Use the Theorem of Pappus to find the volume of the torus formed by rotating the circle $(x-5)^{2}+(y-4)^{2}=4$ A) about the x axis; B) about the y axis.
10. Use the disk or shell method and the equation $x^{2}+y^{2}=r^{2}$ to derive the formula for the volume of a sphere. Explain your method (disk, shell, axis of rotation, etc.).

Calculus II Exam 2 Solations
(.a) Vertical slices: $y= \pm \sqrt{x}$

$$
\left.A=\int_{0}^{1}[\sqrt{x}-(-\sqrt{x})] d x+\int_{1}^{4} \sqrt{x}-(x-2)\right] d x
$$

b) Harizontal slices: $x=y+2$
$A: \int_{-1}^{2}\left[(y+2)-y^{2}\right] d y$
C) $=\frac{y^{2}}{2}+2 y-\left.\frac{y^{3}}{3}\right|_{-1} ^{2}$

$$
=\left(2+4-\frac{8}{3}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right)
$$

$$
=2+4-\frac{8}{3}-\frac{1}{2}+2-\frac{1}{3}
$$

$$
=8-\frac{1}{2}-\frac{9}{3}=9 / 2
$$

4.
a) $\left.\left(V=\pi \iint^{8}-(\sqrt{y})^{2}\right] d y\right)$

$$
\text { 6) } \begin{aligned}
(V & \left.=2 \pi \int_{0}^{0} x\left(x^{3}\right) d x\right) \\
& =\left.2 \pi x^{5}\right|_{0} ^{2} \\
& =\frac{2 \pi}{5} \cdot 32=\left(\frac{64 \pi}{5} \approx 40.2124\right.
\end{aligned}
$$

c) $V=\left.r \frac{x^{7}}{7}\right|_{0} ^{2}=128 \pi=57.4463$

$$
\text { 5. } \begin{aligned}
y & =-(x+\sqrt{x 2}) \\
y^{\prime} & =\frac{1}{\sqrt{x^{2}-1}} \\
s & =\int_{3}^{5} \sqrt{1+\frac{1}{x^{2}-1}} d x \\
& =\int_{3}^{5} \sqrt{\frac{x^{2}-1+1}{x^{2}-1}} d x \\
& =\int_{3}^{5} \sqrt{x^{2}-1} d x+3 t
\end{aligned}
$$

$$
6 . A=2 \pi \int_{x^{2}} y d d
$$

$$
x=y^{2}-\frac{1}{2} a y
$$

$$
=2 \pi \int_{1}^{2} y \sqrt{1+\left(\frac{d_{x}}{d y}\right)^{2}} d y
$$

$$
=2 \pi \int_{1}^{2} y \sqrt{1+\left(\frac{y^{2}-1}{2 y}\right)^{2}} d y
$$

$$
\text { Kt } u=\sqrt{x^{2}-1}
$$

$$
=2 \pi \int_{1}^{2} y \sqrt{1+\frac{y^{4}-2 y^{2}+1}{4 y^{2}}} d y
$$

$$
\therefore \text { Tudes } \quad \text { neta } 2 x d x
$$

$$
u^{2} x^{2}=2 \pi \int_{1}^{2} \frac{4}{4 y^{2}+4^{4}-2 y^{2}+1} d y
$$

$$
=\int \frac{u d u}{u}
$$

$$
=\int d u \quad u=\left.\sqrt{x=1}\right|_{3} ^{5}
$$

$$
\int_{5}^{2}=x C x=\not \pi \int_{1}^{2} y \frac{\sqrt{y^{4}+2 y^{2}+1}}{7 y} \quad d y=\pi \int_{2}^{2} \sqrt{\left(y^{2}+1\right)^{2}} d g
$$

$$
=\sqrt{24}-\sqrt{8}
$$

$$
=\pi \int_{1}^{2}\left(y^{2}+1\right) d y-\pi\left[\frac{y^{3}}{3}+y\right]_{1}^{2}
$$

$$
(2 \sqrt{6}-2 \sqrt{2}) \approx 2.0706
$$

$$
=\pi\left[\frac{8}{3}+2-\left(\frac{1}{3}+1\right)\right]^{\prime}
$$

$2^{n d}$, CALC, FS $-O R-$ on fntut $\left(2 \pi x \sqrt{ }\left(1+\left(\left(x^{2}-1\right) /(2 x)\right)^{2}\right), x, 1,2\right)$ $2^{n d}$, CALC, MORE, Ea $\left.(\operatorname{arc}), \ln \left(x+\left(x^{2}-1\right) A .5\right), x, 3,5\right)$ Enter.
7.

$$
\begin{gathered}
A_{1}=\text { Reang/e }=2 \times 6=12 \\
m(1,3)
\end{gathered}
$$

A.

$$
\begin{aligned}
& \text { prowe }=4 \times 4=16 \\
& \mathrm{~cm}=(4,2)
\end{aligned}
$$

$A y^{-2}$ 在 $=\pi r^{2}=4 \pi$
cm:(8,2)

$$
\bar{x}=\frac{12 \cdot 1+16 \cdot 4+4 \pi \cdot 8}{12+1 \cdot 4}
$$

$$
=\frac{76+32 \pi}{28+4 \pi}=\frac{19+8 \pi}{7+\pi} \approx 4.257
$$

$$
\therefore \frac{68+8 \pi}{28+4 \pi}=\frac{17+2 \pi}{7+\pi} \approx 2.2958
$$

9.

$$
\left\{\begin{array}{l}
(x-5)^{2}+(y-4)^{2}=4 c(5,4) \\
A=\pi R^{2} \quad V=A r e a x 2 \pi r \\
=4 \pi
\end{array}\right.
$$

a) x axis: radius $=4$

$$
\begin{aligned}
V & =\text { Area } \times 2 \pi r \\
& =4 \pi \cdot 2 \pi .4\left(32 \pi^{2}\right.
\end{aligned}
$$

A) $g a x j=\operatorname{radius}=5$

$$
V=4 \pi \cdot 2 \pi-5=40 \pi
$$

8.

$$
\bar{y}=\frac{12 \cdot 3+16 \cdot 2+4 \pi \cdot 2}{28+4 \pi}
$$

$$
\frac{\int_{0}^{2} x\left(4-x^{2}\right) t_{x}^{1}}{\int_{0}^{2}\left(\frac{2}{4}-x^{2}\right) d x}
$$

$$
\bar{y}=\frac{\int_{0}^{2} \frac{\left(4-x^{2}\right)^{2}}{2} d x}{16 / 3}
$$

$$
=\frac{\int_{0}^{2} 4 x-x^{3} d x}{\int_{0}^{1} 4-x^{2} d x}
$$

$$
\begin{aligned}
& =\frac{8.53333}{16 / 3}(F R A C) \\
& =\frac{128 / 5}{16 / 3}=8 / 5
\end{aligned}
$$

$$
=2 x^{2}-\left.\frac{x^{4}}{4}\right|_{0} ^{2}
$$

1.6 -の-

$$
\begin{aligned}
& 4 x-\left.\frac{x^{3}}{3}\right|_{0} ^{2} \\
= & \frac{8-4}{8-8 / 3}
\end{aligned}=\frac{4}{16 / 3}=
$$

$$
\bar{y}=\frac{\int_{0}^{2} 4-x^{2}\left(4-x^{2}\right) d x}{\int_{0}^{2}\left(4-x^{2}\right) d x}
$$

$$
=\frac{1}{2} \int_{2}^{2}\left(16-8 x^{2}+x^{4}\right) d x
$$

16

$$
=\frac{\frac{1}{2}\left[16 x-\frac{8 x^{3}}{3}+\frac{x^{5}}{5}\right]_{0}^{2}}{16 / 3}
$$

$$
=\frac{\frac{1}{2}\left[32-\frac{64}{3}+\frac{32}{5}\right]}{16 / 3}=\frac{16+\frac{16}{5}-\frac{32}{3}}{16 / 3}
$$

$$
=\frac{\frac{240+48-160}{15}}{16 / 3}=\frac{128}{15} \cdot \frac{3}{16}
$$

10. $x^{2}+y^{2}=r^{2}$

$$
y=\sqrt{r^{2}-x^{2}}
$$

Vhemisphere Disk

$$
\begin{aligned}
& =\pi \int_{0}^{r}\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x \\
& =\pi \int_{0}^{r}\left(r^{2}-x^{2}\right) d x \\
& =\pi\left[r^{2} x-\frac{x^{3}}{3}\right]_{0}^{r}=\pi\left[r^{3}-r^{3}\right]=\frac{2 \pi r^{3}}{3}
\end{aligned}
$$

V splec: $=2-\frac{23+r^{3}}{0}=\frac{4 \pi r^{3}}{3}$

