MAC 2233 EXAM 4D Dr. Rapalje NAME
Chapter 5
Show all work on separate paper. Tum in ALL worksheets.

1. $\int\left(24 x^{2}-8 x+12+x^{-3}\right) d x$
2. $\int\left(6 \sqrt{x}-5+\frac{6}{\sqrt[3]{x}}\right) d x$
3. $\int\left(e^{3 x}-\frac{1}{e^{3 x}}\right) d x$
4. $\int\left(\frac{1}{x^{2}}+\frac{1}{x}+1\right) d x$
5. $\int \frac{3 x^{3}-5 x^{2}+6 x-7}{x} d x$
6. Given $\int_{0}^{2}\left(x^{3}+4 e^{-2 x}\right) d x$
a) Find the exact value using calculus.
b) Find the decimal approximation (using the calculator!)
7. Find the area under the curve $f(x)=3 x^{2}-4 x+5$ from $x=2$ to $x=5$.

Set up the integral and solve using calculus. Check with the calculator.
8. Find the area between the curves $y=12 x-3 x^{2}$ and $y=6 x-24$.
9. Find the average value of the function $f(x)=e^{\frac{1}{2} x}$ on $[0,2]$.

Give the exact value.
In 10-13, find each integral.
10. $\int\left(x^{3}+5\right)^{5} x^{2} d x$
11. $\int e^{x^{2}} x d x$
12. $\int \frac{x^{3} d x}{x^{4}+4}$
13. $\int \frac{(\ln x)^{3}}{x} d x$
14. Evaluate: $\int_{0}^{3} x \sqrt{x^{2}+9} d x$ a) using calculus (exact value)
b) using calculator (decimal approx)
c) $\int_{0}^{4} x \sqrt{x^{2}+9} d x$ either method.
15. World consumption of aluminum is running at the rate of $72 e^{0.06 t}$ million tons per year where t is the number of years since year 2000. Find a formula for the total amount of aluminum consumed within t years of 2000. If this rate continues, how long will it take to exhaust the known resources of 8500 million tons?

MAC 2233 ExAm $4 D$ Solutions Dr. Rapalje

1. $\int\left(24 x^{2}-8 x+12+x^{-3}\right) d x$

$$
=8 x^{3}-4 x^{2}+12 x+\frac{x^{-2}}{-2}+c
$$

$$
\text { 4. } \int\left(\frac{1}{x^{2}}+\frac{1}{x}+1\right) d x
$$

$$
\begin{array}{ll}
\text { 2. } \int\left(6 \sqrt{x}-5+\frac{6}{\sqrt[3]{x}}\right) d x \quad \text { 3. } \int\left(e^{3 x}-\frac{1}{e^{3 x}}\right) d x \\
=\int\left(6 x^{1 / 2}-5+6 x^{-1 / 3}\right) d x=\int\left(e^{3 x}-e^{-3 x}\right) d x \\
=6 \frac{2}{3} \cdot x^{3 / 2}-5 x+6 \frac{3}{2} x^{2 / 3}+c=\frac{e^{3 x}}{\frac{3}{3}-\frac{e^{-3 x}}{-3}+c} \\
=4 x^{3 / 2}-5 x+9 x^{3 / 3}+c=\left(\frac{1}{3}\left(e^{3 x}+e^{-3 x}\right)+c\right.
\end{array}
$$

$$
=\int\left(x^{-2}+x^{-1}+1\right) d x
$$

5. $\int \frac{3 x^{3}-5 x^{2}+6 x-7}{x} d x$

$$
=x^{3}-\frac{5}{2} x^{2}+6 x-7 \ln x+0
$$

7. $\int_{2}^{5}\left(3 x^{2}-4 x+5\right) d x$

$$
\begin{aligned}
& =x^{3}-2 x^{2}+\left.5 x\right|_{2} ^{5} \\
& =\left(5^{3}-2\left(5^{2}\right)+5 \cdot 5\right)-\left(2^{3}-2 \cdot 2^{2}+5 \cdot 2\right) \\
& =(125-50+25)-(8-8+10) \\
& =100-10=90
\end{aligned}
$$

9. $A v=\frac{1}{1-a} \int f(x) d x$

$$
=\frac{1}{20} \int_{0}^{2} e^{1 / 2 x} d x
$$

6) $\int_{0}^{2}\left(x^{3}+4 e^{-2 x}\right) d x$

$$
=\frac{x^{-1}}{-1}+\ln x+x+c
$$

$$
=-\frac{1}{x}+\ln x+x+8
$$

$5_{12 x-3 x^{2}}^{\text {hoper }}$ Lower 2
8.

$$
\begin{aligned}
& 12 x-3 x^{2}=6 x-24 \\
& 0=3 x^{2}-6 x-24 \\
& 0=3\left(x^{2}-2 x-8\right) \\
& 0=3(x-4)(x+2)
\end{aligned}
$$

$$
x=4 \quad x=-2
$$

$$
\begin{aligned}
& x=4 \\
& \left.\int_{-}^{4}\left[12 x-3 x^{2}\right)-(6 x-24]\right] d x \\
& \int_{-2}^{4}\left(-3 x^{2}+6 x+24\right) d x
\end{aligned}
$$

$$
=-x^{3}+3 x^{2}+\left.24 x\right|_{-2} ^{4}
$$

$$
=-(4)-3\left(4^{2}\right)+24(4)
$$

$$
\begin{aligned}
& -(4)-3\left(4^{2}\right)+24(4) \\
& -\left(-(-2)^{3}+3(-2)^{2}+24(-2)\right) \\
&
\end{aligned}
$$

$$
=-64+48+96
$$

$$
\begin{aligned}
& -64+48+96 \\
& -(8+12-48) \\
& 80-128)=108
\end{aligned}
$$

$$
\begin{aligned}
& -(8+12-48) \\
& =80-(-28)=\frac{108}{2}
\end{aligned}
$$

$$
=\frac{\int\left(3 x^{2}-5 x+6-\frac{7}{x}\right) d x}{3 x}
$$

$$
=x^{3}-\frac{5}{2} x^{2}+6 x-7 \ln x+0=
$$

$$
\begin{aligned}
& =\frac{x^{4}}{4}+\left.\frac{4 e^{-2 x}}{-2}\right|_{0} ^{2} \\
& =\left(\frac{16}{4}-2 e^{-4}\right)-\left(0-2 e^{-4}\right. \\
& =4-2 e^{-4}+2 \\
& \left(6-2 e^{-4}\right) \text { VALUE }
\end{aligned}
$$

b) ≈ 5.96 (2 worp

$$
=\left.\frac{1}{2} \cdot \frac{夫}{1} e^{1 / 2 x}\right|_{0} ^{2}
$$

$$
=e^{1}-e^{0}=\frac{e-1}{e \times 4 e}!
$$

$$
(\approx 1.72) \text { EXACT! }
$$

10.

$$
\begin{array}{lll}
\text { 0. } \int\left(x^{3}+5\right)^{5} x^{2} d x & \text { det } u=x^{3}+5 & \text { 11. } \int e^{x^{2}} x d x \text { Letu }=x^{2} \\
=\int u^{5} \frac{d u}{3} & \frac{d u}{3}=3 x^{2} d x & \int e^{u} \frac{d u}{2} \quad \frac{d u}{2}=2 x d x \\
=\frac{1}{3} \cdot \frac{u^{6}}{6}+c & =\frac{1}{2} e^{u}+c \\
=\frac{1}{18}\left(x^{3}+5\right)^{6}+c & & =\frac{1}{2} e^{x^{2}+c}
\end{array}
$$

$$
\begin{aligned}
\text { 12. } \int \frac{x^{3} d x}{x^{4}+4} & \text { let } u=x^{4}+4 \\
=\int \frac{d u}{4} & =4 x^{3} d x \\
= & \frac{d u}{4}=x^{3} d x \\
=\frac{d u}{u} & =\frac{1}{4} \ln u+c \\
& =\frac{1}{4} \ln \left(x^{4}+4\right)+8
\end{aligned}
$$

14a) $\int_{0}^{3} x \sqrt{x^{2}+9} d x$

$$
=\int \sqrt{x^{2}+9} \cdot x d x
$$

$$
\begin{aligned}
\text { Letu } & =x^{2}+9 \\
\frac{d u}{} & =2 x d x \\
\frac{d u}{2} & =x d x
\end{aligned}
$$

$$
=\int u^{1 / 2} \frac{d u}{2}
$$

$$
=\frac{1}{2} \frac{2 u^{3 / 2}}{3}
$$

$$
=\left.\frac{1}{3}\left(x^{2}+9\right)^{3 / 2}\right|_{0} ^{3}
$$

$$
=\frac{1}{3}\left(18^{3 / 2}-9^{3 / 2}\right)
$$

$$
=\frac{1}{3}(18 \sqrt{18}-27)
$$

$$
=\frac{1}{3}(18 \cdot 3 \sqrt{2}-27)
$$

$$
=18 \sqrt{2}-9
$$

e) Calcabtor (in 2 urago!)

$$
\approx 16.46
$$

c)

$$
\int_{0}^{4} x \sqrt{x^{2}+9} d x
$$

$=($ Same intearation 1)

$$
=\left.\frac{1}{3}\left(x^{2}+9\right)^{3 / 2}\right|_{0} ^{4}
$$

13. $\int \frac{(\ln x)^{3}}{x} d x$
$=\int u^{3} d u$

$$
=\frac{u^{4}}{4}+c=\frac{(\ln x)^{4}}{4}+c
$$

Let $y=$ millim tons
15. Rate $=d y$ convemen

$$
\begin{gathered}
\frac{d y}{d t}=72 e^{0.06 t} \\
y=\int 72 e^{0.06 t} d t \\
y=\frac{72}{0.06} e^{0.06 t}+C \\
y=1200 e^{0.06 t}+c
\end{gathered}
$$

$A t-A=0$ in year 2000, $y=4$ million tms consumad $=0$

$$
\begin{aligned}
& 0=1200 e^{0}+c \\
& 0=1200+c
\end{aligned}
$$

$c=-1200$

$$
y=1200 e^{0.06 t}-1200
$$

When will $y=8500$ (all gne i)?

$$
\begin{aligned}
& 8500=1200 e^{0.06 t}-1200 \\
& \frac{9700}{1200}=\frac{1200 e^{0.06 t}}{1260} \\
& \frac{97}{12}=e^{0.06 t}\left(\frac{\ln \left(\frac{97}{12}\right)}{0.06} \frac{0.06 t}{0.06}\right. \\
& \ln \left(\frac{97}{12}\right)=\ln e^{0.06 t} \frac{\ln \left(\frac{97}{12}\right)}{.06} \\
& \frac{t a 38.83}{}
\end{aligned}
$$

$$
=\frac{1}{3}\left(25^{3 / 2}-9^{3 / 2}\right)=\frac{1}{3}(125-27)=\frac{1}{3}(98)=98 \text { EXACT }
$$

