MAC 2233 EXAM 2A Dr. Rapalje NAME \qquad
Sections 2.4-3.3

Show all work on this test or on separate paper. Turn in ALL worksheets.

1. If $f(x)=\frac{\mathbf{3}}{4 x^{3}}$, find $\mathrm{f}^{\prime}(x)$. (Simplify and express final answer without negative exponents!)
2. If $f(x)=\frac{x^{2}+1}{x^{5}-1}$, find $\mathrm{f}^{\prime}(\mathrm{x})$. (Give answer in factored form!)
3. A company's profit function is $P(x)=12 x-1800$ dollars.
a) Find the average profit function $\operatorname{AP}(x)=P(x) / x$.
b) Find the marginal average profit function $\operatorname{MAP}(x)$.
4. If $f(x)=x^{4}-3 x^{3}-8 x+4$, find $f^{\prime}(x), f^{\prime \prime}(x), \mathrm{f}^{\prime \prime \prime}(\mathrm{x}), \mathrm{f}^{(4)}(\mathrm{x})$.
5. If $f(x)=\frac{9}{\sqrt[3]{x}}$, find $\mathrm{f}^{\prime \prime}(\mathrm{x})$ and $\mathrm{f}^{\prime \prime}(3)$.
6. The distance a car travels in thours is given by $\boldsymbol{s}(\boldsymbol{t})=50 t+\frac{\mathbf{1 0 0}}{\boldsymbol{t}+\mathbf{2}}$.

Find the velocity after 3 hours.
7. If $f(x)=\left(x^{2}-6 x+3\right)^{10}$, find $f^{\prime}(x)$.
8. Find the second derivative of $f(x)=\left(x^{2}+3\right)^{8}$. (Extra Credit--factor completely.)

9a) What is a critical value of a function f ?
b) What is a point of inflection of a function f ?
10. Find all critical values of $f(x)=\left(x^{2}-6 x-7\right)^{2}$.
11. Given a function $f(x)=x^{4}+4 x^{3}-8 x^{2}+64$, find the first derivative, make a sign diagram for the derivative, plot all critical points, and sketch the graph.
12. Given that $f^{\prime}(x)=4 x^{3}-12 x^{2}$ and $f^{\prime \prime}(x)=12 x^{2}-24 x$
a) make sign diagrams for the given derivatives (either as presented in the textbook or in class).
b) give all critical values for $f(x)$.
c) give all points of inflection for $f(x)$.
d) If $f(0)=0, f(2)=-16$, and $f(4)=-30$, sketch the graph illustrating when the graph is increasing or decreasing, concave up or concave down.
13. Given the following sign diagram,
a) determine all critical values
b) determine all points of inflection
c) sketch the graph, indicating when the function is increasing/decreasing, concave up/down.

X	-4	-2	0	2	6
f	10	6	0	4	-8
f^{\prime}	-	--	Und	+0	

14. Find the absolute extreme values of $f(x)=x-x^{2}$ on the interval $[0,3]$.
15. A farmer has 600 yards of fence with which to enclose a rectangular area that borders a river. If no fence is required for the side along the river, find the dimensions of the largest possible rectangle and the maximum area that can be enclosed on three sides.
16. The cost to produce an automobile is $\$ 8000$ each plus fixed costs of $\$ 20,000$ per week. The selling price function for each car is $p(x)=22,000-70 x$, where p is the price (per car) at which exactly x cars will be sold.
a) Give the profit function $\mathrm{P}(\mathrm{x})$ for the sale of x automobiles per week.
b) Find the number of cars that must be sold per week to obtain maximum profit.
c) Find the maximum profit per week.

MAC 2233 EXAM 2A Solutions

1. $f(x)=\frac{3}{4} x^{-3}$
2. $f(x)=\frac{x^{2}+1}{x^{5}-1}$
(7)

$$
f^{\prime}(x)=\frac{\frac{9}{4} x^{-4}}{-\frac{9}{4 x^{4}}}
$$

4. $f(x)=x^{4}-3 x^{3}-8 x+4$

$$
(7)=\frac{2 x^{6}-2 x-5 x^{6}-5 x^{4}}{6\left(x^{5}-1\right)^{2}}
$$

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-9 x^{2}-8 \\
& f^{\prime \prime}(x)=12 x^{2}-18 x \\
& f^{\prime \prime \prime}(x)=24 x-18 \\
& f^{(4)}(x)=24
\end{aligned}
$$

7. $f(x)=\left(x^{2}-6 x+3\right)^{10}$

$$
\begin{aligned}
& =\frac{-3 x^{6}-5 x^{4}-2 x}{\left(x^{5}-1\right)^{2}} \\
& =\frac{-x\left(3 x^{5}+5 x^{3}+2\right.}{\left(x^{5}-1\right)^{2}} \\
& f(x)=\frac{9}{\sqrt[3]{x}}=9 x^{-1 / 3}
\end{aligned}
$$

5. $\begin{aligned} & f(x)=\frac{9}{\sqrt[3]{x}}=9 x^{-1 / 3} \\ & f^{\prime}(x)=-3 x^{-4 / 3}\end{aligned}$

$$
f^{\prime}(x)=10\left(x^{2}-6 x+3\right) \cdot(2 x-6) f^{\prime \prime}(3)=4 \cdot 3^{(-7 / 3)}
$$

$$
\text { (1) }=20\left(x^{2}-6 x+3\right)^{\frac{9}{2}}(x-3)
$$

8. $f(x)=\left(x^{2}+3\right)^{8}$

$\approx .308$

$$
=16\left[\left(x^{2}+3\right)^{7}\right]
$$

$$
\begin{aligned}
f^{\prime \prime}(x) & =16\left[x\left(x^{2}+3\right)^{7}\right] \\
& \left.=16\left[14 x^{2}+3\right)^{6} \cdot 2 x+\left(x^{2}+3\right)^{7}+\left(x^{2}+3\right)^{7}\right] \\
& =16\left(x^{2}+3\right)^{6}\left[14 x^{2}+x^{2}+3\right]
\end{aligned}
$$

$$
\begin{aligned}
& =16\left(x^{2}+3\right)^{6}\left[14 x^{2}+x^{2}\right. \\
& =16\left(x^{2}+3\right)^{6}\left(15 x^{2}+3\right)
\end{aligned}
$$

$$
=\frac{48\left(x^{2}+3\right)^{6}\left(5 x^{2}+1\right)}{2}
$$

11. $f(x)=x^{4}+4 x^{3}-8 x^{2}+64$

$$
f^{\prime}(x)=4 x^{3}+12 x^{2}-16 x=0
$$

(8)

$$
4 x\left(x^{2}+3 x-4\right)=0
$$

$$
4 x(x+4)(x-1)=0
$$

$$
x=0 \quad x=-4 \quad x=1
$$

min at $(-4,-64)$
Rolmax at $(0,-4)$
Rel Min at $(1,61)$
3. $P(x)=12 x-1800$

$$
\text { 6. } A(t)=50 t+100(t+2)^{-1}
$$

$$
V(t)=\Delta^{\prime}(t)=50-100(t+2)^{-2} .1
$$

$$
\begin{align*}
V(3) & =50-100 \cdot 5^{-2} \\
& =50-100 \cdot \frac{1}{25} \tag{7}\\
& =50-4=46 \mathrm{mph}
\end{align*}
$$

9a) Critical value is a value
(8) of x wifhim the denvin of f, whe $f^{\prime}(x)=0 \sigma$ $f^{\prime}(x)$ is undefined.
94) Pogit t inflection is a point whe $f^{\prime \prime}(x)=0$ a undefined and the concavity change.

$$
\begin{aligned}
& \text { (3) a) } A P(x)=\frac{12 x-1800}{x} \\
& \text { (4) } 6 \text {) } \operatorname{mA} P(x)=\frac{x(12)-(12 x-1800)}{x^{2}} \\
& =\frac{12 x-12 x+1800}{x^{2}} \\
& =\frac{1800}{x^{2}}
\end{aligned}
$$

10. $f(x)=\left(x^{2}-6 x-7\right)^{2}$
(7) $f^{\prime}(x)=2\left(x^{2}-6 x-7\right)^{\prime}(2 x-6)=0$

Deer. Iner. Deer. Iner.
12.

$$
\begin{aligned}
f^{\prime}(x)= & 4 x^{3}-12 x^{2} \\
= & 4 x^{2}(x-3) \\
& x=0 \quad x=3
\end{aligned}
$$

(8)

$$
\begin{aligned}
f^{\prime \prime}(x) & =12 x^{2}-24 x \\
& =12 x(x-2) \\
& x=0 \quad x=2
\end{aligned}
$$

13.

C)
(8)

a) Critical values: $x=0, x=2$
b) Points ψ infl: $(-2,6)(6,-8)$

6) Critical valuees

$$
x=0, x=3
$$

c) Points δ inflection

$$
x=0, x=2
$$

$$
(0,0)(2,-16)
$$

14.

(8)

15.

$$
A=L W
$$

(8)

$$
\begin{aligned}
& A= x(600-2 x) \\
& A= 600 x-2 x^{2} \\
& A^{\prime}= 600-4 x=0 \\
& 600=4 x \\
& x=150^{4} d \text { widtl. } \\
& 600-2 x=300^{4} \text { densth } \\
& \text { M4x Area }=150 \times 300 \\
&=45,0000 \text { eqt. }
\end{aligned}
$$

16. cost $=8000 x+20,000$
(for x anspen wene k)

$$
\begin{aligned}
& \text { S.P }=(22,000-70 x) \cdot x \\
&= 22,000 x-70 x^{2} \\
& \text { Profit }= 22,000 x-70 x^{2}-800 x-20,000 \\
&=-70 x^{2}+14,000 x-20,000 \\
&(\text { PuAit })^{\prime}=-140 x+14,000=0 \\
&-140 x=-14000 \\
& x=100 \mathrm{can} / \mathrm{wd} .
\end{aligned}
$$

c)

$$
\begin{aligned}
& P(x)=-70 x^{2}+14,000 x-20,000 \\
& P(100)=680,000
\end{aligned}
$$

