COLLEGE ALGEBRA EXAM 4 GG

\qquad

SHOW ALL WORK ON THIS TEST OR ON SEPARATE PAPER. Circle answers.

 TURN IN ALL WORKSHEETS. CALCULATORS ARE REQUIRED ON THIS TEST.In 1-9, solve for the unknown:

1. $\log _{3} 81=x$
2. $\log _{4} x=-3 / 2$
3. $\log _{b} 8 \sqrt{2}=\frac{7}{2}$
4. $\log _{27} 9=x$
5. $\log _{b} 10=3$
6. $\log _{10} x=-3$
7. $\log _{10} 0=x$
8. $\log _{25} 0.04=x$
9. $\log _{b} 64=\frac{2}{3}$

In 10-14, simplify completely:
10. $\boldsymbol{e}^{\ln 3 x}=$ \qquad
11. $\ln e^{3 x}=$ \qquad
12. $\ln \left(\frac{1}{\mathrm{e}^{2}}\right)=$
13. $\log _{b} b^{10}=$ \qquad 14. $\log _{10} \sqrt[3]{10}=$

In 15-20, use your calculator (round to nearest hundredth or give scientific notation):
15a) $\log _{10} 98,000=$ \qquad
16a) $\log _{10} 2.5 \times 10^{-4}$ \qquad
17a) $\mathrm{e}^{25}=$ \qquad
b) $\ln \mathbf{9 8 , 0 0 0}=$ \qquad
b) $\ln 7.85 \times 10^{-12}=$ \qquad
b) $\mathrm{e}^{-2}=$ \qquad
18. $\ln \left(e^{7}+e^{3}\right)=$
19. $\log _{5} \frac{125}{\sqrt{5}}$
20. $\log _{7} 100=$

In 21-24, solve for X using the method of logarithms (you may use a graphing calculator to check!):
21. $3^{x}=300$
22. $70^{(x-2)}=10^{x}$
23. $\log _{10} x+\log _{10}(x-15)=2$
24. $\log _{3}(x-2)=\log _{3}(x+2)+2$
25. The population of a rabbit farm is given by $y=150 \mathrm{e}^{0.07 \mathrm{t}}$, where t is in years.
a) Estimate the population in 20 years.
b) How long will it take the population to double?
26. The population of a city in 1996 was 85,000 . In 2000 , the population was 125,000 .
a) Assuming that $y=y_{0} e^{k t}$, find the value of k.
b) Use this value of k to predict the population of the city in 2008.

1. $\log _{3} 81=x$
2. $\log _{4} x=-3 / 2$

$$
\text { 2. } \log _{4} x=-3 / 2
$$

$$
\begin{array}{lc}
3^{x}=81 & 4^{-3 / 2}=x \\
x=4 & =(\sqrt{4})^{-3}=2^{-3}=\left(\frac{1}{8}\right)
\end{array}
$$

5. $\log _{6} 10=3$

$$
\begin{aligned}
& b^{3}=10 \\
& b=\sqrt[3]{10}
\end{aligned}
$$

6. $\log _{10} x=-3$

$$
10^{-3}=x
$$

$$
x=\frac{1}{1000}
$$

$$
\begin{aligned}
& \log _{6} 64=2 / 3 \\
& b^{2 / 3}=64 \\
& \left(b^{2 / 3}\right)^{3 / 2}=(64)^{3 / 2} \\
& b=(\sqrt{64})^{3}
\end{aligned}
$$

$$
\left.b=8^{3}=512 \quad 15 a\right) 4.99
$$

3. $\log _{6} 8 \sqrt{2}=\frac{7}{2}$
4.

$$
\begin{aligned}
& \log _{27} 9=x \\
& 27^{x}=9 \\
& \left(3^{3}\right)^{x}=3^{2} \\
& 33=3^{(3)} \\
& 3 x=2 x=2 / 3
\end{aligned}
$$

7. $\log _{0} 0=x$
calculator-
NoSolution
8. $\log _{25} 0.04=x$

$$
25 x=.04=\frac{4}{100}=\frac{1}{2}
$$

$$
\text { 12. } \begin{array}{rlrl}
\ln \left(\frac{1}{e^{2}}\right) & =\ln e^{-2} & -0 R-\frac{x=-1}{\ln \cdot 04} \\
& =(-2) & \ln 25 & -1
\end{array}
$$

10. $\begin{aligned} &(3 x) \\ & \text { 11. } 3 x \\ & \text { 12 } \ln \left(\frac{1}{e^{2}}\right)\end{aligned}=\ln e^{-2}$
11. (10) 14. $\log _{10} \sqrt[3]{10}=\log 10^{(1 / 3)}$

16a) -3.60
17a) 7.2×10^{10}
18. 7.02
b) 11.49
b) -25.57
b) .14
19.

$$
\begin{aligned}
\log _{5} \frac{125}{\sqrt{5}} & =\log _{5} 125-\log _{5} \sqrt{5} \\
& =\log _{5} 5^{3}-\log _{5} 5^{1 / 2} \\
& \left.=3-\frac{1}{2}=2.5\right)_{0}(2)
\end{aligned}
$$

20. $\log _{7} 100=x \quad 21.3^{x}=300$

$x \ln 7=\log x=\frac{\ln 300}{\ln 3}$
21. $\log _{10} x+\log _{18}(x-5)=2$
$\log _{10} x(x-15)=2$
$x=\frac{e_{1} 100}{h_{2}}$ (2037)

$$
\begin{gathered}
\log _{3}(x-2)-\log _{3}(x+2)=2 \\
\log _{3} \frac{x-2}{x+2}=2 \\
3^{2}=9=\frac{x-2}{x+2} \\
9 x+18=x-2 \\
8 x=-20 \text { Reject }
\end{gathered}
$$

$\begin{array}{ll}8 x=-20 \\ x=-2 & \text { eject }\end{array}$
$x=-2.5$ Reject N_{0} Solution
15a) $y=150 e^{0.07 t}$

$$
=150 e^{(.07)(20)}
$$

$$
=150 e^{1.4}
$$

$=608$ rab6its.

$$
\begin{aligned}
& \text { b) Donbles } \Rightarrow y=2 y_{0} \\
& 2 y_{0}=y_{0} e^{.07 t} \\
& 2=e^{.07 t} \quad \begin{array}{l}
\ln \frac{1250}{85}=85000 e \\
\ln e^{4 t} .
\end{array} \\
& \begin{array}{l}
2=e^{.07 t} \\
\ln 2=\ln e^{(.07 t)}=.07 t \quad 4 k=\ln \frac{125}{85} \\
t=\frac{\ln 2}{.07}=9.9 y 0 .
\end{array} \\
& \text { 26. } V=V_{0} e^{R t} \\
& \text { a) } 125000=85000 e^{k(4)} \\
& \text { b) } y=y_{0} e^{k} \\
& y=85000 e^{(12 b)} \\
& =270,329
\end{aligned}
$$

