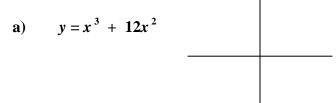
SHOW ALL WORK ON THIS TEST OR ON SEPARATE PAPER. Circle answers. TURN IN <u>ALL</u> WORKSHEETS. CALCULATORS ARE REQUIRED ON THIS TEST.

1. Factor completely


a)
$$8x^3 - 27y^3$$

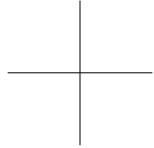
2. Express as a single fraction:

$$\frac{x}{x^2 + 6x + 9} - \frac{3}{x^2 - 9}$$

b)
$$(x^2 - 5x)^2 + 10(x^2 - 5x) + 24$$

3. Find all roots and graph:

4. Use your <u>calculator</u>: (Fractional form)


- 4

(Decimal approx)

a)
$$32^{-\frac{4}{5}}$$

b)
$$\sqrt[5]{3} + \sqrt[3]{5}$$

b) $y = x^4 - 12x^3$

(Decimal approx)

(Fractional form)

c)
$$\frac{\sqrt{2}-14\sqrt{3}}{2\sqrt{3}-3\sqrt{2}}$$

d) $\frac{3+5i}{7-6i}$

5. Find the equation of the perpendicular bisector of the line segment between (-6, 3) and (2, -7). (Give answer in y = mx + b form.)

6. Find the vertex and graph:

$$x = -y^2 + 6y - 2$$

7. Find the center, radius, and graph:

$$x^2 + y^2 - 4x + 10y - 7 = 0$$

- 8. Use your calculator to find all roots. Verify by synthetic division. Give irrational roots in radical form:

$$x^4 - 12x^3 + 37x^2 - 50 = 0$$

- 9. $f(x) = \frac{x-3}{5x}$ and $g(x) = x^2 4x$
- 10. Solve.

Sketch graph (give all roots!).

a) f[g(x)] =

a) |x-8| > 5 (Give interval notation!)

b) g[f(x)] =

b) $(x-4)^4(x+2)^2(x-5)=0$

11a)
$$\log_6 100 =$$
 _____ b) $\ln_0 =$ ____

b)
$$\ln 0 =$$

c)
$$\log_b \sqrt{b} =$$
 _____ d) $\ln e^{10x} =$ _____

d)
$$\ln e^{10x} =$$

12. Solve for x (use logarithms!):
$$8^{(3x-2)} = 5^x$$

13. A population grows from 3,500 in 1998 to 6,500 in 2002. If
$$y = y_0 e^{kt}$$
, find "k" and estimate the population in 2008.

When will the population reach 20,000?