### 2.10 Theorem of Pythagoras

Basic Algebra: One Step at a Time. Pages 193-200: \#41, 42, 45, 46

Dr. Robert J. Rapalje, Retired<br>Central Florida, USA

Regreffully, I still cannot draw pictures for this webpage. Therefore, you will have to draw and label the rectangles and triangles for each problem here.
p. 198: 41. Find the width of a rectangle whose diagonal is 25 cm . and length is 24 cm .

Solution: Let $x=$ the width of the rectangle. $24=$ the length of the rectangle. $25=$ the diagonal of the rectangle.

Draw a rectangle with a diagonal, which will divide the rectangle into two triangles. The legs of the triangle are $x$ and 24 , and the hypotenuse is 25 .

$$
\begin{aligned}
& x^{2}+24^{2}=25^{2} \\
& x^{2}+576=625
\end{aligned}
$$

In order to get all the number terms on the right side, subtract 576 from each side:

$$
\begin{aligned}
& x^{2}+576=625 \\
& -576-576 \\
& \hline x^{2}=49
\end{aligned}
$$

Take the square root of each side:

$$
x= \pm 7
$$

Of course, the negative answer is rejected, since the side of a rectangle cannot be negative.

Final answer: $x=7 \mathrm{~cm}$.
p. 199: 42. Find the width of a rectangle whose diagonal is 29 cm . and length is 21 cm .

Solution: Let $x=$ the width of the rectangle.
$21=$ the length of the rectangle.
$29=$ the diagonal of the rectangle.
Draw a rectangle with a diagonal, which will divide the rectangle into two triangles. The legs of the triangle are $x$ and 21, and the hypotenuse is 29 .

$$
\begin{aligned}
& x^{2}+21^{2}=29^{2} \\
& x^{2}+441=841
\end{aligned}
$$

In order to get all the number terms on the right side, subtract 576 from each side:

$$
\begin{aligned}
x^{2}+441 & =841 \\
-441 & -441 \\
\hline x^{2} & =400
\end{aligned}
$$

Take the square root of each side:

$$
\begin{aligned}
x & = \pm \sqrt{400} \\
x & = \pm 20
\end{aligned}
$$

Of course, the negative answer is rejected, since the side of a rectangle cannot be negative.

Final answer: $x=20 \mathrm{~cm}$.
p. 199: 45. A guy wire to the top of a 35 foot pole reaches the ground 18 feet from the base of the pole. How long is the wire?

Solution: Let $x=$ the length of the wire.
$35=$ the height of the pole.
18 = the base of the triangle.
Draw a right triangle with base 18 and height 35 . The hypotenuse will be the length of the wire, which is $x$. The legs of the triangle are 18 and 35 , and the hypotenuse is $x$.

$$
\begin{array}{r}
18^{2}+35^{2}=x^{2} \\
324+\mathbf{1 2 2 5}=x^{2}
\end{array}
$$

Combine the number terms on the left side:

$$
\begin{aligned}
& 1549=x^{2} \\
& x^{2}=1549
\end{aligned}
$$

Take the square root of each side:

$$
x= \pm \sqrt{1549}
$$

Use a calculator and round to the nearest hundredth:

$$
x= \pm 39.36
$$

The negative answer is rejected, since the side of a triangle cannot be negative.

Final answer:

$$
x=39.36 \text { feet }
$$

p. 199: 46. A guy wire to the top of a pole is 35 feet long. It reaches the ground 18 feet from the base of the pole. How tall is the pole?

Solution: Let $x=$ the height of the pole.
$35=$ the length of the wire.
$18=$ the base of the triangle.
Draw a right triangle with base 18 and height $x$. The hypotenuse will be the length of the wire, which is 35 . The legs of the triangle are 18 and $x$, and the hypotenuse is 35 .

$$
\begin{aligned}
& 18^{2}+x^{2}=35^{2} \\
& 324+x^{2}=\mathbf{1 2 2 5}
\end{aligned}
$$

Subtract 324 from each side:

$$
\begin{array}{r}
324+x^{2}=1225 \\
-\mathbf{3 2 4} \quad-324 \\
\hline x^{2}=\mathbf{9 0 1}
\end{array}
$$

Take the square root of each side:

$$
x= \pm \sqrt{901}
$$

Use a calculator and round to the nearest hundredth:

$$
x= \pm 30.02
$$

The negative answer is rejected, since the side of a triangle cannot be negative.

Final answer: $\quad x=30.02$ feet

