SHOW ALL WORK ON THIS TEST OR ON SEPARATE PAPER. Circle answers. TURN IN \underline{ALL} WORKSHEETS. CALCULATORS ARE REQUIRED ON THIS TEST.

 \mathbb{R}^2

1. Factor completely

a)
$$8x^3 + 27y^3$$

2. Express as a single fraction:

$$\frac{x}{x^2 + 4x + 4} - \frac{2}{x^2 - 4}$$

b)
$$(x^2 - 5x)^2 - 2(x^2 - 5x) - 24$$

3. Find all roots and graph:

4. Use your <u>calculator</u>:

(Fractional form) (Decimal approx.)

b) $\sqrt[5]{3} - \sqrt[3]{5}$

b)
$$y = x^4 + 12x^3$$

(Decimal approx.)

echilar approx.)
$$\frac{\sqrt{2} + 14\sqrt{3}}{2\sqrt{3} - 3\sqrt{2}}$$

(Fractional form!)

d)
$$\frac{3-5i}{7+6i}$$

5. Find the equation of the perpendicular bisector of the line segment between (-8, 3) and (2, -1). (Give answer in y = mx + b form.)

6. Find the vertex and graph:

$$x = -y^2 + 6y - 2$$

7. Find the center, radius, and graph:

$$x^2 + y^2 + 4x - 10y - 7 = 0$$

8. Use your calculator to find all roots. Verify by synthetic division. Give irrational roots in radical form:

$$x^4 - 12x^3 + 37x^2 - 50 = 0$$

- 9. $f(x) = \frac{x-4}{5x}$ and $g(x) = x^2 3x$
- 10. Solve.

Sketch graph (give all roots!).

a) f[g(x)] =

a) $|x+8| \ge 5$ (Give interval notation)

b) g[f(x)] =

b) $(x+4)^4(x-2)^2(x+5) = 0$

11a)
$$\log_{5} 100 =$$
 _____ b) $\ln_{0} 0 =$ _____

b)
$$\ln 0 =$$

c)
$$\log_{b} \frac{1}{b^{2}} =$$
 d) $\ln e^{5x} =$

d)
$$\ln e^{5x} =$$

12. Solve for x (use logarithms!):
$$4^{(3x-2)} = 5^x$$

13. A population grows from 4,500 in 1998 to 7,500 in 2002. If
$$y = y_0 e^{kt}$$
, find "k" and estimate the population in 2008.

When will the population reach 20,000?