Help with the Graduate Equivalency Diploma

Dr. RobertJ. Rapalje, Retired
More FREE help available from my website at www.mathinlivingcolor.com

This page comes from the McGraw Hill Test Information page

The Mathematics Test consists of two parts: Part I examines a test-taker's ability to solve problems with complex calc ulations in realistic settings. The Casio fx-260 scientific calculator is provided to aid with calculations for this part of the test The calculator is not provided for Part II, which examines a test-taker's ability to solve problems using estimation, mental math, and paper and pencil.

Cognitive Levels and Content Areas

Both parts of the Mathematics Test contain 25 items that are drawn from the following content areas and skills:

NUMBER OPERATI ONS AND NUMBER SENSE (20-30\%)

> Representing and using numbers in a variety of equivalent forms (integer, fraction, decimal, percent, exponential, and scientific) in real world and mathematical problem situations
> Using number sense for whole numbers, fractions, decimals, integers, and rational numbers
> Analyzing, explaining, and applying ratios, proportions, and percents in a wide variety of situations Using order relations for whole numbers, fractions, decimals, integers, and rational numbers
> Selecting the appropriate operation to represent problem situations
> Relating the basic arithmetic operations to one another
> Computing with whole numbers, fractions, decimals, and integers (with a calculator, with no restrictions, and mentally or with pencil and paper with certain restrictions)
> Using, analyzing, and explaining procedures for making estimates with whole numbers, fractions, decimals, percents, and square roots
> Using estimation to solve problems and to assess the reasonableness of the answer

MEASUREMENT AND GEOMETRY (20-30\%)

Modeling and solving problems using the concepts of perpendicularity, parallelism, congruence, and similarity of geometric figures
Using spatial visualization to describe and analyze geometric figures
Using the Pythagorean Theorem and similarity to model and solve problems
Finding, using, and interpreting the slope of a line, the y-intercept of a line, and the intersection of two lines
Using coordinates to design and describe geometric figures or translations/ rotations of geometric figures
I dentifying and selecting appropriate units of metric and customary measures
Converting and estimating units of metric and customary measure
Solving and estimating solutions to problems involving length, perimeter, area, surface area, volume, angle measurement, capacity, weight, and mass
Using uniform rates in problem situations
Reading and interpreting scales, meters, and gauges
Predicting the impact of changes in linear dimension on the perimeter, area, and volume of figures

Constructing, interpreting, and drawing inferences from tables, charts, and graphs
Making inferences and convincing arguments that are based on data analysis
Evaluating arguments that are based on data analysis, including distinguishing between correlation and causation
Representing data graphically in ways that make sense and are appropriate to the context
Applying measures of central tendency (mean, medium, mode) and analyzing the effect of changes in data on these measures
Using an informal line of best fit to predict from data
Applying and recognizing the role of sampling and the impact of bias on statistical claims
Making predictions that are based on experimental or theoretical probabilities, including listing possible outcomes
Using and interpreting a frequency distribution of outcomes
Comparing and contrasting different sets of data on the basis of measures of central tendency and dispersion

ALGEBRA, FUNCTI ONS, AND PATTERNS (20-30\%)

Analyzing and representing situations involving variable quantities with tables, graphs, verbal descriptions, and equations
Recognizing that a variety of problem situations may be modeled by the same function or type of function
Converting between different representations, such as tables, graphs, verbal descriptions, and equations
Creating and using algebraic expressions and equations to model situations and solve problems
Evaluating formulas and functions
Solving equations and systems of linear equations
Recognizing and using direct and indirect variation
Analyzing tables and graphs to identify and generalize patterns and relationships
Analyzing and using functional relationships to explain how a change in one quantity results in change
in the other quantity, including linear, quadratic, and exponential functions

PROCEDURAL (15-25\%)

Selecting and applying appropriate procedures correctly
Verifying and justifying the correctness of a procedure using concrete models or symbolic methods
Extending or modifying procedures to deal with factors inherent in problem settings
Using numerical algorithms
Reading and producing graphs and tables
Executing geometric constructions
Rounding numbers appropriately, including rounding up/ down to represent a whole number answer as appropriate in a problem situation
Ordering lists of numbers

CONCEPTUAL (25-35\%)

Recognizing concepts

Labeling concepts
Generating examples and/ or counter examples of concepts
I nterrelating models, diagrams, and representatives of concepts
I dentifying and applying principles
Knowing and applying facts and definitions
Comparing, contrasting, and integrating related concepts and principles
Recognizing, interpreting, and applying signs, symbols, and terms
I nterpreting assumptions and relations

