F S U / UF Algebra Problem

(Solving a Literal Equation)
Dr. Robert J. Rapalje
Central Florida, USA
More FREE help available from my website at www.mathinlivingcolor.com
PROBLEM: Given $\frac{1}{F}=\frac{1}{S}+\frac{1}{U}$, solve for s .

Solution:

First, find the LCD, which is FSU :

$$
F S U \bullet \frac{\mathbf{1}}{\boldsymbol{F}}=F S U \bullet \frac{\mathbf{1}}{S}+F S U \bullet \frac{\mathbf{1}}{\boldsymbol{U}}
$$

In the first position, the F divides out, leaving SU.
In the second position the S divides out, leaving UF.
In the third position, the U divides out, leaving FS.

$$
\begin{aligned}
F^{\prime} S U \cdot \frac{1}{\not Y^{\prime}} & =F S U \cdot \frac{1}{\not 又}+F S \not \subset \cdot \frac{1}{\not \partial} \\
S U & =U F+F S
\end{aligned}
$$

Now, in order to solve for S, you have to get all the S terms on one side of the equation. You can do that by subtracting FS from each side of the equation.

$$
\begin{array}{cc}
S U=\boldsymbol{U F}+\boldsymbol{F S} \\
-\boldsymbol{F S} & \\
\hline S U-F S=\boldsymbol{U F} &
\end{array}
$$

Now, to solve for S, you have to factor out the S on the left side of the equation:

$$
\begin{aligned}
& S U-\boldsymbol{F S}=\boldsymbol{U F} \\
& S(U-\boldsymbol{F})=\boldsymbol{U F}
\end{aligned}
$$

and divide both sides by ${ }^{(U-F)}: \quad \frac{S(U-F)}{(U-F)}=\frac{U F}{(U-F)}$

$$
S=\frac{\boldsymbol{U F}}{U-F}
$$

IMPORTANT NOTE: This problem is very much like my own career, in that I started (and graduated!) at FSU and then ended up (and graduated also!) at UF!!

More FREE help available from my website at www.mathinlivingcolor.com

