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The many occurrences in nature of numbers within the
Fibonacci sequence, and the golden ratio (= 1.62) of consecu-
tive numbers within this sequence, are remarkable. We have
found evidence to show that the Fibonacci sequence may exist
within the complexities of human brain waves.
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The Fibonacci sequence in nature

Leonardo de Pisa (nicknamed Fibonacci) was born in 1170
and died in 1250. He made many contributions to mathemat-
ics and society but is best known for discovering the sequence
of numbers known as the Fibonacci sequence:

15°17°2,53775, 383 F18) 2103 S4TSR MI44 555

The Fibonacci sequence is generated by adding two consecu-
tive numbers to give the following number in the sequence
(starting with 1 and 1 as the first two numbers).

The occurrence in nature of numbers within the Fibonacci
sequence, and the ratio of consecutive Fibonacci numbers,
known as the golden ratio (= 1.62), is remarkable. Examples
are found in:

« the bracts of a pine cone which spiral in two directions in 8
and 13 rows,

« the scales of a pineapple which spiral in three directions in
8, 13 and 21 rows,

e the number of petals in varieties of daisies (13 (Blue), 21
(English), 34 (Oxeye) and 55 (African)), and

e the ratio of chamber dimensions associated with the cyclic
growth of a Nautilus shell.

Those above are just a few examples of the Fibonacci sequence
in nature.! Many examples of the Fibonacci sequence in nature
are associated with spiral-like growth.

Frequencies within EEG biosignals

All biological voltage versus time waveforms: (biosignals),
whether they originate from the brain (electroencephalogram
(EEQG)), heart (electrocardiogram (ECG)) or muscle (elec-
tromyogram (EMG)), can be broken down into the sum of
many pure sine waves each with its own frequency and ampli-
tude. This process is known as Fourier analysis and each sine
wave is known as an harmonic.
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The Fourier (frequency) spectrum is a graph of amphtude ver- -
sus frequency for all harmonics and allows dominant (in terms

of amplitude) frequencies within a biosignal to be identified.

An example of a filtered EEG biosignal and its corresponding

frequency spectrum are shown in Figures 1 (a) and (b) respec-

tively. Note that power (amplitude squared) is plotted on the

y-axis in Figure 1 (b) and the resulting power spectrum is a

common representation for the frequency spectrum. The raw

EEG data used to generate Figures 1 (a) and (b) are from

Nayak.
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Figure 1. (a) An example of a filtered EEG biosignal and (b) the cor-
responding frequency spectrum based on the raw EEG data of
Nayak.2
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Well-known frequencies within EEG biosignals are the 6, 6, o
and 3 bands, corresponding to frequencies of 0.5 to 3.5, 4 to 7,
8 to 13 and >13 Hz respectively. The relative activities of these
bands provide important information on brain function (e.g.,
the B band is relatively active when a person is fully alert and
reduces in activity during relaxation).

An introduction to Bicoherence analysis

Bicoherence analysis detects for the existence of second-order
phase coupling between the # harmonics, X, (f,)= ¢,sin(27f,t+0,),
of an EEG biosignal, where ¢, is amplitude, £, is frequency, ¢,
is phase and ¢ is time.

The bicoherence between two frequencies, written bic(f,, f;),
equals 100 % if the harmonics, X(f,), X(f;) and X(f,+f,), main-
tain a constant phase relationship in time (Figure 2 (a)). Such
phase coupling'is referred to as second-order. If the phases of
the three harmonics in question vary independently, as repre-
sented by the different phase relationship for the time intervals
either side of the vertical line in Figure 2 (b), then bic(f,, f,)
equals 0 %. bic(fp, fq) values between 0 and 100 % represent
varying degrees of second-order phase coupling.
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Figure 2. (a) Harmonics, X(fp), X(fq) and X(fjp+1q), maintain a con-
stant phase relationship in time and (b) the phases of the three har-
monics vary independently in time as indicated by a different phase
relationship for the time intervals either side of the vertical line.

To calculate bic(f,, f,) over an extended time period, the EEG
biosignal is divided into several epochs (e.g., 8 to 32 epochs are
used by Muthuswamy et. al’, Lipton et. al.* and Ning and
Bronzino®). Successive epochs generally overlap by 75 % for
EEG analysis®. The phase information from all epochs is com-
bined to calculate bic(f,, ;) for all frequencies, and thus give
the bicoherence spectrum, according to

3 X () Xulfy) Xld, + 1)
BIC(f,, f,) = 2
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where L is the number of epochs, the index m is the m-th epoch,
X*(frtf,) is the complex conjugate of X(f,+/;) and P(f,) = ¢, is

x 100%

the power of X(f;). For a detailed explanation on the theory
and calculation of bic(f,, f,) see Sigl and Chamoun.®

Relatively high bic(f,, f,) values within bands of frequencies
indicate that brain function involves significant nonlinear
processes (the brain is considered a nonlinear biological sys-
tem). Information on - or a deeper understanding of - nonlin-
ear biological systems like the brain may be achieved by
observing changes in second-order phase couplings in
response to various stimuli. For example, bicoherence analysis
is used to calculate an index for the depth of brain anaesthesia.®

The aim of the present study is to see whether, on average, the
combined bicoherence spectra from several different EEG
channel (electrode) positions for an individual, display promi-
nent frequencies (see Cameron and Skofronick” for a descrip-
tion of the international standard 10-20 referencing system of
EEG channel position).

The raw EEG data used for the present study are for a young,
healthy subject and an elderly subject diagnosed with probable
Alzheimer’s disease. The data is available on the world-wide-
web.> A total of 38 biosignals (19 EEG channel positions with
recordings for eyes open and closed) are available for each
subject. The EEG data were sampled at 128 Hz for 8 s.

Each EEG biosignal was adjusted to a mean of zero and fil-
tered with a fourth-order, zero phase Butterworth filter (24
dB/octave rolloff) with low- and high-pass filter cut-offs set to
40 and 0.5 Hz respectively. The biosignals were divided into
five epochs, each overlapping the next by 75%. Ideally, a larg-
er number of epochs would be used, with the restriction set by
the length of the available data. A Blackman smoothing win-
dow® was applied to each epoch to reduce possible distortion
effects due to the finite length of the epochs and this window
subsequently gave an overall smoothing effect to bicoherence
spectra. A 512 point Fast Fourier transform (FFT) was then
performed on each epoch and bic(f,, f,) calculated for all £, and
Jq above 0.5 Hz such that (f, + £;) < 30.00 Hz, with a frequen-
cy resolution of 0.25 Hz. The 30 Hz maximum was chosen in
accordance with the spectral edge frequency (SEF) of the EEG
frequency spectra (see results section), where SEF is defined
as the frequency below which 95% of the power exists.

To identify prominent bicoherence frequencies, the highest
three bic(f,, f,) values in a given bicoherence spectrum were
identified and their corresponding f,, f; and f, + f, values
recorded. This was repeated for all 38 bicoherence spectra
from each subject. The recorded frequencies were then com-
bined to give a frequency histogram to show the most fre-
quently occurring frequencies (i.e., the frequencies most often
involved with the strongest second-order phase coupling). A
similar procedure was employed for the highest six bic(f,, f,)
values. Since each bicoherence spectrum is made up of
approximately 3500 points, the highest three and six bicoher-
ence values respectively represent 0.086 and 0.17% of the
points within each bicoherence spectrum. The frequency his-
togram generation procedures were repeated for 1000 seg-
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ments of white noise data, each equal in length to an EEG
biosignal.

Results and discussion
Median frequency (MF) and SEF are common indices for EEG
frequency spectra. The average (= SD) MF and SEF for the 38
biosignals are respectively 7.5 = 3.2 and 24.1 + 3.9 Hz (young)
and 6.0 £ 1.7 and 25.4 + 4.2 Hz (elderly). Average MF statis-
tically differs between the subjects (1 = 2.6, df =74, p <0.02).

A typical bicoherence spectrum, which displays bic(f,, f;) cal-
culated for all £, and f;, is shown in Figure 3 (see inside back
cover). The typical triangular shape is a consequence of the
possible mathematical permutations of £, + £, that can equal the
maximum frequency in the EEG frequency spectrum.
Bicoherence spectra for the young and elderly subjects are
similar in general appearance and in terms of their average
bicoherence, bic(f,, f;) , which is a simple measure of the over-
all bicoherence for a given spectrum. bic(f,, /;)is 55.5+ 1.3 %
(young) and 55.2 + 1.2 % (elderly).

Highlighted in Figure 3 is one of many scattered ridge-like
structures at approximately 45° to the x-axis, typical of normal
ECG, EEG and EMG bicoherence spectra.* * ° Such ridges
appear chaotic in nature.*, ° However, a ridge at approximately
45° suggests that a number of frequencies are phase coupled to
one particular frequency, at least for a given instant in time.
Hence, it is possible that some frequencies become more
prominent than others when averaging over a large number of
bicoherence spectra.

Figures 4 (a) and (b) respectively show for the young and
elderly subjects, frequency histograms (n = 342) for all
frequencies based on the highest three bic(f,, 1;) values within
each bicoherence spectrum. The vertical lines represent
Fibonacci numbers. The histogram in Figure 4 (c) represents
the same analysis for 1000 segments of white noise data with
results normalised to n = 342. The trend of a gradual fall-off
in the number of occurrences as frequency increases in these
figures, is related to the fact that the lowest frequency occurs
most often within a bicoherence spectrum and therefore has
the highest probability of chance occurrence for our
methodology.

Figure 5 is analogous to Figure 4 but for frequency histograms
(n = 684) based on the highest six bic(f,, f;) values within each
bicoherence spectrum.

Figures 4 (a) and 5 (a) for the young subject display distribu-
tion peaks that are not present for white noise analysis and sev-
eral of the distribution peaks, (e.g., at 1.00, 1.75, 3.00, 5.00,
8.00 and 13.25 £+ 0.13 Hz) closely align with Fibonacci num-
bers. Since the unit of Hz is arbitrary, the ratio of these promi-
nent frequencies in sequence and its correspondence to the
golden ratio is perhaps of more interest than any absolute
alignment with the Fibonacci numbers. Analysis of a larger
subject group is required to establish whether the finding is
coincidental. However, a similar finding is reported in an EMG
bicoherence analysis study’ that involves 18 adult males and

EMG frequencies from 10 to 300 Hz.

Distribution peaks are observed at 0.75, 2.00 and 5.00 £ 0.13
Hz in Figure 5 (b) for the elderly subject but close alignment
of distribution peaks with Fibonacci numbers is strongest for
the young subject, raising the possibility that such alignment is
desirable. Also, it is interesting to note that within individual
bicoherence spectra, frequencies that match Fibonacci num-
bers were, in a number of instances, found to be strongly phase
coupled to one another. If the Fibonacci sequence does exist
within the complexities of various biosignals, then perhaps the
helical nature of DNA is somehow related, since there are
numerous examples in nature of the Fibonacci sequence occur-
ring where there is spiral-like growth.

Higher-order phase couplings are also likely to occur within
the EEG bicoherence spectra.” However, the consideration of
higher-order couplings is beyond the scope of the present
study.

Conclusion

Prominent frequencies found within two sets of 38 EEG bico-
herence spectra for a young, healthy subject and an elderly
subject diagnosed with probable Alzheimer’s disease include
0.75, 1.00, 1.75, 2.00, 3.00, 5.00, 8.00 and 13.25 £ 0.13 Hz and
these prominent frequencies closely align with the Fibonacci
numbers 1, 2, 3, 5, 8 and 13. The ratio of these prominent fre-
quencies in sequence corresponds to the golden ratio (= 1.62).
Prominent frequencies are not evident for white noise valida-
tion analysis. However, analysis of a larger subject group is
required to establish whether the alignment with Fibonacci
numbers is coincidental.
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Figure 3. A typical EEG bicoherence spectrum, which displays bic (fp, fa)
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Figure 4. Frequency histograms (n = 342) showing the most fre-
quently occurring frequencies based on the highest three bic(f,, 1)
values within-each EEG bicoherence spectrum for (a) young subject,
(b) elderly subject and (c) white noise data. The vertical lines show
the position of Fibonacci numbers.

calculated for all fp and fg. A typical ridge-like feature is highlighted.
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Figure 5. Frequency histograms (n = 684) showing the most Jre-
quently occurring frequencies based on the highest six bic(f,, J) val-
ues within each EEG bicoherence spectrum for (a) young subject, (b)
elderly subject and (c) white noise data. The vertical lines show the
position of Fibonacci numbers.




