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Abstract

This study presents a Discrete Fourier Analysis method that treats the Fourier expansion of a
waveform as a long multivariable equation. A multiple regression (MR) procedure is then used
to evaluate the Fourier expansion coefficients.

The MR method of Discrete Fourier Analysis allows for flexibility in the selection of the con-
stituent frequencies, frequency resolution and maximum frequency of computed frequency-
domain spectra and does not require uniformly spaced time-domain data. The MR method
also offers an alternative means of teaching Fourier Analysis to students from non-traditional
mathematics backgrounds, particularly if the students are familiar with multivariable equa-
tions and MR. A student group focused on in the study are Exercise Science students who
generally have difficulty understanding the Fourier Analysis theory required for topics within
biomechanics, neurology and motor control.

MR frequency-domain spectra closely match those calculated using a standard Fast Fourier
Transform (FFT) and display less spectral leakage than FFT spectra. The FFT algorithm is

computationally more efficient.
Introduction

The Fourier transformation, F(w), of a time-varying waveform, f(t), of duration, T, into the
frequency-domain is usually expressed in terms of the Fourier integral:

T
Fw) =% /0 FE)etdt, (1)

or its discrete counterpart, the Discrete Fourier Transform (DFT):

N N
F(w) — _12\7 Z f(tj)e——iwntj = % Z (f(tj)cos(wnt]-) + if(tj)sin(w,,tj)) (Tl =1,... N/2), (2)

=1 =1

where F(w,) is the n*® harmonic, w, is the angular frequency of the nt* harmonic, N is the
number of discrete time-domain measurements of f(t) and ¢ is time.

For existing computational algorithms such as the Fast Fourier Transform (FFT), the frequency
resolution, A(w), of the calculated frequency-domain spectrum is dependent on N and the
sampling frequency, ws, such that Aw = w, /N. The frequency-domain spectrum is calculated
for all w, up to a maximum of Wmax = Ws/2.

1presented in modified form at the MATLAB User Conference, VIC, November 2000
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The dependence of Aw and wmax on N and w, may restrict the option for their adjustment. For
example, the frequency-domain spectrum of an electroencephalogram (EEG) biosignal sampled
at 125.0 Hz for 4.0 seconds (that is, N = 500) will have A, and wy.x values of 0.25 and
62.50 Hz respectively. If one wished to double A, then N would need to be halved, resulting
in the omission of some data. The example also shows that since wpay is dependent on w,
which in a clinical situation may be set, wmax may not match the actual maximum frequency
present in the analysed waveform. For the given example, wy,ay exceeds the maximum frequency
(approximately 40 Hz) of many EEG biosignals. (Note that a prefix of 2p is implied for all
stated angular frequency values.)

The use of large-scale multiple regression (MR) to calculate F(w,) theoretically allows for
comparatively more flexibility in the selection of constituent w,, Aw and wmya, and does not
require uniformly spaced time-domain data. Although some curve-fitting software packages
(for example, MATLAB curve-fitting tool box) fit trigonometric expansions to data points,
large-scale MR for the calculation of high-resolution Fourier spectra is not typically an option.

The usage of Fourier Analysis by students from non-traditional mathematics backgrounds is
increasing. However, a significant number of these students have difficulty understanding the
concepts and theory of Fourier Analysis and how Equations (1) and (2) have the capacity
to transform a waveform into the frequency-domain. The theory of the FFT, involving the
construction of the Fourier Matrix, may appear even more abstract.

Multivariable equations in contrast are common to the field of Exercise Science (for example,
body surface area as a function of height and mass; VOymay as a function of speed, age and
speed X age; percent body fat as a function of various anthropometric measurements). Accord-
ingly, our Bachelor of Exercise Science students perceive MR to be clinically relevant and learn
to generate multivariable equations from clinical data using MATLAB and EXCEL software.
Since Fourier Analysis can be explained as a large-scale MR, such an explanation may assist
in the learning process of students from clinical backgrounds who have an appreciation and
understanding of MR.

The study therefore presents a MR-based DFT method that allows for flexibility in the choice
of constituent wp, Aw and wpax; does not require uniformly spaced time-domain data; and
offers a supplementary approach for teaching Fourier Analysis to students from non-traditional
mathematics backgrounds.

MR Fourier Analysis Theory
The expansion coefficients, b;. ,, of a multivariable equation of the form

Y=bo+ b0z + boxy + b33 + ... by, (3)

are commonly found by establishing the matrix equation
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Note that with MATLAB, B is conveniently calculated using the backslash operator (namely
B = X\Y), which performs a least squares fit rather than a simultaneous solution, and therefore
X does not have to be square. Without access to the backslash operator, B may be calculated
by establishing the more conventional MR matrix equation

N i ‘T D I D bo Y
)2 ‘T sz zxi > ‘TyTy . > ‘T T by > ‘T 'ty
itm Yytminn X ttd o Yitmitae | x| b | =| Xi'm'y | (5)
Yo Tm Y Tm T Y Em e . Y Tk b 3 trm ty

where the index i represents the i** set of measurements of z;. ., and y.

The discrete Fourier expansion of a waveform in the time-domain takes the standard form

N/2 N/2
f(t)=a0+ ) cnsin(wnt +0) = a0+ »_(ancos(wnt) + bpsin(wat)), (6)
n=1 n=1

where ¢, = v/aZ + b2 and 6,, = tan~'(b,/an). . Equation (6) can be considered as a multivari-
able equation:
Yy bo by T1 [ 2 bs T3 by T4

~ A A N A A N N
f (@) ="ap +"a; cos(wit) + by sin(wit) + az cos(wat) + by sin(wqt)+ ...,

with the trigonometric terms representing the previous ‘z; ,, variables and ao..N/2, bi.nj2
representing the expansion coefficients to be determined. The corresponding MR matrix rep-
resentation of Equation (6) is thus, in the manner of Equation (4), given by

D E F
1 cos(wit1) sin(wit1) ... sin(wn/atr) ap f(t1)
1 cos(wity) sin(wity) ... sin(wnyats) ay f(t2)
1 cos(wits) sin(witz) ... sin(wnyats) by f(t3)
1 cos(wity) sin(wits) ... sin(wnpts) | x| a2 | =] F(tY) )
1 cos(wits) sin(wits) ... sin{wnyats) by f(ts)
1 ... cos(wity) sin(wity) ... sin(wnyatn) b2 ftn)
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The MATLAB source code required to establish and solve Equation (7) for a discretely measured
waveform, f(t), may be obtained from the authors. Note that if certain harmonics are known
to be insignificant, then the number of columns in D (and rows in E) does not have to extend
to N + 1 as would be representative of a conventional DFT.

Hence, specific harmonics may be omitted from Equation (7) but with all N data points still
being used within the MR, since the number of rows in D remains unchanged following any
such omission. Additionally, ¢;,. n in Equation (7) can be non-uniformly spaced and so the
waveform to be analysed may be sampled at irregular time intervals. The default and minimum
Aw for the MR source code is set to 1/(ty — #1).

MR Frequency-Domain Spectra

Figure 1 compares the frequency-domain spectra calculated by MR and a standard FFT for
MATLAB’s time-domain sunspot activity data (N = 288), which displays the annual variation
ih sunspot activity with time since the year 1700.
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Figure 1 Comparison of MR and FFT frequency-domain spectra for MATLAB’s sunspot ac-
twvity data.

A second comparison between MR and a FFT is made for a synthesized waveform (N = 288)
that consists of three harmonics (n = 2,5 and 7) with respective powers of 8, 50 and 98units? :
f(t) = V/8sin(wy +7/4) + V50sin(ws + 7/4) + v/98sin(ws + 7/4). Power by standard definition
is the value of 2, where ¢, is defined by Equation (6).

Table 1 compares theoretical power with power calculated by MR and a FFT for the synthesized
waveform for all harmonics from 1 to 10. (Note that since the scale of MR Fourier spectra is
such that at any discrete point in time the sum of all frequency components add to the value
of f(t), which differs from the FFT scale, the FFT powers in Figure 1 and Table 1 are rescaled
to allow appropriate comparison.)
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Table 1
Harmonic Number Power (units®)
MR FFT Theoretical
1 951 x 10 868x10° -
2 8.00 8.04 8.00
3 453 x 107 1.72 x 107 -
4 3.99x 10% 3.99x 102 -
5 50.0 51.7 50.0
6 3.36x 10% 3.47 x 107 -
7 98.0 98.0 98.0
8 121x10® 7.33x 102 -
] 2.73x 107 1.94 x 107 -
10 217 x 107 8.95x 10° -

Comparison of the theoretical power with the power calculated by MR and a FF'T for the first ten
harmonics of the synthesized waveform for N = 288.

MR and FFT methods give similar spectra. Table 1 also shows that spectral leakage (discussed
in detail by Harris [1]) contributions by non-constituent harmonics are up to 10*” times higher
for the FFT, though spectral leakage is still small for the FFT.

Figure 2 (a) shows MR frequency-domain spectra for vastus medialis quadriceps electromyogram
(EMG) data (ws = 1000 Hz, N = 500) for Aw = 2 and 3 Hz respectively. The solid curve in
Figure 2 (a) is also representative of a FFT to within the accuracy indicated by Figure 1 and
Table 1. The dashed curve in Figure 2 (a) is not representative of a FFT since a FFT would
use N = 333 to achieve Aw = 3 Hz. Hence, Figure 2 (a) demonstrates that for MR, frequency
resolution may be decreased without changing w, or N which is not the case for a FFT.
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Figure 2 (a) MR frequency-domain spectra for vastus medialis quadriceps EMG data for w, =
1000 Hz, N =500 and Aw = 2 and 3 Hz. The solid curve is also representative of a spectrum
that would be obtained with a FFT.
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Figure 2 (b) shows, by comparing MR spectra for Aw = 4 Hz calculated for N = 250 and 500,
the effect of not using all available data to achieve a desired Aw. For N = 250, information is
lost and the resulting spectrum is less accurate as shown. The dashed curve in Figure 2 (b) is
representative of a FFT to within previously described accuracy.

A clinical example of where it is sometimes useful to decrease frequency resolution is seen in
bispectral analysis, which is used to detect the degree of quadratic phase coupling between the
harmonics of an EEG biosignal [2]. Decreasing resolution can make the detection of quadratic
phase coupling between bands of frequencies more easy to detect.

Note that for MR, reducing wpmax below the conventional value of w;/2 and retaining all N will
not improve accuracy but will reduce computation time.
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Figure 2 (b). MR frequency-domain spectra for vastus medialis quadriceps EMG data for
ws = 1000 Hz, Aw =4 Hz and N = 250 and 500. The dashed curve is also representative of a
spectrum that would be obtained with a FFT.

MR Advantages and Conclusion

Fourier Analysis through large-scale MR allows for flexibility in the selection of constituent
wy, Aw and wy., and, if the number of data points exceed the minimum number required, then
the additional data points will in some circumstances add to the accuracy of the MR. For a
standard FFT, constituent wy,, Aw and wy,ax are more rigidly set which can result in unnecessary
calculations or limit the number of data points used. Also, the MR method does not require
uniformly spaced time-domain data.

The differences between MR and FFT spectra for the same Aw and wy,,x are minimal. However,
FFT spectra display up to 10'7 times higher spectral leakage. As expected, the FFT which
requires Vlogs N calculations is computationally more efficient than MR Fourier Analysis which
requires N2 calculations. The difference in computation time does not translate to a significant
disadvantage for many applications.

The use of large-scale MR offers a supplementary approach to teaching Fourier Analysis and this
approach has been particularly useful for teaching students from non-traditional mathematics
backgrounds who are at ease with multivariable equations and MR.
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MathMedia

Deborah Smith, Science Writer, “It’s a tie: two best shoelace knots named in race of 4 million
The Sydney Morning Herald, Thursday December 5, 2002.

This item reports on the publication in Nature of the work of Monash University mathematiciz
Dr Burkard Polster on the strongest and most efficient way of tying shoe laces into knots. Tt
two traditionally favoured methods, viz. ‘straight’ lacing and ‘criss-cross’ lacing result in th
strongest fit. The ‘bow-tie’ method, which is rarely used, is the most efficient, in the sense th:
for a reasonably effective job, it uses the least amount of lace. The relative efficiency of grant
knots and reef knots in completing the task is also investigated.

See also the Monash web-site:

http://www-pso.adm.monash.edu.au/news/ and follow the prompts. [Accessed on 10 Decen
ber, 2002]. This is also the source of the diagrams reproduced below.

Noticed by a number of members, including David Pask and Kim Burgess, Admin. Assista
AustMS.

1. Criss Cross 2. Straight 3. Bow-tie
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