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Abstract—A theoretical formalism and its computational 
requirements are presented showing that a 2D cross-sectional 
image, of diagnostic image quality, can be constructed from a 
large number of 1D object-traversing parallel iso-1H precession 
frequency projections in magnetic resonance imaging.  The 
proposed image construction technique, based on a single spin-
echo (SE) signal, relies on a relatively high sampling frequency 
(e.g., 1.024 MHz) and application of a strong oblique read 
gradient across the image array to allow pixel intensities to be 
calculated via large-scale simultaneous solution of the SE’s 
Fourier signal.  The proposed technique can also theoretically 
provide T2 mapping via the collection of a second SE collected at 
a different echo time for the same 90o radiofrequency pulse.  
Signal-to-noise ratio is theoretically enhanced by the fact that no 
phase gradient is applied.  Current maximum available gradient 
strengths (40 mT/m) conservatively limit the technique to a 
128128 image array with pixel areas of approximately 5 mm2.  
Construction for a 256256 image array is possible but with 
compromised image quality.  With continued rapid 
advancements in gradient strength technology expected, the 
technique could in the future offer an alternative to fast imaging 
sequences, such as echo planar imaging, but with the advantage 
of no phase propagation artifacts or adverse effects of ultrafast 
gradient systems.     
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I.  INTRODUCTION  

Conventional spin-echo (SE) image construction in 
magnetic resonance imaging (MRI) for an M(row)N(column) 
image array requires the collection of M SEs (and consequently 
M lines of frequency- or k-space), each discerned by an 
incremented phase gradient and separated by a time-to-repeat, 
TR, of approximately 0.3 to 3.0 s.  Subsequently, scan times for 
conventional SE MRI using typical M values (e.g., 128, 256, 
512) can be of the order of 10 minutes, or more if averaging is 
employed to increase signal-to-noise ratio, SNR [1], 
representing a significant time disadvantage.   

Echo planar imaging (EPI) is the fastest of all MRI pulse 
sequences [1], with all M echos collected following the same 
radiofrequency (RF) pulse for non-segmented sequences.  This 
“one shot” acquisition is achieved via the rapid and continual 

switching (e.g., M times for a given slice) of high performance 
gradients.  Disadvantages of EPI include high levels of 
acoustic noise associated with increased gradient stress, 
increased risk of gradient-related adverse electromagnetic 
induction effects (e.g., tissue heating and neural stimulation), 
and phase error propagation with each positive and negative 
pass through k-space [1-5].  Such phase errors (e.g., due to 
imperfect gradients, timing mismatch between odd and even 
echos, and magnetic field non-uniformity) when propagated 
may result in image ghosting, increased chemical shift artifact, 
and increased magnetic susceptibility artifact, particularly at 
tissue/air interfaces [1].  Indeed, spatial resolution and SNR are 
compromised in EPI compared to conventional SE imaging.  
Several other relatively fast imaging techniques exist (e.g., fast 
imaging with steady-state precession (true FISP) used for cine 
cardiac imaging and neurological MRI [6]), but all involve 
various compromises or disadvantages (e.g., an ultrafast 
gradient system requirement in the case of true FISP) [7].  
Parallel MRI [1], a recent MRI imaging advancement that 
reduces conventional scan times (e.g., by factors of 2 to 4) 
by utilizing spatial information provided by additional coil 
arrays, should not be confused with the proposed technique.   

The aim of this article is to show that a 2D cross-sectional 
image can theoretically be constructed from a single SE, 
provided (i) a sufficiently large number of SE data points, Nd, 
are collected via a high sampling frequency, fs, and thus high 
bandwidth, BW; and (ii) read gradients, Gx and Gy are 
simultaneously applied in the standard x- and y-directions so 
that, upon SE reading, the field-of-view, FOV, is finely 
divided into contiguous iso-1H precession frequency 
projections oblique to the x- and y-directions, allowing image 
pixel intensities to be calculated via large-scale simultaneous 
solution of the Fourier signals from all such parallel 
projections.  Secondary aims are to demonstrate: that the 
inclusion of T2* approximations1 within the Fourier analysis 
process can partially compensate for the exponential 
components of SE re- and de-phasing to enhance the proposed 
technique; and that T2 mapping1 can theoretically be provided 

                                                           
1. T2 and T2* are standard relaxation times, i.e., governed primarily by random spin-spin interactions 
causing local magnetic field inhomogeneities in the case of T2, and by both random and time-
independent local magnetic field inhomogeneities in the case of T2*, where T2*<T2.   



via the collection of a second SE collected at a different time 
for the same 90o RF pulse.  Note that for the present study, the 
phrase single SE (i.e., one only SE) should not be confused 
with the common-to-MRI single SE pulse sequence (SSE), 
where one SE is collected for each of many 90o RF pulses.   

The proposed theoretical single SE image construction 
technique, like non-segmented EPI, collects all data for a 
given slice following the same RF pulse and likewise has the 
potential to significantly reduce scan time to improve patient 
comfort, reduce motion artifact, and expand the applications 
of functional and cine MRI.  Additionally and, unlike EPI, the 
proposed image construction technique does not require the 
rapid and continual switching of high performance gradients 
or the propagation of data throughout k-space, thereby 
avoiding the adverse effects of such.  

A discrete Fourier analysis method based on large-scale 
multiple regression (MR) [8], [9] and developed by the author 
is also integrated as it offers flexibility in the choice of 
frequency resolution, f, and constituent frequencies of the 
frequency spectrum.  Other advantages of MR-based Fourier 
analysis are (i) additional data points may be included to 
improve transformation accuracy without necessarily affecting 
f and the constituent frequencies; (ii) it results in very low 
spectral leakage; and (iii) it can transform unevenly-spaced 
time-domain data (irregular grids [10]) without approximating 
the Fourier exponential kernel.   

II. THEORETICAL BACKGROUND 

A. Frequency Bandwidth and Sampling Requirements 

The MN image or pixel array, c ][ , jic , is depicted in 

Fig. 1, where the array elements, ci,j, are the MRI signal 
strengths to be determined and NjMi  1,1   are 
standard row and column indices respectively.  Indicated 
within Fig. 1 is the demodulated (rotating frame) 1H precession 
frequency for each pixel centre, i,j, determined via the 
proposed simultaneous application of Gx and Gy noted 
previously, and is given by 

           )
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where Gy is linked to Gx according to )/( yMxGG xy  ,  is 

gyromagnetic ratio, and x and y are pixel dimensions in the 
x- and y-directions respectively.  Note that although (1) 
provides a unique i,j for each pixel centre, the continuous 
nature of magnetic field graduation will result in aliasing for 
each i,j from non-central areas of other pixels, and this 
aliasing is accounted for within theory subsection IIC.  For 
now, an artificially unique and discrete i,j distribution, 
associated with each pixel centre, is considered to assist in the 
determination of f, fs and BW requirements since these 
requirements will translate to those of the aliasing-correcting 
theory of subsection IIC (where each i,j will represent the 
frequency associated with a unique projection through the 
FOV, providing the MN spatial uniqueness required for image 
construction from a single SE).    

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.  Shown is an MN image array.  The interlinked magnetic field 
gradients, Gx and Gy = xGx/(yM), provide spatial encoding via a unique 
precession frequency, i,j = Gxx(j+0.5+(0.5i)/M), at each pixel centre. 

 

Fig. 1 is based on a frequency range from =zero to BW (at 
x=0, y=0 to x=FOVx, y=FOVy), rather than the more 
conventional =-BW/2 to +BW/2, where FOVx and FOVy are 
the fields-of-views in the x- and y-directions respectively.  
Demodulation via the =zero to BW convention aids initial 
formalism explanation by removing the need for quadrature 
analysis during image construction, but increases the 
computational burden of any Fourier analysis (the inclusion of 
quadrature image construction and its computational 
implications are discussed later).  BW equates to  

     )( xFOVGBW xx  .  (2) 

For a selected slice, the assumption is made that the FOV 
encompasses the sample cross-section which represents a 
common practical reality.  For a contrary FOV geometry, the 
simultaneous application of Gx and Gy will result in 1H nuclei 
outside the FOV possessing precession frequencies in-common 
with i,j and, to prevent this external aliasing, two pairs of RF 
spatial presaturation pulses [1] would be required prior to the 
90o RF pulse of the SE pulse sequence.  These pulses would 
need to be applied to the regions x<0, x>FOVx and y<0, 
y>FOVy with the alternate applications of Gx and Gy.  
Alternatively, a surface receiver coil confined to the FOV could 
be utilized to prevent, or at least minimize, such aliasing.  

The digitally sampled SE waveform, S(tn), is first 
represented by the following expansion  (note that precession 
phase, i,j, is constant for each pixel in the absence of any 
phase perturbation, but for now is retained as arbitrary for each 
pixel): 
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where n=1…Nd is the n-th sampled data point, tn is the time 
corresponding to the n-th point (t1=0 s), a0 is a DC offset term, 
TE is the time-to-echo, and i,j is a relaxation time constant that 
describes the rate of SE re- and de-phasing such that  
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this point. 

The factor 
*
,2/|  2/| jin TtTEe   in (3) normally results in a 

Lorentzian distribution [11] or spreading of the SE’s frequency 
spectrum, which is quantified as 1/T2*i,j at full-width-half-
maximum. Thus, if the frequency resolution (increment) 
between pixels, BW/(MN), is greater than 1/T2*min, where 
T2*min is the minimum expected value of T2*i,j, all pixel signals 
can theoretically be individually resolved.  In other words, the 
exponential factor is suppressed and may be set to 1, 
simplifying (3) to a standard Fourier expansion: 


 


N

j

M

i
jinjijin tcatS

1 1
,,,0 )sin()(  

    )sin()cos( ,,
1 1

,,0 njiji

N

j

M

i
njiji tbtaa  

 

,            (4) 

where 2
,

2
,, jijiji bac   and )/(tan ,,

1
, jijiji ab .  To achieve 

BW/(MN)>1/T2*min and provide the necessary minimum Nd 
(2MN) to extract ci,j via Fourier analysis of a SE representative 
of (4), a relatively high BW and short total sample time, Ts, are 
required as given by: 

                 
sT

MN
BW   ,                 (5) 

where (5) assumes fs=2BW in accordance with the Nyquist 
sampling theorem.  Comparison of (5) with the previous 
condition, BW/(MN)>1/T2*min, reveals the requirement of Ts< 
T2*min to prevent adverse frequency crossover. 

B. MR-Based Fourier Analysis 

MR-based Fourier analysis [8], [9] is utilized for analyzing 
SEs simulated by (3) or (4) (simulation is outlined within the 
Method section) as it conveniently accounts for the irregular 
spacing (from zero) of the lowest frequency, M,1, compared to 
the spacing between all other i,j generated by (1).  The 
irregular spacing is due to Gx and Gy being zeroed at x=0, y=0 
(a regular spacing for all i,j, is achieved by a slight 
demodulation or Gy offset).  MR-based Fourier analysis also 
conveniently allows the factoring-in of a SE’s exponential 
components of re- and de-phasing for SEs simulated from (3).   
However, the application of a standard fast Fourier transform 
(FFT) remains feasible.   

MR-based Fourier analysis treats the expansion of (3) or (4) 
as an ordinary multivariable equation, e.g., 

NMNM xbxbxbxbby  3322110
, with the sinusoidal 

terms (including the exponential factor for the case of (3)) 
representing the x variables and ai,j, bi,j representing the b 
expansion coefficients to be determined, as represented by the 
expansion of S(tn) below for (3): 

 

  

 
.)sin()cos(

)sin()cos()(

,
2/|  2/|

,2,1
2/|  2/|

2,1

1,1
2/|  2/|

1,11,1
2/|  2/|

1,10

*
,

3

*
2,1

3

2

*
1,1

2
1

*
1,1

10

  



  

    

NM

NMn

NM

n

nn

x

nNM
TtTE

b

NM

x

n
TtTE

b

x

n
TtTE

b
x

n
TtTE

bby

n

tebtea

tebteaatS












 (6) 

Knowing the values of the sine, cosine and S(tn) terms in 
(6) thus allows the ai,j,bi,j coefficients to be determined by 
establishing a conventional MR matrix equation [8], [9].  For 
the ideal case of i,j being the same (/2 say) for all pixels, the 
sine terms are eliminated from (6) which then equates to the 
real or in-phase, I, component of S(tn).  In this ideal case, 
ci,j=ai,j are calculated by establishing the reduced MR Equation 
(7) and performing the matrix operation A=B-1S, where 
matrices A, B and S are indicated within (7): 
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For conciseness, the factors 
*
,2/|  2/| jin TtTE

e
  are abbreviated as 

ei,j in (7).  These factors allow the exponential re- and de-
phasing to be partially compensated for by choosing an 
appropriate value or values of T2*

i,j (e.g., a mid-clinical range 
value).  If the condition BW/(MN)>1/T2*min is satisfied, these 
factors may be omitted as per (4). 

C. Evaluation of Pixel Intensities from Iso-1H Precession 
Frequency Projections 

Now that f, fs, BW and Ts theoretical requirements have 
been quantified, how can pixel intensities be evaluated after 
(MR-based) Fourier analysis is applied to the single SE 
obtained using the previously described oblique read gradient?  
To answer this question one must appreciate that i,j, though 
unique for each pixel centre in Fig. 1, is actually experienced 
by an oblique line (width  f ) of 1H nuclei within the 
sample.  Hence, ci,j calculated by Fourier analysis for any 
given i,j now does not represent the intensity of pixel i,j but 
consists of part contributions from multiple pixels.  Example 
iso-1H precession frequency projections, oblique to the 
conventional pixel array, are depicted within Fig. 2 for a 
simple 44 image array. 
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Figure 2.  Shown are iso-1H precession frequency projections through pixel 
centres for a 44 image array section.  The effective width of each projection 
corresponds to the frequency resolution, f.  Projection indexing is such that 

1,41 p , 
1,32 p , 

1,23 p , 
1,14 p  …, and so on. 

If the tissue-dependent parameter (which ultimately 
determines signal strength) for each pixel for this true 
continuous frequency distribution is now labeled as Ci,j, the 
signal (Fourier amplitude) associated with any given i,j iso-
frequency projection passing through the centre of pixel i,j, is 
constructed from a linear expansion of several C and path 
lengths.  For example, based on the first (left-most) projection 
for 4,1 in Fig. 2, the Fourier amplitude takes the form 

1,2
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lengths through each pixel for projection p.  Since p
jir ,
 are 

geometrically known, all MN projections (each through the 
centre of a unique pixel) yield a system with MN equations 
and MN unknowns (Ci,j) which can be simultaneously solved 
via C=R-1c, where C is a 1D form of [Ci,j], R ][ ,

p
jir  and 

c ][ pc .  The index NMp  1  additionally indicates 
projection number progressing from left to right across the 
FOV.  Since the first projection in Fig.2 is associated with CM,1 
(for an arbitrary sized array), all Ci,j, are necessarily inserted 
column-wise and in reverse row order into C such that C 
linearly maps ],1 ,1:[ , NMrjC jr  .  The required C 

matrix solution is thus expanded as follows: 
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Because of the symmetry of the projections upon the image 
array, R also takes on a convenient symmetry given, for a 
square image array and previously defined Gx and Gy linkage, 
by: 
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where the number of diagonals of 1’s equals N-1 for even N. 

The evaluation of Ci,j from all parallel projections 
represents 2D image construction from a 1D projection set, 
demonstrating that such a feat is mathematically achievable 
provided one has enough projections (as many as the number 
of pixels to be evaluated) and the image array grid is diagonal 
to these projections.  The proposed image construction 
technique is assisted by the fact that in practice the projections 
are essentially ideal, subject only to field inhomogeneity. 
Also, although the projections are numerous, they are 
resolvable by Fourier analysis as previously theorized and, on 
average, have an effective projection area equal to that of one 
pixel.  It now becomes apparent that the interlinking of Gx and 
Gy to obtain the discrete distribution of Fig. 1 is not essential 
since other oblique read gradients will result in useful, in 
terms of the proposed image construction technique, iso-1H 
precession frequency projections at angles of tan-1(Gy/Gx) to 
the y-direction.  Alternatively, high fs single SE data collection 
could take place with Gx only, with the image array rotated 
before reconstruction. 

III. METHOD 

A. Simulation of Spin-Echos 

The simulated single SE temporal domain data sets for the 
purposes of examining Fourier analysis processing 
requirements and compensation for deleterious T2*

i,j effects, 
were generated from the pixel intensities of a 6464 portion of 
a GE daily quality assurance (QA) phantom image file.   These 
intensities were used as the ci,j coefficients in (3).  Simulation 
for Nd=2MN was performed for fs=1024, 256 and 64 kHz, 
corresponding to Ts=8, 32 and 128 ms respectively.  

Simulations included the 
*
,2/|  2/| jin TtTEe  factors in (3), for which 

T2*
i,j was randomly generated between a clinically meaningful 

range [12] of 20 to 60 ms for each pixel.  A discrete i,j 
distribution for each pixel as per Fig. 1 was assumed for the 
purposes listed above (recalling that the f, fs and BW 
requirements to extract ci,j using (7) are identical to the 
requirements of (7) when extracting cp for the complete 
theoretical  formalism). 
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B. Image Construction from Simulated Spin-Echos 

Computer code developed in the Matlab programming 
language performed MR-based Fourier analysis on a single SE 
to extract ci,j=ai,j as per (7) and subsequently display a 2D 
image.  The programming of (7) is made concise by the use of 
Matlab’s backslash operator.  The solution of (7) was repeated 
with and without the T2*

i,j compensating factors,  
*
,2/|  2/| jin TtTEe  , included within matrices B and S.  When 

included, T2*
i,j were set to a constant, mid-range clinical value 

of 40 ms for all pixels to partially compensate for the 
“unknown” random clinical T2*

i,js of the simulated SEs.  FOVx 

and FOVy were set at 30 cm.  Image construction from the 
simulated SEs was performed on a standard desktop computer 
(Intel Core2Duo processor, 2.40 GHz, 3.45 Gbytes of RAM).  
A pixel-by-pixel regression analysis between the constructed 
and original images was then performed along with digital 
subtraction between the constructed and original images to 
obtain a visual representation of residual image differences. 

IV. RESULTS 

The 6464 image array of the GE daily QA phantom 
portion, constructed via MR-based Fourier analysis, is shown 
in Figs. 3(a), (b) and (c) for Ts=8, 32 and 128 ms (fs=1024, 256 
and 64 kHz) respectively.  For these figures, T2*

i,j is randomly 
assigned to all pixels for SE simulation, while a constant 
T2*

i,j=40 ms is set during image construction to provide partial 
compensation. Respective correlations on a pixel-by-pixel 
basis with the original image for Figs. 3(a) to (c) are 
(r2=0.9955, p0.001), (r2=0.9898, p0.001) and (r2=0.9236, 
p0.001).  Computer processing time for (7) was 
approximately 47 s (reduced for quadrature image construction 
discussed later).  Correlation reduces from r2=0.9898 to 0.9886 
for Ts=32 ms when compensation for the randomly assigned 
T2*

i,js is not applied (the reason for showcasing the Ts=32 ms 
comparison is discussed below) and the associated images, 
digitally subtracted from the original image, are respectively 
given by Figs. 4(a) and (b). 

 

 

 

 
 

Figure 3.  6464 image array constructed from a single SE via MR-based 
Fourier analysis for a GE daily QA phantom portion for (a) fs=1024 kHz and 

Ts=8 ms, (b) fs=256 kHz and Ts=32 ms, and (c) fs=64 kHz and Ts=128 ms. T2*
i,j 

is randomly assigned for all pixels within the simulated SE, and a constant 
T2*

i,j=40 ms is set during reconstruction to provide partial compensation. 

 

 

 

 

Figure 4.  6464 image array constructed for fs=256 kHz and Ts=32 ms and 
digitally subtracted from the original image with (a) and without (b) T2*

i,j 
compensation. 

V. DISCUSSION 

If one assumes T2*min20 ms, based on the fact that 
T2*>20 ms for most soft tissues [1], [12], [13], the subsection 
IIA requirement of Ts< T2*min to prevent frequency crossover is 
met by Ts=8 but not Ts=32 or 128 ms.  Thus, the near-perfect 
correlation between Fig. 3(a) (Ts=8) and the original simulated 
image is expected, as is the monotonic reduction in correlation 
as Ts is progressively increased to Ts=128 ms in Fig. 3(c), 
reflecting increasing deleterious T2* effects.  For Ts=32 ms, the 
reduction in correlation (from r2=0.9898 to 0.9886) between 
the constructed and original simulated image that occurs when 
compensation for randomly allocated T2*

i,j is removed, reveals 
a positive effect of the applied compensation method.  This 
positive effect is best visualized as residuals formed by digital 
subtraction of the constructed images from the original 
simulated image, as shown by Figs. 4(a) (with) and (b) 
(without) compensation.  The residuals without compensation 
are clearly more apparent. 

Table 1 shows Gx and minimum fs values, as calculated by 
(2) and (5) respectively, required for Ts values of 2, 8, 32 and 
128 ms and a range of common image array sizes.  The table 
demonstrates that the values of 8, 32 and 128 ms were not 
arbitrarily chosen for simulated SE data collection.  That is, 
these values correspond to the minimum Ts required to collect 
sufficient Nd for 6464, 128128 and 256256 image array 
construction respectively, without exceeding a practical limit 
set by Gx40 mT/m [1].  It is evident from Table 1 that 
demands on Gx and fs become less as Ts is made larger and 
image array size (for the same FOV) is made smaller, due to 
lessening BW and Nd requirements.  These lessening demands 
naturally come at the expense of decreased spatial resolution 
and increased deleterious T2* effects as previously observed.  
Generally from Table 1, image construction is limited to a 
pixel area of approximately 5 mm2 for the 128128 image 
array (based on a Ts of 32 ms) without the onset of visually 
obvious deleterious T2* effects (digital subtraction would 
again be expected to reveal some such effects).  However, 
depending on one’s desired image quality, this estimate of 
technique limit is conservative given that frequency crossover 
does not grossly effect Fig. 3(c), the Ts of which (128 ms) 
provides enough data collection time for a 256256 image 
array with pixel areas of approximately 1.5 mm2.  It is relevant 
to note that Ts values above 32 ms are utilized in EPI [1].   

TABLE I.  MAGNETIC FIELD GRADIENT, GX, AND MINIMUM SAMPLING 
FREQUENCY, fS, REQUIRED FOR TOTAL SPIN-ECHO SAMPLE TIME, TS, VALUES OF 
2,8, 32 AND 128 ms AND FOR VARIOUS IMAGE ARRAY SIZES.  THE FIELDS-OF-
VIEW, IN THE x- AND y-DIRECTIONS, FOVX AND FOVY, ARE 30 cm.  SHADED 
ENTRIES ARE RESTRICTED BY THE PRACTICAL LIMITATION OF GX40 mT/m.        

 

 

 

 

 

 

 

    (a) (c) 

(b) 
Array Size

 (MN) 

      Ts = 2 ms 

   Gx             fs    

(mT/m)   (MHz) 

Ts = 8 ms 

    Gx            fs 

(mT/m)    (MHz) 

Ts = 32 ms 

   Gx           fs 

(mT/m)   (MHz) 

Ts = 128 ms 

   Gx           fs 

(mT/m)  (MHz) 

6464  160    4.096  40       1.024 10       0.256  2.5     0.064

128128  640    16.38 160      4.096 40       1.024  10      0.256

256256  2560   65.54 640      16.38 160     4.096  40      1.024

(a) 

  (b) 



Shaded entries in Table 1 require Gx values that challenge 
the limits of current technology.  However, the fact that 
technological improvements have, since the days of early 
scanners, lead to an approximate ten-fold increase in maximum 
gradient strength [1] indicates that Gx will become less limiting 
in the future.  fs entries in Table 1 are all practically achievable 
by many modern analog-to-digital converters (ADCs)2.  

MR extraction of cp via (7) requires the inversion of a 
(MN+1)(MN+1) matrix, which for example is easily achieved 
by Matlab on a basic desktop computer for a 128128 image 
array (1638516385 matrix inversion).  Processing demands 
are reduced if a conventional FFT is employed at the expense 
of previously identified MR benefits [8],[9].  However, (8) 
requires similar computational demands to (7) regardless of the 
Fourier analysis method employed.  Clearly, the processing 
time of such large-scale matrix analysis is significantly longer 
than that of Fourier analysis applied to one row of k-space 
processed in quadrature, which requires only 2N data points (2 
N-point Fourier transformations).  However, for reasons stated 
within the introduction, an extended post-scan processing time 
for one SE, as required for the proposed technique, is more 
beneficial than a (conventional) extended scan time due to the 
collection of M SEs, from which the patient cannot be excused.  
If the SE was demodulated within the more conventional =-
BW/2 to +BW/2 range, an MN image array could be 
constructed in a quadrature-like manner from two sets of 
(MN/2+1)(MN/2+1) MR equations3, reducing MR 
processing time for an MN image array to twice that of an 

22 NM   array constructed in a non-quadrature manner.   

An interesting theoretical application of the proposed 
technique is the provision of T2 mapping via a second SE 
collected at a longer TE for the same 90o RF pulse.  The T2 of 
each pixel is then  )(/)(ln/2 ,,, ijifjiji TECTECTET  , 

where TEi and TEf  are the TEs for the first and second SEs 
respectively, and TE=TEfTEi.  Such mappings are of 
particular interest for functional imaging [13] where spatial 
resolution requirements are often less stringent. 

SNR is theoretically enhanced for the proposed technique 
by the fact that no phase gradient is utilized.  For example, for 
conventional imaging the central row of k-space (zero phase 
gradient) can have a peak intensity 100 times that of the outer 
row of k-space (maximum phase gradient), whereas the 
proposed technique utilizes optimal k-space intensity only.  To 
a lesser extent and because SNRBW-1/2[1], SNR is on-the-
other-hand challenged by the wide BW requirement of the 
proposed technique.  Magnetic susceptibility artifacts may be a 
nemesis due to the requirement of high magnetic field 
homogeneity.  However, a degree of self-correction towards 
such artifacts (as seen with phase errors for spiral imaging [14]) 
remains a possibility. Variations to the presented formalism 
exist which include its application to a free induction decay 
signal and other echo types (e.g., gradient echos). 

                                                           
2.  Currently in MRI, down-sampling is commonly performed after the ADC process to reduce the 
amount of data collected and to match the BWs of the ADC output and MRI signal, so the proposed 
technique in a sense puts this otherwise neglected data to use.     
3.  Formed by respectively equating conventional I and Q components to the cosine and sine terms of (4).  
a()=c(+)+c(-) would then be combined with b()=c(+)-c(-) to determine c(+) and c(-).   

 

VI. CONCLUSION 

It has been demonstrated that an image can theoretically be 
constructed from a single SE in MRI, provided a sufficiently 
large Nd are collected via a high fs and the read gradient is 
applied obliquely across the image array, to allow pixel 
intensities to be calculated via large-scale simultaneous 
solution of finely-spaced, parallel iso-1H precession frequency 
projections.  It is also recommended that Nd are collected over 
a relatively short Ts to suppress the exponential components of 
SE re- and de-phasing;  where this is not possible, the 
technique allows for partial compensation of T2* effects.  The 
proposed technique potentially offers an alternative to the “one 
shot” pulse sequence of EPI but with the advantage of no phase 
propagation artifacts or adverse effects of ultrafast gradient 
systems.  Current maximum available gradients strengths (40 
mT/m) conservatively limit the technique to a 128128 image 
array with pixel areas of approximately 5 mm2.  Construction 
for a 256256 image array is possible but with compromised 
image quality.  An accurate T2 map of the same resolution can 
also theoretically be constructed by the collection a second SE 
for the same 90o RF pulse.     
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