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A formalism based on simple physics that predicts the varia-
tion in boat velocity throughout the rowing stroke is presented
and is applicable to all classes of rowing. Predicted boat
velocity-time profiles throughout the rowing stroke closely
match experimental profiles in both shape and amplitude. The
formalism also identifies a primary cause of boat deceleration
at the start of the power phase (blade in the water) as a detri-
mental lever action of the oar. This detrimental lever action
occurs when the net rowing force acts in an opposite direction
to the intended direction of boat travel, irrespective of hydro-
dynamic drag contributions. The detrimental lever action is
minimised if the line of action of the force applied to the oar-
handle by the rower is maintained as parallel to the long-axis
of the boat as possible, a finding consistent with current coach-
ing strategies. For oar-handle forces applied at 10, 20, 30 and
40° to the long-axis of the boat, the lever system is predicted to
operate detrimentally at catch angles above 67, 49, 35 and 27°
respectively for an oar length of 3.4 m and rowlock-to-centre-
of-hands length of 1 m. The findings provide additional quan-
tified insight into observations and predictions made by other
authors (e.g., Pope, 1973; Martin & Bernfield, 1980) and indi-
cate that relatively large catch angles, e.g., 60 to 65°, may in
some respects be detrimental to rowing performance.

Introduction

Studies into the optimisation of rowing technique through
modeling are of interest because of the many rowing tech-
niques that have been used since the first documented regatta
for oared boats held in 13th century Venice (Dodd, 1992). Dal
Monte and Komor (1989) provide a comprehensive review of
studies up to 1985. Sanderson and Martindale (1986),
Millward (1987) and Brearley and de Mestre (1996, 1998) are
more recent studies, all of which develop Newtonian
(ZF=mxa) equations of motion by considering the forces act-
ing on a rowing boat.

The model rowing equations presented by Sanderson and
Martindale (1986) are solved analytically to investigate the
effect of rower size and energy expenditure, while the rowing
equations presented by Millward (1987) and Brearley and de
Mestre (1996) are solved numerically to model known phe-
nomena such as the variation in boat velocity throughout the
rowing stroke. Brearley and de Mestre (1998) model steady
state rowing conditions to study the effects of oar flexing.

The present study develops a model equation of rowing based on
simple Newtonian physics but differs from the above-mentioned
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studies, particularly in its derived relationship between the force
applied to the rowlock by the oar and the force applied by the
feet to the boat, which are the two primary rower-generated
forces that act on the boat. Of particular interest is the use of this
model equation to provide insight into the cause of the known
deceleration at the start of the power phase (blade in the water)
and to suggest strategies to minimise this deceleration.

ey

Power phase

This section briefly outlines the development of an equation of
motion for all classes of rowing during the power phase of the
rowing stroke.

The primary rower-generated, two-dimensional forces that act on
the oar and boat during the power phase, in a plane parailel to the
water surface, are respectively shown in Figures 1a and 1b.

The symbols used throughout the text that are associated with
Figures 1a and 1b are defined as follows:
h = distance from the rowlock to the centre of the hands,

I=  length of the oar from the centre of the blade to the
centre of the hands,
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Figure la. The primary rower-generated, two-dimensional forces act-
ing on the oar in a plane parallel to the water surface. H(t) is the
Jorce applied to the oar-handle and R(1) is the force applied by the
rowlock to thff oar.
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Figure Ib  The primary rower-generated, two-dimensional forces
acting on the boat in a plane parallel to the water surface. F(t) is the
Joot force and R (1) is the force applied by the oar to the rowlock.
Shown is the relationship between H(t) and F(z).

t=  time from the onset of the current power phase,

o(r) = angle at which the oar-handle force is applied measured
relative to the intended (positive) direction of boat
travel (|0(7)| is used within all equations),

0..,= initial and maximum value of ¢(z),

0(z) = angle made by the oar and a line perpendicular to the
direction of boat travel (|0(¢)| is used within all
equations and ¢(7) — zero as 6(f) — zero is assumed),

6,41, = initial and maximum value of 8(7),

F(r) = force applied by the feet to the boat,
F’(f) = component of F() parallel to H(f) (defined below),

F ”(ty = component of F(f) parallel to the oar,
H(f)= force applied to the oar-handle at the centre of the hands
=-F'(1,

H'()= component of H(f) in the positive direction of boat
travel,

R(t) = force applied by the rowlock (at a right-angle) to the
oar,

R'(f) =component of R(f) in the negative direction of boat
travel,
R”’(f)= force applied by the oar to the rowlock = -R(¢), and
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R’(¢f) = component of R”'(f) in the positive direction of boat

travel = -R'(¢).

Water reaction forces on the blade are not shown. The con-
vention used is that G(¢) represents G(7) or |G(¥)| in context, for
any given vector, G(7).

Assuming that the position of the blade remains fixed in the
direction of boat travel establishes the following lever equa-
tion, with the blade as the point of rotation:

IH'(f) = -(-h)R'(1). (1)

Since the blade moves perpendicular to the direction of boat
travel, only force components in the direction of boat travel are
considered related through a lever relationship in establishing
Equation 1. (Force components perpendicular to the direction
of boat travel contribute to wasted effort and Celentano et al.
(1974) show that as much as 22% of rowing effort may be
wasted.)

Since R'(¢) = -R(¢) cos0 (¢) and H'(f) = H(f)cost(f), Equation 1
may be written

)= (/~ A) R(#)cosO(r) . Q)
/ cos¢(7)
This approach whereby the blade is assumed fixed only in the
direction of boat travel is given credence by the fact that if the
blade is also assumed fixed perpendicular to the direction of
boat travel, then Equation 2 would take the form

an==hH Ry 3)
/7 cos(8(2) - ¢(2))

Equation 3 implies that it is advantageous for a rower to apply
force on the oar-handle with a non-zero value of ¢(f) which
does not agree with practical rowing.

The assumption of a fixed blade in the direction of boat travel is
ideal (Affeld et al., 1993). Supporting this assumption, Brearley
and de Mestre (1996) observe only minor blade movement
through the water. Martin and Bemnfield (1980) also observe
that deceleration of the boat due to relative motion ( slipping )
between the water and the blade is generally not evident, which
lends confidence to the assumption of a fixed blade in the direc-
tion of boat travel. Additionally, any slipping of the blade is
largely taken into account by Equation 2 since a loss in blade
efficiency will manifest as changes in the (ideally) experimen-
tally measured profiles of R(¢), 6(r) and ¢(2).

H(?) is ultimately generated by the rower pushing against the
boat with force F(f) which acts primarily through the feet in the
negative direction of boat travel. H(¢) is therefore considered
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the effective reaction force of F'(f), where F'(f) and F”'(¢) add
vectorially to form F(¢) as shown in Figure 1b. For H(?) to be
the effective reaction force of F'(f), F(¢) must not produce
torque about the rowlock which acts as a fixed point of rotation
with the boat as the frame of reference. Hence, F”'(¢) acts par-
allel to the oar and geometric considerations (ci()=90°+0(z)-
®(?) in Figure 1b) give the following equation for F(¥) as a
function of H(t):

cos(B(t) - ¢(l))

AD = - H0) cos6(/) ' 4

Combining Equations 2 and 4 now allows F(?) to be expressed
in terms of R(¥), 6(¥), (?), I and h:

(/= 1) RD)cos(0(2) - 9(2)) (5)
/ cos¢(2) '

The derived relationship between F(f) and R(f) in Equation 5
automatically accounts for the movement of the rowers during
the power phase and therefore offers a simple alternative to
other models of rowing (e.g., Pope, 1973; Sanderson &
Martindale, 1986) where the analysis of rower movement is
more complex. As is practically necessary, F(f) increases with
®(f) for constant (non-zero) 6(f) and R(#). Experimental evi-
dence that also supports Equation 5 is discussed in the results.

A=

R’(?), the reaction (of R'(f)) force component, acts on the boat
to promote motion in the positive direction of boat travel and
is given by

R(1) = R(r)cosb(s) . (6)

R’(f) is referred to as a primary rowing force on the boat in the
positive direction of travel rather than a force component for
further discussion.

The final force that acts on the boat and which needs to be
taken into account is hydrodynamic drag,
D=D(p,v,C,.,L, VD). From established rowing literature
(Pope, 1973; Dal Monte & Komor, 1989), D can be shown to
be given by

D=(tpicN2nzr)+ (72)

where p is the water density; v is the velocity of the boat rela-
tive to the water; C, is a nondimensional viscous drag coeffi-
cient proportional to Reynolds number and dependent on the
smoothness of the boat; V2227 is the wetted surface area of
the boat where L is the boat length and V is the volume of water
displaced by the boat; the bracketed term represents viscous
drag; and D,, is the wave drag which is a function of Froude
number. Also, since V = m/p, where m is the combined mass
of the rowers, boat and oars, Equation 7a can be expressed in
the following form which shows the dependency of D on m:

D=YPC\2nlmp + D, . (7b)

D, makes a relatively small contribution to Equation 7b and
represents approximately 12 and 8% of D for single scull and

cights respectively (Dal Monte & Komor, 1989). Although D,,

exhibits a complex dependency on the shape of the boat, Pope
(1973) shows that to a good approximation, D, is proportional
to 1* and therefore accounts for D, by the introduction of a
multiplicative correction factor. Following this approach, D
may be simplified to

D=10PC\2nlmp )

where { is a factor ranging from 1.14 (single) to 1.08 (eights).
The sign of D is implied within all hydrodynamic drag equa-
tions such that action is against the direction of boat motion.
The effect of air drag is not included.

The expression for D may be further simplified by fitting a
polynomial equation to resistance data obtained from towing
tanks or pools with forced water flow, as is the approach by
Millward (1987) and Brearley and de Mestre (1996). Based on
such data, Millward models hydrodynamic drag on a single
scull as the third-order polynomial D=-0.0672.v*+3.67v*
Wellicome (1967) measures drag as a function of velocity for
three rowing boats. Combining the findings from the Millward
and Wellicome studies with the results of a similarity analysis
between classes of rowing boats (McMahon, 1971) allows
coefficients a and b, for equations of the form

D=ab + b, 9)
to be approximated for other classes of boats. Coefficients cal-
culated for a range of rowing classes are given in Table 1 and
are used to model D for the present study. The approximations
made with respect to D and air drag are not critical for the pre-
sent study since the primary aim, upon the development of a
model equation of rowing, is to obtain a physical understand-
ing of boat deceleration at the start of the power phase.

Table 1 Coefficients a and b for approximating hydrodynamic drag
(D® av’+bVv?) for various boats.

Boat type a b
(N-s’m™) (N-s>m™)
Single -6.73 x 107 3.67
Double -1.01 x 10™ 5.51
Fours -1.61 x 10 8.81
Eights 2.35% 10" 12.9

Incorporating the primary forces acting on the boat in the pos-
itive and negative directions of travel, R”(¢), F(f) and D, given
respectively by Equations 6, 5 and 9, into Newton s second
law, ZF=mxa, generates the following differential equation of
motion during the power phase of rowing for a total of N oars:

o (4= D)eos(8(1) - 9(1))
— = M
v ~ R(7)| cosB(r) + 7c0s0(7)

-a’-67 . (10)

Recovery phase

The theory used to describe the recovery phase assumes half-
cycle sinusoidal motion of the rowers’ displacement described
by:
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x:Aco{Tlt,J > (11)

where x is the displacement of the rowers relative to the centre
sitting position, 4 is the amplitude of motion, 1, is the duration
of the recovery phase and ¢, is the time from the onset of the
recovery phase.

Differentiating Equation 11 twice to obtain the rowers accel-
eration and multiplying by —M, where M is the combined mass
of the rowers, gives the reaction force exerted by the rowers on
the boat throughout the recovery:
2
m - M—nzicos(it,)—av}—bvz. (12)
dt T, T,
Examination of Equation 12 reveals that during the first half of
the recovery, rower motion promotes boat movement in the
positive direction of travel, whereas the opposite is true during
the second half of the recovery.

Incorporating Equations 12 and 9 into XF=mxa generates the
following differential equation of motion for the recovery
phase:
M4 n
7 COS(T—fr) . (13)

Id r

=

Equation 13 is the same as the recovery phase equation pre-
sented by Brearley and de Mestre (1996) except that Brearley
and de Mestre use an alternative simplified expression for D.

Combining Equations 10 and 13 for the power and recovery
phases respectively, yields the following equation for one
complete rowing stroke:

dv (4= Deos(8(2) - (1))
228 N
” dr power, n R(’)[COSO(f) + o~ ¢(l) J
+ 5recave,y, n _@Co{l(f - Tp)) (14)
T, T,
-av-47,

where n is the current phase (power or recovery) and 1, is the
duration of the power phase. The Kronecker delta, §,.,, equals
one or zero and simply turns a term on or off during a particu-
lar phase (i.e. 3,,,, = 1 and 0 for n” = n and n’ # n respective-
ly). Equation 14 is a differential equation that is easily solved
to give v as a function of ¢ using a fourth-order Runge-Kutta
routine that is standard within software packages such as
Matlab and ODE Architect.

Results and discussion |

Boat velocity throughout the rowing stroke

The boat velocity throughout the rowing stroke for the first 11
strokes as predicted by Equation 14 for a coxless pair (2x95 kg
rowers and 28 kg boat) is shown in Figure 2. Constant input
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Figure 2 Simulation of the (a) instantaneous and (b) average boat
velocity for the first 11 strokes for a coxless pair. T, = 0.95, 1, = 1.2
s, rower mass = 95 kg, boat mass = 28 kg. The vertical line represents
transition from power to recovery phase.
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Figure 3 Time-varying inputs (a) R(t), (b) q(t) and (d) f(r), and (c)
hydrodynamic drag, D = A(p,v,C,,L,V.D,) for the simulation in
Figure 2.

parameters are 4 = 0.36 m, / = 3.4 m, & = 1 m, 7,=0.9s and
1,=1.2s (i.e., 28.6 strokes per minute). Time-varying inputs
R(9), 6(¢) (6,4 = 60°) and &(7) (¢4 = 20°) and calculated D
profiles are shown in Figure 3. Input parameters are based on
experimental data for a coxless pair at race-pace (Australian
Institute of Sport (A.L.S.), 1995) and practical observations in
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the case of ¢(¢). For the purpose of the present study, R(?) is
modeled as a half-cycle sinusoid. However, Equation 14 read-
ily accepts actual R(¢) profiles.

The calculated average boat velocity in Figure 2b converges to
5.27 m:s* which supports the validity of the model (5.36 m's*
is the current world championship first place average boat
velocity for heavy-weight men).

Figure 4 shows the calculated average boat velocity through-
out the first 11 strokes for other classes of rowing (single scull,
double scull, quads and eights) based on minimum rower and
boat masses for heavy-weight men as specified by the
International Rowing Federation (FI.S.A.). The manner in
which the calculated attained average boat velocities increase
through the above-mentioned rowing classes also validates the
model (5.1, 5.6, 6.0 and 6.3 m-s* are respective current world
championship first place average boat velocities).
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Figure 4 Average boat velocity calculated for the first 11 strokes for
single scull, double scull, quad and eight.

The shape of the boat velocity-time profiles in Figure 2a close-
ly matches the experimental measurements for a single scull
(Affeld et al., 1990) and an Olympic eight-person crew (Martin
and Bernfield, 1980). The minimum in the calculated veloci-
ty-time profile for the 11th stroke (in particular) demonstrates
deceleration of the boat at the start of the power phase. The
position of this minimum is dependent on rowing style (see
Martin and Bemnfield for an explanation of the shape of the
profile).

We are interested in the condition under which the resultant
rowing force in the direction of boat travel, R”(H)+F(f)+D, is
negative. The model predicts a negative resultant rowing force
when

(/= Aycos(0(r) - 9(2))
/cos@(7)

NR(f)cosO(z) < NR(?) va + b4 (15)

From Equation 15, the critical value of 6(f) for which the oar
lever system undergoes a transition from the production of a
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Figure 5 The effect of O(t), on the resultant rowing force,
R’(t)+F(#)+D, for constant R(t) of 100, 500 and 1000 N. R”(2) is the
force applied to the rowlock in the direction of boat travel. Results are
shown for 0(t) set to (a) 40° and (b) 20° in the absence of D, and (c)
40° and (d) 20° with D. The x-intercepts identified in (a) and (b) are
critical oar angles.

negative to a positive resultant rowing force may be calculated
for selected constant values of ¢(¢), R(¢f) and D. Figures 5a and
5b show resultant rowing force transitions for ¢(¢) set to 40 and

20° respectively and R(?) set to 100, 500 and 1000 N in the
absence of D.

Figures 5a and 5b demonstrate that 6(¢) values above 27 and
49° produce negative resultant rowing forces, irrespective of D,
for ¢(r) = 40 and 20° respectively, a condition we call detri-
mental operation of the oar lever system. Critical 6(¢) values
for other ®(¢) values are given in Table 2. The results in
Table 2 highlight the importance of maintaining ¢(¢) as paral-
lel to the long-axis of the boat as possible, as advocated by cur-
rent coaching practices. When D is set to 130 N (correspond-
ing to = 5.2 m-s") it dominates the R(¥) = 100 N curves in
Figures 5¢ and 5d, demonstrating that once the oar lever sys-
tem ceases to operate detrimentally, it is important to attain a
large rowlock force to counter the effects of D, a finding con-
sistent with observed R(¢) profiles.

Hence, the model identifies a primary cause of boat decelera-
tion at the start of the power phase as a detrimental action (as
distinct from a less efficient action which also causes deceler-

Table 2 Critical O(t) for various values of ¢(t) for | = 3.4 m and
h=1m. IfO() is greater than the critical 6(t) a negative resultant
rowing force occurs irrespective of hydrodynamic drag contributions.

o9 Critical 6(¢)
(degrees) (degrees)
0 -
10 67
20 49
30 35
40 27
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ation) of the oar lever system. This finding provides addition-
al insight into the three causes given by Martin and Bernfield
(1980). Furthermore, the model predicts that this detrimental
lever action may be avoided by a reduction in 6,,,.,, which will
in turn reduce 0,,,,. Supporting this prediction is the fact that
Rowing Australia (1997) recommend 6,,,, values of between
45 and 55° for sweep oar rowing and 55 to 60° for sculls and
these values are lower than those observed for some rowers
(e.g., 60 to 65°. Also, though not advocating a general reduc-
tion in 0, , Sanderson and Martindale (1986) state that the
range of oar motion is reduced for scullers with comparatively
fast sprints, while Pope (1973) shows that if the stroke is short-
ened as a consequence of increasing the stroke frequency, then
0. should be reduced rather than the oar angle at the start of
the recovery phase.

Note that changes in technique that involve a reductionin 6,,,,,
may require a subsequent increase in stroke frequency and are
also limited by other interdependent factors such as the ease of
blade placement in the water. For a shortened slide forward,
the position of the footrests may also need adjustment to allow
maximum leg drive and this may have practical limitations in
terms of boat rigging and balance. Moving the rowlocks slight-
ly forward in relation to the rowers is another strategy to
counter the detrimental lever action of the oar since this will
reduce ecarch and q)catch'

Figure 6 further supports the validity of the model by showing
the variation in R"(f), -F(f) and R"(f)+F(¢) for time-varying
R(¥), 6(7) and (), as per Figure 3, for ¢,,,., values of 10, 20, 30
and 40°. The calculated F(¢) profiles are similar to the experi-
mental measurements of Loschner and Smith (2000) by the
manner in which the profiles follow R”(z). F() profiles (not
shown) calculated for A.LS. (1995) experimental R(¢) profiles
closely match the measurements of Loschner and Smith in a
similar manner. Loschner and Smith show that -F(¢) in prac-
tice may exceed R”(f) at the start of the power phase (a phe-
nomenon associated with boat deceleration) and this ¢,,,,-

) v
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Figure 6 R"(1), -F(t) and the resultant rowing force in the absence of
D, RE()+F(1), during the power phase for O, of (a) 40°, (b) 30° (c)
20°and (d) 10°. R<(1)+F (1) is negative to the left of the vertical lines.

dependent characteristic is also displayed in Figure 6 by
regions to the left of the vertical lines in (a) to (c).
Additionally, in Figure 6 when ¢(f) is zero (ideal for efficient
rowing), -F(£)/R"(¥) is predicted by Equations 5 and 6 to equal
(l-h)/I = 0.70. Supporting this predicted value, Loschner and
Smith measure -F(¢)/R"(¢) to be 0.69 + 0.10 (mean + SD) at the
point of peak force production for six instrumented rowlocks
and footrests.

Though not the primary topic of investigation for the present
study, the effect that changes in / and 4 have on -F(¢)/R”(f) dur-
ing the power phase is of interest. Figure 7 shows that -
F(#y/R"(ty = (I-h)/! is minimised by a decrease in / and an
increase in 4. However, although the minimisation of this ratio
in one respect represents efficiency, the use of a relatively short
!/ and long A by a rower will not necessarily increase boat
velocity, since such dimensional changes have an interdepen-
dency on factors such as stroke length, stroke frequency and
RI(ty+F(t)+D. For example, a decrease in / and an increase in
h will decrease the stroke length, which may have a detrimen-
tal effect on the boat velocity if the range of oar motion and
stroke frequency remain constant. Hence, the effect of oar
dimensions on the resultant rowing force and boat velocity
remains a topic for future research.
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Figure 7 Ratio of -F(1) to R”(3), calculated for 0(t) = &(t) = 0 for var-
ious values of oar length, I, and rowlock-to-centre-of-hands length, .

t) and rowing power on boat

The model predicts an increase in average boat velocity if a
rower decreases power in the early stages of the stroke, hence
reducing the contribution from the forward-most rowing posi-
tion where the lever action can be detrimental, and increases
power when the oar lever system operates more efficiently.
This result is displayed by Figure 8 which compares calculat-
ed boat velocity-time profiles for the first stroke for R(f) mod-
eled on a sine function (as per Figure 3a) and a sine-squared
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Figure 8 First-stroke velocity profiles for R(t) based on sine and sine-
squared functions with the same impulse.

function with the same area (impuise). The sine-squared-
based profiles for all strokes converges to an average velocity
of 5.47 m-s* (3.8% higher than for the sine case).

Hence, Figure 8 highlights that the shape of R(f) can be just as
important as the amplitude of R(¥), a result consistent with the
findings of Martin and Bernfield (1980) and Millward (1987).

The physical model presented has some limitations, namely (i)
the model is two-dimensional and does not consider out-of-
plane forces that can significantly contribute to wasted rower
effort (Celentano et al., 1974); (ii) a simplified expression for
D that does not allow for variations in the combined rower and
boat mass within each class is used for calculations, (iii) the
blade is assumed fixed in the direction of boat travel through-
out the power phase; and (iv) the use of half-cycle sinusoidal
modeling of rower motion. However, these limitations do not
alter the principal findings associated with the mechanics of
the oar lever system throughout the power phase.

A possible research concept generated by the findings of the
present study is the development of a rowlock system that
moves laterally throughout the rowing stroke so that the oar
moves continuously towards and away from the boat as the
magnitude of 8(¢) increases and decreases respectively, there-
by minimising ¢(z) at all times.

Conciusion

This study presents a simple mathematical formalism that pre-
dicts boat velocity-time profiles that closely match experimental
profiles in shape and amplitude and identifies a primary cause of
boat deceleration at the start of the power phase as the detrimen-
tal operation of the oar lever system. For oar-handle forces
appited at 10, 20, 30 and 40. ... to the long-axis of the boat, the lever

system is predicted to detrimentally operate for 6., values
above 67, 49, 35 and 27... respectively for # = 1 mand / = 3.4 m.

To counter this detrimental action of the oar lever system, it is
recommended that a rower apply the oar-handle force as paral-
lel to the long-axis of the boat as possible. The detrimental *
action may also be countered if 8,,,, is reduced with a subse-
quent increase in the stroke frequency and adjustment of the
foot rests to enable maximum leg drive. However, these
changes are likely to affect interdependent factors such as the
ease of blade placement in the water, boat balance and rigging
requirements. Another suggested counter-strategy is to move
the rowlocks slightly forward in relation to the rowers.

It is also recommended that a rower apply minimal rowing
force when the oar operates in a region defined as detrimental.
Once the oar lever system is no longer detrimentally operating,
it is recommended that a rower then attain a large rowlock
force to overcome the effects of hydrodynamic drag. Although
a number of limitations are identified for the model presented,
these limitations do not alter the above conclusions and
recommendations.
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