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O F  A L L  T H E  experiences we have in life, face-to-face 
interaction fills many of our most meaningful moments. 
The complex interplay of facial expressions, eye gaze, 
head movements, and vocalizations in quickly evolving 
“social interaction loops” has enormous influence 
on how a situation will unfold. From birth, these 
interactions are a fundamental element of learning and 
lay the foundation for successful social and emotional 
functioning through life. 

What are the underlying processes from which this 
most human form of interaction emerges? Will we be  
able to interact with computers in a face-to-face way 
that feels natural? This article discusses the unique 
challenges of realistically simulating the appearance and 
behavior of the face to create interactive autonomous 
virtual human models that support naturalistic 
learning and have the “illusion of life.” We describe our 
recent progress toward this goal with “BabyX,” an

autonomously animated psycho-
biological model of a virtual infant. 
While we explore drivers of facial 
behavior, we also expect this founda-
tional approach has the potential for 
more “human” computer interfaces. 
We also describe our work on our 
“Auckland Face Simulator” we are de-
veloping to broaden this work beyond 
infants and give a more realistic face 
and a greater biological basis to adult 
conversational agents. 

Simulating the face has great poten-
tial for human-computer interaction 
(HCI), as it increases the available com-
munication channels between humans 
and machines in an intuitive, accessible 
way. But it is also a vehicle with which 
to explore our own nature. Akin to de-
velopmental robotics,6 which explores 
ways of learning and mental develop-
ment through child-like robots, simu-
lating the underlying processes driving 
the face during social interaction will 
enable HCI researchers to explore be-
havioral and learning models involving 
naturalistic face-to-face interaction. 

There is a trend in the game and 
visual-effects industries to create ever 
more realistic animated characters, 
especially humans, but it turns out to 
not be a straightforward transition 
from the stylized faces of traditional 
animation. For these industries, real-
ism of appearance and movement is 
very important, evidenced by the large 
financial investment going toward cre-
ating the most realistic illusion they 
can achieve. This is done presumably 
because the experience becomes more 
immersive and powerful the closer it is 
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to reality. Realism lessens the leap re-
quired in the suspension of disbelief; it 
is closer to personal experience. Stud-
ies comparing children viewing realis-
tic vs. cartoon depictions of aggression 
show realism to have an increased af-
fective effect on subsequent behavior.35 

As characters move to being more 
human-like, discrepancies in appear-
ance and behavior tend to alarm us, 
with an increasing chance of falling 
into the “uncanny valley.”22 The most 
critical component to “humanness” is 
the face. Achieving the illusion of life 
in the face of a realistic digital char-
acter is challenging in a passive me-
dium (such as film) but even more so 
in interactive games and simulations. 
Concerning realism in computer-gen-
erated faces, Gopnik12 noted: “It made 
sense to think that the ability to rea-
son and speak was at the heart of the 
human mind. Turing’s bet was that a 
computer that could carry on a conver-
sation would be convincingly human. 
But the real imitation game of digital-
effects movies suggests that the ability 
to communicate your emotions may be 
even more important. The ineffable, 
subtle, unconscious movements that 

tell others what we think and feel are 
what matter most. At least that’s what 
matters most to other human beings.” 

In an interactive scenario involving 
unscripted life-like interactions, the 
problem is even more challenging. The 
issue is not only how to represent the 
complex appearance and movement of 
the synthetic face in real time, but, for 
an embodied agent’s behavior to be be-
lievable, it must be consistent and con-
textually appropriate.1 If the simulated 
human can be affected by the interac-
tion, and respond in a way that can af-
fect the user and vice versa, then each 
partner is more invested in how the 
interaction unfolds, creating engage-
ment and emotive connection. 

What creates all these fleeting move-
ments that communicate so much? 
And how can a simulation keep them 
consistent, appropriate, and adaptive? 
Everything that happens on the face 
reflects a brain-body state. Because the 
behavior of the face is affected by so 
many factors—cognitive, emotional, 
and physiological—we explore a more-
detailed and lower-level biologically 
based approach than has previously 
been attempted in facial animation. 

Here, we introduce our general 
approach and design of a modeling 
framework we call “Brain Language” 
(BL) to create autonomous expressive 
embodied models of behavior driven 
by neural-system models based on 
affective and cognitive neuroscience 
theories. Our goal is to integrate dif-
ferent current theories and models 
to create a holistic “large functioning 
sketch” of basic aspects of human be-
havior, with a focus on the face and 
interactive learning. 

Autonomous Animation 
There is long-term interest in creat-
ing self-animating agents that proj-
ect the illusion of life. In 1994, Bates2 
described the importance of appro-
priately timed and clearly expressed 
emotion to make a character seem 
alive. Terzopolous36 introduced a ho-
listic simulation of fish behavior in 
which each such behavior was driven 
by an abstracted brain. Terzopolous’s 
work was a closed system, based on 
initial environmental state, whereas in 
Maes’s ALIVE system,20 the user was in-
cluded in the loop with autonomously 
animated animals, including a virtual I
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Screenshot of BabyX version 4 (under development) looking at a user; image rendered in real time. 
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to, and learn from, the interaction as 
they jointly determine its content and 
quality through real-time contingent 
and reciprocal coaction.” 

Another important factor in the ac-
ceptance of a virtual human face is its 
visual quality. However, realistically 
simulating a face—even when still—
has proved to be formidable. 

Challenges of Modeling 
the Human Face 
The way a digital face moves and ap-
pears can cause unwanted effects. 
Rather than aiding the appearance of 
life, a partially realistic solution can 
elicit a negative response—the un-
canny valley effect. This response is 
thought to be triggered by any number 
of non-expected responses, alarming 
the viewer’s perceptual system.19 To 
avoid this response, many factors must 
be taken into account, including the 
physical appearance of the face and the 
eye-gaze movement of the skin, any of 
which can trigger a form of dissonance 
that interferes with the affinity of the 
perceived face. 

Appearance. The ability to “read” 
faces is so important that several dif-
ferent parts of the brain play a role in 
face perception. We are sensitive to 
many factors that act as signs of health 
and vitality. People often refer to some-
one being “as white as a sheet,” “red 
faced,” or “sickly looking”; it is thus 
important to render physically plau-
sible healthy skin with correct surface 
properties, detail, and subsurface scat-
tering of light that provides diffuse 
properties of skin. 

This challenge has been approached 
in two broadly different ways. First, by 
using “image-based methods” that 
sample the face under different light-
ing and viewing conditions9 and then 
render the face through a combina-
tion of weighted image-blended sets, 
photogrammetry, and/or image pro-
jection. Second, by using “parametric 
methods” that fit the captured data to 
a face and material model used during 
rendering, allowing for more flexibility 
but at the cost of potentially increased 
rendering complexity.16 Given the con-
straints producing imagery fast enough 
for user interaction, adding further to 
the complexity of achieving an effec-
tive interactive face, a simplified imple-
mentation of the second approach is 

dog “Silas” developed by Blumberg3 us-
ing sophisticated ethological models 
to simulate how animals are able to or-
ganize and adapt. 

These and similarly inspired works 
are important on many levels, as they 
explain how behavior can emerge, 
made observable through animation 
with constraints. Blumberg3 suggested 
for a creature to appear alive it must re-
act, have goals, make choices, convey 
its intentionality, emotionally respond 
to events, adapt, and vary its movement 
and response. 

For autonomous animation of the 
face in real time, Terzopolous and Lee37 
developed a physics-based face model 
driven by a basic behavioral animation 
model. Despite this pioneering work, 
few other virtual human studies have 
focused on this lower level of detail in 
real-time facial animation. 

Most research in building auton-
omous human agents has been as 
“embodied conversational agents” 
(such as in Allbeck1 and in Cassell7) 
at a generally more phenomenologi-
cal and higher level, not specifically 
focused on the subtler details of facial 
expression and nonverbal behavior; 
Vinciarelli et al.39 included a survey of 
social-signal processing in computer 
interaction. Simulating these signals 
is getting greater attention from the 
interdisciplinary “intelligent virtual 
agent” community,5 exploring agents 
that are capable of real-time percep-
tion, cognition, and actions in the 
social environment; Marsella and 
Gratch21 discussed simulations of psy-
chological theories of emotion. Emo-
tion-oriented APIs (such as SEMAINE) 
have been developed.33 And Scherer32 
showed how cumulative effects of se-
quential checks of an eliciting event, 
mediated by autonomic and somatic 
components, might combine to create 
compound facial expressions. 

Much of the work on virtual humans 
has an unfortunately robotic “feeling,” 
particularly with facial interaction. 
This is possibly due to most virtual hu-
man models not focusing on the mi-
crodynamics of expression or on facial 
realism. These microdynamics are con-
sidered particularly critical in learning 
contexts. Rohlfling and Deak27 stated: 
“When infants learn in a social envi-
ronment, they do not simply pick up 
information passively. They respond 

The dynamic 
behavior of the face 
emerges from many 
systems interacting 
on multiple levels, 
from high-level 
social interaction  
to low-level biology. 
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typically used for real-time rendering, 
as in Jimenez.15 

Deformation. Achieving coherent 
movement of the skin is especially chal-
lenging due to the complex deforma-
tions in broad expressions and the 
highly non-linear motion of skin. Many 
computer-generated faces in games 
and films do not address these charac-
teristics; for example, the lips on a char-
acter may move while the surrounding 
areas of the face remain static, causing 
an unnatural effect. Unlike skeletal 
muscles, facial muscles are embedded 
in the mobile facial tissue, meaning fa-
cial muscle activation must be treated 
as a system. Arguably the most coher-
ent and generally useful way to drive 
facial animation is through parameter-
ization of individual muscle activity 
(such as in Ekman and Friesen’s Facial 
Action Coding System10). 

The facial deformations used in 
animatable faces are typically rep-
resented through deforming geom-
etry using weighted joints or weighted 
shape combination (“blendshape”) 
methods.25 While effective, these meth-
ods can suffer from combinatorial ex-
plosion in representing the complex 
range of facial expressions. The high-
est-quality models used in the visual-
effects industry incorporate a large 
number of blendshapes to form linear 
approximations to non-linear deforma-
tions. Creating these models is labor 
intensive, so a number of researchers 
have approached the problem using 
flesh simulations.34,37,40 

Facial Motor System 
To design an autonomous digital facial 
system, it is important to understand 
how faces are controlled. Traveling in-
ward from the facial nerves, we reach 
the facial nucleus in the brainstem. 
The facial nucleus receives its main 
inputs from both subcortical and 
cortical areas through different path-
ways. Both a person’s emotional and 
voluntary facial expressions seem to 
arise from different neural circuits.8,13 
The implication is that the voluntary 
expression cannot access a genuine 
emotional motor pattern and is why it 
is not possible to fully produce a genu-
ine emotional expression through vo-
lition. Similarly, stroke patients with 
damage to certain primary motor and 
pre-motor areas cannot produce a sym-

cal explanations link to high-level be-
havior (such as goal setting). 

Building embodied nervous systems 
that can learn through real-time senso-
rimotor interaction is being explored 
in the field of developmental robotics.8 
Social-interaction models have been 
explored with anthropomorphized “so-
cial robots” (such as in Leonardo and 
Kismet4). Developmental robotics, in 
particular, seeks to explore the theory 
of embodied cognition—how the mind 
develops through real-time sensorimo-
tor interaction. 

Our approach to building live in-
teractive virtual agents takes a simi-
lar direction whereby we embody, 
through realistic computer graphics, a 
biologically based model of behavior. 
We ground experience through inter-
action and place particular emphasis 
on the importance of face-to-face in-
teraction, which is difficult to achieve 
in robotics due to mechanical con-
straints. The result is a system that can 
be reduced to more biological detail, 
as well as expandable to incorporate 
higher-level complex systems. As there 
are many competing theories on how 
different brain and behavioral systems 
function, our choice is to opt for flex-
ibility and develop a “system to build 
systems” in a Lego-like manner. 

Brain Language 
BL28 is a modular simulation frame-
work we have been developing for the 
past five years to integrate neural net-
works with real-time computer graph-
ics and sensing. It is designed for maxi-
mum flexibility and can be connected 
with other architectures through a sim-
ple API. It consists of a library of time-
stepping modules and connectors. It 
is designed to support a wide range of 
computational neuroscience models, 
as in Trappenberg.38 Models supported 
by BL range from simple leaky integra-
tors to spiking neurons to mean field 
models to self-organizing maps. These 
can be interconnected to form larger 
neural networks (such as recurrent net-
works and convolutional networks like 
those used in deep learning). Our main 
interest is in online learning, in which 
the network learns during live interac-
tion from both spatial and temporal 
data. A key strength of BL is its tight 
integration with computer graphics as 
a visualization tool. Complex dynamic 

metrical voluntary smile yet can smile 
normally in response to jokes.13 

Expressions are generated by neural 
patterns in both the subcortical and 
cortical regions. In the subcortical area, 
circuits include those for laughing and 
crying. Evidence suggests certain basic 
emotional expressions like these do not 
have to be learned. In comparison, vol-
untary facial movements (such as those 
involved in speech and culture-specific 
expressions) are learned through expe-
rience and predominantly rely on corti-
cal motor control. 

Our psychobiological facial frame-
work aims to reflect that facial expres-
sions consist of both innate and learned 
elements and are driven by quite inde-
pendent brain-region simulations. 

Building a Holistic Model 
The human face mirrors both the brain 
and the body, revealing mental state 
(such as through mental attention in 
eye direction) and physiological state 
(such as through position of eyelids 
and color of the skin). The dynamic be-
havior of the face emerges from many 
systems interacting on multiple levels, 
from high-level social interaction to 
low-level biology. 

To drive a biologically based life-
like autonomous character, one would 
need to model multiple aspects of a 
nervous system. Depending on the lev-
el of implementation, a non-exhaustive 
list includes models of the sensory and 
motor systems, reflexes, perception, 
emotion and modulatory systems, 
attention, learning and memory, re-
wards, decision making, and goals. We 
seek to define an architecture that is 
able to interconnect all of these mod-
els as a virtual nervous system. 

Several biologically inspired cog-
nitive architectures have been devel-
oped; see Goertzel et al.11 for a survey. 
Most are non-graphical, focusing on 
cognition over affect or physiological 
states. It makes sense that the more 
biologically based the architecture and 
the more realistic, the more it is ulti-
mately likely to represent biological 
behavior. An example is the “Leabra” 
framework,23 which constructs low-
level biologically based neural network 
models and connects them to model 
higher-level aspects of cognition. This 
modeling approach is appealing for its 
ability to suggest how low-level biologi-
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simulation, scanning, and geometric 
modeling. Fine details of visually im-
portant elements (such as the mouth, 
eyes, eyelashes, and eyelid geometry) 
are painstakingly constructed for life-
like reality (see Figure 4). 

A highly detailed biomechanical 
face model, as in Figure 3, has been 
constructed from MRI scans and ana-
tomic reference, akin to Wu.40 Skin de-
formation is generated by individual or 
grouped-muscle activations. We have 
modeled the deep and superficial fat, as 
well as muscle, fascia, connective tissue, 
and their various properties. We have 
used large-deformation finite-element 
elasticity40 to deform the face from rest 
position through simulated muscle ac-
tivation. Individual and combined mus-
cle activations were simulated to form 
an expression space,30 interpolated on 
the fly in BL as the face animates. The 
response to muscle activation is consis-
tent skin deformation and motion. 

Nervous system. BabyX’s biologically 
inspired nervous system consists of an 
interconnected set of neural system and 
subsystem models. The models imple-
mented so far are sparse yet span the 
neuroaxis and generate muscle-activa-
tion-based animation as motor output 
from continuously integrated neural 
network models. Due to the Lego-like 
nature of BL, we can have a closed-
loop functioning system allowing ex-
perimental interchange of components 
while exploring different theoretical 
models. In total, the models aim to 
form a “large functioning sketch” of in-
terconnected mechanistic systems con-
tributing to behavior, containing both 
top-down and bottom up mechanisms 
interacting as an integrated system. 

BabyX’s neural networks and cir-
cuits implemented so far cover basic 
elements of motor control, behavior 
selection, reflex actions, visual atten-
tion, learning, salience, emotion, and 
motivation. An architectural diagram 
relating some of the key functional 
components, neuroanatomical struc-
tures, and functional loops is included 
in Figure 5; note cortical and subcorti-
cal input to the facial nucleus. A char-
acteristic of this modeling approach 
is the representation of subcortical 
structures (such as the basal ganglia) 
and brainstem nuclei (such as the oc-
ulomotor nuclei). The structures are 
functionally implemented as neural 

can be shared and drive any aspect of 
a sophisticated 3D animation system; 
for more detail on BL, see Sagar et al.28 

BabyX Project 
To illustrate how these concepts come 
together, we describe an experimental 
psychobiological simulation of an in-
fant we call “BabyX,”29,31 that aims to 
embody models of interactive behavior 
and social learning to create an auton-
omous virtual infant one can interact 
with naturally. 

Facial expression. At a conceptual 
level, BabyX’s computer-graphic face 
model is driven by muscle activations 
generated from motor-neuron activ-
ity. The facial expressions are created 
by modeling the effect of individual 
muscle activations and their non-lin-
ear combination forming her range of 
expressions, as in Figure 3. The model-
ing procedures involve biomechanical 

networks can be visually investigated in 
multiple ways, either through 3D com-
puter graphics (see Figure 1) or through 
a 2D schematic interface showing activ-
ity on the virtual connectome (see Fig-
ure 2). Individual variable activity (such 
as neuron voltage or firing rate) can be 
inspected with scopes during a simula-
tion, as in Figure 2 left. The simulation 
can be interactively modified (such as 
by changing neural-model parameters 
while viewing the effect on the anima-
tion) (see Figure 3 right). 

Sensory input is typically through 
camera, microphone, and keyboard 
to enable computer vision audition 
and “touch” processing, but data can 
be input from any arbitrary sensor or 
output to an effector through the API. 
Computer graphics output is through 
OpenGL and the OpenGL Shading Lan-
guage. A key feature of BL is that any 
variable in the neural network system 

Figure 2. Screenshot of interactive BL viewer: (left) BL scopes viewing activity of a single  
neuron (top) or an array of retinotopic neurons (bottom) during a live interaction; (right)  
partial view of BabyX’s virtual connectome, which can be explored interactively;  
connections light up (green or red) when activated. 

Figure 1. BabyX’s interactive brain: (left) superior colliculus activity driving visual attention 
is visible (green) in the brainstem; (middle) BL raster plot of neural activity and scrolling 
display of modulatory activity; (right) basal ganglia circuit and interactive dopamine level 
modification (green) affecting cortico-thalamic feedback and eye movement. 
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network models with particular char-
acteristics (such as the amygdala and 
hippocampus as “hebbian associa-
tors” and the pulvinar as a topograph-
ically organized array of neurons 
forming a saliency map). Activation 
of the hypothalamus releases virtual 
hormones. Cortical regions use recur-
rent and multi-layer neural networks 
and self-organizing maps. Due to the 
Lego-like nature of BL, simple models 
can be replaced by more sophisticated 
models as they become available. 

One of the goals of BabyX is to visu-
ally represent functional neural-circuit 
models in their appropriate anatomical 
positions. For example, our Basal Gan-
glia model (based on Redgrave et al.26) 
controls motor actions and has an ap-
propriate 3D location and geometry, 
as in Figure 1, and the activity of the 
specific neurons form inputs to the 
shaders to show the circuit in action 
as it processes. 

Emotions in BabyX are, in fact, coor-
dinated brain-body states that modulate 
activity in other circuits (such as increas-
ing the gain on perceptual circuits). 
Emotional states modulate the sensitiv-
ity of behavioral circuits. For example, 
stress lowers the threshold for triggering 
a brainstem central pattern generator 
that, in turn, generates the motor pat-
tern of facial muscles in crying. 

Neurotransmitters and neuromod-
ulators play many key roles in BabyX’s 
learning and affective systems.24 An 
example of a physiological variable 
that affects both the internal and exter-
nal state of BabyX is dopamine, which 
provides a good example of how mod-
eling at a low level interlinks various 
phenomena. In BabyX, virtual dopa-
mine plays a key role in motor activ-
ity and reinforcement learning. It can 
also modulate plasticity in the neural 
networks and have subtle behavioral 
effects such as pupil dilation and blink 
rate. The use of such low-level models 
means the user can adjust BabyX’s be-
havioral dynamics, sensitivities, and 
even temperament by adjusting virtual 
neurotransmitter levels. 

Sensory input. BabyX takes audio-
visual input Web camera and micro-
phone, and “touch” from keyboard or 
touchscreen and is designed to work 
without special hardware. BL can inter-
face to different devices, and the BabyX 
project exists separately from choice 

could be as a virtual agent in AR. Such 
an additional level of engagement 
would enhance the experience but also 
benefit from the tight emotional sig-
naling feedback we have developed. 

Learning through interaction. One 
motivation for the BabyX project is to ex-

of display systems (such as virtual real-
ity, or VR, or augmented reality, or AR). 
Advances in AR, particularly in systems 
that allow for facial-expression track-
ing, accurate eye tracking, and depth 
gaze registration of the user, mean 
an obvious possible implementation 

Figure 3. BabyX (version 1). Detailed biomechanical face model simulating expressions 
generated from muscle activations. 

Figure 4. BabyX (version 4, under development). Screenshot from real-time interactive 
psychobiological virtual infant simulation. 
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mirror system is fundamental to learn-
ing, but how could the mapping be-
tween an infant’s expressions and those 
of a caregiver occur? 

One possible mechanism is 
through “associative sequencing”14 
in which spontaneous motor activity 
causes a facial action that becomes as-
sociated with sensory input caused by 
the caregiver’s response. Spontaneous 
“motor babbling” activity is thought 
to be a fundamental way to bootstrap 
exploration of motor space and con-
sidered fundamental to the develop-
ment of autonomous agency.18 In our 
model, babbling is generated by spon-
taneous neural network activity, mod-

ulated by physiological parameters 
leading to activation of facial motor 
pattern generators. BabyX may spon-
taneously make a puckered mouth 
shape, which is seen and then mir-
rored by the user or “caregiver.” For 
BabyX, the activity and feedback from 
this facial movement is associated 
with a delayed visual sensory pattern 
from the caregiver’s facial response. 
Associative learning is modulated by 
phasic dopamine. Strengthening bi-
directional associative connections 
results in the caregiver’s expression 
being able elicit a similar expression 
in BabyX. On successful imitation 
of an expression, the caregiver may 
praise with positive affect, releasing 
yet more dopamine, which further 
strengthens synaptic connections. 
The sensed positive affect and dopa-
mine release activate and modulate 
affective circuits, causing neural-pat-
tern generators to contract the mus-
cles for smiling. For BabyX to learn an 
association of her muscle activity to 
the caregiver’s expressions, she must 
attend to the caregiver’s face. The 
caregiver’s actions cause activity on 
BabyX’s superior and inferior collicu-
lus, where sensory events compete to 
drive the oculomotor network to move 
the eyes. A subregion of the camera 
input is automatically mapped to the 
virtual “fovea,” which maps to where 
the eyes are focusing. 

In sum, the various circuits driving 
BabyX’s facial expressions converge on 
the facial nucleus in the brainstem that 
then activates BabyX’s animated facial 
muscles. Because the various inputs to 
the facial nucleus arise from the activ-
ity of independent yet interconnected 
networks, BabyX’s facial expressions 
can be understood in the context of in-
ternal activity and external factors. 

While BabyX’s “default” expres-
sions are associated with reflexes and 
basic affective states (such as new-
borns crying), the learned expressions 
here are voluntary. Dating to Charles 
Darwin, the “facial feedback hypoth-
esis” states posing an expression can 
influence emotional state. By adding 
bidirectional connections to the af-
fective networks that generated them, 
mimicked expressions can cause ac-
tivity in BabyX’s affective circuits, 
functioning perhaps as a basis for 
“virtual empathy.” 

plore how high-level social interactions 
might interact with models of lower-lev-
el biological mechanisms. An example 
illustrating such interaction we have in-
vestigated is facial mimicry (see Figure 
6); for a related video, see https://vimeo.
com/123986611. This may be simple to 
program at a high level in an embod-
ied agent (such as by copying inputs to 
outputs), but when exploring how the 
interaction may emerge in a general 
sense, through biologically plausible 
intrinsic learning mechanisms, facial 
mimicry raises complex questions. It is 
a key example cited in the mirror-neu-
ron debate.14 How do we learn to map 
other people’s actions to our own? The 

Figure 5. Architectural diagram showing several key functional components and processing 
loops and their neuroanatomical equivalents (blue text).

https://vimeo.com/123986611
https://vimeo.com/123986611
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Action discovery. An example 
showing learning through interac-
tion with the environment in order 
to demonstrate autonomous action 
discovery26 was to aim to have BabyX 
learn to play the classic video game 
“Pong” (see Figure 7). We thus con-
nected motor neurons in BabyX to the 
bat controls and overlaid the visual 
output of the game on the camera’s 
input. Motor babbling causes the vir-
tual infant to inadvertently move the 
bat, much like a baby might flail its 
arms about. Trajectories of the ball 
are learned as spatiotemporal pat-
terns on neural network maps. If the 
bat hits the ball, a rewarding reaction 
results, reinforcing the association 
of the current motor state with the 
trajectory. This association further 
results in the bat being moved in an-
ticipation of where the ball is going. 
Without further modification to the 
model, it is possible for the user to 
actively encourage BabyX’s choices 
(releasing virtual dopamine), provid-
ing a nice example of “naturally super-
vised” reinforcement learning. 

These basic examples show BabyX 
learning through interaction with a hu-
man user and the shared environment. 
While basic, these examples of intrin-
sic action discovery, association, and 
reinforcement learning (unsupervised 
and “naturally” supervised) are funda-
mental to developing generalized au-
tonomous learning systems. 

Observations. As interaction is cen-
tral to the phenomena, we have dem-
onstrated and tested BabyX in several 
public forums where we have observed 
an extension of emotion from BabyX 
to a shared experience with a “passive” 
audience reacting as vicarious partici-
pant. Audience behavior is absorbed 
into the simulation and is not apart 
from it, making the experience differ-
ent from a film, game, or pre-rendered 
simulation. The demonstrator elicits 
behavior from BabyX through visual 
and vocal activity and tries to direct her 
attention. Affective expressions and 
voice stimulate reward and affective 
circuits. If BabyX is abandoned, de-
pending on oxytocin levels, her stress 
system can activate a cascade of virtual 
hormones, and she becomes increas-
ingly distressed. BabyX can be trained 
to recognize certain images that can be 
associated with vocalizations. When 

the pain response, as if someone was 
about to “hurt” the baby. There was 
no sense that the audience rationally 
thought the baby was real, though it im-
mediately reacted as if she were. Even 
within a formal academic presentation, 
and with the pain response a valid part 
of any brain model, the audience re-
acted as if the demonstrator was about 
to be cruel. Interestingly, this was fol-
lowed by an emotional display of relief 
in the form of laughter. As laughter is 
infectious, the demonstrator laughed, 
which was registered by BabyX’s senso-
ry inputs, causing her to be “happier.” 
The audience thus became a part of the 
feedback loop that changed both par-
ties’ emotional states. The implication 
is that a witness to a BabyX session is to 

the demonstrator gains BabyX’s at-
tention and shows her a “First Words 
Book,” if an image causes a strong 
enough activation, the image will trig-
ger BabyX to voice an associated word. 

Observing in a real, unscripted en-
vironment, people anticipate and seek 
emotional responses from BabyX. As 
such engagement happens, they are of-
ten transformed from observers to en-
gaged participants. An example of this 
was seen at the 2015 SIGGRAPH con-
ference where Sagar31 demonstrated 
BabyX. While the audience was mainly 
informed professionals, their reaction 
was audible and visceral to BabyX. Re-
sponses repeatedly observed included 
a sharp negative reaction when the 
demonstrator offered to demonstrate 

Figure 6. BabyX (version 3). Screenshot of sensorimotor online learning session in which 
multiple inputs and outputs of the model can be viewed simultaneously, including scrolling 
displays, spike rasters, plasticity, activity of specific neurons, camera input, animated output. 

Figure 7. BabyX (version 3). Learning to play the video game “Pong” through action discovery 
and online reinforcement learning. 
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limbs, with initial focus on learning 
to reach and grasp. BabyX version 4 is 
intended to interact with the public in 
exhibitions, performing basic learn-
ing tasks (such as label learning). For 
speech, BabyX babbles with a synthe-
sized voice sampled from phonemes 
produced by a real child. We are im-
plementing techniques so BabyX can 
learn an acoustic mapping from any 
arbitrary voice to construct new words 
using her own voice. Lip shapes are 
pre-associated with acoustic elements. 

Our aim for BabyX is that she should 
be capable of learning arbitrary senso-
rimotor sequences, theorized to map 
to sentence construction.17 

In an ongoing developmental psy-
chology study, we are conducting a de-
tailed quantitative characterization of 
the microdynamics of early social learn-
ing between parents and their infants. 
As a first step to validate the effective-
ness of BabyX’s behavior at a high level, 
we will be exploring how well the model 
elicits naturalistic responses from par-
ents in a social interaction loop, com-
pared to their own or another child. If 
the model is successful, we will have 
a new way to study coordinated inter-
action, and how the way in which we 
teach infants may play a critical role 
in learning. Introducing synthetic 
lesions could be an effective way to ex-
plore lower-level validation. 

The Auckland Face Simulator 
A developing infant is certainly not the 
easiest approach for creating an embod-
ied conversational agent for HCI tasks. 
For this purpose, we are building on the 
same underlying computational plat-
form the “Auckland Face Simulator” (see 
Figure 8 and Figure 9, as well as Figure 
4) also demonstrated at SIGGRAPH31 to 
produce highly realistic avatars capable 
of real-time interaction; for a related vid-
eo, see https://vimeo.com/128835008. 
These faces are designed to be used as 
stimuli for psychological research but 
also to provide a realistic interface for 
third-party virtual-agent and AI applica-
tions. The avatars can be “told what to 
say” using text to speech (TTS), and the 
nonverbal behavior can be specified 
in a simple API or custom TTS markup 
language to add further meaning. Wrin-
kling the nose or raising the upper lip 
while speaking can dramatically change 
the perceived meaning. BL allows inter-
nal variables of the avatar’s nervous sys-
tem to be controlled at any level, from 
muscles to affective circuits. 

Conclusion 
Engaging face to face with an interactive 
computer model requires autonomy 
with contextual responsiveness. If visu-
ally consistent, realistic appearance and 
movement seem to increase the sensory 
intensity of the experience. Internally 
consistent generative models enable 
cognitive, affective, and physiological 

become a part of the holistic environ-
ment and the interactive experience. 
There may be ethical implications as 
well, and further research is needed 
to investigate the co-defined dynamic 
interaction that allows such strong “in 
the moment” emotional responses, as 
such responses may have long-term in-
terface implications. 

Further development and validation. 
We are currently working on BabyX 
version 4, as in Figure 4, which has a 
virtual body and is able to control her 

Figure 8. The Auckland Face Simulator is being developed to create realistic and precisely 
controllable real-time models of the human face and its expressive dynamics for psychology 
research and real-time HCI applications. 

Figure 9. The Auckland Face Simulator enables autonomously animated faces to be used for 
cinematic-like extreme close-up shots. 

https://vimeo.com/128835008
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factors that drive facial behavior to be 
produced coherently, justifying a lower-
level more biologically based model-
ing approach than has previously been 
taken with virtual human faces. Explor-
ing these elements together allows new 
yet familiar phenomena to occur. New, 
because we do not normally experience 
this sort of interaction with computers, 
familiar because we do with people. 

Being able to simulate the under-
lying drivers of behavior, realistic ap-
pearance and real-time interaction 
together deliver three aspects of inter-
action, but virtually: 

Explore. Allows us to explore how 
the interplay of biologically based sys-
tems can give rise to an emotionally af-
fecting experience on a visceral, intui-
tively relatable human level; 

Include movements. Applies an em-
bodied-cognition approach to include 
the subtle and unconscious move-
ments of the face as a crucial part of 
mental development and social learn-
ing; and 

Understand key requirements. Gives 
a basis for understanding the key re-
quirements for more natural and adap-
tive HCI in which the interface has a 
face. 

The virtual infant BabyX is not an 
end unto itself but allows researchers 
to study and learn about the nature of 
human response. There is a co-defined 
dynamic interaction where one can ad-
just to BabyX no longer as a simulation 
but as a personal encounter. 

In summary, the enormous com-
plexity of modeling human behavior 
and dyadic interaction cannot be over-
estimated, but naturalistic autono-
mous virtual humans who embody and 
process theoretical models of our be-
havior and reflect them back at us may 
give us new insight into core aspects of 
our nature and interaction with other 
people—and future machines. 

Acknowledgments 
This work was supported in part 
by the University of Auckland Vice-
Chancellor’s Strategic Development 
Fund, Cross Faculty Research Initia-
tive Fund, Strategic Research Invest-
ment Fund, and Ministry of Business 
Innovation and Employment “Smart 
Ideas” program. We also thank Ki-
eran Brennan, Stephanie Khuu, Kai 
Riemer, and John Reynolds. 

Natural Computation (Auckland, New Zealand). 
Springer, Heidelberg, Germany, 2015, 71–88. 

29. Sagar, M., Bullivant, D., Robertson, P., Efimov, O., 
Jawed, K., Kalarot, R., and Wu, T. A neuro-behavioural 
framework for autonomous animation of virtual 
human faces. In Proceedings of SIGGRAPH Asia 
Autonomous Virtual Humans and Social Robots for 
Telepresence (Shenzhen, China, Dec. 3–6). ACM Press, 
New York, 2014. 

30. Sagar, M. Facial performance capture and expressive 
translation for King Kong. In Proceedings of ACM 
SIGGRAPH 2006 Sketches (Boston, MA, July 30–Aug. 3). 
ACM, Press, New York, 2006, 26. 

31. Sagar, M. BabyX and the Auckland Face Simulator. In 
Proceedings of ACM SIGGRAPH Computer Animation 
Festival (Los Angeles, CA, Aug. 9–13). ACM Press, 
New York, 2015, 183–184. 

32. Scherer, K, Mortillaro, M., and Mehu, M. Understanding 
the mechanisms underlying the production of facial 
expression of emotion: A componential perspective. 
Emotion Review 5, 1 (2013), 47–53. 

33. Schröder, M. The SEMAINE API: Towards a 
standards-based framework for building emotion-
oriented systems. Advances in Human-Computer 
Interaction (2010). 

34. Sifakis, E., Neverov, I., and Fedkiw, R. Automatic 
determination of facial muscle activations from sparse 
motion-capture marker data. ACM Transactions on 
Graphics 24, 3 (July 2005), 417–425. 

35. Stone, R. and Hapkiewicz, W. The effect of realistic versus 
imaginary aggressive models on children’s interpersonal 
play. Child Development 42, 5 (1971), 1583–1585. 

36. Terzopoulos, D. et al. Artificial fishes with autonomous 
locomotion, perception, behavior, and learning in a 
physical world. In Proceedings of the Artificial Life IV 
Workshop, P. Maes and R. Brooks, Eds. (Cambridge, 
MA, July 6–8). MIT Press, Cambridge, MA, 1994. 

37. Terzopoulos, D. and Lee, Y. Behavioral animation 
of faces: Parallel, distributed, and real-time facial 
modeling and animation. In Proceedings of ACM 
SIGGRAPH (Los Angeles, CA, Aug. 8–12). ACM Press, 
New York, 2004, 119–128. 

38. Trappenberg, T. Fundamentals of Computational 
Neuroscience. Oxford University Press, New York, 2010. 

39. Vinciarelli, A. et al. Bridging the gap between social 
animal and unsocial machine: A survey of social signal 
processing. IEEE Transactions on Affective Computing 3, 1 
(2012), 69–87. 

40. Wu, T. A Computational Framework for Modeling the 
Biomechanics of Human Facial Expressions. Ph.D. 
thesis, The University of Auckland, Auckland, New 
Zealand, 2014. 

Mark Sagar (m.sagar@auckland.ac.nz) is an associate 
professor in the Auckland Bioengineering Institute and 
director of the Laboratory for Animate Technologies at the 
University of Auckland, Auckland, New Zealand, and CEO/
founder of Soul Machines Ltd., Auckland, New Zealand. 

Mike Seymour (mike.seymour@sydney.edu.au) is a 
lecturer in information systems at the University of 
Sydney, Sydney, Australia. 

Annette Henderson (a.henderson@auckland.ac.nz) 
is a developmental psychologist and senior lecturer in 
the School of Psychology at the University of Auckland, 
Auckland, New Zealand. 

BabyX and Auckland Face Simulator research and 
development contributors:  
David Bullivant (d.bullivant@auckland.ac.nz),  
Paul Corballis (p.corballis@auckland.ac.nz),  
Oleg Efimov (oefi712@auckland.ac.nz),  
Khurram Jawed (mjaw002@auckland.ac.nz),  
Ratheesh Kalarot (rkal018@auckland.ac.nz),  
Paul Robertson (prob014@auckland.ac.nz),  
Werner Ollewagen (woll627@auckland.ac.nz), and  
Tim Wu (twu051@auckland.ac.nz), all at the  
University of Auckland, Auckland, New Zealand. 

@ 2016 ACM 0001-0782/16/12 $15.00 

References 
1. Allbeck, J. and Badler, N. Consistant communiction 

with control. In Proceedings of the Workshop on 
Multimodal Communication and Context in Embodied 
Agents at the Autonomous Agents Conference (2001). 

2. Bates, J. The role of emotion in believable agents. 
Commun. ACM 37, 7 (July 1994), 122–125. 

3. Blumberg, B.M. Old Tricks, New Dogs: Ethology and 
Interactive Creatures. Ph.D. thesis, MIT, Cambridge, 
MA, 1996. 

4. Breazeal, C. Emotion and sociable humanoid robots. 
International Journal of Human-Computer Studies 59, 
1 (2003), 119–155. 

5. Brinkman, W.P., Broekens, J., and Heylen, D., Eds. 
Proceedings of the Intelligent Virtual Agents: 15th 
International Conference (Delft, The Netherlands, 
Aug. 26–28). Springer, 2015. 

6. Cangelosi, A., Schlesinger, M., and Smith, L.B. 
Developmental Robotics: From Babies to Robots. MIT 
Press, Cambridge, MA, 2015. 

7. Cassell, J. Embodied Conversational Agents. MIT 
Press, Cambridge, MA, 2015. 

8. Cattaneo, L. and Pavesi, G. The facial motor system. 
Neuroscience & Biobehavioral Reviews 38 (2014), 
135–159. 

9. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., 
Sarokin, W., and Sagar, M. Acquiring the reflectance 
field of a human face. In Proceedings of the 27th 
Annual Conference on Computer Graphics and 
Interactive Techniques (New Orleans, LA, July 23–28). 
ACM Press/Addison-Wesley Publishing Co., New York, 
2000, 145–156. 

10. Ekman, P. and Friesen, W.V. Facial Action Coding 
System: Investigator’s Guide Part I. Consulting 
Psychologist Press, Palo Alto, CA, 1978. 

11. Goertzel, B., Lian, R., Arel, I., De Garis, H., and Chen, 
S. A world survey of artificial brain projects. Part 
II: Biologically inspired cognitive architectures. 
Neurocomputing 74, 1 (2010), 30–49. 

12. Gopnick, A. Why digital-movie effects still can’t do a 
human face. The Wall Street Journal (Jan. 8, 2015). 

13. Gothard, K. The amygdalo-motor pathways and 
the control of facial expressions. Frontiers In 
Neuroscience 8 (2014). 

14. Heyes, C. Where do mirror neurons come from? 
Neuroscience & Biobehavioral Reviews 34, 4 (2010), 
575–583. 

15. Jimenez, J., Sunstedt, V., and Gutierrez, D. Screen-
space perceptual rendering of human skin. ACM 
Transactions on Applied Perception 6, 4 (2009), 23. 

16. Klehm, O. et al. Recent advances in facial appearance 
capture. Computer Graphics Forum 34, 2 (2015), 709–733. 

17. Knott, A. Sensorimotor Cognition and Natural 
Language Syntax. MIT Press, Cambridge, MA, 2012. 

18. Lee, M.H. Intrinsic activity: From motor babbling 
to play. In Proceedings of the IEEE International 
Conference on Development and Learning (Frankfurt 
am Main, Germany, Aug. 24–27). IEEE Press, 2011. 

19. MacDorman, K. and Entezari, S. Individual differences 
predict sensitivity to the uncanny valley. Interaction 
Studies 16, 2 (2015), 141–172. 

20. Maes, P. Artificial life meets entertainment: Lifelike 
autonomous agents. Commun. ACM 38, 11 (Nov. 
1995), 108–114. 

21. Marsella, S. and Gratch, J. Computationally modeling 
human emotion. Commun. ACM 57, 12 (Dec. 2014), 56–67. 

22. Mori, M., MacDorman, K.F., and Norri, K. ‘The uncanny 
valley.’ Robotics & Automation Magazine 19, 2 (2012), 
98–100. 

23. O’Reilly, R., Hazy, T., and Herd, S. The leabra cognitive 
architecture: How to play 20 principles with nature 
and win! In Oxford Handbook of Cognitive Science, S. 
Chipman, Ed., Oxford University Press, Oxford, U.K., 2012. 

24. Panksepp, J. Affective Neuroscience: The Foundations 
of Human and Animal Emotions. Oxford University 
Press, 1998. 

25. Parke, F. and Waters, K. Computer Facial Animation. 
CRC Press, 2008. 

26. Redgrave, P., Gurney, K., and Reynolds, J. What 
is reinforced by phasic dopamine signals? Brain 
Research Reviews 58, 2 (2008), 322–339. 

27. Rohlfling, K. and Deak, G. Microdynamics of 
interaction: Capturing and modeling infants’ social 
learning. IEEE Transactions on Autonomous Mental 
Development 5, 3 (Sept. 2013), 189–191. 

28. Sagar, M., Robertson, P., Bullivant, D., Efimov, O., 
Jawed, K., Kalarot, R., and Wu, T. BL: A visual 
computing framework for interactive neural system 
models of embodied cognition and face-to-face social 
learning. In Proceedings of the 14th International 
Conference on Unconventional Computation and 

Watch the authors discuss  
their work in this exclusive  
Communications video.  
http://cacm.acm.org/videos/
creating-connection-with-
autonomous-facial-animation

http://cacm.acm.org/videos/creating-connection-with-autonomous-facial-animation
http://cacm.acm.org/videos/creating-connection-with-autonomous-facial-animation
http://cacm.acm.org/videos/creating-connection-with-autonomous-facial-animation



