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SUMMARY
A complex system is often associated with emergence of new phenomena 
from the interactions between the system’s components. General anesthesia 
reduces brain complexity and so inhibits the emergence of consciousness. 
An understanding of complexity is necessary for the interpretation of brain 
monitoring algorithms. Complexity indices capture the “difficulty” of under-
standing brain activity over time and/or space. Complexity–entropy plots 
reveal the types of complexity indices and their balance of randomness and 
structure. Lempel–Ziv complexity is a common index of temporal complexity 
for single-channel electroencephalogram containing both power spectral and 
nonlinear effects, revealed by phase-randomized surrogate data. Computing 
spatial complexities involves forming a connectivity matrix and calculating the 
complexity of connectivity patterns. Spatiotemporal complexity can be esti-
mated in multiple ways including temporal or spatial concatenation, estima-
tion of state switching, or integrated information. This article illustrates the 
concept and application of various complexities by providing working exam-
ples; a website with interactive demonstrations has also been created.
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Brain Complexities and 
Anesthesia: Their Meaning 
and Measurement
Duan Li, Ph.D., Marco S. Fabus, M.Phys., Jamie W. Sleigh, M.D.

(Anesthesiology 2022; 137:290–302)

“There’s no love in a carbon atom, no hurricane in a 
water molecule, no financial collapse in a dollar bill.” 
— Peter Dodds

What Are Complex Systems?

We could add the phrase “. . . and no conscious-
ness in a neuron” to the quote above. Traditional 

reductionist science has achieved great explanatory success 
by constraining questions into tightly controlled experi-
ments. However, it has become clear that there are limits to 
reductionist explanations. In the real world, many natural 
phenomena appear only when there is collective behavior 
arising from interactions between the components within 
extended systems—known as complex systems. Typical 
examples are given in the introductory quote. The study 
of complex systems has a sporadic intellectual lineage that 
covers almost the whole breadth of science, but about 30 
to 40 yr ago, it became generally accepted as a legitimate 
research methodology that is complementary to the reduc-
tionist paradigm, as marked by a deluge of publications and 
a recent Nobel Prize in Physics awarded to Giorgio Parisi. 

Readers’ toolbox
Understanding Research Methods
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At present, there is no general theory of complex systems 
and therefore no unitary definition of complexity. An intu-
itive understanding of complexity would be of an index 
which captures some “difficulty” associated with the system, 
such as the difficulties of describing or creating the system 
and its organization. A complex system is marked by many 
disorderly interacting elements that produce unpredictable 
and adaptive dynamics and transitions, self-organization, 
signs of criticality, and all sorts of qualitatively different 
phenomena—so-called emergent properties. These are 
properties that cannot be observed or inferred by study-
ing the isolated individual components but that arise only 
when the components are interacting together in a system. 
Typically, emergent properties are very sensitive to the type 
and strength of the interactions between the components. 
Furthermore, a complex system can be described accurately 
with only a fraction of microscopic details that constitute it.

How does the study of complex systems influence the 
practice of anesthesiology? The whole body is a structured 
but adaptable system, made up of large numbers of interact-
ing components at many different scales. As a result, com-
plex system phenomena are seen in all aspects of physiology 
and pharmacology. In this toolbox, we focus on the brain and 
its electrophysiologic output: mainly spontaneous electroen-
cephalography (EEG) recordings but also magnetoencepha-
lography or evoked responses. The brain is a complex adaptive 
system that gives rise to all sorts of emergent phenomena, 
such as consciousness and memory. We assume that the meso-
scopic “state of the brain” is captured by the spatiotemporal 
patterns of its electrical field; that these are a manifestation of 
regional information flow in the brain; and that the syntax of 
information flow is required to generate the semantics that 
underlies consciousness. While in line with most proposed 
scientific theories of consciousness,1,2 we acknowledge that 
these assumptions ignore many things, perhaps most impor-
tantly the underlying chemical milieu. Furthermore, the EEG 

is only a spatially coarse measure of the underlying electrical 
field, and it remains to be seen to what extent it represents the 
true nature of its parallel brain state.

At first glance, it may seem unlikely that the function 
of such a complex system could be captured in a single 
number that quantifies its complexity. Nevertheless, over 
the last 20 years, a large body of literature has appeared 
that relates consciousness and brain complexity.3,4 This has 
been catalogued by Sarasso et al.,3 and we have summa-
rized a comprehensive list of almost all the publications 
pertaining to anesthesia in Supplemental Digital Content 
1 (http://links.lww.com/ALN/C868). The underly-
ing assumption is that consciousness can only emerge 
if the brain is able to access and coordinate a suitably 
large repertoire of states, so it is alluring to imagine that 
measures of complexity might reliably track anesthetic 
impairment of consciousness, and most of the studies in 
Supplemental Digital Content 1 (http://links.lww.com/
ALN/C868) are supportive of these ideas. However, this 
begs the (unanswered) question: “Exactly which index of 
brain complexity best captures the actual brain complexity 
that is specifically related to consciousness?” Many of the 
concepts presented in this review are somewhat abstract, 
so we will use the common analogy of an orchestra to 
try and make the arcane methodology more tangible. 
In essence, the emergence of the majesty and beauty of 
music from an orchestra is a metaphor for the emergence 
of consciousness from sufficiently complex brain dynam-
ics. The different sections of the orchestra correspond to 
the different brain regions, and the various melodies and 
harmonies correspond to the EEG signals from different 
channels. It is important to note that we do not need to 
claim that complexity is identical to consciousness, only 
that sufficient complexity is a necessary prerequisite for 
the emergence of consciousness. The issue of the defini-
tion of consciousness is beyond the purview of this paper; 
we use the word “consciousness” to imply a simple phe-
nomenologic sense of existence.

Types of Complexity Indices and Their 
Relationship to Entropies
As previously mentioned, complexity may be defined as 
the difficulty in describing a phenomenon. Because there 
is no single formal definition of complexity, many (gener-
alized and specialized) indices have been proposed, based 
on a particular aspect of the complex system that is difficult 
to describe or create. What it means to be complex may 
indeed vary depending on the system under consideration. 
We follow an intuitive taxonomy of complexities, proposed 
by Shiner et al.5 The system may be complex because it has 
a complicated intrinsic structure that is difficult to describe 
(type 3 complexities); because its basic design or output is 
relatively simple but has a lot of randomness that is difficult 
to describe (type 1 complexities); or because it has a mix-
ture of both (type 2 complexities).

Box 1. What to Look for in Research Using This 
Method

•	 Is the brain complexity measured in time and/or space? (Do 
the data consist of single-channel time series and/or multi-
channel connectivity?)

•	 Are type 1 or type 2 measures being used? 
•	 For time complexities, what is the electroencephalography 

(EEG) montage; choice of frequency band or time segment 
length; formation of symbol sequence (zero crossing, per-
mutations, choice of threshold); application of complexity or 
entropy algorithm; and role of normalization and surrogates?

•	 For spatial and temporospatial complexities, what is the EEG 
montage/choice of reference/Laplacian/source model; choice 
of frequency band; choice of interchannel coupling index; for-
mation of symbol sequence (choice of threshold, weighted); 
choice of subregions or whole brain; application of complexity 
algorithm; and role of normalization and surrogates?
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It is easy to specify a perfectly regular (predictable) sys-
tem, but it is more difficult to exactly specify the irregu-
lar output from a random system. In thermodynamics and 
statistical physics, the number of ways that small compo-
nents can be arranged to produce a certain large scale sys-
tem pattern, is its “entropy.” Via subsequent developments 
in information theory, many mathematical formulations of 
entropies have been developed that quantify the degree of 
irregularity, randomness, or predictability in a system. Thus, 
entropies are often used as type 1 complexity measures,5 
in which the complexity increases with increasing ran-
domness as shown by the complexity–entropy diagrams in  
figure 1 (A and B).6 To be majestic, music should not be too 
predictable.

The problem with the use of type 1 complexity mea-
sures is that maximum randomness does not necessarily 
correspond to emergence phenomena, because maximum 
randomness indicates that the system is in thermodynamic 
equilibrium,7 whereas one of the features of complex sys-
tems is that they are not in equilibrium. To address this, a 
number of indices have been proposed that have low values 
both when there is perfect regularity and also when there 
is unconstrained randomness but that peak somewhere in 
between these two extremes, when there is some intricate 
structure or pattern and some randomness. An example of 
this inverted U shape is seen in the complexity–entropy 
diagram of figure 1C. These are type 2 complexities. They 
are also called “statistical complexities”8 because while it 
is difficult to precisely describe the individual points in a 
completely random signal, it is often simple to describe the 
statistical distribution of a random output. Typically, they 
are calculated by multiplying the complexity term by its 
distance from equilibrium. They are intuitively appealing, 
as they are maximal around the point where the system is 
in a state that is neither too rigidly regular nor too unpre-
dictably random.7,9 This is related to a zone of “criticality” 
(explored in more detail later in the text) and is currently 
the subject of intense neurobiologic research. It is easy to 
imagine that a conscious brain exhibits a controlled flexible 
agility indicative of function somewhere around this sweet 
spot. Disturbances in consciousness—as seen in both anes-
thetic coma and grand mal seizures—might be manifest by 
decreases in type 2 complexity. An orchestra is most impres-
sive when the music is not perfectly predictable but also not 
completely random.

Type 3 complexities identify complexity with maximum 
order or structure.5 The (complex) wakeful cerebral cortex 
undergoes a plethora of states and changes dynamically. To 
respond to changing environmental demands, it ought not 
to be too rigid. Because of this, as well as the irregular struc-
ture of the brain, these complexities have not been widely 
investigated in anesthesia research yet (although our exam-
ple in fig. 2 suggests more work is needed in this regard).

As pertains to the brain and anesthesia, the best choice 
of complexity index is unclear but would be one that is 

maximal when consciousness is maximal. If we are using 
the temporal complexity from a single EEG channel to esti-
mate the size of the brain’s repertoire of states, then type 
1 indices (such as Lempel–Ziv complexity, permutation 
entropy, and approximate entropy) seem to work quite well, 
because consciousness often emerges when the EEG signal 
has high randomness, which typically displays a flat power 
spectrum. Anesthetic unresponsiveness is usually associated 
with increased alpha and delta EEG oscillations and so is 
marked by loss of the flat power spectrum. The commonly 
used indices of depth of anesthesia, such as the Bispectral 
Index and spectral entropy, have been heuristically derived 
but essentially incorporate and quantify the narrowing of 
the power spectrum caused by most hypnotic drugs. When 
compared in clinical data sets, the permutation entropy is 
usually closely correlated with the Bispectral Index, to the 
point that it can almost be used as an open-source surro-
gate. The choice of complexity index that can also naturally 
include the burst-suppression pattern during deep anes-
thesia is problematic. However, we note that approximate 
entropy appears to correctly classify even burst-suppression 
patterns at deep anesthetic doses,10 without the need of 
an additional burst-suppression algorithm, such as imple-
mented in the Bispectral Index. However, the situation 
is less clear in relation to hallucinogenic states, in which 
type 1 indices are typically greater than their nonhalluci-
natory wakeful values, and it is claimed that hallucinatory 
consciousness is greater than normal wakefulness.11–15 As an 
example, figure 1 shows how type 1 and 2 complexities are 
altered by isoflurane and ketamine in anesthetic and suban-
esthetic doses. It demonstrates that type 1 complexities fail 
to separate anesthetic ketamine from baseline wakefulness 
and in fact can show some very erroneous high values for 
anesthetic ketamine (see the two blue squares on the right-
hand sides of the plots), whereas the type 2 complexity cor-
rectly attributes low values to these points. Both type 1 and 
2 complexities correctly produce low values with isoflurane 
unconsciousness.

In contrast to analyzing irregularity in single EEG chan-
nels, if we are measuring spatial brain network connectivity 
to quantify the brain’s degree of organization, then type 
2 or 3 indices may be more appropriate. This is because 
the wakeful state is not marked by random connectivity 
but emerges when there is some connectivity structure and 
pattern.

The rest of this paper will give examples that highlight 
some technical details about approaches to the calculation of 
various complexity indices as they pertain to anesthesia and 
the brain. We hope that this will facilitate further research 
that is needed to establish whether these ways of looking 
at brain function and consciousness are useful in under-
standing mechanisms of anesthesia and correlates of con-
sciousness. To assist this, we have included in Supplemental 
Digital Content 2 (http://links.lww.com/ALN/C869) the 
MATLAB scripts used in these examples (figs. 1, 2, and 3)  
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and also provided an online repository for interactive 
demonstrations of various concepts and Python functions 
to calculate complexities.16

Temporal Complexity
Most studies have applied various complexity algorithms 
to a single-channel EEG time series and have success-
fully shown that anesthesia makes the EEG more simple/ 
predictable. This is analogous to listening to a melody from 
the symphony as played on a flute. It has not captured the 
whole grandeur of the music but often encapsulates the 
main themes. A series of methodologic choices are neces-
sary to produce the final index. These include EEG mon-
tage, choice of frequency band or time segment length, 
formation of symbol sequence (zero crossing, permutations, 
choice of threshold), application of complexity or entropy 
algorithm, role of normalization, and surrogates. Because 
it is popular, we will use the Lempel–Ziv algorithm to 
illustrate the technical aspects of estimation of temporal 
complexity. Subsequent sections will discuss spatial and 
combined spatiotemporal methods.

Lempel–Ziv Complexity

In essence, the Lempel–Ziv complexity algorithm quanti-
fies how compressible a sequence of symbols is. A complex 
signal is one that cannot be summarized easily. Lempel–Ziv 
complexity is the basis of .zip file compression, is an estima-
tor of entropy rate and hence is a type 1 complexity. Figure 3 
depicts the details of the analytic process to derive the 
Lempel–Ziv complexity for a simple signal (such as the delta 
oscillation of deep anesthesia; fig. 3A) and a complex signal 
(such as might be seen in the awake brain; fig. 3B). First, the 
EEG is thresholded to produce a binary sequence of ones 
and zeroes, or it can be extended to a sequence of a small 

number of symbols.17 Like Morse code, these sequences can 
be viewed as “words” (fig. 3, C and D) or musical phrases. 
The algorithm then counts the number of new words by 
assessing the nonreproducibility from the previous history 
(fig. 3, E and F).18 We see that a regular or simple signal has 
only four types of words, whereas the complex or irregular 
signal has a larger diversity of eight sequences or words and 
hence a higher Lempel–Ziv complexity. The music is more 
interesting with a variety of phrases.

Effect of Signal Properties

What does the Lempel–Ziv complexity mean biolog-
ically? In this section, we outline what signal properties 
drive changes in Lempel–Ziv complexity and what this 
may mean in the context of anesthesia.19,20 We have sum-
marized a list of relevant publications in Supplemental 
Digital Content 3 (http://links.lww.com/ALN/C870). In 
brief, some of the key factors are signal frequency, signal-
to-noise ratio, noise bandwidth, and waveform shape. As 
signal frequency increases, Lempel–Ziv complexity also 
increases (fig. 4A). This is because higher frequencies have 
more zero crossings and a larger dictionary. For similar rea-
sons, as the noise level increases for a constant amplitude 
signal, Lempel–Ziv complexity also increases (fig.  4B). 
Noise bandwidth and “color” (frequency content) are also 
important. Finally, if the signal becomes more nonsinusoi-
dal, Lempel–Ziv complexity is not affected, because zero 
crossings (and hence zeroes and ones) remain the same 
(fig. 4C). Thus, Lempel–Ziv complexity of the EEG is high 
in wakefulness and when there is lots of frontalis muscle 
tone. It is important to recognize that other complexity 
metrics (such as permutation entropy, shown in fig. 4) may 
be altered by signal properties in quite different ways. More 
exploration of signal properties affecting complexity can 
be found in the interactive notebook.16

Fig. 1.  Complexity–entropy diagrams showing the patterns seen with ketamine and propofol for different complexity measures. The hor-
izontal axes have been chosen as typical measures of randomness (mean information gain,6 itself a sort of type 1 complexity metric). The 
vertical axes show different complexity measures: permutation entropy (A), Lempel–Ziv complexity (B), and fluctuation complexity (C).6 Type 
1 complexity measures (A, B) have a monotonic relationship with randomness and more overlap between wakefulness and ketamine than 
the type 2 complexity measure (C).
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Role of Surrogates

During anesthesia, EEG is dominated by slow waves, which 
are lower in frequency than those during wakefulness. These 
slow waves produce “long words,” causing the Lempel–Ziv 

complexity to decrease. Additionally, the underlying broad-
band, background EEG signal also changes structure and 
moves to lower frequencies resulting in a more nega-
tive spectral “slope” (exponent), which also decreases the 

Fig. 2.  Illustration of the process of estimating the spatial complexity based on the functional connectivity matrices. (A) Electroencephalogram 
(EEG) signals from electrodes F3 (blue) and P3 (red) after surface Laplacian transformation. (B) Band-limited signals in the alpha frequency 
band. (C) Corresponding envelope time series. (D) Amplitude envelope correlation was obtained by computing the Pearson correlation between 
the envelope time series. It is worth noting that amplitude envelope correlation is sensitive to volume conduction and may require a correction 
such as orthogonalizing the data before the application.33 (E, F) Instantaneous phase (E) from the band-limited signals in (B), and their differ-
ence in (F), in which the horizontal gray line indicates 0 phase difference. (G) Imaginary part of the cross-spectrum of the band-limited signals 
in (B), and the horizontal gray line indicates 0. (H) Weighted phase-lag index is calculated from the phase difference of the two signals shown 
in (F) but weighted by the magnitude of the imaginary component of the cross-spectrum in (G) to mitigate the effect of volume conduction. 
(I) Connectivity matrices of amplitude envelope correlation during baseline and isoflurane anesthesia. (J) Singular values of the amplitude 
envelope correlation matrices, the maximum singular values, and the diversity of the singular values during baseline and isoflurane anesthe-
sia. (K) Probability of the off-diagonal values of amplitude envelope correlation matrices and the functional complexity values during baseline 
(blue) and isoflurane anesthesia (red). The horizontal black line represents uniform distribution, while the functional complexity measure was 
defined based on the difference between the observed distribution and the uniform distribution. (L to N) Corresponding weighted phase-lag 
index connectivity matrices (L), the singular values (M), and the probability of the off-diagonal values of weighted phase-lag index matrices 
(N) during baseline and isoflurane anesthesia.
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complexity.21 These effects suggest that Lempel–Ziv com-
plexity is, at least in part, simply driven by anesthetic effects 
on the frequency content of the power spectrum. However, 
a strength of complexity metrics is that they could also 
capture nonlinear features of the signal, such multiplicative 
interaction effects, or stochastic variability. If our primary 
research question is whether “complexity” is offering infor-
mation above and beyond those derived from the simple 
power spectrum, we can normalize it by complexity that 
has been computed for surrogate signals.22

Phase randomized surrogates are the most common tool 
for this process.23 Here, Fourier phases of the data are shuf-
fled while amplitudes are kept the same. This preserves the 
power spectrum but destroys nonlinear features of the signal. 
It is like keeping the famous four notes from Beethoven’s 
fifth symphony (duh-duh-duh-daaaa) but rearranging 
their order (duh-daaaa-duh-duh). The notes (frequency 
power) are the same, but the drama of the music has disap-
peared with the rearrangement. As this is a Fourier-based 
method, it assumes the signal is stationary. This means that 
to work properly, phase shuffling must be done on short 
enough time segments to be considered quasistationary (i.e., 
unchanging average frequency and variance, typically 2 to 
10 s). After creating surrogates (typically a few dozen to a 
few hundred), Lempel–Ziv complexity is applied on each 
one, and the original value for the signal is normalized by 
the mean of the surrogate complexities. In practice, results 
after normalization usually show lower but often still signif-
icant changes as anesthesia is induced.24,25 This suggests that 
the complexity decrease seen in anesthesia is a combination 
of both power spectrum changes and nonlinear effects.

However, both power spectrum and nonlinear changes in 
the EEG may be important, and researchers should have clear 
hypotheses before applying complexity metrics. For instance, 
it is possible that slow waves may have a causal role in dis-
rupting information flow in the brain.26,27 If true at least in 
part, this would mean the frequency decrease is key to under-
standing loss of consciousness and complexity, and removing 
spectral effects by surrogate normalization may not be appro-
priate. On the other hand, if researchers want to explore spe-
cific effects that are not captured by the power spectrum or 
simply want to understand what is driving their complexity 
changes, phase randomization is a suitable method.

Spatial Complexity
Spatial complexity is the complexity of the functional 
connectivity between brain regions. It is analogous to 
capturing the harmony between the different sections of 
the orchestra. Its calculation initially involves a number 
of steps to construct a suitable connectivity network, fol-
lowed by the estimation of the complexity of the resul-
tant spatial patterns of connections. The changes with 
anesthesia are more subtle than those seen with temporal 
complexities but no less important. Imagine an orches-
tra where the cellos start playing a symphony different 
from that being played on the woodwinds. Clearly, suc-
cessful music requires the coordination and correct timing 
from all sections of the orchestra. Brain connectivity is 
essentially measuring whether widespread brain regions 
are playing small phrases in time and in harmony with 
each other. Network (or graph theory) measures of brain 

Fig. 3.  Illustration of the process of obtaining the Lempel–Ziv complexity of electroencephalogram-like signals. (A, B) Digitized raw wave-
forms from a regular sinewave signal like that seen in slow wave anesthesia (A) and an irregular signal like that seen in wakefulness (B). (C, 
D) Each point is then binarized as 1 or 0 by whether it is above or below the threshold. (E, F) The number of unique combinations of these 
binary sequences (“words” separated by dots) are counted.
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connectivity28 are often used to indirectly summarize spa-
tial complexity, and we refer readers to a review of net-
work science in the study of anesthetic state transitions.29 
For a more classical illustration of spatial complexity, we 
work through the calculation of spatial complexity for an 
awake EEG and an anesthetized EEG, comparing the two 
different connectivity metrics (fig. 2).

Problem of Volume Conduction

EEG signals arise from many sources in the brain that can 
generate electrical fields large enough to be recorded instan-
taneously by more than one scalp EEG electrode. This is 
called volume conduction and is a potential confound that 
can lead to spuriously high results for 0 or π phase-lag con-
nectivity.30 If we visualize the EEG channels as microphones 
recording the symphony, clearly a single microphone in front 
of the violins will also get some music from the violas. The 
strategies to mitigate this problem include the application 
of a spatial filter (such as surface Laplacian transformation 
or source localization) before connectivity analysis and the 
employment of various connectivity measures that are insen-
sitive to instantaneous correlation.31 The latter assumes that 
there is no true biologic cause of apparent zero-lag connec-
tivity arising from a common source, such as thalamic oscil-
lations that are induced by many common anesthetic drugs.

First Stage: Derivation of Functional Connectivity 
Matrices

There are many methods to estimate the functional con-
nectivity in the brain, and we refer the readers to a review 
on the metrics and their interpretational issues.32 They 
quantify a small section of common activity between two 
electrodes and may be broadly divided into amplitude- and 

phase-based measures, which provide different insights 
about the altered states of consciousness induced by gen-
eral anesthesia.33 Phase-based measures determine whether 
individual musical notes are correctly synchronized 
between the flutes and the brass, whereas amplitude-based 
measures detect whether the flutes are increasing their 
loudness at the same time as the brass is increasing theirs. 
Figure 2 shows the construction of the functional connec-
tivity network. We compare two main types of connectivity 
metrics: (1) an amplitude-based measure (amplitude–enve-
lope correlation)34 and (2) a phase-based measure (weighted 
phase-lag index)30 from the EEG signals after applying sur-
face Laplacian transformation. First, a band-pass filter was 
applied to extract the signals of 8 to 13 Hz in the alpha (α) 
frequency band (e.g., two electrodes F3 and P3; fig.  2, A 
and B). The amplitude–envelope correlation was obtained 
by computing the Pearson correlation between the enve-
lope time series derived from the magnitude of the Hilbert 
transform of the band-limited signals (fig.  2, C and D). 
The weighted phase-lag index measures the synchroniza-
tion between the instantaneous phase signals (fig.  2E). It 
is dependent on the phase difference of the two signals 
(fig. 2F) but weighted by the magnitude of the imaginary 
component of the cross-spectrum (fig.  2G), which is 0 
when the phase difference is 0 or π (fig.  2H). With the 
functional connectivity estimated for every pair of signals, 
figure 2 (I and L) shows the resultant connectivity matrices 
between each pair of electrodes, for amplitude–envelope 
correlation and weighted phase-lag index, during baseline 
and isoflurane anesthesia. It can be seen that the synchro-
nized activity between anterior and posterior regions and 
within posterior regions during baseline were reduced in 
anesthesia. This is signified by most of the green, yellow, and 
red squares becoming blue.

Fig. 4.  Differences in how signal properties affect two commonly used complexity measures: permutation entropy (red) and Lempel–Ziv 
complexity (blue). (A) Increasing signal frequency. (B) Increasing noise level (decreasing signal-to-noise ratio). (C) Increasing number of har-
monics (i.e., more nonsinusoidality). The bottom panels are examples of the raw input signal.
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Second Stage: Complexity Estimation

In this example, we first apply the technique of singular 
value decomposition to capture how the complexity of 
the brain’s functional connectivity changes with anesthe-
sia. Singular value decomposition is one way of summa-
rizing how easy it is to condense the connectivity pattern. 
It is equivalent to seeing whether an acceptable symphony 
could be performed if the orchestra was reduced in size to 
include just the stringed instruments and no others. When 
this method is applied to EEG connectivity matrices (fig. 2, 
I and L), the singular values for the amplitude–envelope 
correlation and weighted phase-lag index methods are 
shown in figure 2 (J and M). General anesthesia causes a 
decrease in both the largest singular value (28.3% in the 
amplitude–envelope correlation and 51.4% in the weighted 
phase-lag index) and also in the diversity of all the singular 
values (38.3% in the amplitude–envelope correlation and 
69.5% in the weighted phase-lag index). A limitation of 
such measures is that they reflect a global synchronization 
level; they have maximum values when all the time series 
are completely synchronized (i.e., a rigidly regular state), and 
minimum values when all the time series are completely 

independent (i.e., an unpredictably random state); this is an 
example of a type 3 complexity index.5

As previously mentioned, a type 2 complexity index 
would have a maximum value between the two extrema 
states; that might more closely reflect the conscious brain’s 
proximity to a state of criticality. A recently proposed met-
ric, functional complexity35 assesses the distance between 
the probability distribution of the connectivity values of all 
the channel pairs (i.e., off-diagonal values in the connectiv-
ity matrix) and a uniform distribution. In the two extremal 
states, when all the time series are completely synchronized 
(or independent), the connectivity values will be dominated 
by these high (or low) values, thus corresponding to a nar-
row distribution and a low complexity; while in an inter-
mediate state, the connectivity values will be more variable 
among different pairs of channels and thus correspond to a 
wider distribution and high complexity. Using this method 
on EEG connectivity matrices (fig. 2, I and L), figure 2 (K 
and N) shows the distribution of the connectivity values 
during baseline and isoflurane anesthesia. Again, general 
anesthesia induced 41.1 and 52.4% decreases, respectively, 
for both connectivity metrics.

Fig. 5.  Diagram of the main classes of spatiotemporal complexity methods. (A) Multivariate electroencephalogram, an example of spatio-
temporal data. (B) Concatenation-based measures. Multivariate data are transformed into one dimension by joining channel time courses 
(“Temporo-spatial”) or spatial channel values (“Spatio-temporal”; size of dot represents amplitude). A usual one-dimensional complexity 
metric (e.g., Lempel–Ziv complexity) is then applied. (C) Metastable states measures. The brain switches between discrete states, here an 
aperiodic frontal state (blue) and an oscillatory posterior state (red). One-dimensional complexity metrics can be evaluated on the temporal 
state sequence. (D) Integrated information measures. Mutual information between partitions (blue, red, or green) of channels is calculated. 
Complexity (Φ) is the effective information of the minimum information partition.
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Spatiotemporal Complexity
The brain needs to process information in both space and 
time because brain regions are functionally segregated, and 
the brain’s computational goals change over time. Thus, it 
seems natural that, to truly quantify how complex the brain’s 
activity is, we need to consider both the spatial dimension 
and the temporal dimension, using multichannel EEG 
(fig. 5A). Many approaches to combine spatial and tempo-
ral information to produce spatiotemporal complexity have 
been proposed, but none has proven to be definitive, as yet. 
Most of the methods can be classified as either concate-
nation, state switching, or information integration methods.

Concatenation

The simplest way to include information across spatial 
channels is to join the data together to make a long one- 
dimensional vector and apply the usual single-channel com-
plexity metrics. This can be done either by concatenating 
channels across time points (fig. 5B, “temporospatial”)36 or by 
concatenating time points across channels (fig. 5B, “spatio-
temporal”)13,14,24,25 and applying metrics such as Lempel–Ziv 
complexity.13,24,25 The analogy for this would be the violins 
playing the whole symphony, followed by the woodwinds 
playing the whole symphony, followed by the brass playing 
the whole symphony and then calculating the average com-
plexity of all three symphonic renditions. In theory, concate-
nation across time is independent from concatenation across 
space. However, in practice, these measures are highly cor-
related.37 Complexity metrics can be applied on spontaneous 
or evoked EEG data.38 As an example, the perturbation com-
plexity index works by applying Lempel–Ziv complexity on 
a concatenated binarized signal after a pulse of transcranial 
magnetic stimulation.37,39 The index discriminates uncon-
sciousness well, even when applied to widely varying eti-
ologies like sleep, anesthesia, and brain injury. However, it 
is clinically impractical, because it requires transcranial mag-
netic stimulation, high-density EEG, and source modeling. 
Although concatenated measures decrease with anesthesia, 
they have several limitations. First, they turn adjacent spatial 
correlations into slow temporal correlations (or vice versa), 
which is very different from identifying true spatial rela-
tionships. Second, all limitations relating to one-dimensional 
metrics still apply. Unless a type 2 complexity is used, we 
equate highest complexity with pure randomness.

State Switching

Brain activity can be considered as switching between dis-
tinct spatial states (fig. 5C).40 These states are assumed to be 
metastable, so the brain switches between them irregularly.41 
Hence, another way to capture spatiotemporal complexity 
is to look at complexity of the states and their switching 
dynamics. The musical analogy would be that of identifying 
symphonic motifs and their development. These states have 

been identified using k-means clustering,42,43 hidden Markov 
models,11 or dimensionality reduction techniques.26,36,44,45 
Once we have identified the states, complexity can be cal-
culated on the temporal transitions vector,42 the size of spa-
tial patterns,43 or simply the number of states we need to 
effectively represent the data.36 Alternatively, each state can 
also be defined as a set of binarized active/ inactive states 
(a “coalition”), in which active states are either those above 
a threshold (amplitude–coalition entropy)13,24 or those 
synchronous in phase (synchrony coalition entropy13,24 or 
connection entropy46). The complexity is then quantified 
as the entropy (temporal diversity) of these coalitions. As 
another example, a variant of the perturbation complexity 
index, based on state transitions, was recently proposed.44,45 
This applies principal component analysis on an evoked 
potential average, quantifies state transitions in the temporal 
recurrence matrix, and computes complexity as the sum 
of number of state transitions across principal components. 
This can be thought of as: spatial × temporal complexity; 
i.e., capturing spatial and temporal information without 
having to reduce data to one dimension.

Integrated Information and Related Measures

Integrated information theory has received some atten-
tion as a candidate theory of consciousness. It proposes to 
equate conscious level with Φ, the effective information of 
the minimum information partition of a system (fig. 5D).2 
Motivated by theoretical arguments, researchers have tried 
to operationalize complexity as integrated information.47–50 
Many attempts compute metrics based on mutual informa-
tion on subsets of data channels.47,51 This is problematic as 
mutual information is notoriously hard to calculate on con-
tinuous data without imposing restrictive assumptions on 
the signal, such as assuming it to be Gaussian.52 More recent 
attempts have used modified Φ metrics with fewer assump-
tions; e.g. based on autoregressive models.49 However, these 
have their own issues, such as having possibly negative val-
ues and having high values in bursts during burst suppres-
sion, a state of deep unconsciousness. All Φ-related metrics 
are also computationally very expensive as ideally all parti-
tions should be examined.

Criticality, Scale-free Behavior, and Other Methods

We have concentrated on the complexity of temporal 
and/or large-scale spatial patterns, but the complexity of 
the interactions between different spatiotemporal scales is 
an important component of brain function. This is man-
ifest in “power laws,” which may be measured in various 
ways including bilogarithmic plots of EEG power spec-
tra (also referred to as 1/f noise, pink noise, or aperiodic 
activity),22 detrended fluctuation analysis,53 or neural ava-
lanche sizes.54 It demonstrates scale-free behavior, mean-
ing that structure in the brain exists on multiple scales 
with no central tendency. A specific mechanism leading 
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to such power law behavior is self-organized criticality, 
where the critical point is stable and reestablished if the 
system is perturbed. This may be a plausible mechanism 
for how complexity arises in the brain, not just what it 
is.55,56 A related analysis is to look at eigendecomposition 
of autoregressive models, which show critical behavior 
near unity eigenvalues.54,57

Changes to criticality and scale-free parameters have been 
observed in anesthesia.21,43,53,54,57–59 A limitation so far has been 
the difficulty of interpreting criticality metrics. The language 
of criticality needs to be linked to a wider understanding of 
functional connectivity, brain organization, and other mea-
sures of complexity. Critical systems show a close correlation 
between functional and structural networks, as indexed by 
pair correlation function.48,60 A large value of pair correlation 
function means that phase configurations are highly variable 
over time, and as such, the system can also be considered 
metastable.61 Furthermore, being near the critical state may 
be what allows the brain to have a large amount of integrated 
information in the system.48 With all the above in mind, a full 
review of criticality and its relationship to brain complexity 
is outside the scope of this toolbox, although there is a need 
for further synthesis of research in this area.

Another alternative metric with a radically different 
approach is the emerging field of topologic data analy-
sis,62 which is based on the intuition that the shape of 
data and its basic topologic features (e.g., number of 
holes) are important. It is robust to noise and deforma-
tions, and a recent study showed differences in topologic 
properties after application of ketamine and propofol.63 
Spatiotemporal information is naturally considered as 
each channel represents a dimension and each time sample 
a point in a high-dimensional embedding space. The com-
plexity is then related to the number of cycles (holes) in 
this space and their properties. However, more work needs 
to be done to make such abstract results interpretable in 
terms of brain activity and connectivity.

Conclusions and Recommendations
There are many different ways to extract temporal and/or 
spatial information into complexity metrics. Most show a 
good separation between conscious and anesthetized states, 

but none has yet emerged as definitive. When evaluating 
the relevance of a publication or designing an experiment, 
it should be specified which emergence phenomenon is of 
interest and what its important temporospatial scales are. 
Conscious perception seems to emerge over the 100-ms 
to 2-s time scale, working memory over a longer scale. 
There should also be some hypothesis or indication about 
whether the emergent phenomenon arises from conditions 
of maximum randomness (use type 1 complexity measures) 
or whether it arises from conditions with some structure 
or criticality (use type 2 or 3 complexity measures). The 
reader or experimentalist must acknowledge that there are 
numerous technical details that have a big influence on 
the results (see box 1). As such, presentation of more than 
one metric of complexity might give an indication of the 
robustness of the conclusions. It is necessary to understand 
how the index is affected by various patterns of noise and 
artifacts, the issue of volume conduction, how to gener-
ate surrogate data, and whether they are pertinent to the 
research question. Anesthesia profoundly disturbs cerebral 
neurodynamics at many levels. The concept of complexity 
has the appeal of succinctly capturing the crucial abstract 
properties of the brain that drives transitions between 
altered states of consciousness. There is greatness in the 
symphony of the conscious brain, but the art of how its 
complexities are distorted and disturbed by anesthesia is 
still an open question.
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•	 Our github worked examples/simulations (https://gitlab.com/

marcoFabus/complexity_toolbox)
•	 Lee U, Mashour GA: Role of network science in the study of anes-

thetic state transitions. Anesthesiology 2018; 129:1029–44
•	 Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, 

Massimini M: Consciousness and complexity: A consilience of 
evidence. Neurosci Conscious 2021; 7:1–247

•	 Scholarpedia

Copyright © 2022, the American Society of Anesthesiologists. All Rights Reserved. Unauthorized reproduction of this article is prohibited.

D
ow

nloaded from
 http://pubs.asahq.org/anesthesiology/article-pdf/137/3/290/674485/20220900.0-00010.pdf by M

ercedes R
eyes on 18 N

ovem
ber 2022

https://gitlab.com/marcoFabus/complexity_toolbox
https://gitlab.com/marcoFabus/complexity_toolbox


300	 Anesthesiology 2022; 137:290–302	 Li et al.

READERS’ TOOLBOX

Correspondence
Address correspondence to Dr. Sleigh: Waikato Clinical 
Campus, University of Auckland, Hamilton 3240, 
New Zealand. jamie.sleigh@waikatodhb.health.nz. 
Anesthesiology’s articles are made freely accessible to all 
readers on www.anesthesiology.org, for personal use only, 6 
months from the cover date of the issue.

Supplemental Digital Content
Summarized Published Papers on Brain Complexity and 
Anesthesia, http://links.lww.com/ALN/C868
Matlab Functions Used in the Calculation of Complexity 
in the Figures, http://links.lww.com/ALN/C869
Interactive Website on How Signal Properties Affect 
Complexity Metrics, http://links.lww.com/ALN/C870

References

	 1.	 Baars BJ: Global workspace theory of consciousness: 
Toward a cognitive neuroscience of human experience. 
Prog Brain Res 2005; 150:45–53

	 2.	 Tononi G, Edelman GM: Consciousness and complex-
ity. Science 1998; 282:1846–51

	 3.	 Sarasso S, Casali AG, Casarotto S, Rosanova M, 
Sinigaglia C, Massimini M: Consciousness and com-
plexity: A consilience of evidence. Neurosci Conscious 
2021; 7:1–247

	 4.	 Arsiwalla XD, Verschure P: Measuring the complexity 
of consciousness. Front Neurosci 2018; 12:424

	 5.	 Shiner JS, Davison M, Landsberg PT: Simple measure 
for complexity. Phys Rev E 1999; 59:1459–64

	 6.	 Wang J, Noh GJ, Choi BM, Ku SW, Joo P, Jung WS, 
Kim S, Lee H: Suppressed neural complexity during 
ketamine- and propofol-induced unconsciousness. 
Neurosci Lett 2017; 653:320–5

	 7.	 Feldman DP, McTague CS, Crutchfield JP: The organi-
zation of intrinsic computation: Complexity–entropy 
diagrams and the diversity of natural information pro-
cessing. Chaos 2008; 18:043106

	 8.	 Feldman DP, Crutchfield JP: Measures of statistical 
complexity: Why? Phys Lett A 1998; 238:244–52

	 9.	 Efatmaneshnik M, Ryan MJ: A general framework 
for measuring system complexity. Complexity 2016; 
21:533–46

	10.	 Bruhn J, Röpcke H, Rehberg B, Bouillon T, Hoeft A: 
Electroencephalogram approximate entropy correctly 
classifies the occurrence of burst suppression pattern 
as increasing anesthetic drug effect. Anesthesiology 
2000; 93:981–5

	11.	 Li D, Mashour GA: Cortical dynamics during psy-
chedelic and anesthetized states induced by ketamine. 
Neuroimage 2019; 196:32–40

	12.	 Timmermann C, Roseman L, Schartner M, Milliere 
R, Williams LTJ, Erritzoe D, Muthukumaraswamy 

S, Ashton M, Bendrioua A, Kaur O, Turton S, Nour 
MM, Day CM, Leech R, Nutt DJ, Carhart-Harris RL: 
Neural correlates of the DMT experience assessed 
with multivariate EEG. Sci Rep 2019; 9:16324

	13.	 Schartner MM, Carhart-Harris RL, Barrett AB, Seth 
AK, Muthukumaraswamy SD: Increased spontaneous 
MEG signal diversity for psychoactive doses of ket-
amine, LSD and psilocybin. Sci Rep 2017; 7:46421

	14.	 Farnes N, Juel BE, Nilsen AS, Romundstad LG, Storm 
JF: Increased signal diversity/complexity of sponta-
neous EEG, but not evoked EEG responses, in ket-
amine-induced psychedelic state in humans. PLoS 
One 2020; 15:e0242056

	15.	 Carhart-Harris RL: The entropic brain: Revisited. 
Neuropharmacology 2018; 142:167–78

	16.	 Fabus MS: Complexity toolbox, 2021. Available at: 
https://gitlab.com/marcoFabus/complexity_toolbox. 
Accessed June 29, 2022.

	17.	 Bai Y, Liang Z, Li X, Voss LJ, Sleigh JW: Permutation 
Lempel–Ziv complexity measure of electroencephalo-
gram in GABAergic anaesthetics. Physiol Meas 2015; 
36:2483–501

	18.	 Lempel A, Ziv J: On the complexity of finite sequences. 
IEEE Trans Inf Theory 1976; 22:75–81

	19.	 Aboy M, Hornero R, Abásolo D, Alvarez D: 
Interpretation of the Lempel–Ziv complexity measure 
in the context of biomedical signal analysis. IEEE Trans 
Biomed Eng 2006; 53:2282–8

	20.	 Hu J, Gao J, Principe JC: Analysis of biomedical sig-
nals by the Lempel–Ziv complexity: The effect of finite 
data size. IEEE Trans Biomed Eng 2006; 53:2606–9

	21.	 Colombo MA, Napolitani M, Boly M, Gosseries O, 
Casarotto S, Rosanova M, Brichant JF, Boveroux P, Rex S, 
Laureys S, Massimini M, Chieregato A, Sarasso S: The spec-
tral exponent of the resting EEG indexes the presence of 
consciousness during unresponsiveness induced by propo-
fol, xenon, and ketamine. Neuroimage 2019; 189:631–44

	22.	 Päeske L, Bachmann M, Põld T, de Oliveira SPM, Lass 
J, Raik J, Hinrikus H: Surrogate data method requires 
end-matched segmentation of electroencephalo-
graphic signals to estimate non-linearity. Front Physiol 
2018; 9:1350

	23.	 Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer 
JD: Testing for nonlinearity in time series: The method 
of surrogate data. Physica D 1992; 58:77–94

	24.	 Schartner M, Seth A, Noirhomme Q, Boly M, Bruno 
MA, Laureys S, Barrett A: Complexity of multi-di-
mensional spontaneous EEG decreases during propo-
fol induced general anaesthesia. PLoS One 2015; 
10:e0133532

	25.	 Puglia MP, Li D, Leis AM, Jewell ES, Kaplan CM, 
Therrian M, Kim M, Lee U, Mashour GA, Vlisides PE: 
Neurophysiologic complexity in children increases 
with developmental age and is reduced by general 
anesthesia. Anesthesiology 2021; 135:813–28

Copyright © 2022, the American Society of Anesthesiologists. All Rights Reserved. Unauthorized reproduction of this article is prohibited.

D
ow

nloaded from
 http://pubs.asahq.org/anesthesiology/article-pdf/137/3/290/674485/20220900.0-00010.pdf by M

ercedes R
eyes on 18 N

ovem
ber 2022

mailto:jamie.sleigh@waikatodhb.health.nz
www.anesthesiology.org
http://links.lww.com/ALN/C868
http://links.lww.com/ALN/C869
http://links.lww.com/ALN/C870
https://gitlab.com/marcoFabus/complexity_toolbox


	 Anesthesiology 2022; 137:290–302	 301

Brain Complexities and Anesthesia

Li et al.

	26.	 Dasilva M, Camassa A, Navarro-Guzman A, Pazienti 
A, Perez-Mendez L, Zamora-López G, Mattia M, 
Sanchez-Vives MV: Modulation of cortical slow 
oscillations and complexity across anesthesia levels. 
Neuroimage 2021; 224:117415

	27.	 Chamadia S, Pedemonte JC, Hahm EY, Mekonnen J, 
Ibala R, Gitlin J, Ethridge BR, Qu J, Vazquez R, Rhee 
J, Liao ET, Brown EN, Akeju O: Delta oscillations 
phase limit neural activity during sevoflurane anesthe-
sia. Commun Biol 2019; 2:415

	28.	 Rubinov M, Sporns O: Complex network mea-
sures of brain connectivity: Uses and interpretations. 
Neuroimage 2010; 52:1059–69

	29.	 Lee U, Mashour GA: Role of network science in the 
study of anesthetic state transitions. Anesthesiology 
2018; 129:1029–44

	30.	 Vinck M, Oostenveld R, van Wingerden M, Battaglia 
F, Pennartz CM: An improved index of phase-synchro-
nization for electrophysiological data in the presence 
of volume-conduction, noise and sample-size bias. 
Neuroimage 2011; 55:1548–65

	31.	 Cohen MX: Analyzing neural time series data: Theory 
and practice, Cambridge, MA, MIT Press, 2014

	32.	 Bastos AM, Schoffelen JM: A tutorial review of func-
tional connectivity analysis methods and their inter-
pretational pitfalls. Front Syst Neurosci 2015; 9:175

	33.	 Duclos C, Maschke C, Mahdid Y, Berkun K, Castanheira 
JDS, Tarnal V, Picton P, Vanini G, Golmirzaie G, Janke 
E, Avidan MS, Kelz MB, Liuzzi L, Brookes MJ, 
Mashour GA, Blain-Moraes S: Differential classifica-
tion of states of consciousness using envelope- and 
phase-based functional connectivity. Neuroimage 
2021; 237:118171

	34.	 Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel 
AK: Large-scale cortical correlation structure of 
spontaneous oscillatory activity. Nat Neurosci 2012; 
15:884–90

	35.	 Zamora-López G, Chen Y, Deco G, Kringelbach ML, 
Zhou C: Functional complexity emerging from ana-
tomical constraints in the brain: The significance of 
network modularity and rich-clubs. Sci Rep 2016; 
6:38424

	36.	 Wenzel M, Han S, Smith EH, Hoel E, Greger B, House 
PA, Yuste R: Reduced repertoire of cortical microstates 
and neuronal ensembles in medically induced loss of 
consciousness. Cell Syst 2019; 8:467–74.e4

	37.	 Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso 
S, Casali KR, Casarotto S, Bruno MA, Laureys S, 
Tononi G, Massimini M: A theoretically based index of 
consciousness independent of sensory processing and 
behavior. Sci Transl Med 2013; 5:198ra105

	38.	 Ferrarelli F, Massimini M, Sarasso S, Casali A, 
Riedner BA, Angelini G, Tononi G, Pearce RA: 
Breakdown in cortical effective connectivity during 

midazolam-induced loss of consciousness. Proc Natl 
Acad Sci U S A 2010; 107:2681–6

	39.	 Sarasso S, Boly M, Napolitani M, Gosseries O, 
Charland-Verville V, Casarotto S, Rosanova M, Casali 
AG, Brichant JF, Boveroux P, Rex S, Tononi G, Laureys 
S, Massimini M: Consciousness and complexity during 
unresponsiveness induced by propofol, xenon, and ket-
amine. Curr Biol 2015; 25:3099–105

	40.	 Vidaurre D, Quinn AJ, Baker AP, Dupret D, Tejero-
Cantero A, Woolrich MW: Spectrally resolved fast 
transient brain states in electrophysiological data. 
Neuroimage 2016; 126:81–95

	41.	 Roberts JA, Gollo LL, Abeysuriya RG, Roberts G, 
Mitchell PB, Woolrich MW, Breakspear M: Metastable 
brain waves. Nat Commun 2019; 10:1056

	42.	 Artoni F, Maillard J, Britz J, Seeber M, Lysakowski 
C, Bréchet L, Tramèr MR, Michel CM: EEG micro-
state dynamics indicate a U-shaped path to propo-
fol-induced loss of consciousness. Neuroimage 2022; 
256:119156

	43.	 Hudetz AG, Vizuete JA, Pillay S, Mashour GA: 
Repertoire of mesoscopic cortical activity is not 
reduced during anesthesia. Neuroscience 2016; 
339:402–17

	44.	 Arena A, Comolatti R, Thon S, Casali AG, Storm JF: 
General anesthesia disrupts complex cortical dynamics 
in response to intracranial electrical stimulation in rats. 
eNeuro 2021; 8:ENEURO.0343-20.2021

	45.	 Comolatti R, Pigorini A, Casarotto S, Fecchio 
M, Faria G, Sarasso S, Rosanova M, Gosseries O, 
Boly M, Bodart O, Ledoux D, Brichant JF, Nobili 
L, Laureys S, Tononi G, Massimini M, Casali AG: 
A fast and general method to empirically estimate 
the complexity of brain responses to transcranial 
and intracranial stimulations. Brain Stimul 2019; 
12:1280–9

	46.	 Lee U, Oh G, Kim S, Noh G, Choi B, Mashour GA: 
Brain networks maintain a scale-free organization 
across consciousness, anesthesia, and recovery: Evidence 
for adaptive reconfiguration. Anesthesiology 2010; 
113:1081–91

	47.	 Lee U, Mashour GA, Kim S, Noh GJ, Choi BM: 
Propofol induction reduces the capacity for neu-
ral information integration: Implications for the 
mechanism of consciousness and general anesthesia. 
Conscious Cogn 2009; 18:56–64

	48.	 Kim H, Lee U: Criticality as a determinant of inte-
grated information phi in human brain networks. 
Entropy 2019; 21:981

	49.	 Kim H, Hudetz AG, Lee J, Mashour GA, Lee U; 
ReCCognition Study Group: Estimating the inte-
grated information measure phi from high-density 
electroencephalography during states of consciousness 
in humans. Front Hum Neurosci 2018; 12:42

Copyright © 2022, the American Society of Anesthesiologists. All Rights Reserved. Unauthorized reproduction of this article is prohibited.

D
ow

nloaded from
 http://pubs.asahq.org/anesthesiology/article-pdf/137/3/290/674485/20220900.0-00010.pdf by M

ercedes R
eyes on 18 N

ovem
ber 2022



302	 Anesthesiology 2022; 137:290–302	 Li et al.

READERS’ TOOLBOX

	50.	 Afrasiabi M, Redinbaugh MJ, Phillips JM, Kambi 
NA, Mohanta S, Raz A, Haun AM, Saalmann YB: 
Consciousness depends on integration between pari-
etal cortex, striatum, and thalamus. Cell Syst 2021; 
12:363–73.e11

	51.	 Varley TF, Sporns O, Puce A, Beggs J: Differential effects 
of propofol and ketamine on critical brain dynamics. 
PLoS Comput Biol 2020; 16:e1008418

	52.	 Ince RA, Giordano BL, Kayser C, Rousselet GA, Gross 
J, Schyns PG: A statistical framework for neuroimaging 
data analysis based on mutual information estimated via 
a Gaussian copula. Hum Brain Mapp 2017; 38:1541–73

	53.	 Thiery T, Lajnef T, Combrisson E, Dehgan A, Rainville 
P, Mashour GA, Blain-Moraes S, Jerbi K: Long-range 
temporal correlations in the brain distinguish con-
scious wakefulness from induced unconsciousness. 
Neuroimage 2018; 179:30–9

	54.	 Alonso LM, Proekt A, Schwartz TH, Pryor KO, Cecchi 
GA, Magnasco MO: Dynamical criticality during 
induction of anesthesia in human ECoG recordings. 
Front Neural Circuits 2014; 8:20

	55.	 Cocchi L, Gollo LL, Zalesky A, Breakspear M: Criticality 
in the brain: A synthesis of neurobiology, models and 
cognition. Prog Neurobiol 2017; 158:132–52

	56.	 Plenz D, Ribeiro TL, Miller SR, Kells PA, Vakili A, 
Capek EL: Self-organized criticality in the brain. Front 
Phys 2021; 9:639689

	57.	 Solovey G, Alonso LM, Yanagawa T, Fujii N, Magnasco 
MO, Cecchi GA, Proekt A: Loss of consciousness is 

associated with stabilization of cortical activity. J 
Neurosci 2015; 35:10866–77

	58.	 Toker D, Pappas I, Lendner JD, Frohlich J, Mateos 
DM, Muthukumaraswamy S, Carhart-Harris R, 
Paff M, Vespa PM, Monti MM, Sommer FT, Knight 
RT, D’Esposito M: Consciousness is supported by 
near-critical slow cortical electrodynamics. Proc Natl 
Acad Sci U S A 2022; 119:e2024455119

	59.	 Krzemiński D, Kamiński M, Marchewka A, Bola 
M: Breakdown of long-range temporal correla-
tions in brain oscillations during general anesthesia. 
Neuroimage 2017; 159:146–58

	60.	 Lee H, Golkowski D, Jordan D, Berger S, Ilg R, 
Lee J, Mashour GA, Lee U; ReCCognition Study 
Group: Relationship of critical dynamics, functional 
connectivity, and states of consciousness in large-
scale human brain networks. Neuroimage 2019; 
188:228–38

	61.	 Deco G, Kringelbach ML, Jirsa VK, Ritter P: The dynam-
ics of resting fluctuations in the brain: Metastability and 
its dynamical cortical core. Sci Rep 2017; 7:3095

	62.	 Sizemore AE, Phillips-Cremins JE, Ghrist R, Bassett 
DS: The importance of the whole: Topological data 
analysis for the network neuroscientist. Netw Neurosci 
2019; 3:656–73

	63.	 Varley TF, Denny V, Sporns O, Patania A: Topological 
analysis of differential effects of ketamine and propofol 
anaesthesia on brain dynamics. R Soc Open Sci 2021; 
8:201971

Copyright © 2022, the American Society of Anesthesiologists. All Rights Reserved. Unauthorized reproduction of this article is prohibited.

D
ow

nloaded from
 http://pubs.asahq.org/anesthesiology/article-pdf/137/3/290/674485/20220900.0-00010.pdf by M

ercedes R
eyes on 18 N

ovem
ber 2022


