

LAND SURVEYING FIELD DATA COLLECTORS

Main Category:	Surveying
Sub Category:	Land Surveying
Course #:	SUR-113
Course Content:	49 pgs
PDH/CE Hours:	2

OFFICIAL COURSE/EXAM (SEE INSTRUCTIONS ON NEXT PAGE)

WWW.ENGINEERING-PDH.COM TOLL FREE (US & CA): 1-833-ENGR-PDH (1-833-364-7734) <u>SUPPORT@ENGINEERING-PDH.COM</u>

SUR-113 EXAM PREVIEW

- TAKE EXAM! -

Instructions:

- At your convenience and own pace, review the course material below. When ready, click "Take Exam!" above to complete the live graded exam. (Note it may take a few seconds for the link to pull up the exam.) You will be able to re-take the exam as many times as needed to pass.
- Upon a satisfactory completion of the course exam, which is a score of 70% or better, you will be provided with your course completion certificate. Be sure to download and print your certificates to keep for your records.

Exam Preview:

- 1. Field survey notes can be collected either manually or electronically. Manual methods include field books or plane table sheets. Electronic methods include both internal and external data collectors interfaced with various survey instruments (total station, GPS receiver, or LIDAR)
 - a. True
 - b. False
- 2. Four types of manual field book notes are kept in practice are sketches, tabulations, descriptions, and combinations of these.
 - a. True
 - b. False
- 3. Topographic locations are numbered according to _____ (or feature codes), be they manually or electronically recorded. These feature codes depict what type of location and where locations were measured.
 - a. Coordinate geometry
 - b. GPS locations
 - c. Coordinates
 - d. Data record numbers
- 4. A finished map and the sketch should be similar. Sketches should always be to scale.
 - a. True
 - b. False
- 5. Tips for manually recording field notes in a survey book (or optionally on an equivalent digital tablet device) include using sketches instead of tabulations when in doubt.
 - a. True
 - b. False

- 6. Some features are often too complex to be fully detailed in a data collector; thus, a field book sketch is required. The _____of the object would be captured in the data collector, and the points referenced on the sketch. A note should be entered into the data collector referencing additional attribute data is provided in the field book (including page number).
 - a. general orientation
 - b. scale
 - c. coordinate origin
 - d. title
- 7. A well-functioning and efficient data collector is vital to performing detail surveys using a total station or RTK system. It should allow the storage of at least _____ or more points, including full descriptor and attribute information.
 - a. 2000
 - b. 2500
 - **c.** 3000
 - d. 500
 - e. 5000
- 8. COGO functions are software routines that perform standard field (and office) survey computations. These COGO routines range from simple ones like inverse computations, to more complex computations such as circular and spiral curve stakeouts or least squares adjustments. Each data collector software package will contain a varying number of these COGO routines.
 - a. True
 - b. False
- 9. COGO is an abbreviation for Control Geometry.
 - a. True
 - b. False
- 10. A _____ is a point with assigned coordinates is sometimes used as a synonym for control station. However, a control point need not be realized by a marker on the ground.
 - a. Control Point
 - b. Coordinate Point
 - c. Data Point
 - d. CTP Point

Chapter 7 Field Data Collectors and Coordinate Geometry Functions

7-1. Purpose

This chapter provides guidance on data collectors that are used to record topographic field data observed with total stations and RTK systems. Data collector features are described along with standard coordinate geometry (COGO) options. Some traditional route surveying parameters are also outlined at the end of the chapter.

7-2. Field Survey Notes--Manual and Electronic

Field survey notes can be collected either manually or electronically. Manual methods include field books or plane table sheets. Electronic methods include both internal and external data collectors interfaced with various survey instruments (total station, GPS receiver, or LIDAR). Electronic data collectors record, store, and transfer field data without the need to key in individual measurements, providing significant time savings in gathering and processing field data and eliminating reading and recording errors. However, not all supplemental feature data or detail sketches are easily encoded in a data collector. It is often better to draw detailed sketches of critical features in a traditional field survey book; or optionally on a digital notebook tablet. Sketches of features can also be supplemented with digital photos--video and digital cameras can be used to supplement the field sketch and provide a very good record of the site conditions for the CADD operator, design engineer, and user of the topographic map. Each District will have their own policy regarding how field notes are to be kept--manually and/or electronically. An important distinction is made when written field notes are not required, and the data collector is used exclusively as an "electronic field book." These electronic files are usually sufficient for submittal without identical hand entries from a field book. However, some Districts may require that a duplicate written field book be kept for electronically recorded data--for data safeguarding and legal issues. When duplicate field books are kept of electronically recorded data, the entries are compared to the files generated by the data collection processing. All field book data are written in the format set by each District. There is no Corps standard for field book data formats. Sample field book indexing and recording formats are shown in Chapter 12.

a. Four types of manual field book notes are kept in practice:

- sketches,
- tabulations,
- descriptions, and
- combinations of these.

The most common type is a combination form, but an experienced recorder selects the version best fitted to the job at hand. The location of a reference point may be difficult to identify without a sketch, but often a few lines of description are enough. Benchmarks are also described. In note keeping this axiom is always pertinent: when in doubt about the need for any information, include it and make a sketch. It is better to have too much data than not enough.

b. Topographic locations are numbered according to data record numbers (or feature codes), be they manually or electronically recorded. These feature codes depict what type of location and where locations were measured. This helps office personnel import digital field drawings into final design drawings. More important, blunders and mislabeled feature codes may be caught before costly design

errors are made. The finished map and the sketch should be similar. Sketches are not required to be at any scale. The suggestions listed below will help eliminate some common mistakes in manually recording field notes in a survey book (or optionally on an equivalent digital tablet device):

- Letter the notebook owner's name and address on the cover and first inside page.
- Title, index, and cross-reference each new job or continuation of a previous one.
- Sign surname and initials in the lower right-hand corner of the right page on all original notes.
- Use a hard pencil or pen, legible and dark enough to copy.
- Begin a new day's work on a new page.

• Immediately after a measurement, always record it directly in the field book rather than on a sheet of scrap paper for copying it.

- Do not erase recorded data.
- Use sketches instead of tabulations when in doubt.
- Avoid crowding.

c. Some features are often too complex to be fully detailed in a data collector; thus, a field book sketch is required. Figure 7-1 is such an example of a sketch that depicts details for a steam utility system that would be impractical to input in a digital data collector. The general orientation of the object would be captured in the data collector, and the points referenced on the sketch. A note should be entered into the data collector referencing additional attribute data is provided in the field book (including page number).

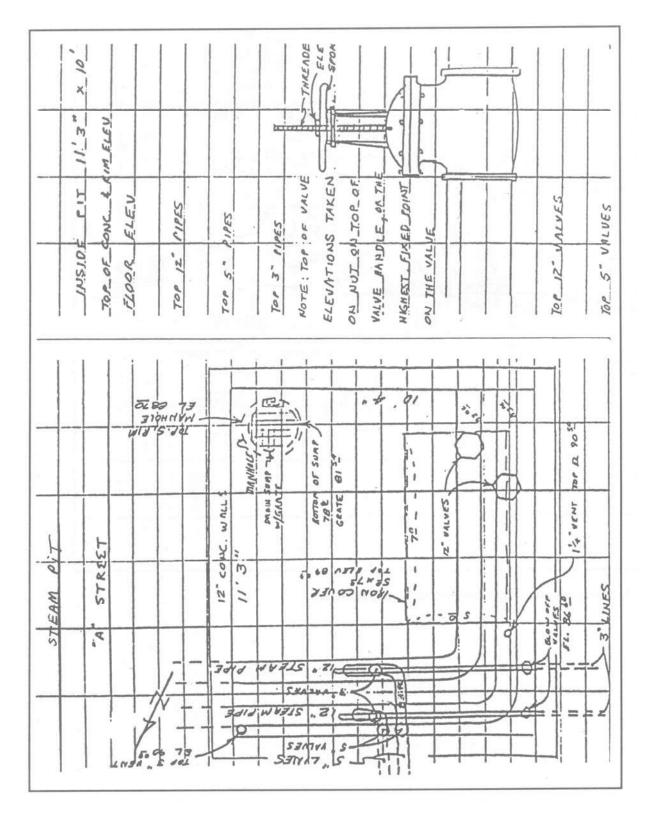


Figure 7-1. Sample from field book depicting utility details

7-3

ENGINEERING-PDH.COM | SUR-113 |

7-3. Functional Requirements of a Generic Data Collector

A well-functioning and efficient data collector is vital to performing detail surveys using a total station or RTK system. Assumptions or oversights made at the time of equipment purchase can force a survey operation into equipment problems on the job for the economic life of the equipment. Listed below are some options to consider when purchasing a field data collector:

- Weatherproof, designed for rugged/durable field use.
- Nonvolatile memory ensures data safety.

• Allow the storage of at least 5,000 or more points, including full descriptor and attribute information.

- Full search and edit routines immediately on the spot.
- Optional screen view of mapped data points.
- Compatibility with a variety of electronic total stations, digital levels, and/or GPS systems.
- Formatting must be very flexible for manual entry, even for various CADD leveling tasks.

• Capability to use two files in the collector: one file for collection, the other file for processed data for stakeout tasks.

- Data collector must communicate with and remotely operate the total station.
- All the features of the total station should be usable with the data collector purchased.
- The data collector must be compatible with the software.
- The data collector must be compatible with the data dictionary.

In evaluating a data collector system for purchase, the following questions should be asked:

• Can I view and store coordinates in the electronic data collector in the field?

• Is the data collector environmentally rugged? What are the environmental limitations of the hardware?

- Can I upgrade the data collector to the latest software version easily and inexpensively?
- Can I create control jobs that can be accessed from any routine in the data collector?
- What data in the data collector will I be able to edit in the field and how will that affect my raw data?
 - Will the data collector be compatible with all of the total stations I own?
 - Do I have a choice of output formats in the data collector?

• What level of training and support is offered at the time of purchase, and what level can I expect after I have had the data collector long enough to know what questions to ask?

- What type of feature coding and attribute capability does the data collector have?
- Can I set up the parameters and configurations in the data collector to the way I like to survey?
- What numbers of electronic devices, total stations, etc., are supported in the basic configuration?

• What types of data are supported? (raw data, coordinate data point list, roadway alignment, archive data files, and descriptions)

• Can I perform separate tasks for collection of traverse points vs. topographic features or side shots?

- Supports State Plane Coordinate input?
- Memory capacity?

• Is the collection of raw data the same as indicated on the survey instrument? (PPM & Prism Constant)

- Is the unit capable of utilizing data from two different coordinate files at the same time?
- Supports auto mapping?

• Supports North and South Azimuth References?

• Supports user definable parameters? (Angle/distance tolerances, observation sequence for direct and reverse observations)

- Capable of producing stakeout reports, cut/fill, relative to design elevation?
- Generate location of next stakeout point from rodman's positions?
- Supports stakeout of a line?
- Downloading/uploading capability? Can it be done remotely via modem?
- Data collection software or data collector itself should output the following:
 - \circ Point number
 - \circ Coordinates
 - Elevations
 - \circ Feature code

7-4. General Software Features on a Data Collector

Field data collectors are either self-contained within a total station or external units attached by cable or wireless (Bluetooth) connection to the survey instrument. Some of the more salient software features found on a data collector are outlined below, as taken from POB 2004b. Not all data collectors must contain all these software features to be acceptable--many of these features may not be required for standard Corps work. In addition, the more features that are included, the higher the cost of the data collector.

a. Cost. The average data collector software package will cost some \$1,500 to \$2,000; however software packages are available as low as \$150 and over \$3,000 at the high end. (These costs do not include the actual microprocessor hardware).

b. Computer. Some software packages will operate on a variety of operating systems while others are specific to a single system. The most common systems include CE.Net, CE, Microsoft, HP-48, and iPAQ. The newest systems have color display screens and will provide field-finish views of collected data. Screen displays should ideally include viewing of points, features, and associated attribute data entered during the survey.

c. Supported instruments. Data collector software may support only a specific brand of total station or can support (and connect with) a variety of electronic survey instruments, such as digital levels, static GPS, kinematic GPS, laser rangefinders, robotic total stations, etc. Obviously, software that encompasses all this versatility will cost more. The advantage of having a data collector that can perform many functions is obvious: the same instrument can be used with either a total station or GPS/RTK system.

d. Storage capacity. Most software can store almost an unlimited number of jobs and points, restricted only by the storage available in the data collector device.

e. Calculations. The software should be able to calculate coordinates from raw data observations, perform inverse computations, calculate intersections, perform traverse computations and adjustments, perform 2-point and 3-point resections (total stations), perform site calibrations (RTK), and perform area computations. Other desirable features would include a variety of stakeout options--to lines, curves, and slopes (including navigation to points), least-squares adjustments or regressions, volume and cut/fill computations, etc. Some of these COGO functions will be described later in this chapter.

f. Background images. The software should be able to import, orient, and display background images from a variety of file formats, such as MicroStation, AutoCAD, and ESRI, and display generic *.JPG, *.TIF, etc. type images.

7-5. Feature or Descriptor Codes for Topographic Field Data

Field codes or data collection codes are a means by which the surveyor controls the map compilation process. Feature codes for each shot are placed on the data collector. The code designations and sequencing will vary depending on the data collector and processing software. Typically, features are described in the data collector by means of some numeric or alphanumeric description. Strings of like features (e.g., curb lines, edges of roads, buildings) or polylines are identified by additional coding. Feature coding is an integral part of the field data acquisition phase. It defines characteristics of an object(s) and how they are represented on the final map--as points, lines, or areas. In addition, they can define the type of annotation, line weight, layer, or cell symbol to be placed on the map. Whether data are recorded by hand or electronically, one of the most critical survey operations is the recording of a code or description to properly identify the point during processing. For example, in a topographic or planimetric survey, identification of points which locate the position of curbs, gutters, centerlines, manholes, and other similar features are essential for their correct plotting and contour interpolation. Since the field crew can virtually produce the map from the field data, this eliminates the need for many field book sketches.

a. Feature code library. The coding scheme is designed so the computer can interpret the recorded data without ambiguity to create a virtually finished product. Normally a feature or descriptor code "library" is established for a given project. This library consists of the common object features that will be shot. During the survey, these feature/descriptor codes can be called up in the data collector after each shot, as a quality control check. If additional attribute information is needed on a point, this can be typed into the controller. These feature/descriptor codes associated with each topographic point shot are later downloaded to a CADD and/or GIS system. If additional attribute detail is provided, this information will stay with that point in the CADD/GIS system.

b. Typical descriptors used in a library. Currently, there is no established descriptor code standard for topographic features. Either numerical point codes or alphanumeric point feature codes can be entered into the data collector. Each District either has their own feature library standard, or accepts data in whatever format a contractor submits it in. Some projects are unique, and new descriptor codes are developed for that work. This variability may entail additional effort during subsequent inputs of datasets into CADD packages. The following is a partial list of alphabetic descriptor names for common features. These same features will have various descriptors in different Districts, as will be illustrated in subsequent lists. Whenever districts require specialized point codes, then the attribute file may be edited to include these changes.

1X2 STAKE 2X2 HUB/TACK A/G FUEL TANK A/G STEAM LINE A/G WATER VALVE AC@PCC JOINT AIR RELIEF VALVE AIRCRAFT TIE-DOWN ALUM MON ARCH CREST ARCH END ARCH START ARCH TOE ASPHALT ASPHALT PATCH B/L BARBED WIRE BENCHMARK BLDG CORNER BOLT BRASS CAP BREAKER BOX BREAKLINE BREAKLINES BRIDGES BUILDING LINE BUOY C/L C/L ROAD C/L ROAD C/L RTRACK CABLE TV CATCH BASIN CDHD CDHU CHAIN LINK CHISELED X CLOSING CORNER COE MON COMMUNICATION CONC. PATCH CONIFEROUS CONTROL CROWN CULVERT CURB CURTAIN DRAIN CUTOFF FENCE	DOLPHIN DOWN GUY DRAIN DRAIN PIT DRIVEWAY EDGE ROAD EDGE ROAD ELECTRICAL ELECTRICAL OUTLET ELECTRICAL MH ELECTRICAL OUTLET ELECTRICAL VAULT END OF BRIDGE EXPANSION JOINT EXPOSED SEWER PIPE FILED X FILLER PIPE U/G TANK FIRE ALARM FIRE HYDRANT FLOODWALL FLOW DITCH FUEL FUEL PIT FUEL TANK VENT PIPE GAS GAS LINE GAS METER GAS METER GAS METER GAS METER GAS VALVE GEOTECH GPS MON GRATED STORM MH GROUND SHOT GROUNDING ROD GUY POLE HAND DRILL HOLE HAZARDOUS WASTE VAULT HEADWALL HEATING HOMESTEAD CORNER HYDRO LIGHT POLE
POST DECIDUOUS	MEANDER CORNER MON

Table 7-1. Typical Descriptors used in a Feature Library

MONITORING DEVICE NAIL NGS MON O/H COMM **O/H PIPE O/H POWER LINE** ORNAMENTAL PAD PAINT STRIPE PBM PHONE BOOTH PICTURE POINT PIER TOE PIER TOP PILING PIPE PK NAIL PORCH POWER @ BLDG POWER POLE POWER POLE/TRANS PVC PIEZOMETER PVC SLOPE INDICATOR QUARTER CORNER RAMP REBAR **REBAR/CAP** REFERENCE POINT RETAINING WALL RISER ROAD WORK ROCK **RR SPIKE** RWY LIGHT SANITARY SANITARY CLEANOUT SANITARY LINE SANITARY MH SECTION CORNER SHOULDER ROAD SIDEWALK SIGN SIXTEENTH CORNER SLOPE SLOPE BREAK SOUNDING

SPRINKLER CONTROL VALVE STEAM MH STEAM PIT STEEL GUARD POST STEPS STORM STORM MH SWITCH BOX TBM TELE @ BLDG TELE SPLICE BOX **TELEPHONE MH TELEPHONE POLE** TEST WELL TOE TOE CONC DRAIN TROUGH **TOE/RIPRAP** TOP TOP CONC DRAIN TROUGH TOP OF RAIL TOP STRUCTURE TOP/RIPRAP TOPOGRAPHIC TOWER LEG TRAFFIC SIG CONTROL BOX TRANSFORMER TREE LINE **U/G CABLE MARKER** U/G COMM U/G COMM BOX **U/G CONDUIT** U/G STREET LIGHTING BOX USGS MON WATER WATER LINE WATER METER WATER MH WATER STANDPIPE WATER VALVE WE/WS WELL HEAD WITNESS CORNER WOOD FENCE WOOD GUARD POST

c. Project specific descriptors. Individual projects will often have unique repeating features, necessitating additional feature codes. An example of a field feature coding scheme for a specific hydraulic design project in Tulsa District is shown below:

B = BEGIN
E = END
BK = BREAK
RIP = RR = RIP RAP
ISL = ISLAND
BEED = CHANNEL BED
CHBS = CHECK BACKSIGHT
CON = CONCRETE
CP = CONTROL POINT

TB = TOP BANK FL = FLOW LINE H WALL = HEAD WALL FEN = FENCE RP = REFERENCE POINT G PT = GUARD RAIL POST SC A = SCOUR AREA BNK = BANK

d. Creating unique descriptor codes. This is done in the software provided with or accompanying the data collector. Alphanumeric codes may also be used for a specific feature. The following process is excerpted from TDS 1999 and is typical of basic feature coding options that are used in most data collectors today.

TDS-HP48GX DESCRIPTOR CODE TABLES

One of the best ways of improving the productivity of data collecting is to speed up the process of keying in point descriptors. The Descriptor Code Table is provided for this purpose. Basically, the Descriptor Code Table is a text file in the TDS-48GX that contains a list of commonly-used point descriptors.

The descriptor table is a list of codes or abbreviations that are associated with a descriptor. These codes may be keyed into the descriptor field in place of the full descriptor. When one of these codes is found in a descriptor field, the TDS-48GX will replace the code with its associated descriptor. Once the TDS-48GX user has established a Code Table of commonly used descriptors, whenever the descriptor prompt appears in the TDS-48 program, a code may be keyed in. The TDS-48 will insert the complete descriptor from the code table in the place of the code in the Coordinate and Raw Data files. The Code Table is actually a special text file in the TDS-48. It requires the unique name "DESCRIPT.TXT." The Code Table itself is composed of a series of lines of text. Each line of text consists of the code followed by a single space and the full descriptor. An example of a Code Table would appear as:

1	POB
02	HUB
СВ	CURB
Τ4	OAK TREE
POB	PT. OF BEGINNING
F	FENCE
f	FENCE

Codes may be up to seven characters in length and may consist of any alphanumeric characters. Examples of these are: 02, CB, and T4. The code is case sensitive, which means that the "F" and "f" codes are not the same and could have different descriptors. If you want an upper or lower case "F" to be interpreted as FENCE you need to enter it twice (as above). The code and the descriptor are separated by one space, and the remainder of the line is the descriptor that is linked to this code. The descriptor may contain alphanumeric characters, spaces, punctuation or symbols; basically anything that can be typed into a descriptor from the keyboard.

During a survey, when the TDS-48 requests a descriptor (usually after the total station has taken a shot), you may key in the full descriptor such as CURB; or you may key in the corresponding code, such as CB, as a "shorthand" notation to indicate the CURB. In either case, the full descriptor CURB will be stored in the job file. If the data is being collected manually, the code may be keyed into the descriptor line of the Traverse/Sideshot Screen before the **[TRAV]** or **[SIDES]** softkeys are pressed. As stated above, the TDS-48 will store the full descriptor from the table into the job file, not the code.

Using Codes With Keyed In Descriptors And Combining Codes

Often you want to use a descriptor from the Code Table, but you would like to add additional characters to the descriptor from the keyboard. As an example, suppose you wanted to use the descriptors "NE 1/4 CORNER" and "SE 1/4 CORNER." Assume that the descriptor "1/4 CORNER" has been keyed into a Code Table under the code "15." To combine text and codes from the Code Table, use the "+" key in the following way: When the descriptor prompt appears in the display and you want the descriptor to read "NE 1/4 CORNER," key in "NE+15." The TDS-48 will combine the keyed-in descriptor "NE" with the descriptor associated with code 15 to create the complete descriptor "NE 1/4 CORNER."

Codes may also be concatenated with keyed in descriptors. For example, if you wanted a series of points with descriptors TOP OF CURB A1, TOP OF CURB A2, TOP OF CURB A3, etc., you would setup TOP OF CURB in a Descriptor Code Table with code 23, for example. Then in response to the descriptor prompt, key in 23+A1, 23+A2, 23+A3, etc.

Codes may also be concatenated with other codes. Assume you have code descriptor pairs for: T TREE, T1 PINE, T2 OAK and T3 MAPLE. The result of the following entries: T1+T; T2+T; T3+T; would be: PINE TREE; OAK TREE and MAPLE TREE. This technique may be used to concatenate up to three descriptor codes or text segments.

7-6. Descriptor Codes and Level Assignments for Various Topographic Features

The following listing contains an example of standardized coding for various features encountered on USACE civil and military projects. Both an alpha and numeric code are given. The four-digit "#Code" corresponds to the level number assignment, the first two digits representing the level (or first digit when only 3 digits are shown).

	Description	Alpha Code	# Code	Elevation	Main Feature/Level Designation
1 2	BUILDING	BLDG BUILDING	401	Random	Buildings
3	HOUSE	HOUSE	402	DNC	Buildings
4	TRAILER	TRAILER	403	DNC	Buildings
5	GARAGE	GARAGE	404	DNC	Buildings
6	SHED	SHED	405	Breakline	Buildings
7	CABIN	CABIN	411	DNC	Buildings
8	PORCH	PORCH	412	Exterior	Buildings
9	STEPS	STEPS	413	Breakline	Buildings
10	OVERHANG	OVERHANG	414	DNC	Buildings
11	CL ROAD	CLRD	601	Breakline	Centerline
12		ROADCL			
13		CLROAD			
14	CL BRIDGE	CLBDG	602	Breakline	Centerline
15		BRIDGECL			
16		CLBRIDGE			
17	CL RAILROAD	CLRR	603	Random	Centerline
18		CLRAILROAD			
19		RAILROADCL			
20	CL ABANDONED	CLARR	604	Breakline	Centerline
	RAILROAD				
21	CL DITCH	DITCHCL	605	Breakline	Centerline
22		CLDITCH			
23	CL CREEK	CLCRK	606	Breakline	Centerline
24		CLD			
25		CREEKCL			
26		CLCREEK	0.07	D 11	
27	CENTERLINE	CENTLINE	607	Breakline	Centerline
28		CLINE	000	Due elstine e	O sustantin s
29	CL SWALE	CLSWALE	608	Breakline	Centerline
30		CLSWL	600	Due ektine	Contarlina
31	CL BERM	CLBERM	609	Breakline	Centerline
32	CL WALL	CLWALL	610	DNC	Centerline
33	CL STONE WALL	CLSTWALL	611	DNC	Centerline
34		STWALLCL	610	Drackling	Contarlina
35 36	CL DIKE	CLDIKE DIKECL	612	Breakline	Centerline
			001	Proakling	Reade Darking Late Walks Reilroads and
37	EDGE DRIVEWAY	DRIVEWAY	801	Breakline	Roads, Parking Lots, Walks, Railroads, and
38		EDGEDRIVEWAY			Irails
39	EDGE PAVEMENT	PVMTEDGE	802	Breakline	Roads, Parking Lots, Walks, Railroads, and
55	EDGETAVEIMENT	TVIVITEDGE	002	Dieakiine	Trails
40	EDGE ROAD	EDGEROAD	803	Breakline	Roads, Parking Lots, Walks, Railroads, and
10			000	Broakino	Trails
41		ROADEDGE			
42	EDGE SHOULDER	EDGESHOULDE	804	Breakline	Roads, Parking Lots, Walks, Railroads, and
		R			Trails
43		SHOULDEREDG			
		E			

44	EDGE SIDEWALK	ESW	805	Breakline	Roads, Parking Lots, Walks, Railroads, and Trails
45 46 47		ESWALK EWALK SW			
48	EDGE TRAIL	EDGETRAIL	806	Breakline	Roads, Parking Lots, Walks, Railroads, and Trails
49 50	BRIDGE CORNER	TRAILEDGE BRIDGECOR	807	Breakline	Roads, Parking Lots, Walks, Railroads, and Trails
51 52	PIER TOP	CORBRIDGE PIERTOP	808	DNC	Roads, Parking Lots, Walks, Railroads, and Trails
53 54	PIER TOE	TOPPIER PIERTOE	809	DNC	Roads, Parking Lots, Walks, Railroads, and
55		TOEPIER			Trails
56	RAILROAD SWITCH	RRSW	851	DNC	Roads, Parking Lots, Walks, Railroads, and Trails
57 58	CONCRETE EDGE	CONCEDGE EDGECONC	901	Breakline	Concrete Joint Layout
59 60	EXPANSION JOINT	CONCJOINT EXPANJOINT	902	Breakline	Concrete Joint Layout
61 62	CURB TOP BACK	BC LBC	903	Breakline	Concrete Joint Layout
63		CURBTB			
64		TBCURB			
65	CURB FRONT EDGE	CURBFE	904	Breakline	Concrete Joint Layout
66	CURB FLOW LINE	CURBFL	905	Breakline	Concrete Joint Layout
67	CURB/PAVEMENT	CURBPVMT	906	Breakline	Concrete Joint Layout
68	CURB-CUT	CURBCUT	907	Random	Concrete Joint Layout
69	CONCRETE	CONCRETE	1001	Random	Concrete Joint Elevations
70	HIGHWAY SIGN	HIGHWAYSIGN	1301	Random	Pavement Markings and Signs
71	SPEED SIGN	SPEEDSIGN	1302	Random	Pavement Markings and Signs
72	STOP SIGN	STOPSIGN	1303	Random	Pavement Markings and Signs
73	YIELD SIGN	YIELDSIGN	1304	Random	Pavement Markings and Signs
74	TURN SIGN	TURNSIGN	1305	Random	Pavement Markings and Signs
75	STOP AHEAD SIGN	STOPAHEADSIG	1306	Random	Pavement Markings and Signs
76	STREET SIGN	N STREETSIGN	1307	Random	Pavement Markings and Signs
77	CURVE SIGN	CURVESIGN	1308	Random	Pavement Markings and Signs
78	BRIDGE SIGN	BRIDGESIGN	1309	Random	Pavement Markings and Signs
79	MILE MARKER	MILEMARKER	1310	Random	Pavement Markings and Signs
80	REFLECTOR	REFLECTOR	1311	Random	Pavement Markings and Signs
81	SIGN	SIGN	1312	DNC	Pavement Markings and Signs
82	WEIGHT LIMIT SIGN	WEIGHTLIMITSIG N	1313	Random	Pavement Markings and Signs
83	RR X-ING SIGN	RRXINGSIGN	1317	Random	Pavement Markings and Signs
84	RR SIGN	RRSIGN	1318	Random	Pavement Markings and Signs
85	BILLBOARD	BBOARD	1319	DNC	Pavement Markings and Signs
86		BILLBRD			
87	DIST-TO-GO	DISTTOGO	1321	Random	Pavement Markings and Signs
88	PAINT STRIPE	PAINTSTRIPE	1322	Random	Pavement Markings and Signs
89	PARKING METER	PARK	1323	DNC	Pavement Markings and Signs
90	MAIL BOX U.S.	USMAILBOX	1394	DNC	Pavement Markings and Signs
91	-	MAILBOXUS		-	3 3-
92	RESIDENT SIGN	RESIDENTSIGN	1395	Random	Pavement Markings and Signs
93	MAIL BOX RESIDENTIAL	RESMAILBOX	1398	Random	Pavement Markings and Signs

94		MAILBOXRES			
95 96	FLAG POLE	FPOLE FLAGPOLE	1399	Random	Pavement Markings and Signs
97	WALL TOP EDGE	WALLTOPEDGE	1401	Breakline	Structures and Headwalls
98 99	WALL BOTTOM	BOTWALL WALLBOT	1402	Breakline	Structures and Headwalls
99 100	PUMP	PUMP	1403	Breakline	Structures and Headwalls
101	FLOODGATE	FLOODGATE	1404	Breakline	Structures and Headwalls
102	STEEL GUARD POST	STEELPOST	1470	Breakline	Structures and Headwalls
103	WOOD GUARD POST	WOODPOST	1471	Breakline	Structures and Headwalls
104	POST	POST	1472	Random	Structures and Headwalls
105	CORRUGATED STEEL-	CMP	1601	DNC	Culverts
106	FLOW LINE REINFORCED	RCP	1602	DNC	Culverts
100	CONCRETE-FLOW		1002	DINO	Ouverta
	LINE				
107	PVC-FLOW LINE	PVCFL	1603	DNC	Culverts
108	TOP CULVERT-BASE FILL	TOPCULBASFIL	1604	DNC	Culverts
109	BOX-FLOW LINE	BOXFL	1605	DNC	Culverts
110	TOP OF PIPE CULVERT	TOPCULVERT	1606	Breakline	Culverts
111	RIPRAP	RIPRAP	1801	Random	Riprap
112	RIPRAP TOP	RRAPTOP	1802	Breakline	Riprap
113		TOPRRAP			
114	RIPRAP TOE	RRAPTOE	1803	Breakline	Riprap
115 116	WATER EDGE	TOERRAP WE	1901	Breakline	Water Features
117	THALWEG	THALWEG	1902	Breakline	Water Features
118	BED	BED	1903	Random	Water Features
119	TREE-DEC	CYPRESS	2101	DNC	Vegetation
		TREE			-
120		DOGWOOD			
121		DTREE			
122 123		MAPLE OAK			
124	TREE-CON	CTREE	2102	DNC	Vegetation
125		FERN		2.10	
126		PINE			
127		SPRUCE			
128	TREE	TREE	2103	DNC	Vegetation
129	TREE LINE	TL	2104	DNC	Vegetation
130 131	STUMP GROUND IN TIMBER	STUMP INTREES	2105 2106	DNC Random	Vegetation Vegetation
132	SHRUB	SHRUB	2100	Random	Vegetation
133	SHRUB LINE	SHRUBLINE	2108	Random	Vegetation
134	BRUSH	BRUSH	2109	Random	Vegetation
135	BRUSH LINE	BRUSHLINE	2110	Random	Vegetation
136	CULTIVATION	CULT	2111	Random	Vegetation
137	LAWN EDGE	LAWNEDGE	2112	Breakline	Vegetation
138		EDGELAWN	0004	Dondo	
139 140	BARBED WIRE FENCE	BWFENCE FENCEBW	2301	Random	Fences, Guard Rails
141 142	CHAIN LINK FENCE	CLFENCE FENCECL	2302	Random	Fences, Guard Rails
143	WOOD FENCE	WFC	2303	Random	Fences, Guard Rails
144	STOCK FENCE	STOCKFEN	2304	Random	Fences, Guard Rails
145 146	GATE EDGE	FENCESTK GATE	2305	Pandam	Fences, Guard Rails
140	GATE EDGE	GATEEDGE	2000	Random	i ences, Guara Ralis

148		EDGEGATE			
149	FENCE CORNER	CORFENCE	2306	Random	Fences, Guard Rails
150		FENCECOR	2000	Random	
151	GUARDRAIL	GRAIL	2308	Random	Fences, Guard Rails
152	CATTLE GUARD	CATGUARD	2309	Random	Fences, Guard Rails
		PPIN			
153	PROPERTY PIN		2501	DNC	Boundary Lines / Cadastral-R/W
154		PROPPIN	2502	DNC	Boundary Lines / Codestrol DAA/
155	BLOCK CORNER	BLOCKCOR	2502	DNC	Boundary Lines / Cadastral-R/W
156	PLSS CORNER	SECCOR	2503	DNC	Boundary Lines / Cadastral-R/W
157	R/W-CAP	RWCAP	2509	DNC	Boundary Lines / Cadastral-R/W
158	R/W-MON	RWMON	2510	DNC	Boundary Lines / Cadastral-R/W
159	R/W-PIN	RWPIN	2511	DNC	Boundary Lines / Cadastral-R/W
160	R/W-REBAR	RWREBAR	2512	DNC	Boundary Lines / Cadastral-R/W
161	STATION MARKER	STAMARKER	2513	DNC	Boundary Lines / Cadastral-R/W
162	CONTROL HORIZ	HCON	2701	Breakline	Survey Control Points, Baselines
163	CONTROL VERT	BM	2702	DNC	Survey Control Points, Baselines
164		VCON			
165	CONTROL H/V	HVCON	2703	DNC	Survey Control Points, Baselines
166	GAUGE	GAUGE	2704	DNC	Survey Control Points, Baselines
167	CONTROL	SECCON	2705	DNC	Survey Control Points, Baselines
	SECONDARY				,
168		CONSEC			
169	BASELINE	BASELINE	2706	DNC	Survey Control Points, Baselines
170	PHOTO HORIZ	РНОТОН	2707	DNC	Survey Control Points, Baselines
171		HPHOTO			,
172	PHOTO VERT	PHOTOV	2708	DNC	Survey Control Points, Baselines
173		VPHOTO	2100	Bitte	
174	PHOTO H/V	PHOTOHV	2709	DNC	Survey Control Points, Baselines
175		НУРНОТО	2100	BNO	
176	BS STATION	BSSTATION	2710	DNC	Survey Control Points, Baselines
177	INST STATION	INSTSTATION	2710	DNC	Survey Control Points, Baselines
178	FS STATION	FSSTATION	2711	DNC	
					Survey Control Points, Baselines
179	CONTROL CHECK	CONCHECK	2713	DNC	Survey Control Points, Baselines
180	ELEVATION CHECK	ELEVCHECK	2714	DNC Dragkling	Survey Control Points, Baselines
181	DUNE TOP	TOPDUNE	2903	Breakline	Breaklines
182		DUNETOP	0004	D	B U
183	DUNE TOE	BOTDUNE	2904	Breakline	Breaklines
184		TOEDUNE			
185		DUNETOE			
186	BANK TOP	TB	2905	Breakline	Breaklines
187		BANKTOP			
188		TOPBANK			
189	BANK TOE	BB	2906	Breakline	Breaklines
190		BOTBANK			
191		TOEBANK			
192		BANKTOE			
193	CUT TOP	CUTTOP	2907	Breakline	Breaklines
194		TOPCUT			
195	CUT TOE	CUTTOE	2908	Breakline	Breaklines
196		TOECUT			
197		BOTCUT			
198	FILL TOP	TOPFILL	2909	Breakline	Breaklines
199		FILLTOP			
200	FILL TOE	BOTFILL	2910	Breakline	Breaklines
201		TOEFILL			
202		FILLTOE			
202	BREAK TOP	BREAKTOP	2911	Breakline	Breaklines
203		TOPBREAK	-011	2. Summe	2. 54111100
207					

205	BREAK TOE	BREAKTOE	2912	Breakline	Breaklines
206		TOEBREAK			
207	SWALE TOP	SWALETOP	2913	Breakline	Breaklines
208		TOPSWALE			
209	SWALE TOE	SWALETOE	2914	Breakline	Breaklines
210		TOESWALE	2011	Broakino	Broakinoo
211	RAILROAD BALLAST	TRRBAL	2915	Breakline	Breaklines
211	TOP	INNDAL	2915	Dieakiine	Dieakiiries
212	RAILROAD BALLAST	BRRB	2916	Breakline	Breaklines
212	TOE		2310	Dieakiirie	DICANINES
213	BREAK LINE	BRK	2999	Breakline	Breaklines
213	BREAREINE	BRKLINE	2999	Dieakiirie	DICANITIES
214	GROUND		3001	Random	Spot Flovation
	GROUND	GND	3001	Nanuom	Spot Elevation
216		NG			
217		SPOT			
218		SUR			
219		GROUND			
220	SLOPE	SLOPE	3002	Random	Spot Elevation
221		SLP			
222	GRAVEL	GRAVEL	3003	Random	Spot Elevation
223	SAND	SAND	3004	Random	Spot Elevation
224	LAWN	LAWN	3005	Random	Spot Elevation
225		GRASS			
226	PAVEMENT	PVMT	3006	Random	Spot Elevation
227		PAVEMENT			
228	ROCK	ROCK	3007	Random	Spot Elevation
229	SHOULDER	SHOULDER	3009	Random	Spot Elevation
230	BORE HOLE	BORE	3401	DNC	Bores, Holes, and Text
230	BOREHOLE		3401	DNC	bores, holes, and text
		BOREHOLE	2402	DNC	Baraa Halaa and Tayt
232	TEST PIT	TPIT	3402	DNC	Bores, Holes, and Text
233		TESTPIT	0.400	DNO	
234	PERC TEST	PERCTEST	3403	DNC	Bores, Holes, and Text
235	STAND PIPE	STANDPIPE	3404	DNC	Bores, Holes, and Text
236	CDHD	CDHD	3405	DNC	Bores, Holes, and Text
237	CDHU	CDHU	3406	DNC	Bores, Holes, and Text
238	MONITORING DEVICE	MONDEVICE	3407	DNC	Bores, Holes, and Text
239	PVC PIEZOMETER	PVCPIEZ	3408	DNC	Bores, Holes, and Text
240	PVC SLOPE	PVCSLPIN	3409	DNC	Bores, Holes, and Text
	INDICATOR				
241	TEST WELL	TESTWELL	3410	DNC	Bores, Holes, and Text
242	WELL HEAD	WELLHEAD	3411	DNC	Bores, Holes, and Text
243	CONC DRAIN TROUGH	CONCDTTOP	3501	Breakline	Storm Sewerlines and Manholes
	TOP				
244		TOPCONCDT			
245	CONC DRAIN TROUGH	CONCDTTOE	3502	Breakline	Storm Sewerlines and Manholes
	TOE				
246	-	TOECONCDT			
247	GRATED STORM MH	GRSTMH	3503	DNC	Storm Sewerlines and Manholes
248	STORM MH	SDRMH	3504	DNC	Storm Sewerlines and Manholes
249		STORMMH	0001	Bitto	
250		MHSTORM			
251	CATCH BASIN	CB	3505	Random	Storm Sewerlines and Manholes
252	CATCH BASIN		3303	Ranuom	Storm Sewernines and Manholes
		EDGECB	2500	DNC	Starra Cauvarlines and Manhalas
253			3506	DNC	Storm Sewerlines and Manholes
254	CURTAIN DRAIN	CURTAINDRN	3509	DNC	Storm Sewerlines and Manholes
255	FLOW LINE IN STORM	FLISTORM	3510	DNC	Storm Sewerlines and Manholes
256	FLOW LINE OUT	FLOSTORM	3511	DNC	Storm Sewerlines and Manholes
o = =	STORM	TODOTODI	05/0	DNG	
257	TOP OF PIPE STORM	TOPSTORM	3512	DNC	Storm Sewerlines and Manholes

258 259 260	SANITARY MH	SSMH SANMH MHSAN	3701	DNC	Sanitary Sewerlines, and Manholes
261 262	FLOW LINE IN SEWER FLOW LINE OUT SEWER	FLISEWER	3702 3703	DNC DNC	Sanitary Sewerlines, and Manholes Sanitary Sewerlines, and Manholes
263 264 265 266 267 268 269 270 271	TOP OF PIPE SEWER SANITARY LINE CLEAN OUT LIFT STATION LEACH LINE SEPTIC TANK DRYWELL DRAIN FIELD SANITARY SEWER FORCE MAIN	TOPSEWER SSLINE CLEANOUT LIFTSTA LEACHLINE SEPTICTANK DRYWELL DRAINFIELD SSMAIN	3704 3706 3707 3708 3709 3710 3711 3712 3713	DNC DNC DNC DNC DNC DNC DNC DNC	Sanitary Sewerlines, and Manholes Sanitary Sewerlines, and Manholes
272	WATER VALVE	WATERVALVE	3901	DNC	Water Lines, Fire Hydrants, and Water Tanks
273	AIR RELIEF VALVE	AIRVALVE	3902	DNC	Water Lines, Fire Hydrants, and Water Tanks
274	RISER	RISER	3903	DNC	Water Lines, Fire Hydrants, and Water Tanks
275	WATER MH	WATERMH	3904	Random	Water Lines, Fire Hydrants, and Water Tanks
276 277	WELL	MHWATER WELL	3905	Random	Water Lines, Fire Hydrants, and Water Tanks
278	WATER LINE	WATERLINE	3906	Random	Water Lines, Fire Hydrants, and Water
279	WELL HOUSE	WELLHOUSE	3907	Random	Tanks Water Lines, Fire Hydrants, and Water
280	FIRE HYDRANT	FH	3908	Random	Tanks Water Lines, Fire Hydrants, and Water
281		HYD			Tanks
282	WATER METER	WATERMETER	3909	DNC	Water Lines, Fire Hydrants, and Water Tanks
283	END ABUTMENT	ENDABUT	3910	DNC	Water Lines, Fire Hydrants, and Water Tanks
284	WATER SERVICE	WATERSER	3911	DNC	Water Lines, Fire Hydrants, and Water Tanks
285	CURB STOP	CURBSTOP	3912	DNC	Water Lines, Fire Hydrants, and Water Tanks
286	SPRINKLER HEAD	SPKLR	3913	Random	Water Lines, Fire Hydrants, and Water Tanks
287	PUMP	WATERPUMP	3915	Random	Water Lines, Fire Hydrants, and Water Tanks
288 289 290	GAS VALVE	GASV GVALVE GASVALVE	4102	DNC	Gaslines, Features, and Valves
291	GAS TANK	GASTANK	4103	DNC	Gaslines, Features, and Valves
292	GAS METER	GASM	4104	DNC	Gaslines, Features, and Valves
293 294	GAS LINE	GASL GASLINE	4105	DNC	Gaslines, Features, and Valves
295	GAS MH	GASMH	4106	Breakline	Gaslines, Features, and Valves
296 297	GAS WITNESS POST	MHGAS GASWITPOST	4107	Random	Gaslines, Features, and Valves
297	FUEL PUMP	FUELPUMP	4107	DNC	Gaslines, Features, and Valves
299	FILLER PIPE U/G TANK	FILLPIPEUGTAN	4110	Random	Gaslines, Features, and Valves
300	A/G FUEL TANK	K AGFUELTANK	4111	Random	Gaslines, Features, and Valves

301	FUEL TANK PIPE VENT	FUELTANKPIPEV ENT	4112	Random	Gaslines, Features, and Valves
302	FUEL PIT	FUELPIT	4113	DNC	Gaslines, Features, and Valves
303	POWER POLE	PPOLE	4301	DNC	Powerlines, Lights, and Telephone Poles
304	POWER DROP	PDROP	4302	DNC	Powerlines, Lights, and Telephone Poles
305	U/G POWER LINE	UGPOWER	4303	Random	Powerlines, Lights, and Telephone Poles
306		UNELEC			
307 308	O/H POWER LINE	OHE OVEL	4304	DNC	Powerlines, Lights, and Telephone Poles
309	LOW WIRE POWER	LOWWIREP	4305	Random	Powerlines, Lights, and Telephone Poles
310	LIGHT POLE	LP	4306	DNC	Powerlines, Lights, and Telephone Poles
311		LPOLE			
312	GUY POLE POWER	GUYPOLEELEC	4307	Random	Powerlines, Lights, and Telephone Poles
313	GUY ANCHOR POWER	GUYPOWER	4308	Random	Powerlines, Lights, and Telephone Poles
314	TRANSFORMER	TRANSFOR	4309	DNC	Powerlines, Lights, and Telephone Poles
315	ELECTRIC MH	ELECMH	4310	Random	Powerlines, Lights, and Telephone Poles
316		EMH	1010	Random	
317		MHELEC			
318	SERVICE POLE	SERVPOLE	4311	Random	Powerlines, Lights, and Telephone Poles
319	ELECTRIC METER			DNC	
		ELECMETER	4312		Powerlines, Lights, and Telephone Poles
320	POWER PED	POWERPED	4313	Random	Powerlines, Lights, and Telephone Poles
321	ELECTRIC DUCT	ELECDUCT	4314	DNC	Powerlines, Lights, and Telephone Poles
322	YARD LIGHT	YARDLIGHT	4315	DNC	Powerlines, Lights, and Telephone Poles
323	ELECTRIC JUNCTION	EBOX	4316	DNC	Powerlines, Lights, and Telephone Poles
	BOX				
324		ELECBOX	40.47	_ .	
325	TOWER LEG	TOWERLEG	4317	Random	Powerlines, Lights, and Telephone Poles
326	TRAFFIC LIGHT POLE	TLP	4318	DNC	Powerlines, Lights, and Telephone Poles
327	TRAFFIC LIGHT	TLSB	4319	DNC	Powerlines, Lights, and Telephone Poles
	SIGNAL BOX				
328	FIRE ALARM	FIREALARM	4320	DNC	Powerlines, Lights, and Telephone Poles
329	RAILROAD SIGNAL	RRSIGPOST	4321	Random	Powerlines, Lights, and Telephone Poles
	POST				
330	RAILROAD SIGNAL	RRSIGBOX	4322	Random	Powerlines, Lights, and Telephone Poles
224	BOX RUNWAY LIGHT		4000	Develope	Deventings Lights and Telephone Deleg
331		RUNWAYLIGHT	4323	Random	Powerlines, Lights, and Telephone Poles
332	THRESHOLD LIGHT	THRESHLIGHT	4324	Random	Powerlines, Lights, and Telephone Poles
333	TELEPHONE POLE	TELEPOLE	4340	Random	Powerlines, Lights, and Telephone Poles
334	PHONE DROP	PHONEDROP	4341	Random	Powerlines, Lights, and Telephone Poles
335	U/G PHONE LINE	UGPHONE	4342	Random	Powerlines, Lights, and Telephone Poles
336		UNTEL			
337	O/H PHONE LINE	OVTEL	4343	DNC	Powerlines, Lights, and Telephone Poles
338		OHPHONE			
339	GUY POLE PHONE	GUYPOLEPHON	4344	Random	Powerlines, Lights, and Telephone Poles
		E			
340	GUY ANCHOR PHONE	GUYPHONE	4345	Random	Powerlines, Lights, and Telephone Poles
341	TELEPHONE MH	TELMH	4346	DNC	Powerlines, Lights, and Telephone Poles
342	PHONE PED	PHONEPED	4347	DNC	Powerlines, Lights, and Telephone Poles
343	PHONE BOX	PHONEBOX	4348	DNC	Powerlines, Lights, and Telephone Poles
344	PHONE SUBSTATION	PHONESUB	4349	DNC	Powerlines, Lights, and Telephone Poles
345	PHONE BOOTH	TBOOTH	4350	DNC	Powerlines, Lights, and Telephone Poles
346	LOW WIRE PHONE	LWPHONE	4351	DNC	Powerlines, Lights, and Telephone Poles
347	REPEATER	REPEATER	4352	DNC	Powerlines, Lights, and Telephone Poles
348	U/G FIBER OPTIC	FIBERUG	4361	Random	Powerlines, Lights, and Telephone Poles
349		UGFIBER			
350	FIBER POST	FIBPOST	4362	Random	Powerlines, Lights, and Telephone Poles
351	U/G CABLE/FIBER	UGCAFBMKR	4363	Random	Powerlines, Lights, and Telephone Poles
-	MARKER				
352	U/G CABLE TV	TVUG	4371	Random	Powerlines, Lights, and Telephone Poles

252					
353		UGTV	4070	Developer	Devertings Lights and Talanhang Dalas
354	O/H CABLE TV		4372	Random	Powerlines, Lights, and Telephone Poles
355	TV PED	TVPED	4373	Random	Powerlines, Lights, and Telephone Poles
356	SATELLITE DISH	SATDISH	4374	DNC	Powerlines, Lights, and Telephone Poles
357	SATELLITE BOX	SATBOX	4375	DNC	Powerlines, Lights, and Telephone Poles
358	STEAM LINE	STEAMLINE	4501	DNC	Steamlines, Features, and Valves
359	STEAM LINE VALVE	SLVALVE	4502	DNC	Steamlines, Features, and Valves
360	STEAM MH	STEAMMH	4503	DNC	Steamlines, Features, and Valves
361		MHSTEAM	4504	5110	
362	STEAM PIT	STEAMPIT	4504	DNC	Steamlines, Features, and Valves
363	SOUNDING	SNDG	4901	Random	Soundings
364		SOUNDING			a a
365	BORROW PIT TOP	BORPITTOP	5001	Breakline	Channel Lines, Disposal Areas
366		TOPBORPIT			
367	BORROW PIT TOE	BORPITTOE	5002	Breakline	Channel Lines, Disposal Areas
368		TOEBORPIT			
369	SPOIL TOP	SPOILTOP	5003	Breakline	Channel Lines, Disposal Areas
370		TOPSPOIL			
371	SPOIL TOE	SPOILTOE	5004	Breakline	Channel Lines, Disposal Areas
372		TOESPOIL			
373	RED BUOY	REDBUOY	5201	DNC	Navigation Aides and Annotation
374		BUOYRED			
375	GREEN BUOY	GRNBUOY	5202	DNC	Navigation Aides and Annotation
376		BOUYGRN			
377	NO WAKE BUOY	NOWAKE	5203	DNC	Navigation Aides and Annotation
378	SWIMMING BUOY	SWIMBUOY	5204	DNC	Navigation Aides and Annotation
379	STUDY GAUGE	STGAUGE	5205	DNC	Navigation Aides and Annotation
380	NAVIGATION LIGHT	NAVLIGHT	5206	DNC	Navigation Aides and Annotation
381	BUOY	BUOY	5207	DNC	Navigation Aides and Annotation
382	DOLPHIN	DOLPHIN	5208	DNC	Navigation Aides and Annotation
383	PILING	PILING	5209	DNC	Navigation Aides and Annotation
384	LEVEE CL	CLLEVEE	5301	Breakline	Levees, Dikes, and Annotation
385		LEVEECL			, ,
386	LEVEE CROWN	LEVEECRN	5302	Breakline	Levees, Dikes, and Annotation
387		CRNLEVEE			, ,
388	LEVEE TOP	LEVEETOP	5303	Breakline	Levees, Dikes, and Annotation
389		TOPLEVEE			
390	LEVEE SLOPE	LEVEESLP	5304	Random	Levees, Dikes, and Annotation
391		SLPLEVEE			
392	LEVEE TOE	TOELEVEE	5305	Breakline	Levees, Dikes, and Annotation
393		LEVEETOE		2.00	
394		BOTLEVEE			
395	BERM CROWN	BERMCRWN	5306	Breakline	Levees, Dikes, and Annotation
396	BEIGHOROWIN	CRWNBERM	0000	Dicakine	
397	BERM TOP	TBERM	5307	Breakline	Levees, Dikes, and Annotation
398	Dertwitter	TOPBERM	0007	Dicakine	
399		BERMTOP			
400	BERM SLOPE	BERMSLP	5308	Random	Levees, Dikes, and Annotation
401	DERWIGEORE	SLPBERM	5500	Random	Levees, Dikes, and Amotation
402	BERM TOE	BBERM	5309	Breakline	Levees, Dikes, and Annotation
402	BEIGHTIGE	TOEBERM	5509	Dieakiine	Levees, Dikes, and Annotation
403					
404 405	DIKE CROWN	BERMTOE DIKECRWN	5211	Breakline	Lovoos Dikos and Appotation
			5311 5212		Levees, Dikes, and Annotation
406	DIKE TOP		5312	Breakline	Levees, Dikes, and Annotation
407			E040	Drookling	Louises Dikes and Azzatation
408	DIKE SLOPE		5313	Breakline	Levees, Dikes, and Annotation
409		DIKESLP	E044	Drookling	Loveen Diken and American
410	DIKE TOE	DIKETOE	5314	Breakline	Levees, Dikes, and Annotation

ENGINEERING-PDH.COM | SUR-113 |

411		TOEDIKE			
412	PIPELINE	PIPELINE	5401	DNC	Pipe Lines, Structures, and Bridges
413	O/H PIPE	OHPIPE	5402	DNC	Pipe Lines, Structures, and Bridges
414	PIPELINE SUPPORT	PIPESUPP	5403	DNC	Pipe Lines, Structures, and Bridges
415	ASPHALT REVETMENT EDGE	ASPHREVEDGE	5701	Breakline	Revetments and Annotation
416	ASPHALT REVETMENT	ASPHREV	5702	Breakline	Revetments and Annotation
417	CONCRETE REVETMENT EDGE	CONCREVEDGE	5703	Breakline	Revetments and Annotation
418	CONCRETE REVETMENT	CONCREV	5704	Breakline	Revetments and Annotation
419	CONCRETE MAT REVETMENT EDGE	CONCREVMATE DGE	5705	Breakline	Revetments and Annotation
420	CONCRETE MAT	CONCREVMAT	5706	Breakline	Revetments and Annotation
421	SEE FIELD BOOK NOTE	NOTE	6301	DNC	Unassigned

7-7. Feature and Attribute Libraries for Topographic Field Data

Most data collectors are now designed to hold detailed feature and attribute libraries. Attributes are subsets of a feature, describing standard detail about a common feature. For example, a CONCRETE_PIPE (Feature) may have selectable diameter attributes (24 IN, 36 IN, 48 IN, etc.). An unlimited number of attributes can be set up for a given common feature. The data collector software can be set up to prompt for selected attributes when a given feature (code) is shot. Unprompted attributes can optionally be assessed. Or, uncatalogued attributes can be added for a point. Feature libraries may be created on the data collector or on other PC software and uploaded to the data collector for use during survey operations. The following representative examples are taken from the Trimble Geomatics Office (TGO) Version 1.60, "Feature and Attribute Editor" default library--reference also Trimble Survey Controller Reference Manual (Trimble 2001). The feature and attribute library is created and edited in the TGO software and uploaded to the controller. Feature codes, point styles, line styles, etc. can be saved directly to a Trimble Survey Controller type data collector or to a generic ASCII file that could be uploaded to another data collector (e.g., a TDS-HP48GX). Some of the TGO default point styles are shown in Figure 7-2 below.

DEFAULT.FCL - Featu	re and Attribute E	ditor			
ile Edit View Help					
0 🗳 🖬 🥇 (5 X @ F	3 ~ X @	P <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	🗣 🛛 =	4 %
Feature Codes Point Style	es Line Styles Ani	notation Templates	Control Codes	110-	
Point Style Name	Dimension	Color	Point Symbol	Diameter	Symbol Rotation
вох	Paper		Box	0.0394 in	0
🔆 Bush	Paper		Bush	0.2362 in	0
+ Cross	Paper		Cross	0.0787 in	0
+ Cross Blue	Paper		Cross	0.0787 in	0
🕀 Cross circle	Paper		Cross circle	0.0984 in	0
+ Cross Red	Paper		Cross	0.0787 in	0
🗙 Dia Cross	Paper		Dia cross	0.0591 in	0
• Dot	Ground		Dot		0
🔘 Double circle	Paper		Double circle	0.0984 in	0
\land Double Triangle	Paper		Double triangle	0.0984 in	0
🕀 Elec Post	Paper		Cross circle	0.0787 in	0
🕈 Fire hydrant	Paper		Hydrant	0.0787 in	0
Iron grate	Ground		Iron grate	1.6404 sft	0
È Lamp post	Paper		Lamp post	0.1969 in	0
🖲 Manhole	Paper		Solid double circle	0.0984 in	0
Power pole	Paper		Solid circle	0.0591 in	0
👁 Sign	Paper		Sign	0.1575 in	0
🕗 Single circle	Paper		Single circle	0.0787 in	0
👷 Solid box	Paper		Solid box	0.0591 in	0
Solid circle	Paper		Solid circle	0.0787 in	0
Solid double circle	Paper		Solid double circle	0.0984 in	0
🖲 SS Manhole	Paper		Solid double circle	0.0984 in	0
🖲 SW Manhole	Paper		Solid double circle	0.0984 in	0
👫 Tree 1	Paper		Tree 1	0.2756 in	0
💮 Tree 2	Paper		Tree 2	0.2756 in	0
🛆 Triangle	Paper		Triangle	0.1181 in	0
🚖 Triangle circle	Paper		Triangle circle	0.0787 in	0
Valve	Paper		Valve	0.1181 in	0

Figure 7-2 Example of Trimble Default Point Styles

Additional features are easily added to the library using a feature/attribute editor, such as that shown in Figure 7-3 below. Attributes can be added to existing or new features using software compatible with the data collector software. For example, the feature TREE in the TGO default library can be modified using the TGO software, and the modifications exported to the data collector, as shown below.

Feature Code F	Point Line	Attributes	
Attribute Name			Attribute Type
Type 123 Girth 123 Height			Text Numeric Numeric
<u>N</u> ew	<u>D</u> elete	4 ♥	•
	Attri	bute Properties	
Comment:	[
Length:	30		_
Eield Entry:	Required		•
	Normal Required		

Figure 7-3. Example of Attribute Editor Options (Trimble)

The attributes for the feature TREE can be prompted for field entry, as shown in the pull down window. Numeric entries for GIRTH and HEIGHT can have default entries, minimum and maximum range, and decimal resolution. Any number of additional attributes can be added to this feature using this editor. When attributes are created, they should ideally conform to current USACE directed CADD/GIS standards.

7-8. Control Commands for Connecting Feature Line Strings

Topographic features that have the same feature code may be connected by a line string if that is the nature of the physical object. Examples of connected line strings would be shots taken along a CENTERLINE, BREAKLINE, CURB, EDGE OF SIDEWALK, BUILDING, etc. The individual feature codes input for these continuous objects do not represent the fact that they may be connected by a line string. A "Control Command" in the data collector before and after a string of individual point codes is used to indicate that a series of shots are connected. For example, a command code "CL" may be used to signify a series of shots along a CENTERLINE, with codes such as "CL START "and "CL END" on each end of the string.

a. Adding Control Commands to point codes provides many advantages over single point codes. Real-time field graphical depiction of features, utilities, and facilities is viewable on the controller screen, as opposed to a display of unconnected points. When the control-coded data is exported to a CADD or GIS platform, a significant amount of the mapping editing effort can be eliminated. In effect, adding Control Codes approaches a "field-finish" topographic mapping product, not unlike the "field-finish" drawing that resulted from a plane table survey years ago. Adding detailed Command Codes takes more care and time in the field; however, the advantages of cleaner editing will usually outweigh the lost time involved in the field.

b. Each data collector software vendor has unique Command Code formats. Users should ensure compatibility between the data collector software output and the CADD package that the final drawings will be developed on. Some formats are compatible with only a specific mapping processor. The feature codes tell how to group the points; the command codes tell how to connect the points. For example, TDS

ForeSight software has a *code table* that tells whether linework is required for a group of points and how it is to be plotted: e.g., symbol type, color, size, etc. In the code table you assign each feature code or group of points a specific symbol, a line type, and several other parameters. The code table is a function of the ForeSight program and is discussed in detail in its manual.

7-9. Field Coordinate Geometry Options

Coordinate Geometry (COGO) functions are software routines that perform standard field (and office) survey computations. These COGO routines range from simple ones like inverse computations, to more complex computations such as circular and spiral curve stakeouts or least squares adjustments. Each data collector software package will contain a varying number of these COGO routines. Depending on the type of work an agency performs, only a small number of these COGO features will actually be used in practice.

a. General. COGO (from COordinate GeOmetry) was initially developed by Charles L. Miller of M.I.T. in 1959. Since then, many improvements have been made, but the basic concept and vocabulary have remained the same. COGO is a problem oriented system that enables the user with limited computer experience to solve common surveying problems. The language is based on familiar surveying terminology, such as, Azimuth, Inverse, Bearing, etc. This terminology is used to define the problem and generate a solution. COGO may be used to solve problems such as curve alignments, point offsets, distance, and direction between two points, intersections, etc.

(1) The basis of the system is a series of commands used to manipulate or compute points defined by a point number, x-coordinate, and y-coordinate on a plane surface. These points are stored in what is referred to as the "coordinate table" and may be recalled by their point number in future computations.

(2) The mathematics used for the COGO computations are beyond the scope of this manual. There are many textbooks published that describe the mathematical procedures in detail--see listing at Appendix A-2. The Oregon DOT *Basic Surveying--Theory and Practice* manual (Oregon DOT 2000) is available on the Internet and describes many basic survey computations.

(3) There are many COGO packages on the market today. Several are available for an office PC environment on the Internet free of charge. However, COGO software compatible with a particular total station and data collector should be purchased as a package.

b. Requirements. A few general requirements for a COGO software package are as follows:

• The ability to utilize a combined scale factor in its computations. This will allow the user to calculate the ground distances when staking out a job, or reduce the measured distances to the reference vertical datum, and correct for the scale factor when the survey is to be tied to the SPCS.

• The ability to rotate and scale (transform) the survey points to fit existing control. When the surveyor uses field coordinates to perform the survey job, the survey can be transformed onto the SPCS by defining two points with their SPCS coordinates.

• Compass traverse adjustment is sufficient for the majority of traverses established by the USACE. The ability to perform a least squares adjustment may be advantageous.

• Must have the ability to work in bearings, north azimuth, or south azimuth.

- Allow the export of the coordinate table to an ASCII file.
- Allow the import of points from an ASCII, *.SHP, *.DGN, *.DFX, etc. file.

7-10. General COGO Computation Routines

Each COGO software package on the market has a variety of computational routines. Figure 7-4 illustrates a screen display from a TDS COGO software package used on field data collectors. Most software packages have fairly common COGO functions that are grouped into the categories listed below.

🛐 Stake Points	🎒 Stake Points
From GUN to ROD: Height of BACK: 0.200 Rod: Go RIGHT: 0.000 5.0 ft	Design Point: 3 Description: SS
✓ Coarse EDM (Fast Shot) Design Elev: 100.000 Change Rod Elev: 100.000 FILL: Shot Data: 0.000 Angle Right: 115°00'00" Zenith: 90°00'00" Slope Dist: Store SS	From Gun to Design Point: Angle Right: 115°00'00" Horz Dist: 100.000 Vert Dist: 0.000 ZE to Rod: 90°00'00" HI OCC: 1 HI: 5,000 BS: 0°00'00"
Store/Tage 99.800 Store/Tage < Back	<u>Circle Zero</u> < <u>Back</u> <u>Stake ></u>
Settings Close \star 💧	Settings Close \star 💧 🔺

Figure 7-4. COGO screen displays for staking out a remote point (TDS COGO for Pocket PC)

<u>Forward Computation Commands</u> used to calculate the coordinates for a point, given the coordinates of a known point and the distance and direction to the unknown point.

(1) LOCATE/AZIMUTH: Computes a point given an azimuth and distance from a known point.

(2) LOCATE/BEARING: Computes a point given a bearing and distance from a known point.

(3) LOCATE/ANGLE: Computes a point given a backsight point, angle, and distance.

(4) LOCATE/LINE: Computes a POT (point on tangent) given tangent end points and a distance.

(5) LOCATE/DEFLECTION: Computes a point given a backsight, deflection angle, and a distance.

<u>Inverse Computation Commands</u> used to compute the distance and direction between two known points. Both the ground and grid distances should be given as output.

(1) INVERSE/AZIMUTH: Computes the distance and azimuth between two known points.

(2) INVERSE/BEARING: Computes the distance and bearing between two known points.

(3) TANGENT/OFFSET: Computes the distance offline and the distance down line given a known point and the ends of a known tangent.

<u>Intersection Commands</u> used to calculate the coordinates of an unoccupied point as the intersection of two vectors of defined direction and/or distance from two known points. Included would also be the various stakeout options--to given templates, slopes, offset alignments, etc.

(1) LINE/LINE INT: Computes the coordinates of the point of intersection of two lines whose end points are known.

(2) RANGE/RANGE INT: Computes the coordinates of the intersection of two arcs with known radii and centers. Two answers are possible, so the user must define the desired intersection.

(3) RANGE/AZIMUTH INT: Computes the coordinates of the intersection of a defined vector and an arc. Two answers are possible, so the user must define the desired intersection.

(4) AZIMUTH/AZIMUTH INT: Computes the coordinates of the intersection of vectors with known direction.

(5) FORESECTION: This is an Azimuth/Azimuth intersection, measured by turning angles from two known points.

<u>Curve Commands</u> allow the user to define curve parameters to use defined alignment in computations. Usually circular, transition, and vertical curves are included.

(1) ALIGNMENT: Given measured curve parameters, computes components of a curve such as:

- Arc length
- Long chord
- Radius
- Degree of curve
- Tangent length
- Center point coordinates
- External distance
- Mid ordinate
- Central angle
- Vertical curves

(2) STATION/OFFSET: Computes the coordinates of an unknown point, given a station and offset along the curve. The reverse function is also available to compute the station and offset of a known point relative to the curve alignment.

<u>Traverse Adjustments</u>. Traditional adjustments of traverses using either Compass Rule or Least Squares methods.

Leveling Routines. Input and adjust single-wire, three-wire, digital, or precise leveling.

<u>Resection Computations</u>. Two and Three-Point resection computations used for locating a total station relative to fixed points on a project.

Astronomic Computations. Sun shots or Polaris azimuth observation reductions.

<u>Area Computation Commands</u> which calculate the area of polygons and curve segments. The COGO package should calculate the area based on ground distances, not the reduced distances.

<u>Volume Computations</u> used for cut/fill or measurement and payment. Most COGO software uses Average End Area volume formulas. More sophisticated software will be able to perform surface-tosurface volume computations based on a generated DTM or TIN from observed topographic shots.

<u>Coordinate Transformation Commands</u> used to rotate, translate, scale, and best fit (warp) between coordinate systems, using either 3- or 7-point transformation routines.

<u>Graphical Display of COGO Functions</u>. Provide a graphical screen display of COGO calculations, such as stakeout, curves, etc.

The following paragraphs contain representative examples of some of the more commonly used COGO routines used in the field. The algorithms used in these COGO routines can be found in any of the surveying texts listed at Appendix A-2. These examples are taken from TDS HP-48GX software or the Trimble TSC software--COGO routines are all basically the same, regardless of the software vendor (e.g., 3-point resection algorithms are identical in output).

7-11. Total Station Resection Computations

Generally, total stations are set up over known control points and oriented in azimuth to another fixed point. Often the total station must be set up at a remote point in order to observe areas not visible from the established control points. This typically occurs on property surveys where multiple corners have been recovered but cannot be physically occupied with the instrument. In such a case, the instrument is set up at an unmarked point that can see two or more of the property corners plus affords good visibility to the survey area.

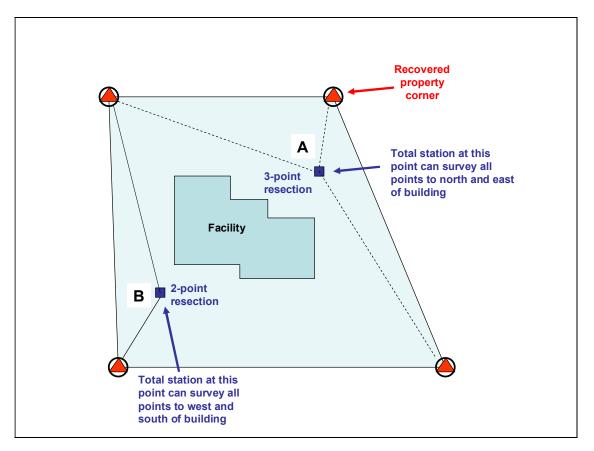


Figure 7-5. Two- and Three-point total station resections

As illustrated in Figure 7-5 above, the total station is set at points A and B in order to delineate facilities, utilities, and topography on this site. From these two points, the entire project site (including the building exterior walls) can be viewed. To position the instrument relative to the recovered property corners, either two- or three-point resections can be performed, as shown at points B and A respectively. The rodman places the prism pole at each corner and shots are taken and saved in the data collector. In practice, only a two-point resection would be performed at both points A and B since the total station can measure distances to both points and the angle between them; providing a redundant solution of the instrument's position. (Three-point resections require only observing of the two angles--three directions-between the three points for a solution--a practice once performed with traditional transits or theodolites). Some COGO software will perform a least-squares adjustment of the resected position when redundant observations are obtained--i.e., both directions and distances on a two-point resection or three directions plus one or more distances on a three-point resection. Likewise, an adjustment would be performed if four or more points were used in a resection. Options for 2D and 3D resection adjustments are available on commercial COGO packages.

The following Figure 7-6 is taken from Tripod Data System fieldwork software (TDS 1999). It illustrates a two-point resection on a HP 48 type data collector, which is similar to more current CE-based data collectors. In this example, the total station is set at point "50," and is backsighted on point "6" (assumed azimuth of 000 deg). A two-point resection is made between point "6" and point "1," as shown in the first table. The two field steps are shown on the following HP 48 menu screen displays. After the direction and distance to the second point is observed, pressing "SOLVE" on the HP 48 will initiate the resection computation. The solved X-Y-Z coordinates of the unknown point "50" will be displayed along with a comparison of the precision of the observation based on the redundancy in the solution.

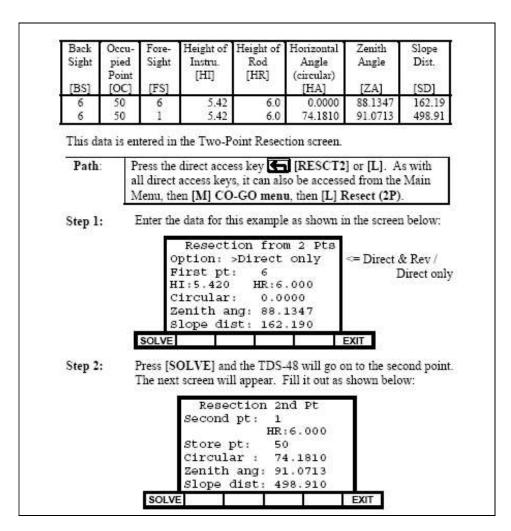


Figure 7-6. Screen displays from a HP 48 Two-Point Resection (Tripod Data Systems)

7-12. Line-Line Intersection Computations

Often the center of a rectangular object cannot be sighted but the corners can be cut in from one of more set ups. An example might be a steel tower structure where all four legs can be sighted from a single total station setup point--see Figure 7-7. The legs are shot with a prism at the base or at a constant elevation using a reflectorless total station. Given the coordinates of the four corners, the center of the object can be calculated. Most COGO routines can do this automatically and store the final coordinates of the object's center.

Appendix L Glossary

L-1. Abbreviations and Acronyms

1D	One Dimensional
2D	Two-dimensional
2DRMS	Twice the distance root mean square
3D	
А-Е	Architect-Engineer
	Architect/Engineer/Construction
	American Congress on Surveying and Mapping
ADA	
AFB	
ALTA	American Land Title Association
AM/FM	Automated Mapping/ Facility Mapping
	Aircraft Obstruction Surveys
ARP	Antenna Reference Point
	American Society of Civil Engineers
	American Society for Photogrammetry and Remote Sensing
	Base Flood Elevation
	Bureau of Land Management
BS	
	Computer Aided Drafting and Design
	Computer Aided Civil Engineering
	California Department of Transportation
	Corps of Engineers Financial Management System
	Coordinate Geometry
CONUS.	CONtinental United States
CORPSCON	CORPS CONvert
CORS	Continuously Operating Reference Stations
COR	Contracting Officer's Representative
DA	Department of the Army
DE	Difference in Elevation
DEM	Digital Elevation Model
	Department of Defense
DOT	Department of Transportation
	Defense Federal Acquisition Regulation Supplement
DGPS	Differential Global Positioning System
DTM	Digital Terrain Model
EAC	Echelons Above Corps
EDM	Electronic Distance Measurement
EFARS	Engineer Federal Acquisition Regulation Supplement
EM	Engineer Manual
ERM	Elevation Reference Mark
ERDC	Engineer Research and Development Center
E&D	Engineering and Design
FA	Field Artillery
	Federal Aviation Administration
FAC	Florida Administrative Code

FAR	Federal Acquisition Regulations
	Federal Aviation Regulation
	Federal Emergency Management Agency
FFP	
	Federal Geodetic Control Subcommittee
	Federal Geographic Data Committee
	Flood Insurance Rate Map
	Flood Insurance Study
	Fair Labor Standards Act
FM	
	Facility Management Standard for Facilities, Infrastructure, and Environment
	Field Operating Activity
FS	
	General and Administrative
	Geometric Dilution of Position
	Geographic Information System
	Global Positioning System
	Geodetic Reference System of 1980
GR5 00	
	General Support
	Grid Zone Designator
	High Accuracy Regional Networks
	Height of Instrument
	Horizontal Dilution of Position
	High Precision Geodetic Networks
	Height of Reflector
НТ	
	Hazardous, Toxic, or radioactive Waste
	Headquarters, US Army Corps of Engineers
-	Indefinite Delivery Contract
	International Earth Rotation Service
	Independent Government Estimate
	International Great Lakes Datum of 1955
	International Great Lakes Datum of 1985
	Instrument Landing System
INT	
	Information Technology Lab
	International Terrestrial Reference Frame
	Joint Travel Regulation
	Contracting Officer
	Lambert Conformal Conic
	Linear Error of Closure
	LIght Detection And Ranging
	Low Water Reference Plane
	Major Army Command
	MicroStation Design Language
	Military Grid-Reference System
	Mean High Water
	Mean Lower Low Water
	Multiple Launch Rocket System
	Microwave Landing System

MSL Mean Sea Level MSL1912 Mean Sea Level Datum of 1912 NAD 27 North American Datum of 1927 NAD 83 North American Datum of 1983
NAD 27 North American Datum of 1927
NADCON North American Datum Conversion
NASNational Airspace System
NAVAID
NAVAID
NDGPS
NFIP
NGRS
NGS
NGVD 29 National Geodetic Vertical Datum 1929
NMAS National Map Accuracy Standard
NMP National Mapping Program
NOAA
NOS
NSRS National Spatial Reference System
NSSDA National Standard for Spatial Data Accuracy
NVCN National Vertical Control Network
OCONUS Outside the Continental United States
OHWM Ordinary High Water Mark
OPUS On-Line Positioning User Service
OTF On-the-Fly
P&S Plans and Specifications
PADS Position and Azimuth Determination System
PBM Permanent Benchmark
PDOPPosition Dilution of Position
PDSC Professional Development Support Center
PI Point of Intersection
PLGRPrecise Lightweight Geodetic Receiver
PM Project Manager or Management
POB Point of Beginning
POI Point on Line
POT Point of Tangency
PPRTK Post-Processed Real-Time Kinematic
ppmParts per Million
PR&C Purchase Request & Commitment
PRIP Plant Replacement and Improvement Program
PROSPECT Proponent Sponsored Engineer Corps Training
PVT Point of Vertical Tangent
QA
QC Quality Control
RFPRequest for Proposal
RMSRoot mean Square
RMSE Root Mean Square Error
RTKReal Time Kinematic
SCPSurvey Control Point
SDSFIE
SDTS
SI International System of Units

SOWScope or Statement of WorkSPCESurvey Planning and Coordination ElementSPCSState Plane Coordinate SystemTATarget AcquisitionTBMTemporary BenchmarkTDSTripod Data SystemsTDSETouchdown Zone ElevationTECTopographic Engineering CenterTINTriangular Irregular NetworkTMTransverse MercatorTGOTrimble Geomatics OfficeTPTurning PointTSCTrimble Survey ControllerUSUnited StatesUSACEUS Army Corps of EngineersUSARCUS Coast & Geodetic SurveyUSCGUS Coast GuardUSFSUS Forest ServiceUSGSUS Ravy Oceanographic OfficeUSNAVOCEANOUS Navy Oceanographic OfficeUSNGUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVERTical CONversionVLBIVery-Long-Baseline-Interferometry
SPCSState Plane Coordinate SystemTA
TATarget AcquisitionTBMTemporary BenchmarkTDSTripod Data SystemsTDSETouchdown Zone ElevationTECTopographic Engineering CenterTINTriangular Irregular NetworkTMTransverse MercatorTGOTrimble Geomatics OfficeTPTurning PointTSCTrimble Survey ControllerUSUnited StatesUSACEUS Army Corps of EngineersUSARCUS Coast & Geodetic SurveyUSCGUS Coast GuardUSFSUS Forest ServiceUSGSUS Geological SurveyUSNAVOCEANOUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVERTical CONversionVLBIVery-Long-Baseline-Interferometry
TBMTemporary BenchmarkTDSTripod Data SystemsTDSETouchdown Zone ElevationTECTopographic Engineering CenterTINTriangular Irregular NetworkTMTransverse MercatorTGOTrimble Geomatics OfficeTPTurning PointTSCTrimble Survey ControllerUSUnited StatesUSACEUS Army Corps of EngineersUSARCUS Army Reserve CenterUSC&GSUS Coast & Geodetic SurveyUSCGUS Forest ServiceUSGSUS Geological SurveyUSNAVOCEANOUS Navy Oceanographic OfficeUSNGUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVERTical CONversionVLBIVery-Long-Baseline-Interferometry
TDSTripod Data SystemsTDSETouchdown Zone ElevationTECTopographic Engineering CenterTINTriangular Irregular NetworkTMTransverse MercatorTGOTrimble Geomatics OfficeTPTurning PointTSCTrimble Survey ControllerUSUnited StatesUSACEUS Army Corps of EngineersUSARCUS Army Reserve CenterUSC&GSUS Coast & Geodetic SurveyUSCGUS Forest ServiceUSGSUS Geological SurveyUSNAVOCEANOUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVERTical CONversionVLBIVery-Long-Baseline-Interferometry
TDSETouchdown Zone ElevationTECTopographic Engineering CenterTINTriangular Irregular NetworkTMTransverse MercatorTGOTrimble Geomatics OfficeTPTurning PointTSCTrimble Survey ControllerUSUnited StatesUSACEUS Army Corps of EngineersUSARCUS Coast & Geodetic SurveyUSC&GSUS Coast GuardUSFSUS Forest ServiceUSGSUS Navy Oceanographic OfficeUSNGUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVERTical CONversionVLBIVery-Long-Baseline-Interferometry
TECTopographic Engineering CenterTINTriangular Irregular NetworkTMTransverse MercatorTGOTrimble Geomatics OfficeTPTurning PointTSCTrimble Survey ControllerUSUnited StatesUSACEUS Army Corps of EngineersUSARCUS Army Reserve CenterUSC&GSUS Coast & Geodetic SurveyUSCGUS Forest ServiceUSGSUS Geological SurveyUSNAVOCEANOUS Navy Oceanographic OfficeUSNGUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVERTical CONversionVLBIVery-Long-Baseline-Interferometry
TINTriangular Irregular NetworkTMTransverse MercatorTGOTrimble Geomatics OfficeTPTurning PointTSCTrimble Survey ControllerUSUnited StatesUSACEUS Army Corps of EngineersUSARCUS Army Reserve CenterUSC&GSUS Coast & Geodetic SurveyUSCGUS Forest ServiceUSGSUS Geological SurveyUSNAVOCEANOUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVery-Long-Baseline-Interferometry
TMTransverse MercatorTGOTrimble Geomatics OfficeTPTurning PointTSCTrimble Survey ControllerUSUnited StatesUSACEUS Army Corps of EngineersUSARCUS Army Reserve CenterUSC&GSUS Coast & Geodetic SurveyUSCGUS Forest ServiceUSGSUS Geological SurveyUSNAVOCEANOUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVery-Long-Baseline-Interferometry
TGOTrimble Geomatics OfficeTPTurning PointTSCTrimble Survey ControllerUSUnited StatesUSACEUS Army Corps of EngineersUSARCUS Army Reserve CenterUSC&GSUS Coast & Geodetic SurveyUSCGUS Coast GuardUSFSUS Forest ServiceUSARCUS Geological SurveyUSGSUS Navy Oceanographic OfficeUSNAVOCEANOUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVERTical CONversionVLBIVery-Long-Baseline-Interferometry
TPTurning PointTSCTrimble Survey ControllerUSUnited StatesUSACEUS Army Corps of EngineersUSARCUS Army Reserve CenterUSC&GSUS Coast & Geodetic SurveyUSCGUS Coast GuardUSFSUS Forest ServiceUSARCUS Maty Oceanographic OfficeUSNGUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVery-Long-Baseline-Interferometry
TSCTrimble Survey ControllerUSUnited StatesUSACEUS Army Corps of EngineersUSARCUS Army Reserve CenterUSC&GSUS Coast & Geodetic SurveyUSCGUS Coast GuardUSFSUS Forest ServiceUSGSUS Geological SurveyUSNAVOCEANOUS Navy Oceanographic OfficeUSNGUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVery-Long-Baseline-Interferometry
USUnited States USACEUS Army Corps of Engineers USARCUS Army Reserve Center USC&GSUS Coast & Geodetic Survey USCGUS Coast Guard USFSUS Forest Service USGSUS Forest Service USARVOCEANOUS Navy Oceanographic Office USNGUS National Grid UTMUS National Grid UTMUNIVERSAL Transverse Mercator VDOPVertical Dilution of Position VERTCONVERTical CONversion VLBIVery-Long-Baseline-Interferometry
USACEUS Army Corps of Engineers USARCUS Army Reserve Center USC&GSUS Coast & Geodetic Survey USCGUS Coast Guard USFSUS Forest Service USGSUS Geological Survey USNAVOCEANOUS Navy Oceanographic Office USNGUS National Grid UTMUNIVERSAL Transverse Mercator VDOPVertical Dilution of Position VERTCONVERTical CONversion VLBIVery-Long-Baseline-Interferometry
USARCUS Army Reserve CenterUSC&GSUS Coast & Geodetic SurveyUSCGUS Coast GuardUSFSUS Forest ServiceUSGSUS Geological SurveyUSNAVOCEANOUS Navy Oceanographic OfficeUSNGUS National GridUTMUniversal Transverse MercatorVDOPVertical Dilution of PositionVERTCONVERTical CONversionVLBIVery-Long-Baseline-Interferometry
USC&GSUS Coast & Geodetic Survey USCGUS Coast Guard USFSUS Forest Service USGSUS Geological Survey USNAVOCEANOUS Navy Oceanographic Office USNGUS National Grid UTMUS National Grid UTMUNIVERSAL Transverse Mercator VDOPVertical Dilution of Position VERTCONVERTical CONversion VLBIVery-Long-Baseline-Interferometry
USCGUS Coast Guard USFSUS Forest Service USGSUS Geological Survey USNAVOCEANOUS Navy Oceanographic Office USNGUS National Grid UTMUS National Grid UTMUNIVERSAL Transverse Mercator VDOPVertical Dilution of Position VERTCONVERTical CONversion VLBIVery-Long-Baseline-Interferometry
USGSUS Geological Survey USNAVOCEANOUS Navy Oceanographic Office USNGUS National Grid UTMUniversal Transverse Mercator VDOPVertical Dilution of Position VERTCONVERTical CONversion VLBIVery-Long-Baseline-Interferometry
USNAVOCEANO US Navy Oceanographic Office USNG US National Grid UTM Universal Transverse Mercator VDOP Vertical Dilution of Position VERTCON VERTical CONversion VLBI Very-Long-Baseline-Interferometry
USNAVOCEANO US Navy Oceanographic Office USNG US National Grid UTM Universal Transverse Mercator VDOP Vertical Dilution of Position VERTCON VERTical CONversion VLBI Very-Long-Baseline-Interferometry
UTM Universal Transverse Mercator VDOP Vertical Dilution of Position VERTCON VERTical CONversion VLBI Very-Long-Baseline-Interferometry
VDOP
VERTCON VERTical CONversion VLBI Very-Long-Baseline-Interferometry
VLBIVery-Long-Baseline-Interferometry
WAAS Wide Area Augmentation System
WGS 84 World Geodetic System of 1984
WRDA Water Resources Development Act
XREF External Reference
ZDZenith Distance

L-2. Terms

Absolute or Autonomous GPS

Operation with a single receiver for a desired position. This receiver may be positioned to be stationary over a point. This mode of positioning is the most common military and civil application.

Accuracy

The degree to which an estimated (mean) value is compatible with an expected value. Accuracy implies the estimated value is unbiased.

Adjustment

Adjustment is the process of estimation and minimization of deviations between measurements and a mathematical model.

Altimeter

An instrument that measures elevation differences usually based on atmospheric pressure measurements.

Altitude

The vertical angle between the horizontal plane of the observer and a directional line to the object.

Angle of Depression A negative altitude.

Angle of Elevation A positive altitude.

Angular Misclosure Difference in the actual and theoretical sum of a series of angles.

Archiving Storing of documents and information.

Astronomical Latitude

Angle between the plumb line and the plane of celestial equator. Also defined as the angle between the plane of the horizon and the axis of rotation of the earth. Astronomical latitude applies only to positions on the earth and is reckoned from the astronomic equator, north and south through 90E. Astronomical latitude is the latitude that results directly from observations of celestial bodies, uncorrected for deflection of the vertical.

Astronomical Longitude

Arbitrarily chosen angle between the plane of the celestial meridian and the plane of an initial meridian. Astronomical longitude is the longitude that results directly from observations on celestial bodies, uncorrected for deflection of the vertical.

Astronomical Triangle

A spherical triangle formed by arcs of great circles connecting the celestial pole, the zenith and a celestial body. The angles of the astronomical triangles are: at the pole, the hour angle; at the celestial body, the parallactic angle; at the zenith, the azimuth angle. The sides are: pole to zenith, the co-latitude; zenith to celestial body, the zenith distance; and celestial body to pole, the polar distance.

Atmospheric Refraction

Refraction of electromagnetic radiation through the atmosphere causing the line-of-sight to deviate from a straight path. Mainly temperature and pressure conditions determine the magnitude and direction of curvature affecting the path of light from a source. Refraction causes the ray to follow a curved path normal the surface gradient.

Azimuth

The horizontal direction of a line clockwise from a reference plane, usually the meridian. Often called forward azimuth to differentiate from back azimuth.

Azimuth Angle

The angle less than 180° between the plane of the celestial meridian and the vertical plane with the observed object, reckoned from the direction of the elevated pole. In astronomic work, the azimuth angle is the spherical angle at the zenith in the astronomical triangle, which is composed of the pole, the zenith and the star. In geodetic work, it is the horizontal angle between the celestial pole and the observed terrestrial object.

Azimuth Closure

Difference in arc-seconds of the measured or adjusted azimuth value with the true or published azimuth value.

Backsight

A sight on a previously established traverse or triangulation station and not the closing sight on the traverse. A reading on a rod held on a point whose elevation has been previously determined.

Barometric Leveling

Determining differences of elevation from measured differences of atmospheric pressure observed with a barometer. If the elevation of one station above a datum is known, the approximate elevations of other station can be determined by barometric leveling. Barometric leveling is widely used in reconnaissance and exploratory surveys.

Baseline

Resultant three-dimensional vector between any two stations with respect to a given coordinate system. The primary reference line in a construction system.

Base net

The primary baseline used for densification of survey stations to form a network.

Base Points

The beginning points for a traverse that will be used in triangulation or trilateration.

Base Control

The horizontal and vertical control points and coordinates used to establish a base network. Base control is determined by field surveys and permanently marked or monumented for further surveys.

Bearing

The direction of a line with respect to the meridian described by degrees, minutes, and seconds within a quadrant of the circle. Bearings are measured clockwise or counterclockwise from north or south, depending on the quadrant.

Benchmark

A permanent material object, natural or artificial, on a marked point of known elevation.

Best Fit

To represent a given set of points by a smooth function, curve, or surface which minimizes the deviations of the fit.

Bipod

A two-legged support structure for an instrument or survey signal at a height convenient for the observer.

Bluebook

Another term for the "FGCS Input Formats and Specifications of the National Geodetic Data Base".

Blunder

A mistake or gross error.

Bureau International de l'Heure

The Bureau was founded in 1919 and its offices since then have been at the Paris Observatory. By an action of the International Astronomical Union, the BIH ceased to exist on 1 January 1988 and a new organization, the International Earth Rotation Service (IERS) was formed to deal with determination of the Earth's rotation.

Cadastral Survey

Relates to land boundaries and subdivisions, and creates units suitable for transfer or to define the limitations of title. The term cadastral survey is now used to designate the surveys of the public lands of the US, including retracement surveys for identification and resurveys for the restoration of property lines; the term can also be applied properly to corresponding surveys outside the public lands, although such surveys are usually termed land surveys through preference.

Calibration

Determining the systematic errors in an instrument by comparing measurements with correct values. The correct value is established either by definition or by measurement with a device that has itself been calibrated or of much higher precision.

Cartesian Coordinates

A system with its origin at the center of the earth and the x and y and z axes in the plane of the equator. Typically, the x-axis passes through the meridian of Greenwich, and the z-axis coincides with the earth's axis of rotation. The three axes are mutually orthogonal and form a right-handed system.

Cartesian System

A coordinate system consisting of axes intersecting at a common point (origin). The coordinate of a point is the orthogonal distance between that point and the hyperplane determined by all axes. A Cartesian coordinate system has all the axes intersecting at right angles, and the system is called a rectangular.

Celestial Equator

A great circle on the celestial sphere with equidistant points from the celestial poles. The plane of the earth's equator, if extended, would coincide with that of the celestial equator.

Celestial pole

A reference point at the point of intersection of an indefinite extension of the earth's axis of rotation and the apparent celestial sphere.

L-7

Celestial sphere

An imaginary sphere of infinite radius with the earth as a center. It rotates from east to west on a prolongation of the earth's axis.

Central Meridian

A line of constant longitude at the center of a graticule. The central meridian is used as a base for constructing the other lines of the graticule. The meridian is used as the y-axis in computing tables for a State Plane Coordinate system. That line, on a graticule, which represents a meridian and which is an axis of symmetry.

Chain

Equal to 66 feet or 100 links. The unit of length prescribed by law for the survey of the US public lands. One acre equals 10 square chains.

Chained Traverse Observations and measurements performed with tape.

Chaining Measuring distances on the ground with a graduated tape or with a chain.

Chart Datum

Reference surface for soundings on a nautical chart. It is usually taken to correspond to a low water elevation, and its depression below mean sea level is represented by the symbol Z_o . Since 1989, chart datum has been implemented to mean lower low water for all marine waters of the US its territories, Commonwealth of Puerto Rico and Trust Territory of the Pacific Islands.

Chi-square Testing

Non-parametric statistical test used to classify the shape of the distribution of the data.

Chronometer

A portable timekeeper with compensated balance, capable of showing time with extreme precision and accuracy.

Circle Position

A prescribed setting (reading) of the horizontal circle of a direction theodolite, to be used for the observation on the initial station of a series of stations that are to be observed.

Circuit Closure

Difference between measured or adjusted value and the true or published value.

Clarke 1866 Ellipsoid

The reference ellipsoid used for the NAD 27 horizontal datum. It is a non-geocentric ellipsoid formerly used for mapping in North America.

Closed Traverse

Starts and ends at the same point or at stations whose positions have been determined by other surveys.

Collimation

A physical alignment of a survey target or antenna over a mark or to a reference line.

Collimation Error

The angle between the actual line of sight through an optical instrument and an alignment.

Compass Rule

The correction applied to the departure (or latitude) of any course in a traverse has the same ratio to the total misclosure in departure (or latitude) as the length of the course has to the total length of the traverse.

Confidence Level

Statistical probability (in percent) based on the standard deviation or standard error associated with the normal probability density function. The confidence level is assigned according to an expansion factor multiplied by the magnitude of one standard error. The expansion factor is based on values found in probability tables at a chosen level of significance.

Conformal

Map projection that preserves shape.

Contour

An imaginary line on the ground with all points at the same elevation above or below a specified reference surface.

Control

Data used in geodesy and cartography to determine the positions and elevations of points on the earth's surface or on a cartographic representation of that surface. A collective term for a system of marks or objects on the earth or on a map or a photograph whose positions or elevation are determined.

Control Densification

Addition of control throughout a region or network.

Control Monuments

Existing local control or benchmarks that may consist of any Federal, state, local or private agency points.

Control Point

A point with assigned coordinates is sometimes used as a synonym for control station. However, a control point need not be realized by a marker on the ground.

Control Survey

A survey which provides coordinates (horizontal or vertical) of points to which supplementary surveys are adjusted.

Control Traverse A survey traverse made to establish control.

Conventional Terrestrial Pole (CTP)

The origin of the WGS 84 Cartesian system is the earth's center of mass. The Z-axis is parallel to the direction of the CTP for polar motion, as defined by the Bureau of International de l'Heure (BIH), and equal to the rotation axis of the WGS 84 ellipsoid. The X-axis is the intersection of the WGS 84 reference meridian plane and the CTP's equator, the reference meridian being parallel to the zero meridian defined by the BIH and equal to the X-axis of the WGS 84 ellipsoid. The Y-axis completes a right-handed, earth-centered, earth-fixed orthogonal coordinate system, measured in the plane of the CTP equator 90 degrees east of the X-axis and equal to the Y-axis of the WGS 84 ellipsoid.

Coordinate Transformation

A mathematical process for obtaining a modified set of coordinates through some combination of rotation of coordinate axes at their point of origin, change of scale along coordinate axes, or translation through space

CORPSCON

(Corps Convert) Software package (based on NADCON) capable of performing coordinate transformations between NAD 83 and NAD 27 datums.

Crandall Method

Traverse misclosure in azimuth or angle is first distributed in equal portions to all the measured angles. The adjusted angles are then held fixed and all remaining coordinate corrections distributed among the distance measurements.

Cross sections

A survey line run perpendicular to the alignment of a project, channel or structure.

Curvature

The rate at which a curve deviates from a straight line. The parametric vector described by dt/ds, where t is the vector tangent to a curve and s is the distance along that curve.

Datum

Any numerical or geometrical quantity or set of such quantities which serve as a reference or base for other quantities.

Declination

The angle, at the center of the celestial sphere, between the plane of the celestial equator and a line from the center to the point of interest (on a celestial body).

Deflection of the Vertical

The spatial angular difference between the upward direction of a plumb line and the normal to the reference ellipsoid. Often expressed in two orthogonal components in the meridian and the prime vertical directions.

Deflection Traverse

Direction of each course measured as an angle from the direction of the preceding course.

Deformation Monitoring

Observing the movement and condition of structures by describing and modeling its change in shape.

Departure

The orthogonal projection of a line onto an east-west axis of reference. The departure of a line is the difference of the meridional distances or longitudes of the ends of the line.

Differential GPS

Process of measuring the differences in coordinates between two receiver points, each of which is simultaneously observing/measuring satellite code ranges and/or carrier phases from the NAVSTAR GPS constellation. Relative positioning with GPS can be performed by a static or kinematic modes.

Differential Leveling

The process of measuring the difference of elevation between any two points by spirit leveling.

Direction

The angle between a line or plane and an arbitrarily chosen reference line or plane. At a triangulation station, observed horizontal angles are referred to a common reference line and termed horizontal direction. A line, real or imaginary, pointing away from some specified point or locality toward another point. Direction has two meanings: that of a numerical value and that of a pointing line.

Direct Leveling

The determination of differences of elevation through a continuous series of short horizontal lines. Vertical distances from these lines to adjacent ground marks are determined by direct observations on graduated rods with a leveling instrument equipped with a spirit level.

Distance Angle

An angle in a triangle opposite a side used as a base in the solution of the triangle, or a side whose length is to be computed.

Dumpy Level

The telescope permanently attached to the leveling base, either rigidly to by a hinge that can be manipulated by a micrometer screw.

Earth-Centered Ellipsoid

Center at the Earth's center of mass and minor semi-axis coincident with the Earth's axis of rotation.

Easting

The distance eastward (positive) or westward (negative) of a point from a particular meridian taken as reference.

Eccentricity

The ratio of the distance from the center of an ellipse to its focus on the major semi-axis.

Electronic Distance Measurement (EDM)

Timing or phase comparison of electro-magnetic signal to determine an interferometric distance.

Elevation

The height of an object above some reference datum.

Ellipsoid

Formed by revolving an ellipse about its minor semi-axis. The most commonly used reference ellipsoids in North America are: Clarke 1866, Geodetic Reference System of 1980 (GRS 80), World Geodetic System of 1972 (WGS 72) and World Geodetic System of 1984 (WGS 84).

Ellipsoid height

The magnitude h of a point above or below the reference ellipsoid measured along the normal to the ellipsoid surface.

Error

The difference between the measured value of a quantity and the theoretical or defined value of that quantity.

Error Ellipse

An elliptically shaped region with dimensions corresponding to a certain probability at a given confidence level.

Error of Closure

Difference in the measured and predicted value of the circuit along the perimeter of a geometric figure.

Finite Element Method

Obtaining an approximate solution to a problem for which the governing differential equations and boundary conditions are known. The method divides the region of interest into numerous, interconnected sub-regions (finite elements) over which simple, approximating functions are used to represent the unknown quantities.

Fixed Elevation

Adopted as a result of tide observations or previous adjustment of spirit leveling, and which is held at its accepted value in any subsequent adjustment.

Foresight

An observation to the next instrument station. The reading on a rod that is held at a point whose elevation is to be determined.

Frequency

The number of complete cycles per second existing in any form of wave motion. Geodesic Line Shortest distance between any two points on any mathematically defined surface.

Geodesy

Determination of the time-varying size and figure of the earth by such direct measurements as triangulation, leveling and gravimetric observations.

Geodetic Control

Established and adjusted horizontal and/or vertical control in which the shape and size of the earth have been considered in position computations.

Geodetic Coordinates

Angular latitudinal and longitudinal coordinates defined with respect to a reference ellipsoid.

Geodetic Height See Ellipsoid height.

Geodetic Latitude The angle which the normal at a point on the reference ellipsoid makes with the plane of the equator.

Geodetic Leveling

The observation of the differences in elevation by means of a continuous series of short horizontal lines of sight.

Geodetic Longitude

The angle subtended at the pole between the plane of the geodetic meridian and the plane of a reference meridian (Greenwich).

Geodetic North

Direction tangent to a meridian pointing toward the pole defining astronomic north, also called true north.

Geodetic Reference System of 1980 Reference ellipsoid used to establish the NAD 83 system of geodetic coordinates.

Geoid

An equipotential surface of the gravity field approximating the earth's surface and corresponding with mean sea level in the oceans and its extension through the continents.

GPS (Global Positioning System)

DoD satellite constellation providing range, time, and position information through a GPS receiver system.

Gravimeter

Instrument for measuring changes in gravity between two points.

Gravity

Combined acceleration potential of an object due to gravitation and centrifugal forces.

Greenwich Meridian

The astronomic meridian through the center of the Airy transit instrument of the Greenwich Observatory, Greenwich, England. By international agreement in 1884, the Greenwich meridian was adopted as the meridian from which all longitudes, worldwide, would be calculated.

Grid Azimuth

The angle in the plane of projection between a straight line and the line (y-axis) in a plane rectangular coordinate system representing the central meridian. While essentially a map-related quantity, a grid azimuth may, by mathematical processes, be transformed into a survey- related or ground-related quantity.

Grid Inverse

The computation of length and azimuth from coordinates on a grid.

Grid Meridian

Line parallel to the line representing the central meridian or y-axis of a grid on a map. The map line parallel to the line representing the y-axis or central meridian in a rectangular coordinate system.

Gunter's Chain

A measuring device once used in land surveying. It was composed of 100 metallic links fastened together with rings. The total length of the chain is 66 feet. Also called a four-pole chain.

Gyrotheodolite

A gyroscopic device used to measure azimuth that is built-in or attached to a theodolite.

Histogram

A graphical representation of relative frequency of an outcome partitioned by class interval. The frequency of occurrence is indicated by the height of a rectangle whose base is proportional to the class interval.

Horizontal Control Determines horizontal positions with respect to parallels and meridians or to other lines of reference.

Hour Circle

Any great circle on the celestial sphere whose plane is perpendicular to the plane of the celestial equator.

Index Error

A systematic error caused by deviation of an index mark or zero mark on an instrument having a scale or vernier, so that the instrument gives a non-zero reading when it should give a reading of zero. The distance error from the foot of a leveling rod to the nominal origin (theoretical zero) of the scale.

Indirect Leveling

The determination of differences of elevation from vertical angles and horizontal distances.

Interior Angle

An angle between adjacent sides of a closed figure and lying on the inside of the figure. The three angles within a triangle are interior angles.

International Foot Defined by the ratio 30.48/100 meters.

International System of Units (SI)

A self-consistent system of units adopted by the general Conference on Weights and Measures in 1960 as a modification of the then-existing metric system.

Interpolation Method

Determination of a intermediate value between given values using a known or assumed rate of change of the values between the given values.

Intersection

Determining the horizontal position of a point by observations from two or more points of known position. Thus measuring directions or distances that intersect at the station being located. A station whose horizontal position is located by intersection is known as an intersection station.

Intervisibility

When two stations are visible to each other in a survey net.

Invar

An alloy of iron containing nickel, and small amounts of chromium to increase hardness, manganese to facilitate drawing, and carbon to raise the elastic limit, and having a very low coefficient of thermal expansion (about 1/25 that of steel).

Isogonic Chart

A system of isogonic lines, each for a different value of the magnetic declination.

Isogonic Line

A line drawn on a chart or map and connecting all points representing points on the earth having equal magnetic declination at a given time.

Laplace Azimuth

A geodetic azimuth derived from an astronomic azimuth by use of the Laplace equation.

Laplace Condition

Arises from the fact that a deflection of the vertical in the plane of the prime vertical will give a difference between astronomic and geodetic longitude and between astronomic and geodetic azimuth. Conversely, the observed differences between astronomic and geodetic values of the longitude and of the azimuth may both be used to determine the deflection in the plane of the prime vertical.

Laplace Equation

Expresses the relationship between astronomic and geodetic azimuths in terms of astronomic and geodetic longitudes and geodetic latitude.

Laplace Station

A triangulation or traverse station at which a Laplace azimuth is determined. At a Laplace station both astronomic longitude and astronomic azimuth are determined.

Least Count

The finest reading that can be made directly (without estimation) from a vernier or micrometer.

Least Squares Adjustment

The adjustment of the values of either the measured angles or the measured distances in a traverse using the condition that the sum of the squares of the residuals is a minimum.

Level

Any device sensitive to the direction of gravity and used to indicate directions perpendicular to that of gravity at a point.

Level Datum

A level surface to which elevations are referred. The generally adopted level datum for leveling in the US is mean sea level. For local surveys, an arbitrary level datum is often adopted and defined in terms of an assumed elevation for some physical mark.

Level Net

Lines of spirit leveling connected together to form a system of loops or circuits extending over an area.

Line of Sight

The line extending from an instrument along which distant objects are seen, when viewed with a telescope or other sighting device.

Local Coordinate System

Where the coordinate system origin is assigned arbitrary values and is within the region being surveyed and used principally for points within that region.

Local Datum

Defines a coordinate system that is used only over a region of very limited extent.

Loop Traverse

A closed traverse that starts and ends at the same station. A pattern of measurements in the field, so that the final measurement is made at the same place as the first measurement.

Magnetic Bearing

The angle with respect to magnetic north or magnetic south stated as east or west of the magnetic meridian.

Magnetic Meridian

The vertical plane through the magnetic pole including the direction, at any point, of the horizontal component of the Earth's magnetic field.

Major Semi-Axis

The line from the center of an ellipse to the extremity of the longest diameter. The term is also used to mean the length of the line.

Map

A conventional representation, usually on a plane surface and at an established scale, of the physical features (natural, artificial, or both) of a part or whole of the Earth's surface by means of signs and symbols and with the means of orientation indicated.

Map Accuracy

The accuracy with which a map represents. Three types of error commonly occur on maps: errors of representation, which occur because conventional signs must be used to represent natural or man-made features such as forests, buildings and cities; errors of identification, which occur because a non-existent feature is shown or is misidentified; and errors of position, which occur when an object is shown in the wrong position. Errors of position are commonly classified into two types: errors of horizontal location and errors of elevation. A third type, often neglected, is errors of orientation.

Map Scale

The ratio of a specified distance on a map to the corresponding distance in the mapped object.

Mean Angle Average value of the angles.

Mean Lower Low Water (MLLW)

The average height of all lower low waters recorded over a 19-year period.

Mean Sea Level Datum

Adopted as a standard datum for heights or elevations. The Sea Level Datum of 1929, the current standard for geodetic leveling in the United States, is based on tidal observations over a number of years at various tide stations along the coasts.

Metric Unit Belonging to or derived from the SI system of units.

Micrometer

In general, any instrument for measuring small distances very accurately. In astronomy and geodesy, a device, for attachment to a telescope or microscope, consisting of a mark moved across the field of view by a screw connected to a graduated drum and vernier. If the mark is a hair-like filament, the micrometer is called a filar micrometer.

Minor Semi-Axis

The line from the center of an ellipse to the extremity of the shortest diameter. I.e., one of the two shortest lines from the center to the ellipse. The term is also used to mean the length of the line.

Misclosure

The difference between a computed and measured value.

Monument

A physical object used as an indication of the position on the ground of a survey station.

NADCON

The National Geodetic Survey developed the conversion program NADCON (North American Datum Conversion) to convert to and from North American Datum of 1983. The technique used is based on a biharmonic equation classically used to model plate deflections. NADCON works exclusively in geographical coordinates (latitude/longitude).

Nadir

The point directly beneath the instrument and directly opposite to the zenith or the lowest point.

National Geodetic Vertical Datum 1929

Formerly adopted as the standard geodetic datum for heights, based on an adjustment holding 26 primary tide stations in North America fixed.

National Map Accuracy Standards Specifications of the accuracy required of topographic maps published by the US at various scales.

National Tidal Datum Epoch

A period of 19 years adopted by the National Ocean Survey as the period over which observations of tides are to be taken and reduced to average values for tidal datums.

Network Interconnected system of surveyed points.

Non-SI units Units of measurement not associated with International System of Units (SI).

North American Datum of 1927

Formerly adopted as the standard geodetic datum for horizontal positioning. Based on the Clarke ellipsoid of 1866, the geodetic positions of this system are derived from a readjustment of survey observations throughout North America.

North American Datum of 1983

Adopted as the standard geodetic datum for horizontal positioning. Based on the Geodetic Reference System of 1980, the geodetic positions of this system are derived from a readjustment of survey observations throughout North America.

North American Vertical Datum of 1988 Adopted as the standard geodetic datum for heights.

Northing

A linear distance, in the coordinate system of a map grid, northwards from the east-west line through the origin (or false origin).

Open Traverse

Begins from a station of known or adopted position, but does not end upon such a station.

Optical Micrometer

Consists of a prism or lens placed in the path of light entering a telescope and rotatable, by means of a graduated linkage, about a horizontal axis perpendicular to the optical axis of the telescope axis. Also called an optical-mechanical compensator. The device is usually placed in front of the objective of a telescope, but may be placed immediately after it. The parallel-plate optical micrometer is the form usually found in leveling instruments.

Optical Plummet

A small telescope having a 90° bend in its optical axis and attached to an instrument in such a way that the line of sight proceeds horizontally from the eyepiece to a point on the vertical axis of the instrument and from that point vertically downwards. In use, the observer, looking into the plummet, brings a point on the instrument vertically above a specified point (usually a geodetic or other mark) below it.

Order of Accuracy

Defines the general accuracy of the measurements made in a survey. The order of accuracy of surveys are divided into four classes labeled: First Order, Second Order, Third Order and Fourth or lower order.

Origin

That point in a coordinate system which has defined initial coordinates and not coordinates determined by measurement. This point is usually given the coordinates (0,0) in a coordinate system in the plane and (0,0,0) in a coordinate system in space.

Orthometric Height

The elevation H of a point above or below the geoid.

Parallax

The apparent displacement of the position of a body, with respect to a reference point or system, caused by a shift in the point of observation.

Philadelphia Leveling Rod

Having a target but with graduations so styled that the rod may also be used as a self-reading leveling rod. Also called a Philadelphia rod. If a length greater than 7 feet is needed, the target is clamped at 7 feet and raised by extending the rod. When the target is used, the rod is read by vernier to 0.001 foot. When the rod is used as a self-reading leveling rod, the rod is read to 0.005 foot.

Photogrammetry

Deducing the physical dimensions of objects from measurements on photographs of the objects.

Picture Point

A terrain feature easily identified on an aerial photograph and whose horizontal or vertical position or both have been determined by survey measurements. Picture points are marked on the aerial photographs by the surveyor, and are used by the photomapper. Planetable

A field device for plotting the lines of a survey directly from observations. It consists essentially of a drawing board mounted on a tripod, with a leveling device designed as part of the board and tripod.

Planimetric Feature Item detailed on a planimetric map.

Plumb Line The direction normal to the geopotential field. The continuous curve to which the gradient of gravity is everywhere tangential.

Positional Error The amount by which the actual location of a cartographic feature fails to agree with the feature's true position.

Post-Processed Real-Time Kinematic GPS GPS carrier phase positioning performed without real-time data link and solution.

Precision

The amount by which a measurement deviates from its mean.

Prime Meridian

The meridian of longitude 0°, used as the origin for measurement of longitude. The meridian of Greenwich, England, is almost universally used for this purpose.

Prime Vertical

The vertical circle through the east and west points of the horizon. It may be true, magnetic, compass or grid depending upon which east or west points are involved.

Project Control Control used for a specific project.

Project Datum Datum used for a specific project.

Projection

A set of functions, or the corresponding geometric constructions, relating points on one surface to points on another surface. A projection requires every point on the first surface to correspond one-to-one to points on the second surface.

Quadrangle

Consisting of four specified points and the lines or line segments on which they lie. The quadrangle and the quadrilateral differ in that the quadrangle is defined by four specified angle points, the quadrilateral by four specified lines or line-segments.

Random Error

Randomly distributed deviations from the mean value.

Range Pole

A simple rod fitted with a sharp-pointed, shoe of steel and usually painted alternately in red and white bands at 1-foot intervals.

Readings The observed value obtained by noting and/or recording scales.

Real-time An event or measurement reported or recorded at the same time as the event is occurring through the absence of delay in getting, sending and receiving data.

Real-Time Kinematic GPS GPS carrier phase processing and positioning in real-time.

Reciprocal Leveling Measuring vertical angles or making rod readings from two instrument positions for the purpose of compensating for the effects of refraction.

Rectangular Coordinate Systems Coordinates on any system in which the axes of reference intersect at right angles.

Redundant Measurements Taking more measurements than are minimally required for a unique solution.

Reference Meridian, True Based on the astronomical meridian.

Reference Meridian, Magnetic Based on the magnetic pole.

Reference Point Used as an origin from which measurements are taken or to which measurements are referred.

Refraction

The bending of rays by the substance through which the rays pass. The amount and direction of bending are determined by its refractive index.

Relative Accuracy

Indicated by the dimensions of the relative confidence ellipse between two points. A quantity expressing the effect of random errors on the location of one point or feature with respect to another.

Repeating Theodolite

Designed so that the sum of successive measurements of an angle can be read directly on the graduated horizontal circle.

Resection Determining the location of a point by extending lines of known direction to two other known points.

Sexagesimal System

Notation by increments of 60. As the division of the circle into 360°, each degree into 60 minutes, and each minute into 60 seconds.

Set-up

In general, the situation in which a surveying instrument is in position at a point from which observations are made.

Spheroid Used as a synonym for ellipsoid.

Spirit Level

A closed glass tube (vial) of circular cross section. Its center line forms a circular arc with precise form and filled with ether or liquid of low viscosity, with enough free space left for a bubble of air or gas.

Stadia Constant

The sum of the focal length of a telescope and the distance from the vertical axis of the instrument on which the telescope is mounted to the center of the objective lens-system.

Stadia Traverse

Distances are determined using a stadia rod. A stadia traverse is suited to regions of moderate relief with an adequate network of roads. If done carefully, such a traverse can establish elevations accurate enough for compiling maps with any contour interval now standard.

Standard Error

The standard deviation of the errors associated with physical measurements of an unknown quantity, or statistical estimates of an unknown quantity or of a random variable.

Systematic Error

Errors that affect the position (bias) of the mean. Systematic errors are due to unmodeled affects on the measurements that have a constant or systematic value.

State Plane Coordinate System (SPCS) A planar reference coordinate system used in the United States.

Strength of Figure

A number relating the precision in positioning with the geometry with which measurements are made.

Subtense Bar

A bar with two marks at a fixed, known distance apart used for determining the horizontal distance from an observer by means of the measuring the angle subtended at the observer between the marks.

Taping Measuring a distance on the using a surveyor's tape. Three-wire Leveling The scale on the leveling rod is read at each of the three lines and the average is used for the final result.

Topographic Map

A map showing the horizontal and vertical locations of the natural and man-made features represented and the projected elevations of the surroundings.

Transformation

Converting a position from one coordinate system to another.

Transit

The apparent passage of a star or other celestial body across a defined line of the celestial sphere.

Transit Rule

The correction to be applied to the departure (or latitude) of any course has the same ratio to the total misclosure in departure (or latitude) as the departure (latitude) of the course has to the arithmetical sum of all the departures (latitudes) in the traverse. The transit rule is often used when it is believed that the misclosure is caused less by errors in the measured angles than by errors in the measured distances.

Transverse Mercator Projection

Mercator map projection calculated for a cylinder with axis in the equatorial plane.

Traverse

A sequence of points along which surveying measurements are made.

Triangulation

Determination of positions in a network by the measurement of angles between stations.

tribrach

The three-armed base, of a surveying instrument, in which the foot screws used in leveling the instrument are placed at the ends of the arms. Also called a leveling base or leveling head.

Trigonometric heighting

The trigonometric determination of differences of elevation from observed vertical angles and measured distances.

Trilateration

Determination of positions in a network by the measurement of distances between stations using the intersection of two or more distances to a point.

Universal Transverse Mercator A worldwide metric military coordinate system.

US Coast & Geodetic Survey (USC&GS) Now known as National Ocean Service (NOS).

US Survey Foot The unit of length defined by 1200/3937 m

Variance-Covariance Matrix

A matrix whose elements along the main diagonal are called the variances of the corresponding variables; the elements off the main diagonal are called the covariances.

Vernier

An auxiliary scale used in reading a primary scale. The total length of a given number of divisions on a vernier is equal to the total length of one more or one less than the same number of divisions on the primary scaled.

VERTCON

Acronym for vertical datum conversion. VERTCON is the computer software that converts orthometric heights between NGVD 29 to NAVD 88.

Vertical Angle

An angle in a vertical plane either in elevation or depression from the horizontal.

Vertical Circle

A graduated scale mounted on an instrument used to measure vertical angles.

Vertical Datum

Any level surface used as a reference for elevations. Although a level surface is not a plane, the vertical datum is frequently referred to as the datum plane.

World Geodetic System of 1984

Adopted as the standard geodetic datum for GPS positioning. Based on the World Geodetic System reference ellipsoid.

Wye Level

Having the telescope and attached spirit level supported in wyes (Y's) in which it can be rotated about its longitudinal axis (collimation axis) and from which it can be lifted and reversed, end for end. Also called a Y-level and wye-type leveling instrument.

Zenith

The point above the instrument where an extension of a plumb (vertical) line at the observer's position intersects the celestial sphere.

Zenith Angle

Measured in a positive direction downwards from the observer's zenith to the observed target.

Zenith Distance

The complement of the altitude, the angular distance from the zenith of the celestial body measured along a vertical circle.