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NAV-122 EXAM PREVIEW    

Instructions: 
 Review the course & exam preview below.   
 Click “Add to Cart” from the course page on the website.  You can “Continue 

Shopping” to add additional courses, or checkout.  Don’t forget to apply your 
coupon code if you have one before checkout. 

 After checkout you will be provided with links to download the official 
courses/exams.   

 At your convenience and own pace, you can review the course material.  When ready, 
select “Take Exam” to complete the live graded exam.  Don’t worry, you can take an 
exam as many times as needed to pass. 

 Upon a satisfactory completion of the course exam, which is a score of 70% or 
better, you will be provided with your course completion certificate.  Be sure to 
download and print your certificates to keep for your records.    

Exam Preview: 
1. The phase angle, δ, gives the phase relationship between the motion and the wave, 

the maximum positive response occurs δ/ω seconds after the maximum wave 
depression. 

a. True 
b. False 

2. Using Figure 4.15: Relative ship and wave heading angle, µ and the surrounding 
reference material, which of the following µ values corresponds to following seas?  

a. 270 
b. 180 
c. 90 
d. 0 

3. According to the reference material, there is a great deal of effort put into minimizing 
roll motion in ships or roll mitigation. Which of the following stabilization techniques 
matches the description: reduces the resonant peak, sometimes by adding appendages 
to the hull? 

a. Tuning stabilization 
b. Damping stabilization 
c. Equilibrium stabilization 
d. Harmonic stabilization  

4. According to the reference material, rudder dimensions are limited by the geometry 
of the ship's stern. However, it is not surprising that the larger the dimensions of the 
rudder, the more maneuverable the ship. 

a. True 
b. False 



 

5. You will probably have noticed that a typical ship's rudder is limited to a range of 
angles from about ±__ degrees. This is because at greater angles than these the 
rudder is likely to stall. 

a. 55 
b. 25 
c. 35 
d. 45 

6. According to the reference material, levels of slow speed maneuverability are 
specified in terms of turning circle and other quantifiable parameters at speeds below 
3 knots. 

a. True 
b. False 

7. Active fins are active roll stabilizers that are mounted on rotatable stocks at the turn 
of the bilge near the middle of the ship. Their effectiveness increases with the square 
of the speed. Reductions of at least __% in the average roll amplitudes are possible in 
moderate waves with a well-designed system. 

a. 25 
b. 40 
c. 50 
d. 60 

8. Generally, the turning path of a ship is characterized by four numerical measures: 
advance, transfer, tactical diameter, and steady turning diameter. All but the last are 
related to heading positions of the ship rather than tangents to the turning path. 

a. True 
b. False 

9. The response characteristics of a ship will depend upon the rudder angle ordered for 
a particular maneuver. It is common procedure for the levels of response to be 
specified with the ship using standard rudder. This is _ degrees of wheel for the USN. 

a. 10 
b. 20 
c. 30 
d. 40 

10. According to the Constraints on Rudder Design section of the reference material, the 
usual section shape is NACA 0015 (see Figure 7.20) to 0021 (relatively thick). These 
foils have a relatively constant center of pressure and thick sections are better 
structurally, and have a max thickness at __% chord length? 

a. 70 
b. 20 
c. 40 
d. 30 

 



Chapter 4 

The System: Ship Dynamics 

Learning Objectives: 

1. For Dynamics Review:

(a) Determine the equation of motion for a spring-mass-damper system with sinu­
soidal excitation and solve for motion amplitude, velocity, acceleration, and phase.

(b) Explain the significance of under-damping, over-damping, or critically damping
in a spring-mass-damper system.

( c) Identify which of the seakeeping DOFs are under-damped or over-damped.

( d) Explain what resonance is and why it is relevant to seakeeping

( e) In your own words, describe the concepts of added mass and hydrodynamic damp­
ing

2. For Model Testing in Regular Waves:

(a) Calculate the encounter frequency given the wavelength, heading, and ship speed.

(b) Explain how encounter frequency depends on heading, ship speed, and wave­
length.

( c) Describe what a transfer function is.

( d) Explain how the transfer function can help determine resulting ship motion given
wave characteristics and why the limitation of linearity is important.

( e) Describe the shape of a transfer function and what this means with respect to the
magnitude of the ship response as the encounter frequency goes from very small
though the natural frequency of the ship to very large.

3. For Strip Theory:

(a) State the assumptions/limitations associated with strip theory and explain what
they mean in your own words.

(b) Identify Maxsurf Motions seakeeping output and explain what the results mean.
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4. For Roll Mitigation:

63 

(a) Solve a roll seakeeping problem given a transfer function, vessel speed and wave
heading, and wave frequency to determine best action (how to change speed or
heading) to reduce roll motions.

(b) Describe a typical roll transfer function.

(c) Explain the effect of damping on the roll response.

( d) Calculate the roll natural frequency for a given ship.

(e) Identify and explain different devices for reducing roll motion.

(f) Calculate the damping factor given the roll decay coefficient.

5. Laboratory Objectives:

(a) Describe proper ballasting techniques for seakeeping experiments.

(b) Set proper pitch and yaw mass moments of inertia for models.

( c) Calculate the pitch gyradius using the knife edge method.

( d) Calculate the yaw gyradius using the bifilar suspension method.

( e) Measure the heave and pitch amplitude responses to given wave excitation.

( f) Measure the excitation (encounter) frequency and compare with the predicted
values.

(g) Develop a pitch and heave transfer function plot from experimental measurements.

(h) Describe the expected heave and pitch motion responses to "short" and "long"
wavelengths.

(i) Explain resonance and the effects of damping on resonant response.

(j) Describe the effects of a passive tank roll stabilization device on the roll motion
for a model in beam seas.

(k) Describe the effect of roll resonance on the roll amplitude magnification.

(1) Explain the relationship between the roll motion and the wave frequencies for a
model experiencing regular waves coming from the starboard beam.

(m) Develop a realistic test plan for a seakeeping experiment.

A ship can be considered a mass that has damping and stiffness and is experiencing an 
oscillating excitation force. Chapter 3 dealt with the specifics of the exciting force. This 
chapter will deal with how a mass with damping and stiffness responds to a sinusoidal 
excitation. Let's review the six degrees of freedom associated with ship motion: 

1. Surge 4. Roll
2. Sway 5. Pitch
3. Heave 6. Yaw

Three of these motions experience a "restoring force" due to buoyancy: heave, roll, and 
pitch. But, what is a restoring force and why is it a problem for a ship in waves? 
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4.1 A Review of Dynamics 

Let's start with Newton's Second Law: 

64 

The forces on the left-hand side include any forces acting on the body - most obviously any 
external force on the system, Fexternal, but also forces due to springs, Fspring, or damping, 

Fdamping· Consider a single point mass on a spring, as shown in Figure 4.1. There are two 
forces in the system: the force of gravity due to the mass and the spring force due to the 
spring compression or extension. Figure 4.1 also shows the Free Body Diagram (FBD) of 
the system. 

+z 

J_ 
weight 

spring 

force 

Free Bodv Diagram 

Figure 4.1: Point mass on a spring and the FBD (free body diagram) 

The force due to gravity equals mg, where m is the mass and g is the acceleration due to 
gravity, and the force due to the spring equals -kx, where k is the spring stiffness and x 

is the distance the spring is stretched. Using Newton's Second Law and these forces, the 
Equation of Motion (EOM) for the system can be written: 

-kx- mg = ma

0 = ma+kx+mg 

Acceleration is the second time-derivative of position. If position is written as x, then 
acceleration can be written as i and the EOM becomes: 

0 = mi+kx+mg 

For a ship, the stiffness is due to the buoyant force acting on the ship. Consider heave motion, 
for example. If you push the ship a foot down in the water, there is an extra buoyant force 
acting up on the ship in excess of the ship's displacement. If you then release the downward 
force on the ship, it will move up. Likewise, lifting a ship out of the water will result in less 

buoyant force than the ship's displacement, so when released the ship will move down. Thus, 
buoyancy is our restoring force, i.e. the spring in the system. Now, if we keep the gravity 
term, our x value equals the draft of a barge just for everything to be in equilibrium (in 
equilibrium there is no acceleration, so x = 0 and the position, x, equals the weight divided 
by the buoyant force). If we redefine the x = 0 to occur when the ship is in equilibrium 
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CHAPTER 4. THE SYSTEM: SHIP DYNAMICS 65 

(rather than when the ship is not in the water yet), the mg term goes away as we are only 
interested in changes to the equilibrium state. So, we can simplify to 0 = mx + kx. Also, 
and just to mess with students who took classical dynamics, instead of using k to represent 
the stiffness coefficient, naval architects use c. So, the EOM now looks like, 

O=mx+cx 

Ships don't just experience a buoyant force from the surrounding water, there is also hydro­
dynamic damping. Water is more viscous than air, so energy dissipates more quickly when 
moving in water. This damping force is proportional to the velocity, -bx, where b is the 
damping coefficient and xis the velocity. This force is an additional force to the spring force. 

0 = mx+bx+cx 

This equation can be considered trivial in the sense that if the ship is at its equilibrium 
draft and is not currently moving or accelerating then both sides of the equation are zero 
and 0 = 0! However, if something gives the ship a bump, thus causing a positive change from 
equilibrium or an initial velocity, then we have a dynamic response that changes over time. 
For the case of spring-mass-damper with no external excitation force, the resulting motion 
is a decaying position that moves back towards the equilibrium position. If the system is 
over-damped the response will look like an exponential decay back to equilibrium. If the 
system is under-damped the position will be a decaying oscillation where the amplitudes 
of oscillation get smaller and smaller until equilibrium is finally reached. And if the system 
is critically damped the position returns to equilibrium in the shortest amount of time 
with one or no oscillations. 

Ships, however, almost never operate in conditions where there is no heaving, rolling, or 
pitching because there is almost always an excitation force around - waves! We have to deal 
with the EOM that includes such external excitation forces. For now we will consider only 
regular waves - sinusoidal excitation with a single frequency and amplitude - moving on to 
more realistic waves in Chapter 5. Our wave excitation force can be written as: 

F(t) = Fo sin wet 

where F0 is the forcing amplitude (related to the wave height) and We is the frequency the 
wave moves past the ship. Figure 4.2 shows the updated free body diagram for our system 
including the mass, spring, damping, and excitation force. 
Using the FBD and Newton's Second Law, our EOM for the full system becomes 

F0 sin wet= mx +bx+ ex (4.1) 

The solution to this equation will be a system that has a transient oscillation until the damp­
ing has eliminated the ship's natural buoyant/damping response to the initial displacement 
and then an equilibrium solution that will have the same frequency as the excitation force. 
The solution will not necessarily have the same amplitude or phase as the excitation force, 
however. The solution can be written as 
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F(t) 
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force damping 

force 

Free Bodv Diagram 

Figure 4.2: Point mass on a spring with damping and an excitation force and the FBD 
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where X0 is the amplitude of the motion, We is the frequency of the motion (and equal to 
the excitation frequency), and ¢ is the phase difference between the excitation sinusoidal 
motion and the resulting sinusoidal motion. The Appendix to this chapter goes through the 
derivation to solve for X0 and ¢. The solutions are: 

X _

Fo 
0 - -----;==========

J(-w;m + c)2 + (web)2

Web 
tan¢ = --

2
---

-w
e 
m + c 

The terms of the EOM can be described as: 
mx: can be considered an inertial term 
bx: can be considered a damping term 
ex: can be considered a stiffness term 
F0 sin wet: can be considered the excitation force term 

If the solution is x( t) = X0 sin( Wet + <p), then the stiffness term has a sine phase ( ex = 
cX0 sin(wet + ¢)), the damping term has a cosine phase (bx= bweXo sin(wet + ¢)), and the 
inertial term has a sine phase (mi= -mw;X0 sin(wet + ¢)). Figure 4.3 shows how each of 
these terms can be treated as a separate effect on the final motion of the mass. 
These terms can be related to some common concepts used in seakeeping (and vibration) to 
describe systems that experience simple harmonic motion (i.e. the system motion is sinu­
soidal due to the presence of a restoring force). 

Natural Frequency - the frequency at which the system oscillates on its own when dis­
turbed from equilibrium 

Wn /!; 
Damping Factor - the amount of damping in the system (> 1 for over-damped, < 1 for 
under-damped, and= 1 for critically damped) 

b 
TJ =- 2../mc
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Figure 4.3: Effects of terms in the Equation of Motion (EOM) (Figure 3.4 in reference 2) 

Tuning Factor - the ratio of the excitation frequency to the natural frequency 

A
- We

Wn

These terms can be used in the EOM giving an EOM that equals: 

.. 2 . 2 
Fo . 

X + rJWnX + WnX = - SlllWet. 
m 

The solution for the response amplitude (X0 ) and response phase (</>) can also be written 
using these concepts: 

X _ 

Fo/c 

o - J(l - A2)2 + (2rJA)2
2rJA 

tan</>= 
A2•1-

(4.2) 

(4.3) 

To understand what all is going on with the response amplitude solution, consider a 
spring-mass-damper system than is experiencing a constant force, F0 (instead of a sinu­
soidally varying force). In this case, the equation of motion looks like 

F0 = mx + bi: + ex 

However, if the force is a constant, the system will come to a state of equilibrium where the 
mass in not moving, i.e. x = i: = 0. Thus, the EOM simplifies to 

Fo = cXo 
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and the solution is 

Xa = Fa/c. 

68 

Looking at the solution for Xa, this is the term in the numerator of equation 4.2. So, 
when a sinusoidal force is applied to a spring-mass-damper system, the resulting position 
amplitude is the "static" response (response if the force amplitude, Fa, were constantly 
applied) modified by the terms in the denominator. The modification of this static response 
is called the Dynamic Magnification Factor or MF: 

1 
Dynamic Magnification Factor (MF) = ------;=======

J(l - A2)2 + (217A)2
(4.4) 

This means that for a given forcing amplitude, Fa, the response amplitude changes depending 
on the damping factor (17) and the tuning factor (A). The damping factor relates to how 
much damping there is in the system. Looking at the MF, the larger 17, the smaller the 
Magnification Factor. As one would expect, increasing damping reduces the magnitude 
of the response. The tuning factor relates to how close the excitation frequency (we) is 
to the natural frequency (wn)- Unlike for damping, it is not clear what happens as the 
tuning factor increases. Consider the case where the excitation frequency equals the natural 
frequency (we= wn)- In this case A= 1 and in the absence of damping (17 = 0) the response 
amplitude would go to infinity. The presence of damping reduces the response amplitude, 
but the maximum response amplitude will still occur at the natural frequency (A= 1). The 
MF increases as A approaches 1 and then decreases as A becomes greater than 1. Figure 4.4 
shows some example MF curves for different amounts of damping. As the damping increases 
the peak response amplitude decreases until the system becomes over-damped and there is 
no peak. This peak is called resonance and systems that are over-damped do not show any 
response amplitudes greater than the static response amplitude. For over-damped systems 
there is no magnification, no resonance. 
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Figure 4.4: Example Dynamic Magnification Factor plots for different amounts of 17 ( damp­
ing) 
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4.2 Added Mass and Hydrodynamic Damping 
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Moving through water is different than moving through air. When you push your flat palm 
through the air it does not feel like you are pushing on anything. The same motion feels 
very different when done under water. This is partly because water is more viscous than 
air (increased damping), but it is also because the water is denser than air and needs to be 
moved along with your palm. This motion requires the water surrounding your palm to be 
accelerated. The effect of this is to make your palm feel as if it had extra inertia (mass). 
This effect is known as added mass. This extra required force shows up in the equation 
of motion (EOM) as an addition to the mass of the object. The added mass represents the 
amount of fluid accelerated by the object. However, something to keep in mind is that the 
particles of fluid adjacent to the body will accelerate to varying degrees and the added mass 
value is a weighted integration of the entire fluid mass effected by the accelerating object. 
So, instead of mi+ bx+ ex= F0 sin wt, the equation of motion becomes, 

(a+ m)i +bx+ ex= F0 sin wt. 

The a stands for added mass ( and now explains why naval architects have damping as b and 
stiffness as c, in contrast to the standard mechanical engineering expressions). Added mass 
depends primarily on the shape of the object, the type of motion (linear or rotation), and 
the direction of the motion. In this way, added mass differs from just mass since mass is a 
quantity independent of motion. 

Hydrodynamic damping is related to the viscosity of the fluid (and hence the frictional 
drag), but when a free surface is involved the damping is dominated by the generation 
of waves. The larger the waves generated, the larger the hydrodynamic damping. This 
damping is proportional to the velocity in this direction as well. Both the added mass (a) 
and hydrodynamic damping coefficients (b) are a function of the frequency of oscillation. 

Experimental Investigation in Sway 

The concepts of damping and "added mass" are forces on an object moving in a fluid that are 
not explained by buoyancy or the mass of the object. To explore the concepts of added mass 
and hydrodynamic damping in a way that could be observed, we conducted an experiment on 
a U-shaped foam barge in the 120-ft towing tank in the USNA Hydromechanics Laboratory. 
Using the data collected, we were able to calculate the added mass and hydrodynamic 
damping coefficients and determined the dependence of the added mass and hydrodynamic 
damping on frequency. In this section we will go over the details, data, and analysis from 
this experiment to help explain the concepts of added mass and hydrodynamic damping. 

The problem addressed in this experiment was a two-dimensional simplification of the 
problem of a ship moving in simple harmonic motion in a calm sea. The cross-section of 
the body had a semi-circular bottom with vertical sides, shown in the figure below. The 
instrumented model section had a length of 3 feet, a beam of 8 inches, and a draft of 5 
inches. The displacement was about 15 pounds. 

The model was attached to a scotch yoke that oscillated the model with pure sinusoidal 
sway motion. The only measurements taken were the sway displacement and the sway 
force over time. 
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z 
r 

Figure 4.5: Cross-section of the "two-dimensional" ship model. 

Experimental Procedure 
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To collect the data necessary to measure added mass and hydrodynamic damping, the fol­
lowing steps were taken: 

1. We oscillated the model in sway in air and recorded the position and the force as a
function of time

2. We oscillated the model in sway in water and recorded the position and the force as a
function of time

Analysis Method 

The damping force is the force component that is proportional to the velocity and the added 
mass force is the force component that is proportional to the acceleration. The equation of 
motion for the model is 

where m is the mass of the model, a2 is the added mass coefficient in sway, x2 is the 
acceleration of the model in sway, b2 is the damping coefficient in sway, ±2 is the sway 
velocity, c2 is the stiffness coefficient in sway, x2 is the sway displacement, F0 is the force 
amplitude in sway, and We is the sway excitation frequency in radians/second. For sway 
motion there is no buoyancy (stiffness), so c2 = 0. The solution to the equation of motion 
(i.e. the motion of the model in time) is of the form 

To solve for the motion and force amplitudes, the data collected was analyzed using 
a FFT to identify the actual oscillation frequency and amplitude at that frequency. For 
example, consider the sample in-air sway displacement plot in Figure 4.6. The motion is 
fairly sinusoidal, although each oscillation varies slightly from the ones before it. However, 
performing an FFT on the data (see the Fourier Transform section in the Irregular Waves 
Lab), gives a pretty clear spike at a single amplitude (see Figure 4.7). We can then say that 
the sway amplitude of the data is 1.3 inches at an excitation frequency of 1.1 Hz. If we use 
that amplitude and frequency and create a sinusoidal function, we can compare that result 
with the actual data, see the plot in Figure 4.8. In this case, the perfect sine wave matches 
the actual data fairly closely. 

ENGINEERING-PDH.COM 
| NAV-122 |



CHAPTER 4. THE SYSTEM: SHIP DYNAMICS 

2 

1.5 

,...., 1 

C 
0.5 

0 

-0.5

-1

0 10 20 

Time (sec) 

30 40 

Figure 4.6: Sway Displacement in Air as a function of time 
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Figure 4.7: FFT of Sway Displacement in Air data 
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We can do the same for the force data - perform a FFT on the data and use the amplitude 
and frequency data to recreate the "pure" signal. The plots below (Figure 4.9) show the 
raw data signal and the FFT result. Compared to the sway displacement, the force FFT 
signal shows many more spikes. This means the raw data is not as good of a pure sinusoid 
and has higher frequency components. However, for this experiment, those higher frequency 
responses can be considered "noise" and we are only interested in the primary spike that 
occurs at the excitation frequency. Recreating the force as a function of time using the FFT 
result, we can compare that pure sine wave to the actual data, see Figure 4.10. 

So, for the data we collected in this experiment, Figures 4.6 to 4.12, we found the values 
for X0, F0, and We for the in-air and in-water experiments. Using these values, the known 
mass, the zero stiffness coefficient, and the equations for magnification (see the appendix in 
this chapter), we can solve for the added mass, a2, and damping, b2, in the air and again in 
the water. For the data shown, the in-air total mass is 1.74 slugs, the in-air damping is 
0.06 lb-s/ft, the in-water total mass is 5.75 slugs, and the in-water hydrodynamic damping 
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Figure 4.10: Data and Pure Sway Force in Air 
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Figure 4.11: Sway Displacement Data for in Water Experiment 
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mass effect) meaning the mass in the equation of motion is really just equal to the mass of 
the model, while the added mass is very noticeable for the in-water experiment. There is a 
similar result for the damping coefficient, the hydrodynamic damping is significantly more 
than the aerodynamic damping. 

By repeating this procedure at different excitation frequencies, we can see how added 
mass and damping vary with frequency of oscillation. Figure 4.13 shows the dependence of 
these coefficients on the frequency of oscillation. The added mass is close to zero in air and 
does not depend on the frequency. The same trends apply for the damping in air. In water, 
the added mass is frequency dependent and tends to decrease with increasing oscillation 
frequency. This means that at higher frequencies there is less of an effect from the added 
mass. The hydrodynamic damping in water also depends on frequency, but in this case the 
damping increases with increasing frequency. Therefore, the damping gets more significant 
at higher oscillation frequencies. 
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Figure 4.12: Sway Force Data for in Water Experiment 
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Figure 4.13: Added Mass and Damping of Sway Oscillation Model as a function of frequency 

4.3 Ship Natural Frequencies 

Each degree of freedom that has a restoring force has an associated natural frequency. So, 

for a ship, there is a natural frequency in heave, roll, and pitch. These natural frequencies 
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depend on the mass and stiffness properties of the system. 
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To a first approximation, we will consider the heave and pitch motions to be uncoupled 
(i.e. independent). The natural frequency in heave is 

(4.5) 

and the natural frequency in pitch is 

(4.6) 

We can actually reasonably estimate the added mass or inertia in heave and pitch, based on 
conventional ships, as equal to the actual mass or inertia. In other words, 

and 

The natural frequency in roll can be similarly determined, 

For roll, the estimated added inertia is about a quarter of the ship's roll moment of inertia, 
or 

However, the roll natural frequency of a ship is also strongly linked to the ship's metacentric 
height ( as can be determined from the stiffness coefficient). So, the roll natural frequency 
can also be written as 

mgGM 
1.2514 

. (4.7) 

The roll damping increases with forward speed. The increase in damping results in a 
smaller maximum resonant peak, but also a slight reduction in the frequency at which the 
peak response will occur. 

4.4 Ship Inertia - Pitch, Yaw, and Roll 

The mass of a ship is determined by its total weight or displacement. The rotational inertia is 
determined by the distance of each weight from the combined center of gravity. The further 
the heaviest weights are from the CG, the larger the moment of inertia (the rotational 
inertia). If all the mass were located equidistant from the center of gravity the moment of 
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inertia would be easy to calculate and would be equal to the total mass times the distance 
from the CG squared. Although the mass in a ship is never located equidistant from the 
center of gravity, we can find the representative distance the mass would need to be were 
the ship a sphere. This representative distance is the radius of gyration, k. If we have the 
radius of gyration, we can find the ship's moment of inertia, 

I= mk2
•

There are three rotational degrees of freedom - roll, pitch, and yaw - and each have a subscript 
number associated with the direction. It turns out that for typical ship shapes, the radii of 
gyration have a relationship to the ship's geometry. So, in general, 

k4 = 0.30BwL 

ks = 0.25Lpp 

k5 = 0.25Lpp 

4.5 Ship Transfer Function 

roll 

pitch 

yaw 

To predict the ship motion in a set of regular waves, we need to have a way to predict the 
ship response as a function of the excitation amplitude and frequency. This is essentially 
the same as the dynamic magnification factor described in Section 4.1. Other names for this 
relationship include Frequency Response Function (FRF) and, for naval architects, Transfer 
Function. In all cases, the result can be represented as a plot with the ratio of ship response 
to excitation amplitude (X/(0 , where (0 is the wave amplitude) on the vertical axis and 
the ratio excitation frequency to natural frequency (A = we/wn ) on the horizontal axis. 
Figure 4.14 shows a typical transfer function in roll. 
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Figure 4.14: Typical Ship Transfer Function for Roll 

The response depends on the ship mass, added mass, hydrodynamic damping, buoyancy, 
and excitation frequency in the direction of motion. If the ship were to not be moving 
forward (zero speed), the excitation frequency would match the wave frequency. However, 
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when the ship has forward speed the excitation frequency depends on the ship speed, the 
wave frequency, and the relative direction of the ship and waves. This resulting excitation 
frequency is called the encounter frequency since it is the frequency at which the ship 
encounters the waves. 

Encounter Frequency 

Assuming the waves and ship are on a straight course, the frequency with which the ship will 
encounter a wave crest depends on the distance between the waves crests ( ,\ - wavelength), 
the speed of the waves (c - which depends on the wavelength), the speed of the ship (U), and 
the relative angle between the ship heading and the wave heading (µ), see Figure 4.15. The 
encounter period is thus the distance traveled ( ,\) divided by the speed the ship encounters 
the waves ( c - U cosµ). The encounter frequency is 

21r 21r 
We = 

- = -(c-Ucosµ). 
Te ,\ 

Manipulating the equation a bit and substituting in the relationships between wavelength, 
wave speed, and wave frequency, the encounter frequency can be written as 

w
2
U 

We = W - -- COSµ. 

g 

The encounter period ( the time between crests to pass) is given by 

,\ 
Te = ---­

c- U cosµ 

Figure 4.15: Relative ship and wave heading angle, µ 

(4.8) 
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The heading angle determines the "type" of seas the ship experiences. For example, 
µ 0° means the ship and waves are heading in the same direction and the ship is
experiencing following seas. When the ship is traveling directly at the oncoming waves 
(µ = 180°), the ship is experiencing head seas. Quartering waves on the ship's starboard
side are whenµ is between 0° and go0 and quartering waves on the ship's port side are when
µ is between 270° and 360°. Starboard beam seas are when µ = goo and port beam seas are
when µ = 270°. When µ is between go0 and 180° the ship is experiencing bow waves on the
starboard side and bow waves on the port side are when µ is between 180° and 270°.

To calculate the transfer function computationally ( as opposed to experimentally), the 
hydrodynamic coefficients need to be known (added mass, mass, damping, and buoyancy). 

Ship Transfer Function Example 

Consider the following roll characteristics for a particular ship: 

• mass = 4,898,300 kg
• Lpp = 86.5 m
• k4 = 0.25Lpp
• a4 = 0.2514
• C4 = 715,000,000 N-m/rad
• b4 = 143,000,000 N-m/(rad/s)

We would like to find the transfer function (or frequency response function) for this ship in roll. First we 
need to solve for all the terms in the EOM for roll: (a4 + J4), Wn , and ry. 

• To solve for the combined moment of inertia and added inertia in roll we need to find the ship's roll
inertia, J4.

J4 = mk� = (4898300) • (0.25 • 86.5) = 2290644073 kg• m2 

We can then find the combined moment of inertia and added inertia using the relationships provided 
above: 

a4 + J4 = 1.25 · J4 = 1.25(2290644073) = 2863305092 kg• m2 . 

• To use the equation for the magnification factor (which gives us the ship transfer function), we also
need to find the ship's natural frequency, Wn 

• and the damping factor, ry

b4 
ry=-----2(a4 + l4)Wn 

715000000 
d 

2863305092 
= 0,50 ra /sec 

143000000 
2 · 2863305092 · 0.50 

= 0·05 

• Now we can plug these values into the ship transfer function equation (i.e. the magnification equation)
using A= We/wn:

1 
ship transfer function = ---;;===:::;;:;::::;;;==;===�

J(l _ A.2)2 + (2ryA)2 

1 
J(l - A.2)2 + (2 . 0.05A)2 
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• Let's consider some points of interest. What is the transfer function when the encounter frequency
equals the natural frequency (i.e. We = wn)? Plugging in A = 1, the transfer function is 10. What
does this mean? It means that the roll response will be 10 times as large as the excitation magnitude.
What about when the excitation frequency is close to zero? In this case, A� 0 and the ship transfer
function equals 1. This means for very low excitation frequencies the roll response is the same as the
excitation magnitude. Lastly, let's consider a very high excitation frequency, say A= 10. In this case
the ship transfer function equals 0.01. This means the ship response is 1/lO0th the magnitude of the
excitation.

• To understand the ship's roll response over a range of frequencies, the best thing is to create a plot.
Figure 4.16 shows the roll transfer function for this problem.
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Figure 4.16: Example ship transfer function in roll

There are two ways to determine the transfer function for a ship - experimentally or 
theoretically. There are distinct limitations to both methods. We will be exploring both 
methods in this class. 

Consider a wave elevation time history at point O that is of the form ( = (0 sin(wet) with 
the resulting ship motion described by Xi = Xw sin(wet + 1\). The motion amplitude (Xw) 
and phase (8i) are functions of the ship speed (U), the ship heading relative to the waves 
(µ), and the encounter frequency (we)- The amplitudes are assumed to be proportional to 
the wave amplitude (Xw = constant x (0 ). Therefore, we typically express the motion am­
plitudes in non-dimensional form: 

X
3
o heave transfer function 

(o 

� roll transfer function 
k(o 

!,i pitch transfer function 

where k(o is the wave slope amplitude. Graphs of the resulting non-dimensional amplitudes 
are plotted as a function of the encounter frequency. In essence, a transfer function gives the 
proportion of wave amplitude or wave slope amplitude "transferred" by the ship "system" 
into ship motions. 
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Low Frequency, contour following behavior 

High Frequency, low response behavior 

Figure 4.17: Relationship between wave length and ship response 

80 

The phase angle, ,\ gives the phase relationship between the motion and the wave, the 
maximum positive response occurs +bd We seconds before the maximum wave depression. 
For -bi the motion lags the wave depression. 

Let's start by examining the magnitude of a ship response operating in head seas(µ = 180°). 
Consider very long waves (low frequency). When We is very low, the dynamic effects associ­
ated with added mass and damping are virtually negligible. Therefore, the excitations and 
motion responses experienced by the ship are almost entirely attributed to the buoyancy 
changes as the wave passes by - the maximum pitch occurs at the wave nodes (inflections) 
and the maximum heave response occurs at the crests and troughs. The result is motion 
amplitudes on the same order as the wave amplitudes. If you think of the wave length as 
much longer than the ship length, the ship will always be aligned with the wave surface ( top 
of Figure 4.17). In this scenario, the transfer function is equal to one ( for example, in heave 
��0 = 1 at low encounter frequencies). 

Now consider very short waves (high frequency). When We is very high, the ship responses 
are reduced because the short waves do not excite the ship very much. In this scenario, there 
are many wavelengths along the length of the ship, and the ship (bottom of Figure 4.17), 
in a way, can't decide if it wants to be up or down so it does neither. As the ship speed 
increases, the wavelengths which do not excite the ship are encountered over a wider range 
of frequencies. When operating in head seas, increasing the ship speed has the effect of 
increasing the encounter frequency for a given wave. 

If the range of frequencies encountered includes the natural frequency of heave and/or 
pitch, the response may exhibit a resonant peak (see the Dynamics Review section). How­
ever, heave and pitch are both heavily damped so any peaks at resonance are never very 
pronounced. 

What about the phases of the ship's response when operating in head seas? In the long 
waves (low we) the heave motion is synchronized with the wave motions (maximum response 
at the crest and trough) while the pitch has a phase of 90° , so the maximum (positive) pitch 
occurs at the wave node. For short waves, there is little response so the phase is not very 
relevant. However, in theory the waves should be out of phase (that is, {J = 180°) with the 
ship motions (for example, the maximum positive heave motion occurs at the wave trough 
and the maximum negative heave motion occurs at the wave crest). 
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Next, let's consider following waves. As in head seas, for long waves (we ➔ 0) the 
transfer function is 1 (for heave and pitch). The heave phase is close to zero over most of 
the encounter frequencies (i.e. the motion is nearly synchronized with the wave). The pitch 
phase is -270° or +90° over most of the range of encounter frequencies. In following waves 
the maximum bow up motion now leads the trough of the wave. In oblique waves the motion 
is no longer confined to the vertical plane, we can now have roll, sway, and yaw motions. For 
long oblique waves the ship appears to be crawling over a succession of long, shallow hills. 
From the ship's perspective, the wave length appears longer. The "effective wave length" 
depends on the heading angle and is, thus, 

cosµ 

The "effective wave slope" is k(0 cosµ. For headings forward of the beam (90° < µ < 180° ), 
the responses are broadly similar to the head seas responses. 

4.6 Model Testing in Regular Waves 

For an experimentally determined transfer function - whether in roll, pitch, or heave - the 
results are only relevant to the specific ship model tested at the tested speed. Therefore, 
each new geometry must have a new model built and tested at relevant speeds to find the 
transfer functions. We can create a set of regular waves to send the ship model through 
and measure the results. For a straight, long tow tank (like the ones at USNA) we can only 
test in head seas with the model in motion. For a stationary model, we can also test beam 
seas. The model tests in regular waves are concerned with the experimental determination 
of the motion transfer functions. We will determine the motion amplitudes experienced for 
a variety of different wavelengths or frequencies. 

Model testing in regular head seas is an important part of determination of full-scale 
ship responses. The usual procedure is to test the model at a variety of speeds covering the 
operating speed range of the vessel. At each speed the model is tested in regular waves with 
a range of frequencies (wavelengths) such that the expected wave frequencies in a typical 
seaway are covered. For each test the heave and pitch response are recorded along with 
information about the waves generated for each run. 

The usual form of output for motions in regular waves is a plot of the average response 
amplitude normalized by the average wave amplitude against the encounter frequency. When 
all of the test runs have been plotted on the same graph, a curve is faired through the data. 
This faired curve represents the Transfer Function of the response for the specified motion 
of the vessel at that specific speed. Squaring the transfer function gives what is known as 
the Response Amplitude Operator {RAO). RAO's are used in the process of determining the 
ship's response in an irregular sea (as we will see later). 

Typically we keep the wave slope constant while varying the wavelength. For these tests, 
the wave steepness must be kept small to ensure the responses are in the linear range ( more 
on this requirement in the section on Strip Theory). To acquire ship phase information ( with 
respect to the waves), it is necessary to measure the incident waves using a wave probe. The 
measurement must not be at a location where the model is influencing the waves and any 
wave generated by a probe must not influence the model. 
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Phase Shift for Wave Time History 

82 

In cases where we can't measure the waves at a location parallel to the model's CG, we need 
to introduce a time shift to the wave time history data. Consider the theoretical condition 
shown in Figure 4.181

. If the probe is located at position x 1p ahead of the CG and x2p to 
starboard, the probe will record the waves Xp after (or before) they have passed the CG. 

Xp = X1p cosµ - X2p sinµ. 

If the waves are overtaking the model, the speed the waves encounter the ship is 

c-Ucosµ

a wave trough recorded at the probe would be at the CG at time 

Xptp =----
c- U cosµ

So, the phase lead measured with reference to the waves recorded at the wave probe should 

Xp 

Probe/ u 

G 

Figure 4.18: Time Shift for Wave Probe Data (Figure 10.15 from reference 2) 

be reduced by the amount 

1
taken from reference 2 

,. We
(X1p cosµ- X2psinµ)

up =WefP = ---------­
C- U cosµ 
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For a standard straight tow tank, the only waves that can be tested are in head seas where 
µ = 180°. In this case cos 180°

= -1 and sin 180°
= 0 so 

� _ We(-X1p)

p- c+U

and we will increase the phase by ( WeXip) / ( c + U) for the waves in the experiment if the 
probe is located forward of the model. 

4.6.1 Experimental Model Ship Testing 

Let's review the basics of resistance testing and then add the complexities introduced by the 
dynamic motions involved in testing in waves. Consider a full-scale boat with the following 
characteristics: You wish to build and test in waves a 5.35 scale model. We need to determine 

Length Overall, ft 
Max Beam, ft 
Displacement, lbs 
LCG ( fwd of transom), ft 
Lpp, ft 
Pitch gyradius, ft 
Speed, kts 

42.77 
13.1 

35,000 
15.09 
38.4 
9.6 
40 

Table 4.1: Model Testing Ship Characteristics 

the model length (in feet), model beam (in feet), displacement (in pounds), pitch 
gyradius (k5 , in inches), and the model speed (in ft/s). 

Remember from Resistance and Propulsion that there are three types of experimental 
"similarities" - Geometric Similarity, Kinematic Similarity, and Dynamic Similarity. To 
achieve geometric similarity we need to make sure all length measurements (for the model 
and the waves) have the same scale ratio between the full-scale and model. Since in this 
example the scale ratio is 5.35, the relationship between the model and full-scale geometric 
lengths is 

R= f: = 5.35

Ls 
LM = 

R
= 8.0.

Therefore, the model must have the following geometric characteristics: The wave heights 
and wavelengths scale in a similar way, 

HM = 

Hs
R 

As 
AM =

Ji
·

Area measurements scale by R2 and mass ( or displacement) scales by R3
• The area is 

two lengths multiplied together, so if each length is scaled by R then the area is scaled by 
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Length Overall, ft 
Max Beam, ft 
LCG ( fwd of transom), ft 
Lpp, ft 
Pitch gyradius, ft 

Ship Model 
42.77 8.0 
13.1 2.45 
15.09 2.82 
38.4 7.18 
9.6 1.79 

Table 4.2: Model Testing Model Characteristics 

84 

R • R = R2 • The mass scales by R3 because it is proportional to volume, which is three
lengths multiplied together (R • R • R = R3). The other concern between model and ship 
is that, generally, a full-scale ship is floating in salt water while a model is floating in fresh 
water. Therefore, we need to account for this difference in scaled displaced volume as well, 

PMmsmM= 
R3 Ps 

So, the moments of inertia scale by R5 ! Remember, the moment of inertia can be expressed 
as mass times the gyradius squared (m-k2 ). So, if the mass is scaled by R3 , when we multiply 
by k2 we get another R2 in the relationship. So, 

I _ PMls M - PsR5.

To achieve kinematic similarity we need to match the Reynolds numbers of the full­
scale and model ships. To achieve Dynamic Similarity we need to match the Froude 
numbers of the full-scale and model ships. Due to the physical properties of our Earth, we 
can't simultaneously satisfy both the Reynolds and Froude scaling requirements. For tank 
testing we neglect the Reynolds number scaling (friction matching) and stimulate the flow 
as necessary for turbulent flow. We do match the Froude scaling. The Froude number is 

Fr = �
.jg[, 

So, to satisfy dynamic similarity, the model speed must be equal to 

rr;; UM= Usy-y;;

U 
_ Us _ 40 · 1.688 

M-

../R,

- JS,35 

So, for our model the speed must be 29.2 ft/s. The wave frequency (or wave period) is 
related to the wave velocity. We can relate the frequencies of the full-scale and model-scale 
using the wavelengths and the relationships between frequency and wavelength shown in 
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Chapter 3. So we find the model wave frequency from 

Using a similar process, the model wave period is 

85 

Froude scaling gives us velocity scaling and geometric scaling gives us position scaling. What 
about acceleration scaling? Let's consider heave. Position scaling gives us 

Velocity scaling gives us 

X33
X3M

=
-
R 

. X33
X3M

=
-
.,/R 

Why is there a square-root for scaling velocity when there isn't for position? This is because 
while position scales by R, time scales by VR due to the requirements of Froude scaling. 
Since velocity has units of length/time, the scaling is R/VR or .,/R. So, let's consider accel­
eration. The units of acceleration are length/time2

• Plugging in the length and time scaling 
relationships we get R/ ( .,/R,)2 

= R/ R = 1. So, there is no scaling factor for acceleration! 
What you measure is what you get, 

.. .. 

X3M = X33

To prepare a model to be tested in waves, we need to have geometric scaling for the hull 
and waves, the model needs to ballasted to the scaled displacement and center of gravity 
location ( correct calm water trim), and we need to have the correct scaled moments of inertia 
in pitch. This last point is different than your previous experience with resistance testing. 
To have the correct moment of inertia the dis tribution of the weight in the model must match 
the full-scale ship, not just the average of the weights. To get the moments of inertia correct 
in our model we need to dynamically ballast the model. 
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Dynamic Ballasting 

86 

When traditional model tests are conducted in still water for resistance and speed related 
sinkage and trim attitude changes, the geometrically similar model must be ballasted to the 
scaled waterline of the subject full-scale prototype. This means that both displacement, .6., 
and longitudinal position of the center of gravity with respect to amidships, LCG, must be 
scaled geometrically; i.e. 

and 

where b.s 

b.m 

Ps 

Pm 

R 

Ps R
3 

b.s = b.m X - X
2240 Pm 

LCGs = LCGm x R 

= ship displacement in long tons 

= model displacement in pounds 

= density of water in which the ship floats 

= density of water in which the model floats 

= linear scale ratio 

As long as the displacement and LCG scale as indicated, no other requirement must be met. 
The situation can be considered to be a steady state. 

However, when models are to be tested in waves such that they oscillate in one or more 
of the six degrees of freedom possible for a rigid body, the added specification of weight 
distribution about the center of gravity becomes necessary. Specifically, when ship models 
are tested in long crested head ( or following) sea conditions - as is typical in long, narrow 
towing tanks - the displacement, the LCG, and a quantitative measure of the distribution 
of weight (longitudinally) about the center must be modeled. The measure of longitudinal 
weight distribution about the center of gravity is the longitudinal gyradius, k5 (subscript 5 
referring to pitch motion), and is defined and scaled as follows: 

Iss = J (x�1 + x�3) dm mass moment of inertia about the x82 axis 

However, it is usually more practical to find the moment of inertia using: 

Iss = mkg 

kss = ksm X R 

Traditionally, a value of k5 equal to about 25% of the length between perpendiculars, Lpp, 
is assumed for ships. Hence, models are ballasted accordingly. Ship models are ballasted to 
the correct displacement, LCG, and k5 , by the judicious placement of ballast weights within 
the test model. 

When the weights are moved symmetrically away from the center of gravity of a ship, the 
gyradius of that ship will increase. No change in displacement or change in the position of 
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the center of gravity will result from such a move. Increasing a ship's longitudinal gyradius 
should affect the natural pitching period and the magnitude of pitch response for a given 
wave excitation. Because of the strong coupling between pitch and heave motions for ships, 
it is likely that the heave motion will also be affected. 

We will be learning two methods for measuring the pitch gyradius for ship models. 

Knife Edge Method The model is hung as shown in Figure 4.19 so that it is supported 
by an installed transverse knife edge which is located at some known longitudinal position 
(e.g., Station 1) on the model. The pitch gyradius can then be computed from 

where T = swing period in seconds 

a = distance from the knife edge to the model center of gravity (inches) 

Experience has shown that timing 50 cycles of model oscillations and then dividing the time 
by 50 provides adequate precision for the calculation of the swing period. It should be noted 
that the Knife Edge Method is really only practical for small models whose ballasted weights 
are securely fastened. 

Figure 4.19: Knife Edge Method 

Bifilar Suspension Method This method involves suspending the model horizontally 
from two eyes equidistant from the model center of gravity and at the same height above 
the model baseline as shown (Figure 4.20). The model is forced to oscillate horizontally 
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about a vertical axis through the center of gravity. Thus the oscillation is in fact in YAW, 
not PITCH, and the resulting gyradius is k6 vice k5. For "normal ship forms" we tacitly 
assume that k6 = k5. This assumption loses validity as L/ B decreases. Nonetheless, k6 can 
be computed from 

where 

ft, Eqn. 10.29, p.197 in Lloyd 

2x R = distance between support wires (ft) 

T = oscillation period (sec) 

h = length of the support wires (ft) 

This method is much more tractable for large models. 

A 

B 

mg/2 h 

Figure 4.20: Bifilar Suspension Method (Lloyd, 1999) 

Lamboley Method Developed by Gilbert Lamboley, this techniques involves swinging 
the model in pitch from pivots a known distance apart. The resultant period is a function 
of the distance from the pivots to the model center of gravity and the pitch gyradius. By 
employing two pivot heights and measuring periods for each, a simultaneous equation can 
be created to solve for both the distance to the CG and the pitch gyradius of the model. 
If the weight of the pivot gear is significant relative to the weight of the model, the pitch 

ENGINEERING-PDH.COM 
| NAV-122 |



CHAPTER 4. THE SYSTEM: SHIP DYNAMICS 89 

moment of inertia of the gear should be measured independently and accounted for in the 
final calculations. 

(d- x)2 + kg 
T2 = 21r 

g(d- x) 

where T is the swing period in seconds, d is the vertical distance from the pivot to the model 
CG, x is the vertical distance between the pivots, and k5 is the pitch gyradius. Figure 4.21 
shows how the rig is configured. If we solve for the intermediate quantity c = g / ( 41r2 x), then 

and 

Figure 4.21: Set-up for Lamboley Method 

d = 
x(cT:f + 1) 

c(T:f - Tl)+ 2

In all of these methods, large amplitudes of motion are not necessary - there is very little 
damping due to air. The oscillation periods measured in either method bear no 
direct relationship to the model's natural period in pitch in water. 

4. 7 Strip Theory

The linearized equations of motion for the six degrees of freedom are as follows: 

(m + au):i\ + b11±1 = Fw10 sin(wet + ')'1) Surge 

(m + a22)i2 + b22±2 + a24X4 + a26x6 + b26±6 + C26 = Fw20 sin(wet + 1'2) Sway 

(m + a33)x3 + b33X3 + C33X3 + a35X5 + b35X5 + C35X5 = Fw30 sin(wet + ')'3) Heave 

a42X2 + b42X2 + (14 + a44)X4 + b44X4 + C44X4 + a45X5 + b45X5 + C45X5 = Fw4o sin(wet + ')'4) Roll 

a53X3 + b53X3 + C53X3 +(ls+ a55)x5 + b55X5 + C55X5 = Fwso sin(wet + ')'5) Pitch 

a52X2 + b52X2 + a54X4 + b54X4 + (h + a55)x5 + b55X5 + C55X5 = Fw60 sin(wet + 1'6) Yaw 
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In these equations, the coefficients have two subscripts - one refers to the direction of motion 
and the other refers to the direction of force. For example, c35 in the heave equation refers 
to the buoyancy force in the heave direction (3) due to a change in position in the pitch 
direction (5). In this example, if the ship pitches bow down, the ship will experience a 
pitching restoring force ( trying to return the ship to bow up). The ship will also experience 
a general upwards force on the ship due to the bow pushing down into the water. Therefore, 
the ship will experience a heave force due to a pitch motion. For coefficients with both 
subscripts being the same number (for example, c55) that is the force and motion in the 
same direction (so c55 refers to the restoring force in pitch due to pitch displacement). 

The six degrees of freedom have the following sign conventions: 

6DOF 

x1 surge 
x2 sway 
x3 heave 

X4 roll 
x5 pitch 
X5 yaw 

Motions for the ship measured at the ship's center of gravity. 

Solving the linearized equations of motion requires evaluation of the coefficients and the exci­
tation amplitudes and phases. Considerable effort has therefore been devoted to developing 
theoretical methods of determining the coefficients and excitations to allow ship motions to 
be calculated without recourse to experiment. Strip theory is a method for determining the 
coefficients and excitations theoretically to allow ship motions to be calculated. 

There are limitations concerning what assumptions must be made to use strip theory. 
The basic principle behind strip theory is that the hydrodynamic properties of a vessel ( that 
is added mass, damping, and stiffness) may be predicted by dividing the vessel into a series 
for two-dimensional transverse strips, for which these properties may be computed. The 
global hydrodynamic values for the complete hull are then computed by integrating the two­
dimensional values of the strips over the length of the ship. Linear strip theory assumes the 
vessel's motions are linear and harmonic, in which case the response of the vessel in both 
pitch and heave, for a given wave frequency and speed, will be proportional to the wave 
amplitude and slope, respectively. 

The basic assumptions ( as stated in reference 2) required for linear strip theory are: 

1. The fluid is inviscid, that is, viscous damping is ignored ( although, the damping factor
which the user enters in Maxsurf Motions for roll should include viscous roll damping,
which is the primary source of damping for roll).

2. The ship is slender (i.e. the length is much greater than the beam or the draft, and the
beam is much less than the wave length).

3. The hull is rigid so that no flexure of the structure occurs.

4. The speed is moderate so there is no appreciable planing lift.

5. The motions are small (or at least linear with wave amplitude).

6. The ship hull sections are wall-sided.
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7. The water depth is much greater than the wave length so that deep water wave ap­
proximations may be applied.

8. The presence of the hull has no effect on the waves (Froude-Krilov hypothesis).

This theory is called Strip Theory because it represents the 3D underwater hull form 
by a series of 2D slices or strips. Each strip has associated local hydrodynamic properties 
( added mass, damping, and stiffness) which contribute to the coefficients for the complete 
hull in the equations of motion. Similarly the wave excitations experienced by the hull are 
composed of contributions from all of the strips. 

00 

Figure 4.22: Concept of the ship "strips" used in Strip Theory (Figure 4.1 in reference 2) 

Consider the hydrodynamic properties of each strip: 

• added mass

• damping

• stiffness

These hydrodynamic properties for each strip contribute to the total hydrodynamic proper­
ties of the ship. How can we distinguish between a property for a strip and a property of 
the ship? By convention, properties of strips are written with a hashmark: 
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Ship Strip 

a33 
I a33 

b33 b;3 
C33 

I 

C33

Consider a barge where each strip has an added mass of a;3• 

Figure 4.23: Strip Theory Barge Example 
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How do we find a33 of the total barge? How would we find the total mass if we had the 

mass of each strip? We could add each strip to find the total! Same principle for the added 

mass, except we will take the integral: 

Can a strip have an added mass in pitch? For strip theory to be successful, each strip must 

be extremely thin so that it can be considered a 2D strip. A 2D strip cannot have any pitch 

motions, so there can be no strip added mass in pitch! Which leaves us with the question 

of how to find the total ship added mass in pitch! Consider how we find the moment of 

inertia about G for a mass a;3 located x BI away from the center of rotation: I = mr2
• We

can use the same relationship for added mass in pitch of the total ship: 

Example: Consider a model barge with each section having a sectional added mass coefficient of 3.2 
slugs/ft with 10 sections each of width 2 inches. Find the total ship added mass in heave (a33) and pitch 
( a55). 

{Lpp {Lpp {Lpp 
a33 = 

lo 
a;3dxBl = 

lo
3.2dxB1 = 3.2 

lo 
dxBl 

L = 10 * 2 = 20 inches= 1.67 ft 

a33 = 3.2(1.67) = 5.34 slugs 
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For added mass in pitch, I need to integrate each strip added mass over the distances from G. Given that each
strip has the same added mass (a;

3 
= 3.2 slugs/ft), we can use Simpson's Rule to integrate this numerically,

XB1 (ft)
-0.75
-0.58
-0.42
-0.25
-0.08

0.08
0.25
0.42
0.58
0.75

/ 2 a33XB1
1.8

1.09
0.56

0.2
0.02
0.02

0.2
0.56
1.09
1.8

Using the symmetry in the problem, the Simpson's Rule integration looks like

a55 = 2 [ 0 ·: 7 (1.8 + 4(1.09) + 2(0.56) + 4(0.42) + 0.02)] = 0.918 slug· ft2 

4. 7 .1 Lewis Coefficients 

Once the forces for inertia, damping, restoring, and exciting are known, the various expres­
sions for the motion can be easily determined. In other words, before we can determine the 
heaving motion, we must evaluate the various strip coefficients! The strip inertial coefficient 
( added mass) can be expressed as a function of the added mass for a simple shape. In the 
case of Lewis coefficients, the shape is a circular segment of unit length and diameter B' (the 
beam of the "strip"). The added mass in heave for a circular segment of unit length and 
diameter B' is 

1 
-{Ylfr

2 

2 

p1r(B')2 
8 

where B' is twice the radius of the circular section. For shapes other than semi-circular, the 
added mass in heave is 

I 
{Ylf ( B') 2

a33 = C 8 

where C is the ratio of the added mass of the section of unit length, section beam B', and 
section draft D' over half of the added mass for a circular segment of unit length and diameter 
B'. The C value is the coefficient for Lewis-form sections (derived through a method known 
as conformal mapping). There are plots that allow you to determine the appropriate Lewis­
form coefficient given the section ( or strip) beam at the waterline, draft, and cross-sectional 
area. Lewis-forms have the same beam, draft and area as the actual ship section, 
but not the same shape. There are similar charts for the damping Lewis-form coefficients. 
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4.8 Roll Mitigation 
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Because of the limited hydrodynamic damping available in roll (rolling causes only small 
waves, as opposed to the waves generated from ship heave or pitch), motions are generally 
large in roll and can be devastating ( cause capsize, for example) if the encountered excitation 
wave frequency is too close to the ship's natural frequency in roll. Therefore, there is a great 
deal of effort put into minimizing roll motion in ships, or roll mitigation.

If the roll motions are too large crew comfort, economics, safety, and readiness can all be 
negatively affected. There are three main ways to reduce motions in waves: 

Tuning stabilization Tuning stabilization changes the natural period (frequency) so that 
resonance is less likely to occur in the expected sea conditions. It is accomplished by hull 
form design and/ or weight placement. 

Damping stabilization Damping stabilization reduces the resonant peak. This is accom­
plished by increasing the damping of the system, sometimes by adding appendages to the 
hull. 

Equilibrium stabilization Equilibrium stabilization creates an equal and opposite force 
approach. This is generally accomplished by applying a counter-acting force to maintain 
the ship in equilibrium, It relies on proper phasing of the forces and moments to reduce the 
motions. 

In addition to the light amount of damping, roll is suitable for mitigation because it is 
a narrow-banded response. It means a stabilizer can be "tuned" to a single frequency. And 
being lightly damped means there can be large motions, but also that small increases in 
damping or counter-acting forces can make big differences. The total roll damping of a ship 
depends on four general categories: wave making (largest), viscous (eddies), skin friction, 
and appendage forces: 

b44 = 
bwave + bvisous + bskin friction + bappendage forces·

Methods of motion reduction are known as "stabilization". The term implies an increase 
in the stiffness coefficient (i.e., c44), but it is more likely the "stabilization" method involves 
an increase in the motion damping (b44). If a motion damper can double the decay coefficient, 

b44 
T/ = ----===== 2Jc44(I4 + a44)' 

the roll amplitude at the natural frequency (wn) is halved, if the inherent damping is very 
small. 

There are many different ways roll motion can be reduced, but in this chapter we are 
going to discuss three types of roll mitigation devices: 

• Bilge Keels

• Active Fins
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• Passive Tanks
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For more roll mitigation devices, and further information on the three mentioned in this 
chapter, I refer you to the NSWC Carderock report "A Survey of Ship Motion Reduction 
Devices" by T.C. Smith and W.L. Thomas III. 

Bilge Keels 

Bilge keels are passive roll devices that increase the damping at all speeds and sea states. 
They consist of long narrow keels, mounted at the turn of the bilge. They work by generating 
drag forces which oppose the rolling motion of the ship. The advantages of bilge keels is 
that they are simple, inexpensive, and require no more maintenance than the hull. The 
disadvantage of bilge keels is that they increase the resistance of the ship ( although the 
effects can be minimized by optimizing the design of the bilge keels for the design speed). 

Active Fins 

Active fins are active roll stabilizers that are mounted on rotatable stocks at the turn of the 
bilge near the middle of the ship. They work by using the angle of incidence between the 
fins and the flow of the water past the ship. The fins are continually adjusted by a control 
system that is sensitive to the rolling motion of the ship. The fins develop lift forces ( due to 
the forward motion) that exert roll moments to oppose the moment applied by the waves. 
The advantages of active fins is that they are the most powerful and effective motion control 
device for high-speed applications. Their effectiveness increases with the square of the speed. 
Reductions of at least 50% in the average roll amplitudes are possible in moderate waves 
with a well-designed system. The disadvantages include that at low speeds the fins do not 
generate much lift (although they act somewhat like passive dampers). Also, their ability 
to reduce roll motion decreases in very severe sea states. They are a relatively sophisticated 
and expensive system and require considerable maintenance. Finally, at less than 10 knots 
they do not produce much lift, and at extreme speeds they can experience cavitation and 
flow separation. 

Passive Tanks 

Passive tanks are stabilizers that involve a sloshing liquid to produce damping and restoring 
forces. They work by shifting the weight of the liquid so that it exerts a roll moment on the 
ship and (by suitable design) this can be arranged to damp the roll motion. The natural 
frequency of the tank should be equal or near the ship's natural frequency. The tank is 
tuned by adjusting the amount of liquid in the tank or by the baffle design. A passive tank 
is a good choice if space and weight are not concerns. There are no moving parts and it 
requires very little maintenance. However, optimal tank placement is high in the ship and 
this makes access along the ship difficult. In addition, the free surface always reduces the 
metacentric height so roll stability is reduced. And all passive tanks amplify the roll motions 
at low encounter frequencies. 
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Motion Sickness Indices (MSI) 
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Ship roll motions can have very negative effects on passengers and crew. The people onboard 
can experience motion sickness and the roll motion can make it more difficult to move in 
a controlled and coherent manner so the performance of everyday tasks is impaired. The 
inner ear detects changes in magnitude and direction of apparent gravitational acceleration. 
Motion sickness is exacerbated if the person is 

• confined below decks (can't see the horizon)

• facing diagonally across the ship

• anxious

• fatigued

• hungry

• smelling strong smells

• eating or smelling greasy foods

• reading

• drinking carbonated or alcoholic drinks

The symptoms of seasickness generally disappear after a few days at sea ( the person becomes 
acclimated). Motions can impair the ability to work effectively even when there are no 
problems with seasickness. In these cases, the addage "one hand for the ship and one for 
yourself" is true. 

The principle cause of motion sickness is believed to be the vertical acceleration expe­
rienced by the person (which varies with location on the ship). Other motions can cause 
motion sickness if sufficiently high, but are not common on conventional ships ( the other 
motions aren't large enough). It is very difficult to predict the occurrence of seasickness. For 
one thing, individuals differ in their susceptibility to motions. Even a single individual's re­
sponses may vary from day to day, depending on the other factors mentioned above. Having 
a job to do versus thinking about how awful you feel can effect how much you suffer. Since 
a deterministic approach is not realistic ( there exists no if this, then that relationship that 
is always true), a statistical approach is required. 

The Motion Sickness Incidence is based on a 1974 experiment. The test measured the 
motion sickness response of over 300 American male college student (paid) volunteers who 
were not acclimated to motions. The students were tested in pairs in a ship motion simulator 
that had no windows and experienced sinusoidal vertical motion with amplitudes of about 3.5 
meters ( � 23 ft overall height). The experimenters monitored the state of the participants 
nausea by having the students press buttons on a control panel. The experiments lasted up 
to 2 hours or until the subjects vomited. The results of this data allowed the Motion Sickness 
Incidence ( defined as the percentage of subjects who vomited within two hours) equation: 

(4.9) 
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where erf is the error function and equal to 

1 1x -z
2 

erf(x) = . 
rrc e-2 dz

y27r 0 
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and the values are typically stored in tables for reference. The other variables in the equation 
are 

µMSI = -0.819 + 2.32(log10 We) 2 

and ls3 1, which is the absolute value of the vertical (heave) acceleration averaged over a half 
cycle. The MSI increases as the magnitude of the vertical acceleration increases and it is 
most severe at a frequency of about 1.07 rad/sec. This frequency is very close to the average 
frequency for the vertical motions for many ships and explains why seasickness is such a 
common problem. 

The applications of these results to the real life environment of a ship in rough weather 
requires us to make assumptions about the equivalence of the random motions of the ship 
and the sinusoidal motions of the simulator used in the experiment. We can assume the ship 
accelerations are distributed according to a normal (or Gaussian) probability distribution 
function (just like the waves the ship is encountering). Therefore, the average acceleration 
is 

where m4 is the variance of the vertical acceleration. The average frequency of the motion 
peaks is 

where m2 is the variance of the vertical displacement. These approximations allow an esti­
mate of the proportion of people who will suffer from seasickness in a given set of conditions 
at sea. 

Motion Induced Interruptions (MIi) 

Another measure of importance for motions related to crew performance is the Motion 
Induced Interruptions value. This measures when a member of a crew would have to stop 
working at the current task and hold on to some convenient anchorage to prevent loss of 
balance. The MIi is relevant to the effectiveness of the ship and the crew. Typically, MIi is 
given as number of interruptions per minute. 

4.9 Appendix: EOM Solution Derivation 

The basic set-up for simple harmonic motion consists of a mass, a spring, a damper, and 
an external harmonic excitation. For the basic equation, the mass is variable m, the spring 
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coefficient is c, the damping coefficient is b and the external excitation has magnitude Fa and 
frequency We . The equation of motion is a 2nd-order, linear, ordinary differential equation: 

The basic solution to this equation is given as 

x(t) = Xa sin(wet - ¢). 

To solve for the unknown amplitude, Xa , and phase angle, ¢, we need to plug the solution 
back into the governing equation. First we need to take the time-derivatives of the solution: 

x(t) = WeXa cos(wet - ¢) 

x(t) = -w;Xa sin(wet - ¢) 

Now, plugging back into the governing equation: 

-mw;Xa sin(wet - ¢) + bweXa cos(wet - ¢) + cXa sin(wet - ¢)=Fa sin wet.

We have two unknowns ( Xa and ¢) and only one equation. We can separate the equation 
into two equations by choosing two times to evaluate at. To start, choose a time such that 
the sinwet term is equal to zero ( i.e. Wet = 0): 

-mw;Xa sin(-¢)+ bweXa cos(-¢)+ cXa sin(-¢)= 0

mw;Xa sin(¢)+ bweXa cos(¢) - cXa sin(¢)= 0. 

This equation simplifies to 

For the second equation, choose a time such that the sin wet term is equal to one ( i.e. 
Wet = 1r/2): 

-mw;Xasin(1r/2 - ¢) + bweXacos(1r/2 - ¢) + cXasin(1r/2- ¢)=Fa

This equation simplifies to 

-mw;Xa cos(¢)+ bweXa sin(¢)+ cXa cos(¢)= Fa.

Z = 
Fa 

(-w;m + c) cos¢+ we b sin¢· 

Using the trigonometric identities for sin and cos in terms of tan: 

• ,1.. 
tan¢ 

Sln 'f' = -----;====:== 
✓1 +tan2¢

cos¢=---,==== 
✓1 +tan2¢
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we can plug the solution for tan¢ (from above) into the second equation: 

Using the first equation, we can substitute 

This leads to 

Simplifying this equation, 

X _ 

Fo 
0 - -----;======== 

✓(-w;m + c) 2 + (web)2
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The other form of the equation of motion for a spring-mass-damper system is written in 
terms of the natural frequency of the system (wn), the damping factor (rJ), and the tuning 
factor (A). These variables are related to the coefficients (mass, damping, and stiffness) in 
the following ways: 

2 
C 

w =­

n 

m 
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b 
rJ=--2mwn 
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Plugging these substitutions back into the equations for X0 and ¢ requires reworking the 
equations so that them, b, and c coefficients can be replaced by the Wn, 'f/, and A variables. 

Reworking the X0 and ¢ equations results in 

X _

Fo/c 

o - ✓(1 - A2)2 + (2rJA)2

2'f/Atan¢= A21-
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Chapter 5 

The Output: Ship Motions in Waves 

Learning Objectives: 

1. Calculate the ship motion response spectrum given a sea state and relevant ship transfer
function.

2. Calculate the motion variance from the motion response spectrum

3. Describe the difference between a transfer function and a Response Amplitude Operator
(RAO)

4. Calculate the significant motion amplitude given the motion response spectrum

5. Calculate the probability of a particular motion amplitude being exceeded given the
motion response spectrum

6. Identify the worst operating conditions given a polar plot with motion RMS or signif­
icant amplitudes

7. Explain what a Safe Operating Envelope is and how it is calculated.

8. Laboratory Objectives:

(a) Calculate the significant pitch and vertical acceleration motions from an experi­
mental time history record

(b) Compare analytical, experimental, and simulation predictions for ship motions in
irregular seas

( c) Develop a realistic test plan for a seakeeping experiment

Now that we have considered the input (waves) and the system characteristics (ship 
transfer functions), we are ready to put them together and determine ship motions in a 
realistic seaway! If we were to know the exact waves the ship will be encountering and 
we have access to a sophisticated CFD (computational fluid dynamics) code designed for 
seakeeping, we could predict (with reasonable accuracy) the actual motions the ship will 
make. However, we rarely know what exact waves the ship will encounter. Remember from 
Chapter 3 that when we deal with realistic sea conditions we have to work with probabilistic 

109 
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predictions. So, the best we will be able to do in terms of ship motions is predict the probable 
resulting motions for a given ship in a given wave spectrum. 

5 .1 The Electronic Filter Analogy 

In 1951, St. Denis and Pierson suggested that the ship could be treated in much the same 
way as the "black box" in an electrical filter. 

Input ➔ 11 Filter 11 ➔ Output 
Waves➔ II Shipll ➔ Ship Motion 

The ship is a "black box" that receives the waves as input and generates ship motions as 
output. This analogy works as long as the filter is "linear." In other words, the output 
amplitude must be proportional to the input amplitude. 

Consider the heave transfer function for a ship in head seas (see Figure 5.1). This transfer 
function looks much the same as a "low-pass" filter. For low We the waves are translated into 
corresponding motions (same amplitudes and phase). For high We, there are no resulting 
ship motions (i.e. the signal does not pass through the filter). 

Figure 5.1: Typical Heave Transfer Function 

5.2 First Challenge: Encounter Frequency Spectrum 

The first challenge to apply the electronic filter analogy is that the ship experiences the 
encounter frequency spectrum, not the wave energy spectrum! Assuming the waves are 
long crested, the wave energy spectra formulae give the wave energy spectum for a fixed 
point in the ocean. We are going to need to transform this information to the reference 
frame of the moving ship. Remember the encounter frequency is found from 

w
2 Ucosµ 

We =W-

where encounter frequency (we ) is greater than the wave frequency (w) in head seas and (gen­
erally) less than the wave frequency in following seas. Therefore, the wave energy spectrum 
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will be shifted along the frequency axis to a different range of frequencies. For example, a

typical open ocean wave spectrum might look like Figure 5.2. If we consider a ship operating 

in head seas for this wave energy spectrum, we would get an encounter frequency spectrum 

like the one shown in Figure 5.3. When we shift the wave frequency range from the wave 

energy spectrum to the equivalent encounter frequencies, we get the shaded areas in Fig­

ure 5.4. The relationship between the frequency spacing on the wave energy spectrum and 

the encounter frequency wave spectrum is given by 

2wU 
8we = (1- -- cosµ)8w. 

g 

The energy in a given range of wave frequencies must match the energy in the shifted set 

ur 
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Figure 5.2: Typical Wave Energy Spectrum 

1 2 3 

Frequency (rad/sec) 

Figure 5.3: Encounter Frequency Spectrum 

4 

4 

of encounter frequencies. In other words, the area in the shaded regions of Figure 5.4 must 

be equal. The areas must be the same since the total wave energy and the significant wave 
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height must be the same whether the waves are measured by a stationary probe or one 
moving with the ship. So, the area of a section is, 

Wave energy spectrum 

(,) 

Equal areas 
w -. Corresponding <a>, 

Encoumer spectrum 

Figure 5.4: Areas under Wave Energy and Encounter Frequency Spectra (Figure 8.2 in 
reference 2) 

Plugging in the expression for 8we given above, the encounter wave energy spectrum can be 
found from 

g 
S,(we) = S,(w)----., ., 

g - 2wU cosµ 
(5.1) 

In head seas, the frequencies increase and the range widens which also results in reducing 
the height of the spectral ordinates ( to keep the area under the curve the same). 

5.3 Second Challenge: Motion Energy Spectrum 

The second ( and main) challenge is to get from the encounter frequency wave spectrum 
to the ship motion energy spectrum. The electronic filter analogy means the encounter 
frequency wave energy spectrum is the input, the ship transfer function is the filter, and the 
ship motion energy spectrum will be our output. But how do we combine the input and 
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the filter to arrive at the output? The equation is actually fairly simple, you multiply the 
encounter frequency wave energy value (at each encounter frequency) times the square of 
the ship transfer function value ( at the same encounter frequency). For example, the heave 
motion energy spectrum is found from 

(5.2) 

The square of the transfer function is also referred to as the Response Amplitude Operator 
(RAO). However, the RAO is sometimes used to refer to the transfer function directly (for 
example, as in Maxsurf Motions), so it is important to double-check when something is called 
an RAO which the term is actually referring to. To summarize, the ship heave motion energy 
spectrum is found from 

To find the ship pitch or roll motion energy spectrum we need to find the encounter wave

slope energy spectrum. The wave slope energy spectrum is 

and the encounter wave slope energy spectrum is equal to 

g 
Sa(we) = Sa(w) 

2 U g- w cosµ 

The resulting heave, pitch, and roll motions will be sinusoidal (just as the irregular waves 
that are in the wave energy spectrum), so we can determine the variance (measure of data 
spread) for these motions, 

Heave 

Pitch 

Roll 

mo = 1
00 

Sx
3 
(we)dwe 

mo = 1
00 

Sx
5
(we)dwe 

mo = 1
00 

sxJwe)dwe 

With the variance ( or zeroth spectral moment), we can use the same techniques as for ocean 
waves (see section 3.2.2) to determine information about the velocity, acceleration, and 
motions using spectral moments! Remember, the spectral moments of an energy spectrum 
are equal to 

mn = 1
00 

w;Bx3
(we)dwe 

The root-mean-square (RMS) motion values are equal to the square-root of the variances. 
So, the RMS value for the motion amplitude is a0 = ,Imo, the RMS value for velocity is 
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a2 = ,Jm;,, and the RMS value for the acceleration is a4 = .jmi._. The mean motion period, 
mean peak motion period, and mean zero-crossing period have the same equations as the 
irregular waves in Chapter 3, 

Figure 5.5 shows an example of a heave motion energy spectrum determined from an en­
counter wave energy frequency for a ship in head seas. When the energy in the encountered 

0.5 
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0 
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4 

Figure 5.5: Calculation of heave energy spectrum 

wave matches the largest response frequencies in the transfer function, you get large ship 
motions. When the energies do not overlap, only small ship motions result. Figure 5.6 shows 
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the same ship transfer function (head seas at a single speed) when paired with different en­
counter frequency energy spectra (i.e. same ship operating in different sea conditions). As 
you can see, the ship response varies greatly based on what frequencies it is encountering in 
the seas. If you have large motions, one option is to change the encountered wave spectrum 
(change heading and/or speed) so that the high energy wave frequencies no longer align with 
the peak in your ship's transfer function. 

0.5 

0.5 

1.5 2 

Frequency (rad/sec) 

2.5 3 

0 L__-�-���--=�---__,J

0 0.5 

0.5 

1.5 2 
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1.5 2 

Frequency (rad/sec) 

2.5 3 

2.5 3 

Figure 5.6: Heave motion energy spectra generated for the same ship transfer function but 
different encounter frequency energy spectra 

5.4 Ship Motion Probability Distributions 

Just as for the irregular waves, a key question in seakeeping is "what is the likelihood of a 
particular event occurring (such as a particular motion amplitude being exceeded)? We can 
use the ship motion energy spectrum to help us predict this type of probability. 

Let's assume we are interested in the probability of the heave motion exceeding 2 m in a 
sea state 3. We can assume we have the relevant heave transfer function. 
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1. Begin by building an ITTC (Bretschneider) wave energy spectrum for a sea state
3 (determine the desired modal period and significant wave height from the NOAA
tables). The NOAA tables show that the mean significant wave height for a S83 is
2.85 ft and the most probable (modal) period is 7.5 sec. The equation we need is

where w0 = 21r /To 

s,(w) = 
1.25 (Wo)4 Hf;3 e-1.25(�)4 

4 w w 

2. Next convert the wave energy spectrum into the encounter frequency spectrum

g 
S,(we) = S,(w)----.,, .,, g - 2wU cosµ

3. Determine the RAO from the transfer function

4. Find the motion energy spectrum

5. Find the variance (mo) and RMS (a0) 

mo = 1
00 

Bx3
(we)dwe 

ao = ,Jmo

6. Find the probability X3 > 2 m

1(�)
2 

1( 2 )
2 

P(X3 > 2 m) = e- 2 o-o = e- 2 o-o 

Calculation of Probability of Exceedance Example Consider the pitching motion of a 520 
ft ship. For the time history recorded (a total of 23.5 minutes), the variance of the pitching motion was 6.522 
deg2

, the variance of the pitching velocity was 3.562 deg2 /sec2
, and the variance of the pitching acceleration 

was 2.276 deg2 /sec4. Find the significant pitching magnitude and the probability of the pitching motion 
exceeding 6 degrees. 
How did we get m0 ? It was found either by taking the variance of the time history or by finding the area 
under the pitch motion energy spectrum. Once we have it we can find the RMS pitching motion from 

XRMS = vrrno = ✓6.522 deg2 
= 2.55 deg. 

The significant pitching amplitude is twice the RMS value, so 

X1;3 = 2(2.55 deg) = 5.10° 

To find the probability of exceedance we plug this into the equation 3.12 from Chapter 3. 

So, for this sea condition, there is a 6.28% probability the pitch motion will exceed 6°. 
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5.5 Polar Plots 

117 

The Response Motion Spectrum is one way to describe the ship motion in a realistic sea 
state, but it is not easy to get useful information directly from the plot. To find information 
about the magnitudes of probable motions the area under the plot needs to be taken and 
that only gives information on a single wave/ship heading combination. To determine the 
ship response in other headings (or the same heading but at different speeds), the process 
needs to be repeated. To understand the ship response for all headings and multiple speeds 
you will need to find the information from many response spectrum plots. One way to 
consolidate the information is using a polar plot. 

There are two main types of polar plots and both have the heading angle as the angle 
around the plot. In the version we will be using in class, the radius of the polar plot represents 
the speed of the ship and the color of the lines represent the magnitude of the response. (In 
the other type of polar plot the radius represent the response magnitude and each curve is for 
a different ship speed). Figure 5.7 shows a typical example of a polar plot. The magnitudes 
for this plot are the RMS responses. To find the significant amplitudes you need to double 
the values found on this plot. 

FFG7, SS6, Pitch Motion 
-15° 0" 15° 

0, 

Radial Distance== Velocity (kts) 

1.8 

16 

1.4 

1.2 

08 

Max 2.01 deg 
Min 0.714 deg 

Figure 5. 7: Sample Polar Plot 

The information on the polar plot can be converted into a probability of exceedence based 
on the target magnitude plotted. For example, a plot of the significant motion amplitude 
gives a plot showing the motion amplitudes that have about a 14% chance of being exceeded. 
If desired, a polar plot showing the 10% or 1 % chance of being exceeded could be displayed. 
The polar plot also has the advantage of showing under what operating conditions (speed 
and heading) for a particular sea the ship will have the largest motions. This will be true 
at any probability level. So, if you are experiencing large rolls in a quartering sea and your 
ship's polar plot for that condition shows beam seas are the worst likely response, it gives 
you better guidance on the best course of action for minimizing your ship's motion response. 

5.5.1 Safe Operating Envelopes (SOE) 

The calculations necessary for a polar plot are done using computational tools to determine 
response amplitudes for a large number of sea states, sea directions, and ship speeds. The 
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results are often categorized by some limits (set by experience or some other guidance) and 
summarized in plots known as Safe Operating Envelopes (SOE). These polar plots show 
regions of marginal and unacceptable motions. Below are some examples from Comstock 
and Keane (1980) showing slamming predictions for CV-41 based on a change in sponson 
design1

. 

FF' llJ5'2; flUI.L LOAD 
FINS JNACTIVt 
NO BUI.WARK 

-

--

-- -

----

Figure 5.8: Development of FF 1042 Class Heavy Weather Seakeeping Operating Envelopes 
(SOEs) 

5.6 Model Testing in Irregular Seas 

Model testing in irregular head seas is a realistic scenario for seakeeping. The goal of sea­
keeping is to evaluate motions and accelerations in different sea conditions. Model testing 
is only possible for limited geometries and sea conditions, however, so it is important to be 
able to use other methods to predict motions and accelerations. 

1 Comstock, Edward N. and Keane, Robert G., Jr. (1980) "Seakeeping by Design," Naval Engineers 

Journal, vol. 92, no. 2, pp. 157-178. 
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Chapter 6 

Introduction to Maneuvering 

Learning Objectives: 

1. Be qualitatively familiar with the 3 broad requirements for ship maneuverability.

(a) Controls fixed straightline stability

(b) Response

( c) Slow speed maneuverability

2. Qualitatively describe what each requirement (listed above) is dependent upon.

3. Briefly describe the various common types of rudder.

4. Understand the various dimensions of the spade rudder, in particular

(a) chord

(b) span

( c) rudder stock

(d) root

( e) tip

5. Qualitatively describe the meaning of

(a) unbalanced rudder

(b) balanced rudder

(c) semi-balanced rudder

6. Qualitatively describe the sequence of events that causes a ship to turn.

7. Qualitatively describe a rudder stall and understand what it means.

8. Qualitatively describe the arrangements and devices that can be used to provide a ship
with maneuverability at slow speeds.

(a) rudder position

(b) twin propellers

( c) lateral thrusters

( d) rotational thrusters

123 
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Welcome to the second part of this course - ship maneuverability! While seakeeping fo­
cused on heave, roll, and pitch, ship maneuverability focuses primarily on the three remaining 
degrees of freedom - surge, sway, and yaw. This text has broken the topic into a broad in­
troductory overview (Chapter 6) and then a chapter delving more deeply into the topics we 
will focus on in this course (Chapter 7). As with the review on Stability (Chapter 2), this 
chapter is primarily taken from the Principles of Ship Performance (EN400) course notes. 

6.1 Introduction 

Ship maneuverability is a very complex and involved subject involving the study of equations 
of motion involving all 6 degrees of freedom. Analysis of these motion equations allows 
predictions of ship maneuverability to be made. However, many assumptions are made, 
so model testing is required to verify analytical results. Once built, a ship's maneuvering 
characteristics are quantified during its Sea Trials. 

To limit the level of complexity covered in this chapter, the analytical study of the 
equations of motion will be limited to Chapter 7. However, the maneuverability requirements 
a ship designer strives to meet will be discussed along with the devices and their arrangements 
that can provide them. 

After completing this chapter you will have an understanding of how a ship's rudder 
makes a ship turn and an appreciation of other devices that improve a ship's slow speed 
maneuverability. 

6.2 Maneuverability Requirements 

When given the task of designing a ship, the naval architect is given a number of design 
requirements to meet. These include the obvious dimensions (such as Lpp, beam, and draft), 
but also other requirements such as top speed, endurance, etc. Some of the more complicated 
requirements involve maneuverability. These can be split into 3 broad categories. 

6.2.1 Directional Stability 

In many operational circumstances, it is more important for a ship to be able to proceed in 
a straight line than turn. That is, with the rudder set at amidships, and in the absence of 
external forces, the ship will travel in a straight line. This is termed controls fixed straight 
line stability. Our experience indicates that this scenario is rarely the case, and anything 
but a sea directly on the bow will create a yawing moment that has to be compensaated for 
by movement of the ship's rudder. However, in principle, ships should be designed to achieve 
controls fixed straight line stability. An illustration of this stability is given in Figure 6.11

Despite this requirement, many hull forms do not have this level of directional stability. 
In particular, ships which are relatively short and wide, such as tugs or harbor utility vessels, 

1 Figure 9.1 from EN400 course notes.
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Figure 6.1: Hull Forms with Different Levels of Directional Stability (from EN400 course 
notes) 

and, in certain circumstances, small combatants tend to have poor controls fixed straight line 
stability. This can be overcome by increasing the amount of deadwood of the hull (fin-like 
vertical surface) at the stern. This is directly analogous to the flights on an arrow or dart. 
Without flights, the arrow will tend to yaw in flight. With flights, the arrow maintains a 
straight line. Hence, increasing the amount of deadwood will increase the directional stability 
properties of a hull. For a ship, the problem is worsened because the ship is pushed rather 
than pulled along. Try pushing the end of your pencil and maintain its motion in a straight 
line. 

Controls fixed straight line stability is quantified during sea trials by the spiral maneuver 
where rate of turn is compared with rudder direction. 

6.2.2 Response 

In opposition to the requirement for controls fixed straight line stability, it is also required 
for the ship to turn in a satisfactory manner when a rudder order is given. In particular: 

• The ship must respond to its rudder and change heading in a specified minimum time.

• There should be minimum overshoot of heading after a rudder order is given.

In practice, both these response quantities are dependent upon the magnitude of the rudder's 
dimensions, the rudder angle, and the ship speed. 

Rudder Dimensions 

As we will see in the next section, rudder dimensions are limited by the geometry of the 
ship's stern. However, it is not surprising that the larger the dimensions of the rudder, the 
more maneuverable the ship. Increasing the rudder dimensions decreases the response time 
and overshoot experienced by the hull. 

The level of response required by a ship is driven by its operational role. For example, 
the ratio of rudder area to the product of length and draft ranges from 0.017 for a cargo ship 
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to 0.025 for destroyers. 

Rudder Angle 

. Rudder Area 
Rudder Area Rat10 = 

LppT 
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Clearly, the response characteristics of a ship will depend upon the rudder angle ordered for 
a particular maneuver. It is common procedure for the levels of response to be specified with 
the ship using standard rudder. This is 20 degrees of wheel for the USN. 

Ship Speed 

Ship speed will also influence the level of maneuverability being experienced by the ship. 
In practice, for the majority of hull forms, greater ship speed will reduce response time, 
but increase overshoot. This is because greater ship speed increases the rudder force being 
generated by a given rudder angle. 

For this reason, during sea trials, ship response and overshoot are quantified at several 
ship speeds. Ship response is usually assessed by the zig-zag maneuver. 

6.2.3 Slow Speed Maneuverability 

It is usually the case that it is most important for ships to be maneuverable when traveling 
at slow speeds. This is because evolutions such as canal transits and port entrances are 
performed at slow speeds for safety reasons. Unfortunately, this is when the ship's rudder is 
least effective. 

Levels of slow speed maneuverability are specified in terms of turning circle and other 
quantifiable parameters at speeds below 5 knots. Devices that can improve slow speed 
maneuverability will be discussed later. 

6.2.4 Maneuverability Trade-Off 

Unfortunately, the need for good directional stability (in particular controls fixed straight 
line stability) and minimum ship response oppose each other. For example, for a fixed rudder 
area, increasing the length of a ship will make it more directionally stable but less responsive 
to its rudder. As discussed, a similar effect is created by increasing the amount of vertical 
flat surface at the stern (deadwood). 

However, increasing rudder area will always improve the response characteristics of a hull 
form and usually improve its directional stability as well. Unfortunately, rudder dimensions 
are limited by stern geometry. Also, larger rudders will increase drag and so reduce ship 
speed for a given DHP from the propeller. 
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6.3 The Rudder 

6.3.1 Rudder Types 

127 

Clearly, the rudder is the most important control surface on the hull. There are a multiplicity 
of different types. Figure 6.2 (repoduced from reference 5) shows some of them. 

SI P1.. TYP RUDDEii POST 

lel 

COMPOU D: UTT 

UN MUNO; $HAL.LOW 

HORN 

It I 

SIMPLE; FUU.Y 8A1AHC 0 

SPADE; ERCHAHT TYP 

Figure 6.2: Different Rudder Types 

(di 

The magnitude of all the rudder types dimensions are limited by the stern geometry. 

• Chord: The chord is limited by the position of the propeller (propeller /rudder clear­
ance is specified by ABS) and the edge of the stern. It is fairly obvious that a rudder
protruding beyond the stern is inadvisable.

• Span: The span is limited by the hull and the need for the rudder to remain above
the ship baseline. This is a "grounding" consideration.

The Spade Rudder 

The most common type of rudder found on military vessels is the spade rudder. Figure 6.2 
(reproduced from reference 5) shows the geometry of a typical semi-balanced spade rudder. 

Rudder Balance Whether a rudder is balanced or not is dependent upon the relationship 
of the center of pressure of the rudder and the position of the rudder stock. 

• When they are vertically aligned, the rudder is said to be "fully balanced" . This
arrangement greatly reduces the torque required by the tiller mechanism to turn the
rudder.
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Figure 6.3: A Semi-balanced Spade Rudder 

128 

• When the rudder stock is at the leading edge, the rudder is "unbalanced" as in Fig­
ure 6.2(a). This is a common arrangement in merchant ships where rudder forces are
not excessive.

• The spade rudder in Figure 6.3 is semi-balanced. This is a sensible arrangement as
it limits the amount of torque required by the tiller mechanism yet should ensure the
rudder returns to amidships after the occurrence of a tiller mechanism failure.

Rudder Performance 

It is a common misconception that the rudder turns a ship. In fact, the rudder is analogous 
to the flaps on an aircraft wing. The rudder causes the ship to orientate itself at an angle of 
attack to its forward motion. It is the hydrodynamics of the flow past the ship that causes 
it to turn. Figure 6.4 shows the stages of a ship turn. The ship will continue to turn until 
the rudder angle is removed. 

Rudder Stall You will probably have noticed that a typical ship's rudder is limited to a 
range of angles from about ±35 degrees. This is because at greater angles than these the 
rudder is likely to stall. Figure 6.5 (reproduced from reference 5) shows the development 
of stall as the rudder angle increases. At small angles, the rudder lift is created due to the 
differences in flow rate across the port and starboard sides of the rudder. However, as the 
rudder angle increases, the amount of flow separation increases until a full stall occurs at 45 
degrees. 

The amount of lift achieved by the rudder reduces significantly after a stall and is matched 
by a rapid increase in drag. Consequently, the rudder angle is limited to values less than the 
stall angle. Figure 6.6 shows how rudder lift alters with rudder angle. 
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Figure 6.4: The Stages of a Ship's Turn 
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As mentioned previously, it is at slow speeds when ships need to be the most maneuverable. 

Unfortunately, at slow speeds the rudder is limited in its effectiveness due to the lack of 

flow across its surfaces. However, there are several things that can be done to improve the 

situation. 

6.4.1 Rudder Position 

To improve the low flow rate experienced by the rudder at slow speeds, the rudder is often 

positioned directly behind the propeller. In this position, the thrust from the propeller acts 

directly upon the control surface. A skilled helmsman can then combine the throttle control 

and rudder angle to vector thrust laterally and so create a larger turning moment. 

6.4.2 Twin Propellers 

The presence of 2 propellers working in unison can significantly improve slow speed maneu­

verability. By putting one prop in reverse and the other forward, very large turning moments 

can be created with hardly any forward motion. 
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Figure 6.5: Rudder Flow Patterns at Increasing Rudder Angle 
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Figure 6.6: How Lift Alters with Rudder Angle 

6.4.3 Lateral Thrusters 
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Lateral thrusters ( or bow thrusters as they are usually positioned at the bow) consist of 
a tube running athwart ships inside of which is a propeller. They are usually electrically 
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driven. With a simple control from the bridge, you can create a turning moment in either 
direction. Figure 6. 7 shows a photograph of 2 lateral thrusters positioned in the bulbous 
bow of a ship. The photo is reproduced from reference 5. 

Figure 6. 7: Lateral Thrusters in the Bow of a Ship 

6.4.4 Rotational Thrusters 

These provide the ultimate configuration for slow speed maneuverability. Rotational thrusters' 
appearance and operation resembles an outboard motor. They consist of pods that can be 
lowered from within the ship hull. Once deployed, the thruster can be rotated through 360 
degrees allowing thrust to be directed at any angle . Figure 6.8 shows a typical "ro-thruster" 
design produced by Kvrerner Masa-Azipod of Finland. 

Figure 6.8: Typical Rotational Thruster Design (from EN400 course notes) 

Some highly specialized ships use "ro-thrusters" as their only means of propulsion. Two 
or three "ro-thrusters" coupled with a complicated GPS centered control system can keep a 
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ship in a geostationary position over the sea bed and at the same heading in quite considerable 
tide and wave conditions. These ships are often associated with diver, salvage, or seabed 
drilling operations. 

Figure 6.9 shows a typical auxiliary propulsion unit used on ships and submarines. It 
can be used for both emergency propulsion and maneuverabilty. 

Figure 6.9: Auxiliary Propulsion Unit (from EN400 course notes) 

In practice, the amount of slow speed maneuverability exhibited by a ship is largely 
dependent upon the amount of money the designer is willing to spend on lateral or rotational 
thrusters in the ship design. This economic question is highly involved and includes estimates 
of ship docking rates, costs of hiring tugs, etc. 
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Maneuvering Theory 

Learning Objectives: 

1. Explain the concepts of directional stability

2. Explain the relationship between controls-fixed straight line stability and the linearized
equations of motion for maneuvering.

3. Describe the forces on a ship in a turn.

4. Describe the effect of the ship characteristics and rudder on turning ability.

5. Calculate the maneuvering hydrodynamic derivatives for a ship from experimental
measurements.

6. Use the maneuvering hydrodynamic derivatives to determine the controls fixed straight
line stability of a ship.

7. Use the maneuvering hydrodynamic derivatives to determine the steady turning radius
of a ship.

8. Estimate appropriate rudder dimensions based on standard guidelines.

9. Laboratory Objectives:

(a) Explain the process for determining the maneuvering hydrodynamic derivatives
dependent on sway and yaw velocities and accelerations.

(b) Describe the procedure for static and dynamic PMM testing and how that data
is used to determine the hydrodynamic derivatives Yv , Nv , Yv, Nv, Yr, Nr , Yr, and
N;- .

In this chapter we will go much more in-depth on the theory behind maneuvering, in­
cluding the equations of motion and the hydrodynamic derivatives. We will discuss how 
to determine these derivatives experimentally and discuss how a ship turns in more detail. 
Finally, we will cover some rudder design considerations. 

134 
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7 .1 Elements of Controllability 

1. Coursekeeping ( or Steering) - The maintenance of a steady mean course or heading.
Interest centers on the ease with which the ship can be held to the course.

2. Maneuvering - The controlled change in the direction of motion ( turning or course
changing). Interest centers on the ease with which change can be accomplished and
the radius and distance required to accomplish the change.

3. Speed Changing - The controlled change in speed including stopping and backing.
Interest centers on the ease, rapidity and distance covered in accomplishing changes.

Performance varies with water depth, channel restrictions, and hydrodynamic interfer­
ence from nearby vessels or obstacles. Coursekeeping and maneuvering characteristics are 
particularly sensitive to ship trim. For conventional ships, the two qualities of coursekeep­
ing and maneuvering may tend to work against each other: an easy turning ship may be 
difficult to keep on course whereas a ship which maintains course well may be hard to turn. 
Fortunately a practical compromise is nearly always possible. 

Since controllability is so important, it is an essential consideration in the design of any 
floating structure. Controllability is, however, but one of many considerations facing the 
naval architect and involves compromises with other important characteristics. Some solu­
tions are obtained through comparison with the characteristics of earlier successful designs. 
In other cases, experimental techniques, theoretical analyses, and rational design practices 
must all come into play to assure adequacy. 

Three tasks are generally involved in producing a ship with good controllability: 

1. Establishing realistic specifications and criteria for coursekeeping, maneuvering, and
speed changing.

2. Designing the hull control surfaces, appendages, steering gear, and control systems to
meet these requirements and predicting the resultant performance.

3. Conducting full-scale trials to measure performance for comparison with required cri­
teria and predictions.

7 .2 Basic Equations of Motion 

For the axis fixed with respect to the Earth, the equations of motion for maneuvering are 

Xo = mf),/ioa 

Yo = mi),_iioa 

Surge 

Sway 

Yaw 

However, for convenience we want to discuss the ship forces and motions from the ship-fixed 
reference frame. To do that, we need to express the variables in the previous equations from 
the ship-fixed coordinate system rather than in the Earth reference frame. 

ENGINEERING-PDH.COM 
| NAV-122 |



CHAPTER 7. MANEUVERING THEORY 

Maneuvering Coordinate System 
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Figure 7.1: Coordinate System for Maneuvering (from reference 1) 

Consider the velocities ( draw a picture): 

±oe = u cos 'ljJ + v sin '1/J 

Yoe = -u sin '1/J + v cos 'ljJ 

To get accelerations we need to take the derivative of the velocities: 

x0e = it cos 'ljJ + v sin '1/J + ( -u sin '1/J + v cos 'ljJ )'¢ 

iioe = -it sin '1/J + v cos 'ljJ - ( u cos 'ljJ + v sin '1/J )'¢ 
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Plugging these into the equations of motion (Note: the forces are still in the Earth reference 
frame): 

X0 = m� ( it cos 'ljJ + v sin '1/J + ( -u sin '1/J + v cos 'ljJ )'¢) 

Y0 = m�(-itsin 'ljJ + vcos'l/J - (ucos'l/J + v sin '1/J)-¢)

Now consider the forces in the ship-fixed reference frame (same transformation as for the 
velocities): 

XO = X cos 'ljJ + Y sin '1/J 
Y0 = -X sin '1/J + Y cos 'ljJ 

Plugging into the previous equations and simplifying gives the equations of motion in the 
forces, velocities, and accelerations measured in the ship-fixed reference frame: 

X = m�(it + v-¢) 

Y = m�(v - u-¢) 
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The angular equation is unchanged by the shift in coordinate system. Since the other 
variables (u, v) are velocities, let's replace the angular velocity (,,P) with r (now velocities 
have no dot and accelerations are all represented with one dot). Now, the equations of 
motion are: 

X = m�(u+vr) 
Y=m�(v-ur) 

N = Izr 

The forces and moments (left hand side) of the equations of motion consist of four types 
of forces that act on a ship during a maneuver: 

1. Hydrodynamic forces acting on the hull and appendages due to ship velocity and
acceleration, rudder deflection, and propeller rotation

(a) Due to relative velocity and acceleration of the surrounding fluid

(b) Due to rudder deflection

( c) Due to propeller action

2. Inertial reaction forces caused by ship acceleration

(a) Rigid body forces acting on a moving body - due to body accelerations

3. Environmental forces due to wind, waves and currents

4. External forces such as tugs, thrusters, mooring lines, etc.

We will only deal with the top two! 

7.2.1 Linear Equations 

The force components X, Y, and moment component N are assumed to be composed of 
several parts, some of which are functions of the velocities and accelerations of the ship. For 
now, we will assume that the forces are composed only of the forces and moments arising 
from motions of the ship which, in turn, have been excited by disturbances whose details we 
need not be concerned with here. 

X = Fx(u,u,v,v,r,r) 

Y= F
y
(u,u,v,v,r,r) 

N= F�(u,u,v,v,r,r) 

The forces are comprised of velocity dependent forces arising from hull drag through the 
water (in surge, sway and yaw) and acceleration dependent forces arising from the mass of 
the ship and the added mass of the fluid being accelerated in surge, sway, and yaw. 

For stability analyses, we need to consider a vessel moving in equilibrium that experiences 
a disturbance. To consider the effect of a disturbance on the forces acting on the vessel, we 
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can use the Taylor Series expansion technique. "If the function of a variable, x, and all its 
derivatives are continuous at a particular value of x, say x1, then the value of the function 
at the value of x not far removed from x1 can be expressed as follows": 

If the change in the variable (x - x1) is kept small, the higher order terms (HOT) can be 
neglected, leaving 

For multivariable functions, 

So, if we write the linearized sway force we get 

For Straight Line Stability, many of the velocities and accelerations are zero. For example, 
for a vessel moving at constant forward speed, there are no acceleration terms, no sway or 
yaw velocities and no Y force before a disturbance. The forward velocity is equal to the ship 
speed, U. 

U1 = U 

V1 = T1 = 0

u1 = v1 = f 1 = 0

F
y
(u1, u1, v1, v1, r1, i'1) = 0

Because of symmetry, there can be no Y force due to forward velocity or acceleration, so 

BY BY 

au
=

au
=O 

The Sway Force Equation now becomes, 

We can perform the same technique to get the linearized Surge and Yaw equations: 

ax ax 
X= -(u-U)+-. u

au au 
aN aN aN aN 

N= -v+-v+-r+-r 
av av Br Br 

ENGINEERING-PDH.COM 
| NAV-122 |



CHAPTER 7. MANEUVERING THEORY 139 

Now we have the forces for the basic equations of motion, we can combine (and move 
everything over to the right hand side) and get 

0 
. ax

( U) 
ax. 

= mil u + mil vr - - u - - -. u 
au au 

. ay ay . ay ay . 
0 = milv - milUr - -v - -v - -r - -r 

av av ar ar 
. aN aN. aN aN. 

0 = I r - -v - -v - -r - -r
z av av ar ar 

Surge 

Sway 

Yaw 

The partial derivatives are called the Hydrodynamic Derivatives and we need to find them 
to solve the equations of motion! 

7.2.2 Notes on Notation 

To define a standard notation for maneuvering (rather than writing out the partial derivatives 
every time), SNAME (1952) specifed the following rule: 

• Replace the partial derivative with the letter for force ( or moment) and the subscript
with the motion. For example,

ay =Y. 
av - V 

aN 
-=N· 
ar - r 

Rewriting the equations of motion using this notation gives the official Linearized Maneu­
vering Equations of Motion: 

- Xu(u - U) + (mil - X;.i)u + milvr = 0
- Yvv + (mil - Yv)v - (Y;. + milU)r - }7rr = 0
- Nvv - Nvv - Nrr + Uz - N,;, )r = 0

For convenience in analysis, we will non-dimensionalize the equations. For maneuvering the 
main effects are on sway and yaw - we can neglect surge since changes in forward velocity 
will be small relative to the mean forward velocity, U. 

- Y:v' + (m� - Y:)v' - (Y: + m�)r' - Y/r' = 0
- N'v' - N�v' - N'r' + (I' - N�)r' = 0

v v r z r 

( The U disappeared in the sway equation since the velocities are non-dimensionalized by U, 
so U' = 1.) 
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7.2.3 Control Forces and Moments 

It is important to note that all the terms in the previous equations must include the effect 
of the ship's rudder held at zero degrees ( on the centerline). On the other hand, if we want 
to consider the path of a ship with controls working, we must include terms expressing the 
control forces and moments created by rudder deflection ( and any other control devices) as 
functions of time. The linearized y-component of the force created by rudder deflection is 
Y88 R· The linearized component of the moment created by rudder deflection about the z-axis 
of the ship is N.,b R· 

Y8 ,N8

rudder-deflection angle, measured from xz-plane of the ship to plane of the 
rudder; positive deflection corresponds to a turn to port for rudder(s) located 
at the stern. 
linearized derivatives of Y and N with respect to rudder-deflection angle 8R

\ 

Figure 7.2: Rudder Induced Turning moments (from reference 1) 

For small rudder deflections ( due to small disturbances, for example) and for usual ship 
configurations, 

Applying these assumptions and including the rudder force and moment, the equations of 
motion become: 

(1; - Nr)r' - N�v' - N:r' = N�8R

(m� - Yt)v' - Y;v' - (Y: + m�)r' = Yf bR

Yaw Moment 
Sway Force 
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For conventional ship configurations, we can simplify the mass and inertial terms as follows: 

(m� -Yt) ~ 2m� 

(I' - N') ~ 21' 
z r z 

We can evaluate the hydrodynamic derivatives for the effect of the rudder on the hull, where 
8 R is the rudder angle in radians (positive to port): 

To make numerical predictions it is necessary to obtain values for some or all of the 
coefficients or derivatives involved. This is primarily done by means of captive model tests. 

7.3 Captive Model Tests (PMM) 

First let us consider what forces are acting on the vessel due to maneuvering motions and 
how these forces relate to the Hydrodynamic Derivatives. 

Consider a ship experiencing transverse acceleration, v (see Figure 7.3). If the acceleration 
is to starboard (positive), there will be a reaction force Yv to port due to the resistance of the 
water. For a transverse acceleration the force will always resist the direction of acceleration. 
This is shown in Figure 7.4 with the sway force versus sway acceleration showing a negative 
slope. 

Figure 7.3: Ship Experiencing Transverse Acceleration 

Consider a ship experiencing angular acceleration, r (see Figure 7.5). If the acceleration 
is positive (bow to starboard), there will be a reaction moment N;, in the negative direction 
due to the resistance of the water. For an angular acceleration the moment will always resist 
the direction of acceleration. Therefore, a plot of yaw moment versus yaw acceleration will 
always have a negative slope and will look like Figure 7.4. 

Figure 7.6 shows the forces on a body with a sway velocity, v, added to a forward velocity, 
u. Both the bow and the stern experience a lift force oppositely directed to v. Therefore, Yv

is always negative ( see Figure 7. 7). However, the bow contribution is usually larger than that
of the stern, so there is a negative moment contribution Nv, Yet the addition of a rudder
at the stern will increase the magnitude of the stern force and so decrease the negative
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YvALWAYS NEGATIVE 

Figure 7.4: Sway Force versus Sway Acceleration 
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tlY;ilBOW 

Figure 7.5: Ship Experiencing Angular Acceleration 
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magnitude of Nv. If the rudder force were sufficiently large, it might even cause Nv to be 
positive (not usually the case). Figure 7.7 show the possible relationships between Nv and 
V. 

__._ \Nv v lSTERN 

- (Ny V )BOW 

m••c �:. . ·}

,, .. ,,t,� 
+Y

Figure 7.6: Ship Experiencing Forward Velocity and Transverse Velocity 

Figure 7.8 shows the effect of an angular velocity, r, in addition to forward velocity, u,

on Y and N. Due to the angular velocity, point B near the bow has a positive transverse 
velocity, v8, producing a negative Y-force and a negative N-moment. Point S near the 
stern has a negative transverse velocity, v8, producing a positive Y-force and a negative 
N-moment. So the moments can combine to produce a large negative moment, but the sway
forces oppose each other resulting in a small positive or negative Y-force. Figure 7.9 shows
the relationship between Y and N and r.

So, how can we use captive model tests and this information to find the hydrodynamic 
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Y ALWAYS 
f'l'EGATIVE Nv NEGATIVE 

If' BOW 
OOMINATES 
(USUAL CASE) 

Figure 7.7: Sway Force and Yaw Moment versus Transverse Velocity 
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Figure 7.8: Ship Experiencing Forward Velocity and Angular Velocity 
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Figure 7.9: Sway Force and Yaw Moment versus Angular Velocity 

derivatives? 

7.3.1 Straight-Line Tests in a Towing Tank 
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The velocity-dependent derivatives Yv and Nv of a ship at any draft and trim can be deter­

mined from measurements on a model of the ship, ballasted to a geometrically similar draft 

and trim, towed in a conventional towing tank at a constant velocity, U, corresponding to 

a given ship Froude number, at various angles of attack, /3, to the model path. The figure 
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below (Figure 7.10) shows the orientation of the model with respect to the tow tank. From 
the figure you can see that the transverse velocity component ( from the vessel coordinate 
system) is produced along the y-axis such that 

v = -U sin/3 

where the negative sign is due to the sign convention (see Figure 7.1). The Y force and N 

+y
(Abkowitz, 1964) 

llllllllllllllllllllllllllll 

Figure 7.10: Straight Line Tow Testing 

moment are measured on the model for each value of /3 tested. The force or moment versus 
sway velocity is then plotted and the hydrodynamic coefficient is the slope of the curve near 
v = 0. Figure 7.7 shows an example of sway force (Y) and yaw moment (N) versus sway 
velocity ( v). The slope of the straight line through the curve at v = 0 is the hydrodynamic 
coefficient. So, for the plot Y versus v, you can find the coefficient Yv and for the plot N 
versus v, you can find the coefficient Nv, Let's review: 

1. Test a model fixed in yaw (specified drift angle, /3) at a constant forward velocity, U.

2. The sway velocity felt by the model is equal to -U sin/3

3. The sway force and yaw moment are measured on the model

4. For a given U and /3 you have one point on the Y versus v plot and one point on the
N versus v plot. To get additional points, run the test at various drift angles.

The propeller will usually exert an important influence on the hydrodynamic derivatives. 
Therefore, the model tests to determine these derivatives should be conducted with the 
propeller operating, preferably at the ship propulsion point. Also, since the undeflected 
rudder contributes significantly to the derivatives the model tests should also include the 
rudder in the amidships position. 

The technique described above can also be used to determine the control derivatives Y8

and N8 . If the model is oriented with zero angle of attack (/3 = 0), but the model were towed 
down the tank at various values of rudder angle, 8 R, the force and moment measurements 
would determine the force Y and moment N as a function of rudder angle. Plots of these 
against rudder angle will indicate the values of the derivatives Y8 and N8 . 

Straight-line tests can also be used to determine the cross-coupling effect of v on Y8 and 
N8 and of 8R on Yv and Nv, 
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7.3.2 Rotating-Arm Technique 

To measure the rotating derivatives Yr and Nr on a model a special type of towing tank and 
apparatus called a rotating-arm facility is occasionally employed. 

• An angular velocity is imposed on the model by fixing it to the end of a radial arm
and rotating the arm about a vertical axis fixed in the tank.

• The model revolves about the tank axis, rotates at rate r while its transverse velocity
component v is zero at all times (yaw angle of attack or drift angle - /3 = 0).

• The model is rotated at a constant linear speed at various radii R and the sway force
Y and yaw moment N are recorded.

• The angular velocity is given by r = U / R, so the only way to vary r at constant U is
to vary R.

• The plots of Y and N versus r provide the hydrodynamic derivatives Yr and Nr.

---..o.+N 

-----�•r 

AXIS FIXED 
IN TANK 

ORCULAR 
PATH OF MODEL 

(Abkowitz, 1964) 

Figure 7.11: Model in Rotating-Arm Facility (from reference 1) 

Some disadvantages of rotating-arm tests: 

1. Require a specialized facility of substantial size. (There are only a few rotating-arm
facilities in the world. One is at the David Taylor Research Center in Carderock, MD.
Another was at the Davidson Laboratory at Stevens Institute of Technology.)

2. The model must be accelerated and data obtained within a single revolution. Otherwise
the model will be running in its own wake and its velocity with respect to the fluid
will not be accurately known.
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3. In order to obtain values of the derivatives Y;., Nr , Yv , and Nv at r = 0, data at small
values of r are necessary. This means that the ratio of the radius of turn, R to the
model length L must be large.

7.3.3 Planar Motion Mechanism (PMM) Technique 

To avoid the large expense of a rotating-arm facility, a device known as a Planar Motion 
Mechanism (PMM) was developed for use in the conventional long and narrow towing tank 
to measure the velocity-dependent and acceleration derivatives. 

Basically the PMM consists of two oscillators, one of which produces a transverse os­
cillation at the bow and the other produces a transverse oscillation at the stern while the 
model moves down the towing tank at a constant forward velocity, U0 ( measured along the 
centerline of the tank). Figure 7.12 shows a sample model in a PMM. The forces required 
from each oscillator are recorded along with the transverse position of the model at each 
oscillator. The point B near the bow is oscillated transversely with a small amplitude, a0,

+Ys ! to0cos(wt + £) l
ta0cos wt 

\·· +Ye 
ll 0 X 

+x,+u 

+v (Abkowitz, 1964) 

+Y

Figure 7.12: Model setup for planar motion tests 

and at frequency w. Point S near the stern is oscillated transversely with the same ampli­
tude, a0, and the same frequency, w. The phase difference between the oscillations allows 
the model to experience yaw. If E = 0, the model experiences pure sway with zero yaw, as 
shown in Figure 7.13. For a pure sway test, the model is moving transversely in a sinusoidal 

k-1 •---PERIOD OF OSCILLATION, T=: ----•1 

t=O , . .z 
2W 

t:::.2!. 
w 

t= 311" 
2w 

,,,2'11' 
w 

(Abkowitz, 1964) 

Figure 7.13: Path and orientation of model for pure sway motion 

motion. The sway velocity and acceleration can be found by taking the time derivatives of 
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the position. 

y = a0 sin wt

dy 
dt 

=v = wa0 cos wt

d2y . 
2 • t 

dt2 
=v = -w a0 sm w 

Therefore, the magnitude of the velocity and acceleration is given by 

v = a0w

. 
2 v = w ao 
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Each oscillator measures the Y-forces experienced by the model as a result of the swaying 
motion (YB and Y8). To find the Yv derivative, we need to consider the Y-force in-phase with 
the velocity (or 90° out-of-phase with the position). To get the magnitude of the Y-force 
in-phase with the velocity we need to do a FFT of the signal (YIPPEE! I hear you cry-..::., ). 
This time, however, we will find the sine and cosine components of the signal, rather than 
the total magnitude. Once we have the components in-phase with the velocity (the cosine 
components) we can find the derivative Yv by plotting the °Yvel term versus the sway velocity. 

For the yaw moment derivative, a similar procedure can be applied. In this case, the sway 
force at each oscillator must be multiplied by a distance to get the moment. The distance, 
Xs, is typically chosen as measured from ®: (and each point B and S must be equidistant 
from .mi:). This means the hydrodynamic derivative Nv can be determined from plotting the 
cosine component of the yaw moment versus the sway velocity. 

The components of the sway force and yaw moment that are in-phase with the acceleration 
are the sine components. Therefore, the derivatives Yv and Nv are found by plotting the Yacc 
and Nace versus the sway acceleration i.J. 

Yacc = YBsin + Yssin 

Nace = (YBsin - Ys.;Jxs 

To obtain the angular derivatives Yr and Nr from planar motion tests, the measurements 
must be made when r = 0, v = 0, and iJ = 0. Similarly, for Yr and N,;,, the measurements 
need to be taken when r = 0, v = 0, and iJ = 0. To impose an angular velocity and an 
angular acceleration on a body with v and iJ equal to zero, the model must be towed down 
the tank with the centerline of the model always tangent to its path, see Figure 7.14. This 
means the sway velocity (relative to the model) is always zero. To obtain pure yaw motion 
using the two oscillators in the PMM, the phase angle, E, must be equal to 

I 
WX8 tanE 2 = u·
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(Abkowitz, 1954 and Gertler, 1959) 

y0 ;-a
0

/2[sin r.it+ sin(c.>t-�l] 
,jl ;-,j,

0
(cas wt-t'2) 

Figure 7.14: Path and orientation of model for pure yaw motion 

The yaw oscillation is a sinusoidal motion and of the form 

'¢ = -'¢0 sin(wt - E/2) 

r ='¢ = -w'¢0 cos(wt - E/2)

r ='¢ = w
2'¢0 sin(wt - E/2)
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The yaw velocity, r is out-of-phase with the angle'¢ and the angular accleration r is in-phase 
with the angle '¢. Therefore, the amplitudes of YB and Ys measured 90° out-of-phase with
'¢ will determine the force and moment due to rotation r and the amplitudes of YB and Ys 
in-phase with the'¢ will determine the forces and moment due to angular acceleration r.

Yangvel = y Bcos + Yscos 

Nangvel = (YBcos - Yscos)xs 

Yangacc = YBsin + Yssin 

Nangacc = (YBsin -

Yssin
)xs 

Plotting these forces versus velocity and acceleration can provide the yaw derivatives. The 
slope of Yangvel versus r gives (Yr+ m!:!.U), the slope of Nangvel versus r gives Nr, the slope
of Yangacc versus r gives Yr,, and the slope of Nangacc versus r gives (N,;- - Iz),

7 .4 Directional Stability 

Now that we have experimental values for our hydrodynamic derivatives, we can solve the 
linear sway and yaw equations of motion. Solutions to the linear sway and yaw equations 
provide linear transfer functions permitting review of the stability of motion. 

There are various kinds of motion stability associated with ships and they are classified 
by the attributes of their initial state of equilibrium that are retained in the final path of 
their centers of gravity. For example, consider Figure 7.15. 

In each of the cases, the ship is assumed to be traveling at a constant speed along a 
straight path. 

1. For case I - Straight Line Stability: the final path after the disturbance is finished
retains the straight-line attribute of the initial state of equilibrium, but not its direction.
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ORIGINAL STRAIGHT * 
LINE PATH 

I STRAIGHT LINE STABILITY 

ORIGINAL STRAIGHT* 
LINE PATH 

Il DIRECTIONAL STABILITY 
(WITH COMPLEX STABILITY INDEXES) 

ORIGINAL STRAIGHT * 
LINE PATH 

fil DIRECTIONAL STABILITY 
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ORIGINAL STRAIGHT* 
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Dlf!ECTION AND POSITION AS 

ORIGINAL PATH 

* INDICATES INSTANTANEOUS DISTURBANCE 

Figure 7.15: Various kinds of motion stability (PNA III, Arentzen 1960) 
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2. For case II - Directional Stability: the final path after the disturbance is finished
retains not only the straight-line attribute of the initial path, but also its direction.

3. For case III - Directional Stability: the result is the same as for Case II, but without
the oscillations.

4. For case IV - Positional Motion Stability: the ship returns to the original path - not
only does the final path have the same direction as the original path, but also its same
transverse position relative to the surface of the earth.

When operating with controls-fixed in the horizontal plane in the open ocean with 
stern propulsion, a surface ship does not have directional stability (i.e. if disturbed from 
its original course it will not return to that course by itself). However, the ship can have 
Straight-Line Stability (i.e. if disturbed from its original straight-line course, the ship will 
settle on a final path that is also a straight line). 

When operating with controls working you can achieve directional stability. You want 
the ship to have directional stability with controls working, but also to have straight-line 
stability with controls fixed. This results in a compromise between rudder size and deadwood 
size. 

We will start by using the linear equations of motion to evaluate the straight-line 

stability characteristics of a ship. 

• We want to understand the effect of ship design features on maneuverability.
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• With the rudder fixed on the centerline, we want the ship to have straight-line stability,

but just barely.

• This will reduce the size of the rudder and steering gear needed for good maneuver­
ability.

The simultaneous solution of the sway and yaw equations for the sway and yaw veloc­
ities yields a second-order differential equation. Working with non-dimensional variables, 
the solutions for v' and r' correspond to the standard solutions of second-order differential 
equations: 

v' = V1ea1t + V2ea2t

r' = R1 e
a1t + R2ea2t

The variables Vi, ½, R1, and R2 are constants of integration and a1 and a2 are the stability 
indexes. If both values of a are negative, v' and r' will approach zero with increasing time 
which means that the path of the ship will eventually resume a new straight-line direction. 
If either a1 or a2 are positive, v' and r' will increase with increasing time and a straight-line 
path will never be resumed. We can relate these stability indexes, a, to the hydrodynamic 
derivatives by substituting the solutions back into the equations of motion. If this is done, 
a quadratic equation in a is obtained: 

Aa2+Ba+C= O

A, B, and C are as follows: 

A= (Yf - m�)(N; - I�) - Y;N� 
B = Y:(N; - I�)+ N'r(Yf - m�) - N�(Y: + m�) - Y;N� 
C = Y' N' - N' (Y' + m' ) v r v r � 

The two roots, both of which must be negative for controls-fixed stability are: 

-B/A ± [(B/A)2 - 4C/A] 112

0"1,2 = ______ 2 _____ _ 

For both stability roots to be negative ( all changes with respect to time are decreasing), two 
conditions must be met: 

B- >0
A 

C- >0
A 

• For conventional ships A is large and positive.

• It can be shown that B is usually large and positive and on the same order of magnitude
as A.

• This means that the determining factor will be C.
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For both stability roots to be negative, C > O! Therefore, 

Rewriting we can say, 
N' N' 

T V 

0-
y

-, --,- -
Y' > .

T +ml!!,,_ V 
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We can calculate the directional straight-line stability after having performed the PMM tests 
on a model, but what can we say generally about controls-fixed straight-line stability from 
what we know about the hydrodynamic derivatives? 

The terms N; and Y; are always negative, and generally large relative to Y: and N�. If 
the bow is dominate (the usual condition), Y: and N� are negative. So, in a conventional 
craft, the ration �

Y.
: will be small and since Y.'N+

' , is likely to be larger, the ship will have
v r m6 

directional stability. For a conventional hull ( where the bow dominates), directional stability 
can be increased by increasing the magnitude of Y; and N;. Adding a larger rudder in the 
stern of the ship increases the directional stability of the ship by decreasing the magnitudes 
of Y: and N�.

7.5 Analysis of Turning Ability 

The response of the ship to deflection of the rudder, and the resulting forces and moments 
produced by the rudder, can be divided into 2 portions: 

1. An initial transient one in which significant surge, sway and yaw accelerations occur

2. A steady turning portion in which rate of turn and forward speed are constant and the
path of the ship is circular

Figure 7.16 shows the turning path of a ship. Generally, the turning path of a ship is 
characterized by four numerical measures: advance, transfer, tactical diameter, and 
steady turning diameter. All but the last are related to heading positions of the ship 
rather than tangents to the turning path. The advance is the distance from the origin at 
"execute" to the x-axis of the ship when that axis has turned go

0

• The transfer is the 
distance from the original approach course to the origin of the ship when the x-axis has
turned go0

• The tactical diameter is the distance from the approach course to the x-axis
of the ship when that axis has turned 180° . These parameters of a ship's turning circle are
useful for characterizing maneuvers in the open sea.

7.5.1 The Three Phases of a Turn 

Phase I: 
The first phase starts the instant the rudder begins to deflect and may be completed by the 
time the rudder reaches full deflection. The rudder force (Y;,o R) and the rudder moment 
(N8oR) produce accelerations and are opposed solely by the inertial reaction of the ship 
(hydrodynamic responses have not yet materialized). For this phase the ship has not changed 
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Figure 7.16: Turning Path of a Ship 

direction, so /3 = v /U = r = 0. The linearized, dimensional equations for the first phase of 
turning are 

(mt:. - Yv)v - Yi,i' = Y88R

(Iz - N;,)i' - Nvv = N88R

These accelerations ( v and i') exist only for a moment, for they quickly give rise to a drift 
angle, /3, and a rotation, r, of the ship. 

Phase II: 
The second phase starts with the introduction of the drift angle, /3, and a rotation, r, of the 
ship. Here the accelerations of the ship coexist with the velocities and all the terms of the 
equations of motion along with the excitation terms Y88R and N88R are fully operative. The 
crucial event at the beginning of the second phase of the turn is the creation of a Yvv-force 
positively directed towards the center of the turn. This force is introduced due to the 
drift angle, /3. The magnitude of this force soon becomes larger than the Yo8wforce which 
is directed to the outside of the circle. The acceleration v ceases to grow to the outside of 
the circle and eventually becomes zero as the inwardly directed Yv v-force comes into balance 
with the outwardly directed force of the ship. In the second phase of the turn, the path of 
the center of gravity of the ship at first responds to the Y88wforce and tends towards the 
outside of the circle before the Yvv-force grows large enough to enforce the inward turn. 

Phase III: 
Finally, after some oscillation (some of which is due to the settling down of the main propul­
sion machinery and is characteristic of the particular type of machinery and its control 
system) the second phase of turning ends with the establishment of the final equilibrium of 
forces. When this equilibrium is reached, the ship settles down to a turn of constant radius. 
This is the third, or steady, phase of the turn. In this phase v and r have non-zero values, 
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but iJ and i' are zero. For this phase of the turn, the linearized equations of motion are: 

-Yvv - (Y;. + mllU)r = Yo8R

-Nvv - Nrr = No8R
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These two simultaneous equations can be solved for r and v provided that the stability 
derivatives (Yv , Y;., Nv , and Nr) and the control derivatives (Yo and N0) are known. Note 
that 

, rL 
r =-

U 
r=-

R 

I L 
r =-

R 

Solving the non-dimensional version of the linearized equations of motion shown above, we 
can solve for the turning radius, R, and the sway velocity, v': 

R 
= _ __!__ [

Y�N: - N�(Y; + m�)
]

L 8R Y;N� - NtYJ 

v' = -/3 = 8 [
N�(Y; + m�) - YJN:

] R 
Y' N' - N' (Y' + m' ) v r v r fl 

A positive R denotes a starboard turn. The equation for the turn radius shows 

• The steady turning radius is proportional to ship length and inversely proportional to
rudder angle.

• Side velocity is equal to the drift angle and that is directly proportional to the rudder
angle.

• Denominator in the equation for R introduces the effect of the rudder on the hull (N�
and Yo)

- Sign of denominator is always positive

- If the numerator is negative ( straight-line stability) and the rudder is at the stern,
a negative 8 R will give a positive R.

To decrease the turning radius we can: 

1. Decrease Y� - could increase L/T ratio, but this is de-stabilizing

2. Generally increase N� (if N� is negative) - this is a result of different bow and stern
shapes. Changes could be made by cutting away skeg and deadwood aft or increasing
forefoot forward.

3. Increase N� (obvious choice) - the trick is to do it without increasing 1/8 too much.
Want to move the rudder as far aft as possible and make the rudder as efficient as
possible.

4. Increase YJ ( only if N� is negative) - can do this with a larger and/ or more efficient
rudder.
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7.6 Rudder Design Considerations 
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Figure 7.17: Rudder Definitions 

7.6.1 Rudder Definitions 

STVCK 

Figure 7.18 shows some important dimensions on a standard spade rudder. 

• Mean Span - average of leading and trailing edge spans

• Mean Chord - average of the root and tip chords

• Profile Area - product of mean span and mean chord

• Aspect Ratio - ratio of mean span to the mean chord

• Taper Ratio - ratio of the tip chord to the root chord

• Sweepback Angle - angle between 1/4 chord line and vertical

• Mean Thickness - average of the max thickness of the foil at the root and tip

7.6.2 Lift, Drag and Angle of Attack 

154 

The lift ( L) from an airfoil is defined as the component of force perpendicular to the free­
stream velocity vector. The drag (D) from an airfoil is defined as the component of force 
parallel to the free-stream velocity. 

CL = 
L 

½pU2c 

CD = 
D 

½pU2c 
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FORCES ON AN AIRFOIL 

Figure 7.18: Forces on an Airfoil 

The lift increases with increasing angle of attack. However, the lift cannot increase indefi­

nitely with angle of attack. Eventually the adverse pressure gradient causes separation over 

the entire upper surface of the foil, resulting in a loss of lift. The maximum obtainable lift 

coefficient is called CL max· 
, 

• rudder stall often precedes a broach

MAXIMUM 

CL 

COEFFICIENT 
OF LIFT 

I ' 

I 
' 

I STALL ANGLE 

:/ 
0 °'• ANGLE-OF-A TT ACK 

Figure 7.19: Lift Curve 

7.6.3 Constraints on Rudder Design 

In profile, the rudder needs to fit within dimensions dictated by the hull shape. 

• The span is limited by the vessel draft.

- It shouldn't extend below the baseline

- It shouldn't penetrate the water surface

• The chord is limited by propeller clearance and stern shape.

- The usual distance between the propeller and the rudder is 0.2-propeller diameter

The rudder should be designed for minimum drag at all speeds. 
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Figure 7.20: Typical Rudder Section 
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• The usual section shape is NACA 0015 (see Figure 7.20) to 0021 (relatively thick).
These foils have a relatively constant center of pressure and thick sections are better
structurally.

- thickness-to-chord ratio is 0.15 to 0.21

- symmetric shape

- relatively low drag

- max thickness at 30% chord length

• High aspect ratio

- a= span/chord

- very good lift-to-drag ratio

The rudder, rudder stock, rudder support and steering engine are considered together. 

• Minimize size and weight of steering equipment

- keep rudder weight as small as possible

- keep torque on rudder stock as small as possible

* balanced rudder - allows for smaller stock

* semi-balanced rudder - support vs. moment

• Keep equipment as simple as possible

- reduced repairs

- simplifies layout

Undesirable effects of the rudder on the ship should be kept to a tolerable level (i.e. rudder 
induced vibration). From a hydrodynamic perspective, the basic considerations in rudder 
design can be summarized as follows: 

• Full form ships need larger rudders

• Large rudders provide superior performance

• Put the rudder in the propeller wake to improve efficiency

• High aspect ratios give better efficiency
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Table 31-General vessel hull form coefficients 
Typical Form Coefficients and Ratios Speed Number of Rudder Dc'!amic 

V, Frou� Propellers/ Area urse 
Vessel Type Cs LIB BIT knots No. V/ gL Rudders Ratios• Stability1 

Harbor tug 0.50 3.3 2.1 10 0.25 1/1 0.025 s 

Tuna seiner 0.50 5.5 2.4 16 0.31 1/1 0.025 s 

Car ferry 0.55 5.1 4.5 20 0.34 2/2 0.020 s· 

Container high speed 0.55 8.3 3.0 28.5 0.53 2/2 0,015 s 

Container high speed 0.55 8.3 3.0 28.5 0.58 2/1 0.025 S' 

CoTJo liners 0.58 6.9 2.4 21 0.29 1/1 0.015 s 

RO RO 0.59 6.9 3.0 22 0.26 1/1 0.015 s 

Barge carrier 0.64 7.5 2.9 19 0.20 1/1 0.015 s 

Container Med. Speed 0.70 7.1 2.8 22 0.25 1/1 0,015 s 

Offshore suppli 0.71 4.7 2.75 18 0.28 2/2 0.016 Sd.•

General cargo ow speed 0.73 6.7 2.4 15 0.20 1/1 0.015 s 

Lumber low speed 0.77 6.7 2.6 15 0.20 1/1 0.025 s 

LNG (125 000 m3) 0.78 6.8 3.7 20 0.20 1/1 0.015 u 

OBO ranamax) 0.82 7.5 2.4 16 0.17 1/1 o.oi8 u 

OBO 150 000 dwt� 0.85 6.4 2.4 15 0.15 1/1 0.017 u 

OBO 300 000 dwt 0.84 6.0 2.5 15 0.14 1/1 0.015 u 

Tanker (Panamax) 0.83 7.1 2.4 15 0.16 1/1 0.o15 u 

Tanker 100 000 to 6.2 2.4 16 0.15 1/1 0.015 u 350000 dwt 0.84 Tanker 350 000 dwt 0.86 5.7 2.8 16 0.13 1/1 0.015 u 

U.S. river towboat 0.66 3.5 4.5 10 0.25 2/2 uc1.•

a Not for design guidance. � U = unstable course stability; S = stable course s�biljty.. . . , Although the vessel is directionally stable, maneuvermg 1s difficult at low speeds when the propeller wash 1.S not effective
over the rudder. . dd d th biff 

d Maneuverability is good owing to installation of Kort nozzles, flanking ru ers, an o er capa 1 1es.
• Twin screw because of restrict.ed draft.

Figure 7.21: From PNA III (1989), p.346 

- limited by hull shape (span by draft; chord by stern shape)

• Rate of swing

- increased rate of swing is good for small ships

- large ships benefit more from rudder area than from swing rate

A good first estimate of rudder area can be achieved using the 1975 Det Norske Veritas 
(DNV) Rules. 

(7.1) 

The formula only applies for single rudders operating in a propeller wake. For all other ar­
rangements DNV requires a 30% increase in area. (You want to put rudders behind propellers 
to increase the flow over the rudder at low speeds - makes the rudder more effective). 

The equation gives (essentially) a rudder area coefficient. It is useful to compare values 
from the equation with values used in industry (see Figures 7.21 and 7.22). In choosing 
a design, the rudder performance is more affected by span length than chord length. An 
increase in the aspect ratio increases the lift/drag ratio. 
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Seakeeping Notation 

II Dynamics Review II 
m mass DFT 

b damping coefficient FFT 

C stiffness coefficient a 

X position T 

j; velocity f 
x acceleration D 

Fa force amplitude Tn 

X motion amplitude 

w wave frequency (rad/s) Co 

We excitation (or encounter) frequency (rad/s) C 

<p phase angle Ug 

A Tuning Factor, We/Wn k 

T/ Damping Factor, b/[2(m + a)wn] a:o 

X/(F0/c) Magnification Factor d 

Wn natural frequency (rad/sec) A 

II Dynamic Ballasting II 
!5 pitch mass moment of inertia Wn3 

ks pitch gyradius Wn5 

16 yaw mass moment of inertia X3/(o 

k5 yaw gyradius Xs/a:o 

R model scale ratio u 

Irregular Waves 

bandwidth parameter 

Added Mass & Damping 

Discrete Fourier Transform 

Fast Fourier Transform 

added mass 

period (sec) 

frequency (Hz) 

draft 

natural period (sec) 

Regular Waves 

wave amplitude 

wave celerity 

group velocity 

wave number 

wave slope 

water depth 

wavelength 

DDG-51 in Head Seas 

heave natural frequency (rad/sec) 

pitch natural frequency (rad/sec) 

Heave Transfer Function 

Pitch Transfer Function 

ship speed 

wave energy spectra 

II 

II 

II 
II 
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Subscripts 

1 Surge (linear) 

2 Sway (linear) 

3 Heave (linear) 

4 Roll (rotational) 

5 Pitch (rotational) 

6 Yaw (rotational) 

M model 

s ship 

e excitation or encounter 

n natural ( as in natural frequency) 
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Maneuvering Notation 

Reference Frame Maneuvering Notation 

XoG CG x-position from Earth Reference Frame 

YoG CG y-position from Earth Reference Frame 

{3 drift angle 

1P yaw angle 

XoG CG x-direction acceleration from Earth Reference Frame 

YoG CG y-direction acceleration from Earth Reference Frame 

1P angular yaw velocity 

r angular yaw velocity 

1P angular yaw acceleration 

,;, angular yaw acceleration 

X direction through ship bow 

y direction to ship starboard 

u velocity in x-direction

V velocity in y-direction

u acceleration in x-direction

iJ acceleration in y-direction 

Xo Total force in Earth x-direction 

Yo Total force in Earth y-direction 

N Moment in yaw 

lz yaw mass moment of inertia 
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SNAME (1952) Derivative and Non-dimensional Notation 

Xu 
ax Xu 

ax 

au au 

Yv 
BY Yv 

BY 

av av 

Nv 
8N Nv 

8N 
av av 

Yr 
BY 

Yr 
BY 

Br a,;, 

Nr 
8N N,;,

8N 
a,;, 

m' 
ffif),. I' 1/2pL3 z 1/2pL5 

v' 
V r' rL 

u 

v' 
vL 

r' rL2 

u2 w 

Y' Y,, Y' Yr 

V 1/2pL2 U r 1/2pL3 U 

N' N
y_ N' Nr 

V 1/2pL3 U r 1/2pL4 U 

Y.' ----2iL.._ Y! 
V 1/2pL3 r 1/2pL4 

N! ___JJj,_ N! 
V 1/2pL4 r 1/2pL5 
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