

FHWA SIGNALIZED INTERSECTIONS INFO GUIDE – PART III

Main Category:	Civil Engineering
Sub Category:	Traffic Engineering
Course #:	TRA-112
Course Content:	171 pgs
PDH/CE Hours:	14

OFFICIAL COURSE/EXAM (SEE INSTRUCTIONS ON NEXT PAGE)

WWW.ENGINEERING-PDH.COM TOLL FREE (US & CA): 1-833-ENGR-PDH (1-833-364-7734) <u>SUPPORT@ENGINEERING-PDH.COM</u>

TRA-112 EXAM PREVIEW

- TAKE EXAM! -

Instructions:

- At your convenience and own pace, review the course material below. When ready, click "Take Exam!" above to complete the live graded exam. (Note it may take a few seconds for the link to pull up the exam.) You will be able to re-take the exam as many times as needed to pass.
- Upon a satisfactory completion of the course exam, which is a score of 70% or better, you will be provided with your course completion certificate. Be sure to download and print your certificates to keep for your records.

Exam Preview:

- 1. The median of a roadway is used for left turns, pedestrian refuge, restriction of or access to properties on the other side of the road, and separation of opposing directions of travel. These purposes can_____, and each use should be considered when design changes are proposed.
 - a. Overlap
 - b. Separate
 - c. Compliment
 - d. Conflict
- 2. Which is not a key feature of median design?
 - a. Width
 - b. Height
 - c. Channelization
 - d. Applicability
- 3. The appropriateness of the use of raised or flush medians depends on conditions at a given intersection. Raised (curbed) medians should provide guidance in the intersection area but should not present a significant obstruction to vehicles.
 - a. True
 - b. False
- 4. Medians at intersections do not provide the same safety benefits as compared to medians between intersections.
 - a. True
 - b. False

- 5. The primary objective of signal coordination is smooth flow of traffic along an arterial, street, or a highway to improve mobility, safety, and fuel consumption. This can be achieved by synchronizing the signal timings at multiple intersections along a major street to improve traffic flow in one or more directional movements.
 - a. True
 - b. False
- 6. Studies have proven the effectiveness of signal coordination in improving safety. The "ITE Traffic Safety Toolbox: A Primer on Traffic Safety" cites two studies of coordinated signals with intersection crash frequencies that dropped by ____ & __ %.
 - a. 22 & 32
 - b. 24 & 40
 - c. 25 & 48
 - d. 25 & 38
- 7. The yellow change interval is normally between 3 and 6 seconds. Since long yellow change intervals may encourage drivers to use it as a part of the green interval, a maximum of _____ seconds is commonly employed.
 - a. 4.5
 - b. 4.75
 - c. 5
 - d. 5.75
- 8. Roadside objects can be a particular hazard to motorists on high-speed approaches. Utility poles, luminaires, traffic signal poles, bus shelters, signs, and other street furniture should be moved back from the edge of the road if possible.
 - a. True
 - b. False
- A report by FHWA cites sight distance improvements as being one of the most costeffective treatments. Fatal collisions were reduced by 56 percent and nonfatal injury collisions were reduced by _____% at intersections having sight distance improvements.
 - a. 25
 - b. 37
 - **c**. 39
 - d. 47
- 10. Reversible lanes increase capacity without additional widening when flows during peak periods are highly directional. However, reversible lanes often increase congestion and can lead to increased rear-end collisions.
 - a. True
 - b. False

Second Edition

FHWA Safety Program

PART III - TREATMENTS

U.S. Department of Transportation Federal Highway Administration

ENGINEERING-PDH.COM

http://safety.fhwa.dot.gov

Signalized Intersections Informational Guide Second Edition

Publication No. FHWA-SA-13-027

July 2013

FOREWORD

This report, now in its Second Edition, complements the American Association of State Highway and Transportation Officials (AASHTO) Strategic Highway Safety Plan (SHSP) efforts to develop guidance on enhancing the safety of unsignalized and signalized intersections. The overarching goal is to reduce the number of traffic related deaths that occur on highways and streets in the United States. This guide is an introductory document that contains methods for evaluating the safety and operations of signalized intersections and tools to remedy deficiencies. The treatments in this guide range from low-cost measures such as improvements to signal timing or signing and markings, to high-cost measures such as intersection widening or reconstruction. Topics covered include fundamental principles of user needs and human factors, multimodal accommodations (emphasizing pedestrians and bicyclists), elements of geometric design, and traffic safety design and operation; safety, maintenance and operations practices; and a wide variety of treatments, techniques and strategies to address existing or anticipated problems at multiple levels, including corridor, approach and individual movement treatments. Each recommended treatment includes a discussion of safety performance, operations, multimodal issues, and physical and economic factors that the practitioner should consider. While some treatments may be better suited to high-volume intersections, most of the treatments are applicable for lower volume intersections and would be worthy of systemic implementation. Every attempt has been made to reflect the latest research and documentation on available treatments and best practices in use by jurisdictions across the United States at the time of publication. Since the scope of this guide is necessarily limited, additional resources and references are highlighted for the student, practitioner, researcher, or decision maker who endeavors to learn more about a particular subject.

An electronic version of this document can be downloaded from the Federal Highway Administration, Office of Safety website at <u>http://safety.fhwa.dot.gov/</u>. A hard copy may be requested by contacting the National Highway Institute, 1310 North Courthouse Road, Suite 300, Arlington, VA 22201; telephone (703) 235-0500; fax (703) 235-0593.

Michael S. Fiffith

Michael Griffith Director Office of Safety Technologies

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

QUALITY ASSURANCE STATEMENT

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

Technical Report Documentation Page

1. Report No. FHWA-SA-13-027	2. Government Accession No.	3. Recipient's Catalog	g No.	
4. Title and Subtitle	5. Report Date			
Signalized Intersections Informational	July 2013			
	6. Performing Organ	nization Code		
	fer E. Atkinson;, Thomas E. Bryer,	8. Performing Organ	ization Report No.	
Izadpanah. 9. Performing Organization Name and	Address	10. Work Unit No. (7	TP AIS)	
SAIC 11251 Roger Bacon Drive Reston, VA 20190 Subconsultants: CIMA+, Sam Schwar Transportation Institute		11. Contract or Gram Contract No. DTFH6 Order No. T-11-006	t No.	
12. Sponsoring Agency Name and Ad Federal Highway Administration Office of Safety 1200 New Jersey Avenue SE	dress	13. Type of Report a Informational Guide August 2011 to July	Book	
Washington, DC 20590		14. Sponsoring Agency Code FHWA HSA		
15. Supplementary Notes		-		
Manager for the Federal Highway Adn working group members, reviewers an Friedman, Tom Elliott, Jim Sturrock, Eddie Curtis, Joe Glinski, Ed Rice (re Additionally, many individual safety academia and industry, made significa Mark Hagan (Virginia DOT), Julie St (Florida DOT), Julie Bradley (Pennsy	Office of Safety Technologies (<u>http://sa</u> ninistration (FHWA). The following FH ad/or provided input or feedback to the p Paul Olson, Mark Doctor, John Broemm tired), Scott Wainwright (retired), Carol partners representing federal, state and lo ant contributions to this project; special t otlemeyer (Missouri DOT), Jake Konono Ivania DOT), Jim Ellison (retired – Piero iversity of Missouri), Doug Noble (Insti red Ranck (traffic safety consultant).	WA staff members co roject at various stage elsiek, Joe Bared, Jam Tan, Caroline Truema cal agencies, professi hanks to Tom Hicks (no ov (retired – Colorado ce County, WA), Peter	ntributed as technical s: Timothy Taylor, Bruce nes Coylar, Jim McCarthy, an and Don Petersen. onal associations, retired – Maryland SHA), DOT), Dwight Kingsbury Koonce (City of	
16. Abstract This is the Second Edition of a document that was originally published in 2004. This document serves as an introduction to an guide for evaluating the safety, design, and operations of signalized intersections. It also provides tools to deliver better balanced solutions for all users. It takes a holistic approach to signalized intersections and considers the safety and operational implications of a particular treatment on all system users (e.g., motorists, pedestrians, bicyclists, and transit users). Readers v find the tools and information necessary to make insightful intersection assessments and to understand the impacts of potentia improvement measures. The information in this guide is based on the latest research available and includes examples of nove treatments as well as best practices in use by jurisdictions across the United States and other countries.				
17. Key Words Signalized Intersections, Intersection S Performance, Intersection Treatments	18. Distribution State No restrictions	ement		
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price	
Unclassified	Unclassified	323	N/A	

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized.

	SI* (MODERN METRIC) CONVERSION							
SYMBOL	FACTORS APPROXIMATE CONVERSIONS TO SI UNITS							
STMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL				
in	inches	25.4	millimeters	mm				
ft	feet	0.305	meters	m				
yd	yards	0.914	meters	m				
mi	miles	1.61	kilometers	km				
. 2		AREA		2				
in ² ft ²	square inches	645.2	square millimeters	mm^2				
π yd ²	square feet square yard	0.093 0.836	square meters	m ² m ²				
ac	acres	0.405	square meters hectares	ha				
mi ²	square miles	2.59	square kilometers	km ²				
	- 1	VOLUME	- 1					
fl oz	fluid ounces	29.57	milliliters	mL				
gal ft ³	gallons	3.785	liters	L				
ft ³	cubic feet	0.028	cubic meters	m³				
yd ³	cubic yards	0.765	cubic meters	m ³				
	NOTE	: volumes greater than 1000 L shall MASS	be shown in m					
oz	ounces	28.35	grams	a				
lb	pounds	0.454	kilograms	g kg				
T	short tons (2000 lb)	0.907	megagrams (or "metric	Mg (or "t")				
	· · · ·		ton")	0 ()				
		TEMPERATURE (exact deg						
°F	Fahrenheit	5 (F-32)/9 or (F-32)/1.8	Celsius	°C				
		ILLUMINATION						
fc	foot-candles	10.76	lux	lx				
fl	foot-Lamberts	3.426	candela/m ²	cd/m ²				
lbf	poundforce	FORCE and PRESSURE or S 4.45	newtons	N				
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa				
		ROXIMATE CONVERSIONS FR		κια				
SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL				
		LENGTH						
mm	millimeters	0.039	inches	in				
m	meters	3.28	feet	ft				
m	meters	1.09	yards	yd				
km	kilometers	0.621	miles	mi				
mm ²	oguoro millimotoro		aguara inchas	in ²				
m ²	square millimeters square meters	0.0016 10.764	square inches square feet	ft ²				
m ²	square meters	1.195	square yards	yd ²				
ha	hectares	2.47	acres	ac				
km ²	square kilometers	0.386	square miles	mi ²				
		VOLUME						
mL	milliliters	0.034	fluid ounces	floz				
L	liters	0.264	gallons	gal				
m ³ m ³	cubic meters	35.314	cubic feet	ft ³ yd ³				
	cubic meters	1.307 MASS	cubic yards	yu				
g	grams	0.035	ounces	OZ				
kg	kilograms	2.202	pounds	lb				
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000 lb)	Т				
		TEMPERATURE (exact deg	rees)					
°C	Celsius	1.8C+32	Fahrenheit	°F				
		ILLUMINATION						
lx o	lux	0.0929	foot-candles	fc				
cd/m ²	candela/m ²	0.2919	foot-Lamberts	fl				
		FORCE and PRESSURE or S	TRESS					
Ν	newtons	0.225	poundforce	lbf				
N kPa	newtons kilopascals	0.225 0.145	poundforce poundforce per square inch	lbf/in ²				

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

Table of Contents

1.0	INT	RODUCTION	1-2
	1.1	Background	
	1.2	Performance Measurement and Asset Management	1-6
	1.3	Scope of the Guide	
	1.4	Audience for this Guide	1-7
	1.5	Organization of the Guide	1-7
2.0	HUN	MAN FACTORS	2-2
	2.1	Overview of Human Factors	2-2
	2.2	Intersection Users	
	2.3	Applying Human Factors	2-22
3.0	DAT	TA COLLECTION AND WARRANTS	
	3.1	Commitment	
	3.2	Where Do You Start? Importance of an Engineering Analysis and Study	
	3.3	Intersection Data Collection Needed	
	3.4	Intersection Counts	
	3.5	Traffic Signal Warrants	
	3.6 \	When is Not Signalizing an Intersection the Right Decision?	
4.0	GEO	OMETRIC DESIGN	4-3
	4.1	Number of Intersection Legs	4-4
	4.2	Channelization	
	4.3	Horizontal and Vertical Alignment	
	4.4	Corner Radius	
	4.5	Sight Distance	4-14
	4.6	Pedestrian Treatments	4-16
	4.7	Bicycle Facilities	
	4.8	Transit Facilities	
5.0	TRA	AFFIC DESIGN AND ILLUMINATION	5-3
	5.1	Traffic Signal Phasing	
	5.2	Vehicle and Pedestrian Displays	
	5.3	Traffic Signal Pole Layout	
	5.4	Traffic Signal Controller and Cabinet	
	5.5	Detection Devices	
	5.6	Traffic Signal Control Type	
	5.7	Basic Signal Timing Parameters	
	5.8	Signing and Pavement Marking Design	
	5.9	Illumination Design	
6.0	SAF	ETY ANALYSIS METHODS	6-3
	6.1	Qualitative Approach	6-4
	6.2	Quantitative Approach	
	6.3	Network Screening or Selection of an Intersection	6-6
	6.4	Diagnosis	6-14
	6.5	Selecting Countermeasures	
	6.6	Economic Appraisal	
	6.7	Project Prioritization	
	6.8	Safety Effectiveness Evaluation	
7.0	OPE	CRATIONAL ANALYSIS METHODS	
	7.1	Operational Performance Measures	7-5
	7.2	Traffic Operations Elements	
	7.3	General Considerations Sizing an Intersection	

	7.4	Critical Lane Analysis	
	7.5	HCM Operational Procedure for Signalized Intersections	
	7.6	Arterial and Network Signal Timing Models	
	7.7	Microscopic Simulation Models	
	7.8	Operational Performance Model Selection	
8.0	SYS	TEM-WIDE TREATMENTS	
	8.1	Median Treatments	
	8.2	Access Management	
	8.3	Signal Coordination	
	8.4	Signal Preemption and/or Priority	
9.0	INTI	ERSECTION-WIDE TREATMENTS	
	9.1	Pedestrian Treatments	
	9.2	Bicycle Treatments	
	9.3	Transit Treatments	
	9.4	Traffic Control Treatments	
	9.5	Street Lighting and Illumination	
	9.6	Remove Traffic Signal	
10.0	APP	ROACH TREATMENTS	
	10.1	Signal Head Placement and Visibility	
	10.2	Signing and Speed Control Treatments	
	10.3	Roadway Surface Improvements	
	10.4	Sight Distance Treatments	
	10.5	Dilemma Zone Detection	
	10.6	Red Light Camera Enforcement	
11.0	IND	IVIDUAL MOVEMENT TREATMENTS	
	11.1	Left-Turn Treatments	
	11.2	Right-Turn Treatments	
	11.3	Variable Lane Use Treatments	
		onyms	
	·	f Terms	
Refei	ences	•••••••••••••••••••••••••••••••••••••••	R-1

CHAPTER 1

INTRODUCTION

TABLE OF CONTENTS

INTR		1-2
	1.1 1.2 1.3 1.4	INTRODUCTION 1.1 Background 1.2 Performance Measurement and Asset Management 1.3 Scope of the Guide 1.4 Audience for this Guide 1.5 Organization of the Guide

LIST OF EXHIBITS

1-1	Summary of motor vehicle crashes related to junction and severity in the United States	
	during 2009	1-4
1-2	Vehicle detection by inductive loop (left) and video (right)	1-5
1-3	Inside a signal controller cabinet	1-5
1-4	Signalized intersection with four approaches	1-7
1-5	Organization of the guide	1-8
	List of intersection treatments discussed in this guide.	

References to be used throughout the Guide include:

- TRB Highway Capacity Manual (2010)
- FHWA Manual on Uniform Traffic Control Devices (2009)
- AASHTO A Policy on Geometric Design of Highways and Streets (2011)
- AASHTO Highway Safety Manual (2010)
- TRB NCHRP Report 500 series
- FHWA Alternative
 Intersections and
 Interchanges Informational
 Report (2010)
- U.S. Access Board Draft Public Rights-of-Way Accessibility Guidelines (2011)
- U.S. Access Board ADAAG Requirements for Detectable Warnings (2008)
- U.S. Access Board ADA Standards for Accessible Design (2010)
- FHWA Traffic Signal Timing Manual (2008)
- FHWA Traffic Detector Handbook (2006)
- ITE Traffic Control Devices Handbook (2011)
- IESNA American National Standard Practice for Roadway Lighting (2005)

1.0 INTRODUCTION

This document serves as an introduction to and guide for evaluating the safety, design, and operations of signalized intersections. It also provides tools to deliver better balanced solutions for all users. The treatments in this guide range from lowcost measures such as improvements to signal timing and signing, to high-cost measures such as intersection reconstruction or grade separation. While some treatments apply only to higher volume intersections, much of this guide is applicable to signalized intersections of all volume levels.

The guide takes a holistic approach to signalized intersections and considers the safety and operational implications of a particular treatment on all system users (e.g., motorists, pedestrians, bicyclists, and transit users). When applying operational or safety treatments, it is often necessary to consider the impact one will have on the other. This guide will introduce the user to these trade-offs and their respective considerations.

Practitioners will find the tools and information necessary to make insightful intersection assessments and to understand the impacts of potential improvement measures. The information in this guide is based on the latest research available and includes examples of novel treatments as well as best practices in use by jurisdictions across the United States and other countries. Additional resources and references are mentioned for the practitioner who wishes to learn more about a particular subject.

This guide does not replicate or replace traditional traffic engineering documents such as the *Manual on Uniform Traffic Control Devices* (MUTCD),⁽¹⁾ the *Highway Capacity Manual* (HCM) 2010⁽²⁾ or the American Association of State Highway and Transportation Officials' (AASHTO) *A Policy on Geometric Design of Highways and Streets*,⁽³⁾ nor is it intended to serve as a standard or policy document. Rather, it provides a synthesis of best practices and treatments intended to help practitioners make informed, thoughtful decisions.

1.1 BACKGROUND

Traffic Signal Basics

Traffic signals are electrically operated traffic control devices that provide indication for roadway users to advance their travels by assigning right-of-way to each approach and movement. Traffic signals are a common form of traffic control used by State and local agencies to address roadway operations and safety issues. They allow the shared use of road space by separating conflicting movements in time and allocating delay, and can be used to enhance the mobility and safety of some movements.

Signalized Intersections: Informational Guide

Consider the installation of traffic signals when attempting to obtain any of the following:

- Optimization of travel delay
- Reduction of crash frequency and/or severity
- Prioritization of specific roadway user type or movement (such as pedestrians or left turn movements)
- Accommodation of a new intersection approach or increase in traffic volumes (such as the addition of an approach at a new development)

Analysis of traffic volume data, crash history, roadway geometry, and other field conditions are the determining factors when deciding upon the installation of traffic signals. Planners, designers, and traffic engineers work together to determine if conditions are right for installation. Several safety and mobility factors should be considered as new traffic signal installation is being discussed. Chapter 4C of the MUTCD outlines basic warrants for when installation of a traffic signal may be justified. In addition to the considerations presented in the MUTCD, practitioners should give thought to roadway/intersection geometry and sight distance, driver expectancy, and the locations of other nearby traffic signals when considering the installation of new traffic signals.

When weighing the options for traffic control types at an intersection, consider the following important factors:

- The design and operation of traffic signals will require choosing elements that may lead to trade-offs in safety and mobility.
- It is possible to lower the overall crash severity at intersections with traffic signals, but increase the crash frequency. Table 14-7 of the 2010 Highway Safety Manual illustrates the effects of converting a stop controlled intersection to a signalized intersection.
- There will be ongoing operational costs attributed to the maintenance of signal equipment and costs for electrical power.

Once installed, the traffic engineers and field traffic signal technicians who operate and maintain the traffic signals should regularly perform site visits to:

- Ensure that safety and mobility targets for the intersection are being met, and make adjustments to signal timings, if necessary, to meet the targets;
- Inspect corresponding intersection signing and pavement markings to ensure they
 properly convey the intended instructions to roadway users;
- Log site visit findings for use when making adjustments or recommendations for change; and
- Communicate traffic signal maintenance and repair needs to field technicians.

Ideally, field traffic signal technicians are qualified to perform maintenance inspections at regular intervals. Repairs are made such that the signal operates safely and efficiently at all times. Technicians are also responsible for the general upkeep and operation of signal equipment located at the intersection.

An agency will identify that a traffic signal needs upgrades, replacement or decommission at some point during its life. Degradation of equipment, new technology, or changing conditions at the site, such as lane additions or the need for alternate phasing, may necessitate an upgrade or full replacement. In some instances, the traffic signal may be completely removed if traffic patterns cease to warrant its use.

Traffic Operations: Safety and Mobility

Traffic signals play a prominent role in achieving safer performance at intersections. Research has shown that the proper installation and operation of traffic signals can reduce the severity of crashes. However, unnecessary or inappropriately designed signals can adversely affect traffic, safety, and mobility. Care in their placement, design, and operation is essential.

In some cases, the dual objectives of mobility and safety will conflict. To meet increasing and changing demands, one element may need to be sacrificed to achieve improvements in the other. In all cases, it is important to understand the degree to which traffic signals are providing mobility and safety for all roadway users.

Assuring the efficient operation of the traffic signal is becoming an increasingly important issue as agencies attempt to maximize vehicle roadway capacity to serve the growing demand for travel, while maintaining a high level of safety.

Reducing crashes should always be one of the objectives whenever the design or operational characteristics of a signalized intersection are modified. As described by the Federal Highway Administration (FHWA), the "mission is not simply to improve mobility and productivity, but to ensure that improved mobility and productivity come with improved safety."⁽⁴⁾

Exhibit 1-1 shows that in 2009, 21 percent of all crashes and 24 percent of all fatalities and injury collisions occurred at signalized intersections.

	in the United State	es auring 2009		
	Total Cr	ashes	Fatalities/I	njuries
	Number	Percent	Number	Percent
Non-Intersection Crashes	3.295.000	60	841.027	54

1,158,000

1,052,000

5,505,000

Exhibit 1-1. Summary of motor vehicle crashes related to junction and severity in the United States during 2009.

Source: Adapted from table 29 of Traffic Safety Facts 2009.⁽⁵⁾

21

19

100

372,299

332,471

1,547,797

24 22

100

How a Traffic Signal Works

Total

Signalized Intersection Crashes

Non-Signalized Intersection Crashes

Traffic signals are designed to allow for the safe and efficient passage of road users when demand exists. Types of traffic signal operation include pre-timed, semi-actuated, fully-actuated, hybrid, adaptive, or traffic responsive. Pre-timed signals give right-of-way to movements based on a predetermined allocation of time. Semi-actuated signals use various detection methods to identify roadway users on the minor approaches, while fully-actuated signals recognize users on all approaches. Chapter 5 discusses each of these methods in further detail.

In addition to the signal heads seen by the road users, signalized intersections may include additional components, such as loop detectors and video detection equipment. The following paragraphs provide information related to each component.

Exhibit 1-2. Vehicle detection by inductive loop (left) and video (right) (Source: Left: South Carolina DOT / Right: Jeff Shaw, FHWA)

Detection.

Semi- and fully actuated signals use various methods to detect road users. Detection methods for motorists include in-pavement loop detectors or sensors (Exhibit 1-2 (left)) and cameras mounted to signal poles (Exhibit 1-2 (right)). Detection methods for pedestrians and bicyclists include push buttons and weight sensors.

Traffic signal controller.

Each detection method sends vehicle presence information to a traffic signal controller. The controller acts as the "brain" of the traffic signal, changing signal indications based on programmed instructions. The controller will determine when the indication for the approach will be given to each

change and how much time will be given to each movement. A controller is shown in Exhibit 1-3.

Traffic control algorithms determine the priority and length of time of each approach movement. These algorithms are tailored to the needs of each intersection, based on historical user demand, crash history, and other roadway network considerations.

Signal heads.

Traffic signal heads inform roadway users of when their movement can proceed through the intersection. Signal heads for motorists and bicyclists are usually mounted on mast arms or span wires above the travel lane, and are sometimes repeated on the signal pole. Pedestrian signal heads are often installed on the traffic signal pole, or independently on separate poles depending on the intersection design. Signal heads vary in configuration, shape, and size depending on the movement for which they are used.

Exhibit 1-3. Inside a signal controller cabinet. Photo Credit: Missouri DOT

Types of Signalized Intersections

In their most common form, signalized intersections have indications for users on each intersection approach. Exhibit 1-4, below, shows a basic signalized intersection with four vehicle approaches and two pedestrian approaches.

In addition to signalizing intersections, it may be necessary to consider the use of pedestrian signals at locations along a corridor with high concentrations of pedestrians. This type of traffic control can be used at signalized intersections with the addition of pedestrian push-buttons and signal heads, or at non-signalized locations that have high volumes of pedestrians crossing. This guide also provides direction on the use of treatments such as the Pedestrian Hybrid Beacon. Pedestrian signals are discussed in more detail in Chapter 5.

1.2 PERFORMANCE MEASUREMENT AND ASSET MANAGEMENT

Agencies face the challenge of providing outstanding customer service with limited resources. Performance measures allow practitioners to assess the effectiveness of a signalized intersection or corridor. These measures can help agencies more effectively allocate resources. Travel performance criteria include: stopped delay, travel speed, arrivals on red, and excessive queuing. Safety performance criteria include crash frequency, crash types, and severity. Traffic signal maintenance data could be categorized according to time of day or types of repair. Over time, practitioners and agencies can refine or adjust these measures.

The practitioner should review this data to assess problem areas to correct. Other information that may be needed includes comments from the practitioner's annual signal timing reviews and annual preventive maintenance program. Examples of questions that may arise from such a review:

- What intersections require monthly visits to fix?
- What types of repetitive repairs are being conducted over a wide number of intersections?
- Are phasing (or other) changes necessary to reduce the number of crashes?

Practitioners should create queries that identify problematic intersections. These queries can also identify global intersection treatments that reduce systematic problems. For example, an agency could choose to install uninterrupted power supply (UPS) units for frequent power outages. The following information can be utilized to monitor performance:

- Detection failures by type of device.
- Outages due to power surges and outages.
- Customer complaints and complements.
- Emergency personnel comments.
- Frequent equipment hits by errant vehicles.
- Damage by weather events.
- Intermittent issues.
- Number of red failures.

Reviews of these measures should involve traffic engineers, technicians, and operations personnel to create a culture of continuous improvement.

1.3 SCOPE OF THE GUIDE

This guide addresses safety and operation for all users of signalized intersections, including motorists, pedestrians, bicyclists, and transit riders. This guide addresses Americans with Disabilities Act (ADA) requirements and provides guidelines for considering older drivers.

Roundabouts and other alternative intersection designs are not addressed directly in this document; for more information, please refer to *Roundabouts: An Informational Guide, Second Edition* ⁽⁶⁾ and the FHWA *Alternative Intersections/Interchanges Informational Report.*⁽⁵⁵⁾

1.4 AUDIENCE FOR THIS GUIDE

This guide is intended for planners, designers, traffic engineers, operations analysts, and signal technicians who perform or want to perform one or more of the following functions as they pertain to signalized intersections:

- Evaluate substantive safety performance experienced by system users.
- Evaluate operational performance experienced by system users.
- Identify treatments that could address a particular operational or safety deficiency.
- Understand fundamental user needs, geometric design elements, or signal timing and traffic design elements.
- Understand the impacts and tradeoffs of a particular intersection treatment.

It is envisioned that this guide will be used by signal technicians, design and traffic engineers, planners, and decision-makers who:

- Wish to be introduced to basic and intermediate traffic signal concepts.
- Are involved with the planning, design, and operation of signalized intersections, particularly those with high volumes.
- Are involved with the identification of potential treatments.
- Make decisions regarding the implementation of treatments at those intersections.

1.5 ORGANIZATION OF THE GUIDE

This guide is arranged in three parts:

- Part I: Fundamentals.
- Part II: Project Process and Analysis Methods.
- Part III: Treatments.

Part I (Chapters 2-5) provides key background information on three topic areas: user needs, data collection, signal warrants,

Exhibit 1-4. Signalized intersection with four approaches. Source: FHWA

geometric design, and traffic design and illumination. These chapters provide a foundation of knowledge of signalized intersections useful as a learning tool for entry-level engineers and as a refresher for more experienced engineers. Parts II and III reference the information in these chapters.

Part II (Chapters 6-7) describes project process and analysis methods. These chapters outline the steps that should be carried out and the tools to consider for evaluating the safety and operational performance of an intersection and determining geometric and timing needs.

Part III (Chapters 8-11) provides a description of treatments that can be applied to mitigate a known safety or operational deficiency. The treatments are organized by chapter, based on the intersection element. Within each chapter, the treatments are grouped by a particular user type (e.g., pedestrian treatments) or are grouped to reflect a particular condition (e.g., signal head visibility).

Exhibit 1-5 depicts the organization of the guide.

Part	Chapter	Title
	1	Introduction
Part I: Fundamentals	2	User Needs
	3	Data Collection and Warrants
	4	Geometric Design
	5	Traffic Design and Illumination
Part II: Project Process and	6	Safety Analysis Methods
Analysis Methods	7	Operational Analysis Methods
Part III: Treatments	8	System-Wide Treatments
	9	Intersection-Wide Treatments
	10	Approach Treatments
	11	Individual Movement Treatments

Exhibit 1-6 provides a list of the treatments discussed in Part III. Each treatment includes a description, a photo or diagram where available, and a summary of the treatment's applicability. In addition, these sections identify the following:

- Key design elements;
- Operational and safety impacts;
- Impacts on other modes;
- Socioeconomic and physical impacts; and
- Education, enforcement, and maintenance issues.

The treatments in Exhibit 1-6 represent some, but not all, possible treatments.

Treatment Type		Treatments
System-Wide Treatments (Chapter 8)	Median treatmentsAccess management	Provide signal coordinationProvide signal preemption/priority
Intersection-Wide Treatments (Chapter 9)	 Reduce curb radius Provide curb extensions Modify stop line location Improve pedestrian signal display Modify pedestrian signal phasing Grade separate pedestrian movements High visibility crosswalks 	 Provide bicycle box (experimental) Provide bike lanes Relocate transit stop Change signal control from pre-timed to actuated Modify change and clearance intervals Modify cycle length Remove late night/early morning flash Provide or upgrade illumination Convert signalized intersection to a roundabout or all-way stop control.
Approach Treatments (Chapter 10)	 Convert to over-the-road signal heads Add supplemental signal heads Increase size of signal heads Increase number of signal heads Provide backplates 	 Provide advance warning Improve lane use and street name signing Reduce operating speed Improve pavement surface Improve cross section Remove obstacles from clear zone Improve sight lines Provide dilemma zone protection Provide red light camera enforcement
Individual Movement Treatments (Chapter 11)	 Add single left-turn lane Add multiple left-turn lane Add channelizing islands Add single right-turn lane Provide double right-turn lanes 	 Restrict turns, U-turns Provide auxiliary through lane Delineate through path Provide reversible lane Provide variable lane use assignments

Exhibit 1-6. List of intersection treatments discussed in this guide.

Part III Treatments

Part III includes a description of treatments that can be applied to signalized intersections to mitigate an operational and/or safety deficiency. The treatments are organized as follows: System-Wide Treatments (Chapter 8), Intersection-Wide Treatments (Chapter 9), Approach Treatments (Chapter 10), and Individual Movement Treatments (Chapter 11). It is assumed that before readers begin to examine treatments in Part III, they will already have familiarized themselves with the fundamental elements described in Part I and the project process and analysis methods described in Part II.

CHAPTER 8

SYSTEM-WIDE TREATMENTS

TABLE OF CONTENTS

8.0	SYST	EM-WID	DE TREATMENTS	8-3
	8.1	Median	Treatments	8-3
		8.1.1	Description	8-3
		8.1.2	Applicability	
		8.1.3	Key Design Features	
		8.1.4	Safety Performance	8-9
		8.1.5	Operational Performance	8-9
		8.1.6	Multimodal Impacts	8-9
		8.1.7	Physical Impacts	8-10
		8.1.8	Socioeconomic Impacts	8-10
		8.1.9	Enforcement, Education, and Maintenance	8-10
		8.1.10	Summary	8-11
	8.2	Access	Management	8-13
		8.2.1	Description	8-13
		8.2.2	Applicability	8-14
		8.2.3	Design Features	8-14
		8.2.4	Safety Performance	
		8.2.5	Operational Performance	8-20
		8.2.6	Multimodal Impacts	
		8.2.7	Physical Impacts	8-20
		8.2.8	Socioeconomic Impacts	8-20
		8.2.9	Enforcement, Education, and Maintenance	8-21
		8.2.10	Summary	8-21
	8.3	Signal (Coordination	8-22
		8.3.1	Description	
		8.3.2	Applicability	8-23
		8.3.3	Safety Performance	8-23
		8.3.4	Operational Performance	
		8.3.5	Multimodal Impacts	
		8.3.6	Physical Impacts	
		8.3.7	Socioeconomic Impacts	
		8.3.8	Enforcement, Education, and Maintenance	
		8.3.9	Summary	
	8.4		Preemption and/or Priority	
		8.4.1	Description	8-25
		8.4.2	Emergency Vehicle Preemption	
		8.4.3	Railroad Preemption	
		8.4.3	Transit Vehicle Preemption	
		8.4.5	Applicability	
		8.4.6	Safety Performance	
		8.4.7	Operational Performance	
		8.4.8	Multimodal Impacts	
		8.4.9	Physical Impacts	
		8.4.10	Socioeconomic Impacts	
		8.4.11	Enforcement, Education, and Maintenance	
		8.4.12	Summary	8-28

LIST OF EXHIBITS

• •		~ .
8-1	Issues associated with intersections with a narrow median	. 8-4
8-2	Issues associated with intersections with a wide median	. 8-5
8-3	Median pedestrian treatments	. 8-7
8-4	Pedestrian signal treatments where medians are present	. 8-8
8-5	This refuge island enables two-stage pedestrian crossings	. 8-9
8-6	Summary of issues for providing median treatments	8-12
8-7	Comparison of physical and functional areas of an intersection	8-14
8-8	Diagram of the upstream functional area of an intersection	8-15
8-9	Access points near signalized intersections	8-17
8-10	Access management requiring U-turns at a downstream signalized intersection	8-18
8-11	Access management requiring U-turns at an unsignalized, directional median opening.	8-18
8-12	Relative crash rates for unsignalized intersection access spacing	8-19
8-13	Summary of issues for providing access management	8-22
8-14	Selected findings of safety effects associated with signal coordination or progression	8-23
8-15	Summary of issues for providing signal coordination	8-25
8-16	Summary of issues for providing signal preemption and/or priority	8-28

8.0 SYSTEM-WIDE TREATMENTS

Treatments in this chapter apply to roadway segments located within the influence of signalized intersections and intersections affected by the flow of traffic along a corridor. These treatments primarily address safety deficiencies associated with rear-end collisions due to sudden accelerating/decelerating; turbulence involved with midblock turning movements from driveways or unsignalized intersections; and coordination deficiencies associated with the progression of traffic from one location to another. The following specific treatments are examined:

- 1. Median treatments.
- 2. Access management.
- 3. Signal coordination.
- 4. Signal preemption and/or priority.
- 5. Automated enforcement.

8.1 MEDIAN TREATMENTS

The median of a roadway is used for left turns, pedestrian refuge, restriction of or access to properties on the other side of the road, and separation of opposing directions of travel. These purposes can conflict, and each use should be considered when design changes are proposed. Medians can be either flush or raised, each having specific operational and safety characteristics that may lead to tradeoffs in either.

8.1.1 **Description**

Median design contributes to safe and efficient operation of corridors and intersections, especially left-turn and pedestrian movements. Specifically, width, height, length, and type are key factors in median design. The median provides a location for vehicles to wait for a gap in opposing traffic through which to turn; it also separates opposing directions of travel. Medians may also provide a refuge for pedestrians. Inappropriate median design may contribute to operational or safety problems related to vehicles turning left from the major road and vehicles proceeding through or turning left from the minor road and public or private entrances.

8.1.2 Applicability

Operational or safety issues that could be addressed by median design changes include spillover of left-turn lanes into the through traffic stream, rear-end or side-swipe crashes involving left-turning vehicles, inappropriate use of the median, and pedestrian crashes. Medians may also form an integral part of an overall access management plan, as discussed later.

8.1.3 Key Design Features

Width, height, length, channelization, end type, and pedestrian treatments are key features of a median design. The elements combine to provide storage for left-turning vehicles, guide turning vehicles through the intersection, and help pedestrians cross the street.

Median Width

Medians physically separate opposing directions of travel and provide a safety benefit by helping reduce occurrence of head-on collisions. It is possible that a median can be so narrow or so wide that its safety benefit is negated by operational or safety problems created by an inappropriate width, as shown in Exhibits 8-1 and 8-2.

- Narrow medians: Many problems associated with medians that are too narrow relate to unsignalized intersections upstream or downstream of the signalized intersection in question. These include vehicles stopping in the median at an angle instead of perpendicular to the major road, or long vehicles stopping in the median and encroaching on major road through lanes. Additionally, pedestrians can have difficulty at signalized intersections with medians that are too narrow. At large intersections with medians, pedestrians commonly cross the street in two stages. If the median width is too narrow, pedestrians may not have sufficient room to wait safely and comfortably. Also, there may be insufficient room to provide adequate ADA-compliant detectable warning surfaces and, in some cases, curb ramps.
- Wide medians: Just as medians that are too narrow can pose difficulties, overly wide medians also can be problematic. At signalized intersections, wide medians increase motor vehicle and bicycle clearance time, thus adding lost time and delay to the intersection. If pedestrians are expected to cross the entire intersection in one crossing, overly wide medians result in very long pedestrian clearance times, which often lead to excessively long cycle lengths.

Wide medians also can create visibility problems for signal displays, which often result in the use of two sets of signal indications: one mid-intersection, and one on the far side. Extremely wide medians can also cause driver confusion with respect to how motorists are to maneuver turns. Extra pavement marking, island delineation and/or signing may be needed to guide motorists. These factors increase the cost of construction and operation of the intersection.

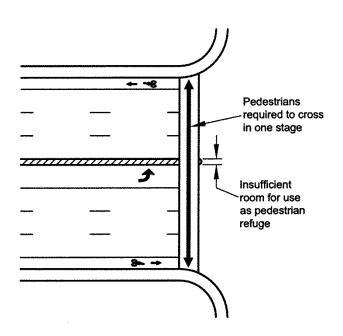


Exhibit 8-1. Issues associated with intersections with a narrow median.

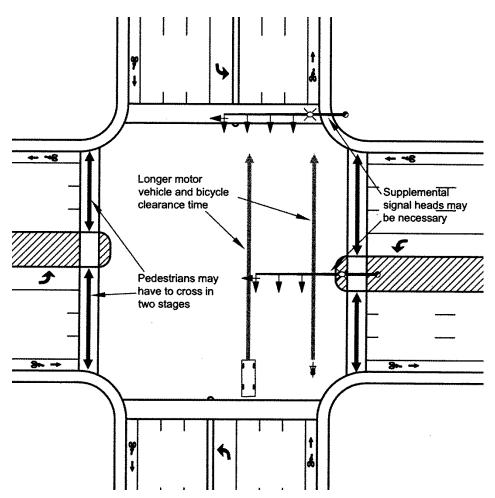


Exhibit 8-2. Issues associated with intersections with a wide median.

Median Channelization

The appropriateness of the use of raised or flush medians depends on conditions at a given intersection. Raised (curbed) medians should provide guidance in the intersection area but should not present a significant obstruction to vehicles. The design should be balanced between the desire for it to be cost effective to construct and maintain and for it to provide safe channelization. Raised medians may be delineated with reflectors, tape, or paint, in addition to the presence of lighting.

AASHTO recommends that flush medians are appropriate for intersections with:⁽³⁾

- Relatively high approach speeds.
- No lighting.
- Little development where access management will not be considered.
- No sign, signal, or luminaire supports in the median.
- Little/infrequent snowplowing operations.
- A need for left-turn storage space.
- Little or no pedestrian traffic.

Where left-turn lanes are provided in the median, raised medians should be used to separate left-turn and opposing through traffic on medians 14 to 16 ft wide or less. These raised medians should be 4 ft wide. Medians 18 ft wide or more should have a painted or physical divider that delineates the movements. It is also recommended that the left-turn lane be offset to provide improved visibility with opposing through traffic. This treatment is discussed in more detail in Chapter 11.

Median End Type

AASHTO provides the following guidance for median ends: ^(3, p. 701)

- Semicircular medians and bullet nose median ends perform the same for medians approximately 4 ft wide.
- Bullet-nose median ends are preferred for medians 10 ft or more wide.

A semicircle is an appropriate shape for the end of a narrow median. An alternative design is a bullet nose, which is based on the turning radius of the design vehicle. This design better guides a left-turning driver through the intersection because the shape of the bullet nose reflects the path of the inner rear wheel. The bullet nose, being elongated, better serves as a pedestrian refuge than does a semicircular median end.

Medians greater than 14 ft wide with a control radius of 40 ft (based on the design vehicle) should have the shape of flattened or squared bullets to provide channelization, though the length of the median opening will be controlled by the need to provide for cross traffic.

The median end controls the turning radius for left-turning vehicles. It can affect movement of vehicles using that leg of the intersection both to turn left from the approach and to depart from the intersection on that leg after turning left from the cross street. A median nose that does not significantly limit the turning radius will help turning vehicles proceed through the intersection at higher speeds. This could contribute to efficient vehicular operations but could also create additional safety issues for pedestrians, bicyclists, and through traffic on the opposing approach if permissive left turns are allowed.

Median Pedestrian Treatments

Careful attention should be given to pedestrian treatments at signalized intersections with medians, as these intersections tend to be larger than most. Two key treatments are discussed here: the design of the pedestrian passage through the median, and the design of the pedestrian signalization.

Pedestrian treatments at medians can be accommodated in two basic ways: a cut-through median, where the pedestrian path is at the same grade as the adjacent roadway; and a ramped median, where the pedestrian path is raised to the grade of the top of curb. Exhibit 8-3 shows the basic features and dimensions for each treatment. Note that if the median is too narrow to accommodate a raised landing of minimum width, a ramped median design cannot be used. If the median is so narrow that a pedestrian refuge cannot be accommodated, then the crosswalk should be located outside the median.

Cut-through and ramped medians both provide pedestrian refuge, but cut-through medians are susceptible to hold roadway drainage and resulting debris. If space allows for ramped medians, they can provide extra visibility to pedestrians by being vertically separated from the roadway. Both cut-through and ramped medians should be designed and operated in a way that provides visibility and conspicuity of pedestrians located in the median, as well as a line-of-sight from the median to roadway users. This is especially important when median landscaping is present. The landscaping must be maintained to provide pedestrians a line-of-sight over and around the landscaping and give motorists the opportunity to detect pedestrians in the median.

Per ADAAG, all curb ramps, including those at median crossings, must have detectable warnings. Further discussion of pedestrian treatments at medians can be found in FHWA's *Designing Sidewalks and Trails for Access: Part II*.⁽³⁷⁾

Signalized Intersections: Informational Guide

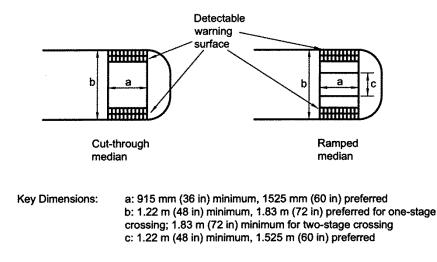


Exhibit 8-3. Median pedestrian treatments.⁽³⁷⁾

Exhibit 8-4 summarizes pedestrian signal treatments, which also depend on the width of the median.

- Narrow crossings providing no refuge require a one-stage crossing using a single set of pedestrian signal displays and detectors. For this option, pedestrian clearance time needs to accommodate crossing the entire roadway.
- Wide intersection crossings with ample room for pedestrians to wait in the median (and where it is advantageous to all users to cross in two stages) require separate pedestrian signal displays and detectors for each half of the roadway. Pedestrian clearance times are set independently for each half of the roadway, as shown in Exhibit 8-5.
- A third option is for crossings where part of the pedestrian population can be reasonably expected to cross in one stage, but others need two stages. For this option, pedestrian clearance time is set to accommodate crossing the entire roadway, but a supplemental pedestrian detector is placed in the median to accommodate pedestrians needing to cross in two stages.

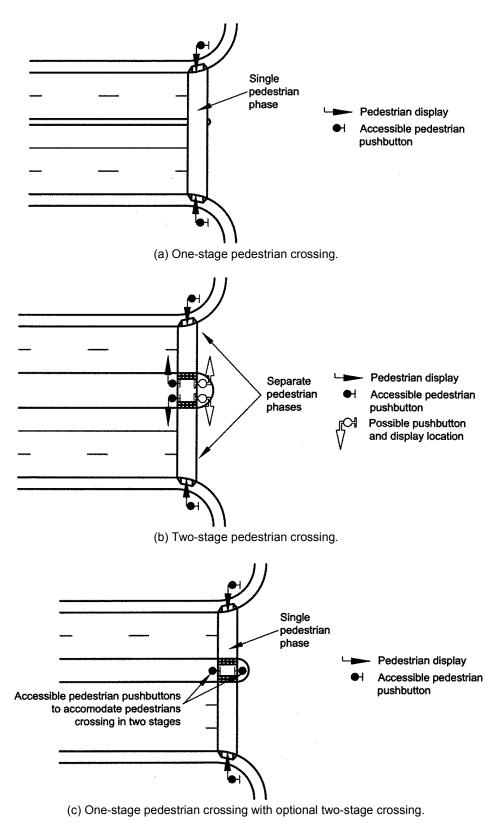


Exhibit 8-4. Pedestrian signal treatments where medians are present.

Exhibit 8-5. This refuge island enables two-stage pedestrian crossings. Source: Michael Ronkin (*Safety Benefits of Raised Medians and Pedestrian Refuge Areas*, FHWA, 2010)

8.1.4 Safety Performance

Medians at intersections can provide safety benefits similar to medians between intersections. Introducing distance between opposing flows can decrease the frequency and severity of crashes. The presence of a raised median impacts motorists' ability to cross the opposing lanes, which can reduce head-on collisions. One report has shown that at urban and suburban intersections, multiple-vehicle crash frequency increases as median width increases for widths between 14 ft and 80 ft, unlike in rural areas where multiple-vehicle crash rates tend to be lower for wider medians.⁽⁸²⁾ The report also provided a summary of a study that found no statistically significant effect of median width on traffic delays and conflicts on medians between 30 ft and 60 ft wide.⁽⁸³⁾

One study found decreasing crash rates with increasing median widths.⁽⁸⁴⁾ A Michigan State University study found that Michigan's boulevard roadways experienced a crash rate half that of roadways with continuous center left-turn lanes.⁽⁸⁵⁾ A median width of 30 ft to 60 ft was found to be the most effective in providing a safe method for turning left.

The frequency of minor collisions and vehicle damage claims may increase when raised medians are present as a result of drivers misinterpreting their distance from the raised median.

8.1.5 **Operational Performance**

Simulation of signalized directional crossovers showed they operate better than other designs (specifically, an undivided cross section with a continuous center left-turn lane and a boulevard with bidirectional crossovers). The undivided cross section has larger delays for left-turning vehicles than do boulevard roadways, even for low turn volumes. The width of the median affects the storage capacity of the crossover, so a crossover in a narrow median may not function as well as a left-turn lane. The signalized crossovers functioned more efficiently (i.e., with less time to make a left-turn) than did stop-controlled crossovers.

Depending on the radius design, the presence of a raised median may impact the speed at which motorists can maneuver left turning movements. A less severe radius will allow for higher speeds of left-turning traffic, which can help clear intersections of traffic more quickly and reduce cycle lengths and delay, but may have adverse effects on pedestrian and bicycle users.

8.1.6 Multimodal Impacts

As noted previously, the width of the median (and the roadway in general) directly impacts the amount of time needed for pedestrians and bicycles to cross the roadway. Large intersections with no median or a median too narrow to provide a refuge force pedestrians to cross the entire street in one stage. Therefore, provision of a median with at least enough width to accommodate a pedestrian can provide the option of crossing in one stage or two. This can be a significant benefit to elderly and disabled pedestrians who cross at speeds less than the typical 4 ft/s used to time pedestrian clearance intervals.

If the median is so wide that pedestrian crossings are operated in two stages, the sequence of the stages may increase crossing time significantly. For example, if the vehicle phases running parallel to the pedestrian crossing in question are split-phased and the sequence of the vehicle phases is in the same direction as the pedestrian, crossing time is similar to that of a single-stage crossing. On the other hand, the reverse direction will result in additional delay to the pedestrian in the median area as the signal cycles through all conflicting phases.

8.1.7 Physical Impacts

Improvements in the median should not affect the footprint of an intersection unless a roadway is widened to provide the median to use for left-turn lanes, pedestrian refuges, and so on.

8.1.8 Socioeconomic Impacts

The primary socioeconomic impact of medians at signalized intersections relates more to their effect on overall access within the corridor, discussed in Section 8.2. The frequency of minor collisions and vehicle damage claims will likely increase when raised medians are installed; sometimes drivers misinterpret their vehicle's distance from the raised median.

Landscaping can play an important esthetic role at the intersection itself. The appropriate use of landscaping can visually enhance a road and its surroundings. Landscaping may act as a buffer between pedestrians and motorists and reduce the visual width of a roadway, serving to reduce traffic speeds and providing a more pleasant environment.

Landscaping must be carefully considered at signalized intersections, otherwise it will prevent motorists from making left and right turns safely because of inadequate sight distances. Care should be taken to ensure that traffic signals and signs, pedestrian crossings, nearby railroad crossings, and school zones are not obstructed. Median planting of trees or shrubs greater than 2 ft in height should be well away from the intersection (more than 50 ft). No plantings having foliage between 2 ft and 8 ft in height should be present within sight distance triangles.

Low shrubs or plants not exceeding a height of 2 ft are appropriate on the approaches to a signalized intersection, either on the median, or along the edge of the roadway. These should not be allowed to overhang the curb onto the pavement nor interfere with the movement of pedestrians. All plantings should have adequate watering and drainage systems or be drought resistant. FHWA's report *Vegetation Control for Safety* provides additional guidelines and insight.⁽⁸⁷⁾

In addition to landscaping height considerations, AASHTO's Roadside Design Guide provides guidance to establish an enhanced lateral offset distance to signs, poles, trees, plants, and shrubbery located within the median. Specifically, the enhanced lateral offset is intended to provide an additional level of protection for roadway users at high-risk locations, such as at locations where lanes merge or at driveways and medians are present. The recommended enhanced lateral offset distance is 4 to 6 ft.

8.1.9 Enforcement, Education, and Maintenance

Flush medians introduce little in the way of unique enforcement or education issues for motor vehicles. However, the enforcement of signalized corridors with continuous raised medians will vary from corridors with median breaks or flush medians that allow enforcement to access both directions of traffic. Practitioners should coordinate with enforcement to discuss these concerns or find locations for median opening turnarounds or flush medians. Pedestrians may need assistance through the use of signs or other methods to make them aware of one-stage versus

two-stage crossings, particularly in communities that have both types of crossings at signalized intersections.

Typical maintenance procedures will apply to medians. However, consideration should be given for providing vertical guidance for snow removal operations on raised medians using delineation. The addition of a raised median will also result in a treatment located among roadway users that will require intermittent maintenance. Landscaping should be maintained so as not to obstruct sight distance.

8.1.10 **Summary**

Exhibit 8-6 summarizes issues associated with providing median treatments.

Characteristic	Potential Benefits	Potential Liabilities
Safety	Introducing distance between opposing flows may allow for a reduction in the frequency and severity of certain crash types.	The frequency of minor collisions may increase when raised medians are present.
Operations	Signalized directional crossovers can operate more efficiently than unsignalized directional crossovers. Appropriately designed median radii can help raise speeds in turning movements and decrease intersection delay.	Narrow medians may create storage problems. For intersections where high pedestrian volumes are present, increased motorist speeds could negatively impact pedestrian safety.
Multimodal	Medians of moderate width can allow pedestrians to cross in one or two stages, depending on ability.	Overly wide medians may require all pedestrians to cross in two stages, significantly increasing pedestrian delay. Narrow medians may require long one-stage crossings.
Physical	None identified.	Changes to median width may have a substantial physical impact upstream and downstream of the intersection. Presence of a raised median requires additional roadway maintenance.
Socioeconomic	Landscaping may provide visual appeal.	Access control upstream or downstream of the intersectior may create challenges. The frequency of vehicle damage claims may increase.
		Potential safety concern if the landscaping becomes a fixed object hazard or impedes sigh distance.
Enforcement, Education, and Maintenance	None identified.	Education on the use of pedestrian push buttons in the median may be considered. Presence of a raised median and landscaping in the mediar will require maintenance. Enforcement methods may need to be addressed, depending on the presence of raised median between signals.

Exhibit 8-6. Summary of issues for providing median treatments.

8.2 ACCESS MANAGEMENT

Practical experience and recent research indicate that controlling access on a roadway can positively impact traffic flow and safety. Access management is a key issue in planning and designing roadways so they perform according to their functional classification.

The topic of access management is growing and exceeds the space that this guide can provide. More information on access management can be found in a number of references, including AASHTO'S *A Policy on Geometric Design of Highways and Streets*⁽³⁾; *NCHRP 420: Impacts of Access Management Techniques*⁽⁸⁸⁾; ITE's *Transportation and Land Development*⁽⁸⁹⁾; and TRB's *Access Management Manual.*⁽⁹⁰⁾ Many States also have extensive guidance on access management. This section focuses on the operational and safety effects of unsignalized intersections (both public streets and private driveways) located within the vicinity of signalized intersections.

8.2.1 Description

Access management plays an important role in the operation and safety of arterial streets needing both mobility of through traffic and access to adjacent properties. Studies have repeatedly shown that improvements in access management improve safety and capacity, and also that roadways with poor access management have safety and operations records worse than those with better control of access. Treatments to improve access management near intersections (within 250 ft upstream or downstream) include changes in infrastructure, geometry, or signing to close or combine driveways, provide turn lanes, or restrict or relocate turn movements.

TRB's Access Management Manual states that access management programs seek to limit and consolidate access along major roadways, while promoting a supporting street system and unified access and circulation systems for development. The result is a roadway that functions safely and efficiently for its useful life, and a more attractive corridor. The goals of access management are accomplished by applying the following principles ⁽⁹⁰⁾:

- Provide a specialized roadway system.
- Limit direct access to major roadways.
- Promote intersection hierarchy.
- Locate signals to favor through movements.
- Preserve the functional area of intersections and interchanges.
- Limit the number of conflict points.
- Separate conflict areas.
- Remove turning vehicles from through-traffic lanes.
- Use non-traversable medians to manage left-turn movements.
- Provide a supporting street and circulation system.

For more information on Access Management, consider the following resources:

- AASHTO A Policy on Geometric Design of Highways and Streets
- ITE Transportation and Land Development
- Transportation Research Board's Access Management Manual
- FHWA's 2007 Compendium of Access Management Tools
- NCHRP 420: Impacts of Access Management Techniques
- NCHRP Synthesis 304: Driveway Regulation Practices
- NCHRP Synthesis 337: Cooperative Agreements for Corridor Management
- NCHRP Report 348: Access Management Guidelines for Activity Centers
- NCHRP Synthesis 351: Access Rights
- NCHRP Report 395: Capacity and Operational Effects of Midblock Left-Turn Lanes
- NCHRP Report 524: Safety of U-Turns at Unsignalized Median Openings
- NCHRP Report 548: Median Intersection Design for Rural High-Speed Divided Highways

Access management works best when combined with land use and zoning policies. Agencies can also regulate aspects of access management through geometric design and ingress/egress spacing.

8.2.2 Applicability

Examples of when to improve access management at an intersection include situations where through vehicles experience delay due to vehicles turning left or right into intersections, such as from major and minor streets (signalized and unsignalized) and from driveways, and when rear-end or angle crashes occur involving vehicles entering or leaving driveways.

8.2.3 **Design Features**

Practitioners should determine the functional area of the signalized intersection, as shown in Exhibit 8-7, to understand the upstream and downstream effects of a signalized intersection on access management. The functional area is larger than the physical area of the intersection because it includes several items, as shown in Exhibit 8-8.⁽⁹⁰⁾

- Distance *d1*: Distance traveled during perception-reaction time as a driver approaches the intersection, assuming 1.5 s for urban and suburban conditions and 2.5 s for rural conditions.
- Distance *d2*: Deceleration distance while the driver maneuvers to a stop upstream of the intersection.
- Distance *d3*: Queue storage at the intersection.
- Distance immediately downstream of the intersection so that a driver can completely clear the intersection before needing to react to something downstream (stopping sight distance is often used for this).

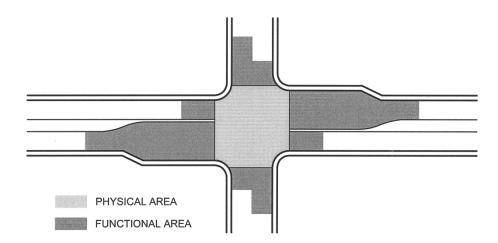


Exhibit 8-7. Comparison of physical and functional areas of an intersection.⁽⁹⁰⁾

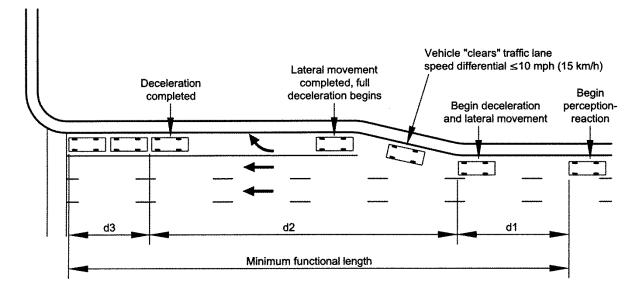
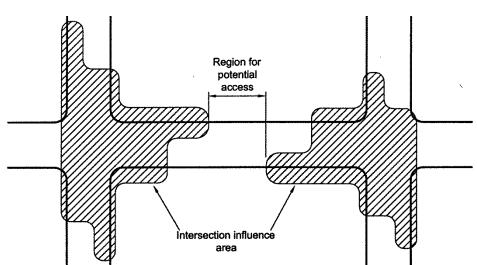


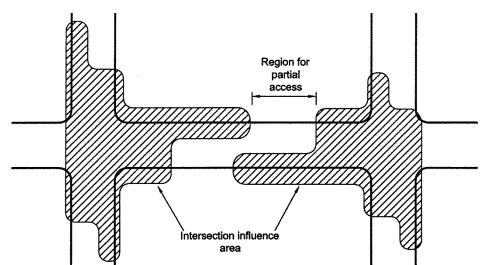
Exhibit 8-8. Diagram of the upstream functional area of an intersection.⁽⁹⁰⁾

Consider overlapping functional areas' varying levels of access when addressing two proximal signalized intersections. Exhibit 8-9 shows how the functional areas of nearby signalized intersections affect the location and extent of feasible access. Ideally, driveways with full access should be located outside of the functional areas of both signalized intersections. However, signalized intersections are often located close enough to each other that the downstream functional area of one intersection overlaps with the upstream functional area of the other. In these cases, there is no clear area between the two intersections where a driveway can operate without infringing upon the functional area of one of the signalized intersections. As such, practitioners should apply sound engineering judgment regarding where and if to allow a driveway. Some important considerations in the evaluation include:

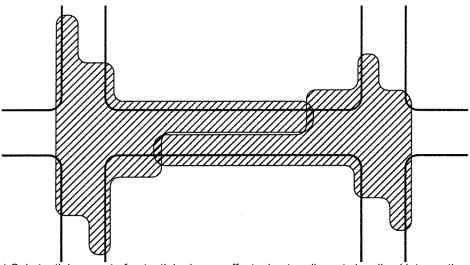
- The volume and type of traffic using the driveway.
- The type of turning maneuvers that will be most prominent.
- The type of median present and potential conflicts with and proximity to other driveways.
- The types and severity of existing crashes in the vicinity.
- The volume of traffic on the major street.


Access points clear of only one of the two signalized intersections would likely perform best from a safety perspective if restricted to right-in, right-out operation. However, in urban areas, this may not always be practical or may create other problems at downstream intersections, so again it is important to apply sound engineering judgment. In some cases, the two signalized intersections may be so close together that any access would encroach within the functional area of the intersections. These situations are likely candidates for either partial or full access restriction. It is important to note that driveways should not be simply eliminated based on general guidelines but rather should be evaluated on a case-by-case basis with consideration of the broader system effects. When driveways are closed without any regard to the system effects, there is a high potential that the problem will be transferred to another location. Finally, as a general guideline, the functional area of an intersection is more critical along corridors with high speeds (45 mph or greater) and whose primary purpose is mobility. If the corridor has a two-way left-turn lane design and driveways are placed indiscriminately, there is a high likelihood for angle crashes, and safety becomes the driving factor.

Improvements to the current access to properties adjacent to an intersection area can be implemented by:


- Closing, relocating, or combining driveways.
- Restricting turning movements through the use of median treatments, using driveway treatments, and/or the installation of signing.

As discussed previously, where access is restricted, the redirection of driveway traffic needs to be considered. Two of the more typical options are:


- Require drivers to make a U-turn at a downstream, signalized intersection (Exhibit 8-10). This requires adequate cross-section width to allow the U-turn and sufficient distance to the downstream intersection to weave across the through travel lanes. In addition to increasing the traffic volumes at the signalized intersection, U-turns also decrease the saturation flow rate of the left-turn movement. These combined effects potentially decrease the available capacity at the signalized intersection if the affected left-turn movement is a critical movement at the intersection.
- Create a midblock opportunity for drivers to make an unsignalized U-turn maneuver via a directional median opening (Exhibit 8-11). A study in Florida evaluated the safety effect of these directional median openings on six-lane divided arterials with large traffic volumes, high speeds, and high driveway/side-street access volumes.⁽⁹¹⁾ This study found a statistically significant reduction in the total crash rate of 26.4 percent as compared with direct left turns.

(a) Minimal amount of potential adverse effects due to adjacent signalized intersections.

(b) Moderate amount of potential adverse effects due to adjacent signalized intersections.

(c) Substantial amount of potential adverse effects due to adjacent signalized intersections.

Exhibit 8-9. Access points near signalized intersections. (adapted from 90, figure 8-15)

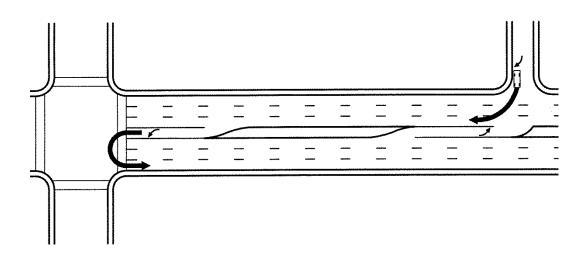


Exhibit 8-10. Access management requiring U-turns at a downstream signalized intersection.

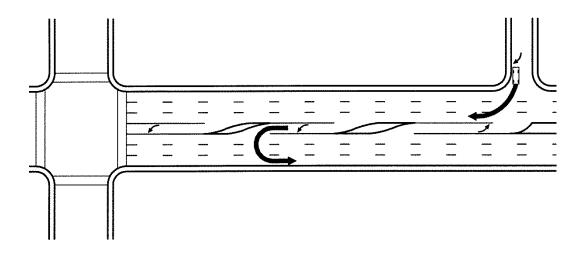


Exhibit 8-11. Access management requiring U-turns at an unsignalized, directional median opening.

Note that the conversion of an existing full-access point to right-in/right-out operation has both advantages and disadvantages. The advantages of right-in/right-out operation include:

- Removal of movements from the functional area of the signalized intersection. This reduces conflicts near the signalized intersection and improves capacity by minimizing discord in driver maneuvers.
- Better operation for the driveway. Eliminating left turns out of the driveway generally reduces delays for the driveway movements.

Disadvantages include:

- Increase in U-turn movements at signalized intersections or at other unsignalized locations. This may reduce the available capacity at the intersection and increase delay. This may also increase the potential for left-turn crashes at the location of the U-turn.
- Increase in arterial weaving. This may happen as the driveway movement attempts to get into position to make the U-turn.
- Potential for increased demand for left turns at other driveways serving the same property.

As with other access management treatments, involvement of property owners in the decision-making and design process is key to the success of the project.

8.2.4 Safety Performance

In general, an increase in the number of access points along a roadway correlates with higher crash rates. Specific relationships vary based on specific roadway geometry (lane width, presence or absence of turn lanes, sight distance, etc.) and traffic characteristics.

Exhibit 8-12 presents a summary of the relative crash rates for a range of unsignalized intersection access spacing. As can be seen, doubling access frequency from 10 to 20 access points per mile increases crash rates by about 40 percent. An increase from 10 to 60 access points per mile would be expected to increase crash rates by approximately 200 percent. Generally, each additional access point per mile along a four-lane roadway increases the crash rate by about 4 percent (see also references 92 and 93).

Unsignalized Access Points Spacing	Average Spacing	Relative Crash Rate ^{****}
10 per mi	1056 ft	1.0
20 per mi	528 ft	1.4
30 per mi	352 ft	1.8
40 per mi	264 ft	2.1
50 per mi	211 ft	2.4
60 per mi	176 ft	3.0
70 per mi	151 ft	3.5

Exhibit 8-12. Relative crash rates for unsignalized intersection access spacing.*

*Source: Reference 90, as adapted from 88.

**Total access connections on both sides of the roadway.

*** Average spacing between access connections on the same side of the roadway; one-half of the connections on each side of the roadway.

**** Relative to the crash rate for 10 access points per mi.

Removing or limiting access to restrict specific movements, such as right-in/right-out access, both have positive impacts to crash severity, congestion, and operational speeds. In *Safe Access is Good for Business*, FHWA states that where access is well-managed operating speeds are 15-20 mph higher. Restricting movements may require adding horizontal and vertical features, such as raised islands, which may contribute to an increase in fixed object crashes.⁽¹⁹⁹⁾

8.2.5 **Operational Performance**

Reducing access along an arterial street can improve traffic operations. For example, urban arterials with a high degree of access control function 30 to 50 percent better than the same facility with no control.⁽⁹⁴⁾ Improved access management also has been shown to improve LOS.⁽⁹⁵⁾ Controlling the flow of traffic through restricting and managing accesses can reduce delay.

Access points close to a signalized intersection can reduce the saturation flow rate of the signalized intersection. Research has determined that the amount of reduction depends on the corner clearance of the driveway, the proportions of curb-lane volume that enter and exit the driveway, and the design of the driveway itself.⁽⁹⁶⁾

However, as indicated earlier, practitioners should evaluate the impact of access control on the upstream and downstream intersections, which may experience a significant increase in U-turns or other types of turning movements. For example, eliminating left-turn movements and converting them to U-turns at signalized intersections could degrade arterial operational performance if adequate capacity to accommodate the turning movements at midblock access driveways exists, because less green time will be available for through traffic. This could substantially reduce capacity and increase delay at the signalized intersection.

8.2.6 Multimodal Impacts

Access treatments that reduce the number of driveways or restrict turning movements at driveways also reduce the number of potential conflicts for pedestrians and bicycles near a signalized intersection. In addition, a median treatment used as part of an overall access management strategy also provides the opportunity for a midblock signalized or unsignalized pedestrian crossing. Practitioners should evaluate whether the considered access treatments would result in a significant increase in operating speed on the facility, as increases in speed have a negative impact on both pedestrians and bicyclists that should be considered in the evaluation.

8.2.7 **Physical Impacts**

Several solutions exist for access management that can affect the footprint of the intersection area. The addition of U-turn lanes for property access will increase the roadway width of the intersection area. Turn restrictions may affect the physical size of an area if a vertical element is added to the intersection (for example a raised curb, median barrier, or flexible delineators used to prohibit left turns). In order for these not to present difficulties for pedestrians with mobility impairments, it may be necessary to provide a cut through.

8.2.8 Socioeconomic Impacts

Literature review indicates inconsistency in the socioeconomic effects of access management. Surveys conducted in Florida reported a relatively low rate of acceptance of access management: most drivers felt that the inconvenience of indirect movements offset the benefits to traffic flow and safety. Businesses also were unsupportive: 26 percent reported a loss in profits, and 10 to 12 percent reported a large loss.⁽⁹⁷⁾ Conversely, experience in Iowa indicates rapid growth in retail sales after access management projects were completed. An opinion survey conducted among affected motorists indicated that a strong majority supported all projects but one.⁽⁹⁵⁾ In *Safe Access is Good for Business,* FHWA states that, where access is managed properly, operating speeds are 15 to 20 mph higher, which yields an increased exposure to more potential customers. The publication also states that "before and after" studies of businesses in Florida, Iowa, Minnesota, and Texas along highways where access has been managed found that the vast majority of businesses do as well or better after the access management projects are completed.

The reactions of drivers, property owners, pedestrians, and others concerned with access to properties adjacent to intersections vary widely. Access management strategies should be

Signalized Intersections: Informational Guide

considered in the context of a roadway corridor with the approval and backing of those affected or if significant safety and operational enhancements can be achieved. A decrease in crashes and traveler delay from applying access management principles can result in considerable societal savings.

Redesign, relocation or closing of driveways should be part of a comprehensive corridor access-management plan. The optimal situation is to avoid driveway conflicts before they develop. This requires coordination with local land use planners and zoning boards in establishing safe development policies and procedures. Avoidance of high-volume driveways near congested or otherwise critical intersections is desirable.

Highway agencies should also understand the safety consequences of driveway requests. The power of a highway agency to modify access provisions is derived from legislation that varies in its provision from State to State. Highway agencies generally do not have the power to deny access to any particular parcel of land, but many do have the power to require, with adequate justification, relocation of access points. Where highway agency powers are not adequate to deal with driveways close to intersections, further legislation may be needed.

8.2.9 Enforcement, Education, and Maintenance

Periodic enforcement may be needed to ensure that drivers obey restrictions at driveways where such restrictions cannot be physically implemented with raised channelization, such as signed prohibitions. If raised channelization is used corridor-wide, it may be necessary to team with enforcement to provide openings for emergency turnarounds.

Education other than appropriate signing should not be needed when implementing changes to access unless major changes to access management are made along a corridor, requiring a fundamental shift in driver behavior.

8.2.10 Summary

Exhibit 8-13 summarizes issues associated with providing access management.

Characteristic	Potential Benefits	Potential Liabilities
Safety	Fewer access points generally result in a lower crash rate along a corridor. Physical segregation of opposing traffic flows if barrier or curb is used as an access management strategy.	Turn restrictions may require adding horizontal and vertical features to driveways, which may contribute to an increase in fixed object crashes.
Operations	Fewer access points generally result in an increase in LOS and capacity.	An increased number of U-turns at a signalized intersection due to access management may reduce the overall capacity of the intersection. An increase in weaving as vehicles entering the highway attempt to turn left at signalized intersections.
Multimodal	Fewer access points reduce the number of potential conflicts for bicycles and pedestrians.	Potential increases in operating speed along the arterial may negatively impact safety relative to bicycle and pedestrian modes.
Physical	None identified.	Turn restrictions may require adding horizontal and vertical features to driveways.
Socioeconomic	Socioeconomic benefits are mixed, with some studies reporting economic improvement and others reporting economic losses. Societal cost savings attributed to decreased crashes and travel delay.	Both economic improvement and economic losses have been reported.
Enforcement, Education, and Maintenance	None identified when raised channelization is used.	Periodic enforcement may be needed where signs are used instead of raised channelization. May be necessary to educate motorists on access options if corridor wide improvements are made, and provide emergency turnarounds for enforcement. Additional costs may be incurred for maintenance with the installation of physical barriers preventing access.

Exhibit 8-13. Summary of issues for providing access management.

8.3 SIGNAL COORDINATION

8.3.1 Description

The primary objective of signal coordination is smooth flow of traffic along an arterial, street, or a highway to improve mobility, safety, and fuel consumption. This can be achieved by synchronizing the signal timings at multiple intersections along a major street to improve traffic flow in one or more directional movements. Examples include arterial streets, downtown networks, and closely spaced intersections like diamond interchanges. Intersections should be coordinated when they are in close proximity to each other (i.e., 0.5 miles or less) and there is a significant amount of traffic on the street being coordinated.⁽⁶⁶⁾ Coordination can also improve travel time reliability; reduce travel time, stops and delay; and improve air quality.⁽²⁰¹⁾

Coordination also has other benefits. Drivers may have occasional difficulty making permissive turns at signalized intersections because of lack of acceptable gaps in the opposing through traffic. This can contribute to both operational and safety problems. Providing coordination can create platooning of through traffic, resulting in availability of more acceptable gaps to left-turning traffic. Increasing acceptable gaps can improve intersection capacity and safety.

8.3.2 Applicability

Signal coordination may be applicable for intersections where:

- Lack of coordination is causing unexpected and/or unnecessary stopping of traffic approaching from adjacent intersections.
- Congestion between closely spaced intersections is causing queues from one intersection to interfere with the operation of another.
- Rear-end conflicts/collisions are occurring due to the higher probability of having to stop at each light.

8.3.3 Safety Performance

Apart from its operational benefits, signal coordination reduces vehicle conflicts along corridors with coordinated traffic signals. This reduces the number of rear-end conflicts, as vehicles tend to move more in unison from intersection to intersection.

Studies have proven the effectiveness of signal coordination in improving safety. The ITE *Traffic Safety Toolbox: A Primer on Traffic Safety* cites two studies of coordinated signals with intersection crash frequencies that dropped by 25 and 38 percent.⁽⁹⁸⁾ One study showed a decrease in crash rates for midblock sections as well. A study on the effectiveness of traffic signal coordination in Arizona concluded that there is a small but significant decrease in crash rates on intersection approaches after signal coordination.⁽⁹⁹⁾ Crashes along the study corridor decreased 6.7 percent. Another study of the safety benefits of signal coordination carried out in Phoenix compared coordinated signalized intersections to uncoordinated signalized intersections citywide. The coordinated intersections were found to have 3 to 18 percent fewer total collisions, and 14 to 43 percent fewer rear-end collisions.⁽¹⁰⁰⁾

Exhibit 8-14 shows selected findings of safety benefits associated with signal coordination.

Treatment	Finding
Signal Coordination ⁽¹⁰⁰⁾	3 to 18% estimated reduction in all collisions along corridor14 to 43% estimated reduction in rear-end collisions along corridor
Provide Signal Progression (101)	10 to 20% estimated reduction in all collisions along corridor

Exhibit 8-14. Selected findings of safety effects associated with signal coordination or progression.

8.3.4 **Operational Performance**

The potential benefits of coordination directly relate to the traffic characteristics and spacing of intersections. Coordinated operation works best when traffic arrives in dense platoons. These platoons occur more frequently when the intensity of traffic volume between intersections increases and distance between intersections decreases, to a practical limit. Selection of the system cycle length defines the relationship that allows coordinated operations between the intersections, while the offset represents the difference in start or end times for the through green at adjacent intersections.

The primary parameters to implement coordination are cycle lengths, splits, offsets and phasing sequences. Coordination requires a fixed background cycle length for all intersections within a specific coordination plan. Selection of an appropriate cycle length for a system is crucial for two reasons. First, the cycle length should be able to service the expected vehicle and pedestrian demand on all movements by selecting the appropriate split (time allocated to service each movement). Second, the cycle length should facilitate good progression along the major

Signalized Intersections: Informational Guide

street. Coordination is then achieved by adjusting the offsets (a function of start or end of a major street green with respect to the start or end of major street green for the adjacent intersection). These offsets are fine-tuned in the field to ensure that any residual queues are cleared before the arrival of platoons for smooth progression. Finally, progression can sometimes be further improved by modifying the signal phasing for left turns (e.g., implementing a lead-lag sequence).

A key to success in signal coordination is the appropriate spacing of the signals. Signals within a half-mile (or sometimes even more if platooning can be maintained) of each other should be coordinated. Dispersion of platoons can occur if signals are spaced too far apart, resulting in inefficient use of signal coordination and loss of any operational benefit. Operations on cross streets may be negatively impacted. The Colorado Access Demonstration Project concluded that 0.5-mi spacing could reduce vehicle hours of delay by 60 percent and vehicle-hours of travel by over 50 percent compared with signals at one-quarter mile intervals with full median openings between signals.^(90, adapted from reference 102)

Grouping the signals into a system to be coordinated is an important aspect of the design of a progressive system. Factors that should be considered include geographic barriers, v/c ratios, and characteristics of traffic flow (random versus platoon arrivals). When systems operating on different cycle lengths are adjacent to or intersect each other, changes to provide a uniform cycle length appropriate for both systems should be considered so that the systems can be unified, at least for certain portions of the day.

Coordination is effective in improving throughput along a major thoroughfare. However, during oversaturated conditions the objective typically changes from providing progression to managing queues. The traffic engineer needs to identify the period of oversaturated conditions and select the appropriate cycle length, splits, offsets, and phasing sequences to ensure smooth movement of traffic under such conditions by management of queues.

Dependent on the spacing between signalized intersections, prevalence of certain movements, or a disparity in ideal cycle lengths of each signalized intersection, it may be beneficial to consider half or double cycles, respective of other cycle lengths that appear on the corridor. Double cycles allow an intersection to cycle twice as frequently as a major intersection, while half cycles have half the cycle length of a major intersection along the corridor. According to FHWA's *Traffic Signal Timing Manual*,⁽⁶⁶⁾ half cycles can often produce substantially lower delays at the minor intersections where double cycling is employed. However, it may become more difficult to achieve progression in both directions along the major arterial, which may result in more arterial stops than desired.

8.3.5 Multimodal Impacts

Progression along a transit route can reduce travel time and improve travel time reliability of transit vehicles. The transit agency should also play a role. They can design their stops appropriately with respect to traffic signals to take advantage of the progression being provided along the corridor.

8.3.6 **Physical Impacts**

Signal coordination may require overhead or underground installation of wire, fiber, or radio equipment if direct connection type of coordination is employed.

8.3.7 Socioeconomic Impacts

Signal coordination will also reduce fuel consumption, noise, and air pollution, by reducing the number of stops and delays. If traffic signals are retimed and maintained properly, we would see a reduction in harmful emissions (carbon monoxide, nitrogen oxides, and volatile organic compounds) of up to 22 percent.⁽²⁰²⁾ According to the Surface Transportation Policy Project, motor vehicles are the largest source of urban air pollution.⁽²⁰³⁾ In addition, the EPA estimates that vehicles generate 3 billion pounds of air pollutants annually.⁽²⁰⁴⁾

8.3.8 Enforcement, Education, and Maintenance

Signals working in coordination should reduce excessive speed, as motorists realize that they cannot "beat" the next traffic signal. Incidents of aggressive driving should be reduced as well.

Signal timing plans need to be updated as traffic volumes and patterns change. This should be factored into periodic maintenance of the traffic signal.

8.3.9 Summary

Exhibit 8-15 summarizes the issues associated with providing signal coordination.

Characteristic	Potential Benefits	Potential Liabilities
Safety	Fewer rear-end and left-turn collisions.	May promote higher speeds.
Operations	Improves traffic flow.	Usually longer cycle lengths.
Multimodal	May reduce pedestrian-vehicle conflicts.	May result in longer pedestrian delays due to longer cycle lengths.
Physical	No physical needs.	None identified.
Socioeconomic	Reduces fuel consumption, noise, and air pollution.	None identified.
Enforcement, Education, and Maintenance	May result in less need for speed enforcement.	Signal timing plans need periodic updating.

Exhibit 8-15. Summary of issues for providing signal coordination.

8.4 SIGNAL PREEMPTION AND/OR PRIORITY

8.4.1 **Description**

Signal preemption and signal priority are terms describing treatments for special needs (e.g., drawbridge, railroad crossing), special vehicle classes or vehicles with multiple users, relative to automobile traffic at the intersection. Signal preemption is the higher order of the two treatments and involves transferring the intersection's signal controller into a special operating mode designed to clear the intersection, if necessary, and then service the special vehicle type or need. The two most common types of signal preemption are emergency vehicle preemption and railroad preemption.

Priority is defined as the preferential treatment of one vehicle class (such as a transit vehicle, emergency service vehicle, or a commercial fleet vehicle) over another vehicle class at a signalized intersection without causing the traffic signal controllers to drop from coordinated operations. Priority may be accomplished by a number of methods, including changing the beginning and end times of greens on identified phases, changing the phase sequence, or including special phases, all without interrupting the general timing relationship between specific green indications at adjacent intersections.

8.4.2 **Emergency Vehicle Preemption**

A specific vehicle often targeted for signal preemption is the emergency vehicle. Signal preemption allows emergency vehicles to disrupt a normal signal cycle to proceed through the intersection more quickly and under safer conditions. The preemption systems can extend the green on an emergency vehicle's approach or replace the phases and timing for the whole cycle. The MUTCD discusses signal preemption, standards for the phases during preemption, and priorities for different vehicle types that might have preemption capabilities.⁽¹⁾

Several types of emergency vehicle detection technologies are available. These include the use of light, sound, pavement loops, radio transmission, and push buttons to detect vehicles approaching an intersection:

- Light—an emitter mounted on emergency vehicles sends a strobe light toward a detector mounted at the traffic signal, which is wired into the signal controller.
- Sound—a microphone mounted at the intersection detects sirens on approaching vehicles; the emergency vehicles do not need any additional equipment to implement signal priority systems.
- Pavement loop—a standard pavement loop connected to an amplifier detects a signal from a low frequency transponder mounted on the emergency vehicle.
- Push button—a hardwire system is activated in the firehouse and is connected to the adjacent signal controller.
- Radio—a radio transmitter is mounted on the vehicle and a receiver is mounted at the intersection.

Many of these systems have applications in transit-vehicle priority as well as signal preemption for emergency vehicles. Some jurisdictions use signs that alert drivers of a police pursuit in progress.

8.4.3 Railroad Preemption

When located in close proximity to rail-highway grade crossings, signalized intersections can use railroad preemption to ensure that vehicles safely clear the crossing prior to train arrival. Operation of the grade crossing's active warning devices (flashing lights or flashing lights with gates) can be synchronized with the traffic signal display such that any active vehicular or pedestrian phases that conflict with the phase(s) servicing the intersection leg with the grade crossing are safely terminated, and then the phase(s) clearing vehicles from the grade crossing are activated with sufficient time to clear the crossing before train arrival.

The signal initiating railroad preemption originates from the track circuit and train detection equipment provided by the railroad for actively-controlled grade crossings. Variations exist in the design of the preemption interconnect circuit and track detection and warning system, but all share the purpose of providing adequate warning time of train arrival to both approaching motorists and the traffic signal controller. In special cases, advance preemption is used to alert the traffic signal controller about the impending arrival of a train before the grade crossing's active warning system (i.e., flashing lights with or without gates) begins operation. Proper design of signal timing for preemption operation is covered in the ITE *Preemption of Traffic Signals Near Railroad Crossings: An ITE Recommended Practice*.⁽²⁰⁵⁾

8.4.4 Transit Vehicle Priority

Unlike preemption, traffic signal priority operates within the context of a signal's routine operational mode. Also, while the immediacy of preemption requests allows the shortening of pedestrian walk and clearance intervals, these changes to routine signal operation are not allowed with signal priority. A variety of methods can be used to provide priority to buses or light rail vehicles, including extending green on identified phases, altering phase sequences and including special phases without interrupting the coordination of green lights between adjacent intersections.⁽⁶⁶⁾

Several different technologies are available for generating a priority request for the transit vehicle on approach to a signalized intersection. Pavement loops and radio (which can also be used for emergency vehicle preemption) can be employed in transit detection and signal interconnection, and even train detection circuits for light rail transit can be used. One emerging technology uses global positioning system (GPS) technology in accordance with the transit agency's automatic vehicle location (AVL) system to transmit a priority request signal in

conjunction with a roadside reader near the signal controller or remotely using the Internet and communication between the transit and road authority. Whether a priority request is granted and can be accommodated by the traffic signal controller can be affected by the current controller state and whether or not the transit vehicle is behind schedule at the time the priority request is received.

8.4.5 Applicability

Preemption/priority is considered where:

- Normal traffic operations impede a specific vehicle group (i.e., emergency vehicles).
- Traffic conditions create a potential for conflicts between a specific vehicle group and general traffic.

8.4.6 Safety Performance

No known research addresses the safety implications of emergency vehicle preemption, although it is expected that the number of conflicting movements associated with an emergency vehicle having to run a red light would be reduced.

Installation of signal preemption systems for emergency vehicles decreases response times. A review of signal preemption system deployments in the United States shows decreases in response times between 14 and 50 percent for systems in several cities. In addition, the study reports a 70 percent decrease in crashes with emergency vehicles in St. Paul, MN, after deploying the system.⁽¹⁰³⁾

Signal preemption has also been considered for intersections at the base of a steep and/or long grade. These grades create a potentially dangerous situation if large trucks lose control and enter the intersection at a high speed. Preemption can reduce the likelihood of conflicts between runaway trucks and other vehicles.

8.4.7 **Operational Performance**

Preemption of signals by emergency vehicles will temporarily disrupt traffic flow. Congestion may occur, or worsen, before traffic returns to normal operation. Data gathered on signal preemption systems in the Washington, DC, metropolitan area suggested that once a signal was preempted, the coordinated systems took anywhere between half a minute to 7 minutes to recover to base time coordination. During these peak periods in more congested areas, vehicles experienced significant delays. Agency traffic personnel indicated that signal preemption seems to have more impacts on peak period traffic in areas where the peak periods extend over longer time periods than it does where peak periods are relatively short.⁽¹⁰³⁾

8.4.8 Multimodal Impacts

Priority for transit vehicles can enhance transit operations, reducing delays and allowing for a tighter schedule, with minimal impacts to pedestrians and bicyclists. A study in King County, Washington showed that transit signal priority coupled with signal timing optimization resulted in a 40 percent reduction in transit signal delay and a 35 to 40 percent reduction in travel time variability. In Portland, Oregon, transit signal priority improved travel time by 10 percent and reduced travel time variability by 19 percent.⁽²⁰⁶⁾

8.4.9 **Physical Impacts**

The key to success is ensuring that the preemption system works when needed by providing clear sight lines between emergency vehicles and detectors. Also, practitioners should ensure that vehicles from a variety of jurisdictions can participate in the signal preemption program.

Light-based detectors need a clear line of sight to the emitter on the vehicles; this line could become blocked by roadway geometry, vehicles, foliage, or precipitation. Also, systems from

Signalized Intersections: Informational Guide

different vendors may not interact well together. Other alarms, such as from nearby buildings, may be detected by a sound-based system.

8.4.10 Socioeconomic Impacts

Reduction in response time by emergency services and more predictable transit services benefit society. However, the costs, particularly when applied to an entire road network, can be significant.

8.4.11 Enforcement, Education, and Maintenance

Preemption directly benefits emergency vehicles, although most police agencies do not use signal preemption. Preempted signals that stop vehicles for too long may encourage disrespect for the red signal, although this has not been reported.

8.4.12 Summary

Exhibit 8-16 summarizes the issues associated with providing signal preemption and/or priority.

Characteristic	Potential Benefits	Potential Liabilities
Safety	Quicker response time for emergency vehicles. On steep grades, preemption could be used to minimize conflicts between runaway trucks and other vehicles.	None identified.
Operations	None identified.	Can be disruptive to traffic flow, particularly during peak hours.
Multimodal	Delay to transit vehicles and travel time variability is reduced.	None identified.
Physical	None identified.	Requires a clear line of sight between the emergency vehicle and the transmitter; other nearby radio systems may be affected or interfere.
Socioeconomic	Lower emergency service response time. More reliable transit service.	Can be costly.
Enforcement, Education, and Maintenance	Improves emergency vehicle response time.	None identified.

Exhibit 8-16. Summary of issues for providing signal preemption and/or priority.

CHAPTER 9

INTERSECTION-WIDE TREATMENTS

TABLE OF CONTENTS

INTE	RSECT	ION-WIDE TREATMENTS	9-3
9.1	Pedest	trian Treatments	9-3
	9.1.1	Reduce Curb Radius	9-4
	9.1.2	Provide Curb Extensions	
	9.1.3	Modify Stop Line Location	
	9.1.4	Improve Pedestrian Signal Displays	9-10
	9.1.5	Modify Pedestrian Signal Phasing	9-13
	9.1.6	Grade-Separate Pedestrian Movements	
	9.1.7	High Visibility Crosswalks	9-17
9.2	Bicycle	e Treatments	9-18
	9.2.1	Provide Bicycle Box	
	9.2.2	Provide Bike Lanes	
9.3	Transit	Treatments	
	9.3.1	Relocate Transit Stop	9-21
9.4	Traffic	Control Treatments	9-23
	9.4.1	Change Signal Control from Pre-Timed to Actuated	9-23
	9.4.2	Modify Change and Clearance Intervals (Yellow and All-Red)	9-26
	9.4.3	Modify Cycle Length	
	9.4.4	Late Night/Early Morning Flash Removal	9-30
9.5	Street	Lighting and Illumination	9-32
	9.5.1	Provide or Upgrade Illumination	9-32
9.6	Remov	/e Traffic Signal	9-35
	9.6.1	Convert Signalized Intersection to a Roundabout	9-35
	9.6.2	Convert Signalized Intersection to All-Way Stop Control	9-37
	 9.1 9.2 9.3 9.4 9.5 	 9.1 Pedesi 9.1.1 9.1.2 9.1.3 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 Bicycle 9.2.1 9.2.2 9.3 Transit 9.3.1 9.4 Traffic 9.4.1 9.4.2 9.4.3 9.4.4 9.5 Street 9.5.1 9.6 Remov 9.6.1 	 9.1.1 Reduce Curb Radius

LIST OF EXHIBITS

9-1	A curb radius increase from 15 ft to 50 ft increases the pedestrian crossing distance	
	from 62 ft to 100 ft, all else being equal	9-4
9-2	Summary of issues for curb radius reduction	9-6
9-3	Intersection with curb extension in South Haven, Michigan	9-7
9-4	Summary of issues for curb extensions	9-8
9-5	Benefits of Modifying Stop Line Location	9-9

9-6	Summary of issues for stop line alterations	9-10
9-7	Examples of countdown and animated eyes pedestrian signal displays	9-11
9-8	Safety effects associated with addition of pedestrian signals: selected findings	9-12
9-9	Summary of issues for pedestrian signal display improvements	9-12
9-10	Summary of issues for pedestrian signal phasing modifications	9-15
9-11	Summary of issues for pedestrian grade separation	9-17
9-12	Summary of issues for high visibility crosswalks	9-18
9-13	Summary of issues for providing a bicycle box	9-19
9-14	Summary of issues for providing bicycle lanes	9-20
9-15	Summary of issues for near-side/far-side transit stops	9-23
9-16	Summary of issues for providing signal actuation	9-25
9-17	Safety effects associated with modifying clearance intervals: selected findings	9-27
9-18	Summary of issues for modifying yellow/red clearance intervals	9-28
9-19	Summary of issues for cycle length modifications	9-30
9-20	Safety effects associated with removal of signal from late night/early morning flash moc	e:
	selected findings	9-31
9-21	Summary of issues for flash mode removal	9-31
9-22	Safety effects associated with providing illumination: Selected findings	9-33
9-23	Summary of issues for providing illumination	9-34
9-24	Safety effects associated with converting traffic signals to roundabouts: selected	
	findings	9-35
9-25	Summary of issues for converting traffic signals to roundabouts	9-37
9-26	Safety effects associated with converting traffic signals to multi-way stop	9-37
9-27	Summary of issues for converting traffic signals to all-way stop control	9-38

9.0 INTERSECTION-WIDE TREATMENTS

This chapter discusses five groups of intersection-wide treatments:

- Pedestrian treatments.
- Bicycle treatments.
- Transit treatments.
- Traffic control treatments.
- Illumination.

9.1 PEDESTRIAN TREATMENTS

Accommodating pedestrians significantly affects the design and operations of a signalized intersection and should therefore be an integral part of the design process. Key actions to consider are:

- Protect crossing locations with a high number of pedestrians (where possible) from conflicting through traffic.
- Minimize crossing distances.
- Provide adequate crossing times.
- Locate pedestrian ramps within the crosswalk.
- Ensure pedestrian ramp location and design meet ADA requirements.
- Consider high visibility cross walk markings.

One common way to better accommodate pedestrians and improve their safety is to reduce their crossing distance. Reducing crossing distance decreases a pedestrian's exposure to traffic, which may be particularly helpful to pedestrians who are disabled or elderly. It also reduces the amount of time needed for the pedestrian phase, which reduces the delay for all other vehicular and pedestrian movements at the intersection. Three common methods of reducing pedestrian crossing distance are:

- Reducing curb radius
- Extending curbs.
- Providing median crossing islands.

Traffic engineers have also modified the location of the stop line and crosswalk to try to control where motorists stop on the intersection approach and where pedestrians cross.

Traffic control improvements directly applicable to pedestrians include:

- Improving the signal display to the pedestrian through the use of redundancy, including the use of pedestrian signals, accessible pedestrian signals, and enhancements to the pedestrian signal display.
- Modifying the pedestrian signal phasing.

Each of these treatments is discussed in the following sections; median crossing islands were addressed in Chapter 8.

9.1.1 Reduce Curb Radius

Description

A wide curb radius typically results in high-speed turning movements by motorists, increasing the opportunity for right-turning vehicle conflicts with pedestrians. Existing guidelines recommend reconstructing the turning radius to a tighter turn to reduce turning speeds, shorten the crossing distance for pedestrians, and improve sight distance between pedestrians and motorists. Exhibit 9-1 demonstrates that increasing the curb radius increases pedestrian crossing distance. Tighter turning radii are even more important where street intersections are not at right angles.⁽¹⁰⁴⁾

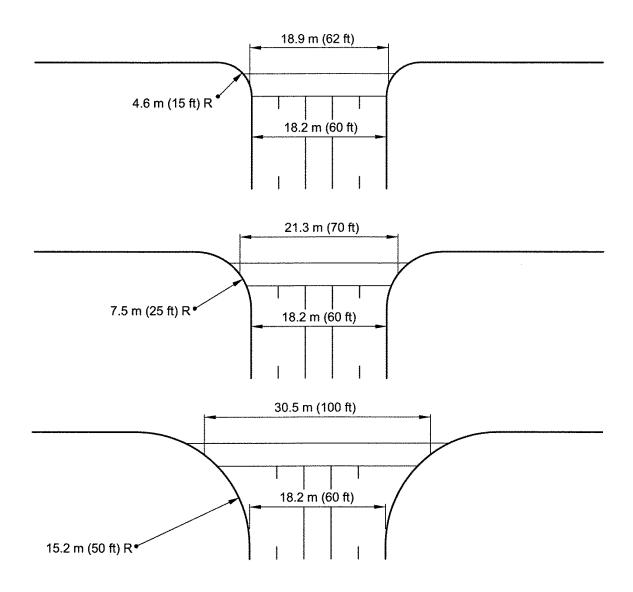


Exhibit 9-1. A curb radius increase from 15 ft to 50 ft increases the pedestrian crossing distance from 62 ft to 100 ft, all else being equal.

Applicability

Consider reducing the curb radii at any signalized intersection with pedestrian activity. Note that the need to accommodate the design vehicle may limit how much the curb radius can be reduced.

Signalized Intersections: Informational Guide

Safety Performance

Reducing the curb radius lowers the speed of right-turning vehicles and should reduce the frequency of pedestrian-vehicle collisions. Any remaining collisions will be less severe due to the lower speeds involved. Crash severity increases significantly between 20 and 40 mph.⁽¹⁰⁵⁾

However, vehicles turning right will be forced to decelerate more rapidly in attempting the right turn. This could lead to rear-end conflicts with through vehicles, particularly if a separate right-turn lane is not provided and the through movements have high speeds.

Operational Performance

Reducing pedestrian crossing distance via smaller curb radii reduces the amount of time needed to serve the pedestrian clearance time. This may result in shorter cycle lengths and less delay for all users. However, a curb radius reduction may reduce the capacity of the affected right-turn movement.

Multimodal Impacts

Pedestrians benefit from a shorter crossing distance and the reduced speed of right-turning vehicles.

Larger vehicles and transit may have difficulty negotiating the tighter corner, either swinging out too far into the intersection or having their rear wheels encroach the curb onto the sidewalk. Caution should be exercised in reducing curb radius if right-turning large trucks or buses are frequent users. It may be necessary to move the stop line locations on the roadway the trucks are turning into to allow them to briefly swing wide into the opposing lanes.

Physical Impacts

Reducing the curb radius reduces the size of the intersection and allows for additional space for landscaping or pedestrian treatments. Traffic signal equipment may need to be relocated.

Socioeconomic Impacts

Depending on the degree of improvement, low to moderate construction costs will be associated with the reconstruction of the curb radius.

Enforcement, Education, and Maintenance

The effectiveness of this treatment may be enhanced by police enforcement of drivers failing to come to a complete stop on a red signal when making a right turn and/or not yielding to pedestrians in the crosswalk.

Summary

Exhibit 9-2 summarizes issues associated with curb radius reduction.

Characteristic	Potential Benefits	Potential Concerns
Safety	Reduction in right-turning vehicle/pedestrian collisions. Fewer right-turn-on-red violations.	May increase right-turning/through vehicle rear-end collisions due to increased speed differential. Large vehicle off-tracking.
Operations	Less overall delay due to reduced time needed to serve pedestrian movement.	Reduction in capacity for affected right-turn movement.
Multimodal	Shorter crossing distance. Facilitates the use of two perpendicular ramps rather than a single diagonal ramp.	May be more difficult for large trucks and buses to turn right.
Physical	Reduces the size of the intersection.	None identified.
Socioeconomic	Low to moderate costs.	None identified.
Enforcement, Education, and Maintenance	None identified.	Enforcement of yielding to pedestrians may be necessary.

9.1.2 Provide Curb Extensions

Description

Curb extensions, also known as "bulbouts" or "neckdowns," involve extending the sidewalk or curb line into the street, reducing the effective street width. These are often used for traffic calming on neighborhood streets, but the technique is applicable for higher volume signalized intersections. Curb extensions improve the visibility of the pedestrian crosswalk. They reduce the amount of roadway available for illegal or aggressive motorist activities such as failing to yield to

pedestrians, making high-speed turns, and passing in the parking lane. It has also been observed that motorists are more inclined to stop behind the crosswalk at a curb extension, and that pedestrians are more inclined to wait on the curb extension than in the street. An example of a curb extension is shown in Exhibit 9-3.

Curb extensions provide multiple benefits:

- Improve crosswalk visibility
- Reduce pavement for high-speed turns and passing on right.
- Motorists are more likely to stop.
- Pedestrians are more likely to wait.

Application

This treatment applies to urban intersections with moderate to heavy pedestrian traffic and/or a history of pedestrian collisions. It would not be appropriate at high-speed rural intersections, and caution should be used at intersections with a high proportion of right-turning movements. Curb extensions can be used to terminate parking lanes; care should be exercised if they are used to terminate travel lanes.

Exhibit 9-3. Intersection with curb extension in South Haven, Michigan. Photo credit: Jeff Shaw, Federal Highway Administration

Safety Performance

Reducing the pedestrian crossing distance and subsequent exposure of pedestrians to traffic should reduce the frequency of pedestrian collisions. A New York City study suggested that curb extensions appear to be associated with lower frequencies and severities of pedestrian collisions.⁽¹⁰⁶⁾ Curb extensions should also reduce speeds on approaches where they are applied.

Operational Performance

The operational performance effects of curb extensions are similar to those for reduced curb radii. The reduction in pedestrian crossing distance reduces the amount of time needed to serve the pedestrian clearance time. This may result in shorter cycle lengths and less delay for all movements. However, the reduced curb radius resulting from the curb extension may reduce the capacity of the affected right-turn movement. If a right-turn lane is present, the curb radius reduction should not impede through movements.

Because curb extensions are essentially a traffic-calming treatment, they will likely reduce speeds and possibly divert traffic to other roads; right-turn movements would be particularly affected by this treatment. Emergency services (fire, ambulance, and police) should be consulted if this treatment is being considered.

Multimodal Impacts

Pedestrians benefit greatly from the provision of curb extensions. The curb extension can greatly improve the visibility between pedestrians and drivers. In addition, the reduction in pedestrian crossing distance reduces pedestrian exposure and crossing time.

Bicycle movements and interactions with motor vehicles need to be considered in the design of any curb extensions.

Practitioners should use caution when considering this treatment along heavy truck routes. All types of trucks and transit vehicles, in particular those needing to turn right at the intersection, would be negatively affected by this treatment.

Physical Impacts

Drainage should be evaluated whenever curb extensions are being considered, as the curb extension may interrupt the existing flow line.

Socioeconomic Impacts

Costs associated with this improvement would be low to moderate.

Enforcement, Education, and Maintenance

No specific effects have been identified.

Summary

Exhibit 9-4 provides a summary of the issues associated with curb extensions.

Characteristic	Potential Benefits	Potential Concerns
Safety	Reduction in right-turning vehicle/pedestrian collisions. Fewer right-turn-on-red violations.	May increase right-turning/through vehicle rear-end collisions due to increased speed differential. Large vehicle off-tracking.
Operations	Less overall delay due to reduction in time needed to serve pedestrian movement.	May adversely affect operation if curb extension replaces a travel lane. Right-turn movements delayed. Emergency vehicles may be significantly delayed.
Multimodal	Shorter crossing distance. Facilitates the use of two perpendicular ramps rather than a single diagonal ramp. Better visibility between pedestrians and drivers.	May be more difficult for large trucks and buses to turn right.
Physical	None identified.	Drainage may be adversely affected.
Socioeconomic	Low to moderate costs.	None identified.
Enforcement, Education, and Maintenance	None identified.	None identified.

Exhibit 9-4. Summary of issues for curb extensions.

9.1.3 Modify Stop Line Location

Description

Visibility is a key consideration for determining the location of stop lines. The FHWA *Pedestrian Facilities Users Guide—Providing Safety and Mobility* suggests advance stop lines as a possible countermeasure.⁽³⁸⁾ At signalized pedestrian crossing locations, the vehicle stop line can be moved 15 to 30 ft further back from the pedestrian crossing than the standard 4 ft distance to improve visibility of through bicyclists and crossing pedestrians for motorists (and particularly truck drivers) who are turning right. Advanced stop lines benefit pedestrians, as the pedestrians and drivers have a clearer view and more time to assess each other's intentions when the signal phase changes, as shown in Exhibit 9-5.

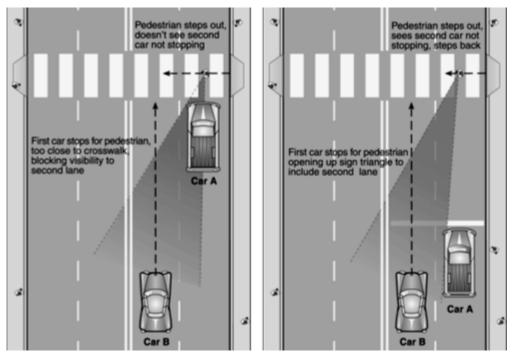


Exhibit 9-5. Benefits of Modifying Stop Line Location Source: *Crossing Enhancements*, Pedestrian and Bicycle Information Center, www.walkinfo.org.

Applicability

Relocated stop lines may apply to intersections with frequent conflicts between pedestrians and adjacent right-turning vehicles, or a history of right-turn-on-red vehicle/pedestrian collisions.

Safety Performance

One evaluation study found that advance stop lines resulted in reduced right-turn-on-red conflicts with cross traffic; more right-turn-on-red vehicles also made complete stops behind the stop line. Another study determined that stop line relocation resulted in better driver compliance with the new location and increased elapsed time for lead vehicles entering the intersection. This may decrease the risk of pedestrian collisions involving left-turning vehicles^{(104),(108),(109)} However, placing the crosswalk at least 10 ft or more from the cross-street flow line or curb also provides more time for drivers to react for the presence of pedestrian crossing on the street they are about to enter.⁽¹¹⁰⁾

Operational Performance

Advance stop lines increase the clearance time for vehicles passing through the intersection. As a result, there may be an increase in lost time. If in-pavement stop line vehicle detectors are already installed at this signalized intersection, they may need to be replaced or modified.

Multimodal Impacts

Advance stop lines can better allow trucks entering the intersection from the side street to turn wide, thereby allowing smaller curb radii that are more pedestrian friendly.

Physical Impacts

No physical needs have been identified.

Socioeconomic Impacts

Minimal costs associated with stop line alterations.

Enforcement, Education, and Maintenance

Supplemental signing (e.g., STOP HERE with appropriately oriented downward pointing arrow) and enforcement of the relocated stop lines may be necessary.

Summary

Exhibit 9-6 summarizes the issues associated with stop line alterations.

Characteristic	Potential Benefits	Potential Concerns
Safety	Decreased risk of pedestrian collisions.	None identified.
Operations	None identified.	Increase in vehicular clearance time and lost time.
Multimodal	Facilitates turning movements of heavy trucks.	None identified.
Physical	No physical needs identified.	None identified.
Socioeconomic	None identified.	None identified.
Enforcement, Education, and Maintenance	Improved compliance.	None identified.

Exhibit 9-6. Summary of issues for stop line alterations.

9.1.4 Improve Pedestrian Signal Displays

Traffic signals should allow adequate crossing time for pedestrians and an adequate change and clearance interval based on walking speed. Pedestrian signal enhancements include:

- Separate pedestrian signals (WALK/DON'T WALK)
- Accessible pedestrian signals.
- Countdown displays.
- Animated eyes display.

Application

Chapter 5 provided guidance on the use of pedestrian signals and accessible pedestrian signals. Current thinking suggests that redundancy in information benefits all pedestrians. For example, sighted pedestrians may react more quickly to the WALK indication when provided an audible cue in addition to the pedestrian signal display. Therefore, accessible pedestrian signals may enhance the usability of the intersection for all pedestrians, not just those with visual impairments.

Countdown signals, shown in Exhibit 9-7(a), display the number of seconds remaining before the end of the flashing DON'T WALK interval. The WALKING PERSON symbol and flashing and steady UPRAISED HAND symbol still appear at the appropriate intervals. The countdown signals do not change the way a signal operates; they only provide additional information to the pedestrian. All pedestrian signal heads used at crosswalks where the pedestrian change interval is more than 7 seconds shall include a pedestrian change interval countdown display in order to inform pedestrians of the number of seconds remaining in the pedestrian change interval.⁽¹⁾

Another innovative pedestrian signal treatment is an animated eyes display, shown in Exhibit 9-7(b). The animated, LED signal head is used to prompt pedestrians to look for turning vehicles at the start of the WALK indication. The signal head includes two eyes that scan from left to right.

Animated eyes are included in the MUTCD for optional use with the pedestrian signal WALK indication. $^{\left(1\right) }$

(a) Countdown display. (111)

(b) Animated eyes display.

Exhibit 9-7. Examples of countdown and animated eyes pedestrian signal displays.

Safety Performance

The available research does not provide a clear indication of the safety effects of installing pedestrian signals. One report suggests that installing pedestrian signals is associated with a 15 to 17 percent reduction in pedestrian collisions.⁽¹¹²⁾ However, a number of older studies found that pedestrian signalization does not improve safety.^{(113),(114)} Larger pedestrian signal heads were described in the literature as a treatment to enhance conspicuity, though no research on the effect on pedestrian safety was found.

Accessible pedestrian signals assist visually impaired pedestrians. Different devices generating audible messages (audible at pedestrian head or audible at push button), vibration at push button, and transmitted messages are in use.⁽¹¹⁵⁾ A recent study found a 75 percent reduction in the percentage of pedestrians not looking for threats and a similar reduction in conflicts at an intersection equipped with speakers providing messages prompting pedestrians to look for turning vehicles during the walk interval.⁽¹¹⁶⁾

Countdown displays may reduce vehicle-pedestrian conflicts resulting from pedestrians attempting to cross the intersection at inappropriate times. Some studies of these pedestrian countdown signals found no statistically significant reductions in pedestrian crash rates. The countdowns did result in a higher percentage of successful crossings by pedestrians (completed their crossing before conflicting traffic received the right-of-way).^{(110),(117),(118)} A 2005 study in San Francisco, California, indicated a reduction of up to 52 percent by converting to countdown signals.⁽¹¹⁹⁾

Results from studies of the use of animated-eye displays show increased pedestrian observation of traffic behavior and reductions in pedestrian/vehicle conflicts at a variety of intersection configurations.^{(116),(120)} The 2009 MUTCD allows for and provides a standard for its design (Section 4E.04).

Exhibit 9-8 presents the results of selected references involving the addition of pedestrian signals.

Treatment	Implication
Convert WALK / DON'T WALK pedestrian signals to countdown signals	52% reduction in pedestrian-related crashes.

Exhibit 9-8. Safety effects associated with addition of pedestrian signals: selected findings.⁽¹⁴⁷⁾

Operational Performance

These treatments should have a negligible effect on vehicle operations. Redundant visual and audible displays may reduce the delay pedestrians experience in initiating their crossing, which may reduce the delay for right-turning vehicles.

Multimodal Impacts

Some treatments described above are of specific benefit to people with visual disabilities, although all pedestrians are likely to benefit from redundancy. They should be considered when modifying intersections.

Apart from pedestrians, there are no specific impacts to other transportation modes.

Physical Impacts

No particular specific physical needs have been identified.

Socioeconomic Impacts

Pedestrian signals and the pedestrian signal enhancements described above have moderate costs.

Enforcement, Education, and Maintenance

As some of the treatments described above have not seen widespread use (e.g., the animated eyes display), some education on the meaning of the devices should be considered upon their introduction to the public.

Summary

Exhibit 9-9 summarizes the issues associated with pedestrian signal display improvements.

Characteristic	Potential Benefits	Potential Concerns
Safety	Give pedestrians improved awareness of traffic.	None identified.
Operations	None identified.	None identified.
Multimodal	All pedestrians, but especially visually impaired pedestrians, are likely to benefit.	None identified.
Physical	None identified.	None identified.
Socioeconomic	None identified.	Some enhancements are expensive.
Enforcement, Education, and Maintenance	None identified.	Education may be necessary.

Exhibit 9-9. Summary of issues for pedestrian signal display improvements.

9.1.5 Modify Pedestrian Signal Phasing

Description

In general, shorter cycle lengths and longer WALK intervals provide better service to pedestrians and encourage greater signal compliance. Pedestrian walking speeds generally range between 2.5 to 6.0 ft/s.⁽³⁾ The MUTCD uses a walk speed of 3.5 ft/s for determining crossing times (Page 497, Sect. 4E.06-07).⁽¹⁾ However, FHWA pedestrian design guidance recommends a lower speed to accommodate users who require additional time to cross the roadway, and in particular a lower speed in areas where there are concentrations of children and or elderly persons.^{(37),(38)} The *HCM 2000* indicates that if elderly persons constitute more than 20 percent of the total pedestrians, the average walking speed should be decreased to 3.0 ft/s.⁽²⁾

Three options beyond standard pedestrian signal phasing are:

- The leading pedestrian interval.
- The lagging pedestrian interval.
- The exclusive pedestrian phase.

A leading pedestrian interval entails retiming the signal splits so that the pedestrian WALK signal begins a few seconds before the vehicular green. While the vehicle signals are in "All Red," this allows pedestrians to establish their presence in the crosswalk before the turning vehicles, thereby enhancing the pedestrian right-of-way.

A lagging pedestrian interval entails retiming the signal splits so that the pedestrian WALK signal begins a few seconds after the vehicular green for turning movement. The 2001 ITE guide, *Alternative Treatments for At-Grade Pedestrian Crossings*, indicates that this treatment is applicable at locations where there is a high one-way to one-way turning movement and works best where there is a dedicated right-turn lane.⁽¹¹⁰⁾ This benefits right-turning vehicles over pedestrians by giving the right turners a head start before the parallel crosswalk becomes blocked by a heavy and continuous flow of pedestrians.

An exclusive pedestrian signal phase allows pedestrians to cross in all directions at an intersection at the same time, including diagonally. It is sometimes called a "Barnes dance" or "pedestrian scramble." Vehicle signals are red on all approaches of the intersection during the exclusive pedestrian signal phase. The objective of this treatment is to reduce vehicle turning conflicts, decrease walking distance, and make intersections more pedestrian-friendly. The 2001 ITE guide refers to research that indicates that leading intervals were more effective treatments than this scramble pattern.⁽¹¹⁰⁾

Application

Leading pedestrian phasing may be considered where:

- There is moderate to heavy pedestrian traffic.
- A high number of conflicts/collisions occur between turning vehicles and crossing pedestrians.

Lagging pedestrian phasing may be considered where:

- There is moderate to heavy pedestrian traffic.
- There is right-turn channelization that is heavily used by vehicles.
- A high number of conflicts/collisions occur between right-turning vehicles and crossing pedestrians.

Exclusive pedestrian phasing (scramble) may be considered where:

- There is heavy pedestrian traffic.
- Delay for vehicular turning traffic is excessive due to the heavy pedestrian traffic.
- There are a large number of vehicle-pedestrian conflicts involving all movements.

Note that for any of the three treatments, practitioners should use accessible pedestrian signals to give people with visual disabilities information regarding the walk phase in the absence of predictable surging traffic.

Safety Performance

Several studies have demonstrated that imposing leading pedestrian intervals significantly reduces conflicts for pedestrians.^{(106),(110),(121)} Crash analysis conducted at 26 locations with leading pedestrian intervals in New York City (based on up to 10 years of data) showed that leading pedestrian intervals have a positive effect on pedestrian safety, especially where there is a heavy concentration of turning vehicles. This evidently occurs regardless of pedestrian volume.

None of the studies of lagging pedestrian intervals considered the safety effect of this treatment.

Using exclusive pedestrian intervals that stop traffic in all directions has been shown to reduce pedestrian crashes by 50 percent in some locations (i.e., downtown locations with heavy pedestrian volumes and low vehicle speeds and volumes).^{(104),(122)}

Operational Performance

The leading pedestrian phase will increase delay at the intersection due to a loss in green time. A solution for the issue of loss of green time for vehicles when using a leading pedestrian interval is based on trading the leading pedestrian interval seconds at the beginning of the cycle for seconds at the end of the cycle. This causes all movements to receive less green time, but optimizes that time. However, this timing was not investigated empirically.⁽¹⁰⁶⁾

A main operational disadvantage of lagging pedestrian intervals is additional delays to pedestrians.

With concurrent signals, as described above, pedestrians usually have more crossing opportunities and shorter waits. Unless a system more heavily penalizes motorists, pedestrians will often have to wait a long time for an exclusive pedestrian phase. As a result, many pedestrians will simply choose to ignore the signal and cross if and when a gap in traffic occurs.^{(104),(122)} In addition, an exclusive pedestrian phase may increase the overall cycle length of the intersection, thus increasing delay for all users. On the other hand, an exclusive pedestrian phase removes pedestrians from the vehicular phases, thus increasing vehicular capacity during those phases.

Multimodal Impacts

Pedestrians may become impatient or ignore a lagging pedestrian interval or exclusive pedestrian phase and begin crossing the road during the DON'T WALK phase.

Physical Impacts

No specific physical needs were identified.

Socioeconomic Impacts

Minimal costs are associated with the retiming of the pedestrian signals. The exclusive pedestrian phase, if implemented, may require additional signing and pavement markings to indicate that diagonal crossings may be made (2009 MUTCD, Section 3B.18).⁽¹⁾

Enforcement, Education, and Maintenance

Leading or lagging pedestrian phases should be accompanied by police enforcement to ensure that vehicles and pedestrians obey traffic signals.

Summary

Exhibit 9-10 summarizes the issues associated with pedestrian signal phasing modifications.

Characteristic	Potential Benefits	Potential Concerns
Safety	Reduce pedestrian/vehicle collisions.	None identified.
Operations	Exclusive phase: increased capacity for vehicular turning movements.	Lead phase: increased vehicular delay. Exclusive phase: increased vehicular delay due to potentially longer cycle length.
Multimodal	Lead phase: reduced pedestrian delay.	Lag phase: increased pedestrian delay. Exclusive phase: increased pedestrian delay due to potentially longer cycle length.
Physical	None identified.	None identified.
Socioeconomic	Lead or lag phases: little or no cost.	Exclusive phase: low cost to implement; moderate costs associated with vehicle delays.
Enforcement, Education, and Maintenance	None identified.	Enforcement may be necessary.

Exhibit 9-10. Summary of issues for pedestrian signal phasing modifications.

9.1.6 Grade-Separated Pedestrian Treatment

Description

In some situations, it may be feasible to separate pedestrian movements from an intersection. Pedestrian overpasses and underpasses allow for the uninterrupted flow of pedestrian movement separate from the vehicle traffic. However, it increases out-of-direction travel, both horizontally and vertically, for the pedestrian in the process.

Applicability

Pedestrian grade separation may be appropriate in situations where:

- An extremely high number of pedestrian/vehicle conflicts or collisions are occurring at the existing crossing location.
- School crossings exist or high volumes of children cross.
- A crossing has been evaluated as a high-risk location for pedestrians.
- Turning vehicles operate with high speeds.
- Sight distance is inadequate.

Usually, a warrant for a grade pedestrian separation is based on pedestrian and vehicle volume, vehicle speed, and area type. Warrants usually differ for new construction projects and existing highways. The first case provides greater opportunities for grade separation. In some cases, safety can be a major factor; for example, New Jersey Department of Transportation guidelines consider pedestrian overpasses and/or underpasses warranted if a safety evaluation indicates that erection of a fence to prohibit pedestrian crossing.⁽¹²³⁾

Safety Performance

Ideally, pedestrian grade separations should completely remove any pedestrian/vehicle conflicts at the location in question. However, studies have shown that many pedestrians will not use overpasses or underpasses if they can cross at street level in about the same amount of time, or if the crossing takes them out of their way. Some pedestrians may avoid a pedestrian tunnel or overpass due to personal security concerns.

Operational Performance

Completely eliminating a pedestrian crossing area should improve traffic flow. However, a pedestrian overpass will not likely be used if it is too inconvenient. Use of a median pedestrian barrier or landscaping treatments should be considered to reduce midblock crossings and encourage pedestrians to use the grade-separated crossing.

Multimodal Impacts

Pedestrian access and convenience may be negatively affected by grade separation. Pedestrians with disabilities or low stamina may have difficulty with the out-of-direction travel and elevation changes associated with grade separation.

Physical Impacts

Construction of a bridge overpass or tunnel is required. Note that any new or modified pedestrian grade separation treatment must comply with ADA requirements. This may involve adding long ramps with landings at regular intervals or installing elevators.

Socioeconomic Impacts

Grade separation can be very expensive and difficult to implement. As a result, grade separation is usually only feasible where pedestrians must cross high-speed, high-volume arterials.⁽¹⁰⁴⁾ In most cases, other treatments are likely to be more cost effective.

Enforcement, Education, and Maintenance

Maintenance issues associated with litter and graffiti are significant with pedestrian overpasses and underpasses. Additional police enforcement may be needed because of the fear of crime in these facilities.

Summary

Exhibit 9-11 summarizes the issues associated with pedestrian grade separation.

Characteristic	Potential Benefits	Potential Concerns
Safety	Reduced pedestrian-vehicle collisions. Converting at-grade intersections to grade-separated interchanges is associated with a 57 percent reduction in injury crashes, although this finding is for all road users. ⁽¹²⁴⁾	Pedestrians may cross in unexpected locations due to inconvenience of grade separation.
Operations	Improved vehicular capacity.	None identified.
Multimodal	Fewer conflicts between pedestrians and vehicles.	Increased walking distance, delay, and difficulty for pedestrians.
Physical	None identified.	Grade separation structure required, as well as ramps or elevators to meet ADA requirements.
Socioeconomic	None identified.	Significant costs (grade separation).
Enforcement, Education, and Maintenance	None identified.	Graffiti removal and enforcement for personal security may be necessary.

Exhibit 9-11. Summary of issues for pedestrian grade separation.

9.1.7 High Visibility Crosswalks

Description

In some situations, increasing the conspicuity of crosswalks can provide a safety benefit to pedestrians at signalized intersections. Designs and product application vary around the country based on State and local needs. The crosswalk should include retroreflective pavement markings (versus only using a different material like brick for the crosswalk).

Applicability

The addition of high visibility crosswalks may apply to intersections with frequent conflicts between pedestrians and vehicles. Due to the low cost of this treatment, it could also serve as a systemic treatment on a series of intersections or jurisdiction-wide as a policy.

Safety Performance

Anecdotal evidence has shown a safety benefit to the installation of high visibility crosswalks. A case study in New York City in 1995 indicated reductions at a small number of installations at locations with a high number of pedestrian-vehicle crashes.

Additionally, a ladder-style, also referred to as a continental style, crosswalk (longitudinal versus lateral) was shown to be effective for keeping vehicles out of the crosswalk area.⁽¹²⁵⁾

Operational Performance

None identified. The high visibility crosswalks typically have the same footprint as existing crosswalks.

Multimodal Impacts

High visibility crosswalks provide an enhanced space for pedestrian and bicycles to cross the intersection safely.

Physical Impacts

None identified. High visibility crosswalks typically have the same footprint as existing crosswalks.

Socioeconomic Impacts

Minimal costs are associated with high visibility pavement markings.

Enforcement, Education, and Maintenance

Because the high visibility pavement marking is installed in the travel lane, it will be necessary to maintain the markings. In some cases the markings (e.g., "ladder style" markings) can be designed so there is little or no pavement marking in the typical motor vehicle wheel paths.

Summary

Exhibit 9-12 summarizes the issues associated with high visibility crosswalks.

Characteristic	Potential Benefits	Potential Concerns
Safety	Decreased risk of pedestrian collisions.	None identified.
Operations	None identified.	None identified.
Multimodal	Enhanced space for pedestrian and bicyclists to cross.	None identified.
Physical	Installation can occur in the same footprint as standard crosswalks.	None identified.
Socioeconomic	None identified.	None identified.
Enforcement, Education, and Maintenance	Improved compliance.	Enhanced crosswalks may require additional effort to maintain pavement markings.

Exhibit 9-12. Summary of issues for high visibility crosswalks.

9.2 BICYCLE TREATMENTS

9.2.1 Provide Bicycle Box

Description

A bicycle box uses advance stop lines placed on the approach to a signalized intersection, typically in the rightmost lane, at a location upstream from the normal stop line location. These create a dedicated space for bicyclists—a bicycle box—to occupy while waiting for a green indication. Advance stop lines are used in conjunction with bicycle lanes or other similar bicycle provisions.

Note that this treatment is considered experimental; it is not currently identified in the MUTCD.

Applicability

This treatment may apply in situations where vehicle-bicycle collisions have been observed in the past, or vehicle/bicycle conflicts are observed in field observations. The treatment may be considered if a bike lane exists on the approach.

In locations with a high volume of right-turning motor vehicle traffic, use of this treatment may be beneficial.

Safety Performance

Such a treatment was found to be effective in Europe, resulting in a 35 percent reduction in through-bicycle/right-turning-vehicle collisions.⁽¹²⁶⁾

Operational Performance

This treatment is not expected to have a significant effect on traffic operations unless a high volume of right-turning traffic is present.

Multimodal Impacts

Bicycle boxes permit bicyclists to pass other queued traffic on the intersection approach leg, giving them preferential treatment in proceeding through the intersection.

Enforcement, Education, and Maintenance

Concerns with providing a bicycle box include motorist violation of existing stop line, a lack of uniformity with other intersections, and a need for right-turn-on-red prohibitions. Users are not yet familiar with this application, so heavy education may be required.

Summary

Exhibit 9-13 summarizes the issues associated with providing a bicycle box.

Characteristic	Potential Benefits	Potential Concerns
Safety	Potential reduction in collisions between through bicycles and right-turning vehicles.	None identified.
Operations	None identified.	None identified.
Multimodal	Bicyclists can bypass queued traffic, thus reducing delay.	None identified.
Physical	None identified.	None identified.
Socioeconomic	None identified.	None identified.
Enforcement, Education, and Maintenance	None identified.	Enforcement of the box may be necessary.

Exhibit 9-13. Summary of issues for providing a bicycle box.

9.2.2 Provide Bike Lanes

Description

While bicycle lanes are frequently used on street segments, AASHTO cautions against the use of bicycle lane markings through intersections.⁽²⁶⁾ Special lanes for bicyclists can cause problems to the extent that they encourage bicyclists and motorists to violate the rules of the road for drivers of vehicles. Specifically, a bike lane continued to an intersection encourages right-turning motorists to stay in the left lane, not the right (bike) lane, in violation of the rule requiring that right turns be made from the lane closest to the curb. Similarly, straight-through, or even left-turning, bicyclists are encouraged to stay right. Installation of bike lanes at signalized intersections is associated with a range of vehicle-bicycle crash effects – both increases and decreases.⁽¹²⁷⁾

The bike lane shall be positioned between the through lane and the right-turn only lane. A right-turn-only lane encourages motorists to make right turns by moving close to the curb (as the

traffic law requires). A bicyclist going straight can easily avoid a conflict with a right-turning car by staying to the left of the right-turn lane. A bike lane to the left of the turn lane encourages bicyclists to stay out of the right-turn lane when going straight. The MUTCD requires through bicycle lanes to be positioned only to the left of a right-turn-only lane and to the right of a left-turn-only lane.

Applicability

This treatment may be applicable in situations where there are a high number of bicyclists using the road or where bicycle use is being promoted or encouraged.

Safety Performance

Some European literature suggests that bicycle lane markings can increase motorist expectation of bicyclists; one Danish study found a 36 percent reduction in bicycle collisions when these were marked.⁽¹²⁸⁾ Other research concludes that bicycle paths along arterials typically increase bicyclists' vulnerability to a collision at signalized intersections; however, raised and brightly colored crossings reduce the number of bicycle/vehicle conflicts and should improve safety.⁽¹²⁰⁾ Installation of colored bike lanes at signalized intersections has been associated with a 39 percent reduction in vehicle/bicycle crashes.⁽¹²⁷⁾

Multimodal Impacts

Bicycle lanes delineate roadway space between motor vehicles and bicycles and provide for more predictable movements by each.⁽²⁶⁾

Physical Impacts

Bicycle lanes may require additional right-of-way unless width is taken from the existing travel and/or parking lanes, either by lane narrowing or the removal of a lane.

Summary

Exhibit 9-14 summarizes of the issues associated with providing bicycle lanes.

Characteristic	Potential Benefits	Potential Concerns
Safety	Potential reduction in vehicle/bicycle collisions.	Potential increase in vehicle/bicycle collisions.
Operations	None identified.	None identified.
Multimodal	Bicycle lanes delineate roadway space between motor vehicles and bicycles and provide for more predictable movements by each.	None identified.
Physical	None identified.	Bicycle lanes may require additional right- of-way unless width is taken from existing lanes.
Socioeconomic	None identified.	None identified.
Enforcement, Education, and Maintenance	None identified.	None identified.

Exhibit 9-14. Summary of issues for providing bicycle lanes.

9.3 TRANSIT TREATMENTS

9.3.1 Relocate Transit Stop

Placement of bus stops in the vicinity of intersections can significantly influence safety and operational performance. Approximately 2 percent of pedestrian accidents in urban areas and 3 percent in rural areas are related to bus stops.⁽¹²⁹⁾ Proper placement and provisions at bus stops can reduce several safety and mobility problems. Traffic engineers often have two choices with regard to bus stop placement in the vicinity of an intersection: on the near side (upstream) or far side (downstream). The 1996 *Transit Cooperative Research Program (TCRP) Report 19: Guidelines for the Location and Design of Bus Stops* provides a comprehensive comparative analysis of far-side, near-side, and midblock placement of bus stops.⁽¹²⁹⁾

Application

Relocation of a transit stop to a location upstream of the intersection (near side) should be considered in situations where there is congestion on the far side of the intersection during peak periods.

Relocation of a transit stop to a location downstream of the intersection (far side) should be considered in situations where one or more of the following exist:

- Heavy right-turn movement.
- Conflicts between vehicles trying to turn right, through vehicles, and stationary near-side buses, resulting in rear-end and sideswipe collisions.
- Pedestrian collisions because pedestrians cross in front of a stationary bus and are struck by a vehicle.

Safety Performance

One advantage of near-side placements is that the bus driver has the entire width of the intersection available to pull away from the curb. Near-side bus placements increase conflicts between right-turning vehicles, through traffic, and the bus itself. When the bus is stopped at the bus stop, traffic control devices, signing, and crossing pedestrians are blocked from view. Vehicles on the adjacent approach to the right may have difficulty seeing past a stopped bus while attempting a right turn on red.

Far-side bus stop placements minimize conflicts between right-turning vehicles and buses. Relocating the bus stop to the far side of the intersection can also improve safety by eliminating the sight distance restriction caused by the bus and encouraging pedestrians to cross the street from behind the bus instead of in front of it.⁽¹³⁰⁾ The presence of a far-side transit bus stop is associated with a 45 percent reduction in transit-related crashes.⁽¹³¹⁾ The 1996 TCRP report recommends a minimum clearance distance of 5 ft between a pedestrian crosswalk and the front or rear of a bus stop.⁽¹²⁹⁾ Finally, the bus driver can take advantage of gaps in the traffic flow that are created at signalized intersections. However, far-side bus stops may cause rear-end collisions, as drivers often do not expect buses to stop immediately after the traffic signal.

Far-side bus stops appear to offer greater overall safety.

Operational Performance

Near-side bus stop placements minimize interference with through traffic in situations where the far side of the intersection is congested. This type of placement also allows the bus driver to look for oncoming traffic, including other buses with potential passengers for the stopped bus. However, if the bus stop services more than one bus, the right and through lanes may be temporarily blocked.

Far-side bus stop placements improve the right-turn capacity of the intersection. Yet they may block the intersection during peak periods by stopping buses or by a traffic queue extending

Signalized Intersections: Informational Guide

back into the intersection. Also, if the light is red, it forces the bus to stop twice, decreasing the efficiency of bus operations.

Multimodal Impacts

Near-side bus stop placements allow pedestrians to access buses closest to the crosswalk, and allow pedestrians to board, pay the fare, and find a seat while the bus is at a red light. However, placing the bus stops on the near side of intersections or crosswalks may block pedestrians' view of approaching traffic and the approaching drivers' view of pedestrians.⁽¹⁰⁴⁾

Physical Impacts

Near-side bus stops/bus shelter placements may interfere with the placement of a red-light camera.

Socioeconomic Impacts

Relocation of a bus stop is a relatively low-cost improvement, unless it involves the relocation of a bus bay and shelter.

Enforcement, Education, and Maintenance

Some jurisdictions have implemented or are considering a yield-to-bus law. If implemented, this would require all motorists to yield to buses pulling away from a bus stop and reduce transit/vehicle conflicts.

Far-side bus bays provide a location for police officers to conduct red-light running or speed enforcement, and can also facilitate U-turns.

From a driver education point of view, the traffic engineer and transit agency may consider consistently placing the bus stop either on the near side or the far side, so that motorists have an expectation of where the bus is going to stop at all signalized intersections in their jurisdiction.

Summary

Exhibit 9-15 summarizes of the issues associated with providing near-side or far-side transit stops.

Characteristic	Potential Benefits	Potential Concerns
Safety	Right-turning vehicle conflicts (far side). Sight distance issues for crossing pedestrians/vehicles on adjacent approach (far side). Rear-end conflicts (near side).	Right-turning vehicle conflicts (near side). Sight distance issues for crossing pedestrians/vehicles on adjacent approach (near side). Rear-end conflicts (far side).
Operations	Eliminates double stopping (near side).	Right-turn/through lanes may be blocked (near side). Intersection may be blocked (far side).
Multimodal	Passenger can board while light is red (near side). Less walking distance to crosswalk (near side).	None identified.
Physical	None identified.	May interfere with red-light camera placement (near side).
Socioeconomic	None identified.	Relocation (far or near) may be costly if it involves relocation of bus bay/bus shelter.
Enforcement, Education, and Maintenance	Far-side bus bays provide space for enforcement vehicles.	Enforcement of yielding to buses may be necessary.

Exhibit 9-15. Summary of issues for near-side/far-side transit stops.

9.4 TRAFFIC CONTROL TREATMENTS

Intersection-wide traffic control treatments can provide operational and/or safety benefits on all approaches and for all movements. Signal coordination improves traffic flow for through traffic and provides gaps for left-turn movements. Signal preemption and priority identifies and accommodates critical movements and users. Signal controller upgrades (from pre-timed to actuated) accommodate intersections where traffic flow is highly variable, reducing delays and driver frustration. Change and clearance interval adjustments can address a red-light running problem. Cycle length can also be adjusted based on the nature of the traffic flow through the intersection. Finally, the advisability of removal of a signalized intersection from late night/early morning flash mode should be evaluated.

9.4.1 Change Signal Control from Pre-timed to Actuated

Description

Traffic signal control at an intersection may be pre-timed, semi-actuated, actuated, adaptive or traffic responsive. A pre-timed mode of control could simply be a function of the capabilities of the controller (older controllers may not have actuated capabilities), or it could be a byproduct of the lack of detection at the intersection (for example, a modern controller with full actuated capabilities may be required to run pre-timed if no detection is in place). The mode of control used can have a profound effect on the operational efficiency and safety of the signalized intersection.

A pre-timed controller operates within a fixed cycle length using preset intervals and no detection. Pre-timed traffic control signals direct traffic to stop and permit it to proceed in accordance with a single predetermined time schedule or series of schedules.

Traffic engineers should consider upgrading intersections from pre-timed to more efficient types of control. Semi-actuated traffic signals have detectors located on the minor approaches and oftentimes in the left-turn lanes of the major approaches. Fully actuated traffic signals have

detection on all approaches, have varying cycle lengths, and ensure acceptable servicing through basic controller timings.

Traffic responsive control uses system and presence detection to select one of a set of timing plans (pre-timed) based upon the traffic demand. This type of control further optimizes the operation by using the presence detection on the side streets and left turns to allocate unused green time to other phases as needed. Adaptive control dynamically assigns green time for each phase based upon system detection.

Selecting the best type of control for a location requires full knowledge of local conditions, but, in general, can be based on:

- Variations in peak and average hourly traffic volumes on the major approaches.
- Variations in morning and afternoon hourly volumes.
- Percentage of volumes on the minor approaches.
- Usage by large vehicles, pedestrians, and bicycles.
- Capabilities of existing traffic control equipment.
- Locations where main or side street traffic could benefit from progression or platooning.

Applicability

Converting a signal from pre-timed to a more efficient type of control may be considered in the following situations:

- Where fluctuations in traffic cannot be anticipated and thus cannot be programmed with pre-timed control.
- At complex intersections where one or more movements are sporadic or subject to variations in volume.
- At intersections that are poorly placed within a traffic corridor of intersections with pretimed traffic signals.
- To minimize delay in periods of light traffic.

Safety Performance

Actuated traffic signals and traffic signal systems control (intelligent signal systems) provide better service to all movements at an intersection, reducing driver frustration and the likelihood of red-light running. However, they can also make it more difficult for pedestrians with visual impairments to predict when changes in signal phasing will occur. There is little research on the safety effects of changing signal control from pre-timed to actuated, but the possibility of reduced rear-end and red-light running crashes due to fewer stops makes actuation a potential safety measure.

Operational Performance

Intelligent signal systems, used in appropriate situations, can reduce delays to vehicles, particularly in light traffic situations and for movements from minor approaches.

Benefits of intelligent signal systems may be less significant in situations where traffic patterns and volumes are predictable and do not vary significantly. Actuated control only may not be the best choice where there is a need for a consistent starting time and ending time for each phase to facilitate signal coordination with traffic signals along a corridor. Actuated signals are dependent on the proper operation of detectors; therefore, they are affected by a stalled vehicle, vehicles involved in a collision, or construction work. To a lesser degree, other types of intelligent signal control operation could be impacted by malfunction or loss of system detectors. Most intelligent signal systems rely upon fail-safe timing plans when one or more groups of detectors fail.

Multimodal Impacts

Pre-timed traffic signals may be more acceptable to the unfamiliar pedestrian than trafficactuated signals in areas where there is large and fairly consistent pedestrian traffic crossing the road. Intelligent signal systems may cause confusion to the pedestrian with the operation of pedestrian push buttons where long cycle lengths or adaptive control is present. Actuated pedestrian push buttons must be located in appropriate locations and be accessible to be ADA compliant.

Physical Impacts

Approaches needing actuation require detectors. Depending on the type of detector, this may create physical impacts (see Chapter 5 for further discussion of detector types).

Socioeconomic Impacts

Generally speaking, intelligent signal system equipment costs more to purchase and install than pre-timed traffic controllers, although almost all traffic controllers purchased today are capable of actuated operation. Depending on the geometry, number of lanes, and traffic characteristics, detection can be a significant percentage of the cost of a signalized intersection, but many of the more advanced, newer types of detection can cover an entire approach (lefts and throughs) per unit.

Enforcement, Education, and Maintenance

Pre-timed traffic signals may lead to driver frustration in low-volume situations, as in the late evening/early morning hours, as the driver waits for the signal to change green while no other vehicles are present on the other approaches. This may lead to red-light running.

Intelligent signal systems require more equipment and components, and can be more costly to maintain. Detector and/or signal indication (bulb, lens, LED) failure are the most common public complaints.

Summary

Exhibit 9-16 summarizes the issues associated with providing signal actuation.

Characteristic	Potential Benefits	Potential Concerns
Safety	Improves safety. Reduces driver frustration, red-light running.	None identified.
Operations	Provides better service to minor approaches. Accommodates widely fluctuating volumes.	Can sometimes reduce smooth platooning in coordinated systems. Requires proper operation of detectors.
Multimodal	None identified.	May be problematic for unfamiliar pedestrians due to variations to cycle lengths or longer cycle lengths.
Physical	None identified.	Detectors required.
Socioeconomic	None identified.	Can be costly.
Enforcement, Education, and Maintenance	Enforcement needs may decrease.	Maintenance costs will likely increase to maintain detection.

Exhibit 9-16. Summary of issues for providing signal actuation.

9.4.2 Modify Change and Clearance Intervals (Yellow and All-Red)

Description

The yellow change interval warns approaching traffic of the change in assignment of right-ofway. Yellow change intervals, a primary safety measure used at traffic signals, are the subject of much debate. The yellow change interval is normally between 3 and 6 seconds. Since long yellow change intervals may encourage drivers to use it as a part of the green interval, a maximum of 5 seconds is commonly employed. Longer yellow intervals are generally associated with higher approach speeds. Local practice dictates the length of the change interval.

The ITE standard formula for change intervals is a follows:

$$CP = t + \frac{V}{2a + 64.4g} + \frac{W + L}{V}$$
 (U.S. Customary)

where: *CP* = change period (s)

t = perception-reaction time of the motorist (s); typically 1

- V = speed of the approaching vehicle (ft/s)
- $a = \text{comfortable deceleration rate of the vehicle (ft/s²); typically 10 ft/s²$
- W = width of the intersection, curb to curb (ft)
- L = length of vehicle (ft); typically 20 ft
- *g* = grade of the intersection approach (%); positive for upgrade, negative for downgrade

Intersections where the existing yellow change interval time is less than the time needed for a motorist traveling at the prevailing speed of traffic to reach the intersection or stop comfortably before the signal turns red will require a longer yellow change interval. The minimum length of yellow should be determined using the kinematics formula in the 1985 ITE proposed practice assuming an average deceleration of 10 ft/s or less, a reaction time of 1 second or more, and an 85th percentile approach speed. An additional 0.5 seconds of yellow time should be considered for locations with significant truck traffic, significant population of older drivers, or more than 3 percent of the traffic entering on red.⁽¹³³⁾

The red clearance interval is an optional interval that follows the yellow change interval and precedes the next conflicting green interval. The red clearance interval provides additional time following the yellow change interval before releasing conflicting traffic. The decision to use a red clearance interval is determined based on engineering judgment and assessment of any of the following criteria:

- Intersection geometrics.
- Collision experience.
- Pedestrian activity.
- Approach speeds.
- Local practices.

The red clearance interval is typically either set by local policy or calculated using an equation that determines the time needed for a vehicle to pass through the intersection. The equation most commonly used is described in various documents ⁽¹³⁴⁾ (and Chapter 5). As intersections are widened to accommodate additional capacity, the length of the calculated clearance interval increases. This increase may contribute to additional lost time at the intersection, which negates some of the expected gain in capacity due to widening.

Applicability

Modifying the yellow or red clearance interval may be considered where:

Signalized Intersections: Informational Guide

- A high number of angle/left-turn collisions occur due to through/left-turning drivers failing to clear the intersection or stop before entering the intersection at onset of the red.
- A high number of rear-end collisions occur because drivers brake sharply to avoid entering the intersection at the onset of the red.
- A high number of red-light violations are recorded.

Safety Performance

At intersection approaches where yellow signal timing duration is set below values associated with ITE guidelines or similar kinematic-based formulae, increasing yellow change interval duration to achieve ITE guidelines can significantly reduce red-light running. Increasing yellow change and/or red clearance interval timing to achieve values associated with ITE guidelines or similar kinematic formulae can significantly reduce motorists entering the intersection at the end of the yellow phase.

The best estimate of the crash effects associated with implement improved change interval timing, based on before-after studies, is about 8 to 14 percent reduction in total crashes, and about a 12 percent decrease in injury crashes.⁽¹³⁵⁾

Research shows that yellow interval duration is a significant factor affecting the frequency of red-light running and that increasing yellow time to meet the needs of traffic can dramatically reduce red-light running. Bonneson and Son (2003) and Zador et al. (1985) found that longer yellow interval durations consistent with the ITE Proposed Recommended Practice (1985) of using 85th percentile approach speeds are associated with fewer red-light violations, all other factors being equal. Bonneson and Zimmerman (2004) found that increasing yellow time in accordance with the ITE guideline or longer reduced red light violations more than 50 percent. Van Der Host found that red light violations were reduced by 50 percent one year after yellow intervals were increased by 1 seconds.⁽¹⁴⁰⁾ Retting et al (2007) found increasing yellow time in accordance with the guideline reduced red-light violations by 36 percent on average. Retting, Chapline & Williams (2002) found that adjusting the yellow change interval in accordance with the ITE guidelines reduced total crashes by 8 percent, right-angle crashes by 4 percent, and pedestrian and bicycle crashes by 37 percent.⁽⁷⁸⁾

One study conducted by Souleyrette et al. (2004), suggests modest short-term crash reductions, but no longer-term effects associated with installing red clearance intervals.⁽¹³⁶⁾

Treatment	Finding
Retiming to ITE standards. (137)	Reduced red-light violations by 50 percent.
Add all-red clearance interval. ⁽¹³⁶⁾	Modest short-term crash reductions, but no longer-term effects.
Retiming signal change intervals to ITE	8 percent estimated reduction in all collisions.
standards. ⁽¹³⁸⁾	12 percent estimated increase in rear-end collisions.
	39 percent estimated reduction in vehicle-bicycle and vehicle-pedestrian collisions.
Retiming signal change intervals to ITE	5 percent estimated reduction in all collisions.
standards. ⁽¹³⁹⁾	9 percent estimate reduction in fatal and injury collisions

Exhibit 9-17 presents selected findings associated with signal clearance modifications.

Exhibit 9-17. Safety effects associated with modifying change and clearance intervals: selected findings.

Operational Performance

Extending the yellow and red interval will increase the amount of lost time, decreasing the overall efficiency of the intersection.

Multimodal Impacts

Either extending the yellow and/or red clearance interval or providing a red clearance interval will benefit pedestrians, giving them additional time to clear the intersection. The elderly or people with mobility disabilities may benefit substantially.

Physical Impacts

No physical impacts are associated with this treatment.

Socioeconomic Impacts

The treatment has been shown to reduce red-light running at a wide variety of signalized intersections.

Enforcement, Education, and Maintenance

Local practice varies as to legal movements during the yellow phase. Police, traffic engineering staff, and the public need to be clear and in agreement about what is permissible in their jurisdiction.

Summary

Exhibit 9-18 summarizes the issues associated with modifying yellow and/or red clearance intervals at signalized intersections.

Characteristic	Potential Benefits	Potential Concerns
Safety	Angle collisions are reduced. Left-turn collisions are reduced. Rear-end collisions are reduced.	None identified.
Operations	None identified.	Increased lost time.
Multimodal	The elderly and people with mobility disabilities have more time to cross.	None identified.
Physical	No physical requirements.	None identified.
Socioeconomic	Low-cost alternative to police and automated enforcement.	None identified.
Enforcement, Education, and Maintenance	Red-light enforcement may become less necessary.	None identified.

Exhibit 9-18. Summary of issues for modifying yellow/red clearance intervals.

9.4.3 Modify Cycle Length

Description

Calculating and selecting cycle length requires judgment on the part of the traffic engineer or analyst. General practice suggests a cycle length between 50 and 120 seconds. For low-speed urban roads, a shorter cycle length is preferable (50 to 70 seconds). For wider roadways (greater than 50 ft) with longer pedestrian crossing times (greater than 20 s seconds), or in situations where heavier traffic is present and left-turning vehicles are not effectively accommodated, a cycle length of 60 to 90 seconds may be preferable. At high-volume intersections, multiple phases to accommodate heavy turning movements may necessitate a cycle length of 90 to 120 seconds.⁽¹⁴⁰⁾ In addition, cycle lengths longer than 120 seconds may be needed at large intersections to accommodate multiple long pedestrian crossings in combination with heavy turning movements, especially during peak periods. Typically, system cycle lengths are governed by the higher volume intersections within the system and limit the flexibility of the traffic engineer in choosing a cycle length that may otherwise work better for a specific location.

Safety Performance

Longer cycle lengths may lead to driver frustration and red-light running, as it may take several cycles for a motorist to get through the intersection, particularly when attempting a left turn against opposing traffic. However, because an increase in cycle length reduces driver exposure to the yellow indication (e.g., a cycle length change from 60 to 120 seconds reduces the number of times that the yellow is presented by 50 percent), there is an inverse relationship between a change in cycle length and the frequency of red-light-running. That is, an increase in cycle length corresponds to a decrease in the frequency of red-light-running.

No known research or specific collision modification factors exist for modifying cycle length.

Operational Performance

A cycle length of 90 seconds is often considered optimum, since lost time is approaching a maximum, capacity is approaching a minimum, and delay is not too great.⁽¹⁴⁰⁾ Longer cycle lengths may lead to excessive queuing on the approach and will interfere with turning movements (left- and right-turn channelization) if through traffic is severely backed up.

Conversely, intersection capacity drops substantially when cycle lengths fall below 60 seconds, as a greater percentage of available time is used up in the yellow and red clearance intervals.

Multimodal Impacts

A shorter cycle length may not provide pedestrians with sufficient time to safely cross the intersection, particularly if it has turning lanes. Conversely, a longer cycle length may encourage impatient pedestrians to cross illegally during the red phase.

Physical Impacts

No physical impacts are associated with the modification of cycle length.

Enforcement, Education, and Maintenance

As part of regular traffic signal observations (recommended every 3 to 5 years, or as needed), consider modifying cycle lengths and splits (and offsets in coordinated systems) to accommodate emerging operational needs.

Socioeconomic Impacts

No significant costs are associated with this treatment, apart from labor.

Summary

Exhibit 9-19 summarizes the issues associated with cycle length modification.

Characteristics	Potential Benefits	Potential Concerns
Safety	Increase in cycle length corresponds to a decrease in the frequency of red-light running.	Longer cycle lengths could induce some drivers to run red lights.
Operations	Reduction in delay optimized at 90 seconds.	Excessive queuing (with longer cycle lengths). Inadequate capacity (with cycle lengths that are too short).
Multimodal	None identified.	Inadequate crossing time for pedestrians (with cycle lengths that are too short).
Physical	None identified.	None identified.
Socioeconomic	None identified.	None identified.
Enforcement, Education, and Maintenance	None identified.	Increased maintenance cost of regular signal observations and retiming.

Exhibit 9-19. Summary of issues for cycle length modifications.

9.4.4 Late Night/Early Morning Flash Removal

Description

Some jurisdictions operate traffic signals in flashing mode during various periods of the night, the week, or for special events. Flashing operation can benefit traffic flow, particularly with pretimed signals, when traffic is very light (late evening/early morning hours, or on a Sunday or holiday in an industrial area).

Two modes of flashing operation are typically used: red-red and red-yellow. Red-red (all approaches receive a flashing red indication) is used where traffic on all approaches is roughly the same. In this instance, the intersection operates as an all-way stop. Red-yellow (the minor street receives a flashing red indication and the major street receives a flashing yellow indication) is used in situations where traffic is very light on the minor street. In this instance, the intersection operates as a two-way stop.

Safety Performance

One study examined safety impacts associated with converting 12 intersections from nighttime flashing operation to steady operation in Winston-Salem, NC. The analysis indicated that flashing operation reduced nighttime angle crashes (the ones most likely to be positively affected) by approximately 34 percent. Total nighttime crashes also saw a significant reduction of approximately 35 percent.⁽¹⁴²⁾

A separate study evaluated safety impacts associated with a change in statewide late night flash policy by the North Carolina DOT making it standard practice to operate signals in steady mode at all times. Before this policy, it was standard practice to allow traffic signals to operate in late night flash mode unless directed otherwise by the division traffic engineer. The policy also changed the standard operating times for late night flash operations. As a result of this policy, many signals were either removed from late night flash operations or had their late night flash operating times modified to conform to the new policy. Replacing nighttime flash with steady operation was associated with an estimated 48 percent reduction in nighttime frontal and opposing direction sideswipe collisions and head-on collisions, and an estimated 27 percent reduction in all nighttime collisions.

Selected study findings associated with the removal of a traffic signal from a flashing mode operation (such as during the late-night/early morning time period) are shown in Exhibit 9-20.

Treatment	Finding
Remove signal from late night/early morning flash mode. ^{(142),(143)}	 34 percent estimated reduction in nighttime angle collisions. 35 percent estimated reduction in all nighttime collisions. 48 percent estimated reduction in nighttime frontal and opposing direction sideswipe collisions and head-on collisions 27 percent estimated reduction in all nighttime collisions

Exhibit 9-20. Safety effects associated with removal of signal from late night/early morning flash mode: selected findings.

Operational Performance

If the signalized intersection removed from flashing operation is not fully actuated and responsive to traffic demand, increased red-light violations and/or complaints about unnecessary long waits on red signals may occur.

Multimodal Impacts

Removing a traffic signal from a flash mode will require vehicles to come to a complete stop during the red phase. This treatment should give vehicles more time to see, respond, and yield to any pedestrians.

Physical Impacts

No physical impacts are associated with this treatment.

Socioeconomic Impacts

No costs are associated with this treatment.

Enforcement, Education, and Maintenance

When a traffic signal is taken out of flash mode, police enforcement could be undertaken at the location to ensure habituated drivers do not proceed through the intersection as if the signal were still operating in flashing mode. The traffic engineer may consider temporary signing/publicity to inform motorists of the change in operations and to explain the safety benefits.

Summary

Exhibit 9-21 summarizes the issues associated with flash mode removal.

Characteristic	Potential Benefits	Potential Concerns
Safety	Angle collisions are reduced.	Could induce red-light running on minor legs if controller is not sufficiently sensitive to minor road demand.
Operations	None identified.	Increased delay for through traffic.
Multimodal	Motorists forced to yield to pedestrians.	None identified.
Physical	None identified.	None identified.
Socioeconomic	None identified.	None identified.
Enforcement, Education, and Maintenance	None identified.	Enforcement and temporary signing may be needed for a period after conversion.

Exhibit 9-21. Summary of issues for flash mode removal.

9.5 STREET LIGHTING AND ILLUMINATION

9.5.1 Provide or Upgrade Illumination

Description

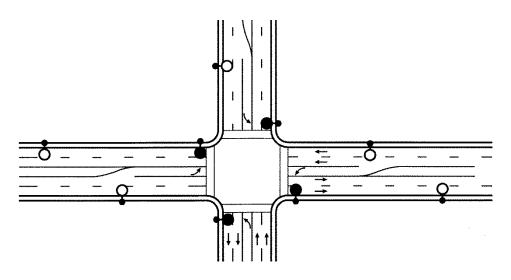
The purpose of roadway lighting is to enhance visibility and conspicuity for drivers, bicyclists, and pedestrians, thereby improving their ability to see each other and the physical infrastructure of the intersection. This allows them to react more quickly and accurately to each other when natural light drops below a certain level, either at night or during bad weather.

Applicability

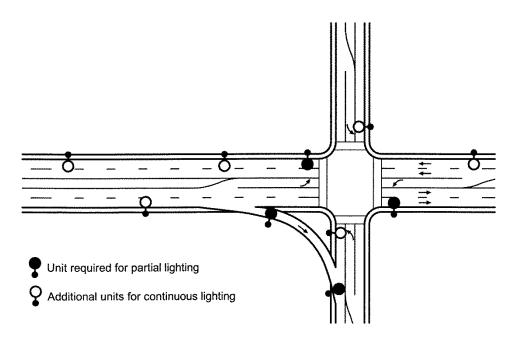
Consider intersection lighting at all signalized intersections. More nighttime collisions than expected may justify upgrades, particularly if the nighttime collisions involve pedestrians, bicyclists, and/or fixed objects.

Design Features

The illumination design at an intersection should meet lighting criteria established by the Illuminating Engineering Society of North America (IESNA) in IESNA RP-8-00, *American National Standard Practice for Roadway Lighting*.⁽⁷⁰⁾ The basic principles and design values for intersections have been presented previously (Chapter 5) and include overall light level and uniformity of lighting.


Some of the factors that affect the light level and uniformity results include:

- Luminaire wattage, type, and distribution.
- Luminaire mounting height.
- Pole placement and spacing.


These factors are interrelated. For example, higher mounting heights improve uniformity by spreading the light over a larger area; however, the overall light level decreases unless larger wattages are used or poles are placed closer together. Good illumination design balances these various factors against an overall desire to minimize the number of poles and fixtures (both for cost savings and for minimizing the number of fixed objects in the right-of-way).

Pole Placement and Spacing

Besides the types of poles and fixtures, the placement is also an important aspect of a good roadway design. Several factors need to be considered in pole placement. The first is safety. Most important is to place the pole at an offset distance that can assist in preventing crashes (vehicles and pedestrians). Second, determine the pole spacing most efficacious for initial and long-term maintenance costs, yet still meeting the lighting requirement. At intersections, shared use of poles for signal equipment and illumination is recommended. Exhibit 9-22 shows examples from RP-8-00 of illumination pole layouts typical at signalized intersections with and without channelized right-turn lanes. However, recent research to improve lighting at midblock pedestrian crosswalks suggests it may be desirable to locate poles approximately one third to one half the luminaire mounting height back from the crosswalk to improve lighting for pedestrians. This may require separate poles for signal equipment and luminaires.⁽¹⁴⁴⁾ For intersections providing separate pedestrian pedestals at the crosswalk, the mast arm poles for vehicle signal heads should be located for optimal illumination as well. Intersection lighting, when crosswalks are present, should account for the presence of pedestrians and attempt to achieve positive contrast.

(a) Typical lighting layout for intersection without right-turn bypass lane.

(b) Typical lighting layout for intersection with right-turn bypass lane.

Exhibit 9-22. Typical lighting layouts.^(70, figure D3)

Safety Performance

Optimal illumination and visibility reduces the chance of nighttime accidents and enhances traffic flow. Roadway lighting also increases sight distance, security, and the use of surrounding facilities. Installation of lighting at intersections is associated with a 38 percent reduction in all dark condition collisions and a 42 to 59 percent reduction in vehicle/pedestrian collisions in dark conditions.⁽¹⁴⁵⁾

Operational Performance

No documented relationship exists between illumination and operational intersection performance. The authors believe that illumination likely has little effect on traffic flow, delay, and queuing.

Multimodal Impacts

As noted above, illumination demonstrably reduces pedestrian crashes and provides a more secure nighttime environment for all intersection users.

Physical Impacts

Illumination typically has little effect on the overall footprint of an intersection. Commonly, combination poles support both signal heads and luminaires, so additional poles are rarely needed in the immediate vicinity of the intersection. However, the recent research cited previously suggests the possibility of improved pedestrian visibility using additional poles upstream from the crosswalk.

Socioeconomic Impacts

Illumination also reduces the fear of crime at night, and it promotes business and the use of public streets at night. $(^{70})$

In addition to the initial capital cost and maintenance of illumination fixtures, illumination requires energy consumption. The Roadway Lighting Committee of IESNA believes that lighting of streets and highways is generally economically practical and that such preventive measures can cost a community less than the crashes caused by inadequate visibility.⁽⁷⁰⁾ Judicious design of luminaire types, wattages, mounting height, and pole spacing may increase visibility at the intersection without significantly increasing energy costs.

Summary

Exhibit 9-23 summarizes the issues associated with providing illumination.

Characteristic	Potential Benefits	Potential Disbenefits
Safety	Reported reductions in nighttime collisions.	None identified.
Operations	None identified.	None identified.
Multimodal	May reduce pedestrian crashes.	None identified.
Physical	Little impact.	None identified.
Socioeconomic	May reduce fear of nighttime crime.	Additional energy consumption.
Enforcement, Education, and Maintenance	None identified.	Maintenance of illumination will be necessary.

Exhibit 9-23. Summary of issues for providing illumination.

9.6 REMOVE TRAFFIC SIGNAL

As indicated in Section 4B.03 of the MUTCD, improper or unjustified traffic control signals can result in one or more of the following disadvantages:

- Excessive delay.
- Excessive disobedience of the signal indications.
- Increased use of less adequate routes as road users attempt to avoid the traffic control signals.
- Significant increases in the frequency of collisions (especially rear-end collisions).

Converting traffic signals to roundabouts or multi-way stop controls at appropriate settings and under appropriate traffic conditions can provide a range of safety, operational, environmental, and economic benefits.

9.6.1 Convert Signalized Intersection to a Roundabout

Description

The modern roundabout is a circular intersection with design features promoting safe and efficient traffic flow. At roundabouts in the United States, vehicles travel counterclockwise around a raised center island, with entering traffic yielding the right-of-way to circulating traffic. In urban settings, entering vehicles negotiate a curve sharp enough to slow speeds to about 15 to 20 mph; in rural and suburban settings, entering vehicles may be held to somewhat higher speeds (30 to 35 mph). Within the roundabout and as vehicles exit, slow speeds are maintained by the deflection of traffic around the center island and the relatively tight radius of the roundabout and exit lanes. Roundabouts have replaced many formerly signalized intersections.

Applicability

Converting a signalized intersection to a roundabout requires sufficient right-of-way to accommodate the circumference of the roundabout, which may include one, two, or three circulating lanes, depending on the volume of traffic. Mini roundabouts can be installed with less right-of-way, including some cases where no additional right-of-way is needed.

Safety Performance

Conversion of signalized intersections to roundabouts is associated with substantial safety benefits. Before-after analysis conducted for nine such conversions as part of NCHRP Report 672 estimated a 48 percent reduction in all crashes, and a 78 percent reduction in injury crashes. (146)

Treatment	Finding
Convert signalized intersection to roundabout. ⁽¹⁴⁶⁾	48 percent estimated reduction in all collisions. 78 percent estimated reduction in injury collisions.

Exhibit 9-24. Safety effects associated with converting traffic signals to roundabouts: selected findings.

Operational Performance

In addition to providing safety effects, converting signalized intersections to roundabouts is associated with substantial reductions in vehicle delay. Several studies have reported significant improvements in traffic flow following conversion of traditional intersections to roundabouts. A study of three locations in New Hampshire, New York, and Washington, where roundabouts replaced traffic signals or stop signs, found an 89 percent average reduction in vehicle delays and

a 56 percent average reduction in vehicle stops.⁽¹⁴⁸⁾ A study of 11 intersections in Kansas found a 65 percent average reduction in delays and a 52 percent average reduction in vehicle stops after roundabouts were installed.⁽¹⁴⁹⁾

Multimodal Impacts

Conversion of signalized intersections to roundabouts can benefit pedestrians. Roundabouts generally are safer for pedestrians than traditional intersections. In a roundabout, pedestrians walk on sidewalks around the perimeter of the circular roadway. If they need to cross the roadway, they cross only one direction of traffic at a time. In addition, crossing distances are relatively short, and traffic speeds are lower than at traditional intersections. Studies in Europe indicate that, on average, converting conventional intersections to roundabouts can reduce pedestrian crashes by about 75 percent.^{(150),(151)} Single-lane roundabouts in particular have been reported to involve substantially lower pedestrian crash rates than comparable intersections with traffic signals. Safety studies on bicyclists at roundabouts have mixed findings, with some European studies showing higher crash rates for bicycles at roundabouts compared with traffic signals.⁽¹⁴⁶⁾

Physical Impacts

Converting a signalized intersection to a roundabout requires sufficient right-of-way to accommodate the circumference of the roundabout. In many cases, construction of a roundabout in place of a traffic signal will require the acquisition of small amounts of right-of-way at the intersection. However, because roundabouts generally require fewer approach lanes than signalized intersections, in some cases existing travel lanes approaching the intersection can be converted to parking, bike lanes, or other uses. Roundabouts can also improve the esthetics of existing signalized intersections, including the addition of landscaping.

Socioeconomic Impacts

Converting a signalized intersection to a roundabout requires significant capital investment. However, roundabouts offer lower lifecycle costs compared with traffic signals, which require electrical power and maintenance of signal hardware (including detectors). Reduced vehicle delays and other operational benefits associated with roundabouts can lower vehicle operating costs (including fuel consumption) for motorists and transit agencies.

Summary

Exhibit 9-25 summarizes the issues associated with converting traffic signals to roundabouts.

Characteristic	Potential Benefits	Potential Disbenefits
Safety	Substantial reductions in all collisions and injury collisions.	None identified.
Operations	Substantial reductions in traffic delays and vehicle stops.	None identified.
Multimodal	Roundabouts generally are safer for pedestrians than traditional intersections.	Multi-lane roundabouts can be challenging for visually impaired pedestrians. Safety studies on bicyclists at roundabouts have mixed findings.
Physical	Esthetic improvement, including landscaping.	May require additional right-of-way.
Socioeconomic	Lower life cycle costs, vehicle operating costs (including fuel consumption) for motorists.	Requires significant capital investment.
Enforcement, Education, and Maintenance	Roundabouts require less maintenance than traffic signals.	Public information may be needed.

Exhibit 9-25. Summary of issues for converting traffic signals to roundabouts.

9.6.2 Convert Signalized Intersection to All-Way Stop Control

Description

All-way stop control requires vehicles approaching the intersection from all directions to stop prior to entering the intersection. Because of the large number of vehicle stops and delays associated with this form of control, its use is generally limited to residential areas and low-speed settings.

Applicability

Converting a signal to all-way stop control requires thoughtful analysis and consideration, as it is not a common practice. Before converting a signal to all-way stop control, the engineer should review the guidance in the MUTCD Part 2B.07.

Safety Performance

Researchers identified the effect on intersection crashes of converting nearly 200 one-way street intersections in Philadelphia from signal to all-way stop sign control.⁽¹⁵²⁾ Using crash and traffic volume data for a comparison group, regression models were computed to represent the normal crash experience of signal controlled intersections of one-way streets, by impact type, as a function of traffic volume. Estimates were obtained for different classes of crashes categorized by impact type, day/night condition, and impact severity. Aggregate results indicate that replacing signals by all-way stop signs on one-way streets is associated with a reduction in crashes of approximately 24 percent, combining all severities, light conditions, and impact types.

Treatment	Finding
Convert signalized	24 percent estimated reduction in all collisions.
intersection to multi-way	25 percent estimated reduction in right-angle collisions.
stop. ⁽¹⁵²⁾	17 percent estimated reduction in pedestrian collisions (46 percent reduction at night)

Exhibit 9-26. Safety effects associated with converting traffic signals to multi-way stop.

Operational Performance

By design, all-way-stop control generates considerable vehicle delay compared with traffic signal operation because all vehicles are required to stop before entering the intersection.

Multimodal Impacts

Conversion of signalized intersections to all-way stop control benefits pedestrians and bicyclists because of the low traffic speeds of motor vehicles in the vicinity of the intersection.

Physical Impacts

Conversion of signalized intersections to all-way stop control eliminates traffic signal poles, but introduces sign supports. Intersection sight distance differs depending on the type of intersection and maneuver involved. Signalized intersections require that drivers be provide with an unobstructed view of both the approach triangle and the departure triangle, whereas intersections controlled by all-way stop signs have no such requirements.⁽¹⁵³⁾

Socioeconomic Impacts

Conversion of signalized intersections to all-way stop control reduces costs required to electrify and maintain traffic signals. The cost of installing and maintaining multi-way stop signs is relatively low.

Summary

Exhibit 9-27 summarizes the issues associated with converting traffic signals to all-way stop control.

Characteristic	Potential Benefits	Potential Disbenefits
Safety	Reduced crashes.	None identified.
Operations	None identified.	Increased vehicle delay.
Multimodal	Benefits pedestrians and bicyclists because of the low traffic speeds of motor vehicles in the vicinity of the intersection.	None identified.
Physical	Eliminates traffic signal poles.	Requires installation of sign poles.
Socioeconomic	Reduces costs required to electrify and maintain traffic signals.	None identified.
Enforcement, Education, and Maintenance	Eliminates traffic signal maintenance.	Significant education will be required to share the signal removal decision with the public and public officials. The location may require periodic police enforcement of stop signs.

Exhibit 9-27. Summary of issues for converting traffic signals to all-way stop control.

CHAPTER 10 APPROACH TREATMENTS TABLE OF CONTENTS

10.0	APPF	ROACH TREATMENTS	10-2
	10.1	Signal Head Placement and Visibility	10-2
		10.1.1 Convert to Over-the-Road Signal Heads	10-3
		10.1.2 Add Supplemental Signal Heads	
		10.1.3 Increase Size of Signal Heads	
		10.1.4 Increase Number of Signal Heads	
		10.1.5 Provide Backplates	10-9
		10.1.6 Provide Advance Warning	
	10.2	Signing and Speed Control Treatments	
		10.2.1 Improve Lane Use and Street Name Signing	
		10.2.2 Reduce Operating Speed	
	10.3	Roadway Surface Improvements	
		10.3.1 Improve Pavement Surface	
		10.3.2 Improve Cross Section	
		10.3.3 Remove Obstacles from Clear Zone	
	10.4	Sight Distance Treatments	
		10.4.1 Improve Sight Lines	10-20
	10.5	Dilemma Zone Detection	10-23
	10.6	Red Light Camera Enforcement	10-25

LIST OF EXHIBITS

10-1	Summary of approach treatments	10-2
10-2	Safety benefits associated with using mast arms: selected findings	10-3
10-3	Summary of issues for using mast arm/span wire-mounted signal heads	10-4
10-4	Summary of issues for supplemental near-side traffic signal heads	10-5
10-5	Safety benefits associated with using 12-inch signal lenses: selected findings	10-6
10-6	Summary of issues for increasing the size of signal heads	10-7
	Lane-aligned signal heads	
10-8	Safety benefits associated with the addition of a signal head: selected findings	10-8
	Summary of issues for adding a signal head	
10-10) Summary of issues for using signal head backplates	10-10
	I Safety benefits associated with advance warning signs and flashers: selected fir	
	2 Summary of issues related to advance warning treatments	
	3 Safety benefits associated with advance lane-use signs: selected findings	
	Summary of issues for improving signing	
10-15	5 Safety benefits associated with nonskid treatments, drainage improvements, or	
	resurfacing: selected findings	
	Summary of issues for pavement treatments	
	7 Summary of issues for cross section improvements	
	3 Summary of issues for removing obstacles from the clear zone	
10-19	9 Expected reduction in number of crashes per intersection per year by increased	
	distance	
) Safety benefits associated with sight distance improvements: selected findings.	
	Summary of issues for visibility improvements	
	2 Dilemma zone and detector placement	
	3 Vehicular distances traveled by speed	
	Summary of issues for dilemma zone detection	
10-25	5 Summary of issues for red light cameras	10-27

10.0 APPROACH TREATMENTS

Approaches are critical signalized intersection components. Intersections and traffic control devices should be obvious to approaching motorists, bicyclist, and pedestrians. Adequate signing and pavement marking must provide the driver with sufficient information to determine the appropriate lane and direction to travel. The pavement on the approaches should provide the needed degree of friction for a turning maneuver or stop and adequate drainage. The approaches ideally should meet at right angles and should be at grade and free of unnecessary clutter and obstacles. Sight distance for all approaches should be adequate for drivers proceeding through the intersection, particularly those making a permissive left turn.

Approach Treatment Type	Treatment
Traffic control	Mast arm and span wire mounts
	Advanced warning flashers
	Dilemma zone protection
	Operating speed
	Extended lane line markings
Pavement/cross section improvements	Skid resistance
	Rumble strips
	Improved cross section
	Removal of obstacles
	Reduce intersection skew
Visibility	Near-side traffic signal heads
-	Larger traffic signal heads
	Increase number of signal heads
	Backplates
	Adequate sight distance for conflicting
	turning movements, pedestrian
	crossings

This chapter will discuss various treatments related to signalized intersection approaches, as summarized in Exhibit 10-1.

Exhibit 10-1. Summary of approach treatments.

10.1 SIGNAL HEAD PLACEMENT AND VISIBILITY

Traffic signals should be placed so the signal heads are visible at a distance upstream of the intersection and from all lanes on the approach. Approaches with poorly placed traffic signals are likely to experience an increase of conflicts and collisions. At intersections with a higher proportion of heavy trucks, drivers in adjacent lanes or following a heavy vehicle may not be able to see the signal indication, which may lead to inadvertent red-light running. Some red-light runners claim they did not see the traffic signal, and one reason could be suboptimal placement of traffic signal heads or a failure to make the traffic signal head visually prominent.

Approach treatments that improve signal visibility help drivers make decisions at the intersection and alert them to the presence of a signalized intersection. Subsequently, the probability of driver error, such as inadvertently running a red light and being involved in a collision, is lower.

The following sections identify traffic control treatments that can be applied to improve the visibility of signal heads.

10.1.1 Convert to Over-the-Road Signal Heads

Description

Three major types of signal head placement are in popular use today: pedestal, span wire, or mast arm mounted. Chapter 5 discussed the merits and drawbacks of each. For a signalized intersection experiencing safety problems related to the placement or visibility of a pedestal-mounted signal head, the traffic engineer should consider either replacing signal heads or supplementing signal heads. Replacing or supplementing signal heads should be considered when:

- An approach where a pedestal-mounted traffic signal head is located against a backdrop with a considerable amount of visual clutter.
- An approach where heavy truck traffic habitually prevents adjacent and following drivers from viewing a pedestal-mounted traffic signal head.

Both mast arms and span wire mounted traffic signals improve the signal head's prominence upstream of the intersection.

Application

This treatment should be considered:

• At intersections where a high number of angle collisions occur that may be attributable to unintentional red-light runners.

Safety Performance

The safety impact of mast arm mounted signal heads relates to the conspicuity of the signal indications, especially in areas where there are competing visual distractions like on-site signing and lighting near the pedestal-mounted heads. Safety effects of signal upgrades from pedestal to mast arm are shown in Exhibit 10-2.

Treatment	Finding
Replace pedestals with mast arms, (155)	36 percent reduction for all crash types and severities.
	47 percent reduction for severe injuries (all crash types)
	13 percent reduction for minor injuries (all crash types)
	72 percent reduction for right angle crashes (all severities)
	20 percent increase in rear-end crashes (all severities)
	2 percent increase in left turn crashes (all severities)

Exhibit 10-2. Safety benefits associated with using mast arms: selected findings.

Operational Performance

Signal head placement has a negligible effect on intersection capacity. However, centering signal heads over lanes can help drivers chose the proper lane to navigate through the intersection.

Multimodal Impacts

The placement of traffic signal heads on span wires or mast arms will be particularly advantageous for heavy vehicles, giving them additional time to decelerate and come to a full stop.

Physical Impacts

Span wire mounted signal heads have a constructability advantage over mast arm mounted signal heads. At larger intersections, the length of the mast arm may limit its use.

Socioeconomic Impacts

Span wire installations are generally considered less esthetically pleasing than mast arms because of overhead wires.

Enforcement, Education, and Maintenance

Span wire installations generally have higher ongoing maintenance costs than mast arms. Both types may need additional reinforcements if installed in a location known for strong winds.

Summary

Exhibit 10-3 summarizes the issues associated with using mast arm or span wire mounts for signal heads.

Characteristic	Potential Benefits	Potential Concerns
Safety	Increases signal visibility. Decreases collisions.	None identified.
Operations	Negligible effect.	None identified.
Multimodal	Heavy vehicles have more time to stop.	None identified.
Physical	Greater flexibility in placement of span wire poles.	Less flexibility in placement of mast arm poles.
Socioeconomic	None identified.	Span wires not aesthetically pleasing.
Enforcement, Education, and Maintenance	None identified.	Span wires typically require more maintenance than mast arms.

Exhibit 10-3. Summary of issues for using mast arm/span wire-mounted signal heads.

10.1.2 Add Supplemental Signal Heads

Description

Supplemental traffic signals may also be placed on the near side of the intersection, far-left, far-right, or very high. This may be particularly useful if:

- Sight distance is an issue, such as on approaches to intersections on horizontal and vertical curves.
- The intersection is particularly wide, so that a far-side signal cannot be placed within MUTCD sight distance requirements for approaching drivers.⁽¹⁾
- Auxiliary turn lanes are present.

Applicability

Supplemental head placements may be considered where there may be limited sight distance or at a particularly wide intersection where visibility of the signal indications could be a problem. Refer to the MUTCD for guidance on the location of signal heads.⁽¹⁾

Safety Performance

Supplemental traffic signal heads appear to reduce the number of fatal and injury collisions at an intersection, according to the limited research that has been done on their effectiveness at preventing collisions.

Signalized Intersections: Informational Guide

Operational Performance

When placed on the near side of an intersection, additional signal poles have a negligible effect on intersection capacity.

Multimodal Impacts

Near-side traffic signal placement on a median benefits heavy trucks by giving them additional warning.

The placement of the traffic signal should not interfere with the movement of pedestrians across the intersection or along the sidewalk.

Physical Impacts

As a pedestal traffic signal is mounted on the near side of an intersection, a median must be present in that location. This will likely incur additional costs to provide electricity and conduit to connect to the traffic controller. In other cases (far-left, far-right, or very high-mounted), the signal head can often be placed on an existing pole with access to conduit and power.

Summary

Exhibit 10-4 summarizes the issues associated with supplemental near-side traffic signal poles.

Characteristic	Potential Benefits	Potential Concerns
Safety	Increases signal visibility. Decreases angle collisions.	None identified.
Operations	Negligible.	None identified.
Multimodal	Heavy trucks have more time to stop.	May interfere with movement of crossing pedestrians.
Physical	None identified.	None identified.
Socioeconomic	None identified.	Moderate costs.
Enforcement, Education, and Maintenance	None identified.	None identified.

Exhibit 10-4. Summary of issues for supplemental near-side traffic signal heads.

10.1.3 Increase Size of Signal Heads

Description

Two diameter sizes are currently used for signal lenses: 8 inches and 12 inches. Of these, 12-inch signal faces for red, amber, and green indications are commonly used at medium- and high-volume intersections. Many jurisdictions are working to limit the use of 8-inch signal heads to only low-speed locations without confusing/complex backgrounds. The MUTCD indicates 12-inch signal faces shall be used for all signal sections in all new signal faces, with the following exceptions:⁽¹⁾

Eight-inch circular signal indications may be used in new signal faces only for:

- A. The green or flashing yellow signal indications in an emergency-vehicle traffic control signal;
- B. The circular indications in signal faces controlling the approach to the downstream location where two adjacent signalized locations are close to each other and it is not practical

because of factors such as high approach speeds, horizontal or vertical curves, or other geometric factors to install visibility-limited signal faces for the downstream approach;

- C. The circular indications in a signal face located less than 120 feet from the stop line on a roadway with a posted or statutory speed limit of 30 mph or less;
- D. The circular indications in a supplemental near-side signal face;
- E. The circular indications in a supplemental signal face installed for the sole purpose of controlling pedestrian movements rather than vehicular movements; and
- F. The circular indications in a signal face installed for the sole purpose of controlling a bikeway or a bicycle movement.

Existing 8-inch circular signal indications not included in items A through F may be retained for the remainder of their useful service life.

Application

Using 12-inch lenses should improve visibility for the driver, and as such may reduce red-light running and associated angle collisions.

Safety Performance

Srinivasan et al. (2008) conducted a before-after evaluation for four types of treatments at signalized intersections using data from Winston-Salem, NC. The result was an estimated 42 percent reduction in right-angle collisions and a 3 percent reduction in total collisions.⁽¹⁵⁶⁾ Another before-and-after study was undertaken to assess the effectiveness of larger (12 inches) and brighter signal head displays in British Columbia. Results from an EB analysis showed the frequency of total crashes was reduced by approximately 24 percent with the proposed signal displays. The results were found to be consistent with previous studies and laboratory tests that showed increased signal visibility results in shorter reaction times by drivers and leads to improved safety.⁽¹⁵⁷⁾

References regarding the safety benefits of installing 12-inch signal lenses are shown in Exhibit 10-5.

Treatment	Finding
Install 12-inch signal lenses, use higher wattage bulbs. ⁽¹⁵⁷⁾	24 percent estimated reduction in all collisions.
Install 12-inch signal lenses. ⁽¹⁵⁶⁾	42 percent estimated reduction in right angle collisions.
	3 percent estimated reduction in all collisions.

Exhibit 10-5. Safety benefits associated with using 12-inch signal lenses: selected findings.

Operational Performance

None identified.

Socioeconomic Impacts

Using 12-inch lenses costs nominally more than using 8-inch lenses.

Summary

Exhibit 10-6 summarizes the issues associated with increasing the size of signal heads.

Characteristic	Potential Benefits	Potential Concerns
Safety	Reduction in collisions – particularly angle collisions.	None identified.
Operations	None identified.	None identified.
Multimodal	None identified.	None identified.
Physical	None identified.	None identified.
Socioeconomic	None identified.	Larger signal heads cost nominally more than smaller signal heads.
Enforcement, Education, and Maintenance	None identified.	None identified.

Exhibit 10-6. Summary of issues for increasing the size of signal heads.

10.1.4 Increase Number of Signal Heads

Description

The number of signal heads may be increased so one signal head is over each lane of traffic on an approach. Current MUTCD requirements for signal head placement state "a minimum of two signal faces shall be provided for the major movement on the approach, even if the major movement is a turning movement."⁽¹⁾ In addition, at least one signal head must be not less than 40 ft beyond the stop line and not more than 180 ft beyond the stop line unless a supplemental near-side signal face is provided. Finally, at least one and preferably both of the signal faces must be within the 20-degree cone of vision.

Traffic signal heads on a mast arm typically located above each. Exhibit 10-7 shows an example of an approach with dual left-turn lanes, two through lanes, and a right-turn lane with lane-aligned signal heads.

Exhibit 10-7. Lane-aligned signal heads.

Application

Consider this treatment in situations where unusually high numbers of angle collisions occur because a vehicle runs a red light. Also, consider it at high speed intersections with fewer signal heads than approach lanes. This application may be a local or spot treatment, or may be part of a systematic improvement plan.

Safety Performance

A Canadian study evaluated the crash effects associated with additional primary signal heads and found a 28 percent decrease in all collisions, a 28 percent decrease in rear-end collisions, and a 35 percent reduction in angle collisions.⁽¹⁵⁸⁾

Exhibit 10-8 summarizes selected findings relating to the safety benefits of adding a signal head.

Treatment	Finding
Add a primary signal	28 percent estimated reduction in all collisions.
Add a primary signal head. ⁽¹⁵⁸)	28 percent estimated reduction in rear-end collisions.
	35 percent estimated reduction in angle collisions.

Exhibit 10-8. Safety benefits associated with addition of a signal head: selected findings.

Operational Performance

None identified.

Socioeconomic Impacts

The capital cost of adding an extra signal head is minimal if the existing mounting and pole can be used. If a new mast arm and/or pole is required, for instance, the costs could be significant. Additional maintenance and electricity costs are incurred over time.

Summary

Exhibit 10-9 summarizes the issues associated with adding a signal head.

Characteristic	Potential Benefits	Potential Concerns
Safety	Reduction in collisions.	None identified
Operations	None identified.	None identified.
Multimodal	None identified.	None identified.
Physical	None identified.	May require new signal pole and foundation.
Socioeconomic	None identified.	Costs may be high if a new mast arm and pole is required.
Enforcement, Education, and Maintenance	None identified.	None identified.

Exhibit 10-9. Summary of issues for adding a signal head.

10.1.5 Provide Backplates

Description

Backplates are a common treatment for enhancing the signal head visibility. Backplates have a dull black finish to enhance the contrast between the signal head and its surroundings, and can include a strip of yellow retroreflective tape around the perimeter of the backplate.

Applicability

The MUTCD contains guidance pertaining to the use of backplates in Section 4D.12, Visibility, Aiming, and Shielding of Signal Faces. Backplates should be provided for the following situations

- Intersections with approach speeds 45 mph or higher.
- Sun glare, bright sky, and/or complex or confusing backgrounds indicate a need for enhanced signal face target value.

Backplates serve to increase the contrast between the signal head and its surroundings, drawing the attention of approaching drivers and therefore increasing the likelihood that they will stop on a red indication. They should be considered in situations where a high number of angle collisions occur.

Operational Features

Backplates with a yellow retroreflective strip around the outside edge highlight the presence of the traffic signal. This is an advantage particularly during power outages, and provides an additional benefit to drivers with a color vision deficiency (the shape of the signal is clear, helping a color deficient driver identify red-yellow-green by placement rather than color).

Safety Performance

A British Columbia study evaluated crash effects of installing yellow micro-prismatic retroreflective sheeting along the outer edge of backplates in an attempt to frame the signal heads and make them more visible to motorists.⁽¹⁵⁹⁾ The study found an estimated 15 percent reduction in all crashes.

Operational Performance

The use of backplates enhances the contrast between the traffic signal indications and their surroundings for both day and night conditions, which is also helpful to older drivers (MUTCD Section 4D.12).⁽¹⁾

Socioeconomic Impacts

The cost of installing signal backplates on a signal head is minimal. In addition, extra wind loading caused by backplates may necessitate larger (more costly) support poles for both span wires and mast arms.

Education, Enforcement, and Maintenance

Due to their larger size, signal heads with backplates may be more prone to movement during high winds. This may pose a problem if they are mounted on a span wire, leading to maintenance issues; however, there are designs available (e.g., vented backplates) to mitigate potential problems.

Summary

Exhibit 10-10 summarizes the issues associated with using signal head backplates.

Characteristic	Potential Benefits	Potential Concerns
Safety	Reduction in angle collisions.	None identified.
Operations	Benefit to Older Drivers	None identified.
Multimodal	None identified.	None identified.
Physical	None identified.	None identified.
Socioeconomic	None identified.	Minor cost for backplates and reflective tape. Possible increased pole cost for increased wind loads.
Enforcement, Education, and Maintenance	None identified.	None identified.

Exhibit 10-10. Summary of issues for using signal head backplates.

10.1.6 Provide Advance Warning

Description

These two treatments provide advance warning to motorists:

- 1. Provide a general warning of a signalized intersection ahead.
- 2. Provide a specific advance warning of an impending traffic signal change (from green to red) ahead.

Treatments that provide a general warning include static signs (SIGNAL AHEAD) and continuous advance-warning flashers. These flashers consist of a sign mounted on a pole with a yellow flashing light. The sign may read BE PREPARED TO STOP or show a schematic of a traffic signal. This type of flasher flashes regardless of what is occurring at the signal. Both treatments are placed upstream of the traffic signal at a distance sufficient to allow drivers time to react to the signal.

The second type of treatment provides a specific warning of an impending traffic signal change ahead. These advance-warning flashers inform drivers of the status of a downstream signal. This type is activated showing yellow flashing lights or illuminating an otherwise blank changeable message such as "Red Signal Ahead."

The sign and the flashers are placed a certain distance from the stop line as determined by the speed limit on the approach.

Applicability

A SIGNAL AHEAD sign (possibly with an optional warning flasher) is required by the MUTCD in cases were the primary traffic control is not visible from a sufficient distance to permit the driver to respond to the signal. Warning flashers may be an effective countermeasure for:

- Rear-end collisions where a driver appears to have stopped suddenly to avoid running a red light and was struck from behind.
- Angle collisions caused by inadvertent red-light running.
- Queues from a red signal occurring at a location where approaching traffic cannot see it due to a vertical or horizontal curve.

Advance-warning flashers are appropriate for higher-speed, isolated intersections where the signalized intersection may be unexpected or where there may be sight distance issues. They

appear to be most beneficial in situations where the minor approach volumes exceed 13,000 AADT or greater.⁽¹⁶⁰⁾

Operational Features

A key factor in operating an advance-warning flasher is determining an appropriate time for coordinating the onset of flash with the onset of the yellow interval at the traffic signal. The recommended practice is to time the onset of flash as a function of posted speed for the distance from the flasher to the stop line. Timing the onset of flash for speeds greater than the posted speed encourages speeding to clear the intersection before the onset of the red interval.

Safety Performance

The introduction of advance-warning flashers on the approaches to a signalized intersection appears to be associated with a reduction in right-angle collisions.

Angle collisions were reduced by 35 percent at 11 signalized intersections where a SIGNAL AHEAD sign was installed on one or more approaches.⁽¹⁶¹⁾

A study conducted in Minnesota involving the installation of an advance-warning flasher on one approach found a 29 percent reduction in the number of red-light running events, in particular those involving trucks (63 percent). The study did not use a control or comparison group of intersection approaches.⁽¹⁶²⁾

Results from a study of 106 signalized intersections in British Columbia showed that intersections with advance-warning flashers have a lower frequency of crashes than similar locations without flashers. The results were not statistically significant at the 95th percentile confidence level. Benefits were found primarily for moderate-to-high traffic volumes on the minor approach.⁽¹⁶⁰⁾

Exhibit 10-11 shows selected references to safety benefits of advance-warning devices.

Treatment	Finding
Post SIGNAL AHEAD signs. ⁽¹⁶¹⁾	35 percent estimated decrease in angle collisions.
Advance-warning flasher ⁽¹⁶³⁾	8 percent estimated decrease in all crash types, all severities.
	11 percent estimated decrease in injury crashes (all crash types)
	43 percent estimated decrease in right angle crashes (all severities)
	1 percent estimated decrease in rear-end crashes (all severities)

Exhibit 10-11. Safety benefits associated with advance warning signs and flashers: selected findings.

Operational Performance

Advance-warning flashers have no documented effect on intersection capacity.

Multimodal Impacts

Flashers may be particularly useful for larger commercial vehicles, which need a greater distance to stop on intersection approaches.

Socioeconomic Impacts

Advance-warning flashers that activate before the onset of the yellow phase may be costly to install.

Enforcement, Education, and Maintenance

Another study investigated the effect of advance flashing amber signs at two intersection approaches. Results showed that only a few drivers responded to the start of flashing by slowing down. The majority of vehicles increased their speed; many significantly exceeded the speed limit. Fifty percent of drivers who saw the flashing amber within the first 3 seconds it was displayed continued through the stop line. Driver education and police enforcement should be applied to ensure that drivers respond appropriately to signal-activated advance warning flashers.⁽¹⁶⁴⁾

Summary

Exhibit 10-12 summarizes the issues associated with advance warning treatments.

Characteristics	Potential Benefits	Potential Concerns
Safety	Decreases angle collisions.	May induce some drivers to try to beat the light.
Operations	Negligible effect.	None identified.
Multimodal	Heavy vehicles given more time to stop.	None identified.
Physical	None identified.	Activated advance-warning flashers require link to traffic controller at intersection.
Socioeconomic	Signing and continuous advance- warning flashers have low cost.	Activated advance-warning flashers have moderate costs.
Enforcement, Education, and Maintenance	None identified.	Enforcement may be needed to ensure compliance with the signal indications.

Exhibit 10-12. Summary of issues related to advance warning treatments.

10.2 SIGNING AND SPEED CONTROL TREATMENTS

10.2.1 Improve Lane Use and Street Name Signing

Description

For some intersections, the use of signs beyond the minimum required by the MUTCD may improve safety and/or operations. $^{(1)}$

Application

Signing treatments to consider at signalized intersections include:

- Increase the size of signs. Signs located on wide streets are more difficult to read from the far lane, and signs located overhead appear smaller to drivers and therefore need to be substantially larger than ground-mounted signs to have the same visibility.⁽⁶⁹⁾
- Use overhead lane-use signs. These provide improved visibility and may help correct a problem with sideswipe crashes on approach due to last-minute lane changes. These are especially important for treatments involving indirect turning movements that may violate driver expectation. In addition, ground-mounted signs may be less visible in a typical urban environment due to visual clutter.
- Use large street name signs on mast arms. These signs, either retroreflective or internally illuminated, are visible from a greater distance.

• Use advance street name signs.

Safety Performance

Advance lane-use signs may improve safety by reducing last-minute lane changes and better preparing drivers to watch for potential conflicts. One study in Winston Salem, NC based on limited data reported that advance signing reduced angle collisions by 35 percent.⁽¹⁶¹⁾ An evaluation of advance street name signs estimated these devices were associated with a 10 percent reduction in sideswipe crashes.⁽¹⁶⁵⁾

Selected findings of safety benefits of other types of improved signing at signalized intersections are shown in Exhibit 10-13.

Treatment	Finding
Install larger signs. ⁽¹⁰¹⁾	15 percent decrease in all collisions.
Overhead lane-use signs. ⁽¹⁶⁶⁾	10 percent decrease in rear-end collisions. 20 percent decrease in sideswipe collisions.
Install advance warning signs. (161)	35 percent estimated reduction in angle crashes.
Install advance street name signs. (165)	10 percent estimated reduction in sideswipe crashes.

Exhibit 10-13. Safety benefits associated with advance lane-use signs: selected findings.

Operational Performance

Advance lane-use signing may improve lane utilization at the intersection and therefore improve capacity if the affected movement is critical.

Physical Impacts

Sign supports are obstacles that could injure bicyclists, motorcyclists, pedestrians, and vehicle occupants.⁽⁶⁹⁾ Therefore, each sign should be carefully located to minimize the potential hazard. In addition, large advance signs can be difficult to locate in areas with tight right-of-way or where a sidewalk would be adversely affected by the sign or its support.

Socioeconomic Impacts

Low to moderate cost.

Summary

Exhibit 10-14 summarizes the issues associated with improving signing.

Characteristic	Potential Benefits	Potential Concerns
Safety	Various types of improved informational signing can reduce crashes.	None identified.
Operations	Advance signing may improve lane utilization and capacity of the intersection.	None identified.
Multimodal	None identified.	None identified.
Physical	None identified.	Sign supports must be designed to minimize potential hazard.
Socioeconomic	None identified.	Low to moderate cost.
Enforcement, Education, and Maintenance	None identified.	Added sign inventory to manage/maintain

Exhibit 10-14. Summary of issues for improving signing.

10.2.2 Reduce Operating Speed

Excessive speed on an approach may lead to drivers' running a red light, braking suddenly to avoid a signal change, or losing control of the vehicle while attempting a left or right turn. Reducing the operating speed on an intersection approach cannot be accomplished through simply lowering the posted speed limit. Research suggests that drivers use the road and the surrounding road environment in choosing the operating speed of their vehicle, as opposed to a posted speed limit.

Possible countermeasures to reduce vehicles' operating speed include landscaping, rumble strips, medians, narrow travel lanes, bike lanes, on-street parking, curb radii reductions, and automated speed enforcement. Several of these treatments are discussed elsewhere in the guide; the reader is encouraged to refer to those sections for more information.

10.3 ROADWAY SURFACE IMPROVEMENTS

10.3.1 Improve Pavement Surface

Description

An important objective of highway design objective is ensuring that pavement provides sufficient friction and provides for adequate drainage. A polished pavement surface, a surface with drainage problems, or a poorly maintained road surface can contribute to crashes at or within intersections. Within an intersection, the potential for vehicles on adjacent approaches to be involved in crashes contributes to the likelihood of severe (angle) crashes, particularly in crashes where the driver is unable to stop in time.

Water can accumulate on pavement surfaces due to rutted wheel paths, inadequate crowns, and poor shoulder maintenance. These problems can also cause skidding crashes and should be treated when present. While there is only limited research on such site-specific programs, the results provide confidence that pavement improvements are effective in decreasing crashes related to wet pavement. The effectiveness will vary with respect to location, traffic volume, rainfall intensity, road geometry, temperature, pavement structure, and other factors

Vehicles often experience difficulties in coming to a safe stop at intersections because of reduced friction on wet or slippery pavement. A vehicle will skid during braking and maneuvering

when frictional demand exceeds the friction force that can be developed between the tire and the road surface; friction is greatly reduced on a wet and slippery surface, which has 20 to 30 percent less friction than a dry road surface.⁽¹⁶⁷⁾

Water pooling on or flowing across the roadway can prevent smooth operation of an intersection if vehicles are forced to decelerate or swerve in order to proceed safely through the intersection. It is necessary to intercept concentrated storm water at all intersection locations before it reaches the highway and to remove over-the-curb flow and surface water without interrupting traffic flow or causing a problem for vehicle occupants, pedestrians, or bicyclists. Improvements to storm drainage may be needed to improve intersection operations and safety. Potholes, if present on an approach, increase the likelihood of drivers' swerving or braking to avoid damage to their vehicles. A rough surface may also allow water to pool, and in colder environments, can cause ice to form on an intersection approach.

Proper drainage and a high-quality surface will prevent problems related to pooled water and lack of skid resistance. Skid resistance is an important consideration in pavement design, and polished pavement surfaces should be addressed to reduce the potential for skidding. Both vehicle speeds and pavement condition affect the surface's skid resistance. Improving the pavement condition, especially for wet weather conditions, can be accomplished by providing adequate drainage, grooving existing pavement, or overlaying existing pavement.

Improvements to pavement condition should have high initial skid resistance, ability to retain skid resistance with time and traffic, and minimum decrease in skid resistance with increasing speed.

Applicability

Improvements related to skid resistance, drainage problems, and pavement surface should be considered when:

- A high number of wet road surface collisions occur.
- Angle collisions occur and many involve one or more vehicles' skidding into the intersection and striking another vehicle.
- Single vehicle collisions occur where the driver lost control due to skidding.
- Rear-end or sideswipe collisions occur when drivers swerve or brake to avoid potholes or puddles.
- Change in type of control.

Safety Performance

Several pavement treatments appear to reduce collisions, although the study locations for the following findings of effectiveness were not necessarily signalized intersections. A 2010 California study reported that resurfacing with grooved pavement reduced wet road crashes by 50 percent, but results were not significant due to the lack of sufficient data.⁽¹⁶⁸⁾ Grooves carry off water from the road surface and increase the coefficient of friction between tires and pavement. The same study found that resurfacing with open-graded asphalt concrete significantly decreased the number of wet-related collisions by 42 percent. Another paper describes a non-carbonate surface treatment used at a wide range of sites as part of a comprehensive Skid Accident Reduction Program. Wet pavement collisions dropped by 61 to 82 percent; fatal and injury wet pavement collisions, resurfacing the approaches to an intersection will likely reduce the number of rear-end or sideswipe collisions caused when vehicles swerve or slow to avoid potholes. It may, however, lead to a higher operating speed and an overall shift in the collision profile toward collisions of greater severity.

Exhibit 10-15 shows the safety benefits associated with nonskid treatments, drainage improvements or resurfacing.

Signalized Intersections: Informational Guide

Treatment	Finding
Groove pavement. ⁽¹⁶⁸⁾	50 percent estimated reduction in wet pavement collisions.
Resurface with open-graded asphalt concrete. ⁽¹⁶⁸⁾	42 percent estimated reduction in wet pavement collisions.
Overlay pavement. ⁽¹⁷⁰⁾	27 percent estimated reduction in all collisions.
	29 percent estimated reduction in fatal collisions.
	16 percent estimated reduction in injury collisions.
	32 percent estimated reduction in PDO collisions.
Resurface. ⁽¹⁷¹⁾	5 percent estimated reduction in fatal/serious injury collisions.
	1 percent estimated increase in all collisions.
Improve pavement friction (increase skid resistance).	40 to 78 percent estimated reduction in wet road crashes
Improve pavement texture. ⁽¹⁷²⁾	5 percent estimated reduction in all collisions.
Noncarbonate surface treatment. (169)	61 to 82 percent estimated reduction in wet pavement collisions
	73 to 82 percent estimated reduction in fatal/injury collisions on wet pavement.
Drainage improvement. ⁽¹⁰¹⁾	20 percent estimated reduction in all collisions.

Exhibit 10-15. Safety benefits associated with nonskid treatments, drainage improvements, or resurfacing: selected findings.

Operational Performance

A pavement in poor condition can result in lower saturation flow rates and, consequently, reduce the capacity of the intersection. If vehicles need to proceed at slow speeds through an intersection or deviate from the travel path to avoid potholes, pooled water, or ice, operations likely will degrade.

Pavement resurfacing and drainage improvements usually improve intersection operations, although no known research conclusively indicates the expected capacity benefit of these treatments.

Multimodal Impacts

If road improvements are being carried out, sidewalks and bike paths adjacent to the intersection should be considered for skid-resistant treatments, checked for adequate drainage, and repaired if uneven surfaces exist due to cracking, frost heaves, etc. This will reduce pedestrian tripping hazards and the likelihood of bicyclists' swerving into traffic to avoid potential roadside hazards.

Enforcement, Education, and Maintenance

Pavement improvements (particularly resurfacing) may convey the message to drivers that they can now travel at higher speeds. Speeds on the approaches to the intersection should be monitored to ensure that the speed profile has not increased significantly in the post-implementation period. If speed has increased significantly and this is leading to degradation in safety, speed enforcement should be considered.

Summary

Exhibit 10-16 summarizes the issues associated with pavement treatments.

Signalized Intersections: Informational Guide

Characteristic	Potential Benefits	Potential Concerns
Safety	Wet-weather collisions reduced. Angle collisions due to skidding reduced. Rear-end/sideswipe collisions due to swerving/braking reduced.	Higher speed profile is a possible byproduct.
Operations	Improved traffic flow, less swerving.	None identified.
Multimodal	None identified.	None identified.
Physical	No additional requirements.	None identified.
Socioeconomic	None identified	Moderate to high costs associated with improvements.
Enforcement, Education, and Maintenance	None identified.	Enforcement may be needed to control speeds.

Exhibit 10-16. Summary of issues for pavement treatments.

10.3.2 Improve Cross Section

Description

Roadways should intersect on as flat a grade as possible to prevent difficulty in vehicle handling, especially when vehicles will likely need to wait for their turn to enter the intersection (as with left-turn lanes). However, it is not always feasible to design a level intersection, so consideration should be given to the profiles of the roadways as they intersect. Practitioners should examine roadway profiles and crowns to determine whether the intersection of these slopes contributes to vehicle handling difficulties. Generally, the pavement of the minor road is warped so that the crown is tilted to the same plane as the major road profile. Another option is to flatten the cross sections of both roadways so that they are each inclined to intersect with the profile of the other road. This method can create a large, flat roadway area, which in turn can lead to drainage problems; therefore, this design should only be used on smaller intersections or where the drainage problem can be solved. A third option involves maintaining constant cross sections on both roadways, and altering the centerline profiles to provide smooth pavement. This is a less desirable option than the previous two discussed, given that drivers from both directions must pass over three grade breaks at the intersection.⁽³⁾

In addition to the benefits to vehicles, pedestrians and bicyclists benefit from improvements to the cross section of an intersection. Severe grades and cross slopes can be difficult for bicyclists and pedestrians to negotiate. For example, flatter uphill grades allow bicyclists to more easily accelerate from a complete stop. Low cross slopes of no more than 2 percent are essential for pedestrians with mobility impairments per ADAAG, as severe cross slopes can make a roadway inaccessible.⁽³⁶⁾

Application

This treatment may be applicable at intersections where the grades of intersecting roads are greater than 3 percent and one or both of the following is true:

- A high number of rear-end collisions are occurring due to driver hesitation on the approaches and while making left or right turns.
- A high number of left-turn collisions are occurring due to poor sight distance.

Safety Performance

The cross section improvements discussed above will improve sight distance, and therefore should decrease left-turn conflicts with through vehicles. It will also allow a more uniform operating speed through the intersection on the major road approaches, reducing rear-end conflicts.

Operational Performance

The cross section improvements discussed above may reduce the time headway between vehicles and increase the capacity of the intersection.

Multimodal Impacts

Larger commercial vehicles and transit buses will particularly benefit from cross section improvements to the intersection. During any intersection reconstructing, the engineer should consider improvements to the adjacent sidewalks if pedestrian facilities exist and are being used.

Socioeconomic impacts

Cross section improvements may have moderate costs. They may be difficult to implement in areas where there is little or no right-of-way. Coordination with adjacent landowners may be needed.

Education, Enforcement, and Maintenance

Cross section improvements may convey the message that drivers can now travel at higher speeds. Speeds on the approaches to the intersection should be monitored to ensure that the speed profile has not increased significantly in the post-implementation period. If speed has increased significantly and this leads to safety problems, consider police speed enforcement. Note that cross section improvements on hilly roadways may actually result in reduced speeds.

The effectiveness of this treatment will likely be enhanced if performed in conjunction with a comprehensive and timely winter road maintenance program in colder climates.

Summary

Exhibit 10-17 summarizes the issues associated with cross section improvements.

Characteristic	Potential Benefits	Potential Concerns
Safety	Decrease in rear-end collisions due to driver braking.	Higher speed profile.
	Decrease in left-and right-turning collisions involving inadequate sight distance.	
Operations	Better traffic flow.	None identified.
Multimodal	Improved driver handling of large trucks and transit. Sidewalks and curb ramps will be made more accessible by retrofitting to new cross section.	None identified.
Physical	None identified.	Significant right-of-way requirements.
Socioeconomic	None identified.	Moderate costs.
Enforcement, Education, and Maintenance	None identified.	Speed enforcement may be necessary. Winter maintenance may be needed.

Exhibit 10-17. Summary of issues for cross section improvements.

10.3.3 Remove Obstacles from Clear Zone

Description

Roadside objects can be a particular hazard to motorists on high-speed approaches. Utility poles, luminaires, traffic signal poles, bus shelters, signs, and other street furniture should be moved back from the edge of the road if possible. In general, a signalized intersection and the entire area within the right-of-way should be kept free of visual clutter, particularly illegally placed commercial signs.

Application

For high speed approaches at rural intersections, obstacles should be routinely removed from the clear zone on intersection approaches. Removing objects should be considered an immediate priority when:

- An unusually high number of run-off-the-road injury and fatal collisions involving roadside obstacles occurs.
- There is evidence in the collision police report that drivers claim distraction by unnecessary or illegally placed signing or other visual clutter.

Poles and other hardware that cannot be removed could be shielded from impact by errant vehicles.

For urban, low-speed environments, the right-of-way is often limited. It may not be practical to establish a full-width clear zone. Types of obstructions that may be located near signals could be fire hydrants, signs, utility poles, transit facilities, and luminaire supports. Obstacles should be located far enough away from the shoulder and curb to accomplish the following:

- Avoid adverse impacts on vehicle lane position and encroachments into other lanes.
- Improve sight distance for all users at the signal.
- Reduce the travel lane encroachments from occasional parked and disabled vehicles.
- Minimize contact between obstacles and vehicles.

The practitioner should relocate objects a minimum of 4 feet and at least 6 feet where feasible under these conditions. Other considerations can be found in the Roadside Design Guide.⁽⁶²⁾

Safety Performance

This treatment should decrease the frequency and severity of run-off-the-road collisions involving roadside obstacles. An Ohio study on roadside safety treatments estimated that removing or relocating fixed objects outside of the clear zone was associated with a 38 percent reduction in fatal and injury crashes.⁽¹⁷³⁾ This study was not limited to intersections.

Physical Impacts

Moving objects further away from the roadside may be difficult to implement in built-up areas where right-of-way is limited. Studies have shown under urban conditions that a minimum offset from curbs of 4 ft and, if possible, a distance of 6 ft can reduce fixed object crashes. For buffer areas between sidewalks and curbs, the practitioner should only allow posts with frangible bases.⁽¹⁷⁴⁾

Enforcement, Education, and Maintenance

Traffic engineers should coordinate with their equivalents in the planning department and maintenance staff to ensure that the entire right-of-way surrounding the intersection and its approaches stays free of obstacles and extraneous signing.

Summary

Exhibit 10-18 summarizes the issues associated with removing obstacles from the clear zone.

Characteristic	Potential Benefits	Potential Concerns
Safety	Reduction in the number and severity of single-vehicle collisions.	None identified.
Operations	None identified.	None identified.
Multimodal	None identified.	None identified.
Physical	-	Obstacle removal may be difficult in built-up areas with limited right-of-way.
Socioeconomic	None identified.	None identified.
Enforcement, Education, and Maintenance	-	Ongoing maintenance will be needed to ensure that the clear zone remains free of obstacles.

Exhibit 10-18. Summary of issues for removing obstacles from the clear zone.

10.4 SIGHT DISTANCE TREATMENTS

10.4.1 Improve Sight Lines

Description

Adequate sight distance for drivers contributes to the safety of the intersection. In general, left-turning vehicles need sight distance to see opposing through vehicles approaching the intersection in situations where a permissive left-turn signal is being used. Also, where right turns on red are permitted, right-turning vehicles need adequate sight distance to view vehicles approaching from the left on the cross street, as well as opposing vehicles turning left onto the cross street. AASHTO's *A Policy on Geometric Design of Highways and Streets* recommends providing adequate sight distance for all movements at signalized intersections where the signal operates on flash at times.⁽³⁾

Sight distance at signalized intersections should:

- Provide drivers making permissive left-turning movements need enough sight distance to judge on-coming traffic.
- Provide clear sight lines to all signal faces.
- Provide clear sight lines at pedestrian crosswalks.
- Provide clear sight lines at bike lanes and other bicycle facilities or treatments.
- Have sight distance at or above the above the minimums used in the AASHTO Green Book when placed on flash for emergencies.

Carefully consider landscaping at signalized intersections; it could prevent motorists from making left and right turns safely due to inadequate sight distances. Practitioners should ensure that traffic signs, pedestrian crossings, and nearby railroad crossing and school zones are not obstructed. Median planting of trees or shrubs greater than 2 ft in height should be well away from the intersection (more than 50 ft). No plantings having foliage between 2 ft and 8 ft in height should be present within sight triangles. Low shrubs or plants not exceeding a height of 2 ft are appropriate on the approaches to a signalized intersection, either on the median, or along the

edge of the roadway. The 1990 FHWA Guide, *Vegetation Control for Safety: A Guide for Street and Highway Maintenance Personnel,* provides additional guidelines and insight on vegetation control with regard to sight distance issues.⁽⁸⁷⁾

Application

Visibility improvements at signalized intersections should be considered when:

• Inadequate sight distance exists between vehicles and/or pedestrian. Any obstructions that limit sight distance of any types of users should be removed or relocated. A high number of left- and right-turn collisions are occurring.

Safety Performance

Crashes related to inadequate sight distance (specifically, angle- and turning-related) would be reduced if sight distance problems were improved. Intersections with sight distance problems will experience higher collision rates.⁽¹⁵⁷⁾ Older drivers are likely to have problems at intersections with limited sight distances, as they may need more time to perceive and react to hazards. Exhibit 10-19 shows the expected reduction in number of collisions per intersection per year, based on an FHWA report.⁽¹⁷⁵⁾

AADT* (1000s)	Increased Sight Distance		
	20 ft–49 ft	50 ft–99 ft	> 100 ft
< 5	0.18	0.20	0.30
5-10	1.00	1.30	1.40
10-15	0.87	2.26	3.46
> 15	5.25	7.41	11.26

* Annual average daily traffic entering the intersection

Exhibit 10-19. Expected reduction in number of crashes per intersection per year by increased sight distance.⁽¹⁷⁵⁾

A report by FHWA cites sight distance improvements as being one of the most cost-effective treatments (see Exhibit 10-20). Fatal collisions were reduced by 56 percent and nonfatal injury collisions were reduced by 37 percent at intersections having sight distance improvements.⁽¹⁷⁶⁾ The Handbook of Road Safety measures estimates that increasing triangle sight distance is associated with a 48 percent reduction in injury crashes, and an 11 percent reduction in property damage crashes.⁽¹⁴⁵⁾ However, these results include both signalized and unsignalized intersections.

Treatment	Implication
Sight distance improvements. ⁽¹⁷⁶⁾	56 percent estimated reduction in fatal collisions.
	37 percent estimated reduction in injury collisions.
Sight distance improvements. ⁽¹⁴⁵⁾	48 percent estimated reduction in injury crashes.
	11 percent estimated reduction in property damage crashes.

* Note: these crash results include both signalized and unsignalized intersections

Exhibit 10-20. Safety benefits associated with sight distance improvements: selected findings.

Socioeconomic Impacts

Sight distance improvements can often be achieved at relatively low cost by clearing sight triangles of vegetation or roadside appurtenances.

The most difficult aspect of this strategy is the removal of sight restrictions located on private property. The legal authority of highway agencies to deal with such sight obstructions varies

widely, and the time (and possibly the cost) to implement sight distance improvements by clearing obstructions may be longer if those obstructions are located on private property than if they are on public property. If the object is mature trees or plantings, then environmental issues may arise. Larger constructed objects (i.e., bus shelters, buildings) may not be feasibly removed. Consider other alternatives in these situations.

Multimodal Impacts

The appropriate use of landscaping can visually enhance a road and its surroundings. Landscaping may act as a buffer between pedestrians and motorists and reduce the visual width of a roadway, serving to reduce traffic speeds while providing a more pleasant environment. However, landscaping should not interfere with the movement of pedestrians along sidewalks, nor should it block the motorist's view of the pedestrian, or the pedestrian's view of the motorist.

Enforcement, Education, and Maintenance

All plantings should have an adequate watering and drainage system, or should be drought resistant. This will minimize the amount of maintenance required and reduce the exposure of maintenance staff to traffic. Plantings should not be allowed to obstruct pedestrians at eye height or overhang the curb onto the pavement.

Summary

Exhibit 10-21 summarizes the issues associated with visibility treatments.

Characteristics	Potential Benefits	Potential Concerns
Safety	Left- and right-turning collisions involving inadequate sight distance.	None identified.
Operations	Negligible.	None identified.
Multimodal	Provides additional warning for heavy vehicles making left and right turns. Appropriate landscaping will provide a more pleasant environment for pedestrians.	None identified.
Physical	None identified.	May be significant right-of-way requirements.
Socioeconomic	Appropriate landscaping will visually enhance intersection and surroundings.	None identified.
Enforcement, Education, and Maintenance	None identified.	Landscaping may require extensive maintenance.

Exhibit 10-21. Summary of issues for visibility improvements.

10.5 DILEMMA ZONE DETECTION

Description

On a high-speed approach to a signalized intersection there is a length of roadway in advance of the intersection, commonly referred to as the "dilemma zone," wherein drivers may be indecisive and respond differently to the onset of the yellow signal. When in the dilemma zone at the onset of yellow, some drivers may stop abruptly, while others may decide not to stop and perhaps even accelerate through the intersection. Such variation in driver behavior is conducive to the occurrence of rear-end, right-angle, and left-turn collisions. A dilemma zone detection system uses pulse (or advanced) detectors placed at one or more locations on the intersection

approach to extend the green and prevent the onset of yellow while approaching vehicles are in the dilemma zone (see Section 5.5.1).

The current state of the practice includes two typical installations:

- 1. Basic detection/actuation to increase the probability of gap-outs and reduce max-outs to improve both safety and operations.
- 2. Detection systems that take more dynamic control, extending all-red time if the system detects that a driver will likely run the red light.

As shown in Exhibit 10-22, some States use a rule of thumb of 5 seconds in advance of the stop line to provide dilemma zone protection. On very high speed routes, an additional set of detectors may be placed 8 seconds from the stop line. Exhibit 10-23 illustrates the distance traveled by vehicles at various speeds.

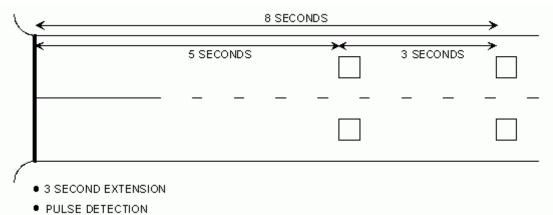


Exhibit 10-22. Dilemma Zone and detector placement.⁽⁶³⁾

Speed (mph)		Tim	ne (s)
		5	8
mph	fps		e Traveled ft)
5	7.3	37	59
10	14.7	73	117
15	22.0	110	176
20	29.3	147	235
25	36.7	183	293
30	44.0	220	352
35	51.3	257	411
40	58.7	293	469
45	66.0	330	528
50	73.3	367	587
55	80.7	403	645
60	88.0	440	704
65	95.3	477	763
70	102.7	513	821
75	110.0	550	880
80	117.3	587	939

Exhibit 10-23. Vehicular distances traveled by speed. (Adapted from 63)

Application

Dilemma zone detection systems apply to high-speed signalized intersections, often located in rural or suburban areas. This treatment (more specifically, a dynamic type control) is especially useful on high-speed approaches with heavy volumes of large trucks.

Safety Performance

An evaluation of a dilemma zone detection system developed for the Texas Department of Transportation estimated that red light violations were reduced by 58 percent, heavy vehicle red light violations were reduced by 80 percent, and severe crash frequency was reduced by 39 percent.⁽¹⁷⁷⁾

Operational Performance

The dilemma zone detection system developed for the Texas Department of Transportation was associated with a 14 percent reduction in approach delay and a 9 percent reduction in stop frequency. Other dynamic detection system designs for protection achieve similar operational improvements.

Multimodal Impacts

Large trucks and tour buses, which require longer stopping distances than passenger vehicles, especially benefit from the use of dilemma zone detection.

Socioeconomic impacts

Reductions in approach delay, heavy vehicle braking, and injury crashes provide economic benefits. Significant initial costs are associated with design and implementation of dilemma zone detection systems.

Education, Enforcement, and Maintenance

Traffic signal maintenance technicians may require additional training on technical aspects of dilemma zone detection systems.

Summary

Exhibit 10-24 summarizes the issues associated with the application of dilemma zone detection.

Characteristics	Potential Benefits	Potential Concerns
Safety	Reduced red-light running and injury crashes.	None identified.
Operations	Reduced approach delay and stop frequency.	None identified.
Multimodal	Especially useful for large trucks.	None identified.
Physical	None identified.	Possible disturbance to ROW and/or pavement surface.
Socioeconomic	Economic benefits from reductions in approach delay, heavy vehicle braking, and injury crashes.	Significant initial costs for design and implementation.
Enforcement, Education, and Maintenance	None identified.	Traffic signal technicians may require additional training for maintenance of installed equipment.

Exhibit 10-24. Summary of issues for dilemma zone detection

10.6 RED LIGHT CAMERA ENFORCEMENT

Description

Red light cameras automatically photograph vehicles whose drivers run red lights. The cameras are connected to the traffic signal and to sensors monitoring traffic flow just before the crosswalk or stop line. Vehicles that do not stop during the red phase are photographed. Depending on the particular technology, the system captures a series of photographs and/or a video clip showing the red light violator prior to entering the intersection on a red signal, as well as the vehicle's progression through the intersection. Cameras record the date, time of day, time elapsed since the beginning of the red signal, vehicle speed, and license plate. Tickets typically are mailed to owners of violating vehicles, based on a review of photographic evidence.

Application

Red light cameras are typically deployed at specific approaches to urban and suburban intersections with histories of red-light running crashes. Red light cameras may be especially useful on approaches where police officers have difficulty conducting traditional red light enforcement due to constrained environments and/or high traffic speeds.

It is vital to put public safety first in decisions regarding enforcement of traffic laws, including an emphasis on non-automated enforcement alternatives where applicable.⁽¹⁷⁸⁾ Note that other infrastructure treatments should be considered before automated red light enforcement, including the following:

- Updating signal timing to reflect current traffic conditions.
- Updating clearance timing per recommended practice.
 - Ensuring that clearance timing practice does not vary between State and local agencies in a region.
- Clearing sight lines to signal heads.
- Signing in advance of the intersection.
- Installing advance, signal-activated warning flashers.
- Installing reflectorized backplates.

Safety Performance

In NCHRP Report 729: *Automated Enforcement for Speeding and Red Light Running* three of the four case studies included information on safety performance:⁽¹⁷⁹⁾

- The program in the city of Portland, Oregon, resulted in a 69 to 93 percent reduction in red-light running violations.
- The program in the city of Virginia Beach, Virginia, reduced red light violations more than 69 percent over a 13 month period since the activation of the red light cameras.
- An audit of the program in the city of San Diego, California, found an 8 percent reduction in crashes from red-light running and a 16 percent reduction in red-light running related crashes at the specific signals with cameras. The city has initiated many changes to the program since completion of the audit.

Some studies, including FHWA's Safety Evaluation of Red Light Cameras, ⁽²⁰⁷⁾ have reported reductions in angle crashes along with increases in rear end crashes, resulting in a net decrease in aggregate crash severity. The *Highway Safety Manual* ⁽¹¹⁾ (Chapter 14) includes crash modification factors for red light cameras that indicate a 26 percent reduction in angle crashes and an 18 percent increase in rear-end crashes. However, NCHRP Report 729 concluded that the overall impact on violations and crashes related to a red light enforcement program needs further study.

Operational Performance

No operational performance measures have been reported for this treatment. However, changes to signal timing, detector settings, and other components of the intersection must be communicated to the division responsible for overseeing the red light program. As these adjustments are made, changes to the red light cameras can be made to ensure proper operation.

Multimodal Impacts

Pedestrians and bicyclists are vulnerable to impacts from motor vehicles that run red lights, and thus stand to benefit from reductions in red-light running behavior.

Socioeconomic impacts

A successful red light camera program will modify driver behavior in order to achieve a decrease in severe crashes associated with red-light running. The citations generated from red light cameras will result in fines and fees, which should be distributed in accordance with the state laws and/or local ordinances. In most cases, the citation fines and fees may be used to offset the cost of the red light camera program, with any excess monies used expressly for other road safety purposes.

The judiciary is critical to a successful red light camera program from the development of legislation to the choice of camera right down to the processing of violations. It is therefore important to get them involved as early on in the process as possible and for the judiciary to champion the effort. Another reason to involve them is to ensure that they are prepared to support the prosecution of the issued tickets when the red light camera system is activated.⁽¹⁸⁰⁾

Education, Enforcement, and Maintenance

A key component in developing a new enforcement program is informing and educating the public about the program, especially the purpose, the camera locations, the process for adjudication of citations, the use of revenue, and results of program evaluation in terms of effect on violations and crashes. In addition to conducting a public information campaign, a jurisdiction should consider assessing public support prior to, and during, implementation of the program.

Summary

Exhibit 10-25 summarizes the issues associated with red light cameras

Characteristics	Potential Benefits	Potential Concerns
Safety	Reduced red-light running and angle crashes.	Increased rear-end crashes.
Operations	None identified.	Changes to signal timing must be addressed when an agency installs red light cameras.
Multimodal	Pedestrians and bicyclists benefit from reduced red-light running.	None identified.
Physical	None identified.	Additional equipment installed along the roadside.
Socioeconomic	Fines generated by citations typically cover the cost of camera installation and operation	Fine revenue in excess of program operating costs can be a source of controversy.
Enforcement, Education, and Maintenance	Enforcement should be accompanied by public information and education.	Maintenance of installed equipment.

Exhibit 10-25. Summary of issues for red light cameras.

1

Chapter 11

INDIVIDUAL MOVEMENT TREATMENTS

TABLE OF CONTENTS

1.0	Indivi	dual Moveme	ent Treatments	11-3
	11.1	Left-Turn Tr	eatments	11-3
		11.1.1 Add	Single Left-Turn Lane	11-3
		11.1.2 Mul	tiple Left-Turn Lanes	11-15
	11.2	Right-Turn T	Treatments	11-18
			nnelizing Islands	
		11.2.2 Rigl	nt-Turn Lanes	11-23
		11.2.3 Pro	vide Double Right-Turn Lanes	11-28
		11.2.4 Res	tricting Turns, U-Turns	11-30
		11.2.5 Prov	vide Auxiliary Through Lanes	11-31
		11.2.6 Deli	neate Through Path	11-34
	11.3	Variable Lar	ne Use Treatments	11-36
		11.3.1 Prov	vide Reversible Lanes	11-36
		11.3.2 Pro	vide Variable Lane Use Assignments	11-37

LIST OF EXHIBITS

11-1 Diagram of a single left-turn lane
11-2 Rule-of-thumb intersection capacities assuming various exclusive left-turn treatments 11-5
11-3 Narrow left-turn lanes may be used effectively in retrofit situations
11-4 Illustration of negative, no, and positive offset left-turn lanes
11-5 Example of positive offset left-turn lane
11-6 Guidelines for use of left-turn phasing
11-7 Guidelines for selection of type of left-turn phasing 11-11
11-8 Minimum recommended sight distance for allowing permissive left turns
11-9 Safety benefits associated with left-turn lane improvements for four approach, urban and
suburban intersection
11-10 Crash effects of modifying left-turn phases 11-13
11-11 Summary of issues for left-turn lanes
11-12 Safety benefits associated with double left-turn lanes: selected findings
11-13 Summary of issues for multiple left-turn lanes
11-14 Channelized islands
11-15 Example illustration of a channelized right-turn lane 11-21
11-16 Safety benefits associated with right-turn channelization: selected findings
11-17 Summary of issues for channelized right-turn lanes 11-23
11-18 Diagram of a typical right-turn lane
11-19 Right-turn lane volume warrants
11-20 Narrow (8 ft) right-turn lanes may be used effectively in retrofit situations 11-26
11-21 Safety benefits associated with right-turn improvements 11-27
11-22 Summary of issues for right-turn lanes
11-23 Summary of issues for double right-turn lanes
11-24 Summary of issues for turn prohibitions
11-25 Diagram of an auxiliary through lane
11-26 Summary of issues for auxiliary through lanes
11-27 Example of delineated paths
11-28 Summary of issues for path delineation
11-29 Summary of issues for reversible lanes

11-30 Example use of variable lane use sign to add a third left-turn lane during certain times	
of day11	1-38
11-31 Example use of variable lane use sign to add a second right-turn lane along a corridor	
during certain times of day 11	1-39
11-32 Summary of issues for variable lane use 11	1-39

11.0 INDIVIDUAL MOVEMENT TREATMENTS

This section identifies treatments for vehicle movements at signalized intersections. This section will start with left- and right-turn lanes, including multiple turning lanes. Relocating or prohibiting movements will be the next treatment discussed. Information related to through lane treatments will follow. Finally, this chapter will cover treatments to be used sparingly, but are available in response to unusually heavy traffic conditions (e.g., variable and reversible lane usage). The treatments in this section primarily address the following safety and operational concerns facing practitioners:

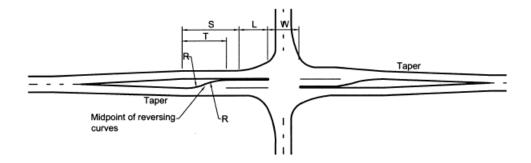
- Choosing appropriate treatment that addresses common crash types at signals.
- Impacts to all users are considered when choosing a treatment.
- An intersection that operates with nominal delay and queuing.

11.1 LEFT-TURN TREATMENTS

This section discusses the key safety, operational, and design characteristics associated with left-turn treatments that range in scope from a single left-turn lane to multiple left-turn lanes.

Left-turning vehicles encounter conflicts from several sources: pedestrians; bicyclists; opposing through traffic; through traffic in the same direction; and crossing traffic. These conflicts can cause angle-, sideswipe, left-turn, and rear-end crashes.

The demand for left-turn movements also affects the amount of green time that is allocated to other traffic movements. Operational treatments may be justified to minimize the amount of green time that is allocated to left-turn movements. This will allow the practitioner to reallocate time to other critical movements.


11.1.1 Add Single Left-Turn Lane

Adding a single left-turn lane at an approach that currently has shared through and left-turn movements is one the most common approaches to improve the safety and reduce delay. An example of a typical left-turn lane is shown in Exhibit 11-1. Installing a left-turn lane on one approach does not necessarily mean that a left-turn lane for the opposing left is necessary. If one left-turn lane is installed, the practitioner should ensure that the traveling path of through traffic transitions through the signal into the correct lane

Left-turning vehicles stopped in traffic while waiting for a gap in opposing traffic are prone to rear-end crashes. Separate left-turn lanes provide a refuge while waiting for a gap. Reviewing the crash history collision diagrams or the results of a traffic conflict study can provide the basis for adding a left-turn lane or changing left-turn phasing. Practitioners should look for a history of rear ends or left-turn crashes on any given approach.

A left-turn lane provides left-turning vehicles space to safely decelerate away from through traffic. Reducing this conflict directly impacts rear end collisions. If practicable, the left-turn lane should be long enough to accommodate most of the deceleration needed to stop at the intersection.

Left-turn lanes can help improve signals' efficiency. Separating through movements from leftturning vehicles can decrease the headway between vehicles and improve the flow rate through the signal for both movements. Different phasing options can be utilized to accommodate fluctuating traffic flow occurring throughout the day. For example, a lagging left turn needed for the morning commuters reverting back to simultaneous lefts for the rest of the day. The practitioner should always consider impacts to non-motorized travel. The typical impact is the additional pavement that pedestrians must cross and the walk time that must be added to signal's timing plan.

- L = Storage length
- R = Radius of reversing curve

S = Stopping sight distance for a speed of (0.7)(operating speed of highway)

- T = Tangent distance required to accommodate reversing curve
- W = Minimum distance of 12 m (40 ft)

Exhibit 11-1. Diagram of a single left-turn lane.⁽¹⁸¹⁾

Applicability

Review local agencies' adopted guidelines and practices should be reviewed to determine whether left-turn lane warrants are in place for a particular roadway. Key elements to consider when determining whether a left-turn lane is warranted include:

- **Significant intersections.** A left-turn lane should be considered at the intersections of higher class facilities (i.e., arterials and principal arterials) and other public roads equal to a collector or higher classification to accommodate both higher approach speeds and expected growth in traffic volumes.
- **Prevailing approach speeds**. An increase in speed differentials between through and slower-speed left-turning vehicles may lead to an increase in rear-end collisions.
- **Capacity of an intersection.** The addition of a left-turn lane can increase the number of vehicles the intersection can serve.
- **Proportion of approach vehicles turning left**. Higher volumes of left-turn traffic result in increased conflicts and delay to through vehicles.
- Volumes of opposing through vehicles. High volumes of opposing vehicles reduce the number of gaps available for a left-turn movement (assuming permissive phasing), thus increasing conflicts and delay with approaching through movements.
- **Design conditions**. A left-turn lane may be needed to improve sight distance.
- Crash history associated with turning vehicles. A left-turn lane should be considered if there is a disproportionate amount of collisions involving left-turning vehicles on the approach.

In the absence of site-specific data, the *HCM 2010* indicates the probable need for a left-turn lane if the left-turn volume is greater than 100 vehicles in a peak hour, and the probable need for dual left-turn lanes if the volume exceeds 300 vehicles per hour.⁽²⁾ The HCM also indicates a left-turn lane should be provided if a left-turn phase is warranted.

Exhibit 11-2 highlights several rule-of-thumb intersection capacities for various scenarios where exclusive left-turn treatments may be required on one or both approaches to an intersection. In general, exclusive left-turn lanes are needed when a left-turn volume is greater

Signalized Intersections: Informational Guide

than 20 percent of total approach volume or when a left-turn volume is greater than 100 vehicles per hour in peak periods.⁽⁴⁸⁾

Case I: No Exclusive Left-Turn Lanes

2

3

4

Assumed critical signal phases*

```
Left-turn volumes
```

Critical major approach:** \leq 125 veh/hr Critical minor approach: \leq 100 veh/hr

Planning-level capacity (veh/hr),		Number of basic lanes,**** major approach		
sum of critical approach		2	3	4
Number of basic lanes, 1		1,700	2,300	
minor approach	2	2,400	3,000	
	3		_	

Case II: Exclusive Left-Turn Lane on Major Approaches Only

Assumed critical signal phases

```
Left-turn volumes
```

Critical major approach: 150-350 veh/hr Critical minor approach: ≤ 125 veh/hr

Planning-level capacity (veh/hr),		Number of basic lanes, major approach		
sum of critical approach	/olumes	s 2 3		4
Number of basic lanes, 1		1,600	2,100	2,300
minor approach	2	2,100	2,600	2,800
	3	2,700	3,000	3,200

Case III: Exclusive Left-Turn Lane on Both Major and Minor Approaches

Assumed critical signal phases

```
Left-turn volumes
```

Critical major approach: 150-350 veh/hr Critical minor approach: 150-250 veh/hr

Planning-level capacity (veh/hr),		Number of basic lanes, major approach		
sum of critical approach		2	3	4
Number of basic lanes,	1	1,500	1,800	2,000
minor approach	2	1,900	2,100	2,400
	3	2,200	2,300	2,800

Notes: *Critical signal phases are non-concurrent phases

**A critical approach is the higher of two opposing approaches (assumes same number of lanes)

***Use fraction of capacity for design purposes (e.g., 85 or 90 percent)

****Basic lanes are through lanes, exclusive of turning lanes

Adapted from NCHRP 279, figure 4-11(48)

Exhibit 11-2. Rule-of-thumb intersection capacities assuming various exclusive left-turn treatments.

Key Design Features

Key design elements of an exclusive left-turn lane include: entering taper, storage length, lane width, and offset. Design criteria for left-turn lanes are presented in the AASHTO *A Policy on Geometric Design for Highways and Streets* as well as in the policies of individual highway agencies.⁽³⁾

Entering taper. Entering tapers should be designed to: (1) allow vehicles to depart the through travel lane with minimum braking; and (2) provide adequate length to decelerate and join the back of queue. In practice, some deceleration (10 mph) is considered acceptable in the

through lane prior to entering the turn lane. An appropriate combination of deceleration and taper length will vary according to the situation at individual intersections. A relatively short taper and a longer deceleration length may be applicable at busier intersections where speeds are slower during peak hours. This allows more storage space during peak hours and reduces the potential for spillover into the adjacent through lane. However, off-peak conditions should be considered when vehicle speeds may be higher, thus requiring a longer deceleration length.

AASHTO indicates a taper rate of 8:1 for 30 mph to 15:1 for 50 mph or greater is common for high-speed roadways. Using a taper that is too short may require a vehicle to stop suddenly, thus increasing the potential for rear-end collisions. Using too long of a taper may result in drivers inadvertently drifting into the left-turn lane, especially if located within a horizontal curve. AASHTO indicates that municipalities and urban counties are increasingly adopting the use of taper lengths such as 100 ft for a single turn lane and 150 ft for a dual turn lane.⁽³⁾

Storage length. The length of the left-turn bay should be sufficient to store the number of vehicles likely to accumulate during a critical period so the lane may operate independent of the through lanes. The storage length should be sufficient to prevent vehicles spilling back from the auxiliary lane into the adjacent through lane. Storage length is a function of the cycle length, signal phasing, rate of arrivals and departures, and vehicle mix. As a rule-of-thumb, the left-turn lane should be designed to accommodate one and one-half to two times the average number of vehicle queues per cycle, although methods vary by jurisdiction. The HCM can also be used to estimate queues, as noted in Chapter 7.⁽²⁾ Traffic models used to develop signal timing can provide an accurate estimate on queue length.

Lane width. Lane width requirements for left-turn lanes are largely based on operational considerations. Generally, lane widths of 12 ft are desirable to maximize traffic flow; however, right-of-way or non-motorized needs may dictate the use of a narrower lane width. For situations where it is not possible to achieve the standard width for a left-turn lane, providing a less-thanideal lane is likely an improvement over providing no left-turn lane. Lane widths less than 9 ft are not recommended for new design. However, in some very constrained retrofit situations on lower speed roadways, lane widths as low as 8 ft for some left-turn lanes. Achieving more lanes through restriping from 12-ft lanes to narrower lanes should be considered where appropriate.^{(57),(182)} Exhibit 11-3 shows an example from Montgomery County, Maryland, where a narrow left-turn lane has been used effectively.

Exhibit 11-3. Narrow left-turn lanes may be used effectively in retrofit situations.

Offset. A left-turning driver's view of opposing through traffic may be blocked by left-turning vehicles on the opposite approach. When left-turning traffic has a permissive signal phase, this can lead to collisions between vehicles turning left and through vehicles on the opposing

Signalized Intersections: Informational Guide

approach. In a situation with a negative offset or no offset, left-turning motorists can be blocked by opposing left turners (see Exhibit 11-4(a)). This should be avoided when possible.

The practitioner should consider left-turn lanes with a positive offset that allow drivers to see oncoming traffic without obstruction (see Exhibit 11-4(c)).

This practice helps improve safety and operations of the left-turn movement by improving driver acceptance of gaps in opposing through traffic and eliminating the potential for vehicle path overlap. This is especially true for older drivers who have difficulty judging gaps in front of oncoming vehicles. AASHTO policy recommends that medians wider than 18 ft should have positive offset left-turn lanes. However, providing any amount of offset that moves obstructing vehicles out of the way should be pursued. One method for laterally shifting left-turning vehicles is to narrow the turn-lane width using pavement markings.

Positive offsetting has other benefits. Positive offsetting of left-turn lanes ensures that the turning radii for opposing left-turning vehicles do not overlap each other. This allows these movements to be concurrent phases. Also, positive offsetting of the left-turn lanes can be useful for staged improvements. For example, dual lefts can be built on the major street approach, but cannot be utilized until the minor streets are widened. The outside turn lane is striped out to provide positive offset.

Offset left-turn lanes should remain parallel to the through travel route if practical. Exhibit 11-4 illustrates a positive offset at an intersection.⁽¹⁾

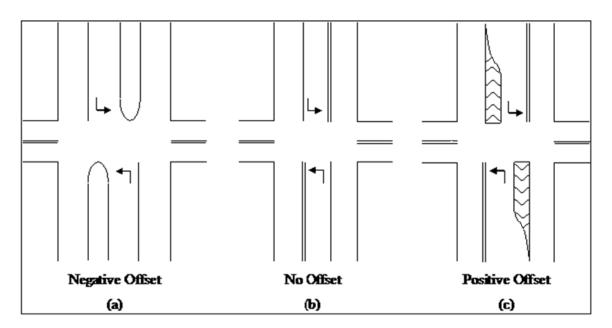


Exhibit 11-4. Illustration of negative, no, and positive offset left-turn lanes. Positive offset is preferred.⁽¹⁸³⁾

Exhibit 11-5. Example of positive offset left-turn lane.

Dropped Lane. In constrained areas, through lanes are sometimes converted to left-turn lanes. This type of lane is sometimes referred to as a "dropped" lane. The traffic control used to alert or raise awareness by the driver in this situation is critical especially at locations with higher speeds or congested areas. For this reason, the MUTCD requires the use of a wide dotted white lane line to distinguish the drop lane from the adjacent through lane (refer to MUTCD Section 3B.04).

Channelization

Physical channelization of left turns emphasizes separation of left-turning vehicles from the through traffic stream. It guides drivers through an intersection approach, increasing capacity and driver comfort.

A left-turn channelization design should incorporate consideration of the design vehicle, roadway cross section, traffic volumes, vehicle speeds, type and location of traffic control, pedestrians, and bus stops. In addition to these design criteria, consideration should be given to the travel path; drivers should not have to sharply change direction in order to follow the channelization. Channelizing devices should not cause drivers to make turns with angles that vary greatly from 90 degrees. If median treatments are used to channelize the left turn, pedestrian needs identified in Chapter 8 should be considered. Additional guidance is provided in the AASHTO policy.⁽³⁾

Channelization can be provided using curbed concrete, painted islands, or delineators. The appropriateness of raised or flush medians depends on conditions at a given intersection. Painted channelization provides guidance to drivers without presenting an obstruction in the roadway, and would be more appropriate where vehicles may be proceeding through the intersection at high speeds or where the design vehicle can be better accommodated. However, paint is more difficult to see at night, especially at intersections that are not lighted.

Raised curbed islands should provide guidance in the intersection area but should not present a significant obstruction to vehicles. Safety advantages of left-turn lanes with raised channelization include:

- Turning paths are clearly defined within an expansive median opening.
- Improved visibility for left-turning drivers.
- Simultaneous opposing left-turn lanes are offset from one another.
- Sideswipe collisions due to motorists' changing from left-turn to through lanes or vice versa are prevented.
- Median refuge for pedestrians providing a two stage crossing.
- Median islands can used to control speed across crosswalks.

Raised pavement markings and "flex-post" delineators should be considered when use of raised channelization is not possible.

Operational Features

The type of signal phasing used for a left-turn movement directly affects the safety and operational performance of the turn. The practitioner should always strive to utilize the smallest number of phases. To accomplish this, less-restrictive phasing schemes are preferable where appropriate because these phases result in lower delay to all users of the intersection. However, the responsible agency for the signal's performance should review the operation and safety of the intersection on an annual basis to ensure the intersection is operating within expectations.

Exhibit 11-6 presents suggested guidelines for determining whether left-turn phasing is appropriate, and Exhibit 11-7 presents suggested guidelines for determining the type of left-turn phasing. Current signal equipment allows practitioners the flexibility to alter timing and phasing throughout the day as conditions warrant. Exhibit 11-8 presents the minimum recommended sight distance for permissive left turns. Note that many agencies have adopted similar guidelines with localized variations to reflect State policy. Examples of deviations include the following:

- Some States have a policy to always use protected-only left-turn phasing where the leftturn movement crosses three lanes, while other States allow the use of permissive phasing or protected-permissive phasing in those situations.
- Some States use values in the criteria that are more conservative than provided here, such as lower crash frequency thresholds for protected-only left-turn phasing.
- Some municipalities (Tucson, AZ; Denver, CO) allow the use of protected-permissive phasing at double left turns, while most States use protected-only phasing for those locations.

Left-turn phasing (protected-permissive, permissive-protected, or protectedonly) should be considered if any one of the following criteria is satisfied:

- 1. A minimum of 2 left-turning vehicles per cycle and the product of opposing and left-turn hourly volumes exceeds the appropriate following value:
 - a. Random arrivals (no other traffic signals within 0.5 mi):

One opposing lane: 45,000 Two opposing lanes: 90,000

b. Platoon arrivals (other traffic signals within 0.5 mi):

One opposing lane: 50,000 Two opposing lanes: 100,000

- 2. The left-turning movement crosses 3 or more lanes of opposing through traffic.
- 3. The posted speed of opposing traffic exceeds 45 mph.
- 4. Recent crash history for a 12-month period indicates 5 or more left-turn collisions that could be prevented by the installation of left-turn signals.
- 5. Sight distances to oncoming traffic are less than the minimum distances in Exhibit 11-7.
- 6. The intersection has unusual geometric configurations, such as five legs, when an analysis indicates that left-turn or other special traffic signal phases would be appropriate to provide positive direction to the motorist.
- 7. An opposing left-turn approach has a left-turn signal or meets one or more of the criteria in this table.
- 8. An engineering study indicates a need for left-turn signals. Items that may be considered include, but are not necessarily limited to, pedestrian volumes, traffic signal progression, freeway interchange design, maneuverability of particular classes of vehicles, and operational requirements unique to preemption systems.

Exhibit 11-6. Guidelines for use of left-turn phasing.^{(184),(185)}

The type of phasing to use can be based on the following criteria:

- 1. Insignificant number of adequate gaps in opposing traffic to complete a left turn.
- 2. Permissive left-turn phasing may be considered at sites that do not satisfy any of the left-turn phasing criteria listed in Exhibit 11-6.
- 3. Protected-permissive left-turn phasing may be considered at sites that satisfy one or more of the left-turn phasing criteria listed in Exhibit 11-6 but do not satisfy the phasing criteria for protected-only phasing (see criterion 4 below). Protected-permissive phasing is not appropriate when left-turn phasing is installed as a result of an accident problem.
- 4. Permissive-protected left-turn phasing may be considered at sites that satisfy the criteria for protected-permissive phasing and one of the following criteria:
 - a. The movement has no opposing left turn (such as at a T-intersection) or the movement is prohibited (such as at a freeway ramp terminal).
 - b. A protected-permissive signal display is used that provides the left-turning vehicle with an indication of when the driver must yield to opposing traffic, a flashing yellow arrow, or other such devices.
- 5. Protected-only left-turn phasing should be considered if any one of the following criteria is satisfied:
 - a. A minimum of 2 left-turning vehicles per cycle and the product of opposing and left-turn hourly volumes exceed 130,000-150,000 for one opposing lane or 300,000 for two opposing lanes.
 - b. The posted speed of opposing traffic exceeds 45 mph.
 - c. Left-turning crashes per approach (including crashes involving pedestrians) equal 4 or more per year, or 6 or more in 2 years, or 8 or more in 3 years.
 - d. The left-turning movement crosses three or more lanes of opposing through traffic.
 - e. Multiple left-turn lanes are provided.
 - f. Sight distances to oncoming traffic are less than the minimum distances in Exhibit 11-8.
 - g. The signal is located in a traffic signal system that may require the use of lead-lag left-turn phasing. This criterion does not apply if:
 - i. An analysis indicates lead-lag phasing is not needed.
 - ii. An analysis indicates that protected-permissive phasing reduces total delay more than lead-lag phasing.
 - iii. A protected-permissive signal display is used that allows a permissive left turn to operate safely opposite a lagging protected left-turn phase (see Chapter 2 for discussion of left-turn trap).
 - An engineering study indicates a need for left-turn signals. Items that may be considered include, but are not necessarily limited to, pedestrian volumes, traffic signal progression, freeway interchange design, maneuverability of particular classes of vehicles, number of older drivers, and operational requirements unique to preemption systems.

Exhibit 11-7. Guidelines for selection of type of left-turn phasing.^(184,185)

Design Speed (mph)	Design Intersection Sight Distance for Passenger Cars* (ft)
20	165
25	205
30	245
35	285
40	325
45	365
50	405
55	445
60	490
65	530

^{*} For a passenger car making a left turn from an undivided highway. For other conditions and design vehicles, the time gap should be adjusted and the sight distance recalculated. Source: Adapted from (3), exhibit 9-67

Exhibit 11-8. Minimum recommended sight distance for allowing permissive left turns.

Safety Performance

The HSM contains information that allows practitioners to quantify the safety impacts of leftturning phasing and/or left-turn lanes. Exhibits 11-9 and 11-10 identify CMFs used to calculate the number of crashes per year. The exhibits show favorable impacts towards safety through the addition of a lane and exclusive left-turn movements.

The presence of a left-turn lane could create situations where vehicles are more likely to offtrack. Large trucks and buses are more likely to off-track than passenger cars particularity if short tapers are used to shift through traffic. Off-tracking increases the likelihood of sideswipe and head on crashes between left-turning and adjacent through vehicles and between opposing left-turning vehicles. These impacts to large vehicles can be reduced with proper lengths of tapers and appropriate pavement markings.

In providing left-turn lanes, vehicles in opposing left-turn lanes may block their respective drivers' view of approaching vehicles in the through lanes. This potential problem can be resolved by offsetting the left-turn lanes.

Exhibit 11-9 shows safety benefits of left-turn geometric improvements. All collision modification factors suggest safety improvements associated with providing a left-turn lane at a signalized intersection. Collision types that would particularly benefit from a left-turn lane are rearend and left-turn collisions. Provision of a left-turn lane in conjunction with protected left-turn phasing would appear to provide the most benefit.

Crash Modification Factor (CMF _{1i}) for Installation of Left-Turn Lanes on Intersection Approaches							
Intersection Type	Intersection traffic control	c Number of approaches with left-turn lanes ^a					
		One approach	Two approaches	Three approaches	Four approaches		
3 Approaches	Traffic signal	0.93	0.86	0.80	0.80		
4 Approaches	Traffic signal	0.90	0.81	0.73	0.66		

Exhibit 11-9. Safety benefits associated with left-turn lane improvements for four approach, urban and suburban intersection.

Source: Highway Safety Manual.⁽¹¹⁾

Treatment	Setting (Intersection Type)	Traffic Volume AADT (veh/day)	Crash Type (Severity)	CMF	Std. Error
Change to protected phasing (8,15)	Urban (Four- and three-leg signalized)	Unspecified	Left-turn crashes on treated approach (All severities)	0.01*	0.01
			All types (All severities)	0.94**	0.1
Change from permissive to protected/permissive or permissive/protected phasing 15.22)	Urban (Four-leg signalized)	Major road 3,000 to 77,000 and minor road 1 to 45,500	Left-turn (Injury)	0.84	0.02
Change from permissive w protected/permissive or permissive/protected phasing (15)	Urban (Four-leg signalized)	Unspecified	All types (All severities)	0.99	N/A*

Potential Crash Effects of Modifying Left-Turn Phase at Urban Signalized Intersections (8,15,22)

Base Condition: For changing to protected phasing, the base condition is permissive, permissive/protected, or protected/permissive phasing. For changing to permissive/protected or protected/permissive phasing, the base condition is permitted phasing.

NCTE: Bold text is used for the most reliable CMFs. These CMFs have a standard error of 0.1 or less.

 Observed variability suggests that this treatment could result in an increase, decrease, or no change in crashes. See Part D—Introduction and Applications Guidance.

Standard error of CMF is unknown.

+ Combined CMF, see Part D-Introduction and Applications Guidance.

Exhibit 11-10. Crash effects of modifying left-turn phases Source: Highway Safety Manual⁽¹¹⁾

Operational Performance

The addition of a left-turn lane increases capacity for the approach by removing left-turn movements from the through traffic stream. The addition of a left-turn lane may allow for the use of a shorter cycle length or allocation of green time to other critical movements.

The additional pavement width associated with the left-turn lane increases the crossing width for pedestrians and may increase the minimum time required for pedestrians to cross. In addition, the wider roadway section likely will increase the amount of clearance time required for the minor street approach. Restriping the roadway with narrower lanes can minimize this problem.

If a left-turn lane is excessively long, through drivers may enter the lane by mistake without realizing it is a left-turn lane. Effective signing and marking of the upstream end of the left-turn lane should remedy this problem.

Practitioners considering adding protected left turn phasing should evaluate the impacts to other movements at the intersection. Other movements may experience increases in queue lengths, and stopped approach delay for all users. Impacts to coordination also should be evaluated prior to implementation of additional left turn phasing.

Multimodal Impacts

For cases where widening is required to add a left-turn lane, the pedestrians will need to walk further to cross the street increasing the conflict between vehicles and pedestrians. Consider pedestrian refuges (along with push buttons) for wide roadway sections (approximately 75 ft).⁽¹⁸⁶⁾

Practitioners should consider the volumes of truck and bus traffic using the lane in the design of a left-turn lane.

Physical Impacts

Adding a left-turn lane will increase the footprint of the intersection if no median is currently present, except when the approach is restriped with narrower lanes. The approach to the intersection will be wider to accommodate the auxiliary lane.

Designers should also use caution when considering restriping a shoulder to provide or lengthen a left-turn lane. Part of the safety benefits of installing the turn lane may be lost due to a loss of shoulder, less proximity to roadside objects, and a reduction in intersection sight distance. In addition, the shoulder may not have been designed and constructed to a depth that will support considerable traffic volumes and may require costly reconstruction.

Socioeconomic Impacts

The potential reduction in travel time and in vehicle emissions is a benefit of left-turn lanes. A certain degree of comfort is provided to drivers when they are able to wait to turn outside of the through traffic stream, since they are not delaying other vehicles and can wait for a comfortable gap.

The cost of construction and the accompanying signing, striping, and additional signal equipment are one of the main economic disadvantages to installing a left-turn lane. Also, access to properties adjacent to the intersection approach may need to be restricted when a left-turn lane is installed.

Enforcement, Education, and Maintenance

Given that left-turn lanes are common at signalized intersections, no education should be needed to prepare drivers for installation of a lane at an intersection.

Maintenance issues for left-turn lanes and phasing will be the same as for other areas of the intersection. Pavement markings, signs, and indications should be kept visible and legible. Pavement skid resistance should be maintained. Detection systems should be checked for any call failures. In addition, ongoing reviews through intersection counts, observations, and periodic checks of performance goals related to crashes, delay, and network compatibility are needed.

Summary

Exhibit 11-11 provides a summary of the issues associated with left-turn lanes.

Characteristic	Potential Benefits	Potential Concerns
Safety	Separation of left-turn vehicles from though movements.	Increased pedestrian exposure.
Operations	Additional capacity. Potential for shorter cycle lengths and/or allocation of green to other movements.	Spillback; inadequacy of design.
Multimodal	Left-turn lane may result in shorter pedestrian delays due to shorter cycle length.	Depending on design, may result in longer crossing time and exposure for pedestrians.
Physical	None identified.	Increased intersection size. *
Socioeconomic	Travel time reduced. Vehicle emissions reduced.	Right-of-way and construction costs. *
Enforcement, Education, and Maintenance	None identified.	None identified. Adding signals without funding adjustment reduces ability to properly maintain all intersections.

* Applies to situations where the left-turn lane is added by physical widening rather than restriping.

Exhibit 11-11. Summary of issues for left-turn lanes.

11.1.2 Multiple Left-Turn Lanes

Multiple left-turn lanes are widely used at signalized intersections where traffic volumes have increased to the point that signal timing cannot alleviate excessive queues and delay with the current number of lanes.

Multiple left-turn lanes allow for the allocation of green time to other critical movements or utilize a shorter cycle length. Using multiple left-turn lanes helps reduce the queue waiting to turn left; the practitioner will need to estimate how many vehicles may be in each lane. Rarely will there be an even distribution among the turn lanes, which can dramatically impact the signal timing.

Applicability

Double and triple left-turn lanes are appropriate at intersections with high left-turn volumes that cannot be adequately served in a single lane. As a rule-of-thumb, consider dual left-turn lanes when left-turn volumes exceed 300 vehicles per hour (assuming moderate levels of opposing through traffic and adjacent street traffic). A left-turn demand exceeding 600 vehicles per hour indicates a triple left-turn may be appropriate. Lane distribution for triple lefts is critical to operational success.⁽¹⁸⁷⁾

While effective in improving intersection capacity, double or triple lefts are not appropriate where:

- A high number of vehicle-pedestrian conflicts occur.
- Left-turning vehicles are not expected to evenly distribute themselves among the lanes.
- Channelization may be obscured.
- Sufficient right-of-way is not available to provide for the design vehicle.
- Other alternative intersections may be a more appropriate option.
- An insufficient number of departure lanes exist.

Design Features

The design of multiple left-turn lanes is similar to that of single turn lanes. In addition, the interaction between vehicles in adjacent lanes and also the width of the receiving lanes should be considered. The following are design considerations for triple left-turn lanes provided by Ackeret.⁽¹⁸⁸⁾ These same considerations apply for double left-turn lanes:

- Widths of receiving lanes.
- Width of intersection (to accommodate three vehicles abreast).
- Clearance between opposing left-turn movements during concurrent maneuvers.
- Pavement marking and signing visibility.
- Placement of stop lines for left-turning and through vehicles.
- Weaving movements downstream of turn.
- Potential for pedestrian conflict.

The previous section provided criteria for selecting the type of signal phasing to be used. In general, protected-only left-turn phasing is used for most double-lane and triple-lane left-turn movements, although some agencies have used protected-permissive phasing for double left turns.

Operational Features

Drivers may be confused when attempting to determine their proper turn path on an approach with multiple left-turn lanes. Providing positive guidance for the driver in the form of pavement markings can help eliminate driver confusion and eliminate vehicle conflict by channeling vehicles in their proper turn path.

Delineation of turn paths is especially useful to drivers making simultaneous opposing left turns, as well as in some cases where drivers turn right when a clear path is not readily apparent. This strategy is also appropriate when the roadway alignment may be confusing or unexpected.

Delineation of turn paths is expected to improve intersection safety, though the effectiveness has not been well evaluated. The additional guidance in the intersection will help separate vehicles making opposing left turns, as well as vehicles turning in adjacent turn lanes.

Additional operational features of dual and triple left-turn lanes are identified below.

- Prominent and well-placed signing, located over each lane if feasible, should be used with triple left-turn movements, especially in advance of the intersection. The signing will help maximize the benefits of triple lefts. Lane distribution for triple left-turn lanes should be estimated as close as possible. Practitioners should reevaluate marking and signing immediately after the triple lefts are constructed for any necessary adjustments.
- The excess green time for left-turn movements resulting from the additional lane should be allocated to other critical movements or removed from the entire cycle to reduce the cycle length.
- Triple left turns should not include a permissive phase; they should be protected only at all times of day.

Safety Performance

A literature review shows that dual left-turn lanes with protected-only phasing generally operate with minimal negative safety impacts. Common crash types in multiple turn lanes are sideswipes between vehicles in the turn lanes. Turn path delineation guides drivers through their lane and can help reduce sideswipes at left-turn maneuvers.

A study of double and triple left-turn lanes in Las Vegas, NV, showed that about 8 percent of intersection-related sideswipes occur at double lefts, and 50 percent at triple lefts.⁽¹⁸⁹⁾ These

sideswipes are 1.4 and 9.2 percent of all crashes at the intersections with double and triple lefts, respectively. Turn path geometry and elimination of downstream bottlenecks are important considerations for reducing sideswipes.

One study indicates that triple left-turn lanes have been shown to operate well, and drivers do not have trouble understanding the triple left turns.⁽¹⁹⁰⁾ In addition, construction of triple left-turn lanes has not resulted in unexpected or unacceptable crash experiences. Another study showed that 10 percent of the crashes at intersections with triple lefts occurred in the approach for the triple left. These are angle crashes that occur when left-turning vehicles collide with through traffic on the cross street. These crashes are attributed to short change and clearance intervals and limited sight distance, not operation of the triple left.

Treatment	Finding
Double left-turn lane. ⁽¹⁶³⁾	29 percent estimated reduction in all fatal/injury collisions.
	26 percent estimated reduction in all PDO collisions.
	29 percent estimated reduction in fatal/injury rear-end collisions.
	47 percent estimated reduction in fatal/injury left-turn collisions.
	20 percent estimated reduction in angle fatal/injury collisions.
Triple left -turn lanes.	Texas study found triple lefts did not raise any major safety issues.

Exhibit 11-12 presents selected findings of the safety benefits of multiple left-turn lanes.

Exhibit 11-12. Safety benefits associated with double left-turn lanes: selected findings.

Operational Performance

Multiple left-turn lanes can improve intersection operations by reducing the time allocated to the signal phase for the left-turn movement. Triple left-turn lanes have been constructed to meet the left-turn capacity demand without having to construct an interchange. This configuration can accommodate left-turn volumes of more than 600 vehicles per hour. Vehicle delays, intersection queues, and green time for the left-turn movement are all reduced, improving operation of the entire intersection.

To achieve this level of performance, these turning movements should still be serviced through normal phasing sequences. If these turns require split-phasing and/or independent phasing, the advantages mentioned in the previous paragraph will not be long term. Evaluation of the signal timing necessary for the triple left-using traffic software and simulation is key to a successful implementation of multiple left-turn lanes. The practitioner may need to compare triple lefts with other alternative intersection designs.

While dual left-turn lanes are largely operated with protected-only phasing, some agencies use protected-permissive signal phasing. This signal phasing improves capacity for the left-turn movements, particularly during nonpeak times when opposing traffic volumes are lower. Many agencies have safety concerns regarding permissive left-turns in a double turn lane. In fact, many agencies only allow dual left-turn lanes to be run as protected-only phasing. However, some agencies overcome this concern by offsetting the dual left-turn lanes.

Multimodal Impacts

Adding turn lanes increases the crossing distance for pedestrians, as well as their exposure to potential conflicts if roadway widening is required. One method to mitigate this exposure is the use of median refuge islands for pedestrians. The islands reduce the walking distance and provide safe areas for pedestrians and bicyclists to wait. These refuge islands also allow for a two stage crossing.

Physical Impacts

Installation of a second or third turn lane will increase the footprint of the intersection, except when additional lanes can be accommodated through restriping. As with single left-turn lanes, practitioners should consider right-of-way costs and access to adjacent properties.

Socioeconomic Impacts

A shorter green time for left-turning vehicles, made possible by multiple turn lanes, can provide more green time to other movements. As this reduces delay, it will also reduce vehicle emissions.

Enforcement, Education, and Maintenance

Little or no education should be needed for multiple left-turn lanes that operate with protected-only or split phasing other than lane assignment signing and markings. Some public information may be needed to educate drivers regarding a permissive movement at a double left-turn lane.

Summary

Exhibit 11-13 summarizes the issues associated with multiple left-turn lanes.

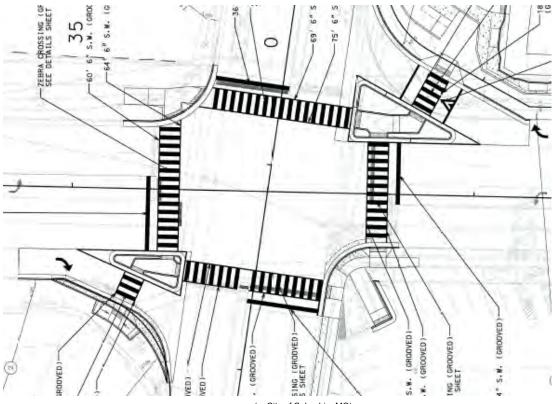
Characteristic	Potential Benefits	Potential Concerns
Safety	Potential reduction in collisions.	Permissive phasing can increase the opportunity for left turn crashes.
Operations	Potential improvement in capacity.	Unbalanced lane utilization.
Multimodal	None identified	Longer crossing distance and more exposure.
Physical	None identified.	Multiple turn lanes may increase the footprint of the intersection.
Socioeconomic	Potential reduction in vehicle emissions due to lower delay.	None identified.
Enforcement, Education, and Maintenance	None identified.	Maintaining more equipment, pavement, marking, signing. Enforcement of triple lefts may be an issue.

Exhibit 11-13. Summary of issues for multiple left-turn lanes.

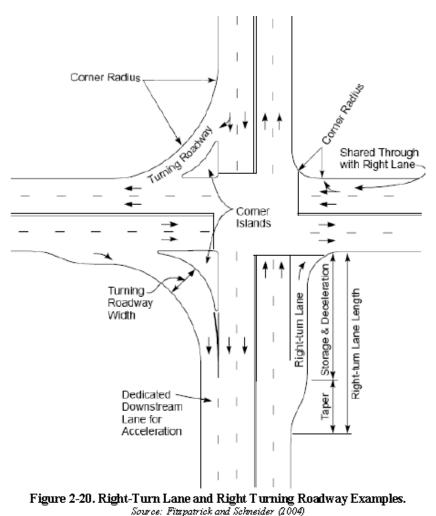
11.2 RIGHT-TURN TREATMENTS

The purpose of this section is to highlight what strategies are available to practitioners for right-turning movements. Significant volumes of right-turning vehicles can adversely impact the operations and safety of a signalized intersection. Typical improvements used to offset these adverse impacts range from channelizing islands to right-turn lanes. This section will move from lower to higher impact improvements related to additional property.

Practitioners should consider phasing overlaps for right-turning movements. The ability to share green time with compatible movements at the intersection can reduce the need for some of the following treatments.⁽¹⁸⁷⁾


11.2.1 Channelizing Islands

Channelizing islands that physically separate through and right-turning movements are constructed to improve the operations and/or safety of an intersection. These islands can be constructed as standalone improvements or built in combination with a right-turn lane.


Applicability

Channelization of the right turn with a raised or painted island can provide larger turning radii to accommodate large design vehicles. A larger turning radius also allows higher turning speeds. These higher speeds help increase the efficiency of the right-turning vehicles. The island allows some queuing of through traffic and provides access for right-turning vehicles to travel through the intersection.

Agencies increasingly install raised channelized islands to provide an area for pedestrian refuge. Crosswalks with long crossing distances can be reduced somewhat by providing these islands.

(11-14a)^(a. City of Columbia, MO) Exhibit 11-14. Channelized islands.

(11-14b)⁽²⁰⁰⁾

Exhibit 11-14. Channelized islands (cont'd).

Key Design Features

Channelizing islands can be raised or flush with the pavement. A Georgia study evaluated the effects of right-turn channelization in the form of painted islands, small raised islands, and large raised islands.⁽¹⁹¹⁾ Results show that traffic islands appear to reduce the number of right-turn angle crashes, and the addition of an exclusive turn lane appears to correspond to an increased number of sideswipe crashes given the introduction of a lane change.

Raised channelized islands using simple curves find high incidences of rear-end and pedestrian crashes. As driver's focus to their left anticipating on-coming traffic, they lose sight of the vehicle they were following who chooses to yield. To aid driver's line of sight while turning right, an "Australian" right is used. A large radius allows a right turn vehicle to maneuver by the island, but allows viewing all of the details in front of them.

Exhibit 11-15 illustrates a channelized right-turn lane.

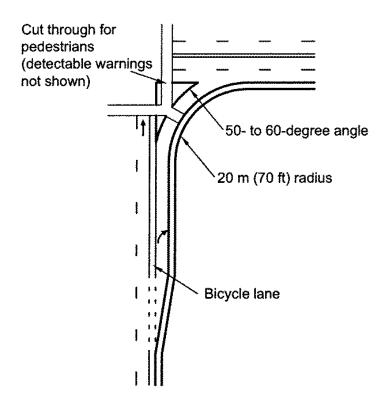


Exhibit 11-15. Example illustration of a channelized right-turn lane.

Channelized right-turn lanes apply for intersections with a high volume of right-turning vehicles that experience excessive delay due to the traffic signal. The larger the turn radius, the higher vehicle speeds can be. An important consideration is the desired speed of the turning vehicles as they enter the crossroad. The turn radius can be used to control speed, especially if the speed varies greatly from the road the vehicle is turning from. Additionally, larger turn radii and higher speeds can pose a pedestrian safety issue.

A channelized right-turn lane will have a larger footprint than an intersection with a conventional right-turn lane. Additional right-of-way may be needed to accommodate the larger corner radius. Constructing a departure auxiliary lane to allow for a downstream merge may also increase right-of-way costs.

Operational Features

The right turn may operate as a free flow movement if an acceleration lane is provided on the cross street, or the movement may be controlled by a YIELD sign where the turning roadway enters the cross street. Periodic enforcement may be needed to ensure drivers obey any traffic control devices used for the right-turn roadway (such as a YIELD sign).

Visibility of channelizing islands is very important. Islands can be difficult for drivers to see, especially at night and in inclement weather. This is particularly true for older drivers. Raised islands have been found to be more effective than flush painted islands at reducing nighttime collisions, because they are easier to see.

Older drivers, in particular, benefit from channelization as it provides a better indication of the proper use of travel lanes at intersections. However, older drivers often find making a right turn without the benefit of an acceleration lane on the crossing street to be particularly difficult.

Safety Performance

A reduction in rear-end collisions involving right-turning vehicles and following through vehicles could be expected after construction of a right-turn roadway. Turning vehicles will not need to decelerate as much as they would for a standard right-turn lane, and therefore the speed differentials between turning and through vehicles would not be as great.

The potential for rear-end and sideswipe crashes on the departure lanes may increase as the vehicles turning onto the crossroad merge with the vehicles already on the road.

Higher speeds and a possibly longer crossing distance and exposure could lead to an increase in crashes involving pedestrians, and the resulting crashes will likely have more serious consequences.

Safety benefits of right-turn channelization are shown in Exhibit 11-16.

Exhibit 11-16. Safety benefits associated with right-turn channelization: selected findings.⁽²⁰⁰⁾

Treatment	Finding
Channelization	25 percent decrease in all collisions
	50 percent decrease in right-turn collisions

Operational Performance

Through vehicles will experience less delay if right-turning vehicles do not have to decelerate in a through lane. If the volume of right turns is significant enough that the right turn is the critical movement on an approach, provision of a right-turn roadway may increase capacity enough that more green time can be provided for other movements.

Multimodal Impacts

Curbed islands offer a pedestrian refuge. Crossing paths should be clearly delineated, and the island itself should be made as visible as possible to passing motorists.

Right-turn roadways can reduce the safety of pedestrian crossings if an area is not provided for pedestrian refuge. Right-turn roadways increase crossing distances and pedestrian exposure to traffic. Elderly and mobility-impaired pedestrians may have difficulty crossing intersections with large corner radii. Right-turn channelization also makes it more difficult for pedestrians to cross the intersection safely, adequately see oncoming traffic that will turn right, and know where to cross. Proper delineation of the turning roadway may help, particularly at night.

Larger turn radii result in higher vehicle speeds. In areas with significant pedestrian traffic, consideration should be given to minimizing the curb radii while still accommodating the turning path of the design vehicle. Minimizing the curb radii will reduce vehicular turning speeds, minimize pedestrian crossing distances, and reduce the potential severity of vehicle-pedestrian collisions.

Socioeconomic Impacts

Access to adjacent properties may need to be restricted to provide a merge area. Owners of adjacent property should be involved in early discussions regarding the plans.

Summary

Exhibit 11-17 summarizes the issues associated with channelized right-turn lanes.

Characteristics	Potential Benefits	Potential Liabilities
Safety	Separation of decelerating right-turn vehicles.	Potential for sideswipes and rear-end collisions on departure leg. Pedestrian crosswalk design compatibility.
Operations	Higher right-turn capacity. Shorter green time. Less delay for following through vehicles.	None identified. "Australian Right" may not accommodate large vehicles
Multimodal	Pedestrian refuge area.	Longer pedestrian crossing distance and exposure. Higher vehicle speeds.
Physical	Smaller impact than a lane along the right-of-way	Larger intersection footprint.
Socioeconomic	Support a mixed use, walkable community	Right-of-way costs. Access restrictions to property.
Enforcement, Education, and Maintenance	None identified.	Higher maintenance of islands, marking, signing

Exhibit 11-17. Summary of issues for channelized right-turn lanes.

11.2.2 Right-Turn Lanes

Turning vehicles' deceleration creates a speed differential between them and the through vehicles. This can lead to delay for the through vehicles, as well as rear-end crashes involving both movements.

In addition to providing safety benefits for approaching vehicles, right-turn lanes at signalized intersections can reduce vehicular delay and increase intersection capacity.

Exhibit 11-18 illustrates the operational impacts of a right-turn lane.

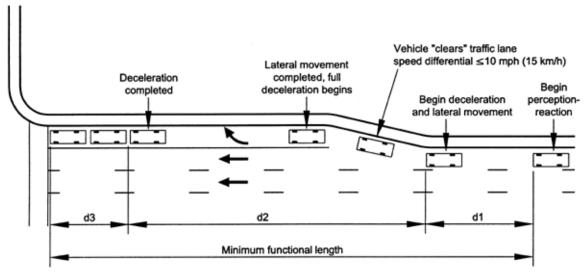


Exhibit 11-18. Diagram of a typical right-turn lane. (adapted from 192)

Right-Turn Lane Warrants

Similar to left-turn lane warrants, review the adopted guidelines and practices from local agencies when determining if a right-turn lane is warranted. Factors to consider include vehicle speeds, turning and through volumes, percentage of trucks, approach capacity, desire to provide right-turn-on-red operation, type of highway, arrangement/frequency of intersections, crash history involving right turns, pedestrian conflicts, and available right-of-way.

NCHRP 279 identifies warrants for right-turn lanes on four-lane, high-speed roadways, shown in Exhibit 11-19.⁽⁴⁸⁾ These warrants are based on the percentage of vehicles turning right (as a percentage of through vehicles) during the peak period.

State	Conditions	Conditions Warranting Right-Turn Lane off Major (Through Highway)			
	Through Volume	Right-Turn Volume	Highway Conditions		
Alaska	N/A	DHV = 25 vph			
Idaho	DHV = 200 vph	DHV = 5 vph	2 lanes		
Michigan	N/A	ADT = 600 vpd	2 lanes		
Minnesota	ADT = 1,500 vpd	All	Design speed > 70 km/h (45 mph		
Utah	DHV = 300 vph	Crossroad ADT = 100 vpd	2 lanes		
Virginia	DHV = 500 All DHV = 1,200 vph All	DHV = 40 vph DHV = 120 vph DHV = 40 vph DHV = 90 vph	2 lanes Design speed > 70 km/h (45 mph 4 lanes		
West Virginia	DHV = 500 vph	DHV = 250 vph	Divided highways		
Wisconsin	ADT = 2,500 vpd	Crossroad ADT = 1,000 vpd	2 lanes		

Notes: DHV = design hourly volume; ADT = average daily traffic; vph = vehicles per hour; vpd = vehicles per day

Exhibit 11-19. Right-turn lane volume warrants.⁽⁴⁸⁾

Design features

The key design criteria for right-turn lanes are: entering taper; deceleration length; storage length; lane width; corner radius; and sight distance. *A Policy on Geometric Design for Highways and Streets* and agencies' policies describe the design criteria for selecting an appropriate right-turn lane length.⁽³⁾

Entering taper and deceleration length. Determine the entering taper and deceleration length based on vehicle speed. Design the storage length to accommodate the maximum vehicle queue expected for the movement under design year conditions. From a functional perspective, the entering taper should allow for a right-turning vehicle to decelerate and brake outside of the through traffic lanes. This is particularly important at higher vehicle speeds. In urban areas, this is often difficult to achieve and some deceleration of a turning vehicle is expected in the through travel lane.

Storage length. Make right-turn lanes sufficiently long to store the number of vehicles likely to accumulate during a critical period. The storage length should be sufficient to prevent vehicles from spilling back from the auxiliary lane into the adjacent through lane. At signalized intersections, the storage length required is a function of the cycle length, signal phasing arrangement, and rate of arrivals and departures. As a rule-of-thumb, design the auxiliary lane to accommodate 1.5 to 2 times the average number of vehicle queues per cycle, although methods vary by jurisdiction. See Chapter 7 for additional discussion regarding methodologies for estimating queue lengths/storage requirements.

In some cases, a right-turn lane may already exist, but increased traffic volumes may necessitate lengthening it, which can help improve operations and safety by providing additional storage for right-turning vehicles. If the length of a right-turn lane is inadequate, right-turning vehicles will spill back into the through traffic stream, thus increasing the potential for rear-end collisions. Longer entering tapers and deceleration lengths can reduce this potential.

Lane width. Lane width requirements for right-turn lanes are largely based on operational considerations. Generally, lane widths of 12 ft maximize traffic flow; however, right-of-way or pedestrian needs may dictate use of a narrower lane width. Consider restriping from 12 ft-lanes to narrower lanes in order to create more travel lanes where appropriate.⁽⁵⁷⁾ Exhibit 11-20 shows

an example from Montgomery County, MD, where a narrow right-turn lane has been used effectively.

Exhibit 11-20. Narrow (8 ft) right-turn lanes may be used effectively in retrofit situations.

Corner Radius. The corner radius influences the turning speed of vehicles. Large corner radii allow vehicles to turn at higher speeds. If low-speed, right-turn movements are desired, particularly in locations where pedestrian crossings occur, the curb radius should be minimized, yet still accommodate the turning path of the design vehicle. Pedestrian crossing distances will be minimized if curb radius is minimized. In addition, lower vehicle speeds can reduce the probability of a crash.

A larger curb radius is appropriate for situations where it is desirable for right-turning vehicles to exit the through traffic stream quickly. The right turn may operate as a free-flow movement if an acceleration lane is provided on the cross street, or the movement may be controlled by a yield sign where the turning roadway enters the cross street.

Increasing the turning radius can reduce the potential for sideswipe or rear-end collisions by reducing lane encroachments as a vehicle approaches a turn and as it enters the cross street. Also, some older drivers and drivers of large vehicles may have difficulty maneuvering; the rear wheels of their vehicles may ride up over the curb or swing out into other lanes where traffic may be present. For situations where a large turning radius is desired, the use of a channelization island may be appropriate to reduce unused pavement area. Unused pavement area contributes to driver confusion regarding the appropriate path through the intersection.

Sight distance. Adequate sight distance should be provided for vehicles in the right-turn lane or channelized right-turn movement. If right turns on red are permitted, drivers turning right should be able to view oncoming traffic from the left on the crossroad.

Safety Performance

Right-turn lanes are often used to preclude the undesirable effects resulting from the deceleration of turning vehicles. ITE's *Transportation and Land Development* indicates that a vehicle traveling on an at-grade arterial at a speed 10 mph slower than the speed of the normal traffic stream is 180 times more likely to be involved in a crash than a vehicle traveling at the normal traffic speed.⁽⁸⁹⁾ Right-turn channelization demonstrably reduces right-turn angle crashes. However, the addition of a right-turn lane may result in an increase in sideswipe crashes. From a vehicular operations standpoint, larger curb radii generally result in vehicle turning paths that are in line with the pavement edge. In addition, larger curb radii produce higher vehicle speeds that can negatively impact the safety of pedestrians and bicyclists.

The provision of right-turn lanes minimizes collisions between vehicles turning right and following vehicles, particularly on high-volume and high-speed major roads. A right-turn lane may

Signalized Intersections: Informational Guide

be appropriate in situations with an unusually high number of rear-end collisions on a particular approach. Installation of a right-turn lane on one major road approach at a signalized intersection is expected to reduce total crashes by 2.5 percent, and crashes are expected to decrease by 5 percent when right-turn lanes are constructed on both major-road approach.⁽¹⁹⁰⁾

Selected findings of safety benefits associated with various right-turn lane improvements are given in Exhibit 11-21.

Intersection	Intersection traffic	Number of approaches with right-turn lanes ^a			
Туре			Two approaches	Three approaches	Four approaches
3 Approaches	Traffic signal	0.96	0.92		
4 Approaches	Traffic signal	0.96	0.92	0.88	0.85

Crash Modification Factor	(CMF _{3i}) for Insta	allation of Right-Iurn	Lanes on Intersection A	Approaches

Exhibit 11-21. Safety benefits associated with right-turn improvements. Source: Highway Safety Manual, Chapter 12.⁽¹¹⁾

Operational Performance

Right-turn lanes remove decelerating and slower-moving vehicles from the through traffic stream, which reduces delay for following through vehicles. Lin concluded that a right-turn lane may reduce vehicle delays substantially, even with the percentage of right-turns as low as 10 percent.⁽¹⁹³⁾

Installation of a right-turn lane can create other safety or operational problems at the intersection. For example, vehicles in the right-turn lane may block the cross street drivers' view of through traffic; a significant issue where right turns on red are permitted on the cross street. If a right shoulder is restriped to provide a turn lane, there may be adverse impacts on safety due to the decrease in distance to roadside objects. Carefully consider delineation of the turn lane to provide adequate guidance through the intersection.

If a right-turn lane is excessively long, through drivers may enter the lane by mistake without realizing it is a right-turn lane. Effective signing and marking the upstream end of the right-turn lane may remedy this.

Also, if access to a right-turn lane is blocked by a queue of through vehicles at a signal, drivers turning right may block the movement of through traffic if the two movements operate on separate phases. This could lead to unsafe lane changes and added delay.

Multimodal Impacts

The speed of turning vehicles is a risk to pedestrian safety.

The addition of a turn lane increases the crossing distance for pedestrians and may require additional time for the pedestrian change (upraised hand) interval phase. Other issues to consider when designing a right-turn lane include potential conflicts between turning vehicles and bicyclists proceeding through the intersection. Also, right-turning drivers from the inside right-turn lane might not see pedestrians in a parallel crosswalk that has a concurrent WALK signal.

Transit stops may have to be relocated from the near side of an intersection, due to possible conflicts between through buses and right-turning vehicles.

Physical Impacts

Addition of a right-turn lane will increase the footprint of the intersection, unless the shoulder is restriped to create a turn lane. The approach to the intersection will be wider to accommodate the auxiliary lane.

Designers should use caution when considering restriping a shoulder to provide or lengthen a right-turn lane. Part of the safety benefits of installing the turn lane may be lost due to loss of shoulder, the greater proximity of traffic to roadside objects, and a possible reduction in intersection sight distance.

Socioeconomic Impacts

Installing or lengthening a right-turn lane on an intersection approach may involve restricting right turns in and out of driveways on that approach. Techniques include signing or construction of a raised median.

The cost of construction (including relocation of signal equipment) and right-of-way acquisition is the main disadvantage to installation of a turn lane. Also, access to properties adjacent to the intersection approach may need to be restricted when a turn lane is installed.

Enforcement, Education, and Maintenance

Periodic enforcement may be needed to prevent red light violations, especially if right turns on red are prohibited.

Right-turn lanes are common, and minimal education should be needed to prepare drivers for their installation. Drivers may need a reminder that they should be watching for pedestrians crossing the departure lanes.

Maintenance issues for right-turn lanes will be the same as for other areas of the intersection. Pavement markings and signs should be kept visible and legible. Pavement skid resistance should be maintained.

Summary

Characteristic	Potential Benefits	Potential Liabilities
Safety	Separation of right-turn vehicles.	Higher speed of right-turning vehicles increases risk to pedestrians.
Operations	Higher right-turn capacity. Shorter green time. Less delay for following through vehicles. Additional storage for approach queues.	Potential for off-tracking of large vehicles.
Multimodal	None identified.	Longer pedestrian crossing distance, time, and exposure. May require transit stop relocation.
Physical	None identified.	Larger intersection footprint.
Socioeconomic	None identified.	Right-of-way/construction costs. Access restrictions to property.
Enforcement, Education, and Maintenance	None identified.	Periodic enforcement may be needed to prevent red light violations, especially if right turns on red are prohibited.

Exhibit 11-22 summarizes the issues associated with right-turn lanes.

Exhibit 11-22. Summary of issues for right-turn lanes.

11.2.3 Provide Double Right-Turn Lanes

High volumes of right-turning vehicles may support double right-turn lanes to increase capacity for the turns and reduce delay for other movements at the intersection. Double right-turn lanes can reduce both the length needed for turn lanes and the green time needed for that movement.

Approaches with right-turn volumes that cannot be accommodated in a single turn lane without excessively long green times (and delays for other approaches) may be appropriate locations for double turn lanes. Also, locations where right-of-way is not available to provide a long turn lane but there is space for two shorter turn lanes may be ideal for double turn lanes. Clearly, multiple turn lanes are not appropriate where only one receiving lane is available; however, consideration may be given to providing a departing auxiliary lane to allow for double right turns with a downstream merge.

As with single right-turn lanes, the design vehicle should be considered when determining length, width, and taper of the turn lane. The receiving lane should accommodate the turning radius of a large vehicle. Delineation of the turn path will guide drivers through the maneuver and help reduce crossing over into adjacent lanes while turning.

Based on the subjective assessment of the authors, the safety experience of double right-turn lanes should be similar to that of single right-turn lanes. Rear-end collisions of decelerating right-turn vehicles and following through vehicles may be reduced after construction of the additional turn lane, because the turn lanes have a higher capacity for the slower vehicles. Even though the double turn lanes increase capacity, some deceleration may occur in the through lanes, depending on the length of the turn lanes. This could lead to rear-end crashes.

Sideswipes between turning vehicles are a possibility at double turn lanes. This is especially an issue if the turn radius is tight and large vehicles are likely to be using the turn lanes. Delineation of turn paths should help address this.

Construction of an additional right-turn lane can be reasonably expected to improve the operation of the intersection, provided that the affected right-turn movement is a critical movement. The additional deceleration and storage space should help prevent spillover into adjacent through lanes. Less green time should be needed for right-turn traffic, and this time thus can be allocated to other movements. However, a double turn lane will result in a wider footprint for the intersection and increase the distance pedestrians must cross, which increases their exposure to potential conflicts with vehicular traffic.

Acquisition of right-of-way to provide an additional turn lane may be expensive. If a departure auxiliary lane is to be constructed to allow for a downstream merge, this may also increase right-of-way costs. Access to adjacent properties may need to be restricted to provide a merge area. Owners of adjacent property should be involved in early discussions regarding the plans.

Lane use signing and signs prohibiting right turns on red from the inside turn lane should convey all the information that drivers would need. In some cases the outside lane will be handled with yield control while the inside right-turn lane is under signal control. Periodic enforcement may be needed to ensure drivers obey any right turn on red prohibitions.

Summary

Exhibit 11-23 summarizes the issues associated with double right-turn lanes.

Characteristics	Potential Benefits	Potential Liabilities
Safety	Separation of right-turn vehicles.	Potential for sideswipes.
Operations	Higher right-turn capacity. Shorter green time. Less delay for following through vehicles.	Off-tracking of large vehicles.
Multimodal	None identified.	Longer pedestrian crossing distance, time, and exposure.
Physical	Potentially shorter intersection footprint than needed for single turn lane.	Wider intersection footprint.
Socioeconomic	None identified.	Right-of-way costs. Access restrictions to property.
Enforcement, Education, and Maintenance	None identified.	None identified.

Exhibit 11-23. Summary of issues for double right-turn lanes.

11.2.4 Restricting Turns, U-Turns

One of the easiest methods to improve the operation of signals is reducing the number of phases or movements. Typically, these restrictions relate to a turning movement; however, any movement like through movements from the minor street could be restricted. Safety and operations at some signalized intersections can be enhanced by restricting turning maneuvers, particularly left turns, during certain periods of the day (such as peak traffic periods) or by prohibiting particular turning movements altogether. Signing or channelization can be implemented to restrict or prohibit turns at intersections.

Prohibiting or restricting left turns should practically eliminate crashes related to the affected turning maneuver. Analyze alternative routes to ensure crash rates and operational problems do not increase due to diversion of traffic to these alternatives. Also, the benefit of restricting turns may be reduced by an increase in accidents related to formation of queues (rear-end collisions).

Restricting right turns on red is a commonly done due to the number of pedestrians crossing at the intersection. Certain vehicles, such as school buses, have policies in place to prohibit drivers from turning right on red. The HSM equation 12-35 calculates a CMF using this formula: $CMF = 0.98^{n}$, in which n is the number of approaches that have the prohibition.

The key to success is how well the prohibition is communicated through signing, marking, and may require public outreach to inform drivers.

Managing access near signals is often problematic. Adding medians and restricting existing entrances to right in, right out can improve operational efficiency. Providing a U-turn at the signal for access can help offset these restrictions. Note that U-turning vehicles proceed through an intersection at a slower speed than left-turning vehicles and can adversely affect both operations and safety at the intersection. Consider prohibition of U-turns at intersections with high volumes of movement with which U-turns interfere. Slower moving U-turning traffic will reduce the capacity of a left-turn movement. Drivers attempting to make a U-turn during a permitted left-turn phase may interfere with opposing through traffic. Rear-end crashes involving U-turning vehicles followed by left-turning or through vehicles may be a sign of operational problems with the U-turn maneuver.

Consider sight distance limitations. If opposing left-turning vehicles waiting in a turn lane block a U-turning driver's view of oncoming through traffic, prohibition of U-turn (as well as left-turn) maneuvers on a permissive left-turn phase may be appropriate.

Accommodate the turning radius of the design vehicle by a combination of median and receiving lane width. A shorter turn radius will cause slower speeds for U-turning vehicles, and will result in more delay to following vehicles.

One study suggests adjusting for U-turns differently from left-turns when determining saturation flow rates of left-turn lanes, to account for their larger effect on operations.⁽¹⁹⁴⁾

Summary

Exhibit 11-24 summarizes the issues associated with turn prohibitions.

Characteristic	Potential Benefits	Potential Liabilities
Safety	Potential reduction in collisions.	None identified.
Operations	Potential increase in capacity and reduction in delay due to reduction of the number of phases.	Could adversely affect adjacent intersections.
Multimodal	Fewer conflicts with turning vehicles. Lower delay to all users.	None identified.
Physical	Could reduce the footprint of intersection.	Upkeep of delineators, marking, and islands to restrict movements.
Socioeconomic	Part of a traffic calming measure while enhancing main street efficiency. Reduce emissions.	Impacts from adverse travel.
Enforcement, Education, and Maintenance	None identified.	Enforcement of turn restrictions may be needed.

Exhibit 11-24. Summary of issues for turn prohibitions.

11.2.5 Provide Auxiliary Through Lanes

Adding auxiliary through lanes (i.e., additional through lanes with limited length) at signalized intersections can provide added capacity for through movements. The amount of added capacity achieved depends on the extent to which through vehicles use the auxiliary lane. Various factors (such as the length of the auxiliary lane, turn volumes, and overall operation of the intersection) contribute to how many vehicles will use an auxiliary lane.

Description

Auxiliary lanes are generally provided on the approaches of a signalized intersection in advance of the intersection, reduced downstream of the intersection, or dropped at a subsequent intersection. Right-turn traffic may share the outside lane with a portion of the through vehicles, or there may be a separate exclusive right-turn lane. The auxiliary lane may also serve as an acceleration lane for vehicles turning right from the adjacent approach. Exhibit 11-25 illustrates an auxiliary through lane.

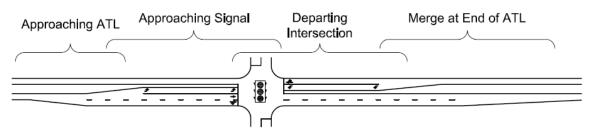


Exhibit 11-25. Diagram of an auxiliary through lane. Source: NCHRP Report 707.⁽¹⁹⁵⁾

Applicability

Auxiliary through lanes are applicable for arterials that have adequate capacity along midblock segments but require additional capacity at signalized intersection locations. The full benefit of an auxiliary through lane will not be realized if a bottleneck or constraint exists on the arterial upstream or downstream of the intersection.

Design Features

The length of the auxiliary through lane on both sides of an intersection helps determine whether the lane will be used; longer lanes get more use by through vehicles than do shorter ones. Ideally, the lane should be of sufficient length to allow a smooth merge once the lane is reduced.

Clearly communicating when the lane will end also determines how well the auxiliary lane will be used.⁽¹⁹⁶⁾ The reduction of the auxiliary lane downstream should be signed and marked according to the MUTCD.⁽¹⁾ If not properly signed and marked, motorists can become trapped near the end of the reduced lane, without advance notice of the reduction. Therefore, pay particular attention should be made to discontinuing the lane line at the ³/₄d distance from the end of the full width lane (see MUTCD Figure 3B-14). Note that "d", placement of the warning sign, is found in MUTCD Table 2C-4.

Operational Features

Unless a separate right-turn lane is provided, both through and right-turning vehicles may use the additional lane. More vehicles are likely to use the auxiliary through lane if there is not adequate green time to clear the signal from the inside through lane. Using relatively short green times for the approach will clear vehicle queues and likely result in a higher utilization of the outside auxiliary through lane due to compressed gaps in the through movement.

Safety Performance

Based on the subjective assessment of the authors, the safety experience of an intersection with auxiliary through lanes should not significantly differ from conventional intersections without the additional lane. The downstream merge maneuver this design requires may lead to an increase in merge-related collisions (sideswipes), but studies have not evaluated this.

Again, the length of the auxiliary through lane impacts the safety of the intersection. Drivers not comfortable with an auxiliary lane will stay in the through lane. No reduction in rear end crashes at the signal should be expected. Right-turning vehicles off the minor street may conflict with the vehicles on the main street using the auxiliary lane. The right-turning vehicles may use the auxiliary lane as an acceleration lane and not properly yield to the major street. This could lead to right turn, right angle crashes or right turn rear end crashes.

NCHRP 707 lists the following elements as critical to its safe operation:(195)

• Downstream length should be sufficient to allow enough acceleration to merge back into through movement easily.

- Access control is necessary to reduce the number of conflicting movements along the lane.
- Sight distance should be adequate to view all signing, marking, merge area, and judge traffic flow.
- Queuing downstream of the auxiliary through lane merge should be prevented if possible from bottlenecks.
- Taper design should match AASHTO Green Book standards.
- Signing, marking, and lighting of the auxiliary through lane should be in accordance with MUTCD guidelines, should be clear and concise, and should accommodate nighttime operations.

Operational Performance

NCHRP 707 contains a step by step procedure to estimate the usage of a proposed auxiliary lane. This example is for the additional of a single auxiliary lane adjacent to a single, continuous through lane.⁽¹⁹⁵⁾

$$X_T = \frac{V_T}{S_T \times \frac{g}{C}}$$

where: V_{τ} = 15 - minute through - movement demand flow rate on the approach, expressed in vehicles per hour;

S $_{T}$ = A adjusted through saturation flow rate per lane on the approach, in vehicles per hour;

g = Effective green time for the approach, in seconds; and

C = Intersection cycle length, in seconds.

$$V_{ATL} = 20.226 + 81.791 \times X_T^2 + 1.65 \times \frac{V_T^2}{10,000}$$

where: V_{ATL} = The predicted through movement flow rate in the auxiliary through lane (in vehicles per hour), and all other variables are as previously defined.

Remaining volume traveling in the continuous through lanes is $V_{CTL} = V_T - V_{ATL}$.

Multimodal Impacts

Wider intersections result in longer crossing times for pedestrians and bicyclists, as well as increased exposure to vehicle conflicts.

Physical Impacts

Adding an auxiliary through lane will increase the footprint of the intersection if no median is currently present. The approach to the intersection will be wider to accommodate the auxiliary lane.

Socioeconomic Impacts

Driver perception of the benefits of the auxiliary through lane will determine how often the lane is used by through vehicles. If right-turn volumes are high enough that drivers do not benefit from using the lane, capacity of the through movement will not improve significantly.

The cost of construction and the accompanying signing and striping are among the main economic disadvantages to installation of an auxiliary lane. Also, access to properties adjacent to the intersection approach should be restricted when another lane is constructed. Property owners affected by the restrictions, especially business owners, may be opposed to the auxiliary lanes.

Enforcement, Education, and Maintenance

Auxiliary through lanes do not present any special enforcement issues.

No public education should be needed to inform drivers how to proceed through the intersection. Only critical, location-specific signs should be located within the downstream auxiliary through lane area due to the merge and reduction demand on the driver. Markings and signing for lane use and arrangement are generally sufficient upstream, and lane reduction signing and markings are sufficient downstream.

Maintenance issues for through auxiliary lanes will be the same as for other areas of the intersection. Pavement markings and signs should be kept visible and legible.

Summary

Exhibit 11-26 summarizes the issues associated with auxiliary through lanes.

Characteristic	Potential Benefits	Potential Liabilities
Safety	May reduce rear-end crashes due to improved signal operation.	Potential for sideswipes downstream of merge. Right-turn crashes with minor street.
Operations	Decreased delay for through vehicles.	Improper use of auxiliary lane downstream; under use of auxiliary lane upstream.
Multimodal	Reduces queues may decrease overall cycle length	Longer pedestrian crossing time and exposure.
Physical	None identified.	Larger intersection footprint.
Socioeconomic	None identified.	Construction costs. Driver perception of delay. Access to properties.
Enforcement, Education, and Maintenance	None identified	Enforcement responding to crashes from rear ends and side swipes. Right-turning drivers not yielding to through movement.

Exhibit 11-26. Summary of issues for auxiliary through lanes.

11.2.6 Delineate Through Path

At complex intersections where the correct path through the intersection may not be immediately evident to drivers, pavement markings may be needed to provide additional guidance. The same markings are used to delineate turning paths through intersections for multiple turn lanes. These markings are a continuation of the longitudinal lane stripes, but have a different stripe and skip pattern. An example of these markings is given in Exhibit 11-27.

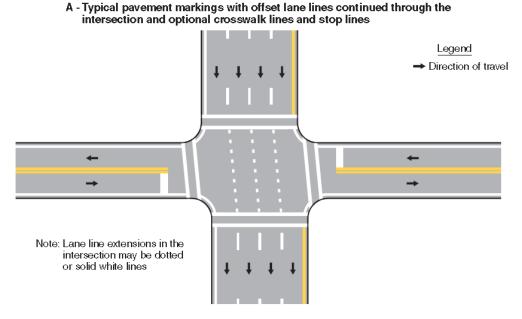


Exhibit 11-27. Example of delineated paths. Source: MUTCD 2009 Fig 3B-13.⁽¹⁾

Intersections where through vehicles cannot proceed through the intersection in a straight line may benefit from pavement markings that guide drivers along the appropriate path. Skewed intersections, intersections where opposing approaches are offset, and multi-leg intersections may all present situations where additional guidance can improve safety and operations.

Delineating the through path should help reduce driver confusion in the intersection, which will reduce erratic movements as drivers steer into or out of the appropriate path. This would reduce the potential for sideswipe, rear-end, and head-on crashes.

Pavement markings through the intersection should account for off-tracking of large (design) vehicles. The markings should be spaced far enough apart to allow off-tracking without crossing over the markings.

The cost of installing and maintaining the pavement markings should be the only costs of this treatment, and should be similar to that of other pavement markings on the approaches.

Summary

Exhibit 11-28 summarizes the issues associated with path delineation.

Characteristic	Potential Benefits	Potential Liabilities
Safety	Fewer erratic maneuvers.	None identified.
Operations	Fewer erratic maneuvers.	None identified.
Multimodal	None identified.	Potential off-tracking of large vehicles.
Physical	None identified.	Installation costs.
Socioeconomic	None identified.	Maintenance costs.
Enforcement, Education, and Maintenance	None identified.	None identified.

Exhibit 11-28. Summary of issues for path delineation.

11.3 VARIABLE LANE USE TREATMENTS

11.3.1 Provide Reversible Lanes

Reversible lanes increase capacity without additional widening when flows during peak periods are highly directional. These peak periods could be regular occurrences, as with normal weekday morning and evening peak traffic, or with special events, as with roadways near major sporting venues. Reversible lanes often extend for a considerable length of an arterial through multiple signalized intersections.

According to the MUTCD, reversible lanes are governed by signs (Section 2B.25) and/or the following lane use control signals (section 4J.02): ⁽¹⁾

- DOWNWARD GREEN ARROW.
- YELLOW X.
- WHITE TWO-WAY LEFT-TURN ARROW.
- WHITE ONE-WAY LEFT-TURN ARROW.
- RED X.

At least three sources provide good information on the implementation of reversible lanes. First, the MUTCD provides guidance on the allowable applications of these lane use control signs and signals, as well as when lane use signals should be used instead of signs. Second, the *Traffic Control Devices Handbook* provides additional information on signal control transition logic that can be used when reversing the directional flow of a lane or changing a lane to or from two-way left-turn operation.⁽⁶⁸⁾ Third, the *Traffic Safety Toolbox* provides further discussion on planning and implementation considerations, in addition to a discussion of the effects on capacity and safety.⁽¹⁰⁾

Safety Performance

Reversible lanes help reduce congestion and likely reduce rear-end collisions. As reported in the *Traffic Safety Toolbox*, "Studies of a variety of locations where reversible lanes have been implemented have found no unusual problem with head-on collisions compared to other urban facilities. Typically, the reversible lanes will have either no effect on safety conditions or will achieve small but statistically significant reductions in accident rates on the facility." ^(10, p. 130)

Reversible lanes may preclude the use of median treatments as an access- management technique along an arterial street.

Signalized Intersections: Informational Guide

Operational Performance

Reversible lanes directly benefit operational performance by allowing better matching of the available right-of-way to peak direction demands.

Multimodal Impacts

The operation of a reversible lane precludes the use of a fixed median to physically separate opposing travel directions. Therefore, reversible lane operation precludes the use of medians as a refuge area for pedestrians, thus requiring pedestrians to cross the arterial in one stage.

Physical Impacts

Reversible lanes may postpone or eliminate the need to widen a facility.

Socioeconomic Impacts

Reversible lanes are a relatively low-cost treatment compared to the cost of physically widening a facility. This type of facility may not be viewed as conducive to the type of development along the route.

Summary

Exhibit 11-29 summarizes of the issues associated with reversible lanes.

Characteristics	Potential Benefits	Potential Concerns
Safety	Typically achieves small but statistically significant accident reductions due to reduced congestion.	May preclude access management techniques.
Operations	Provides additional capacity to accommodate peak direction flows.	Potential confusion by drivers during off peak times.
Multimodal	None identified.	Reversible lanes may prevent the use of median pedestrian refuges.
Physical	May postpone or eliminate the need to widen a facility.	None identified.
Socioeconomic	Relatively low cost.	May not be compatible with adjacent property uses.
Enforcement, Education, and Maintenance	None identified.	New treatment to the area would require some communication.

Exhibit 11-29. Summary of issues for reversible lanes.

11.3.2 Provide Variable Lane Use Assignments

The concept of variable lane use treatments at signalized intersections is similar to that of the reversible lane but is typically applied locally to a single intersection. Variable treatments change individual lane assignments at a signalized intersection by time of day and thus can be used to accommodate turning movements with highly directional peaking characteristics.

Issues to consider when implementing variable lane use assignments include: (57)

- Adequate turning radius for the number of turning lanes intended during each mode of operation.
- Adequate receiving lanes for each mode of operation.
- Compatible signal phasing to accommodate each lane configuration.

• The use of similar variable advance lane use signs to provide adequate notice to drivers of the lane use in effect.

Impacts to signal timing and phasing require special attention when implementing variable lane use assignments. Variable lane assignments should be evaluated using traffic software and simulations. While not necessary for all variable lane use operations, split phasing allows any legal combination of lanes to be implemented, provided that the other factors cited above are accommodated. Other techniques that could be used include variable left-turn phasing treatments (e.g., protected-only operation during some times of day, and protected-permissive operation during others). Today's traffic software and simulation programs allow the practitioner to evaluate different scenarios prior to implementing this strategy on the street.

Exhibits 11-30 and 11-31 provide examples from Montgomery County, Maryland, where variable lane use signs have been provided for additional left and right turns, respectively. These signs have been employed in conjunction with advance variable lane use signs provided several hundred feet before the intersection. The signs are compliant with the MUTCD, which allows changeable message signs to use the reverse color pattern when displaying regulatory messages (Sections 2A.07 and 6F.52).⁽¹⁾ They are reported as being well received by the public and effective in reducing peak-period queuing.⁽⁵⁷⁾

(a) Double left turn during morning peak and off-peak periods.

(b) Triple left turn during evening peak period.

Exhibit 11-30. Example use of variable lane use sign to add a third left-turn lane during certain times of day.

Exhibit 11-31. Example use of variable lane use sign to add a second right-turn lane along a corridor during certain times of day.

Summary

Exhibit 11-32 summarizes the issues associated with variable lane use.

Characteristics	Potential Benefits	Potential Concerns
Safety	None identified.	None identified.
Operations	Improved peak-period utilization of existing right-of-way. Reduced queuing during peak periods.	None identified.
Multimodal	None identified.	Barrier to adding bike lanes.
Physical	Reduces or eliminates need for additional right-of-way.	None identified.
Socioeconomic	Lower cost than adding lanes.	None identified.
Enforcement, Education, and Maintenance	None identified.	Communicate any changes to the public. Maintain additional equipment

Exhibit 11-32. Summary of issues for variable lane use.

List of Acronyms

AADT	Average Annual Daily Traffic
AASHTO	American Association of State Highway and Transportation Officials
ADA	Americans with Disabilities Act
ADAAG	Americans with Disabilities Act Accessibility Guidelines
ADT	Average Daily Traffic
ATC	Advanced Transportation Controller
BCR	Benefit-Cost Ratio
BIU	Bus Interface Unit
CLA	Critical Lane Analysis
CMF	Crash Modification Factor
CW	Continuous Wave
EB	Empirical Bayes
EPDO	Equivalent Property Damage Only
FARS	Fatality Analysis Reporting System
FHWA	Federal Highway Administration
GPS	Global Positioning System
HCM	Highway Capacity Manual
HSIS	Highway Safety and Information System
HSM	Highway Safety Manual
IESNA	Illuminating Engineering Society of North America
ITE	Institute for Transportation Engineers
ITS	Intelligent Transportation Systems
LED	Light Emitting Diode
LOS	Level of Service
MMU	Malfunction Management Unit
MMUCC	Model Minimum Uniform Crash Criteria
mph	mile(s) per hour
MUTCD	Manual on Uniform Traffic Control Devices
NCHRP	National Cooperative Highway Research Program
NEMA	National Electrical Manufacturers Association
NHTSA	National Highway Traffic Safety Administration
NTCIP	National Transportation Communication for ITS Protocol
PDO	Property Damage Only
PHB	Pedestrian Hybrid Beacons

Signalized Intersections: Informational Guide

Protected-Permissive Left-Turn
Public Rights of Way Accessibility Guidelines
Potential for Safety Improvement
Quick Estimation Method
Radio Frequency
Road Safety Audit
Relative Severity Index
Signal Control and Prioritization
Synchronous Data Link Control
Safety Performance Function
Single Point Urban Intersection
Surrogate Safety Analysis Model
Small Target Visibility
Sport Utility Vehicle
Transit Capacity and Quality of Service Manual
Transportation Research Board
Uninterrupted Power Supply
United States Department of Transportation
Volume-to-Capacity

Glossary of Terms

Actuated Signals: Vary the amount of green time allocated to each phase based on traffic demand. Can operate either in a fully actuated mode, semi-actuated mode, or coordinated mode.

Advance Stop Lines: Vehicle stop lines moved 5 to 10 m (15 to 30 ft) further back from the pedestrian crossing than the standard 1.2 m (4 ft) distance to improve visibility of through bicyclists and crossing pedestrians for motorists who are turning right.

All-way Stop control: Requires that vehicles approaching the intersection from all directions come to a stop prior to entering the intersection.

Americans with Disabilities Act (ADA): Law passed in 1990 that prohibits discrimination and ensures equal opportunity and access for persons with disabilities (<u>http://www.fta.dot.gov/civilrights/12325.html</u>).

Auxiliary Lane: A lane added in advance of (and sometimes carried through) an intersection for a limited distance to facilitate speed change (acceleration or deceleration), added capacity (throughput), separate turning or weaving.

Back-of-Queue: The maximum backward extent of queued vehicles during a typical cycle.

Before and After Study: Crash frequencies at a site are compared before and after implementation of a treatment.

Benefit-Cost Ratio (BCR) Method: First the present worth of benefits and costs is calculated. Then the ratio of present worth of benefits over present worth of costs is calculated. If the ratio is greater than 1.0, the project is economically justified.

Bicycle Box: Advance stop lines are placed on the approach to a signalized intersection, typically in the rightmost lane, at a location upstream from the normal stop line location. These create a dedicated space for bicyclists—a bicycle box—to occupy while waiting for a green indication.

Capacity: The maximum sustainable flow rate at which vehicles can pass through a given point in an hour under prevailing conditions; it is often estimated based on assumed values for saturation flow, and width of lanes, grades, and lane use allocations, as well as signalization conditions.

Change and Clearance Interval: The amount of time, in seconds, based on speed and corresponding to distance, provided for vehicles to either stop at or clear an intersection (refer to ITE Recommended Practice).

Crash Modification Factor (CMF): The ratio of expected crash frequency at a location with a countermeasure divided by the expected crash frequency at the location without the countermeasure.

Critical Phase: One phase of a set of phases that occur in sequence and whose combined flow ratio is the largest for the signal cycle.

Cut-through Median: A median on which the pedestrian path is at the same grade as the adjacent roadway.

Signalized Intersections: Informational Guide

Curb Extensions (also known as "Bulbouts" or "Neckdowns"): Involve extending the sidewalk or curb line into the street, reducing the effective street width.

Curb Ramp: A ramp leading from a sidewalk to a street to provide access for people who use wheelchairs and scooters.

Cycle Length: The time allotted or used for one complete sequence of signal indications.

Decision Sight Distance: The distance needed for a driver to detect an unexpected or otherwise difficult-to-perceive information source or condition in a roadway environment that may be visually cluttered, recognize the condition or its potential threat, select an appropriate speed and path, and initiate and complete the maneuver safely and efficiently.

Delay: The additional travel time experienced by a driver, passenger, bicyclist, or pedestrian beyond that is required to travel at the desired speed, including stop and start-up time.

Detectable Warning: A surface of truncated domes built in or applied to walking surfaces to alert visually impaired pedestrians of the presence of the vehicular travel way and to provide physical cues to assist pedestrians in detecting the boundary from sidewalk to street.

Detectors (also called Sensors): Inform the signal controller that a motor vehicle, pedestrian, or bicycle is present at a defined location on the approach to an intersection or within a signal system.

Dilemma Zone: Length of roadway in advance of an intersection wherein drivers may be indecisive and respond differently to the onset of a yellow signal.

Dilemma Zone Detection System: Uses detectors placed at one or more locations on an intersection approach to extend the green and prevent the onset of yellow while approaching vehicles are in the dilemma zone.

Disability Glare: The glare that results when stray light is superimposed in the eye on top of the retinal image of the object of interest, altering the apparent brightness of that object and the background in which it is viewed.

Dropped Lane: A through lane that becomes a left- or right-turn lane at an intersection.

Effective Green Time: The amount of usable time available to serve vehicular movements during a phase of a cycle.

Empirical Bayes (EB) Method: Calculates expected crash frequencies through a combination of observed and predicted crash frequencies. The predicted crash frequencies are derived through the development of a safety performance function (SPF).

Exclusive Pedestrian Signal Phase: Allows pedestrians to cross in all directions at an intersection at the same time, including diagonally. Sometimes called a "Barnes dance" or "pedestrian scramble."

Far-side Transit Stop: A transit stop located downstream of an intersection.

Forgiving Roadway: An information-driven concept predicated on meeting the expectations of road users—motorists, bicyclists, and pedestrians—and assuring that they get needed information, when it is required, in an explicit and usable format, in sufficient time to react.

Fully-actuated Signals: Traffic signals that recognize users on all approaches.

Gap Reduction: A predetermined, constant time (often fraction of a second) which is subtracted from the maximum extension or passage time beginning at a point after the initial or minimum green has timed out.

Highway Safety Manual (HSM): An American Association of State Highway Transportation Officials (AASHTO) document that provides tools to practitioners to conduct quantitative safety analyses.

Human Factors Research: Deals with human physical, perceptual, and cognitive abilities and characteristics and how they affect our interactions with tools, machines, and workplaces.

Illuminance: The amount of light incident on the pavement surface from the lighting source.

Intersection Count: Number of vehicles entering a signalized intersection. This is often counted by turning movement and direction of travel.

Intersection Sight Distance: The distance required for a driver without the right of way to perceive and react to the presence of traffic signal indications, conflicting vehicles, and pedestrians.

Lagging Pedestrian Interval: Retiming the signal splits so that the pedestrian WALK signal begins a few seconds after the vehicular green for turning movement.

Leading Pedestrian Interval: Retiming the signal splits so that the pedestrian WALK signal begins a few seconds before the vehicular green. While the vehicle signals are in "All Red," this allows pedestrians to establish their presence in the crosswalk before the turning vehicles, thereby enhancing the pedestrian right-of-way.

Light Level: Represents the intensity of light output on the pavement surface. Reported in units of lux (metric) or footcandles (U.S. Customary).

Lost Time: The unused portion of a vehicle phase that occurs twice during a phase: at the beginning when vehicles are accelerating from a stopped position, and at the end when vehicles decelerate in anticipation of the red indication; often calculated as the sum of start-up loss and clearance interval.

Luminance: The amount of light reflected from the pavement toward the driver's eyes.

Manual on Uniform Traffic Control Devices (MUTCD): A compilation of national standards for all traffic control devices, including traffic signals.

Maximum Green Time: The maximum limit to which the green time can be extended for a phase in the presence of a call from a conflicting phase.

Near-side Transit Stop: A transit stop located upstream of an intersection.

Pedestrian Hybrid Beacon (PHB): A special type of traffic control device used to warn and control traffic at an unsignalized location to assist pedestrians in crossing a street or highway at a marked crosswalk.

Pedestrian Signal Detector: Devices to help pedestrians, including those with visual or mobility impairments, activate the pedestrian phase, such as pushbuttons or other passive detection devices.

Permissive-only Left-Turn Phasing (also called "Permitted-Only" Phasing): Signal phasing that allows two opposing approaches to time concurrently, with left turns allowed after motorists yield to conflicting traffic and pedestrians.

Signalized Intersections: Informational Guide

Positive Guidance: Concept that focuses on understanding and making allowances for how road users—primarily motorists—acquire, interpret, and apply information in the driving task.

Potential for Safety Improvement (PSI): The difference between expected crashes (obtained from the Empirical Bayes method) and predicted crashes (obtained from safety performance functions).

Preemption: Primarily related to the transfer of the normal control (operation) of traffic signals to a special signal control mode for the purpose of servicing railroad crossings, emergency vehicle passage, mass transit vehicle passage, and other special tasks, the control of which requires terminating normal traffic control to serve the special task.

Presence Detection: Alerts the controller to waiting vehicles during the red interval and calls for additional green time (passage or extension) for moving vehicles during the green interval.

Pre-timed Signals: Traffic signals that are programmed to give green indications to movements based on a predetermined allocation of time. Operate with fixed cycle lengths and green splits, and in turn can operate either in an isolated or coordinated mode.

Priority: The preferential treatment of one vehicle class (such as a transit vehicle, emergency service vehicle, or a commercial fleet vehicle) over another vehicle class at a signalized intersection without causing the traffic signal controllers to drop from coordinated operations.

Progression: The movement of vehicle platoons from one signalized intersection to the next.

Prohibited Left-Turn Movements: A scenario under which left-turning drivers are required to divert to another facility or turn in advance of or beyond the intersection via a geometric treatment such as a jughandle or a downstream median U-turn.

Protected-only Left-Turn Phasing: Signal phasing that provides a separate phase for left-turning traffic and allowing left turns to be made only on a green left arrow signal indication, with no pedestrian movement or vehicular traffic conflicting with the left turn.

Protected-Permissive Left-Turn (PPLT) Phasing: A combination of protected and permissive left-turn phasing.

Public Rights of Way Accessibility Guidelines (PROWAG): Guidelines developed specifically for pedestrian facilities in the public right-of-way that address conditions and constraints that exist in the public right-of-way.

Pulse Detection: A type of detection located well upstream of the intersection to provide inputs to the controller regarding approaching vehicles.

Queue Storage Ratio: The proportion of the available queue storage distance that is occupied at the point in the cycle when the back-of-queue position is reached.

Ramped Median: A median on which the pedestrian path is raised to the grade of the top of the curb.

Red Clearance Interval: Optional interval that follows the yellow change interval and precedes the next conflicting green interval. Provides additional time following the yellow change interval before conflicting traffic is released.

Signalized Intersections: Informational Guide

Red Light Running: When a motorist enters an intersection when the red signal is displayed and as a consequence sometimes collides with another motorist, pedestrian, or bicyclist who is legally within the intersection.

Red-Red Flashing Operation: A mode of flashing operation in which all approaches receive a flashing red indication. Typically used where traffic volumes on all approaches are roughly the same.

Red-Yellow Flashing Operation: A mode of flashing operation in which the minor street receives a flashing red indication and the major street receives a flashing yellow indication. Used in situations where traffic is very light on the minor street.

Ring-and-Barrier Structure: Signal phasing that prohibits conflicting movements (e.g., eastbound and southbound through movements) from timing concurrently while allowing non-conflicting movements (e.g., northbound and southbound through movements) to time together.

Road Safety Audit (RSA): A formal safety performance examination of an existing or future road or intersection by an independent audit team that considers the safety of all road users and qualitatively estimates and reports on road safety issues and opportunities for safety improvement.

Road Safety Management Process: Systematically identifying deficient locations from safety perspectives and addressing safety problems of these locations.

Roundabout: A circular intersection with design features that promote safe and efficient traffic flow.

Safety Performance Function: An equation that presents the mathematical relationship between crash frequency and volume for a reference group.

Safety Effectiveness Evaluation: The process of developing quantitative estimates of how a countermeasure, project, or a group of projects has affected crash frequencies or severities.

Semi-actuated Signals: Traffic signals that use various detection methods to identify roadway users on the minor approaches and/or major approach left-turn lanes.

Signal Interval: The part of the signal cycle during which signal indications do not change.

Signal Phase: The right-of-way, yellow change, and red clearance intervals in a cycle that are assigned to an independent traffic movement or combination of traffic movements.

Signal Phasing: The sequence of individual signal phases or combinations of signal phases within a cycle that define the order in which various pedestrian and vehicular movements are assigned the right-of-way.

Split Phasing: Signal phasing that consists of having two opposing approaches time consecutively rather than concurrently (i.e., all movements originating from the west followed by all movements from the east).

Small Target Visibility (STV): The level of visibility of an array of targets on the roadway. Determined by the average of three components: the luminance of the targets and background, the adaptation level of adjacent surroundings, and the disability glare.

Stopping Sight Distance: The distance along a roadway required for a driver to perceive and react to an object in the roadway and to brake to a complete stop before reaching that object.

Signalized Intersections: Informational Guide

System Detection: A collection of vehicular data such as count, speed, occupancy, queue length used by the controller to order and recall special override timing plans, traffic responsive timing plans, and adaptive signal control.

Traffic Demand: For an intersection, traffic demand represents the arrival pattern of vehicles.

Traffic Signals: Electrically operated traffic control devices that provide indication for roadway users to advance their travels by assigning right-of-way to each approach and movement.

Traffic Signal Controller: Acts as the "brain" of a traffic signal, changing signal indications based on user needs. The controller determines when the indication for the approach will change and how much time will be given to each movement.

Traffic Signal Heads: Informs roadway users of when their movement can proceed through the intersection. Signal heads vary in configuration, shape, and size depending on the movement for which they are used.

Traffic Volume: For an intersection, traffic volume is generally measured as the number of vehicles that pass through the intersection over a specific period of time.

Uniformity: Represents the ratio of either the average-to-minimum light level (E_{avg}/E_{min}) or the maximum-to-minimum light level (E_{max}/E_{min}) on the pavement surface.

Variable Initial: A volume-density feature used to improve intersection efficiency by using each pulse detector actuation during the red interval, typically on the major through approach, to incrementally alter the minimum green time in order to clear the accumulated queue for each cycle.

Variable Lane Use Treatments: Individual lane assignments at a signalized intersection are changed by time of day.

Veiling Luminance: Produced by stray light from light sources within the field of view. This stray light is superimposed in the eye on top of the retinal image of the object of interest, which alters the apparent brightness of that object and the background in which it is viewed.

Volume-to-Capacity (v/c) Ratio (also called degree of saturation): Represents the sufficiency of an intersection to accommodate the vehicular demand.

Yield-to-Bus Law: A law requiring all motorists to yield to buses pulling away from a bus stop in order to reduce transit/vehicle conflicts.

REFERENCES

1. Federal Highway Administration (FHWA). *Manual on Uniform Traffic Control Devices*. Washington, DC: U.S. Department of Transportation (USDOT), 2009.

2. Transportation Research Board (TRB). *Highway Capacity Manual 2010.* Washington, DC: TRB, National Research Council (NRC), 2010.

3. American Association of State Highway and Transportation Officials (AASHTO). *A Policy on Geometric Design of Highways and Streets.* Washington, DC: AASHTO, 2011.

4. FHWA. Safety and Operations Electronic Reading Room. <u>http://www.fhwa.dot.gov/tfhrc/safety/intro.htm</u>. Accessed May 2004.

5. National Highway Traffic Safety Administration (NHTSA). *Traffic Safety Facts 2002: A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System*. Washington, DC: USDOT, 2003.

6. Rodegerdts, L., et al., *NCHRP Report 672: Roundabouts: An Informational Guide, Second Edition.* Washington, DC: Transportation Research Board of the National Academies, 2010.

7. Americans with Disabilities Act (ADA). Public Law 226, 101st Congress. July 26, 1990.

8. U.S. Architectural and Transportation Barriers Compliance Board (U.S. Access Board). *Proposed Accessibility Guidelines for Pedestrian Facilities in the Public Right-of-Way,* July 26, 2011.

9. FHWA, *Driver Expectancy in Highway Design and Operations*. FHWA-TO-86-1. Washington, DC: USDOT, May 1986.

10. Institute for Transportation Engineers (ITE). *Traffic Safety Toolbox: A Primer on Traffic Safety*. Washington, DC: ITE, 1999.

11. American Association of State Highway and Transportation Officials (AASHTO). *Highway Safety Manual, 1st Edition.* Washington, DC: AASHTO, 2010.

12. Smiley, A., C. MacGreger, and R. Dewar. *Evaluation of Prototype Highway Tourist Signs for Ontario*. Prepared by Human Factors North for the Ontario Ministry of Transportation, Research and Development Branch. Ontario, Canada: June 1996.

13. Eby, D. and L. Kostyniuk. *Estimating Driving Task Demand from Crash Probabilities: A Review of the Literature and Assessment of Crash Databases*. 2004. http://www.volpe.dot.gov/coi/hfrsa/work/roadway/saveit/docs/dec04/litrev_2a.pdf

14. Treat, J., N. Tumbas, S. McDonald, D. Shinar, R. Hume, R. Mayer, R. Stansfin, and N. Castellen. *Tri-level Study of the Causes of Traffic Accidents*. Report No. DOT-HS-034-3-535-77 (TAC), Indiana, 1977.

15. Staplin, L., K. Lococo, S. Byington, and D. Harkey. *Highway Design Handbook for Older Drivers and Pedestrians.* Report No. FHWA-RD-01-103. Washington, DC: USDOT, 2001.

Signalized Intersections: Informational Guide

16. FHWA. Young Drivers and Highway Design and Operations: Findings and Recommended *Research.* Report No. FHWA-RD-01-120. Washington DC: USDOT, 2001

17. Bureau of Transportation Statistics. *National Transportation Statistics 2010.* "Table 1-11: Number of U.S. Aircraft, Vehicles, Vessels, and Other Conveyances." Washington, DC: USDOT, 2010.

18. Fatality Analysis Reporting System. "Fatality Facts 2009: Pedestrians." http://www.iihs.org/research/fatality.aspx?topicName=Pedestrians&year=2009

19. Insurance Institute for Highway Safety, Fatality Facts, Passenger Vehicles.

20. American Association of State Highway and Transportation Officials. *Highway Safety Manual* (2010), Table 10-6.

21. Slack, K., *NCHRP Report 500: Guidance for Implementation of the AASHTO Strategic Highway Safety Plan.* Washington, DC: Transportation Research Board of the National Academies, 2000.

22. NHTSA. Traffic Safety Facts 2008. http://safety.fhwa.dot.gov/intersection/redlight/

23. Mohamedshad, Y., L. Chen, and F. Council. *Association of Selected Intersection Factors with Red-Light-Running Crashes*. Report No. FHWA-RD-00-12. Washington, DC: USDOT, 2000.

24. NHTSA. *Traffic Safety Factors.* "Distracted Driving 2009." Report No. DOT HS 811 379. Washington, DC: 2010, p. 11.

25. Sing, S. *Distracted Driving and Driver, Roadway, and Environmental Factors*. Report No. DOT HS 811 380, National Highway Traffic Safety Administration. Washington, DC: 2010, p. 12.

26. AASHTO. *Guide for the Development of Bicycle Facilities, 4th Edition*. Washington, DC: AASHTO, 2012.

27. FHWA. Selecting Roadway Design Treatments to Accommodate Bicycles. Report No. FHWA-RD-92-073. Washington, DC: USDOT, January 1994.

28. Pein, W. E. *Trail Intersection Design Guidelines*. Prepared for State Bicycle/Pedestrian Program, State Safety Office, Florida Department of Transportation. Highway Safety Research Center, University of North Carolina. September 1996.

29. Danish Road Directorate. *Collection of Cycle Concepts.* Copenhagen, Denmark: Road Directorate: 2000.

30. USDOT, Pedestrian and Bicycle Information Center, "How Many Bicyclists are Killed and Injured Each Year?" web page. <u>http://www.bicyclinginfo.org/faqs/answer.cfm?id=40</u>

31. NHTSA. *NHTSA Traffic Safety Facts 2009*, "Bicyclists and Other Cyclists." Report No. DOT HS 811 386. Washington, DC: 2010.

32. FHWA. *Injuries to Pedestrians and Bicyclists: An Analysis Based on Hospital Emergency Department Data.* Report No. FHWA-RD-99-078. Washington, DC: USDOT, 1999.

33. FHWA. *Pedestrian and Bicycle Crash Types of the Early 1990s*. Report No. FHWA-RD-95-163. Washington, DC: USDOT, 1995.

Signalized Intersections: Informational Guide

34. FHWA. *Summary of Travel Trends: 2009 National Household Travel Survey.* "Table 7. Average Annual Person Trips Per Household by Mode of Transportation and MSA Size 1977, 1983, 1990, and 1995 NPTS, and 2001 and 2009 NHTS." Report No. FHWA-PL-II-022, Washington, DC: USDOT, 2011, p. 16.

35. Fruin, J. J. *Pedestrian Planning and Design.* New York: Metro Association of Urban Designers and Environmental Planning, 1971.

36. U.S. Department of Justice, ADA Standards for Accessible Design (ADAAG). 2010.

37. Kirschbaum, J. B., P. W. Axelson, P.E. Longmuir, K. M. Mispagel, J. A. Stein, and D. A. Yamada. *Designing Sidewalks and Trails for Access, Part II of II: Best Practices Design Guide.* Report No. FHWA-EP-01-127. Washington, DC: USDOT, September 2001.

38. Zegeer, C.V., C. Seiderman, P. Lagerway, M. Cynecki, M. Ronkin, and R. Schneider. *Pedestrian Facilities Users Guide—Providing Safety and Mobility*. Report No. FHWA-RD-01-102. Washington, DC: USDOT, 2002.

39. Leaf, W.A., and D.F. Preusser. *Literature Review on Vehicle Travel Speeds and Pedestrian Injuries*. Report No. DOT-HS-809-021. Washington, DC: USDOT, October 1999.

40. Florida Department of Transportation, *Florida Pedestrian Planning and Design Handbook*, April 1999.

41. Taoka, G.T. "Statistical Evaluation of Brake Reaction Time," *Compendium of Technical Papers*, 52nd Annual Meeting of ITE, Chicago, IL, pp. 30-36, August 1982.

42. ITE, Trip Generation Manual, 8th Edition: An ITE Informational Report. Washington, DC: 2008.

43. Minnesota Department of Transportation. "Intersection Control Evaluation (ICE)." Technical Memorandum No. 07-02-T-01, March 20, 2007, p 2. http://dotapp7.dot.state.mn.us/edms/download?docId=700081

44. ITE. *ITE Traffic Engineering Handbook*. 6th edition, W.H. Kraft, ed. Washington, DC: ITE, 2009.

45. Bonneson, J. and M. Fontaine. *NCHRP Report 457: Evaluating Intersection Improvements: An Engineering Study Guide*. Washington, DC: Transportation Research Board of the National Academies, 2010

46. Woodson, W.E., B. Tillman, and P. Tillman. *Human Factors Design Handbook: Information and Guidelines for the Design of Systems, Facilities, Equipment, and Products for Human Use*, Second Edition. New York: McGraw-Hill, Inc., 1992.

47. Gattis, J. L., and S. T. Low. *Intersection Angle Geometry and the Driver's Field of View*. Final Technical Report 1073. University of Arkansas, March 1998, p. 38.

48. AASHTO. *Guide for the Planning, Design, and Operation of Pedestrian Facilities.* 1st Edition. Washington, DC: AASHTO, 2004.

49. FHWA. *Federal Lands Highway Project Development and Design Manual.* "Chapter 9. Highway Design." Draft. August 2012. <u>http://flh.fhwa.dot.gov/resources/manuals/pddm/</u>

Signalized Intersections: Informational Guide

50. University of North Carolina Highway Safety Research Center. *Florida Pedestrian Planning and Design Handbook.* Florida Department of Transportation: April 1999.

51. City of Portland (Oregon). *City of Portland Pedestrian Design Guide*. Portland, OR: Office of Transportation, June 1998.

52. FHWA. Memorandum on ADAAG Detectable Warnings. May 6, 2002. http://www.fhwa.dot.gov/environment/bicycle_pedestrian/guidance/accessibility_guidance/dwm.cfm.

53. U.S. Department of Justice. *2010 ADA Standards for Accessible Design*, "Chapter 7. Communication Elements and Features," Figure 705.1 Size and Spacing of Truncated Domes.

54. U.S. Architectural and Transportation Barriers Compliance Board (U.S. Access Board). *Proposed Accessibility Guidelines for Pedestrian Facilities in the Public Right-of-Way,* July 26, 2011.

55. FHWA *Alternative Intersections/Interchanges: Informational Report (AIIR).* Report No. FHWA-HRT-09-060, Washington, DC: USDOT, 2010. <u>http://www.fhwa.dot.gov/publications/research/safety/09060/</u>

56. Seymour, E., J. Green, and J. Black. "The Permitted Lead-Lag Left-Turn Display." In *1994 Compendium of Technical Papers*, ITE, 64th Annual Meeting, La Jolla, CA, 1994.

57. Wainwright, W.S. "Tricks of the Trade: How to Get More Capacity at Your Signalized Intersections, at Low Cost and Without Compromising Safety." In *2003 Annual Meeting and Exhibit, CD Compendium*, ITE, 73rd Annual Meeting, Seattle, WA, August 24-27, 2003.

58. FHWA. *Alternative Intersections/Interchanges: Informational Report (AIIR).* Report No. FHWA-HRT-09-060, Washington, DC: USDOT, 2010. <u>http://www.fhwa.dot.gov/publications/research/safety/09060/</u>

59. Bentzen, B.L., and L.S. Tabor. *Accessible Pedestrian Signals*. Document A-37. Washington, DC: U.S. Architectural and Transportation Barriers Compliance Board (U.S. Access Board), 1998.

60. Barlow, J.M., B.L. Bentzen, and L.S. Tabor. "Accessible Pedestrian Signals: Synthesis and Guide to Best Practice." *Research Results Digest Number* 278. Washington, DC: NCHRP, July 2003.

61. Noyce, D.A., and J.M. Barlow. *Interfacing Accessible Pedestrian Signals (APS) with Traffic Signal Control Equipment*. Washington, DC: U.S. Architectural and Transportation Barriers Compliance Board (U.S. Access Board), April 2003.

62. American Association of State Highway Transportation Officials (AASHTO). *Roadside Design Guide*. Washington, DC: AASHTO, 2002.

63. Missouri DOT. *Engineering Policy Guide, Section 902.5.37.3.* Jefferson City, MO, <u>http://epg.modot.mo.gov</u>

64. Kell, J.H., and I.J. Fullerton. *Manual of Traffic Signal Design*, 2nd edition. Washington, DC: ITE, 1998.

65. Bonneson, J.A., and P.T. McCoy. *Manual of Traffic Detector Design*, 1st edition. Washington, DC: ITE, 1994.

66. FHWA. *Traffic Signal Timing Manual*. Report No. FHWA-HOP-08-024. Washington, DC: USDOT, FHWA, June 2008.

Signalized Intersections: Informational Guide

67. Wortman, R.H., and T.C. Fox. "A Reassessment of the Traffic Signal Change Interval." In *Transportation Research Record* 1069 (1986).

68. ITE. Traffic Control Devices Handbook, J.L. Pline, ed. Washington, DC: ITE, 2001.

69. ITE. Traffic Signing Handbook. Washington, DC: ITE, 1997.

70. Illuminating Engineering Society of North America (IESNA). *American National Standard Practice for Roadway Lighting*. Standard RP-8-00. June 2000 (Reaffirmed 2005).

71. Antonucci, N.D., K.K. Hardy, K.L. Slack, et al. *NCHRP Report 500 Volume 12: Guidance for Implementation of the AASHTO Strategic Highway Safety Plan.* Washington, DC: Transportation Research Board of the National Academies, 2004.

72. FHWA. *FHWA Road Safety Audit Guidelines.* Report No. FHWA-SA-06-06. Washington, DC: USDOT, 2006.

73. ITE. Statistical Evaluation in Traffic Safety Studies. Washington, DC: ITE, 1999.

74. USDOT. *Model Minimum Uniform Crash Criteria Guideline*. Third Edition. Washington, DC: USDOT, 2008.

75. Alexander, G. *Positive Guidance in Maryland: Guidelines and Case Studies.* Maryland State Highway Administration, 1997.

76. FHWA, *Retroreflective Borders on Traffic Sgnal Backplates: A South Carolina Success Story.* Report No. FHWA-SA-09-011. Washington, DC: USDOT, 2009.

77. FHWA, *Safety Evaluation of Advance Street Name Signs*. Report No. FHWA-HRT-09-029. Washington, DC: USDOT, 2009.

78. FHWA, Crash Modifications Factors (CMF) Clearinghouse. http://www.cmfclearinghouse.org/

79. Hauer, E. Observational Before - After Studies in Road Safety. Elsevier Science Ltd., Oxford, UK: 1997.

80. TRB. Highway Capacity Manual, Special Report 209. Washington, DC: TRB, 1985.

81. Chang, G.L., J. Joseph. *Empirical Investigation of Intersection Traffic Patterns Under Maryland Driving Populations—Analysis of the Critical-Lane Volume Method at Signalized Intersections*. College Park, MD: The University of Maryland at College Park, August 2001.

82. Harwood, D.W., M.T. Pietrucha, M.D. Wooldridge, R.E. Brydia, and K. Fitzpatrick. *NCHRP Report 375: Median Intersection Design*. Washington, DC: Transportation Research Board of the National Academies, 1995.

83. Radwan, A.E., K.C. Sinha, and H.L. Michael. *Development and Use of a Computer Simulation Model for the Evaluation of Design and Control Alternatives for Intersections of Minor Roads with Multilane Rural Highways*. Report Nos. FHWA-IN-79/8, FHWA-IN-79/9, and FHWA-IN-79/10. Joint Highway Research Project. West Lafayette, IN: Purdue University, July 1979.

Signalized Intersections: Informational Guide

84. Priest, R.V. "Statistical Relationships Between Traffic Volume, Median Width, and Accident Frequency on Divided Highway Grade Intersections." *Highway Research News*, No. 13. Washington, DC: Highway Research Board, NRC, June 1964.

85. Castronovo, S., P.W. Dorothy, and T.L. Maleck. "Investigation of the Effectiveness of Boulevard Roadways." In *Transportation Research Record* 1635 (1998).

86. Dorothy, P.W., T.L. Maleck, and S.E. Nolf. "Operational Aspects of Michigan Design for Divided Highways." *Transportation Research Record* 1579 (1997).

87. FHWA. Vegetation Control for Safety: A Guide for Street and Highway Maintenance Personnel. Report No. FHWA-RT-90-003. Washington, DC: USDOT, 1990.

88. Gluck, J., H.S. Levinson, and V.G. Stover. *NCHRP Report 420: Impacts of Access Management Techniques.* Washington, DC: Transportation Research Board of the National Academies, 1999

89. ITE. Transportation and Land Development, 2nd Edition. Washington, DC: ITE, 2002.

90. TRB. Access Management Manual. Washington, DC: TRB, 2003.

91. Xu, L. "Right Turns Followed by U-Turns vs. Direct Left Turns: A Comparison of Safety Issues." *ITE Journal*, November 2001, pp. 36-43.

92. Papayannoulis, V., J.S. Gluck, K. Feeney, and H.S. Levinson. "Access Spacing and Traffic Safety." In *Transportation Research Circular E-C019: Urban Street Symposium Conference Proceedings*, Dallas, TX, June 28-30, 1999. Washington, DC: TRB, NRC, December 2000.

93. McLean, J. *Transport Research Report 315: Practical Relationships for the Assessment of Road Feature Treatments*. Summary Report. Australian Road Research Board, 1997.

94. Colorado Department of Transportation. *Colorado Access Control Demonstration Project: Final Report*. Denver, CO: Colorado Department of Transportation, June 1985.

95. Maze, T., D. Plazak, P. Chao, J. K. Evans, E. Padgett, and J. Witmer. *Access Management Research and Awareness Program*, Phase IV Final Report. CTRE Management Project 97-1. Center for Transportation Research and Education: November 1999.

96. McCoy, P.T., and J.E. Heimann. "Effect of Driveway Traffic on Saturation Flow Rates at Signalized Intersections." *ITE Journal*, February 1990, pp. 12-15.

97. Vargas, F.A., and Y. Gautam. "Problem: Roadway Safety vs. Commercial Development Access." In *1989 Compendium of Technical Papers*, ITE, 59th Annual Meeting, San Diego, CA. Washington, DC: ITE, 1989, pp. 46-50.

98. ITE. The Traffic Safety Toolbox: A Primer on Traffic Safety. Washington, DC: ITE, 1999.

99. Rakha, H., A. Medina, H. Sin, F. Dion, M. Van Aerde, and J. Jenq. "Traffic Signal Coordination Across Jurisdictional Boundaries: Field Evaluation of Efficiency, Energy, Environmental, and Safety Impacts." *Transportation Research Record* 1727 (2000).

100. Avgoustis, A. *Quantifying the Safety Impacts of Intelligent Transportation Systems*. Master of Engineering Thesis, Civil Engineering Department, Virginia Polytechnic Institute and State University, 1999

Signalized Intersections: Informational Guide

101. Southeast Michigan Council of Governments. SEMCOG Traffic Safety Manual, Third Edition. 1998

102. Colorado Department of Transportation. *Colorado Access Control Demonstration Project: Final Report*. Denver, CO: Colorado Department of Transportation, June 1985.

103. Collura, J., J. Chang, E.W. Willhaus, and J. Gifford. "Traffic Signal Preemption and Priority: Technologies, Past Deployments, and System Requirements." In *2001 ITS America Conference Proceedings*, Miami Beach, FL, 2001.

104. Zegeer, C.V., and C. Seiderman. "Designing for Pedestrians." In *2001 Compendium of Technical Papers*, ITE, 71st Annual Meeting, Chicago, IL. Washington, DC: ITE, 2001.

105. UK Dept. of Transportation, London, England. *Killing Speed and Saving Lives*. See also Limpert, Rudolph. *Motor Vehicle Accident Reconstruction and Cause Analysis*. Fourth Edition. Charlottesville, VA: The Michie Company, 1994

106. King, M. "Calming New York City Intersections." *Transportation Research Circular E-C019: Urban Street Symposium Conference Proceedings*, Dallas, TX, June 28-30, 1999. Washington, DC: TRB, NRC, December 2000.

107. Walkinfo.org Pedestrian and Bicycle Information Center, "Crossing Enhancements." <u>http://www.walkinginfo.org/engineering/crossings-enhancements.cfm</u>

108. Retting, R.A., and R. Van Houten. "Safety Benefits of Advance Stop Lines at Signalized Intersections: Results of a Field Evaluation." *ITE Journal*, September 2000, pp. 47-49, 54.

109. Zegeer, C.V., and M.J. Cynecki. "Evaluation of Countermeasures Related to RTOR Accidents that Involve Pedestrians." *Transportation Research Record* 1059 (1986).

110. Lalani, N. and the ITE Pedestrian and Bicycle Task Force. *Alternative Treatments for At-Grade Pedestrian Crossings*. Washington, DC: ITE, 2001.

111. FHWA. Pedestrian Safety Countermeasure Deployment Project web site. http://safety.fhwa.dot.gov/ped_bike/tools_solve/ped_scdproj/

112. Washington State Department of Transportation (WSDOT). *Local Agency Safety Management System*. Olympia, WA: WSDOT, September 2000.

113. Lord, D., A. Smiley, and A. Haroun. "Pedestrian Accidents with Left-Turning Traffic at Signalized Intersections: Characteristics, Human Factors and Unconsidered Issues." Presented at TRB 77th Annual Meeting, 1998.

114. Zaidel, D.M., and I. Hocherman. "Safety of Pedestrian Crossings at Signalized Intersections." *Transportation Research Record* 1141 (1987).

115. Barlow, J. "Making Intersections Accessible for the Visually Impaired." In *2001 Compendium of Technical Papers*, ITE, 71st Annual Meeting, Chicago, IL. Washington, DC: ITE, 2001.

116. Van Houten, R., J.E.L. Malenfant, J. Van Houten, and R.A. Retting. "Auditory Pedestrian Signals Increase Pedestrian Observing Behavior at Signalized Intersections." Presented at TRB 77th Annual Meeting, 1998.

Signalized Intersections: Informational Guide

117. Allsbrook, L. "Pedestrian Signal Countdown Device." In *1999 Compendium of Technical Papers*, ITE, 69th Annual Meeting, Las Vegas, NV. Washington, DC: ITE, 1999.

118. Chester, D.C., and M. Hammond. "Evaluation of Pedestrians Understanding of Pedestrians Countdown Signals." In *1998 Compendium of Technical Papers*, ITE, 68th Annual Meeting, Toronto, Ontario, Canada. Washington, DC: ITE, 1998.

119. Markowitz, F., S. Sciortino, J.L. Fleck, and B.M. Yee. "Pedestrian Countdown Signals: Experience with an Extensive Pilot Installation." *ITE Journal*, January 2006, pp. 43-48. Updated by Memorandum: Olea, R., "Collision changes 2002-2004 and countdown signals." (February 7, 2006)

120. Van Houten, R., J.E. Malenfant, & R. Steiner. "Scanning 'eyes' symbol as part of the WALK signal: Examination across several intersection geometries and timing parameters." *Transportation Research Record* 1773 (2001): 75-81.

121. Van Houten, R., R.A. Retting, J. Van Houten, C.M. Farmer, and J.E.L. Malenfant. "Use of Animation in LED Pedestrian Signals to Improve Pedestrian Safety." *ITE Journal*, February 1999, pp. 30-38.

122. Zegeer, C, K. Opiela, and M. Cynecki. *Pedestrian Signalization Alternatives*. Report No. FHWA-RD-83-102. Washington, DC: USDOT, 1983.

123. New Jersey Department of Transportation. *Pedestrian Compatible—Planning and Design Guidelines*. Trenton, NJ: New Jersey Department of Transportation, 2001.

124. Elvik, R., T. Vaa, A. Erke, and M. Sorensen. *The Handbook of Road Safety Measures*. Second Edition. United Kingdom: Emerald Group Publishing, 2009.

125. King. M., *Walking Info Case Study No. 37, Zebra Crosswalk Markings*, New York, NY. http://www.walkinginfo.org/pedsafe/casestudy.cfm?CS_NUM=37

126. Herrstedt, L., M.A. Nielsen, L. Agústson, K.M.L. Krogsgaard, E. Jørgensen, and N.O. Jørgensen. *Safety of Cyclists in Urban Areas: Danish Experiences*. Copenhagen, Denmark: Danish Road Directorate, 1994.

127. Turner, S. A., Wood, G., Hughes, T., and Singh, R., "Safety Performance Functions for Bicycle Crashes in New Zealand and Australia." Presented at the 90th Annual Meeting of the Transportation Research Board, Washington, D.C., (2011)

128. Jensen, S.U., and M.A. Nielsen. "The Marking of Bicycle Crossings at Signalized Intersections" (in Danish). Summarized in *Nordic Road & Transport Research*, No. 1, 1997, p. 27.

129. Texas Transportation Institute. *TCRP Report 19: Guidelines for the Location and Design of Bus Stops*. Transit Cooperative Research Program. Washington, DC: Transportation Research Board of the National Academies, 1996.

130. Park, Y, and W.C. Kloos. "Applicability of Countermeasures to Implement Farside Travel Lane Bus Stops Case Study: Lloyd District Transit Hub, Portland, Oregon." In *1998 Compendium of Technical Papers*, ITE, 68th Annual Meeting, Toronto, Ontario, Canada. Washington, DC: ITE, 1998.

131. Shalah, F., A. Shalaby, B. Persaud, B., and A. Hadayeghi, "Analysis of Transit Safety at Signalized Intersections in Toronto." TRB 88th Annual Meeting Compendium of Papers CD-ROM. Washington, DC: 2009.

Signalized Intersections: Informational Guide

132. New York State Department of Transportation. Accident Reduction Factors. 2002.

133. FHWA. 9 Proven Safety Countermeasures Guidance Policy. 2008.

134. Eccles, K.A., and H.W. McGee. *A History of the Yellow and All-Red Intervals for Traffic Signals*. Washington, DC: ITE, 2001.

135. McGee, H., K. Moriarty, K. Eccles, et al. *NCHRP Report 731: Guidelines for Timing Yellow and All-Red Intervals at Signalized Intersections.* Washington, DC: Transportation Research Board of the National Academies, 2012.

136. Souleyrette, R. R., M. M. O'Brien, T. McDonald, H. Preston, and R. Storm. "Effectiveness of All-Red Clearance Interval on Intersection Crashes." Iowa State University, Center for Transportation Research and Education Report Number MN/RC-2004-26, 2004.

137. Bonneson, J., K. Zimmerman, C. Messer, D. Lord, and M. Wooldridge. *Development of Ramp Design Procedures for Facilities without Frontage Roads*. Report FHWA/TX-05/0-4538-2. Texas Department of Transportation, Austin, Texas, September 2004.

138. Retting, R.A. and Chapline, J.F. 2002. "Changes in Crash Risk Following Re-Timing of Traffic Signal Change Intervals." *Accident Analysis and Prevention* 34/2: 215-220.

139. Harkey, D., Srinivasan, R., Zegeer, C., Persaud, B., Lyon, C., Eccles, K., Council, F. M., and McGee, H., "Crash Reduction Factors for Traffic Engineering and Intelligent Transportation System (ITS) Improvements: State of Knowledge Report." *Research Results Digest* 299 (2005).

140. Ontario Ministry of Transportation. *Ontario Traffic Manual Book 12—Traffic Signals*. Toronto, Ontario, Canada: Ontario Ministry of Transportation, July 2001.

141. Bonneson, J.A.; Zimmerman, K.H.; and Brewer, M. 2002. *Engineering Measures to Reduce Red Light Running*. Texas Department of Transportation Report No. FHWA/TX-03/4027-2.

142. Harkey, D., et al., *NCHRP Report 617: Accident Modification Factors for Traffic Engineering and ITS Improvements*, Washington, DC: Transportation Research Board of the National Academies, 2008.

143. Murphy, B., "An Evaluation of the Safety Effects of Modifying Late Night Flash Signal Operations in North Carolina." TRB 88th Annual Meeting Compendium of Papers CD-ROM. Washington, D.C., (2009).

144. Hasson, P., P. Lutkevich, B. Ananthanarayanan, P. Watson, and R. Knoblauch. "Field Test for Lighting to Improve Safety at Pedestrian Crosswalks." Presented at the 2004 TRB Annual Meeting, Washington, DC, 2004.

145. Elvik, R. and Vaa, T., "Handbook of Road Safety Measures." Elsevier Science Ltd., Oxford, UK: 2004.

146. Rodegerdts, L., et. al., *NCHRP Report 672: Roundabouts: An Informational Guide,* Second Edition. Washington, DC: Transportation Research Board of the National Academies, 2010.

147. Markowitz, F., Sciortino, S., Fleck, J. L., and Yee, B. M., "Pedestrian Countdown Signals: Experience with an Extensive Pilot Installation." *ITE Journal*, January 2006, pp. 43-48.

148. Retting, R.A.; S. Mandavilli, E.R. Russell, and A.T. McCartt. "Roundabouts, traffic flow and public opinion." *Traffic Engineering and Control* 47 (2006):268-72.

Signalized Intersections: Informational Guide

149. Russell, E.R., Mandavilli, S.; and Rys, M.J. *Operational Performance of Kansas Roundabouts: Phase II.* Report No. K-TRAN KSU-02-04, Manhattan, KS: Department of Civil Engineering, Kansas State University, 2004.

150. Brilon, W., B. Stuwe, and O. Drews. Sicherheit und Leistungsfahigkeit von Kreisverkehrsplatzen. FE Nr 77359/91. Bochum, Germany: Lehrstuhl fur Verkehrswesen, Ruhr-Universitat Bochum, 1993. Cited by: Elvik R. "Effects on road safety of converting intersections to roundabouts: a review of evidence from non-US studies." *Transportation Research Record* 1847 (2003):1-10.

151. Schoon, C. and J. van Minnen. "The safety of roundabouts in the Netherlands." *Traffic Engineering and Control* 35 (1994):142-48.

152. Persaud, B., E. Hauer, R. A. Retting, R. Vallurupalli, and K. Mucsi. "Crash Reductions Related to Traffic Signal Removal in Philadelphia." *Accident Analysis and Prevention* 29/6 (1997): 803-810.

153. Campbell, J.L., M.G. Lichty, J.L. Brown, et al. *NCHRP 600A: Human Factors Guidelines for Road Systems*. Washington DC: Transportation Research Board of the National Academies, 2008.

154. Bhesania, R.P. "Impact of Mast-Mounted Signal Heads on Accident Reduction." *ITE Journal*, October 1991, p. 25-29.

155. Thomas, G., D.Smith. "Effectiveness of Roadway Safety Improvements." Iowa State University, 2001.

156. Srinivasan, R., F. Council, C. Lyon, F. Gross, N. Lefler, and B. Persaud. "Evaluation of the Safety Effectiveness of Selected Treatments at Urban Signalized Intersections." TRB 87th Annual Meeting Compendium of Papers CD-ROM. Washington, D.C., 2008.

157. Sayed, T., W. Abdelwahab, and J. Nepomuceno. "Safety Evaluation of Alternative Signal Head Design." In *Transportation Research Record* 1635(1998).

158. Felipe, E., Mitic, D., and Zein, S. R., "Safety Benefits of Additional Primary Signal Heads." Vancouver, B.C., Insurance Corporation of British Columbia; G.D. Hamilton Associates, (1998)

159. Sayed, T., P. Leur, and J. Pump. "Safety Impact of Increased Traffic Signal Backboards Conspicuity." 2005 TRB 84th Annual Meeting: Compendium of Papers CD-ROM, Vol. TRB#05-16, Washington, D.C., 2005.

160. Sayed, T., H. Vahidi, and F. Rodriguez. "Advance Warning Flashers: Do They Improve Safety?" *Transportation Research Record 1692* (1999).

161. Polanis, S. F., *Traffic Safety Toolbox: A Primer on Traffic Safety*. "Chapter 27. Low-Cost Safety Improvements." Washington, DC: Institution of Transportation Engineers, 1999. pp. 265-272.

162. Farraher, B.A., B.R. Weinholzer, and M.P. Kowski. "The Effect of Advanced Warning Flashers on Red Light Running: A Study Using Motion Imaging Recording System Technology at Trunk Highway 169 and Pioneer Trail in Bloomington, Minnesota." In *1999 Compendium of Technical Papers*, ITE, 69th Annual Meeting, Las Vegas, NV. Washington, DC: ITE, 1999.

163. Appiah, J., B. Naik, R. Wojtal, L. Rilett, "Safety Effectiveness of Actuated Advance Warning Systems." *Transportation Research Record* 2250 (2011).

Signalized Intersections: Informational Guide

164. Teply, S. "Safety Implications of Advanced Flashing Amber at Signalized Intersections." Presented at Traffic Safety Summit in Alberta VII, Annual Western Canada Traffic Association Conference, October 4-7, 1998.

165. Gross, F., N. Lefler, C. Lyon, and K. Eccles. "Safety Effectiveness of Advance Street Name Signs." TRB 89th Annual Meeting Compendium of Papers CD-ROM. Washington, D.C., 2010.

166. Laughland, J.C., L.E. Haefner, J.W. Hall, and D.R. Clough. *NCHRP Report 162: Methods for Evaluating Highway Safety Improvements.* Washington DC: Transportation Research Board of the National Academies, 1975.

167. Schaerer, P. *Engineering Studies for Snow Removal.* Special Report 115. Washington, DC: Highway Research Board, 1970.

168. Oh, S., D.R. Ragland, and C.Y. Chan. "Safety Performance of Experimental Pavement Types in California Using Before-and-After Comparisons." TRB 89th Annual Meeting Compendium of Papers CD-ROM. Washington, D.C., 2010.

169. Bray, J. "The Role of Crash Surveillance and Program Evaluation: NYSDOT's Skid Accident Reduction Program (SKARP)." Presented at 28th International Forum on Traffic Records and Highway Information Systems, Orlando, FL, 2002.

170. North Carolina Department of Transportation. "Safety Project Development Guide." <u>http://www.doh.dot.state.nc.us/preconstruct/traffic/safety/project_guide/</u>.

171. Abdel-Aty, M., Devarasetty, P. C., and Pande, A., "Safety Evaluation of Multilane Arterials in Florida." *Accident Analysis and Prevention*, 41 (2009): 4, pp. 777-788.

172. California Department of Transportation. *Local Assistance Program Guidelines*. "Chapter 9— Hazard Elimination Safety Program." 1997.

173. Hovey, P. W. and Chowdhury, M., "Development of Crash Reduction Factors." 14801(0), Ohio Department of Transport, 2005.

174. Dixon, K., M. Liebler, H. Zhu, M. Hunter, and B. Mattox. *NCHRP Report 612: Safe and Aesthetic Design of Urban Roadside Treatments.* Washington DC: Transportation Research Board of the National Academies, 2008.

175. David, N.A., and J.R. Norman. *Motor Vehicle Accidents in Relation to Geometric and Traffic Features of Highway Intersections: Volume II.* Report No. FHWA-RD-76-129. Washington, DC: USDOT, 1975.

176. FHWA. *The 1996 Annual Report on Highway Safety Improvement Programs.* Report No. FHWA-SA-96-040. Washington, DC: USDOT, 1996.

177. Zimmerman, K. and Bonneson, J., "In-Service Evaluation of the Detection-Control System for Isolated High-Speed Intersections." 2006 TRB 85th Annual Meeting: Compendium of Papers CD-ROM, Vol. TRB#06-1252, Washington, D.C., 2006.

178. Madsen, T. and P. Baxandall, "Caution: Red Light Cameras Ahead." U.S. Public Interest Research Group (PIRG) Education Fund, 2011.

Signalized Intersections: Informational Guide

179. Eccles, K., R. Fiedler, B. Persaud, C. Lyon and G. Hansen. *NCHRP 729: Automated Enforcement for Speeding and Red Light Running.* Washington DC: Transportation Research Board of the National Academies, 2012

180. FHWA, "Red-Light Camera Enforcement: Implementation Guidance" website. <u>http://safety.fhwa.dot.gov/intersection/redlight/cameras/ipl_guide.cfm</u>

181. Oregon Department of Transportation. *Highway Design Manual*. Salem, OR: Oregon Department of Transportation, 2003.

182. Harwood, D. *NCHRP Report 330: Effective Utilization of Street Width.* Washington DC: Transportation Research Board of the National Academies, 1990.

183. FHWA. *Techbrief: Safety Evaluation of Offset Improvements for Left-Turn Lanes*, Report No. FHWA-HRT-09-036, June 2009.

184. Agent, K., N. Stamatiadis, and S. Jones. *Development of Accident Reduction Factors*. Kentucky Highway Research Program, Research Report KTC-96-13. Lexington, KY: University of Kentucky, 1996.

185. Oregon Department of Transportation. *Traffic Signal Policy and Guidelines*. Salem, OR: Oregon Department of Transportation, November 19, 1999.

186. ITE, Traffic Engineering Council Committee 5A-5, *Design and Safety of Pedestrian Facilities*. Washington, DC: ITE, 1998.

187. FHWA. *Development of Guidelines for Triple Left and Dual Right-turn Lanes.* Report No. FHWA/TX-11/0-6112-1. Washington, DC: USDOT, 2011.

188. Ackeret, K.W. "Criteria for the Geometric Design of Triple Left-Turn Lanes." *ITE Journal*, December 1994, pp. 27-33.

189. Ackeret, K.W., S.S. Nambisan, and R. Menon. "Evaluation of Side Swipe Crashes at Triple and Dual Turn Lanes in Las Vegas, Nevada." In *1999 Compendium of Technical Papers*, ITE, 69th Annual Meeting, Las Vegas, NV. Washington, DC: ITE, 1999.

190. Belluccia, A.G., G.L. Harter, and M.J. Rechtoric. "Triple Left-turn Lanes: Getting the First One Approved." In *1998 Compendium of Technical Papers*, ITE, 68th Annual Meeting, Toronto, Ontario, Canada. Washington, DC: ITE, 1998.

191. Dixon, K.K., J.L. Hibbard, and H. Nyman. "Right-Turn Treatment for Signalized Intersections." In *Transportation Research Circular E-C019: Urban Street Symposium Conference Proceedings*, Dallas, TX, June 28-30, 1999.

192. Washington State Department of Transportation (WSDOT). *Highway Design Manual*. Olympia, WA: Environmental and Engineering Services Center, WSDOT, September 2002.

193. Lin, F.B. "Right-Turn-on-Red Characteristics and Use of Auxiliary Right-Turn Lanes." *Transportation Research Record* 1010 (1985).

194. Tsao, S. M., and S. W. Ando. "A Study on Adjustment Factors for U-Turns in Left-Turn Lanes at Signalized Intersections." *Journal of Advanced Transportation*, 29 (1995): 2, pp. 183-192.

Signalized Intersections: Informational Guide

195. Nevers, B., et. al., *NCHRP Report 707: Guidelines on the Use of Auxiliary Through Lanes at Signalized Intersections*. Washington DC: Transportation Research Board of the National Academies, 2011.

196. James Clark School of Engineering, University of Maryland, "Auxiliary Lane Length" web page. http://attap.umd.edu/bbs/view.php?id=Tools&page=1&sn1=&divpage=1&sn=off&ss=on&sc=on&select arr ange=headnum&desc=asc&no=1

197. USDOT, "Policy Statement on Bicycle and Pedestrian Accommodation Regulations and Recommendations." Washington, DC: 2010. http://www.fhwa.dot.gov/environment/bicycle_pedestrian/overview/policy_accom.cfm

198. FHWA, "Guidance Memorandum on Consideration and Implementation of Proven Safety Countermeasures." Waashington, D.C.: 2008.

199. FHWA, *Safe Access is Good for Business*. Report No. FHWA-HOP-06-107. Washington, DC: USDOT, 2006.

200. Fitzpatrick, K., W. Schneider, and E. Park, "Operation and Safety of Right-turn Lane Designs." Transportation Research Board Annual Meeting. Washington, DC., 2006.

201. National Transportation Operations Coalition. *National Traffic Signal Report Card*, 2012. Washington, DC: ITE, 2012.

202. ITS Benefits and Costs Database, USDOT ITS Joint Program Office, <u>http://www.benefitcost.its.dot.gov/</u>

203. Surface Transportation Policy Partnership. "Transportation and the Environment" web page. <u>http://www.transact.org/library/factsheets/environment.asp</u>

204. Environmental Protection Agency. "Technology Transfer Network 1996 National-Scale Air Toxics Assessment" web page. <u>http://www.epa.gov/ttnatw01/nata/natsa1.html</u>

205. ITE. *Preemption of Traffic Signals Near Railroad Grade Crossings: An ITE Recommended Practice.* Washington, DC: ITE, 2006.

206. ITS America, Transit Signal Priority (TSP): A Planning and Implementation Handbook. Washington, DC: ITS America, 2005.

207. FHWA, Safety Evaluation of Red Light Cameras. Report No. FHWA-RT-05-048. Washington, DC: USDOT, 2005.

For More Information:

Visit http://safety.fhwa.dot.gov/intersection

FHWA, Office of Safety

Jeffrey Shaw jeffrey.shaw@dot.gov 708-283-3524