

Issue Date: December 2024

Job No: TF-24-589-CA

REPORT TITLE : Geoenvironmental and Geotechnical Report:

Proposed Residential Development, Craig-y-

Parcau, Bridgend

JOB NUMBER : TF-24-589-CA

ISSUE DATE : December 2024

REPORT REFERENCE : TF-24-589-T2-01

Document Revision Record

Issue No.	Date	Revision Details	Initials
1	01/12/2024		ML

	Name	Signature
Prepared	David Emanuel BSc (Hons), MSc, FGS, Dip.Chem, M Phil, CGeol	
	Associate Director	1.6/1
Checked	Mathew Lake MEng, FGS	10 1
	Director	1. Tule
Approved	Gwyn Lake	
	BSc (Hons). PhD, CGeol, FGS	Can Phi
	Managing Director	o juy porc

Executive Summary					
Site Location and Proposed Development	Bellway Homes (the Client) is proposing the construction of a new residential development at Craig-y-Parcau, Bridgend. The development site is irregular in shape and locates within Merthyr Mawr, Bridgend. The site centres on an approximate National Grid Reference of 288980, 178610, occupying a plan				
Development		area of approximately 6.91 Hectares.			
Geology	The Geological map shows the site to be underlain by the Blue Lias Formation (western parcel of site) and the Porthkerry Formation. No superficial deposits are shown overlying the solid geology.				
	Depth	(m)	Thickness (m)	Stratum	
Ground Conditions	0.00 -	0.4/0.8	0.4/0.8	Made Ground: slightly sandy gravelly CLAY with occasional brick concrete and timber fragments. (TP01-TP03 +TP07 only)	
	0.4/0.8 -	1.4/2.6	1.0/1.8	Weathered Blue Lias/Porthkerry Formation - Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content	
Contamination of Concern	Contaminants of concern identified in made ground soils during the investigation are lead, non volatile PAH and chrysotile asbestos.				
	Made Ground located around the former Craig-y-Parcau buildings was found to contain a number of contaminants that were above generic assessment criteria for a residential setting. In addition, Chrysotile asbestos fibre clumps were recorded in 1 sample of made ground. A Stockpile of excavated soil located in the compound of Craig-y-Parcau was also found to contain elevated levels of PAH. Given the recorded concentration of contamination and limited access to parts of the site, it is recommended that a Tier 3 Assessment is completed before moving onto a Stage 2 Options Appraisal and Remediation Strategy. The objectives of the Tier 3 assessment is to: Investigate the extent of made ground and contamination within the made ground Derive site specific assessment criteria Assess the risk posed by the made ground and update the conceptual site model				
Conclusion of Tier 2 Assessment					
Foundation Solution	The presence of soluble limestone bedrock on the western part of the site provides a geotechnical risk and will require a specific foundation solution to mitigate the risk posed from dissolution. As such, the site has been split into two foundation zones. The western zone will require raft/semi raft foundations capable of spanning a 3m soft spot. Strip foundations are suitable for the remaining site.				
Recommended Further Works	In order to refine the site conceptual model, it is recommended that additional investigation is undertaken around the area of the former buildings on site and areas currently inaccessible during this phase of investigation works. Samples of made ground should be collected and assessed to fully quantity the risk posed by the identified contaminants.				

TABLE OF CONTENTS

SECTION 1	Introduction & Proposed Development	1
	1.1 Background1.2 Objectives1.2.1 Tier 2	1 1 2
	1.3 Geotechnical Category	2
	1.4 Information Sources	2
	1.5 Roles & Responsibilities1.6 Limitations & Exceptions of Investigation	2
	1.7 Quality Assurance	3
SECTION 2	Summary of Tier 1 Assessment	4
	2.1 Summary of Tier 1 Assessment	4
SECTION 3	Field Investigation	5
	3.1 Site Works	5
	3.2 Ground Conditions3.3 Groundwater	5
	3.3 Groundwater	5
	3.4 Stability & Obstructions3.5 Laboratory Chemical Testing	5 6
	3.5.1 Sampling Strategy	6
	3.5.2 Sample Analysis	6 7
	3.6 Soil Property Testing	7
	3.6.1 In-situ Permeability Testing	7
	3.6.2 In-situ California Bearing Ratio (CBR) Testing3.6.3 Laboratory Geotechnical Testing	7 7
SECTION 4	Evaluation of Geoenvironmental Analytical Results	9
	4.1 Assessment Methodology	9
	4.1.1 Soils	9 9
	4.2 Soil Test Results	
	4.2.1 Inorganics	9
	4.2.2 Organics4.2.3 Asbestos Testing	10 11
SECTION 5	Generic Quantitative Risk Assessment	12
	5.1 Contaminants of Concern	12
	5.2 Contaminant Linkages	12
	5.3 Conclusions of the Generic Quantitative Risk Assessment	12
	5.4 Likely Remediation Solution	13
	5.4.1 Human Health 5.4.1.1 Radon	13 13
SECTION 7	Laboratory Geotechnical Testing Results Analysis	14
	7.1 Soil Testing	14
	7.1 Soil Testing 7.1.1 Plasticity & Moisture Content Testing	14
	7.1.2 Concrete Classification Testing	15
SECTION 8	Engineering Recommendations	16

	Foundation & Floor Slab Solution Recommended Foundation Solution – Zone A Recommended Foundation Solution – Zone B Ground Floor Slabs Excavations & Formations Protection of Buried Concrete Access Roads & Car Parking Areas Storm Water Drainage Retaining Walls	16 16 17 17 18 18 18 19 19
BIBLIOGRAPH	Y	22
	line Sources andard Publications	22 22
Tables		
Table 2.1 Summa Table 3.1 Summa Table 3.2 Sample Table 3.3 Summa Table 3.4 Summa Table 3.5 Summa Table 4.1 Summa Table 4.2 Summa Table 4.3 Summa Table 4.4 Summa Table 5.1 Contam Table 5.2 Refined Table 7.1 Plasticit Table 7.2 BRE SI Table 8.1 Summa	and Responsibilities ary of Tier 1 Assessment ary of Typical Ground Conditions a Locations and Targets ary of Soakaway Results ary of CBR Testing ary of Geotechnical Testing ary of Soil Chemical Test Results – Inorganics ary of Soil Chemical Test Results – Speciated PAH ary of Soil Chemical Test Results – Petroleum Hydrocarbons ary of Soil Chemical Test Results – Asbestos Quantification ainants of Concern I Conceptual Site Model ay & Moisture Content Test Results D1 Testing Summary ary of Soakaway Results e Shear Stress Parameters	2 4 5 6 7 7 8 9 10 10 11 12 12 14 15 19 20
Figures		
Figure 1.1 Proose	d Site Layout	1
Ληηονος		

ANNEX A Trial Pit Logs

ANNEX B Soakaway Results

ANNEX C Laboratory Chemical Test Results

ANNEX D CBR Test Results

ANNEX E Laboratory Geotechnical Test Results

Drawings

Drawing 01 Proposed Site Layout

SECTION 1 Introduction & Proposed Development

1.1 Background

Bellway Homes (the Client) is proposing the construction of a new residential development at Craig-y-Parcau, Bridgend. The proposed site layout can be seen **Figure 1.1**.

Figure 1.1 Proosed Site Layout

Terra Firma have been commissioned by the Client to undertake a Geotechnical and Geoenvironmental Report.

This report contains a Tier 2 assessment (Site Investigation) including a Generic Quantitative Geoenvironmental Risk Assessment and Geotechnical Ground Investigation.

1.2 Objectives

Land Contamination Risk Management (LCRM) guidance provided by the Environment Agency advocates using a tiered approach. This comprises Tier 1; the Preliminary Risk Assessment, Tier 2; the Generic Quantitative Risk Assessment and Tier 3; the Detailed Quantitative Risk Assessment. As each tier is completed a decision is made whether it is necessary to advance to the next tier.

In addition to LCRM, geotechnical aspects of the development also need to be considered and are approached in a similar manner, with the risks identified in the preliminary assessment, and then investigated through subsequent phase of investigation.

1.2.1 Tier 2

The main objectives of the Tier 2 Generic Quantitative Geoenvironmental Risk Assessment programme are:

- investigate the potential human health and environmental liabilities at the site associated with any contamination; and
- provide a summary of the human health and environmental conditions at the site, together with any necessary further intrusive works and / or remediation works to render the site fit for its intended use.

The main objectives of the Geotechnical Site Investigation are:

- investigate the type, strength and bearing characteristics of the shallow superficial and underlying solid geology;
- provide engineering foundation and floor slab recommendations for the proposed development;
- provide infiltration rates and stormwater drainage viability; and
- provide recommendations regarding any other geotechnical aspects pertaining to the development.

In order to achieve the above objectives, Terra Firma carried out an assessment programme including a review of existing data, followed by a field investigation to collect geotechnical and geoenvironmental data from selected locations.

1.3 Geotechnical Category

In accordance with BS EN 1997-1:2004+A1:2013, the proposed development comprises the following geotechnical category:

Geotechnical Category 2: conventional types of structures and foundation with no exceptional risk of difficult soil or loading conditions (e.g., spread, raft & pile foundations; retaining structures; excavations; earthworks and ground anchors).

1.4 Information Sources

The following sources of information have been referenced in support of this assessment:

Tier 1 Assessment Report Reference T1-24-589-1.

1.5 Roles & Responsibilities

Table 1.1 Roles and Responsibilities

Role	Organisation
Client/Developer	Bellway Homes
Geotechnical/Geoenvironmental Consultant	Terra Firma
Local Authority	Bridgend County Borough Council

1.6 Limitations & Exceptions of Investigation

The Client has requested that a Tier 2 Geoenvironmental and Geotechnical Report (GGR) be undertaken to enable the outlined main objectives.

The GGR was conducted, and this report has been prepared for the sole internal reliance of the Client and their design and construction team. This report shall not be relied upon or transferred to any other parties without the express written authorisation of TFW Group Ltd. If an unauthorised third party comes into possession of this report, they rely on it at their peril and the authors owe them no duty of care and skill. The report represents the findings and opinions of experienced geoenvironmental and geotechnical consultants. TFW Group Ltd does not provide legal advice and the advice of lawyers may be required.

The subsurface geological profiles, any contamination and other plots are generalised by necessity and have been based on the information found at the locations of the exploratory holes and depths sampled and tested.

Human health and environmental risk assessment outcomes may not take into account the potential for the creation of new contaminant linkages as a result of variation to the proposed development and recommended engineering solutions. It is therefore imperative that the Client engages a geoenvironmental consultant to re-visit the conceptual site model and potential risks upon completion of final designs, prior to development.

Whilst this report assesses the suitability of soils in respect to human health and the environment, it is beyond the scope of this report to determine the legal status of imported and re-used soils/aggregates. It is the responsibility of the Client to confirm imported and re-used soils/aggregates have reached 'Non-Waste' status.

The investigation was limited by the following site constraints:

 Access restrictions to the required locations due to Himalayan Balsam and above ground utilities.

1.7 Quality Assurance

The quality, health, safety and environmental aspects of the assessment comply with Terra Firma business management system which is UKAS accredited and complies with the requirements of BS EN ISO 9001:2015, BS EN ISO 14001:2015 and BS EN ISO 45001:2018 standards.

SECTION 2 Summary of Tier 1 Assessment

The site has been the subject of a previous Tier1 Geoenvironmental Desk Study:

• Tier 1 Geoenvironmental and Geotechnical Report: Proposed Residential Development at Craig-y-Parcau, Bridgend dated November 2024.

The salient points of the Tier 1 Assessment are summarised in **Section 2.1**.

2.1 Summary of Tier 1 Assessment

The findings of the Tier 1 Assessment are summarised in **Table 2.1**. The Tier 1 Assessment can be made available on request.

Table 2.1 Summary of Tier 1 Assessment

Site History	The site was undeveloped until the 1890's when Carig y Parcau was built. Llanerch was later built on the southeastern part of the site in the early 1970's.
Geology	The Geological map shows the site to be underlain by the Blue Lias Formation (western parcel of site) and the Porthkerry Formation. No superficial deposits are shown overlying the solid geology.
Radon	Full radon protection measures are required for new development on site.
Potential Sources of Contamination	Several sources of contamination have been discovered during the desk study which require further investigation, namely demolition waste, former lime kilns and underlying geology

SECTION 3 Field Investigation

3.1 Site Works

A geotechnical and geoenvironmental site investigation comprising the excavation of 31 trial pits was undertaken between the 6th and 8th November 2024.

The fieldwork was supervised by Terra Firma, who logged the exploratory holes to the requirements of BS 5930:2015+A1:2020. The proposed locations of the exploratory holes were determined by Terra Firma in general accordance with BS 10175:2011+A2:2017 in order to assess the findings of the preliminary conceptual site model.

Trial pits referenced TP01 to TP31, were formed using a JCB 3CX excavator with a 0.60m wide bucket.

Representative disturbed samples were taken and retained in airtight containers for environmental and geotechnical testing.

On completion, all trial pits were backfilled with materials arisings compacted in layers using the excavator bucket. The ground surface was left proud to accommodate future settlement of backfilled materials.

The trial pit logs are presented in **Annex A.**

Soakaway tests were carried out in trial pits TP23 and TP25-TP29 in general accordance with BRE DG 365:2016. The excavation sides were squared using the excavator bucket and dimensions recorded within the test section. The trial pit was partially filled with clean water using a dedicated bowser with a 75mm diameter outlet and the fall in level recorded against time. The results are presented in **Annex B.**

Exploratory hole locations are shown on **Drawing 01**.

3.2 Ground Conditions

The ground conditions encountered by the exploratory holes can in general be summarised as shown in **Table 3.1**.

Table 3.1 Summary of Typical Ground Conditions

Depth (m)		Thickness (m)	Stratum	
0.00-	-	0.4/0.8	0.4/0.8	Made Ground: slightly sandy gravelly CLAY with occasional brick concrete and timber fragments. (TP01-TP03 +TP07 only)
0.4/0.8	-	>2.6	1.0/1.8	Weathered Blue Lias/Porthkerry Formation - Firm yellowish brown slightly sandy gravelly silty with low cobble and boulder content

3.3 Groundwater

Groundwater was not encountered in the exploratory holes.

3.4 Stability & Obstructions

Trial pits remained stable and vertical during excavation.

A concrete obstruction was encountered at 0.8m depth in trial pit TP07.

All trial pits terminated on possible bedrock ranging between 1.4m and 2.6m depth.

3.5 Laboratory Chemical Testing

3.5.1 Sampling Strategy

Soil sampling locations were selected on a targeted basis to investigate suspected sources of contamination or potential contamination migration pathways.

Soil sampling locations were also selected on a non-targeted basis to characterise the contamination status of the remaining site.

Sample locations, depths and suspected/known contamination source targets are summarised in **Table 3.2**:

Table 3.2 Sample Locations and Targets

Location	Depth (m)	Contamination Targets
TP01	0.2-0.3	Made Ground
TP02	0.5-0.6	Made Ground
TP03	0.2-0.3	Made Ground
TP04	0.5-0.6	Natural strata
TP05	1-1.1	Natural strata
TP06	0.6	Natural strata
TP07	0.1	Made Ground
TP07	0.4	Made Ground
TP08	0.1	Made Ground
TP08	0.8	Natural strata
TP09	0.05	Natural strata
TP10	1.5	Natural strata
TP11	0.7	Natural strata
TP12	1	Natural strata
TP13	0.1	Natural strata
TP14	0.1	Natural strata
TP15	0.6	Natural strata
TP16	0.4	Natural strata
TP17	0.1	Natural strata
TP18	1.5	Natural strata
TP19	0.5	Natural strata
TP20	0.8	Natural strata
TP21	0.1	Natural strata
TP22	0.4	Natural strata
TP23	0.5	Natural strata
TP24	0.9	Natural strata
TP25	0.6	Natural strata
TP28	0.05	Natural strata
SP1	0.1	Stockpile
SP2	0.1	Stockpile

3.5.2 Sample Analysis

During the site investigation works soil samples were collected and despatched under a chain of custody to the accredited laboratories of Eurofins Chemtest for chemical analysis.

The laboratory test results certificates may be found in **Annex C**.

3.6 Soil Property Testing

3.6.1 In-situ Permeability Testing

Soakaway test results are summarised in Table 3.3.

Table 3.3 Summary of Soakaway Results

Trial Pit	Depth Range of Test (m)	Geology Description	Infiltration Rate (ms ⁻¹)
TP23	0.4-1.15		1.82 x10 ⁻⁰⁵
TP25	1-1.5	Oli alatha a sa ah a sasa a lla a ilita	No infiltration
TP26	0.5-1.0	Slightly sandy gravelly silty CLAY with low cobble and boulder content	6.53x10 ⁻⁰⁵
TP27	0.5-1.2		No infiltration
TP28	0.7-1.2		2.21x10 ⁻⁰⁵
TP29	1.1-1.6		No infiltration

The test results and calculation sheets may be found in **Annex B**.

3.6.2 In-situ California Bearing Ratio (CBR) Testing

In-situ California Bearing Ratio (CBR) test results are summarised in Table 3.4.

Table 3.4 Summary of CBR Testing

Location	CBR Value Summary
TRL01	Initially less than 2% increasing to 5-6% beyond 0.4m
TRL02	Initially less than 2% increasing to 5-7% beyond 0.4m
TRL03	Initially less than 3% increasing to 5-7% beyond 0.3m
TRL04	Initially less than 3% increasing to 5-12% beyond 0.3m
TRL05	Initially less than 2% increasing to 6% beyond 0.3m
TRL06	Initially less than 2% increasing to 5-7% beyond 0.3m
TRL07	Initially less than 2% increasing to 5-7% beyond 0.3m
TRL08	Initially less than 2% increasing to 5-7% beyond 0.2m
TRL09	Initially less than 2% increasing to 7% beyond 0.3m
TRL10	Initially less than 2% increasing to 10% beyond 0.2m
TRL11	Initially less than 2% increasing to 7% beyond 0.3m

Equivalent CBR values have been calculated and presented with the results in **Annex D**.

3.6.3 Laboratory Geotechnical Testing

A schedule of laboratory tests was prepared by Terra Firma and samples were despatched to the accredited laboratories of Apex Testing Solutions. A summary of the testing carried out is presented in **Table 3.5**.

Table 3.5 Summary of Geotechnical Testing

Geotechnical Test	No. Samples Tested
Moisture Content	15
4 Point Liquid and Plastic Limit	15
BRE SD1 (Concrete classification)	10

The geotechnical test results are presented in $\bf Annex~\bf E.$

SECTION 4 Evaluation of Geoenvironmental Analytical Results

4.1 Assessment Methodology

4.1.1 Soils

An assessment of the analytical results has been made with comparison with the following generic assessment criteria with preference in most onerous order:

- Land Quality Management (LQM) and the Chartered Institute of Environmental Health (CIEH) Suitable 4 Use Levels (S4UL) (Nathanail, CP et al.:2015);
- Category 4 Screening Levels (C4SL) provided by the Department for Environment, Food and Rural Affairs (DEFRA:2014);
- Soil Guideline Values (SGV) by the Environment Agency (2009);
- Generic Assessment Criteria (GAC) provided by EIC/AGS/CL:AIRE (2010); and

In the absence of generic assessment criteria, the laboratory limit of detection has been used for comparison, in order to establish the presence/absence of determinands and for initial screening purposes.

An average soil organic matter (SOM) of 0.79% was determined from laboratory analysis, therefore a conservative value of 1% SOM has been adopted for the site when assessing appropriate threshold values for analysed determinants.

4.2 Soil Test Results

A summary of the chemical test results which include the regulatory soil guideline values used in a **residential setting with plant uptake** are given in the following tables. The complete results can be found in **Annex D**.

4.2.1 Inorganics

Thirty samples were tested for a standard suite of inorganics, pH and organic matter. The summarised results are in **Table 4.1**.

Table 4.1 Summary of Soil Chemical Test Results – Inorganics

Determinant	Threshold Value	Source	Measured Concentrations (mg/kg)		Number of Exceedances
	(mg/kg)		Minimum	Maximum	Exocodunicos
Arsenic	37	LQM/CIEH	3	32	0
Cadmium	11	LQM/CIEH	0.1	5.7	0
Chromium III	910	LQM/CIEH	8.2	37	0
Chromium VI	6	LQM/CIEH	<0.50	<0.50	0
Copper	2400	LQM/CIEH	5.5	53	0
Lead	200	C4SL	15	550	2
Mercury (inorganic)	40	LQM/CIEH	<0.05	0.16	0
Nickel	180	LQM/CIEH	5.1	64	0
Selenium	250	LQM/CIEH	0.39	8.8	0
Zinc	3700	LQM/CIEH	21	640	0
Cyanide	-	-	<0.50	<0.50	-
Boron	290	LQM/CIEH	<0.4	1.2	0

Organic Matter (%)	-	-	0.2	4.6	-	
рН	-	-	6.5	9.3	-	
Notes: - No available guideline						

4.2.2 Organics

Thirty samples were tested for speciated polycyclic aromatic hydrocarbons (PAH). The summarised results are in **Table 4.2**.

Table 4.2 Summary of Soil Chemical Test Results - Speciated PAH

Determinant	Threshold Value	Source	Measured Concentrations (mg/kg)		Number of
	(mg/kg)		Minimum	Maximum	Exceedances
Naphthalene	2.3	LQM/CIEH	<0.10	0.24	0
Acenaphthylene	170	LQM/CIEH	<0.10	0.33	0
Acenaphthene	210	LQM/CIEH	<0.10	0.51	0
Fluorene	170	LQM/CIEH	<0.10	0.65	0
Phenanthrene	95	LQM/CIEH	<0.10	4.0	0
Anthracene	2400	LQM/CIEH	<0.10	1.8	0
Fluoranthene	280	LQM/CIEH	<0.10	10	0
Pyrene	620	LQM/CIEH	<0.10	7.5	0
Benzo(a)anthracene	7.2	LQM/CIEH	<0.10	8.9	1
Chrysene	15	LQM/CIEH	<0.10	9.7	0
Benzo(b)fluoranthene	2.6	LQM/CIEH	<0.10	15	1
Benzo(k)fluoranthene	77	LQM/CIEH	<0.10	4.6	0
Benzo(a)pyrene	2.2	LQM/CIEH	<0.10	12	1
Indeno(123cd)pyrene	27	LQM/CIEH	<0.10	8.2	0
Dibenzo(ah)anthracene	0.24	LQM/CIEH	<0.10	2.1	1
Benzo(ghi)perylene	320	LQM/CIEH	<0.10	6.7	0
Total PAH	-	-	<2.0	92	-

Notes:

Thresholds based on 1.0% soil organic matter

Thirty samples were tested for petroleum hydrocarbon. The summarised results are shown in **Table 4.3.**

Table 4.3 Summary of Soil Chemical Test Results - Petroleum Hydrocarbons

Determinand	Threshold Value	Source	Measured Concentrations (mg/kg)		Number of Exceedances
	(mg/kg)		Minimum	Maximum	
Aliphatic					
PH C5 – C6 Ali	42	LQM/CIEH	<0.5	<1.0	0
PH C6 – C8 Ali	100	LQM/CIEH	<0.1	<1.0	0
PH C8 – C10 Ali	27	LQM/CIEH	<0.05	0.17	0
PH C10 – C12 Ali	130	LQM/CIEH	<2.0	<2.0	0
PH C12 – C16 Ali	1100	LQM/CIEH	<1.0	42	0
PH C16 – C21 Ali	65000*	LQM/CIEH	<2.0	69	0

⁻ No available guidelines

PH C21 – C35 Ali	65000*	LQM/CIEH	<3.0	91	0
PH C35 – C44 Ali	65000	LQM/CIEH	<10	150	0
Aromatic					
PH C5 – C7 Arom	70	LQM/CIEH	<0.05	<0.05	0
PH C7 – C8 Arom	130	LQM/CIEH	<0.05	<0.05	0
PH C8 – C10 Arom	34	LQM/CIEH	<0.05	<0.05	0
PH C10 – C12 Arom	74	LQM/CIEH	<1.0	<1.0	0
PH C12 – C16 Arom	140	LQM/CIEH	<1.0	33	0
PH C16 – C21 Arom	260	LQM/CIEH	<2.0	14	0
PH C21 – C35 Arom	1100	LQM/CIEH	<2.0	50	0
PH C35 – C44 Arom	1100	LQM/CIEH	<1.0	46	0
Notos:					

Notes:

PH - Petroleum Hydrocarbon

Ali – Aliphatic

Arom – Aromatic

Thresholds based on 1.0% soil organic matter

4.2.3 Asbestos Testing

All made ground soil samples were scheduled for asbestos screening. Asbestos was detected in 1no. samples. Samples testing positive for asbestos were further scheduled for gravimetric quantification of fibre quantification in soils. The results are summarised in **Table 4.4**.

Table 4.4 Summary of Soil Chemical Test Results - Asbestos Quantification

Sample	Depth (m)	Comment	Result (mass %)
TP07	0.4	Chrysotile fibres/clumps	0.001

^{* -} Ali C16-21 and C21-C35 based on criteria for Ali EC >16-35

SECTION 5 Generic Quantitative Risk Assessment

5.1 **Contaminants of Concern**

Contaminants of concern identified as part of the investigation are summarised in **Table 5.1**, along with an interpretation of the likely contamination source. Where applicable, the contaminant, source relationship is based on the inferences made in the preliminary conceptual site model.

Table 5.1 Contaminants of Concern

Location	Depth	Contaminant	Source	
TP03	0.2-0.3	Lead	Made Ground	
TP07	0.5	Leau	Made Ground	
		Benzo(a)anthracene		
		Benzo(b)fluoranthene	Made Ground - Stockpile	
SP2	0.1	Benzo(a)pyrene		
		Dibenzo(ah)anthracene		
TP07	0.4	Chrysotile asbestos	Made Ground	

5.2 **Contaminant Linkages**

Based on the findings of the intrusive site investigation and identified contaminants, the preliminary conceptual site model has been revised. Remaining contaminant linkages are tabulated in the refined conceptual site model Table 5.2. Identified contaminant linkages may require further investigation, detailed risk assessment and appropriate mitigation or remedial measures.

Table 5.2 Refined Conceptual Site Model

Source	Pathway	Receptor
Made Ground associated with previous buildings	Direct soil and dust ingestion Dermal contact Inhalation Inhalation of asbestos fibres	Future site users Construction workers
Radon gas	Horizontal and vertical migration of ground gasses	Future site users

5.3 Conclusions of the Generic Quantitative Risk Assessment

Made Ground located around the former Craig-y-Parcau buildings was found to contain a number of contaminants that were found above generic assessment criteria for a residential setting. In addition, Chrysotile fibre clumps were recorded in one sample of made ground. A Stockpile of excavated soil located in the compound of Craig-y-Parcau was also found to contain elevated levels of PAH.

Given the recorded concentrations of contamination and limited access to parts of the site, it is recommended that a Tier 3 Assessment is completed before moving onto a Stage 2 Options Appraisal and Remediation Strategy. The objectives of the Tier 3 assessment is to:

- Investigate the extent of made ground and contamination within the made ground
- Investigate areas previously inaccessible or restricted
- Derive site specific assessment criteria
- Assess the risk posed by the made ground and update the conceptual site model

5.4 **Likely Remediation Solution**

The following sections outline the likely mitigation and remedial measures suitable for the identified contamination and proposed development. Detailed methodology to achieve the measures must be prescribed in a Remediation Strategy Report and the results presented in a Validation Report upon their completion.

5.4.1 Human Health

Given the low level of contamination in and around the former buildings, a cap and cover system is likely to be suitable for the affected areas of the site. This should be confirmed following the recommended Tier 3 assessment in line with LCRM.

All imported soils must be validated as clean and suitable for use in accordance with 'Requirements for the Chemical Testing of Imported Soils for Various End Uses and Validation Cover Systems'.

If during earthworks ground conditions are encountered that are markedly different to those found during the investigation, then the ground must be subject to additional sampling and testing and any necessary remedial measures designed and implemented before continuing with the works.

5.4.1.1 Radon

To mitigate against the risk to future site users from radon gas, full radon protection measures will be required in all structures. Reference should be made to guidance publication BR 211:2023 for further details on required protection elements. Specialist design, specification and verification of the installed protection measures is recommended.

Terra Firma offer a comprehensive in-house ground gas protection system design, specification and verification service.

Verification of installed ground gas protection systems by a competent, qualified, accredited, independent third party, will be required upon completion of the protection elements installation. Final verification will only be achieved if evidence gathering processes prescribed in the Verification Plan are fully undertaken.

SECTION 7 Laboratory Geotechnical Testing Results Analysis

Laboratory geotechnical testing results are summarised in the following sections and presented in their entirety in **Annex F**, unless otherwise stated.

7.1 Soil Testing

7.1.1 Plasticity & Moisture Content Testing

During the investigation fifteen samples of the shallow cohesive material was obtained and submitted for plasticity and moisture content testing. The test results are summarised in **Table 7.1**.

Table 7.1 Plasticity & Moisture Content Test Results

Location	Depth (m)	Geological Description	Moisture Content (%)	Plasticity Index (%)	Passing 425µm Sieve (%)	Modified Plasticity Index (%)	Volume Change Potential
TP01	0.60	Light brown slightly gravelly CLAY	34.2	38	98	37.24	Medium
TP03	0.90- 1.0	Brown CLAY	31.5	46	100	31.5	Medium
TP04	1.4	Light brown slightly sandy slightly gravelly CLAY	22.8	30	95	28.5	Medium
TP05	1.0- 1.10	Brownish grey slightly gravelly slightly sandy CLAY	20.0	26	92	23.92	Medium
TP08	0.80	Brown slightly gravelly CLAY	35.1	43	92	39.56	Medium
TP09	0.80	Brown slightly sandy CLAY	33.0	40	98	39.2	Medium
TP10	1.5	Light brown CLAY	32	44	100	44	High
TP11	1.10	Brown CLAY	37.8	35	98	34.3	Medium
TP13	0.10	Brown SILT	54.7	34	100	34	Medium
TP15	0.60	Orange brown slightly sandy CLAY	30.8	29	98	28.4	Medium
TP17	1.20	Brown CLAY	29.6	39	100	39	Medium
TP19	0.50	Brown slightly gravelly slightly sandy CLAY	23.4	19	88	16.72	Low

TP21	0.40	Brown Slightly sandy CLAY	32.2	44	100	44	High
TP23	0.5	Brown sandy gravelly CLAY	18.8	26	70	18.2	Low
TP28	0.60	Brown Slightly Sandy CLAY	28.8	28	100	28	Medium

In line with the NHBC:2024 (Chapter 4.2), the modified plasticity index for each sample was calculated.

For design purposes the shallow soils on site must be considered to have a high volume change potential.

7.1.2 Concrete Classification Testing

Ten samples were subject to testing for concrete classification in accordance with BRE SD1:2015. The results are summarised in **Table 7.2**

Table 7.2 BRE SD1 Testing Summary

Location Depth				Total Acid		Total Potential	Oxidisable Sulphides	рН
Location	(m)	SO ₄ (mg/l)	(%)	Sulphate	Sulphate (%)	(%)	рп	
TP01	0.2-0.3	200	0.18	0.16	0.54	0.38	8.4	
TP04	0.5-0.6	10	0.020	0.036	0.06	0.024	8.3	
TP07	0.1	10	0.020	< 0.010	0.06	< 0.05	8.6	
TP07	0.4	56	0.10	0.088	0.3	0.212	8.0	
TP11	0.7	10	0.030	< 0.010	0.09	<0.08	7.6	
TP13	0.1	10	0.040	0.069	0.12	0.051	7.3	
TP15	0.6	10	0.020	0.060	0.06	0	7.3	
TP18	1.5	10	0.020	< 0.010	0.06	< 0.05	7.8	
TP19	0.5	10	0.040	0.060	0.12	0.06	6.9	
TP24	0.9	10	0.020	0.014	0.06	0.046	7.5	

Notes:

The following stoichiometric equation was employed to determine the Total Potential Sulphate (TPS). TPS (% as SO4) = $3.0 \times Total Sulphur (TS % as S)$.

The amount of Oxidisable Sulphides (OS as %SO4) has been conservatively calculated by the following equation. OS = TPS – Acid Soluble Sulphate (AS).

Based on results obtained, the characteristic values are provided below.

Sulphate (2:1 Water Soluble) as SO4: 10-200mg/l pH: 6.9-8.6 Total Potential Sulphate (TPS): 0.06-0.54%

The initial classification for the site based on sulphate (2:1 Water Soluble) as SO4 is Design Sulphate (DS) Class DS-1. The Aggressive Chemical Environment for Concrete (ACEC) Class for the site based on sulphate (2:1 Water Soluble) as SO4, mobile water and pH is AC-1.

SECTION 8 Engineering Recommendations

8.1 Preparation of Site

Prior to modification or demolition, the existing building must be subject to a refurbishment and demolition survey to identify any asbestos containing materials (ACM). Any deleterious materials must be removed by a suitably qualified person and disposed of at an appropriately licenced landfill. Precautions must be in place to prevent any contamination of the soils on site during the removal process.

Remaining structures, including foundations, and associated areas of hard standing over granular sub-base materials must be stripped and removed from beneath the proposed development area.

Areas of vegetation including all roots must be stripped and removed from beneath the proposed development site.

Allowances should be made for any temporary/permanent support works to any existing adjacent structure necessary as a result of the proposed works.

Allowances should also be made for dealing with buried basements which are considered likely in the vicinity of historical structures.

Contingencies should be made for the protection/diversion of any underground/overhead services present beneath/above the site brought about as a result of the proposed works.

Any reduced levels should be brought up to the required levels with suitable inert mainly granular materials. Department for Transport (DfT) type 2 sub-base or similar should be used and compacted in layers to the requirements of the Specification for Highway Works.

Allowances must also be made for the excavation of any soft spots/areas and their replacement with well compacted imported granular materials.

In accordance with EC Regulation 1272/2008 (Ref) and Environment Agency Guidance WM3 soils and other materials destined for off-site disposal must be classified on the basis of their hazard phrases prior to disposal. Soils are classified as a mirror entry waste and must be classified on the basis of their specific chemical properties. Terra Firma offer this service if required.

8.2 Foundation & Floor Slab Solution

The proposed development is to comprise the construction of 120no. traditional residential dwellings of masonry/timber construction.

The ground investigation confirmed the ground conditions beneath the site to comprise firm, clays between 0.6m and 2.6m depth below existing ground level Which was underlain by possible bedrock.

The presence of soluble limestone bedrock on the western part of the site provides a geotechnical risk and will require a specific foundation solution to mitigate the risk posed from dissolution. As such, the site has been split into two foundation zones. The foundation zones are presented in **Drawing 01.**

8.2.1 Recommended Foundation Solution - Zone A

Based on the proposed development and known ground conditions beneath the site, it is considered that a strip foundation founded within the firm to very stiff yellowish brown gravelly clay is used for buildings in this area. The founding strata can be found below 0.6m depth though this may be deeper in areas of made ground located around the existing/previous buildings.

In due consideration of the identified ground conditions, in-situ and laboratory geotechnical testing, Terra Firma has undertaken an assessment of the net safe allowable bearing pressure (ABP) with the underlying soils to assist in the detailed design of foundations and infrastructure and to determine a suitable target stratum. Based upon this assessment it is recommend that an allowable bearing capacity of 150kPa is used for strip foundations with widths up to 1m.

Foundations must sit at least 200mm within the founding horizon.

For the given foundation solutions and bearing pressure, maximum total settlements of 25mm should result with differential movements of the superstructure not exceeding 1:750.

Allowances should be made for the removal of any 'soft spots' and their replacement with well-compacted granular materials. Department for Transport (DfT) Type 2 materials or similar could be used and should be compacted in layers to the specification for Highway Works.

In order to protect the formations from the effect of frost heave and or thermal shrinkage the minimum foundation depth should be 900mm.

Deeper foundations will be required within influencing distance of tree root systems. The National Hose Building Council (NHBC) give guidelines based upon the tree type' distance for the tree and plasticity of the soil.

All foundation formations should be inspected by a suitably qualified Geotechnical Engineer before being concreted.

8.2.2 Recommended Foundation Solution - Zone B

Given the risk of dissolution in **Zone B**, it is recommended that a raft foundation or semi raft foundation is adopted for proposed buildings in the area. The raft/semi raft must be designed to span a soft spot of 3.0m with a cantilever effect on corners of 1.5m.

In due consideration of the identified ground conditions, in-situ and laboratory geotechnical testing, Terra Firma has undertaken an assessment of the net safe allowable bearing pressure (ABP) with the underlying soils to assist in the detailed design of foundations and infrastructure and to determine a suitable target stratum. Based upon this assessment it is recommend that an allowable bearing capacity of 100kPa is used for raft foundations. If a semi raft foundation (reinforced strips with suspended slab) is adopted than an allowable bearing capacity of 150kPa may be used for design purposes.

Foundations must sit at least 200mm within the founding horizon.

In order to protect the formations from the effect of frost heave and or thermal shrinkage the minimum foundation depth should be 900mm.

Deeper foundations will be required within influencing distance of tree root systems. The National Hose Building Council (NHBC) give guidelines based upon the tree type' distance for the tree and plasticity of the soil.

For the given foundation solutions and bearing pressure, maximum total settlements of <25mm should result with differential movements of the superstructure not exceeding 1:750.

8.2.3 Ground Floor Slabs

Current building control regulations require that where infilled ground is present to depths in excess of 600mm or where the sub-stratum is variable in terms of the structure and settlement potential or where clay soils are present within the influence of existing or proposed trees, a suspended floor slab is required.

In this instance it is considered that for the majority of substructures, the underlying stratum would be clay of medium volume change potential and as such a suspended floor slab will be required.

8.3 Excavations & Formations

Most of the shallow excavations will be possible with normal soil excavating machinery. Allowances for a breaker attachment will be required when dealing with areas of hard standing and buried obstructions / bedrock.

Shallow perched water and groundwater flows were not encountered during the investigation. Any water inflows together with rainwater infiltration should be dealt with by conventional pumping techniques. However, it should be noted that during times of heavy rainfall a higher water table will be encountered.

The sides of any excavations deeper than 1.20m, or shallower if unstable, should be supported by planking and strutting or other proprietary means.

The sub-formations/formations are likely to be susceptible to loosening, softening and deterioration by exposure to weather (rain, frost and drying conditions), the action of water (flood water or removal of groundwater) and site traffic.

Formations should never be left unprotected and continuously exposed to rain causing degradation, or left exposed/uncovered overnight, unless permitted by a qualified engineer.

Construction plant and other vehicular traffic should not be operated on unprotected formations.

As a minimum the formation/excavation surfaces must be protected by blinding concrete immediately after exposure.

Allowances should be made for the removal of soft spots/areas and their replacement with well compacted granular materials.

Allowances should also be made for special precautions to prevent formation deterioration in addition to the above.

8.4 Protection of Buried Concrete

Geotechnical testing of selected samples for concrete classification in accordance with BRE SD1:2015 are presented in Table 7.2.

When the results are compared with Table C2 of BRE Digest 1:2005, it indicates that buried concrete should generally conform to Class AC-1.

8.5 Access Roads & Car Parking Areas

For car parking and road areas, formations within the in-situ natural soils a California Bearing Ration (CBR) value of 5% may be used for design purposes.

Allowances should be made for the removal of any 'soft spots/areas' and their replacement with well-compacted granular materials as previously described.

Please note that the Local Council / Highways Authority may require in-situ CBR testing to be undertaken before a road is adopted. In-situ CBR testing should be performed following earthworks to verify the performance of the engineered fill.

8.6 Storm Water Drainage

During the site investigation three soakaway tests were undertaken in general accordance with BRE DG 365:2016. The soakaway test results are presented in **Table 8.1.**

The testing produced variable results which is attributed to the variation in weathering of the underlying bedrock and fractures and fissures therein. It is considered that infiltration drainage is feasible for the development tough it is recommended that targeted investigation should be undertaken to confirm infiltration rates at the exact locations of infiltration features.

Table 8.1 Summary of Soakaway Results

Trial Pit	Depth Range of Test (m)	Geology Description	Infiltration Rate (ms ⁻¹)
TP23	0.4-1.15	slightly sandy gravelly silty CLAY with low cobble and boulder content	1.82 x10 ⁻⁰⁵
TP25	1-1.5	slightly sandy gravelly silty CLAY with low cobble and boulder content	No infiltration
TP26	0.5-1.0	slightly sandy gravelly silty CLAY with low cobble and boulder content	6.53x10 ⁻⁰⁵
TP27	0.5-1.2	slightly sandy gravelly silty CLAY with low cobble and boulder content	No infiltration
TP28	0.7-1.2	slightly sandy gravelly silty CLAY with low cobble and boulder content	2.21x10 ⁻⁰⁵
TP29	1.1-1.6	slightly sandy gravelly silty CLAY with low cobble and boulder content	No infiltration

Given the risk of dissolution in the Blue Lias formation, it is recommended that proposed soakaways must be positioned at least 10.0m away from any structure.

8.7 Retaining Walls

Due to the sloping nature of the site, retaining walls may be required. The existing steepness of any embankments should not be increased. Any cuts should be undertaken in small sections and in such a way so as not to induce any instability to the ground.

Effective shear parameters for retaining wall design are presented in **Table 8.2**.

Table 8.2 Effective Shear Stress Parameters

Stratum Description	Bulk Unit Weight (γ) kN/m³	Effective Cohesion (c') kN/m ²	Effective Angle of Shearing Resistance (\(\phi' \)) degrees
Firm to stiff cohesive soils	18	0	30
Well compacted, granular materials, compacted as per Specification for Highway Works and other relevant guidance such as British Standards (BS) 6031: 1981. Code of Practise for Earthworks.	19 – 20	0	30 - 35
Fresh/slightly weathered mudstone/limestone bedrock	19-24	5	35 - 40
Moderately / highly weathered Mudstone/limestone bedrock	19-24	0	30 – 35

The parameters are based on experience in similar ground conditions.

The materials to be in-filled behind the retaining wall must be placed at or close to its optimum moisture content/maximum dry density and compacted in layers as per the requirements of the Specification for Highway Works. During the earthworks suitable in-situ testing must be carried out to ensure that the compaction process is achieving the required maximum dry density to achieve at least 95% compaction.

The acceptability of the filling works must be verified by appropriate on-site testing. A certification report must also be prepared on the earthworks by a suitably qualified Geotechnical Engineer.

Appropriate drainage must be incorporated in the design to prevent the build-up of hydrostatic pressure.

Appropriate cutting and benching of the existing slope must be conducted prior to the replacement of any imported fill to minimise the risk of any slip surfaces forming on the interface between the existing imported materials.

8.8 Re-Use of Demolition Materials

TFW Group Limited are aware that there is currently a structure located on the study site and that this will be demolished as part of the development programme. TFW Group Limited are not currently aware of the mass balance of the project and whether there is a net excess, or net deficit, of material at the site. Notwithstanding, material management should be considered from the earliest stage to ensure that materials are not cross contaminated, unnecessary costs are not incurred and the developer does not fall foul of waste legislation.

TFW Group Limited would recommend that, at the earliest convenience, a mass balance calculation be made for the development. This will allow TFW Group to undertake a feasibility study to determine whether the development achieves the criteria for a CL:AIRE Definition of Waste — Development Industry Code of Practice (DoW:CoP) Material Management Plan (MMP) to reuse site won material, import suitable clean natural soils from other sites or export suitable excess material to other nearby development sites.

Prior to the demolition of the existing structure, it is essential to undertake a pre-demolition asbestos survey and ensure asbestos, if present, is completely removed by an appropriately certified contractor prior to demolition. Failure to do so could lead to asbestos contamination

of the demolition rubble, creating hazardous mixed waste, which would not be suitable for reuse as an aggregate and have a significantly higher disposal cost.

If it is proposed to generate a 'non-waste' recycled aggregate for off-site re-use, the developer could consider using WRAP Quality Protocol. The protocol will require a geotechnical and chemical test regime to be prepared in advance to ensure the generated aggregate achieves the necessary standards.

If the reuse/import of soils and demolition rubble achieves the criteria for a CLAIRE DoW:CoP MMP the application should be submitted in advance of any earthworks as MMPs are not designed for retrospective application and require a period of consultation with regulators and a CL:AIRE Qualified Person (QP).

In accordance with the Environment Agency Waste Hierarchy, re-use of suitable material is preferable to disposal. However, if unsuitable materials are encountered which require off-site disposal these should be subject to Total and WAC Analysis, and classified in accordance with Environment Agency document WM3 and, on the basis of this classification, disposed to an appropriate licenced facility.

BIBLIOGRAPHY

Online Sources

- 1.1 British Geological Survey. GeoIndex Onshore. Available at: https://mapapps2.bgs.ac.uk/geoindex/home.html (accessed January 2024)
- 1.2 Environment Agency. Land contamination risk management (LCRM). Last updated 20 July 2023. https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm (accessed January 2024)
- 1.3 Environmental Protection Act 1990. c.43. Part IIA Contaminated Land. Available at: https://www.legislation.gov.uk/ukpga/1990/43/contents (accessed January 2024)
- 1.4 Google Maps. Available at: https://www.google.com/maps (accessed January 2024)
- 1.5 Zetica UXB Risk Maps. Available at: https://zeticauxo.com/guidance/risk-maps/ (accessed January 2024)

Standard Publications

British Research Establishment. 2005. Concrete in aggressive ground (SD1). Bracknell: IHS BRE Press

British Research Establishment, Scivyer, C & Jagg, M, 2023. Radon: Guidance on protective measures for new buildings (including supplementary advice for extensions, conversions and refurbishment projects). Sixth Edition. BR 211. Bracknell: IHS BRE Press

British Research Establishment S. Garvin. 2016. Soakaway design. (DG365). Bracknell: IHS BRE Press

British Standards Institute, 1990. BS 1377-9: Methods of test for soils for civil engineering purposes - In-situ tests. London: BSI.

British Standards Institute, 2013. BS 8576. Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs). London: BSI

British Standards Institute, 2013. BS EN 1997-1:2004+A1. Eurocode 7. Geotechnical design – General rules. London: BSI.

British Standards Institute, 2017. BS 10175:2011+A2: Investigation of potentially contaminated sites. Code of practice. London: BSI.

British Standards Institute, 2019. BS 8485:2015+A1. Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings. London: BSI.

British Standards Institute, 2020. BS 5930:2015+A1: Code of practice for ground investigations. London: BSI.

ANNEX A Trial Pit Logs

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. TP01

earth matters Phone:	033 022 36380 Email: he	lo@tfwgroup.co.uk	Cardiff CF23 7HA	Exeter EX6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name		Project No.	Date			Hole Type
Craig-y-Parcau		TF-24-589-C	A 06/	11/2024 to	06/11/2024	TP
Client		Co-ords		Water St	rike Details	Logged By
Bellway Homes Limited		E. 200074 C		oth Strike	Remarks	ES
Contractor	Plant Used	E: 289071.6	۷			Approved By
		N: 178616.3	7			
Pritchards	8T	L: 23.54				Scale 1:50

					L. 23.34	Scale 1.50
Sample	s and Re			Legeno		
Results	Туре	Depth	(Thickness)	Level		_
	ES	0.20 - 0.30	- - (0.40)		MADE GROUND. [Soft] slightly sandy gravelly CLAY with occasional brick concrete and timber fragments. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies. ()	
			0.40	23.14	Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	
	D	0.60	F			
			E			<u></u>
			(1.10)			+ <u>-</u> -×-
			1 (1.10)	Ί		<u></u>
			-			- <u>×</u>
			1.50	22.04	Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sa	and x
					is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	
			F		angular and subangular of ilmestone. Boulders are angular and subangular of ilmestone ()	+,:-:-;
			2 (1.00))		
			-	1		
			F			
			2.50	21.04		
			2.50	21.04	End of Trial Pit at 2.50m	-
			_			-
			3			
			-			-
]
			\vdash			-
			F]
			F			=
			4			_
			-			-
			-			7
			-			7
			-			_
	1	1	1	1		

Remarks		1.80r	n	
1] Consistency, strength and density indicators are based upon field judgement. 2] Density in guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder				
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	9	<u>o</u>		
Pit Stability: Stable		Final Depth	2.50m	
Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brack	ets.	гінаі Берін	2.50111	

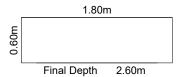
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA


Borehole No. TP02

Sheet 1 of 1 Project Name Date Hole Type Project No. Craig-y-Parcau TF-24-589-CA 06/11/2024 to 06/11/2024 ΤP Client Water Strike Details Logged By Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 289074.44 **Approved By** Contractor Plant Used N: 178635.63 8T Pritchards L: 23.83 Scale 1:50

			-		L: 23.83			Scale 1:50
Samples and Results		Depth,		Stratum Description			Lagand	
Results Ty	уре	Depth	(Thickness)	Level	5	tratum Description		Lege
E	ES	0.50 - 0.60	- - - - - - - - - - - - - - - - - - -	23.03	MADE GROUND. [Soft] slightly sandy fragments. Sand is fine to coarse. Grav lithologies. () Firm yellowish brown sightly sandy silty	el is angular and subang	ular fine to coarse of mixed	
			(0.70) (0.70)	22.33			·	
			- 1.50 (1.10)	22.33	Firm yellowish brown slightly sandy gra is fine to coarse. Gravel is angular and angular and subangular of limestone. E	subangular fine to coarse	e of limestone. Cobbles are	d
				21.23		End of Trial Pit at 2.60m		
			- - - - 3 -			Elid of High Rut 2.50m		- - - - -
			- - - - - -					- - - - - - -
								<u>-</u> - - -
			_ - - -					_ - - -

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

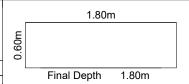
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. TP03


Sheet 1 of 1 Date Hole Type **Project Name** Project No. TF-24-589-CA 06/11/2024 to 06/11/2024 ΤP Craig-y-Parcau Client Water Strike Details Logged By Co-ords ES Depth Strike Remarks Bellway Homes Limited E: 289073.48 Approved By Plant Used Contractor N: 178655.32 8T Pritchards L: 23.83 Scale 1:50

					L. 23:83	Scale 1.50
Samples and Results		Depth,		Stratum Description	Legend	
Results	Type	Depth	(Thickness)	Level		_
	ES	0.20 - 0.30	(0.40)		MADE GROUND. [Soft] slightly sandy gravelly CLAY with occasional brick concrete and timber fragments. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies. ()	
		0.90 - 1.00	- 0.40 (0.90)		Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	
	D	0.90 - 1.00	- 1 - 1 - 1.30		Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. S.	
			(0.50) - 1.80		is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	
			2 		End of Trial Pit at 1.80m	
			<u>-</u> - -			
			3 3 			-
			_ _ _			
			_ _ 4 _			-
			- - -			- - -
			<u> </u>			

Remarks	I
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for	
quidance only, and is not in accordance with BS 5930 2015. 31 Trial nit terminated on houlder/hedrock refusal	ı

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

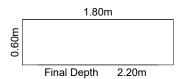
Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. TP04

earth matters Phone:	033 022 36380 Email: hello@tfwgroup.	co.uk Caro CF2:	liff Exeter 3 7HA EX6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	06/11/2024 to	06/11/2024	TP
Client		Co-ords	Water St	rike Details	Logged By
Bellway Homes Limited		E: 289099.69	Depth Strike	Remarks	ES
Contractor	Plant Used				Approved By
Doit do and a	o .	N: 178674.90			
Pritchards	8T	L: 23.19			Scale 1:50


					L. 23.19	Scale 1.50
Samples and Results		Depth,		Stratum Description	Logond	
Results	Туре	Depth	(Thickness)	Level		Legend
			(0.10) 0.10	23.09	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Grangular and subangular fine to coarse of mixed lithologies () Stiff yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	avel is $\overline{\times \times \times \times}$
	ES	0.50 - 0.60	(0.80)			
		0.00	- (0.00)			—×— ; X——x =
			0.90	22.29	Very stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder con	tent.
			_		Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobble angular and subangular of limestone. Boulders are angular and subangular of limestone ()	es are
	D	1.40	_			
			(1.30)			
			- - - 2			
			2.20	20.99	End of Trial Pit at 2.20m	_ · · · · · · · · · · · · · · · · · · ·
			_			_
			_			-
			3			
						_
						_
			_			-
			4			
						_
						-

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicate	or is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedro	ck refusal.

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

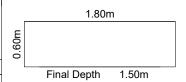
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA


Borehole No. TP05

Phone: 033 022 36380 Email: hello@tfwgroup.co.uk Cardin Exeter Portsmouth CF23 7HA EX6 7BP PO2 8FA	Sheet 1 of 1
Project No. Date	Hole Type
TF-24-589-CA 06/11/2024 to 06/11/2024	TP
Co-ords Water Strike Details	Logged By
Depth Strike Remarks	ES
_: =50.0000	Approved By
N: 178649.24	
L: 22.85	Scale 1:50
TF-24-589-CA 06/11/2024 to 06/11/2024 Co-ords Water Strike Details Depth Strike Remarks Plant Used N: 178649.24	Logge ES Approv

Samples and Results Depth, (Thickness) Level Stratum Description	Legend
Results Type Depth (Thickness) Level	Logona
(0.10) 0.10 22.75 Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel angular and subangular fine to coarse of mixed lithologies () 0.50 to 0.05m - 4.0 0.05m concrete boding (60mm x 60mm), pit moved north of obstruction and continue Very stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	e
D 1.00 - 1.10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
- 1.50 21.35 End of Trial Pit at 1.50m	

Remarks	
1] Consistency, strength and density indicators are base	
guidance only, and is not in accordance with BS 5930:20	• •
4] Trial pit backfilled with arisings. 5] No groundwater wa	as encountered.

Pit Stability: Stable

Phone: 033 022 36380

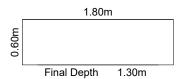
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP06**


	·
Project Name Project No. Date Hole T	ype
Craig-y-Parcau TF-24-589-CA 06/11/2024 to 06/11/2024 TP	1
Client Co-ords Water Strike Details Logged	d By
Bellway Homes Limited E: 289088.33 Depth Strike Remarks ES	
Contractor Plant Used N: 178643.47	ed By
Pritchards 8T L: 23.16 Scale 2	1:50

					L. 23.10	Scale 1.50
Samples and Results		Depth,		Stratum Description	Legend	
Results	Туре	Depth	(Thickness)	Level		_
	ES	0.60	(0.10) 0.10	23.06	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Grav angular and subangular fine to coarse of mixed lithologies () Very stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder conte Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles angular and subangular of limestone. Boulders are angular and subangular of limestone ()	nt.
	ES	0.60	- (1.20) 1 1 - 1.30	21.86	End of Trial Pit at 1.30m	
			2 			
			- - - -			
			3 			
			- - - -			
			-4			
			- - - -			

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. **TP07**

Sheet 1 of 1 Date **Project Name** Project No. **Hole Type** TF-24-589-CA Craig-y-Parcau 06/11/2024 to 06/11/2024 TP Client Logged By Water Strike Details Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 289038.80 Approved By Plant Used Contractor N: 178627.43 8T Pritchards L: 23.49 Scale 1:50

					L. 23.49		Scale 1.50
	s and Re		Depth,		St	ratum Description	Lege
Results	Туре	Depth	(Thickness)	Level			_
	ES	0.10	(0.20)		MADE GROUND. Yellow angular and si	ubangular fine and medium GRAVEL of limeston	e. ()
			0.20	23.29	MADE GROUND. [Soft] slightly sandy g	gravelly CLAY with occasional brick concrete and el is angular and subangular fine to coarse of mix	timber
	ES	0.40	[(0.50)		fragments. Sand is fine to coarse. Grave lithologies. ()	el is angular and subangular fine to coarse of mix	ked
			(0.50)		intrologies. ()	0.20 to 0.20m - At 0.20m: Blac	k membrane.
			0.70	22.79			
			-			End of Trial Pit at 0.70m	=
			<u>_</u> 1				
			F'				
			-				-
			-				4
			F				-
]
			+ _				-
			2				
			-				-
			Ė				
			F				
			+				-
							1
			F				-
			3				
			-				4
			-				-
							_
			-				-
							_
			 				-
			4				
			F				
			+				-
			L				
			-				_
			L				_
	1						

Remarks		

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on possible concrete slab.

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Stable Pit Stability:

1.80m 0.60m Final Depth 0.70m

Phone: 033 022 36380

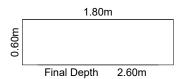
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No.


edilitilations		CI 23 THA	EX0 / DP	FOZ OFA	Sneet 1 of 1	
Project Name	Project No.	Dat	te	Hole Type		
Craig-y-Parcau	TF-24-589-0	CA C	06/11/2024 to	06/11/2024	TP	
Client	Co-ords		Water Strike Details		Logged By	
Bellway Homes Limited			I .	Depth Strike	Remarks	ES
Contractor	Plant Used	E: 289023.3 N: 178617.7				Approved By
Pritchards	8T	L: 25.32				Scale 1:50

i monardo			١٠.		L: 25.32			Scale 1:50
Samples and Results		Depth,		·				
			(Thickness)	Level	Stratum Description		Legen	
Results	Туре	Depth	(THICKHESS)	Level	MADE GROUND. Dark brown angular and subangular fine and medium GRAVEL of limestone. ()			
	ES	0.10	(0.20)					· 0
			0.20	25.12	MADE GPOLIND, Vallow angular and a	MADE GROUND. Yellow angular and subangular fine and medium GRAVEL of limestone. ()		
			-		WADE GROOMD. Tellow angular and subangular line and medium Grove E of linestone.			
			(0.40)					
			-	04.70				→>>>>>
			0.60	24.72	Firm yellowish brown sightly sandy silty	CLAY. Sand is fine to co	parse. ()	×
	D	0.80] <u>x</u>
	ES	0.80						
			<u> </u>					—×
			-					<u></u>
			-					
			-					- <u>x-</u>
			·					1^
			(1.80)					
] _ _
			_					x_
			2					— <u>^</u>
			-					+× <u>_</u>
			-					<u></u>
			-					
			2.40	22.92	Firm yellowish brown slightly sandy gra	avelly silty CLAY with low	cobble and boulder content. S	and ÷ · · ·
			- (0.20) - 2.60	22.72	is fine to coarse. Gravel is angular and	subangular fine to coars	e of limestone. Cobbles are	
			_ 2.00	22.12	angular and subangular of limestone. E	Boulders are angular and	subangular of limestone ()	
			_			End of Trial Pit at 2.60m		_
			-					_
			 3					-
			-					-
			-					-
			-					_
			-					4
			 					=
			<u> </u>					_
			F					-
			F					7
			<u> </u>					4
			-					4
			 					4
			F					4
		l		1	1			

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for	
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.	
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	

Pit Stability: Stable

Remarks

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6.7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP09**

edilitilalieis		Cr	23 / HA EX6 / BP	POZ OFA	Sneet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	06/11/2024 to	06/11/2024	TP
Client		Co-ords	Water S	trike Details	Logged By
Bellway Homes Limited		E: 288988.69	Depth Strike	Remarks	ES
Contractor	Plant Used	N: 178691.01			Approved By
Pritchards	8T	L: 21.08			Scale 1:50

				L. 21:00	Scale 1.50
Samples and	Depth,		Stratum Description	Lege	
Results Typ	e Depth	(Thickness)	Level		_
Ē		(0.10) 0.10 - - - (0.70)		Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies () Very stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone ()	<u> </u>
	0.80	0.80	20.28	End of Trial Pit at 0.80m	
		- 1			
		- - -			- - - -

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA Borehole No. **TP10**

eammaners				CF23	THA EX67BP	POZ 6FA	Sneet 1 of 1
Project Name				Project No.	Date		Hole Type
Craig-y-Parcau				TF-24-589-CA	06/11/2024 to	06/11/2024	TP
Client				Co-ords	Water St	trike Details	Logged By
Bellway Homes Limited				E 000000 00	Depth Strike	Remarks	ES
				E: 289026.00			Approved By
Contractor	Plant U	sed		N: 178670.85			''
Duitalaanda	от	ОТ					
Pritchards	8T			L: 22.70			Scale 1:50

		l i		L. 22.70			Scale 1.50
Samples and Re	Depth,			tratum Description		Logo	
Results Type	Depth	(Thickness)	Level	5	tratum Description		Lege
		(0.10) (0.10) (0.70)	22.60	Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm yellowish brown sightly sandy silt	of mixed lithologies ()		el is
		0.80	21.90	Very stiff yellowish brown slightly sand Sand is fine to coarse. Gravel is angulangular and subangular of limestone. I	ar and subangular fine to	coarse of limestone. Cobbles a	nt.
D	1.50	1.50	21.20		End of Trial Pit at 1.50m		
ES	1.50						

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	.60m	
Pit Stability: Stable	U	

Remarks

Phone: 033 022 36380

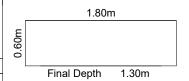
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. **TP11**


Sheet 1 of 1 Project Name Date Hole Type Project No. TF-24-589-CA 07/11/2024 to 07/11/2024 ΤP Craig-y-Parcau Water Strike Details Client Logged By Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 288858.35 Approved By Plant Used Contractor N: 178755.41 8T Pritchards L: 26.59 Scale 1:50

			01		L: 26.59			Scale 1:50
Samples and Results			Depth,		_			
	уре	Depth	(Thickness)	Level	S	tratum Description		Legend
rtocate	ypo	Dopui	- (0.20) - 0.20 -		Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm orangish brown sightly sandy silty	of mixed lithologies ()		is
	ES	0.70	- (0.60) 0.80	25.79	Very stiff greyish brown slightly sandy of Sand is fine to coarse. Gravel is angula	gravelly silty CLAY with lo	w cobble and boulder content.	X X X X X X X X X X X X X X X X X X X
	D	1.10	(0.50) - - 1.30	25.29	angular and subangular of limestone. E	Boulders are angular and	subangular of limestone ()	
				25.29		End of Trial Pit at 1.30m		
			<u>-</u>					

Remarks	
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for	
guidance only, and is not in accordance with BS 5930 2015, 31 Trial pit terminated on boulder/bedrock refusal	l

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

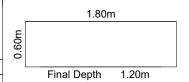
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP12**


edilitilalieis		Ol Z	STIA EXCTOR	FOZ OFA	Sheet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	07/11/2024 to	07/11/2024	TP
Client		Co-ords	Water St	rike Details	Logged By
Bellway Homes Limited		E: 288826.57	Depth Strike	Remarks	ES
Contractor	Plant Used	N: 178671.41			Approved By
Pritchards	8T	L: 29.43			Scale 1:50

Samples and Results Depth (Thickness) Level Stratum Description Lege Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies () Stratum Description Stratum Descrip						L. 29.43	Scale 1.50
Results Type Depth (Thickness) Level Control of the coarse	Samples and Results		Depth,		Stratum Description	Logona	
angular and subangular fine to coarse of mixed lithologies () Comparison of the coarse of mixed lithologies () Coarse of mixed	Results	Туре	Depth	(Thickness)	Level		_
ES 1.00 29.23 Firm orangish brown sightly sandy silty CLAY. Sand is fine to coarse. ()				- (0.20)			s <u> </u>
ES 1.00 — 1 (0.50) 1.20 28.23 End of Trial Pit at 1.20m End of Trial Pit at 1.20m				0.20	29 23	angular and subangular fine to coarse of mixed lithologies ()	(XXXX
ES 1.00 28.73 Very stiff greyish brown slightly sandy gravelly sitty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone () End of Trial Pit at 1.20m				_ 5.25		Firm orangish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	x
ES 1.00 28.73 Very stiff greyish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone () End of Trial Pit at 1.20m				L			
ES 1.00 (0.50) 1.20 28.23 Very still greysin provin slightly sarry gravely still power possible and boulder content. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Obbles are angular and subangular of limestone ()				(0.50)			×
ES 1.00 (0.50) 1.20 28.23 Very still greysin provin slightly sarry gravely still power possible and boulder content. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Obbles are angular and subangular of limestone ()				L			×
ES 1.00 — 1 (0.50) 1.20 28.23 Very still greysin or provided in the to-coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone ()				0.70	28 73		×— —×
ES 1.00					20.70	Very stiff greyish brown slightly sandy gravelly silty CLAY with low cobble and boulder content.	
ES 1.00 —1 1.20 28.23 End of Trial Pit at 1.20m				L		Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	,
End of Trial Pit at 1.20m		FS	1.00	(0.50)		angular and subangular of limestone. Boulders are angular and subangular of limestone ()	
			1.00	Γ.			
				1 20	28 23		* * * * * * * * * * * * * * * * * * * *
				L 1.20	20.23	End of Trial Pit at 1.20m	
				L			
				L			
				L			
				L			
				L			
				L			
				L			-
				L			4
-3				L			
				3			
							_
				_			
				_			_
				_			_
							_
				-			_
				_			4
				L			4
							4
				<u> </u>			_
				_			_
				_			_
				-			4
				-			4
				\vdash			\dashv
				-			4
				-			4
				-			4
				-			4
					<u> </u>	1	

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930 2015, 31 Trial pit terminated on boulder/bedrock refusal.

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

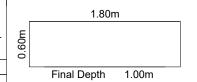
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. **TP13**


Sheet 1 of 1 Date **Project Name** Project No. **Hole Type** TF-24-589-CA 07/11/2024 to 07/11/2024 Craig-y-Parcau TP Client Logged By Water Strike Details Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 288877.30 Approved By Plant Used Contractor N: 178634.16 8T Pritchards L: 23.31 Scale 1:50

					E. 25.51	Scale 1.50
Samples and Results		Depth,		Stratum Description	Legend	
Results	Туре	Depth	(Thickness)	Level		_
	D ES	0.10 0.10	- (0.20) - 0.20	23.11	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel angular and subangular fine to coarse of mixed lithologies () Firm orangish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	is
			(0.40)			
			- 0.60 - (0.40)		Very stiff greyish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles at angular and subangular of limestone. Boulders are angular and subangular of limestone ()	re
			1.00	22.31	End of Trial Pit at 1.00m	******
			-			_
			-			_
			E			
			2 			_
			_			_
			-			-
			_ 3			
			_			-
			E			_
			-			_
			4			_
			Ė			
			F			-
			E			-
				l	1	

Remarks	1
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for	
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.	

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

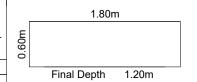
Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. **TP14**

Sheet 1 of 1 Date **Project Name** Project No. **Hole Type** TF-24-589-CA 07/11/2024 to 07/11/2024 Craig-y-Parcau TP Client Logged By Water Strike Details Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 288865.33 Approved By Plant Used Contractor N: 178685.55 8T Pritchards L: 26.14 Scale 1:50


				L. 20.14	Scale 1.50	
Samples and Results Results Type Depth		Depth,		Charles Barrier time		
		Thickness)	Level	Stratum Description	Leger	
ES	0.10	(0.20) 0.20	25.94	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Grav angular and subangular fine to coarse of mixed lithologies () Firm orangish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	el is	
	-	(0.50)				
	-	0.70	25.44	Very stiff greyish brown slightly sandy gravelly silty CLAY with low cobble and boulder content Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles angular and subangular of limestone. Boulders are angular and subangular of limestone ()	are	
	-	- 1 (0.50) - 1 1.20	24.94			
	_		2	End of Trial Pit at 1.20m	=	
	-				-	
	-	-2			4	
	-					
	-					
	-				-	
	_	- 3			_	
	-					
	-				_	
	-	- 4				
	-	·			-	
	-				=	
	-				=	
	E					

Remarks		
1] Consistency, strength and density indicators are based upon field judgement.	2] D	ensity indicate

guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

Consulting Geotechnical, Geo-Environmental Engineers & Site Investigation Contractors

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP15**

edilitilidileis		GFZS	THA EXC / BP	POZ 6FA	Sneet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau	TF-24-589-CA	07/11/2024 to	07/11/2024	TP	
Client	Co-ords	Water St	Logged By		
Bellway Homes Limited		E: 288919.76	Depth Strike	Remarks	ES
Contractor	Plant Used				Approved By
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N: 178726.67			
Pritchards	8T	L: 22.57			Scale 1:50

					L. 22.31	Scale 1.50
Samples and Results		Depth,		Stratum Decariation	Lagana	
Results	Туре	Depth	(Thickness)	Level		Legend
			- - (0.40)		Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies ()	- X X X X - X X X X - X X X X
			0.40	22.17	Firm orangish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	×
	D ES	0.60 0.60	-			
	[53	0.00	F			
			1 (1.20)			
			(1.30)			<u></u>
						
			F			
			1.70	20.87	Verseiff annich bereit liebte er de marcelle ille CLAV with less selde en de la selde er et al	
			(0.30)		Very stiff greyish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	
			_ 2 2.00	20.57	angular and subangular of limestone. Boulders are angular and subangular of limestone () End of Trial Pit at 2.00m	· · · · · ·
						7
						_
			_			-
]
			3			_
						_
						-
			_			7
			-			=
			-			-
						-
			F			_
			F			=
			 			+

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	0.60m				
Pit Stability: Stable		Final D			
Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.					

Phone: 033 022 36380

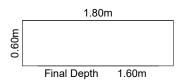
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP16**


edilitifialieis	G12	EXO TOP	FOZ OFA	Sheet 1 of 1	
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau	TF-24-589-CA	07/11/2024 to	TP		
Client	Co-ords	Water St	Water Strike Details		
Bellway Homes Limited	E: 289114.02	Depth Strike	Remarks	ES	
Contractor	Plant Used	N: 178590.00			Approved By
Pritchards	8T	L: 20.43			Scale 1:50

					L: 20.43			Scale 1:50
Samples and Results		oles and Results Depth,		0				
Results	Туре	Depth	(Thickness)	Level	S	tratum Description		Lege
results	ES	0.40	- (0.20) - 0.20		Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm yellowish brown sightly sandy silt	of mixed lithologies ()		is
		0.10	(0.60) - - - 0.80	19.63	Firm yellowish brown slightly sandy grais fine to coarse. Gravel is angular and	subangular fine to coarse	e of limestone. Cobbles are	X
			(0.80)		angular and subangular of limestone. E	Soulders are angular and	subangular of limestone ()	
			1.60	18.83		End of Trial Pit at 1.60m		
						End of Trial Pit at 1.60m		
			- 4 					-

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA Borehole No. **TP17**

edilitilalieis		CF2.	S / HA EX6 / BP	POZ OFA	Sneet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau	TF-24-589-CA	07/11/2024 to	07/11/2024	TP	
Client	Co-ords	Water St	Logged By		
Bellway Homes Limited	E: 289107.46	Depth Strike	Remarks	ES	
	Plant Used	N: 178567.17			Approved By
Pritchards	8T	L: 19.97			Scale 1:50

					L. 19.91	30aie 1.30
Samples and Results			Depth,		Stratum Description	1 0000
Results	Туре	Depth	(Thickness)	Level		Legend
	ES	0.10	- (0.20) - 0.20	19.77	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies () Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	-X X X X X X X X X X X X X X X X X X X
			(0.50)			
			0.70	19.27	Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand	×
			_ _ _ 1		is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	
	D	1.20	(1.10)			
			_ (,			
			-			
			1.80	18.17	End of Trial Pit at 1.80m	-
			2 			
			-			_
			-			\exists
			_ 			
			— 3 –			_
			_			
			_			_
			-			-
			4			-
			_			_
						-
			-			-

Remarks		า		
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	0.60m		<u> </u>	
Pit Stability: Stable] [Final Depth	1.80m	
Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.		гінаі Берін	1.00111	

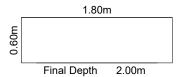
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA Borehole No. **TP18**


edilitifialieis			CIZS	THA EXOTOP	FOZ OFA	Sheet 1 of 1	
Project Name			Project No.	Date		Hole Type	
Craig-y-Parcau	TF-24-589-CA	07/11/2024 to	07/11/2024	TP			
Client			Co-ords	Water St	Water Strike Details		
Bellway Homes Limited			E: 289090.03	Depth Strike	Remarks	ES	
Contractor	Plant Used		N: 178548.63			Approved By	
Pritchards	8T		L: 20.28			Scale 1:50	

			L. 20.20	Scale 1.50
Samples and Results	Depth,		Stratum Description	Logona
Results Type	Depth (Thickness)	Level		Legend
	- (0.30 - 0.30 - (0.50	19.98	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel i angular and subangular fine to coarse of mixed lithologies () Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	s
	- - - - 1 -	19.48	Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. San is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	d
ES	1.50 (1.20)		
	2 2.0i	18.28	End of Trial Pit at 2.00m	-
	- - - - 3			-
	- - - -			- - - - -
	- - - - -			

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

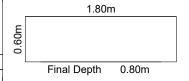
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP19**


			GFZS	THA EX67BP	POZ 8FA	Sneet 1 of 1	
			Project No.	Date		Hole Type	
Craig-y-Parcau					07/11/2024	TP	
Client				Water St	Water Strike Details		
Bellway Homes Limited				Depth Strike	Remarks	ES	
1	sed		N: 178516.46			Approved By	
8T	8T		L: 21.39			Scale 1:50	
	Plant Us	Plant Used 8T	Plant Used	Project No. TF-24-589-CA Co-ords E: 289044.41 N: 178516.46	TF-24-589-CA 07/11/2024 to Co-ords Water St Depth Strike Plant Used N: 178516.46	Project No. Date 07/11/2024 to 07/11/2024 Co-ords E: 289044.41 N: 178516.46 OT OT OT OT OT OT OT O	

					L. 21.39	Scale 1.50
Samples and Results Results Type Depth		Depth,		Stratum Description	Legend	
		(Thickness)	Level		_	
			(0.10) 0.10 (0.50)	21.29	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Grav angular and subangular fine to coarse of mixed lithologies () Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	el is
	D ES	0.50 0.50	- (0.50) - 0.60 - (0.20)	20.79	Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. S	
			- 0.80 - 1	20.59	is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone () End of Trial Pit at 0.80m	
			- - -			
			- - -			-
			_ 2 			-
			- - -			
			_ _ _			-
			3 			
			- - -			=
			_ _ _ _			
			4 			_
			- - -			_

1] (Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guid	dance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4]	Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

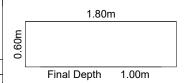
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP20**


edilitifialieis		G12	EXO / DF	FOZ OFA	Sheet Tori
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	07/11/2024 to	07/11/2024	TP
Client	Co-ords	Water St	Water Strike Details		
Bellway Homes Limited	E: 289013.48	Depth Strike	Remarks	ES	
Contractor	Plant Used	N: 178538.56			Approved By
Pritchards	8T	L: 22.19			Scale 1:50

			" "		L. 22.19	Scale 1.50
Samples ar	nd Res	sults	Depth,		Stratum Description	Logon
Results	Туре	Depth	(Thickness)	Level	Stratum Description	Legen
			(0.10) 0.10	22.09	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is	s ××××
			0.10	22.09	angular and subangular fine to coarse of mixed lithologies () Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	_/ _
			_		Firm yellowish brown signtly sandy silty CLAY. Sand is line to coarse. ()	_×
			(0.60)			+×-
						+ <u>-</u>
			0.70	21.49		
	ES	0.80			Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. San	d Litin
			(0.30)		is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	+
			1 1.00	21.19	End of Trial Pit at 1.00m	
						-
			_			4
			-			4
			-			4
			2			
						_
			_			_
			-			+
]
			L			4
			F			4
			-			-
			3			
			_			4
			-			-
						_
			L			4
			 4			-
			-			4
]
			L			_
			\vdash			_
			H			4
			-			=
						1

Remarks	I
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for	
guidance only, and is not in accordance with BS 5930:2015. 31 Trial pit terminated on boulder/bedrock refusal.	ı

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

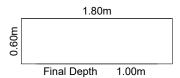
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP21**


edilitifialieis			CF23 THA	EX0 / DF	FOZ OFA	Sheet 1 of 1
Project Name		Project No.	Date			Hole Type
Craig-y-Parcau		TF-24-589-C	A 07/	11/2024 to	TP	
Client	Co-ords		Water St	Logged By		
Bellway Homes Limited		E: 289045.68		pth Strike	Remarks	ES
Contractor	Plant Used	N: 178561.13				Approved By
Pritchards	8T	L: 22.63				Scale 1:50

				_::··		
Samples and Results Results Type Depth		Depth,	Objectives Description			
			(Thickness)	Level	Stratum Description	Legend
	ES	0.10	(0.10) - 0.10		Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel angular and subangular fine to coarse of mixed lithologies () Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	is ×××××
	D	0.40	(0.70)		,, ,,,,,, .	-^x_ x xx
			- - 0.80 - (0.20)		Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. San	xx x nd <u></u>
			— 1 1.00 —	21.63	is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone () End of Trial Pit at 1.00m	
			_			=
			-			-
			2 			
			- - -			-
			- - -			-
			3			-
			- - -			-
			- - -			-
			4			_
			-			-
			E			
						_

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for	
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refu 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	sal.

Pit Stability: Stable

Remarks

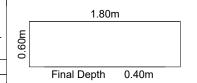
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA


Borehole No. TP22

earth matters	Phone: 03	3 022 36380	Emai	I: hello@tfwgroup.co	uk Car CF2	diff 23 7HA	Exeter EX6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name					Project No.	Date			Hole Type
Craig-y-Parcau				-	TF-24-589-CA	07/11	/2024 to	07/11/2024	TP
Client					Co-ords		Water St	rike Details	Logged By
Bellway Homes Limited				ı	E: 288955.64	Deptl	n Strike	Remarks	ES
Contractor	Р	lant Use	d						Approved By
	[· 		N: 178546.22				
Pritchards	8T			L: 20.15				Scale 1:50	
						_			

					L. 20.10			
Samples and Results		Depth,		Stratum Description				
Results	Type	Depth	(Thickness)	Level				Leg
	ES	0.40	(0.10) - 0.10 - (0.30) - 0.40		Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm yellowish brown slightly sandy gris fine to coarse. Gravel is angular and angular and subangular of limestone. I	of mixed lithologies () avelly silty CLAY with low d subangular fine to coars	cobble and boulder content. Sar e of limestone. Cobbles are	is XX
			1 _ _ _ _					
								-
			- - - -					- - - -
			3 					-
								- - - -
			- 4 - - -					
			- - - -					- - - -

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

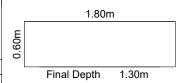
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP23**


ediffilations		CFZ	3 / HA EX6 / BP	POZ OFA	Sneet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	08/11/2024 to	08/11/2024	TP
Client		Co-ords	Water St	Logged By	
Bellway Homes Limited		E: 288999.88	Depth Strike	Remarks	ES
	Plant Used	N: 178615.86			Approved By
Pritchards	8T	L: 22.64			Scale 1:50

				2. 22.01	O0010 1.00	
Samples and Results		Depth,		0		
Results Type Depth		Depth	(Thickness)	Level	Stratum Description	Legend
rtoouno	1,700	Борит	(0.10)		Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel	is ××××
			0.10	22.54	angular and subangular fine to coarse of mixed lithologies ()	
					Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	
]×
	D	0.50	L			_XX
	ES	0.50	(0.90)			
			-			+ <u>-</u> -x-1
			=			- ××
			F	04.04		
			1 1.00		Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sar	ıd
			(0.30)		is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	
			1.30	21.34	angular and subangular of limestone. Boulders are angular and subangular of limestone () End of Trial Pit at 1.30m	
			-		End of that Pit at 1.50m	-
						-
			-			-
			Ē.]
			<u> </u>			_
			_			-
			-			-
			_			7
]
			_			_
			-			
			-			-
			F _			-
			3			
			_			_
			_			-
						-
			_			7 1
]
			L			
			— 4			_
			-			-
			-			1 1
]
			F			4
			F			4
			 			-
			<u> </u>			7

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930 2015, 31 Trial pit terminated on boulder/bedrock refusal

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

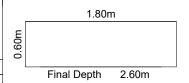
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. **TP24**


Sheet 1 of 1 Date Hole Type **Project Name** Project No. TF-24-589-CA 08/11/2024 to 08/11/2024 ΤP Craig-y-Parcau Client Water Strike Details Logged By Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 288979.21 Approved By Plant Used Contractor N: 178595.37 8T Pritchards L: 21.92 Scale 1:50

toriardo		1		L: 21.92			Scale 1:50
Samples and Results		Depth,		0			
Results Type		(Thickness)	Level	S	tratum Description		Lege
1,150	Jopan.	(0.50)		Grass over soft brown slightly gravelly angular and subangular fine to coarse	slightly sandy clayey SIL of mixed lithologies ()	T. Sand is fine to coarse. Grave	el is
ES	0.90	- 0.50 - - - - - - -	21.42	Firm yellowish brown sightly sandy silty	y CLAY. Sand is fine to co	oarse. ()	
		(1.60) 					-x-^- -x -x -x -x -x
		- - - 2 - 2.10	19.82	Firm yellowish brown slightly sandy gra is fine to coarse. Gravel is angular and	subangular fine to coarse	e of limestone. Cobbles are	
		(0.50)	19.32	angular and subangular of limestone. E	Boulders are angular and End of Trial Pit at 2.60m	subangular of limestone ()	
		_ _ _ _ 3					-
		- - -					- - -
		- - -					-
		_ - -					-
		-					

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial nit terminated on boulder/bedrock refusal.

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. **TP25**

earth matters	Phone: (033 022 3638	0 Em	nail: hello@tfwgroup.o			eter 6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name					Project No.	Date			Hole Type
Craig-y-Parcau					TF-24-589-CA	08/11/2024	4 to 0	8/11/2024	TP
Client					Co-ords	Wa	ter Stri	ke Details	Logged By
Bellway Homes Limited					E: 288961.00	Depth Stri	ke	Remarks	ES
Contractor		Plant U	sed		N: 178606.51				Approved By
Pritchards		8T		L: 21.08				Scale 1:50	
6 1 15 1	I _			1					

					L. 21.00	Codic 1.00
Samples and Results		Depth,				
Results	Туре	Depth	(Thickness)	Level	Stratum Description	Legend
ixesuits	Турс	Бериі		LOVOI	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is	
			(0.20)		angular and subangular fine to coarse of mixed lithologies ()	- ×
			0.20	20.88	Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
					, , , , , , , , , , , , , , , , , , , ,	
						XX
	ES	0.60				
		0.00	L			<u>×</u> ×
			(1.10)			X
			_			+-x-^;
			<u> </u>			- <u>x-</u> -x
			-			x
			1 20	19.78		1^×-
			- 1.30 - (0.20)	19.76	Stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand	
			1.50	19.58	is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	
				10.00	angular and subangular of limestone. Boulders are angular and subangular of limestone () End of Trial Pit at 1.50m	/ -
			_		End of Marrical 1.50m	4
			F			=
			- _			-
			2			_
			_			_
			_			-
			-			-
						-
]
			3			
			_ ~			_
			_			-
			_			-
			-			+
						7
			L			
			<u> </u>			4
			<u> </u>			_
			-			4
			-			+
			<u> </u>			1
						1
			L			_
			L			4
			-			-
	l				<u>l</u>	

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.

1.80m 0.60m Final Depth 1.50m

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. TP26

earth matters	Phone: 033 022 36380	Email: hello@tfwgroup.co.uk	Cardiff Exeter CF23 7HA EX6 7I		Sheet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-0	CA 08/11/2024	to 08/11/2024	TP
Client		Co-ords	Wate	er Strike Details	Logged By
Bellway Homes Limited		E: 288971.	Depth Strike	e Remarks	ES
Contractor	Plant Used				Approved By
Pritchards	8T	L: 20.53			Scale 1:50

toriardo		١٠.		L: 20.53			Scale 1:50	
Samples and Results		Depth,		Stratum Description				
Results Type	Depth	(Thickness)	Level	5	tratum Description		Lege	
		(0.10) 0.10	20.43	Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm yellowish brown sightly sandy silt	of mixed lithologies ()		el is $\overline{\times \times \overline{\times}}$	
		(0.50)		Firm yellowish brown signly sandy sing	y CLAY. Sand is line to co	oarse. ()		
		0.60	19.93	Stiff yellowish brown slightly sandy gra	velly silty CLAY with low	cobble and boulder content. Sa		
		(0.40)		is fine to coarse. Gravel is angular and angular and subangular of limestone.	l subangular fine to coars Boulders are angular and	e of limestone. Cobbles are subangular of limestone ()		
		1 1.00	19.53		End of Trial Pit at 1.00m			
]	
		_					_	
		-					-	
		2					_	
]	
		_					_	
		- -					=	
]	
		-					_	
		_					-	
		_					7	
		<u> </u>					_	
		-					=	
							=	
		_					_	
		F					+	

Remarks		1.80m		
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	0.60m	1.001	1	
Pit Stability: Stable	L	Final Donth	1.00m	
Notes: For all symbols and abbreviations places see key sheet. All deaths and measurements in matres. Stratum thicknesses given in brackets		Final Depth	1.00111	

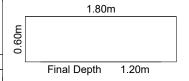
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA


Borehole No. **TP27**

earth matters	Phone: 033 022 3	6380 Email: hello@	@tfwgroup.co.uk	Cardiff CF23 7HA	Exeter EX6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name			Project No	Da	ite		Hole Type
Craig-y-Parcau			TF-24-589	-CA	08/11/2024 to 0	8/11/2024	TP
Client			Co-ords		Water Str	ike Details	Logged By
Bellway Homes Limited			E: 288955	I .	Depth Strike	Remarks	ES
Contractor	Plant	Used	N: 178577				Approved By
Pritchards	8T		L: 20.33				Scale 1:50

			* '		L. 20.33			Scale 1.50
Samples and Results Results Type Depth		Depth,		Stratum Description				
		(Thickness)					Legei	
			(0.10) 0.10 - (0.40)		Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm yellowish brown sightly sandy silty	of mixed lithologies ()		el is $\overline{\times \times \times}$
			0.50		Stiff yellowish brown slightly sandy gra	velly silty CLAY with low	cobble and boulder content. S	and ::
			(0.70)		is fine to coarse. Gravel is angular and angular and subangular of limestone. E	subangular fine to coars	e of limestone. Cobbles are	
			1					
			1.20	19.13		End of Trial Pit at 1.20m		-
			_					=
			2 					=
			_					=
			-					-
			3					_
			_					_
			_					=
			4					_
			-					-
			<u></u>					1
			E					=

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP28**

edilitifialieis		CIZ	S THA EXOTOP	FOZ OFA	Sheet Tori
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	08/11/2024 to	08/11/2024	TP
Client	Co-ords	Co-ords Water Strike Details		Logged By	
Bellway Homes Limited	E: 288990.56	Depth Strike	Remarks	ES	
Contractor	Plant Used	N: 178554.19			Approved By
Pritchards	8T	L: 21.87			Scale 1:50

			* '		L. 21.0/	Scale 1.50
Samples and Results		Depth,		Stratum Deparintion	Lagana	
Results	Туре	Depth	(Thickness)	Level	Stratum Description	Legend
	ES	0.05	_ (0.10) _ 0.10	21.77	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies () Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	
			(0.50)		. In my should be started by said years of the second started by s	- X X
	D	0.60	0.60	21.27	Stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	-×-
			1 (0.70)		angular and subangular of limestone. Boulders are angular and subangular of limestone ()	
			- - 1.30	20.57	F-14T-150-1400-	
			_		End of Trial Pit at 1.30m	_
			_ _ _			=
			2 2			_
			_			_
			_			
			_			-
			3 			_
			_			
						-
			<u>-</u>			
			<u> 4 </u>			_
						=
			_			

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
duidance only, and is not in accordance with BS 5930:2015. 31 Trial pit terminated on boulder/bedrock refusal.

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.

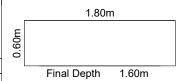
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

TP29
Sheet 1 of 1


					Silect For I			
Project Name				Project No.	Date	Date		
Craig-y-Parcau		TF-24-589-CA	08/11/2024 to	TP				
Client		Co-ords	Water St	Logged By				
Bellway Homes Limited					Depth Strike	Remarks	ES	
		l = = =l		E: 289117.79			Approved By	
Contractor	Plant U	Plant Used		N: 178597.86				
Pritchards	8T	ST		L: 20.61			Scale 1:50	
	_ •			•	•		-	-

					L. 20.01	Scale 1.50
Samples and Results Results Type Depth		Depth,				
		(Thickness)	Level	Stratum Description	Legend	
rtoodito	1,700	Ворит	-		Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is	××××
			(0.20)	00.44	angular and subangular fine to coarse of mixed lithologies ()	1 × × ×
			0.20	20.41	Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	××
]^
						<u>×</u> ×
			(0.70)			
			-			+^×
			 			+×_^
			0.90	19.71	Stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand	-
			<u> </u>		lis fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	-:-:-
			-		is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	- <u>:</u> -:-:
			(0.70)			1
			Ē ` ´			7:=:=:
]
			1.60	19.01		
			-		End of Trial Pit at 1.60m	4
			-			4
			-			=
			2			_
			_			_
			-			-
			-			4
			-			4
			-			4
			3			7
			L			
			_			_
			-			_
			-			-
			-			-
						7
			_ 4			
			_			-
			_			7
			-			
			- - -			=======================================
			- - - -			
			- - - - -			
			- - - - - -			

	1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
l	guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
l	4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

Phone: 033 022 36380

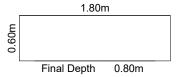
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. TP30


earth matters	Phon	e: 033 022 363	80 E	mail: hello@tfwgroup.c		rdiff Exeter 23 7HA EX6 7E		Sheet 1 of 1	
Project Name					Project No.	Date		Hole Type	
Craig-y-Parcau					TF-24-589-CA	08/11/2024	to 08/11/2024	TP	
Client			Co-ords	Wate	Logged By				
Bellway Homes Limited			E: 289034.63	Depth Strike	Remarks	ES			
Contractor		Plant U	sed		N: 178550.80			Approved By	y
Pritchards		8T		L: 22.54			Scale 1:50		

					L. 22.54	scale 1.50
Sample	s and Re	sults	Depth,		Ctratum Description	ا محم
Results	Туре	Depth	(Thickness)	Level	Stratum Description	Lege
	1 ''	· ·	(0.10)	22.44	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is	XXX
			0.10	22.44	angular and subangular fine to coarse of mixed lithologies ()	
			F (2.50)		Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	
			(0.50)			×-
			\vdash			+^
			0.60		Stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand	
			- (0.20) - 0.80	21.74	is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	<u> </u>
				21.74	angular and subangular of limestone. Boulders are angular and subangular of limestone () End of Trial Pit at 0.80m	4
			<u> </u>		End of that Pit at 0.00m	_
			-			4
			F			4
			<u> </u>			
			-			-
			+			-
			F			7
			2			J
			L *			_
			-			-
			-			-
						_
			F			
			-			4
			F			-
			-			-
			_ 3			
			-			_
			-			-
			-			-
			F			
			F			4
			F			-
			-4			-
]
			-			_
			F			4
			F			\dashv
			 			1
			E			
						4
	1					

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

Phone: 033 022 36380

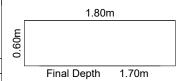
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. **TP31**


Sheet 1 of 1 Project Name Date Hole Type Project No. Craig-y-Parcau TF-24-589-CA 08/11/2024 to 08/11/2024 ΤP Client Water Strike Details Logged By Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 288883.09 Approved By Contractor Plant Used N: 178707.62 8T Pritchards L: 24.65 Scale 1:50

Filicilaius			01		L: 24.65			Scale 1:50
Samples	and Res	sults	Depth,				•	
Results	Туре	Depth	(Thickness)	Level	S	tratum Description		Legend
Results	Туре	Depth	(0.20) - 0.20 - 0.20 (0.70)		Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm orangish brown sightly sandy silty	of mixed lithologies ()		
			- 0.90 - 1 (0.80)		Very stiff greyish brown slightly sandy g Sand is fine to coarse. Gravel is angula angular and subangular of limestone. E	gravelly silty CLAY with lo ar and subangular fine to Soulders are angular and	w cobble and boulder content. coarse of limestone. Cobbles a subangular of limestone ()	re
			1.70	22.95		End of Trial Pit at 1.70m		

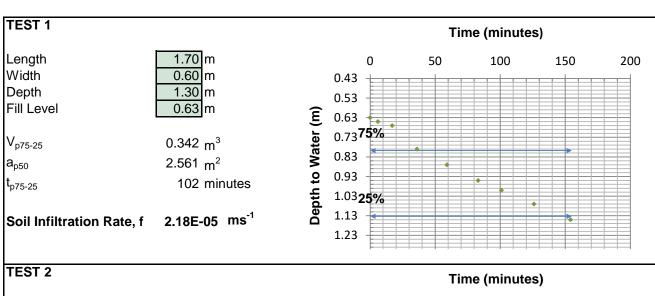
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

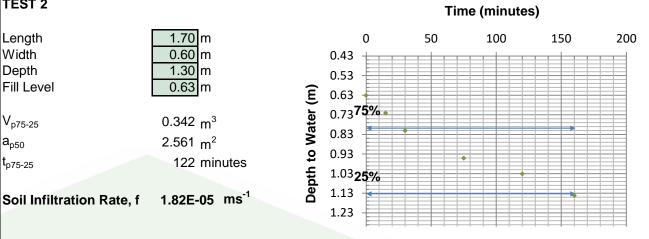
Pit Stability: Stable

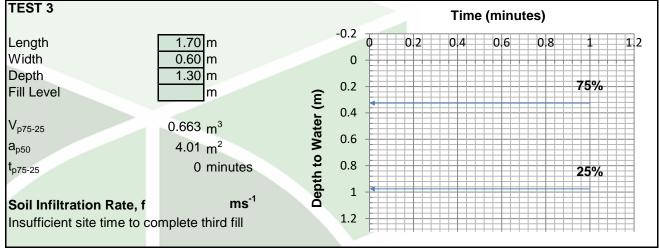
Remarks

ANNEX B Soakaway Results

V1 Issued: Nov 2020 Reviewed: Nov 2020


SOAKAWAY TEST


Site Name: Craig-y-Parcau **Project Number**: TF-24-589-CA


Date: 08-Nov Engineer: Elliot

Trial Pit: TP23

REMARKS:

Ref: QF-033

SOAKAWAY TEST

Site Name: Craig-y-Parcau Project Number: TF-24-589-CA

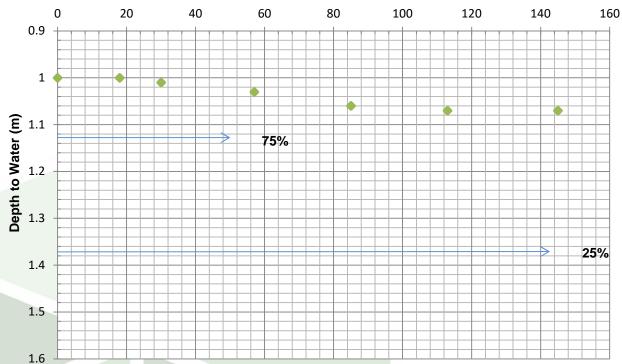
Date: 08-Nov Engineer: Elliot

V1 Issued: Nov 2020

Reviewed: Nov 2020

TrialPit: **TP25**

TEST 1


Length 1.70 m Width 0.60 m Depth 1.50 m Fill Level 1.00

 V_{p75-25} $0.071 \, \text{m}^3$ a_{p50} 0.754 m^2 0 minutes t_{p75-25}

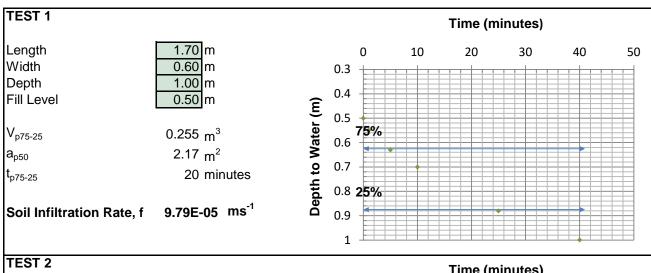
Soil Infiltration Rate, f

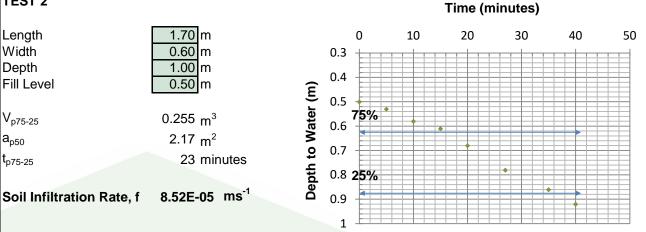
insufficient flow to calculate infiltration rate

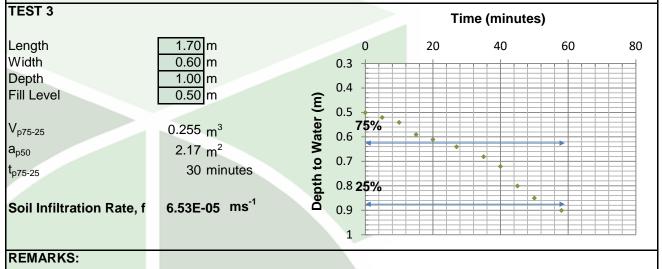
Time (minutes)

REMARKS:

V1 Issued: Nov 2020 Reviewed: Nov 2020


SOAKAWAY TEST


Site Name: Craig-y-Parcau **Project Number:** TF-24-589-CA


Date: 08-Nov Engineer: Elliot

Trial Pit: TP26

Ref: QF-033

SOAKAWAY TEST

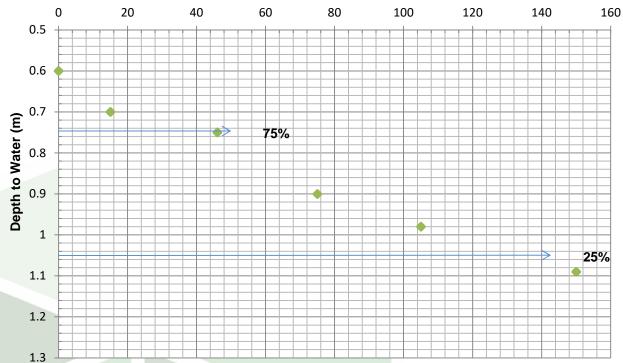
V1 Issued: Nov 2020

Reviewed: Nov 2020

Site Name: Craig-y-Parcau Project Number: TF-24-589-CA

Date: 08-Nov **Trial Pit: TP27**

Engineer: Elliot


TEST 1

Length 1.70 m Width 0.60 m Depth 1.20 m Fill Level 0.60

 V_{p75-25} $0.085 \, \text{m}^3$ a_{p50} 0.848 m^2 94 minutes t_{p75-25}

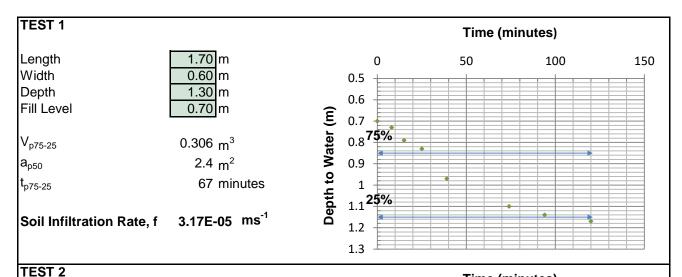
Soil Infiltration Rate, f 2.08E-05

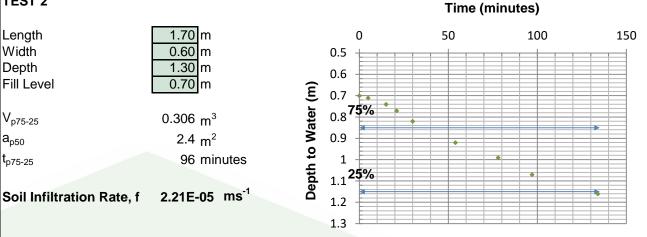
Time (minutes)

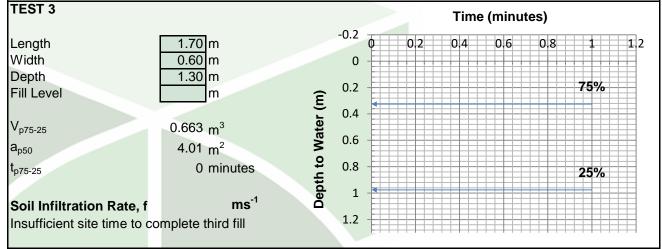
REMARKS:

Test carried out in accordance with BRE Digest 365 (2016). Insufficient site time to complete additional fills

V1 Issued: Nov 2020 Ref: QF-041 Reviewed: Nov 2020


SOAKAWAY TEST


Site Name: Craig-y-Parcau Project Number: TF-24-589-CA


Date: 08-Nov Engineer: Elliot

TP28 Trial Pit:

REMARKS:

Ref: QF-033

SOAKAWAY TEST

Site Name: Craig-y-Parcau Project Number: TF-24-589-CA

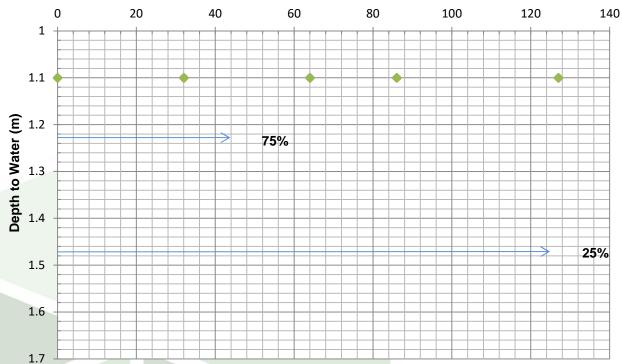
Date: 08-Nov Engineer: Elliot

V1 Issued: Nov 2020

Reviewed: Nov 2020

TrialPit: **TP29**

TEST 1


Length 1.70 m Width 0.60 m Depth 1.60 m Fill Level 1.10

 V_{p75-25} $0.071 \, \text{m}^3$ a_{p50} 0.754 m^2 0 minutes t_{p75-25}

Soil Infiltration Rate, f

insufficient flow to calculate infiltration rate

Time (minutes)

REMARKS:

ANNEX C
Laboratory Chemical Test Results

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 24-36973-2

Initial Date of Issue: 21-Nov-2024 Date of Re-Issue: 28-Nov-2024

Re-Issue Details:

This report has been revised and directly supersed as 24-36073-1 in its entirety.

supersedes 24-36973-1 in its entirety

Client Terra Firma

Client Address: 5 Deryn Court

Wharfedale Road

Pentwyn Cardiff CF23 7HA

Contact(s): elliot@terrafirmawales.co.uk

Project Bridgend

Quotation No.: Date Received: 13-Nov-2024

Order No.: 24-589-CA Date Instructed: 13-Nov-2024

No. of Samples: 30

Turnaround (Wkdays): 13 Results Due: 29-Nov-2024

Date Approved: 28-Nov-2024

Approved By:

Details: David Smith, Technical Director

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Project: Briagena												
Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:			Chemte	est Sam	ple ID.:	1894224	1894225	1894226	1894227	1894228	1894229	1894230
			Cli	ent Sam	nple ID.:	ES1TP01	ES1TP02	ES1TP03	ES1TP04	ES1TP05	ES1TP06	ES1TP07
			Sa	ample L	ocation:	TP01	TP02	TP03	TP04	TP05	TP06	TP07
				Sampl	e Type:	SOIL						
				Top De	pth (m):	0.2	0.5	0.2	0.5	1	0.6	0.1
			Bo	ttom De	pth (m):	0.3	0.6	0.3	0.6	1.1	0.6	0.1
				Date Sa	ampled:	08-Nov-2024						
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	tos Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
ACM Type		U	2192		N/A	-	-	-	-	-	-	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected						
Asbestos by Gravimetry		U	2192	%	0.001							
Total Asbestos		U	2192	%	0.001							
Moisture		N	2030	%	0.020	28	27	20	20	15	17	4.0
Soil Colour		N	2040		N/A	Brown						
Other Material		N	2040		N/A	Stones, Wood and Roots	Stones and Roots	Stones and Roots	None	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Loam	Loam	Loam	Clay	Clay	Clay	Sand
pH at 20C		М	2010		4.0	8.4	8.8	9.3	8.3	8.7	8.6	8.6
pH (2.5:1) at 20C		N	2010		4.0	7.7			7.8	-		8.8
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	1.1	0.41	0.65	< 0.40	< 0.40	< 0.40	< 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010	_		< 0.010			< 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	0.20			< 0.010			< 0.010
Total Sulphur		U	2175	%	0.010	0.18			0.020			0.020
Chloride (Water Soluble)		М	2220	g/l	0.010	0.010			< 0.010			< 0.010
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010			< 0.010			< 0.010
Cyanide (Complex)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01			< 0.01			< 0.01
Sulphate (Acid Soluble)		U	2430	%	0.010	0.16	0.16	0.11	0.036	0.033	0.032	< 0.010
Arsenic		М	2455	mg/kg	0.5	13	13	17	14	8.0	11	3.0
Beryllium		U	2455	mg/kg		0.7	0.6	0.9	2.2	0.8	1.9	< 0.5
Cadmium		М	2455			0.47	0.46	0.62	1.0	0.10	0.70	0.75
Chromium		М	2455	mg/kg	0.5	15	8.2	13	22	13	16	10
Mercury Low Level		N	2450	mg/kg		0.05	0.08	0.16	0.07	< 0.05	< 0.05	< 0.05
Manganese		М	2455	mg/kg		780	490	690	1400	380	360	490
Molybdenum		М	2455	mg/kg		1.6	1.3	1.7	7.1	1.7	2.1	< 0.5
Antimony		N	2455	mg/kg	2.0	< 2.0	< 2.0	3.5	< 2.0	< 2.0	< 2.0	< 2.0
Copper		М	2455	mg/kg		19	26	50	23	19	20	5.5
Nickel		М	2455	mg/kg		18	16	23	30	26	29	5.1
Lead		М	2455	mg/kg		81	90	210	28	17	20	15
Selenium		М	2455	mg/kg		1.2	0.90	1.4	2.6	1.1	2.1	0.39
Zinc		М	2455			91	96	200	130	21	28	29

Project: Bridgend									T			
Client: Terra Firma				mtest J		24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(st Sam	•	1894224	1894225	1894226	1894227	1894228	1894229	1894230
				ent Sam	•	ES1TP01	ES1TP02	ES1TP03	ES1TP04	ES1TP05	ES1TP06	ES1TP07
			Sa	ample L		TP01	TP02	TP03	TP04	TP05	TP06	TP07
					e Type:	SOIL						
				Top De		0.2	0.5	0.2	0.5	1	0.6	0.1
			Bo	ttom De	pth (m):	0.3	0.6	0.3	0.6	1.1	0.6	0.1
				Date Sa	ampled:	08-Nov-2024						
				Time Sa		12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	tos Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chromium (Trivalent)		N	2490	mg/kg	1.0	15	8.2	13	22	13	16	10
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg		< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg	1.00	42	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg		69	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	М	2690	mg/kg		91	4.4	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg		150	< 10	< 10	< 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М	2690	mg/kg		200	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH 2D AL #1	N	2690		10.00	350	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	Ū	2780	mg/kg		< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	Ü	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	Ü	2690	mg/kg		33	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	Ū	2690	mg/kg		12	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	Ü	2690	mg/kg		38	3.8	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg		38	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	Ü	2690	mg/kg		84	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC	EH 2D AR #1	N	2690		10.00	120	< 10	< 10	< 10	< 10	< 10	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	_	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH 2D Total #1	U	2690	mg/kg		290	< 10	< 10	< 10	< 10	< 10	< 10
Total EPH >C10-C40 MC	EH_2D_Total_#1	N	2690		10.00	470	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	L11_2D_10la1_#1	M	2800	mg/kg		< 0.10	0.14	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
•		N	2800	mg/kg		< 0.10	< 0.14	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthone		M	2800			< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		M	2800	mg/kg			< 0.10					
Fluorene				mg/kg		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		M	2800	mg/kg		< 0.10	0.35	0.38	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		M	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		M	2800	mg/kg	0.10	0.54	0.46	0.54	< 0.10	< 0.10	< 0.10	< 0.10

Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(Chemtest Sample ID.:			1894224	1894225	1894226	1894227	1894228	1894229	1894230
			Cli	ent Sam	ple ID.:	ES1TP01	ES1TP02	ES1TP03	ES1TP04	ES1TP05	ES1TP06	ES1TP07
			Sa	ample Lo	ocation:	TP01	TP02	TP03	TP04	TP05	TP06	TP07
				Sampl	e Type:	SOIL						
				Top De	oth (m):	0.2	0.5	0.2	0.5	1	0.6	0.1
		Bottom Depth (m):			0.3	0.6	0.3	0.6	1.1	0.6	0.1	
			Date Sampled:			08-Nov-2024						
		Time Sampled:			12:00	12:00	12:00	12:00	12:00	12:00	12:00	
			Asbestos Lab:		DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Pyrene		М	2800	mg/kg	0.10	0.40	0.37	0.48	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	0.39	0.35	0.30	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	0.43	0.42	0.38	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		M	2800	mg/kg	0.10	< 0.10	0.50	0.55	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		M	2800	mg/kg	0.10	< 0.10	0.15	0.20	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	0.36	0.37	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	0.31	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10	0.31	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		N	2800	mg/kg	2.0	< 2.0	3.1	3.8	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Organic Matter BS1377		N	2930	%	0.10	3.7	4.6	1.5	0.10	0.40	0.60	0.60

Project: Bridgend												
Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:				est Sam		1894231	1894232	1894233	1894234	1894235	1894236	1894237
			Cli	ent Sam	ple ID.:	ES2TP07	ES1TP08	ES2TP08	ES1TP09	ES1TP10	ES1TP11	ES1TP12
			S	ample Lo	ocation:	TP07	TP08	TP08	TP09	TP10	TP11	TP12
				Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	pth (m):	0.4	0.1	0.8	0.05	1.5	0.7	1
			Bo	ttom De	pth (m):	0.4	0.1	0.8	0.05	1.5	0.7	1
				Date Sa	ampled:	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
ACM Type		U	2192		N/A	Fibres/Clumps	-	-	-	-	-	-
Asbestos Identification		U	2192		N/A	Chrysotile	No Asbestos Detected					
Asbestos by Gravimetry		U	2192	%	0.001	0.001						
Total Asbestos		U	2192	%	0.001	0.001						
Moisture		N	2030	%	0.020	15	7.5	21	24	21	22	21
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Roots, Stones and Wood	Stones	Roots	grass and Roots	None	Roots and Stones	Stones
Soil Texture		N	2040		N/A	Loam	Sand	Clay	Loam	Clay	Clay	Clay
pH at 20C		М	2010		4.0	8.0	8.3	7.9	7.6	7.6	7.6	7.9
pH (2.5:1) at 20C		N	2010		4.0	8.0					7.9	
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	1.2	0.58	< 0.40	0.41	< 0.40	< 0.40	< 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010					< 0.010	
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	0.056					< 0.010	
Total Sulphur		U	2175	%	0.010	0.10					0.030	
Chloride (Water Soluble)		М	2220	g/l	0.010	< 0.010					< 0.010	
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010					< 0.010	
Cyanide (Complex)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01					< 0.01	
Sulphate (Acid Soluble)		U	2430	%	0.010	0.088	0.14	0.012	0.058	0.014	< 0.010	0.039
Arsenic		М	2455	mg/kg	0.5	26	7.3	28	42	9.6	32	40
Beryllium		U	2455	mg/kg	0.5	0.5	0.6	1.4	2.5	1.9	1.5	2.2
Cadmium		М	2455	mg/kg	0.10	1.5	0.75	0.27	5.7	0.68	0.97	3.7
Chromium		М	2455	mg/kg	0.5	20	10	30	37	20	34	36
Mercury Low Level		N	2450	mg/kg	0.05	0.08	0.05	0.07	0.12	< 0.05	0.08	0.14
Manganese		М	2455	mg/kg	1.0	930	420	450	1800	560	1100	1100
Molybdenum		М	2455	mg/kg	1	1.6	1.2	2.8	9.9	1.3	3.8	5.5
Antimony		N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper		М	2455	mg/kg	0.50	20	11	25	23	17	28	33
Nickel		М	2455	mg/kg	0.50	18	9.2	24	55	39	38	50
Lead		М	2455	mg/kg	0.50	550	38	48	260	34	87	160
Selenium		М	2455	mg/kg	0.25	1.3	0.88	1.1	8.8	1.9	2.8	3.3
Zinc		М	2455			440	52	71	460	26	110	370
	_		_		_					-		

Project: Bridgend												
Client: Terra Firma				mtest J		24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(st Sam		1894231	1894232	1894233	1894234	1894235	1894236	1894237
				ent Sam	•	ES2TP07	ES1TP08	ES2TP08	ES1TP09	ES1TP10	ES1TP11	ES1TP12
			Sa	ample L		TP07	TP08	TP08	TP09	TP10	TP11	TP12
					e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		0.4	0.1	0.8	0.05	1.5	0.7	1
			Bot	ttom De	pth (m):	0.4	0.1	0.8	0.05	1.5	0.7	1
				Date Sa	ampled:	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024
				Time Sa		12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chromium (Trivalent)		N	2490	mg/kg	1.0	20	10	30	37	20	34	36
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg		< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg		11	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	М	2690	mg/kg		28	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М	2690	mg/kg		39	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH 2D AL #1	N	2690		10.00	39	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	-	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	Ü	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1	3.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	Ü	2690	mg/kg		14	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	Ü	2690	mg/kg		50	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg		46	1.5	< 1.0	< 1.0	30	< 1.0	< 1.0
		U	+			68						
Total Aromatic EPH > C10-C35 MC	EH_2D_AR_#1	N	2690 2690	mg/kg		110	< 5.0	< 5.0	< 5.0	< 5.0 30	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC Total VPH >C5-C10	EH_2D_AR_#1	U	2690		10.00	< 0.50	< 10 < 0.50	< 10 < 0.50	< 10 < 0.50	< 0.50	< 10 < 0.50	< 10 < 0.50
	HS_2D_Total	U		mg/kg								
Total EPH > C10-C35 MC	EH_2D_Total_#1		2690	mg/kg		110	< 10	< 10	< 10	< 10	< 10	< 10
Total EPH >C10-C40 MC	EH_2D_Total_#1	N	2690		10.00	150	< 10	< 10	< 10	30	< 10	< 10
Naphthalene		M	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		M	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		М	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		М	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		М	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(Chemte	st Sam	ple ID.:	1894231	1894232	1894233	1894234	1894235	1894236	1894237
			Cli	ent Sam	ple ID.:	ES2TP07	ES1TP08	ES2TP08	ES1TP09	ES1TP10	ES1TP11	ES1TP12
			Sa	ample Lo	ocation:	TP07	TP08	TP08	TP09	TP10	TP11	TP12
				Sampl	e Type:	SOIL						
				Top De	oth (m):	0.4	0.1	0.8	0.05	1.5	0.7	1
			Bot	ttom De _l	oth (m):	0.4	0.1	0.8	0.05	1.5	0.7	1
				Date Sa		08-Nov-2024						
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		Ν	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Organic Matter BS1377		N	2930	%	0.10	0.90	0.60	0.30	0.60	0.90	0.50	0.30

Project: Briagena												
Client: Terra Firma			Chei	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(st Sam		1894238	1894239	1894240	1894241	1894242	1894243	1894244
			Clie	ent Sam	ple ID.:	ES1TP13	ES1TP14	ES1TP15	ES1TP16	ES1TP17	ES1TP18	ES1TP19
			Sa	ample Lo	ocation:	TP13	TP14	TP15	TP16	TP17	TP18	TP19
				Sampl	e Type:	SOIL						
				Top De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
			Bot	tom De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
				Date Sa	ampled:	08-Nov-2024						
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
ACM Type		U	2192		N/A	-	-	-	-	-	-	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected						
Asbestos by Gravimetry		U	2192	%	0.001							
Total Asbestos		Ü	2192	%	0.001							
Moisture		N	2030	%	0.020	19	28	24	18	28	19	21
Soil Colour		N	2040		N/A	Brown						
Other Material		N	2040		N/A	grass	Stones and Roots	Roots and grass	Stones	Roots and Stones	None	Stones and Roots
Soil Texture		N	2040		N/A	Loam	Loam	Clay	Loam	Loam	Clay	Loam
pH at 20C		M	2010		4.0	7.3	6.7	7.3	7.7	6.5	7.8	6.9
pH (2.5:1) at 20C		N	2010		4.0	7.4		7.3			7.7	7.2
Boron (Hot Water Soluble)		M	2120	mg/kg	0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010	1 01.10	< 0.010	1 01.10	101.10	< 0.010	< 0.010
Sulphate (2:1 Water Soluble) as SO4		M	2120	g/l	0.010	< 0.010		< 0.010			< 0.010	< 0.010
Total Sulphur		U	2175	%	0.010	0.040		0.020			0.020	0.040
Chloride (Water Soluble)		M	2220	g/l	0.010	< 0.010		< 0.010			< 0.010	< 0.010
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010		< 0.010			< 0.010	< 0.010
Cyanide (Complex)		М	2300	mg/kg	0.50	< 0.50	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg		< 0.50	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01		< 0.01			< 0.01	< 0.01
Sulphate (Acid Soluble)		U	2430	%	0.010	0.069	0.088	0.060	0.027	0.044	< 0.010	0.060
Arsenic		М	2455	mg/kg	0.5	23	29	21	11	7.2	26	22
Beryllium		U	2455	mg/kg	0.5	1.1	1.1	1.0	1.3	0.9	2.1	1.2
Cadmium		М	2455	mg/kg		0.90	1.1	0.67	0.72	0.63	1.0	0.77
Chromium		М	2455	mg/kg	0.5	28	36	21	20	11	34	34
Mercury Low Level		N	2450	mg/kg		0.05	0.09	0.06	< 0.05	< 0.05	0.09	0.06
Manganese		М	2455	mg/kg		1500	1400	860	1200	420	2000	1700
Molybdenum		М	2455	mg/kg	1	2.9	2.7	2.7	2.3	1.1	3.0	4.7
Antimony		N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper		М	2455	mg/kg		21	27	16	16	18	30	25
Nickel		М	2455	mg/kg		25	25	21	24	7.8	64	29
Lead		М	2455	mg/kg		90	99	53	31	25	32	73
Selenium		М	2455	mg/kg		1.9	2.1	1.5	1.8	1.0	3.3	2.3
Zinc		М	2455	mg/kg		280	170	230	57	49	100	250

Project: Briagena												
Client: Terra Firma				mtest J		24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:				st Sam		1894238	1894239	1894240	1894241	1894242	1894243	1894244
			Clie	ent Sam	nple ID.:	ES1TP13	ES1TP14	ES1TP15	ES1TP16	ES1TP17	ES1TP18	ES1TP19
			Sa	ample L	ocation:	TP13	TP14	TP15	TP16	TP17	TP18	TP19
				Samp	e Type:	SOIL						
				Top De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
			Bot	tom De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
				Date S	ampled:	08-Nov-2024						
				Time S	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	tos Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chromium (Trivalent)		N	2490	mg/kg	1.0	28	36	21	20	11	34	34
Chromium (Hexavalent)		N	2490	mg/kg	_	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS 2D AL	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	Ü	2780	mg/kg		< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	M	2690	mg/kg		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	M	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	M	2690	mg/kg		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	M	2690	mg/kg		< 3.0	6.0	< 3.0	< 3.0	27	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	M	2690	mg/kg		< 5.0	6.0	< 5.0	< 5.0	28	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH_2D_AL_#1	N	2690	mg/kg		< 10	< 10	< 10	< 10	28	< 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	Ü	2780	mg/kg		< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	+	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C16-C21 MC Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg mg/kg		< 2.0	< 2.0	< 2.0	< 2.0	3.0	< 2.0	< 2.0
Aromatic EPH >C21-C35 MC Aromatic EPH >C35-C40 MC		N	_	0								
	EH_2D_AR_#1	U	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic EPH > C10-C35 MC	EH_2D_AR_#1		2690	mg/kg		< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC	EH_2D_AR_#1	N U	2690	mg/kg	_	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total VPH >C5-C10	HS_2D_Total	_	2780	mg/kg		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg		< 10	< 10	< 10	< 10	31	< 10	< 10
Total EPH >C10-C40 MC	EH_2D_Total_#1	N	2690	mg/kg		< 10	< 10	< 10	< 10	31	< 10	< 10
Naphthalene		M	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		M	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		М	2800	mg/kg	•	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		М	2800	mg/kg	_	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		М	2800	mg/kg	_	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Terra Firma				mtest J		24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(Chemte	est Sam	ple ID.:	1894238	1894239	1894240	1894241	1894242	1894243	1894244
				ent Sam		ES1TP13	ES1TP14	ES1TP15	ES1TP16	ES1TP17	ES1TP18	ES1TP19
			Sa	ample Lo	ocation:	TP13	TP14	TP15	TP16	TP17	TP18	TP19
				Sampl	e Type:	SOIL						
				Top De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
			Bo	ttom De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
				Date Sa	ampled:	08-Nov-2024						
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		N	2800		2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Organic Matter BS1377		N	2930		0.10	0.20	0.20	0.20	0.20	0.40	0.70	0.70

Project: Briagena												
Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(Chemte	st Sam	ple ID.:	1894245	1894246	1894247	1894248	1894249	1894250	1894251
			Cli	ent Sam	ple ID.:	ES1TP20	ES1TP21	ES1TP22	ES1TP23	ES1TP24	ES1TP25	ES1TP28
				ample Lo		TP20	TP21	TP22	TP23	TP24	TP25	TP28
					е Туре:	SOIL						
				Top De		0.8	0.1	0.4	0.5	0.9	0.6	0.05
		+	Bo	ttom De		0.8	0.1	0.4	0.5	0.9	0.6	0.05
		+		Date Sa		08-Nov-2024						
		+		Time Sa		12:00	12:00	12:00	12:00	12:00	12:00	12:00
		+		Asbest		DURHAM						
Determinand	HWOL Code	Accred.	SOP			DOMINI	DOMINI	DOMINI	DOMINI	DOMINI	DOMINI	DOMINAN
ACM Type	HWOL Code	U Accieu.	2192	Ullits	N/A		-	<u>-</u>	-			
ACIVI Type		$+$ $\overline{}$	2192	-	IN/A	No Ashastas				No Ashastas	No Ashastas	No Ashastas
Asbestos Identification		U	2192		N/A	No Asbestos Detected						
Asbestos by Gravimetry		U	2192	%	0.001							
Total Asbestos		U	2192	%	0.001							
Moisture		N	2030	%	0.020	28	27	21	14	15	20	30
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Black
						Roots, Stones	Stones, Roots			Stones and		_
Other Material		N	2040		N/A	and grass	and grass	Roots	Stones	grass	Roots	Roots
Soil Texture		N	2040		N/A	Clay	Loam	Clay	Clay	Loam	Clay	Loam
pH at 20C		М	2010		4.0	7.7	6.9	7.8	7.4	7.5	7.8	6.8
pH (2.5:1) at 20C		N	2010		4.0					7.3		
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	< 0.40	0.44	0.48	< 0.40	< 0.40	< 0.40	< 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010					< 0.010		
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010					< 0.010		
Total Sulphur		U	2175	%	0.010					0.020		
Chloride (Water Soluble)		М	2220	g/l	0.010					< 0.010		
Nitrate (Water Soluble)		N	2220	g/l	0.010					< 0.010		
Cyanide (Complex)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Ammonium (Water Soluble)		М	2220	g/l	0.01					< 0.01		
Sulphate (Acid Soluble)		U	2430	%	0.010	0.010	0.085	0.048	< 0.010	0.014	0.030	0.094
Arsenic		М	2455	mg/kg	0.5	8.5	22	24	15	19	27	14
Beryllium		U	2455	mg/kg	0.5	1.1	1.4	0.8	1.3	1.5	1.4	0.6
Cadmium	1	M	2455	mg/kg	0.10	1.4	0.90	0.37	0.44	0.58	0.85	0.46
Chromium		M	2455	mg/kg	0.5	17	40	26	24	40	33	23
Mercury Low Level		N	2450	mg/kg	0.05	0.05	0.08	0.05	0.06	0.06	0.06	< 0.05
Manganese		M	2455	mg/kg	1.0	730	1400	510	1700	1900	630	880
Molybdenum	1	M	2455	mg/kg	0.5	1.6	2.4	2.3	3.2	3.2	3.5	1.5
Antimony		N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper		M	2455	mg/kg	0.50	14	24	21	20	24	27	17
Nickel		M	2455	mg/kg	0.50	29	33	28	33	40	39	16
Lead		M	2455		0.50	30	57	67	32	35	91	50
Selenium		M	2455	mg/kg		2.7	2.1	1.4	2.0	2.2	2.5	1.1
				mg/kg	0.25							
Zinc		М	2455	mg/kg	0.50	290	150	340	100	110	640	130

Project: Briagena												
Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(Chemte	est Sam	ple ID.:	1894245	1894246	1894247	1894248	1894249	1894250	1894251
			Cli	ent Sam	ple ID.:	ES1TP20	ES1TP21	ES1TP22	ES1TP23	ES1TP24	ES1TP25	ES1TP28
			S	ample Lo	ocation:	TP20	TP21	TP22	TP23	TP24	TP25	TP28
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	0.8	0.1	0.4	0.5	0.9	0.6	0.05
			Bo	ttom De	oth (m):	0.8	0.1	0.4	0.5	0.9	0.6	0.05
				Date Sa		08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chromium (Trivalent)		N	2490	mg/kg	1.0	17	40	26	24	40	33	23
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS 2D AL	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS 2D AL	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	Ü	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	M	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	M	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	M	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	M	2690	mg/kg	3.00	< 3.0	3.6	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	M	2690	mg/kg	5.00	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	Ū	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	Ü	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	Ü	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	Ü	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC	EH 2D AR #1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	EH_2D_Total_#1	N	2690		10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total EPH >C10-C40 MC Naphthalene	LU_70_10(q1_#1	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
		N N	2800	mg/kg	0.10	< 0.10			< 0.10		< 0.10	
Acenaphthone		M	2800	mg/kg	0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10
Acenaphthene				mg/kg								
Fluorene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.27	< 0.10
Anthracene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.14	< 0.10
Fluoranthene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.50	< 0.10

· · · · · · · · · · · · · · · · · · ·												
Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:			Chemte	est Sam	ple ID.:	1894245	1894246	1894247	1894248	1894249	1894250	1894251
			Cli	ent Sam	ple ID.:	ES1TP20	ES1TP21	ES1TP22	ES1TP23	ES1TP24	ES1TP25	ES1TP28
			S	ample Lo	ocation:	TP20	TP21	TP22	TP23	TP24	TP25	TP28
				Sampl	е Туре:	SOIL						
				Top De	pth (m):	0.8	0.1	0.4	0.5	0.9	0.6	0.05
			Bo	ttom De	pth (m):	0.8	0.1	0.4	0.5	0.9	0.6	0.05
				Date Sa	ampled:	08-Nov-2024						
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.34	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Organic Matter BS1377		N	2930	%	0.10	0.50	1.0	1.0	0.10	0.50	0.80	0.90

Client: Terra Firma			Che	mtest Jo	ob No.:	24-36973	24-36973
Quotation No.:		(Chemte	st Sam	ple ID.:	1894252	1894253
			Cli	ent Sam	ple ID.:	SP1ES1	SP2ES1
			Sa	ample Lo	cation:	SP1	SP2
				Sampl	е Туре:	SOIL	SOIL
				Top Dep	oth (m):	0.1	0.1
			Bot	tom Dep	oth (m):	0.1	0.1
				Date Sa	ampled:	08-Nov-2024	08-Nov-2024
				Time Sa	ampled:	12:00	12:00
				Asbest	os Lab:	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
ACM Type		U	2192		N/A	-	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Asbestos by Gravimetry		U	2192	%	0.001		
Total Asbestos		U	2192	%	0.001		
Moisture		N	2030	%	0.020	12	13
Soil Colour		N	2040		N/A	Brown	Brown
Other Material		N	2040		N/A	Stones, Roots and Wood	Stones and Roots
Soil Texture		N	2040		N/A	Loam	Loam
pH at 20C		М	2010		4.0	8.6	8.2
pH (2.5:1) at 20C		N	2010		4.0		
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	0.78	0.41
Magnesium (Water Soluble)		N	2120	g/l	0.010		
Sulphate (2:1 Water Soluble) as SO4		M	2120	g/l	0.010		
Total Sulphur		U	2175	%	0.010		
Chloride (Water Soluble)		М	2220	g/l	0.010		
Nitrate (Water Soluble)		N	2220	g/l	0.010		
Cyanide (Complex)		М	2300	mg/kg	0.50	< 0.50	< 0.50
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50
Ammonium (Water Soluble)		М	2220	g/l	0.01		
Sulphate (Acid Soluble)		U	2430	%	0.010	0.079	0.099
Arsenic		M	2455	0 0	0.5	13	22
Beryllium		U	2455		0.5	0.8	1.2
Cadmium		M	2455		0.10	0.96	0.50
Chromium		М	2455		0.5	20	25
Mercury Low Level		N	2450		0.05	0.07	0.12
Manganese		М	2455	0	1.0	840	970
Molybdenum		M	2455		0.5	1.3	2.6
Antimony		N	2455	mg/kg	2.0	< 2.0	< 2.0
Copper		M	2455	mg/kg	0.50	18	53
Nickel		M	2455		0.50	18	31
Lead		M	2455		0.50	120	110
Selenium		M	2455	0 0	0.25	0.94	1.2
Zinc		M	2455	mg/kg	0.50	160	170

Client: Terra Firma			Che	mtest Jo	ob No.:	24-36973	24-36973
Quotation No.:		(Chemte	st Sam	ole ID.:	1894252	1894253
			Cli	ent Sam	ple ID.:	SP1ES1	SP2ES1
			Sa	ample Lo	cation:	SP1	SP2
				Sample	е Туре:	SOIL	SOIL
				Top Dep	oth (m):	0.1	0.1
			Bot	tom Dep	, ,	0.1	0.1
				Date Sa		08-Nov-2024	08-Nov-2024
				Time Sa	-	12:00	12:00
				Asbest		DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units			
Chromium (Trivalent)		N		mg/kg	1.0	20	25
Chromium (Hexavalent)	110.00.41	N	2490	mg/kg	0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aliphatic VPH > C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aliphatic VPH > C6 C8 (Sum)	HS_2D_AL	U N	2780 2780	mg/kg	0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum) Aliphatic VPH >C8-C10	HS_2D_AL HS_2D_AL	U	2780	mg/kg mg/kg	0.10	< 0.10 < 0.05	< 0.10 0.17
Total Aliphatic VPH >C5-C10	HS_2D_AL HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.17
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	M	2690	mg/kg	2.00	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	M	2690	mg/kg	1.00	4.4	< 1.0
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	M	2690	mg/kg	2.00	22	< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	M	2690	mg/kg	3.00	8.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg		< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	M	2690	mg/kg	5.00	34	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00	34	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0	< 2.0
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0	8.2
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00	< 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	< 5.0	10
Total Aromatic EPH >C10-C40 MC	EH_2D_AR_#1	N	2690	mg/kg		< 10	10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg		35	10
Total EPH >C10-C40 MC	EH_2D_Total_#1	N	2690	mg/kg		35	10
Naphthalene		M	2800	mg/kg	0.10	< 0.10	0.24
Acenaphthone		N	2800	mg/kg	0.10	< 0.10	0.33
Acenaphthene		M M	2800	mg/kg	0.10	0.22	0.51
Fluorene Phenanthrene		M	2800 2800	mg/kg	0.10	0.18 0.95	0.65 4.0
Anthracene		M	2800	mg/kg mg/kg	0.10	0.95	1.8
Fluoranthene		M	2800	mg/kg	0.10	1.6	1.0

Client: Terra Firma		_	Che	mtest Jo	ob No.:	24-36973	24-36973
Quotation No.:			Chemte	est Sam	ple ID.:	1894252	1894253
			Cli	ent Sam	ple ID.:	SP1ES1	SP2ES1
			Sa	ample Lo	ocation:	SP1	SP2
				Sampl	е Туре:	SOIL	SOIL
				Top Dep	oth (m):	0.1	0.1
			Bot	ttom Dep	oth (m):	0.1	0.1
				Date Sa	ampled:	08-Nov-2024	08-Nov-2024
				Time Sa	ampled:	12:00	12:00
				Asbest	os Lab:	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
Pyrene		М	2800	mg/kg	0.10	1.1	7.5
Benzo[a]anthracene		М	2800	mg/kg	0.10	0.99	8.9
Chrysene		М	2800	mg/kg	0.10	0.78	9.7
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	1.5	15
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	0.50	4.6
Benzo[a]pyrene		М	2800	mg/kg	0.10	1.2	12
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	0.80	8.2
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	0.24	2.1
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	0.69	6.7
Total Of 16 PAH's		N	2800	mg/kg	2.0	11	92
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10
Organic Matter BS1377		N	2930	%	0.10	0.20	0.50

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2010	pH Value of Soils	pH at 20°C	pH Meter	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <30°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C40	Acetone/Heptane extraction / GCxGC FID detection	
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8- C10 Aromatics: >C5-C7,>C7-C8,>C8-C10		
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
		Phonelie compounds including Passyring		
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	

Report Information

Key UKAS accredited M MCERTS and UKAS accredited N Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis This analysis has been subcontracted to an unaccredited laboratory Т I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

This report shall not be reproduced except in full, and only with the prior approval of the laboratory.

Any comments or interpretations are outside the scope of UKAS accreditation.

The Laboratory is not accredited for any sampling activities and reported results relate to the samples 'as received' at the laboratory.

Uncertainty of measurement for the determinands tested are available upon request .

None of the results in this report have been recovery corrected.

All results are expressed on a dry weight basis.

The following tests were analysed on samples 'as received' and the results subsequently corrected to a dry weight basis EPH, VPH, TPH, BTEX, VOCs, SVOCs, PCBs, Phenols.

For all other tests the samples were dried at ≤ 30°C prior to analysis.

All Asbestos testing is performed at the indicated laboratory.

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt.

All water samples will be retained for 14 days from the date of receipt.

Charges may apply to extended sample storage.

Water Sample Category Key for Accreditation

DW - Drinking Water

GW - Ground Water

LE - Land Leachate

NA - Not Applicable

Report Information

- PL Prepared Leachate
- PW Processed Water
- RE Recreational Water
- SA Saline Water
- SW Surface Water
- TE Treated Effluent
- TS Treated Sewage
- UL Unspecified Liquid

Clean Up Codes

- NC No Clean Up
- MC Mathematical Clean Up
- FC Florisil Clean Up

HWOL Acronym System

- HS Headspace analysis
- EH Extractable hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by Florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatic only
- 2D GC-GC Double coil gas chromatography
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
- + Operator to indicate cumulative e.g. EH+EH_Total or EH_CU+HS_Total

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

ANNEX D
CBR Test Results

V1 Issued: Nov 2020 Reviewed: Nov 2020

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

Date: 11/11/2024 Test: TRL01

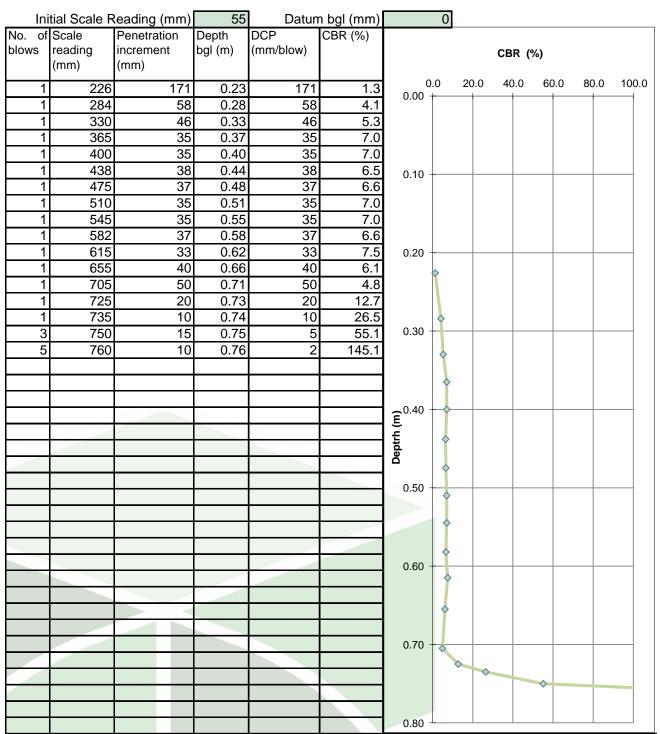
Engineer: Elliot

lni	itial Scale F	Reading (mm)	66	Datun	n bgl (mm)		0			
No. of		Penetration	Depth	DCP	CBR (%)					
	reading		bgl (m)	(mm/blow)	,			CBR (%)		
	(mm)	(mm)	3 ()	,				OBIT (70)		
						_	.0 2.0	4.0	6.0	8.0
1			0.16	94		0.00	.0 2.0	4.0	0.0	- 0.0 i
1	216	56	0.22	56	4.3	0.00				
1	285	69	0.29	69	3.4					
1	355	70	0.36	70	3.4					
1			0.41	50	4.8	0.10				
1			0.45	48	5.0	0.10				
1		44	0.50	44	5.5					
1			0.54	46	5.3					
1		44	0.59	44	5.5					
1		45	0.63	45	5.4	0.20		>		
1								<i>y</i>		
			0.68	43	5.7					
1			0.72	43	5.7			♦		
1			0.76	42	5.8	0.30				
1			0.80	40	6.1					
1		40	0.84	40	6.1					
1		33	0.87	33	7.5					
1	915	42	0.92	42	5.8	0.40				
1	950	35	0.95	35	7.0				\	
			100			→ 0.50 ·				
						ָ בּ				
						Deptrh (m)				
						De				
						0.60				
									\	
									♦	
						0.70				
									\rightarrow	
									8	
						0.80			—	
										>>
						0.90				
						0.03				
						1.00				
						1.00				

REMARKS:

Test carried out in accordance with operating instructions for the dynamic cone penetrometer Model A2465 by CNS Farnell Ltd. CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by TRL taken from The Highways Agency Interim Advice Note 73/06 - Design Guidance for Road Pavement Foundations (2009)

V1 Issued: Nov 2020 Ref: QF-039 Reviewed: Nov 2020


DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL02 Date: 11/11/2024 Test:

Engineer: Elliot

REMARKS:

Test carried out in accordance with operating instructions for the dynamic cone penetrometer Model A2465 by CNS Farnell Ltd. CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by TRL taken from The Highways Agency Interim Advice Note 73/06 - Design Guidance for Road Pavement Foundations (2009)

V1 Issued: Nov 2020 Ref: QF-039 Reviewed: Nov 2020

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL03 Date: 11/11/2024 Test:

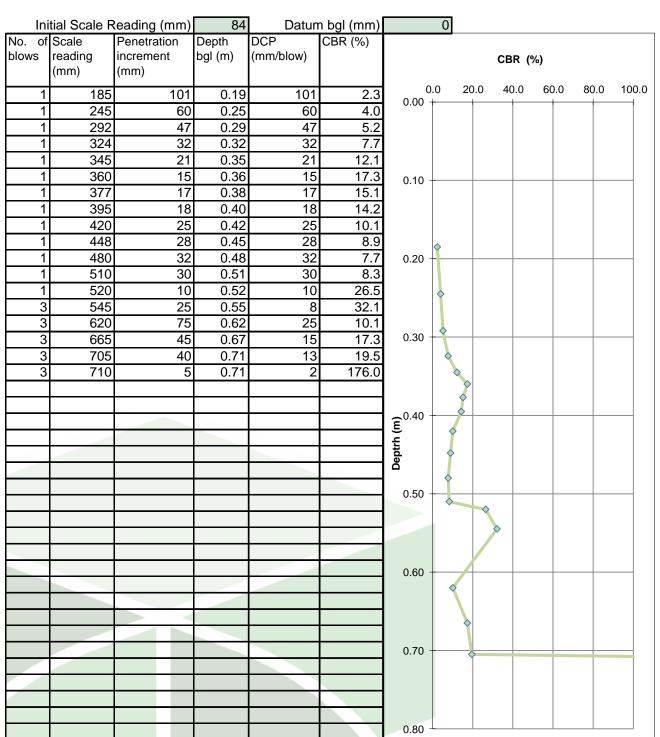
Engineer: Elliot

		Reading (mm)	70		n bgl (mm)		0						
No. of		Penetration	Depth	DCP	CBR (%)		_						
blows	reading		bgl (m)	(mm/blow)				СВ	R (%	6)			
	(mm)	(mm)							`				
1	180	110	0.18	110	2.1	0.	.0 1	0.0 2	0.0	30.0	40	0.0	50.0
1	250	70	0.25	70	3.4	0.00 +							
1	293	43	0.29	43	5.7								
1	330	37	0.33	37	6.6								
1	365	35	0.37	35	7.0	0.40							
1	400	35	0.40	35	7.0	0.10 -							
1	435	35	0.44	35	7.0								
1	475	40	0.48	40	6.1								
1	505	30	0.51	30	8.3	0.20 -							
1	537	32	0.54	32	7.7	0.20							
1	580	43	0.58	43	5.7								
1	593	13	0.59	13	20.1		1						
1	605	12	0.61	12	21.8	0.30 -	\						
3		18	0.62	6	45.4	0.00							
3		22	0.65	7	36.8		Y						
5		40	0.69	8	33.5		\Q						
3		35	0.72	12	22.5	0.40 -			-				_
1	745	25	0.75	25	10.1								
1	765	20	0.77	20	12.7		Y						
1	785	20	0.79	20	12.7		*						
1	805	20	0.81	20	12.7	<u>~</u> 0.50 −	\						-
1	820	15	0.82	15	17.3	n) (n							
1	838	18	0.84	18	14.2	ptrł							
3	895	57	0.90	19	13.4	Deptrh (m)	~						
3		20	0.92	7	40.7	0.60 -			*				
	0.10	20	0.02	,	10.7						_	\	
											♦		
						0.70 -							
								*					
						0.80		♦					
						0.80 -		•		\Box			
								*					
						0.90 -		\rightarrow					
						3.00						>	
						1.00							
						1.00						l	

REMARKS:

Test carried out in accordance with operating instructions for the dynamic cone penetrometer Model A2465 by CNS Farnell Ltd. CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by TRL taken from The Highways Agency Interim Advice Note 73/06 - Design Guidance for Road Pavement Foundations (2009)

DYNAMIC CONE PENETROMETER TEST


V1 Issued: Nov 2020

Reviewed: Nov 2020

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

Date: 11/11/2024 Test: TRL04

Engineer: Elliot

REMARKS:

Test carried out in accordance with operating instructions for the dynamic cone penetrometer Model A2465 by CNS Farnell Ltd. CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by TRL taken from The Highways Agency Interim Advice Note 73/06 - Design Guidance for Road Pavement Foundations (2009)

V1 Issued: Nov 2020 Ref: QF-039 Reviewed: Nov 2020

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL05 Date: 11/11/2024 Test:

Engineer: Elliot

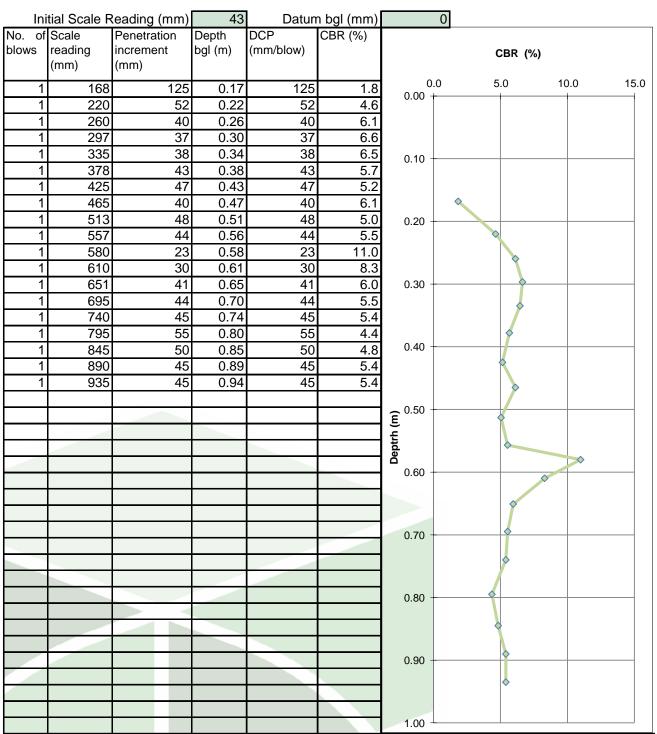
		Reading (mm)			n bgl (mm)		0						
No. of		Penetration	Depth	DCP	CBR (%)								
blows	reading	increment	bgl (m)	(mm/blow)					СВ	R (%)		
	(mm)	(mm)											
1	205	121	0.21	121	1.9	0.00 -	.0	20.0) 40	0.0	60.0	80.0	100.0
1	245	40	0.25	40	6.1	0.00							
1			0.29	40	6.1								
1			0.33	40	6.1								
1		40	0.37	40	6.1								
1		45	0.41	45	5.4								
1			0.47	55		0.10 -	-	+			_	-	
1			0.49	20	12.7								
3			0.51	7	40.7								
3			0.53	7	40.7								
3			0.54	3	84.6								
3			0.55	5	55.1	0.00							
3			0.58		26.5	0.20 -	\rightarrow						
5			0.59	1	302.0		١\						
							\Q						
							\						
						0.30	-	+					
							ľ						
						Ē							
						h (r							
						Deptrh (m)							
						ا 0.40 ق	\langle						
							\langle						
							0						
						0.50	-	+		>			
										>			
												\	.
											\		
									0				
						0.60 -			•				
						0.00						T	
						0.70							

REMARKS:

Test carried out in accordance with operating instructions for the dynamic cone penetrometer Model A2465 by CNS Farnell Ltd. CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by TRL taken from The Highways Agency Interim Advice Note 73/06 - Design Guidance for Road Pavement Foundations (2009)

Ref: QF-039 Reviewed: Nov 2020

DYNAMIC CONE PENETROMETER TEST



V1 Issued: Nov 2020

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

Date: 11/11/2024 Test: TRL06

Engineer: Elliot

REMARKS:

Test carried out in accordance with operating instructions for the dynamic cone penetrometer Model A2465 by CNS Farnell Ltd. CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by TRL taken from The Highways Agency Interim Advice Note 73/06 - Design Guidance for Road Pavement Foundations (2009)

V1 Issued: Nov 2020 Ref: QF-039 Reviewed: Nov 2020

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL07 Date: 11/11/2024 Test:

Engineer: Elliot

Ini	itial Scale R	Reading (mm)	60	Datum	n bgl (mm)		0			
No. of	Scale	Penetration	Depth	DCP	CBR (%)					
blows			bgl (m)	(mm/blow)	, ,			CBR (%)		
	(mm)	(mm)	3 ()	,				OBIT (70)		
			0.40	40-		0.	0	5.0	10.0	15.0
1	185	125	0.19	125	1.8	0.00	-	+	10.0	
1	223	38	0.22	38	6.5					
1	285	62	0.29	62	3.8					
1	325	40	0.33	40	6.1					
1	360	35	0.36	35	7.0	0.10 -				
1	400	40	0.40	40	6.1					
1	445	45	0.45	45	5.4					
1	485	40	0.49	40	6.1					
1	525	40	0.53	40	6.1	0.20 -	A			
1	565	40	0.57	40	6.1	0.20		0		
1	590	25	0.59	25	10.1					
 1	625	35	0.63	35	7.0					
1	660	35	0.66	35	7.0	0.30 -	•			
						0.30				
1	700	40	0.70	40	6.1			\		
1	730	30	0.73	30	8.3			>		
1	765	35	0.77	35	7.0	0.40				
1	805	40	0.81	40	6.1	0.40 -	_			
1	845	40	0.85	40	6.1					
1	890	45	0.89	45	5.4			X		
1	935	45	0.94	45	5.4			\		
						⊋ ^{0.50} -				
						Deptrh (m)				
						ptr				
						0.60 -				
								*		
						0.70 -				
								>		
						0.80				
								>		
								/		
						0.90 -		*		
								V		
						1.00				
						1.00				

REMARKS:

Test carried out in accordance with operating instructions for the dynamic cone penetrometer Model A2465 by CNS Farnell Ltd. CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by TRL taken from The Highways Agency Interim Advice Note 73/06 - Design Guidance for Road Pavement Foundations (2009)

DYNAMIC CONE PENETROMETER TEST

V1 Issued: Nov 2020

Reviewed: Nov 2020

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

Date: 11/11/2024 Test: TRL08

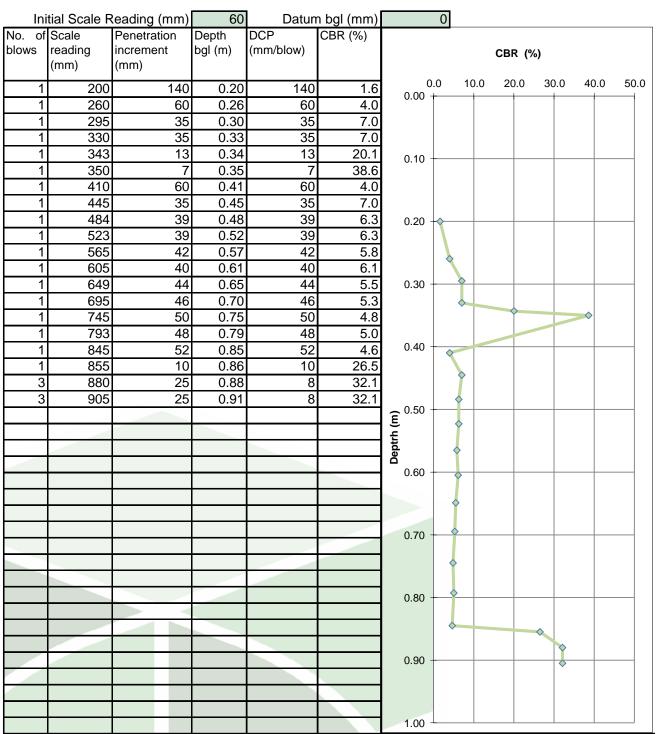
Engineer: Elliot

Ini	itial Scale R	Reading (mm)	70		n bgl (mm)	0					
No. of		Penetration	Depth	DCP	CBR (%)						
blows	reading	increment	bgl (m)	(mm/blow)	, ,			CBR (%	6)		
	(mm)	(mm)	. ,	, ,				J. ()	٠,		
	, ,		0.40	100	1.0	0.0	2.0	4.0	6.0	8.0	10.0
1	190	120	0.19	120	1.9	0.00 +		+		-	
1	225	35	0.23	35	7.0						
1	270	45	0.27	45	5.4						
1	310	40	0.31	40	6.1						
1	360	50	0.36	50	4.8	0.10				-	
1	400	40	0.40	40	6.1						
1	450	50	0.45	50	4.8						
1	500	50	0.50	50	4.8						
1	540	40	0.54	40	6.1	0.20				_	
1	582	42	0.58	42	5.8					>	
1	620	38	0.62	38	6.5						
1	648	28	0.65	28	8.9						
1	680	32	0.68	32	7.7	0.30					
1	710	30	0.71	30	8.3						
1	745	35	0.75	35	7.0						
1	773	28	0.77	28	8.9			~			
1	800	27	0.80	27	9.3	0.40					
1	830	30	0.83	30	8.3						
1	860	30	0.86	30	8.3			4			
1	910	50	0.91	50	4.8						
1	950	40	0.91	40	6.1	0.50		-			
- 1	930	40	0.95	40	0.1	Deptrh (m)					
						ţ			*		
						de(
						0.60					
									A		
											>
						0.70					
											'
						0.80					
						0.55					
										ľ	
											•
						0.90					
						0.50		•			
						1.00					
						1.00					

REMARKS:

Test carried out in accordance with operating instructions for the dynamic cone penetrometer Model A2465 by CNS Farnell Ltd. CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by TRL taken from The Highways Agency Interim Advice Note 73/06 - Design Guidance for Road Pavement Foundations (2009)

DYNAMIC CONE PENETROMETER TEST


terra

V1 Issued: Nov 2020 Reviewed: Nov 2020

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

Date: 11/11/2024 Test: TRL09

Engineer: Elliot

REMARKS:

Test carried out in accordance with operating instructions for the dynamic cone penetrometer Model A2465 by CNS Farnell Ltd. CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by TRL taken from The Highways Agency Interim Advice Note 73/06 - Design Guidance for Road Pavement Foundations (2009)

V1 Issued: Nov 2020 Ref: QF-039 Reviewed: Nov 2020

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL₁₀ Date: 11/11/2024 Test:

Engineer: Elliot

Ini	itial Scale R	Reading (mm)	70		n bgl (mm)		0				
No. of		Penetration	Depth	DCP	CBR (%)						
blows	reading		bgl (m)	(mm/blow)				CBR (9	%)		
	(mm)	(mm)									
							.0 10	0.0 2	0.0	30.0	40.0
1	170	170	0.17	170	1.3	0.00					
1	195	25	0.20	25	10.1						
1	210	15	0.21	15	17.3						
1	225	15	0.23	15	17.3	0.10					
1	240		0.24	15	17.3	0.10					
1	260		0.26	20	12.7						
1	270	10	0.27	10	26.5		\rightarrow				
1	280	10	0.28	10	26.5	0.20					
1	290		0.29	10	26.5			*			
1	305	15	0.31	15	17.3						
1	324		0.32	19	13.4				*		
1	345	21	0.35	21	12.1	0.30		\	\		
1	365	20	0.37	20	12.7						
1	380	15	0.38	15	17.3						
3	420	40	0.42	13	19.5			***			
3	465	45	0.47	15	17.3	0.40		\			-
3		55	0.52	18	14.0			/	7		
3		25	0.55	8	32.1						
3		35	0.58	12	22.5						
3		40	0.62	13	19.5	Deptrh (m)					
3		70	0.69	23	10.8	<u>۔</u>					
3		40	0.73	13	19.5	ept					
3		40	0.77	13	19.5	0.60					
3		50	0.82	17	15.4	0.00					
3		75	0.90	25	10.1		3000				
1	920	25	0.92	25	10.1						
						0.70		Ø		_	
								/	9		
						0.80					
								//			
						0.90					
							·	Ĭ			
						1.00					
						1.00					

REMARKS:

Test carried out in accordance with operating instructions for the dynamic cone penetrometer Model A2465 by CNS Farnell Ltd. CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by TRL taken from The Highways Agency Interim Advice Note 73/06 - Design Guidance for Road Pavement Foundations (2009)

V1 Issued: Nov 2020 Ref: QF-039 Reviewed: Nov 2020

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL11 Date: 11/11/2024 Test:

Engineer: Elliot

		Reading (mm)			n bgl (mm)		0				
No. of		Penetration	Depth	DCP	CBR (%)						
blows	reading	increment	bgl (m)	(mm/blow)				CBR	(%)		
	(mm)	(mm)									
1	180	124	0.18	124	1.9		0.0 2	0.0	40.0	60.0	80.0
1		50	0.23	50	4.8	0.00	1				
1		35	0.27	35	7.0						
1		35	0.30	35	7.0						
1		30	0.33	30	8.3						
1		15	0.35		17.3	0.05	-				
1		5	0.35	5	55.1						
1			0.36	10							
		10			26.5						
1		5	0.37	5	55.1	0.40					
3		25	0.39	8	32.1	0.10		1			
5	410	20	0.41	4	69.8						
						0.15	+				
						0.20					
						0.20					
						Ē.	\				
						h (r					
						호 0.25	+	-			
						Deptrh (m)					
						0.30					
						0.30					
						0.35	+			*	
								\		→	
						0.40					
						0.40					→
						0.45					

REMARKS:

Test carried out in accordance with operating instructions for the dynamic cone penetrometer Model A2465 by CNS Farnell Ltd. CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by TRL taken from The Highways Agency Interim Advice Note 73/06 - Design Guidance for Road Pavement Foundations (2009)

ANNEX E
Laboratory Geotechnical Test Results

Results Summary

Apex Testing Solutions Limited

Village Farm Industrial Estate Pyle Bridgend CF33 6BZ

Telephone: 01656 746762

E-mail: andrew.grogan@apex-drilling.com laura.davis@apex-drilling.com

Reporting Details		Key Information	
Company Name:	TFW Group Ltd	Site Name:	Bridgend
Address:	5 Deryn Court		
	Wharfdale Road	Job Number:	D24428
	Cardiff	Date Received:	12/11/2024
	CF23 7HA	Job Coordinator:	L. Davis
Contact Name:	Elliot		
Contact Number:			

Item No.	Tests Undertaken	Number of Tests
	Water Content - ISO 17892 2014 Atterburg Limits (4 point) - BS1377-2: 1990	15 15

Results Issued: 28/11/2024

Comments

Results herein relate only to samples received in the laboratory and where not sampled by Apex Testing Solutions personnel relate to the samples as received.

Where tests are UKAS accredited any Opinion and/or Interpretation expressed herein are outside the scope of the UKAS Accreditation. The reports shall not be reproduced in full without the written approval of the laboratory.

Please contact the job coordinator should any further information be required.

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend

Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38548 CF23 7HA

Site Ref / Hole ID:

TP01

Depth (m):

0.60

Sample No:

No

Sample Type:

Disturbed

Sampling Certificate

Received:

Material Description:

Light brown slightly gravelly CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Water Content (%)	34.2
-------------------	------

Remarks:

QA Ref.

EN ISO 17892-1:2014 +A1:2022 A (S

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

27/11/2024

МС

L Davis, Quality Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38548

CF23 7HA

Site Ref / Hole ID:

TP01

Depth (m):

0.60

Sample No:

Sample Type:

Disturbed

Sampling Certificate Received:

No

Material Description:

Light brown slightly gravelly

CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

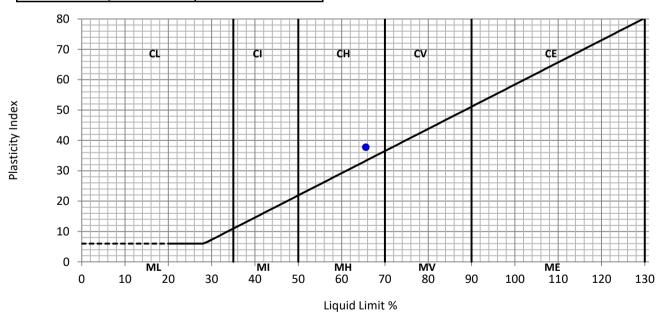
Sampled By:

Client

Specification:

BS1377

Date Received:


12 November 2024

Date Tested: 26 November 2024

Test Results

Liquid Limit	66	%
Plastic Limit	28	%
Plasticity Index	38	%

Preparation:	4.2.3 Natural Spec	cimen	
Proportion retained	ed on 425µm sieve:	2	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0 (5

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096 UK

Approver

L Davis

Date

L Davis, Quality Manager

27/11/2024

Fig.

2024

ATT

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend Client:

TFW Group Ltd 5 Deryn Court

Address:

Wharfdale Road

Cardiff

CF23 7HA ATS Sample No: 38549

Site Ref / Hole ID:

TP03

Depth (m):

0.90

1.00

Sample No:

No

Sample Type:

Disturbed

Sampling Certificate

Received:

Material Description:

Brown CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

25 November 2024

Test Results

Water Content (%)	31.5
-------------------	------

Remarks:

QA Ref.

EN ISO 17892-1:2014 +A1:2022

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

26/11/2024

MC

L Davis, Quality Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38549

CF23 7HA

Site Ref / Hole ID:

TP03

Depth (m):

Address:

0.90

- 1.00

Sample No:

Sampling Certificate No

Sample Type:

Disturbed

Received:

140

Material Description:

Brown CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

BS1377

Date Received:

12 November 2024

Date Tested:

22 November 2024

Test Results

Liquid Limit	68	%
Plastic Limit	22	%
Plasticity Index	46	%

Preparation:	4.2.3 Natural Spec	cimen	
Proportion retained on 425µm sieve:		0	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

Date

__.

26/11/2024

ATT

Fig.

L Davis, Quality Manager

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

CF23 7HA ATS Sample No: 38550

Site Ref / Hole ID:

TP04

Depth (m):

1.40

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

No

Material Description:

Light brown slightly sandy slughtly gravelly

CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Water Content (%)	22.8
` ,	

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

28/11/2024

MC

L Davis, Quality Manager

EN ISO 17892-1:2014 +A1:2022

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name: D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38550 CF23 7HA

Site Ref / Hole ID:

TP04

Depth (m):

1.40

Sample No:

Sample Type:

Received:

Sampling Certificate No **Material Description:**

Light brown slightly sandy slughtly gravelly CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Disturbed

Date Sampled:

Unknown

Material Supplier:

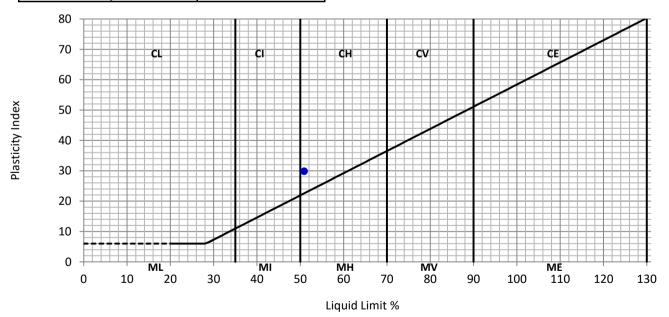
Ex-Site BS1377

Sampled By:

Client

Specification: Date Tested:

27 November 2024


Date Received:

12 November 2024

Test Results

Liquid Limit	51	%
Plastic Limit	21	%
Plasticity Index	30	%

Preparation:	4.2.4 Sieved Spec	cimen	
Proportion retained on 425µm sieve:		5	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

Date

L Davis, Quality Manager

28/11/2024

Fig.

ATT

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38551

CF23 7HA

Site Ref / Hole ID:

TP05

Depth (m):

1.00

1.10

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

No

Material Description:

Brownish grey slightly

gravelly slightly sandy

CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Water Content (%)

20.0

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

27/11/2024

MC

L Davis, Quality Manager

EN ISO 17892-1:2014 +A1:2022

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38551

CF23 7HA

Site Ref / Hole ID:

TP05

Depth (m):

1.00

- 1.10

Sample No:

Received:

Sampling Certificate No

Sample Type:

Disturbed

Material Description:

Brownish grey slightly

gravelly slightly sandy CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

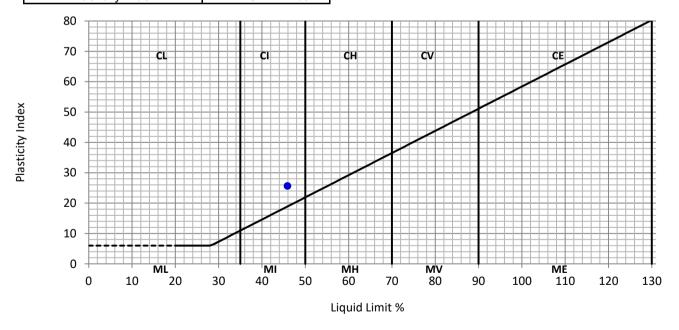
Sampled By:

Client

Specification:

BS1377

Date Received:


12 November 2024

Date Tested: 26 November 2024

Test Results

Liquid Limit	46	%
Plastic Limit	20	%
Plasticity Index	26	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained on 425µm sieve:		8	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096 UKAS

Approver

L Davis

Date

L Davis, Quality Manager

27/11/2024

Fig.

ATT

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend

Client: Address: TFW Group Ltd 5 Deryn Court

5 Deryn Court

Wharfdale Road Cardiff

ATS Sample No: 38552

CF23 7HA

Site Ref / Hole ID:

TP08

No

Depth (m):

0.80

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

Material Description:

Brown slightly gravelly

CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Water Content (%)	35.1
water Content (%)	35.1

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

L Davis

27/11/2024

МС

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38552

CF23 7HA

Site Ref / Hole ID:

TP08

Depth (m):

Sample Type:

0.80

Sample No:

Disturbed

Sampling Certificate Received:

No

Material Description:

Brown slightly gravelly CLAY

N/a

Material Source:

Ex-Site

Date Sampled:

Location in Works:

Unknown

Material Supplier:

Ex-Site

Sampled By:

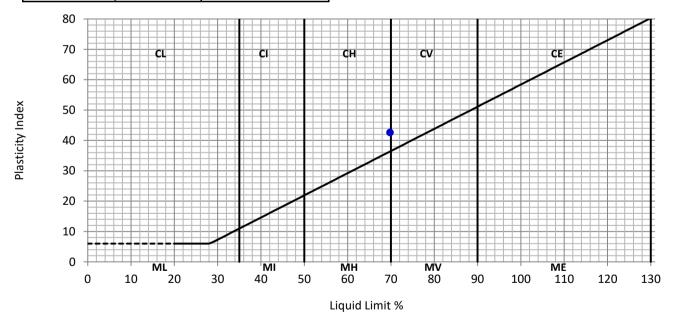
Client

Specification:

BS1377

Date Received:

12 November 2024


Date Tested:

26 November 2024

Test Results

Liquid Limit	70	%
Plastic Limit	27	%
Plasticity Index	43	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained on 425µm sieve:		8	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

Date

27/11/2024

ATT

Fig.

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend

Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38553

CF23 7HA

Site Ref / Hole ID:

TP09

Depth (m):

0.80

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

No

Material Description:

Brown slghtly sandy

CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Water Content (%)	33.0

Remarks:

QA Ref.

A (S

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

L Davis

27/11/2024

МС

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38553

CF23 7HA

Site Ref / Hole ID:

TP09

Depth (m):

0.80

Sample No:

Sample Type:

Disturbed

Sampling Certificate Received:

No

Material Description:

Brown sightly sandy CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

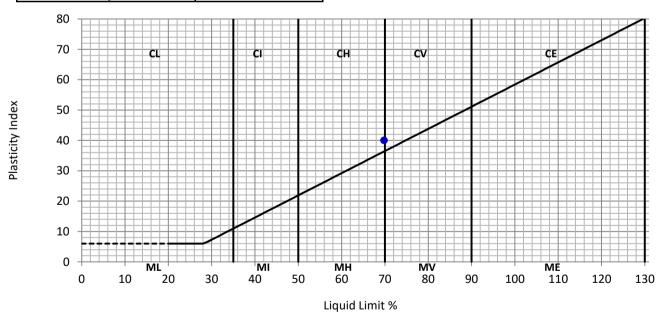
Client

Specification:

BS1377

Date Received:

12 November 2024


Date Tested:

26 November 2024

Test Results

Liquid Limit	70	%
Plastic Limit	30	%
Plasticity Index	40	%

Preparation:	4.2.3 Natural Spec	cimen	
Proportion retained	ed on 425µm sieve:	2	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096 UKAS

Approver

L Davis

Date

27/11/2024

Fig.

ATT

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

CF23 7HA ATS Sample No: 38554

Site Ref / Hole ID:

TP10

Depth (m):

1.50

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

No

Material Description:

Light brown CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

27/11/2024

MC

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name: D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38554 CF23 7HA

Site Ref / Hole ID:

TP10

Depth (m):

1.50

Sample No:

Sample Type:

Disturbed

Sampling Certificate Received:

Material Description:

Light brown CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site BS1377

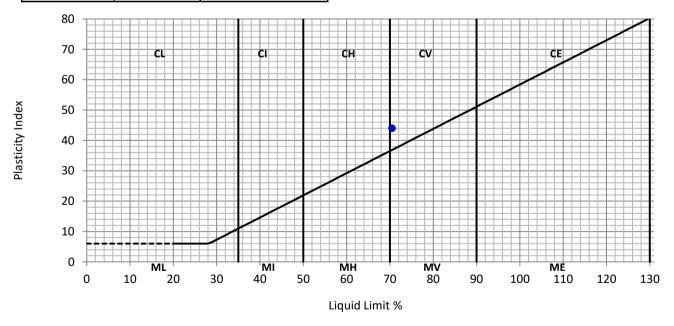
Sampled By:

Client

Specification:

Date Received:

12 November 2024


Date Tested:

26 November 2024

Test Results

Liquid Limit	71	%
Plastic Limit	27	%
Plasticity Index	44	%

Preparation:	4.2.3 Natural Spe	cimen	
Proportion retained on 425µm sieve:		0	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

Date

27/11/2024

ATT

Fig.

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

CF23 7HA ATS Sample No: 38555

Site Ref / Hole ID:

TP11

Depth (m):

Sample Type:

1.10

Sample No:

Disturbed

Sampling Certificate

No

Material Description:

Brown CLAY

Received:

N/a

Material Source:

Ex-Site

Date Sampled:

Location in Works:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

27/11/2024

MC

L Davis, Quality Manager

EN ISO 17892-1:2014 +A1:2022

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name: D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38555 CF23 7HA

Site Ref / Hole ID:

TP11

Depth (m):

Sample Type:

1.10

Sample No:

Disturbed

Sampling Certificate Received:

Location in Works:

N/a

Material Description:

Brown CLAY

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

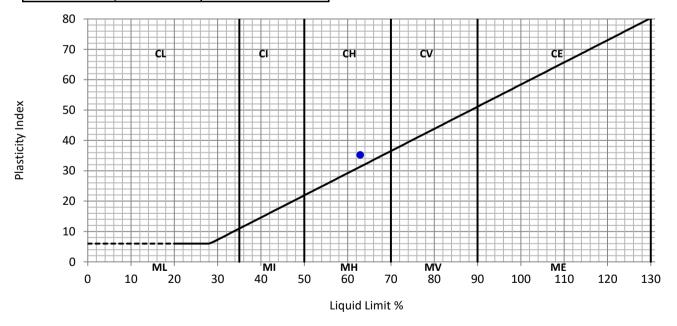
Client

Specification:

BS1377

Date Received:

12 November 2024


Date Tested:

26 November 2024

Test Results

Liquid Limit	63	%
Plastic Limit	28	%
Plasticity Index	35	%

Preparation:	4.2.3 Natural Spec	cimen	
Proportion retained on 425µm sieve:		2	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

L Davis, Quality Manager

Date

Fig.

27/11/2024

ATT

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

CF23 7HA ATS Sample No: 38556

Site Ref / Hole ID:

TP13

Depth (m):

0.10

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

Material Description:

Brown SILT

Location in Works:

N/a

No

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

25 November 2024

Test Results

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

26/11/2024

MC

L Davis, Quality Manager

EN ISO 17892-1:2014 +A1:2022

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name: D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38556 CF23 7HA

Site Ref / Hole ID:

TP13

Depth (m):

Sample Type:

0.10

Sample No:

Disturbed

Sampling Certificate

Material Description:

Brown SILT

Received:

Location in Works: N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

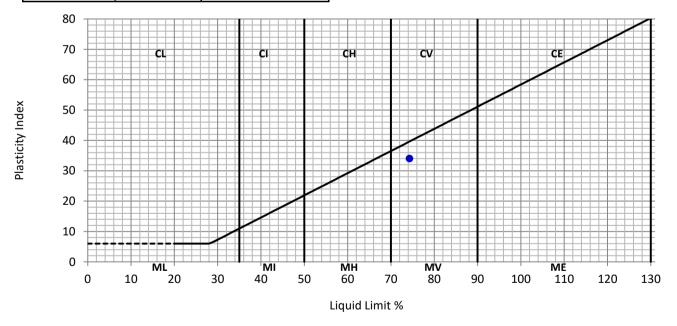
Client

Specification:

BS1377

Date Received:

12 November 2024


Date Tested:

22 November 2024

Test Results

Liquid Limit	74	%
Plastic Limit	40	%
Plasticity Index	34	%

Preparation:	4.2.3 Natural Spec	cimen	
Proportion retained on 425µm sieve:		0	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

Date

26/11/2024

ATT

Fig.

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend

Client: Address: TFW Group Ltd 5 Deryn Court

3 Deryn Court

Wharfdale Road Cardiff

ATS Sample No: 38557 CF23 7HA

Site Ref / Hole ID:

TP15

Depth (m):

0.60

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

Material Description:

Orange brown slightly

sandy CLAY

Location in Works:

N/a

No

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Water Content (%)	30.8

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

L Davis

28/11/2024

MC

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38557

CF23 7HA

Site Ref / Hole ID:

TP15

Depth (m):

0.60

Sample No:

Sample Type:

Disturbed

Sampling Certificate Received:

INO

Material Description:

Orange brown slightly sandy

CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

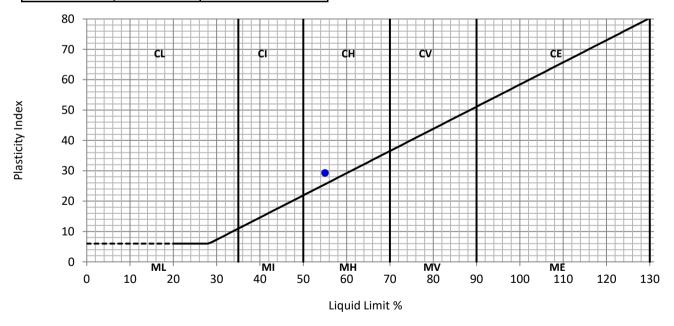
Client

Specification:

BS1377

Date Received:

12 November 2024


Date Tested: 27

27 November 2024

Test Results

Liquid Limit	55	%
Plastic Limit	26	%
Plasticity Index	29	%

Preparation:	4.2.3 Natural Spe	cimen	
Proportion retained on 425µm sieve:		2	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096 UKAS

Approver

L Davis

Date

Fig.

28/11/2024

ATT

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

CF23 7HA ATS Sample No: 38558

Site Ref / Hole ID:

TP17

Depth (m):

1.20

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

No

Material Description:

Brown CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Water Content (%)	29.6

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

28/11/2024

MC

L Davis, Quality Manager

EN ISO 17892-1:2014 +A1:2022

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38558

CF23 7HA

Site Ref / Hole ID:

TP17

Depth (m):

Sample Type:

1.20

Sample No:

Disturbed

Sampling Certificate Received:

Location in Works:

No

Material Description:

Brown CLAY

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

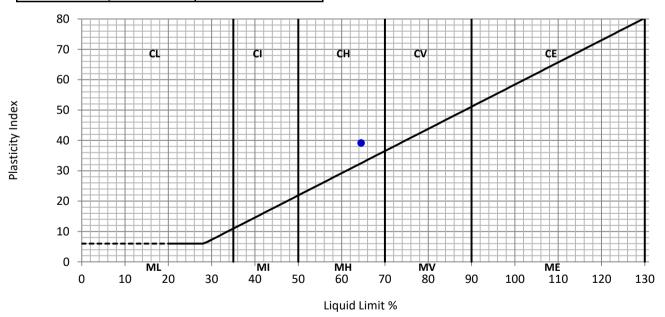
Client

Specification:

BS1377

Date Received:

12 November 2024


Date Tested:

27 November 2024

Test Results

Liquid Limit	64	%
Plastic Limit	25	%
Plasticity Index	39	%

Preparation:	4.2.3 Natural Spec	cimen	
Proportion retained on 425µm sieve:		0	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

•

L Davis

L Davis, Quality Manager

Date

28/11/2024

Fig.

ATT

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend

Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38559 CF23 7HA

Site Ref / Hole ID:

TP19

Depth (m):

0.50

Sample No:

No

Sample Type:

Disturbed

Sampling Certificate

Received:

Material Description:

Brown slightly gravelly slightly sandy CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Water Content (%)	23.4

Remarks:

QA Ref.

A (S

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

L Davis

27/11/2024

MC

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38559

CF23 7HA

Site Ref / Hole ID:

TP19

Depth (m):

Address:

0.50

Sample No:

Sample Type: Disturbed

Sampling Certificate Received:

Material Description:

Brown slightly gravelly slightly

sandy CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

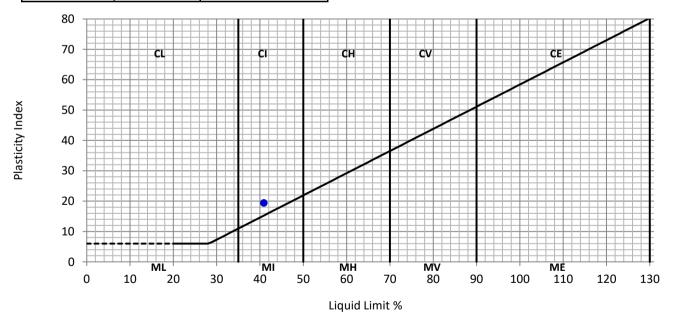
Sampled By:

Client

Specification:

BS1377

Date Received:


12 November 2024

Date Tested: 26 November 2024

Test Results

Liquid Limit	41	%
Plastic Limit	22	%
Plasticity Index	19	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained on 425µm sieve:		12	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Tel: 01656 746762 Fax: 01656 749096

Bridgend, CF33 6BZ

Sturmi Way, Village Farm Industrial Est, Pyle,

UKAS

Approver

L Davis

Date

Fig.

27/11/2024

ATT

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

CF23 7HA ATS Sample No: 38560

Site Ref / Hole ID:

TP21

Depth (m):

0.40

Sample No:

Received:

Sample Type:

Disturbed

Sampling Certificate No **Material Description:**

Brown Slightly sandy

CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

28 November 2024

Test Results

Water Content (%) 32.3	Water Content (%)	32.3
------------------------	-------------------	------

Remarks:

QA Ref.

EN ISO 17892-1:2014 +A1:2022

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

A Grogan

12/10/2022

MC

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38560

CF23 7HA

Site Ref / Hole ID:

TP21

Depth (m):

0.40

Sample No:

Sample Type:

Disturbed

Sampling Certificate Received:

No

Material Description:

Brown Slightly sandy CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

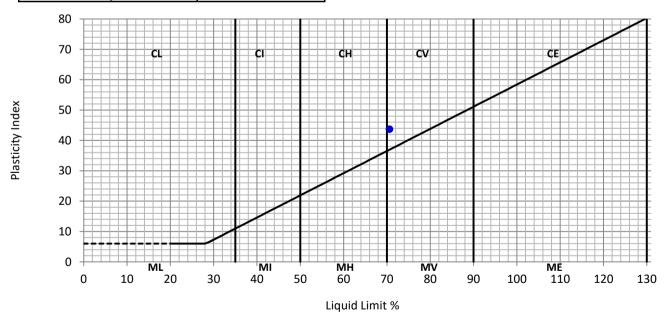
Ex-Site BS1377

Sampled By:

Client

Specification:

Date Tested:


28 November 2024

Date Received: 12 November 2024

Test Results

Liquid Limit	71	%
Plastic Limit	27	%
Plasticity Index	44	%

Preparation:	4.2.3 Natural Spe	cimen	
Proportion retained on 425µm sieve:		0	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig.

20/06/2023

ATT

A Grogan, Laboratory Manager

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend

Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38561 CF23 7HA

Site Ref / Hole ID:

TP23

Depth (m):

0.50

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

Material Description:

Brown sandy gravelly

CLAY

Location in Works:

N/a

No

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Water Content (%)	18.8

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

L Davis

28/11/2024

MC

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38561

CF23 7HA

Site Ref / Hole ID:

TP23

Depth (m):

Sample Type:

0.50

Sample No:

Disturbed

Sampling Certificate Received:

No

Material Description:

Brown sandy gravelly CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site BS1377

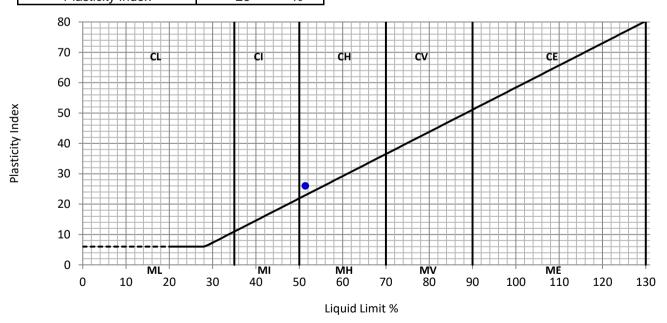
Sampled By:

Client

Specification:

Date Tested:

27 November 2024


Date Received:

12 November 2024

Test Results

Liquid Limit	51	%
Plastic Limit	25	%
Plasticity Index	26	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained on 425µm sieve:		30	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

Date

.

Fig.

28/11/2024

ATT

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

ATS Sample No: 38562

Project Name: 24-589-CA - Bridgend Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

CF23 7HA

Site Ref / Hole ID:

TP28

Depth (m):

0.60

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

Material Description:

Brown Slightly Sandy

CLAY

Location in Works:

N/a

No

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

28 November 2024

Test Results

Water Content (%)	28.8
(1.1)	

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

A Grogan

12/10/2022

MC

A Grogan, Laboratory Manager

EN ISO 17892-1:2014 +A1:2022

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name: D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38562 CF23 7HA

Site Ref / Hole ID:

TP28

Depth (m):

Sample Type:

0.60

Sample No:

Disturbed

Brown Slightly Sandy CLAY

Received:

Sampling Certificate

Material Description:

Date Sampled:

Location in Works:

Unknown

Material Supplier:

Material Source:

Ex-Site

Ex-Site

Sampled By:

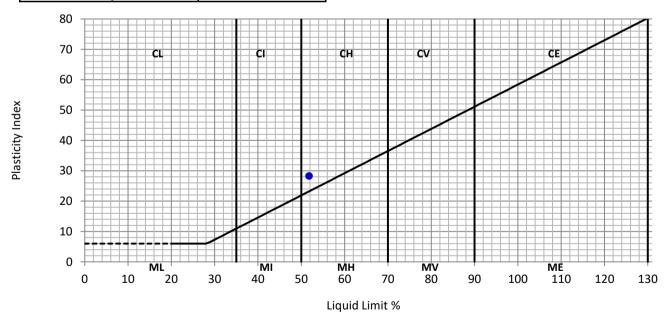
Client

N/a

Specification:

BS1377

Date Received:


12 November 2024

Date Tested: 28 November 2024

Test Results

Liquid Limit	52	%
Plastic Limit	24	%
Plasticity Index	28	%

Preparation:	4.2.3 Natural Spe	cimen	
Proportion retained on 425µm sieve:		0	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

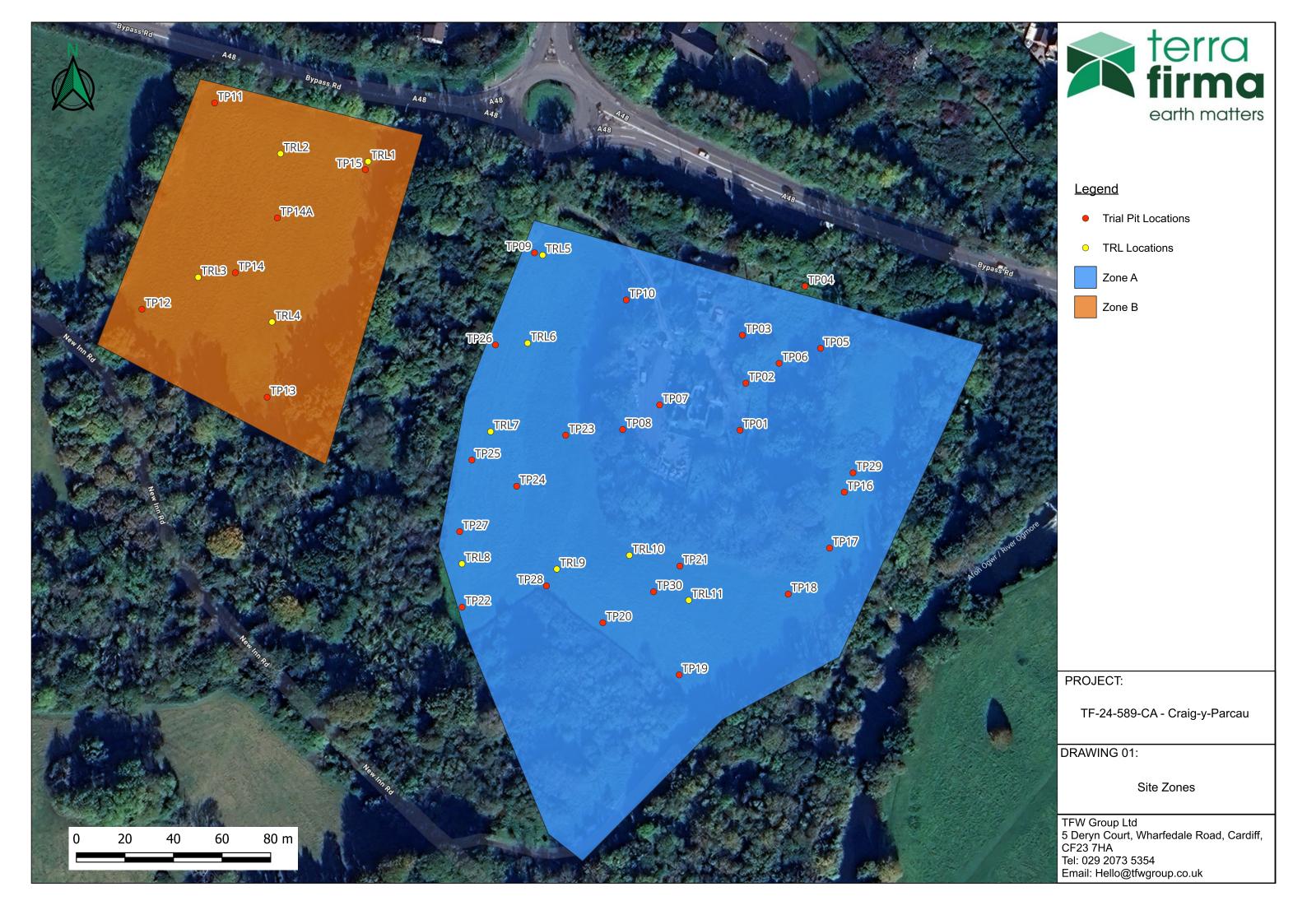
Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig.


20/06/2023

ATT

A Grogan, Laboratory Manager

DRAWINGS

