Land at Craig Y Parcau Bridgend

Flood Consequence Assessments (FCA)

October 2025

Issue/Revision	First Issue	Second Issue	Third Issue	Fourth Issue
Date	30/11/2025			
Prepared	CW			
Checked	ТМ			
Authorised	МН			
Project Number	3954			
File Reference	FCA-1I			

Table of Content

1.0	INTRODUCTION	1
1.1	APPOINTMENT AND BRIEF	
1.2	OBJECTIVE OF STUDY	
1.3	STUDY METHODOLOGY	1
1.4	LIMITATIONS	2
2.0	EXISTING SITE	3
2.1	SITE LOCATION	
2.2	SITE DESCRIPTION	3
3.0	EXISTING DRAINAGE	4
3.1	EXISTING FOUL DRAINAGE	.4
3.2	EXISTING SURFACE WATER DRAINAGE	4
3.3	WATERCOURSES	4
3.4	GEOLOGY AND HYDROGEOLOGY	5
3.5	HISTORICAL LAND USES	
3.6	HISTORICAL FLOOD RECORDS	
3.7	FLOOD MAPPING	
3.8	SITE WALKOVER	
4.0	PROPOSED DEVELOPMENT	8
4.1	DESCRIPTION	.8
5.0	PLANNING & POLICY CONTEXT	9
5.1	NATIONAL POLICY:- PLANNING POLICY WALES (PPW)	
5.2	REGIONAL POLICY AND LOCAL POLICY	
5.3	THE SEQUENTIAL TEST	
5.4	STRATEGIC FLOOD RISK ASSESSMENT	
6.0	ASSESSMENT OF POTENTIAL SOURCES OF FLOODING	
6.1	DEVELOPMENT SITE	
6.2	FLUVIAL	
6.3	TIDAL	10
6.4	OVERLAND FLOWS AND FLOODING FROM LAND	
6.5	GROUNDWATER	
6.6	FLOODING AND DRAINAGE	10
6.7	CANALS, RESERVOIRS AND OTHER INFRASTRUCTURE	
7.0	PROPOSED DEVELOPMENT AND FLOOD RISK MANAGEMENT 1	
7.1	FLUVIAL	
7.2	TIDAL	
7.3	OVERLAND FLOW	
7.4	GROUNDWATER	
7.5	FLOODING FROM SEWERS AND DRAINS	
7.6	OUTLINE DRAINAGE STRATEGY	
7.7	RESIDUAL FLOOD RISK	
8.0	CONCLUSIONS	15

APPENDICES

Α	List of documents
В	Site Location Plan & Site Red Line Boundary Plan
С	Topographical Survey (S24090-002-0)
D	Dwr Cymru Welsh Water records
E	Constraint and Opportunities Plan (P24-1590-DE-01)
F	Flood Zone Overlay & NRW Flood Maps
G	Greenfield Runoff & Quick store estimations
Н	Tier 2 Geotechnical and Geoenvironmental Assessment by Terra Firma
J	BRE365 Soakaway Test Results & Trial Pit Locations
K	Preliminary Engineering Layout and proposed drainage strategy
L	Existing Ground Conditions – Flow Arrows
М	Typical SUDS features
N	Bridgend Local Authority Guidance Documents • Bridgend Flood Risk Management Plan
Р	Tree Constraints Plan A3 Craig V Parcau, Bridgend

1.0 INTRODUCTION

1.1 APPOINTMENT AND BRIEF

1.1.1 Healer Surveys Ltd has been commissioned by Bellway Homes Ltd Wales to undertake a site-specific Flood Consequence Assessments (FCA) the proposed residential development at the site at Craig Y Parcau, Bridgend.

1.2 OBJECTIVE OF STUDY

1.2.1 This Flood Consequence Assessment (FCA) has been prepared in support of a proposed residential development at Craig-y-Parcau, Bridgend. The purpose of the FCA is to assess the potential flood risks affecting the site and to demonstrate compliance with the requirements of Technical Advice Note 15 (TAN-15, 2025) and the policies of Planning Policy Wales (Feb 2024).

The assessment considers fluvial, pluvial, and residual flood risks and proposes appropriate mitigation measures to ensure that the development remains safe for its lifetime, without increasing flood risk elsewhere.

- 1.2.2 The study assesses flood risk to:
 - The Site and the proposed residential development; and
 - Any impact on flood risk to any adjacent land as a result of the development.
- 1.2.3 Where required, flood risk mitigation measures have been proposed. The report also provides an outline drainage strategy for the foul and surface water flows from the proposed development site.
- 1.2.4 The report has been prepared to accompany a planning application.

1.3 STUDY METHODOLOGY

- 1.3.1 The appraisal process consisted of a desk study, data research and consultation with the regulatory authorities and third parties. A site visit has been undertaken together with a site topographical survey to assess the general topography of the area and to identify any potential flood risk features that could affect the site.
- 1.3.2 A list of documents referred to, to obtain data in relation to the site and development is given in **APPENDIX A**.
- 1.3.3 This is an assessment of potential flooding from all possible sources, including

fluvial, tidal, surface run-off, overland flows, groundwater, sewers and manmade infrastructure. The assessment also identifies and examines the residual flood risk to the proposed development.

1.3.4 Local and national guidance research has been undertaken and requirements assessed.

In particular relating to the design of the surface water system PPW states in Clauses 6.6.18/19:

"The provision of SuDS must be considered as an integral part of the design of new development and considered at the earliest possible stage when formulating proposals for new development.153 In guiding new development the planning system should at the very least ensure the incorporation of measures at an individual site scale, particularly in urban areas, in order to secure cumulative benefits over a wider area. A concerted effort of this nature will bring benefits over a whole catchment. At a development plan level, however, there will be considerable advantages associated with developing collaborative approaches which, drawing on evidence obtained through green infrastructure assessments, integrate SuDS as part of growth strategies for particular areas."

"Development proposals should incorporate design for surface water management, based on principles which work with nature to facilitate the natural functioning of the water cycle, providing issues such as land contamination would not result in the mobilisation of contaminants which may have an impact over a wider area. Design for multiple benefits and green infrastructure should be secured wherever possible and as part of Green Infrastructure Assessments suitable approaches towards the provision of SuDS should be identified. It may, in some circumstances, be necessary for 'hard' infrastructure solutions to be preferred because of practical or archaeological considerations but taking into account the role of water services in contributing to the quality of place, nature-based solutions should be the preference."

1.4 LIMITATIONS

1.4.1 A detailed survey of the existing drainage and confirmation of connectivity had not been undertaken as part of this study.

2.0 EXISTING SITE

2.1 SITE LOCATION

2.1.1 The site is situated south of the existing Broadlands estate at Craig Y Parcau in Bridgend centred on a National Grid Reference of 289002, 178650. It occupies a plan area of approximately 6.9 hectares.

See **APPENDIX B** for site location plan and red line boundary.

2.2 SITE DESCRIPTION

2.2.1 Table 2.1 describes the general characteristics.

Table 2.1: Characteristics of the site

Area		The site currently comprises two areas separated by an ancient woodland/SINC zone. The eastern area, mainly grassed fields, comprises two dilapidated buildings and a concrete access from the lane to the south. The western parcel contains open grass fields.
General Topography		The western parcel falls at approx. 1:12 west to east with the low point in the northeastern corner. There is a high point in the eastern field, with gradient falling away to the boundaries.
Existing Surfacing		Grass covered field with used for grazing sheep. There are two existing buildings that are to be demolished, a watercourse through the centre of the site within a valley, and an access road at the southern boundary rising into site.
Boundaries	North East	Dilapidated wooden fence to trees/woodland and further beyond an industrial estate Dilapidated wooden fence to further grass
	Last	covered fields
	South	The southern boundary of the site is defined by an upward embankment leading up to the A4281
	West	Stone wall boundary to outbuildings and further grass covered fields
Access		Off existing A48 roundabout southern arm

2.2.2 See **APPENDIX C** for the topographical survey of the site and **APPENDIX P** for the Tree Constraints Plan.

3.0 EXISTING DRAINAGE

3.1 EXISTING FOUL DRAINAGE

3.1.1 There is an existing 300mm diameter public foul sewer running along the northern boundary of the development, on the northern side of the A48 carriageway, continuing underneath the River Ogwr to the east.

The exact location of this apparatus has not been the subject of a CCTV sewer Survey or radar survey to date.

3.1.2 A check is to be undertaken with Dwr Cymru Welsh Water in relation to the ability of the capacity of the existing network to accept addition of the proposed development. The Local Development Plan (LDP) states that:

Public Sewerage - There should be no issue with the public sewerage network accommodating the foul-only flows from this development site. The site is traversed by a 350mm foul sewer for which protection measures will be required in the form of an easement width or diversion.

WwTW (Wastewater Treatment Works) - There should be no issue with Penybont (Merthyr Mawr) WwTW accommodating the foul-only flows from this development.

3.1.3 Initial enquiries have been made with Dwr Cymru Welsh Water. Records are included in **APPENDIX D**.

3.2 EXISTING SURFACE WATER DRAINAGE

3.2.1 There is an existing 1500mm concrete surface water sewer along the northern boundary of site on the southern side of the A48 carriageway.

3.3 WATERCOURSES

3.3.1 An existing watercourse flows north to south through the centre of the development within a SINC and Ancient Woodland designated area approximately 4-6m below the developable land areas. The unnamed watercourse outfall from the development area conveyed to the opposite side of 'New Inn Road', to the south of site, via a twin pipe culvert as shown overleaf:

Debris within the existing twin culvert outfall – taken 27/10/2025

The watercourse continues along a shallow depression, south of 'New Inn Road', before discharging to the River Ogwr to the East.

3.3.2 The topographical survey and DCWW map indicates the watercourse discussed above, which enters the site from the north under the existing A48 roundabout from the vicinity of the Broadlands development. The survey is contained within the document appendices.

3.4 GEOLOGY AND HYDROGEOLOGY

- 3.4.1 Terrafirma produced a Tier 2 Geotechnical and Geoenvironmental Assessment in December 2024. The general geology reviewed from the site investigation revealed the following.
- 3.4.2 Made Ground located around the former Craig-y-Parcau buildings was found to contain a number of contaminants that were found above generic assessment criteria for a residential setting. In addition, Chrysotile fibre clumps were recorded in one sample of made ground. A Stockpile of excavated soil located in the compound of Craig-y-Parcau was also found to contain elevated levels of PAH.

Given the recorded concentrations of contamination and limited access to parts of the site, it is recommended that a Tier 3 Assessment is completed before moving onto a Stage 2 Options Appraisal and Remediation Strategy.

The objectives of the Tier 3 assessment are to:

- Investigate the extent of made ground and contamination within the made ground
- Investigate areas previously inaccessible or restricted
- Derive site specific assessment criteria
- 3.4.3 During the investigation fifteen samples of the shallow cohesive material was obtained and submitted for plasticity and moisture content testing.
- 3.4.4 During the site investigation three soakaway tests were undertaken in general accordance with BRE DG 365:2016. The soakaway test results are presented in Table 8.1 of the report, included within the appendices documents for reference.

Further information on the testing carried, the location of tests and the report can be found within **APPENDIX J.**

3.4.5 Given the risk of dissolution in the Blue Lias formation, it is recommended that proposed soakaways must be positioned at least 10.0m away from any structure.

3.5 HISTORICAL LAND USES

3.5.1 A study of historical Ordnance Survey maps has revealed that the site and surrounding land previously had many uses.

Most of the area was farmland, with small fields for pasture and arable farming. Bridgend historically had coal mining and industrial activity, but Craig-y-Parcau itself was largely undeveloped woodland and farmland.

Now, it's designated as a Site of Importance for Nature Conservation (SINC). The land is primarily woodland, scrub, and grassland, supporting biodiversity and public recreation.

Some remnants of historical features, like old hedgerows or pathways, can still be seen. Historically, Craig-y-Parcau was mainly agricultural and estate land, with scattered woodland. Over time, it transitioned to conservation and recreational use, preserving much of its natural landscape.

3.6 HISTORICAL FLOOD RECORDS

3.6.1 No history of flooding has been located, only the NRW advice map that indicates flood risk from a minor watercourse.

3.7 FLOOD MAPPING

- 3.7.1 TAN 15 Flood Risk provides further detail to PPW and identifies four zones of potential flood risk:
 - **Zone 1**: Less than 1 in 1,000 (0.1%) annual chance of river flooding (plus climate change) etc.
 - **Zone 2**: Between 0.1% and 1% (rivers) or equivalent for sea/surface water.
 - **Zone 3**: Greater than 1% (rivers) or 0.5% (sea) etc.
 - Defended Zone: Areas protected by flood-defences but still subject to residual risk.

National Resources Wales (NRW) Planning map defines these zones.

According to NRW Development Advice Map (DAM) and Flood Map for Planning (FMfP), a small part of the extreme southern corner of the site is identified as being within Flood Zone C2 (DAM) and Flood Zone 3 (FMfP). This portion of the site lies outside the area proposed of development. The FMfP also identify a small area of the site as being at risk of flooding from surface water/small watercourses.

Drawing '3954-SK003 - Flood Zone Overlay' shows and overlay of the proposed development with the flood zone mapping, illustrating that the development is not within the critical areas. The lowest Finished Floor Level (FFL) of the proposed development is at 20.300m, while the watercourse in question discharges from the development area via a twin pipe culvert at approx. 11.220m, over 9m below plot levels. This extreme level difference will protect any plots from potential flooding.

- 3.7.2 Refer to **APPENDIX F** for flood maps and supporting information.
- 3.7.3 Flood zone designations ignore the presence of any flood defences and only consider flooding from fluvial and tidal sources.

3.8 SITE WALKOVER

- 3.8.1 A site walkover has been conducted individually and with the SAB officer.
- 3.8.2 The site currently comprises two grass covered fields with used for grazing sheep. There are two existing buildings that are to be demolished and an access road at the southern boundary rising into site.

The existing watercourse within the valley separating the parcels contains an ancient woodland/SINC zone.

See **APPENDIX B** for site location plan and **APPENDIX C** for the topographical survey.

4.0 PROPOSED DEVELOPMENT

4.1 DESCRIPTION

- 4.1.1 The proposed development of 6.90 Ha in total area is to be serviced from a proposed single access from an existing roundabout on the A48. The proposal comprises up to 120 houses from one-bedroom flats to three/four bedroom in size with associated roads, sewers, and private driveways.
- 4.1.2 It is proposed to maintain the existing boundary landscape features. In general, the site falls in an east to west direction in the western parcel and to the boundaries on each side of the eastern parcel due to a high point at the location of the existing buildings. The existing flow route of the surface water and site Constraints can be seen within **APPENDIX E**. The proposed plot levels will be determined to suit site conditions.
- 4.1.3 It is also proposed to dispose of surface water using SUDS techniques. Typical SUDS features to be proposed can be seen in **APPENDIX M**.

A proposed drainage strategy/layout is included in **APPENDIX K**, which shows a planning layout for the proposed development.

5.0 PLANNING & POLICY CONTEXT

5.1 NATIONAL POLICY:- PLANNING POLICY WALES (PPW)

5.1.1 PPW sets out the requirements for flood consequence assessments in Wales. TAN 15 Appendix 1

A) Objectives of the Assessment

The prime objective of an assessment is to develop a full appreciation of:

- The consequences of flooding on the development
- The consequences (i.e. the overall impacts) of the development on flood risk elsewhere within the catchment for a range of potential flooding scenarios up to that flood having a probability of 0.1%
- The assessment can be used to establish whether appropriate mitigation measures can be incorporated within the design of the development to ensure that development minimises risk to life, damage to property and disruption to people living and working on the site or elsewhere in the floodplain.

5.2 REGIONAL POLICY AND LOCAL POLICY

5.2.1 Bridgend Flood Risk Management Plan - Local Flood Risk Investigation Areas (August 2016) are included in APPENDIX N. The BCBC LFRMP/S discusses appropriate mitigation measures to maintain Greenfield run-off so as not to exacerbate the potential for any flooding.

5.3 THE SEQUENTIAL TEST

5.3.1 As previously identified in Section 3.7.1 the proposed development Site off A48 at Craig Y Parcau, Bridgend is located primarily in Flood Zone 1 however partially within Flood Zone 2/3. Due to the extreme level difference between the watercourse and proposed development the site is deemed to not be at risk of flooding.

5.4 STRATEGIC FLOOD RISK ASSESSMENT

5.4.1 The proposed development site is located within primarily zone 1 however there is an element of zone 2/3 where the watercourse dissects the site. Flood Zones as shown in the BCBC LFRMS and as shown on the National Resources Wales map in **APPENDIX F.** Due to the extreme level difference between the watercourse and proposed development the site is deemed to not be at risk of flooding therefore no further mitigation is required.

6.0 ASSESSMENT OF POTENTIAL SOURCES OF FLOODING

6.1 DEVELOPMENT SITE

6.1.1 This chapter identifies, assesses, and quantifies (as far as practicably possible), potential sources and mechanisms which are assessed to determine their flood risk and where possible a statement given stating the considered level of risk – negligible, low or significant.

6.2 FLUVIAL

6.2.1 The site lies within Flood Zone 1 with partial zones 2/3 along the existing watercourse location. Due to the extreme level difference between the watercourse and proposed development the site, between 4-9m+, it is deemed to not be at risk of fluvial flooding.

6.3 TIDAL

6.3.1 The site is not near the coast or tidal estuary. It is many metres above sea level. Consequently, there is a negligible risk of flooding from coastal sources.

6.4 OVERLAND FLOWS AND FLOODING FROM LAND

- 6.4.1 The site slopes generally from the West to east in the western parcel and from the centre of the eastern parcel to the boundaries. The existing watercourse within a valley dissecting the centre of the development is between 4m at the north to 9m+ at the southern end of the development below proposed dwelling levels. The existing surface water entering the development site from the north from the existing carriageway/roundabout will be maintained.
- 6.4.2 On-Site flooding from the proposed development drainage is unlikely to be a significant risk as it is proposed as set-out in Section 7 to attenuate development flows within SUDS features prior to exiting site through the existing outfall which is situated significantly lower than the proposed site levels.

6.5 GROUNDWATER

- 6.5.1 No groundwater was encountered within testing.
- 6.5.2 Further groundwater checks are being commissioned at the location of the proposed basins.

6.6 FLOODING AND DRAINAGE

6.6.1 There is an existing 150mm diameter VC public combined sewer running

north west to south east along Nant-Y-Croft in to Rassau Road in close proximity to the south western corner of site.

The exact location of this apparatus has not been the subject of a CCTV sewer Survey or radar survey to date.

- 6.6.2 A check is to be undertaken with Dwr Cymru Welsh Water in relation to the ability of the capacity of the existing network to accept addition of the proposed development.
- 6.6.3 An existing 600mm diameter concrete surface water culvert enters the site within the north western corner. An existing minor watercourse flows south along the western boundary of site with an outfall to an existing concrete culvert approx. 600mm diameter (to be confirmed) located in the south western corner of the development land.
- 6.6.4 The topographical survey indicates 'piped drainage' in the south western section of the site, also outfalling to the existing culvert, which have been identified as private drainage from the sheds located on adjacent land.
- 6.6.5 The DCWW Sewer records are included in **APPENDIX D** for information.
- 6.6.6 Natural Resource Wales Flood Risk Assessment Wales Map indicates that the potential flooding risk for this development is limited to the minor watercourse along the western boundary. This watercourse is to be maintained and development limited in this area. The Flood Risk Assessment Wales Map can be seen in **APPENDIX G.**

6.7 CANALS, RESERVOIRS AND OTHER INFRASTRUCTURE

6.7.1 There are no reservoirs or other such infrastructure in the vicinity.

7.0 PROPOSED DEVELOPMENT AND FLOOD RISK MANAGEMENT

7.1 FLUVIAL

7.1.1 The fluvial risk to the development is low due to level differences to the development site.

7.2 TIDAL

7.2.1 There is no Tidal flood risk; therefore, flood risk mitigation is not required.

7.3 OVERLAND FLOW

7.3.1 Having examined the local topography, the risk of overland flow and flooding from adjacent land is negligible.

The SUDS features proposed within the development are designed to deal with surface water at source and extend the time in which the water takes to reach the outfall location. The existing flow routes, see **APPENDIX E**, have been considered during the design stage to ensure that overland flows have access routes to reach the outfall location should blockages/failures occur in the system.

7.3.2 A flood exceedance plan will also be produced to indicate the overland flow routes should the 1in100 year storm event + climate change % design criteria be surpassed.

7.4 GROUNDWATER

7.4.1 With reference to section 6.5 and the records of the site ground investigation, it is not anticipated that flood risk mitigation will be necessary.

7.5 FLOODING FROM SEWERS AND DRAINS

7.5.1 No existing sewers and drains are present on site. All sewers and drains are to be designed and installed to Sewers for Adoption 8th Edition and to local authority specification.

7.6 OUTLINE DRAINAGE STRATEGY

Sustainable Drainage Systems.

- 7.6.1 All development presents opportunity to incorporate sustainable surface water drainage systems, which might include infiltration techniques or attenuation of flows to protect receiving sewers or watercourses. The choice of methods is dependent upon ground conditions and availability of suitable areas within the particular scheme layout.
- 7.6.2 The development proposals will incorporate sustainable drainage solutions to dispose of surface water runoff. The guidance given in the CIRIA report C697 "The SUDS Manual" will be followed during the detailed design of the proposed sustainable drainage solution. Runoff will be managed both at source and across the Site as a whole. SUDS will incorporate pollution control facilities to improve water quality.
- 7.6.3 Requirement H3 Part 3 of the Building Regulations Approved Document H (2010 Edition) states:
 - (3) Rainwater from a system provided pursuant to sub-paragraphs (1) and (2) should discharge to one of the following listed in order of priority:
 - (a) An adequate soakaway or some adequate infiltration system; or, where this is not reasonably practicable,
 - (b) A watercourse; or where this is not reasonably practicable,
 - (c) A sewer.
- 7.6.4 This development presents an opportunity to incorporate sustainable surface water drainage systems to employ SUDS techniques to accommodate both highway and domestic surface water.
- 7.6.5 The Tier 2 Geotechnical and Geoenvironmental Assessment includes a small number of infiltration test results, to BRE 365 guidance, however the results are inconsistent and not within areas where surface water is proposed to be concentrated.

This document also states, 'Given the risk of dissolution in the Blue Lias formation, it is recommended that proposed soakaways must be positioned at least 10.0m away from any structure.'

The soakaway test undertaken by Terrafirma, (TF-24-589-CA'), in December 2024 was part of their site investigation and are annexed to this report **APPENDIX J.** Mixed infiltration rates were recorded on site, the breakdown of the testing procedure/outcome can be seen in **APPENDIX J.** The use of soakaway drainage is not believed to possible on this development however further tests have been commissioned at the location of the basins to further assess the potential.

- 7.6.6 Proposed SUDS features to be incorporated into the surface water system designed for the development are indicated in **APPENDIX M.**
- 7.6.7 Please refer to **APPENDIX K** for the drainage strategy plan.
- 7.6.8 Maintenance activities in relation to the SUDS features will be the responsibility of the adopting authority, while responsibilities for private features such as water butts, SuDS planters and permeable paving will be that of the homeowner.

- 7.6.9 Foul water flows will be drained to the existing 150mm diameter combined public sewer located south of the development site.
- 7.6.10 DCWW are to be contacted in relation to the available capacity within the existing drainage network and treatment works however this has been considered within the BCBC LDP.

Within the Bridgend Local Development Plan (LDP) 2018-2033 the document 'Statement of Common Ground, between Bridgend County Borough and Dwr Cymru (Welsh Water)' which is an agreement between Bridgend County Borough Council And Dwr Cymru Welsh Water the following is stated for Craig Y Parcau:

Public Sewerage - There should be no issue with the public sewerage network accommodating the foul-only flows from this development site.

The site is traversed by a 350mm foul sewer for which protection measures will be required in the form of an easement width or diversion.

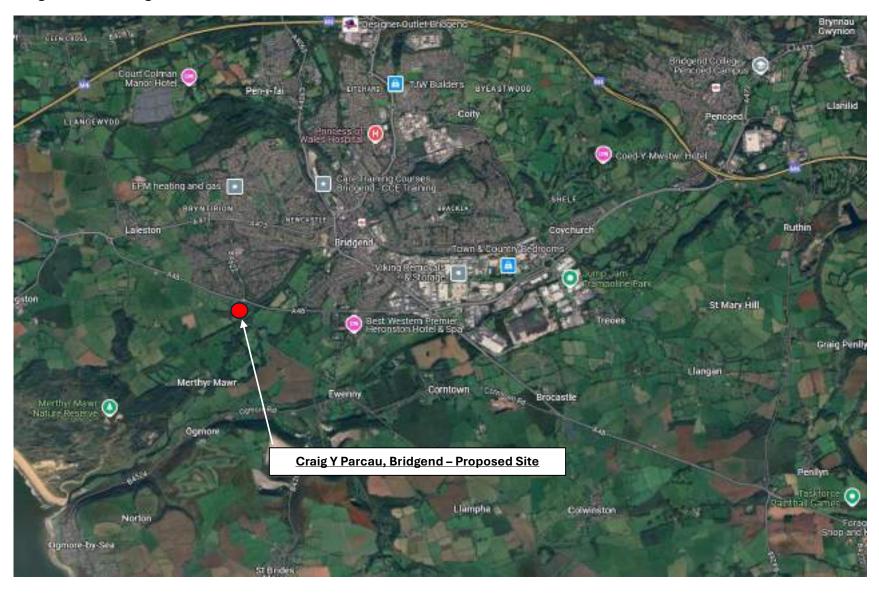
WwTW (Wastewater Treatment Works) - There should be no issue with Penybont (Merthyr Mawr) WwTW accommodating the foul-only flows from this development.

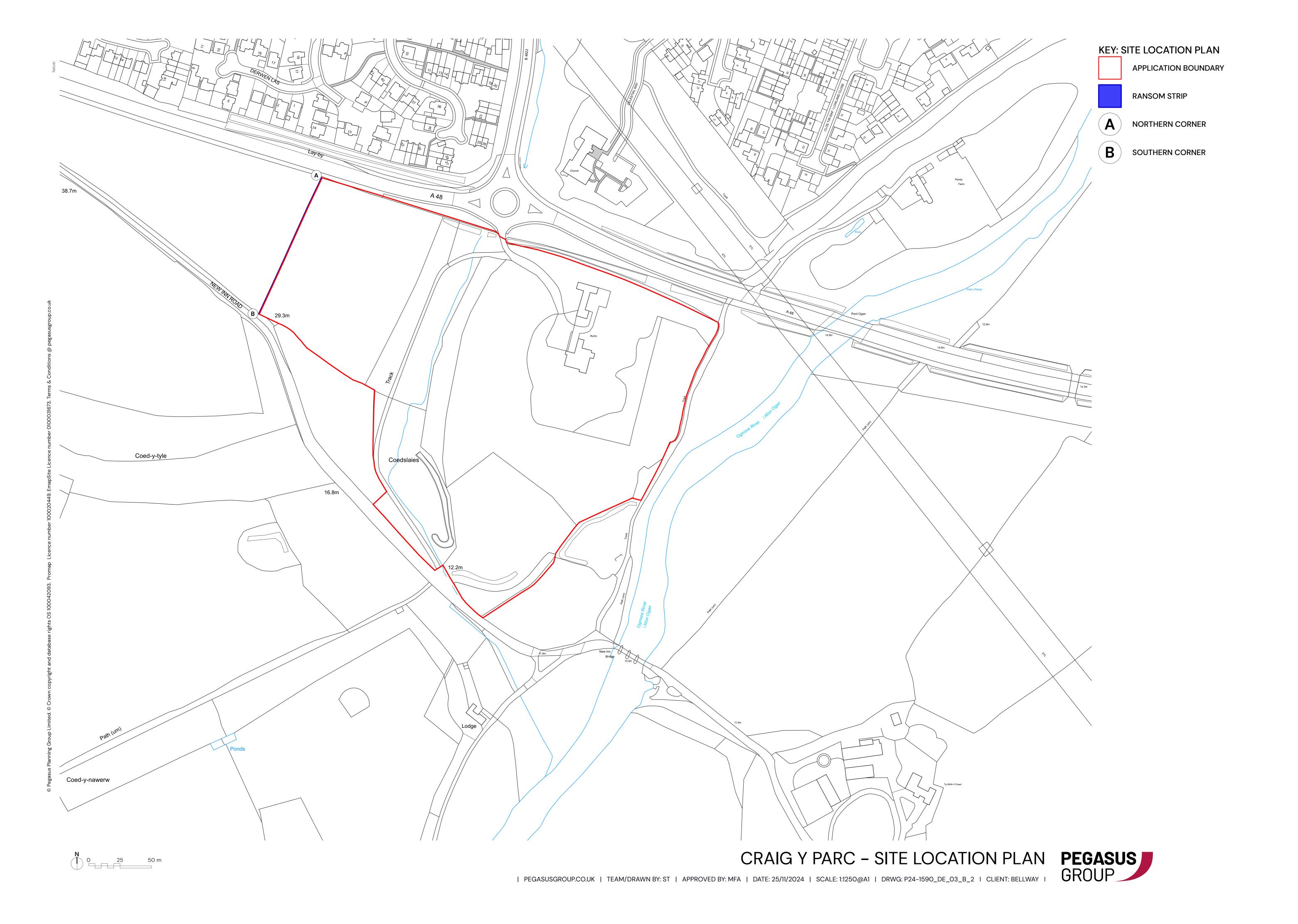
7.7 RESIDUAL FLOOD RISK

- 7.7.1 The main residual flood risks for the proposed development are rainfall events greater than the design criteria and blockages in the existing and proposed drainage systems.
- 7.7.2 Site levels will be designed to ensure that any resulting overland flow will run within driveways and road corridors allowing drainage to avoid property flooding.
- 7.7.3 The residual flood risk is therefore considered to be low.

8.0 CONCLUSIONS

- 8.1.1 This report demonstrates that the proposed development site is at negligible risk of flooding from all sewers and water courses within close proximity of the site.
- 8.1.2 No mitigation measures are required, with no impact on flood risk to other land provided that the site levels are carefully designed.
- 8.1.3 Access and egress through the site of the proposed development can be provided safely with no significant residual flood risk to the site or surrounding areas.
- 8.1.4 Surface water from the proposed development will discharge to SUDS features initially prior to a storage basin which will in turn discharge at a greenfield run off rate of Qbar via a flow control device for storms up to and including the 100-year event plus 40% allowance for future climate change. This represents a significant betterment on the current situation and ensures that the proposed development is reducing flood risk to the downstream catchment. Attenuation storage will be provided within the soakaway systems.
- 8.1.5 Foul water from the proposed development will discharge into the existing 150mm diameter DCWW foul sewer, located within the footway of the southern side of the A48 to the northern boundary of site.

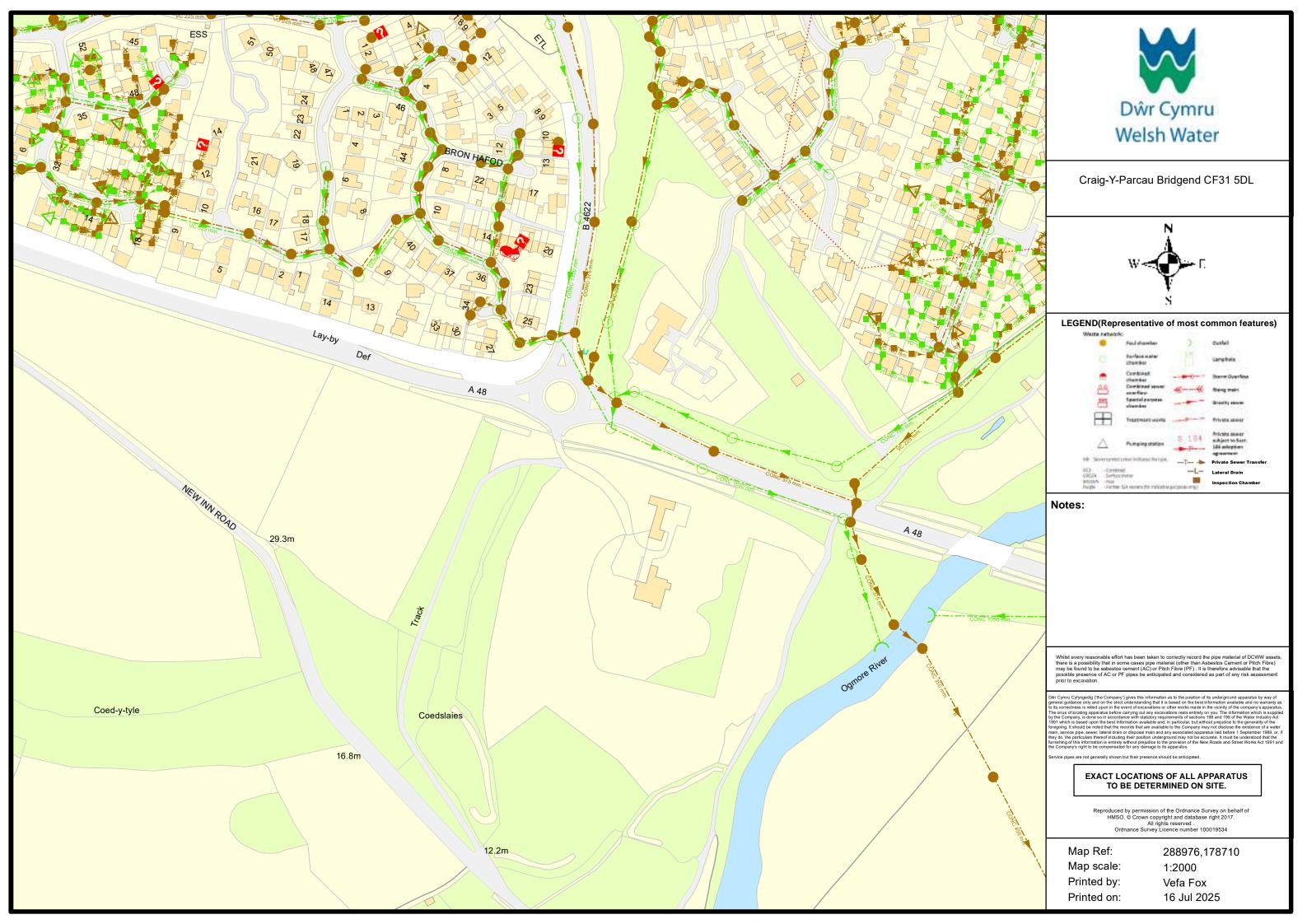



APPENDIX A

Α	List of documents
В	Site Location Plan & Site Red Line Boundary Plan
С	Topographical Survey (S24090-002-0)
D	Dwr Cymru Welsh Water records
Е	Constraint and Opportunities Plan (P24-1590-DE-01)
F	Flood Zone Overlay & NRW Flood Maps
G	Greenfield Runoff & Quick store estimations
Н	Tier 2 Geotechnical and Geoenvironmental Assessment by Terra Firma
J	BRE365 Soakaway Test Results & Trial Pit Locations
K	Preliminary Engineering Layout and proposed drainage strategy
L	Existing Ground Conditions – Flow Arrows
М	Typical SUDS features
N	Bridgend Local Authority Guidance Documents • Bridgend Flood Risk Management Plan
Р	Tree Constraints Plan A3 Craig Y Parcau, Bridgend

ADDENDIV D	
APPENDIX B	
Site Location Plan & Site Red Line Boundary Plan	

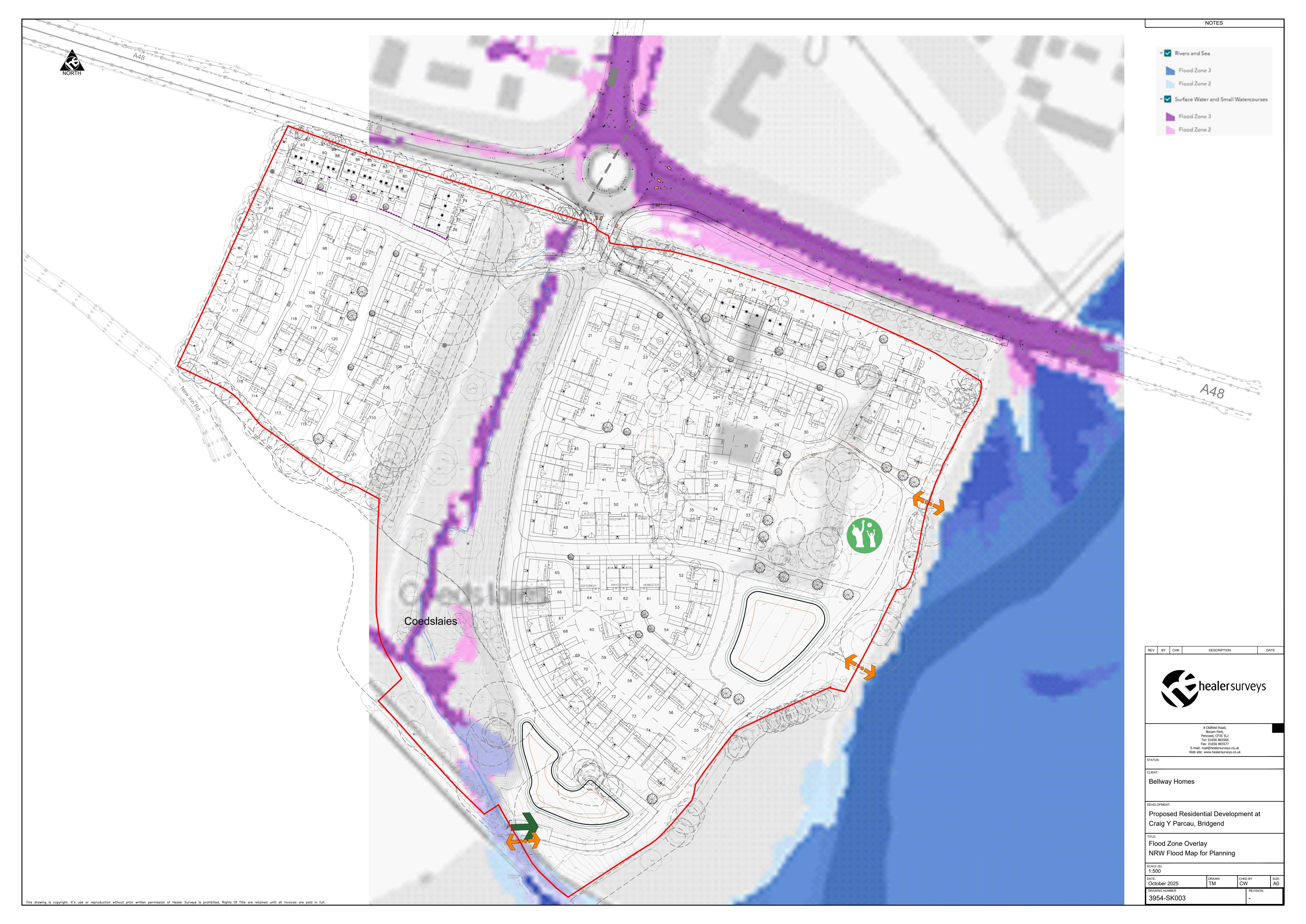
1.2 - Craig Y Parcau, Bridgend - Location Plan

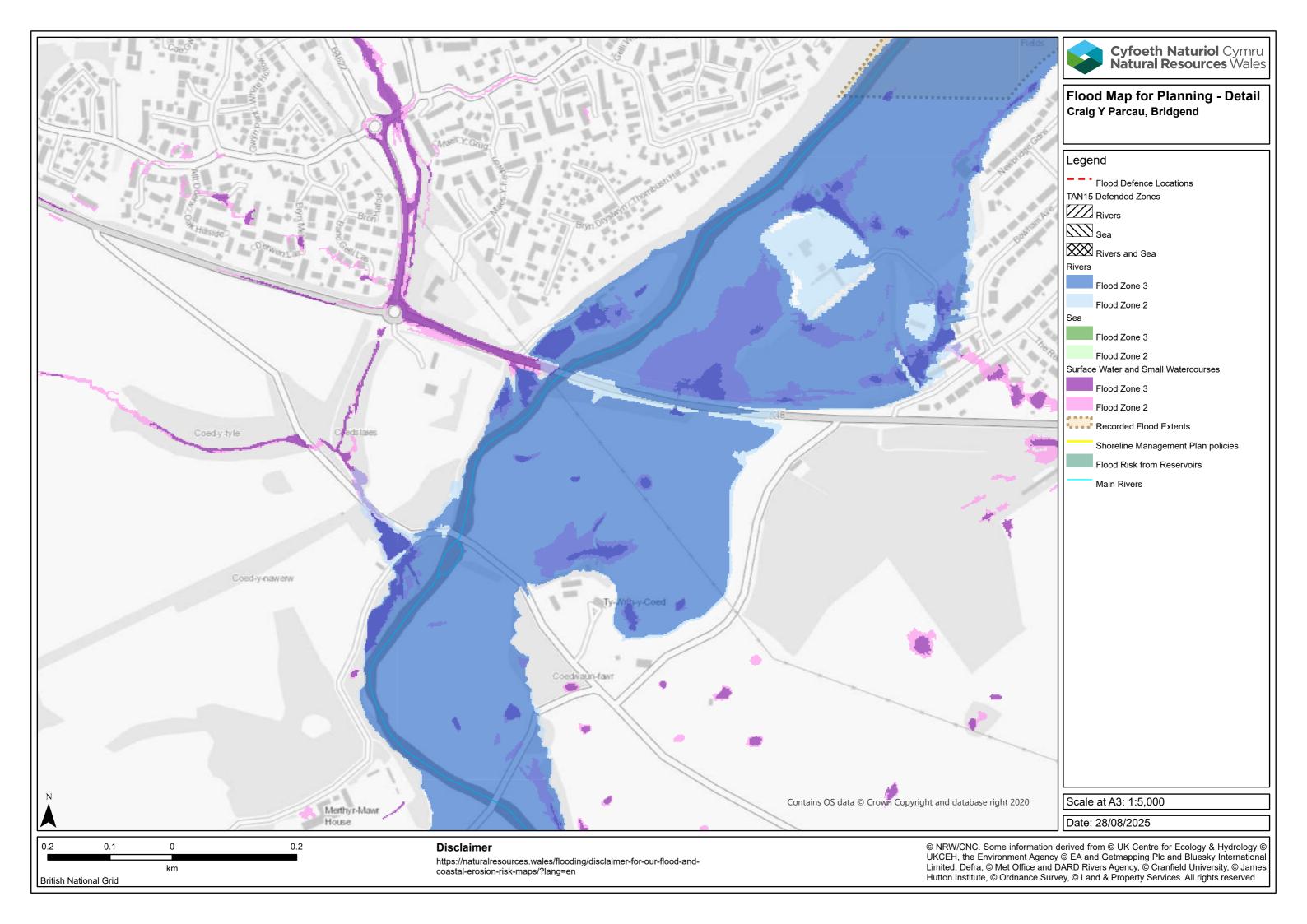


APPENDIX	С
Topographical Survey (S	324090-002-0)

APPENDIX D	
APPENDIA D	
Dwr Cymru Welsh Water records	

APPEN	IDIX E	
Constraint and Opportunitie	es Plan (P24-1590-DE-01)	


APPENDIX F	
Flood Zana Overday 9 NDVV Flood	Mana
Flood Zone Overlay & NRW Flood	Maps


Craig Y Parcau

Bridgend

29/10/2025

APPENDIX G	
Greenfield Runoff & Quick store estimations	

chris.rhys.williams

From: Gethin Powell <Gethin.Powell@bridgend.gov.uk>

Sent: 06 October 2025 10:54 **To:** chris.rhys.williams

Subject: RE: Greenfield Runoff Rate - Craig Y Parcau, Bridgend

Hi Chris,

Yes QBar is acceptable.

Happy to have some discussions/informal agreement prior to a pre-app submission.

Regards,

Gethin

Gethin Powell

Arweinydd Tîm Rheoli Arfordiroedd a Llifogydd | Team Leader Coastal & Flood Management Y Gyfarwyddiaeth Cymunedau | Communities Directorate
Cyngor Bwrdeistref Sirol Pen-y-bont ar Ogwr | Bridgend County Borough Council

Ffôn/Phone: (01656) 642 810

Ebost/Email: Gethin.Powell@bridgend.gov.uk
Gwefan/ website: www.bridgend.gov.uk

From: chris.rhys.williams <chris.rhys.williams@healersurveys.co.uk>

Sent: 06 October 2025 10:37

To: Gethin Powell <Gethin.Powell@bridgend.gov.uk>

Subject: FW: Greenfield Runoff Rate - Craig Y Parcau, Bridgend

Importance: High

Rhybudd: E-bost allanol yw hwn - sy wedi dod o sefydliad/unigolyn y tu allan i'r Cyngor. Byddwch yn wyliadwrus wrth glicio ar ddolenni neu agor atodiadau.

Caution: This is an external email and did not originate from within the Council. Please take care when clicking links or opening attachments.

Hi Gethin,

Prior to today's meeting, have you had chance to review the email below and attached Qbar estimation?

We also wanted to discuss things like Bridgend's approach to interception ratios, use of swales/features etc prior to making a Pre-SAB application, to try and refine the design to Bridgend's requirements making any comments received more refined.

Is this something we can do, or would you advise making the Pre-SAB application as a first point of reference without LA input?

Thanks, Chris

Senior Infrastructure Engineer

Healer Surveys Limited

■ 8 Old Field Road, Bocam Park, Pencoed, Bridgend, South Wales. CF35 5LJ

Tel:- 01656 865566

Email:- chris.rhys.williams@healersurveys.co.uk

Wesbite:- Healer Surveys South Wales

Please consider the environment before printing this email and any attachments.

From: chris.rhys.williams

Sent: 22 September 2025 14:53 To: SAB <<u>sab@bridgend.gov.uk</u>>

Cc: Ruilin.Jiao@bridgend.gov.uk; Biodiversity < biodiversity@bridgend.gov.uk >; thomas.morris

<thomas.morris@healersurveys.co.uk>

Subject: FW: Greenfield Runoff Rate - Craig Y Parcau, Bridgend

Importance: High

Hi,

Has there been any progress on our query below sent on Friday 12th September?

Regards,

Chris Williams Senior Infrastructure Engineer

Healer Surveys Limited

8 Old Field Road, Bocam Park, Pencoed, Bridgend, South Wales. CF35 5LJ

Tel:- 01656 865566

Email:- chris.rhys.williams@healersurveys.co.uk

Wesbite:- Healer Surveys South Wales

Please consider the environment before printing this email and any attachments.

From: chris.rhys.williams

Sent: 12 September 2025 15:23 **To:** 'SAB' <SAB@bridgend.gov.uk>

Cc: thomas.morris <thomas.morris@healersurveys.co.uk>; Biodiversity <Biodiversity@bridgend.gov.uk>

Subject: RE: Greenfield Runoff Rate - Craig Y Parcau, Bridgend

Importance: High

Hi Gethin,

Thank you for the response below. We've discussed the response with the client and have been asked to discuss the issue a little further.

The original LDP document statement was made by Environment Agency Wales, now replaced by NRW. If NRW were to still have the same stance would SAB still object and require the controlled rate?

Is there any documentation within the LDP application information that contradicts the statement and forms the basis for SAB requiring the controlled discharge rate?

As we are currently in the process of producing the FCA, should the discharge rate be required, could you confirm if the attached Greenfield Runoff estimation for Qbar (22.2l/s) is acceptable?

The client has also asked if there is a Commuted Sum calculator available from Bridgend SAB?

I would be happy to discuss the above in a telephone conversation should you wish to give me a call on the contact details below.

Kind regards,

Chris Williams Senior Infrastructure Engineer

Healer Surveys Limited

8 Old Field Road, Bocam Park, Pencoed, Bridgend, South Wales. CF35 5LJ

Tel:- 01656 865566

Email:- chris.rhys.williams@healersurveys.co.uk

Wesbite:- Healer Surveys South Wales

Please consider the environment before printing this email and any attachments.

From: SAB < SAB@bridgend.gov.uk> Sent: 08 September 2025 15:11

To: chris.rhys.williams < chris.rhys.williams@healersurveys.co.uk>

Cc: thomas.morris < <u>thomas.morris@healersurveys.co.uk</u>>; Biodiversity < <u>Biodiversity@bridgend.gov.uk</u>> **Subject:** RE: Greenfield Runoff Rate - Craig Y Parcau, Bridgend

Hi Chris,

Apologies for the delay responding.

That statement is incorrect. Flows rates will need to be discharged at a restricted rate.

Regards,

Gethin

Gethin Powell

Arweinydd Tîm Rheoli Arfordiroedd a Llifogydd | Team Leader Coastal & Flood Management Y Gyfarwyddiaeth Cymunedau | Communities Directorate

Cyngor Bwrdeistref Sirol Pen-y-bont ar Ogwr | Bridgend County Borough Council

Ffôn/Phone: (01656) 642 810

Ebost/Email: <u>Gethin.Powell@bridgend.gov.uk</u> Gwefan/ website: <u>www.bridgend.gov.uk</u>

From: chris.rhys.williams < chris.rhys.williams@healersurveys.co.uk

Sent: 05 September 2025 16:10

To: Biodiversity < Biodiversity@bridgend.gov.uk >

Cc: landdrainage < landdrainage@bridgend.gov.uk >; Gethin Powell < Gethin.Powell@bridgend.gov.uk >; thomas.morris@healersurveys.co.uk >; Ruilin Jiao < Ruilin.Jiao@bridgend.gov.uk >; SAB

<<u>SAB@bridgend.gov.uk</u>>

Subject: FW: Greenfield Runoff Rate - Craig Y Parcau, Bridgend

Importance: High

Rhybudd: E-bost allanol yw hwn - sy wedi dod o sefydliad/unigolyn y tu allan i'r Cyngor. Byddwch yn wyliadwrus wrth glicio ar ddolenni neu agor atodiadau.

Caution: This is an external email and did not originate from within the Council. Please take care when clicking links or opening attachments.

Good afternoon,

We've been trying to get in contact with Bridgend in reference to the attached emails for SAB and Greenfield runoff rates for the proposed development at Craig Y Parcau.

We have reviewed the attached Drainage Strategy which was produced on 29th April 2020 by Consulting Civil Engineer WL Squared for the client HD Ltd.

Within the attached document there is a section named 'CURRENT HYDROLOGICAL REGIME', and it is stated:

"The stream that runs through the site, it is believed to be the main means of stormwater discharge from the site given the site topography. The detailed flood risk maps maintained by Natural Resources Wales (excerpt opposite left bottom) show the area of stream running through the site to be an area of low surface water flood risk (shown in yellow). Environment Agency Wales have previously advised HD Ltd through their consultants Opus that the permitted (stormwater) discharge rate to the River Ogwr depended upon where on the River the development surface water was discharged. If the discharge to the River Ogwr was north of the A48 crossing then a maximum discharge rate of 28.2l/s/ha would be permitted. If however the discharge was south of the A48 then there would be no restriction of

discharge rate imposed by them provided SUDS features were incorporated within the proposed drainage scheme."

As this document was included within the Bridgend LDP under Supporting Evidence for Proposed Allocation COM1(1) – Craig Y Parcau document SD183 Drainage Strategy, can you confirm that should we provide a positive outfall for the Surface water to the river Ogwr this would be acceptable at free discharge as per the approved document attached as the development is South of the A48?

Kind Regards,

Chris Williams Senior Infrastructure Engineer

Healer Surveys Limited

8 Old Field Road, Bocam Park, Pencoed, Bridgend, South Wales. CF35 5LJ

Tel:- 01656 865566

Email:- chris.rhys.williams@healersurveys.co.uk

Wesbite:- Healer Surveys South Wales

Please consider the environment before printing this email and any attachments.

From: chris.rhys.williams
Sent: 27 August 2025 11:11
To: biodiversity@bridgend.gov.uk

Cc: thomas.morris < thomas.morris@healersurveys.co.uk > **Subject:** Greenfield Runoff Rate - Craig Y Parcau, Bridgend

Importance: High

Hi,

We're in the process of working for a developer within Bridgend CBC and have a query in relation to the greenfield runoff rate for a proposed site.

The site in question is yet to have an FRA (one is being commissioned) and therefore no greenfield runoff rate has been agreed to date.

Could you confirm if the attached Greenfield Runoff estimation is correct, which would result in a QBar of 22.2l/s for the development?

Kind Regards,

Chris Williams Senior Infrastructure Engineer

Healer Surveys Limited

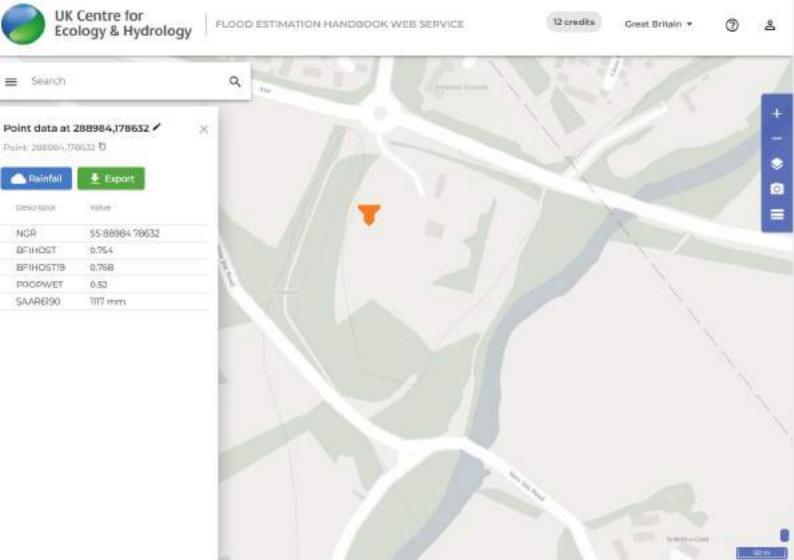
8 Old Field Road, Bocam Park, Pencoed, Bridgend, South Wales. CF35 5LJ

Tel:- 01656 865566

Email:- chris.rhys.williams@healersurveys.co.uk

Wesbite:- Healer Surveys South Wales

Please consider the environment before printing this email and any attachments.



This e-mail and any attachments transmitted with it represents the views of the individual(s) who sent them and should not be regarded as the official view of Bridgend County Borough Council. The contents are confidential and intended solely for the use of the addressee. If you have received it in error, please inform the system administrator postmaster@bridgend.gov.uk

This e-mail and any attachments have been scanned.

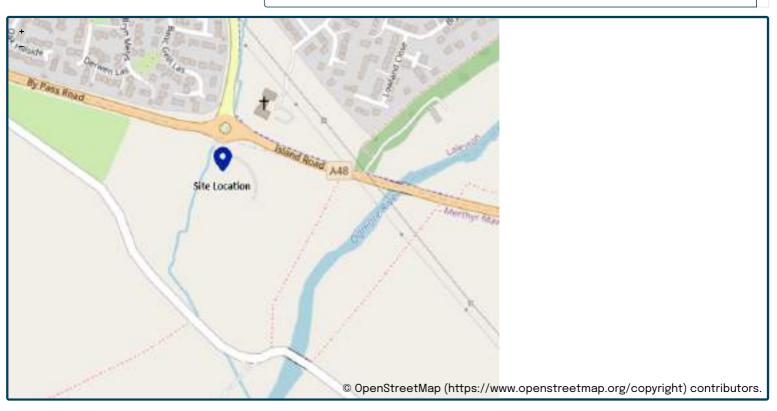
Greenfield runoff rate estimation tool

hrwallingford www.uksuds.com | Greenfield runoff rate estimation tool (https://www.uksuds.com/)

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (CIRIA, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Project details

Date	22/08/2025	
Calculated by	Healer Surveys	
Reference	3954	
Model version	2.1.2	


Location

Site name

Craig Y Parcau

Site location

Bridgend

Site easting (British National Grid)

Site northing (British National Grid)

288988 178666

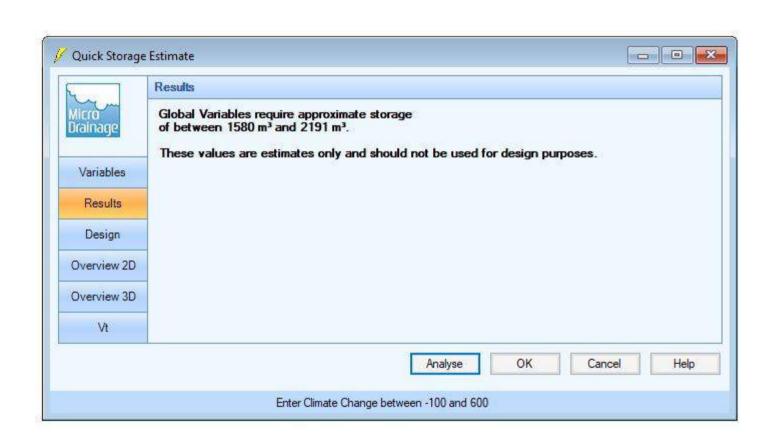
Site details

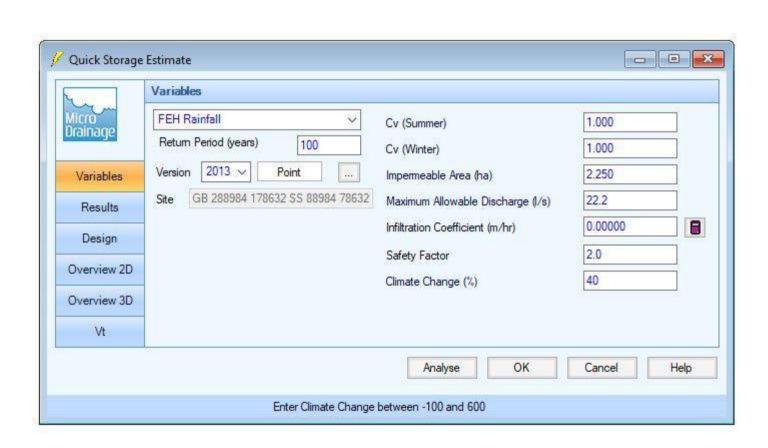
Total site area (ha)

6.9

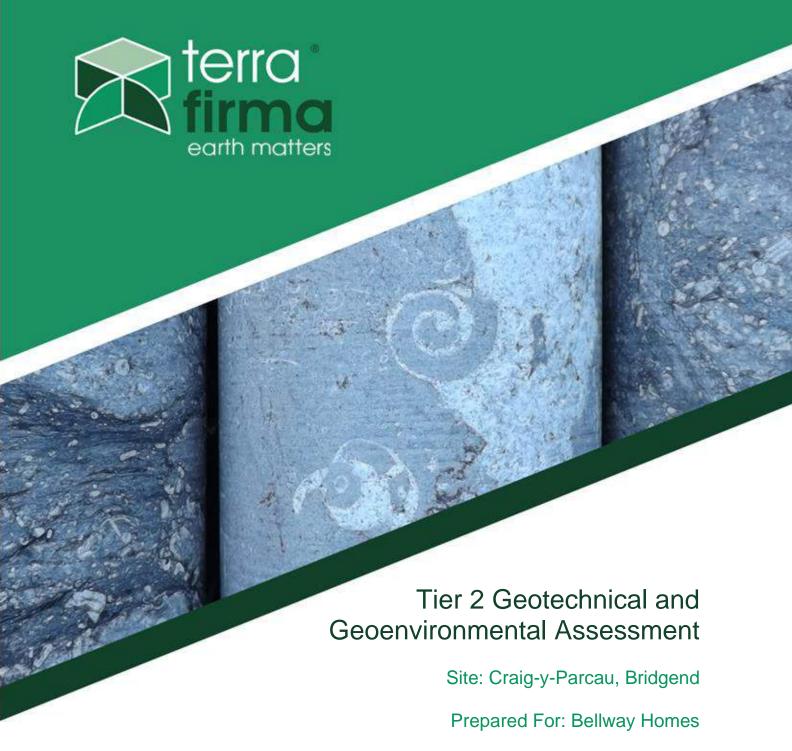
We use cookies on this site to enhance your user experience

OK, I AGREE


Greenfield runoff Method Method FEH statistical FEH statistical Map value My value SAAR (mm) 1117 1117 **BFIHOST** 0.754 QMed-QBar conversion 1.075 1.075 QMed (I/s) l/s 20.63 QBar (FEH statistical) (I/s) l/s 22.18 Growth curve factors My value Map value Hydrological region 9 9 1 year growth factor 0.88 2 year growth factor 0.93 10 year growth factor 1.42 30 year growth factor 1.78 100 year growth factor 2.18 200 year growth factor 2.46 Results Method FEH statistical Flow rate 1 year (I/s) 19.5 l/s Flow rate 2 year (I/s) 20.6 l/s Flow rate 10 years (I/s) 31.5 l/s Flow rate 30 years (I/s) 39.5 l/s Flow rate 100 years (I/s) 48.3 l/s Flow rate 200 years (I/s) 54.6 l/s Please note runoff estimation is subject to significant uncertainty. Results are therefore normally reported to only 1 decimal place. Where 2 decimal places are provided, this does not indicate accuracy to this level, it has been adopted to prevent 'zero' figures from being reported. Outputs less than 0.01 l/s are reported as 0.01 l/s. Disclaimer This report was produced using the Greenfield runoff rate estimation tool (2.1.2) developed by HR Wallingford and available at uksuds.com (https://www.uksuds.com/). The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at uksuds.com/terms-conditions


(https://www.uksuds.com/terms-conditions). The outputs from this tool have been used to estimate Greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, Centre for Ecology and Hydrology, Wallingford

Hydrosolutions **(New 4 serior and this sife to entitle of this sife)**


By clicking the Accept button, you agree to us doing so.

experience

APPENDIX H Tier 2 Geotechnical and Geoenvironmental Assessment by Terra Firma

Issue Date: December 2024

Job No: TF-24-589-CA

REPORT TITLE : Geoenvironmental and Geotechnical Report:

Proposed Residential Development, Craig-y-

Parcau, Bridgend

JOB NUMBER : TF-24-589-CA

ISSUE DATE : December 2024

REPORT REFERENCE : TF-24-589-T2-01

Document Revision Record

Issue No.	Date	Revision Details	Initials
1	01/12/2024		ML

	Name	Signature
Prepared	David Emanuel BSc (Hons), MSc, FGS, Dip.Chem, M Phil, CGeol	1/1
	Associate Director	1.61
Checked	Mathew Lake MEng, FGS	10 1
	Director	1. Tuhe
Approved	Gwyn Lake	2000 CONTACT
	BSc (Hons). PhD, CGeol, FGS	Ca. Ph
	Managing Director	5 Jun Porc

Executive Summary				
Site Location and Proposed Development	Bellway Homes (the Client) is proposing the construction of a new residential development at Craig-y-Parcau, Bridgend. The development site is irregular in shape and locates within Merthyr Mawr, Bridgend. The site centres on an approximate National Grid Reference of 288980, 178610, occupying a plan			
Development	area of approximately 6.91 Hectares.			
Geology	The Geological map shows the site to be underlain by the Blue Lias Formation (western parcel of site) and the Porthkerry Formation. No superficial deposits are shown overlying the solid geology.			
	Depth	(m)	Thickness (m)	Stratum
Ground Conditions	0.00 -	0.4/0.8	0.4/0.8	Made Ground: slightly sandy gravelly CLAY with occasional brick concrete and timber fragments. (TP01-TP03 +TP07 only)
	0.4/0.8 -	1.4/2.6	1.0/1.8	Weathered Blue Lias/Porthkerry Formation - Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content
Contamination of Concern	Contaminants of concern identified in made ground soils during the investigation are lead, non volatile PAH and chrysotile asbestos.			
	Given the recorded concentration of contamination and limited access to parts of the site, it is recommended that a Tier 3 Assessment is completed before moving onto a Stage 2 Options			
Conclusion of Tier 2 Assessment				nt is completed before moving onto a Stage 2 Options
Foundation Solution	The presence of soluble limestone bedrock on the western part of the site provides a geotechnical risk and will require a specific foundation solution to mitigate the risk posed from dissolution. As such, the site has been split into two foundation zones. The western zone will require raft/semi raft foundations capable of spanning a 3m soft spot. Strip foundations are suitable for the remaining site.			
Recommended Further Works	In order to refine the site conceptual model, it is recommended that additional investigation is undertaken around the area of the former buildings on site and areas currently inaccessible during this phase of investigation works. Samples of made ground should be collected and assessed to fully quantity the risk posed by the identified contaminants.			

TABLE OF CONTENTS

SECTION 1	Introduction & Proposed Development	1
	 1.1 Background 1.2 Objectives 1.2.1 Tier 2 1.3 Geotechnical Category 1.4 Information Sources 1.5 Roles & Responsibilities 	1 1 2 2 2 2 3
	1.6 Limitations & Exceptions of Investigation1.7 Quality Assurance	3
SECTION 2	Summary of Tier 1 Assessment	4
	2.1 Summary of Tier 1 Assessment	4
SECTION 3	Field Investigation	5
	 3.1 Site Works 3.2 Ground Conditions 3.3 Groundwater 3.4 Stability & Obstructions 3.5 Laboratory Chemical Testing 3.5.1 Sampling Strategy 3.5.2 Sample Analysis 3.6 Soil Property Testing 3.6.1 In-situ Permeability Testing 3.6.2 In-situ California Bearing Ratio (CBR) Testing 3.6.3 Laboratory Geotechnical Testing 	5 5 5 6 7 7 7 7
SECTION 4	Evaluation of Geoenvironmental Analytical Results	9
	 4.1 Assessment Methodology 4.1.1 Soils 4.2 Soil Test Results 4.2.1 Inorganics 4.2.2 Organics 4.2.3 Asbestos Testing 	9 9 9 10 11
SECTION 5	Generic Quantitative Risk Assessment	12
	 5.1 Contaminants of Concern 5.2 Contaminant Linkages 5.3 Conclusions of the Generic Quantitative Risk Assessment 5.4 Likely Remediation Solution 5.4.1 Human Health 5.4.1.1 Radon 	12 12 12 13 13
SECTION 7	Laboratory Geotechnical Testing Results Analysis	14
	 7.1 Soil Testing 7.1.1 Plasticity & Moisture Content Testing 7.1.2 Concrete Classification Testing 	14 14 15
SECTION 8	Engineering Recommendations	16

		Preparation of Site Foundation & Floor Slab Solution Recommended Foundation Solution – Zone A Recommended Foundation Solution – Zone B Ground Floor Slabs Excavations & Formations Protection of Buried Concrete Access Roads & Car Parking Areas Storm Water Drainage Retaining Walls Re-Use of Demolition Materials	16 16 17 17 18 18 19 19
BIBLIOGRA	PHY		22
		e Sources ard Publications	22 22
Tables			
Table 2.1 Sur Table 3.1 Sur Table 3.2 Sar Table 3.3 Sur Table 3.4 Sur Table 3.5 Sur Table 4.1 Sur Table 4.3 Sur Table 4.4 Sur Table 5.1 Cor Table 5.2 Ref Table 7.1 Pla Table 7.2 BRI Table 8.1 Sur	mmary of mmary of mmary of mmary of mmary of mmary of mmary of mmary of mmary of sticity & E SD1 of mmary of	Responsibilities of Tier 1 Assessment of Typical Ground Conditions ocations and Targets of Soakaway Results of CBR Testing of Geotechnical Testing of Soil Chemical Test Results – Inorganics of Soil Chemical Test Results – Speciated PAH of Soil Chemical Test Results – Petroleum Hydrocarbons of Soil Chemical Test Results – Asbestos Quantification ants of Concern onceptual Site Model & Moisture Content Test Results Testing Summary of Soakaway Results Shear Stress Parameters	2 4 5 6 7 7 8 9 10 10 11 12 12 14 15 19 20
Figures			
Figure 1.1 Pro	oosed S	Site Layout	1
_			

Annexes

ANNEX A Trial Pit Logs

ANNEX B Soakaway Results

ANNEX C Laboratory Chemical Test Results

ANNEX D CBR Test Results

ANNEX E Laboratory Geotechnical Test Results

Drawings

Drawing 01 Proposed Site Layout

SECTION 1 Introduction & Proposed Development

1.1 Background

Bellway Homes (the Client) is proposing the construction of a new residential development at Craig-y-Parcau, Bridgend. The proposed site layout can be seen **Figure 1.1**.

Figure 1.1 Proosed Site Layout

Terra Firma have been commissioned by the Client to undertake a Geotechnical and Geoenvironmental Report.

This report contains a Tier 2 assessment (Site Investigation) including a Generic Quantitative Geoenvironmental Risk Assessment and Geotechnical Ground Investigation.

1.2 Objectives

Land Contamination Risk Management (LCRM) guidance provided by the Environment Agency advocates using a tiered approach. This comprises Tier 1; the Preliminary Risk Assessment, Tier 2; the Generic Quantitative Risk Assessment and Tier 3; the Detailed Quantitative Risk Assessment. As each tier is completed a decision is made whether it is necessary to advance to the next tier.

In addition to LCRM, geotechnical aspects of the development also need to be considered and are approached in a similar manner, with the risks identified in the preliminary assessment, and then investigated through subsequent phase of investigation.

1.2.1 Tier 2

The main objectives of the Tier 2 Generic Quantitative Geoenvironmental Risk Assessment programme are:

- investigate the potential human health and environmental liabilities at the site associated with any contamination; and
- provide a summary of the human health and environmental conditions at the site, together with any necessary further intrusive works and / or remediation works to render the site fit for its intended use.

The main objectives of the Geotechnical Site Investigation are:

- investigate the type, strength and bearing characteristics of the shallow superficial and underlying solid geology;
- provide engineering foundation and floor slab recommendations for the proposed development;
- provide infiltration rates and stormwater drainage viability; and
- provide recommendations regarding any other geotechnical aspects pertaining to the development.

In order to achieve the above objectives, Terra Firma carried out an assessment programme including a review of existing data, followed by a field investigation to collect geotechnical and geoenvironmental data from selected locations.

1.3 Geotechnical Category

In accordance with BS EN 1997-1:2004+A1:2013, the proposed development comprises the following geotechnical category:

Geotechnical Category 2: conventional types of structures and foundation with no exceptional risk of difficult soil or loading conditions (e.g., spread, raft & pile foundations; retaining structures; excavations; earthworks and ground anchors).

1.4 Information Sources

The following sources of information have been referenced in support of this assessment:

Tier 1 Assessment Report Reference T1-24-589-1.

1.5 Roles & Responsibilities

Table 1.1 Roles and Responsibilities

Role	Organisation
Client/Developer	Bellway Homes
Geotechnical/Geoenvironmental Consultant	Terra Firma
Local Authority	Bridgend County Borough Council

1.6 Limitations & Exceptions of Investigation

The Client has requested that a Tier 2 Geoenvironmental and Geotechnical Report (GGR) be undertaken to enable the outlined main objectives.

The GGR was conducted, and this report has been prepared for the sole internal reliance of the Client and their design and construction team. This report shall not be relied upon or transferred to any other parties without the express written authorisation of TFW Group Ltd. If an unauthorised third party comes into possession of this report, they rely on it at their peril and the authors owe them no duty of care and skill. The report represents the findings and opinions of experienced geoenvironmental and geotechnical consultants. TFW Group Ltd does not provide legal advice and the advice of lawyers may be required.

The subsurface geological profiles, any contamination and other plots are generalised by necessity and have been based on the information found at the locations of the exploratory holes and depths sampled and tested.

Human health and environmental risk assessment outcomes may not take into account the potential for the creation of new contaminant linkages as a result of variation to the proposed development and recommended engineering solutions. It is therefore imperative that the Client engages a geoenvironmental consultant to re-visit the conceptual site model and potential risks upon completion of final designs, prior to development.

Whilst this report assesses the suitability of soils in respect to human health and the environment, it is beyond the scope of this report to determine the legal status of imported and re-used soils/aggregates. It is the responsibility of the Client to confirm imported and re-used soils/aggregates have reached 'Non-Waste' status.

The investigation was limited by the following site constraints:

 Access restrictions to the required locations due to Himalayan Balsam and above ground utilities.

1.7 Quality Assurance

The quality, health, safety and environmental aspects of the assessment comply with Terra Firma business management system which is UKAS accredited and complies with the requirements of BS EN ISO 9001:2015, BS EN ISO 14001:2015 and BS EN ISO 45001:2018 standards.

SECTION 2 Summary of Tier 1 Assessment

The site has been the subject of a previous Tier1 Geoenvironmental Desk Study:

• Tier 1 Geoenvironmental and Geotechnical Report: Proposed Residential Development at Craig-y-Parcau, Bridgend dated November 2024.

The salient points of the Tier 1 Assessment are summarised in **Section 2.1**.

2.1 Summary of Tier 1 Assessment

The findings of the Tier 1 Assessment are summarised in **Table 2.1**. The Tier 1 Assessment can be made available on request.

Table 2.1 Summary of Tier 1 Assessment

Site History	The site was undeveloped until the 1890's when Carig y Parcau was built. Llanerch was later built on the southeastern part of the site in the early 1970's.
Geology	The Geological map shows the site to be underlain by the Blue Lias Formation (western parcel of site) and the Porthkerry Formation. No superficial deposits are shown overlying the solid geology.
Radon	Full radon protection measures are required for new development on site.
Potential Sources of Contamination	Several sources of contamination have been discovered during the desk study which require further investigation, namely demolition waste, former lime kilns and underlying geology

SECTION 3 Field Investigation

3.1 Site Works

A geotechnical and geoenvironmental site investigation comprising the excavation of 31 trial pits was undertaken between the 6th and 8th November 2024.

The fieldwork was supervised by Terra Firma, who logged the exploratory holes to the requirements of BS 5930:2015+A1:2020. The proposed locations of the exploratory holes were determined by Terra Firma in general accordance with BS 10175:2011+A2:2017 in order to assess the findings of the preliminary conceptual site model.

Trial pits referenced TP01 to TP31, were formed using a JCB 3CX excavator with a 0.60m wide bucket.

Representative disturbed samples were taken and retained in airtight containers for environmental and geotechnical testing.

On completion, all trial pits were backfilled with materials arisings compacted in layers using the excavator bucket. The ground surface was left proud to accommodate future settlement of backfilled materials.

The trial pit logs are presented in **Annex A.**

Soakaway tests were carried out in trial pits TP23 and TP25-TP29 in general accordance with BRE DG 365:2016. The excavation sides were squared using the excavator bucket and dimensions recorded within the test section. The trial pit was partially filled with clean water using a dedicated bowser with a 75mm diameter outlet and the fall in level recorded against time. The results are presented in **Annex B.**

Exploratory hole locations are shown on **Drawing 01**.

3.2 Ground Conditions

The ground conditions encountered by the exploratory holes can in general be summarised as shown in **Table 3.1**.

Table 3.1 Summary of Typical Ground Conditions

Depth (m)		Thickness (m)	Stratum	
0.00-	-	0.4/0.8	0.4/0.8	Made Ground: slightly sandy gravelly CLAY with occasional brick concrete and timber fragments. (TP01-TP03 +TP07 only)
0.4/0.8	-	>2.6	1.0/1.8	Weathered Blue Lias/Porthkerry Formation - Firm yellowish brown slightly sandy gravelly silty with low cobble and boulder content

3.3 Groundwater

Groundwater was not encountered in the exploratory holes.

3.4 Stability & Obstructions

Trial pits remained stable and vertical during excavation.

A concrete obstruction was encountered at 0.8m depth in trial pit TP07.

All trial pits terminated on possible bedrock ranging between 1.4m and 2.6m depth.

3.5 Laboratory Chemical Testing

3.5.1 Sampling Strategy

Soil sampling locations were selected on a targeted basis to investigate suspected sources of contamination or potential contamination migration pathways.

Soil sampling locations were also selected on a non-targeted basis to characterise the contamination status of the remaining site.

Sample locations, depths and suspected/known contamination source targets are summarised in **Table 3.2**:

Table 3.2 Sample Locations and Targets

Table 3.2 Sample Locations a	iliu raigeis	
Location	Depth (m)	Contamination Targets
TP01	0.2-0.3	Made Ground
TP02	0.5-0.6	Made Ground
TP03	0.2-0.3	Made Ground
TP04	0.5-0.6	Natural strata
TP05	1-1.1	Natural strata
TP06	0.6	Natural strata
TP07	0.1	Made Ground
TP07	0.4	Made Ground
TP08	0.1	Made Ground
TP08	0.8	Natural strata
TP09	0.05	Natural strata
TP10	1.5	Natural strata
TP11	0.7	Natural strata
TP12	1	Natural strata
TP13	0.1	Natural strata
TP14	0.1	Natural strata
TP15	0.6	Natural strata
TP16	0.4	Natural strata
TP17	0.1	Natural strata
TP18	1.5	Natural strata
TP19	0.5	Natural strata
TP20	0.8	Natural strata
TP21	0.1	Natural strata
TP22	0.4	Natural strata
TP23	0.5	Natural strata
TP24	0.9	Natural strata
TP25	0.6	Natural strata
TP28	0.05	Natural strata
SP1	0.1	Stockpile
SP2	0.1	Stockpile

3.5.2 Sample Analysis

During the site investigation works soil samples were collected and despatched under a chain of custody to the accredited laboratories of Eurofins Chemtest for chemical analysis.

The laboratory test results certificates may be found in **Annex C**.

3.6 Soil Property Testing

3.6.1 In-situ Permeability Testing

Soakaway test results are summarised in Table 3.3.

Table 3.3 Summary of Soakaway Results

Trial Pit	Depth Range of Test (m)	Geology Description	Infiltration Rate (ms ⁻¹)
TP23	0.4-1.15		1.82 x10 ⁻⁰⁵
TP25	1-1.5	Oli ala tha a sa a la a sana a lla a sitta	No infiltration
TP26	0.5-1.0	Slightly sandy gravelly silty CLAY with low cobble and	6.53x10 ⁻⁰⁵
TP27	0.5-1.2	boulder content	No infiltration
TP28	0.7-1.2	bodider content	2.21x10 ⁻⁰⁵
TP29	1.1-1.6		No infiltration

The test results and calculation sheets may be found in **Annex B**.

3.6.2 In-situ California Bearing Ratio (CBR) Testing

In-situ California Bearing Ratio (CBR) test results are summarised in Table 3.4.

Table 3.4 Summary of CBR Testing

Location	CBR Value Summary
TRL01	Initially less than 2% increasing to 5-6% beyond 0.4m
TRL02	Initially less than 2% increasing to 5-7% beyond 0.4m
TRL03	Initially less than 3% increasing to 5-7% beyond 0.3m
TRL04	Initially less than 3% increasing to 5-12% beyond 0.3m
TRL05	Initially less than 2% increasing to 6% beyond 0.3m
TRL06	Initially less than 2% increasing to 5-7% beyond 0.3m
TRL07	Initially less than 2% increasing to 5-7% beyond 0.3m
TRL08	Initially less than 2% increasing to 5-7% beyond 0.2m
TRL09	Initially less than 2% increasing to 7% beyond 0.3m
TRL10	Initially less than 2% increasing to 10% beyond 0.2m
TRL11	Initially less than 2% increasing to 7% beyond 0.3m

Equivalent CBR values have been calculated and presented with the results in **Annex D**.

3.6.3 Laboratory Geotechnical Testing

A schedule of laboratory tests was prepared by Terra Firma and samples were despatched to the accredited laboratories of Apex Testing Solutions. A summary of the testing carried out is presented in **Table 3.5**.

Table 3.5 Summary of Geotechnical Testing

Geotechnical Test	No. Samples Tested
Moisture Content	15
4 Point Liquid and Plastic Limit	15
BRE SD1 (Concrete classification)	10

The geotechnical test results are presented in $\bf Annex~\bf E.$

SECTION 4 Evaluation of Geoenvironmental Analytical Results

4.1 Assessment Methodology

4.1.1 Soils

An assessment of the analytical results has been made with comparison with the following generic assessment criteria with preference in most onerous order:

- Land Quality Management (LQM) and the Chartered Institute of Environmental Health (CIEH) Suitable 4 Use Levels (S4UL) (Nathanail, CP et al.:2015);
- Category 4 Screening Levels (C4SL) provided by the Department for Environment, Food and Rural Affairs (DEFRA:2014);
- Soil Guideline Values (SGV) by the Environment Agency (2009);
- Generic Assessment Criteria (GAC) provided by EIC/AGS/CL:AIRE (2010); and

In the absence of generic assessment criteria, the laboratory limit of detection has been used for comparison, in order to establish the presence/absence of determinands and for initial screening purposes.

An average soil organic matter (SOM) of 0.79% was determined from laboratory analysis, therefore a conservative value of 1% SOM has been adopted for the site when assessing appropriate threshold values for analysed determinants.

4.2 Soil Test Results

A summary of the chemical test results which include the regulatory soil guideline values used in a **residential setting with plant uptake** are given in the following tables. The complete results can be found in **Annex D**.

4.2.1 Inorganics

Thirty samples were tested for a standard suite of inorganics, pH and organic matter. The summarised results are in **Table 4.1**.

Table 4.1 Summary of Soil Chemical Test Results – Inorganics

Determinant	Threshold Value	Source	Measured Co (mg/		Number of Exceedances
	(mg/kg)		Minimum	Maximum	Exocodunicos
Arsenic	37	LQM/CIEH	3	32	0
Cadmium	11	LQM/CIEH	0.1	5.7	0
Chromium III	910	LQM/CIEH	8.2	37	0
Chromium VI	6	LQM/CIEH	<0.50	<0.50	0
Copper	2400	LQM/CIEH	5.5	53	0
Lead	200	C4SL	15	550	2
Mercury (inorganic)	40	LQM/CIEH	<0.05	0.16	0
Nickel	180	LQM/CIEH	5.1	64	0
Selenium	250	LQM/CIEH	0.39	8.8	0
Zinc	3700	LQM/CIEH	21	640	0
Cyanide	-	-	<0.50	<0.50	-
Boron	290	LQM/CIEH	<0.4	1.2	0

Organic Matter (%)	-	-	0.2	4.6	-		
рН	-	-	6.5	9.3	-		
Notes: - No available guideline							

4.2.2 Organics

Thirty samples were tested for speciated polycyclic aromatic hydrocarbons (PAH). The summarised results are in **Table 4.2**.

Table 4.2 Summary of Soil Chemical Test Results - Speciated PAH

Determinant	Threshold Source		Meas Concentrati	Number of Exceedances	
	(mg/kg)		Minimum	Maximum	Exceedances
Naphthalene	2.3	LQM/CIEH	<0.10	0.24	0
Acenaphthylene	170	LQM/CIEH	<0.10	0.33	0
Acenaphthene	210	LQM/CIEH	<0.10	0.51	0
Fluorene	170	LQM/CIEH	<0.10	0.65	0
Phenanthrene	95	LQM/CIEH	<0.10	4.0	0
Anthracene	2400	LQM/CIEH	<0.10	1.8	0
Fluoranthene	280	LQM/CIEH	<0.10	10	0
Pyrene	620	LQM/CIEH	<0.10	7.5	0
Benzo(a)anthracene	7.2	LQM/CIEH	<0.10	8.9	1
Chrysene	15	LQM/CIEH	<0.10	9.7	0
Benzo(b)fluoranthene	2.6	LQM/CIEH	<0.10	15	1
Benzo(k)fluoranthene	77	LQM/CIEH	<0.10	4.6	0
Benzo(a)pyrene	2.2	LQM/CIEH	<0.10	12	1
Indeno(123cd)pyrene	27	LQM/CIEH	<0.10	8.2	0
Dibenzo(ah)anthracene	0.24	LQM/CIEH	<0.10	2.1	1
Benzo(ghi)perylene	320	LQM/CIEH	<0.10	6.7	0
Total PAH	-	-	<2.0	92	-

Notes:

Thresholds based on 1.0% soil organic matter

Thirty samples were tested for petroleum hydrocarbon. The summarised results are shown in **Table 4.3.**

Table 4.3 Summary of Soil Chemical Test Results - Petroleum Hydrocarbons

Determinand	Threshold Value	Source			Measured Concentrations (mg/kg)		Number of Exceedances
	(mg/kg)		Minimum	Maximum			
Aliphatic							
PH C5 – C6 Ali	42	LQM/CIEH	<0.5	<1.0	0		
PH C6 – C8 Ali	100	LQM/CIEH	<0.1	<1.0	0		
PH C8 – C10 Ali	27	LQM/CIEH	< 0.05	0.17	0		
PH C10 – C12 Ali	130	LQM/CIEH	<2.0	<2.0	0		
PH C12 – C16 Ali	1100	LQM/CIEH	<1.0	42	0		
PH C16 – C21 Ali	65000*	LQM/CIEH	<2.0	69	0		

⁻ No available guidelines

PH C21 – C35 Ali	65000*	LQM/CIEH	<3.0	91	0					
PH C35 – C44 Ali	65000	LQM/CIEH	<10	150	0					
Aromatic	Aromatic									
PH C5 – C7 Arom	70	LQM/CIEH	<0.05	<0.05	0					
PH C7 – C8 Arom	130	LQM/CIEH	<0.05	<0.05	0					
PH C8 – C10 Arom	34	LQM/CIEH	<0.05	<0.05	0					
PH C10 – C12 Arom	74	LQM/CIEH	<1.0	<1.0	0					
PH C12 – C16 Arom	140	LQM/CIEH	<1.0	33	0					
PH C16 – C21 Arom	260	LQM/CIEH	<2.0	14	0					
PH C21 – C35 Arom	1100	LQM/CIEH	<2.0	50	0					
PH C35 – C44 Arom	1100	LQM/CIEH	<1.0	46	0					
NI-4										

Notes:

PH - Petroleum Hydrocarbon

Ali - Aliphatic

Arom – Aromatic

Thresholds based on 1.0% soil organic matter

4.2.3 Asbestos Testing

All made ground soil samples were scheduled for asbestos screening. Asbestos was detected in 1no. samples. Samples testing positive for asbestos were further scheduled for gravimetric quantification of fibre quantification in soils. The results are summarised in **Table 4.4**.

Table 4.4 Summary of Soil Chemical Test Results - Asbestos Quantification

Sample	Depth (m)	Comment	Result (mass %)
TP07	0.4	Chrysotile fibres/clumps	0.001

^{* -} Ali C16-21 and C21-C35 based on criteria for Ali EC >16-35

SECTION 5 Generic Quantitative Risk Assessment

5.1 **Contaminants of Concern**

Contaminants of concern identified as part of the investigation are summarised in **Table 5.1**, along with an interpretation of the likely contamination source. Where applicable, the contaminant, source relationship is based on the inferences made in the preliminary conceptual site model.

Table 5.1 Contaminants of Concern

Location	Depth	Contaminant	Source	
TP03	0.2-0.3	Lead	Made Ground	
TP07	0.5	Lead	Made Ground	
		Benzo(a)anthracene		
		Benzo(b)fluoranthene		
SP2	0.1	Benzo(a)pyrene	Made Ground - Stockpile	
		Dibenzo(ah)anthracene		
TP07	0.4	Chrysotile asbestos	Made Ground	

5.2 **Contaminant Linkages**

Based on the findings of the intrusive site investigation and identified contaminants, the preliminary conceptual site model has been revised. Remaining contaminant linkages are tabulated in the refined conceptual site model Table 5.2. Identified contaminant linkages may require further investigation, detailed risk assessment and appropriate mitigation or remedial measures.

Table 5.2 Refined Conceptual Site Model

Source	Pathway	Receptor
Made Ground associated with previous buildings	Direct soil and dust ingestion Dermal contact Inhalation Inhalation of asbestos fibres	Future site users Construction workers
Radon gas	Horizontal and vertical migration of ground gasses	Future site users

5.3 Conclusions of the Generic Quantitative Risk Assessment

Made Ground located around the former Craig-y-Parcau buildings was found to contain a number of contaminants that were found above generic assessment criteria for a residential setting. In addition, Chrysotile fibre clumps were recorded in one sample of made ground. A Stockpile of excavated soil located in the compound of Craig-y-Parcau was also found to contain elevated levels of PAH.

Given the recorded concentrations of contamination and limited access to parts of the site, it is recommended that a Tier 3 Assessment is completed before moving onto a Stage 2 Options Appraisal and Remediation Strategy. The objectives of the Tier 3 assessment is to:

- Investigate the extent of made ground and contamination within the made ground
- Investigate areas previously inaccessible or restricted
- Derive site specific assessment criteria
- Assess the risk posed by the made ground and update the conceptual site model

5.4 Likely Remediation Solution

The following sections outline the likely mitigation and remedial measures suitable for the identified contamination and proposed development. Detailed methodology to achieve the measures must be prescribed in a Remediation Strategy Report and the results presented in a Validation Report upon their completion.

5.4.1 Human Health

Given the low level of contamination in and around the former buildings, a cap and cover system is likely to be suitable for the affected areas of the site. This should be confirmed following the recommended Tier 3 assessment in line with LCRM.

All imported soils must be validated as clean and suitable for use in accordance with 'Requirements for the Chemical Testing of Imported Soils for Various End Uses and Validation Cover Systems'.

If during earthworks ground conditions are encountered that are markedly different to those found during the investigation, then the ground must be subject to additional sampling and testing and any necessary remedial measures designed and implemented before continuing with the works.

5.4.1.1 Radon

To mitigate against the risk to future site users from radon gas, full radon protection measures will be required in all structures. Reference should be made to guidance publication BR 211:2023 for further details on required protection elements. Specialist design, specification and verification of the installed protection measures is recommended.

Terra Firma offer a comprehensive in-house ground gas protection system design, specification and verification service.

Verification of installed ground gas protection systems by a competent, qualified, accredited, independent third party, will be required upon completion of the protection elements installation. Final verification will only be achieved if evidence gathering processes prescribed in the Verification Plan are fully undertaken.

SECTION 7 Laboratory Geotechnical Testing Results Analysis

Laboratory geotechnical testing results are summarised in the following sections and presented in their entirety in **Annex F**, unless otherwise stated.

7.1 Soil Testing

7.1.1 Plasticity & Moisture Content Testing

During the investigation fifteen samples of the shallow cohesive material was obtained and submitted for plasticity and moisture content testing. The test results are summarised in **Table 7.1**.

Table 7.1 Plasticity & Moisture Content Test Results

Location	Depth (m)	Geological Description	Moisture Content (%)	Plasticity Index (%)	Passing 425µm Sieve (%)	Modified Plasticity Index (%)	Volume Change Potential
TP01	0.60	Light brown slightly gravelly CLAY	34.2	38	98	37.24	Medium
TP03	0.90- 1.0	Brown CLAY	31.5	46	100	31.5	Medium
TP04	1.4	Light brown slightly sandy slightly gravelly CLAY	22.8	30	95	28.5	Medium
TP05	1.0- 1.10	Brownish grey slightly gravelly slightly sandy CLAY	20.0	26	92	23.92	Medium
TP08	0.80	Brown slightly gravelly CLAY	35.1	43	92	39.56	Medium
TP09	0.80	Brown slightly sandy CLAY	33.0	40	98	39.2	Medium
TP10	1.5	Light brown CLAY	32	44	100	44	High
TP11	1.10	Brown CLAY	37.8	35	98	34.3	Medium
TP13	0.10	Brown SILT	54.7	34	100	34	Medium
TP15	0.60	Orange brown slightly sandy CLAY	30.8	29	98	28.4	Medium
TP17	1.20	Brown CLAY	29.6	39	100	39	Medium
TP19	0.50	Brown slightly gravelly slightly sandy CLAY	23.4	19	88	16.72	Low

TP21	0.40	Brown Slightly sandy CLAY	32.2	44	100	44	High
TP23	0.5	Brown sandy gravelly CLAY	18.8	26	70	18.2	Low
TP28	0.60	Brown Slightly Sandy CLAY	28.8	28	100	28	Medium

In line with the NHBC:2024 (Chapter 4.2), the modified plasticity index for each sample was calculated.

For design purposes the shallow soils on site must be considered to have a high volume change potential.

7.1.2 Concrete Classification Testing

Ten samples were subject to testing for concrete classification in accordance with BRE SD1:2015. The results are summarised in **Table 7.2**

Table 7.2 BRE SD1 Testing Summary

Location Dep	Depth (m) 2:1 Water/Soil Extract SO ₄ (mg/l)	2:1 Water/Soil epth Extract Total Acid Sulphur Soluble			Total Potential Sulphate	Oxidisable Sulphides	рН
Location		SO ₄ (mg/l)	(%)	-		(%)	рп
TP01	0.2-0.3	200	0.18	0.16	0.54	0.38	8.4
TP04	0.5-0.6	10	0.020	0.036	0.06	0.024	8.3
TP07	0.1	10	0.020	< 0.010	0.06	< 0.05	8.6
TP07	0.4	56	0.10	0.088	0.3	0.212	8.0
TP11	0.7	10	0.030	< 0.010	0.09	<0.08	7.6
TP13	0.1	10	0.040	0.069	0.12	0.051	7.3
TP15	0.6	10	0.020	0.060	0.06	0	7.3
TP18	1.5	10	0.020	<0.010	0.06	< 0.05	7.8
TP19	0.5	10	0.040	0.060	0.12	0.06	6.9
TP24	0.9	10	0.020	0.014	0.06	0.046	7.5

Notes:

The following stoichiometric equation was employed to determine the Total Potential Sulphate (TPS). TPS (% as SO4) = 3.0 x Total Sulphur (TS % as S).

The amount of Oxidisable Sulphides (OS as %SO4) has been conservatively calculated by the following equation. OS = TPS – Acid Soluble Sulphate (AS).

Based on results obtained, the characteristic values are provided below.

Sulphate (2:1 Water Soluble) as SO4: 10-200mg/l pH: 6.9-8.6 Total Potential Sulphate (TPS): 0.06-0.54%

The initial classification for the site based on sulphate (2:1 Water Soluble) as SO4 is Design Sulphate (DS) Class DS-1. The Aggressive Chemical Environment for Concrete (ACEC) Class for the site based on sulphate (2:1 Water Soluble) as SO4, mobile water and pH is AC-1.

SECTION 8 Engineering Recommendations

8.1 Preparation of Site

Prior to modification or demolition, the existing building must be subject to a refurbishment and demolition survey to identify any asbestos containing materials (ACM). Any deleterious materials must be removed by a suitably qualified person and disposed of at an appropriately licenced landfill. Precautions must be in place to prevent any contamination of the soils on site during the removal process.

Remaining structures, including foundations, and associated areas of hard standing over granular sub-base materials must be stripped and removed from beneath the proposed development area.

Areas of vegetation including all roots must be stripped and removed from beneath the proposed development site.

Allowances should be made for any temporary/permanent support works to any existing adjacent structure necessary as a result of the proposed works.

Allowances should also be made for dealing with buried basements which are considered likely in the vicinity of historical structures.

Contingencies should be made for the protection/diversion of any underground/overhead services present beneath/above the site brought about as a result of the proposed works.

Any reduced levels should be brought up to the required levels with suitable inert mainly granular materials. Department for Transport (DfT) type 2 sub-base or similar should be used and compacted in layers to the requirements of the Specification for Highway Works.

Allowances must also be made for the excavation of any soft spots/areas and their replacement with well compacted imported granular materials.

In accordance with EC Regulation 1272/2008 (Ref) and Environment Agency Guidance WM3 soils and other materials destined for off-site disposal must be classified on the basis of their hazard phrases prior to disposal. Soils are classified as a mirror entry waste and must be classified on the basis of their specific chemical properties. Terra Firma offer this service if required.

8.2 Foundation & Floor Slab Solution

The proposed development is to comprise the construction of 120no. traditional residential dwellings of masonry/timber construction.

The ground investigation confirmed the ground conditions beneath the site to comprise firm, clays between 0.6m and 2.6m depth below existing ground level Which was underlain by possible bedrock.

The presence of soluble limestone bedrock on the western part of the site provides a geotechnical risk and will require a specific foundation solution to mitigate the risk posed from dissolution. As such, the site has been split into two foundation zones. The foundation zones are presented in **Drawing 01.**

8.2.1 Recommended Foundation Solution - Zone A

Based on the proposed development and known ground conditions beneath the site, it is considered that a strip foundation founded within the firm to very stiff yellowish brown gravelly clay is used for buildings in this area. The founding strata can be found below 0.6m depth though this may be deeper in areas of made ground located around the existing/previous buildings.

In due consideration of the identified ground conditions, in-situ and laboratory geotechnical testing, Terra Firma has undertaken an assessment of the net safe allowable bearing pressure (ABP) with the underlying soils to assist in the detailed design of foundations and infrastructure and to determine a suitable target stratum. Based upon this assessment it is recommend that an allowable bearing capacity of 150kPa is used for strip foundations with widths up to 1m.

Foundations must sit at least 200mm within the founding horizon.

For the given foundation solutions and bearing pressure, maximum total settlements of 25mm should result with differential movements of the superstructure not exceeding 1:750.

Allowances should be made for the removal of any 'soft spots' and their replacement with well-compacted granular materials. Department for Transport (DfT) Type 2 materials or similar could be used and should be compacted in layers to the specification for Highway Works.

In order to protect the formations from the effect of frost heave and or thermal shrinkage the minimum foundation depth should be 900mm.

Deeper foundations will be required within influencing distance of tree root systems. The National Hose Building Council (NHBC) give guidelines based upon the tree type' distance for the tree and plasticity of the soil.

All foundation formations should be inspected by a suitably qualified Geotechnical Engineer before being concreted.

8.2.2 Recommended Foundation Solution - Zone B

Given the risk of dissolution in **Zone B**, it is recommended that a raft foundation or semi raft foundation is adopted for proposed buildings in the area. The raft/semi raft must be designed to span a soft spot of 3.0m with a cantilever effect on corners of 1.5m.

In due consideration of the identified ground conditions, in-situ and laboratory geotechnical testing, Terra Firma has undertaken an assessment of the net safe allowable bearing pressure (ABP) with the underlying soils to assist in the detailed design of foundations and infrastructure and to determine a suitable target stratum. Based upon this assessment it is recommend that an allowable bearing capacity of 100kPa is used for raft foundations. If a semi raft foundation (reinforced strips with suspended slab) is adopted than an allowable bearing capacity of 150kPa may be used for design purposes.

Foundations must sit at least 200mm within the founding horizon.

In order to protect the formations from the effect of frost heave and or thermal shrinkage the minimum foundation depth should be 900mm.

Deeper foundations will be required within influencing distance of tree root systems. The National Hose Building Council (NHBC) give guidelines based upon the tree type' distance for the tree and plasticity of the soil.

For the given foundation solutions and bearing pressure, maximum total settlements of <25mm should result with differential movements of the superstructure not exceeding 1:750.

8.2.3 Ground Floor Slabs

Current building control regulations require that where infilled ground is present to depths in excess of 600mm or where the sub-stratum is variable in terms of the structure and settlement potential or where clay soils are present within the influence of existing or proposed trees, a suspended floor slab is required.

In this instance it is considered that for the majority of substructures, the underlying stratum would be clay of medium volume change potential and as such a suspended floor slab will be required.

8.3 Excavations & Formations

Most of the shallow excavations will be possible with normal soil excavating machinery. Allowances for a breaker attachment will be required when dealing with areas of hard standing and buried obstructions / bedrock.

Shallow perched water and groundwater flows were not encountered during the investigation. Any water inflows together with rainwater infiltration should be dealt with by conventional pumping techniques. However, it should be noted that during times of heavy rainfall a higher water table will be encountered.

The sides of any excavations deeper than 1.20m, or shallower if unstable, should be supported by planking and strutting or other proprietary means.

The sub-formations/formations are likely to be susceptible to loosening, softening and deterioration by exposure to weather (rain, frost and drying conditions), the action of water (flood water or removal of groundwater) and site traffic.

Formations should never be left unprotected and continuously exposed to rain causing degradation, or left exposed/uncovered overnight, unless permitted by a qualified engineer.

Construction plant and other vehicular traffic should not be operated on unprotected formations.

As a minimum the formation/excavation surfaces must be protected by blinding concrete immediately after exposure.

Allowances should be made for the removal of soft spots/areas and their replacement with well compacted granular materials.

Allowances should also be made for special precautions to prevent formation deterioration in addition to the above.

8.4 Protection of Buried Concrete

Geotechnical testing of selected samples for concrete classification in accordance with BRE SD1:2015 are presented in Table 7.2.

When the results are compared with Table C2 of BRE Digest 1:2005, it indicates that buried concrete should generally conform to Class AC-1.

8.5 Access Roads & Car Parking Areas

For car parking and road areas, formations within the in-situ natural soils a California Bearing Ration (CBR) value of 5% may be used for design purposes.

Allowances should be made for the removal of any 'soft spots/areas' and their replacement with well-compacted granular materials as previously described.

Please note that the Local Council / Highways Authority may require in-situ CBR testing to be undertaken before a road is adopted. In-situ CBR testing should be performed following earthworks to verify the performance of the engineered fill.

8.6 Storm Water Drainage

During the site investigation three soakaway tests were undertaken in general accordance with BRE DG 365:2016. The soakaway test results are presented in **Table 8.1.**

The testing produced variable results which is attributed to the variation in weathering of the underlying bedrock and fractures and fissures therein. It is considered that infiltration drainage is feasible for the development tough it is recommended that targeted investigation should be undertaken to confirm infiltration rates at the exact locations of infiltration features.

Table 8.1 Summary of Soakaway Results

Trial Pit	Depth Range of Test (m)	Geology Description	Infiltration Rate (ms ⁻¹)
TP23	0.4-1.15	slightly sandy gravelly silty CLAY with low cobble and boulder content	1.82 x10 ⁻⁰⁵
TP25	1-1.5	slightly sandy gravelly silty CLAY with low cobble and boulder content	No infiltration
TP26	0.5-1.0	slightly sandy gravelly silty CLAY with low cobble and boulder content	6.53x10 ⁻⁰⁵
TP27	0.5-1.2	slightly sandy gravelly silty CLAY with low cobble and boulder content	No infiltration
TP28	0.7-1.2	slightly sandy gravelly silty CLAY with low cobble and boulder content 2.21x10 ⁻⁰⁵	
TP29	1.1-1.6	slightly sandy gravelly silty CLAY with low cobble and boulder content	No infiltration

Given the risk of dissolution in the Blue Lias formation, it is recommended that proposed soakaways must be positioned at least 10.0m away from any structure.

8.7 Retaining Walls

Due to the sloping nature of the site, retaining walls may be required. The existing steepness of any embankments should not be increased. Any cuts should be undertaken in small sections and in such a way so as not to induce any instability to the ground.

Effective shear parameters for retaining wall design are presented in **Table 8.2**.

Table 8.2 Effective Shear Stress Parameters

Stratum Description	Bulk Unit Weight (γ) kN/m³	Effective Cohesion (c') kN/m ²	Effective Angle of Shearing Resistance (\(\phi' \)) degrees
Firm to stiff cohesive soils	18	0	30
Well compacted, granular materials, compacted as per Specification for Highway Works and other relevant guidance such as British Standards (BS) 6031: 1981. Code of Practise for Earthworks.	19 – 20	0	30 - 35
Fresh/slightly weathered mudstone/limestone bedrock	19-24	5	35 - 40
Moderately / highly weathered Mudstone/limestone bedrock	19-24	0	30 – 35

The parameters are based on experience in similar ground conditions.

The materials to be in-filled behind the retaining wall must be placed at or close to its optimum moisture content/maximum dry density and compacted in layers as per the requirements of the Specification for Highway Works. During the earthworks suitable in-situ testing must be carried out to ensure that the compaction process is achieving the required maximum dry density to achieve at least 95% compaction.

The acceptability of the filling works must be verified by appropriate on-site testing. A certification report must also be prepared on the earthworks by a suitably qualified Geotechnical Engineer.

Appropriate drainage must be incorporated in the design to prevent the build-up of hydrostatic pressure.

Appropriate cutting and benching of the existing slope must be conducted prior to the replacement of any imported fill to minimise the risk of any slip surfaces forming on the interface between the existing imported materials.

8.8 Re-Use of Demolition Materials

TFW Group Limited are aware that there is currently a structure located on the study site and that this will be demolished as part of the development programme. TFW Group Limited are not currently aware of the mass balance of the project and whether there is a net excess, or net deficit, of material at the site. Notwithstanding, material management should be considered from the earliest stage to ensure that materials are not cross contaminated, unnecessary costs are not incurred and the developer does not fall foul of waste legislation.

TFW Group Limited would recommend that, at the earliest convenience, a mass balance calculation be made for the development. This will allow TFW Group to undertake a feasibility study to determine whether the development achieves the criteria for a CL:AIRE Definition of Waste — Development Industry Code of Practice (DoW:CoP) Material Management Plan (MMP) to reuse site won material, import suitable clean natural soils from other sites or export suitable excess material to other nearby development sites.

Prior to the demolition of the existing structure, it is essential to undertake a pre-demolition asbestos survey and ensure asbestos, if present, is completely removed by an appropriately certified contractor prior to demolition. Failure to do so could lead to asbestos contamination

of the demolition rubble, creating hazardous mixed waste, which would not be suitable for reuse as an aggregate and have a significantly higher disposal cost.

If it is proposed to generate a 'non-waste' recycled aggregate for off-site re-use, the developer could consider using WRAP Quality Protocol. The protocol will require a geotechnical and chemical test regime to be prepared in advance to ensure the generated aggregate achieves the necessary standards.

If the reuse/import of soils and demolition rubble achieves the criteria for a CLAIRE DoW:CoP MMP the application should be submitted in advance of any earthworks as MMPs are not designed for retrospective application and require a period of consultation with regulators and a CL:AIRE Qualified Person (QP).

In accordance with the Environment Agency Waste Hierarchy, re-use of suitable material is preferable to disposal. However, if unsuitable materials are encountered which require off-site disposal these should be subject to Total and WAC Analysis, and classified in accordance with Environment Agency document WM3 and, on the basis of this classification, disposed to an appropriate licenced facility.

BIBLIOGRAPHY

Online Sources

- 1.1 British Geological Survey. GeoIndex Onshore. Available at: https://mapapps2.bgs.ac.uk/geoindex/home.html (accessed January 2024)
- 1.2 Environment Agency. Land contamination risk management (LCRM). Last updated 20 July 2023. https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm (accessed January 2024)
- 1.3 Environmental Protection Act 1990. c.43. Part IIA Contaminated Land. Available at: https://www.legislation.gov.uk/ukpga/1990/43/contents (accessed January 2024)
- 1.4 Google Maps. Available at: https://www.google.com/maps (accessed January 2024)
- 1.5 Zetica UXB Risk Maps. Available at: https://zeticauxo.com/guidance/risk-maps/ (accessed January 2024)

Standard Publications

British Research Establishment. 2005. Concrete in aggressive ground (SD1). Bracknell: IHS BRE Press

British Research Establishment, Scivyer, C & Jagg, M, 2023. Radon: Guidance on protective measures for new buildings (including supplementary advice for extensions, conversions and refurbishment projects). Sixth Edition. BR 211. Bracknell: IHS BRE Press

British Research Establishment S. Garvin. 2016. Soakaway design. (DG365). Bracknell: IHS BRE Press

British Standards Institute, 1990. BS 1377-9: Methods of test for soils for civil engineering purposes - In-situ tests. London: BSI.

British Standards Institute, 2013. BS 8576. Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs). London: BSI

British Standards Institute, 2013. BS EN 1997-1:2004+A1. Eurocode 7. Geotechnical design – General rules. London: BSI.

British Standards Institute, 2017. BS 10175:2011+A2: Investigation of potentially contaminated sites. Code of practice. London: BSI.

British Standards Institute, 2019. BS 8485:2015+A1. Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings. London: BSI.

British Standards Institute, 2020. BS 5930:2015+A1: Code of practice for ground investigations. London: BSI.

ANNEX A Trial Pit Logs

Phone: 033 022 36380

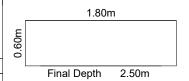
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. **TP01**


Sheet 1 of 1 Project Name Date Hole Type Project No. TF-24-589-CA 06/11/2024 to 06/11/2024 ΤP Craig-y-Parcau Client Water Strike Details Logged By Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 289071.62 Approved By Contractor Plant Used N: 178616.37 8T Pritchards L: 23.54 Scale 1:50

intorial do			١٠.		L: 23.54			Scale 1:50
Sample	s and Re	sults	Depth,			5		
Results	Туре	Depth	(Thickness)	Level	S	tratum Description		Legen
	ES	0.20 - 0.30	- (0.40)		MADE GROUND. [Soft] slightly sandy fragments. Sand is fine to coarse. Gravlithologies. ()	gravelly CLAY with occas vel is angular and subang	sional brick concrete and timber Jular fine to coarse of mixed	
			0.40	23.14	Firm yellowish brown sightly sandy silt	y CLAY. Sand is fine to co	parse. ()	
	D	0.60						
			E					
			1 (1.10)					
			F					
			-					
			1.50	22.04	Firm yellowish brown slightly sandy gra	avelly silty CLAY with low	cobble and boulder content. Sa	ind
			+		is fine to coarse. Gravel is angular and angular and subangular of limestone. E	subangular fine to coars Boulders are angular and	e of limestone. Cobbles are subangular of limestone ()	
			F					
			2 (1.00)					
			_					
			2.50	21.04				
						End of Trial Pit at 2.50m		_
			+					-
			_ 3					_
			F					=
			-					
			-					_
								_
			+ ,					-
			-					_
			F					=
			F					
			-					
			F					_

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for	
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusa	al.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	

Pit Stability: Stable

Remarks

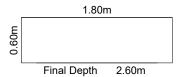
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA


Borehole No. TP02

Sheet 1 of 1 Project Name Date Hole Type Project No. Craig-y-Parcau TF-24-589-CA 06/11/2024 to 06/11/2024 ΤP Client Water Strike Details Logged By Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 289074.44 **Approved By** Contractor Plant Used N: 178635.63 8T Pritchards L: 23.83 Scale 1:50

Titoriards			0'		L: 23.83			Scale 1:50
Samples and	d Res	sults	Depth,			5		
	уре	Depth	(Thickness)	Level	S	tratum Description		Lege
	ES	0.50 - 0.60	- - - - - - - -		MADE GROUND. [Soft] slightly sandy of fragments. Sand is fine to coarse. Grav lithologies. ()	gravelly CLAY with occas el is angular and subang	ional brick concrete and timber ular fine to coarse of mixed	- - - - - - - -
			- 0.80 - 1 - (0.70)		Firm yellowish brown sightly sandy silty	CLAY. Sand is fine to co	earse. ()	
			- 1.50 2 - (1.10)	22.33	Firm yellowish brown slightly sandy gra is fine to coarse. Gravel is angular and angular and subangular of limestone. E	subangular fine to coarse	e of limestone. Cobbles are	nd - ×-
				21.23		End of Trial Pit at 2.60m		- \(\frac{1}{2}\) \(\frac{1}{2
			3 					
			- - - -					
			<u> </u>					

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. TP03

earth matters	Phone: 033 022 36380	Email: hello@tfwgroup.co.uk	Cardiff CF23 7HA	Exeter EX6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name		Project No.	Date			Hole Type
Craig-y-Parcau		TF-24-589-C	A 06/1	11/2024 to	06/11/2024	TP
Client		Co-ords		Water St	ike Details	Logged By
Bellway Homes Limited		E: 289073.4		oth Strike	Remarks	ES
Contractor	Plant Used					Approved By
Pritchards	8T	N: 178655.3	2			Capla 4:50
	١٠.	L: 23.83				Scale 1:50

					1. 20.00	00aic 1.00
Samples and Results		esults	Depth,		Stratum Description	Legend
Results	Results Type Depth		(Thickness)	Level		Logona
	ES	0.20 - 0.30	(0.40)		MADE GROUND. [Soft] slightly sandy gravelly CLAY with occasional brick concrete and timber fragments. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies. ()	
			0.40		Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	D	0.90 - 1.00	- (0.30) - 1 1.30			
			(0.50)		Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	
			- 1.60 - 2 	22.03	End of Trial Pit at 1.80m	-
			- - - -			
			- - - 3			-
			- - -			- - - -
			_ _ _ 4			-
			- - -			-
			- - -			-
			<u> </u>			_

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.

1.80m 0.60m Final Depth 1.80m

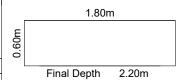
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA


Borehole No. **TP04**

Sheet 1 of 1 Project No. Project Name Date Hole Type Craig-y-Parcau TF-24-589-CA 06/11/2024 to 06/11/2024 ΤP Client Water Strike Details Logged By Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 289099.69 Approved By Plant Used Contractor N: 178674.90 8T Pritchards L: 23.19 Scale 1:50

i ilicilards			01		L: 23.19			Scale 1:50
Samples a	and Re	sults	Depth,			5		
Results	Туре	Depth	(Thickness)	Level	S	tratum Description		Legend
	71	'	(0.10)	23.09	Grass over soft brown slightly gravelly angular and subangular fine to coarse Stiff yellowish brown sightly sandy silty	of mixed lithologies ()		el is
	ES	0.50 - 0.60	(0.80)					
			- 0.90 1 -	22.29	Very stiff yellowish brown slightly sandy Sand is fine to coarse. Gravel is angula angular and subangular of limestone. E	ar and subangular fine to	coarse of limestone. Cobbles a	nt.
	D	1.40	(1.30)					
			2 _ _ 2.20	20.99		End of Trial Pit at 2.20m		- · · · · · · · · · · · · · · · · · · ·
			<u>-</u> -					-
			- - - 3 -					-
			- - -					-
			- - -					-
			4 					-
			[- -					- - -
			- - -					=

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

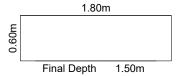
Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP


Portsmouth Office Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. TP05

edilitifications			GF2.	3 / HA EX6 / BP	POZ OFA	Sneet 1 of 1
Project Name			Project No.	Date		Hole Type
Craig-y-Parcau			TF-24-589-CA	06/11/2024 to	06/11/2024	TP
Client			Co-ords	Logged By		
Bellway Homes Limited	E: 289105.55	Depth Strike Remarks		ES		
Contractor	Plant Use	d	N: 178649.24			Approved By
Pritchards 8T			L: 22.85			Scale 1:50
0 I D It-				<u> </u>	<u> </u>	

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	0.60m
Pit Stability: Stable	-

Remarks

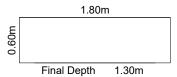
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA


Borehole No. TP06

earth matters	Phone: 033 022 36380	Email: hello@tfwgroup.co.uk	Cardiff Exeter CF23 7HA EX6 7E		Sheet 1 of 1		
Project Name		Project No.	Date		Hole Type		
Craig-y-Parcau		TF-24-589-0	CA 06/11/2024	to 06/11/2024	TP		
Client		Co-ords	Wate	Water Strike Details			
Bellway Homes Limited		E: 289088.3	Depth Strike	e Remarks	ES		
Contractor	Plant Used				Approved By		
Pritchards	8T	L: 23.16			Scale 1:50		

					L. 20.10				
	Samples and Results Results Type Depth		Depth,					1	
Ī			(Thickness)	Level				•	
		Type ES	Depth 0.60	Depth, (Thickness) - (0.10) - 0.10 - (1.20) (1.30)	23.06	Grass over soft brown slightly gravelly angular and subangular fine to coarse Very stiff yellowish brown slightly sand Sand is fine to coarse. Gravel is angula angular and subangular of limestone.	of mixed lithologies () y gravelly silty CLAY with ar and subangular fine to	n low cobble and boulder content coarse of limestone. Cobbles a	Legend
				3 					

Remarks	
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	

Pit Stability: Stable

Phone: 033 022 36380

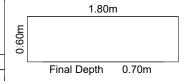
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. TP07


earth matters	Phone: 033 022 36380	Email: hello@tfwgroup.co.uk	Cardiff Exete CF23 7HA EX6 7		Sheet 1 of 1		
Project Name		Project No.	Date		Hole Type		
Craig-y-Parcau		TF-24-589-0	CA 06/11/2024	to 06/11/2024	TP		
Client		Co-ords	Wate	Water Strike Details			
Bellway Homes Limited		E: 289038.8	Depth Strike	e Remarks	ES		
Contractor	Plant Used				Approved By		
Pritchards	8T	L: 23.49			Scale 1:50		

Samples and Results		Depth,		Stratum Description	Lege	
Results Type Depth		(Thickness)	Level		Lege	
	ES	0.10	- (0.20)		MADE GROUND. Yellow angular and subangular fine and medium GRAVEL of limestone. ()	
			0.20	23.29	MADE GROUND. [Soft] slightly sandy gravelly CLAY with occasional brick concrete and timber fragments. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed	
	ES	0.40	[fragments. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed	
			(0.50)		lithologies. () 0.20 to 0.20m - At 0.20m: Black membrane.	-
			0.70	22.79		
			- 0.70	22.75	End of Trial Pit at 0.70m	_
			 			-
			F '			_
			-			-
			Ĺ			
			_			_
			-			-
]
			_			-
			2			
			-			_
			-			-
			F			-
			Ė			
			_			_
			- 3			
			-			-
			L			
			_			_
			F			-
			 4			
			t			
			-			
			 			-
			-			_
			E			-
			Γ			٦

1]	Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
gi	uidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on possible concrete slab.
4	Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

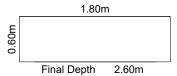
Remarks

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EXE 7 P.P.

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth


Borehole No. **TP08**

earm maners		CFZ	3 /HA EX6 /BP	PO2 8FA	Sheet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau	TF-24-589-CA	06/11/2024 to	06/11/2024	TP	
Client	Co-ords	Water St	Logged By		
Bellway Homes Limited	E: 289023.36	Depth Strike	Remarks	ES	
Contractor	Plant Used	N: 178617.70			Approved By
Pritchards	8T	L: 25.32			Scale 1:50

			" '		L. 25.32			Scale 1.50
Samples and Results		Depth,			1			
Results Type Depth			(Thickness)	Level	5	tratum Description		Lege
	ES	0.10	- (0.20)		MADE GROUND. Dark brown angular	and subangular fine and	medium GRAVEL of limestone	. 0
			0.20	25.12	MADE GROUND. Yellow angular and	subangular fine and medi	ium GRAVEL of limestone. ()	
			(0.40)			•	·	
			F					-
			0.60	24.72	Firm yellowish brown sightly sandy silt	y CLAY. Sand is fine to co	parse. ()	<u> </u>
	D	0.80	-					+ <u>×</u> _×_
	ES	0.80	<u>_</u> 1					<u>X</u> X
			·					- <u>-</u>
			t					<u> </u>
			F] <u>×</u>
			(1.80)					- <u>×-</u> ×-
			F					1,-x-
			F					+^
			2					
			-					
			- 2.40		Firm yellowish brown slightly sandy gra	avelly silty CLAY with low	cobble and boulder content. Sa	and ÷·-
			- (0.20) - 2.60	22.72	is fine to coarse. Gravel is angular and	I subangular fine to coars	e of limestone. Cobbles are	
			-		angular and subangular of limestone. I	End of Trial Pit at 2.60m	subangular of limestone ()	
			— 3					_
			-					_
			L					
			-					4
			-					+
			F]
			4					-
			F					
			 					-
			F					\exists
			-					4
			ļ.					
			F					4
				1	1			

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. TP09

earth matters Pho	ne: 033 022 36380	Email: hello@tfwgroup.c	co.uk Card CF2	diff Exeter 3 7HA EX6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name			Project No.	Date		Hole Type
Craig-y-Parcau			TF-24-589-CA	06/11/2024 to	06/11/2024	TP
Client	Co-ords	Water St	Logged By			
Bellway Homes Limited	E: 288988.69	Depth Strike	Remarks	ES		
Contractor	Plant Used					Approved By
	-		N: 178691.01			
Pritchards	81	8T				Scale 1:50

Samples Results	Type ES	sults Depth	Depth, (Thickness)		Stratum Description	Lege
Results	Type	Depth	(Thickness)			
	EQ			Level		Logo
		0.05	(0.10) - 0.10 (0.70)		Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies () Very stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	×××
	D	0.80	0.80	20.28	End of Trial Pit at 0.80m	
			1			
			- - -			- - - -

Remarks					
41 0	. 4	 	 	 c	

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.

1.80m 0.60m Final Depth 0.80m

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. TP10

earth matters Phone	e: 033 022 36380	Email: hello@tfwgroup.co.uk	Cardiff CF23 7HA	Exeter EX6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name		Project No.	Date	е		Hole Type
Craig-y-Parcau		TF-24-589-0	CA 0	6/11/2024 to	06/11/2024	TP
Client		Co-ords		Water St	rike Details	Logged By
Bellway Homes Limited	E: 289026.0	I	Depth Strike	Remarks	ES	
Contractor	Plant Used	1				Approved By
		N: 178670.8	35			
Pritchards	8T					Scale 1:50

				L. 22.70		Scale 1.50
Samples and R	esults	Depth,		Ctratum Des	arintian	Lagana
Results Type	Depth	(Thickness)	Level	Stratum Des	scription	Legend
	·	(0.10) - 0.10 - (0.70)	22.60	Grass over soft brown slightly gravelly slightly sandy angular and subangular fine to coarse of mixed lithol Firm yellowish brown sightly sandy silty CLAY. Sand	logies ()	s ×××× ×- ×- ×- ×- ×-
		0.80	21.90	Very stiff yellowish brown slightly sandy gravelly silty Sand is fine to coarse. Gravel is angular and subang angular and subangular of limestone. Boulders are a	gular fine to coarse of limestone. Cobbles are	X
D	1.50	(0.70)	21.20	End of Trial Pit	at 1.50m	
ES	1.50					

Remarks							
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.							
Pit Stability: Stable							

Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.

1.80m Final Depth 1.50m

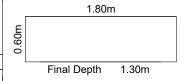
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP11**


eammaneis			CF23 THA	EX0 / DP	FOZ OFA	Sheet 1 of 1	
Project Name		Project No.	Dat	е		Hole Type	
Craig-y-Parcau	TF-24-589-0	CA 0	7/11/2024 to	07/11/2024	TP		
Client				Water Strike Details		Logged By	
Rellway Homes Limited				Depth Strike Remarks		ES	
Contractor	Plant Used	E: 288858.3 N: 178755.4				Approved By	
Pritchards	8T	L: 26.59				Scale 1:50	

					L. 20.39	Scale 1.50
Samples and Results			Depth,		Ctratum Deceription	Lagand
Results Type Depth			(Thickness)	Level	Stratum Description	Legend
			- (0.20) - 0.20	26.39	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel angular and subangular fine to coarse of mixed lithologies () Firm orangish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	is
			(0.60)			
	ES	0.70	0.80	25.79	Very stiff greyish brown slightly sandy gravelly silty CLAY with low cobble and boulder content.	×——×——————————————————————————————————
	D	1.10	1 (0.50)		Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	
			- 1.30 -	25.29	End of Trial Pit at 1.30m	_
			_			
			2			
			-			-
			3			-
			_			-
			_			-
			_ _ 4			-
			-			-
			_			-
			_			

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930 2015, 31 Trial pit terminated on boulder/bedrock refusal.

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

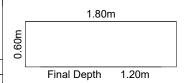
Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA


Borehole No. **TP12**

edilitilatieis		Cr.	23 / HA EX6 / BP	POZ 6FA	Sneet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	07/11/2024 to	07/11/2024	TP
Client	Co-ords	Water St	Logged By		
Bellway Homes Limited	E: 288826.57	Depth Strike	Remarks	ES	
Contractor	Plant Used	N: 178671.41			Approved By
Pritchards	8T	L: 29.43			Scale 1:50

					L. 29.43	Scale 1.50
Samples	and Res	sults	Depth,		0	
Results Type Depth			(Thickness)	Level	Stratum Description	Legen
	71	•	- (0.20) - 0.20	29.23	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gra angular and subangular fine to coarse of mixed lithologies () Firm orangish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	vel is $\begin{array}{c} \overline{\times} \times \overline{\times} \times \\ \overline{\times} \times \times \end{array}$
			(0.50)			- <u>×</u> -
			0.70	28.73	Very stiff greyish brown slightly sandy gravelly silty CLAY with low cobble and boulder conter Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles	ot.
	ES	1.00	(0.50) - - 1.20	28.23	angular and subangular of limestone. Boulders are angular and subangular of limestone ()	* * * * * * * * * * * * * * * * * * * *
			- 1.20 - -	20.23	End of Trial Pit at 1.20m	-
			E			-
			_ _ 2			
			-			-
			3 3			_
			-			-
						_
			<u> </u>			_
			E			=
			E			=
			-			_

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

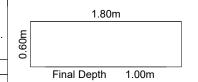
Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. TP13

earth matters	Phone: 033 022	36380 Email: h	ello@tfwgroup.co.uk	Cardiff CF23 7H	Exeter A EX6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name			Project No	. D	ate		Hole Type
Craig-y-Parcau			TF-24-589	CA	07/11/2024 to	07/11/2024	TP
Client			Co-ords		Water Sti	ike Details	Logged By
Bellway Homes Limited			E: 288877.3		Depth Strike	Remarks	ES
Contractor	1	Used	N: 178634				Approved By
Pritchards	8T	8T					Scale 1:50


				L. 23.31	Scale 1.30	
Samples and Results		Depth,		Stratum Description		
Results	Туре	Depth	(Thickness)	Level	·	Legei
	D 0.10 ES 0.10		- (0.20) - 0.20	23.11	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies () Firm orangish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	X X X X X X
			(0.40)		i illi orangish brown signity sarruy siny CLAT. Sarru is line to coarse. ()	-XX-
			0.60	22.71	Very stiff greyish brown slightly sandy gravelly silty CLAY with low cobble and boulder content.	
			(0.40)		Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	
			1.00	22.31	End of Trial Pit at 1.00m	
						3
			_			_
			-			-
			2			_
]
			_			_
			_			=
			3			=
			_ 3			
			_			_
			_			_
			_			=
			4			_
			_			_
			_			_
			-			=
			Ė			1

Remarks	
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is	for

guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

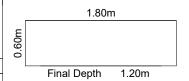
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. **TP14**


Sheet 1 of 1 Project Name Date Hole Type Project No. Craig-y-Parcau TF-24-589-CA 07/11/2024 to 07/11/2024 ΤP Client Water Strike Details Logged By Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 288865.33 **Approved By** Contractor Plant Used N: 178685.55 8T Pritchards L: 26.14 Scale 1:50

			01		L: 26.14			Scale 1:50
Samples	and Res	sults	Depth,			5		
Results	Туре	Depth	(Thickness)	Level	S	tratum Description		Legend
	ES	0.10	- (0.20) - 0.20		Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm orangish brown sightly sandy silty	of mixed lithologies ()		Tis
			(0.50)	25.44	Very stiff greyish brown slightly sandy of	gravelly eithy CLAV with le	w cabble and boulder content	
			1 (0.50)		Sand is fine to coarse. Gravel is angular and subangular of limestone.	ar and subangular fine to	coarse of limestone. Cobbles a	re
			1.20	24.94		End of Trial Pit at 1.20m		-
			_					_
			_					_
			2					_
			_ _ _					=
								=
			_					_
			3 					
			_					_
			_					_
			4					=
								_
			_					_
			- - -					
			_					

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for	
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusa	ıl.
41 Trial pit backfilled with arisings 51 No groundwater was encountered	

Pit Stability: Stable

Remarks

Phone: 033 022 36380

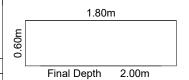
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. **TP15**


Sheet 1 of 1 Date Hole Type **Project Name** Project No. TF-24-589-CA 07/11/2024 to 07/11/2024 ΤP Craig-y-Parcau Client Water Strike Details Logged By Co-ords Depth Strike Remarks ES Bellway Homes Limited E: 288919.76 Approved By Plant Used Contractor N: 178726.67 8T Pritchards L: 22.57 Scale 1:50

L: 22.57			Scale 1:50
Si	tratum Description		Legei
rass over soft brown slightly gravelly singular and subangular fine to coarse of the orangish brown sightly sandy silty	of mixed lithologies ()		el is
ery stiff greyish brown slightly sandy g	gravelly silty CLAY with lo	ow cobble and boulder content.	
and is fine to coarse. Gravel is angula Igular and subangular of limestone. B			are

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5030:2015. 3] Trial nit terminated on houlder/hedrock refusal

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA Borehole No. **TP16**

edilitilidileis			FZ3 / HA EX6 / BP	POZ OFA	Sheet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	07/11/2024 to	07/11/2024	TP
Client		Co-ords	Water S	trike Details	Logged By
Bellway Homes Limited		E: 289114.02	Depth Strike	Remarks	ES
Contractor	Plant Used	N: 178590.00			Approved By
Pritchards	8T	L: 20.43			Scale 1:50

			1		L. 20.43			Scale 1.50
Samples and	d Res	sults	Depth,					
	/ре	Depth	(Thickness)	Level	S	tratum Description		Leger
	ES .	0.40	- (0.20) - 0.20	20.23	Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm yellowish brown sightly sandy silt	of mixed lithologies ()		
	_5	0.40	(0.60) - - - 0.80	19.63				
			- 1 (0.80)	10.00	Firm yellowish brown slightly sandy gra is fine to coarse. Gravel is angular and angular and subangular of limestone. B	subangular fine to coars	e of limestone. Cobbles are	ind
			- - -	40.00				
			1.60	18.83		End of Trial Pit at 1.60m		
			_ _ 2					-
			_ _ _					-
			- - -					-
			- - -					- - -
			— 3 – –					
			_					
			_					
			4 					
			- - -					-
			_ _ _					-
			-					+

Remarks		
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	0.60m	
Pit Stability: Stable		

Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.

Phone: 033 022 36380

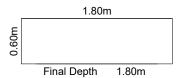
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP17**


edilitifialieis		CIZ	37HA EX07BP	FOZ OFA	Sheet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	07/11/2024 to	07/11/2024	TP
Client		Co-ords	Water St	rike Details	Logged By
Bellway Homes Limited		E: 289107.46	Depth Strike	Remarks	ES
Contractor	Plant Used	N: 178567.17			Approved By
Pritchards	8T	L: 19.97			Scale 1:50

			1		L. 19.97			Scale 1.50
Sample	s and Res	sults	Depth,			Nantura Dagarintian		1
Results	Туре	Depth	(Thickness)	Level		Stratum Description		Legen
	ES	0.10	- (0.20) - 0.20	19.77	Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm yellowish brown sightly sandy silt	of mixed lithologies ()		is
			(0.50)					
			- 0.70 -	19.27	Firm yellowish brown slightly sandy gr is fine to coarse. Gravel is angular and angular and subangular of limestone.	I subangular fine to coars	e of limestone. Cobbles are	nd
	D	1.20	1 (1.10)		angular and subangular of limestone.	boulders are arrigular and	subangular of inflestorie ()	
			- (1.10)					
			- - 1.80	18.17		End of Trial Pit at 1.80m		
			2 					
			F					=
			F					=
			3					=
								=
			- 4 -					
			-					=
			- - -					- -
			 					+

widenes and and in not in accordance with DC 5020,0045. OI Trial wit terminated an bevilded/bedreak unforced
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

Phone: 033 022 36380

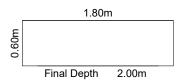
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. TP18


earth matters Phone: 033 022 36380 Email: hello@tfwgroup.co.uk Carolin Exeter Portsmouth CF23 7HA EX6 7BP PO2 8FA Sheet	1 of 1
Project Name Project No. Date Hole	Туре
Craig-y-Parcau TF-24-589-CA 07/11/2024 to 07/11/2024 TI	P
Client Co-ords Water Strike Details Logge	ed By
Bellway Homes Limited E: 289090.03 Depth Strike Remarks E:	
Contractor Plant Used Approv	ved By
N: 178548.63	
Pritchards 8T L: 20.28 Scale	1:50

					L. 20.20	Scale 1.50
	s and Re		Depth,		Stratum Description	Lege
Results	Туре	Depth	(Thickness)	Level		
			(0.30)		Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies ()	- X_X_X_
			0.30			$\times \times \times$
			-	10.00	Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	- -
			(0.50)			
						×
			0.80	19.48	Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand	
			1		is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	
			_		angular and subangular of limestone. Boulders are angular and subangular of limestone ()	
			(1.20)			
	ES	1.50				
			E			
						+
			2 2.00	18.28	End of Trial Pit at 2.00m	
			-		End of Thai Pit at 2.00m	-
			-			-
			_			_
						=
			3			
			-			-
			-			-
			-			_
			<u> </u>			_
			F			7
			-			-
			F			
			-			4
						1

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

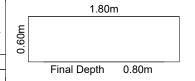
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP19**


edilitilations		G12	S THA EXOTOP	FOZ OFA	Sheet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	07/11/2024 to	07/11/2024	TP
Client		Co-ords	Water St	trike Details	Logged By
Bellway Homes Limited		E: 289044.41	Depth Strike	Remarks	ES
Contractor	Plant Used	N: 178516.46			Approved By
Pritchards	8T	L: 21.39			Scale 1:50

Samples and Results Depth (Thickness) Level Stratum Description					L. 21.39		Scale 1.50
Results Type Depth (ITICKIES) Level - (0.10) - (0.10) - (0.50) - (0.50) - (0.20) - (0.80) - (0.20) - (0.80) -	Samples and Resul	Depth,		Depth,	Strat	atum Description	Legend
ES 0.50 (0.50) D 0.50 (0.20) - (0.80)	Results Type		Depth (Th				_
D 0.50 C 0.60 (0.20) 0.80 20.59 ES 0.50 C 0.60 (0.20) 0.80 C 0.8			_ _ _	Firr	ngular and subangular fine to coarse of m	nixed lithologies ()	avel is $\overline{\times} \times \overline{\times} \times \overline{\times}$
	D	(0.10) 2 - (0.50) - (0.50) - (0.60 2 - (0.20) - 0.80 2 - 1	0.50	(0.10) (0.10) (0.50) 0.60 (0.20) (0.80) 20.59 Firr is fi ang	rass over soft brown slightly gravelly sligi rgular and subangular fine to coarse of m rm yellowish brown sightly sandy silty CL rm yellowish brown slightly sandy gravell fine to coarse. Gravel is angular and sub roular and subangular of limestone. Boul	phtly sandy clayey SILT. Sand is fine to coarse. Granked lithologies () LAY. Sand is fine to coarse. () lly silty CLAY with low cobble and boulder content bangular fine to coarse of limestone. Cobbles are liders are anoular and subangular of limestone ()	
			- - - - - - - - -	-4			
		- - - - - - -	- - - - - - - -				- - - - - - - -

Re	marks
1]	Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
ani	dance only and is not in accordance with BS 5930:2015, 31 Trial nit terminated on boulder/bedrock refusal

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

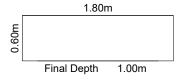
Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA


Borehole No. **TP20**

ediffilations		GFZ	3 / HA EX6 / BP	POZ OFA	Sneet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	07/11/2024 to	07/11/2024	TP
Client		Co-ords	Water St	trike Details	Logged By
Bellway Homes Limited		E: 289013.48	Depth Strike	Remarks	ES
	Plant Used	N: 178538.56			Approved By
Pritchards	8T	L: 22.19			Scale 1:50

_						L. 22.10	Oddie 1.00
	Samples	and Re	esults	Depth,		Charles December	
	Results	Туре	Depth	(Thickness)	Level	Stratum Description	Legend
		- 71		(0.10)		Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel	is ××××
				0.10	22.09	angular and subangular fine to coarse of mixed lithologies ()	_/ + + + + + + + + + + + + + + + + + + +
						Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	
				(0.60)]×
				_ (0.00)			<u>×</u> <u>×</u>
				-			+ <u>-</u> -x <u>-</u> x
				0.70	21.49	Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. San	nd . · · · · ·
		ES	0.80	(0.30)		is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	
				1.00		angular and subangular of limestone. Boulders are angular and subangular of limestone ()	
				1.00	21.19	End of Trial Pit at 1.00m	
				_			
				-			-
				-			-
				-			-
							7
]
				2			
				-			_
				-			-
							-
				_			_
				-			=
				=			=
							=
				_ 3			
				_			
				-			-
				H			-
							-
				L			
				-			4
				 4			
				F			-
							7
				\vdash			_
				-			-
				 			-
				F			7

emarks
Consistency, strength and density indicators are based upon field judgement. 2 Density indicator is for uidance only, and is not in accordance with BS 5930:2015. 3 Trial pit terminated on boulder/bedrock refusal. Trial pit backfilled with arisings. 5 No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. TP21

earth matters	Phone	e: 033 022 363	80 Em	nail: hello@tfwgroup.c		rdiff 23 7HA	Exeter EX6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name					Project No.	Date			Hole Type
Craig-y-Parcau					TF-24-589-CA	07/11/2	2024 to (07/11/2024	TP
Client					Co-ords		Water Sti	ike Details	Logged By
Bellway Homes Limited					E: 289045.68	Depth	Strike	Remarks	ES
Contractor		Plant U	sed		N: 178561.13				Approved By
Pritchards		8T			L: 22.63				Scale 1:50

					L. 22.03	ocale 1.50
Sample	s and Re	sults	Depth,		Stratum Description	Leger
Results	Туре	Depth	(Thickness)	Level		
	ES	0.10	_ (0.10) - 0.10	22.53	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of mixed lithologies () Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	- X X X X
	D	0.40	(0.70)			
			_			
			- 0.80 - (0.20) - 1 1.00		Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	
			- 1.00	21.03	angular and subangular of limestone. Boulders are angular and subangular of limestone () End of Trial Pit at 1.00m	′ <u> </u>
			_			-
			_ _ _			
			-			-
			2 			
			<u>-</u>			-
			_			
			_			-
			— 3 –			_
			_			-
			<u>-</u> -			
			<u> </u>			_
			_			-
			<u></u>			-
			 			+

Remarks		1.80n	n
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	0.60m	1.501	
Pit Stability: Stable	L	Final Donth	1.00m
Notes: For all symbols and abbreviations places see key sheet. All denths and measurements in metres. Stratum thicknesses given in brackets		Final Depth	1.00m

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

TP22

Project Name Project No. Date	Hole Type
Craig-y-Parcau TF-24-589-CA 07/11/2024 to 07/1	11/2024 TP
Client Co-ords Water Strike	Details Logged By
Bellway Homes Limited E: 288955.64	Remarks ES
Contractor Plant Used N: 178546.22	Approved By
Pritchards 8T L: 20.15	Scale 1:50

					L. 20.10	1		00010 1.00
Samples		sults	Depth,			Stratum Description		Leg
Results	Type	Depth	(Thickness)	Level				_
	ES	0.40	(0.10) 0.10 (0.30) 0.40		Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm yellowish brown slightly sandy gr is fine to coarse. Gravel is angular and angular and subangular of limestone. It	of mixed lithologies () avelly silty CLAY with low by subangular fine to coars	cobble and boulder content. Sar e of limestone. Cobbles are	
			- 1 - - - -					-
			- - - - - 2					- - - - -
								-
			3 					-
			- - - - -					- - - - -
			- - - -					
			- - -					- - - -

Re	marks				
41	O:	-4	 al a a :4	::	 ll

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA Borehole No. **TP23**

ediffilations		CFZ	S / HA EX6 / BP	POZ OFA	Sneet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	08/11/2024 to	08/11/2024	TP
Client		Co-ords	Water St	rike Details	Logged By
Bellway Homes Limited		E: 288999.88	Depth Strike	Remarks	ES
	Plant Used	N: 178615.86			Approved By
Pritchards	8T	L: 22.64			Scale 1:50

						L. 22.01	Oddie 1.00
	Samples a	and Re	sults	Depth,		0	
F	Results	Туре	Depth	(Thickness)	Level	Stratum Description	Legend
	tosuits	Турс	Ворит	(0.10)		Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel	is ××××
				0.10	22.54	angular and subangular fine to coarse of mixed lithologies ()	~
				_		Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	_
]
		D	0.50				<u>×</u> ×
		ES	0.50	(0.90)			××
				=			+^×
				-			+×_^_××
				F			
				1 1.00		Firm yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sar	nd Y
				(0.30)		is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	
				1.30	21.34	angular and subangular of limestone. Boulders are angular and subangular of limestone ()	
				-		End of Trial Pit at 1.30m	4
				<u> </u>			-
				-			-
				=			-
				Ē]
				2			_
				_			_
				_			-
				-			-
				_			
				_			_
				-			_
				-			-
				 3			_
				_			_
				<u> </u>			\dashv
				-			-
				-			=
]
				4			
				-			4
				-			-
				-			-
							7
]
				_			4
				 			4
							-
				L		1	

1] Consistency, strength and density indicators are based upon field judgement. 2] Density ir	ndicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/	bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	

Pit Stability: Stable

Remarks

Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.

1.80m E 90 60 Final Depth 1.30m

Phone: 033 022 36380

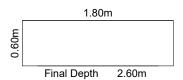
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP24**


edilitilations			CI 23 THA	TOZ OFA	Sheet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-C	A 08/11/2024	to 08/11/2024	TP
Client		Co-ords	Wa	ter Strike Details	Logged By
Bellway Homes Limited		E: 288979.2	Depth Stril	ke Remarks	ES
Contractor	Plant Used	N: 178595.3			Approved By
Pritchards	8T	L: 21.92			Scale 1:50

					L. 21.92		1	Scale 1.50
Samples	and Res	sults	Depth,			tuetus December the co		1
Results	Туре	Depth	(Thickness)	Level	S	tratum Description		Lege
			(0.50)		Grass over soft brown slightly gravelly angular and subangular fine to coarse	slightly sandy clayey SIL of mixed lithologies ()	T. Sand is fine to coarse. Grave	lis
	ES	0.90	0.50	21.42	Firm yellowish brown sightly sandy silt	y CLAY. Sand is fine to co	parse. ()	-x- -x- -x- -x- -x- -x-
			- - (1.60)					
			- - - - -					_ X _ X
			2.10		Firm yellowish brown slightly sandy gr is fine to coarse. Gravel is angular and angular and subangular of limestone. E	subangular fine to coars	e of limestone. Cobbles are	and - ×-
			2.60	19.32		End of Trial Pit at 2.60m		
			- - - - 3 - -					- - - -
			- - - -					- - - -
			4					
			- - -					_ _ _ _

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

Phone: 033 022 36380

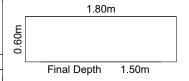
Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. **TP25**


earth matters	Phone: 033 022 36380	Email: hello@tfwgroup.co.uk	Cardiff CF23 7HA	Exeter EX6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name		Project No	. Date			Hole Type
Craig-y-Parcau		TF-24-589-	CA 08	3/11/2024 to	08/11/2024	TP
Client		Co-ords		Water St	rike Details	Logged By
Bellway Homes Limited		E: 288961	l l	epth Strike	Remarks	ES
Contractor	Plant Use	d				Approved By
Dettales and	от	N: 178606	51			
Pritchards	8T	L: 21.08				Scale 1:50

					L. 21.00	Scale 1.50
Samples	s and Re	sults	Depth,		Stratum Description	Logond
Results	Туре	Depth	(Thickness)	Level		Legend
			- (0.20) - 0.20	20.88	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravangular and subangular fine to coarse of mixed lithologies () Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	/el is
	ES	0.60	(1.10)			
			- 1 - 1.30 - (0.20)		Stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. S is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	and
			1.50	19.58	angular and subangular of limestone. Boulders are angular and subangular of limestone () End of Trial Pit at 1.50m	
						-
			- - - -			
			- 3 - - -			
			 _ _ _			_ - - -
			4			<u>-</u> - -
						- - -
			-			

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930 2015, 31 Trial pit terminated on boulder/bedrock refusal.

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. TP26

earth matters	Phon	e: 033 022 363	80 En	nail: hello@tfwgroup.c			eter (6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name					Project No.	Date			Hole Type
Craig-y-Parcau					TF-24-589-CA	08/11/202	4 to 0	8/11/2024	TP
Client					Co-ords	W	ater Stri	ke Details	Logged By
Bellway Homes Limited					E: 288971.77	Depth Str	ike	Remarks	ES
Contractor		Plant U	sed		N: 178653.57				Approved By
Pritchards		8T		_	L: 20.53				Scale 1:50

i iitoriarus			01		L: 20.53			Scale 1:50
Sample	s and Res	sults	Depth,			to the second of		1
Results	Туре	Depth	(Thickness)	Level	5	tratum Description		Legend
		•	(0.10) 0.10	20.43	Grass over soft brown slightly gravelly angular and subangular fine to coarse	of mixed lithologies ()		el is $\overline{\times \times \times \times}$
			(0.50)		Firm yellowish brown sightly sandy silty	y CLAY. Sand is fine to co	parse. ()	
			0.60	19.93	Stiff yellowish brown slightly sandy gra	velly silty CLAY with low	cobble and boulder content. Sa	
			(0.40)		is fine to coarse. Gravel is angular and angular and subangular of limestone. E	subangular fine to coarse	e of limestone. Cobbles are	
			1 1.00	19.53		End of Trial Pit at 1.00m		
			_					-
			-					_
			_					-
			_ _ 2					_
								_
			_					-
			-					-
			3					_
			_					-
			_					_
]
			4					_
			_					=
			F					=
			E					=

Remarks		1.80n	n
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	0.60m		<u>'</u>
Pit Stability: Stable	ı ∟	Final Donth	1.00m
Notes: For all symbols and abbreviations please see key sheet All depths and measurements in metres. Stratum thicknesses given in brackets		Final Depth	1.00m

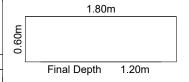
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP27**


			GFZS	THA EX67BP	POZ OFA	Sneet 1 of 1
			Project No.	Date		Hole Type
			TF-24-589-CA	08/11/2024 to	08/11/2024	TP
			Co-ords	Water St	rike Details	Logged By
			E: 288055 36	Depth Strike	Remarks	ES
10	sed		N: 178577.25			Approved By
8T			L: 20.33			Scale 1:50
	Plant Us	Plant Used 8T	Plant Used	Project No. TF-24-589-CA Co-ords E: 288955.36 Plant Used N: 178577.25	Project No. TF-24-589-CA Co-ords E: 288955.36 N: 178577.25 Date 08/11/2024 to 08/11/2024 to 08/11/2024 to	Project No. Date 08/11/2024 to 08/11/2024

ional do	١٠.		L: 20.33			Scale 1:50
Samples and Results	Depth,			to at use December is a		1
Results Type Depth	(Thickness)	Level	5	tratum Description		Leger
	(0.10) 0.10 (0.40)	20.23	Grass over soft brown slightly gravelly angular and subangular fine to coarse Firm yellowish brown sightly sandy silt	of mixed lithologies ()		el is $\overline{\times \times \times}$
	- 0.50 - - - - (0.70)	19.83	Stiff yellowish brown slightly sandy gra is fine to coarse. Gravel is angular and angular and subangular of limestone. E	subangular fine to coarse	e of limestone. Cobbles are	and
	1 1 1.20	19.13				
	- 1.20 - - -	19.13		End of Trial Pit at 1.20m		-
	_ _ _ 2					<u>-</u>
	-					
	_ - -					-
	3 3					
	- - -					
	- - -					-
	4 					_
	- -					=

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930 2015, 31 Trial pit terminated on boulder/bedrock refusal.

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

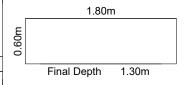
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

Borehole No. **TP28**


edilitilatieis		Cr	23 / HA EX6 / BP	POZ 6FA	Sneet 1 of 1
Project Name		Project No.	Date		Hole Type
Craig-y-Parcau		TF-24-589-CA	08/11/2024 to	08/11/2024	TP
Client		Co-ords	Water St	trike Details	Logged By
Bellway Homes Limited		E: 288990.56	Depth Strike	Remarks	ES
Contractor	Plant Used	N: 178554.19			Approved By
Pritchards	8T	L: 21.87			Scale 1:50

					L. 21.01	Scale 1.50
Samples	and Re	sults	Depth,		Stratum Description	Logond
Results	Туре	Depth	(Thickness)	Level		Legend
	ES	0.05	(0.10) 0.10	21.77	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Grave angular and subangular fine to coarse of mixed lithologies () Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	l is
			(0.50)			
	D	0.60	0.60	21.27	Stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sa is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are angular and subangular of limestone. Boulders are angular and subangular of limestone ()	nd
			1 (0.70)			
			1.30	20.57	End of Trial Pit at 1.30m	
			_ _ 2			
			-			=
						3
			_			
			3			_
			_			
			_			-
			_			-
			- 4			
			E			
			-			-

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930 2015, 31 Trial pit terminated on boulder/bedrock refusal.

4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office
The Slate Barn
Lower Lowley
Dunsford
Exeter
EX6 7BP

Portsmouth Office
Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA

TP29
Sheet 1 of 1

Project Name Project No. Date	Hole Type
Craig-y-Parcau TF-24-589-CA 08/11/2024 to 08/11/2024	TP
Client Co-ords Water Strike Details	Logged By
Bellway Homes Limited E: 289117.79 Depth Strike Remarks	ES
Contractor Plant Used N: 178597.86	Approved By
Pritchards L: 20.61	Scale 1:50

			١٠.		L: 20.61			Scale 1:50
Samples	and Res	sults	Depth,					
Results	Туре	Depth	(Thickness)	Level	S	tratum Description		Legen
rtoouno	1,700	Борин	<u> </u>		Grass over soft brown slightly gravelly	slightly sandy clayey SIL	T. Sand is fine to coarse. Gravel i	s ×××
			- (0.20) - 0.20	20.41	angular and subangular fine to coarse	of mixed lithologies ()		XXX
			0.20	20.41	Firm yellowish brown sightly sandy silt	y CLAY. Sand is fine to co	parse. ()	_×
			-					×
			(0.70)					+^ <u>~</u> _
			[(****)					<u> </u>
								x
			0.90	19.71	Stiff vallowish brown slightly condy gro	vally ailty CLAV with law	ashble and boulder centent. San	, <u>, , , , , , , , , , , , , , , , , , </u>
			- 1		Stiff yellowish brown slightly sandy grais fine to coarse. Gravel is angular and	subangular fine to coarse	e of limestone. Cobbles are	' <u> </u>
					angular and subangular of limestone.	Boulders are angular and	subangular of limestone ()	
			(0.70)					
			_					
			-					—
			1.60	19.01		End of Trial Pit at 1.60m		
]
			_					_
			2					-
			-					-
]
			_					_
			-					-
								-
]
			_					_
			<u> </u>					
								-
			_					4
			\vdash					\dashv
								-
]
			_					4
			 4					_
			-					-
]
			L					-
			\vdash					\dashv
								7
			Г					7
	1 1		L					

1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal.
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Remarks

Notes: For all symbols and abbreviations please see key sheet. All depths and measurements in metres. Stratum thicknesses given in brackets.

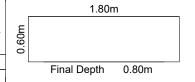
Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole
Kingston Crescent
North End
Portsmouth
PO2 8FA


Borehole No. TP30 Sheet 1 of 1

Cammanell	Sileet 1 of 1
Project Name Project	ect No. Date Hole Type
Craig-y-Parcau TF-24-	4-589-CA 08/11/2024 to 08/11/2024 TP
Client Co-ord	rds Water Strike Details Logged By
Bellway Homes Limited	Depth Strike Remarks ES
Contractor Plant Used N: 178	78550.80 Approved By
Pritchards 8T L: 22.	2.54 Scale 1:50

			-		L. 22:34	Scale 1.50
Samples	s and Re	sults	Depth,		Stratum Description	امما
Results	Туре	Depth	(Thickness)	Level	Stratum Description	Lege
	1 '' 1		- (0.10) - 0.10	22.44	Grass over soft brown slightly gravelly slightly sandy clayey SILT. Sand is fine to coarse. Gravel is	XXX
			0.10	22.44	angular and subangular fine to coarse of mixed lithologies ()	/
					Firm yellowish brown sightly sandy silty CLAY. Sand is fine to coarse. ()	
			(0.50)			<u>X</u> <u>X</u> -
			-			+×
			0.60		Stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand	1
			(0.20)		is fine to coarse. Gravel is angular and subangular fine to coarse of limestone. Cobbles are	†
			0.80	21.74	angular and subangular of limestone. Boulders are angular and subangular of limestone ()	/
			L ₁		End of Trial Pit at 0.80m	
			L '			_
			_			_
			-			-
			-			-
						\neg
						7
]
						_
			2			_
			-			4
			-			-
						7
			L			
			-			4
			-			4
			=			-
			 3			
			L			_
			_			4
			-			-
			-			-
			-			7
			4			
			·			
			-			-
			+			\dashv
			 			\dashv
						\dashv
]
			-			4
					1	

Remarks
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for
guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal
4] Trial pit backfilled with arisings. 5] No groundwater was encountered.

Pit Stability: Stable

Phone: 033 022 36380

Email: hello@tfwgroup.co.uk

Cardiff Office 5 Deryn Court Wharfedale Road Pentwyn Cardiff CF23 7HA

Exeter Office The Slate Barn Lower Lowley Dunsford Exeter EX6 7BP

Portsmouth Office Technopole Kingston Crescent North End Portsmouth PO2 8FA

Borehole No. TP31

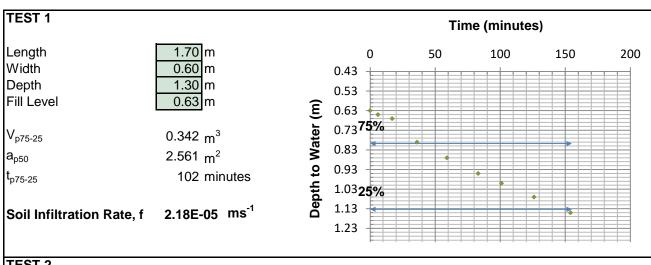
earth matters	Phone	: 033 022 3638	30 E	mail: hello@tfwgroup.c		ardiff F23 7HA	Exeter EX6 7BP	Portsmouth PO2 8FA	Sheet 1 of 1
Project Name					Project No.	Date			Hole Type
Craig-y-Parcau					TF-24-589-CA	08/11	1/2024 to	08/11/2024	TP
Client					Co-ords		Water St	Logged By	
Bellway Homes Limited					E: 288883.09	Dept	n Strike	Remarks	ES
Contractor		Plant U	sed		N: 178707.62				Approved By
Pritchards		8T			L: 24.65				Scale 1:50

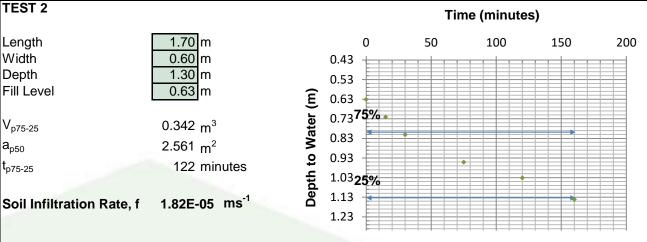
			1		L. 24.00			Scale 1.50
Samples and Results		Depth,			0		Leger	
Results	Туре	Depth	(Thickness)	Level	8	Stratum Description		
	7.	•	- (0.20)		Grass over soft brown slightly gravelly	slightly sandy clayey SIL	T. Sand is fine to coarse. Gravel	is <u>XXXX</u>
			- 0.20	24.45	angular and subangular fine to coarse Firm orangish brown sightly sandy silty		parea ()	X X X
			-		I in orangish brown signity sandy sing	y CLAT. Salid is lifte to do	aise. ()	+^
			(0.70)					x
			-					+
			0.90	23.75				<u> </u>
			1	20.70	Very stiff greyish brown slightly sandy	gravelly silty CLAY with lo	ow cobble and boulder content.	
			-		Sand is fine to coarse. Gravel is angul angular and subangular of limestone. I	ar and subangular line to Boulders are angular and	subangular of limestone ()	
			(0.80)			· ·	· ·	<u></u>
			(0.60)					
			-					- <u>-</u>
			1.70	22.95				
			1.70	22.93		End of Trial Pit at 1.70m		_
			-					-
			2					
			_					_
			-					-
			-					4
			-					-
]
			 3					_
			-					-
]
			-					-
								\dashv
]
			-					-
			+ ,					-
			4					
			-					-
			t					
			F					\exists
			-					-
			†					1
			F					1

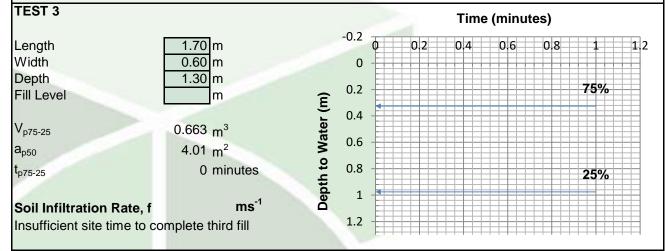
Remarks		1.80m		
1] Consistency, strength and density indicators are based upon field judgement. 2] Density indicator is for guidance only, and is not in accordance with BS 5930:2015. 3] Trial pit terminated on boulder/bedrock refusal. 4] Trial pit backfilled with arisings. 5] No groundwater was encountered.	0.60m	1.001	II	
Pit Stability: Stable		Final Donth	1 70m	
Notes: For all symbols and abbreviations places see key sheet. All deaths and measurements in matres. Stratum thicknesses given in brackets		Final Depth	1.70m	

ANNEX B Soakaway Results

V1 Issued: Nov 2020 Ref: QF-041 Reviewed: Nov 2020


SOAKAWAY TEST


Site Name: Craig-y-Parcau Project Number: TF-24-589-CA


Date: 08-Nov Engineer: Elliot

TP23 Trial Pit:

REMARKS:

Test carried out in accordance with BRE Digest 365 (2016)

V1 Issued: Nov 2020

Reviewed: Nov 2020

SOAKAWAY TEST

Site Name: Craig-y-Parcau

Project Number: TF-24-589-CA

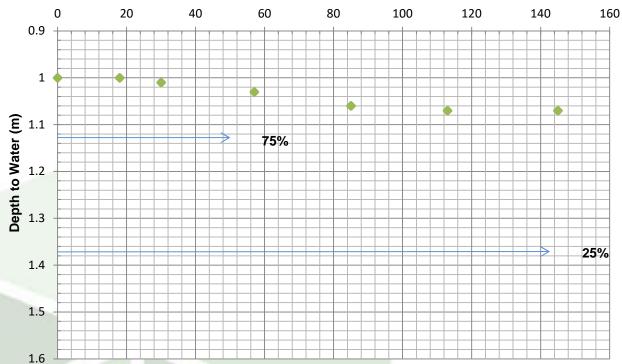
Date: 08-Nov TrialPit: TP25
Engineer: Elliot

TEST 1

 Length
 1.70 m

 Width
 0.60 m

 Depth
 1.50 m


 Fill Level
 1.00

 $\begin{array}{ccc} V_{p75\text{-}25} & & 0.071 \text{ m}^3 \\ a_{p50} & & 0.754 \text{ m}^2 \\ t_{p75\text{-}25} & & 0 \text{ minutes} \end{array}$

Soil Infiltration Rate, f

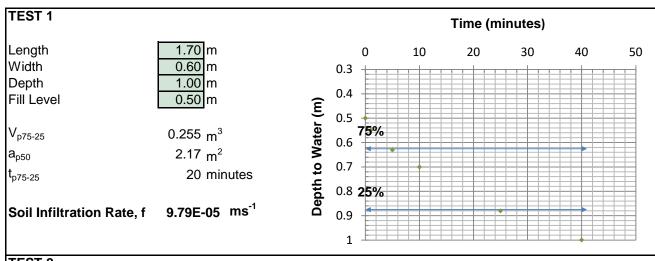
insufficient flow to calculate infiltration rate

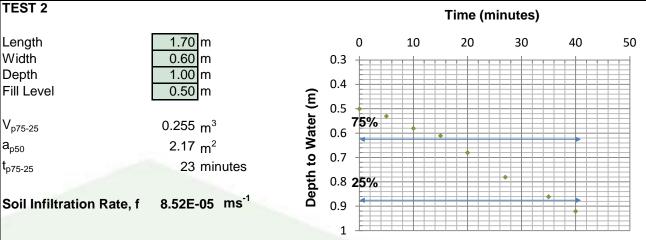
Time (minutes)

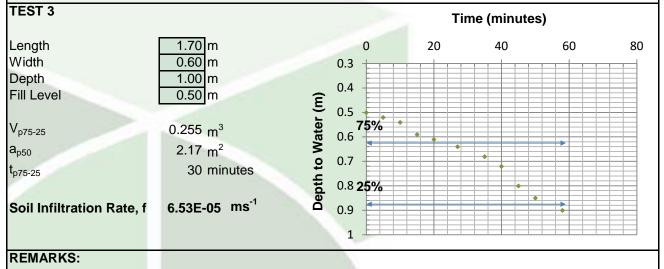
REMARKS:

Test carried out in accordance with BRE Digest 365 (2016)

V1 Issued: Nov 2020 Ref: QF-041 Reviewed: Nov 2020


SOAKAWAY TEST


Site Name: Craig-y-Parcau Project Number: TF-24-589-CA


> Date: 08-Nov Engineer: Elliot

TP26 Trial Pit:

Test carried out in accordance with BRE Digest 365 (2016)

Ref: QF-033

SOAKAWAY TEST

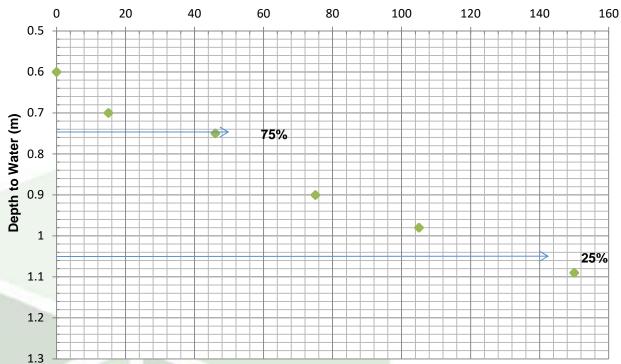
V1 Issued: Nov 2020

Reviewed: Nov 2020

Site Name: Craig-y-Parcau Project Number: TF-24-589-CA

Date: 08-Nov **Trial Pit: TP27**

Engineer: Elliot


TEST 1

Length 1.70 m Width 0.60 m Depth 1.20 m Fill Level 0.60

 V_{p75-25} $0.085 \, m^3$ a_{p50} 0.848 m^2 94 minutes t_{p75-25}

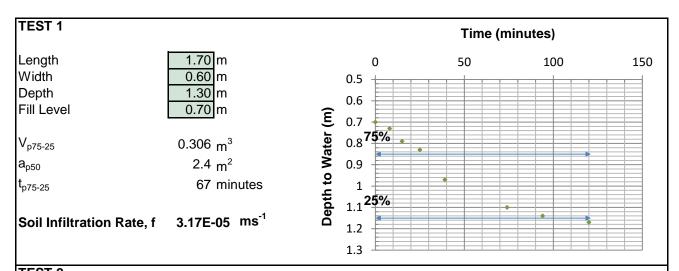
Soil Infiltration Rate, f 2.08E-05

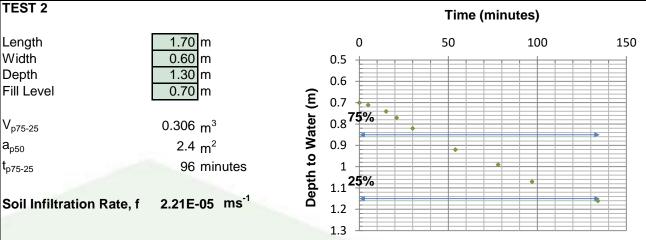
Time (minutes)

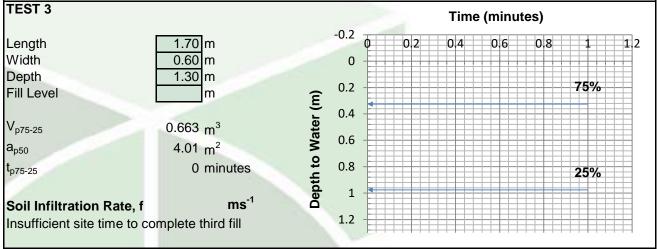
REMARKS:

Test carried out in accordance with BRE Digest 365 (2016). Insufficient site time to complete additional fills

SOAKAWAY TEST


terra firma


V1 Issued: Nov 2020


Reviewed: Nov 2020

Site Name: Craig-y-Parcau **Project Number**: TF-24-589-CA

Date: 08-Nov Engineer: Elliot Trial Pit: TP28

REMARKS:

Test carried out in accordance with BRE Digest 365 (2016)

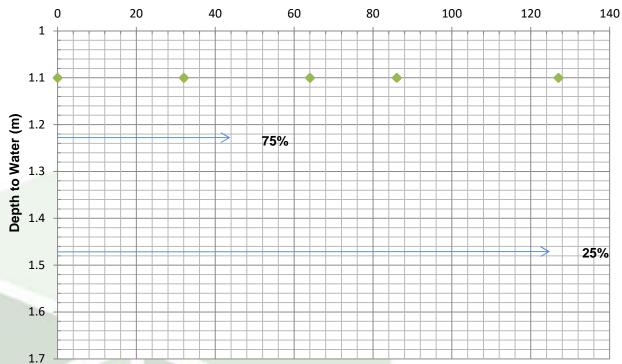
SOAKAWAY TEST

Site Name: Craig-y-Parcau Project Number: TF-24-589-CA

Date: 08-Nov Engineer: Elliot

TrialPit: **TP29**

TEST 1


Length 1.70 m Width 0.60 m Depth 1.60 m Fill Level 1.10

 V_{p75-25} $0.071 \, \text{m}^3$ a_{p50} 0.754 m^2 0 minutes t_{p75-25}

Soil Infiltration Rate, f

insufficient flow to calculate infiltration rate

Time (minutes)

REMARKS:

Test carried out in accordance with BRE Digest 365 (2016)

ANNEX C
Laboratory Chemical Test Results

chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 24-36973-2

Initial Date of Issue: 21-Nov-2024 Date of Re-Issue: 28-Nov-2024

Re-Issue Details:

This report has been revised and directly

supersedes 24-36973-1 in its entirety

Client Terra Firma

Client Address: 5 Deryn Court

Wharfedale Road

Pentwyn Cardiff CF23 7HA

Contact(s): elliot@terrafirmawales.co.uk

Project Bridgend

Quotation No.: Date Received: 13-Nov-2024

Order No.: 24-589-CA Date Instructed: 13-Nov-2024

No. of Samples: 30

Turnaround (Wkdays): 13 Results Due: 29-Nov-2024

Date Approved: 28-Nov-2024

Approved By:

Details: David Smith, Technical Director

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Project: Bridgend												
Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:			Chemte	est Sam	ple ID.:	1894224	1894225	1894226	1894227	1894228	1894229	1894230
			Cli	ent Sam	nple ID.:	ES1TP01	ES1TP02	ES1TP03	ES1TP04	ES1TP05	ES1TP06	ES1TP07
			Sa	ample L	ocation:	TP01	TP02	TP03	TP04	TP05	TP06	TP07
				Sampl	e Type:	SOIL						
				Top De	pth (m):	0.2	0.5	0.2	0.5	1	0.6	0.1
			Bo	ttom De	pth (m):	0.3	0.6	0.3	0.6	1.1	0.6	0.1
				Date Sa	ampled:	08-Nov-2024						
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	tos Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
ACM Type		U	2192		N/A	-	-	-	-	-	-	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected						
Asbestos by Gravimetry		U	2192	%	0.001							
Total Asbestos		U	2192	%	0.001							
Moisture		N	2030	%	0.020	28	27	20	20	15	17	4.0
Soil Colour		N	2040		N/A	Brown						
Other Material		N	2040		N/A	Stones, Wood and Roots	Stones and Roots	Stones and Roots	None	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Loam	Loam	Loam	Clay	Clay	Clay	Sand
pH at 20C		М	2010		4.0	8.4	8.8	9.3	8.3	8.7	8.6	8.6
pH (2.5:1) at 20C		N	2010		4.0	7.7			7.8			8.8
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	1.1	0.41	0.65	< 0.40	< 0.40	< 0.40	< 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010			< 0.010			< 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	0.20			< 0.010			< 0.010
Total Sulphur		U	2175	%	0.010	0.18			0.020			0.020
Chloride (Water Soluble)		М	2220	g/l	0.010	0.010			< 0.010			< 0.010
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010			< 0.010			< 0.010
Cyanide (Complex)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01			< 0.01			< 0.01
Sulphate (Acid Soluble)		U	2430	%	0.010	0.16	0.16	0.11	0.036	0.033	0.032	< 0.010
Arsenic		М	2455	mg/kg	0.5	13	13	17	14	8.0	11	3.0
Beryllium		U	2455	mg/kg		0.7	0.6	0.9	2.2	0.8	1.9	< 0.5
Cadmium		М	2455			0.47	0.46	0.62	1.0	0.10	0.70	0.75
Chromium		М	2455	mg/kg	0.5	15	8.2	13	22	13	16	10
Mercury Low Level		N	2450	mg/kg		0.05	0.08	0.16	0.07	< 0.05	< 0.05	< 0.05
Manganese		М	2455	mg/kg		780	490	690	1400	380	360	490
Molybdenum		М	2455	mg/kg		1.6	1.3	1.7	7.1	1.7	2.1	< 0.5
Antimony		N	2455	mg/kg	2.0	< 2.0	< 2.0	3.5	< 2.0	< 2.0	< 2.0	< 2.0
Copper		М	2455	mg/kg		19	26	50	23	19	20	5.5
Nickel		М	2455	mg/kg		18	16	23	30	26	29	5.1
Lead		М	2455	mg/kg		81	90	210	28	17	20	15
Selenium		М	2455	mg/kg		1.2	0.90	1.4	2.6	1.1	2.1	0.39
Zinc		М	2455			91	96	200	130	21	28	29

Project: Bridgend									T			
Client: Terra Firma				mtest J		24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(st Sam		1894224	1894225	1894226	1894227	1894228	1894229	1894230
				ent Sam	•	ES1TP01	ES1TP02	ES1TP03	ES1TP04	ES1TP05	ES1TP06	ES1TP07
			Sa	ample L		TP01	TP02	TP03	TP04	TP05	TP06	TP07
					e Type:	SOIL						
				Top De		0.2	0.5	0.2	0.5	1	0.6	0.1
			Bo	ttom De	pth (m):	0.3	0.6	0.3	0.6	1.1	0.6	0.1
				Date Sa	ampled:	08-Nov-2024						
				Time Sa		12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chromium (Trivalent)		N	2490	mg/kg	1.0	15	8.2	13	22	13	16	10
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg		< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg	1.00	42	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg	•	69	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	М	2690	mg/kg		91	4.4	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg		150	< 10	< 10	< 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М	2690	mg/kg		200	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH 2D AL #1	N	2690		10.00	350	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	Ū	2780	mg/kg	-	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	Ü	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	Ü	2690	mg/kg	1	33	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	Ü	2690	mg/kg		12	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	Ü	2690	mg/kg		38	3.8	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg		38	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	Ü	2690	mg/kg		84	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC	EH 2D AR #1	N	2690		10.00	120	< 10	< 10	< 10	< 10	< 10	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	_	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH 2D Total #1	U	2690	mg/kg		290	< 10	< 10	< 10	< 10	< 10	< 10
Total EPH >C10-C40 MC	EH_2D_Total_#1	N	2690		10.00	470	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	L11_2D_10la1_#1	M	2800	mg/kg		< 0.10	0.14	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
		N	2800	mg/kg		< 0.10	< 0.14	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthone		M	2800		-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		M	2800	mg/kg			< 0.10					
Fluorene				mg/kg		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		M	2800	mg/kg		< 0.10	0.35	0.38	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		M	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		М	2800	mg/kg	0.10	0.54	0.46	0.54	< 0.10	< 0.10	< 0.10	< 0.10

Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(Chemte	st Sam	ple ID.:	1894224	1894225	1894226	1894227	1894228	1894229	1894230
			Cli	ent Sam	ple ID.:	ES1TP01	ES1TP02	ES1TP03	ES1TP04	ES1TP05	ES1TP06	ES1TP07
			Sa	ample Lo	ocation:	TP01	TP02	TP03	TP04	TP05	TP06	TP07
				Sampl	e Type:	SOIL						
				Top De	oth (m):	0.2	0.5	0.2	0.5	1	0.6	0.1
			Bot	ttom De _l	oth (m):	0.3	0.6	0.3	0.6	1.1	0.6	0.1
				Date Sa		08-Nov-2024						
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Pyrene		М	2800	mg/kg	0.10	0.40	0.37	0.48	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	0.39	0.35	0.30	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	0.43	0.42	0.38	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		M	2800	mg/kg	0.10	< 0.10	0.50	0.55	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10	0.15	0.20	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	0.36	0.37	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	0.31	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10	0.31	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		N	2800	mg/kg	2.0	< 2.0	3.1	3.8	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Organic Matter BS1377		N	2930	%	0.10	3.7	4.6	1.5	0.10	0.40	0.60	0.60

		Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
		Chemte	st Sam	ple ID.:	1894231	1894232	1894233	1894234	1894235	1894236	1894237
		Cli	ent Sam	ple ID.:	ES2TP07	ES1TP08	ES2TP08	ES1TP09	ES1TP10	ES1TP11	ES1TP12
		Sa	ample Lo	ocation:	TP07	TP08	TP08	TP09	TP10	TP11	TP12
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	0.4	0.1	0.8	0.05	1.5	0.7	1
		Bot	tom De	pth (m):	0.4	0.1	0.8	0.05	1.5	0.7	1
			Date Sa	ampled:	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024
			Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
HWOL Code	Accred.	SOP	Units	LOD							
	U	2192		N/A	Fibres/Clumps	-	-	-	-	-	-
	U	2192		N/A	Chrysotile	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
	U	2192	%	0.001	0.001						
	U	2192	%	0.001	0.001						
	N	2030	%	0.020	15	7.5	21	24	21	22	21
	N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
	N	2040		N/A	Roots, Stones and Wood	Stones	Roots	grass and Roots	None	Roots and Stones	Stones
	N	2040		N/A	Loam	Sand	Clay	Loam	Clay	Clay	Clay
	М	2010		4.0	8.0	8.3	7.9	7.6	7.6	7.6	7.9
	N	2010		4.0	8.0					7.9	
	М	2120	mg/kg	0.40	1.2	0.58	< 0.40	0.41	< 0.40	< 0.40	< 0.40
	N	2120	g/l	0.010	< 0.010					< 0.010	
	М	2120	g/l	0.010	0.056					< 0.010	
	U	2175	%	0.010	0.10					0.030	
	М	2220	g/l	0.010	< 0.010					< 0.010	
	N	2220	g/l	0.010	< 0.010					< 0.010	
	М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	М	2220	g/l	0.01	< 0.01					< 0.01	
		2430	%	0.010	0.088	0.14	0.012	0.058	0.014	< 0.010	0.039
	_	2455	mg/kg	0.5	26		28	42	9.6	32	40
	_	2455	mg/kg	0.5					1.9		2.2
	М		0	0.10	1.5	0.75	0.27	5.7	0.68	0.97	3.7
	М		mg/kg	0.5	20	10	30	37	20	34	36
	N	2450	mg/kg	0.05	0.08	0.05	0.07	0.12	< 0.05	0.08	0.14
	М	2455	mg/kg	1.0	930	420	450	1800	560	1100	1100
	М	2455			1.6	1.2	2.8	9.9	1.3	3.8	5.5
	N	2455	mg/kg			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
	М	2455	mg/kg	0.50	20	11	25	23	17	28	33
	М	2455	mg/kg	0.50	18	9.2	24	55	39	38	50
	М	2455	mg/kg	0.50	550	38	48	260	34	87	160
	М	2455	mg/kg	0.25	1.3	0.88	1.1	8.8	1.9	2.8	3.3
	М	2455	mg/kg	0.50	440	52	71	460	26	110	370
	HWOL Code	HWOL Code Accred. U U U U N N N N N N N N N	Chemte Clin Si	Chemtest Sam	U 2192 N/A U 2192 % 0.001 U 2192 % 0.001 U 2192 % 0.001 N 2030 % 0.020 N 2040 N/A N 2040 N/A N 2040 N/A N 2010 4.0 N 2010 4.0 N 2120 mg/kg 0.40 N 2120 g/l 0.010 M 2120 g/l 0.010 M 2220 g/l 0.010 M 2300 mg/kg 0.50 M 2300 mg/kg 0.50 M 2455 mg/kg 0.5 M 2455 mg/kg 0.50 M 2455 mg/kg 0.50	Chemtest Sample ID.:	Chemtest Sample ID.: 1894231 1894232 Client Sample ID.: ESZTPO7 ES1TP08 Sample Location: TP07 TP08 Sample Type: SOIL SOIL Top Depth (m): 0.4 0.1 Date Sampled: 0.8-Nov-2024 08-Nov-2024 Time Sampled: 12:00 12:00 Asbestos Lab: DURHAM DURHAM DURHAM DURHAM DURHAM DURHAM DURHAM DURHAM DURHAM DURHAM DURHAM DURHAM DURHAM D	Chemtest Sample ID.:	Chemtest Sample ID:	Chemisest Sample ID:	Chemitest Sample ID:

Project: Bridgend												
Client: Terra Firma				mtest J		24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(st Sam		1894231	1894232	1894233	1894234	1894235	1894236	1894237
				ent Sam	•	ES2TP07	ES1TP08	ES2TP08	ES1TP09	ES1TP10	ES1TP11	ES1TP12
			Sa	ample L		TP07	TP08	TP08	TP09	TP10	TP11	TP12
					e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De		0.4	0.1	0.8	0.05	1.5	0.7	1
			Bot	ttom De	pth (m):	0.4	0.1	0.8	0.05	1.5	0.7	1
				Date Sa	ampled:	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024
				Time Sa		12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chromium (Trivalent)		N	2490	mg/kg	1.0	20	10	30	37	20	34	36
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	U	2780	mg/kg		< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М	2690	mg/kg		11	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	М	2690	mg/kg		28	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М	2690	mg/kg		39	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH 2D AL #1	N	2690		10.00	39	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	-	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	Ü	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1	3.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	Ü	2690	mg/kg		14	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	Ü	2690	mg/kg		50	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg		46	1.5	< 1.0	< 1.0	30	< 1.0	< 1.0
	_	U	+			68						
Total Aromatic EPH > C10-C35 MC	EH_2D_AR_#1	N N	2690 2690	mg/kg		110	< 5.0	< 5.0	< 5.0	< 5.0 30	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC Total VPH >C5-C10	EH_2D_AR_#1	U	2690		10.00	< 0.50	< 10 < 0.50	< 10 < 0.50	< 10 < 0.50	< 0.50	< 10 < 0.50	< 10 < 0.50
	HS_2D_Total	U		mg/kg								
Total EPH > C10-C35 MC	EH_2D_Total_#1		2690	mg/kg		110	< 10	< 10	< 10	< 10	< 10	< 10
Total EPH >C10-C40 MC	EH_2D_Total_#1	N	2690		10.00	150	< 10	< 10	< 10	30	< 10	< 10
Naphthalene		M	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		M	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		М	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		М	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		М	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(Chemte	st Sam	ple ID.:	1894231	1894232	1894233	1894234	1894235	1894236	1894237
			Cli	ent Sam	ple ID.:	ES2TP07	ES1TP08	ES2TP08	ES1TP09	ES1TP10	ES1TP11	ES1TP12
			Sa	ample Lo	ocation:	TP07	TP08	TP08	TP09	TP10	TP11	TP12
				Sampl	e Type:	SOIL						
				Top De	oth (m):	0.4	0.1	0.8	0.05	1.5	0.7	1
			Bot	ttom De _l	oth (m):	0.4	0.1	0.8	0.05	1.5	0.7	1
				Date Sa		08-Nov-2024						
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		Ν	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Organic Matter BS1377		N	2930	%	0.10	0.90	0.60	0.30	0.60	0.90	0.50	0.30

Project: Briagena												
Client: Terra Firma			Chei	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(st Sam		1894238	1894239	1894240	1894241	1894242	1894243	1894244
			Clie	ent Sam	ple ID.:	ES1TP13	ES1TP14	ES1TP15	ES1TP16	ES1TP17	ES1TP18	ES1TP19
			Sa	ample Lo	ocation:	TP13	TP14	TP15	TP16	TP17	TP18	TP19
				Sampl	е Туре:	SOIL						
				Top De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
			Bot	tom De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
				Date Sa	ampled:	08-Nov-2024						
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
ACM Type		U	2192		N/A	-	-	-	-	-	-	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected						
Asbestos by Gravimetry		U	2192	%	0.001							
Total Asbestos		U	2192	%	0.001							
Moisture		N	2030	%	0.020	19	28	24	18	28	19	21
Soil Colour		N	2040		N/A	Brown						
Other Material		N	2040		N/A	grass	Stones and Roots	Roots and grass	Stones	Roots and Stones	None	Stones and Roots
Soil Texture		N	2040		N/A	Loam	Loam	Clay	Loam	Loam	Clay	Loam
pH at 20C		М	2010		4.0	7.3	6.7	7.3	7.7	6.5	7.8	6.9
pH (2.5:1) at 20C		N	2010		4.0	7.4	_	7.3			7.7	7.2
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010	< 0.010		< 0.010			< 0.010	< 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010		< 0.010			< 0.010	< 0.010
Total Sulphur		U	2175	%	0.010	0.040		0.020			0.020	0.040
Chloride (Water Soluble)		М	2220	g/l	0.010	< 0.010		< 0.010			< 0.010	< 0.010
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010		< 0.010			< 0.010	< 0.010
Cyanide (Complex)		М	2300	mg/kg	0.50	< 0.50	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Ammonium (Water Soluble)		М	2220	g/l	0.01	< 0.01		< 0.01			< 0.01	< 0.01
Sulphate (Acid Soluble)		U	2430	%	0.010	0.069	0.088	0.060	0.027	0.044	< 0.010	0.060
Arsenic		М	2455	mg/kg	0.5	23	29	21	11	7.2	26	22
Beryllium		U	2455	mg/kg	0.5	1.1	1.1	1.0	1.3	0.9	2.1	1.2
Cadmium		М	2455	mg/kg	0.10	0.90	1.1	0.67	0.72	0.63	1.0	0.77
Chromium		М	2455	mg/kg	0.5	28	36	21	20	11	34	34
Mercury Low Level		N	2450	mg/kg	0.05	0.05	0.09	0.06	< 0.05	< 0.05	0.09	0.06
Manganese		М	2455	mg/kg	1.0	1500	1400	860	1200	420	2000	1700
Molybdenum		М	2455	mg/kg		2.9	2.7	2.7	2.3	1.1	3.0	4.7
Antimony		N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper		М	2455	mg/kg	0.50	21	27	16	16	18	30	25
Nickel		М	2455	mg/kg		25	25	21	24	7.8	64	29
Lead		М	2455	mg/kg	0.50	90	99	53	31	25	32	73
Selenium		М	2455	mg/kg	0.25	1.9	2.1	1.5	1.8	1.0	3.3	2.3
Zinc		М	2455	mg/kg		280	170	230	57	49	100	250
		_	-									

Project: Briagena												
Client: Terra Firma				mtest J		24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:				st Sam		1894238	1894239	1894240	1894241	1894242	1894243	1894244
			Clie	ent Sam	nple ID.:	ES1TP13	ES1TP14	ES1TP15	ES1TP16	ES1TP17	ES1TP18	ES1TP19
			Sa	ample L	ocation:	TP13	TP14	TP15	TP16	TP17	TP18	TP19
				Samp	e Type:	SOIL						
				Top De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
			Bot	tom De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
				Date S	ampled:	08-Nov-2024						
				Time S	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	tos Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chromium (Trivalent)		N	2490	mg/kg	1.0	28	36	21	20	11	34	34
Chromium (Hexavalent)		N	2490	mg/kg	_	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS 2D AL	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS 2D AL	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	Ü	2780	mg/kg		< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	M	2690	mg/kg		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	M	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	M	2690	mg/kg		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	M	2690	mg/kg		< 3.0	6.0	< 3.0	< 3.0	27	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	M	2690	mg/kg		< 5.0	6.0	< 5.0	< 5.0	28	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH_2D_AL_#1	N	2690	mg/kg		< 10	< 10	< 10	< 10	28	< 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	Ü	2780	mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	Ü	2780	mg/kg		< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	+	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C16-C21 MC Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg mg/kg		< 2.0	< 2.0	< 2.0	< 2.0	3.0	< 2.0	< 2.0
Aromatic EPH >C21-C35 MC Aromatic EPH >C35-C40 MC		N	_	0								
	EH_2D_AR_#1	U	2690	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic EPH > C10-C35 MC	EH_2D_AR_#1		2690	mg/kg		< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC	EH_2D_AR_#1	N U	2690	mg/kg	_	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total VPH >C5-C10	HS_2D_Total	_	2780	mg/kg		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg		< 10	< 10	< 10	< 10	31	< 10	< 10
Total EPH >C10-C40 MC	EH_2D_Total_#1	N	2690	mg/kg		< 10	< 10	< 10	< 10	31	< 10	< 10
Naphthalene		M	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		M	2800	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		М	2800	mg/kg	•	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		М	2800	mg/kg	_	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		М	2800	mg/kg	_	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Terra Firma				mtest J		24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(Chemte	est Sam	ple ID.:	1894238	1894239	1894240	1894241	1894242	1894243	1894244
				ent Sam		ES1TP13	ES1TP14	ES1TP15	ES1TP16	ES1TP17	ES1TP18	ES1TP19
			Sa	ample Lo	ocation:	TP13	TP14	TP15	TP16	TP17	TP18	TP19
				Sampl	е Туре:	SOIL						
				Top De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
			Bo	ttom De	pth (m):	0.1	0.1	0.6	0.4	0.1	1.5	0.5
				Date Sa	ampled:	08-Nov-2024						
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		N	2800		2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Organic Matter BS1377		N	2930		0.10	0.20	0.20	0.20	0.20	0.40	0.70	0.70

Project: Briagena												
Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:			Chemte	st Sam	ple ID.:	1894245	1894246	1894247	1894248	1894249	1894250	1894251
			Cli	ent Sam	ple ID.:	ES1TP20	ES1TP21	ES1TP22	ES1TP23	ES1TP24	ES1TP25	ES1TP28
				ample Lo		TP20	TP21	TP22	TP23	TP24	TP25	TP28
					е Туре:	SOIL						
				Top De		0.8	0.1	0.4	0.5	0.9	0.6	0.05
				tom De		0.8	0.1	0.4	0.5	0.9	0.6	0.05
				Date Sa		08-Nov-2024						
				Time Sa		12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest		DURHAM						
Determinand	HWOL Code	Accred.	SOP			DOMINI						
ACM Type	HWOL Code	U Accrea.	2192	Ullits	N/A		-	<u>-</u>	-			
ACIVI Type		+ -	2192	-	IN/A	No Ashastas				No Ashastas	No Ashastas	No Ashastas
Asbestos Identification		U	2192		N/A	No Asbestos Detected						
Asbestos by Gravimetry		U	2192	%	0.001							
Total Asbestos		U	2192	%	0.001	_						
Moisture		N	2030	%	0.020	28	27	21	14	15	20	30
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Black
						Roots, Stones	Stones, Roots			Stones and		
Other Material		N	2040		N/A	and grass	and grass	Roots	Stones	grass	Roots	Roots
Soil Texture		N	2040		N/A	Clay	Loam	Clay	Clay	Loam	Clay	Loam
pH at 20C		М	2010		4.0	7.7	6.9	7.8	7.4	7.5	7.8	6.8
pH (2.5:1) at 20C		N	2010		4.0					7.3		
Boron (Hot Water Soluble)		M	2120	mg/kg	0.40	< 0.40	0.44	0.48	< 0.40	< 0.40	< 0.40	< 0.40
Magnesium (Water Soluble)		N	2120	g/l	0.010					< 0.010		
Sulphate (2:1 Water Soluble) as SO4		M	2120	g/l	0.010					< 0.010		
Total Sulphur		U	2175	%	0.010					0.020		
Chloride (Water Soluble)		М	2220	g/l	0.010					< 0.010		
Nitrate (Water Soluble)		N	2220	g/l	0.010					< 0.010		
Cyanide (Complex)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Ammonium (Water Soluble)		М	2220	g/l	0.01					< 0.01		
Sulphate (Acid Soluble)		U	2430	%	0.010	0.010	0.085	0.048	< 0.010	0.014	0.030	0.094
Arsenic		М	2455	mg/kg	0.5	8.5	22	24	15	19	27	14
Beryllium		U	2455	mg/kg	0.5	1.1	1.4	0.8	1.3	1.5	1.4	0.6
Cadmium		М	2455	mg/kg	0.10	1.4	0.90	0.37	0.44	0.58	0.85	0.46
Chromium		M	2455	mg/kg	0.5	17	40	26	24	40	33	23
Mercury Low Level	+	N	2450	mg/kg	0.05	0.05	0.08	0.05	0.06	0.06	0.06	< 0.05
Manganese		M	2455	mg/kg	1.0	730	1400	510	1700	1900	630	880
Molybdenum		M	2455	mg/kg	0.5	1.6	2.4	2.3	3.2	3.2	3.5	1.5
Antimony		N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper		M	2455	mg/kg	0.50	14	24	21	20	24	27	17
Nickel	+	M	2455	mg/kg	0.50	29	33	28	33	40	39	16
		M					57	67	32			50
Lead			2455	mg/kg	0.50	30	_			35	91	
Selenium		M	2455	mg/kg	0.25	2.7	2.1	1.4	2.0	2.2	2.5	1.1
Zinc		M	2455	mg/kg	0.50	290	150	340	100	110	640	130

Project: Briagena												
Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:		(Chemte	est Sam	ple ID.:	1894245	1894246	1894247	1894248	1894249	1894250	1894251
			Cli	ent Sam	ple ID.:	ES1TP20	ES1TP21	ES1TP22	ES1TP23	ES1TP24	ES1TP25	ES1TP28
			S	ample Lo	ocation:	TP20	TP21	TP22	TP23	TP24	TP25	TP28
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	0.8	0.1	0.4	0.5	0.9	0.6	0.05
			Bo	ttom De	oth (m):	0.8	0.1	0.4	0.5	0.9	0.6	0.05
				Date Sa		08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Chromium (Trivalent)		N	2490	mg/kg	1.0	17	40	26	24	40	33	23
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS 2D AL	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS 2D AL	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS 2D AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS 2D AL	Ü	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	M	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	M	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	M	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH 2D AL #1	M	2690	mg/kg	3.00	< 3.0	3.6	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	M	2690	mg/kg	5.00	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	Ū	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS 2D AR	Ü	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS 2D AR	Ü	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	Ü	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	Ü	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC	EH 2D AR #1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	EH_2D_Total_#1	N	2690		10.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Total EPH >C10-C40 MC Naphthalene	LU_70_10(q1_#1	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
		N N	2800	mg/kg	0.10	< 0.10			< 0.10		< 0.10	
Acenaphthone		M	2800	mg/kg	0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10
Acenaphthene				mg/kg								
Fluorene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.27	< 0.10
Anthracene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.14	< 0.10
Fluoranthene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.50	< 0.10

· · · · · · · · · · · · · · · · · · ·												
Client: Terra Firma			Che	mtest J	ob No.:	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973	24-36973
Quotation No.:			Chemte	est Sam	ple ID.:	1894245	1894246	1894247	1894248	1894249	1894250	1894251
			Cli	ent Sam	ple ID.:	ES1TP20	ES1TP21	ES1TP22	ES1TP23	ES1TP24	ES1TP25	ES1TP28
			S	ample Lo	ocation:	TP20	TP21	TP22	TP23	TP24	TP25	TP28
				Sampl	е Туре:	SOIL						
				Top De	pth (m):	0.8	0.1	0.4	0.5	0.9	0.6	0.05
			Bo	ttom De	pth (m):	0.8	0.1	0.4	0.5	0.9	0.6	0.05
				Date Sa	ampled:	08-Nov-2024						
				Time Sa	ampled:	12:00	12:00	12:00	12:00	12:00	12:00	12:00
				Asbest	os Lab:	DURHAM						
Determinand	HWOL Code	Accred.	SOP	Units	LOD							
Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.34	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Organic Matter BS1377		N	2930	%	0.10	0.50	1.0	1.0	0.10	0.50	0.80	0.90

Client: Terra Firma				mtest Jo		24-36973	24-36973
Quotation No.:				est Sam		1894252	1894253
				ent Sam		SP1ES1	SP2ES1
			Sa	ample Lo		SP1	SP2
				Sample	е Туре:	SOIL	SOIL
				Top Dep	oth (m):	0.1	0.1
			Bot	ttom Dep	oth (m):	0.1	0.1
				Date Sa	impled:	08-Nov-2024	08-Nov-2024
				Time Sa	impled:	12:00	12:00
				Asbest	os Lab:	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
ACM Type		U	2192		N/A	=	=
Asbestos Identification		U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Asbestos by Gravimetry		U	2192	%	0.001		
Total Asbestos		U	2192	%	0.001		
Moisture		N	2030	%	0.020	12	13
Soil Colour		N	2040		N/A	Brown	Brown
Other Material		N	2040		N/A	Stones, Roots and Wood	Stones and Roots
Soil Texture		N	2040		N/A	Loam	Loam
pH at 20C		М	2010		4.0	8.6	8.2
pH (2.5:1) at 20C		N	2010		4.0		-
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	0.78	0.41
Magnesium (Water Soluble)		N	2120	g/l	0.010		-
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010		
Total Sulphur		U	2175	%	0.010		
Chloride (Water Soluble)		M	2220	g/l	0.010		
Nitrate (Water Soluble)		N	2220	g/l	0.010		
Cyanide (Complex)		М	2300	mg/kg	0.50	< 0.50	< 0.50
Cyanide (Free)		М	2300	mg/kg	0.50	< 0.50	< 0.50
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50
Ammonium (Water Soluble)		М	2220	g/l	0.01		
Sulphate (Acid Soluble)		U	2430	%	0.010	0.079	0.099
Arsenic		М	2455	mg/kg	0.5	13	22
Beryllium		U	2455	mg/kg	0.5	0.8	1.2
Cadmium		М	2455	mg/kg	0.10	0.96	0.50
Chromium		М	2455	mg/kg	0.5	20	25
Mercury Low Level		N	2450	mg/kg	0.05	0.07	0.12
Manganese		М	2455	mg/kg	1.0	840	970
Molybdenum		М	2455	mg/kg	0.5	1.3	2.6
Antimony		N	2455	mg/kg	2.0	< 2.0	< 2.0
Copper		М	2455	mg/kg	0.50	18	53
Nickel		М	2455	mg/kg	0.50	18	31
Lead		М	2455	mg/kg	0.50	120	110
Selenium		М	2455	mg/kg	0.25	0.94	1.2
Zinc		М	2455	mg/kg	0.50	160	170

Client: Terra Firma			Che	mtest Jo	ob No.:	24-36973	24-36973
Quotation No.:		(Chemte	st Sam	ole ID.:	1894252	1894253
			Cli	ent Sam	ple ID.:	SP1ES1	SP2ES1
			Sa	ample Lo	cation:	SP1	SP2
				Sample	е Туре:	SOIL	SOIL
				Top Dep	oth (m):	0.1	0.1
			Bot	tom Dep	, ,	0.1	0.1
				Date Sa		08-Nov-2024	08-Nov-2024
				Time Sa	-	12:00	12:00
				Asbest		DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units			
Chromium (Trivalent)		N		mg/kg	1.0	20	25
Chromium (Hexavalent)	110.00.41	N	2490	mg/kg	0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aliphatic VPH > C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aliphatic VPH > C6 C8 (Sum)	HS_2D_AL	U N	2780 2780	mg/kg	0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum) Aliphatic VPH >C8-C10	HS_2D_AL HS_2D_AL	U	2780	mg/kg mg/kg	0.10	< 0.10 < 0.05	< 0.10 0.17
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.17
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	M	2690	mg/kg	2.00	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	M	2690	mg/kg	1.00	4.4	< 1.0
Aliphatic EPH >C16-C21 MC	EH 2D AL #1	M	2690	mg/kg	2.00	22	< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	M	2690	mg/kg	3.00	8.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg		< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	M	2690	mg/kg	5.00	34	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH 2D AL #1	N	2690	mg/kg	10.00	34	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0	< 2.0
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0	8.2
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00	< 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	< 5.0	10
Total Aromatic EPH >C10-C40 MC	EH_2D_AR_#1	N	2690	mg/kg		< 10	10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg		35	10
Total EPH >C10-C40 MC	EH_2D_Total_#1	N	2690	mg/kg		35	10
Naphthalene		M	2800	mg/kg	0.10	< 0.10	0.24
Acenaphthone		N	2800	mg/kg	0.10	< 0.10	0.33
Acenaphthene		M M	2800	mg/kg	0.10	0.22	0.51
Fluorene Phenanthrene		M	2800 2800	mg/kg	0.10	0.18 0.95	0.65 4.0
Anthracene		M	2800	mg/kg mg/kg	0.10	0.95	1.8
Fluoranthene		M	2800	mg/kg	0.10	1.6	1.0

Client: Terra Firma			Che	mtest Jo	ob No.:	24-36973	24-36973
Quotation No.:		(Chemte	st Sam	ple ID.:	1894252	1894253
			Cli	ent Sam	ple ID.:	SP1ES1	SP2ES1
			Sa	ample Lo	ocation:	SP1	SP2
				Sampl	е Туре:	SOIL	SOIL
				Top Dep	oth (m):	0.1	0.1
			Bot	ttom Dep	oth (m):	0.1	0.1
				Date Sa	ampled:	08-Nov-2024	08-Nov-2024
				Time Sa	ampled:	12:00	12:00
				Asbest	os Lab:	DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
Pyrene		M	2800	mg/kg	0.10	1.1	7.5
Benzo[a]anthracene		M	2800	mg/kg	0.10	0.99	8.9
Chrysene		M	2800	mg/kg	0.10	0.78	9.7
Benzo[b]fluoranthene		M	2800	mg/kg	0.10	1.5	15
Benzo[k]fluoranthene		M	2800	mg/kg	0.10	0.50	4.6
Benzo[a]pyrene		M	2800	mg/kg	0.10	1.2	12
Indeno(1,2,3-c,d)Pyrene		M	2800	mg/kg	0.10	0.80	8.2
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	0.24	2.1
Benzo[g,h,i]perylene		M	2800	mg/kg	0.10	0.69	6.7
Total Of 16 PAH's		N	2800	mg/kg	2.0	11	92
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10
Organic Matter BS1377		N	2930	%	0.10	0.20	0.50

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2010	pH Value of Soils	pH at 20°C	pH Meter	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <30°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C40	Acetone/Heptane extraction / GCxGC FID detection	
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8- C10 Aromatics: >C5-C7,>C7-C8,>C8-C10		
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
		Phonelie compounds including Passyring		
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

This report shall not be reproduced except in full, and only with the prior approval of the laboratory.

Any comments or interpretations are outside the scope of UKAS accreditation.

The Laboratory is not accredited for any sampling activities and reported results relate to the samples 'as received' at the laboratory.

Uncertainty of measurement for the determinands tested are available upon request .

None of the results in this report have been recovery corrected.

All results are expressed on a dry weight basis.

The following tests were analysed on samples 'as received' and the results subsequently corrected to a dry weight basis EPH, VPH, TPH, BTEX, VOCs, SVOCs, PCBs, Phenols.

For all other tests the samples were dried at ≤ 30°C prior to analysis.

All Asbestos testing is performed at the indicated laboratory.

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt.

All water samples will be retained for 14 days from the date of receipt.

Charges may apply to extended sample storage.

Water Sample Category Key for Accreditation

DW - Drinking Water

GW - Ground Water

LE - Land Leachate

NA - Not Applicable

Report Information

- PL Prepared Leachate
- PW Processed Water
- RE Recreational Water
- SA Saline Water
- SW Surface Water
- TE Treated Effluent
- TS Treated Sewage
- UL Unspecified Liquid

Clean Up Codes

- NC No Clean Up
- MC Mathematical Clean Up
- FC Florisil Clean Up

HWOL Acronym System

- HS Headspace analysis
- EH Extractable hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by Florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatic only
- 2D GC-GC Double coil gas chromatography
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
- + Operator to indicate cumulative e.g. EH+EH_Total or EH_CU+HS_Total

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

ANNEX D
CBR Test Results

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL01 Date: 11/11/2024 Test:

Engineer: Elliot

		Reading (mm)			n bgl (mm)		0				
No. of		Penetration	Depth	DCP	CBR (%)						
blows	reading (mm)	increment (mm)	bgl (m)	(mm/blow)				CBR ((%)		
1	160	94	0.16	94	2.5	0.00 +	0 2	.0	4.0	6.0	8.0
1	216	56	0.22	56	4.3	0.00					
1	285	69	0.29	69	3.4						
1	355	70	0.36	70	3.4						
1	405	50	0.41	50	4.8	0.10					
1			0.45	48							
1			0.50	44	5.5						
1	543	46	0.54	46	5.3						
1		44	0.59	44	5.5	0.20					
1		45	0.63	45	5.4						
1		43	0.68	43	5.7				/		
1			0.72	43	5.7						
1		42	0.76	42	5.8	0.30					
1		40	0.80	40	6.1						
1		40	0.84	40	6.1			4			
1			0.87	33	7.5	0.40					
1			0.92	42	5.8	0.40			7		
1	950	35	0.95	35	7.0						
									'	\	
						€ 0.50			+	7	-
						h (r					
						Deptrh (m)				1	
										>	
						0.60					
										\rightarrow	
						0.70			+		
					7.77						
										V	
						0.80				~	
						0.00					
7	A					0.90 -				•	
											,
											•
						1.00					

REMARKS:

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL02 Date: 11/11/2024 Test:

Engineer: Elliot

lni	itial Scale R	Reading (mm)	55		n bgl (mm)		0							
No. of	Scale	Penetration	Depth	DCP	CBR (%)									
		increment	bgl (m)	(mm/blow)	` ,				СВ	R (%	.)			
	(mm)	(mm)	• ,	,					-	. (/	,,			
			0.00	474	4.0	0	.0	20.0	40	0.0	60.0	80.0	100	0 (
1	226		0.23	171	1.3	0.00								
1	284	58	0.28	58	4.1									
1	330	46	0.33	46	5.3									
1	365	35	0.37	35	7.0									
1	400	35	0.40	35	7.0									
1	438	38	0.44	38	6.5	0.10 -								
1	475	37	0.48	37	6.6									
1	510	35	0.51	35	7.0									
1	545	35	0.55	35	7.0									
1	582	37	0.58	37	6.6									
1	615	33	0.62	33	7.5	0.20 -								
1	655	40	0.66	40	6.1									
1	705		0.71	50	4.8		ľ							
1	725		0.73	20	12.7									
1	735		0.74	10	26.5									
3			0.75	5	55.1	0.30 -	<u> </u>							
5		10	0.76	2	145.1	0.00								
- 3	760	10	0.76		145.1		\							
						_ 0.40 -								
						Ξ,								
						r.	\							
						Deptrh (m)								
							♦							
						0.50 -								
						0.00	\Q							
						100								
	d.					0.60 -								
			200			0.00	♦							
							\							
						0.70 -								
						0.70								
	<i>A</i>						*							
											♦			
						0.90								
						0.80								

REMARKS:

Ref: QF-039

DYNAMIC CONE PENETROMETER TEST

V1 Issued: Nov 2020

Reviewed: Nov 2020

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

Date: 11/11/2024 Test: TRL03

Engineer: Elliot

		Reading (mm)			n bgl (mm)		0						
No. of		Penetration	Depth	DCP	CBR (%)								
blows	reading	increment	bgl (m)	(mm/blow)				СВ	R (%	6)			
	(mm)	(mm)							`	•			
1	180	110	0.18	110	2.1		.0 1	0.0 2	0.0	30.0	40	0.0	50.0
1	250	70	0.25	70	3.4	0.00 -							
1	293	43	0.29	43	5.7								
1	330	37	0.33	37	6.6								
1	365	35	0.37	35	7.0	0.10 -							
1	400	35	0.40	35	7.0	0.10							
1	435	35	0.44	35	7.0								
1	475	40	0.48	40	6.1								
1	505	30	0.51	30	8.3	0.20 -							_
1	537	32	0.54	32	7.7								
1	580	43	0.58	43	5.7		\						
1	593	13	0.59	13	20.1								
1	605	12	0.61	12	21.8	0.30 -	\	-	-				-
3	623	18	0.62	6	45.4		\						
3	645	22	0.65	7	36.8								
5	685	40	0.69	8	33.5		ľ						
3			0.72	12	22.5	0.40 -	-		+				\dashv
1	745	25	0.75	25	10.1		\						
1	765		0.77	20	12.7								
1	785		0.79	20	12.7	0.50							
1	805	20	0.81	20	12.7	Ê 0.50 ⁻	*						
1	820	15	0.82	15	17.3	٠ (>						
1	838	18	0.84	18	14.2	Deptrh (m)							
3	895	57	0.90	19	13.4	0.60 -	*		\				
3	915	20	0.92	7	40.7	0.00						\	
						0.70 -		-	-				_
				100					\				
	4-1				4-7-3								
						0.80 -			+				\dashv
0						0.90 -						>	\dashv
						1.00							
						1.00 -							

REMARKS:

Non. **41** 000

DYNAMIC CONE PENETROMETER TEST

V1 Issued: Nov 2020

Reviewed: Nov 2020

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

Date: 11/11/2024 Test: TRL04

Engineer: Elliot

Ini	itial Scale R	Reading (mm)	84		n bgl (mm)		0						
No. of	Scale	Penetration	Depth	DCP	CBR (%)								
blows	reading		bgl (m)	(mm/blow)					CBI	R (%)		
	(mm)	(mm)											
1	185	101	0.19	101	2.3		.0 2	20.0	40	.0	60.0	80.0	100.0
1	245		0.25		4.0	0.00 -							
1	292	47	0.29	47	5.2								
1	324	32	0.32	32	7.7								
1	345	21	0.35	21	12.1								
1	360	15	0.36	15	17.3	0.10 -							
1	377	17	0.38	17	15.1								
1	395	18		18	14.2								
1	420	25	0.42	25	10.1								
1	448	28	0.45	28	8.9		♦						
1	480	32	0.48	32	7.7	0.20 -							
1	510	30	0.51	30	8.3								
1	520	10	0.52	10	26.5		\rightarrow						
3		25	0.55	8	32.1								
3		75	0.62	25	10.1		\						
3			0.67	15	17.3	0.30 -							
3		40	0.71	13	19.5								
3	710	5	0.71	2	176.0								
								X					
						- 0.40 -	\						
						E 0.40							
						tr							
						Deptrh (m)							
							\langle						
						0.50 -		-					
							\	1					
						-		\	>				
				100									
						0.60 -		+					
							*						
							\ \						
								>					
						0.70							
						0.70 -		\(\rightarrow\)					
p 100	A												
						0.80							

REMARKS:

DYNAMIC CONE PENETROMETER TEST

terra firma

V1 Issued: Nov 2020

Reviewed: Nov 2020

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

Date: 11/11/2024 Test: TRL05

Engineer: Elliot

Ini	itial Scale R	Reading (mm)	84		n bgl (mm)		0							
No. of		Penetration	Depth	DCP	CBR (%)									
blows	reading		bgl (m)	(mm/blow)	, ,				CB	R (%)	١			
	(mm)	(mm)	0 ()	,					0.5	. (70)	,			
			0.04	404	4.0	0	0.0	20.0	40	0.0	60.0	80.0	100	0
1	205			121	1.9	0.00	+			···	-			
1	245			40	6.1									
1	285			40	6.1									
1	325	40		40	6.1									
1	365	40		40	6.1									
1	410	45		45	5.4									
1	465	55		55	4.4	0.10		+						
1	485	20	0.49	20	12.7									
3	505	20	0.51	7	40.7									
3		20	0.53	7	40.7									
3		10		3	84.6									
3				5	55.1	1								
3				10	26.5	0.20								
5				1	302.0		1							
			0.00		002.0		\							
	1					0.30	L							
						0.00								
							•							
						l _								
						٤	♦							
						훈								
						Deptrh (m)	+	-						
														
							4							
							1							
						0.50		+		>				
	4								•	>				
												*		
			-								\			
		> 4												
	and the same of the					0.00			•					
						0.60								
0.00														
-														
						0.70								
						3								

REMARKS:

V1 Issued: Nov 2020 Reviewed: Nov 2020

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL06 Date: 11/11/2024 Test: Engineer: Elliot

Initial Scale Reading (mm) 43 Datum bgl (mm) 0 No. of Scale Penetration Depth DCP CBR (%) blows reading increment bgl (m) (mm/blow) **CBR (%)** (mm) (mm) 10.0 0.0 5.0 15.0 125 125 168 0.17 1.8 0.00 220 52 0.22 52 4.6 1 260 40 0.26 40 6.1 37 1 297 37 0.30 6.6 1 335 38 0.34 38 6.5 0.10 1 378 43 0.38 43 5.7 425 5.2 1 47 0.43 47 1 465 40 0.47 40 6.1 48 48 5.0 1 513 0.51 0.20 1 557 44 0.56 44 5.5 580 23 0.58 23 11.0 1 30 30 610 0.61 8.3 1 651 41 0.65 41 6.0 0.30 1 695 44 0.70 44 5.5 740 45 0.74 45 5.4 1 1 795 55 0.80 55 4.4 0.40 1 845 50 0.85 50 4.8 890 45 0.89 45 5.4 935 45 0.94 45 5.4 0.50 Deptrh (m) 0.60 0.70 0.80 0.90 1.00

REMARKS:

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL07 Date: 11/11/2024 Test:

Engineer: Elliot

lni	itial Scale R	Reading (mm)	60		n bgl (mm)		0			
No. of	Scale	Penetration	Depth	DCP	CBR (%)					
		increment	bgl (m)	(mm/blow)	, ,			CBR (%)		
	(mm)	(mm)		,				0211 (70)		
			0.40	405	4.0	0	.0	5.0	10.0	15.0
1	185	125		125	1.8	0.00 -	-	+		
1	223	38		38	6.5					
1	285	62	0.29	62	3.8					
1	325	40	0.33	40	6.1					
1	360	35	0.36	35	7.0	0.10 -				
1	400	40	0.40	40	6.1					
1	445	45	0.45	45	5.4					
1	485	40	0.49	40	6.1					
1	525	40	0.53	40	6.1	0.20 -	•			
1	565	40	0.57	40	6.1	0.20		*		
1	590	25	0.59	25	10.1					
1	625	35	0.63	35	7.0					
1	660	35	0.66	35	7.0	0.30 -	4			
1	700	40	0.70	40	6.1	0.00		8		
1	730	30	0.70	30	8.3					
								>		
1	765	35	0.77	35	7.0	0.40 -				
1	805	40	0.81	40	6.1	0.40				
1	845	40	0.85	40	6.1					
1	890	45		45	5.4			\		
1	935	45	0.94	45	5.4	0.50		\		
						ਿਛ ^{0.50 -}				
						Deptrh (m)		Y		
						ept		*		
						0.60 -				
								>		
						0.70 -				
									•	
						0.80 -		*		
		-								
	100									
Color	1					0.90 -		+		
					1			\		
1								1		
					1/1	1.00 -	L			

REMARKS:

Y FORM V1 Issued: Nov 2020 039 Reviewed: Nov 2020

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

Date: 11/11/2024 Test: TRL08

Engineer: Elliot

	_				_						
		Reading (mm)			n bgl (mm)	0					
No. of		Penetration	Depth	DCP	CBR (%)						
blows	reading		bgl (m)	(mm/blow)				CBR (%	6)		
	(mm)	(mm)									
1	190	120	0.19	120	1.9	0.0 0.00 	2.0	4.0	6.0	8.0	10.0
1	225	35	0.23	35	7.0	0.00					
1	270	45	0.27	45	5.4						
1	310	40	0.31	40	6.1						
1	360	50	0.36	50	4.8	0.10					
1	400	40	0.40	40	6.1	0.10					
1	450	50	0.45	50	4.8						
1	500	50	0.50	50	4.8						
1	540		0.54	40	6.1	0.20				_	
1	582	42	0.58	42	5.8					>	
1	620	38	0.62	38	6.5						
1	648	28	0.65	28	8.9						
1	680	32	0.68	32	7.7	0.30					_
1	710	30	0.71	30	8.3						
1	745	35	0.75	35	7.0						
1	773	28	0.77	28	8.9						
1	800	27	0.80	27	9.3	0.40			—	_	_
1	830	30	0.83	30	8.3						
1	860	30	0.86	30	8.3						
1	910	50	0.91	50	4.8						
1	950	40	0.95	40	6.1	€ 0.50					
						Deptrh (m)					
						eptr					
						0.60			0		
											,
						0.70				9	
				100		0.70					
	4								 		
				100							·
						0.80					
0/						0.90					
					100						
					N. VI						
						1.00					

REMARKS:

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL09 Date: 11/11/2024 Test:

Engineer: Elliot

		teading (mm)	60		n bgl (mm)		0					
No. of		Penetration	Depth	DCP	CBR (%)							
blows	reading	increment	bgl (m)	(mm/blow)				С	BR (%	%)		
	(mm)	(mm)						_	(,	,		
1	200	140	0.20	140	1.6	0.	.0 1	0.0	20.0	30.0	40.	0 50.0
1	260	60	0.26	60	4.0	0.00	_		+			
1	295	35	0.20	35	7.0							
1	330	35	0.33	35	7.0							
1	343	13	0.34	13	20.1							
<u> </u>	350	7	0.35	7	38.6	0.10 -						
1	410	60	0.33	60	4.0							
1	445	35	0.41	35	7.0							
1	484	39	0.43	39	6.3	0.00						
				39		0.20 -						
1	523 565	39 42	0.52 0.57	42	6.3 5.8		\					
1				42			\Q					
1	605	40	0.61		6.1 5.5	0.00						
1	649	44	0.65	44		0.30 -						
1	695	46		46	5.3		\rightarrow		\			
1	745	50	0.75	50	4.8							
1	793	48	0.79	48	5.0	0.40 -						
1	845	52	0.85	52	4.6	0.40	•					
1	855	10	0.86	10	26.5		*					
3	880	25	0.88	8	32.1							
3	905	25	0.91	8	32.1	0.50	•		\perp			
						Deptrh (m)	♦					
						trh						
						Эер	\langle					
						0.60						
							\langle					
						0.70	-		+			
	4						\Q					
						0.80			+		-	
		-										
							\rightarrow			•		
										\Q		
5/2						0.90 -			+	\Q		
1					1							
						1.00		-				

REMARKS:

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL₁₀ Date: 11/11/2024 Test:

Engineer: Elliot

lni	itial Scale F	Reading (mm)	70	Datun	n bgl (mm)		0					
No. of		Penetration	Depth	DCP	CBR (%)							
blows	reading	increment	bgl (m)	(mm/blow)	(/			CB	R (%)			
	(mm)	(mm)		,				O.D.	(70)			
	` ,	,				0.	.0	10.0	20.0	:	30.0	40.0
	470	470	0.47	470	4.0	0.00	-	+			+	
1	170		0.17	170	1.3							
1	195		0.20	25	10.1							
1	210		0.21	15	17.3							
1	225		0.23	15	17.3	0.10 -		_				
1	240			15	17.3							
1	260		0.26	20	12.7							
1	270	10	0.27	10	26.5		\rightarrow					
1	280	10	0.28	10	26.5	0.20 -		\			-	
1	290	10	0.29	10	26.5				*			
1	305	15	0.31	15	17.3							
1	324	19	0.32	19	13.4					*		
1	345		0.35	21	12.1	0.30 -				*		
1	365		0.37	20	12.7			*				
1	380		0.38	15	17.3							
3			0.42	13	19.5							
3			0.47	15	17.3	0.40 -			\rightarrow			
3			0.52	18	14.0				>			
3			0.55	8	32.1				//			
3			0.58	12	22.5				>			
					22.5	0.50 -			-			
3			0.62	13	19.5	E		4				
3	690		0.69	23	10.8						*	
3	730		0.73	13	19.5	d ec					1	
3			0.77	13	19.5	0.60 -			-			
3			0.82	17	15.4				9			
3			0.90	25	10.1							
1	920	25	0.92	25	10.1							
						0.70 -		Ø				
	4											
				400					\$			
						0.80			$-\!\!\!/\!\!\!\!\perp$			
								1	>			
			-					/				
- 1						0.90 -		A				
7						,,,,,		\langle				
						1.00						

REMARKS:

DYNAMIC CONE PENETROMETER TEST

Site Name: Craog-y-Parcau Project Number: TF-24-589-CA

TRL11 Date: 11/11/2024 Test:

Engineer: Elliot

		Reading (mm)			n bgl (mm)		0				
No. of		Penetration	Depth	DCP	CBR (%)						
blows	reading	increment	bgl (m)	(mm/blow)				CBR	(%)		
	(mm)	(mm)									
1	180	124	0.18	124	1.9		.0 2	0.0	40.0	60.0	80.0
1			0.23	50	4.8	0.00					
1			0.27	35	7.0						
1			0.30	35	7.0						
1		30	0.33	30	8.3						
1		15	0.35			0.05					
1		5	0.35	5	55.1						
1		10	0.36	10	26.5						
1			0.37	5	55.1						
3			0.39	8	32.1	0.10					
5	410	20	0.41	4	69.8						
						0.15					
							♦				
						0.20					
						<u> </u>					
						٤					
						b 0.25					
						Deptrh (m)					
						0.30	†				
				1000		0.35	*				
	1000					0.00		\			
								*			
						0.40					
7											*
						0.45					
						0.40					

REMARKS:

ANNEX E
Laboratory Geotechnical Test Results

Results Summary

Apex Testing Solutions Limited

Village Farm Industrial Estate Pyle Bridgend CF33 6BZ

Telephone: 01656 746762

E-mail: andrew.grogan@apex-drilling.com laura.davis@apex-drilling.com

Reporting Details		Key Information	
Company Name:	TFW Group Ltd	Site Name:	Bridgend
Address:	5 Deryn Court		
	Wharfdale Road	Job Number:	D24428
	Cardiff	Date Received:	12/11/2024
	CF23 7HA	Job Coordinator:	L. Davis
Contact Name:	Elliot		
Contact Number:			

Item No.	Tests Undertaken	Number of Tests
	Water Content - ISO 17892 2014 Atterburg Limits (4 point) - BS1377-2: 1990	15 15

Results Issued: 28/11/2024

Comments

Results herein relate only to samples received in the laboratory and where not sampled by Apex Testing Solutions personnel relate to the samples as received.

Where tests are UKAS accredited any Opinion and/or Interpretation expressed herein are outside the scope of the UKAS Accreditation. The reports shall not be reproduced in full without the written approval of the laboratory.

Please contact the job coordinator should any further information be required.

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

CF23 7HA ATS Sample No: 38548

Site Ref / Hole ID:

TP01

Depth (m):

0.60

Sample No:

No

Sample Type:

Disturbed

Sampling Certificate Received:

Material Description:

Light brown slightly gravelly CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Remarks:

QA Ref.

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

27/11/2024

MC

L Davis, Quality Manager

EN ISO 17892-1:2014 +A1:2022

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name: D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38548 CF23 7HA

Site Ref / Hole ID:

TP01

Depth (m):

0.60

Sample No:

Sampling Certificate

Sample Type:

Disturbed

Received:

Material Description:

Light brown slightly gravelly

CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

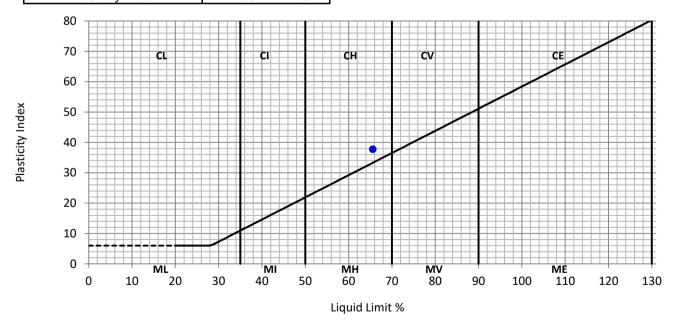
Sampled By:

Client

Specification:

BS1377

Date Received:


12 November 2024

Date Tested: 26 November 2024

Test Results

Liquid Limit	66	%
Plastic Limit	28	%
Plasticity Index	38	%

Preparation:	4.2.3 Natural Spe	cimen	
Proportion retained on 425µm sieve: 2 %			

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

L Davis, Quality Manager

Date

Fig.

27/11/2024

ATT

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road

Cardiff

CF23 7HA ATS Sample No: 38549

Site Ref / Hole ID:

TP03

Depth (m):

0.90

1.00

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

No

Material Description:

Brown CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

25 November 2024

Test Results

Water	Content	(%)	

31.5

Remarks:

QA Ref.

EN ISO 17892-1:2014 +A1:2022 **Apex Testing Solutions**

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

26/11/2024

MC

L Davis, Quality Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D24427

24-589-CA - Bridgend

Client: TFW Group Ltd

Address: 5 Deryn Court

Wharfdale Road

Cardiff

ATS Sample No: 38549

CF23 7HA

Site Ref / Hole ID:

TP03

Depth (m):

0.90

- 1.00

Sample No:

Sampling Certificate No

Sample Type:

Disturbed

Received:

INO

Material Description:

Brown CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

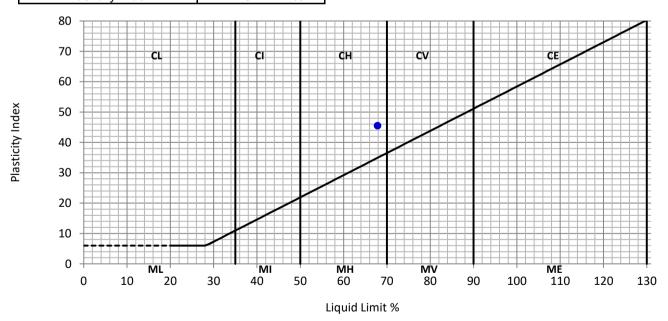
Client

Specification:

BS1377

Date Received:

12 November 2024


Date Tested:

22 November 2024

Test Results

Liquid Limit	68	%
Plastic Limit	22	%
Plasticity Index	46	%

Preparation:	4.2.3 Natural Spe	cimen	
Proportion retained on 425µm sieve: 0 %			

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

Date

Fig.

26/11/2024

ATT

L Davis, Quality Manager

Determination Of Water Content

ISO 17892-1: 2014 +A1:2022

Project No: D24427

Project Name: 24-589-CA - Bridgend Client: Address: TFW Group Ltd 5 Deryn Court

Wharfdale Road Cardiff

ATS Sample No: 38550

CF23 7HA

Site Ref / Hole ID:

TP04

No

Depth (m):

Sample Type:

1.40

Sample No:

Disturbed

Sampling Certificate Received:

Material Description:

Light brown slightly

sandy slughtly gravelly

CLAY

Location in Works:

N/a

Material Source:

Ex-Site

Date Sampled:

Unknown

Material Supplier:

Ex-Site

Sampled By:

Client

Specification:

ISO 17892-1

Date Received:

12 November 2024

Date Tested:

26 November 2024

Test Results

Water Content (%)	22.8
Trater Coment (70)	22.0

Remarks:

QA Ref.

EN ISO 17892-1:2014 +A1:2022 **Apex Testing Solutions**

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Approver

Date

Fig

L Davis

28/11/2024

MC