Carlos Sessa
Foreworn By Jake Wharton

/'I MANNING

www.finebook.ir

http://www.finebook.ir/../

50 Android Hacks

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

50 Android Hacks

CARLOS SESSA

MANNING
SHELTER ISLAND

www.finebook.ir

http://www.finebook.ir/../

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 261

Shelter Island, NY 11964.

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/I/I Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical proofreader: Cyril Mottier
PO Box 261 Copyeditor: Benjamin Berg
Shelter Island, NY 11964 Proofreader: Katie Tennant

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617290565
Printed in the United States of America
123456789 10- MAL - 18 17 16 15 14 13

www.finebook.ir

www.manning.com
http://www.finebook.ir/../

Al milagro que hizo esto posible

(1o the miracle that made this possible)

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

brief contents

© 00 3 O Ot &~ 0 N~

—
N = O

Working your way around layouts 1
Creating cool animations 19

View tips and tricks 29

Tools 47

Patterns 53

Working with lists and adapters 77
Useful libraries 97

Interacting with other languages 107
Ready-to-use snippets 117

Beyond database basics 133
Avoiding fragmentation 157
Building tools 171

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

contents

Sforeword xvii

preface xix

acknowledgments — xxi

about this book xxiii

about the cover illustration xxvii

1 Working your way around layouts 1

HACK 1 CENTERING VIEWS USING WEIGHTS 1
1.1 Combining weightSum and layout_weight 2
1.2 The bottom line 3
1.3 External links 3

HACK 2 USING LAZY LOADING AND AVOIDING REPLICATION 3

1.4 Avoid replication using the <include /> tag 4
1.5 Lazy loading views with the ViewStub class 5
1.6 The bottom line 7

1.7 External links 7

HACK 3 CREATING A CUSTOM VIEWGROUP 8

1.8 Understanding how Android draws views 9
1.9 Creating the CascadeLayout 9
1.10 Adding custom attributes to the children 12

www.finebook.ir

http://www.finebook.ir/../

CONTENTS

1.11 The bottom line 13
1.12 External links 14

HACK 4 PREFERENCES HACKS 14

1.13 The bottom line 17
1.14 External links 17

: 3 Creating cool animations 19
HACK 5 SNAPPY TRANSITIONS WITH TEXTSWITCHER AND
IMAGESWITCHER 19

2.1 The bottom line 21
2.2 External links 21

HACK 6 ADDING EYE CANDY TO YOUR VIEWGROUP’S
CHILDREN 21

2.3 The bottom line 23
2.4 External links 23

HACK 7 DOING ANIMATIONS OVER THE CANVAS 23
2.5 The bottom line 25
2.6 External links 25
HACK 8 SLIDESHOW USING THE KEN BURNS EFFECT 25

2.7 The bottom line 27
2.8 External links 28

View tips and tricks 29

HACK 9 AVOIDING DATE VALIDATIONS WITH AN EDITTEXT FOR
DATES 29
3.1 The bottom line 30
3.2 External links 30

HACK 10 FORMATTING A TEXTVIEW’S TEXT 30
3.3 The bottom line 31
3.4 External links 31

HACK 11 ADDING TEXT GLOWING EFFECTS 32

3.5 The bottom line 33
3.6 External links 33

www.finebook.ir

http://www.finebook.ir/../

HACK 12
3.7
3.8

HACK 13

3.9

3.10
HACK 14
3.11

3.12

HACK 15

3.13
3.14
HACK 16
3.15
3.16
HACK 17
3.17
3.18

Tools 47

HACK 18
4.1
4.2

HACK 19

4.3
4.4

CONTENTS xi

ROUNDED BORDERS FOR BACKGROUNDS 33
The bottom line 34

External links 34

GETTING THE VIEW’S WIDTH AND HEIGHT IN THE
ONCREATE() METHOD 34

The bottom line 36

External links 36

VIDEOVIEWS AND ORIENTATION CHANGES 36

The bottom line 38
External links 39

REMOVING THE BACKGROUND TO IMPROVE YOUR
ACTIVITY STARTUP TIME 39

The bottom line 40
External links 41

TOAST’S POSITION HACK 41

The bottom line 42
External links 42

CREATING A WIZARD FORM USING A GALLERY 42

The bottom line 46
External links 46

REMOVING LOG STATEMENTS BEFORE RELEASING 47

The bottom line 48

External links 48

USING THE HIERARCHY VIEWER TOOL TO REMOVE
UNNECESSARY VIEWS 49

The bottom line 52
External links 52

Patterns 53

HACK 20

5.1
5.2

THE MODEL-VIEW-PRESENTER PATTERN 53

The bottom line 55
External links 56

www.finebook.ir

http://www.finebook.ir/../

xii CONTENTS

BROADCASTRECEIVER FOLLOWING ACTIVITY’S
LIFECYCLE b6

5.3 The bottom line 57
5.4 External links 58

HACK 22 ARCHITECTURE PATTERN USING ANDROID LIBRARIES 58

5.5 Back-end logic and model 58
5.6 Android library 59

5.7 Android application 59

5.8 The bottom line 60

5.9 External links 60

HACK 23
5.10
5.11
5.12
5.13

HACK 21

THE SYNCADAPTER PATTERN 60

Common approaches 60
What we’ll create 62
The bottom line 75
External links 75

Working with lists and adapters 77

HACK 24 HANDLING EMPTY LISTS 77

6.1
6.2

HACK 25
6.3
6.4

HACK 26
6.5
6.6
6.7
6.8
6.9

HACK 27

6.10
6.11

The bottom line 78
External links 78

CREATING FAST ADAPTERS WITH A VIEWHOLDER 78

The bottom line 80
External links 81

ADDING SECTION HEADERS TO A LISTVIEW 81

Creating list layouts 82

Providing visible section headers

Wrapping up 84
The bottom line 84
External links 84

COMMUNICATING WITH AN ADAPTER USING AN ACTIVITY

AND A DELEGATE 85

The bottom line 87
External links 87

www.finebook.ir

83

http://www.finebook.ir/../

CONTENTS xiii

HACK 28 TAKING ADVANTAGE OF LISTVIEW’S HEADER 87
6.12 The bottom line 89
6.13 External links 89

HACK 29 HANDLING ORIENTATION CHANGES INSIDE A
VIEWPAGER 89

6.14 The bottom line 90
6.15 External links 91

HACK 30 LISTVIEW’S CHOICEMODE 91

6.16 The bottom line 94
6.17 External links 95

Useful libraries 97

HACK 31 ASPECT-ORIENTED PROGRAMMING IN ANDROID 97
7.1 The bottom line 100
7.2 External links 100

HACK 32 EMPOWERING YOUR APPLICATION USING
Cocos2px 101
7.3 Whatis Cocos2d-x? 101
7.4 Using Cocos2dx 101
7.5 The bottom line 104
7.6 External links 105

Interacting with other languages 107

HACK 33 RUNNING OBJECTIVE-C IN ANDROID 107
8.1 Downloading and compiling Itoa 108
8.2 Creating the modules 108
8.3 Setting up the Java part 112
8.4 The bottom line 113
8.5 External links 113

HACK 34 USING SCALA INSIDE ANDROID 113
8.6 The bottom line 116
8.7 External links 116

www.finebook.ir

http://www.finebook.ir/../

xiv

CONTENTS

Ready-to-use snippets 117

HACK 35
9.1
9.2
9.3
9.4
9.5

HACK 36

9.6
9.7

HACK 37

9.8
9.9
9.10
9.11

HACK 38
9.12
9.13

HACK 39
9.14
9.15

HACK 40
9.16
9.17
9.18
9.19
9.20
9.21

FIRING UP MULTIPLE INTENTS 117
Taking a picture 118

Picking a picture from the gallery 118
Mixing both intents 118

The bottom line 118

External links 119

GETTING USER INFORMATION WHEN RECEIVING
FEEDBACK 119

The bottom line 121
External links 121

ADDING AN MP3 TO THE MEDIA CONTENT-
PROVIDER 121

Adding the MP3 using content values 121
Adding the MP3 using the media scanner 122
The bottom line 122

External links 122

ADDING A REFRESH ACTION TO THE ACTION BAR 122
The bottom line 125
External links 125

GETTING DEPENDENCIES FROM THE MARKET 126

The bottom line 127
External links 128

LAST-IN-FIRST-OUT IMAGE LOADING 128
Starting point: Android sample application 128
Introducing executors 129

UI thread—Ileaving and returning seamlessly 130
Considerations 131

The bottom line 131

External links 131

www.finebook.ir

http://www.finebook.ir/../

CONTENTS

Beyond database basics 133

HACK 41
10.1
10.2
10.3
10.4

10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12

HACK 42
10.13
10.14

10.15
10.16

HACK 43
10.17
10.18
10.19
10.20
10.21

BUILDING DATABASES WITH ORMLITE 133

A simple data model 134

Getting started 135

Rock-solid database schema 136
SQLiteOpenHelper—your gateway to the
database 138

Singleton pattern for database access 139
CRUD operations made easy 140
Query builders 141

Data types and tricky foreign types 143
Raw SQL queries 145

Transactions 146

The bottom line 147

External links 147

CREATING CUSTOM FUNCTIONS IN SQLITE 148

Java code 148
Native code 149
The bottom line 151
External links 151

BATCHING DATABASE OPERATIONS 152
No batch 152

Using batch operations 153

Applying batch using SQLiteContentProvider
The bottom line 156

External links 156

Avoiding fragmentation 157

HACK 44
11.1
11.2
11.3
11.4
11.5

HANDLING LIGHTS-OUT MODE 157
Android 2.x 158

Android 3.x 158

Merging both worlds in a single Activity 160
The bottom line 160

External links 160

www.finebook.ir

154

XV

http://www.finebook.ir/../

xvi CONTENTS

HACK 45 USING NEW APIS IN OLDER DEVICES 160
11.6 Using apply() instead of commit() 161
11.7 Storing the app on the SD card 163
11.8 The bottom line 164
11.9 External links 164

HACK 46 BACKWARD-COMPATIBLE NOTIFICATIONS 164
11.10 The bottom line 168
11.11 External links 168

HACK 47 CREATING TABS WITH FRAGMENTS 168
11.12 Creating our tab Ul 169
11.13 Placing the tabs in an Activity 169
11.14 The bottom line 170
11.15 External links 170

Building tools 171

HACK 48 HANDLING DEPENDENCIES WITH
APACHE MAVEN 171
12.1 The bottom line 174
12.2 External links 174

HACK 49 INSTALLING DEPENDENCIES IN A ROOTED DEVICE 175
12.3 Predexing 176
12.4 Creating the permissions XML 176
12.5 Modifying AndroidManifest.xml 177
12.6 The bottom line 177
12.7 External links 177

HACK 50 USINGJENKINS TO DEAL WITH DEVICE DIVERSITY 178
12.8 Creating a Jenkins job 179
12.9 Running the job 181
12.10 The bottom line 182
12.11 External links 182

index 183

www.finebook.ir

http://www.finebook.ir/../

Joreword

Android as an ecosystem is expanding rapidly in all directions. Every day manufactur-
ers introduce new devices and form factors, consumers purchase and activate over
one million devices, and users download and try new apps. It’s the job of developers
(yourself included, hopefully) to fill this ecosystem with beautiful, engaging, and
deeply fulfilling applications through which users can better interpret and interact
with their world.

As a platform, Android was birthed in late 2003 by former employees of Danger
(the company behind the popular Sidekick phones). In 2005 the company driving
Android was acquired by Google, and three years later the HTC Dream (Gl) was
released as the first consumer device running Android. Over the next three years the
hardware and platform were heavily iterated, but Android remained solely a phone
operating system.

In 2011 Google introduced two new form factors for the Android: tablets and TV.
This represented the first official deviation from phones as the device of choice and
sparked manufacturer interest in other devices. Android now runs on laptops, wrist-
watches, video game consoles, and car stereos. It can only be expected that in the
future the number of devices supporting Android will continue to grow.

As application developers, it’s extremely important that you understand the diver-
sity of the platform and the direction in which it’s heading. Creating content on
Android is no longer as simple as designing for a phone-sized screen held in portrait
orientation. While this does mean more work for the developer creating apps, the end
result is a vastly more pleasant experience for the user, regardless of which device your
content is consumed on.

xvii

www.finebook.ir

http://www.finebook.ir/../

Xviii

FOREWORD

In developing applications there are three major things that you’ll need aside from
your own creativity and desire to develop: the platform documentation, the open
source community, and glue to hold everything together. The platform documenta-
tion is easy, since the latest version is always hosted at http://developer.android.com.
The open source community is spread across GitHub, Google Code, Stack Overflow,
and the like, providing libraries, code snippets, and design patterns for simplifying
development. You still need something to tie these disjointed pieces together as one
cohesive app. If it were as simple as arranging a few building blocks, everyone would
be developing applications. This book is that glue.

Contained in the book are examples of how to solve common problems that arise
in Android development. Some are relatively trivial and some quite complex. What
they share, however, is being loosely or sparsely documented facets of app develop-
ment which often cause developers pain. 50 Android Hacks is not meant as a sole
resource for learning or mastering Android development, but rather exists to fill in
the cracks.

It’s a great task to craft an app that’s dynamic enough to support Android’s grow-
ing device diversity. With the knowledge provided by this book, accompanied by that
of similar print and online sources, it’s my hope that you’re more empowered to
develop and publish apps. Beyond this, while I am a developer just like you, I am also
an avid Android user and patiently await that next great application. Perhaps you will
be the one to write it.

JAKE WHARTON
ANDROID ENGINEER

www.finebook.ir

http://d.android.com/
http://www.finebook.ir/../

preface

I started learning about Android back in 2009. Android version 1.5 had just been
released, and it showed a lot of potential.

In July 2009, thanks to a friend living in Australia, I got my first Android-powered
device, an HTC Magic with Android version 1.5. To be honest, it processed more
slowly than I expected, but I started testing the APIs and creating apps that I wanted to
have on my cell phone. I sensed that Android would get a lot of attention and I knew
that if I managed to create an application, it would be available to a lot of people.

I was proved right—not long afterward, there was a kick-off for Android develop-
ment, which soon grew bigger and bigger. Suddenly a lot of tools and third-party
libraries supporting the Android platform emerged—everything from game frame-
works, like cocos2d-x, to build systems, like Apache Maven.

In November 2010 I was asked to review a book from Manning Publications called
Android in Practice (www.manning.com/collins/). Delving deep into Manning’s work,
it occurred to me that I could write a book about Android development using a differ-
ent approach. I wanted to imitate Joshua Bloch’s Effective Java (www.amazon.com/
Effective-Java-2nd-Joshua-Bloch/dp/0321356683), providing tips and patterns I had
learned over all my years of developing for the Android platform.

Essentially, I wanted to gather together in one book every Android tip I have
learned and provide some degree of documentation for it. That’s what 50 Android
Hacks is all about: a collection of tips gathered in the process of developing different
Android applications.

Something I enjoyed about Effective Java was that the book doesn’t have any partic-
ular order and I could read various sections, learning something different from each

www.finebook.ir

http://www.manning.com/collins/
http://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683)
http://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683)
http://www.finebook.ir/../

p.0. ¢

PREFACE

of them. After some time, I would go back to the book and find a different application
for the project I was working on. I kept that in mind while writing this book. I imagine
the reader investigating a hack while going to work or before going to sleep, getting
new ideas for the project they’re working on.

I’'m already using this book on my new projects, copying the sample code for cer-
tain tasks and using its examples to explain to my coworkers certain patterns. It’s
proven to be useful for myself, and I hope it will be useful for you as well.

While writing the book and samples, I set the minimum SDK to 1.6. Most of the
hacks in the book work in Android version 1.6 onward unless mentioned. You’ll
notice that there are hacks specific to the newest Android versions, but most of them
are recommendations or ideas that would work for every version. Every hack has an
icon identifying the minimum SDK it will work with.

So pick a hack of interest to you from the table of contents and start reading. I
hope you learn as much reading this book as I learned writing it.

www.finebook.ir

http://www.finebook.ir/../

acknowledgments

When reading acknowledgments in other books, I'm always surprised by the number
of people the author thanks. I now understand how big the list can be, and as I write
these words I’'m nervous that I may be forgetting someone.

First of all, I want to thank Cynthia Kane, my development editor. She helped me
manage the book. She pointed out every single thing that needed a change, dealt with
my inadequacies in English, and helped me understand the key parts of creating a
book. Almost every single line I wrote needed a fix, and while it was sometimes frustrat-
ing for Cynthia, the result of these repeated iterations is a book of which I am proud.

Another key player was Nicholas Chase. Nick is in charge of support for the Man-
ning XML schema and the authoring tool. Fortunately, Nick was online on Skype every
time I had an question for him.

The rest of the Manning team also played a big part. Some of the people who
worked with me are Ozren Harlovic, Kevin Sullivan, Tara McGoldrick Walsh, Benja-
min Berg, Katie Tennant, Candace Gillhoolley, Martin Murtonen, Michael Stephens,
and Maureen Spencer.

Thanks to the collaborators: William Sanville (Hack 40: Last-in-first-out image
loading; and Hack 41: Building databases with ORMLite); Chris King (Hack 26: Add-
ing section headers to a ListView); and Christopher Orr (Hack 50: Using Jenkins to
deal with device diversity). They lent their expertise to complete these areas.

Thanks to Cyril Mottier, who took an in-depth look at the book and didn’t hesitate
to tell me which parts he hated and wanted to change. He kept the bar very high and
I enjoyed working with him. Merci beaucoup!

xxi

www.finebook.ir

http://www.finebook.ir/../

xxii

ACKNOWLEDGMENTS

Thanks to my partners at NASA Trained Monkeys, who helped me out by reading a
lot and making recommendations. Most of the cool hack titles came from their wild
imaginations.

Thanks to the Android community itself, and a special thanks to the people who
contribute to open source libraries (just to mention a few names: Michael Burton,
Manfred Moser, Matthias Képpler, Jake Wharton, Jeremy Feinstein, the cocos2d-x
team, Jan Berkel, Jeff Gilgelt, Xavi Rigau, Chris Banes, James Brechtel, and Dmitry
Skiba).

Thanks to everyone who reviewed the book. The reviews helped me identify what
was missing and what topics needed more attention. Getting positive reviews from
people I admire was very rewarding. Thanks to the following reviewers for finding the
time to read the book; I hope you learned something from it: Adam Koch, Alberto
Pose, Bill Cruise, Christian Badenas, Frank Ableson, Ignacio Luciani, Jeff Goldschrafe,
Joshua Skinner, Matthias Kippler, Maximiliano Gomez Vidal, “Ming,” Octavian
Damiean, Paul Butcher, Robi Sen, Roger Binns, Shan Coster, Suzanne Alexandra, and
Will Turnage.

Thanks to my family and friends—you did a great job supporting me!

And last but not least, thank you, Mili, for being there every time I needed you. I
love you.

www.finebook.ir

http://www.finebook.ir/../

about this book

Android is a project with a lot of momentum. The first Android release happened on
September 23, 2008, and by the end of 2010 it had become the leading smartphone
platform.

Every time there’s a new release, a new set of APIs and possibilities show up. While
Android version 1.5 (Donut) only worked in the HTC Dream, right now Android runs
in many devices from cellphone to TVs, and on different sizes of tablets and laptops.

This causes two big problems when developing for Android. First, you have to deal
with different types of supported devices. While there are lots of ways of dealing with
different screen sizes and screen density, you need to create an app that works, and
looks great, in every device. Also, targeting every possible Android-powered device
might result in different user experiences. The user won’t interact in the same way
with a cellphone as with a TV.

The second problem is how long the Android versions stay alive. The story is always
the same: with a new Android version, we get new APIs. A new API would be an excel-
lent addition to your app, but as a developer you still need to support older versions,
because not everyone will get the update and also because it may take a lot of time to
reach your main target audience.

You’ll need to choose if you want to add the new API functionality and release an
app just for people using the newest Android version, or go with a hybrid approach
where some functionalities are only available in newer versions.

I've created this book to help you out, because when you’re developing for
Android, all the decisions are in your hands. 50 Android Hacks offers a problem/solu-
tion approach to tasks you might encounter while developing, but also ways to
enhance what’s already there.

xxiii

www.finebook.ir

http://www.finebook.ir/../

xxiv

ABOUT THIS BOOK

What is Android?

Android is an open source operating system based on Linux. In the beginning, it was
just for cell phones, but now it works on tablets, TVs, computers, and even car stereos.
It has been gaining a lot of momentum in the mobile scene and is now used in more
than 50% of mobile devices.

The apps that run on an Android-powered device are usually coded in Java and it
has a powerful SDK that allows the developer to create different types of applications.
Android allows developers to customize almost everything. For example, you can cre-
ate custom wallpapers, custom keyboards, and custom home screens, things you
wouldn’t imagine doing in other platforms.

Who should read this book?

This book is intended for people who are already developing with Android. I assume
you know how to program in Java and the basic concepts of the Android platform.
There are hacks intended for people taking their first steps with the Android plat-
form, and there are hacks for advanced developers. If you’re developing an Android
app, skim through the book; I'm sure you’ll find something that will help you.
To find out if this book is for you, consider these questions:

m Are you developing for Android?

= Have you found yourself scratching your head, trying to think of better solu-
tions to your problems?

= Are you looking for new ways of addressing your programming issues?

= Do you want to find out how other people are handling similar problems?

How to use this book

My recommendation is that, before you read about a hack, you first compile and run
the sample code. That will give you a better understanding of what we’ll do in each
example. Apart from that, the book doesn’t need to be read in any particular order.
Feel free to start reading any section that interests you.

Roadmap

While the book is flexible enough to let you go forward and backward between hacks
without an issue, you can also read it sequentially.

= Chapter 1, “Working your way around layouts,” has four hacks that offer you dif-
ferent layout tips.

m The four hacks in chapter 2, “Creating cool animations,” describe different tips
for dealing with animations.

= Chapter 3, “View tips and tricks,” has nine hacks covering every tip related to
views.

= The two hacks in chapter 4, “Tools,” give you an overview of available tools apart
from the IDE.

www.finebook.ir

http://www.finebook.ir/../

ABOUT THIS BOOK XXV

m Chapter 5, “Patterns,” offers pattern examples in its four hacks that are applica-
ble for Android.

m Chapter 6, “Working with lists and adapters,” groups tips about the ListView
and Adapter classes in its seven hacks.

m Two hacks in chapter 7, “Useful libraries,” explain how to use third-party librar-
ies in your apps.

m Chapter 8, “Interacting with other languages,” shows some examples of coding
for Android in programming languages other than Java in one hack focused on
Objective-C and one hack discussing Scala.

m Chapter 9, “Ready-to-use snippets,” offers six hacks that provide copy-and-paste
code snippets.

m The three hacks in chapter 10, “Beyond database basics,” state some advanced
tips about database usage.

m Chapter 11, “Avoiding fragmentation,” includes four hacks that show how to
make your app work in different Android versions.

m The final three hacks presented in chapter 12, “Building tools,” include tips on
how to build your app.

Code conventions and downloads

All the code in the examples used in this book is presented in a monospace font like
this. Annotations accompany many of the code listings and numbered cueballs are
used if longer explanations are needed.

The source code for all of the examples in the book is available for download from
the publisher’s website at www.manning.com/50AndroidHacks. You can also down-
load the source code from the Google code project. How to get the latest code is
explained in the appendix. The sample code is hosted at GitHub. You can download
the code here: https://github.com/Macarse/50AH-code.

To run the book samples, you’ll need to install

= Eclipse
= Android SDK
m Eclipse Android plugin
If you don’t know where to start, I recommend visiting http://developer

.android.com/sdk/installing/index.html, where there’s an easy step-by-step guide to
configuration.

Author Online

The purchase of 50 Android Hacks includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/50AnroidHacks.

www.finebook.ir

www.manning.com/50AndroidHacks
http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/installing/index.html
www.manning.com/50AnroidHacks
https://github.com/Macarse/50AH-code
http://www.finebook.ir/../

xxvi

ABOUT THIS BOOK

This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author

Carlos Sessa is a passionate full-time Android developer. He is the cofounder of a
mobile development company based in Buenos Aires, Argentina, called NASA Trained
Monkeys. His company focuses on mobile development for both Android and iOS
platforms.

www.finebook.ir

http://www.finebook.ir/../

about the cover illustration

The figure on the cover of 50 Android Hacks is captioned “A Woodsman.” The illustra-
tion is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume
compendium of regional dress customs published in France. Each illustration is finely
drawn and colored by hand. The rich variety of Maréchal’s collection reminds us viv-
idly of how culturally apart the world’s towns and regions were just 200 years ago. Iso-
lated from each other, people spoke different dialects and languages. On the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

xxvii

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

Working your
around lay

)
s

In this chapter, we’ll cover tips and recommendations for Android layouts. You’ll
learn how to create certain types of layouts from scratch as well as how to improve
upon existing ones.

Hack 1 Centering views using weights
Android v1.6+

At an Android talk I gave to a group of developers, when I was explaining how to
create a view using an XML file, someone asked, “What should I write if I want a but-
ton to be centered and 50% of its parent width?” At first I didn’t understand what
he was asking, but after he drew it on the board, I understood. His idea is shown in
figures 1.1 and 1.2.

Itlooks simple, right? Now take five minutes to try to achieve it. In this hack, we’ll
look at how to solve this problem using the LinearlLayout’s android:weightSum
attribute in conjunction with the LinearLayout’s child android:layout_weight
attribute. This might sound like a simple task, but it’s something I always ask
about in interviews with developers because a lot of them don’t know the best way
to do this.

www.finebook.ir

http://www.finebook.ir/../

1.1

CHAPTER 1 Working your way around layouts

& ¥ 0 . oall @ 11:07Pm

Hack001

- Y O = all @ 11:14PM
Hack001
Click me
Click me
Figure 1.1 Button with 50% of Figure 1.2 Button with 50% of its parent width (landscape)

its parent width (portrait)

Combining weightSum and layout_weight

Android devices have different sizes, and as developers we need to create XML in a
way that works for different screen sizes. Hard-coding sizes isn’t an option, so we’ll
need something else to organize our views.

We’ll use the layout_weight and weightSum attributes to fill up any remaining
space inside our layout. The documentation for android:weightSum (see section 1.3)
describes a scenario similar to what we’re trying to achieve:

Defines the maximum weight sum. If unspecified, the sum is computed by
adding the layout_weight of all of the children. This can be used for instance
to give a single child 50% of the total available space by giving it a
layout_weight of 0.5 and setting the weightSum to 1.0.

Imagine we need to place stuff inside a box. The percentage of available space would
be the weightSum and the layout_weight would be the percentage available for each
item inside the box. For example, let’s say the box has a weightSum of 1 and we have
two items, A and B. A has a layout_weight of 0.25 and B has a layout_weight of 0.75.
So item A will have 25% of the box space, while Bwill get the remaining 75%.

The solution to the situation we covered at the beginning of this chapter is similar.
We give the parent a certain weightSum and give the button half of that value as
android:layout_weight. The resulting XML follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

www.finebook.ir

http://www.finebook.ir/../

1.2

1.3

Using lazy loading and avoiding replication 3

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#FFFFFF"
android:gravity="center"

android:orientation="horizontal" @ Reads the

android:weightSum="1"> - | android:weightSum attribute

<Button Decides the
android:layout_width="0dp" < button’s width

android:layout_height="wrap_content"

android:layout_weight="0.5"

android:text="Click me"/>
</LinearLayout>

Makes sure it uses exactly
50% of available space

The LinearLayout reads the android:weightSum attribute @ and learns that the sum
of the weights of its children needs to be 1. Its first and only child is the Button and
because the button has its android:layout_width set to 0dp @), the LinearLayout
knows that it must decide the button’s width by the available space given by the
android:weightSum. Because the Button has the android:layout_weight set to 0.5
©, it will use exactly 50% of the available space.

A possible example would be a 200dp wide LinearLayout with its
android:weightSumset to 1. The width of the Button would be calculated as follows:

Button's width + Button's weight * 200 / sum(weight)

Because the Button’s width is 0dp, the Button’s weight is 0.5. With the sum(weight)

set to 1, the result would be the following:
0+ 0.5 * 200 /1 =100

The bottom line

Using LinearLayout’s weight is important when you want to distribute the available
space based on a percentage rather than using hard-coded sizes. If you’re targeting
Honeycomb and using Fragments, you’ll notice that most of the examples place the
different Fragments in a layout using weights. Understanding how to use weights will
add an important tool to your toolbox.

External links
http://developer.android.com/reference/android /widget/LinearLayout.html

Hack 2 Using lazy loading and avoiding replication

Android v1.6+

When you're creating complex layouts, you may find yourself adding a lot of View-
Groups and Views. But making your view hierarchy tree taller will also make it slower.

www.finebook.ir

http://developer.android.com/reference/android/widget/LinearLayout.html
http://www.finebook.ir/../

2.1

CHAPTER 1 Working your way around layouts

Creating optimized layouts is fundamental to building an application that runs fast
and is responsive to the user.

In this hack, you’ll learn how to use the <include /> tag in your XML to avoid rep-
lication, and how to use the ViewStub class to lazy load views.

Avoid replication using the <include /> tag

Let’s imagine we want to add a footer to every view in our application—something
simple, such as a TextView with our application’s name. If we have more than one
Activity, we might have more than one XML file. Would we copy this TextView to
every XML file? What happens if we need to edit it in the future? Copying and pasting
would solve the problem, but it doesn’t sound efficient. The easiest way to add a footer
to our application is to use the <include /> tag. Let’s look at how it can help us out.

We use the <include /> tag in XML to add another layout from another XML file.
In our example, we’ll create our complete view, and at the bottom we’ll add the
<include /> tag pointing to our footer’s layout. One of our Activity’s XML files
would look like the following:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:gravity="center_horizontal"
android:text="@string/hello" />

<include layout="@layout/footer_with_layout_properties"/>
</RelativeLayout/>
And the footer_with_layout_properties would look like the following:

<TextView xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_alignParentBottom="true"

android:layout_marginBottom="30dp"

android:gravity="center_horizontal"

android:text="@string/footer_text"/>
In this first example, we’ve used the <include /> tag with the only required layout.
You might be thinking, “OK, this works because we’re using a RelativeLayout for our
main XML. What’ll happen if one of the XML files is a LinearLayout? android
:layout_alignParentBottom="true" wouldn’t work because it’s a RelativeLayout
attribute.” That’s true. Let’s look at the second way to use includes, where we’ll place
android:layout_* attributes in the <include /> itself.

www.finebook.ir

http://www.finebook.ir/../

22

Using lazy loading and avoiding replication 5

The following modified main.xml uses the <include /> tag with android:layout_*
attributes:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:gravity="center_horizontal"
android:text="@string/hello"/>

<include
layout="@layout/footer"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_marginBottom="30dp" />

</RelativeLayout/>
The following shows the modified footer.xml:

<TextView xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="0dp"

android:layout_height="0dp"

android:gravity="center"

android:text="@string/footer_text"/>
In this second example, we’ve let the container of the included footer decide where to
place it. Android’s issue tracker has reported an issue, which says that the <include />
tag is broken (overriding layout params never works). This is partially true. The prob-
lem is that the <include /> tag must specify both android:layout_width and
android:layout_height if we want to override any android:layout_* attributes.

Note a small detail about what we’ve done in this hack. As you can see in the sec-

ond example, we moved every android:layout_* attribute to the <include /> tag.
Take a look at the width and height we placed in the footer.xml file: they’re both 0dp.
We did this to make users specify a width and height when used together with the
<include /> tag. If users don’t add them, they won’t see the footer because the width
and height are zero.

Lazy loading views with the ViewStub class

When designing your layouts, you may have thought about showing a view depending
on the context or the user interactions. If you’ve ever found yourself making a view
invisible and then making it visible afterward, you should keep on reading—you’ll
want to use the ViewStub class.

As an introduction to the ViewStub class, let’s take a look at the Android documen-
tation (see section 2.4):

www.finebook.ir

http://www.finebook.ir/../

CHAPTER 1 Working your way around layouts

A ViewStub is an invisible, zero-sized View that can be used to lazily inflate
layout resources at runtime. When a ViewStub is made visible, or when
inflate() is invoked, the layout resource is inflated. The ViewStub then
replaces itself in its parent with the inflated View or Views.

You already know what a ViewStub is, so let’s see what you can do with it. In the follow-
ing example you’ll use a ViewStub to lazy load a MapView. Imagine creating a view with
the details about a place. Let’s look at two possible scenarios:

= Some venues don’t have GPS information
= The user might not need the map

If the venue doesn’t have GPS information, you can’t place a marker on the map, and
if the user doesn’t need the map, why load it? Let’s place the MapView inside a View-
Stub and let the user decide whether to load the map.

To achieve this, you’ll use the following layout:

<?xml version="1.0" encoding="utf-8"7?>

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<Button
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/show_map"
android:onClick="onShowMap" />

<ViewStub
android:id="@+id/map_stub"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout="@layout/map"
android:inflatedId="@+id/map_view"/>
</RelativeLayout>

It might be obvious, but we’ll use the map_stub ID to get the ViewStub from the
Activity, and the layout attribute tells the ViewStub which layout should inflate. For
this example, we’ll use the following layout for the map:
<?xml version="1.0" encoding="utf-8"7?>
<com.google.android.maps.MapView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:clickable="true"
android:apiKey="my_api_key"/>
The last attribute we need to discuss is inflatedId. The inflatedId is the ID that the
inflated view will have after we call inflate() or setVisibility() in the ViewStub
class. In this example, we’ll use setVisibility(View.VISIBLE) because we won’t do

www.finebook.ir

http://www.finebook.ir/../

2.3

24

Using lazy loading and avoiding replication 7

anything else with the MapView. If we want to get a reference to the view inflated, the
inflate() method returns the view to avoid a second call to findViewById().
The code for the Activity is simple:

public class MainActivity extends MapActivity {
private View mViewStub;

@Override

public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;
mViewStub = findviewById(R.id.map_stub) ;

}

public void onShowMap (View v) {
mViewStub.setVisibility (View.VISIBLE) ;
}

}

As you can see, we only need to change the ViewStub visibility when we want to show
the map.

The bottom line

The <include /> tagisa useful tool to order your layout. If you already created some-
thing with the Fragment class, you’ll notice that using includes is almost the same
thing. As you need to do with fragments, your complete view can be a set of includes.

The <include /> tag offers a nice way to organize the content of your XML files. If
you’re making a complex layout and the XML gets too big, try creating different parts
using includes. The XML becomes easier to read and more organized.

ViewStub is an excellent class to lazy load your views. Whenever you’re hiding a
view and making it visible, depending on the context, try using a ViewStub. Perhaps
you won’t notice the performance boost with only one view, but you will if the view has
a large view hierarchy.

External links
http://code.google.com/p/android/issues/detail?id=2863

http://android-developers.blogspot.com.ar/2009/03/
android-layout-tricks-3-optimize-with.html

http://developer.android.com/reference/android/view/ViewStub.html

www.finebook.ir

http://code.google.com/p/android/issues/detail?id=2863
http://android-developers.blogspot.com.ar/2009/03/android-layout-tricks-3-optimize-with.html
http://developer.android.com/reference/android/view/ViewStub.html
http://www.finebook.ir/../

CHAPTER 1 Working your way around layouts

Creating a custom ViewGroup
Android v1.6+

When you’re designing your application, you might have com-
plex views that will show up in different activities. Imagine that
you're creating a card game and you want to show the user’s
hand in a layout similar to figure 3.1. How would you create a
layout like that?

You might say that playing with margins will be enough for
that type of layout. That’s true. You can do something similar
to the previous figure with a RelativeLayout and add margins
to its children. The XML looks like the following: Figure 3.1 User's

hand in a card game

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >

<View
android:layout_width="100dp"
android:layout_height="150dp"
android:background="#FF0000" />

<View
android:layout_width="100dp"
android:layout_height="150dp"
android:layout_marginLeft="30dp"
android:layout_marginTop="20dp" v

android:background="#00FF00" /> e

<View
android:layout_width="100dp"
android:layout_height="150dp"
android:layout_marginLeft="60dp"
android:layout_marginTop="40dp"
android:background="#0000FF" />

</RelativeLayout>

</FrameLayout>

The result of the previous XML can be seen in
figure 3.2.

In this hack, we’ll look at another way of creating
the same type of layout—we’ll create a custom View-
Group. The benefits of using a custom ViewGroup
instead of adding margins by hand in an XML file are
these:

= It’s easier to maintain if you're using it in differ-

o Figure 3.2 Card layout created
ent actvitues. using the default Android widgets

www.finebook.ir

http://www.finebook.ir/../

3.1

3.2

With cascade
namespace

Creating a custom ViewGroup 9

= You can use custom attributes to customize the position of the ViewGroup chil-
dren.

= The XML will be easier to understand because it’ll be more concise.

= If you need to change the margins, you won’t need to recalculate by hand every
child’s margin.

Let’s take a look at how Android draws views.

Understanding how Android draws views

To create a custom ViewGroup, you'll need to understand how Android draws views. I
won’t go into the details, but you’ll need to understand the following paragraph from
the documentation (see section 3.5), because it explains how you can draw a layout:

Drawing the layout is a two-pass process: a measure pass and a layout pass. The
measuring pass is implemented in measure(int, int) and is a top-down
traversal of the View tree. Each View pushes dimension specifications down
the tree during the recursion. At the end of the measure pass, every View has
stored its measurements. The second pass happens in layout (int, int, int,
int) and is also top-down. During this pass each parent is responsible for
positioning all of its children using the sizes computed in the measure pass.

To understand the concept, let’s analyze the way to draw a ViewGroup. The first step is
to measure its width and height, and we do this in the onMeasure () method. Inside
that method, the ViewGroup will calculate its size by going through its children. We’ll
make the final pass in the onLayout () method. Inside this second method, the View-
Group will lay out its children using the information gathered in the onMeasure ()
pass.

Creating the CascadelLayout

In this section, we’ll code the custom ViewGroup. We’ll achieve the same result as fig-
ure 3.2. Call the custom ViewGroup: CascadeLayout. The XML using the Cascade-
Layout follows:

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:cascade=
"http://schemas.android.com/apk/res/com.manning.androidhacks.hack003"
android:layout_width="fill_parent" <
android:layout_height="fill_parent" >

Custom
namespace to
use custom
<com.manning.androidhacks.hack003.view.CascadeLayout attributes in
android:layout_width="fill_parent" the XML
android:layout_height="fill_parent"

you can use cascade:horizontal_spacing="30dp" Cascadelayout used

custom
attributes

cascade:vertical_spacing="20dp" > ﬁomtheXMLuﬁng
its fully qualified name
<View

android:layout_width="100dp"

www.finebook.ir

http://www.finebook.ir/../

10 CHAPTER 1 Working your way around layouts

android:layout_height="150dp"
android:background="#FF0000" />

<View
android:layout_width="100dp"
android:layout_height="150dp"
android:background="#00FF00" />

<View
android:layout_width="100dp"
android:layout_height="150dp"
android:background="#0000FF" />
</com.manning.androidhacks.hack003.view.CascadeLayout>

</FrameLayout>

Now that you know what you need to build, let’s get started. The first thing we’ll do is
define those custom attributes. To do this, we need to create a file called attrs.xml
inside the res/values folder, with the following code:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<declare-styleable name="CascadeLayout">
<attr name="horizontal_spacing" format="dimension" />
<attr name="vertical_spacing" format="dimension" />
</declare-styleable>
</resources>

We’ll also use default values for the horizontal and vertical spacing for those times
when the user doesn’t specify them. We’ll place the default values inside a dimens.xml
file inside the res/values folder. The contents of the dimens.xml file are as follows:
<?xml version="1.0" encoding="utf-8"?>
<resources>

<dimen name="cascade_horizontal_spacing">10dp</dimen>

<dimen name="cascade_vertical_spacing">10dp</dimen>
</resources>
After understanding how Android draws views, you might imagine that you need to
write a class called CascadeLayout that extends ViewGroup and overrides the
onMeasure () and onLayout () methods. Because the code’s a bit long, let’s analyze it
in three separate parts: the constructor, the onMeasure() method, and the
onLayout () method. The following code is for the constructor:

public class CascadelLayout extends ViewGroup {

private int mHorizontalSpacing;
private int mVerticalSpacing;

— > public CascadeLayout (Context context, AttributeSet attrs) {

Constructor
called when super (context, attrs); < mHorizontalSpacing
view instance is TypedArray a = context.obtainStyledAttributes (attrs, and mVerticalSpacing
created from an R.styleable.CascadeLayout) ; are read from
XML file. custom attributes. If
try { they’re not present,
mHorizontalSpacing = a.getDimensionPixelSize (use default values.

www.finebook.ir

http://www.finebook.ir/../

Make
every
child
measure
itself.

Creating a custom ViewGroup 11

R.styleable.CascadelLayout_horizontal_spacing,
getResources () .getDimensionPixelSize (
R.dimen.cascade_horizontal_spacing)) ;

mVerticalSpacing = a.getDimensionPixelSize(
R.styleable.CascadeLayout_vertical_spacing,
getResources ()
.getDimensionPixelSize (
R.dimen.cascade_vertical_spacing)) ;
} finally {
a.recycle();

Before coding the onMeasure() method, we’ll create a custom LayoutParams. This
class will hold the x,y position values of each child. We’ll have the LayoutParams class
as a CascadeLayout inner class. The class definition is as follows:

public static class LayoutParams extends ViewGroup.LayoutParams {
int x;
int vy;
public LayoutParams (Context context, AttributeSet attrs) {

super (context, attrs);

}

public LayoutParams (int w, int h) {
super (w, h);

}

To use our new Cascadelayout.LayoutParams class, we’ll need to override some
additional methods in the CascadeLayout class. These are checkLayoutParams (),
generateDefaultLayoutParams (), generateLayoutParams (AttributeSet attrs),
and generatelayoutParams (ViewGroup.LayoutParams p). The code for these meth-
ods is almost always the same between ViewGroups. If you're interested in its content,
you’ll find it in the sample code.

The next step is to code the onMeasure () method. This is the key part of the class.
The code follows:

@Override
protected void onMeasure (int widthMeasureSpec, int heightMeasureSpec) {
int width = 0;
int height = getPaddingTop(); Use width and height to
calculate layout’s final
size and children’s x and
y positions.

final int count = getChildCount() ;
for (int i = 0; i < count; i++) {
View child = getChildAt (i) ;

> measureChild(child, widthMeasureSpec, heightMeasureSpec) ;

LayoutParams lp = (LayoutParams) child.getLayoutParams() ;
width = getPaddingLeft () + mHorizontalSpacing * i;

www.finebook.ir

http://www.finebook.ir/../

12

Uses calculated
width and
height to set
measured
dimensions of
whole layout.

3.3

CHAPTER 1 Working your way around layouts

lp.x - width; <~ Inside the LayoutParams,
lp.y = height; hold x and y positions for
each child.

width += child.getMeasuredwidth() ;
height += mVerticalSpacing;
}

width += getPaddingRight() ;
height += getChildAt (getChildCount () - 1) .getMeasuredHeight ()
+ getPaddingBottom() ;

setMeasuredDimension (resolveSize (width, widthMeasureSpec),
resolveSize (height, heightMeasureSpec)) ;

}
The last step is to create the onLayout () method. Let’s look at the code:

@Override
protected void onLayout (boolean changed, int 1, int t, int r, int b) {

final int count = getChildCount() ;

for (int i = 0; i < count; i++) {
View child = getChildAt (i) ;
LayoutParams lp = (LayoutParams) child.getLayoutParams/() ;
child.layout (lp.x, 1lp.y, 1lp.x + child.getMeasuredwidth(), 1lp.y

+ child.getMeasuredHeight ()) ;

}

As you can see, the code is dead simple. It calls each child layout () method using the
values calculated inside the onMeasure () method.

Adding custom attributes to the children
In this last section, you’ll learn how to add custom attributes to the children views. As
an example, we’ll add a way to override the vertical spacing for a particular child. You
can see a result of this in figure 3.3.

The first thing we’ll need to do is add a new attribute to the attrs.xml file:
<declare-styleable name="CascadeLayout_LayoutParams">

<attr name="layout_vertical_spacing" format="dimension" />

</declare-styleable>
Because the attribute name starts with layout_ instead of containing a View attribute,
it’s added to the LayoutParams attributes. We’ll read this new attribute inside the
LayoutParams constructor as we did with the ones from CascadeLayout. The code is
the following:

public LayoutParams (Context context, AttributeSet attrs) {
super (context, attrs);

TypedArray a = context.obtainStyledAttributes(attrs,
R.styleable.CascadeLayout_LayoutParams) ;
try {
verticalSpacing = a.getDimensionPixelSize (

www.finebook.ir

http://www.finebook.ir/../

Creating a custom ViewGroup 13

R.styleable.CascadelLayout_LayoutParams_layout_vertical_spacing,
-1);
} finally {
a.recycle();

}

The verticalSpacing is a public field. We’ll use it inside the CascadeLayout’s
onMeasure () method. If the child’s LayoutParams contains the verticalSpacing, we
can use it. The source code looks like the following:

verticalSpacing = mVerticalSpacing;

LayoutParams 1lp = (LayoutParams) child.getLayoutParams () ;

if (lp.verticalSpacing >= 0) {
verticalSpacing = lp.verticalSpacing;

width += child.getMeasuredwidth() ;
height += verticalSpacing;

The bottom line

Using custom Views and ViewGroups is an excellent way to organize your application
layouts. Customizing components will also allow you to provide custom behaviors. The
next time you need to create a complex layout, decide whether or not it’d be better to
use a custom ViewGroup. It might be more work at the outset, but the end result is
worth it.

b = all 10:39aM

Hack003

Figure 3.3 First child with
different vertical spacing

www.finebook.ir

http://www.finebook.ir/../

14 CHAPTER 1 Working your way around layouts

3.5 External links

http://developer.android.com/guide/topics/ui/how-android-draws.html
http://developer.android.com/reference/android/view/ViewGroup.html

http://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html

Preferences hacks v 8 il 9:40AM
Android v1.6+

Preferences

One of the features I like about the Android SDK is SIS ’
the preferences framework. I prefer it to the iOS SDK
because it makes it easier to create layouts. When
you edit a simple XML file, you get an easy-to-use Rate the app
preferences screen. Share it
Although Android provides many settings wid-
gets for you to use, sometimes you may need to cus- Send Feedback
tomize the view. In this hack, you’ll find a couple of
examples in which the settings framework has been e
customized. The finished preferences screen is
shown in figure 4.1.
Let’s first take a look at the XML:
<?xml version="1.0" encoding="utf-8"?> Figure 4.1 Preferences screen

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android"

—p> android:key="pref_first_preferencescreen_key"

'IfngPd android:title="Preferences">
practice to give
preferences an <PreferenceCategory We can use a PreferenceCategory to
android:key. android:title="User"s> Q_‘ separate preferences by certain
With that key group names.
we’re able to <EditTextPreference
retrieve the android:key="pref_username"
prefere[lces andro%d: semmary: "Username" 7 To pick a username, we’ll
object. android:title="Username" /> use an EditTextPreference.

A summary is set, but

we’ll replace it with the

<PreferenceCategory username the user picked.
android:title="Application">

</PreferenceCategory>

We’ll use a Preference
for options that will
launch an Intent.

<Preference
android:key="pref_rate"
android:summary="Rate the app in the store!"
android:title="Rate the app"/>

www.finebook.ir

http://developer.android.com/guide/topics/ui/how-android-draws.html
http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html
http://www.finebook.ir/../

<Preference
android:
android:
android:

Preferences hacks 15

key="pref_share"
summary="Share the app with your friends"
title="Share it"/>

<com.manning.androidhacks.hack004.preference.EmailDialog

android:
android
android:
android:
android:
android:
android:
android:

<com.manning.androidhacks.hack004.preference.AboutDialog

android:
android:
android:
android:
android:

</PreferenceCategory>

</PreferenceScreen>

dialogIcon="@drawable/ic_launcher"

:dialogTitle="Send Feedback"

dialogMessage="Do you want to send an email?"
key="pref_sendemail_key"
negativeButtonText="Cancel"
positiveButtonText="0K"

summary="Send your feedback by e-mail"
title="Send Feedback"/>

dialogIcon="@drawable/ic_launcher"
dialogTitle="About"
key="pref_about_key"

: Inside preferences, we
negativeButtonText="@null" can also create custom

title="About"/> preferences to extend one
of the existing widgets.

The XML we’ve created will take care of the UL Now it’s time to add all of the logic. To
do this, we’ll create an Activity, but instead of extending android.app.Activity,

we’ll extend android.

preference.PreferenceActivity. The code follows:

public class MainActivity extends PreferenceActivity implements
OnSharedPreferenceChangelListener {

Instead of calling

@Override setContentView(), we need

public void onCreate (Bundle savedInstanceState) { to call addPreferences-
super .onCreate (savedInstanceState) ; FromResource with XML
addPreferencesFromResource (R.xml.prefs) ; we created previously.

Preference ratePref = findPreference("pref_rate");

Uri uri = Uri.parse("market://details?id=" + getPackageName ()) ;
Intent goToMarket = new Intent(Intent.ACTION_VIEW, uri);
ratePref.setIntent (goToMarket) ;

}

@Override

In onCreate() method, we can start
getting preferences without actions
and start setting their Intents. In

protected void onResume() { this case, rate preference will use

super.onResume ()

Intent.ACTION_VIEW.

7

getPreferenceScreen () .getSharedPreferences ()

.registerOnSharedPreferenceChangeListener (this) ;

“77 Register to be

} notified of

preferences
@override changes.
protected void onPause () {

super.onPause() ;

www.finebook.ir

http://www.finebook.ir/../

16

CHAPTER 1 Working your way around layouts

getPreferenceScreen () .getSharedPreferences ()

.unregisterOnSharedPreferenceChangelListener (this) ; Unregister to

} preferences

@override changes.

public void onSharedPreferenceChanged (
SharedPreferences sharedPreferences, String key) {

+E i};zla/';zg::i;e(xslz? ?‘username R 7| When there’s a change in
! username preference, we
} need to update preference
} summary.
private void updateUserText () {
EditTextPreference pref;
pref = (EditTextPreference) findPreference("pref_username");

String user = pref.getText();
To update summary, we need to get
if (user == null) { preference and update summary using
user = "?"; EditTextPreference’s getText() method.

}

pref.setSummary (String.format ("Username: %s", user));

}

The code we want to create shows how to create custom preferences. It works as if we
were creating a custom view. To understand it, let’s look at the following, where we
create the code for the EmailDialog class:

public class EmailDialog extends DialogPreference { <

Custom class should
Context mContext;

extend some of existing
public EmailDialog(Context context) { preferences widgets. In

H b
this (context, null); tmscase,WElluse
) DialogPreference.

public EmailDialog(Context context, AttributeSet attrs) ({
this(context, attrs, 0);
}

public EmailDialog(Context context, AttributeSet attrs,
int defStyle) { <+

Constructors are the same
as those used to create a
custom view extending the
View class.

super (context, attrs, defStyle);
mContext = context;
}

@Override

public void onClick(DialogInterface dialog, int which) {

. . .] onClick() is
super.onClick(dialog, which); overridden. If
if (DialogInterface.BUTTON_POSITIVE == which) { users press OK
LaunchEmailUtil.launchEmailToIntent (mContext) ; button, then we’ll
} launch email Intent
} with helper class.

www.finebook.ir

http://www.finebook.ir/../

4.1

4.2

Preferences hacks 17

The bottom line

Although the settings framework allows you to add some custom behavior, you need to
remember that its purpose is to create simple preferences screens. If you’re thinking
of adding more complex user interfaces or flows, I'd recommend you create a sepa-
rate Activity, theming it as a Dialog, and launching it from a preferences widget.

External links

http://developer.android.com/reference/android/preference/PreferenceActivity.html

www.finebook.ir

http://developer.android.com/reference/android/preference/PreferenceActivity.html
http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

Creating cool animatt

In this chapter, you’ll learn about animations. You’ll find different examples that
use a variety of APIs to add animations to your application widgets.

Hack 5 Snappy transitions with TextSwiicher and
ImageSwitcher
Android v1.6+

Imagine you need to cycle through information in a TextView or in an ImageView.
Some examples of this would be

= Navigating through a list of dates with Left and Right buttons
= Changing numbers in a date picker

= Countdown clock

= News headlines

Changing the contents of a view is a basic function of most applications, but it
doesn’t have to be boring. If we use the default TextView, you’ll notice there’s no
eye candy when we swap its content. It’d be nice to have a way to apply different
animations to content being swapped. So to make our transitions more visually
appealing, Android provides two classes called TextSwitcher and ImageSwitcher.
TextSwitcher replaces a TextView and ImageSwitcher replaces an ImageView.

19

www.finebook.ir

http://www.finebook.ir/../

20

CHAPTER 2 Creating cool animations

TextView and TextSwitcher work in a similar way. Suppose we’re navigating
through a list of dates, as mentioned earlier. Every time the user clicks a button, we
need to change a TextView’s content with each date. If we use a TextView, we’re swap-
ping out some text in a view using mTextView.setText ("something"). Our code
should look something like the following:

private TextView mTextView;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
mTextView = (TextView) findViewById(R.id.your_textview) ;

mTextView.setText (“something”) ;
}
As you might’ve noticed, if we change the content of a TextView, it’ll change instantly;
TextSwitcher is what we need if we want to add an animation to avoid the hard swap.
A TextSwitcher is useful to animate a label onscreen. Whenever it’s called,
TextSwitcher animates the current text out and animates the new text in. We can get
a more pleasant transition by following these easy steps:

1 Get the view using findviewById (), or constructitin your code like any normal
Android view.

2 Seta factory using switcher.setFactory ().

3 Setan in-animation using switcher.setInAnimation().

4 Set an out-animation using switcher.setOutAnimation().

Here’s how TextSwitcher works: it uses the factory to create new views, and whenever
we use setText (), it first removes the old view using an animation set with the set-
OutAnimation () method, and then places the new one using the animation set by the
setInAnimation () method. So let’s see how to use it:

private TextSwitcher mTextSwitcher;

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;
Animation in = AnimationUtils.loadAnimation (this,
android.R.anim. fade_in) ;
Animation out = AnimationUtils.loadAnimation(this,
android.R.anim. fade_out) ;

mTextSwitcher = (TextSwitcher) findViewById(R.id.your_textview) ;
mTextSwitcher.setFactory (new ViewFactory () {
@Override

public View makeView() {
TextView t = new TextView(YourActivity.this);
t.setGravity (Gravity.CENTER) ;

www.finebook.ir

http://www.finebook.ir/../

5.1

5.2

Adding eye candy to your ViewGroup’s children 21

return t;
}
)i

mTextSwitcher.setInAnimation (in) ;

mTextSwitcher.setOutAnimation (out) ;
}
That’s it. The user gets the new text, and we get some cool animations for free. The
new transition fades out the original text while the new text fades in to replace it.
Because we used android.R.anim.fade_in in our example, the effect was a fade-in.
This technique works equally well with other effects. Providing your own animation or
using one from android.R.anim. ImageSwitcher works in the same way, except with
images instead of text.

The bottom line

The TextSwitcher and ImageSwitcher methods give you a simple way to add ani-
mated transitions. Their role is to make these transitions less dull and more vibrant.
Don’t abuse them; you don’t want your application to look like a Christmas tree!

External links
http://developer.android.com/reference/android/widget/ TextSwitcher.html
http://developer.android.com/guide/topics/graphics/view-animation.html

Adding eye candy to your
ViewGroup’s children
Android v1.6+

By default, when you add views to a ViewGroup, they're instantly added and displayed,
but there’s an easier way to animate that action. In this hack, I'll show you how to
apply an animation to children views being added to their parent ViewGroup. I'll show
you how to add eye candy to your application in a few lines.

Android provides a class called LayoutAnimationController. This class is useful to
animate a layout’s or a ViewGroup’s children. It’s important to mention that you won’t
be able to provide different animations for each child, but the LayoutAnimation-
Controller can help you decide when the animation should apply to each child.

The best way to understand how to use LayoutAnimationController is through an
example. We’ll animate ListView’s children with a mix of two animations, alpha and
translate. You can use the LayoutAnimationController in two ways: from the code

www.finebook.ir

http://developer.android.com/reference/android/widget/TextSwitcher.html
http://developer.android.com/guide/topics/graphics/view-animation.html
http://www.finebook.ir/../

22

Create set ’

and use
default. 0

Apply
Layout-
Animation-
Controller.

CHAPTER 2 Creating cool animations

and from the XML. I’ll show how to do it from code and you can try converting it to
XML as an exercise. Let’s look at the code used to apply the animation:

mListView = (ListView) findViewById(R.id.my_ listview_id); Get

AnimationSet set = new AnimationSet (true); ListView ref.

Animation animation = new AlphaAnimation(0.0f, 1.0f);
animation.setDuration(50) ;
set.addAnimation (animation) ;

Create alpha
animation.

animation = new TranslateAnimation (Animation.RELATIVE_TO_SELF, 0.0f,
Animation.RELATIVE_TO_SELF, 0.0f, Animation.RELATIVE_TO_SELF,
-1.0f, Animation.RELATIVE_TO_SELF, 0.0f);

animation.setDuration(100) ;

set.addAnimation (animation) ;

Create translate
animation.

LayoutAnimationController controller = new LayoutAnimationController (

t, 0.5f); . .
=°) Create LayoutAnimationController

mListView.setLayoutAnimation (controller) ; and delay between animations.
First, you need to get the ListView reference @. Because we want to add more than
one animation, we’ll need to use a set @. The Boolean variable will determine
whether every animation will use the same interpolator. In this example, we’ll use the
default interpolator, and then create the alpha animation © and the translate anima-
tion @, and add them to the set. We create the LayoutAnimationController with
the set and the delay between child animations @. Finally, we apply the Layout-
AnimationController to the ListView @.

Most of the animations provided by the framework look like TranslateAnimation,
so let’s take a closer look at that particular code. The constructor is defined as follows:
public TranslateAnimation(int fromXType, float fromXvalue, int toXType,

float toXValue, int fromYType, float fromYValue, int toYType,

float toYvalue) {
The idea is simple: we need to provide initial and final x,y coordinates. Android pro-
vides a way to specify where it should calculate the position from, with three options:

® Animation.ABSOLUTE

" Animation.RELATIVE_TO_SELF
®* Animation.RELATIVE_TO_PARENT

If we go back to our example, we can explain every child position with words like this:

= Initial X: Position provided by its parent

= Initial Y: -1 from the position provided by its parent
= Final X: Position provided by its parent

= Final Y: Position provided by its parent

The end result will be every child “falling” through the y axis to its position. Because
we have a delay between children, it’ll look like a cascade.

www.finebook.ir

http://www.finebook.ir/../

6.1

6.2

Doing animations over the Canvas 23

The bottom line

Adding animations to ViewGroups is easy, and they make your application look profes-
sional and polished. This hack only covered a small portion of what you can do, but, for
example, you can try changing the default interpolator to the BounceInterpolator.
This will make your views bounce when they reach their final position. You can also
change the order in which to animate the children.

Use your imagination to create something cool, but don’t overdo it—you should
avoid using too many animations.

External links

http://developer.android.com/reference/android/view/animation/
LayoutAnimationController.html

Doing animations over the Canvas
Android v1.6+

If you’re animating your own widgets, you might find the animation APIs a bit limited.
Is there an Android API to draw things directly to the screen? The answer is yes.
Android offers a class called Canvas.

In this hack, I'll show you how to use the Canvas
class to draw elements and animate them by creating
a box that will bounce around the screen. You can
see the finished application in figure 7.1.

Before we create this application, let’s make sure
you understand what the Canvas class is—the follow-
ing is from the documentation (see section 7.2):

A Canvas works for you as a pretense, or
interface, to the actual surface upon which your
graphics will be drawn—it holds all of your
“draw” calls. Via the Canvas, your drawing is
performed upon an underlying Bitmap, which is
placed into the window.

Based on that definition, the Canvas class holds all
of the draw calls. We can create a View, override the
onDraw() method, and start drawing primitives

there.
To make everything more clear, we’ll create a

Figure 7.1 Box bouncing around
DrawView class that will take care of drawing the box the screen

www.finebook.ir

http://developer.android.com/reference/android/view/animation/LayoutAnimationController.html
http://www.finebook.ir/../

CHAPTER 2 Creating cool animations

and updating its position. Because we don’t have anything else onscreen, we’ll make it
the Activity’s content view. The following is the code for the Activity:

public class MainActivity extends Activity {
private DrawView mDrawView;

@QOverride
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ; Get the

screen width
Display display = getWindowManager () .getDefaultDisplay () ; and height.
mDrawView = new DrawView(this) ;
mDrawView.height = display.getHeight () ;
mDrawView.width = display.getWidth() ; .

pray-9 @ DrawView takes all

setContentView (mDrawView) ; | the available space.

}

We’ll use the WindowManager to get the screen width and height @. These values will
be used inside the DrawView to limit where to draw. Afterward, we’ll set the DrawView
as the Activity’s contentView @. This means that the Drawview will take all of the

available space.
Let’s take a look at what’s happening inside the DrawView class:

public class DrawView extends View {
private Rectangle mRectangle;
public int width;
public int height;

public DrawView (Context context) {

super (context) ; Plays the role

mRectangle = new Rectangle(context, this); of the box.
mRectangle.setARGB (255, 255, 0, 0);
mRectangle.setSpeedX(3) ;
mRectangle.setSpeedY (3) ;
}

@override Change the

protected void onDraw(Canvas canvas) { mc@wﬁe%
mRectangle.move () ; 4 position.
mRectangle.onDraw (canvas) ; Drmﬂtheredange

invalidate() ; ﬂ Forces a view to the canvas.
} to draw.
}

We’ll first create a Rectangle instance that will play the role of the box @. The
Rectangle class also knows how to draw itself to a canvas and contains all of the bor-
ing logic regarding how to update its position to be drawn in the correct place. When
the onDraw () method gets called, we’ll change the rectangle’s position @ and draw it
to the canvas €. The invalidate() call @ is the hack itself. The invalidate () call is
a View’s method to force a view to draw. Placing it inside the onDraw () method means

www.finebook.ir

http://www.finebook.ir/../

7.1

7.2

Slideshow using the Ken Burns effect 25

that onDraw () will be called as soon as the view finishes drawing itself. To put it differ-
ently, we’re looping over the Rectangle’s move () and onDraw () calls to create a nice
animation.

The bottom line

Updating view positions in the onDraw () method through the invalidate() call is an
easy way to provide custom animations. If you’re planning to make a small game,
using this trick is a simple way to handle your game’s main loop.

External links
http://developer.android.com/reference /android/graphics/Canvas.html
http://developer.android.com/guide/topics/graphics/2d-graphics.html

Haclk 8 Slideshow using the Ken Burns effect

Android v1.6+

One of the first products my company created is called
FeedTV. The idea behind FeedTV is to change the way we
read RSS feeds. Instead of showing them in a long list, we cre-
ated something like a photo frame application that shows
the feed’s headline and its main image. FeedTV for the iPad
can be seen in figure 8.1.

To make it even cooler, instead of placing a still image,
Figure 8.1 FeedTV

we’ll analyze the image and, using it’s size and aspect ratio, = g in an iPad

apply something called the Ken Burns effect. The Ken Burns

effect is nothing more than a type of panning and zooming effect used in video pro-
duction from still imagery. The best way to understand the Ken Burns effect is to
watch a video, but figure 8.2 can also give you an idea of how it works.

Figure 8.2 Ken Burns effect example taken from Wikipedia

www.finebook.ir

http://developer.android.com/reference/android/graphics/Canvas.html
http://developer.android.com/guide/topics/graphics/2d-graphics.html
http://www.finebook.ir/../

26

CHAPTER 2 Creating cool animations

In this hack, I'll show you how to mimic the Ken Burns effect in an image slideshow.
To do this, we’ll use a library created by Jake Wharton called Nine Old Androids. The
Nine Old Androids library lets you use the new Android 3.0 animation API in older
versions.

To create the Ken Burns effect, we’ll have a number of preset animations. These
animations will be applied randomly to an ImageView and, when the animation is fin-
ished, we’ll start another animation with the next photo. The main layout will be a
FrameLayout, and we’ll place ImageViews inside it. The layout is created with the fol-

lowing code:

@Override

public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

mContainer = new FrameLayout (this);
mContainer.setLayoutParams (new LayoutParams (<+—— Create container.
LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT)) ;

mView = createNewView() ;
mContainer.addvView (mView) ; <+ Create and add ImageView.

setContentView (mContainer) ;

}

private ImageView createNewView() {
ImageView ret = new ImageView(this) ;
ret.setLayoutParams (new LayoutParams (LayoutParams.FILL_PARENT,
LayoutParams.FILL_PARENT)) ;

ret.setScaleType (ScaleType.FIT_XY); Set image to show
ret.setImageResource (PHOTOS [mIndex]) ; and increment index.
mIndex = (mIndex + 1 < PHOTOS.length) ? mIndex + 1 : 0;

return ret;

}

So far, so good. We’ll use the createNewView() to create new ImageViews and keep
track of the image we’re showing next. The next step is to create a method called
nextAnimation (). This method will take care of setting the animation and start it.

The code follows:

private void nextAnimation() {
AnimatorSet anim = new AnimatorSet () ;
final int index = mRandom.nextInt (ANIM_COUNT) ; < Pick animation randomly.

switch (index) {

case 0:
anim.playTogether (Scaling
ObjectAnimator.ofFloat (mView, "scalex", 1.5f, 1f), animation.
ObjectAnimator.ofFloat (mvView, "scaley", 1.5f, 1f));
break;

www.finebook.ir

http://www.finebook.ir/../

8.1

Slideshow using the Ken Burns effect 27

case 3:

default:
AnimatorProxy.wrap (mView) .setScaleX (1.5f); < Translation
AnimatorProxy.wrap (mView) .setScaleY (1.5f); animation.

anim.playTogether (ObjectAnimator.ofFloat (mView,
"translationX", 0f, 40f));

break;
} Set the duration, set

Activity as listener,

anim.setDuration(3000) ; and start it.

anim.addListener (this) ;

anim.start () ;
}
The AnimatorProxy @ is a class available in the Nine Old Androids library to modify
View’s properties. The new animation framework is based on the possibility of modify-
ing View’s properties over time. The AnimatorProxy is used because on Android ver-
sions lower than 3.0 some properties had no getters/setters.

The remaining code is calling the nextAnimation() method when the animation

is finished. Remember, we set the Activity as the animation listener @? Let’s look at
the overridden method:

@Override
public void onAnimationEnd (Animator animator) { Remove old view from
mContainer.removeView (mView) ; 4 container and add new one.

mView = createNewView() ;
mContainer.addview (mView) ;

nextAnimation() ; < Start new animation.
}

That’s it. We have our Ken Burns effect running on every photo. You can try improv-
ing the sample by doing two things: adding an alpha animation when switching views
and adding an AnimationSet that pans and zooms at the same time. You can get addi-
tional ideas from the Nine Old Androids sample code.

The bottom line
The new animation API has better potential than the previous one. Following is a
short list of improvements:

= Previous version supported animations only on View objects

= Previous version limited to move, rotate, scale, and fade

= Previous version changed the visual appearance, not the real position, in the

case of a move

The fact that a library like Nine Old Androids exists means there’s no excuse for not
trying it out on the new APL

www.finebook.ir

http://www.finebook.ir/../

28

CHAPTER 2 Creating cool animations

External links

www.nasatrainedmonkeys.com/portfolio/feedtv/
https://github.com/JakeWharton/NineOldAndroids
http://en.wikipedia.org/wiki/Ken_Burns_effect

http:/ /android-developers.blogspot.com.ar/2011/02/animation-in-honeycomb.html

http://android-developers.blogspot.com.ar/2011/05/
introducing-viewpropertyanimator.html

www.finebook.ir

www.nasatrainedmonkeys.com/portfolio/feedtv/
https://github.com/JakeWharton/NineOldAndroids
http://en.wikipedia.org/wiki/Ken_Burns_effect
http://android-developers.blogspot.com.ar/2011/02/animation-in-honeycomb.html
http://android-developers.blogspot.com.ar/2011/05/introducing-viewpropertyanimator.html
http://android-developers.blogspot.com.ar/2011/05/introducing-viewpropertyanimator.html
http://www.finebook.ir/../

View tips an

In this chapter, you’ll read about different hacks that use views. Most of them show
how to customize and/or tweak widgets to perform certain functionalities.

Haclk 9 Avoiding date validations with an
Edit'Text for dates
Android v1.6+

We all know that validating data in forms is boring as well as error-prone. I worked
on an Android application that used a lot of forms and had a couple of date inputs.
I didn’t want to validate the date fields, so I found an elegant way to avoid it. The
idea is to make users think they have an EditText when it’s in fact a button that will
show a DatePicker when clicked.

To make this happen, we’ll change the default background of an Android
Button to the EditText’s background. We can do this easily from the XML:
<Button android:id="@+id/details_date"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:gravity="center_vertical"
android:background="@android:drawable/edit_text" />

29

www.finebook.ir

http://www.finebook.ir/../

30

9.1

9.2

CHAPTER 3 View tips and tricks

Note how we used @android:drawable instead of a drawable of our own. Using
Android’s resources inside your application has its pros and cons. It makes your appli-
cation fit in the device, but it’'ll look different on different devices. Some developers
prefer using their own resources, drawables, and themes to have their own look.

If you’ve been testing your application in different devices, you’ll notice that wid-
gets might not have the same styles. Using Android’s resources will make your applica-
tion maintain Android’s styles.

After creating the button, we need to set its click listener. It should look something
like the following:

mDate = (Button) findvViewById(R.id.details_date);
mDate.setOnClickListener (new OnClickListener () {
@Override

public void onClick(View v) {
showDialog (DATE_DIALOG_ID) ;
}
3
The rest of the code sets up the DatePicker and sets the text into the Button after the
user has picked a date.

The bottom line

You might be asking yourself why we didn’t set a click listener to the EditText instead
of using a Button. Using a Button is safer because the user won’t be able to modify the
text. If you used an EditText and only set the click listener, the user could gain focus
by using the arrow and modifying the text without going through your picker.

You can always use a TextWatcher with your EditText to validate user input, but
it’s boring and it takes a lot of time. Using this hack means less coding and avoiding
user input errors. Remember that using Android’s resources is a good way to use the
device’s styles inside your application.

External links

http://developer.android.com/reference /android/widget/DatePicker.html
http://developer.android.com/reference/android/widget/EditText.html

Formatting a TextView'’s text
Android v1.6+

Imagine a Twitter application showing a tweet (see figure 10.1). Note the different
text styles within it. You might think that Twitter created a new custom view, but the
widget used is a TextView.

www.finebook.ir

http://developer.android.com/reference/android/widget/DatePicker.html
http://developer.android.com/reference/android/widget/EditText.html
http://www.finebook.ir/../

10.1

10.2

Formatting a TextView’s text 31

Sometimes you’ll want to add text with different

. . . Multiple-APK Support in Android
styles to show emphasis or provide visual feedback on P PP

Market: goo.gl/0TX2B (via

links and make your application more user friendly. AndroidDev)
Other examples of where it’s useful to use text styles
include these: Figure 10.1 Twitter example

= Showing links for the telephone field
= Using a different background color for different parts of the text

In this hack, I'll show how the TextView helps us add styled text and links.

The first thing we’ll add is the hyperlink. We can set a TextView’s text using
Html. fromHtml (). The idea is simple: we’ll use HTML for the TextView’s text. Here’s
the code:

mTextViewl = (TextView) findviewById(R.id.my_text_view_html) ;
String text =

"Visit Manning home page";
mTextViewl.setText (Html.fromHtml (text)) ;
mTextViewl.setMovementMethod (LinkMovementMethod.getInstance()) ;

Using HTML to set styles in a TextView is fine, but what does the Html.fromHtml ()
method do? What does it return? It converts HTML into a Spanned object to use with a
TextView’s setText () method.

Now we’ll try something different. Instead of using HTML to format the text, we’ll
create a Spanned object using the SpannableString class. Here’s the source code:
mTextView2 = (TextView) findviewById(R.id.my text_view_spannable) ;

Spannable sText = new SpannableString (mTextView2.getText()) ;
sText.setSpan (new BackgroundColorSpan(Color.RED), 1, 4, 0);

sText.setSpan (new ForegroundColorSpan(Color.BLUE), 5, 9, 0);
mTextView2.setText (sText) ;

We can see the visual output of both examples in figure 10.2. The idea is simple: we
add different spans using different indexes inside the text. Using a SpannableString,
we can place different styles in different parts of the text.

The bottom line

Android’s TextView is a simple but powerful widget.
You can use styled texts in different ways inside your
application. Although TextView doesn’t support all
the HTML tags, they’re enough to format the text Figure 10.2 TextView using

Visit Mar

Hello Id,. HomeActEwry!

nicely. Try it out. spannables

External links
http://developer.android.com/reference/android/widget/ TextView.html

www.finebook.ir

http://developer.android.com/reference/android/widget/TextView.html
http://www.finebook.ir/../

32

CHAPTER 3 View tips and tricks

Adding text glowing effects
Android v1.6+

Imagine you need to create an application that shows the time. m
Do you remember those digital clocks that displayed a super-
bright green light? In this hack, I'll show you how to tweak sure 111 Digital
Android’s TextView to generate that exact effect. The final clock demo
image we’re after can be seen in figure 11.1.

The first thing we’ll do is create an LedTextView class that extends TextView. This

class will be used to set a specific font, which makes the text look like it was written in
LEDs (light-emitting diodes). Let’s look at the code:

public class LedTextView extends TextView {

public LedTextView (Context context, AttributeSet attrs) {
super (context, attrs);

AssetManager assets = context.getAssets(); Sets the

final Typeface font = Typeface.createFromAsset (assets, « typeface
FONT_DIGITAL_7) ;

setTypeface(font) ;

}

When the object is created, we get the font from the assets folder and set it as the type-
face @. Now that we have a widget capable of showing text with a custom font, we’ll
take care of how the numbers will be drawn. If you check figure 11.1 you’ll notice it
can be done with two TextViews. The first one is a shadow in the back that draws
88:88:88, and the second one draws the current time.

To add the glowing effect, the TextView provides a method with the following sig-
nature:

public void setShadowLayer (float radius, float dx, float dy, int color)

This can also be accessed from the XML with the following properties: android
: shadowColor, android: shadowDx, android: shadowDy, and android: shadowRadius.
Let’s take a look on how we can apply it:

<?xml version="1.0" encoding="utf-8"7?>

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<com.manning.androidhacks.hack01ll.view.LedTextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:text="88:88:88"
android:textSize="80sp"

www.finebook.ir

http://www.finebook.ir/../

11.1

11.2

Rounded borders for backgrounds 33

android:textColor="#3300FF00" /> Sets color to be

<com.manning.androidhacks.hack01ll.view.LedTextView transparent
android:id="@+id/main_clock_time"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:text="08:43:02"
android:textSize="80sp"
android:textColor="#00FF00" j Text color, shadow
android:shadowColor="#00FF00" color are same
android:shadowDx="0"
android:shadowDy="0"

android:shadowRadius="10"/> Modifies shadow radius

</RelativeLayout> to look brighter

The first LedTextView draws the 88:88:88 in the back. The purpose of this view is
mocking the ghosting effect in old digital clocks. We’ve achieved that look by setting
the text color to be a bit transparent @. The second LedTextvView shows the current
time. Note that the text color and the shadow color are the same @. We could’ve
played with the alpha as well.

Modifying the android:shadowDx and android:shadowDy values differentiates
the shadow position from the text position. The shadow radius will give the sensation
of the text being brighter. To create the glowing effect, we didn’t use the
android:shadowDx or android:shadowDy properties, but we modified the shadow
radius to make it look brighter €.

The bottom line

Making your application look great is the best way to get good reviews in the market.
Sometimes, polishing your widgets takes a few more lines of code, but they’re worth it.
In addition, using shadows in texts is simple and will make your views look profes-
sional. Try it out. You won’t regret it.

External links
http://www.styleseven.com/php/get_product.php?product=Digital-7
http://developer.android.com/reference/android/widget/ TextView.html

Hack 12 Rounded borders for backgrounds

Android v1.6+

When you pick a background for your application’s widgets, you typically use images.
In general, you want to avoid the default styles, adding your own colors and shapes.

www.finebook.ir

http://www.styleseven.com/php/get_product.php?product=Digital-7
http://developer.android.com/reference/android/widget/TextView.html
http://www.finebook.ir/../

34

12.1

12.2

CHAPTER 3 View tips and tricks

Rounded borders are a feature you can add to your applica-
. . . . Hello World, MalnActivity!
tion that looks nice, using only a few lines of code.

As an example, let’s add a gray Button with rounded cor-
Figure 12.1 Button with

ners to the Hello World demonstration. What we’ll create is rounded corners

shown in figure 12.1.
For this, we’ll add a Button to the layout using the following XML:
<Button android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/hello"
android:textColor="#000000"
android:padding="10dp"
android:background="@drawable/button_rounded_background" />
As you can see, we didn’t add any strange properties. A drawable is assigned as a back-
ground, but it’s not an image, it’s an XML file. In the drawable’s XML resides a Shape-
Drawable object. A ShapeDrawable is a drawable object that creates primitive shapes
such as rectangles. Here’s the XML for the ShapeDrawable:
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">
<solid android:color="#AAAAAA"/>
<corners android:radius="15dp"/>
</shape>
Apart from the radius, we defined a shape and solid color. These aren’t the only avail-
able properties; you can read the documentation (section 12.2) and see what else is
available for ShapeDrawables.

The bottom line

The ShapeDrawable is a nice tool to add effects to your widgets. This trick works for
every widget that can have a background. You can also try using it with ListViews to
make your applications look more professional.

External links
http://developer.android.com/guide/topics/resources/drawable-resource. html#Shape

Hack 13 Getting the view’s width and height in the

onCreate() method
Android v1.6+

When you want to do something that depends on a widget’s width and height, you
might want to use View’s getHeight () and getWidth() methods. A common pitfall

www.finebook.ir

http://developer.android.com/guide/topics/resources/drawable-resource.html#Shape
http://www.finebook.ir/../

Getting the view’s width and height in the onCreate() method 35

for new Android developers is trying to get a widget’s width and height inside the
Activity’s onCreate () method. Unfortunately, those methods will return 0 if you call
them from there, but I'll show you an easy way around this.

Let’s first see why we get a 0 when we ask for the view’s sizes inside the Activity’s
onCreate () method. When the onCreate() method is called, the content view is set
inflating the layout XML with a LayoutInflater. The process of inflation involves cre-
ating the views but not setting their sizes. So when does the view get assigned its size?
Let’s review what the Android documentation (see section 13.2) says:

Drawing the layout is a two pass process: a measure pass and a
layout pass. The measuring pass is implemented in measure (int,
int) and is a top-down traversal of the View tree. Each View
pushes dimension specifications down the tree during the
recursion. At the end of the measure pass, every View has stored its
measurements. The second pass happens in layout (int, int,
int, int) and is also top-down. During this pass each parent is
responsible for positioning all of its children using the sizes
computed in the measure pass.

The conclusion is the following: Views get their height and width when the layout hap-
pens. Layout happens after the onCreate () method is called, so we get a 0 when we
call getHeight () or getWidth () from it.

Imagine the XML layout as a cake recipe: the LayoutInflater would be the person
in charge of buying all of the items; the bakers would do the measuring and layout of
passes; and the view would be the cake itself. During the onCreate () method, the
ingredients will be purchases, but knowing what ingredients make up the cake isn’t
enough information to know how big the cake will end up being.

To solve this issue, we can use the View’s post () method. This method receives a
Runnable and adds it to the message queue. An interesting thing is that the Runnable
will be executed on the user interface thread. The code to use the post () call should
look like the following:

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.main) ;

View view = findviewById(R.id.main_my_view) ; Get size of view

view.post (new Runnable() { <! after layout
@QOverride
public void xrun() Correct width
Log.d(TAG, "view has width: "+view.getWidth() + and height

" and height: "+view.getHeight());

www.finebook.ir

http://www.finebook.ir/../

36

13.1

13.2

CHAPTER 3 View tips and tricks

The bottom line

The post () method is used in several parts inside Android itself, and isn’t only for get-
ting the width and height of a view. Look at the View class source code and search for
the post keyword. You’ll be surprised how many times it gets called. Understanding
how the framework works is important in avoiding these kinds of pitfalls. As I always

say, understand what it’s for and don’t abuse it.

External links

http://source.android.com/source/downloading.html

http://developer.android.com/guide/topics/ui/how-android-draws.html

VideoViews and orientation changes

Android v1.6+

Adding video to an application is a great way to
create a rich user experience. I've seen applica-
tions that provide company information using
fancy graphs containing videos. Sometimes vid-
eos are an easy way to present information in
complex views without the need for coding the
animation logic.

I noticed that when a video is available, users
tend to turn the device to landscape to enjoy it,
so in this hack I'll show you how to make the
video full-screen when the device is rotated.

To create this, we’ll tell the system that we’ll
handle the orientation changes ourselves. When
the device is rotated, we’ll change the size and
position of the videoview.

The first thing to do is create the layout we
want for our Activity. For this hack, I created a
layout divided in two by a small line. The upper
part will have a small bit of text on the left with a
video on the right, and the bottom part will have
a long description. When I created the XML for
this view, instead of adding a videoView, I added

Loremn ipsum dolor sit

e sit amet lorem
quam, feugiat

st justo, non aliquet libero.
isque vel enim eget tellus rhoncus condimentum
sed non metus. Aenean et venenatis lorem. Sed
entum sapien

rdum, mi eget tincidunt
em blandit elit, commodo

cu vel nisi. Aliquam aliquam nisl
non sem congue blandit. Quisque ultrices est justo,
non aliguet libero. Quisque vel enim eget tellus
rhoncus condimentum sed ne us. Aenean et
venenatis lorem. Sed ultr
ac fermentum sa pien cons .
lorem, tincidunt elementum pharetra in,
sed erat. Etiam ante risus, gravida sed ultricies vel,
accumsan eu metus. Donec interdum, mi eget
tincidunt adipiscing, purus lorem bla
COmmo turpis arcu vel
aliquam nisl non sem congue blandit.

Figure 14.1 Finished layout

a View with a white background. This view will be used to copy its size and position to
place the videoView correctly. You can see the finished layout in figure 14.1.

www.finebook.ir

http://source.android.com/source/downloading.html
http://developer.android.com/guide/topics/ui/how-android-draws.html
http://www.finebook.ir/../

VideoViews and orientation changes 37

In figure 14.2 you can see how the view tree is created. The videoview hangs from the
root view at the same level as the portrait content. Placing the videoView there will
allows us to change its size and position without needing to use two different layouts
or changing the videoView’s parent when rotation occurs. On the other hand, the
white background view, called the portrait position, is placed deeper in the tree.

o
o
39
=X
X 0
o<
FQ
- J
(o) (¢ <) o)
i)
2
20 o Q @
o ;E’:I §§
g g2 S S
29 >3 52
XS @ C)
‘©
E
el
_ oo\ N J
4 =) 4 R 4 <)
[9}
<
- o
58 .| 3 52
T3 T 20 SK
4Kk € D~ =k
8§38 >3 §3
£0Q ® »n o
‘©
£
i)
N T J N J NG T J
VS
" -

it_conten

LinearLayout
@43773260
VideoView
@43778428

t\ld/mam_portrm

id/main_videoview

=1
®©
O

o >
g8 38
2 =, C [N
S5 N~
.ngg 2o
£=}

28%8 5®
=20 &

Figure 14.2 View tree

www.finebook.ir

http://www.finebook.ir/../

38

Makes
content
visible

14.1

CHAPTER 3 View tips and tricks

Now that we have the layout, we can take care of the Activity’s code. The first thing
to do is to enable handling the orientation changes. To do this, we need to add
android:configChanges="orientation" to the proper <Activity> element inside
AndroidManifest.xml. Adding that attribute will cause the onConfiguration-
Changed () method to be called instead of restarting the Activity when the device is
rotated.

When the orientation is changed, we need to change the video’s size and position.
For this we’ll call a private method called setVideoViewPosition (). Here’s is the con-
tent of this method:

private void setVideoViewPosition() { .
Portrait and
if (getResources () .getConfiguration().orientation == landscape
ActivityInfo.SCREEN_ORIENTATION_PORTRAIT) { configurations
mPortraitContent.setVisibility (View.VISIBLE) ;
int[] locationArray = new int[2]; Vide.o.View
mPortraitPosition.getLocationOnScreen (locationArray) ; position

RelativeLayout.LayoutParams params =
new RelativeLayout.LayoutParams (mPortraitPosition.getWidth(),
mPortraitPosition.getHeight()) ;

params.leftMargin = locationArray[0];

params.topMargin = locationArrayl[1]; Sets videoView’s
mvVideoView.setLayoutParams (params) ; 4? layout parameters
} else { . .
Hides portrait
mPortraitContent.setVisibility (View.GONE) ; content

RelativeLayout.LayoutParams params =
new RelativeLayout.LayoutParams (LayoutParams.FILL_PARENT,

LayoutParams.FILL_PARENT) ; sh I "
ows layou

params.addRule (RelativeLayout .CENTER_IN_PARENT) ; parameters we
mvVideoView.setLayoutParams (params) ; created in videoView

}

}

The setvideoViewPosition() method is separated into two parts: the portrait and
the landscape configurations @. First, we’ll make the portrait content visible 0.
Because the videoView will have the same position and size as the white view, we want
its position @ to be set as the videoView’s layout parameters @.

Something similar is done in the second part, for the landscape orientation. In this
case, we first hide the portrait content ©, and afterward we create the layout parame-
ters to make the videoView use the whole screen. Finally, we set the layout parameters
we’ve created to the videoView @.

The bottom line

As I mentioned at the beginning of this hack, videos can be useful for improving your
application content. You should know that the default videoView class will respect the

www.finebook.ir

http://www.finebook.ir/../

Removing the background to improve your Activity startup time 39

aspect ratio when resizing, and if you wish to make it fill the space available, you’ll
need to override the onMeasure () method in your own custom view.

14.2 External links

http://developer.android.com/guide/topics/resources/runtime-changes.html

Removing the background to improve your
Actroity startup time
Android v1.6+

Inside the Android SDK, you’ll find a tool BacKgrounaTeCT LG Suotau
called Hierarchy Viewer. You can use this Hello World, BackgroundTestActivity!

tool to detect unused views and lower the
view tree height. If you open a view tree
inside the tool, you’ll see some nodes over
which you don’t have control. In this hack,
we’ll look at what these nodes are and see
how we can tweak them to improve our
Activity startup time.

If we create the default new Android
application and run it, we’ll see something
similar to figure 15.1. When we run the Hier-
archy Viewer with this Activity, we’ll see
something like figure 15.2. We need to
diminish the height of the tree.

Figure 15.1 The default Android application

. (h 4
LinearLayout FrameLayout TextView
@43771498 @43771ddo @43772510
id/

0 0 0

PhoneWindow$DecorView
@43773260

) (B (A
FrameLayout LinearLayout LinearLayout
@43773758 @43773c18 @43773e70

id/content id/content

L ./ . V.

Figure 15.2 Hierarchy Viewer showing the view tree

www.finebook.ir

http://developer.android.com/guide/topics/resources/runtime-changes.html
http://www.finebook.ir/../

40

15.1

CHAPTER 3 View tips and tricks

PhoneWindow$DecorView, FrameLayout LinearLayout TextView
@43770ccO @43771560 @43772218 @43772700
id/content
0 0 0 0

Figure 15.3 Hierarchy Viewer showing the view tree without title

First, let’s remove some of the nodes by removing the title. The title is the gray bar on
top with the text that reads BackgroundTest, which is formed by a FrameLayout and a
TextView. We can delete these nodes by creating a theme.xml file under the res/
values directory with the following content:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="Theme.NoBackground" parent="android:Theme">

<item name="android:windowNoTitle">true</item>

</style>
</resources>
We can apply this theme in our Android manifest by modifying the <application>
tag and adding android: theme="@style/Theme.NoBackground" as an attribute. If we
run the application again, the title will disappear and the view tree will look like
figure 15.3.

You already know what LinearLayout and TextView are, but what about Phone-
Window$DecorView and FrameLayout?

FrameLayout is created when we execute the setContentView() method, and the
DecorView is the root of the tree. By default, the framework fills our window with a
default background color and the DecorView is the view that holds the window’s back-
ground drawable. So if we have an opaque UI or a custom background, our device is
wasting time drawing the default background color.

If we’re sure that we’ll use opaque user interfaces in our activity, we can remove
the default background to boost our startup time. To do this, we need to add a line to
the theme mentioned previously, as shown next:
<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="Theme.NoBackground" parent="android:Theme">
<item name="android:windowNoTitle">true</item>
<item name="android:windowBackground">@null</item>

</style>
</resources>

The bottom line

Removing the window background is a simple trick to gain some speed. The rule is
simple: if the UI of your application is drawing 100% of the window contents, you

www.finebook.ir

http://www.finebook.ir/../

Toast’s position hack 41

should always set windowBackground to null. Remember that the theme can be set in
an <application> or an <activity> tag.

15.2 External links

http://developer.android.com/guide/developing/debugging/
debugging-ui.html#HierarchyViewer

http:/ /stackoverflow.com/questions/ 6499004/
androidwindowbackground-null-to-improve-app-speed

Toast’s position hack
Android v1.6+

In Android, whenever you need to notify the user
that something happened you can use a class called

8:00™ ™

Toast. A Toast is a pop-up notification that usually

shows a text, and it’s placed in the bottom middle [ESelikes gl
This al, Is set for 17 hours and 57
of the screen. If you’ve never seen a Toast, take a AWistEe (SR THoRTY s

look at figure 16.1. The Toast is the black box that [EHUY A
says, “This alarm is set for 17 hours and 57 minutes

from now.”
Figure 16.1 A Toast example from
@ ¥ @& il 12:43Pm the Alarm application
Hack016 The API to launch a Toast is super simple. For example, to
launch a Toast that says, “Hi!” we only need to write the fol-
lowing code:

Show toast Show toast

Toast.makeText (this, "Hi!", Toast.LENGTH_SHORT) .show() ;

The Toast class isn’t flexible at all. For example, for the dura-
tion parameter we can only pick between Toast.LENGTH
_SHORT and Toast . LENGTH_LONG. Although there aren’t many
things we can change about Toast, what we can change is
where the pop-up is placed.

Depending on our application layout, we might want to
position the Toast somewhere else, for instance, on top of
certain views. Let’s see how to create a Toast so that it’s
shown in a different position than the default one. A working

S—— example can be seen in figure 16.2. In the sample applica-
ottom Right! .
tion, we have four bottoms, one on each corner. When a but-

Show toast

ton is clicked, a Toast is created and positioned over the

Fi 16.2 T t with diff t .
'gure cast with differen corner where the button is located.

position

www.finebook.ir

http://developer.android.com/guide/developing/debugging/debugging-ui.html#HierarchyViewer
http://stackoverflow.com/questions/6499004/androidwindowbackground-null-to-improve-app-speed
http://www.finebook.ir/../

42 CHAPTER 3 View tips and tricks

To move the Toast around the screen, we need to create it a bit differently. It has a
public method inside the class with the following signature:
public void setGravity (int gravity, int xOffset, int yOffset);

To reproduce the Toast shown in figure 16.2 we’d need to use the following:

Toast toast = Toast.makeText (this, "Bottom Right!", <+—— Create Toast
Toast.LENGTH_SHORT) ;

toast.setGravity (Gravity.BOTTOM | Gravity.RIGHT, 0, 0); <

Set gravity to avoid
toast.show() ; g ty

default position
16.1 The bottom line
Although this hack might look simple, many Android developer aren’t aware of this

solution. You might find changing the position useful when your screen is split into
different Fragments and you want the Toast to show in a specific place.

16.2 External links

http://developer.android.com/guide/topics/ui/notifiers/toasts.html

Creating a wizard form using a Gallery
Android v2.1+

You may find circumstances will arise when you need your users to fill out a long form.
Maybe you need to create a registration form, or your application needs some form to
upload content. In other platforms, you can create something called a wizard form,
which is a form separated in different views. But in Android, this type of widget
doesn’t exist. In this hack, we’ll use the Gallery widget to create a registration form
with many fields. The result we’re after is shown in figure 17.1.

Figure 17.1 Wizard form using a Gallery

www.finebook.ir

http://developer.android.com/guide/topics/ui/notifiers/toasts.html
http://www.finebook.ir/../

Creating a wizard form using a Gallery 43

For the sake of this example, we’ll create a registration form where the user will need
to fill in the following information:

= Full name
= Email

= Password

= Gender

= City

= Country

= Postal code

We’ll have two fields per page, so in total we’ll have four pages. To create the wizard
form, we need to create an Activity called CreateAccountActivity. This Activity
will use a Theme.Dialog style to give the form the look and feel of a pop-up. Inside it
we’ll place a Gallery, which will be populated with an Adapter. The Adapter will need
to communicate with the Activity, and for that we’ll use a Delegate interface.

Let’s first create the generic view for each page. The XML follows:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="270dp"
android:layout_height="350dp">

<LinearLayout android:id="@+id/create_account_form" Inside
android:layout_width="fill_parent" LinearLayout
android:layout_height="wrap_content" you place
android:layout_alignParentTop="true" < all fields.

android:orientation="vertical"

android:paddingLeft="10dp"

android:paddingTop="10dp"

android:paddingRight="10dp"

android:background="#AAAAAA">

At first item of

LinearLayout you
place form title.

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Account creation"
android:textColor="#000000"
android:textStyle="bold"
android:textSize="20sp"/>

</LinearLayout>

<Button
android:id="@+id/create_account_next" Next button will
android:layout_width="wrap_content" be used to move
android:layout_height="wrap_content" f0fwardthrough
android:layout_alignParentTop="true" < wizard pages.

android:layout_alignParentRight="true"
android:textSize="12sp"
android:gravity="center"
android:layout_marginTop="10dp"

www.finebook.ir

http://www.finebook.ir/../

CHAPTER 3 View tips and tricks

android:layout_marginRight="10dp"
android:text="Next"/>

<Button This button will
android:id="@+id/create_account_create" be only visible in
android:layout_width="fill_parent" last page; it will be

in charge of

android:layout_height="wrap_content" k)
submitting form.

android:layout_below="@id/create_account_form"
android:gravity="center"
android:paddingRight="45dp"
android:text="Create Account"
android:textSize="12sp"/>

</RelativeLayout>

As you can see, we placed a LinearLayout as a placeholder to every field. You’ll see
later how to populate it from the Gallery’s Adapter code.

Now that we have the XML for the generic view, we should create the Adapter’s
code. We’ll call our AdapterCreateAccountAdapter and extend from BaseAdapter.
Because the Adapter’s code is quite long, we’ll discuss only the important methods.
The first thing to write is the interface we’ll use to communicate with the Activity.
Use the following:
public static interface CreateAccountDelegate {

int FORWARD = 1;
int BACKWARD = -1;

void scroll (int type);

void processForm(Account account) ;

}

We’ll use the scroll () method when the user presses the next button and the proc-
cessForm() method when the user submits the form. We’ll need to call the delegate
when these buttons are pressed, so we’ll want to set the click listeners in the get-
View () method, which is shown here:

public View getView(int position, View convertView, ViewGroup parent) ({

convertView = mInflator.inflate(

R.layout.create_account_generic_row, parent, false); 7 Inflate
LinearLayout formLayout = (LinearLayout) convertView q5t°m
.findviewById(R.id.create_account_form) ; <7 Get view.

View nextButton = convertView LinearLayout

.findviewById(R.id.create_account_next) ; where we’ll
if (position == FORMS_QTY - 1) { pl-aceallform
nextButton.setVisibility (View.GONE) ; widgets.
} else {
nextButton.setVisibility (View.VISIBLE) ; Next button
! should be visible
if (mDelegate != null) { in every page
nextButton.setOnClickListener (new OnClickListener () { but last one.

@Override
public void onClick(View v) {

www.finebook.ir

http://www.finebook.ir/../

Creating a wizard form using a Gallery 45

mDelegate.scroll (CreateAccountDelegate.FORWARD) ;

)i
}

Button createButton = (Button) convertView

.findViewById(R.id.create_account_create); Create bu“?'_‘
if (position == FORMS_QTY - 1) { should be visible

: . . . only in last page.
createButton.setOnClickListener (new OnClickListener () { <+
@Override
public void onClick (View v) {
processForm() ;

}
1)

createButton.setVisibility (View.VISIBLE) ;
} else {

createButton.setVisibility (View.GONE) ;
}

switch (position) { In last step, switch

case 0: ' over the position
populateFirstForm(formLayout) ; and populate
break; LinearLayout

accordingly.

}

return convertView;
}

The code inside the populateFirstForm() is the creation of fields and titles, which
will end inside the LinearLayout. In the sample code, I decided to do everything by
code, but we could easily create the views by inflating XMLs.

The missing piece of the puzzle is the one in charge of implementing the Create-
AccountDelegate. In this case, it will be our CreateAccountActivity.

CreateAccountActivity will track the page that the user is in and it will be in
charge of the page turn logic. The code is the following:

public class CreateAccountActivity extends Activity implements
CreateAccountDelegate {

private Gallery mGallery;
private CreateAccountAdapter mAdapter;
private int mGalleryPosition;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.create_account) ;
mGallery = (Gallery) findvViewById(R.id.create_account_gallery) ;

mAdapter = new CreateAccountAdapter (this) ;
mGallery.setAdapter (mAdapter) ; <
mGalleryPosition = 0;

Inside onCreate()
method, create Adapter
and set it to the Gallery.

www.finebook.ir

http://www.finebook.ir/../

46

17.1

17.2

CHAPTER 3 View tips and tricks

@Override

protected void onResume () { <
super.onResume () ;
mAdapter.setDelegate (this) ;

Set Activity as Adapter’s
delegate in onResume()
method and set it to null
} when onPause() is called.

@Override

protected void onPause () {
super.onPause () ;
mAdapter.setDelegate (null) ;

}

@Override
public void onBackPressed() { < 0verﬁdeAcﬁvky%
if (mGalleryPosition > 0) { onBackPressed() method
scroll (BACKWARD) ; so there’s a way to go back
} else { to a previous page.

super .onBackPressed () ;
}
}
) Inside scroll() method,
€override Activity moves Gallery to next
public void scroll(int type) { or previous page depending

switch (type) { on the parameter.

case FORWARD:
if (mGalleryPosition < mGallery.getCount() - 1) {
mGallery.onKeyDown (KeyEvent . KEYCODE_DPAD_RIGHT,
new KeyEvent (0, 0));
mGalleryPosition++;

}

break;

}

Unfortunately, we can’t animate the page turn in Android’s Gallery widget. The only
way I found is to send a KeyEvent . KEYCODE_DPAD_RIGHT event. It’s hacky but it works.

The remaining code of the CreateAccountActivity takes care of validations and
error handling. It contains nothing out of the ordinary, so I'll leave it for you to read
from the sample code.

The bottom line

Using the Gallery widget to create wizard forms makes it easy for the user to fill out a
long form. Having different pages and using the Gallery’s default animation adds
nice eye candy to make the process of filling the form less frustrating.

Depending on your needs, you can also try doing the same thing with the View-
Pager class. Your Adapter would return Fragments instead of views.

External links
http://developer.android.com/reference/android/widget/Gallery.html

www.finebook.ir

http://developer.android.com/reference/android/widget/Gallery.html
http://www.finebook.ir/../

In this chapter, we’ll look at two interesting tools you can use to create an Android
application.

Haclk 18 Removing log statements before releasing
Android v1.6+

If your application is making requests to a server, you might be using some type of
log to check whether or not your requests are successful. Unfortunately, those logs
don’t get removed when you build the final APK (Android application package
file). Removing logs is important to keep the logcat output as clean as possible.
Leaving log statements in could also expose you to unintentional disclosure of sen-
sitive information. In this hack, I'll show you how easy it is to remove logs for your
market release.

Developers have their own technique preferences for removing logs from the
final release. Some prefer doing something like the following:

if (BuildConfig.DEBUG) LOG.d(TAG, "The log msg");

From my point of view, the best way to remove logs is to use the ProGuard tool. If
you’ve never used ProGuard, let me introduce it with the following quote from the
Android documentation (see section 18.2):

47

www.finebook.ir

http://www.finebook.ir/../

48

18.1

18.2

CHAPTER 4 Tools

The ProGuard tool shrinks, optimizes, and obfuscates your code
by removing unused code and renaming classes, fields, and
methods with semantically obscure names. The result is a smaller
sized .apk file that is more difficult to reverse engineer.

If you haven’t noticed yet, when we build an Android application we’ll find a pro-
guard.cfg file in our project root directory. Its presence there doesn’t mean it’s on by
default; we need to enable it. Fortunately, it’s simple: we need to add the following
line in the default.properties file located in our project root directory:

proguard.config=proguard.cfg

Now ProGuard is enabled, but it’ll only be used when exporting a signed APK. We
need to add the necessary lines to the proguard.cfg to get rid of those logs. Append
the following lines to proguard.cfg:
-assumenosideeffects class android.util.Log {

public static *** d(...);
}
What we’re telling ProGuard is this: remove every use of a d() method with any
amount of parameters that returns something and belongs to the android.util.Log
class. This will match with Log’s d () method and every debug log will be removed.

The bottom line

The ProGuard tool offers another way of polishing a release. Make sure you read the
ProGuard manual and create a correct configuration for your project because Pro-
Guard might remove essential code, thinking it’s not necessary for the application to
work. If this happens, be sure to check that you’re telling ProGuard to keep every-
thing you need.

Notice that ProGuard isn’t only used to remove log statements. As I'm testing, I
usually create methods in my Activity to populate forms. These methods are also
something I use ProGuard to remove.

External links

http://proguard.sourceforge.net/
http://developer.android.com/tools/help/proguard.html
http://mng.bz/ZR3t

www.finebook.ir

http://proguard.sourceforge.net/
http://developer.android.com/tools/help/proguard.html
http://mng.bz/ZR3t
http://www.finebook.ir/../

Using the Hierarchy Viewer tool to remove unnecessary views 49

Using the Hierarchy Viewer tool to remove

unnecessary views
Android v1.6+

The Android SDK comes with a lot of tools; one
of them is the Hierarchy Viewer. This tool lets
you see the view tree and analyze how long it
took to measure, lay out, and draw the views in
your view. With the information this tool pro-
vides, you’ll be able to detect unneeded views in
the tree and bottlenecks. In this hack, we’ll look
at how to find these issues and solve them.

NOTE I won’t explain how to use the
Hierarchy Viewer itself, so you might
want to read Android’s documentation
at http://mng.bz/7ZX1 for more infor-
mation before proceeding.

For this hack, I've created a toy application with
slow views that we’ll try to fix using the Hierarchy
Viewer. The application has a unique Activity,
which you can see in figure 19.1, and it has the
following XML:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

Slow Draw

Figure 19.1 Subject application

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent">

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:text="@string/hello" />

<RelativeLayout
android:id="@+id/slow_container"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

android:layout_alignParentBottom="true">

<com. test.SlowDrawView
android:id="@+id/slow_draw"

android:layout_width="fill_parent"

android:layout_height="30dp"

android:layout_alignParentTop="true"

android:background="#FF0000"
android:text="Slow Draw"/>

www.finebook.ir

http://mng.bz/7ZXl
http://www.finebook.ir/../

50 CHAPTER 4 Tools

<com. test.SlowLayoutView
android:id="@+id/slow_layout"
android:layout_width="fill_parent"
android:layout_height="30dp"
android:layout_below="@id/slow_draw"
android:background="#00FF00"
android:text="Slow Layout"/>

<com. test.SlowMeasureView
android:id="@+id/slow_measure"
android:layout_width="fill_parent"
android:layout_height="30dp"
android:layout_below="@id/slow_layout"
android:background="#0000FF"
android:text="Slow Measure"/>
</RelativeLayout>
</RelativeLayout>

This application is the default one, with some minor modifications. I've added three

custom views in the button and removed the title bar. Let’s load the Hierarchy Viewer
with this application. You can see the results in figure 19.2.

NOTE For now, forget the definitions for the PhoneWindow$DecorView and
the FrameLayout. Let’s say they’re nodes placed by the framework and
unmodifiable. We talked about them in hack 15.

The first things to look for are ViewGroups inside ViewGroups. In this case, we have a
TextView that has the android:layout_alignParentTop attribute and a second
RelativeLayout holding all of the custom views, with android:layout_align-
ParentBottom. You can also see that the second RelativeLayout has its three

FYala Hierarchy Viewer

H Save as PNG =l Capture Layers) ("33 Load View Hierarchy | (@ Display View) { Invalidate Layout | -. Request Layout

Property Value

__| Show Extras a Load All V-ews

(2) &3 (55 Filter by class or Id: 20% e <> 200%

Figure 19.2 Hierarchy Viewer showing the application

www.finebook.ir

http://www.finebook.ir/../

Using the Hierarchy Viewer tool to remove unnecessary views 51

performance indicators in red. This means that it’s the slowest view in the tree. Let’s
try removing it by changing the other view’s attributes. The modified XML looks like
the following:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:text="@string/hello" />

<com. test.SlowMeasureView
android:id="@+id/slow_measure"
android:layout_width="fill_parent"
android:layout_height="30dp"
android:layout_alignParentBottom="true"
android:background="#0000FF"
android:text="Slow Measure"/>

<com. test.SlowLayoutView
android:id="@+id/slow_layout"
android:layout_width="fill_parent"
android:layout_height="30dp"
android:layout_above="@id/slow_measure"
android:background="#00FF00"
android:text="Slow Layout"/>

<com.test.SlowDrawView
android:id="@+id/slow_draw"
android:layout_width="fill_parent"
android:layout_height="30dp"
android:layout_above="@id/slow_layout"
android:background="#FF0000"
android:text="Slow Draw"/>

</RelativeLayout>

The last fix reduced the view tree height by one. When creating views, it’s always better
to avoid tall view trees. Android draws the layout in a two-pass process: a measure pass
and a layout pass. If you have a lot of nodes, it’ll take longer to do the tree traversal.

After you’'ve modified the XML to generate the shallowest tree, start looking at the
performance indicators. Note that this indicator is relative to other view objects in the
tree, so don’t be fooled by this. Most of the nodes might be green, but that doesn’t
mean they’re OK. Check how long it takes for them to draw and make sure everything
is working well.

www.finebook.ir

http://www.finebook.ir/../

52

19.1

19.2

CHAPTER 4 Tools

The bottom line

The Hierarchy Viewer is a great tool to see your view tree. As you’re developing your
application, try to keep track of how your view trees evolve to make sure your layouts
are as responsive as they should be and that you’re using the shallowest tree possible.

External links
http://developer.android.com/guide/developing/debugging/debugging-ui.html

www.finebook.ir

http://developer.android.com/guide/developing/debugging/debugging-ui.html
http://www.finebook.ir/../

In this chapter, you’ll read about different development patterns you can use inside
Android.

Hack 20 The Model-View-Presenter pattern

Android v1.6+

You’ve most likely heard of the MVC (Model-View-Controller) pattern, and you’ve
probably used it in different frameworks. When I was trying to find a better way to
test my Android code, I learned about the MVP (Model-View-Presenter) pattern. The
basic difference between MVP and MVC is that in MVP, the presenter contains the Ul
business logic for the view and communicates with it through an interface.

In this hack, I'll show you how to use MVP inside Android and how it improves
the testability of the code. To see how it works, we’ll build a splash screen. A splash
screen is a common place to put initialization code and verifications, before the
application starts running. In this case, inside the splash screen we’ll provide a
progress bar while we’re checking whether or not we have internet access. If we do,
we continue to another activity, but if we don’t, we’ll show the user an error mes-
sage to prevent them from moving forward.

To create the splash screen, we’ll have a presenter that will take care of the com-
munication between the model and the view. In this particular case, the presenter

53

www.finebook.ir

http://www.finebook.ir/../

54

CHAPTER 5 Patterns

¥ 2 hack020
¥ ((@#src
¥ £ com.manning.androidhacks.hack020.presenter
» [J] SplashPresenter.java
¥ £ com.manning.androidhacks.hack020.presenter.model
» [J] IConnectionStatus.java
¥ 3 com.manning.androidhacks.hack020.presenter.model.impl
> a ConnectionStatus.java
¥ £ com.manning.androidhacks.hack020.view
> [J] ISplashView.java
¥ {#} com.manning.androidhacks.hack020.view.impl
» [J] MainActivity.java
> a SplashActivity.java
> E?gen [Generated Java Files)
¥ [Hrests
¥ £ com.manning.androidhacks.hack020.presenter
» [J] SplashTest.java
» (os mockito-all-1.9.0-r¢ 1.jar
P =4 JUnit 4
P =\ Android 1.6
&= assets
> O@ bin
> = libs
v Gc;- res
» (= drawable-hdpi
» (= drawable-Idpi
» (= drawable-mdpi
¥ (= layout
\X] main.xml
\X] splash.xml
¥ (= values
X] strings.xml
4| AndroidManifest.xml
= proguard.cfg

project.properties
Figure 20.1 MVP project structure

will have two functions: one that knows when we’re online and another to take care of
controlling the view. You can see the project structure in figure 20.1.

The presenter will use a model class called ConnectionStatus that will implement
the IConnectionStatus interface. This interface will answer whether we have internet
access with a single method:
public interface IConnectionStatus {

boolean isOnline();
}
As you might be thinking, the code in charge of controlling the view will be an
Activity that implements the ISplashView interface. The interface will be used by
the presenter to control the flow of the application. Let’s look at the code for the
ISplashView interface:
public interface ISplashView {

void showProgress() ;
void hideProgress() ;

www.finebook.ir

http://www.finebook.ir/../

20.1

The Model-View-Presenter pattern 55

void showNoInetErrorMsg() ;

void moveToMainView() ;
}
Because we’re coding in Android, the view will be the first to be created and afterward
we’ll give the control to the presenter. Let’s see how we do that:

public class SplashActivity extends Activity implements ISplashView {
private SplashPresenter mPresenter;

@override @ Activity
public void onCreate(Bundle savedInstanceState) { initialization
| code

mPresenter = new SplashPresenter () ;

i) Instantiate presenter
mPresenter.setView(this) ;

) for this Activity

@Override

protected void onResume () { Start presenter code
super .onResume () ; when we reach
mPresenter.didFinishLoading () ; onResume() method

}
}

We’ll first need to initialize the Activity @. Afterward, we create the presenter (2]
that will take care of getting everything done and we set the Activity instance to the
presenter. We can override the onResume () method @ to let the presenter know the
view is ready to give control to it.

The presenter code is simple. Following is the presenter’s didFinishLoading ()
method:

public void didFinishLoading () {

ISplashView view = getView() ; 4 Getting view, in this

if (mConnectionStatus.isOnline()) { case the Activity
view.moveToMainView () ;

} else { <

Logic to decide if we

view.hideProgress () ; can move on

view.showNoInetErrorMsg() ;

}

We’ll get a reference to the ISplashView implementation using a presenter’s getter @.
We’ll use the model’s IConnectionStatus implementation to verify whether we’re
online @. Depending on that, we’ll do different things with the view. As you can see,
the view is used through an interface without knowing it’s implemented by an Android
Activity. This will end up in a view that’s easy to mock in a unit test.

The bottom line

Using the MVP pattern will make your code more organized and easier to test. In
the sample code, you’ll notice a test folder. The test needs to instantiate the presenter
and mock the interfaces. Because you’re not using any Android-specific code in the

www.finebook.ir

http://www.finebook.ir/../

56

20.2

CHAPTER 5 Patterns

presenter, you don’t need to run in an Android-powered device and instead can run it
in the JVM. In this case, you’'ve used Mockito to mock the interfaces.

Because you’ve been working with Android, you’ll notice that a lot of code ends up
in the Activity. Unfortunately, testing activities is painful. Using the MVP pattern will
help you create tests and apply TDD (test-driven development) in an easy way.

External links
http://en.wikipedia.org/wiki/Model_View_Presenter

BroadcastRecerver following Activity’s lifecycle
Android v1.6+

Android uses different kinds of messages to notify applications when something hap-
pens. For example, if you want to know whether or not a device has connected to the
internet, you have to listen to an Intent whose action is android.net.conn
.CONNECTIVITY_CHANGE. This Intent can be heard using a BroadcastReceiver.

Although using a BroadcastReceiver to listen to different notifications from the
OS works well, you can’t access an Activity from the receiver.

Imagine trying to update the UI depending on the connectivity status. How would
you do it? What would you do if you wanted to get the receiver’s information inside
one of your activities? In this hack, I’ll show you how to use a BroadcastReceiver as
an Activity’s inner class to get broadcast Intents.

Setting up a BroadcastReceiver as an Activity’s inner class lets us do two impor-
tant things:

= (Call the Activity’s methods from inside the receiver
= Enable and disable the receiver depending on the Activity’s status

For this hack, we’ll create a Service that, when activated, waits for 5 seconds and then
broadcasts a message. For this toy application, the message we’ll send is a string with
adate. The implementation of the service isn’t that important, but you should
know that it’ll broadcast an Intent with an action—com.manning.androidhacks
.hack021.SERVICE_MSG—and the date travels as an extra.

Because we want to use the date information the service sends in order to update
the UI, we’ll want to listen to this message only when the Activity’s screen is shown.
Let’s see how to achieve that using the following code:
public class MainActivity extends Activity {

private ProgressDialog mProgressDialog;
private TextView mTextView;

www.finebook.ir

http://en.wikipedia.org/wiki/Model_View_Presenter
http://www.finebook.ir/../

21.1

BroadcastReceiver following Activity’s lifecycle 57

private BroadcastReceiver mReceiver;
private IntentFilter mIntentFilter;

@Override
public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;

setContentView(R.layout.main) ; Creates new instance

of BroadcastReceiver
mReceiver = new MyServiceReceiver () ; <!

mIntentFilter = new IntentFilter (MyService.ACTION) ; Creates and

startService (new Intent (this, MyService.class)); defines which
} type of Intent
the receiver gets
@Override
protected void onResume () {
super.onResume () ;

registerReceiver (mReceiver, mIntentFilter) ; < . .
Registers receiver
} l in onResume()
@override method
public void onPause() {

super.onPause() ;
unregisterReceiver (mReceiver) ;

) Unregisters

receiver inside

private void update(String msg) { onPause() method

/* Do something with the msg */
}

class MyServiceReceiver extends BroadcastReceiver { <

Invokes
@Override Activity’s
public void onReceive (Context context, Intent intent) { 6 upd:tecp

metho

update (intent.getExtras () .getString (MyService.MSG_KEY)) ;

}

We’ll create a new instance of the BroadcastReceiver @ and create an Intent-
Filter @ that we’ll use to define which type of Intent the receiver should get.
Because the receiver is only used inside the Activity, we’ll need to register it in the
onResume () method @ and unregister it inside the onPause () method 0. When the
receiver is called @, it’ll invoke the Activity’s update() method with the Intent’s
extra information as a parameter.

That’s it—we now have a receiver that only updates the UI when the Activity is
shown.

The bottom line

The whole Android ecosystem uses Intents to communicate. You’ll need to use them
sooner or later. By placing a receiver as an inner class in your Activity, you can give
visual feedback using the information inside an Intent. Unregistering the receiver is a
good way to avoid unnecessary calls to modify the UI when it’s not needed.

www.finebook.ir

http://www.finebook.ir/../

58

21.2

CHAPTER 5 Patterns

External links
http://developer.android.com/reference/android/content/Intent.html

http://developer.android.com/reference/android/content/BroadcastReceiver.html

Hack 22 Architecture pattern using Androwd libraries

22.1

Android v1.6+

Before Android library projects were released, sharing code between Android projects
was hard or even impossible. You could use a JAR to share Java code, but you couldn’t
share code that needed resources. Sharing an Activity or a custom view was impossi-
ble because you can’t add resources to JARs and use them later in an Android applica-
tion. Android library projects were created as a way to share Android code. In this
hack, we’ll look at a way to use them.

As an example, we’ll create a small application with a login screen. The application
is divided into three layers:

= Back-end logic and model (JAR file)
= Android library
= Android application

Back-end logic and model

This layer is a simple JAR file that can hold logic and doesn’t involve or use Android-
specific code. It’s here that we place the server calls and business objects and logic. In
our example, we’ll have a project that creates a JAR file to handle login-specific func-
tionality.

Asyou can see in figure 22.1, Login doesn’t need to have Android as a dependency.
The output of this project will be a JAR file to be included in our Android application.
Having the business logic in a Java project means we can test everything with JUnit
without setting up an Android test, which is painful. Also, separating code allows
developers with different skills to work on the appropriate layer.

¥ ;=2 hack022-Login
¥ (#Bsrc
¥ {3 com.manning.androidhacks.hack022.login
» [J] Login.java
¥ [rest
¥ £} com.manning.androidhacks.hack022.login
» [J] LoginTest.java
P =3 JRE System Library [J25E-1.5]
P =i JUnit 4

Figure 22.1 Login project loaded in Eclipse

www.finebook.ir

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://www.finebook.ir/../

22.2

22.3

Architecture pattern using Android libraries 59

YL:':}hackOEZ-androidlib
¥ (@&#Bsrc
¥ £ com.manning.androidhacks.hack022.androidlib
» [J] LoginActivity.java
> ‘Lnégen [Generated Java Files]
P =i\ Android 1.6
P =i\ Android Dependencies
&= assets
» 2= bin
v Lo res
P (= drawable-hdpi
P (= drawable-ldpi
P (= drawable-mdpi
¥ (= layout
%] login.xml
¥ (= values
|X] login_attr.xml
|X] login_strings.xml
|X] login_styles_green.xml
|X] login_styles_red.xml
|X] login_styles.xml
|X] login_themes_green.xml
|X] login_themes_red.xml
| AndroidManifest.xml
\=] proguard.cfg
project.properties Figure 22.2 The Android
library loaded in Eclipse

Android library

As I mentioned earlier, an Android library is like a JAR file but with the possibility of
using Android resources. When we add an Android library as a dependency of our
application, we get a second R class with the library’s IDs and we’ll be able to use the
library’s resources from our code. This layer will have Android-specific activities, a cus-
tom view, or services that Android applications will be able to reuse.

In figure 22.2, you can see the Android library androidlib. Here you can see
Android as a dependency, which means that you can use every Android class and
resource. Every Android library will have its own R class.

Note that this library can use the JAR mentioned earlier as a dependency. In this
example, we placed the JAR as a dependency for the Android library. This way, we have
a modular and maintainable library to use in any Android project.

Android application

The resulting Android application depends on the back-end JAR to handle business
logic and the Android library to handle Android-related stuff. You can see in
figure 22.3 how the Android library is included in the project.

www.finebook.ir

http://www.finebook.ir/../

60

22.4

22.5

CHAPTER 5 Patterns

In this layer, we’ll be able to use code v 53 hack022-SingleA
2 -Sin
from the JAR and from the Android L::écm o

library. We now can start developing ¥ £ com.manning.androidhacks.hack022.singleapp
> [J] MainActivity.java
> GIL(;ggen [Generated Java Files)
P =\ Android 1.6
P =\ Android Dependencies
The bottom line » = bin
Y%res
P (= drawable-hdpi

our application, taking care of the
distribution of code between layers.

This was a short introduction to a

possible architecture design using » G drawable-1dpi
Android libraries. Reusable code and » (= drawable-mdpi
maintainability is hard to achieve, ¥ & layout |

. |X] main.xm
but now that you have Android > G values
libraries, it’s possible. <l AndroidManifest.xml

.| proguard.cfg
[£] project.properties

Figure 22.3 Android application folder structure

External links
http://developer.android.com/tools/projects/index.html#LibraryProjects

http://developer.android.com/tools/projects/
projects-eclipse.html#SettingUpLibraryProject

Haclk 23 The SyncAdapter paitern

23.1

23.1.1

Android v2.2+

Almost every Android application uses the internet to fetch information or to sync
data. If you've already created a couple of applications, you’ll be able to describe
many different ways to create a connection and show a progress animation while
fetching results.

Common approaches

I’ve been working as a contractor for different companies, and in my experiences I’ve
seen developers handle data fetching in a variety of ways. Most of the code I've seen
falls into one of the approaches that I'll cover next.

Using the AsyncTask class

AsyncTask is an Android class that handles threads for you, making it easy to move
logic to another thread. If you’ve used it in previous projects, the following story
might ring a bell.

www.finebook.ir

http://developer.android.com/tools/projects/index.html#LibraryProjects
http://developer.android.com/tools/projects/projects-eclipse.html#SettingUpLibraryProject
http://www.finebook.ir/../

23.1.2

The SyncAdapter pattern 61

Some time ago, you started developing for Android. You learned that you
shouldn’t place background logic in the main thread. You searched the web for an
explanation of how to do it and you found a nice Android developer’s article entitled
“Painless Threading.” Near the end of the article (see section 23.4), it states this:

Always remember these two rules about the single thread model.
Do not block the UI thread, and make sure that you access the
Android UI toolkit only on the UI thread.

AsyncTask just makes it easier to do both of these things.

So you learned how to use the AsyncTask class and you started using it everywhere.
No matter how complex your UI was, or how long it took to parse those big chunks of
data, the AsyncTask was always there for you. You left work early pointing and laugh-
ing at the i0S developers from your company, saying “Android is easier than iOS; I fin-
ished earlier than you. Enjoy your night coding, Apple fan boys!”

Unfortunately, this didn’t last long. You noticed that if you rotated the device while
an AsyncTask was running, your application crashed. It was hard to fix, but an ugly
hack did the trick. Later you noticed that your application also crashed after some
time due to a limitation in the amount of concurrent tasks the AsyncTask supported.
When you tried to fix this second issue, you noticed that your Activity’s code was pol-
luted with a lot of inner classes extending AsyncTask. After a long day, you started
questioning where you went wrong.

If you’re planning to use an AsyncTask, think it over. The only reason to use it is
when the background task is simple or you don’t depend on the result. Let’s look at
another approach.

Using a Service

The second approach is to use a Service. Using a Service solves a lot of issues but
comes with some difficulties. Following is a list of concerns that always caused me to
wonder whether or not I was making the correct choice:

= Communicating with an Activity
= Deciding when and how to start the Service
= Detecting connectivity status while working

= Persisting data

The issue with this approach is the system’s flexibility. For example, you have many
ways to communicate with an Activity. Should the Activity bind to the Service?
Should it use a Handler? Should it communicate via Intents? Should it communicate
through a database? Many possibilities exist and the answer to the question of which
you should use is always “it depends.”

The question I started asking myself was, how does the Gmail application work?
How does it sync and work offline without an issue? Google uses something called
SyncAdapter. Unfortunately, this is one of Android’s best but least documented

www.finebook.ir

http://www.finebook.ir/../

62

23.2

23.2.1

CHAPTER 5 Patterns

features. If you ask Android developers if they know what it is, they’ll say yes, but
they’ve never used it.

In this hack, we’ll see how to use a SyncAdapter to organize an internet-dependent
application, making our development life easier.

What we’ll create

For this example, we’ll create a TODO list. We’ll use a server that will have a front end
to add items from the browser. You can see how it looks in figure 23.1. The server will
also have an API so we can have the same functionality in an Android device. The run-
ning Android application can be seen in figure 23.2.

What’s a SyncAdapter?

A SyncAdapter is an Android Service that’s started by the platform. There we’ll place
all of our sync logic. Before you get lost, go watch Virgil Dobjanschi’s Google I/0 2010
Android REST (see section 23.4)client application presentation. This is without a
doubt the best Google I/0 presentation ever and the only good documentation on
SyncAdapters.

The benefits of using SyncAdapters include

= Automatically syncs in the background (even when our application isn’t open)
= Handles authentication against the server
= Handles retries

= Respects user’s preferences regarding background syncs

‘}' !=|

Hack023

all 11:10AM

Add New TODOs Refresh

‘What to do ?

Finish hack 23 | 2¢lete

Wash the dishes 22/

I need to: Getalife...

Add todo
Logout
Figure 23.1 Server’s front end Figure 23.2 Android application’s front end

www.finebook.ir

http://www.finebook.ir/../

The SyncAdapter pattern 63

23.2.2 Hitting a database instead of the server

The first thing to do is to forget about syncing. We’ll create the application to only work
locally and save information inside a database. To do this, we’ll need a DatabaseHelper,
a TodoContentProvider, and a TodoDAO. Let’s first understand the DatabaseHelper:

public class DatabaseHelper extends SQLiteOpenHelper { < Extends
public static final String DATABASE_NAME = "todo.db"; SQLkeOpeanper
private static final int DATABASE_VERSION = 1;
public DatabaseHelper (Context context) {
super (context, DATABASE_NAME, null, DATABASE_VERSION) ; Spedﬁes
} database
@Override name and
version

Decides if >~ public void onCreate(SQLiteDatabase db) {
db.execSQL ("CREATE TABLE "

n:::f: + TodoContentProvider.TODO_TABLE_NAME + " ("
be created + TodoContentProvider.COLUMN_ID

+ " INTEGER PRIMARY KEY AUTOINCREMENT, "
+ TodoContentProvider.COLUMN_SERVER_ID + " INTEGER, "
+ TodoContentProvider.COLUMN_TITLE + " LONGTEXT,"
+ TodoContentProvider.COLUMN_STATUS_FLAG + " INTEGER"
+ "))

}

@Override

public void onUpgrade (SQLiteDatabase db, int oldVersion,
int newVersion) {

< Upgrades
db.execSQL ("DROP TABLE IF EXISTS " + from an old
TodoContentProvider.TODO_TABLE_NAME) ; schema

onCreate (db) ;

}

The DatabaseHelper extends SQLiteOpenHelper @. When the class is created, we
specify the database name and its version ®. The SQLiteOpenHelper will use that to
decide whether some tables need to be created @ or upgraded from an old schema @.
Don’t worry about the schema for now. You’ll understand all its rows in short order.
Now that we have the DatabaseHelper in place, we’ll need to set up our Content-
Provider. Note that if you’ve never used a ContentProvider, you should try doing a
fast web search before you continue reading. The TodoContentProvider class for this
hack has nothing out of the ordinary. Let’s look at how the query method is created:

public class TodoContentProvider extends ContentProvider { <
public static final String TODO_TABLE_NAME = "todos";
public static final String AUTHORITY = TodoContentProvider.class

.getCanonicalName () ; Extends

ContentProvider
public static final String COLUMN_ID = "_id";
public static final String COLUMN_SERVER_ID = "server_id";
public static final String COLUMN_TITLE = "title";
public static final String COLUMN_STATUS_FLAG = "status_flag";

private static final int TODO = 1;

www.finebook.ir

http://www.finebook.ir/../

64 CHAPTER 5 Patterns

private static final int TODO_ID = 2;

private static HashMap<String, String> projectionMap;
private static final UriMatcher sUriMatcher;

public static final String CONTENT_TYPE =
"vnd.android.cursor.dir/vnd.androidhacks.todo";

public static final String CONTENT_TYPE_ID =
"vnd.android.cursor.item/vnd.androidhacks.todo";

public static final Uri CONTENT URI = Uri.parse("content://"
+ AUTHORITY + "/" + TODO_TABLE_NAME) ;
@ Decides which
action to take

static { for an incoming
sUriMatcher = new UriMatcher (UriMatcher.NO_MATCH) ; ~ | content URI
sUriMatcher.addURI (AUTHORITY, TODO_TABLE_NAME, TODO) ;
sUriMatcher.addURI (AUTHORITY, TODO_TABLE_NAME + "/#", TODO_ID) ;

private DatabaseHelper dbHelper;

Changes

projectionMap.put (COLUMN_ID, COLUMN_ID) ; match

projectionMap.put (COLUMN_SERVER_ID, COLUMN_SERVER_ID) ;

projectionMap.put (COLUMN_TITLE, COLUMN_TITLE) ;

projectionMap.put (COLUMN_STATUS_FLAG, COLUMN_STATUS_FLAG) ;
}

projectionMap = new HashMap<String, String>(); 42,

O Creates

@override .
ContentProvider

public boolean onCreate() {
dbHelper = new DatabaseHelper (getContext());
return true;

}

@Override
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

SQLiteQueryBuilder gb = new SQLiteQueryBuilder();
switch (sUriMatcher.match(uri)) { Switches over
case TODO: a URI and sets
qb.setTab%es(?ODO_TABLETNAM?); querybuﬂder
gb.setProjectionMap (projectionMap) ;
break;
case TODO_ID:
gb.setTables (TODO_TABLE_NAME) ;
gb.setProjectionMap (projectionMap) ;
gb.appendWhere (COLUMN_ID + "=" + uri.getPathSegments().get(1l));
break;
default:
throw new RuntimeException ("Unknown URI") ;

Sets }
notification o Gets a Cursor
URI: Cursor SQLiteDatabase db = dbHelper.getReadableDatabase() ; from the
’ Cursor c = gb.query(db, projection, selection, database

watches for i
URI content selectionArgs, null, null, sortOrder);

Changes L— > c.setNotificationUri (getContext () .getContentResolver (),
uri) ;

www.finebook.ir

http://www.finebook.ir/../

The SyncAdapter pattern 65

return c;

}

The TodoContentProvider extends ContentProvider @. Inside it we define a
UriMatcher that will help us decide which action to take for an incoming content URI
@. In this case, the content values to use with the ContentProvider have a one-to-one
match with the database columns. If we want to change that, we can use a projection
map €@. When the ContentProvider is created @, we get an instance of the
DatabaseHelper, which will be useful for querying the database. For the sake of brev-
ity I only show the query () method. The rest of the ContentProvider methods look
alike. Inside the query () method, we can see how to switch over a URI and set the
query builder correctly @. After that we use the query builder to get a Cursor from
the database that will be returned to the user @. Pay attention to the last line Q.
Before returning the Cursor, we set the notification URI. This will make the Cursor
watch for URI content changes. This means that every time something gets modified,
the Cursor will update automagically.

Finally, the TodoDAO will be in charge of calling the ContentProvider through a
ContentResolver. This is the layer where conversions from Java objects to database
values and from database values to Java objects occur, as follows:

public class TodoDAO {
private static final TodoDAO instance = new TodoDAO() ;

private TodoDAO () {}

@ Implements
public static TodoDAO getInstance() { < singleton
return instance;
} ﬁ Places
public void addNewTodo (ContentResolver contentResolver, calls

Todo list, int flag) {
ContentValues contentValue = getTodoContentValues(list, flag);
contentResolver. insert (TodoContentProvider.CONTENT_URI,

contentValue) ;
} Converts
to content
private ContentValues getTodoContentValues (Todo todo, values

int flag) {

ContentValues cv = new ContentValues() ;

cv.put (TodoContentProvider.COLUMN_SERVER_ID, todo.getId());
cv.put (TodoContentProvider.COLUMN_TITLE, todo.getTitle());
cv.put (TodoContentProvider.COLUMN_STATUS_FLAG, flag);

return cv;

www.finebook.ir

http://www.finebook.ir/../

66

23.2.3

CHAPTER 5 Patterns

As you can see, the TodoDAO is implemented with a singleton @. There, we placed calls
such as addNewTodo () @ which, after a proper conversion to content values O, will
end in a database insert.

Populating the database
In this section, you’ll see how to deal with the database from the application. We’ll use
two activities:

= MainActivity—Will show the list of TODOs

= AddNewActivity—Will present a form to add a new TODO
Both activities function in a similar way. When they need to modify some data, they’ll
do it through the TodoDAO. Let’s take a look at the code for the MainActivity:
public class MainActivity extends Activity {

private ListView mListView;
private TodoAdapter mAdapter;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

mListView = (ListView) findViewById(R.id.main_activity_ listview) ;
mAdapter = new TodoAdapter (this); Creates
mListView.setAdapter (mAdapter) ; ListView
}
Starts
public void addNew(View v) { AddNewActivity
startActivity (new Intent (this, AddNewActivity.class)); 4 activity

}

Nothing out of the ordinary here. We created a ListView that will use a TodoAdapter
0, and every time the user clicks on the Add New button, we’ll start the AddNew-
Activity activity @.

The TodoAdapter holds more interesting code. Let’s see how it’s done:

public class TodoAdapter extends CursorAdapter ({

private static final String[] PROJECTION_IDS_TITLE_AND_STATUS =
new Stringl[] {
TodoContentProvider.COLUMN_ID,
TodoContentProvider.COLUMN_TITLE,
TodoContentProvider .COLUMN_STATUS_FLAG };

public TodoAdapter (Activity activity) {
super (activity, getManagedCursor (activity), true);
mActivity = activity;

} Gets a
Cursor
private static Cursor getManagedCursor (Activity activity) { 4
return activity.managedQuery (TodoContentProvider .CONTENT_URI,

www.finebook.ir

http://www.finebook.ir/../

The SyncAdapter pattern 67

PROJECTION_IDS_TITLE_AND_STATUS,

TodoContentProvider.COLUMN_STATUS_FLAG + " != "
“1 Checks use of

TodoContentProvider’s
URI and a projection

+ StatusFlag.DELETE, null,
TodoContentProvider .DEFAULT_SORT_ORDER) ;
}

@Override
public void bindView (View view, Context context, Cursor c) {
final ViewHolder holder = (ViewHolder) view.getTag() ;

holder.id.setText (c.getString (mInternalIdIndex)) ;
holder.title.setText (c.getString (mTitleIndex)) ;

Changes
final int status = c.getInt (mInternalStatusIndex); background
if (StatusFlag.CLEAN != status) { . of text

holder.title.setBackgroundColor (Color.RED) ;
} else {

holder.title.setBackgroundColor (Color.GREEN) ;
}

final Long id = Long.valueOf (holder.id.getText () .toString());
holder.deleteButton.setOnClickListener (new OnClickListener () ({

@QOverride
public void onClick(View v) {
TodoDAO.getInstance () .deleteTodo (< Removes
mActivity.getContentResolver (), id); TODO from

. } 0 the list

}

When the TodoAdapter is created, we get a Cursor (1) using Activity’s managed-
Query () method. Check how we used the TodoContentProvider’s URI and a projec-
tion @. Finally, we have the bindview() method. With it we change the background
of the text depending on the status flag (I'll discuss that later) € and set a click lis-
tener for the Delete button. Inside the listener, we use the TodoDAO to remove the
TODO from the list @.

Where’s the notifyDataSetChanged()? There’s no need for it. Do you remember
the setNotificationUri() call we used inside the TodoContentProvider? The
Cursor returned by the TodoContentProvider will get updated when changes are
made to the database through the ContentProvider.

Up to this point, we have a working application that saves data to a database. Now
we need to take the authentication step and sync with the server.

23.2.4 Adding login functionality

Before adding the SyncAdapter to our code, let’s first see how to deal with the
authentication with the server. Instead of saving the login details inside a database or
a shared preference, we’ll save them in an Android Account. To handle accounts,
we’ll use an Android class called AccountManager. The AccountManager is in charge
of managing user credentials inside Accounts. The basic idea is that users enter their

www.finebook.ir

http://www.finebook.ir/../

68

Creates
a new
account

Asks user for
password

CHAPTER 5 Patterns

credentials once, and they’re saved inside an Account. All of the applications that
have the USE_CREDENTIALS permission can query the manager to obtain an account
where an authentication token or whatever is necessary to authenticate against a
server is saved.

Before coding this part, you need to understand that the login functionality will be
used in these situations:

= When the application starts and no account has been created
= When the user goes to Accounts & Sync and clicks on New Account
= When the SyncAdapter tries to sync and the authentication fails

Let’s look at the first two situations in this section and the last one after we have the
SyncAdapter working. For the first one, we’ll create a BootstrapActivity:

public class BootstrapActivity extends Activity {
private static final int NEW_ACCOUNT = 0;
private static final int EXISTING_ACCOUNT = 1;
private AccountManager mAccountManager;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.bootstrap) ;

Gets list of
mAccountManager = AccountManager.get (this); accounts of
Account[] accounts = mAccountManager our type

ﬁ) .getAccountsByType (AuthenticatorActivity.PARAM ACCOUNT_TYPE) ;
> if (accounts.length == 0) {

final Intent i1 = new Intent(this, AuthenticatorActivity.class);
i.setFlags (Intent.FLAG_ACTIVITY_CLEAR_WHEN_TASK_ RESET) ;
startActivityForResult (i, NEW_ACCOUNT) ;

} else {
String password = mAccountManager.getPassword (accounts[0]) ;
if (password == null) {

final Intent i1 = new Intent(this, AuthenticatorActivity.class);
i.putExtra (AuthenticatorActivity.PARAM_USER, accounts[0].name) ;
startActivityForResult (i, EXISTING_ACCOUNT) ;

} else {

startActivity (new Intent(this, MainActivity.class)); b Continues to

finish(); MainActivity

}

Inside the onCreate () method, we get a list of accounts of our type @. If we have no
account, we launch the AuthenticatorActivity to help create a new account @. If the
account exists but the AccountManager doesn’t have a password for it, we need to ask
the user for the password ©. This can happen when the password gets invalidated. The
last case is when everything is in place, so we can continue to the MainaActivity @.

www.finebook.ir

http://www.finebook.ir/../

The SyncAdapter pattern 69

The second situation is more complicated but will leave everything in place for the
last situation. To create a new account through the Accounts & Sync settings, we’ll
need to extend AbstractAccountAuthenticator.

The AbstractAccountAuthenticator is a base class for creating account authenti-
cators. In order to provide an authenticator, we must extend this class, provide imple-
mentations for the abstract methods, and write a service that returns the result of
getIBinder () in the service’s onBind(android.content.Intent) method when
invoked with an Intent with action AccountManager . ACTION_AUTHENTICATOR_INTENT.

We’ll extend the AbstractAccountAuthenticator with a class called Authentica-
tor. It’s OK to return null values from the methods we’re not going to use. The impor-
tant ones are addAcount () and getAuthToken (). The code follows:

public class Authenticator extends AbstractAccountAuthenticator {
private final Context mContext;

public Authenticator (Context context) {
super (context) ;
mContext = context;

}

@Override

public Bundle addAccount (AccountAuthenticatorResponse response,
String accountType, String authTokenType,
String[] requiredFeatures, Bundle options)
throws NetworkErrorException {

final Intent intent = new Intent (mContext,
AuthenticatorActivity.class) ;

intent.putExtra (AuthenticatorActivity.PARAM_ AUTHTOKEN_TYPE,
authTokenType) ;

intent.putExtra (AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,
response) ;

final Bundle bundle = new Bundle();

bundle.putParcelable (AccountManager .KEY_INTENT, intent);

return bundle;

@Override

public Bundle getAuthToken (AccountAuthenticatorResponse response,
Account account, String authTokenType, Bundle options)
throws NetworkErrorException {

if (!'authTokenType

.equals (AuthenticatorActivity.PARAM_AUTHTOKEN_TYPE)) { Checks if
final Bundle result = new Bundle(); required
result.putString (AccountManager .KEY_ERROR_MESSAGE, token is

"invalid authTokenType") ; the same

return result;

}

final AccountManager am = AccountManager.get (mContext) ;
final String password = am.getPassword(account) ;

www.finebook.ir

http://www.finebook.ir/../

CHAPTER 5 Patterns

if (password != null) { G Getsa
boolean verified = false;

: . password
String loginResponse = null;

try {
loginResponse = LoginServiceImpl.sendCredentials (
account .name, password) ;
verified = LoginServiceImpl.hasLoggedIn(loginResponse) ;
} catch (AndroidHacksException e) {
verified = false;

} Returns

if (verified) { | theresult

final Bundle result = new Bundle();

result.putString (AccountManager .KEY_ACCOUNT_NAME, account.name) ;

result.putString (AccountManager .KEY_ACCOUNT_TYPE,
AuthenticatorActivity.PARAM ACCOUNT_TYPE) ;

return result;

Lets caller know

} which activity to call

final Intent intent = new Intent (mContext, < for user to sign in
AuthenticatorActivity.class) ;

intent.putExtra (AuthenticatorActivity.PARAM_USER, account.name) ;

intent.putExtra (AuthenticatorActivity.PARAM AUTHTOKEN_TYPE,
authTokenType) ;

intent.putExtra (AccountManager .KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,
response) ;

final Bundle bundle = new Bundle();

bundle.putParcelable (AccountManager .KEY_ INTENT, intent);

return bundle;

}

« ull 11:11AM

The addAccount () method is straightforward. There
we prepare the Intent that the AccountManager will
use to create a new account. Let’s now investigate the
getAuthToken () method. This method will be called
when we need to log in to the server using the cre-
dentials inside the Account. We’ll first check if the
required token is the same as the one we handle 0.
Afterward, we use the AccountManager to get a pass-
word. If there’s a password stored 0, we sign in
against the server, and if it’'s OK ©, we return the
result. If we can’t sign in, we’ll return an Intent to let
the caller know which activity to call to let the user
sign in 0. This happens when the password changes

or the credentials were revoked.

The next class to create is AuthenticatorActivity. oK
This activity will be used to show the login form. You
can see how it looks in figure 23.3. Figure 23.3 Login form from

AuthenticatorActivity

www.finebook.ir

http://www.finebook.ir/../

The SyncAdapter pattern 71

The code is the following:

public class AuthenticatorActivity extends

AccountAuthenticatorActivity {

public static final String PARAM_ACCOUNT_TYPE =
"com.manning.androidhacks.hack023";

public static final String PARAM AUTHTOKEN_TYPE = "authtokenType";

public static final String PARAM USER = "user";

public static final String PARAM CONFIRMCREDENTIALS =
"confirmCredentials";

private AccountManager mAccountManager;

private Thread mAuthThread;

private String mAuthToken;

private String mAuthTokenType;

private Boolean mConfirmCredentials = false;

private final Handler mHandler = new Handler();

protected boolean mRequestNewAccount = false;

private String mUser;

private void handleLogin (View view) {
if (mRequestNewAccount) {

mUsername = mUsernameEdit.getText () .toString() ;
}
mPassword = mPasswordEdit.getText () .toString();
if (TextUtils.isEmpty (mUsername) || TextUtils.isEmpty (mPassword)) {
mMessage.setText (getMessage()) ;
} Launches
showProgress () ; thread that
mAuthThread = NetworkUtilities.attemptAuth (mUsername, < will hit server

mPassword, mHandler, AuthenticatorActivity.this);
}

public void onAuthenticationResult (Boolean result) {

Returns result to
hideProgress() ;

AuthenticatiorActivity
if (result) {
if (!mConfirmCredentials) {
finishLogin() ;
}
} else {
mMessage.setText ("User and/or password are incorrect");
}
} Calls
private void finishLogin () { 45, ﬁnthognO

final Account account = new Account (mUsername, PARAM_ACCOUNT_TYPE) ;

if (mRequestNewAccount) {

Sets a new .
mmsword mAccountManager .addAccountExplicitly (account, mPassword, null);
} else {
mAccountManager.setPassword (account, mPassword) ;
}

final Intent intent = new Intent();
intent.putExtra (AccountManager.KEY_ACCOUNT_NAME, mUsername) ;

www.finebook.ir

http://www.finebook.ir/../

72

CHAPTER 5 Patterns

intent.putExtra (AccountManager .KEY_ ACCOUNT_TYPE,
PARAM_ACCOUNT_TYPE) ;

if (mAuthTokenType != null
&& mAuthTokenType.equals (PARAM_AUTHTOKEN_TYPE)) {
intent.putExtra (AccountManager .KEY_AUTHTOKEN, mAuthToken) ;
}

setAccountAuthenticatorResult (intent.getExtras()) ;
setResult (RESULT_OK, intent);
finish();

< Sets the
result

}

When the user enters the login details and clicks OK, handleLogin() gets executed.
There we launch a thread that will hit the server @ and return the result to the
AuthenticatorActivity in the onAuthenticationResult () method @. If the service
can authenticate correctly, we’ll call finishLogin() ©, and if not we’ll show an error
and let the user try again. Inside finishLogin(), if the Request New Account flag is
set, we use the AccountManager to create an account. If the account exists, we’ll set a
new password @. Finally, we set the result that’s to be sent as the result of the request
that caused this activity to be launched @.

The last step is modifying the AndroidManifest.xml to register the Service. We do
that by adding the following:

<service android:name=".authenticator.AuthenticationService"

android:exported="true"> Returns an

<intent-filter> Authenticator

<action android:name="android.accounts.AccountAuthenticator" />
</intent-filter>

<meta-data android:name="android.accounts.AccountAuthenticator"
android:resource="@xml/authenticator" /> . . .
</services qb Additional information

The android.accounts.AccountAuthenticator Intent filter will make the system
notice that this particular Service returns an Authenticator @. We’ll also need to give
additional information using a separate XML file ®. In this example, the
authenticator XML contains the following:

<account-authenticator
xmlns:android="http://schemas.android.com/apk/res/android"
android:accountType="com.manning.androidhacks.hack023"
android:icon="@drawable/ic_launcher"
android:smallIcon="@drawable/ic_launcher"
android:label="@string/app_name" />

The most important piece of information is the android:accountType. That means
that the Service will return an Authenticator to authenticate only accounts of type

www.finebook.ir

http://www.finebook.ir/../

The SyncAdapter pattern 73

com.manning.androidhacks.hack023. The rest of the information we can place there
determines how the Accounts & Sync row will look.

23.2.5 Adding the SyncAdapter

The last step is to add a SyncAdapter. After so many pages, we still don’t know what it’s
for, so let’s try to understand how the SyncAdapter will add a happy ending to every-
thing we wrote so far.

The SyncAdapter is a Service handled by Android that will use an Account to
authenticate to the server and a ContentProvider to sync data. When we finish cod-
ing it, the application will sync with the server without us telling it anything. The OS
will register it with every other SyncAdapter inside the device. The SyncAdapters run
one at a time to avoid making our internet connection choke. Isn’t it the best Android
feature you’ve used so far? Let’s learn how to code it.

We first need to declare it in the AndroidManifest.xml:

<service android:name=".service.TodoSyncService"
android:exported="true"> Defines the
<intent-filter> android.content
<action android:name="android.content.SyncAdapter" /> .SyncAdapter

</intent-filter>
<meta-data android:name="android.content.SyncAdapter"
android:resource="@xml/todo_sync_adapter" /> 444€) Additional XML
</service>

Similar to the AuthenticationService, we define the android.content.SyncAdapter
action to let Android know that TodoSyncService is a SyncAdapter @. It also has
some additional XML @ with the following information:

<sync-adapter xmlns:android="http://schemas.android.com/apk/res/android"
android:contentAuthority=
"com.manning.androidhacks.hack023.provider.TodoContentProvider"
android:accountType=
"com.manning.androidhacks.hack023" />

This means that the TodoSyncService will use the TodoContentProvider’s authority
and will need a com.manning.androidhacks.hack023 account type.
The next step is to extend AbstractThreadedSyncAdapter. Following is the code:

public class TodoSyncAdapter extends AbstractThreadedSyncAdapter {
private final ContentResolver mContentResolver;
private AccountManager mAccountManager;
private final static TodoDAO mTodoDAO = TodoDAO.getInstance() ;

@Override

public void onPerformSync (Account account, Bundle extras,
String authority, ContentProviderClient provider,
SyncResult syncResult) {

Gets every Removes the

TODO from T try { TODOs from the

theserver | . List<Todo> data = fetchData(); local database
syncRemoteDeleted (data) ; <

www.finebook.ir

http://www.finebook.ir/../

74

Calls
syncFromServer-
ToLocalStorage

CHAPTER 5 Patterns

syncFromServerToLocalStorage (data) ;

syncDirtyToServer (Gets every TODO from
mTodoDAO.getDirtyList (mContentResolver)) ; database; either push a
new TODO to server
4 and update or delete

} catch (Exception e) {
handleException (e, syncResult);

}

private void handleException (Exception e,

SyncResult syncResult) { Howexcepﬁons

if (e instanceof AuthenticatorException) { are handled
syncResult.stats.numParseExceptions++;

} else if (e instanceof IOException) {
syncResult.stats.numIoExceptions++;

}

When the onPerformSync() method gets called, we're already in a background
thread. Here’s where we add the logic to sync with the server. In the next few lines, I'll
explain a sync approach that works for me; it doesn’t mean you’re obliged to do it this
way.

Do you remember what a row in the TODO table looked like? The TODO table has
the following columns:

= _id—Local ID.

= server_id—After syncing, every row will get the server’s ID.

= status_flag—The status can be CLEAN, MOD, ADD, DELETE.
= title—The text of the TODO.

When the sync starts, we first get every TODO from the server @. Note that if we have
lots of TODOs, we might need to use some sort of pagination. The next step is remov-
ing from the local database TODOs that are no longer in the server @. We do this by
getting a list of TODOs from our local database with the CLEAN flag set, and checking
whether a TODO is in the server’s list. If it’s not there, we can delete it from our local
database. After that, syncFromServerToLocalStorage is called €. There we’ll iterate
over the server’s TODOs. We can use the server_id to check whether it exists locally.
If it exists, we update it with the information from the server. If not, we create a new
one. The last step is syncDirtyToServer () @. In this case, we get every TODO from
the local database that’s dirty (not clean). There, depending on the status flag, we
push a new TODO to the server and update or delete.

Note how the exceptions are handled 6. Depending on the exception, we modify
the syncResult object. We do this to help the SyncManager decide when to call the
SyncAdapter again.

www.finebook.ir

http://www.finebook.ir/../

23.3

23.4

The SyncAdapter pattern 75

The final step is to wrap the SyncAdapter inside the TodoSyncService, which we
can do using the following code:
public class TodoSyncService extends Service {

private static final Object sSyncAdapterLock = new Object();
private static TodoSyncAdapter sSyncAdapter = null;

@Override
public void onCreate() {
synchronized (sSyncAdapterLock) {
if (sSyncAdapter == null) {
sSyncAdapter = new TodoSyncAdapter (
getApplicationContext (), true);
}
}
}
@QOverride

public IBinder onBind(Intent intent) {
return sSyncAdapter.getSyncAdapterBinder () ;
}

}

The bottom line
You might be thinking that using a SyncAdapter is a lot of work, but note how after
creating the model and the ContentProvider, everything got easier. Users can use the
application offline or online; they won’t notice the difference.

Note that I didn’t explain anything about the server. For this example, I've coded a
small Python server using web.py. If you're giving SyncAdapters a try, I recommend
you use something like StackMob. You’ll avoid wasting time coding the back end.

External links
http://developer.android.com/reference/android/os/AsyncTask.html
http://www.youtube.com/watch?feature=player_embedded&v=xHXn3Kg2IQE
http://android-developers.blogspot.com.ar/2009/05/painless-threading.html
http://logc.at/2011/11/08/the-hidden-pitfalls-of-asynctask/

http://developer.android.com/reference/android/content/
AbstractThreadedSyncAdapter.html

http://www.youtube.com/watch?v=xHXn3Kg2IQE&feature=youtu.be
http://developer.android.com/guide/topics/providers/content-provider-creating.html
http://naked-code.blogspot.com/2011/05/revenge-of-syncadapter-synchronizing.html

http://developer.android.com/reference/android/content/
AbstractThreadedSyncAdapter.html

https://www.stackmob.com/

www.finebook.ir

http://developer.android.com/reference/android/os/AsyncTask.html
http://www.youtube.com/watch?feature=player_embedded&v=xHXn3Kg2IQE
http://android-developers.blogspot.com.ar/2009/05/painless-threading.html
http://logc.at/2011/11/08/the-hidden-pitfalls-of-asynctask/
http://developer.android.com/reference/android/content/AbstractThreadedSyncAdapter.html
http://www.youtube.com/watch?v=xHXn3Kg2IQE&feature=youtu.be
http://developer.android.com/guide/topics/providers/content-provider-creating.html
http://naked-code.blogspot.com/2011/05/revenge-of-syncadapter-synchronizing.html
http://developer.android.com/reference/android/content/AbstractThreadedSyncAdapter.html
https://www.stackmob.com/
http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

Working
and @

Lists and adapters are two of the main concepts to master in Android development.
In this chapter, you’ll learn several tips and tricks you can use with lists and adapters.

Hack 24 Handling empty lists
Android v1.6+

A common way to show data to the user in mobile platforms is to place it inside a list.
When you do this, you need to handle two cases: the ordinary list full of items and
an empty state. For the list, you’ll use a ListView, but how do you handle the empty
state? Fortunately, there’s an easy way to achieve this. Let’s look at how to do it.

ListView and other classes that extend AdapterView easily handle emptiness
through a method called setEmptyView(View). When the AdapterView needs to
draw, it’'ll draw the empty view if its Adapter is null, or the adapter’s isEmpty ()
method returns true.

Let’s try an example. Imagine we want to create an application to handle our
TODO list. Our main screen will be a ListView with all our TODO items, but when
we launch it for the first time, it’ll be empty. For our empty state, we’ll draw a nice
image. Following is the XML layout:

77

www.finebook.ir

http://www.finebook.ir/../

78 CHAPTER 6 Working with lists and adapters

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<ListView android:id="@+id/list_view"
android:layout_width="fill_parent"
android:layout_height="fill_parent"/>

<ImageView android:id="@+id/empty_view"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:src="@drawable/empty view" />

</FrameLayout>

The only thing missing is the onCreate() code, where we fetch the ListView and
place the ImageView as the empty view. The code to use is the following:

@override

public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

ListView mListView = (ListView) findViewById(R.id.list_view) ;
mListView.setEmptyView(findViewById(R.id.empty_view)) ;
}

Because we’re not setting an adapter to the ListView when we run this code, it’ll show
the ImageView.

24.1 The bottom line

I must admit that I was late to learn about this trick. I kept hiding my ListViews when
the adapter was empty. When you use the setEmpty (View) method, your code will be
more compact and easier to read.

You can also try using a ViewStub as an empty view. Using a ViewStub as an empty
view will guarantee that the empty view isn’t inflated when it’s not needed.

24.2 External links

http://developer.android.com/reference/android/widget/ListView.html

Hack 25 Creating fast adapters with a ViewHolder
Android v1.6+

If you’ve already been programming in Android, you’ve probably used the Adapter
class. But for those of you who haven’t used the Adapter, it’s described in the Android
documentation (see section 25.2) as follows:

www.finebook.ir

http://developer.android.com/reference/android/widget/ListView.html
http://www.finebook.ir/../

Creating fast adapters with a ViewHolder 79

An Adapter object acts as a bridge between an AdapterView and
the underlying data for that view. The Adapter provides access to
the data items. The Adapter is also responsible for making a View
for each item in the data set.

In this hack, I'll provide a short introduction on how the Adapter works so you can
learn how to construct one quickly, making your application as responsive as possible.

The AdapterView is the abstract class for views that use an Adapter to fill them-
selves. A common subclass is the ListView. Both classes work together in a simple way.
When the AdapterView is shown, it calls the Adapter’s getView() method to create
and add the views as children. The Adapter will take care of creating the views in its
getView() method. As you can imagine, instead of returning new views per row,
Android offers a way to recycle them. Let’s first look at how this works and then how to
take advantage of the recycling.

In figure 25.1, we see a recycling example in action. In A we see the list loaded for
the first time. In B the user scrolls down and the view for Item 1 disappears—instead of
freeing the memory, it’s sent to the recycler. When the AdapterView asks the Adapter
for the next view, the getView() method is called and we get a recycled view in the
convertView parameter. This way if Item 5’s view is the same as Item 1’s view, we can
change the text and return it. The populated row will end in the empty space in C.

To explain this in a few words, when getView() is called, if convertView isn’t null,
then we use convertView instead of creating a new view. We need to fetch each wid-
get’s reference using convertView. findviewById () and populate it with the informa-
tion from the model corresponding to the position.

A. B. C.

Tl S:40AM

Item1 —l

Item1 Item2 i \ Iltem2
. Iltem1 !

Item2 tem3 A T 1 """"" ! Iltem3

Iltem3 Item4 View getView(int position, Iltem4

View convertView,

ltem4 ltem5 ViewGroup parent) Iltem5

Item5 ltemé6 1 ,,,,,,,,,, Item6
E Iltem8 E

Iltem6 Iltem7 !) Iltem7

Item7 \—» Item8

Figure 25.1 Views being recycled by the Adapter

www.finebook.ir

http://www.finebook.ir/../

80 CHAPTER 6 Working with lists and adapters
Although this will work, we can tweak it further. To do so, we’ll use the ViewHolder
pattern. The ViewHolder is a static class where we can save the row’s widgets to avoid
the findviewById() calls every time getView() is called.
Let’s see an example of how it’s used. In the example, we’ll create an Adapter that
inflates a view that has an ImageView and two TextViews. The code follows:
public View getView(int position, View convertView, ViewGroup parent) ({
final ViewHolder viewHolder;
If convertView —> if (convertView == null) {
is null convertView = mInflater.inflate(R.layout.row_layout, parent, false);
inflate viev; o viewHolder = new ViewHolder () ;
viewHolder.imageView = (ImageView) Fe“hrekrmmes
convertView. findviewById (R.id.image) ; to widgets
viewHolder.textl =
(TextView) convertView.findViewById(R.id.textl);
viewHolder.text2 =
(TextView) convertView.findvViewById(R.id.text2);
. convertView.setTag (viewHolder) ; .
ViewHolder [~ gl) If convertView
saved as tag } else { isn’t null,
viewHolder = (ViewHolder) convertView.getTag(); < recycle it
}
Get > Model model = getItem(position);
model viewHolder.imageView.setImageResource (model.getImage()) ; <
object : Populate
viewHolder.textl.setText (model.getTextl ()) ; view

25.1

viewHolder.text2.setText (model.getText2 ()) ;

return convertView;

}

static class ViewHolder {
public ImageView imageView;
public TextView textl;
public TextView text2;

ViewHolder
class

}

If the convertView is null, then inflate the view @. When we create the view, we need
to fetch the references to the widgets and save them inside the ViewHolder ®. The
ViewHolder gets saved as a tag ©. If the convertView isn’t null, that means we can
recycle it. We can get the ViewHolder from the convertview’s tag @. Then we get the
model object, depending on the position @, and populate the view with information
from the model @. The ViewHolder class contains all of the widgets as public fields Q.

The bottom line

Almost every Android application uses some sort of list or gallery to present data.
Because these kinds of widgets are subclasses of AdapterView, understanding how
AdapterView works and how it interacts with an adapter is critical to making your appli-
cation faster. The ViewHolder hack is an excellent way to achieve speed within lists.

www.finebook.ir

http://www.finebook.ir/../

Adding section headers to a ListView 81

25.2 External links

http://developer.android.com/reference/android/widget/Adapter.html
http://developer.android.com/training/improving-layouts/smooth-scrolling.html

Adding section headers to a ListView

Android v1.6+
Contributed by Chris King

Imagine that you want to create a vacation-planning application that allows users to
browse a list of popular destinations organized by country. To present a long list of
data, you’ll want to include section information to help orient people within the list.
For example, contacts applications will often group users by the first letter of their last
name, and scheduling applications will group appointments by dates. You can accom-
plish this with a design similar to that used in the iPhone contacts screen, where a sec-
tion header scrolls with the list, with the current section’s header always visible at the
top of the screen. In figure 26.1, the highlighted letters are the section headers, and
the lists below them contain the countries whose name begins with those letters. What
you see in the figure is difficult to create in Android because ListView doesn’t have a
concept of a section or a section header, only of items |Frgry
within the list. Hack026

Android developers often try to solve this problem
by creating two types of list items: a regular item for
data, and a separate item for section headers. We can bitcairn Islands
do this by overriding the getViewTypeCount() [-ySpme
method to return 2, and modifying our getView() CRERS
method to create and return the appropriate type of [SHF=E=Tas
item. In practice, however, this will lead to messy
code. If our underlying list of data contains 20 items,
our adapter will need to contain anywhere from 21 to
40 items, depending on how many sections it con-
tains. This can lead to complicated code: the List-
View might want to show the 15th visible item, which
might be the 9th item in the underlying list.

Sgo Tome and Principe
Saint Helena

A much simpler approach is to embed the section
header within the list item, and then make it visible
or invisible as needed. This greatly simplifies the

Figure 26.1 A sectioned list of
logic for building the list and looking up items when country names

www.finebook.ir

http://developer.android.com/reference/android/widget/Adapter.html
http://developer.android.com/training/improving-layouts/smooth-scrolling.html
http://www.finebook.ir/../

82

26.1

CHAPTER 6 Working with lists and adapters

the user makes a selection. We can create a special TextView that overlaps the top of
the list, and update it when the list scrolls a new section into view.

Creating list layouts

To create an experience like that shown in the previous figure, start by writing the fol-
lowing XML for the section header R, the third header shown in the previous image.
We’ll create this in a separate layout file so we can reuse it for headers that scroll with
the list and the stationary header at the top:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/header"
style="Q@android:style/TextAppearance.Small"
android:layout_width="fill_parent" Custom
android:layout_height="wrap_content" ‘r background
android:background="#0000££" /> < color

The text has a custom background color @ to distinguish it from regular text in the
list. Now, write the following XML for the screen, including the stationary section
header:

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<ListView @ Uses standard
android:id="@android:id/list" ~ Android list ID
android:layout_width="fill_parent"
android:layout_height="fill_parent"/>

<include layout="@layout/header"/>
</FrameLayout>

The list @ uses the standard Android list ID so we can use it in our subclass of List-
Activity. Include the header in this frame, so it will overlap the list and show the cur-
rent section.

The last XML to create is the list item, which follows, and includes both the data
field and the section header:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"

android:layout_height="wrap_content"> Visible sections

<include layout="@layout/header"/> headers
<TextView
android:id="@+id/label"
style="Q@android:style/TextAppearance.Large"
android:layout_width="fill_parent" Shows data
android:layout_height="wrap_content"/> for the slot
</LinearLayout>

www.finebook.ir

http://www.finebook.ir/../

26.2

Labels
section
header

Adding section headers to a ListView 83

Our section header @ will be visible for items that starta [
new section, and are hidden otherwise. The label @ will [F{EValle]a}

always show the data for this slot. The relationships [RUEINEIN
between item, header, and label are shown in figure 26.2.

List Item

Figure 26.2 List items with
label and optional header
Providing visible section headers
Next, create an Adapter subclass that will configure the list items. Unlike other
approaches to creating a sectioned list, only getView() needs to be overridden; we
don’t need to return multiple types of views or convert between positions in the visible
list and positions in the underlying data list:
public class SectionAdapter extends ArrayAdapter<String> {

private Activity activity;

public SectionAdapter (Activity activity, String[] objects) {

super (activity, R.layout.list_item, R.id.label, bjects); <1 Provides
this.activity = activity; XML for
} custom
@Override views
public View getView(int position, View view, ViewGroup parent) ({
if (view == null) {
view = activity.getLayoutInflater().inflate(
R.layout.list_item, parent, false); t’ Checks if item
} starts with a
TextView header = (TextView) view.findvViewById(R.id.header); different letter
String label = getItem(position); than preceding
if (position == D — item
|| getItem(position - 1).charAt(0) != label.charAt(0)) {

header.setVisibility (View.VISIBLE) ;

>
header.setText (label.substring (0, 1)); . .
} else { @ Hides section

header.setVisibility(View.GONE) ; P — header
}

return super.getView(position, view, parent);

}

The ArrayAdapter parent class can do most of the work if we provide @ the XML for
its custom views. After creating a list item, check to see whether it starts with a differ-
ent letter than the preceding item ®. If it does, then it’s the first item in this section,
and so we label the section header and make it visible €. Otherwise, we hide it @.

Now that the section headers within the list are properly set, write a helper method
that will configure the floating section header at the top of the screen:

private TextView topHeader; <@ Accesses section header

private void setTopHeader (int pos) {
final String text = Countries.COUNTRIES[pos].substring(0, 1);

www.finebook.ir

http://www.finebook.ir/../

84

26.3

26.4

26.5

CHAPTER 6 Working with lists and adapters

topHeader .setText (text) ; 4—0 Updates text
}

The instance variable @ lets us access the section header at the top of the screen.
When we initially create or scroll the list, we’ll call this helper method, which finds the
appropriate letter to use for this section and updates the text @.

Wrapping up
Finally, bring it all together in the Activity’s onCreate () method. Configure the list
and attach a new listener that updates the header when the list scrolls:

private int topVisiblePosition;

public void onCreate (Bundle savedInstanceState) ({

super.onCreate (savedInstanceState) ; Attaches a

setContentView(R.layout.list); scroll listener

topHeader = (TextView) findvViewById(R.id.top);

setListAdapter (new SectionAdapter (this, Countries.COUNTRIES)) ;

getListView() .setOnScrollListener (new AbsListView.OnScrollListener () {
@Override

public void onScrollStateChanged (AbsListView view,
int scrollState) {
// Empty.
}
@Override
public void onScroll (AbsListView view, int firstVisiblelItem,
int visibleItemCount, int totalItemCount) {
if (firstVisiblelItem != topVisiblePosition) {
topVisiblePosition = firstVisibleItem; Invokes the
setTopHeader (firstVisibleItem) ; helper method

}

} © Initializes first
}) i header to the
setTopHeader (0) ; < | first item

}
After configuring the Ul @, attach a scroll listener. When users scroll the list, check to
see whether they’ve changed position, and if so, invoke the helper method @ to
update the floating header. Make sure to initialize the header to the first item € when
the list first appears.

The bottom line

Even though ListView doesn’t automatically support section headers, you can easily
add them by embedding the headers within your list items and making them visible or
hidden as appropriate. Although this hack’s example applies to an alphabetized list,
the same approach can work for any type of sectioned grouping you’d like to create.

External links

http://developer.android.com/reference/android/widget/ListView.html
http://developer.android.com/reference/android/widget/BaseAdapter.html

www.finebook.ir

http://developer.android.com/reference/android/widget/ListView.html
http://developer.android.com/reference/android/widget/BaseAdapter.html
http://www.finebook.ir/../

Communicating with an Adapter using an Activity and a delegate 85

Communicating with an Adapter using
an Activity and a delegate
Android v1.6+

A lot of Android widgets use an Adapter to populate themselves. Every Android wid-
get that uses an undefined list of views will have an Adapter to fetch them. This means
that after you learn how to use one, you’ll be able to operate a wide range of widgets
easily. One benefit of this approach is that you can place all of the code related to the
visual logic inside the Adapter. Why is this important? Because you can apply the con-
cept of separation of concerns (SoC). Imagine that you need to show a list of tele-
phone numbers with two different clickable widgets inside each row—the first one to
remove the telephone number from the list, and the second one to make the call.
Where would you place all of those click handlers?

In this hack, we’ll look at how to solve this problem using the Delegation pattern.
This pattern will help us to move all of the business logic away from the Adapter and
place it inside the Activity. We’ll create a simple application that adds numbers to a
list and each row will have a Remove button to remove the phone number.

The idea is simple: we’ll add the Remove button click handler in the Adapter, but
instead of removing the object there, we’ll call an Activity’s method through the del-
egate interface. The first thing we’ll create is the Adapter’s code:

public class NumbersAdapter extends ArrayAdapter<Integer> {

public static interface NumbersAdapterDelegate {

: Defines
void removeltem(Integer value) ;

delegate

} interface

private LayoutInflater mInflator;
private NumbersAdapterDelegate mDelegate;

public Num