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Preface

Introduction

This text is a development of classroom notes prepared in connection with advanced undergraduate
and first-year graduate courses in elasticity and the mechanics of solids. It is designed to satisfy the
requirements of courses subsequent to an elementary treatment of the strength of materials. In addition
to its applicability to aeronautical, civil, and mechanical engineering and to engineering mechanics
curricula, the text is useful to practicing engineers. Emphasis is given to numerical techniques
(which lend themselves to computerization) in the solution of problems resisting analytical
treatment. The stress placed on numerical solutions is not intended to deny the value of classical
analysis, which 1s given a rather full treatment. It instead attempts to fill what the authors believe to
be a void in the world of textbooks.

An effort has been made to present a balance between the theory necessary to gain insight into the
mechanics, but which can often offer no more than crude approximations to real problems because of
simplifications related to geometry and conditions of loading, and numerical solutions, which are so
useful in presenting stress analysis in a more realistic setting. This text emphasizes those aspects of
theory and application that prepare a student for more advanced study or for professional practice in
design and analysis.

The theory of elasticity plays three important roles in the text: it provides exact solutions where the
configurations of loading and boundary are relatively simple; it provides a check on the limitations of
the mechanics of materials approach; and it serves as the basis of approximate solutions employing
numerical analysis.

To make the text as clear as possible, attention is given to the presentation of the fundamentals of the
mechanics of materials. The physical significance of the solutions and practical applications are
given emphasis. A special effort was made to illustrate important principles and applications with
numerical examples. Consistent with announced national policy, problems are included in the text in
which the physical quantities are expressed in the International System of Units (SI). All important
quantities are defined in both SI and U.S. Customary System of units. A sign convention, consistent
with vector mechanics, 1s employed throughout for loads, internal forces, and stresses. This
convention conforms to that used in most classical strength of materials and elasticity texts, as well as
to that most often employed in the numerical analysis of complex structures.

Text Arrangement

Because of the extensive subdivision into a variety of topics and the employment of alternative
methods of analysis, the text should provide flexibility in the choice of assignments to cover courses
of varying length and content. Most chapters are substantially self-contained. Hence, the order of
presentation can be smoothly altered to meet an instructor’s preference. It is suggested, however, that
Chapters 1 and 2, which address the analysis of basic concepts, should be studied first. The emphasis
placed on the treatment of two-dimensional problems in elasticity (Chapter 3) may differ according to
the scope of the course.

This fifth edition of Advanced Mechanics of Materials and Applied Elasticity seeks to preserve the
objectives and emphases of the previous editions. Every effort has been made to provide a more



complete and current text through the inclusion of new material dealing with the fundamental
principles of stress analysis and design: stress concentrations, contact stresses, failure criteria,
fracture mechanics, compound cylinders, finite element analysis (FEA), energy and variational
methods, buckling of stepped columns, and common shell types. The entire text has been reexamined
and many improvements have been made throughout by a process of elimination and rearrangement.
Some sections have been expanded to improve on previous expositions.

The references, provided as an aid to the student who wishes to further pursue certain aspects of a
subject, have been updated and identified at the end of each chapter. We have resisted the temptation
to increase the material covered except where absolutely necessary. However, it was considered
desirable to add a number of illustrative examples and a large number of problems important in
engineering practice and design. Extra care has been taken in the presentation and solution of the
sample problems. All the problem sets have been reviewed and checked to ensure both their clarity
and numerical accuracy. Most changes in subject-matter coverage were prompted by the suggestions
of faculty familiar with earlier editions.

It is hoped that we have maintained clarity of presentation, simplicity as the subject permits,
unpretentious depth, an effort to encourage intuitive understanding, and a shunning of the irrelevant. In
this context, as throughout, emphasis is placed on the use of fundamentals in order to build student
understanding and an ability to solve the more complex problems.

Supplements

The book is accompanied by a comprehensive Solutions Manual available to instructors. It features
complete solutions to all problems in the text. Answers to selected problems are given at the end of
the book. PowerPoint slides of figures and tables and a password-protected Solutions Manual are
available for instructors at the Pearson Instructor Resource Center, pearsonhighered.com/irc.
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Chapter 1. Analysis of Stress

1.1 Introduction

There are two major parts to this chapter. Review of some important fundamentals of statics and
mechanics of solids, the concept of stress, modes of load transmission, general sign convention for
stress and force resultants that will be used throughout the book, and analysis and design principles
are provided first. This is followed with treatment for changing the components of the state of stress
given in one set of coordinate axes to any other set of rotated axes, as well as variation of stress
within and on the boundaries of a load-carrying member. Plane stress and its transformation are of
basic importance, since these conditions are most common in engineering practice. The chapter 1is
thus also a brief guide and introduction to the remainder of the text.

Mechanics of Materials and Theory of Elasticity

The basic structure of matter is characterized by nonuniformity and discontinuity attributable to its
various subdivisions: molecules, atoms, and subatomic particles. Our concern in this text is not with
the particulate structure, however, and it will be assumed that the matter with which we are
concerned is homogeneous and continuously distributed over its volume. There is the clear
implication in such an approach that the smallest element cut from the body possesses the same
properties as the body. Random fluctuations in the properties of the material are thus of no
consequence. This approach is that of continuum mechanics, in which solid elastic materials are
treated as though they are continuous media rather than composed of discrete molecules. Of the states
of matter, we are here concerned only with the solid, with its ability to maintain its shape without the
need of a container and to resist continuous shear, tension, and compression.

In contrast with rigid-body statics and dynamics, which treat the external behavior of bodies (that s,
the equilibrium and motion of bodies without regard to small deformations associated with the
application of load), the mechanics of solids is concerned with the relationships of external effect
(forces and moments) to internal stresses and strains. Two different approaches used in solid
mechanics are the mechanics of materials or elementary theory (also called the technical theory)
and the theory of elasticity. The mechanics of materials focuses mainly on the more or less
approximate solutions of practical problems. The theory of elasticity concerns itself largely with
more mathematical analysis to determine the “exact” stress and strain distributions in a loaded body.
The difference between these approaches is primarily in the nature of the simplifying assumptions
used, described in Section 3.1.

External forces acting on a body may be classified as surface forces and body forces. A surface force
is of the concentrated type when it acts at a point; a surface force may also be distributed uniformly
or nonuniformly over a finite area. Body forces are associated with the mass rather than the surfaces
of a body, and are distributed throughout the volume of a body. Gravitational, magnetic, and inertia
forces are all body forces. They are specified in terms of force per unit volume. All forces acting on a
body, including the reactive forces caused by supports and body forces, are considered to be external
forces. Internal forces are the forces that hold together the particles forming the body. Unless
otherwise stated, we assume in this text that body forces can be neglected and that forces are applied
steadily and slowly. The latter is referred to as static loading.

In the International System of Units (SI), force is measured in newtons (N). Because the newton is a



small quantity, the kilonewton (kN) is often used in practice. In the U.S. Customary System, force is
expressed in pounds (1b) or kilopounds (kips). We define all important quantities in both systems of
units. However, in numerical examples and problems, SI units are used throughout the text consistent
with international convention. (Table D.2 compares the two systems.)

Historical Development

The study of the behavior of members in tension, compression, and bending began with Leonardo da
Vinci (1452-1519) and Galileo Galilei (1564—1642). For a proper understanding, however, it was
necessary to establish accurate experimental description of a material’s properties. Robert Hooke
(1615-1703) was the first to point out that a body is deformed subject to the action of a force. Sir
Isaac Newton (1642—1727) developed the concepts of Newtonian mechanics that became key
elements of the strength of materials.

Leonard Euler (1707-1783) presented the mathematical theory of columns in 1744. The renowned
mathematician Joseph-Louis Lagrange (1736—-1813) received credit in developing a partial
differential equation to describe plate vibrations. Thomas Young (1773—1829) established a
coefficient of elasticity, Young’s modulus. The advent of railroads in the late 1800s provided the
impetus for much of the basic work in this area. Many famous scientists and engineers, including
Coulomb, Poisson, Navier, St. Venant, Kirchhoft, and Cauchy, were responsible for advances in
mechanics of materials during the eighteenth and nineteenth centuries. The British physicist William
Thomas Kelvin (1824—1907), better known by his knighted name, Sir Lord Kelvin, first demonstrated
that torsional moments acting at the edges of plates could be decomposed into shearing forces. The
prominent English mathematician Augustus Edward Hough Love (1863—1940) introduced simple
analysis of shells, known as Love’s approximate theory.

Over the years, most basic problems of solid mechanics had been solved. Stephan P. Timoshenko
(1878-1972) made numerous original contributions to the field of applied mechanics and wrote
pioneering textbooks on the mechanics of materials, theory of elasticity, and theory of elastic stability.
The theoretical base for modern strength of materials had been developed by the end of the nineteenth
century. Following this, problems associated with the design of aircraft, space vehicles, and nuclear
reactors have led to many studies of the more advanced phases of the subject. Consequently, the
mechanics of materials is being expanded into the theories of elasticity and plasticity.

In 1956, Turner, Clough, Martin, and Topp introduced the finite element method, which permits the
numerical solution of complex problems in solid mechanics in an economical way. Many
contributions in this area are owing to Argyris and Zienkiewicz. The recent trend in the development
1s characterized by heavy reliance on high-speed computers and by the introduction of more rigorous
theories. Numerical methods presented in Chapter 7 and applied in the chapters following have clear
application to computation by means of electronic digital computers. Research in the foregoing areas
1s ongoing, not only to meet demands for treating complex problems but to justify further use and
limitations on which the theory of solid mechanics 1s based. Although a widespread body of
knowledge exists at present, mechanics of materials and elasticity remain fascinating subjects as their

areas of application are continuously expanded.” The literature dealing with various aspects of solid
mechanics is voluminous. For those seeking more thorough treatment, selected references are
identified in brackets and compiled at the end of each chapter.

1.2 Scope of Treatment



As stated in the preface, this book is intended for advanced undergraduate and graduate engineering
students as well as engineering professionals. To make the text as clear as possible, attention is given
to the fundamentals of solid mechanics and chapter objectives. A special effort has been made to
illustrate important principles and applications with numerical examples. Emphasis is placed on a
thorough presentation of several classical topics in advanced mechanics of materials and applied
elasticity and of selected advanced topics. Understanding is based on the explanation of the physical
behavior of members and then modeling this behavior to develop the theory.

The usual objective of mechanics of material and theory of elasticity is the examination of the load-
carrying capacity of a body from three standpoints: strength, stiffness, and stability. Recall that these
quantities relate, respectively, to the ability of a member to resist permanent deformation or fracture,
to resist deflection, and to retain its equilibrium configuration. For instance, when loading produces
an abrupt shape change of a member, instability occurs; similarly, an inelastic deformation or an
excessive magnitude of deflection in a member will cause malfunction in normal service. The
foregoing matters, by using the fundamental principles (Sec. 1.3), are discussed in later chapters for
various types of structural members. Failure by yielding and fracture of the materials under combined
loading is taken up in detail in Chapter 4.

Our main concern is the analysis of stress and deformation within a loaded body, which is
accomplished by application of one of the methods described in the next section. For this purpose, the
analysis of loads is essential. A structure or machine cannot be satisfactory unless its design is based
on realistic operating loads. The principal topics under the heading of mechanics of solids may be
summarized as follows:

1. Analysis of the stresses and deformations within a body subject to a prescribed system of forces.
This is accomplished by solving the governing equations that describe the stress and strain fields
(theoretical stress analysis). It is often advantageous, where the shape of the structure or conditions
of loading preclude a theoretical solution or where verification is required, to apply the laboratory
techniques of experimental stress analysis.

2. Determination by theoretical analysis or by experiment of the limiting values of load that a
structural element can sustain without suffering damage, failure, or compromise of function.

3. Determination of the body shape and selection of the materials that are most efficient for resisting a
prescribed system of forces under specified conditions of operation such as temperature, humidity,
vibration, and ambient pressure. This is the design function.

The design function, item 3, clearly relies on the performance of the theoretical analyses under items
1 and 2, and it is to these that this text is directed. Particularly, emphasis is placed on the
development of the equations and methods by which detailed analysis can be accomplished.

The ever-increasing industrial demand for more sophisticated structures and machines calls for a
good grasp of the concepts of stress and strain and the behavior of materials—and a considerable
degree of ingenuity. This text, at the very least, provides the student with the ideas and information
necessary for an understanding of the advanced mechanics of solids and encourages the creative
process on the basis of that understanding. Complete, carefully drawn free-body diagrams facilitate
visualization, and these we have provided, all the while knowing that the subject matter can be
learned best only by solving problems of practical importance. A thorough grasp of fundamentals will
prove of great value in attacking new and unfamiliar problems.



1.3 Analysis and Design

Throughout this text, a fundamental procedure for analysis in solving mechanics of solids problems is
used repeatedly. The complete analysis of load-carrying structural members by the method of
equilibrium requires consideration of three conditions relating to certain laws of forces, laws of
material deformation, and geometric compatibility. These essential relationships, called the basic
principles of analysis, are:

1. Equilibrium Conditions. The equations of equilibrium of forces must be satisfied throughout the
member.

2. Material Behavior. The stress—strain or force-deformation relations (for example, Hooke’s law)
must apply to the material behavior of which the member is constructed.

3. Geometry of Deformation. The compatibility conditions of deformations must be satisfied: that
1s, each deformed portion of the member must fit together with adjacent portions. (Matter of
compatibility is not always broached in mechanics of materials analysis.)

The stress and deformation obtained through the use of the three principles must conform to the
conditions of loading imposed at the boundaries of a member. This is known as satisfying the
boundary conditions. Applications of the preceding procedure are illustrated in the problems
presented as the subject unfolds. Note, however, that it is not always necessary to execute an analysis
in the exact order of steps listed previously.

As an alternative to the equilibrium methods, the analysis of stress and deformation can be
accomplished by employing energy methods (Chap. 10), which are based on the concept of strain
energy. The aspect of both the equilibrium and the energy approaches is twofold. These methods can
provide solutions of acceptable accuracy where configurations of loading and member shape are
regular, and they can be used as the basis of numerical methods (Chap. 7) in the solution of more
realistic problems.

Engineering design is the process of applying science and engineering techniques to define a
structure or system in detail to allow its realization. The objective of a mechanical design procedure
includes finding of proper materials, dimensions, and shapes of the members of a structure or machine
so that they will support prescribed loads and perform without failure. Machine design is creating
new or improved machines to accomplish specific purposes. Usually, structural design deals with
any engineering discipline that requires a structural member or system.

Design is the essence, art, and intent of engineering. A good design satisfies performance, cost, and
safety requirements. An optimum design is the best solution to a design problem within given
restrictions. Efficiency of the optimization may be gaged by such criteria as minimum weight or
volume, optimum cost, and/or any other standard deemed appropriate. For a design problem with
many choices, a designer may often make decisions on the basis of experience, to reduce the problem
to a single variable. A solution to determine the optimum result becomes straightforward in such a
situation.

A plan for satisfying a need usually includes preparation of individual preliminary design. Each
preliminary design involves a thorough consideration of the loads and actions that the structure or
machine has to support. For each situation, an analysis is necessary. Design decisions, or choosing
reasonable values of the safety factors and material properties, are significant in the preliminary
design process.



The role of analysis in design may be observed best in examining the phases of a design process.
This text provides an elementary treatment of the concept of “design to meet strength requirements” as
those requirements relate to individual machine or structural components. That is, the geometrical
configuration and material of a component are preselected and the applied loads are specified. Then,
the basic formulas for stress are employed to select members of adequate size in each case. The
following is rational procedure in the design of a load-carrying member:

1. Evaluate the most likely modes of failure of the member. Failure criteria that predict the various
modes of failure under anticipated conditions of service are discussed in Chapter 4.

2. Determine the expressions relating applied loading to such effects as stress, strain, and
deformation. Often, the member under consideration and conditions of loading are so significant or
so amenable to solution as to have been the subject of prior analysis. For these situations,
textbooks, handbooks, journal articles, and technical papers are good sources of information.
Where the situation is unique, a mathematical derivation specific to the case at hand is required.

3. Determine the maximum usable value of stress, strain, or energy. This value is obtained either by
reference to compilations of material properties or by experimental means such as simple tension
test and is used in connection with the relationship derived in step 2.

4. Select a design factor of safety. This 1s to account for uncertainties in a number of aspects of the
design, including those related to the actual service loads, material properties, or environmental
factors. An important area of uncertainty is connected with the assumptions made in the analysis of
stress and deformation. Also, we are not likely to have a secure knowledge of the stresses that may
be introduced during machining, assembly, and shipment of the element.

The design factor of safety also reflects the consequences of failure; for example, the possibility
that failure will result in loss of human life or injury or in costly repairs or danger to other
components of the overall system. For these reasons, the design factor of safety 1s also sometimes
called the factor of ignorance. The uncertainties encountered during the design phase may be of
such magnitude as to lead to a design carrying extreme weight, volume, or cost penalties. It may
then be advantageous to perform thorough tests or more exacting analysis rather to rely on overly
large design factors of safety.

The true factor of safety, usually referred to simply as the factor of safety, can be determined only
after the member is constructed and tested. This factor is the ratio of the maximum load the member
can sustain under severe testing without failure to the maximum load actually carried under normal
service conditions, the working load. When a linear relationship exists between the load and the
stress produced by the load, the factor of safety n may be expressed as

maximum usable stress

H =
allowable stress

(1.1)

Maximum usable stress represents either the yield stress or the ultimate stress. The allowable
stress 1s the working stress. The factor of safety must be greater than 1.0 if failure is to be avoided.
Values for factor of safety, selected by the designer on the basis of experience and judgment, are
about 1.5 or greater. For most applications, appropriate factors of safety are found in various
construction and manufacturing codes.

The foregoing procedure is not always conducted in as formal a fashion as may be implied. In some



design procedures, one or more steps may be regarded as unnecessary or obvious on the basis of
previous experience. Suffice it to say that complete design solutions are not unique, involve a
consideration of many factors, and often require a trial-and-error process [Ref. 1.6]. Stress is only
one consideration in design. Other phases of the design of components are the prediction of the
deformation of a given component under given loading and the consideration of buckling (Chap. 11).
The methods of determining deformation are discussed in later chapters. Note that there is a very
close relationship between analysis and design, and the examples and problems that appear
throughout this book illustrate that connection.

We conclude this section with an appeal for the reader to exercise a degree of skepticism with regard
to the application of formulas for which there is uncertainty as to the limitations of use or the areas of
applicability. The relatively simple form of many formulas usually results from rather severe
restrictions in its derivation. These relate to simplified boundary conditions and shapes, limitations
on stress and strain, and the neglect of certain complicating factors. Designers and stress analysts
must be aware of such restrictions lest their work be of no value or, worse, lead to dangerous
inadequacies.

In this chapter, we are concerned with the state of stress at a point and the variation of stress
throughout an elastic body. The latter is dealt with in Sections 1.8 and 1.16 and the former in the
balance of the chapter.

1.4 Conditions of Equilibrium

A structure 1s a unit consisting of interconnected members supported in such a way that it is capable
of carrying loads in static equilibrium. Structures are of four general types: frames, trusses, machines,
and thin-walled (plate and shell) structures. Frames and machines are structures containing
multiforce members. The former support loads and are usually stationary, fully restrained structures.
The latter transmit and modify forces (or power) and always contain moving parts. The truss
provides both a practical and economical solution, particularly in the design of bridges and buildings.
When the truss is loaded at its joints, the only force in each member is an axial force, either tensile or
compressive.

The analysis and design of structural and machine components require a knowledge of the distribution
of forces within such members. Fundamental concepts and conditions of static equilibrium provide
the necessary background for the determination of internal as well as external forces. In Section 1.6,
we shall see that components of internal-forces resultants have special meaning in terms of the type of
deformations they cause, as applied, for example, to slender members. We note that surface forces
that develop at support points of a structure are called reactions. They equilibrate the effects of the
applied loads on the structures.

The equilibrium of forces is the state in which the forces applied on a body are in balance. Newton’s
first law states that if the resultant force acting on a particle (the simplest body) is zero, the particle
will remain at rest or will move with constant velocity. Statics is concerned essentially with the case
where the particle or body remains at rest. A complete free-body diagram is essential in the solution
of problems concerning the equilibrium.

Let us consider the equilibrium of a body in space. In this three-dimensional case, the conditions of
equilibrium require the satisfaction of the following equations of statics:
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The foregoing state that the sum of all forces acting on a body in any direction must be zero; the sum
of all moments about any axis must be zero.

In a planar problem, where all forces act in a single (xy) plane, there are only three independent
equations of statics:

(1.3)

That 1s, the sum of all forces in any (x, y) directions must be zero, and the resultant moment about axis
z or any point 4 in the plane must be zero. By replacing a force summation with an equivalent moment
summation in Egs. (1.3), the following alternative sets of conditions are obtained:

SF =0 SM, =0 SMp =0
(1.4a)
provided that the line connecting the points 4 and B is not perpendicular to the x axis, or
SM, =0 SMy =0 SM =0
(1.4b)

Here points A, B, and C are not collinear. Clearly, the judicious selection of points for taking
moments can often simplify the algebraic computations.

A structure is statically determinate when all forces on its members can be found by using only the
conditions of equilibrium. If there are more unknowns than available equations of statics, the problem
is called statically indeterminate. The degree of static indeterminacy 1s equal to the difference
between the number of unknown forces and the number of relevant equilibrium conditions. Any
reaction that is in excess of those that can be obtained by statics alone is termed redundant. The
number of redundants is therefore the same as the degree of indeterminacy.

1.5 Definition and Components of Stress

Stress and strain are most important concepts for a comprehension of the mechanics of solids. They
permit the mechanical behavior of load-carrying components to be described in terms fundamental to
the engineer. Both the analysis and design of a given machine or structural element involve the
determination of stress and material stress—strain relationships. The latter is taken up in Chapter 2.

Consider a body in equilibrium subject to a system of external forces, as shown in Fig. 1.1a. Under
the action of these forces, internal forces are developed within the body. To examine the latter at some
interior point O, we use an imaginary plane to cut the body at a section a—a through Q, dividing the
body into two parts. As the forces acting on the entire body are in equilibrium, the forces acting on
one part alone must be in equilibrium: this requires the presence of forces on plane a—a. These
internal forces, applied to both parts, are distributed continuously over the cut surface. This process,
referred to as the method of sections (Fig. 1.1), is relied on as a first step in solving all problems
involving the investigation of internal forces.



Figure 1.1. Method of sections: (a) Sectioning of a loaded body; (b) free body with external and
internal forces; (c¢) enlarged area A4 with components of the force AF.
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A free-body diagram is simply a sketch of a body with all the appropriate forces, both known and
unknown, acting on it. Figure 1.1b shows such a plot of the isolated left part of the body. An element
of area A4, located at point Q on the cut surface, is acted on by force AF. Let the origin of
coordinates be placed at point O, with x normal and y, z tangent to AA4. In general, AF does not lie
along x, y, or z.

Decomposing AF into components parallel to x, y, and z (Fig. 1.1¢), we define the normal stress o,
and the shearing stresses t,, and .

i AF, dF,
.= lim = —=
Tx = pa— AA dA
AR dF, ~ AF, dF,
Ty = M == — T, = llm —— =

aA—0 A A da’ aA—0 AA (J'_x".

(1.5)

These definitions provide the stress components at a point Q to which the area A4 is reduced in the
limit. Clearly, the expression A4 — 0 depends on the idealization discussed in Section 1.1. Our
consideration is with the average stress on areas, which, while small as compared with the size of the
body, is large compared with interatomic distances in the solid. Stress 1s thus defined adequately for
engineering purposes. As shown in Eq. (1.5), the intensity of force perpendicular, or normal, to the
surface is termed the normal stress at a point, while the intensity of force parallel to the surface is the
shearing stress at a point.

The values obtained in the limiting process of Eq. (1.5) differ from point to point on the surface as
AF varies. The stress components depend not only on AF, however, but also on the orientation of the
plane on which it acts at point Q. Even at a given point, therefore, the stresses will differ as different
planes are considered. The complete description of stress at a point thus requires the specification of
the stress on all planes passing through the point.

Because the stress (o or 7) is obtained by dividing the force by area, it has units of force per unit
area. In SI units, stress is measured in newtons per square meter (N/m?), or pascals (Pa). As the
pascal is a very small quantity, the megapascal (MPa) is commonly used. When U.S. Customary
System units are used, stress is expressed in pounds per square inch (psi) or kips per square inch
(kst).

It is verified in Section 1.12 that in order to enable the determination of the stresses on an infinite
number of planes passing through a point Q, thus defining the stresses at that point, we need only
specify the stress components on three mutually perpendicular planes passing through the point. These




three planes, perpendicular to the coordinate axes, contain three hidden sides of an infinitesimal cube
(Fig. 1.2). We emphasize that when we move from point Q to point Q' the values of stress will, in
general, change. Also, body forces can exist. However, these cases are not discussed here (see Sec.
1.8), as we are now merely interested in establishing the terminology necessary to specify a stress
component.

Figure 1.2. Element subjected to three-dimensional stress. All stresses have positive sense.
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The general case of a three-dimensional state of stress is shown in Fig. 1.2. Consider the stresses to
be identical at points O and Q' and uniformly distributed on each face, represented by a single vector
acting at the center of each face. In accordance with the foregoing, a total of nine scalar stress
components defines the state of stress at a point. The stress components can be assembled in the
following matrix form, wherein each row represents the group of stresses acting on a plane passing

through O(x, y, z):

Tex  Txy  Taz Oy Ty Ty
[%i] = |7 Teyy Ty | = | Ty Ty Ty
T-x T, T Tox Tic s ar
(1.6)
We note that in indicial notation (refer to Sec. 1.17), a stress component is written as t;;,, where the

ij
subscripts i and j each assume the values of x, y, and z as required by the foregoing equation. The
double subscript notation is interpreted as follows: The first subscript indicates the direction of a
normal to the plane or face on which the stress component acts; the second subscript relates to the

direction of the stress itself. Repetitive subscripts are avoided in this text, so the normal stresses 7.,
7,), and 7., are designated o,, 0,, and o, as indicated in Eq. (L.6). 4 face or plane is usually
identified by the axis normal to it; for example, the x faces are perpendicular to the x axis.

Sign Convention

Referring again to Fig. 1.2, we observe that both stresses labeled 7, tend to twist the element in a

clockwise direction. It would be convenient, therefore, if a sign convention were adopted under
which these stresses carried the same sign. Applying a convention relying solely on the coordinate
direction of the stresses would clearly not produce the desired result, inasmuch as the 7, stress acting

on the upper surface is directed in the positive x direction, while 7, acting on the lower surface is

directed in the negative x direction. The following sign convention, which applies to both normal and
shear stresses, is related to the deformational influence of a stress and is based on the relationship



between the direction of an outward normal drawn to a particular surface and the directions of the
stress components on the same surface.

When both the outer normal and the stress component face in a positive direction relative to the
coordinate axes, the stress is positive. When both the outer normal and the stress component face in a
negative direction relative to the coordinate axes, the stress is positive. When the normal points in a
positive direction while the stress points in a negative direction (or vice versa), the stress is negative.
In accordance with this sign convention, tensile stresses are always positive and compressive
stresses always negative. Figure 1.2 depicts a system of positive normal and shear stresses.

Equality of Shearing Stresses

We now examine properties of shearing stress by studying the equilibrium of forces (see Sec. 1.4)
acting on the cubic element shown in Fig. 1.2. As the stresses acting on opposite faces (which are of
equal area) are equal in magnitude but opposite in direction, translational equilibrium in all
directions is assured; that is, XF, =0, ZFy =0, and 2F, = 0. Rotational equilibrium is established by

taking moments of the x-, y-, and z-directed forces about point Q, for example. From XM =0,
(—Tyy dy dz)dx + (7, dx dz)dy =0

Simplifying,
Tl.'l- = T'I-r
(1.7a)
Likewise, from XM, = 0 and 2M, = 0, we have
Tz = Top T_'-':. o T:_r
(1.7b)

Hence, the subscripts for the shearing stresses are commutative, and the stress tensor 1s symmetric.
This means that shearing stresses on mutually perpendicular planes of the element are equal.

Therefore, no distinction will hereafter be made between the stress components 7, and 7,,,, 7,, and
T,y OI 7). and 7,,,. In Section 1.8, it is shown rigorously that the foregoing is valid even when stress

components vary from one point to another.

Some Special Cases of Stress

Under particular circumstances, the general state of stress (Fig. 1.2) reduces to simpler stress states,
as briefly described here. These stresses, which are commonly encountered in practice, are given
detailed consideration throughout the text.

a. Triaxial Stress. We shall observe in Section 1.13 that an element subjected to only stresses oy, 05,

and o5 acting in mutually perpendicular directions is said to be in a state of triaxial stress. Such a
state of stress can be written as

(] o) (]

0 0 o

(2)



The absence of shearing stresses indicates that the preceding stresses are the principal stresses for
the element. A special case of triaxial stress, known as spherical or dilatational stress, occurs if
all principal stresses are equal (see Sec. 1.14). Equal triaxial tension is sometimes called
hydrostatic tension. An example of equal triaxial compression is found in a small element of liquid
under static pressure.

b. Twwo-Dimensional or Plane Stress. In this case, only the x and y faces of the element are subjected
to stress, and all the stresses act parallel to the x and y axes, as shown in Fig. 1.3a. The plane stress
matrix is written

(1.8)

Figure 1.3. (a) Element in plane stress; (b) two-dimensional presentation of plane stress; (c)
element in pure shear.
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Although the three-dimensional nature of the element under stress should not be forgotten, for the
sake of convenience we usually draw only a two-dimensional view of the plane stress element
(Fig. 1.3b). When only two normal stresses are present, the state of stress 1s called biaxial. These
stresses occur in thin plates stressed in two mutually perpendicular directions.

¢. Pure Shear. In this case, the element is subjected to plane shearing stresses only, for example, z,,,
and 7, (Fig. 1.3c). Typical pure shear occurs over the cross sections and on longitudinal planes of

a circular shaft subjected to torsion.

d. Uniaxial Stress. When normal stresses act along one direction only, the one-dimensional state of
stress 1s referred to as a uniaxial tension or compression.

1.6 Internal Force-Resultant and Stress Relations

Distributed forces within a load-carrying member can be represented by a statically equivalent
system consisting of a force and a moment vector acting at any arbitrary point (usually the centroid) of
a section. These internal force resultants, also called stress resultants, exposed by an imaginary
cutting plane containing the point through the member, are usually resolved into components normal
and tangent to the cut section (Fig. 1.4). The sense of moments follows the right-hand screw rule,
often represented by double-headed vectors, as shown in the figure. Each component can be
associated with one of four modes of force transmission:

1. The axial force P or N tends to lengthen or shorten the member.

2. The shear forces V), and V_ tend to shear one part of the member relative to the adjacent part and
are often designated by the letter V.



3. The torque or twisting moment T 1s responsible for twisting the member.
4. The bending moments M,, and M, cause the member to bend and are often identified by the letter
M.

Figure 1.4. Positive forces and moments on a cut section of a body and components of the force
dF on an infinitesimal area dA.

A member may be subject to any or all of the modes simultaneously. Note that the same sign
convention 1s used for the force and moment components that is used for stress; a positive force (or
moment) component acts on the positive face in the positive coordinate direction or on a negative
face in the negative coordinate direction.

A typical infinitesimal area dA of the cut section shown in Fig. 1.4 is acted on by the components of
an arbitrarily directed force dF, expressed using Eq. (1.5) as dF, = o, d4, dF, =1, dA4, and dF’, = 1,,
dA. Clearly, the stress components on the cut section cause the internal force resultants on that section.
Thus, the incremental forces are summed in the x, y, and z directions to give

P ]u’,.tf:‘l, ¥ = ]71'_-.-‘1"*‘41 V. = /TTZdA
(1.9a)

In a like manner, the sums of the moments of the same forces about the x, y, and z axes lead to

T ][T,,}' TL_.I,_"]H'A, .';-f_.l = /rnifi'f‘-- M, =" f”.n.’*"fA
(1.9b)

where the integrations proceed over area A4 of the cut section. Equations (1.9) represent the relations
between the internal force resultants and the stresses. In the next paragraph, we illustrate the
fundamental concept of stress and observe how Egs. (1.9) connect internal force resultants and the
state of stress in a specific case.

Consider a homogeneous prismatic bar loaded by axial forces P at the ends (Fig. 1.5a). A prismatic
bar is a straight member having constant cross-sectional area throughout its length. To obtain an
expression for the normal stress, we make an imaginary cut (section a—a) through the member at right
angles to its axis. A free-body diagram of the isolated part is shown in Fig. 1.5b, wherein the stress is
substituted on the cut section as a replacement for the effect of the removed part. Equilibrium of axial
forces requires that P =| o, d4 or P = Ao,. The normal stress is therefore



(1.10)

Figure 1.5. (a) Prismatic bar in tension; (b) Stress distribution across cross section.
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where A 1s the cross-sectional area of the bar. Because Vy, V_, and T all are equal to zero, the second
and third of Egs. (1.92) and the first of Eqgs. (L9b) are satisfied by 7,, = 7,, = 0. Also, M, =M, =0 in
Egs. (1.9b) requires only that o, be symmetrically distributed about the y and z axes, as depicted in

Fig. 1.5b. When the member is being extended as in the figure, the resulting stress is a uniaxial
tensile stress; if the direction of forces were reversed, the bar would be in compression under
uniaxial compressive stress. In the latter case, Eq. (1.10) is applicable only to chunky or short

members owing to other effects that take place in longer members.”

Similarly, application of Egs. (1.9) to torsion members, beams, plates, and shells is presented as the
subject unfolds, following the derivation of stress—strain relations and examination of the geometric
behavior of a particular member. Applying the method of mechanics of materials, we develop other
elementary formulas for stress and deformation. These, also called the basic formulas of mechanics
of materials, are often used and extended for application to more complex problems in advanced
mechanics of materials and the theory of elasticity. For reference purposes to preliminary
discussions, Table 1.1 lists some commonly encountered cases. Note that in thin-walled vessels (r/t <
10) there is often no distinction made between the inner and outer radii because they are nearly equal.
In mechanics of materials, » denotes the inner radius. However, the more accurate shell theory (Sec.
13.11) 1s based on the average radius, which we use throughout this text. Each equation presented in
the table describes a state of stress associated with a single force, torque, moment component, or
pressure at a section of a typical homogeneous and elastic structural member [Ref. 1.7]. When a
member is acted on simultaneously by two or more load types, causing various internal force
resultants on a section, it is assumed that each load produces the stress as if it were the only load
acting on the member. The final or combined stress 1s then determined by superposition of the several
states of stress, as discussed in Section 2.2.

Table 1.1. Commonly Used Elementary Formulas for Stress?
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The mechanics of materials theory is based on the simplifying assumptions related to the pattern of
deformation so that the strain distributions for a cross section of the member can be determined. It is a
basic assumption that plane sections before loading remain plane after loading. The assumption can
be shown to be exact for axially loaded prismatic bars, for prismatic circular torsion members, and
for prismatic beams subjected to pure bending. The assumption is approximate for other beam
situations. However, it is emphasized that there is an extraordinarily large variety of cases in which
applications of the basic formulas of mechanics of materials lead to useful results. In this text we
hope to provide greater insight into the meaning and limitations of stress analysis by solving problems
using both the elementary and exact methods of analysis.

1.7 Stresses on Inclined Sections

The stresses in bars, shafts, beams, and other structural members can be obtained by using the basic
formulas, such as those listed in Table 1.1. The values found by these equations are for stresses that
occur on cross sections of the members. Recall that all of the formulas for stress are limited to
isotropic, homogeneous, and elastic materials that behave linearly. This section deals with the states
of stress at points located on inclined sections or planes under axial loading. As before, we use
stress elements to represent the state of stress at a point in a member. However, we now wish to find



normal and shear stresses acting on the sides of an element in any direction.

The directional nature of more general states of stress and finding maximum and minimum values of
stress are discussed in Sections 1.10 and 1.13. Usually, the failure of a member may be brought about
by a certain magnitude of stress in a certain direction. For proper design, it is necessary to determine
where and in what direction the largest stress occurs. The equations derived and the graphical
technique introduced here and in the sections to follow are helpful in analyzing the stress at a point
under various types of loading. Note that the transformation equations for stress are developed on the
basis of equilibrium conditions only and do not depend on material properties or on the geometry of
deformation.

Axially Loaded Members

We now consider the stresses on an inclined plane a—a of the bar in uniaxial tension shown in Fig.
1.6a, where the normal x’ to the plane forms an angle 6 with the axial direction. On an isolated part of
the bar to the left of section a—a, the resultant P may be resolved into two components: the normal
force P,.= P cos 0 and the shear force Py, =—P sin 6, as indicated in Fig. 1.6b. Thus, the normal and
shearing stresses, uniformly distributed over the area 4, = A/cos 6 of the inclined plane (Fig. 1.6¢),

are given by

Pcos@ 2 g
o, = = r, CO8"
A,
(1.11a)
Psin g :
Taige = = ;:,-- = — ¢, s1ndcos
(1.11b)
Figure 1.6. (a) Prismatic bar in tension; (b, ¢) side views of a part cut from the bar.
a1 '
4.8 .-‘fx
= K s g
| \r”' Ao x ——l;
P r— A vl—— =
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A A
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F’h F"P; Yi &, #;rx
Ty

where o, = P/A. The negative sign in Eq. (1.11b) agrees with the sign convention for shearing stresses

described in Section 1.5. The foregoing process of determining the stress in proceeding from one set
of coordinate axes to another is called stress transformation.

Equations (1.11) indicate how the stresses vary as the inclined plane is cut at various angles. As



expected, 0, is a maximum (0,,,,,) when 6 1s 0° or 180°, and 7, is maximum (,,,) when 6 is 45° or
135°. Also, Twax = * 3%max, The maximum stresses are thus

_ _ 1
T = T Tuax = L 50;

(1.12)

Observe that the normal stress is either maximum or a minimum on planes for which the shearing
stress 1s zero.

Figure 1.7 shows the manner in which the stresses vary as the section is cut at angles varying from 6 =
0° to 180°. Clearly, when 6 > 90°, the sign of 7, in Eq. (1.11b) changes; the shearing stress changes
sense. However, the magnitude of the shearing stress for any angle 6 determined from Eq. (1.11b) is
equal to that for 8 + 90°. This agrees with the general conclusion reached in the preceding section:
shearing stresses on mutually perpendicular planes must be equal.

Figure 1.7. Example 1.1. Variation of stress at a point with the inclined section in the bar shown
in Fig. 1.6a.
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We note that Egs. (1.11) can also be used for uniaxial compression by assigning to P a negative value.
The sense of each stress direction is then reversed in Fig. 1.6¢.

Example 1.1. State of Stress in a Tensile Bar

Compute the stresses on the inclined plane with 8 = 35° for a prismatic bar of a cross-sectional

area 800 mm?, subjected to a tensile load of 60 kN (Fig. 1.6a). Then determine the state of stress
for 6 = 35° by calculating the stresses on an adjoining face of a stress element. Sketch the stress
configuration.

Solution

The normal stress on a cross section is
60( 107
T % B Ht]n[]ﬂj‘] — > MPa

Introducing this value in Egs. (1.11) and using 8 = 35°, we have

o = o, cos’ 0 = 75(cos 35°) = 50.33 MPa

Ty = —o 8in @ cos @ = —75(sin 357 )(cos 35°) = —35.24 MPa
The normal and shearing stresses acting on the adjoining y'’ face are, respectively, 24.67 MPa and
35.24 MPa, as calculated from Eqgs. (1.11) by substituting the angle 8 + 90° = 125°. The values of

o,rand 7, are the same on opposite sides of the element. On the basis of the established sign

convention for stress, the required sketch is shown in Fig. 1.8.



Figure 1.8. Example 1.1. Stress element for 6 = 35°.
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1.8 Variation of Stress within a Body

As pointed out in Section 1.5, the components of stress generally vary from point to point in a
stressed body. These variations are governed by the conditions of equilibrium of statics. Fulfillment
of these conditions establishes certain relationships, known as the differential equations of
equilibrium, which involve the derivatives of the stress components.

Consider a thin element of sides dx and dy (Fig. 1.9), and assume that o,, oy, 7, and 7, are functions

of x, y but do not vary throughout the thickness (are independent of z) and that the other stress
components are zero. Also assume that the x and y components of the body forces per unit volume, F,
and F), are independent of z and that the z component of the body force F, = 0. This combination of
stresses, satisfying the conditions described, is the plane stress. Note that because the element is very
small, for the sake of simplicity, the stress components may be considered to be distributed uniformly

over each face. In the figure they are shown by a single vector representing the mean values applied at
the center of each face.

Figure 1.9. Element with stresses and body forces.

9Ty
Ty oy v
¥ 71,
T LTYK T );"d};
T
PP
Fr' Ty + = dx
T, dy Lb- 3
: Fe o +{}—ﬂ"-’ dx
Ty o dlx

Ix X
o
As we move from one point to another, for example, from the lower-left corner to the upper-right
corner of the element, one stress component, say o,., acting on the negative x face, changes in value on
the positive x face. The stresses ), 7., and 7, similarly change. The variation of stress with position

may be expressed by a truncated Taylor’s expansion:

rk‘!
o+ —dx
iax

(2)

The partial derivative is used because o, 1s a function of x and y. Treating all the components



similarly, the state of stress shown in Fig. 1.9 is obtained.

We consider now the equilibrium of an element of unit thickness, taking moments of force about the
lower-left corner. Thus, M, = 0 yields

der, 1 T 14 07Ty
( ~dx ﬂ’_v) L (t B8 ri_v) Ty (T_I..I. e n‘_r)dx dy
av % ax 2 dx

tl:.lT..L. d_ !
—(T'.'.r + ! d},)ﬂrx d_-p -+ F_L_d_'[_' (f}: ?T 2, F.r dx nl'_\_. _'}I =1

[
iy g

Neglecting the triple products involving dx and dy, this reduces to 7,,, = 7,,,. In a like manner, it may

as already obtained in Section 1.5. From the equilibrium of x

be shown that 7, = 7,, and 7,, = 7,,,,

zy
forces, XF, = 0, we have

l"h‘.r.l ‘:‘Tu =
o, + dx |dy — o, dy + | 1, + dy ldx — 1., dx + F,dxdy =0

X ay

(b)
Upon simplification, Eq. (b) becomes

T IHT-,_-.
(— +— 4 Fl)dx dy =0
ax ay

(c)

Inasmuch as dx dy is nonzero, the quantity in the parentheses must vanish. A similar expression is
written to describe the equilibrium of y forces. The x and y equations yield the following differential
equations of equilibrium for two-dimensional stress:

r::lﬂ'x HT.':_I. :
24— 4 F,=0
X 1'J'pU ’

ad,  dTy,

— + —— 4+ F,=0
dy  dx :

(1.13)

The differential equations of equilibrium for the case of three-dimensional stress may be generalized
from the preceding expressions as follows:

o dTy, aTy;
=y 2 X4 F =0
ax ay Az
il ¥ d Txy 0 Ty; .
: 5 — + F, =10
dy aXx iz g
00, dTy, 0Ty

+ +: + F,.=0
iz ax ay -

(1.14)

A succinct representation of these expressions, on the basis of the range and summation conventions
(Sec. 1.17), may be written as



(1.152)

where x, =x, x,, =y, and x, = z. The repeated subscript s j, indicating summation. The unrepeated
subscript is i. Here i is termed the free index, and j, the dummy index.
If in the foregoing expression the symbol 0/0x is replaced by a comma, we have

Ty ¥ I =1
(1.15b)

where the subscript after the comma denotes the coordinate with respect to which differentiation is
performed. If no body forces exist, Eq. (L.15b) reduces to 7;; ; = 0, indicating that the sum of the three
stress derivatives is zero. As the two equilibrium relations of Eqs. (1.13) contain three unknowns
(04, 0y, Ty,,) and the three expressions of Egs. (1.14) involve the six unknown stress components,

problems in stress analysis are internally statically indeterminate.

In a number of practical applications, the weight of the member is the only body force. If we take the
y axis as upward and designate by p the mass density per unit volume of the member and by g, the
gravitational acceleration, then F\ = F, = 0 and F,, =—pg in Egs. (1.13) and (1.14). The resultant of

this force over the volume of the member is usually so small compared with the surface forces that it
can be ignored, as stated in Section 1.1. However, in dynamic systems, the stresses caused by body
forces may far exceed those associated with surface forces so as to be the principal influence on the

stress field.

Application of Egs. (1.13) and (1.14) to a variety of loaded members is presented in sections
employing the approach of the theory of elasticity, beginning with Chapter 3. The following sample
problem shows the pattern of the body force distribution for an arbitrary state of stress in equilibrium.

Example 1.2. The Body Forces in a Structure

The stress field within an elastic structural member is expressed as follows:
o= —x + yj. T = 5z + 292, T, = X" + _rl}-‘

1, 1.2 2 3
oy =2 Loy, T = 0 o, =4y — 1

(d)
Determine the body force distribution required for equilibrium.
Solution

Substitution of the given stresses into Eq. (1.14) yields
(=3x%) + (4y) + (3x2%) + F,

0
(¥} + (0) +(0) + F, =10
(-3z2)+ (22 +2xy) + () + F, =D

The body force distribution, as obtained from these expressions, is therefore

F,=3x*—-4y-3xz%, F,=-y, F,=-2xy+37-72

(e)



The state of stress and body force at any specific point within the member may be obtained by
substituting the specific values of x, y, and z into Egs. (d) and (e), respectively.

1.9 Plane-Stress Transformation

A two-dimensional state of stress exists when the stresses and body forces are independent of one of
the coordinates, here taken as z. Such a state is described by stresses o, oy, and Ty and the x and y

body forces. Two-dimensional problems are of two classes: plane stress and plane strain. In the

case of plane stress, as described in the previous section, the stresses o, 7., and Tz and the z-
directed body forces are assumed to be zero. The condition that occurs in a thin plate subjected to
loading uniformly distributed over the thickness and parallel to the plane of the plate typifies the state

of plane stress (Eig. 1.10). In the case of plane strain, the stresses 7, and 7,,, and the body force F, are

likewise taken to be zero, but ¢, does not vanish™ and can be determined from stresses o, and 0y

Figure 1.10. Thin Plate in-plane loads.

We shall now determine the equations for transformation of the stress components o,, o, and z,,, at

any point of a body represented by an infinitesimal element, 1solated from the plate illustrated in Fig.
1.10. The z-directed normal stress o, even if it is nonzero, need not be considered here. In the

following derivations, the angle 6 locating the x' axis is assumed positive when measured from the x
axis in a counterclockwise direction. Note that, according to our sign convention (see Sec. 1.5), the
stresses are indicated as positive values.

Consider an infinitesimal wedge cut from the loaded body shown in Fig. 1.11a, b. It is required to
determine the stresses o, and 7,4, which refer to axes x’, y" making an angle 6 with axes x, y, as
shown in the figure. Let side AB be normal to the x’ axis. Note that in accordance with the sign

convention, 6, and 7., are positive stresses, as shown in the figure. If the area of side 4B is taken as
unity, then sides QA4 and OB have area cos 6 and sin 0, respectively.

Figure 1.11. Elements in plane stress.



{a)
Equilibrium of forces in the x and y directions requires that
p, = o,cos8 + 7,,sin d

p, = Ty €086 + o,sinf
(1.16)

where p, and p,, are the components of stress resultant acting on 4B in the x and y directions,
respectively. The normal and shear stresses on the x' plane (4B plane) are obtained by projecting p,
and p,, in the x"and y’ directions:

ay = Dy cos § + f)} sin 6
Tey = pycosf — p,sing
(2)

From the foregoing it is clear that Oy + Toy = Pit By, Upon substitution of the stress resultants from
Eq. (1.16), Egs. (a) become

oy = g,c08’ 0 + g,sin” 0 + 27,,5in 6 cos 6
(1.17a)
Tyy = 'T_r.a-[i-'l*?*: 6 — sin*0) + (o, — o,) sin# cos f
(1.17b)

Note that the normal stress o, acting on the y' face of an inclined element (Fig. 1.11¢) may readily be
obtained by substituting 6 + /2 for 6 in the expression for o, In so doing, we have

o, =0, sin®@ + o, cos’@ — 27, sinfcos @
(1.17¢)

Equations (1.17) can be converted to a useful form by introducing the following trigonometric
identities:

cos’ § = %{I + cos 26), sin f cos 6 = %:-‘.in 20,
sin” @ = 3(1 — cos 26)
The transformation equations for plane stress now become

1 1 z
oy = 3(oy + a,) + 3(o, — 0,) cos 20 + 7., 8in 26

(1.182)



— o, — o,) sin 26 + 7, cos 20

=
Il

(1.18b)

I § _Ep : v
oy = 3la, + o) — 3lo, — o) cos 280 — 7, 5in 20

(1.18¢)

The foregoing expressions permit the computation of stresses acting on all possible planes AB (the
state of stress at a point) provided that three stress components on a set of orthogonal faces are
known.

Stress tensor. It 1s important to note that addition of Eqgs. (1.17a) and (1.17c) gives the relationships
o, +0,=0,* 0, = constant

In words then, the sum of the normal stresses on two perpendicular planes is invariant—that is,
independent of 4. This conclusion is also valid in the case of a three-dimensional state of stress, as
shown in Section 1.13. In mathematical terms, the stress whose components transform in the
preceding way by rotation of axes is termed fensor. Some examples of other quantities are strain and
moment of inertia. The similarities between the transformation equations for these quantities are
observed in Sections 2.5 and C.4. Mohr’s circle (Sec. 1.11) 1s a graphical representation of a stress
tensor transformation.

Polar Representations of State of Plane Stress

Consider, for example, the possible states of stress corresponding to o, = 14 MPa, ¢, =4 MPa, and
7,, = 10 MPa. Substituting these values into Eq. (1.18) and permitting 6 to vary from 0° to 360° yields
the data upon which the curves shown in Fig. 1.12 are based. The plots shown, called stress
trajectories, are polar representations: o, versus 6 (Fig. 1.12a) and 7, versus 0 (Fig. 1.12b). Itis

observed that the direction of each maximum shear stress bisects the angle between the maximum and
minimum normal stresses. Note that the normal stress is either a maximum or a minimum on planes at

60 =31.66° and 6 =31.66° + 90°, respectively, for which the shearing stress is zero. The conclusions

drawn from this example are valid for any two-dimensional (or three-dimensional) state of stress and
are observed in the sections to follow.

Figure 1.12. Polar representations of ¢, and 7., (in megapascals) versus 6.
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Cartesian Representation of State of Plane Stress

Now let us examine a two-dimensional condition of stress at a point in a loaded machine component
on an element 1llustrated in Fig. 1.13a. Introducing the given values into the first two of Egs. (1.18),



gives
g, =45+ 25c0os 28 + 5sin 20
Tey = —2.58in26 + 5 cos 20

Figure 1.13. Graph of normal stress o, and shearing stress 7., with angle 0 (for 6 < 180°).
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In the foregoing, permitting & to vary from 0° to 180° in increments of 15° leads to the data from
which the graphs illustrated in Fig. 1.13b are obtained [Ref. 1.7]. This Cartesian representation
demonstrates the variation of the normal and shearing stresses versus 6§ < 180°. Observe that the
direction of maximum (and minimum) shear stress bisects the angle between the maximum and
minimum normal stresses. Moreover, the normal stress is either a maximum or a minimum on planes 6
=31.7°and 8 =31.7° + 90°, respectively, for which the shear stress is zero. Note as a check that o, +

0y, = Omax + Omin = 9 MPa, as expected.

The conclusions drawn from the foregoing polar and Cartesian representations are valid for any state
of stress, as will be seen in the next section. A more convenient approach to the graphical
transformation for stress 1s considered in Sections 1.11 and 1.15. The manner in which the three-
dimensional normal and shearing stresses vary is discussed in Sections 1.12 through 1.14.

1.10 Principal Stresses and Maximum In-Plane Shear Stress

The transformation equations for two-dimensional stress indicate that the normal stress o, and

shearing stress 7,

orientation of x'y’ corresponding to maximum or minimum ., the necessary condition do,./df = 0 is

, vary continuously as the axes are rotated through the angle 6. To ascertain the

applied to Eq. (1.18a). In so doing, we have
—(oy — o) sin 20 + 21,,c0828 = 0

(a)
This yields

(1.19)

Inasmuch as tan 260 = tan(x + 26), two directions, mutually perpendicular, are found to satisfy Eq.



(L.19). These are the principal directions, along which the principal or maximum and minimum
normal stresses act. Two values of 6, corresponding to the o and o, planes, are represented by %

and %7, respectively.
When Eq. (L.18b) is compared with Eq. (a), it becomes clear that z,.,,= 0 on a principal plane. A

principal plane is thus a plane of zero shear. The principal stresses are determined by substituting
Eq. (1.19) into Eq. (1.18a):

& ooy T S R
Tmax, min — F12 — + "\l,'l T Ty

(1.20)

Note that the algebraically larger stress given here is the maximum principal stress, denoted by 0.
The minimum principal stress is represented by o,. It is necessary to substitute one of the values 6,
into Eq. (1.18a) to determine which of the two corresponds to o;.

Similarly, employing the preceding approach and Eq. (1.18b), we determine the planes of maximum
shearing stress. Thus, setting dz,,,/d0 = 0, we now have (o, — o,)cos 20 + 27, sin 20 = 0 or
[ S ¢ o

2T

Ty

tan 28, = —

(1.21)

The foregoing expression defines two values of 0, that are 90° apart. These directions may again be
denoted by attaching a prime or a double prime notation to 6. Comparing Eqs. (1.19) and (1.21), we

also observe that the planes of maximum shearing stress are inclined at 45° with respect to the planes
of principal stress. Now, from Eqs. (1.21) and (1.18b), we obtain the extreme values of shearing
stress as follows:

(o, — a2 ] :
Tmax = T '\”.'I 2 T Ty = X E{U: — 03)

(1.22)
Here the largest shearing stress, regardless of sign, is referred to as the maximum shearing stress,

designated 7,,,,. Normal stresses acting on the planes of maximum shearing stress can be determined
by substituting the values of 26, from Eq. (1.21) into Egs. (1.18a) and (1.18c¢):

#

ﬂ- = Jil'\'L’ = l:':ﬂ-l + ﬂ-'lj
(1.23)

The results are illustrated in Fig. 1.14. Note that the diagonal of a stress element toward which the
shearing stresses act is called the shear diagonal. The shear diagonal of the element on which the
maximum shearing stresses act lies in the direction of the algebraically larger principal stress as
shown in the figure. This assists in predicting the proper direction of the maximum shearing stress.

Figure 1.14. Planes of principal and maximum shearing stresses.



1.11 Mohr’s Circle for Two-Dimensional Stress

A graphical technique, predicated on Eq. (1.18), permits the rapid transformation of stress from one
plane to another and leads also to the determination of the maximum normal and shear stresses. In this
approach, Eqgs. (1.18) are depicted by a stress circle, called Mohr’s circle.” In the Mohr
representation, the normal stresses obey the sign convention of Section 1.5. However, for the
purposes only of constructing and reading values of stress from Mohr s circle, the sign convention
for shear stress is as follows: If the shearing stresses on opposite faces of an element would produce
shearing forces that result in a c/ockwise couple, as shown in Fig. 1.15c, these stresses are regarded
as positive. Accordingly, the shearing stresses on the y faces of the element in Fig. 1.15a are taken as
positive (as before), but those on the x faces are now negative.

Figure 1.15. (a) Stress element; (b) Mohr’s circle of stress; (¢) interpretation of positive
shearing stresses.
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Given g,, 0, and 7,,, with algebraic sign in accordance with the foregoing sign convention, the
procedure for obtaining Mohr’s circle (Fig. 1.15b) is as follows:

1. Establish a rectangular coordinate system, indicating +r and +o¢. Both stress scales must be
identical.

2. Locate the center C of the circle on the horizontal axis a distance 2(% * @) from the origin.

3. Locate point 4 by coordinates o, and —,,,. These stresses may correspond to any face of an element
such as in Fig. 1.15a. It 1s usual to specify the stresses on the positive x face, however.

4. Draw a circle with center at C and of radius equal to CA.

5. Draw line 4B through C.

The angles on the circle are measured in the same direction as 6 is measured in Fig. 1.15a. An angle

of 26 on the circle corresponds to an angle of 6 on the element. The state of stress associated with the
original x and y planes corresponds to points 4 and B on the circle, respectively. Points lying on



diameters other than 4B, such as 4" and B’, define states of stress with respect to any other set of x’
and y' planes rotated relative to the original set through an angle 6.

It is clear that points 4, and B, on the circle locate the principal stresses and provide their magnitudes
as defined by Eqgs. (1.19) and (1.20), while D and E represent the maximum shearing stresses, defined
by Egs. (1.21) and (1.22). The radius of the circle is

CA=VCF'+ AF*

where
CF =%{ey,—0a,), AF=r1,

Thus, the radius equals the magnitude of the maximum shearing stress. Mohr’s circle shows that the
planes of maximum shear are always located at 45° from planes of principal stress, as already
indicated in Fig. 1.14. The use of Mohr’s circle is illustrated in the first two of the following
examples.

Example 1.3. Principal Stresses in a Member

At a point in the structural member, the stresses are represented as in Fig. 1.16a. Employ Mohr’s
circle to determine (a) the magnitude and orientation of the principal stresses and (b) the
magnitude and orientation of the maximum shearing stresses and associated normal stresses. In
each case, show the results on a properly oriented element; represent the stress tensor in matrix
form.

Figure 1.16. Example 1.3. (a) Element in plane stress; (b) Mohr’s circle of stress; (c)
principal stresses; (d) maximum shear stress.
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Solution

Mohr’s circle, constructed in accordance with the procedure outlined, is shown in Fig. 1.16b.

The center of the circle is at (40 + 80)/2 = 60 MPa on the ¢ axis.

a. The principal stresses are represented by points 4; and B; Hence, the maximum and minimum
principal stresses, referring to the circle, are

g2 = 60 = V(80 — 40)2 + (30)°
or
g =9%.05MPa and o, = 23.95MPa
The planes on which the principal stresses act are given by

-

30
20, = tan™! ﬁ = 5630° and 207 = 56.30° + 180° = 236.30°

Hence

8, = 28.15° and 6, = 118.15°
Mohr’s circle clearly indicates that % locates the o, plane. The results may readily be checked
by substituting the two values of 0, into Eq. (1.18a). The state of principal stress is shown in

Fig. 1.16¢.
b. The maximum shearing stresses are given by points D and E. Thus,

= + V(80 — 40)? + (30)? = £36.05 MPa

It is seen that (o — 0,)/2 yields the same result. The planes on which these stresses act are
represented by
O, = 28.15" + 45" = 73.15" and 6 = 163.15°

As Mohr’s circle indicates, the positive maximum shearing stress acts on a plane whose

normal x' makes an angle & with the normal to the original plane (x plane). Thus, +7,,,,

on two
opposite x' faces of the element will be directed so that a clockwise couple results. The
normal stresses acting on maximum shear planes are represented by OC, ¢’ = 60 MPa on each

face. The state of maximum shearing stress is shown in Fig. 1.16d. The direction of the 7,,’s

may also be readily predicted by recalling that they act toward the shear diagonal. We note
that, according to the general sign convention (Sec. 1.5), the shearing stress acting on the x'
plane in Fig. 1.16d is negative. As a check, if 20y = 146.30" and the given initial data are
substituted into Eq. (1.18b), we obtain 7., = —36.05 MPa, as already found.

We may now describe the state of stress at the point in the following matrix forms:
80 30 96.05 0 Bt —-36.05
30 40/ 0 23.95 —36.05 60

These three representations, associated with the 8 = 0°, 8 = 28.15°, and 8 = 73.15° planes
passing through the point, are equivalent.

Note that if we assume o, = 0 in this example, a much higher shearing stress is obtained in the

planes bisecting the x' and z planes (Problem 1.56). Thus, three-dimensional analysis, Section
1.15, should be considered for determining the true maximum shearing stress at a point.




Example 1.4. Stresses in a Frame

The stresses acting on an element of a loaded frame are shown in Fig. 1.17a. Apply Mohr’s circle
to determine the normal and shear stresses acting on a plane defined by 6 = 30°.

Figure 1.17. Example 1.4. (a) Element in biaxial stresses; (b) Mohr’s circle of stress; (c)
stress element for 4 = 30°.
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Solution

Mohr’s circle of Fig. 1.17b describes the state of stress given in Fig. 1.17a. Points 4, and B,

represent the stress components on the x and y faces, respectively. The radius of the circle is (14
+ 28)/2 = 21. Corresponding to the 30° plane within the element, it is necessary to rotate through
60° counterclockwise on the circle to locate point 4. A 240° counterclockwise rotation locates
point B'. Referring to the circle,

oo =7+ 21 cos60° = 17.5 MPa

o, = —3.5MPa

and Tey = £218in 60° = £18.19 MPa

Figure 1.17¢ indicates the orientation of the stresses. The results can be checked by applying Eq.
(1.18), using the initial data.

Example 1.5. Cylindrical Vessel Under Combined Loads

A thin-walled cylindrical pressure vessel of 250-mm diameter and 5-mm wall thickness is rigidly
attached to a wall, forming a cantilever (Fig. 1.18a). Determine the maximum shearing stresses



and the associated normal stresses at point A of the cylindrical wall. The following loads are
applied: internal pressure p = 1.2 MPa, torque 7'=3 kN - m, and direct force P =20 kN. Show
the results on a properly oriented element.

Figure 1.18. Example 1.5. Combined stresses in a thin-walled cylindrical pressure vessel: (a)
side view; (b) free body of a segment; (c¢) and (d) element A (viewed from top).
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Solution

The internal force resultants on a transverse section through point 4 are found from the
equilibrium conditions of the free-body diagram of Fig. 1.18b. They are V=20 kN, M =8 kN -
m, and 7= 3 kN - m. In Fig. 1.18c, the combined axial, tangential, and shearing stresses are
shown acting on a small element at point 4. These stresses are (Tables 1.1 and C.1)

R(10%)r 8(10°
ﬁr,':: — IMr — { q} = |:_.| } o = 32.{} MPH
I Tt w(0.125%)(0.005)
3(10M)r 3(10°
oy PP W) _ 6112 mpa
J 271 27r(0.125%)(0.005)

pr 1.2(10%)(125)
ATRETT 30
We thus have o, = 47.6 MPa, 0y, = 30 MPa, and (e —6.112 MPa. Note that for element 4, Q = 0;
hence, the direct shearing stress 7, =7, = VQ/Ib = 0.

= 15 MPa, oy = 20, = 30 MPa

The maximum shearing stresses are from Eq. (1.22):

[(47.6 — 30\° ,
T \(‘T) + (=6.112)? = +£10.71 MPa

Equation (1.23) yields
o' = 3(47.6 + 30) = 38.8 MPa

To locate the maximum shear planes, we use Eq. (1.21):



476 - 30
=]: H —1 _—
% = ztan |- 2 6i12)

Applying Eq. (1.18b) with the given data and 20, = 55.2° =-10.71 MPa. Hence, 05 = 27.6",
and the stresses are shown in their proper directions in Fig. 1.18d.

= 276" and 117.6"

9 Tx'y’

1.12 Three-Dimensional Stress Transformation

The physical elements studied are always three dimensional, and hence it is desirable to consider
three planes and their associated stresses, as illustrated in Fig. 1.2. We note that equations governing
the transformation of stress in the three-dimensional case may be obtained by the use of a similar
approach to that used for the two-dimensional state of stress.

Consider a small tetrahedron isolated from a continuous medium (Fig. 1.19a), subject to a general
state of stress. The body forces are taken to be negligible. In the figure, p,, p,, and p, are the
Cartesian components of stress resultant p acting on oblique plane ABC. It is required to relate the
stresses on the perpendicular planes intersecting at the origin to the normal and shear stresses on
ABC.

Figure 1.19. Stress components on a tetrahedron.

(b)
The orientation of plane ABC may be defined in terms of the angles between a unit normal » to the

plane and the x, y, and z directions (Fig. 1.19b). The direction cosines associated with these angles
are

cosa = cos(n, x) =1
cos B = cos(n, ¥) = m
cosy = cos(m, z) =n

(1.24)

The three direction cosines for the n direction are related by
F+m+n=1
(1.25)

The area of the perpendicular plane QA4B, QAC, OBC may now be expressed in terms of 4, the area of
ABC, and the direction cosines:



The other two areas are similarly obtained. In so doing, we have altogether
Al"_]‘..-‘l.fi — ."‘1.I|r7 f’l{_j__“_ = .fL.lIJ”, rd.lt'__”;{' = An
(a)
Here i, j, and k are unit vectors in the x, y, and z directions, respectively.

Next, from the equilibrium of x, y, z-directed forces together with Eq. (a), we obtain, after canceling
4,

Pr=0d+ r,mtrn
lt}l = ."-.'I."ld!II + t:'l-'l'ﬁ'i 2] ..'|-'|'.'F'r

2

Tial F Toulth - o551

(1.26)

The stress resultant on 4 1s thus determined on the basis of known stresses o, Oys Oz Tyys Tz and T,
and a knowledge of the orientation of 4. In the limit as the sides of the tetrahedron approach zero,
plane 4 contains point Q. It is thus demonstrated that the stress resultant at a point is specified. This in
turn gives the stress components acting on any three mutually perpendicular planes passing through O
as shown next. Although perpendicular planes have been used there for convenience, these planes

need not be perpendicular to define the stress at a point.
Consider now a Cartesian coordinate system x', y’, z', wherein x' coincides with n and y’, z' lie on an
oblique plane. The x'y'z"and xyz systems are related by the direction cosines: /; = cos (x', x), m; =

cos(x’, ), and so on. The notation corresponding to a complete set of direction cosines is shown in
Table 1.2. The normal stress o, is found by projecting p,, p,,, and p, in the x’ direction and adding

oy = pdy + pomy + p.y

(1.27)
Table 1.2. Notation for Direction Cosines

X ¥ s

x! [ ", 1,

J_.l' fj iz fla

7' [5 1y My

Equations (1.26) and (1.27) are combined to yield
a. = ali + omi + a':nf + (7. iy + Ty + 70m)

(1.28a)

Similarly, by projecting p,, p,,, and p, in the y"and z' directions, we obtain, respectively,
Ty = O + oymmy + ooy + 1 (L + myly)

+ 7 (myny + nmy) + 7l + Ling)

(1.28b)



Ty = O ily + oymmy + anng + 7,(5Lmy + myly)

+ T (mng + mmy) + 7 (mls 4+ Ling)
(1.28¢)

Recalling that the stresses on three mutually perpendicular planes are required to specify the stress at
a point (one of these planes being the oblique plane in question), the remaining components are found
by considering those planes perpendicular to the oblique plane. For one such plane, n would now

coincide with the y' direction, and expressions for the stresses o, 7,5, and 7,.» would be derived. In
a similar manner, the stresses o, 7, and 7,4, are determined when n comc1des with the z' direction.

Owing to the symmetry of the stress tensor, only six of the nine stress components thus developed are
unique. The remaining stress components are as follows:

Ty = ol + r:r}.mﬁ + G':H:: + 27, omy + 7 man, + 7.6Lny)
(1.28d)
.= ol + omi+ a':n_% + 2(7. ams + 7m0 + 7 0an)
(1.28e)
Tyr = oubly + oymams + oy + 7 (maly + L)
+ 7. (s, + mans) + 7. (b0, + nolsy)
(1.28f)
Equations (1.28) represent expressions transforming the quantities o, 6,, 0,, 7y, 7y, and 7, which,

as we have noted, completely define the state of stress. Quantities such as stress (and moment of
inertia, Appendix C), which are subject to such transformations, are tensors of second rank (see Sec.

1.9).

The equations of transformation of the components of a stress tensor, in indicial notation, are
represented by

T;.‘f = "Irjr"r,l'. LT
(1.29a)
Alternatively,

Ll

Try rivspt iy

(1.29b)

The repeated subscripts i and j imply the double summation in Eq. (1.29a), which, upon expansion,
yields
T:". = }I.‘U'IJ.'.'-CT.T.T + !.I'FJIIL'.":T.TL' + JII.'C.V‘II.".'.T.'I.'.'

+ I H'J'I.T.'ET.T ¥ -}- f'.'.rf 1'.'|'T1' ¥ + I'I'.'i'll!la'_n"..r'l':
+ 'r:r f.'l."..‘-.l'.". + IE:F'IE._'I'.H'T'I'.' + IF:-"!-'..'I'T.?.'
(1.29¢)

By assigning 7, s =X, y, z and noting that 7., = 7,,, the foregoing leads to the six expressions of Eq.

S?”



(1.28).

It is interesting to note that, because x', y', and z' are orthogonal, the nine direction cosines must
satisfy trigonometric relations of the following form:

B+ m+nl=1, o L
(1.30a)
and
Iy + mym, + iy =10
Ll + mams + nany = 0)
Li; + mms + nny =0
(1.30b)

From Table 1.2, observe that Egs. (1.30a) are the sums of the squares of the cosines in each row, and
Egs. (1.30b) are the sums of the products of the adjacent cosines in any two rows.

1.13 Principal Stresses in Three Dimensions

For the three-dimensional case, it is now demonstrated that three planes of zero shear stress exist, that
these planes are mutually perpendicular, and that on these planes the normal stresses have maximum
or minimum values. As has been discussed, these normal stresses are referred to as principal
stresses, usually denoted o, 7,, and a5. The algebraically largest stress is represented by o, and the

smallest by o3: 0 > 0, > 03.
We begin by again considering an oblique x’ plane. The normal stress acting on this plane is given by
Eq. (1.28a):

»l ) ]
o =0od"+om +on + 2. JIm+ 7,.mn+ 7. ln
X X ¥ z Xy Vi Xz

(a)
The problem at hand is the determination of extreme or stationary values of ¢, To accomplish this,
we examine the variation of ¢ relative to the direction cosines. Inasmuch as /, m, and n are not
independent, but connected by /2 + m? + n?> = 1, only / and m may be regarded as independent
variables. Thus,

O T
= = (), —~ =0
af iR

(b)
Differentiating Eq. (a) as indicated by Egs. (b) in terms of the quantities in Eq. (1.26), we obtain
)+;Eﬂ—[] J"'Jai_“
P, 'F:r'hf_ s J'rj"f:ﬁm_
(c)
Fromn? =1 — I> — m?, we have on/0l =—I/n and 0n/0m = —m/n. Introducing these into Eq. (c), the
following relationships between the components of p and n are determined:



p. Py p:

[ 70 n

(d)
These proportionalities indicate that the stress resultant must be parallel to the unit normal and
therefore contains no shear component. It is concluded that, on a plane for which o, has an extreme or
principal value, a principal plane, the shearing stress vanishes.

It is now shown that three principal stresses and three principal planes exist. Denoting the principal
stresses by 0, Eq. (d) may be written as

p. = ol Py = g m, D= ogh
(e)
These expressions, together with Eq. (1.26), lead to
(o, —o )l + Tpm + 7,0 =0
T Tilog =i o =1
o Titpaint (g, <= ln =10
(1.31)
A nontrivial solution for the direction cosines requires that the characteristic determinant vanish:
Or=0p T Tz
T.l.'_r 'Cr_'.' = 'Crp T_‘.': =4l
T.'l.'.'. T'l'.' GF._ = {‘r_rJ
(1.32)
Expanding Eq. (1.32) leads to
G—;J o !‘|U'¢;:, -+ I,EUJ” = f_'J =)
(1.33)
where
lJI = 0, T a, + o
(1.34a)
IE = 00, > T, + o, = TE'I. N T%.' o T::'
(1.34b)
Cr'f T.'I"l' T'l.
Ii= |9 o Ty
T'l. T_'I'.' J
(1.34¢)

The three roots of the stress cubic equation (1.33) are the principal stresses, corresponding to which
are three sets of direction cosines, which establish the relationship of the principal planes to the
origin of the nonprincipal axes. The principal stresses are the characteristic values or eigenvalues of



the stress tensor 7;;. Since the stress tensor is a symmetric tensor whose elements are all real, it has

real eigenvalues. That is, the three principal stresses are real [Refs. 1.8 and 1.9]. The direction
cosines /, m, and n are the eigenvectors of T

It 1s clear that the principal stresses are independent of the orientation of the original coordinate
system. It follows from Eq. (1.33) that the coefficients /;, /5, and /5 must likewise be independent of
x, ¥, and z, since otherwise the principal stresses would change. For example, we can demonstrate
that adding the expressions for o, 0, and o, given by Eq. (1.28) and making use of Eq. (1.30a) leads
tol; =0, +0,+0,=0,+0,+ 0, Thus, the coefficients /;, /5, and /5 represent three invariants of the
stress tensor in three dimensions or, briefly, the stress invariants. For plane stress, it is a simple
matter to show that the following quantities are invariant (Prob. 1.27):

[, = 1 oy = Oy + T

ol

L= =00, — 1-;1 = Oy0y — 1-%..1__
(1.35)
Equations (1.34) and (1.35) are particularly helpful in checking the results of a stress transformation,
as illustrated in Example 1.7.
If now one of the principal stresses, say o, obtained from Eq. (1.33), is substituted into Eq. (1.31), the

resulting expressions, together with /2 + m? + n® = 1, provide enough information to solve for the
direction cosines, thus specifying the orientation of o, relative to the xyz system. The direction
cosines of o, and o5 are similarly obtained. A convenient way of determining the roots of the stress

cubic equation and solving for the direction cosines is presented in Appendix B, where a related
computer program is also included (see Table B.1).

Example 1.6. Three-Dimensional Stress in a Hub

A steel shaft is to be force fitted into a fixed-ended cast-iron hub. The shaft is subjected to a
bending moment M, a torque 7, and a vertical force P, Fig. 1.20a. Suppose that at a point Q in the
hub, the stress field is as shown in Fig. 1.20b, represented by the matrix

-19 N 6.45
—4.7 46 11.8 |[MPa
645 11.8 —83

Figure 1.20. Example 1.6. (a) Hub-shaft assembly. (b) Element in three-dimensional stress.

{a)



Determine the principal stresses and their orientation with respect to the original coordinate
system.

Solution

Substituting the given stresses into Eq. (1.33) we obtain from Eqgs. (B.2)
o, = 11.618 MPa, a, = —9.001 MPa, oy = —25.316 MPa

Successive introduction of these values into Eq. (1.31), together with Eq. (1.30a), or application
of Egs. (B.6) yields the direction cosines that define the orientation of the planes on which oy, 05,

and o5 act:
I, = 0.0266, 1, = —0.6209, Iy = 0.7834
m; = —(0.8638, m, = 0.3802, my = (1.3306
n; = —0.5031, n, = —().6855, n. = —0.5262

Note that the directions of the principal stresses are seldom required for purposes of predicting
the behavior of structural members.

Example 1.7. Three-Dimensional Stress in a Machine Component
The stress tensor at a point in a machine element with respect to a Cartesian coordinate system is

given by the following array:

50 10 0
7] = [10 20 40 |MPa
0 40 30

®
Determine the state of stress and /4, /,, and /5 for anx’, y’, z' coordinate system defined by rotating
x, y through an angle of 8 = 45° counterclockwise about the z axis (Fig. 1.21a).
Figure 1.21. Example 1.7. Direction cosines for § = 45°.

¥ X | X % z
x | 1Nz Wz o
-1/42 W2 o
z 0 0 1
(b}

Solution

The direction cosines corresponding to the prescribed rotation of axes are given in Fig. 1.21b.
Thus, through the use of Eq. (1.28) we obtain

45 —15 28.28
[r:2] = | =15 25 28.28 | MPa
2828 2828 30



(8
It is seen that the arrays (f) and (g), when substituted into Eq. (1.34), both yield /; = 100 MPa, /,

= 1400 (MPa)2, and /5 =-53,000 (MPa)3, and the invariance of 7, /,, and /5 under the orthogonal
transformation is confirmed.

1.14 Normal and Shear Stresses on an Oblique Plane

A cubic element subjected to principal stresses oy, 05, and o5 acting on mutually perpendicular

principal planes is called in a state of triaxial stress (Fig. 1.22a). In the figure, the x, y, and z axes are
parallel to the principal axes. Clearly, this stress condition is not the general case of three-
dimensional stress, which was taken up in the last two sections. It is sometimes required to determine
the shearing and normal stresses acting on an arbitrary oblique plane of a tetrahedron, as in Fig.
1.22b, given the principal stresses or triaxial stresses acting on perpendicular planes. In the figure,
the x, y, and z axes are parallel to the principal axes. Denoting the direction cosines of plane ABC by
I, m, and n, Eqgs. (1.26) with o, = 0, 7,,, = 7,,, = 0, and so on, reduce to

(2)

Figure 1.22. Elements in triaxial stress.
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|

2

T

o3 & -7 "I
Ty

F4

(a)
Referring to Fig. 1.22a and definitions (a), the stress resultant p is related to the principal stresses
and the stress components on the oblique plane by the expression

pr=al + am+oint=d + 7
(1.36)
The normal stress ¢ on this plane, from Eq. (1.28a), is found as
o= o> + oy’ + o’
(1.37)

Substitution of this expression into Eq. (1.36) leads to
T = g‘ffl + (T%J'?‘]'z + gj:n: - g

(1.382)



or

]
“-

7 = o’ + a&m® + an’ — (off + o’ + o)
(1.38b)

Expanding and using the expressions 1 — [2=m? + n?, 1 — n*> = > + m?, and so on, the following result
is obtained for the shearing stress 7 on the oblique plane:

1/2

b |

= [{u‘, — o) P + (o2 — ) 'mPn? + (o — o)

(1.39)
This clearly indicates that if the principal stresses are all equal, the shear stress vanishes, regardless
of the choices of the direction cosines.

For situations in which shear as well as normal stresses act on perpendicular planes (Fig. 1.22b),
we have p,, p,, and p, defined by Eqgs. (1.26). Then, Eq. (1.37) becomes

o=gal’+ tT}.HI: + o.n® + 27,y Im + 7, mn + 7., In)
(1.40)
Hence,
7= |(od +1ym+ 7,0V + (1l + oym + 1. n)
112
+ {rad + Tpm =t n)? - a
(1.41)

where ¢ 1s given by Eq. (1.40). Formulas (1.37) through (1.41) represent the simplified
transformation expressions for the three-dimensional stress.

It is interesting to note that substitution of the direction cosines from Egs. (a) into Eq. (1.25) leads to
2 P.\2 1 \2
o ol Pl
l'_TI l:r: f_T.g

which is a stress ellipsoid having its three semiaxes as the principal stresses (Fig. 1.23). This
geometrical interpretation helps to explain the earlier conclusion that the principal stresses are the
extreme values of the normal stress. In the event that o = 0, = 03, a state of hydrostatic stress exists,

(1.42)

and the stress ellipsoid becomes a sphere. In this case, note again that any three mutually
perpendicular axes can be taken as the principal axes.

Figure 1.23. Stress ellipsoid.
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Octahedral Stresses

The stresses acting on an octahedral plane is represented by face ABC in Fig. 1.22b with Q4 = OB =
QC. The normal to this oblique face thus has equal direction cosines relative to the principal axes.

Since 2+ m? + n? =1, we have

(b)

Plane ABC is clearly one of eight such faces of a regular octahedron (Fig. 1.24). Equations (1.39) and
(b) are now applied to provide an expression for the octahedral shearing stress, which may be
rearranged to the form

Toa = 3l(00 — 02)” + (03 — 03) + (03 — 09)]"”
(1.43)
Figure 1.24. Stresses on an octahedron.
Through the use of Egs. (1.37) and (b), we obtain the octahedral normal stress:
Oo = 3oy + 03 + 03)
(1.44)

The normal stress acting on an octahedral plane is thus the average of the principal stresses, the mean
stress. The orientations of o and 7, are indicated in Fig. 1.24. That the normal and shear stresses

are the same for the eight planes is a powerful tool for failure analysis of ductile materials (see Sec.
4.8). Another useful form of Eq. (1.43) is developed in Section 2.15.

1.15 Mohr’s Circles in Three Dimensions

Consider a wedge shown in Fig. 1.25a, cut from the cubic element subjected to triaxial stresses (Fig.
1.22a). The only stresses on the inclined x' face (parallel to the z axis) are the normal stress o, and



the shear stress 7, acting in the x'y’ plane. Inasmuch as the foregoing stresses are determined from
force equilibrium equations in the x'y' plane, they are independent of the stress o5. Thus, the

transformation equations of plane stress (Sec. 1.9) and Mohr’s circle can be employed to obtain the
stresses o, and 7,4, The foregoing conclusion is also valid for normal and shear stresses acting on

inclined faces cut through the element parallel to the x and y axes.
Figure 1.25. Triaxial state of stress: (a) wedge; (b) planes of maximum shear stress.

2]
ial ib)

The stresses acting on elements oriented at various angles to the principal axes can be visualized with
the aid of Mohr’s circle. The cubic element (Fig. 1.22a) viewed from three different directions is
sketched in Figs. 1.26a to c. A Mohr’s circle is drawn corresponding to each projection of an
element. The cluster of three circles represents Mohr’s circles for triaxial stress (Fig. 1.26d). The
radii of the circles are equal to the maximum shear stresses, as indicated in the figure. The normal
stresses acting on the planes of maximum shear stresses have the magnitudes given by the abscissa as
of the centers of the circles.

Figure 1.26. (a—c) Views of elements in triaxial stresses on different principal axes; (d) Mohr’s
circles for three-dimensional stress.
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The largest shear stresses occur on planes oriented at 45° to the principal planes. The shear stress is
a maximum located as the highest point on the outer circle. The value of the absolute maximum
shearing stress is therefore

[T]11;l?¢:|:ﬂ = I:T13JI£ o %[G‘I o JFJ
(1.45)

acting on the planes that bisect the planes of the maximum and minimum principal stresses, as shown
in Fig. 1.25b. It is noted that the planes of maximum shear stress may also be ascertained by
substituting n? = 1 — I> — m? into Eq. (1.38b), differentiating with respect to / and m, and equating the
resulting expressions to zero (Prob. 1.80).

Determining the absolute value of maximum shear stress is significant when designing members made
of ductile materials, since the strength of the material depends on its ability to resist shear stress (Sec.
4.6). Obviously, as far as the stress magnitudes are concerned, the largest circle is the most
significant one. However, all stresses in their various transformations may play a role in causing
failure, and it is usually instructive to plot all three principal circles of stress, as depicted in the
figure. An example of this type occurs in thin-walled pressurized cylinders, where oy = 04, 6, = 0,

and o, = o3 = 0 at the outer surface (Table 1.1). It is also interesting to note that, in special cases,
where two or all principal stresses are equal, a Mohr’s circle becomes a point.

Equations of Three Mohr’s Circles for Stress

It has been demonstrated that, given the values of the principal stresses and of the direction cosines
for any oblique plane (Fig. 1.22b), the normal and shear stresses on the plane may be ascertained
through the application of Eqgs. (1.37) and (1.38). This may also be accomplished by means of a
graphical technique due to Mohr [Refs. 1.10 through 1.12]. The latter procedure was used in the early
history of stress analysis, but today it is employed only as a heuristic device.

In the following discussion, we demonstrate that the aforementioned equations together with the

relation /2 + m? + n*> = 1 are represented by three circles of stress, and the coordinates (o, 7) locate a
point in the shaded area of Fig. 1.26d [Ref. 1.13]. These simultaneous equations are

l=P2+m+n
og=ol’+aom + on
r=ml + am’ + oan’ - o
(a)
where /2> 0, m?> 0, and n? > 0. Solving for the direction cosines, results in
& + (o — o) (o — o3)

= — =0
(op — ;m)(oy — o3)

., (o - a)(o - ay)
- = =0
'fffa - ffﬁ}':ﬂr: - Ul]

ot (o—a)(o— o)
n° = = ()
(o3 — o ) (o3 — 02)

(1.46)



Inasmuch as o, > 0, > 03, the numerators of Eqgs. (1.46) satisfy
a + (o — &) o—- o) =0
o+ {oc—-m)e—o)=0
o+ (o0—o)(oc— ) =0
(b)

as the denominators of Eqs. (1.46) are (o; — 0,) > 0 and (o, — 03) > 0, (6, — 03) > 0 and (0, — 77) <0,
(03— 07) <0and (o5 — 0,) <0, respectively.

Finally, the preceding inequalities may be expressed as follows

o + [o = (o + )P =302 — 03)" = (T23) 7
o + I‘T - %((TI + "T?-Illzi-_ll(ﬂ-l - a }': = (Tlﬂﬁmx
o+ I‘T - %((TI + ‘73”2'3-_[1(0-1 - ‘73}': = (lejﬁmx

(1.47)

Equations (1.47) represent the formulas of the three Mohr’s circles for stress, shown in Fig. 1.26d.
Stress points (o, 7) satisfying the equations for circles centered at C; and C, lie on or outside circles,

but for the circle centered at C; lie on or inside circle. We conclude therefore that an admissible state
of stress must lie on Mohr’s circles or within the shaded area enclosed by these circles.

Example 1.8. Analysis of Three-Dimensional Stresses in a Member

The state of stress on an element of a structure is illustrated in Fig. 1.27a. Using Mohr’s circle,
determine (a) the principal stresses and (b) the maximum shearing stresses. Show results on a
properly oriented element. Also, (¢) apply the equations developed in Section 1.14 to calculate
the octahedral stresses.

Figure 1.27. Example 1.8. (a) Element in three-dimensional stress; (b) Mohr’s circles of
stress; (c¢) stress element for " = 26,567
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a. First, Mohr’s circle for the transformation of stress in the xy plane is sketched in the usual
manner as shown, centered at C, with diameter 4,45 (Fig. 1.27b). Next, we complete the three-

dimensional Mohr’s circle by drawing two additional circles of diameters 4,4, and 4,45 in the
figure. Referring to the circle, the principal stresses are o; = 100 MPa, ¢, =40 MPa, and o5 = —
60 MPa. Angle 7/ = 26:56" a5 tan 1an 20, The results are sketched on a properly oriented
element in Fig. 1.27¢c.

b. The absolute maximum shearing stress, point B3, equals the radius of the circle centered at Cy
of diameter A, A5. Thus,

Solution

=

[Tli’ijm:lx - LTmux]u = %Il“ﬂ - {_ﬁﬂ” = 80 MPa
The maximum shearing stress occurs on the planes 45° from the y' and z faces of the element of

Fig. 1.27c.
c¢. The octahedral normal stress, from Eq. (1.44), is

Toer = 3(100 + 40 — 60) = 26.7 MPa
The octahedral shearing stress, using Eq. (1.43), is
Toa = S[(100 = 40)% + (40 + 60)> + (=60 — 100)*]' = 66 MPa

Comments

A comparison of the results (see Fig. 1.27b) shows that

Cru:n:.l = oy :'-'”-"1 T1|¢1 = I:"-m:w}rr
That 1s, the maximum principal stress and absolute maximum shear stress are greater than their
octahedral counterparts.

1.16 Boundary Conditions in Terms of Surface Forces

We now consider the relationship between the stress components and the given surface forces acting



on the boundary of a body. The equations of equilibrium that must be satisfied within a body are
derived in Section 1.8. The distribution of stress in a body must also be such as to accommodate the
conditions of equilibrium with respect to externally applied forces. The external forces may thus be
regarded as a continuation of the internal stress distribution.

Consider the equilibrium of the forces acting on the tetrahedron shown in Fig. 1.19b, and assume that
oblique face ABC is coincident with the surface of the body. The components of the stress resultant p
are thus now the surface forces per unit area, or surface tractions, p,, p,, and p,. The equations of

equilibrium for this element, representing boundary conditions, are, from Eqs. (1.26),
Py = ot T m -+t 7.0
oo o Sl ¢ Sl g

Py = Tl + 70t + o0t

(1.48)

For example, if the boundary is a plane with an x-directed surface normal, Eqs. (1.48) give p, = o,,

Py = Ty and p, = 7,..; under these circumstances, the applied surface force components p,, p,,, and p,
are balanced b , and 7 __, respectively.
Y Oys Ty 2> TESP y

It is of interest to note that, instead of prescribing the distribution of surface forces on the boundary,
the boundary conditions of a body may also be given in terms of displacement components.
Furthermore, we may be given boundary conditions that prescribe surface forces on one part of the
boundary and displacements on another. When displacement boundary conditions are given, the
equations of equilibrium express the situation in terms of strain, through the use of Hooke’s law and
subsequently in terms of the displacements by means of strain—displacement relations (Sec. 2.3). It is
usual in engineering problems, however, to specify the boundary conditions in terms of surface
forces, as in Eq. (1.48), rather than surface displacements. This practice is adhered to in this text.

1.17 Indicial Notation

A system of symbols, called indicial notation, index notation, also known as tensor notation, to
represent components of force, stress, displacement, and strain is used throughout this text. Note that a
particular class of tensor, a vector, requires only a single subscript to describe each of its
components. Often the components of a tensor require more than a single subscript for definition. For
example, second- order or second-rank tensors, such as those of stress or inertia, require double
subscripting: t;; Quantities such as temperature and mass are scalars, classified as tensors of zero

ij> lJ
rank.

Tensor or indicial notation, here briefly explored, offers the advantage of succinct representation of
lengthy equations through the minimization of symbols. In addition, physical laws expressed in tensor
form are independent of the choice of coordinate system, and therefore similarities in seemingly
different physical systems are often made more apparent. That is, indicial notation generally provides
insight and understanding not readily apparent to the relative newcomer to the field. It results in a
saving of space and serves as an aid in nonnumerical computation.

The displacement components u, v, and w, for instance, are written uy, u,, u3 (or u, , U, , u.) and
collectively as u;, with the understanding that the subscript i canbe 1, 2, and 3 (or x, y, z). Similarly,

the coordinates themselves are represented by x1, x,, x5, or simply x,(i = 1, 2, 3), and x, x,, x_, or x; (i

y}



=X, ¥, z). Many equations of elasticity become unwieldy when written in full, unabbreviated term;
see, for example, Egs. (1.28). As the complexity of the situation described increases, so does that of
the formulations, tending to obscure the fundamentals in a mass of symbols. For this reason, the more
compact indicial notation is sometimes found in publications.

Two simple conventions enable us to write most equations developed in this text in indicial notation.
These conventions, relative to range and summation, are as follows:

Range convention: When a lowercase alphabetic subscript is unrepeated, it takes on all values
indicated.
Summation convention: When a lowercase alphabetic subscript is repeated in a term, then

summation over the range of that subscript is indicated, making unnecessary the use of the
summation symbol.

The introduction of the summation convention is attributable to A. Einstein (1879-1955). This
notation, in conjunction with the tensor concept, has far-reaching consequences not restricted to its
notational convenience [Refs. 1.14 and 1.15].
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Problems

Sections 1.1 through 1.8

1.1. Two prismatic bars of a by b rectangular cross section are glued as shown in Fig. P1.1. The
allowable normal and shearing stresses for the glued joint are 700 and 560 kPa, respectively.
Assuming that the strength of the joint controls the design, what is the largest axial load P that
may be applied? Use ¢ =40°, a = 50 mm, and » = 75 mm.

Figure P1.1.

1.2. A prismatic steel bar of @ = b = 50-mm square cross section is subjected to an axial tensile
load P =125 kN (Fig. P1.1). Calculate the normal and shearing stresses on all faces of an
element oriented at (a) ¢ = 70°, and (b) ¢ =45°.

1.3. A prismatic bar is under an axial load, producing a compressive stress of 75 MPa on a plane
at an angle 0 = 30° (Fig. P1.3). Determine the normal and shearing stresses on all faces of an
element at an angle of 8 = 50°.

Figure P1.3.

N

1.4. A square prismatic bar of 1300-mm? cross-sectional area is composed of two pieces of
wood glued together along the x' plane, which makes an angle 6 with the axial direction (Fig.
1.6a). The normal and shearing stresses acting simultaneously on the joint are limited to 20
and 10 MPa, respectively, and on the bar itself, to 56 and 28 MPa, respectively. Determine the
maximum allowable axial load that the bar can carry and the corresponding value of the angle
0.

1.5. Calculate the maximum normal and shearing stresses in a circular bar of diameter d = 50 mm
subjected to an axial compression load of P =150 kN through rigid end plates at its ends.

1.6. A frame is formed by two metallic rectangular cross sectional parts soldered along their
inclined planes as illustrated in Fig. P1.6. What is the permussible axial load P,; that can be
applied to the frame, without exceeding a normal stress of o, or a shearing stress of 7,; on the
inclined plane? Given: a =10 mm, b =75 mm, ¢ =20 mm, 0 = 55°, o,y =25 MPa, and 7,; = 12
MPa. Assumption: Material strength in tension is 90 MPa.



Figure P1.6.
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1.7. Redo Prob. 1.6 for the case in which g,; = 20 MPa, 7,; = 8 MPa, and 6 = 40°.

1.8. Determine the normal and shearing stresses on an inclined plane at an angle ¢ through the bar
subjected to an axial tensile force of P (Fig. P1.1). Given: a =15 mm, b =30 mm, ¢ = 50°, P
=120 kN.

1.9. Redo Prob. 1.8, for an angle of ¢ = 30° and P =-100 kN.

1.10. A cylindrical pipe of 160-mm outside diameter and 10-mm thickness, spirally welded at an
angle of ¢ = 40° with the axial (x) direction, is subjected to an axial compressive load of P =
150 kN through the rigid end plates (Fig. P1.10). Determine the normal o, and shearing

stresses 7., acting simultaneously in the plane of the weld.

Figure P1.10.

Y

1.11. The following describes the stress distribution in a body (in megapascals):

S4+2y, G, =xy—yz, Tyu=-—-xy+1

xy

o, =X
Ty =4 Tis — XL — 2.1(3}*, T, = ¥t = 72
Determine the body force distribution required for equilibrium and the magnitude of its
resultant at the point x =—10 mm, y = 30 mm, z = 60 mm.
1.12. Given zero body forces, determine whether the following stress distribution can exist for a
body in equilibrium:
o, = —2cxy, Oy Cagy a, =1
"-.'c_'.' = {'-I(E"E S .}JEII T C3XZ, Tyz — L3, T_'r: =
Here the ¢’s are constants.

1.13. Determine whether the following stress fields are possible within an elastic structural
member in equilibrium:



l =Pt Xy ]
T3 1. 4
b.L XV A
The ¢’s are constant, and it is assumed that the body forces are negligible.
1.14. For what body forces will the following stress field describe a state of equilibrium?
o, = —2x° + 3}12 — 8z, =gy =7

o, = _2}12-. i e —3x + Yk 1

i, =35 # Y+ 32 =5, 1, =0

Sections 1.9 through 1.11
1.15. and 1.16. The states of stress at two points in a loaded body are represented in Figs. P1.15

and P1.16. Calculate for each point the normal and shearing stresses acting on the indicated
inclined plane. As is done in the derivations given in Section 1.9, use an approach based on
the equilibrium equations applied to the wedge-shaped element shown.

Figure P1.15.
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Figure P1.16.
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1.17. and 1.18. Resolve Probs. 1.15 and 1.16 using Egs. (1.18).
1.19. At a point in a loaded machine, the normal and shear stresses have the magnitudes and
directions acting on the inclined element shown in Fig. P1.19. What are the stresses o, o,

and 7,,, on an element whose sides are parallel to the xy axes?
Figure P1.19.
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1.20. The stresses at a point in the enclosure plate of a tank are as depicted in the element of Fig.
P1.20. Find the normal and shear stresses at the point on the indicated inclined plane. Show
the results on a sketch of properly oriented element.

Figure P1.20.
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1.21. A welded plate carries the uniform biaxial tension illustrated in Fig. P1.21. Determine the
maximum stress ¢ for two cases: (a) The weld has an allowable shear stress of 30 MPa. (b)
The weld has an allowable normal stress of 80 MPa.
Figure P1.21.

60 MPa

1.22. Using Mohr’s circle, solve Prob. 1
1.23. Using Mohr’s circle, solve Prob. 1.16.
1.24. Using Mohr’s circle, solve Prob. 1.20.
1.25. Using Mohr’s circle, solve Prob. 1.21.

1.26. The states of stress at two points in a loaded beam are represented in Fig. P1.26a and b.
Determine the following for each point: (a) The magnitude of the maximum and minimum
principal stresses and the maximum shearing stress; use Mohr’s circle. (b) The orientation of
the principal and maximum shear planes; use Mohr’s circle. (¢) Sketch the results on properly
oriented elements. Check the values found in (a) and (b) by applying the appropriate



equations.
Figure P1.26.
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1.27. By means of Mohr’s circle, verify the results given by Egs. (1.35).

1.28. An element in plane stress (Fig. 1.3b) is subjected to stresses o, = 50 MPa, 6, = —190 MPa,

and 7,

oriented element.

=—70 MPa. Determine the principal stresses and show them on a sketch of a properly

1.29. For an element in plane stress (EFig. 1.3b), the normal stresses are o, = 60 MPa and o, = —
100 MPa. What is the maximum permissible value of shearing stress z,,, if the shearing stress
in the material is not to exceed 140 MPa?

1.30. The state of stress on an element oriented at & = 60° is shown in Fig. P1.30. Calculate the
normal and shearing stresses on an element oriented at 6 = 0°.

Figure P1.30.
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1.31. A thin skewed plate is subjected to a uniform distribution of stress along its sides, as shown

in Fig. P1.31. Calculate (a) the stresses o,, 0, 0,,, and (b) the principal stresses and their

orientations.
Figure P1.31.
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1.32. The stress acting uniformly over the sides of a rectangular block is shown in Fig. P1.32.
Calculate the stress components on planes parallel and perpendicular to mn. Show the results
on a properly oriented element.




Figure P1.32.
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1.33. Redo Prob. 1.31 for the stress distribution shown in Fig. P1.33.

Figure P1.33.
70 MPa
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1.34. A thin-walled cylindrical tank of radius 7 is subjected simultaneously to internal pressure p

and a compressive force P through rigid end plates. Determine the magnitude of force P to
produce pure shear in the cylindrical wall.

1.35. A thin-walled cylindrical pressure vessel of radius 120 mm and a wall thickness of 5 mm is
subjected to an internal pressure of p =4 MPa. In addition, an axial compression load of P =
30z kN and a torque of 7= 10z kN - m are applied to the vessel through the rigid end plates
(Fig. P1.35). Determine the maximum shearing stresses and associated normal stresses in the
cylindrical wall. Show the results on a properly oriented element.

Figure P1.35.
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1.36. A pressurized thin-walled cylindrical tank of radius » = 60 mm and wall thickness ¢ =4 mm
1s acted on by end torques 7= 600 N - m and tensile forces P (Fig. P1.35 with sense of P
reversed). The internal pressure is p =5 MPa. Calculate the maximum permissible value of P
if the allowable tensile stress in the cylinder wall is 80 MPa.

1.37. A shaft of diameter d carries an axial compressive load P and two torques 77, 75 (Fig.

P1.37). Determine the maximum shear stress at a point A on the surface of the shaft. Given: d
=100 mm, P=400kN, 77 =10kN - m, and 7, =2 kN - m.

Figure P1.37.



1.38. What are the normal and shearing stresses on the spiral weld of the aluminum shaft of
diameter d subjected to an axial load P and a torque T (Fig. P1.38)? Given: P=120 kN, T'=
1.5 kN - m, d =40 mm, and ¢ = 50°.

Figure P1.38.

1.39. A hollow generator shaft of 180-mm outer diameter and 120-mm inner diameter carries
simultaneously a torque 7'= 20 kN - m and axial compressive load P =700 kN. What is the
maximum tensile stress?

1.40. A cantilever beam of thickness # 1s subjected to a constant traction 7, (force per unit area) at
its upper surface, as shown in Fig. P1.40. Determine, in terms of 7, /4, and L, the principal
stresses and the maximum shearing stress at the corner points 4 and B.

Figure P1.40.

1.41. A hollow shaft of 60-mm outer diameter and 30-mm inner diameter is acted on by an axial
tensile load of 50 kN, a torque of 500 N - m and a bending moment of 200 N - m Use Mohr’s
circle to determine the principal stresses and their directions.

1.42. Given the stress acting uniformly over the sides of a thin, flat plate (Fig. P1.42), determine

(a) the stresses on planes inclined at 20° to the horizontal and (b) the principal stresses and
their orientations.

Figure P1.42.



A--L—--!——-q—D

1.43. A steel shaft of radius » = 75 mm is subjected to an axial compression P = 81 kN, a twisting
couple 7=15.6 kN - m, and a bending moment M = 13 kN - m at both ends. Calculate the
magnitude of the principal stresses, the maximum shear stress, and the planes on which they
act in the shaft.

1.44. A structural member is subjected to a set of forces and moments. Each separately produces

the stress conditions at a point shown in Fig. P1.44. Determine the principal stresses and their
orientations at the point under the effect of combined loading.

Figure P1.44.
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1.45. Redo Prob. 1.44 for the case shown in Fig. P1.45.
Figure P1.45.
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1.46. Redo Prob. 1.44 for the case shown in Fig. P1.46.
Figure P1.46.
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1.47. The shearing stress at a point in a loaded structure is z,,, = 40 MPa. Also, it is known that the
principal stresses at this point are o; = 40 MPa and ¢, =—-60 MPa. Determine o,
(compression) and o, and indicate the principal and maximum shearing stresses on an
appropriate sketch.



1.48. The state of stress at a point in a structure 1s depicted in Fig. P1.48. Calculate the normal
stress o and the angle 6.

Figure P1.48.
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1.49. Acting at a point on a horizontal plane in a loaded machine part are normal stress o, =20

MPa and a (negative) shearing stress. One principal stress at the point is 10 MPa (tensile),
and the maximum shearing stress 1s of magnitude 50 MPa. Find, by the use of Mohr’s circle,
(a) the unknown stresses on the horizontal and vertical planes and (b) the unknown principal
stress. Show the principal stresses on a sketch of a properly oriented element.

1.50. For a state of stress at a point in a structure, certain stress components are given for each of
the two orientations (Fig. P1.50). Applying transformation equations, calculate stress
components g, and 7, and the angle 6, between zero and 90°.

Figure P1.50.
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1.51. A solid shaft 200 mm in diameter rotates at /= 20 rps and is subjected to a bending moment
of 217 kN - m. Determine the torque 7 and power P that can also act simultaneously on the
shaft without exceeding a resultant shearing stress of 56 MPa and a resultant normal stress of
98 MPa (with f'expressed in rps and torque in N - m, P =2zf - T in watts).

1.52. The cylindrical portion of a compressed-air tank is made of 5-mm-thick plate welded along a
helix at an angle of ¢ = 60° with the axial direction (Fig. P1.52). The radius of the tank 1s 250
mm. If the allowable shearing stress parallel to the weld is 30 MPa, calculate the largest
internal pressure p that may be applied.

Figure P1.52.
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1.53. A thin-walled cylindrical tank is subjected to an internal pressure p and uniform axial tensile
load P (Fig. P1.53). The radius and thickness of the tank are » = 0.45 mand ¢ = 5 mm. The
normal stresses at a point 4 on the surface of the tank are restricted to o,.= 84 MPa and 0, =

56 MPa, while shearing stress 7.

w18 not specified. Determine the values of p and P. Use 9 =
30°.

Figure P1.53.
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1.54. For a given state of stress at a point in a frame, certain stress components are known for each

of the two orientations shown in Fig. P1.54. Using Mohr’s circle, determine the following
stress components: (a) z,,, and (b) 7,4, and o,,.

Figure P1.54.
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1.55. The state of stress at a point in a machine member is shown in Fig. P1.55. The allowable
compression stress at the point is 14 MPa. Determine (a) the tensile stress o, and (b) the

maximum principal and maximum shearing stresses in the member. Sketch the results on
properly oriented elements.

Figure P1.55.
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1.56. In Example 1.3, taking o, = 0, investigate the maximum shearing stresses on all possible
(three-dimensional) planes.

1.57. A thin-walled pressure vessel of 60-mm radius and 4-mm thickness 1s made from spirally
welded pipe and fitted with two rigid end plates (Fig. P1.57). The vessel is subjected to an

internal pressure of p =2 MPa and a P = 50 kN a axial load. Calculate (a) the normal stress
perpendicular to the weld; (b) the shearing stress parallel to the weld.

Figure P1.57.
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1.58. A thin-walled cylindrical pressure vessel of 0.3-m radius and 6-mm wall thickness has a
welded spiral seam at an angle of ¢ = 30° with the axial direction (Fig. P1.10). The vessel is
subjected to an internal gage pressure of p Pa and an axial compressive load of P =97z kN
applied through rigid end plates. Find the allowable value of p if the normal and shearing
stresses acting simultaneously in the plane of welding are limited to 21 and 7 MPa,
respectively.

Sections 1.12 and 1.13

1.59. The state of stress at a point in an x, y, z coordinate system is

20 12 -15
k2 4 10| MPa
=45 40 6

Determine the stresses and stress invariants relative to the x’, ', z’ coordinate system defined
by rotating x, y through an angle of 30° counterclockwise about the z axis.

1.60. Redo Prob. 1.59 for the case in which the state of stress at a point in an x, y, z coordinate

system 1s
60 40 —40
4() 0 20 MPa
=40 =20 20

1.61. The state of stress at a point relative to an x, y, z coordinate system is given by

12 4 2
4 -8 -—-1|MPa
2. =] 6

Calculate the maximum shearing stress at the point.
1.62. At a point in a loaded member, the stresses relative to an x, y, z coordinate system are given
by
60 20 10
20 —40 —5|MPa
10 =% Bl



Calculate the magnitude and direction of maximum principal stress.
1.63. For the stresses given in Prob. 1.59, calculate the maximum shearing stress.

1.64. At a specified point in a member, the state of stress with respect to a Cartesian coordinate
system is given by

12 6 9
6 10 3| MPa
4 3 14

Calculate the magnitude and direction of the maximum principal stress.

1.65. At a point in a loaded structure, the stresses relative to an x, y, z coordinate system are given
by
30 0 20

0 0 (O|MPa
20 04 0

Determine by expanding the characteristic stress determinant: (a) the principal stresses; (b)
the direction cosines of the maximum principal stress.

1.66. The stresses (in megapascals) with respect to an x, y, z coordinate system are described by

o, = X+ ¥, O ==X+ 0¥ g

[t gt et Toy = Tyr = T

=]

v

At point (3, 1, 5), determine (a) the stress components with respect to x’, y’, z"if

y 3 _ V3 i _ V3
===l My = I Hy = 2 » fl; = L My = 2
, T -
and (b) the stress components with respect to x", y", z"if it = 2/V5 my = =UVS ‘and py =1,

Show that the quantities given by Eq. (1.34) are invariant under the transformations (a) and
(b).
1.67. Determine the stresses with respect to the x', y’, z" axes in the element of Prob. 1.64 if

V3
=5 b=—3~ L=0

"y

W
5
nm =1, n. = 1, fi, = 1

1.68. For the case of plane stress, verify that Eq. (1.33) reduces to Eq. (1.20).

1.69. Obtain the principal stresses and the related direction cosines for the following cases:
| 6

5 | MPa,

I

1
Hy = niy = =, miy = U

L =R PN |
th 2

1432 0.8 1.55
0.8 697 52 |MPa
bl 155 52 16.3




Sections 1.14 through 1.17

1.70. The stress at a point in a machine component relative to an x, y, z coordinate system is given

by
100 40 )]
40 60 80 |MPa
0 8) 20

Referring to the parallelepiped shown in Fig. P1.70, calculate the normal stress ¢ and the
shear stress 1 at point Q for the surface parallel to the following planes: (a) CEBG, (b) ABEF,
(c) AEG. [Hint: The position vectors of points G, E, 4 and any point on plane AEG are,
respectively, r, = 3i, r, = 4j, r, = 2k, r =xi + yj + zk. The equation of the plane is given by

=)o) . —r) =0

(P1.70)
Figure P1.70.
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=3 W F
-3 4 0|=0 or dx+3y+6z=12
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The direction cosines are then
4 4 3 6
= ) 3} vl -} - _u'r_, ’n - —F, ,F - 1
V4t + 3+ 5 V6l V6l Vol
1.71. Re-solve Prob. 1.70 for the case in which the dimensions of the parallelepiped are as shown

[

in Fig. P1.71.
Figure P1.71.
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1.72. The state of stress at a point in a member relative to an x, y, z coordinate system is



10 30 0 | MPa
- 10 0 a0

Determine the normal stress ¢ and the shearing stress 7 on the surface intersecting the point
and parallel to the plane: 2x +y —3z=09.

1.73. For the stresses given in Prob. 1.62, calculate the normal stress ¢ and the shearing stress 7 on
a plane whose outward normal is oriented at angles 35°, 60°, and 73.6° with the x, y, and z
axes, respectively.

1.74. At a point in a loaded body, the stresses relative to an x, y, z coordinate system are

40 40 30
40 20 0 |MPa
30 0 20

Determine the normal stress ¢ and the shearing stress 7 on a plane whose outward normal is
oriented at angles of 40°, 75°, and 54° with the x, y, and z axes, respectively.

1.75. Determine the magnitude and direction of the maximum shearing stress for the cases given in
Prob. 1.69.

1.76. The stresses at a point in a loaded machine bracket with respect to the x, y, z axes are given

as
6 0 0
0 43 0 | MPa
kg =72

Determine (a) the octahedral stresses; (b) the maximum shearing stresses.
1.77. The state of stress at a point in a member relative to an x, y, z coordinate system is given by

100 0 =80
0 20 (0 | MPa
—80 0 20)

Calculate (a) the principal stresses by expansion of the characteristic stress determinant; (b)
the octahedral stresses and the maximum shearing stress.

1.78. Given the principal stresses oy, 0,, and o5 at a point in an elastic solid, prove that the
maximum shearing stress at the point always exceeds the octahedral shearing stress.

1.79. Determine the value of the octahedral stresses of Prob. 1.64.

1.80. By using Eq. (1.38b), verify that the planes of maximum shearing stress in three dimensions
bisect the planes of maximum and minimum principal stresses. Also find the normal stresses
associated with the shearing plane by applying Eq. (1.37).

1.81. A point in a structural member is under three-dimensional stress with g, = 100 MPa, o, = 20
MPa, 7,,, = 60 MPa, and o, as shown in Fig. P1.81. Calculate (a) the absolute maximum shear
stress for o, = 30 MPa; (b) the absolute maximum shear stress for o, = —30 MPa.

Figure P1.81.



Determine, using only Mohr’s circle, the principal stresses and their orientation with respect
to the original system.

1.82. Consider a point in a loaded body subjected to the stress field represented in Fig. P1.82.

Figure P1.82.
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1.83. Re-solve Prob. 1.82 for the case of a point in a loaded body subjected to the following
nonzero stress components: o, = 80 MPa, o, = —60 MPa, and 7,,, = 40 MPa.

1.84. The state of stress at a point in a loaded structure is represented in Fig. P1.84. Determine (a)
the principal stresses; (b) the octahedral stresses and maximum shearing stress.

Figure P1.84.
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1.85. Find the normal and shearing stresses on an oblique plane defined byI R ffi, Vi3 and

]
W13,

The principal stresses are o; = 35 MPa, 0, =—14 MPa, and o3 =28 MPa. If this plane is on
the boundary of a structural member, what should be the values of surface forces p,, p,, and p,
on the plane?

1.86. Redo Prob. 1.85 for an octahedral plane, oy = 40 MPa, o, = 15 MPa, and o5 = 25 MPa.



Chapter 2. Strain and Material Properties

2.1 Introduction

In Chapter 1, our concern was with the stresses within a body subject to a system of external forces.
We now turn to the deformations caused by these forces and to a measure of deformational intensity
called strain, discussed in Sections 2.3 through 2.5. Deformations and strains, which are necessary to
an analysis of stress, are also important quantities in themselves, for they relate to changes in the size
and shape of a body.

Recall that the state of stress at a point can be determined if the stress components on mutually
perpendicular planes are given. A similar operation applies to the state of strain to develop the
transformation relations that give two-dimensional and three-dimensional strains in inclined
directions in terms of the strains in the coordinate directions. The plane strain transformation
equations are especially important in experimental investigations, where normal strains are measured
with strain gages. It is usually necessary to use some combination of strain gages or a strain rosette,
with each gage measuring the strain in a different direction.

The mechanical properties of engineering materials, as determined from tension test, are considered
in Sections 2.6 through 2.8. Material selection and stress—strain curves in tension, compression, and
shear are also briefly discussed. Following this, there is a discussion of the relationship between
strain and stress under uniaxial, shear, and multiaxial loading conditions. The measurement of strain
and the concept of strain energy are taken up in Sections 2.12 through 2.15. Finally, Saint-Venant’s
principle, which is extremely useful in the solution of practical problems, is introduced in Section
2.16.

2.2 Deformation

Let us consider a body subjected to external loading that causes it to take up the position pictured by
the dashed lines in Fig. 2.1, in which 4 is displaced to 4', B to B’, and so on, until all the points in the
body are displaced to new positions. The displacements of any two points such as 4 and B are simply
AA' and BB', respectively, and may be a consequence of deformation (straining), rigid-body motion
(translation and rotation), or some combination. The body is said to be strained if the relative
positions of points in the body are altered. If no straining has taken place, displacements 44" and BB’
are attributable to rigid-body motion. In the latter case, the distance between 4 and B remains fixed;
that 1s, Ly = L. Such displacements are not discussed in this chapter.

Figure 2.1. Plane displacement and strain in a body.

¥
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To describe the magnitude and direction of the displacements, points within the body are located with
respect to an appropriate coordinate reference as, for example, the xyz system. Therefore, in the two-



dimensional case shown in Fig. 2.1, the components of displacement of point 4 to 4’ can be
represented by u and v in the x and y coordinate directions, respectively. In general, the components
of displacement at a point, occurring in the x, y, and z directions, are denoted by u, v, and w,
respectively. The displacement at every point within the body constitutes the displacement field, u =
u(x, y,z),v=wvx,y, z), and w=w(x, y, z). In this text, mainly small displacements are considered, a
simplification consistent with the magnitude of deformation commonly found in engineering
structures. The strains produced by small deformations are small compared to unity, and their
products (higher-order terms) are neglected. For purposes of clarity, small displacements with which
we are concerned will be shown highly exaggerated on all diagrams.

Superposition

The small displacement assumption leads to one of the basic fundamentals of solid mechanics, called
the principle of superposition. This principle 1s valid whenever the quantity (stress or displacement)
to be determined 1s a /inear function of the loads that produce it. For the foregoing condition to exist,
material must be linearly elastic. In such situations, the total quantity owing to the combined loads
acting simultaneously on a member may be obtained by determining separately the quantity
attributable to each load and combining the individual results.

For example, normal stresses caused by axial forces and bending simultaneously (see Table 1.1) may
be obtained by superposition, provided that the combined stresses do not exceed the proportional
limit of the material. Likewise, shearing stresses caused by a torque and a vertical shear force acting
simultaneously in a beam may be treated by superposition. Clearly, superposition cannot be applied
to plastic deformations. The principle of superposition is employed repeatedly in this text. The
motivation for superposition is the replacement of a complex load configuration by two or more
simpler loads.

2.3 Strain Defined

For purposes of defining normal strain, refer to Fig. 2.2, where line 4B of an axially loaded member
has suffered deformation to become A'B’. The length of AB 1s Ax (Fig. 2.2a). As shown in Fig. 2.2b,
points A and B have each been displaced: 4 an amount «, and B, u + Au. Stated differently, point B
has been displaced by an amount Au in addition to displacement of point 4, and the length Ax has
been increased by Au. Normal strain, the unit change in length, is defined as

Au  du

g = lim — =—
Yoar—0 Ax dx

2.1)

Figure 2.2. Normal strain in a prismatic bar: (a) undeformed state; (b) deformed state.
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In view of the limiting process, Eq. (2.1) represents the strain at a point, the point to which Ax
shrinks.

If the deformation is distributed uniformly over the original length, the normal strain may be written
L-L, &
L, La

£,

2.2)

where L, L, and ¢ are the final length, the original length, and the change of length of the member,
respectively. When uniform deformation does not occur, the aforementioned is the average strain.

Plane Strain

We now investigate the case of two-dimensional or plane strain, wherein all points in the body,
before and after application of load, remain in the same plane. Two-dimensional views of an element
with edges of unit lengths subjected to plane strain are shown in three parts in Fig. 2.3. We note that
this element has no normal strain ¢, and no shearing strains y,, and y,,, in the xz and yz planes,

respectively.
Figure 2.3. Strain components &,, &y, and ., in the xy plane.
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Referring to Fig. 2.4, consider an element with dimensions dx, dy and of unit thickness. The total

deformation may be regarded as possessing the following features: a change in length experienced by
the sides (Fig. 2.4a) and a relative rotation without accompanying changes of length (Fig. 2.4b).

Figure 2.4. Deformations of an element: (a) normal strain; (b) shearing strain.
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Recalling the basis of Eq. (2.1), two normal or longitudinal strains are apparent upon examination of
Fig. 2.4a:

R dv
E.'I' = .._'5‘ E" v = ._
ax dy

(2.3a)

A positive sign is applied to elongation; a negative sign, to contraction.



Now consider the change experienced by right angle DAB (Fig. 2.4b). We shall assume the angle o,
between AB and A'B’ to be so small as to permit the approximation a, = tan a,. Also, in view of the
smallness of a,, the normal strain is small, so 4B = A'B". As a consequence of the aforementioned
considerations, a, = 0v/0Ox, where the counterclockwise rotation 1s defined as positive. Similar
analysis leads to —a,, = 0u/0y. The total angular change of angle DAB, the angular change between
lines in the x and y directions, is defined as the shearing strain and denoted by v,

e an

4 s TR S
"'L : ! day X

(2.3b)

The shear strain is positive when the right angle between two positive (or negative) axes decreases.
That is, if the angle between +x and +y or —x and —y decreases, we have positive v,,; otherwise the

shear strain 1s negative.

Three-Dimensional Strain

In the case of a three-dimensional element, a rectangular prism with sides dx, dy, dz, an essentially
identical analysis leads to the following normal and shearing strains:

i v dw
Ey = gy = e =
X ? dy o
it o i ol oW it
e Yar = T Ve = ST
- dy ox : az day X dz

(2.4)
Clearly, the angular change is not different if it is said to occur between the x and y directions or
between the y and x directions; v,,, = v,,. The remaining components of shearing strain are similarly

related:

Yir = Vyao Yvz = Yo Yz = Yar
The symmetry of shearing strains may also be deduced from an examination of Eq. (2.4). The
expressions (2.4) are the strain—displacement relations of continuum mechanics. They are also
referred to as the kinematic relations, treating the geometry of strain rather than the matter of cause
and effect.

A succinct statement of Eq. (2.3) is made possible by tensor notation:

l(mq Imﬂ) -
gir=il e S Li=x.y2
o2 \ax;,  ax, ] '

(2.5a)

or expressed more concisely by using commas,

1
'L".'; - E(“.'...i i ”j..‘]

(2.5b)

, . .
, Uy =V, X, =X, and so on. The factor 2 in Eq. (2.5) facilitates the representation of the

strain transformation equations in indicial notation. The longitudinal strains are obtained when i =;

where u, = u



the shearing strains are found when i #j and ¢;; = ¢;;. It is apparent from Eqgs. (2.4) and (2.5) that
S.T'l' = l;’}"}i"l"‘ S'I'.' = %T'l'.'? E.'I.'.' = :!"l}'l.'l'._
(2.6)

Just as the state of stress at a point is described by a nine-term array, so Eq. (2.5) represents nine
strains composing the symmetric strain tensor (¢; = €;,):

Yz
2 T_r:
1

2 }r:_r

&y % Yoy
["':.‘.'] = . T_'."l 'r':_'.'
Vex

o | =

bl ] i

Q2.7)

It 1s interesting to observe that the Cartesian coordinate systems of Chapters 1 and 2 are not identical.
In Chapter 1, the equations of statics pertain to the deformed state, and the coordinate set is thus
established in a deformed body; xyz is, in this instance, a Eulerian coordinate system. In discussing
the kinematics of deformation in this chapter, recall that the xyz set is established in the undeformed
body. In this case, xyz is referred to as a Lagrangian coordinate system. Although these systems are
clearly not the same, the assumption of small deformation permits us to regard x, y, and z, the
coordinates in the undeformed body, as applicable to equations of stress or strain. Choice of the
Lagrangian system should lead to no errors of consequence unless applications in finite elasticity or
large deformation theory are attempted. Under such circumstances, the approximation discussed is not
valid, and the resulting equations are more difficult to formulate [Refs. 2.1 and 2.2].

Throughout the text, strains are indicated as dimensionless quantities. The normal and shearing strains
are also frequently described in terms of units such as inches per inch or micrometers per meter and
radians or microradians, respectively. The strains for engineering materials in ordinary use seldom

exceed 0.002, which is equivalent to 2000 x 1076 or 2000 1. We read this as “2000 micros.”

Example 2.1. Plane Strains in a Plate

A 0.8-m by 0.6-m rectangle ABCD is drawn on a thin plate prior to loading. Subsequent to
loading, the deformed geometry is shown by the dashed lines in Fig. 2.5. Determine the
components of plane strain at point A.

Figure 2.5. Example 2.1. Deformation of a thin plate.
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The following approximate version of the strain—displacement relations of Egs. (2.3) must be
used:

Solution



An Aw Au  Aw

T Ax = Ay P Ay  Ax
(2.8)

Thus, by setting Ax = 800 mm and Ay = 600 mm, the normal strains are calculated as follows:
ug —uy 1.6 —06

= TR — — IZ‘_

Ex A 800 o0
vp—vy; —-12-0

i - = 2000

y Ay 600 i

In a like manner, we obtain the shearing strain:
e — Uy g v 006 . 2—0 .
+ = + = ]
By T 60 | g0 0K

The positive sign indicates that angle BAD has decreased.

Yx ¥ i

Large Strains

As pointed out in Section 2.1, the small deformations or deflections are considered in most
applications of this book. The preceding is consistent with the magnitude of deformations usually
found in engineering practice. The following more general large or finite strain—displacement
relationships are included here so that the reader may better understand the approximations resulting
in the relations of small-deformation theory.

When displacements are relatively large, the strain components are given in terms of the square of the
element length instead of the length itself. Therefore, with reference to Fig. 2.4b, we write

(A'D')? — (ADY

S.L‘ =

2(AD)
(2.9)
in which
(A'D')? = (cf_r " "fﬁa‘x) + (ﬂdr)
X X
= [1 g (ﬂ) ; (‘:ﬂﬂ(dnz
olX [ak X
and AD = dx.
Carrying the foregoing terms into Eq. (2.9) leads to a two-dimensional finite normal strain—
displacement relationship:
o2l (2]
e Y \ax ax
(2.10a)
Likewise, we have
v ,Kﬁu)j . (f’i?})j]
£y = = Al | = —
Y ooay CL\ay Ay



(2.10b)

It can also be verified [Refs. 2.3 and 2.4], that the finite shearing strain—displacement relation is

av it o o " ot g
Sy T = + S R R

dx  dy  dxdy  ax ay
(2.10¢)

In small displacement theory, the higher-order terms in Egs. (2.10) are omitted. In so doing, these
equations reduce to Egs. (2.4), as expected. The expressions for three-dimensional state of strain may
readily be generalized from the preceding equations.

2.4 Equations of Compatibility

The concept of compatibility has both mathematical and physical significance. From a mathematical
point of view, it asserts that the displacements u, v, and w match the geometrical boundary conditions
and are single-valued and continuous functions of position with which the strain components are
associated [Refs. 2.1 and 2.2]. Physically, this means that the body must be pieced together; no voids
are created in the deformed body.

Recall, for instance, the uniform state of stress at a section a—a of an axially loaded member as shown
in Fig. 1.5b (Sec. 1.6). This, as well as any other stress distribution symmetric with respect to the
centroidal axis, such as a parabolic distribution, can ensure equilibrium provided that [ o,dA=P.

However, the reason the uniform distribution is the acceptable or correct one is that it also ensures a
piece-wise-continuous strain and displacement field consistent with the boundary conditions of the
axially loaded member, the essential characteristic of compatibility.

We now develop the equations of compatibility, which establish the geometrically possible form of
variation of strains from point to point within a body. The kinematic relations, Egs. (2.4), connect six
components of strain to only three components of displacement. We cannot therefore arbitrarily
specify all the strains as functions of x, y, and z. As the strains are evidently not independent of one
another, in what way are they related? In two-dimensional strain, differentiation of ¢, twice with

respect to y, &, twice with respect to x, and y,, with respect to x and y results in

P b
e, au ae, o & Yy Fu ooy
il T A T =.,,z+.ﬁ.
ay" ax ay” X" dx™ ay X oy dx ay Ax=dy
or
7 nd -
a8, &, ¥y

ay  axt  axay
(2.11)

This is the condition of compatibility of the two-dimensional problem, expressed in terms of strain.
The three-dimensional equations of compatibility are obtained in a like manner:
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(2.12)

These equations were first derived by Saint-Venant in 1860. The application of the equations of
compatibility is illustrated in Example 2.2(a) and in various sections that use the method of the theory
of elasticity.

To gain further insight into the meaning of compatibility, imagine an elastic body subdivided into a
number of small cubic elements prior to deformation. These cubes may, upon loading, be deformed
into a system of parallelepipeds. The deformed system will, in general, be impossible to arrange in
such a way as to compose a continuous body unless the components of strain satisfy the equations of
compatibility.

2.5 State of Strain at a Point

Recall from Chapter 1 that, given the components of stress at a point, it is possible to determine the
stresses on any plane passing through the point. A similar operation pertains to the strains at a point.

Consider a small linear element AB of length ds is an unstrained body (Fig. 2.6a). The projections of
the element on the coordinate axes are dx and dy. After straining, 4B is displaced to position A'B" and
is now ds'long. The x and y displacements are u + du and v + dv, respectively. The variation with
position of the displacement is expressed by a truncated Taylor’s expansion as follows:

ot o ot ol
du = —dx + —dy, dv=—dx + —dy
cx Jy fx Ay
(2)
Figure 2.6. Plane straining of an element.
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Figure 2.6b shows the relative displacement of B with respect to 4, the straining of AB. It is observed
that 4B has been translated so that 4 coincides with 4" it is now in the position A'B”. Here B" D = du
and DB'= dv are the components of displacement.

Transformation of Two-Dimensional Strain

We now choose a new coordinate systemx'y’, as shown in Fig. 2.6, and examine the components of



strain with respect to it: &, &, ¥y, First we determine the unit elongation of ds’, &, The projections

of du and dv on the x' axis, after taking EB' cos a = EB'(1) by virtue of the small angle approximation,
lead to the approximation (Fig. 2.6b)

EB" = ducos + dvsin @
(b)
By definition, ¢, 1s found from EB"/ds. Thus, applying Eq. (b) together with Egs. (a), we obtain

“ 7 \ax ds ay ds e ay ds  ax ds e
Substituting cos 6 for dx/ds, sin 6 for dy/ds, and Eq. (2.3) into this equation, we have

gy = £,c080 + £,sin°H + y,,sin # cos O

X

(2.132)

This represents the transformation equation for the x-directed normal strain, which, through the use of
trigonometric identities, may be converted to the form
E.T + El' E.r - 8'.'

Vy
p = + 08 + — g
£, 5 2 cos2@ 5 sin2f

(2.14a)
The normal strain ¢, is determined by replacing 0 by 0 + /2 in Eq. (2.14a).

To derive an expression for the shearing strain y,,,, we first determine the angle o through which 4B

(the x"axis) 1s rotated. Referring again to Fig. 2.6b, tan a = B" E/ds, where B"E = dv cos 0 — du sin 0
— EB' sin a. By letting sin a = tan a = a, we have EB'sin a = ¢,.ds a = 0. The latter is a consequence

of the smallness of both ¢ and a. Substituting Eqs. (a) and (2.3) into B"E, oo = B" E/ds may be written
as follows:

. v e,
a=—(g, — e)sinfcosh + r—tcmzﬁ' — iﬁsm*ﬁ
: : ax ay
(c)
Next, the angular displacement of y'is readily derived by replacing 8 by 8 + 7/2 in Eq. (c):
. -II. ! . il i 5
Qgegn = —(&, — &,) sinfcos O + i—bsm"ﬂ = tﬂcmr t
: X oy

Now, taking counterclockwise rotations to be positive (see Fig. 2.4b), it is necessary, in finding the
shear strain y,,,, to add a and —ay , ;. By so doing and substituting v,,, = 0v/Ox + ou/Qy, we obtain

Yary = 2(8y — &;)sInOCO8 O + -y, (cos’ @ — sin® @)
(2.13b)

Through the use of trigonometric identities, this expression for the transformation of the shear strain
becomes

Yey = —(&; — &) sin 20 + vy,, cos 20

(2.14b)



Comparison of Egs. (1.18) with Egs. (2.14), the two-dimensional transformation equations of strain,
reveals an identity of form. It is observed that transformations expressions for stress are converted
into strain relationships by replacing

o with &  and 7 with %T
These substitutions can be made in all the analogous relations. For instance, the principal strain
directions (where v, = 0) are found from Eq. (1.19):

tan 26, = =
(2.15)
Similarly, the magnitudes of the principal strains are
£y T 8y .'I Ex — Ey\? Yo \2
. 'i'\,"'( 2 ) ’ (T)
(2.16)

The maximum shearing strains are found on planes 45° relative to the principal planes and are given

by
T — £,\? Yay \2
Ymax = :tzn,l“ll'l( : 5 II) + ( 21) = :I:Ii"':l — F;-}

Transformation of Three-Dimensional Strain

(2.17)

This case may also proceed from the corresponding stress relations by replacing o by ¢ and 7 by v/2.
Therefore, using Egs. (1.28), we have

gy = gls + a_ﬁ.m% + e.ni + Yodiy + ymng + vy iy

(2.18a)
Yoy = 2(eily + eypymy + gny) + oy, (Lms + myls)
+ vy lmny + ) + oy (il + L)
(2.18b)
Yor = 2(eils + ggymy + g.mns) + v, (Lims + myls)
+ ylmng + mms) + oyl + Ling)
(2.18¢)
By = el + em3 + ey + vyl + Yyatty + Yidat
(2.18d)
e, = el + .{-',-‘_,..J'?I_% + gk + YodaMy + ymans + vy b
(2.18e¢)

Yvr = 2(e ol + emomy + enan5) + oy (mpls + Lms)

+ Yo (M2t + BRy) + vy + nsly)



(2.18f)

where /; 1s the cosine of the angle between x and x’, m, 1s the cosine of the angle between y and x',

and so on (see Table 1.2). The foregoing equations are succinctly expressed, referring to Egs. (1.29),
as follow:

'L“.:.'-' = '; En‘_n‘

it jx

(2.192)

Conversely,

(2.19b)
These equations represent the law of transformation for a strain tensor of rank 2.

Also, referring to Egs. (1.33) and (1.34), the principal strains in three dimensions are the roots of the
following cubic equation:

.L|rJ —d f-,‘i +dye=dy=l

(2.20)
The strain invariants are
JI :"-':.1'-'_81'4_8:
J’l = S.'I.'&"'l' + E.KE.' + E'l'EF — %I::ﬁ\ + ﬁ'.— + '}.f?“_:l
1
SI E-TI'I E .}JT_
'}1 = %T:L'_r 8_1' ;‘:"'l.
|
% Y 7Yz £
(2.21)

For a given state of strain, the three roots ¢y, &,, and &5 of Eqs. (2.20) and the corresponding direction
cosines may conveniently be computed using Table B.1 with some notation modification.

Example 2.2. Three-Dimensional Strain in a Block

A 2-mby 1.5-m by 1-m parallelepiped is deformed by movement of corner point A to 4’ (1.9985,
1.4988, 1.0009), as shown by the dashed lines in Fig. 2.7. Calculate the following quantities at
point 4: (a) the strain components; (b) the normal strain in the direction of line 4B; and (c) the
shearing strain for perpendicular lines AB and AC.

Figure 2.7. Example 2.2. Deformation of a parallelpiped.




Solution

The components of displacement of point 4 are given by
iy = —1.5mm, v, = —1.2 mm, w, = 0.9 mm

(d)

a. We can readily obtain the strain components, by using an approximate version of Egs. (2.4) and
Egs. (d), as in Example 2.1. Alternatively, these strains can be determined as follows. First,
referring to Fig. 2.7, we represent the displacement field in the form

U = xyz, v = £, XVZ, W = €3 XVZ
(2.22)
where ¢, ¢,, and c; are constants. From these and Egs. (d), —1.5(107%) =¢,(2 x 1.5 x 1) or ¢,
= -500(107%); similarly, ¢, = —400(107%), and c; = 300(107°). Therefore,
u = —500(107%)xyz, v = —400(107%)xyz, w = 300(10%)xyz

(e)
Applying Egs. (2.4) and substituting 107 = x, we have
g, = :—E: = =500z, e, = —d400uxz, &, = 300pxy
Yoy = %’- : % = —u(400yz + 500xz),  ,, = —w(400xy — 300xz)
Ve = —,u(iﬂilr}' — 300yz)
®

By introducing the foregoing into Egs. (2.12), we readily find that these conditions are
satisfied and the strain field obtained is therefore possible. The calculations proceed as
follows:

g, = =500pu(1.5 X 1) = =750 u, g, = =800, .= Wp
Yoo = — (400 X 1.5 % 1T + 500 % 2 % 1) = —1600 pu,
Y. = =600, y,.=—1050pu

b. Let the x" axis be placed along the line from A4 to B. The direction cosines of AB are /; =—0.8,
m; =-0.6, and n; = 0. Applying Eq. (2.18a), we thus have
ey = &di + emi + y, imy
= [-750(—0.8)" — 800( —0.6)* — 1600( —0.8)(—0.6)] u = —1536 u
c. Let the ' axis be placed along the line 4 to C. The direction cosines of AC are [, =0, m, =0,



and n, =—1. Thus, from Eq. (2.18b),
Yoy = Yyttt + ydint
= [=600( —0.6) (—1) — 1050( —0.8) (—1)] & = —1200
where the negative sign indicates that angle BAC has increased.

Mohr’s Circle for Plane Strain

Because we have concluded that the transformation properties of stress and strain are identical, it is
apparent that a Mohr s circle for strain may be drawn and that the construction technique does not
differ from that of Mohr’s circle for stress. In Mohr’s circle for strain, the normal strains are plotted
on the horizontal axis, positive to the right. When the shear strain is positive, the point representing
the x axis strains is plotted a distance y/2 below the ¢ line, and the y axis point a distance y/2 above
the ¢ line, and vice versa when the shear strain is negative. Note that this convention for shear strain,
used only in constructing and reading values from Mohr’s circle, agrees with the convention
employed for stress in Section 1.11.

An illustration of the use of Mohr’s circle of strain is given in the solution of the following numerical
problem.

Example 2.3. State of Plane Strain in a Plate

The state of strain at a point on a thin plate is given by ¢, = 510 u, &, = 120 41, and v,,, = 260 p.
Determine, using Mohr’s circle of strain, (a) the state of strain associated with axes x', y’, which
make an angle 6 = 30° with the axes x, y (Fig. 2.8a); (b) the principal strains and directions of the
principal axes; (¢) the maximum shear strains and associated normal strains; (d) display the given
data and the results obtained on properly oriented elements of unit dimensions.

Figure 2.8. Example 2.3: (a) Axes rotated for & = 30°; (b) Mohr’s circle of strain.
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A sketch of Mohr’s circle of strain is shown in Fig. 2.8b, constructed by determining the position
of point C at e+ &) and 4 at (£02Y0) from the origin O. Note that v, /2 is positive, so point 4,
representing x-axis strains, is plotted below the ¢ axis (or B above). Carrying out calculations
similar to that for Mohr’s circle of stress (Sec. 1.11), the required quantities are determined. The

radius of the circle is 7 = (1952 + 130%)"2 4 =234 4, and the angle 26; = tan™'(130/195) = 33.7°,

a. At a position 60° counterclockwise from the x axis lies the x" axis on Mohr’s circle,
corresponding to twice the angle on the plate. The angle 4'C4; 1s 60° — 33.7° =26.3°. The
strain components associated with xy’ are therefore

g, =35pu + 234 pneos203° = 525u
gy =315p — 234 pc0s26.3° = 105
Yoy = —2(234 u sin 26.3%) = 207 u

(2

The shear strain is taken as negative because the point representing the x axis strains, 4, is
above the ¢ axis. The negative sign indicates that the angle between the element faces x’ and )’
at the origin increases (Sec. 2.3). As a check, Eq. (2.14b) is applied with the given data to
obtain —207 u as before.

b. The principal strains, represented by points 4, and B, on the circle, are found to be
£, =315p + 234 u = 549
g =315p—-234pu=81pn
The axes of ¢ and ¢, are directed at 16.85° and 106.85° from the x axis, respectively.
c. Points D and E represent the maximum shear strains. Thus,
=+468 u

Observe from the circle that the axes of maximum shear strain make an angle of 45° with
respect to the principal axes. The normal strains associated with the axes ofy,,,, are equal,

'Ymax

represented by OC on the circle: 315 p.

d. The given data is depicted in Fig. 2.9a. The strain components obtained, Egs. (g), are
portrayed in Fig. 2.9b for an element at 6 = 30°. Observe that the angle at the corner Q of the
element at the origin increases because v,,, is negative. The principal strains are given in Fig.

2.9c. The sketch of the maximum shearing strain element is shown in Fig. 2.9d.

Figure 2.9. Example 2.3. (a) Element with edges of unit lengths in plane strain; (b) element
at  =30°; (c¢) principal strains; and (d) maximum shearing strains.
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2.6 Engineering Materials

The equations of equilibrium derived in Chapter 1 and the kinematic relations of this chapter together
represent nine equations involving 15 unknowns (six stresses, six strains, and three displacements).
The 1nsufficiency noted in the number of available equations is made up for by a set of material-
dependent relationships, discussed in Section 2.9, that connect stress with strain. We first define some
important characteristics of engineering materials, such as those in widespread commercial usage,
including a variety of metals, plastics, and concretes. Table 2.1 gives a general classification of
materials commonly used in engineering [Refs. 2.5 through 2.8]. Following this, the tension test is
discussed (Sec. 2.7), providing information basic to material behavior.

Table 2.1. Typical Engineering Materials

Metallic Marerials

Ferrous Metals MNonferrous Metals

Cast iron Aluminum
Cast steel Copper
Plain carbon steel Lead
Steel alloys Magnesium
Stainless steel Nickel
Special steels Platinum
Structural steel Silver
Nonmetallic Marerials
Graphite Plastics
Ceramics Brick
Glass Stone
Concrete Wood

An elastic material 1s one that returns to its original (unloaded) shape upon the removal of applied



forces. Elastic behavior thus precludes permanent or plastic deformation. In many cases, the elastic
range includes a region throughout which stress and strain bear a linear relationship. This portion of
the stress—strain variation ends at a point termed the proportional limit. Such materials are linearly
elastic. It is not necessary for a material to possess such linearity for it to be elastic. In a viscoelastic
material, the state of stress is a function not only of the strains but of the time rates of change of stress
and strain as well.

Combinations of elastic (springlike) and viscous (dashpotlike) elements form a viscous—elastic
model. Glasses, ceramics, biomaterials, synthetic rubbers, and plastics may frequently be considered
to be linear viscoelastic materials. Also, most rocks exhibit properties that can be represented by
inclusion of viscous terms in the stress—strain relationship. Viscoelastic solids return to their original
state when unloaded. A plastically deformed solid, on the other hand, does not return to its original
shape when the load is removed; there is some permanent deformation. With the exception of Chapter
12, our considerations will be limited to the behavior of elastic materials.

Leaving out Section 5.9, it is also assumed in this text that the material is homogeneous and isotropic.
A homogeneous material displays identical properties throughout. If the properties are identical in all
directions at a point, the material is termed isotropic. A nonisotropic or anisotropic solid such as
wood displays direction-dependent properties. An orthotropic material, such as wood, 1s a special
case of an anisotropic material, which has greater strength in a direction parallel to the grain than
perpendicular to the grain (see Sec. 2.11). Single crystals also display pronounced anisotropy,
manifesting different properties along the various crystallographic directions.

Materials composed of many crystals (polycrystalline aggregates) may exhibit either isotropy or
anisotropy. Isotropy results when the crystal size is small relative to the size of the sample, provided
that nothing has acted to disturb the random distribution of crystal orientations within the aggregate.
Mechanical processing operations such as cold rolling may contribute to minor anisotropy, which in
practice is often disregarded. These processes may also result in high internal stress, termed residual
stress. In the cases treated in this volume, materials are assumed initially entirely free of such stress.

General Properties of Some Common Materials

There are various engineering materials, as listed in Table 2.1. The following is a brief description of
a few frequently employed materials. The common classes of materials of engineering interest are
metals, plastics, ceramics, and composites. Each group generally has similar properties (such as
chemical makeup and atomic structure) and applications. Selection of materials plays a significant
role in mechanical design. The choice of a particular material for the members depends on the
purpose and type of operation as well as on mode of failure of this component. Strength and stiffness
are principal factors considered in selection of a material. But selecting a material from both its
functional and economical standpoints is very important. Material properties are determined by
standardized test methods outlined by the American Society for Testing Materials (ASTM).

Metals

Metals can be made stronger by alloying and by various mechanical and heat treatments. Most metals
are ductile and good conductors of electricity and heat. Cast iron and steel are iron alloys containing
over 2% carbon and less than 2% carbon, respectively. Cast irons constitute a whole family of
materials including carbon. Steels can be grouped as plain carbon steels, alloy steels, high-strength
steels, cast steels, and special-purpose steels. Low-carbon steels or mild steels are also known as the



structural steels. There are many effects of adding any alloy to a basic carbon steel. Stainless steels
(in addition to carbon) contain at least 12% chromium as the basic alloying element. Aluminum and
magnesium alloys possess a high strength-to-weight ratio.

Plastics

Plastics are synthetic materials, also known as polymers. They are used increasingly for structural
purposes, and many different types are available. Polymers are corrosion resistant and have low
coefficient of friction. The mechanical characteristics of these materials vary notably, with some
plastics being brittle and others ductile. The polymers are of two classes: thermoplastics and
thermosets. Thermoplastics include acetal, acrylic, nylon, teflon, polypropylene, polystyrene, PVC,
and saran. Examples of thermosets are epoxy, polyster, polyurethane, and bakelite. Thermoplastic
materials repeatedly soften when heated and harden when cooled. There are also highly elastic
flexible materials known as thermoplastic elastomers. A common elastomer is a rubber band.
Thermosets sustain structural change during processing; they can be shaped only by cutting or
machining.

Ceramics

Ceramics represent ordinary compounds of nonmetallic as well as metallic elements, mostly oxides,
nitrides, and carbides. They are considered an important class of engineering materials for use in
machine and structural parts. Ceramics have high hardness and brittleness, high compressive but low
tensile strengths. High temperature and chemical resistance, high dielectric strength, and low weight
characterize many of these materials. Glasses are also made of metallic and nonmetallic elements,
just as are ceramics. But glasses and ceramics have different structural forms. Glass ceramics are
widely used as electrical, electronic, and laboratory ware.

Composites

Composites are made up of two or more distinct constituents. They often consist of a high-strength
material (for example, fiber made of steel, glass, graphite, or polymers) embedded in a surrounding
material (such as resin or concrete), which is termed a matrix. Therefore, a composite material shows
a relatively large strength-to-weight ratio compared with a homogeneous material; composite
materials generally have other desirable characteristics and are widely used in various structures,
pressure vessels, and machine components. A composite is designed to display a combination of the
best characteristics of each component material. A fiber-reinforced composite is formed by
imbedding fibers of a strong, stiff material into a weaker reinforcing material. A layer or lamina of a
composite material consists of a variety of arbitrarily oriented bonded layers or laminas. If all fibers
in all layers are given the same orientation, the laminate is orthotropic. A typical composite usually
consists of bonded three-layer orthotropic material. Our discussions will include isotropic
composites like reinforced-concrete beam and multilayered members, single-layer orthotropic
materials, and compound cylinders.

2.7 Stress—Strain Diagrams

Let us now discuss briefly the nature of the typical static tensile test. In such a test, a specimen is
inserted into the jaws of a machine that permits tensile straining at a relatively low rate (since
material strength is strain-rate dependent). Normally, the stress—strain curve resulting from a tensile
test is predicated on engineering (conventional) stress as the ordinate and engineering
(conventional) strain as the abscissa. The latter is defined by Eq. (2.2). The former is the load or



tensile force (P) divided by the original cross-sectional area (4,) of the specimen and, as such, is

simply a measure of load (force divided by a constant) rather than true stress. True stress is the load
divided by the actual instantaneous or current area (A) of the specimen.

Ductile Materials in Tension

Figure 2.10a shows two stress—strain plots, one (indicated by a solid line) based on engineering
stress, the other on true stress. The material tested is a relatively ductile, polycrystalline metal such
as steel. A ductile metal 1s capable of substantial elongation prior to failure, as in a drawing process.
The converse applies to brittle materials. Note that beyond the point labeled “proportional limit” is a
point labeled “yield point” (for most cases these two points are taken as one). At the yield point, a
great deal of deformation occurs while the applied loading remains essentially constant. The
engineering stress curve for the material when strained beyond the yield point shows a characteristic
maximum termed the ultimate tensile stress and a lower value, the rupture stress, at which failure
occurs. Bearing in mind the definition of engineering stress, this decrease is indicative of a decreased
load-carrying capacity of the specimen with continued straining beyond the ultimate tensile stress.

Figure 2.10. (a) Stress—strain diagram of a typical ductile material; (b) determination of yield
strength by the offset method.
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For materials such as heat-treated steel, aluminum, and copper that do not exhibit a distinctive yield
point, it is usual to employ a quasi-yield point. According to the 0.2-percent offset method, a line is
drawn through a strain of 0.002, parallel to the initial straight line portion of the curve (Fig. 2.10b).
The intersection of this line with the stress—strain curve defines the yield point as shown.
Corresponding yield stress is commonly referred to as the yield strength.

Geometry Change of Specimen

In the vicinity of the ultimate stress, the reduction of the cross-sectional area becomes clearly visible,
and a necking of the specimen occurs in the range between ultimate and rupture stresses. Figure 2.11
shows the geometric change in the portion of a ductile specimen under tensile loading. The local
elongation is always greater in the necking zone than elsewhere. The standard measures of ductility of
a material are expressed as follows:

Eii=_L

I i

Percent elongation = (100)

(2.232)

Figure 2.11. A typical round specimen of ductile material in tension: (a) necking; (b) fractured.
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Percent reduction in area =

(2.23b)

Here 4, and L, designate, respectively, the initial cross-sectional area and gage length between two

punch marks of the specimen. The ruptured bar must be pieced together in order to measure the final
gage length L. Similarly, the final area 4, is measured at the fracture site where the cross section is

minimum. The elongation is not uniform over the length of the specimen but concentrated on the region
of necking. Percentage of elongation thus depends on the gage length. For structural steel, about 25
percent elongation (for a 50-mm gage length) and 50 percent reduction in area usually occur.

True Stress and True Strain

The large disparity between the engineering stress and true stress curves in the region of a large strain
is attributable to the significant localized decrease in area (necking down) prior to fracture. In the
area of large strain, particularly that occurring in the plastic range, the engineering strain, based on
small deformation, is clearly inadequate. It is thus convenient to introduce true or logarithmic strain.
The true strain, denoted by ¢, 1s defined by

3
L ;
4L In— = In(1 + &,)

e =
Jr, L L,

(2.24)

This strain is observed to represent the sum of the increments of deformation divided by the length L
corresponding to a particular increment of length dL. Here L, 1s the original length and ¢, is the

engineering strain.
For small strains, Egs. (2.2) and (2.24) yield approximately the same results. Note that the curve of
true stress versus true strain is more informative in examining plastic behavior and will be discussed

in detail in Chapter 12. In the plastic range, the material is assumed to be incompressible and the
volume constant (Sec. 2.10). Hence,

(2)

where the left and right sides of this equation represent the original and the current volume,
respectively. If P is the current load, then

P oL L

rr=;=r4—”z=r}}r”

But, from Eq. (2.2), we have L/L, =1 + ¢,. The true stress 1s thus defined by

og=o,l + &,)



(2.25)

That is, the true stress is equal to the engineering stress multiplied by 1 plus the engineering
Strain.

A comparison of a true and nominal stress—strain plot is given in Fig. 2.12 [Ref. 2.8]. The true 6 — ¢
curve shows that as straining progresses, more and more stress develops. On the contrary, in the
nominal ¢ — ¢ curve, beyond the ultimate strength the stress decreases with the increase in strain. This
1s particularly important for large deformations involved in metal-forming operations [Ref. 2.7].

Figure 2.12. Stress—strain curves for a low-carbon (0.05%) steel in tension.
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Brittle Materials in Tension

Brittle materials are characterized by the fact that rupture occurs with little deformation. The
behavior of typical brittle materials, such as magnesium alloy and cast iron, under axial tensile
loading is shown in Figs. 2.13a. Observe from the diagrams that there is no well-defined linear
region, rupture takes place with no noticeable prior change in the rate of elongation, there 1s no
difference between the ultimate stress and the fracture stress, and the strain at rupture is much smaller
than in ductile materials. The fracture of a brittle material is associated with the tensile stress. A
brittle material thus breaks normal to the axis of the specimen, as depicted in Fig. 2.13b, because this
is the plane of maximum tensile stress.

Figure 2.13. Cast iron in tension: (a) Stress—strain diagram; (b) fractured specimen.
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Materials in Compression

Diagrams analogous to those in tension may also be obtained for various materials in compression.
Most ductile materials behave approximately the same in tension and compression over the elastic
range, and the yield-point stress is about the same in tension as in compression. But, in plastic range,
the behavior is notably different. Many brittle materials have ultimate stresses in compression that
are much greater than in tension. Their entire compression stress—strain diagram has a form similar to
the form of the tensile diagram. In compression, as the load increases, the brittle material, such as
gray cast iron, will generally bulge out or become barrel shaped.

Materials in Shear

Shear stress—strain diagrams can be determined from the results of direct-shear or torsion tests [Ref.
2.9]. These diagrams of torque (7) versus shear strain () are analogous to those seen in Fig. 2.10 for
the same materials. But properties such as yield stress and ultimate stress are often half as large in
shear as they are in tension. For ductile materials, yield stress in shear 1s about 0.5 to 0.6 times the
yield stress in tension.

2.8 Elastic versus Plastic Behavior

The preceding section dealt with the behavior of a variety of materials as they are loaded statically
under tension, compression, or shear. We now discuss what happens when the load 1s slowly
removed and the material is unloaded. Let us consider the stress—stain curve in Fig. 2.14, where E
and F represent the elastic [imit and point of fracture, respectively. The elastic strain is designated by
&,. It 1s seen from Fig. 2.14a that when the load 1s removed at (or under) point £, the material follows

exactly same curve back to the origin O. This elastic characteristic of a material, by which it returns
to its original size and shape during unloading, is called the elasticity. Inasmuch as the stress—strain
curve from O to E is not a straight line, the material is nonlinearly elastic.

Figure 2.14. Stress—strain diagrams showing (a) elastic behavior; (b) partially elastic behavior.
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When unloaded at a point 4 beyond E, the material follows the line AB on the curve (Fig. 2.14b). The
slope of this line is parallel to the tangent to the stress—strain curve at the origin. Note that ¢ does not
return to zero after the load has been removed. This means that a residual strain or permanent strain
remains in the material. The corresponding elongation of the specimen is called permanent set. The
property of a material that experiences strains beyond those at the elastic limit is called the p/asticity.
On the stress—strain curve, an elastic range 1s therefore followed by a plastic region (Fig. 2.14a), in
which total recovery of the size and shape of a material does not occur.

Upon reloading (BA), the unloading path is retracted and further loading results in a continuation of
the original stress—strain curve. It is seen that the material behaves in a linearly elastic manner in this
second loading. There is now proportional limit (A4) that is higher than before but reduced ductility,
inasmuch as the amount of yielding from E to F'is less than from A to F. This process can be repeated
until the material becomes brittle and fractures. A significant implication of the preceding is that the
strength and ductility characteristics of metals change considerably during fabrication process
involving cold working.

A final point to be noted is that, so far, we discussed the behavior of a test specimen subjected to only
static loading; passage of time and change in temperatures did not enter into our considerations.
However, under certain circumstances, some materials may continue to deform permanently. On the
contrary, a loss of stress 1s observed with time though strain level remains constant in a load-carrying
member. The study of material behavior under various loading and environmental conditions is taken
up in Chapters 4 and 12.

2.9 Hooke’s Law and Poisson’s Ratio

Most structural materials exhibit an initial region of the stress—strain diagram in which the material
behaves both elastically and linearly. This linear elasticity is extremely important in engineering
because many structures and machines are designed to experience relatively small deformations. For
that straight-line portion of the diagram (Fig. 2.10a), stress is directly proportional to strain. If the
normal stress acts in the x direction,

o, = Fe

I X



(2.26)

This relationship 1s known as Hooke s law, after Robert Hooke (1635—1703). The constant E is
called the modulus of elasticity, or Youngs modulus, in honor of Thomas Young (1773-1829). As ¢
is a dimensionless quantity, £ has the units of ¢. Thus, £ is expressed in pascals (or gigapascals) in SI
units and in pounds (or kilo-pounds) per square inch in the U.S. Customary System. Graphically, E is
the slope of the stress—strain diagram in the linearly elastic region, as shown Fig. 2.10a. It differs
from material to material. For most materials, £ in compression is the same as that in tension (Table
D.1).
Elasticity can similarly be measured in two-dimensional pure shear (Fig. 1.3¢). It is found
experimentally that, in the linearly elastic range, stress and strain are related by Hooke s law in
shear:

T (_:'j.{ﬁ.}.

(2.27)

Here G is the shear modulus of elasticity or modulus of rigidity. Like E, G 1s a constant for a given
material.

It was stated in Section 2.7 that axial tensile loading induces a reduction or lateral contraction of a
specimen’s cross-sectional area. Similarly, a contraction owing to an axial compressive load is
accompanied by a lateral extension. In the linearly elastic region, it is found experimentally that
lateral strains, say in the y and z directions, are related by a constant of proportionality, v, to the axial
strain caused by uniaxial stress only €. = ¢, /E, 1n the x direction:

fT.I

B, = & = —V

E
(2)

Alternatively, the definition of v may be stated as

lateral strain
T ——
axial strain

(2.28)

Here v 1s known as Poisson s ratio, after S. D. Poisson (1781-1840), who calculated v to be i for
1sotropic materials employing molecular theory. Note that more recent calculations based on a model

of atomic structure yield ¥ = 3. Both values given here are close to the actual measured values, 0.25
to 0.35 for most metals. Extreme cases range from a low of 0.1 (for some concretes) to a high of 0.5

(for rubber).
Volume Change

The lateral contraction of a cubic element from a bar in tension is illustrated in Fig. 2.15, where it is
assumed that the faces of the element at the origin are fixed in position. From the figure, subsequent to
straining, the final volume is

V= (1+ &) dx(1 — ve,) dy(1 — ve,) dz

(b)



Figure 2.15. Lateral contraction of an element in tension.
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Expanding the right side and neglecting higher-order terms involving £ and &, we have
Ve=[1+ (e, —2ve)]dxdy dz=V,+ AV

where V, is the initial volume dx dy dz and AV is the change in volume. The unit volume change e,

also referred to as the dilatation, may now be expressed in the form

AV 1 — 2»
&= ? = {] = 2&'}:‘:1. = 3

i

7,

(2.29)

Observe from this equation that a tensile force increases and a compressive force decreases the
volume of the element.

Example 2.4. Deformation of a Tension Bar

An aluminum alloy bar of circular cross-sectional area 4 and length L is subjected to an axial
tensile force P (Fig. 2.16). The modulus of elasticity and Poisson’s ratio of the material are £ and
v, respectively. For the bar, determine (a) the axial deformation; (b) the change in diameter d; and
(c) the change in volume AV. (d) Evaluate the numerical values of the quantities obtained in (a)
through (¢) for the case in which P =60 kN, d =25 mm, L =3 m, E =70 GPa, v =0.3, and the
yield strength o, = 260 MPa.

Figure 2.16. Example 2.4. A bar under tensile forces.

Solution

If the resulting axial stress o = P/A4 does not exceed the proportional limit of the material, we may
apply Hooke’s law and write o = Ee. Also, the axial strain is defined by ¢ = J/L.

a. The preceding expressions can be combined to yield the axial deformation,
PL

5 =
AE



(2.30)

where the product AE 1s known as the axial rigidity of the bar.
b. The change in diameter equals the product of transverse or lateral strain and diameter: &,d = —
ved. Thus,

vrPd
A=~ aE
(2.31a)
c. The change in volume, substituting V,, = AL and ¢, = P/AE 1nto Eq. (2.29), is
AV = %(1 — 2v)
(2.31b)
d. For A = (7/4)(25?%) = 490.9(10~%) n?, the axial stress o in the bar is obtained from
60(10°
o= £ = & = 122.2 MPa
A 490.9(10°%)

which is well below the yield strength of 260 MPa. Thus, introducing the given data into the
preceding equations, we have

60(107)3(10%)
§ = - — = 524 mm
490.9(70)10°

0.3(60 x 1(}-1]25
Ad = — — — = —(.0131 mm
490.9(70)10r

60(107)3(10%) :
V = —(1 — 2 X 0.3) = 1029 mm’
70(10°)

Comment

A positive sign indicates an increase in length and volume; the negative sign means that the
diameter has decreased.

2.10 Generalized Hooke’s Law

For a three-dimensional state of stress, each of the six stress components is expressed as a linear
function of six components of strain within the linear elastic range, and vice versa. We thus express
the generalized Hooke's law for any homogeneous elastic material as follows:

o £
T, i G2 Gy Cig G5 O £y
(T_,.. O Coa Coy Crg O3 Cog EJ.

) 0. y = Ciyy €y €33 Cxg C3z  Cap < £; \
Tay Cq € €3 €y Cs5 Cg | | Yy
Tyz Cs51 Csp €53 Csg  Cs5  Csg Yz
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(2.32)



The coefficients ¢;(i,j = 1, 2, 3..., 6) are the material-dependent elastic constants. A succinct
representation of the preceding stress—strain relationships are given in the following form:
Tf'_' = Cmm'jg Hin

(2.33)

which is valid in a// coordinate systems. Thus, it follows that the c,,,,;, requiring four subscripts for

definition, are components of a tensor of rank 4. We note that, to avoid repetitive subscripts, the
material constants cqq11, C1122, ---» Cegs6 are denoted cqq, 1, ..., Cgq, as indicated in Eqgs. (2.32).

In a homogeneous body, each of the 36 constants ¢;; has the same value at all points. A material

without any planes of symmetry is fully anisotropic. Strain energy considerations can be used to show
that for such materials, Cij = Cjiy thus the number of independent material constants can be as large as
21 (see Sec. 2.13). In case of a general orthotropic material, the number of constants reduces to nine,
as shown in Section 2.11. For a homogeneous isotropic material, the constants must be identical in a/l
directions at any point. An isotropic material has every plane as a plane of symmetry. Next, it is

observed that if the material is isotropic, the number of essential elastic constants reduces to two.

In the following derivation, we rely on certain experimental evidence: a normal stress (o,) creates no
shear strain whatsoever, and a shear stress (z,,) creates only a shear strain (y,,). Also, according to

the small deformation assumption, the principle of superposition applies under multiaxial stressing.
Consider now a two-dimensional homogeneous isotropic rectangular element of unit thickness,
subjected to a biaxial state of stress (Fig. 2.17). Were o, to act, not only would the direct strain o,/E
but a y contraction would take place as well, —vo,/E. Application of o,, alone would result in an x
contraction —vo,/E and a y strain g,/E. The simultaneous action of g, and o, applying the principle of

superposition, leads to the following strains:
o, LB a, o,
P N e G T e e T s

E E *“E E
(2)

For pure shear (Fig. 1.3¢), it is noted in Section 2.9 that, in the linearly elastic range, stress and strain
are related by

T

G

Similar analysis enables us to express the components €, v,,, and y,, of strain in terms of stress and
material properties. In the case of a three-dimensional state of stress, this procedure leads to the
generalized Hooke s law, valid for an isotropic homogeneous material:

Yy =



-..

1 . :
f"‘.'l' — F[(TJ. = y[.ﬂ"l + G'.'_JI]’ .}'I.'l.'_'l' =

Iy

G

£, = l[m_. =plersd o) YV = i
] T z) G

£ = l[nr, - (o, + a,)], Vop = i
: = gL _ : TG

(2.34)

It is demonstrated next that the elastic constants £, v, and G are related, serving to reduce the number
of independent constants in Eq. (2.34) to two. For this purpose, refer again to the element subjected to

pure shear (Fig. 1.3¢). In accordance with Section 1.9, a pure shearing stress z,,, can be expressed in

terms of the principal stresses acting on planes (in the x’ and )’ directions) making an angle of 45°
with the shear planes: o,,= 7., and o,,= . Then, applying Hooke’s law, we find that
0. o Try
gv =2 —v—=—A1+7v)

z F E F
(b)
On the other hand, because ¢, = ¢, = 0 for pure shear, Eq. (2.13a) yields, for 8 =45°,&..=v_./2, or
X y X Xy

Ty ¥

2G
(c)
Equating the alternative relations for ¢, in Egs. (b) and (c), we find that
_E
T 2(1 + v)
(2.35)

It is seen that, when any two of the constants v, £, and G are determined experimentally, the third may
be found from Eq. (2.35). From Eq. (2.34) together with Eq. (2.35), we obtain the following stress—
strain relationships:

o, =208, T K& Ty = Gy
!‘T_T = zf;EL + }lf-'ﬂ T_T: = (;Y}':
o. = 2Ge, + Ae, T = Gy
(2.36)
Here
1 = 2v
e=gyt epte= (ff_-. + o, + "T:]'
(2.37)
and
vl

N — 28



(2.38)

The shear modulus G and the quantity A are referred to as the Lamé constants. Following a procedure
similar to that used for axial stress in Section 2.9, it can be shown that Eq. (2.37) represents the unit
volume change or dilatation of an element in triaxial stress.

The bulk modulus of elasticity is another important constant. The physical significance of this quantity
is observed by considering, for example, the case of a cubic element subjected to hydrostatic pressure

p. Because the stress field is described by 0, =0, =0, =-p and 7,,, = 7,, = 7,, = 0, Eq. (2.37) reduces

to e =-3(1 — 2v)p/E. The foregoing may be written in the form
_ B _E
= e 3(1 - 2v)

(2.39)

where K is the modulus of volumetric expansion or bulk modulus of elasticity. It is seen that the unit
volume contraction is proportional to the pressure and inversely proportional to K. Equation (2.39)
also indicates that for incompressible materials, for which e = 0, Poisson’s ratio is 1/2. For all
common materials, however, v < 1/2, since they demonstrate some change in volume, e # 0. Table D.1
lists average mechanical properties for a number of common materials. The relationships connecting
the elastic constants introduced in this section are given by Egs. (P2.51) in Prob. 2.51.

Example 2.5. Volume Change of a Metal Block

Calculate the volumetric change of the metal block shown in Fig. 2.18 subjected to uniform
pressure p = 160 MPa acting on all faces. Use £ =210 GPa and v =0.3.

Figure 2.18. Example 2.5. A parallelpiped under pressure.

Y
= : - +_1.5m
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il * ‘.,1 m
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Solution
The bulk modulus of elasticity of the material, using Eq. (2.39), is
E 210(10%)
Fl—20) Bl —2 %03 a
and the dilatation is
160
e=-L— T _— _914x10"
K 175(10°)

Since the initial volume of the block (Fig. 2.18) is ¥, =2 x 1.5 x 1 =3 m’, Eq. (2.29) yields
AV=eV,=(-9.14 x 1074 (3 x 10°) = -2.74 x 105 mm’



where a minus sign means that the block experiences a decrease in the volume, as expected
intuitively.

2.11 Hooke’s Law for Orthotropic Materials

A general orthotropic material has three planes of symmetry and three corresponding orthogonal axes
called the orthotropic axes. Within each plane of symmetry, material properties may be different and
independent of direction. A familiar example of such an orthotropic material is wood. Strength and
stiffness of wood along its grain and in each of the two perpendicular directions vary. These
properties are greater in a direction parallel to the fibers than in the transverse direction. A polymer
reinforced by parallel glass or graphite fibers represents a typical orthotropic material with two axes
of symmetry.

Materials such as corrugated and rolled metal sheet, reinforced concrete, various composites,
gridwork, and particularly laminates can also be treated as orthotropic [Refs. 2.8 and 2.10]. We note
that a gridwork consists of two systems of equally spaced parallel ribs (beams), mutually
perpendicular and attached rigidly at the points of intersection. For an elastic orthotropic material, the
elastic coefficients c;; remain invariant at a point under a rotation of 180° about any of the
orthotropic axes. In the following derivations, we shall assume that the directions of orthotropic axes

are parallel to the directions of the x, y, and z coordinates.”

First, let the xy plane be a plane material symmetry and rotate Oz through 180° (Fig. 2.19a).
Accordingly, under the coordinate transformation x: x', y: y’, and z: —Z', the direction cosines (see
Table 1.1) are

Iy =my=1,n,= -1, L=L=m=my=n=n=»0
(a)

Figure 2.19. Orthotropic coordinates X, y, z: (a) with Oz rotated 180°; (b) with Oy rotated 180°.
¥

1 XX
zz' :
¥
i
(a) (b)
Carrying Egs. (a) into Egs. (1.28) and (2.18), we have
O = Ty O =y, Tp =0 T = T T = Ty THs = Ty
(b)
and
By = 8y 8.,..- = E}.. By =8y ?_-;'_1-' = "I".r_v' .}I_'I'I:I e T_r:' Yo = Yaz
(©)

Inasmuch as the ¢;; remain the same, the first of Eqs. (2.28) may be written as



Ty = &y 13 c]l‘E]" i Ci3&y ¥ flr—l?x'_&" + Ctﬁ}"y":' it C16Yx'z

Inserting Egs. (b) and (c) into Eq. (d) gives

o, = ,

v = Cnéx t a8y t+ C1ag; + CryYyy —

(d)

(e)

Comparing Eq. () with the first of Eqs. (2.28) shows that ¢{5 = —cys, ¢14 = —16, Implying that ¢;5 =

c16 = 0. Likewise, considering o, 0, 7,

z" “x'y’
/] 1s therefore

0. The elastic coefficient matrix [c;

yz’ Tx'zh

we obtain that Cr5 = Cpg = C35 = C36 = Cy5 = Cyg —

J
cn €2 €3 ¢4 0 0]
€z € €n €y 0 0
€3 €1 € cyy 0 0
Clg €y Cy Cyq 0 0
0 0 0 0 e5 e
0 0 0 0 5

®
Next, consider the xz plane of elastic symmetry by rotating Oy through a 180° angle (Fig. 2.19b).
This gives [y =ny;=1,m,=—-1 and [, = [3=m; =my=n; = n, =0. Upon following a procedure
similar to that in the preceding, we now obtain c 4 = ¢y4 = €34 = €55 = 0. The matrix of elastic

coefficients, Egs. (f), become then

cy ¢ o3 0 0 0

€z € € 0 0 0

€3 €xn ¢y 0 0 0
0 0 0 ¢4 0 0
0 0 0 0 ¢5 0
0O 0 0 0 0 cg

(2.40)

Finally, letting yz be the plane of elastic symmetry and repeating the foregoing procedure do not lead
to further reduction in the number of nine elastic coefficients of Egs. (2.40). Hence, the generalized
Hooke’s law for the most general orthotropic elastic material is given by

o, = ey t ey T 038,

o, = Cpey T ens, T EnE;

0, = C138; T Cn&y T C13E;
T.‘I:_L = Cy4 ..l’r.'.'}'
T_I.E = Css ‘.!"".1':

Txz = Coo Yz



(2.41)

The inversed form of Egs. (2.41), referring to Egs. (2.34), may be expressed in terms of orthotropic
moduli and orthotropic Poisson’s ratios as follows:

1 Yy, v,

Ey = E Fg = ;:*TJ- B Eﬂ:
W SO N
2 E. T, E, oy~ @
¥, Vs 1
B. = ——E—lﬂ'l — E o, — EI‘_T
T.'L'_r - U;._--,- T.l.'_'l'
. 7
"G, "
s
Yz = G_l-;_ x
(2.42)
Because of symmetry in the material constants (Sec. 2.13), we have
1'1'].' 'E'"_l. X I”l‘: F:l ”.,-- H:.'c
(2.43)
In the foregoing, the quantities £, £, £, designate the orthotropic moduli of elasticity, and G, G,,,,
G, are the orthotropic shear moduli in the orthotropic coordinate system. Poisson’s ratio v,
indicates the strain in the y direction produced by the stress in the x direction. The remaining
Poisson’s ratios vy, v,., ..., vy, are interpreted in a like manner. We observe from Eqs. (2.42) that, in

an orthotropic material, there is no interaction between the normal stresses and the shearing strains.

2.12 Measurement of Strain: Strain Rosette

A wide variety of mechanical, electrical, and optical systems has been developed for measuring the
normal strain at a point on a free surface of a member [Ref. 2.12]. The method in widest use
employs the bonded electric wire or foil resistance strain gages. The bonded wire gage consists of a
grid of fine wire filament cemented between two sheets of treated paper or plastic backing (Fig.
2.20a). The backing insulates the grid from the metal surface on which it is to be bonded and
functions as a carrier so that the filament may be conveniently handled. Generally, 0.025-mm diameter
wire is used. The grid in the case of bonded foil gages is constructed of very thin metal foil
(approximately 0.0025 mm) rather than wire. Because the filament cross section of a foil gage is
rectangular, the ratio of surface area to cross-sectional area is higher than that of a round wire. This
results in increased heat dissipation and improved adhesion between the grid and the backing
material. Foil gages are readily manufactured in a variety of configurations. In general, the selection
of a particular bonded gage depends on the specific service application.

Figure 2.20. (a) Strain gage (courtesy of Micro-Measurements Division, Vishay Intertechnology,



Inc.) and (b) schematic representation of a strain rosette.
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The ratio of the unit change in the resistance of the gage to the unit change in length (strain) of the gage
is called the gage factor. The metal of which the filament element 1s made is the principal factor
determining the magnitude of this factor. Constantan, an alloy composed of 60% copper and 40%
nickel, produces wire or foil gages with a gage factor of approximately 2.

The operation of the bonded strain gage is based on the change in electrical resistance of the filament
that accompanies a change in the strain. Deformation of the surface on which the gage is bonded
results in a deformation of the backing and the grid as well. Thus, with straining, a variation in the
resistance of the grid will manifest itself as a change in the voltage across the grid. An electrical
bridge circuit, attached to the gage by means of lead wires, is then used to translate electrical changes
into strains. The Wheatstone bridge, one of the most accurate and convenient systems of this type
employed, is capable of measuring strains as small as 1 u.

Strain Rosette

Special combination gages are available for the measurement of the state of strain at a point on a
surface simultaneously in three or more directions. It is usual to cluster together three gages to form a
strain rosette, which may be cemented on the surface of a member. Generally, these consist of three
gages whose axes are either 45° or 60° apart. Consider three strain gages located at angles 6, 8,, and

0. with respect to reference axis x (Fig. 2.20b). The a-, b-, and c-directed normal strains are, from
Eq. (2.13a),

£, = &, c08° 0, + gy sin® @, + Yy S0 G, COS 6,

&y = &, o8 By + &, 5in" 0, + v,, sin 6, cos 6,

g = £,008° 0, + &,sin* @, + y,,sin 6, cos 0,

(2.44)

When the values of ¢, ¢, and ¢, are measured for given gage orientations 6, 0;, and 0, the values
of¢,, &, and y,, can be obtained by simultaneous solution of Eqs. (2.44). The arrangement of gages
employed for this kind of measurement is called a strain rosette.

Once strain components are known, we can apply Eq. (3.11b) of Section 3.4 to determine the out-of-
plane principal strain ¢,. The in-plane principal strains and their orientations may be obtained
readily using Egs. (2.15) and (2.16), as illustrated next, or Mohr’s circle for strain.

Example 2.6. Principal Strains on Surface of a Steel Frame



Strain rosette readings are made at a critical point on the free surface in a structural steel member.
The 60° rosette contains three wire gages positioned at 0°, 60°, and 120° (Fig. 2.20b). The
readings are

£, = 190 u, & = 200 ., g, = —300 u

(2)

Determine (a) the in-plane principal strains and stresses and their directions, and (b) the true
maximum shearing strain. The material properties are £ =200 GPa and v =0.3.

Solution

For the situation described, Eq. (2.44) provides three simultaneous expressions:
Eﬁ' — ‘F".l.'
V3

T Yy

3
3

|
&y = J 8y T -1‘9.1' t

V3
— Y ¥

. | -
& = 38, + .1‘8_'.' 4

From these,
E.l.' = ‘Hrl

&y = I_J.[Z{Eh =t E{'} =T Er.']
r}'r.'._'l' = MIEREPL - Et')

(b)
Note that the relationships among ¢, &5, and &, may be observed from a Mohr’s circle
construction corresponding to the state of strain ¢,, ¢,,, and v,,, at the point under consideration.

a. Upon substituting numerical values, we obtain &, = 190 4, &, =—130 u, and y,,, = 577 p1. Then,
from Eq. (2.16), the principal strains are

190 — 130 | 19U+13ﬂ3+ ST\
£,2 = E M\ 5

= 30 + 330
or

£ =360u, & =-300p

The maximum shear strain is found from
=+(g; — &) =%£[360 — (-300)]u = £660 u

The orientations of the principal axes are given by Eq. (2.15):
77 _
320

Ymax

20, = tan* 61° or #,=305° @7,=1205°

(d)



When % is substituted into Eq. (2.14) together with Eq. (b), we obtain 360 u. Therefore, 30.5°
and 120.5° are the respective directions of ¢; and ¢,, measured from the horizontal axis in a

counterclockwise direction. The principal stresses may now be found from the generalized
Hooke’s law. Thus, the first two equations of (2.34) for plane stress, letting o, =0, o, = ¢y, and

0, = 0y, together with Egs. (¢), yield

200 x 10° p
= —— 360 + 0.3( =3 ) = 59.34 MP«
a - D.ﬂ'}[‘jﬁ{} + 0.3(=300)](10™) a
-2 W 3 .
. %mm b 0.3(360)] = —42.2 MPa
The directions of o) and o, are given by Eq. (d). From Eq. (2.36), the maximum shear stress 1s
200 x 10¢

== " 660 % 107 = 50.77 MP:
T = L 1.5) 4

Note as a check that (o, — 7,)/2 yields the same result.

b. Applying Eq. (3.11b), the out-of-plane principal strain is
o e B P E 0.3
H™ A ST — 03

The principal strain ¢, found in part (a) is redesignated e3 =—300 u so that algebraically ¢, >

(190 — 130)u = —26

€3, where &, =26 u. The true or absolute maximum shearing strain
{Tm:m}.' = :|:|:£'1 £ 33:'
(2.45)

is therefore £660 w, as already calculated in part (a).

Employing a procedure similar to that used in the preceding numerical example, it is possible to
develop expressions relating three-element gage outputs of various rosettes to principal strains and
stresses. Table 2.2 provides two typical cases: equations for the rectangular rosette (6, = 0°, 0, =

45°, and 6. =90°, Fig. 2.20b) and the delta rosette (0, = 0°, 6, = 60°, and 8. = 120°, Fig. 2.20b).
Experimental stress analysis is facilitated by this kind of compilation.
Table 2.2. Strain Rosette Equations

1. Rectangular rosette or 45° strain rosette
Principal strains:

£1,2 = %l&'r + £ + ﬁ"’f(‘f“n’ o Sr';lz g2 (2811 = &y T Sr')l]

(2.462)

Principal stresses:

2 o - |
= B
1 - ] + v

s =

1ﬁ"’f{grr - Ht.'}z + I:25':.':- — Eqp T Hq-}_i|

(2.46b)



Directions of principal planes:

: 0 = h T By T &
tané, o 5
(2.46¢)
2. Delta rosette or 60° strain rosette
Principal strains:
l_ Faa o = > 5
g3 = _{Hﬁ gy Fae ENEAIVIE S s R R s — f:r,}‘]
(2.47a)
Principal stresses:
r & 2./ 3 ; ;
Ta= = |y SN e = )t (-8 (& —a,r]
; il 1-—v» 1 + v
(2.47b)
Directions of principal planes:
V(e = &)
tan 20, =
LEq T Ep &,
(2.47¢)

2.13 Strain Energy

The work done by external forces in causing deformation is stored within the body in the form of
strain energy. In an ideal elastic process, no dissipation of energy takes place, and all the stored
energy is recoverable upon unloading. The concept of elastic strain energy, introduced in this section,
is useful as applied to the solution of problems involving both static and dynamic loads. It is
particularly significant for predicting failure in members under combined loading.

Strain Energy Density for Normal and Shear Stresses

We begin our analysis by considering a rectangular prism of dimensions dx, dy, dz subjected to

uniaxial tension. The front view of the prism is represented in Fig. 2.21a. If the stress is applied very
slowly, as is generally the case in this text, it is reasonable to assume that equilibrium is maintained at
all times. In evaluating the work done by stresses o, on either side of the element, it is noted that each

stress acts through a different displacement. Clearly, the work done by oppositely directed forces (o,

dy dz) through positive displacement (#) cancel one another. The net work done on the element by
force (o, dy dz) 1s therefore

AW =il = [ 'a,.ff(f”—‘d,x)dydz = ] o de(dedydz)
S i}

X

Figure 2.21. (a) Displacement under uniaxial stress; (b) work done by uniaxial stress.
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where ou/Ox = ¢,.. Note that dW is the work done on dx dy dz, and dU is the corresponding increase in
strain energy. Designating the strain energy per unit volume (strain energy density) as U, for a
linearly elastic material we have

(a)
After integration, Eq. (a) yields

(2.48)

This quantity represents the shaded area in Fig. 2.21b. The area above the stress—strain curve, termed
the complementary energy density, may be determined from

UI
S
U, = / e do,
Jo

For a linearly elastic material, Uo = U, but for a nonlinearly elastic material, U, and V. will differ, as

(2.49)

seen in the figure. The unit of strain energy density in SI units is the joules per cubic meter (J/m?), or

pascals; in U.S. Customary Units, it is expressed in inch-pounds per cubic inch (in. - Ib/in.%), or
pounds per square inch (psi).

When the material is stressed to the proportional limit, the strain energy density is referred to as the
modulus of resilience. 1t is equal to the area under the straight-line portion of the stress—strain
diagram (Fig. 2.10a) and represents a measure of the material’s ability to store or absorb energy
without permanent deformation. Similarly, the area under an entire stress—strain diagram provides a
measure of a material’s ability to absorb energy up to the point of fracture; it is called the modulus of
toughness. The greater the total area under a stress—strain diagram, the tougher the material.

In the case in which ,, 6, and o, act simultaneously, the total work done by these normal stresses is
simply the sum of expressions similar to Eq. (2.48) for each direction. This is because an x-directed
stress does no work in the y or z directions. The total strain energy per volume is thus

L, =

%(UI e + fTJ: S}.— ra '-'T: EZ)

(b)



The elastic strain energy associated with shear deformation is now analyzed by considering an
element of thickness dz subject only to shearing stresses 7, (Fig. 2.22). From the figure, we note that

shearing force 7, dxdz causes a displacement of y,, dy. The strain energy due to shear is

| 4 i . . . . . .
(7o dxdz)(y. dy) where the factor 2 arises because the stress varies linearly with strain from zero to its
final value, as before. The strain energy density is therefore

Figure 2.22. Deformation due to pure shear.
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(2.50)

Because the work done by 7,,, accompanying perpendicular strains y,,, and y,, is zero, the total strain

energy density attributable to shear alone is found by superposition of three terms identical in form
with Eq. (2.50):

ro_ 1 —
= 3(7.1'_1'T.1'_1' + Tya¥yz T T-”T"""J

(©)
Strain Energy Density for Three-Dimensional Stresses
Given a general state of stress, the strain energy density is found by adding Egs. (b) and (¢):
U, =3(0.8, + 0y, + 0.8, + To¥ey + TV + Tuo¥es)
(2.51)

Introducing Hooke’s law into Eq. (2.51) leads to the following form involving only stresses and
elastic constants:

&= i (st o Hiag) - %Emm- + g, )
boc (B Tt )
(2.52)
An alternative form of Eq. (2.51), written in terms of strains, is
U, =3[Ae® + 2G(&2 + & + £2) + G(V3, + V2. + V2]
(2.53)

The quantities A and e are defined by Egs. (2.38) and (2.37), respectively.



It is interesting to observe that we have the relationships
U (1) U, (&)

— . —_— = T f _|i| = X.v b
2 i : i 1 Vs
a7y d e J

(2.54)

Here U, (7) and U, (¢) designate the strain energy densities expressed in terms of stress and strain,

respectively [Egs. (2.52) and (2.53)]. Derivatives of this type will be discussed again in connection
with energy methods in Chapter 10. We note that Eqs. (2.54) and (2.32) give

HL’JH
: =0y = €y + C2€, 0.5 Cp3&; + C14Y xy + C15Yy: + Cr16Yas
0
wl‘l — . 2 a3 e -
v = Ty = Cri&y T ('{12&:} * Cp3€; 22 cﬁ-l}".l._'; 2 E'fﬁ?_r: T CnYas
O ¥xz
(2.55)
Differentiations of these equations as indicated result in
U, U,
e m. oYy Ty T e ke
0 de, o o -
H]L"rr. ';*:{“'rn
: = = C46 = Cod T = Cs6 = Cg59 -
{}-}J KT I'iT 'I'_'|' ri.F}Il'l': {"}".1_:
(2.56)

We are led to conclude from these results that ¢;; = ¢;,(, j = 1, 2, ..., 6). Because of this symmetry of

elastic constants, there can be at most [(36 — 6)/2] + 6 = 21 independent elastic constants for an
anisotropic elastic body.

2.14 Strain Energy in Common Structural Members

To determine the elastic strain energy stored within an entire body, the elastic energy density 1s
integrated over the original or undeformed volume V. Therefore,

U = / U,dv = f / / U, dx dy dz
Vv
(2.57)

The foregoing shows that the energy-absorbing capacity of a body (that is, the failure resistance),
which is critical when loads are dynamic in character, is a function of material volume. This contrasts
with the resistance to failure under static loading, which depends on the cross-sectional area or the
section modulus.

Equation (2.57) permits the strain energy to be readily evaluated for a number of commonly
encountered geometries and loadings. Note especially that the strain energy is a nonlinear (quadratic)
function of load or deformation. The principle of superposition is thus not valid for the strain energy.
That 1s, the effects of several forces (or moments) on strain energy are not simply additive, as



demonstrated in Example 2.7. Some special cases of Eq. (2.57) follow.
Strain Energy for Axially Loaded Bars

The normal stress at any given transverse section through a nonprismatic bar subjected to an axial
force P 1s o, = P/A, where A represents the cross-sectional area (Fig. 2.23). Substituting this and Eq.

(2.48) into Eq. (2.57) and setting dV = A dx, we have

PE
; E‘w [ 2AE

(2.58)

Figure 2.23. Nonprismatic bar with varying axial loading.

e

When a prismatic bar is subjected at its ends to equal and opposite forces of magnitude P, the
foregoing becomes

2L

(2.59)
where L is the length of the bar.

Example 2.7. Strain Energy in a Bar under Combined Loading

A prismatic bar suspended from one end carries, in addition to its own weight, an axial load P,
(Fig. 2.24). Determine the strain energy U stored in the bar.
Figure 2.24. Example 2.7. A prismatic bar loaded by its weight and load P,
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Solution



The axial force P acting on the shaded element indicated is expressed
P = yA(L - x) + P,
(a)

where vy is the specific weight of the material and A4, the cross-sectional area of the bar. Inserting
Eq. (a) into Eq. (2.58), we have

ol N > 12 2 3 2 2
i / [YA(L — x) + P,] AL  yP,L?  PiL
WS

= +
2 AE T ER 3E  2AE

(2.60)

The first and the third terms on the right side represent the strain energy of the bar subjected to its
own weight and the strain energy of a bar supporting only axial force P, respectively. The

presence of the middle term indicates that the strain energy produced by the two loads acting

simultaneously is not simply equal to the sum of the strain energies associated with the loads
acting separately.

Strain Energy of Circular Bars in Torsion

Consider a circular bar of varying cross section and varying torque along its axis (Fig. 2.23, with
double-headed torque vector T replacing force vector P). The state of stress 1s pure shear. The
torsion formula (Table 1.1) for an arbitrary distance p from the centroid of the cross section results in

7= Tp/J. The strain energy density, Eq. (2.50), becomes then U, = T2p?%/2J?>G. When this is introduced
into Eq. (2.57), we obtain
L Tz i
U= z dA) 1x
ﬁ 27°G (/ S i
(b)

where dV = dA dx; dA represents the cross-sectional area of an element. By definition, the term in
parentheses is the polar moment of inertia J of the cross-sectional area. The strain energy is therefore

A
r i
- _f 3G Y

In the case of a prismatic shaft subjected at its ends to equal and opposite torques 7, Eq. (2.61)
yields

(2.61)

T2k

Y =5e

(2.62)
where L is the length of the bar.

Strain Energy for Beams in Bending



For the case of a beam in pure bending, the flexure formula gives us the axial normal stress o, =
~My/I (see Table 1.1). From Eq. (2.48), the strain energy density is U, = M?y%/2EI?. Upon
substituting this into Eq. (2.57) and noting that M?/2EI? is a function of x alone, we have

L a .
e -
U= / : > ( /} n’A)a'_r
g BETS K
(c)

Here, as before, dV' = dA dx, and dA represents an element of the cross-sectional area. Recalling that
the integral in parentheses defines the moment of inertia / of the cross-sectional area about the neutral
axis, the strain energy is expressed as
" LM ;
= =%
o 2E1

where integration along beam length L gives the required quantity.

(2.63)

2.15 Components of Strain Energy

A new perspective on strain energy may be gained by viewing the general state of stress (Fig. 2.25a)
in terms of the superposition shown in Fig. 2.25. The state of stress in Fig. 2.25b, represented by

a, U 0
{'} (T.'.l'f U
0 0 e,
(a)
Figure 2.25. Resolution of (a) state of stress into (b) dilatational stresses and (c) distortional
stresses.
Oy *ﬁm' % (o, + 0+ 0, Oy = Opm
i |
—— ' = - i - 3
';-- 7 Ix [ i o #1700y
o Oy :%Tm = T
{a) {b) {c)

results in volume change without distortion and is termed the dilatational stress tensor. Here
ow = 3(0. + 0, + o) i the mean stress defined by Eq. (1.44). Associated with o, is the mean strain,

S

&n = 3le: * £, + &) The sum of the normal strains accompanying the application of the dilatational
stress tensor is the dilatation e = ¢, + ¢, + ¢, representing a change in volume only. Thus, the

dilatational strain energy absorbed per unit volume is given by
T _ |
2K 18K

/ — Ei 2
'L'.-u' = 30y &y = {G-.l' 34 !T_l F J?J

[ ]



(2.64)

where K is defined by Eq. (2.39).
The state of stress in Fig. 2.25¢, represented by

g.'u o ‘:r.rl'lI T.'n._'r' lT'u:
Tyy Oy, = Uy Ty

Tyz Tyz a. = Oy

(b)
is called the deviator or distortional stress tensor. This produces deviator strains or distortion
without change in volume because the sum of the normal strains is (¢, — &) + (¢, — &,) + (¢, —¢&,,) = 0.
The distortional energy per unit volume, U, ;, associated with the deviator stress tensor is attributable
to the change of shape of the unit volume, while the volume remains constant. Since U,, and U, ; are
the only components of the strain energy, we have U, = U,,, + U, ;. By subtracting Eq. (2.64) from Eq.
(2.52), the distortional energy is readily found to be

.
8 -

l‘I‘)Il'-'-:-ll = 4(} T:'IL'l.

(2.65)

This is the elastic strain energy absorbed by the unit volume as a result of its change in shape
(distortion). In the preceding, the octahedral shearing stress 7, 1s given by

(2.66)

The planes where the 7, acts are shown in Fig. 1.24 of Section 1.14. The strain energy of distortion

plays an important role in the theory of failure of a ductile metal under any condition of stress. This is
discussed further in Chapter 4. The stresses and strains associated with both components of the strain
energy are also very useful in describing the plastic deformation (Chap. 12).

Example 2.8. Strain Energy Components in a Tensile Bar

A mild steel bar of uniform cross section A4 is subjected to an axial tensile load P. Derive an
expression for the strain energy density, its components, and the total strain energy stored in the
bar. Let v =0.25.

Solution

The state of stress at any point in the bar is axial tension, 7, =1,,=1,=0,=0,=0,0,=0=P/A

by Tz T hz T 0y
(Fig. 2.25a). We therefore have the stresses associated with volume change o,, = 6/3 and shape
change o, — 0, = 20/3, 0, - 0, = 0, — 0, = —0/3 (Eig. 2.25b, ¢). The strain energy densities for the

state of stress in cases a, b, and ¢ are found, respectively, as follows:



(c)
Observe from these expressions that U, = U,, + U, and that 5U,,, = U, ;. Thus, we see that in

changing the shape of a unit volume element under uniaxial stressing, five times more energy is
absorbed than in changing the volume.

2.16 Saint-Venant’s Principle

The reader will recall from a study of Newtonian mechanics that, for purposes of analyzing the statics
or dynamics of a body, one force system may be replaced by an equivalent force system whose force
and moment resultants are identical. It is often added in discussing this point that the force resultants,
while equivalent, need not cause an identical distribution of strain, owing to difference in the
arrangement of the forces. Saint-Venant's principle, named for Barr¢ de Saint-Venant (1797-1886),
a famous French mathematician and elastician, permits the use of an equivalent loading for the
calculation of stress and strain. This principle or rule states that if an actual distribution of forces 1s
replaced by a statically equivalent system, the distribution of stress and strain throughout the body is

altered only near the regions of load application.”

The contribution of Saint-Venant’s principle to the solution of engineering problems is very important,
for it often frees the analyst of the burden of prescribing the boundary conditions very precisely when
it 1s difficult to do so. Furthermore, where a certain solution is predicated on a particular boundary
loading, the solution can serve equally for another type of statically equivalent boundary loading, not
quite the same as the first. That is, when an analytical solution calls for a certain distribution of stress
on a boundary (such as o, in Sec. 5.5), we need not discard the solution merely because the boundary

distribution is not quite the same as that required by the solution. The value of existing solutions is
thus greatly extended.

Saint-Venant’s principle is confirmed in Fig. 2.26, which shows the stress distribution, obtained using
the methods of the theory of elasticity, across three sections of a rectangular elastic plate of width b
subjected to a concentrated load [Ref. 2.15]. The average stress o,,, as given by Eq. (1.10) is also
sketched in the diagrams. From these, note that the maximum stress o,,,,, greatly exceeds the average
stress near the point of application of the load and diminishes as we move along the vertical center
axis of the plate away from an end. At a distance equal to the width of the plate, the stress is nearly
uniform. With rare exceptions, this rule applies to members made of /inearly elastic materials.

Figure 2.26. Stress distribution due to a concentrated load in a rectangular elastic plate,
confirming the Saint-Venant’s principle.
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The foregoing observation also holds true for most stress concentrations and practically any type of
loading. Thus, the basic formulas of the mechanics of materials give the stress in a member with high
accuracy, provided that the cross section in question is at least a distance b (or h) away from any
concentrated load or discontinuity of shape. Here, b (or i) denotes the largest lateral dimension of a
member. We note that within this distance the stresses depend on the details of loading, boundary
conditions, and geometry of the stress concentrations, as is seen in Chapter 3.

rrﬂ'l.\'ﬁ

Consider, for example, the substitution of a uniform distribution of stress at the ends of a tensile test
specimen for the actual irregular distribution that results from end clamping. If we require the stress
in a region away from the ends, the stress variation at the ends need not be of concern, since it does
not lead to significant variation in the region of interest. As a further example, according to Saint-
Venant’s principle, the complex distribution of force supplied by the wall to a cantilever beam (Fig.
2.27a) may be replaced by vertical and horizontal forces and a moment (Fig. 2.27b) for purposes of
determining the stresses acting at a distance from the wall equal to or greater than the depth /4 of the
beam.

Figure 2.27. Cantilever beam illustrating use of Saint-Venant’s principle: (a) actual support; (b)
statical equivalent.
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Problems
Sections 2.1 through 2.8

2.1. Determine whether the following strain fields are possible in a continuous material:
c(x* + ) c'x}}

-

a.l cxy y

72 7
l{r:{x' + %) f.'xyﬂ
2
b CXYZ yz |

Here c is a small constant, and it is assumed thate, =v,, =v,, = 0.

2.2. Rectangle ABCD is scribed on the surface of a member prior to loading (Fig. P2.2).
Following the application of the load, the displacement field is expressed by
u=c(2x + ¥, o =¢(x* — 3¥°)

Figure P2.2.
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where ¢ = 10~%. Subsequent to the loading, determine (a) the length of the sides 4B and 4D;
(b) the change in the angle between sides AB and AD; and (c) the coordinates of point 4.
2.3. A displacement field in a body is given by
u=c(x*+ 10)
v = 2cyz

w=c(—xy + %)



where ¢ = 107*. Determine the state of strain on an element positioned at (0, 2, 1).
2.4. The displacement field and strain distribution in a member have the form
u = ax’y’ + axy’ + ax’y
B = e':rr_1,'r1y + bixy
Viy = CoXZy + cixy + 6x* + 5y’
What relationships connecting the constants (a’s, b’s, and ¢’s) make the foregoing expressions
possible?
2.5. Redo Prob. 2.4 for the following system of strains:

.
e, =day+ ayt + v
E,_- ek .!‘Jn + f]'l_\.'z + _f4
7 2
Yoo = €0 + cxy( + ¥ + )

2.6. A rigid horizontal bar BE is supported as illustrated in Fig. P2.6. After the load P is applied,
point £ moves 3 mm down and the axial strain in the bar AB is —500 u. Calculate the axial
strain in the bar CD.

Figure P2.6.
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2.7. Find the normal strain in the members 4B and CB of the pin-connected plane structure (Fig.
P2.7) if point B is moved leftward 2.5 mm. Assume that axial deformation is uniform
throughout the length of each member.

Figure P2.7.
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2.8. The thin, triangular plate ABC is uniformly deformed into a shape ABC as depicted by the
dashed lines in Fig. P2.8. Determine (a) the plane stress components ¢,, ¢, and v,,; (b) the



shearing strain between edges AC and BC.

Figure P2.8.
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2.9. A 100-mm by 150-mm rectangular plate Q4ABC 1s deformed into the shape shown by the

dashed lines in Fig. P2.9. All dimensions shown in the figure are in millimeters. Determine at
point Q (a) the strain components &

€y, Pxy» ad (b) the principal strains and the direction of
the principal axes.

Figure P2.9.
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2.10. Calculate the principal strains and their orientations at point 4 of the deformed rectangular
plate shown in Fig. 2.5 of Example 2.1.

2.11. As a result of loading, the rectangle shown in Fig. P2.11 deforms into a parallelogram in
which sides Q4 and BC shorten 0.003 mm and rotate 500 x radian counterclockwise while
sides 4B and QC elongate 0.004 mm and rotate 1000 x radian clockwise. Determine the

principal strains and the direction of the principal axes at point Q. Take a =20 mm and b =
12mm.

Figure P2.11.
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2.12. A thin rectangular plate @ =20 mm % » = 12 mm (Fig. P2.11) is acted upon by a stress

distribution resulting in the uniform strains &, = 300 z, &, = 500 x, and y,;, = 200 . Determine
the changes in length of diagonals OB and AC.



2.13. Redo Prob. 2.12 using the following information: @ = 30 mm, = 15 mm, ¢, = 400 g, =
200 u, and vy, =300 w.

2.14. A thin plate is subjected to uniform shear stress 7, = 70 MPa (Fig. P1.42 of Chap. 1). Let £ =

200 GPa, v =0.3, AB = 40 mm, and BC = 60 mm. Determine (a) the change in length AB, (b)
the changes in length of diagonals AC and BD, and (c) the principal strains and their directions
at point 4.

2.15. The principal strains at a point are ¢; = 400 ¢ and ¢, = 200 u. Determine (a) the maximum

shear strain and the direction along which it occurs and (b) the strains in the directions at 6 =
30° from the principal axes. Solve the problem by using the formulas developed and check the
results by employing Mohr’s circle.

2.16. A 3-m by 2-m rectangular thin plate is deformed by the movement of point B to B as shown
by the dashed lines in Fig. P2.16. Assuming a displacement field of the formu = cyxy and v =

c,xy, wherein ¢ and ¢, are constants, determine (a) expressions for displacements u and v;
(b) strain components &,, &, and v,,, at point B; and (¢) the normal strain ¢, in the direction of
line OB. Verify that the strain field is possible.

Figure P2.16.
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2.17. If the strains at a point are &, =-900 z, &, =—300 y, and v,,, = 900 4, what are the principal
strains, and in what direction do they occur? Use Mohr’s circle of strain.

2.18. Solve Prob. 2.17 for &, = 300 x, &, = 900 y, and v,,, =-900 4.

2.19. A 3-m by I-m by 2-m parallelepiped 1s deformed by movement of corner 4 to A’ (2.9995,
1.0003, 1.9994), as shown in Fig. P2.19. Assuming that the displacement field is given by
Egs. (2.22), calculate at point A4 (a) the strain components and ascertain whether this strain
distribution is possible; (b) the normal strain in the direction of line 4B; and (c) the shearing
strain for the perpendicular lines 4B and AC.

Figure P2.19.

2.20. Redo Prob. 2.19 for the case in which corner point 4 is moved to 4’ (3.0006, 0.9997,
1.9996).

2.21. At a point in a stressed body, the strains, related to the coordinate set xyz, are given by



200 300 200

300 —100 500 |

200 500 —400
Determine (a) the strain invariants; (b) the normal strain in the x’ direction, which is directed
at an angle 6 = 30° from the x axis; (c) the principal strains ¢y, &,, and &3; and (d) the maximum
shear strain.

2.22. Solve Prob. 2.21 for a state of strain given by

400 100 0
100 0 =200 |p
0 =200 600

2.23. The following describes the state of strain at a point in a structural member:

450 600 900
600 300 750 |
900 750 150

Determine the magnitudes and directions of the principal strains.

2.24. A tensile test is performed on a 12-mm-diameter aluminum alloy specimen (v = 0.33) using a
50-mm gage length. When an axial tensile load reaches a value of 16 kN, the gage length has
increased by 0.10 mm. Determine (a) the modulus of elasticity; (b) the decrease Ad in
diameter and the dilatation e of the bar.

2.25. A 12-mm-diameter specimen is subjected to tensile loading. The increase in length resulting
from a load of 9 kN 1s 0.025 mm for an original length L, of 75 mm. What are the true and

conventional strains and stresses? Calculate the modulus of elasticity.

Sections 2.9 through 2.12

2.26. Find the smallest diameter and shortest length that may be selected for a steel control rod of a
machine under an axial load of 5 kN if the rod must stretch 2 mm. Use £ =210 GPa and o,; =

160 MPa.
2.27. A 40-mm diameter bar ABC is composed of an aluminum part AB and a steel part BC (Fig.

P2.27). After axial force P is applied, a strain gage attached to the steel measures normal
strain at the longitudinal direction as ¢, = 600 . Determine (a) the magnitude of the applied

force P; (b) the total elongation of the bar if each material behaves elastically. Take £, =70
GPa and E, =210 GPa.

Figure P2.27.



Aluminum

2.28. A 5-m-long truss member 1s made of two 40-mm-diameter steel bars. For a tensile load of
600 kN, find (a) the change in the length of the member; (b) the change in the diameter of the

member. Use £ =200 GPa, Oyp = 250 MPa, and v=0.3.

2.29. The cast-iron pipe of length L, outer diameter D, and thickness 7 is subjected to an axial
compressive P. Calculate (a) the change in length AL; (b) the change in outer diameter D; (¢)
the change in thickness Az. Given: D =100 mm, = 10 mm, L =0.4 m, P =150 kN, £ =70
GPa, and v=0.3.

2.30. A typical vibration isolation device consists of rubber cylinder of diameter d compressed
inside of a steel cylinder by a force Q applied to a steel rod, as schematically depicted in Fig.
P2.30. Find, in terms of d, O, and Poisson’s ratio v for the rubber, as needed: (a) an
expression for the lateral pressure p between the rubber and the steel cylinder; (b) the lateral
pressure p between the rubber and the steel cylinder for d = 50 mm, v =0.3, and O =5 kN.
Assumptions: 1. Friction between the rubber and steel can be neglected; 2. Steel cylinder and
rod are rigid.

Figure P2.30.
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2.31. A solid sphere of diameter d experiences a uniform pressure of p. Determine (a) the decrease
in circumference of the sphere; (b) the decrease in volume of the sphere AV. Given: d =250
mm, p = 160 MPa, E = 70 GPa, and v = 0.3. Note: Volume of a sphere is Vo = 17 where r =
d/2.

2.32. The state of strain at a point in a thin steel plate is &, = 500 x, &, = —100 p, and v,,, = 150 4.

Determine (a) the in-plane principal strains and the maximum in-plane shear strain; (b) true
maximum shearing strain v = 0.3. Sketch the results found in part (a) on properly oriented
deformed elements.



2.33. An element at a point on a loaded frame has strains as follows: ¢, =480 x, &, =800 x and v,,,

=—1120 u. Determine (a) the principal strains; (b) the maximum shear strain; (c) the true
maximum shearing strain.

2.34. A metallic plate of width w and thickness ¢ is subjected to a uniform axial force P as shown
in Fig. P2.34. Two strain gages placed at point 4 measure the strains ¢, and at 30° and 60°,

respectively, to the axis of the plate. Calculate (a) the normal strains ¢, and ¢; (b) the normal
strains &, and ¢,; (c) the shearing strain y,,. Given: w =60 mm, ¢ = 6 mm, E 200 GPa, v =
0.3,and P =25 kN

Figure P2.34.
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2.35. During the static test of a panel, a 45° rosette reads the following normal strains on the free
surface (Fig. P2.35): ¢, =—-800 u, &, =—1000 u, and &, = 400 w. Find the principal strains and

show the results on a properly oriented deformed element.
Figure P2.35.
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Figure P2.36.
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2.36. A 50-mm-square plate is subjected to the stresses shown in Fig. P2.36. What deformation is
experienced by diagonal BD? Express the solution, in terms of £, for v = 0.3 using two
approaches: (a) determine the components of strain along the x and y directions and then
employ the equations governing the transformation of strain; (b) determine the stress on planes
perpendicular and parallel to BD and then employ the generalized Hooke’s law.



2.37. A uniform pressure p acts over the entire straight edge of a large plate (Fig. P2.37). What are
normal stress components o, and o, acting on a volumetric element at some distance from the

loading in terms of Poisson’s ratio v and p, as required? Assume thate, =¢, =0 and g, =—p
everywhere.
Figure P2.37.
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2.38. A 45° rosette is used to measure strain at a critical point on the surface of a loaded beam.
The readings are ¢, =—100 u, &, = 50 u, ¢, = 100 p for 8, = 0°, 6, = 45°, and 6. = 90° (Fig.
2.20b). Calculate the principal strains and stresses and their directions. Use £ =200 GPa and
v=20.3.

Yy ¥y + Y

2.39. The following state of strain has been measured at a point on the surface of a crane hook: ¢,

= 1000 u, &, =250 u, and ¢, = 200 u for 6, =—15°, 6, =30°, and 6, = 75° (Fig. 2.20b).
Determine strain components &y, &, and vy,

2.40. The strains measured at a point on the surface of a machine element are ¢, = 400 u, ¢, = 300
u, and e, =—-50 u for §,=30°, 6, =-30°, and 6, = 90° (Fig. 2.20b). Calculate (a) the in-plane

maximum shearing strain, and (b) the true maximum shearing strain. Use ¥ = 3
2.41. For a given steel, £ =200 GPa and G = 80 GPa. If the state of strain at a point within this

material is given by

200 100 0
100 300 400 |
0 400 0

ascertain the corresponding components of the stress tensor.

2.42. For a material with G = 80 GPa and £ = 200 GPa, determine the strain tensor for a state of
stress given by

20 -4 5
—4 0 10| MPa
5 10 15
2.43. The distribution of stress in an aluminum machine component is given (in megapascals) by
oy =y +:27% T = 3¢
@ =X P SR
o= 3 e T —’3'}‘

Calculate the state of strain of a point positioned at (1, 2, 4). Use £ =70 GPa and v=0.3.

2.44. The distribution of stress in a structural member 1s given (in megapascals) by Egs. (d) of

Example 1.2 of Chapter 1. Calculate the strains at the specified point 0(3.%.3) for E = 200 GPa
and v =0.25.




2.45. An aluminum alloy plate (£ = 70 GPa, v = 1/3) of dimensions a = 300 mm, » = 400 mm, and
thickness # = 10 mm 1s subjected to biaxial stresses as shown in Fig. P2.45. Calculate the
change in (a) the length AB; (b) the volume of the plate.

Figure P2.45.

2.46. The steel rectangular parallelepiped (£ =200 GPa and v = 0.3) shown in Fig. P2.46 has

dimensions a =250 mm, b =200 mm, and ¢ = 150 mm. It is subjected to triaxial stresses o, =
—60 MPa, o, =50 MPa, and ¢, =40 MPa acting on the x, y, and z faces, respectively.

Determine (a) the changes Aa, Ab, and Ac in the dimensions of the block, and (b) the change
AV in the volume.

Figure P2.46.
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2.47. Redo Prob. 2.46 for an aluminum block (£ =70 GPa and *» = Eli) for which a = 150 mm, b =
100 mm, and ¢ =75 mm, subjected to stresses o, = 70 MPa, 0, = —30 MPa, and ¢, =—15 MPa.

2.48. At a point in an elastic body, the principal strains €3, &,, € are in the ratio 3: 4: 5; the largest
principal stress is g = 140 MPa. Determine the ratio o5: 0,: o, and the values of ¢, and a3.
Take v =0.3 and £ = 200 GPa.

2.49. A rectangular plate is subjected to uniform tensile stress o along its upper and lower edges,
as shown in Fig. P2.49. Determine the displacements z and v in terms of x, y, and material
properties (E, v): (a) using Egs. (2.3) and the appropriate conditions at the origin; (b) by the
mechanics of materials approach.

Figure P2.49.
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2.50. The stress field in an elastic body is given by

[cyz 0 ]
0 —ex?

where c is a constant. Derive expressions for the displacement components u(x, y) and v(x, )
in the body.

2.51. Derive the following relations involving the elastic constants:

2G(1 + v) E

31— 20)  3(1 - 2)

Al = 2¢)  3K(1 — 2v) IKE

K=X+3G=

MRS S iR B
G(3Ar + 2G) OKG
o ——— -+ = 3. — 2 —
E o= 2G(1 + v) K(1 v) K 1 G
A E IK - 2G 3K - E
e et B T =
2A +G) 2 2(3K + G) 6K

(P2.51)

2.52. As shown in Fig. P2.52, a thin prismatical bar of specific weight y and constant cross section
hangs in the vertical plane. Under the effect of its own weight, the displacement field is
described by

i = Ly
u [(2xa —x-—=wy’), w®BF —E{a — X)y

T 2E
Figure P2.52.
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The z displacement and stresses may be neglected. Find the strain and stress components in
the bar. Check to see whether the boundary conditions [Eq. (1.48)] are satisfied by the
stresses found.

2.53. A uniform bar of rectangular cross section 2/ x b and specific weight y hangs in the vertical
plane (Fig. P2.53). Its weight results in displacements

vy

= — E.E:
L

= —E}'E
N
2E

Demonstrate whether this solution satisfies the 15 equations of elasticity and the boundary

w (22— &) + v(a* + V)]



conditions.
Figure P2.53.
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Sections 2.13 through 2.16
2.54. A bar of uniform cross-sectional area 4, modulus of elasticity £, and length L is fixed at its
right end and subjected to axial forces P; and P, at its free end. Verify that the total strain
energy stored in the bar is given by
PiL L. PPl
ooy =T -
2AE 2AE AE

S

(P2.54)

Note that U is not the sum of the strain energies due to P and P, acting separately. Find the
components of the energy for P; =P, =P and v =0.25.

2.55. Three bars of successively larger volume are to support the same load P (Fig. P2.55). Note
that the first bar has a uniform cross-sectional area A4 over its length L. Neglecting stress
concentrations, compare the strain energy stored in the three bars.

Figure P2.55.
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2.56. A solid bronze sphere (£ =110 GPa, ¥ = 5, r=150 mm) is subjected to hydrostatic pressure
p so that its volume is reduced by 0.5%. Determine (a) the pressure p, and (b) the strain

energy U stored in the sphere. (Note: volume of a sphere V' = ST )
2.57. Calculate the total strain energy U stored in the block described in Prob. 2.46.

2.58. A round bar is composed of three segments of the same material (Fig. P2.58). The diameter
is d for the lengths BC and DE and nd for length CD, where n is the ratio of the two diameters.
Neglecting the stress concentrations, verify that the strain energy of the bar when subjected to
axial load P is



1 + 3n® P°L

P
2 4n* 2AE

(P2.58)

Figure P2.58.
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where A = nd*/4. Compare the result for n = 1 with those for * = S andn=2.

2.59. (a) Taking into account only the effect of normal stress, determine the strain energy of
prismatic beam 4B due to the axial force P and moment M, acting simultaneously (Fig.

P2.59). (b) Evaluate the strain energy for the case in which the beam is rectangular, 100-mm
deep by 75-mmwide, P=8 kKN, M, =2kN -m L=12m,a=03m,b=0.9m,and £E=70

f

SO

GPa.
Figure P2.59.
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2.60. A stepped shaft is subjected to pure torsion, as shown in Fig. P2.60. Neglecting the stress
concentrations, develop the following equation for energy stored in the shafi:

_ wfiqbz( di d} )
2L\

(P2.60)

Figure P2.60.
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Here ¢ is the angle of twist and G represents the modulus of rigidity.

2.61. (a) Determine the strain energy of a solid brass circular shaft ABC loaded as shown in Fig.
P2.61, assuming that the stress concentrations may be omitted. (b) Calculate the strain energy
for T=14kN - m, a=500 mm, d =20 mm, and G =42 GPa.

Figure P2.61.



1.4d

y ¥ Ta=4T }d -

F ~— | I =

A B C

le— 1.2a —>L¥a—»|

2.62. Consider a simply supported rectangular beam of depth 4, width b, and length L subjected to
a uniform load of intensity p. Verify that the maximum strain energy density equals
45 U

TRV

i
A

(P2.62)

in which U is the strain energy of the beam and V its volume.

2.63. Consider a beam with simple supports at B and C and an overhang 4B (Fig. P2.63). What is
the strain energy in the beam due to the load P?

Figure P2.63.
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2.64. A simply supported beam carries a concentrated force P and a moment M, as shown in Fig.

P2.64. How much strain energy is stored in the beam owing to the loads acting
simultaneously?

Figure P2.64.
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2.65. Consider the state of stress given in Fig. 1.20b. Determine how many times more energy is

absorbed in changing the shape than in changing the volume of a unit element. Let £ = 200
GPa and v=0.3.

2.66. The state of stress at a point is

200 200 10
20 =50 0 |MPa
10 0 40

Decompose this array into a set of dilatational stresses and a set of deviator stresses.
Determine the values of principal deviator stress.

2.67. Calculate the strain energy per unit volume in changing the volume and in changing the shape

of the material at any point on the surface of a steel shaft 120 mm in diameter subjected to
torques of 20 kN - m and moments of 15 kN - mat its ends. Use £ =200 GPa and v =0.25.

2.68. The state of stress at a point in a loaded member is represented in Fig. P2.68. Express the
dilatational energy density and the distortional energy density in terms of the given stresses (o,
7) at the point and the material properties (E, v).



Figure P2.68.
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2.69. A circular prismatic cantilever is subjected to a torque 7 and an axial force P at its free end.

The length of the bar is L, the radius is », and the modulus of elasticity of the material 1s E.

Determine the total strain energy stored in the bar and its components. Assume ¥ = i for the
material.




Chapter 3. Problems in Elasticity

3.1 Introduction

As pointed out in Section 1.1, the approaches in widespread use for determining the influence of
applied loads on elastic bodies are the mechanics of materials or elementary theory (also known as
technical theory) and the theory of elasticity. Both must rely on the conditions of equilibrium and
make use of a relationship between stress and strain that is usually considered to be associated with
elastic materials. The essential difference between these methods lies in the extent to which the strain
is described and in the types of simplifications employed.

The mechanics of materials approach uses an assumed deformation mode or strain distribution in the
body as a whole and hence yields the average stress at a section under a given loading. Moreover, it
usually treats separately each simple type of complex loading, for example, axial centric, bending, or
torsion. Although of practical importance, the formulas of the mechanics of materials are best suited
for relatively slender members and are derived on the basis of very restrictive conditions. On the
other hand, the method of elasticity does not rely on a prescribed deformation mode and deals with
the general equations to be satisfied by a body in equilibrium under any external force system.

The theory of elasticity is preferred when critical design constraints such as minimum weight,
minimum cost, or high reliability dictate more exact treatment or when prior experience is limited and
intuition does not serve adequately to supply the needed simplifications with any degree of assurance.
If properly applied, the theory of elasticity should yield solutions more closely approximating the
actual distribution of strain, stress, and displacement. Thus, elasticity theory provides a check on the
limitations of the mechanics of materials solutions. We emphasize, however, that both techniques
cited are approximations of nature, each of considerable value and each supplementing the other. The
influences of material anisotropy, the extent to which boundary conditions depart from reality, and
numerous other factors all contribute to error.

In this chapter, we present the applied theory of elasticity, emphasizing physical significance and
employing engineering notations in Cartesian and polar coordinates. The main purpose here is to give
the reader a clear and basic understanding of methods for solving typical problems in elasticity. The
high localized stresses created by abrupt changes in cross section, as well as the high stresses
produced by concentrated loads and reactions, are treated. Our analysis is carried out for i1sotropic
and linearly elastic materials under ordinary and elevated temperatures. The later chapters include
solutions by the theory of elasticity on bending of beams, noncircular torsion, and various
axisymmetrically loaded structural and machine components, plates, and shells.

3.2 Fundamental Principles of Analysis

To ascertain the distribution of stress, strain, and displacement within an elastic body subject to a
prescribed system of forces requires consideration of a number of conditions relating to certain
physical laws, material properties, and geometry. These fundamental principles of analysis, also
called the three aspects of solid mechanics problems, summarized in Section 1.3, are conditions of
equilibrium, material behavior or stress—strain relations, and conditions of compatibility.

In addition, the stress, strain, and displacement fields must be such as to satisfy the boundary
conditions for a particular problem. If the problem is dynamic, the equations of equilibrium become



the more general conservation of momentum; conservation of energy may be a further requirement.

Three-Dimensional Problems

The conditions described, and stated mathematically in the previous chapters, are used to derive the
equations of elasticity. In the case of a three-dimensional problem in elasticity, it is required that the
following 15 quantities be ascertained: six stress components, six strain components, and three
displacement components. These components must satisfy 15 governing equations throughout the body
in addition to the boundary conditions: three equations of equilibrium, six stress—strain relations, and
six strain—displacement relations. Note that the equations of compatibility are derived from the
strain—displacement relations, which are already included in the preceding description. Thus, if the
15 expressions are satisfied, the equations of compatibility will also be satisfied. Three-dimensional
problems in elasticity are often very complex. It may not always be possible to use the direct method
of solution in treating the general equations and given boundary conditions. Only a useful indirect
method of solution will be presented in Sections 6.4 and 6.5.

Two-Dimensional Problems

In many engineering applications, ample justification may be found for simplifying assumptions with
respect to the state of strain and stress. Of special importance, because of the resulting decrease in
complexity, are those reducing a three-dimensional problem to one involving only two dimensions. In
this regard, we discuss throughout the text various plane strain and plane stress problems.

This chapter is subdivided into two parts. In Part A, derivations of the governing differential
equations and various approaches for solution of two-dimensional problems in Cartesian and polar
coordinates are considered. Part B treats stress concentrations in members whose cross sections
manifest pronounced changes and cases of load application over small areas.

Part A—Formulation and Methods of Solution

3.3 Plane Strain Problems

Consider a long prismatic member subject to lateral loading (for example, a cylinder under pressure),
held between fixed, smooth, rigid planes (Fig. 3.1). Assume the external force to be functions of the x
and y coordinates only. As a consequence, we expect all cross sections to experience identical
deformation, including those sections near the ends. The frictionless nature of the end constraint
permits x, y deformation but precludes z displacement; that is, w = 0 at z = £L/2. Considerations of
symmetry dictate that w must also be zero at midspan. Symmetry arguments can again be used to infer
that w = 0 at +L/4, and so on, until every cross section is taken into account. For the case described,
the strain depends on x and y only:

o v i i
Exy = T By =y Yoy ==
Ax Ay ooay ax
3.1)
A ol ot i TH o
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3.2)

Figure 3.1. Plane strain in a cylindrical body.
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The latter expressions depend on 0u/0z and 0v/0z vanishing, since w and its derivatives are zero. A
state of plane strain has thus been described wherein each point remains within its transverse plane,
following application of the load. We next develop the equations governing the behavior of bodies
under plane strain.

Substitution of &, =y, = y,, = 0 into Eq. (2.36) provides the following stress—strain relationships:

LT i 2 GE.'( + ‘}'-(Fv + E.,..}

oy = 2Ge, + Alg, + &)
T.'l."l' = G?.n‘
(3.3)
and
Ty = Ty = 0, L7 e "]LEEI i E_'.J = pl:'ﬂ-.'r * g_r]
34

Because o, 1s not contained in the other governing expressions for plane strain, it is determined
independently by applying Eq. (3.4). The strain—stress relations, Eqs. (2.34), for this case become
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(3.5)

Inasmuch as these stress components are functions of x and y only, the first two equations of (1.14)
yield the following equations of equilibrium of plane strain:
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(3.6)
The third equation of (1.14) 1s satisfied 1f /, = 0. In the case of plane strain, therefore, no body force



in the axial direction can exist.

A similar restriction is imposed on the surface forces. That is, plane strain will result in a prismatic
body if the surface forces p, and p,, are each functions of x and y and p, = 0. On the lateral surface, n

=0 (Fig. 3.2). The boundary conditions, from the first two equations of (1.41), are thus given by
p,=al+ 7.m

py = 7l + om
3.7)
Figure 3.2. Surface forces.
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Clearly, the last equation of (1.48) is also satisfied.

In the case of a plane strain problem, therefore, eight quantities, o, Oy Ty Exs Es Vys U and v, must

be determined so as to satisfy Egs. (3.1), (3.3), and (3.6) and the boundary conditions (3.7). How
eight governing equations, (3.1), (3.3), and (3.6), may be reduced to three is now discussed.

Three expressions for two-dimensional strain at a point [Eq. (3.1)] are functions of only two
displacements, u and v, and therefore a compatibility relationship exists among the strains [Eq.
(211)]:

- . )
FJ"J-.‘.I. &, Yoy

-

avt axt dxay
(3.9)

This equation must be satisfied for the strain components to be related to the displacements as in Egs.
(3.1). The condition as expressed by Eq. (3.8) may be transformed into one involving components of
stress by substituting the strain—stress relations and employing the equations of equilibrium.
Performing the operations indicated, using Egs. (3.5) and (3.8), we have
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Next, the first and second equations of (3.6) are differentiated with respect to x and y, respectively,
and added to yield
'H:Txr EJE(}' ‘:]'1':]-5' EJJP I':"F'.'
(5 - ()
ax oy ax- Ay X ay

Finally, substitution of this into Eq. (a) results in
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This is the equation of compatibility in terms of stress.

3.9)

We now have three expressions, Egs. (3.6) and (3.9), in terms of three unknown quantities: o, o,,
and 7,,. This set of equations, together with the boundary conditions (3.7), is used in the solution of

plane strain problems. For a given situation, after determining the stress, Eqs. (3.5) and (3.1) yield
the strain and displacement, respectively. In Section 3.6, Egs. (3.6) and (3.9) will further be reduced
to one equation containing a single variable.

3.4 Plane Stress Problems

In many problems of practical importance, the stress condition is one of plane stress. The basic
definition of this state of stress was given in Section 1.8. In this section we present the governing
equations for the solution of plane stress problems.

To exemplify the case of plane stress, consider a thin plate, as in Fig. 3.3, wherein the loading is
uniformly distributed over the thickness, parallel to the plane of the plate. This geometry contrasts
with that of the long prism previously discussed, which is in a state of plane strain. To arrive at
tentative conclusions with regard to the stress within the plate, consider the fact that o, y,., and 7,,,

are zero on both faces of the plate. Because the plate is thin, the stress distribution may be very
closely approximated by assuming that the foregoing is likewise true throughout the plate.

Figure 3.3. Thin plate under plane stress.
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We shall, as a condition of the problem, take the body force F, = 0 and F, and F), each to be functions
of x and y only. As a consequence of the preceding, the stress is specified by

T, ., T

O; = Ty = Tyy = 0

(2)

The nonzero stress components remain constant over the thickness of the plate and are functions of x
and y only. This situation describes a state of plane stress. Equations (1.14) and (1.48), together with
this combination of stress, again reduce to the forms found in Section 3.3. Thus, Egs. (3.6) and (3.7)
describe the equations of equilibrium and the boundary conditions in this case, as in the case of plane
strain.



Substitution of Eq. (a) into Eq. (2.34) yields the following stress—strain relations for plane stress:
1

g, = E (o — voy)
.
&y = I ({r.._ v, )
Ty
Yiy = E
(3.10)
and
Yer = Yo T [}1 g = — %(G‘r T LT_I.II
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Solving for o, + 0, from the sum of the first two of Egs. (3.10) and inserting the result into Eq.
(3.11a), we obtain

P
£ = = I:E_'c + E'.'}I

—
(3.11b)

Equations (3.11) define the out-of-plane principal strain in terms of the in-plane stresses (o, 0,) or
strains (&y, ).

Because ¢, is not contained in the other governing expressions for plane stress, it can be obtained
independently from Eqs. (3.11); then ¢, = 0w/0z may be applied to yield w. That is, only  and v are

considered as independent variables in the governing equations. In the case of plane stress, therefore,
the basic strain—displacement relations are again given by Eqs. (3.1). Exclusion from Eq. (2.4) of ¢,

ow/0z makes the plane stress equations approximate, as is demonstrated in the section that follows.

The governing equations of plane stress will now be reduced, as in the case of plane strain, to three
equations involving stress components only. Since Egs. (3.1) apply to plane strain and plane stress,
the compatibility condition represented by Eq. (3.8) applies in both cases. The latter expression may
be written as follows, substituting strains from Eqgs. (3.10) and employing Egs. (3.6):

2 3 o -
8 i 7 ) O
(‘—j + f—q)'fﬂ'_f ta,)=—(1+ F)(t. = —)
ax-  ady X oy

This equation of compatibility, together with the equations of equilibrium, represents a useful form
of the governing equations for problems of plane stress.

(3.12)

Stress—Strain Relations for Orthotropic Materials

Three-dimensional stress—strain relations for orthotropic materials in terms of orthotropic moduli of
elasticity and orthotropic Poisson’s ratios were developed in Section 2.11. Now consider an
orthotropic member with orthotropic axes x, y, z subjected to state of stress relative to the xy plane.
Thus, for the orthotropic material in state of plane stress, introducing Egs. (a) into Egs. (2.42), we
obtain the strain—stress relations:
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It is recalled that £, E\, denote the orthotropic moduli of elasticity, G,,, the orthotropic shear modulus
of elasticity, and

the stress—strain relations are found as

Viys Vaz» Vy are the orthotropic Poisson ratios. Through the inversion of Egs. (3.13),
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Having the preceding equations, the plane stress orthotropic problems are treated similarly to plane
stress problems for isotropic materials.

3.5 Comparison of Two-Dimensional Isotropic Problems

To summarize the two-dimensional situations discussed, the equations of equilibrium [Egs. (3.6)],
together with those of compatibility [Eq. (3.9) for plane strain and Eq. (3.12) for plane stress] and the
boundary conditions [Egs. (3.7)], provide a system of equations sufficient for determination of the
complete stress distribution. It can be shown that a solution satisfying all these equations is, for a
given problem, unique [Ref. 3.1]. That is, it is the only solution to the problem.

In the absence of body forces or in the case of constant body forces, the compatibility equations for
plane strain and plane stress are the same. In these cases, the equations governing the distribution of
stress do not contain the elastic constants. Given identical geometry and loading, a bar of steel and
one of Lucite should thus display identical stress distributions. This characteristic 1s important in that
any convenient isotropic material may be used to substitute for the actual material, as, for example, in
photoelastic studies.

It is of interest to note that by comparing Egs. (3.5) with Egs. (3.10) we can form Table 3.1, which
facilitates the conversion of a plane stress solution into a plane strain solution, and vice versa. For
instance, conditions of plane stress and plane strain prevail in a narrow beam and a very wide beam,

respectively. Hence, in a result pertaining to a thin beam, £/ would become EI/(1 — v?) for the case of



a wide beam. The stiffness in the latter case is, for v = 0.3, about 10% greater owing to the prevention
of sidewise displacement (Secs. 5.2 and 13.4).

Table 3.1. Conversion between Plane Stress and Plane Strain Solutions

Solution To Convert to: E is Replaced by: v is Replaced by:
: E i
Plane stress Plane strain :
| T l — v
. 1 + 2w ¥
Plane strain Plane stress ~F
(1 + »)* 1+ »

3.6 Airy’s Stress Function

The preceding sections demonstrated that the solution of two-dimensional problems in elasticity
requires integration of the differential equations of equilibrium [Egs. (3.6)], together with the
compatibility equation [Eq. (3.9) or (3.12)] and the boundary conditions [Egs. (3.7)]. In the event that
the body forces F), and F), are negligible, these equations reduce to

doe Oy _ o oy My _
ax dy ay ax
(2)
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( i J{cn- +a,) =0
gxs  ay’ '
(b)

together with the boundary conditions (3.7). The equations of equilibrium are identically satisfied by
the stress function, ®(x, y), introduced by G. B. Airy, related to the stresses as follows:

Fb 7P F D
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Substitution of (3.16) into the compatibility equation, Eq. (b), yields
a*d it a'd
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What has been accomplished is the formulation of a two-dimensional problem in which body forces
are absent, in such a way as to require the solution of a single biharmonic equation, which must of
course satisfy the boundary conditions.

It should be noted that in the case of plane stress we have o, =7, =17,, =0 and o,, 0,,

independent of z. As a consequence, y,, =7,. =0, and ¢, ¢, ¢, and y,,, are independent of z. In

accordance with the foregoing, from Eq. (2.12), it is seen that in addition to Eq. (3.17), the following
compatibility equations also hold:

and 7,

e, e, &e, ’
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(c)

Clearly, these additional conditions will not be satisfied in a case of plane stress by a solution of Eq.
(3.17) alone. Therefore, such a solution of a plane stress problem has an approximate character.
However, i1t can be shown that for thin plates the error introduced is negligibly small.

Generalized Plane Strain Problems

It is also important to note that if the ends of the cylinder shown in Fig. 3.1 are free to expand, we
may assume the longitudinal strain ¢, to be a constant. Such a state may be called that of generalized

plane strain. Therefore, we now have

3
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and

o, = o, + 0,) + Eg,
(3.19)

Introducing Egs. (3.18) into Eq. (3.8) and simplifying, we again obtain Eq. (3.17) as the governing
differential equation. Having determined o, and o,, the constant value of ¢, can be found from the

condition that the resultant force in the z direction acting on the ends of the cylinder is zero. That is,
Jllrf':r- dx (i'l_}’ =)

(d)
where o, 1s given by Eq. (3.19). A detailed discussion of pressured thick-cylinders is given in
Section 8.2.

3.7 Solution of Elasticity Problems

Unfortunately, solving directly the equations of elasticity derived may be a formidable task, and it is
often advisable to attempt a solution by an indirect method: the inverse or semi-inverse method. The
inverse method requires examination of the assumed solutions with a view toward finding one that
will satisfy the governing equations and boundary conditions. The semi-inverse method requires the
assumption of a partial solution formed by expressing stress, strain, displacement, or stress function
in terms of known or undetermined coefficients. The governing equations are thus rendered more
manageable.

It is important to note that the preceding assumptions, based on the mechanics of a particular problem,
are subject to later verification. This is in contrast with the mechanics of materials approach, in
which analytical verification does not occur. The applications of indirect and direct methods are
found in examples to follow and in Chapters 5, 6, and 8.

A number of problems may be solved by using a linear combination of polynomials in x and y and



undetermined coefficients of the stress function Clearly, an assumed polynomial form must satisfy the
biharmonic equation and must be of second degree or higher in order to yield a nonzero stress
solution of Eq. (3.16), as described in the following paragraphs. In general, finding the desirable
polynomial form is laborious and requires a systematic approach [Refs. 3.2 and 3.3]. The Fourier
series, indispensible in the analytical treatment of many problems in the field of applied mechanics,
is also often employed (Secs. 10.10 and 13.7).

Another way to overcome the difficulty involved in the solution of Eq. (3.17) 1s to use the method of
finite differences. Here the governing equation is replaced by series of finite difference equations
(Sec. 7.3), which relate the stress function at stations that are removed from one another by finite
distances. These equations, although not exact, frequently lead to solutions that are close to the exact
solution. The results obtained are, however, applicable only to specific numerical problems.

Polynomial Solutions

An elementary approach to obtaining solutions of the biharmonic equation uses polynomial functions
of various degree with their coefficients adjusted so that V#® = 0 is satisfied. A brief discussion of
this procedure follows.

A polynomial of the second degree,

i1a

Ca
b, = 3 x + baxy + = y‘z

2
(3.20)

satisfies Eq. (3.14). The associated stresses are

a, = O oy = 8, Toy = —Dg
All three stress components are constant throughout the body. For a rectangular plate (Fig. 3.4a), it is
apparent that the foregoing may be adapted to represent simple tension (¢, # 0), double tension (c, #
0, a, #0), or pure shear (b, # 0).

A polynomial of the third degree

i3 by , i [
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(3.21)
Figure 3.4. Stress fields of (a) Eq. (3.20) and (b) Eq. (3.21).
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fulfills Eq. (3.17). It leads to stresses

oy = ¢3x + dsy, oy = X + by, Tey = —bsx — cay



For ay= b3 =c3 =0, these expressions reduce to

r. = day, &= Ty 1
representing the case of pure bendzng of the rectangular plate (Fig. 3.4b).
A polynomial of the fourth degree,

ay 4 b‘j 1 €4 5 9 ”r.t €4 4
= + —x'y + = + —xy + —
O, ]jr ﬁrv 211 6,m ]2»
3.22)
satisfies Eq. (3.17) if e, = —(2¢4 + a4). The corresponding stresses are
g, =cx* +dyxy — (2c4 + a)y’
o, =n WX+ byxy + )
by . dy
Top =" g, i 2':4'1-.}" iD _.}
: 2
A polynomial of the fifth degree
D, = mr‘+b—1 =+{—ﬁf\f +ix‘1y +Lr1 + 28
T T 6 12 20"
(3.23)

fulfills Eq. (3.17) provided that
(3as+2c5 + esh + (bs + 2ds + 3f5)y = 0
It follows that
g5 = _3ET_=, . 2-(.'_{- -E}_:, = _sz5 - 3f-7,

The components of stress are then
Oy

T, = ?',rl + dxly — (3as + 2¢)xy? + foy°
1 & d“ 3
0y = asx® = (3fs + 2d)Py + csxp? + 2y

Txy :_%'[3.f~i+2ff}f — csx’y — dsxy® + 3(3ds + 2¢5)y°

Problems of practical importance may be solved by combining functions (3.20) through (3.23), as
required. With experience, the analyst begins to understand the types of stress distributions arising
from a variety of polynomials.

Example 3.1. Stress Distribution in a Cantilever Beam

A narrow cantilever of rectangular cross section is loaded by a concentrated force at its free end
of such magnitude that the beam weight may be neglected (Fig. 3.5a). Determine the stress
distribution in the beam.

Figure 3.5. Example 3.1. (a) End-loaded cantilever beam; (b) stress distribution away from
ends.



(b}

Solution

The situation described may be regarded as a case of plane stress provided that the beam

thickness ¢ is small relative to the beam depth 2.

The following boundary conditions are consistent with the coordinate system in Fig. 3.5a:
{T.I._I.':I_I. + = []1 [JL:I'.' =+ i = {}

(2)

These conditions simply express the fact that the top and bottom edges of the beam are not loaded.
In addition to Eq. (a), it is necessary, on the basis of zero external loading in the x direction at x =
0, that o, = 0 along the vertical surface at x = 0. Finally, the applied load P must be equal to the

resultant of the shearing forces distributed across the free end:

w+-h
P = —/ Tod dy
i

The negative sign agrees with the convention for stress discussed in Section 1.5.

(b)

For purposes of illustration, three approaches are employed to determine the distribution of stress
within the beam.

Method 1. Inasmuch as the bending moment varies linearly with x and o, at any section depends
on y, it is reasonable to assume a general expression of the form

FP
0y = —5 = C1Xxy
ay°
(©)
in which ¢ represents a constant. Integrating twice with respect to y,
O = ferxy’ + yfi(x) + folx)
(d)

where f(x) and f5(x) are functions of x to be determined. Introducing the ® thus obtained into Eq.
(3.17), we have

d'fy  d'f,

: dx? E de*

Since the second term is independent of y, a solution exists for all x and y provided that d*f;/dx* =

0




0 and d*f,/dx* = 0, which, upon integrating, leads to
filx) = e’ + e + e+ ¢
o) = g + e + e + ¢
where ¢, c3,..., are constants of integration. Substitution of f1(x) and f5(x) into Eq. (d) gives

I 3 3 7
P = zoxy + (X8 + cx” + cgx +ocs)y
1 2
-+ fl_:,.'f' + CaX + L‘H.l‘ + f_‘l_]-

Expressions for o, and 7, follow from Eq. (3.16):

»
a P
gy = T = b(cay + c)x + 2(cay + c3)
' ax”
2
&P 1 2 " 2
Toyy = ——— = =350V = 3cx° = 2e:x — ¢4
; X oy

(e)

At this point, we are prepared to apply the boundary conditions. Substituting Egs. (a) into (e), we
obtain ¢, = ¢3 = ¢ = c; = 0 and ¢ = —3¢:/, The final condition, Eq. (b), may now be written as

i I
= / T.l.'.l-'r ff_,'l-’ = / %ﬁ-‘ﬁ{}’z = -‘IIJ]'(EI_}’ = P
of = S

2th? [
where I = 3/ is the moment of inertia of the cross section about the neutral axis. From Egs. (¢)
and (e), together with the values of the constants, the stresses are found to be
FPxy P
=y _

from which

o, =

(3.24)

The distribution of these stresses at sections away from the ends is shown in Fig. 3.5b.
Method 2. Beginning with bending moments M, = Px, we may assume a stress field similar to that
for the case of pure bending;

F ;.
o, = _(TA)}'s Ty — T_.I_l-{.l', .}':L Oy =0, = Typp = Tyz — 0

()
Equation of compatibility (3.12) is satisfied by these stresses. On the basis of Egs. (f), the
equations of equilibrium lead to
E{ﬂ"r i fj':'r.l._; ', ‘-*FT.'._L _ 0
ox dy ax
(8)

From the second expression, 7,,, can depend only on y. The first equation of (g) together with Egs.



(f) yrelds

from which

Here ¢ is determined on the basis of (7)., = 0: ¢ = —Ph?/21. The resulting expression for Ty
satisfies Eq. (b) and is identical with the result previously obtained.

Method 3. The problem may be treated by superimposing the polynomials @, and @,,
a2:C2:a4:b4:C4:e4:0
Thus,

Iy =
® = 0, + O, = by + ;—4_1;_1;-‘
The corresponding stress components are
ff-J, 7
o, = dgxy, o, =0, P e ?‘y-
It is seen that the foregoing satisfies the second condition of Egs. (a). The first of Egs. (a) leads to
d, = —2b,/h?. We then obtain
h_

which when substituted into condition (b) results in b, = —3P/4ht = Ph*/21. As before
given in Egs. (3.24).

, Tyy 18 @S

Comments

Observe that the stress distribution obtained is the same as that found by employing the
elementary theory. If the boundary forces result in a stress distribution as indicated in Fig. 3.5b,
the solution is exact. Otherwise, the solution is not exact. In any case, however, recall that Saint-
Venant’s principle permits us to regard the result as quite accurate for sections away from the
ends.

Section 5.4 illustrates the determination of the displacement field after derivation of the
curvature—moment relation.

3.8 Thermal Stresses

Consider the consequences of increasing or decreasing the uniform temperature of an entirely
unconstrained elastic body. The resultant expansion or contraction occurs in such a way as to cause a
cubic element of the solid to remain cubic, while experiencing changes of length on each of its sides.
Normal strains occur in each direction unaccompanied by normal stresses. In addition, there are
neither shear strains nor shear stresses. If the body is heated in such a way as to produce a nonuniform
temperature field, or if the thermal expansions are prohibited from taking place freely because of
restrictions placed on the boundary even if the temperature is uniform, or if the material exhibits



anisotropy in a uniform temperature field, thermal stresses will occur. The effects of such stresses can
be severe, especially since the most adverse thermal environments are often associated with design
requirements involving unusually stringent constraints as to weight and volume. This is especially
true in aerospace applications but is of considerable importance, too, in many everyday machine
design applications.

Equations of Thermoelasticity

Solution of thermal stress problems requires reformulation of the stress—strain relationships
accomplished by superposition of the strain attributable to stress and that due to temperature. For a
change in temperature 7(x, ), the change of length, JL, of a small linear element of length L in an
unconstrained body is L = aLT. Here a, usually a positive number, is termed the coefficient of linear
thermal expansion. The thermal strain ¢, associated with the free expansion at a point is then

& =al

(3.25)

The total x and y strains, ¢, and ¢, are obtained by adding to the thermal strains of the type described,

the strains due to stress resulting from external forces:
I

& = (o, = voy) + aT
l e
By = FE(T_T ~ )
T.l._'l' = [.;_-
(3.26a)
In terms of strain components, these expressions become
) EaT
o, = '.II:SJ. + vEy) —
] — v " | — v
FEaT
U'l' = '.II:E'l' -I- !'Jg.'.'] -
GRS | — v
T'I.'.'.' = GT'I.'.T
(3.26b)

Because free thermal expansion results in no angular distortion in an isotropic material, the shearing
strain is unaffected, as indicated. Equations (3.26) represent modified strain—stress relations for
plane stress. Similar expressions may be written for the case of plane strain. The differential
equations of equilibrium (3.6) are based on purely mechanical considerations and are unchanged for
thermoelasticity. The same is true of the strain—displacement relations (2.3) and the compatibility
equation (3.8), which are geometrical in character. Thus, for given boundary conditions (expressed
either as surface forces or displacements) and temperature distribution, thermoelasticity and ordinary
elasticity differ only to the extent of the strain—stress relationship.

By substituting the strains given by Eq. (3.26a) into the equation of compatibility (3.8), employing Eq.
(3.6) as well, and neglecting body forces, a compatibility equation is derived in terms of stress:



(% 4 il)l;;f, + o, + aET) = 0
ax H_}-’ :

(3.27)

Introducing Eq. (3.16), we now have
Vid + aEV'T =0
(3.28)

This expression is valid for plane strain or plane stress provided that the body forces are negligible.

It has been implicit in treating the matter of thermoelasticity as a superposition problem that the
distribution of stress or strain plays a negligible role in influencing the temperature field [Refs. 3.4
and 3.5]. This lack of coupling enables the temperature field to be determined independently of any
consideration of stress or strain. If the effect of the temperature distribution on material properties
cannot be disregarded, the equations become coupled and analytical solutions are significantly more
complex, occupying an area of considerable interest and importance. Numerical solutions can,
however, be obtained in a relatively simple manner through the use of finite difference methods.

Example 3.2. Thermal Stress and Strain in a Beam

A rectangular beam of small thickness ¢, depth 2/, and length 2L is subjected to an arbitrary
variation of temperature throughout its depth, 7= 7(y). Determine the distribution of stress and
strain for the case in which (a) the beam is entirely free of surface forces (Fig. 3.6a) and (b) the
beam is held by rigid walls that prevent the x-directed displacement only (Fig. 3.6b).

Figure 3.6. Example 3.2. Rectangular beam in plane thermal stress: (a) unsupported; (b)
placed between two rigid walls.

¥ Yi
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Solution

The beam geometry indicates a problem of plane stress. We begin with the assumptions

g =0y), oy=7y=0

(a)
Direct substitution of Egs. (a) into Egs. (3.6) indicates that the equations of equilibrium are
satisfied. Equations (a) reduce the compatibility equation (3.27) to the form
d-

-
A

(o, + aET) =10

dy

(b)
from which



o, = —aET + ¢,y + ¢,

(c)
where ¢ and ¢, are constants of integration. The requirement that faces y = +4 be free of surface
forces 1s obviously fulfilled by Eq. (b).

a. The boundary conditions at the end faces are satisfied by determining the constants that assume
zero resultant force and moment at x = +L:

ol h
] agldy =10, / o yidy =10
—h o —f
(d)

3 1 “f S " H g
Substituting Eq. (¢) into Egs. (d), it is found that ¢1 = (324") [, aETydy and e = (1/2h) [J,aET dy,
The normal stress, upon substituting the values of the constants obtained, together with the
moment of inertia / = 243t/3 and area 4 = 2h¢, into Eq. (¢), is thus

w7 ]
i Vi
=R =T e i rd v
a, Fﬂ[ T A/th’y - !./HT_HJ_}}

(3.29)
The corresponding strains are
g, = % Tl By = acd 2 al, Yig =
(e)

The displacements can readily be determined from Egs. (3.1).

From Eq. (3.29), observe that the temperature distribution for 7'= constant results in zero
stress, as expected. Of course, the strains (e) and the displacements will, in this case, not be
zero. It is also noted that when the temperature is symmetrical about the midsurface (y = 0),
that 1s, 7(y) = T(—y), the final integral in Eq. (3.29) vanishes. For an antisymmetrical
temperature distribution about the mid-surface, 7(y) = —7(—y), and the first integral in Eq.
(3.29) 1s zero.

b. For the situation described, ¢, = 0 for all y. With g, =7, = 0 and Eq. (¢), Eqs. (3.26a) lead to
c1 = ¢, =0, regardless of how T varies with y. Thus,

a, = —Eal
(3.30)

and
S.‘L’ = TJ;r — D-. S_':' = |:]_ -+ ]_i}ﬂ-T

®

Comment

Note that the axial stress obtained here can be large even for modest temperature changes, as can
be verified by substituting properties of a given material.




3.9 Basic Relations in Polar Coordinates

Geometrical considerations related either to the loading or to the boundary of a loaded system often
make it preferable to employ polar coordinates rather than the Cartesian system used exclusively thus
far. In general, polar coordinates are used advantageously where a degree of axial symmetry exists.
Examples include a cylinder, a disk, a wedge, a curved beam, and a large thin plate containing a

circular hole.
The polar coordinate system (7, 8) and the Cartesian system (x, y) are related by the following
expressions (Fig. 3.7a):

x=rcos, r*=x+y
: y
y = rsiné, A =tan ' =
: =
(2)
Figure 3.7. (a) Polar coordinates; (b) stress element in polar coordinates.
do Tyt ITry ae
Ty +——dd
a8 )
d s
0t ar
It
a O gy
/}\f. ' o+ dr
y v r f,-ff
"__,ff ci.! =B o Tra
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These equations yield
AF X ¥ i .
i—=—=msﬁ, =i
X r o} r
a y  sind i x  cosd
ax r il ay rt r
(b)

Any derivatives with respect to x and y in the Cartesian system may be transformed into derivatives
with respect to » and 6 by applying the chain rule:

il ar af o il sin 6 d
——pmer— e AR —
ax  dx ar ax of ar roooof
ol ar a b ; il cosf g
o —om i e i =
av o ay ar  dy af ar rooan

(c)

Relations governing properties at a point not containing any derivatives are not affected by the
curvilinear nature of the coordinates, as 1s observed next.

Equations of Equilibrium



Consider the state of stress on an infinitesimal element abcd of unit thickness described by polar
coordinates (Fig. 3.7b). The r and 6-directed body forces are denoted by F, and F;. Equilibrium of

radial forces requires that

l'-.IU-..- 7 iy _ i)
(Lr,. + = u"r)u' + dr)df — ordd — (U,-_, + 2 u’ﬂ)d!‘ 51

dr 2

{6 e 10 10
— oy dr sin s + (T,..-J s fi’ﬂ);h' cﬂsf ------ T, dr cos s F.rdrdid =10

2 2 )

Inasmuch as d6 1s small, sin(d6/2) may be replaced by d6/2 and cos(d6/2) by 1. Additional

simplication is achieved by dropping terms containing higher-order infinitesimals. A similar analysis

may be performed for the tangential direction. When both equilibrium equations are divided by r dr

do, the results are

gr, 10Ty O~ 0y
+ = +

+ F =10
ir rooag r "
1 oy T . i . 0
—— — + = — - =
roog ar 4 d

(3.31)

In the absence of body forces, Egs. (3.31) are satisfied by a stress function ®(r, 8) for which the
stress components in the radial and tangential directions are given by

1 b 1 &P
3 S it g

roar .

ER)
i =

or-

1l ab 1 &#d ﬁ(l aqb)
g e e = = —| ——
rL rt oo Foar oo ar\or of

(3.32)

Strain—Displacement Relations

Consider now the deformation of the infinitesimal element abcd, denoting the » and 6 displacements
by u and v, respectively. The general deformation experienced by an element may be regarded as
composed of (1) a change in length of the sides, as in Figs. 3.8a and b, and (2) rotation of the sides, as
in Figs. 3.8¢ and d.

Figure 3.8. Deformation and displacement of an element in polar coordinates.
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In the analysis that follows, the small angle approximation sin 6 = 6 is employed, and arcs ab and cd
are regarded as straight lines. Referring to Fig. 3.8a, it is observed that a u displacement of side ab
results in both radial and tangential strain. The radial strain ¢,, the deformation per unit length of side
ad, 1s associated only with the u displacement:

r

(3.33a)
The tangential strain owing to u, the deformation per unit length of ab, is
B (r + u)dd — rd u
[J-"I.‘,:IH - rdo - r
(d)
Clearly, a v displacement of element abcd (Fig. 3.8b) also produces a tangential strain,
_ [EJ'EH"&H:I dt) B 1 an
(80)0 = rde  raf
(e)

since the increase in length of ab is (0v/00)d6. The resultant tangential strain, combining Egs. (d) and

(e), is
| av i
g =——+—

roof r
(3.33h)

Figure 3.8c shows the angle of rotation ebf of side a’b’ due to a u displacement. The associated strain
is
(onfof) dB 1 au

(Yeo)u = T

)

The rotation of side bc associated with a v displacement alone 1s shown in Fig. 3.8d. Since an initial
rotation of " through an angle v/r has occurred, the relative rotation gb"” /4 of side bc is



o n
ks = o —

v r
(8)
The sum of Egs. (f) and (g) provides the total shearing strain
_w Lw v
Yri ar r a0 ¥
(3.33¢)

The strain—displacement relationships in polar coordinates are thus given by Egs. (3.33).

Hooke’s Law

To write Hooke’s law in polar coordinates, we need only replace subscripts x with » and y with 8 in
the appropriate Cartesian equations. In the case of plane stress, from Egs. (3.10) we have

|

g, = E(G‘]- = vay)
= (o)~ v07)
&p = _E,I L L
o,
Ve G Te
(3.34)
For plane strain, Egs. (3.5) lead to
B i =
5, = ——I(1 = ¥)o, = v
B
&y = £ V[“ v)o, — vo,]
1
Ve = ET."H
(3.35)
Transformation Equations
Replacement of the subscripts x’' with » and ' with 6 in Egs. (1.17) results in
o, = o, cos’ 0 + T, sin @ + 2 Ty, SIN B oS @
70 = (o, — @, )sindcos O + 7, (cos’ 0 — sin” 0)
oy = a,sin’ 0 + a,cos’ @ — 27, sin 0 cos 6
(3.36)

We can also express o

w Txy» and o, in terms of 0,, 7,4, and o (Problem 3.26) by replacing 6 with -0 in
Egs. (1.17). Thus,

o, cos” 8 + o, sin’@ — 27, sin O cos @

0y

T, = (0, — op) sin @ cos @ + 7,5(cos’# — sin’ )

r

o, = o,sin° 0 + o, cos’ 0 + 27, sin @ cos 0



3.37)
Similar transformation equations may also be written for the strains and ¢,., v,4, and €.
Compatibility Equation
It can be shown that Egs. (3.33) result in the following form of the equation of compatibility:

Pagiy
f.l-f:'”

3 . ; 2 :
e, " 2 dgg 1 de, . | By 1 ¥

ar’ o al? roodr roor Fodrof ool

3

(3.38)

To arrive at a compatibility equation expressed in terms of the stress function @, it is necessary to

evaluate the partial derivatives 0°®/0x? and 0°®/0y? in terms of 7 and 6 by means of the chain rule
together with Egs. (a). These derivatives lead to the Laplacian operator:

Vi = fftlf . fjr’ﬁ: _ ;_»FcE: L1l L {,}3{?
ax? et at r o P
3.39)
The equation of compatibility in alternative form is thus
T'l‘f..l} — (f'l_r |' l .-i -I— l_, ﬁl_}){?f{h] o {}
o Fodr oot
(3.40)

For the axisymmetrical, zero body force case, the compatibility equation is, from Eq. (3.9) [referring
to (3.39)],
d*(o, + o)

Tz[t:rr + (TI'.I:I — 5
dar-

1 {j‘{(Tr + oy)
r dr

(3.41)

The remaining relationships appropriate to two-dimensional elasticity are found in a manner similar
to that outlined in the foregoing discussion.

Example 3.3. State of Stress in a Plate in Tension
A large thin plate 1s subjected to uniform tensile stress o, at its ends, as shown in Fig. 3.9.
Determine the field of stress existing within the plate.

Figure 3.9. Example 3.3. A plate in uniaxial tension.
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Solution



For purposes of this analysis, it will prove convenient to locate the origin of coordinate axes at
the center of the plate as shown. The state of stress in the plate is expressed by

Cr.'l.' — Cr-l')? ':rl' — T.'f'.' = {'}
The stress function, ® = ,)%/2, satisfies the biharmonic equation, Eq. (3.17). The geometry

suggests polar form. The stress function ® may be transformed by substituting y = r sin 6, with the
following result:

® = 1g,r(1 — cos 20)
(h)
The stresses in the plate now follow from Egs. (h) and (3.32):
o, = 30,(1 + cos26)
a, = 50,(1 = cos 26)
T = — _%fr” sin 26
3.42)

Clearly, substitution of g, = 7,,, = 0 could have led directly to the foregoing result, using the
transformation expressions of stress, Egs. (3.36).

Part B—Stress Concentrations

3.10 Stresses Due to Concentrated Loads

Let us now consider a concentrated force P or F acting at the vertex of a very large or semi-infinite
wedge (Fig. 3.10). The load distribution along the thickness (z direction) is uniform. The thickness of
the wedge is taken as unity, so P or F'is the load per unit thickness. In such situations, it is
convenient to use polar coordinates and the semi-inverse method.

Figure 3.10. Wedge of unit thickness subjected to a concentrated load per unit thickness: (a)
knife edge or pivot; (b) wedge cantilever.

{a) (b

In actuality, the concentrated load is assumed to be a theoretical /ine load and will be spread over an
area of small finite width. Plastic deformation may occur locally. Thus, the solutions that follow are
not valid in the immediate vicinity of the application of load.



Compression of a Wedge (Fig. 3.10a)

Assume the stress function
P = cPrésind

(2)

where c is a constant. It can be verified that Eq. (a) satisfies Eq. (3.40) and compatibility is ensured.
For equilibrium, the stresses from Eqgs. (3.32) are
cos

r

a. = 2cP

(b)

The force resultant acting on a cylindrical surface of small radius, shown by the dashed lines in Fig.
3.10a, must balance P. The boundary conditions are therefore expressed by
Ty = Ty = 0, 0 =+1a

(c)

2] (er, cos B)rdf) = —P
0

(d)

Conditions (¢) are fulfilled by the last two of Egs. (b). Substituting the first of Egs. (b) into condition
(d) results in

4|:.~P/ cos’@ déd = —P
J1

Integrating and solving for c: ¢ =—1/(2a + sin 2a). The stress distribution in the knife edge is
therefore
P cos @

rFla + 3sin2a)

T, = — a, = 0, T =0

(3.43)
This solution is due to J. H. Mitchell [Ref. 3.6].

The distribution of the normal stresses o, over any cross section m — n perpendicular to the axis of

symmetry of the wedge is not uniform (Fig. 3.10a). Applying Eq. (3.37) and substituting » = L/cos 6
in Eq. (3.43), we have

P cos'e

L(a + 5sin 2a)

vl
g, = g, Cco5 0 = —

(3.44)

The foregoing shows that the stresses increase as L decreases. Observe also that the normal stress is
maximum at the center of the cross section (6 = 0) and minimum at & = a. The difference between the
maximum and minimum stress, Ag,, 1s from Eq. (3.44),

P(1 — cos*a)

L{a + 3sin2a)

Aa, = —



(e)
For instance, if a = 10°, Ao, =—0.172P/L is about 6% of the average normal stress calculated from
elem = —F/A=—P/2L tan o = -2.836F/L. For larger angles, the difference

is greater; the error in the mechanics of materials solution increases (Prob. 3.31). It may be
demonstrated that the stress distribution over the cross section approaches uniformity as the taper of
the wedge diminishes. Analogous conclusions may also be drawn for a conical bar. Note that Egs.
(3.43) can be applied as well for the uniaxial tension of tapered members by assigning o, a positive

the elementary formula (o,

value.

Bending of a Wedge (Fig. 3.10b)

We now employ @ = cFr6, sin 6, with §; measured from the line of action of the force. The
equilibrium condition is

:' :'I-'Elfl +af l: r:.-'E:I -+ ¥
/ (o, cos 0y)r dy = ZEF/ cos’ 0, do, = —F

o (T2 -

(w2 —a
from which, after integration, ¢ =—1/(2a — sin 2a). Thus, by replacing 8; with 90° — 6, we have
F cos 0 Fsing

G-J_Z— | - ——B | : A ﬂ'ﬂ:{}_‘ Trtf:{)
r(a — 5sin 2ar) rla — 5sin 2u)

(3.45)
It is seen that if 0, 1s larger than 7/2, the radial stress is positive, that is, tension exists. Because sin 0

=y/r,cos @=x/r,and " = V x* + ¥, the normal and shearing stresses at a point over any cross
section m — n, using Eqs. (3.37) and (3.45), may be expressed as

F sin 6 cos” @

.
W, = i, Q08T ="

0 %Sinzﬂj
F i
= - t = > .
a — 5sin 2a (x° + ¥°)
. 2 F sin’ §
oy = o 8in° 8 = — 2
- r(ee — 3 sin 2a)
F 111'
- L 7 R I
a — 3sin2a (x° + ¥°)
- F sin® @ cos 0
Tey — O sin HEGSH = = -
- rie — 5sin 2a)
s E Xy’
a — 3sin2a (x*+ ¥

(3.46)

Using Egs. (3.46), it can be shown that (Prob. 3.33) across a transverse section x = L of the wedge:
oy 1s a maximum for 6 =£30°, o, is a maximum for 6 = +60°, and 7, is a maximum for 6 = +45°.

To compare the results given by Eqgs. (3.46) with the results given by the elementary formulas for
stress, consider the series
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It follows that, for small angle o, we can disregard all but the first two terms of this series to obtain
(2a)’

sin 2o = 2o —

2o = sin 2o +

®

By introducing the moment of inertia of the cross sectionm —n, I = =50 tan'e and Eq. (f), we find

from Eqs. (3.46) that
oy (o )a}
: ! o
(2

Fxv 3
= iKtan “) cos' 6
For small values of a, the factor in the bracket is approximately equal to unity. The expression for o,

! 0¥

then coincides with that given by the flexure formula, —My/I, of the mechanics of materials. In the
elementary theory, the lateral stress o, given by the second of Eqgs. (3.46) is ignored. The maximum

shearing stress 7, obtained from Eq. (g) is twice as great as the shearing stress calculated from

VQ/Ib of the elementary theory and occurs at the extreme fibers (at points m and ») rather than the
neutral axis of the rectangular cross section.

In the case of loading in both compression and bending, superposition of the effects of P and F results
in the following expression for combined stress in a pivot or in a wedge—cantilever:

Pcost F cos 8,
ﬂ'r = = Lo = i - (T[,l = ﬂ, Tr” = ﬂ
rla + 3sin2a) r(a — 5sin2a)

(3.47)

The foregoing provides the local stresses at the support of a beam of narrow rectangular cross
section.

Concentrated Load on a Straight Boundary (Fig. 3.11a)

Figure 3.11. (a) Concentrated load on a straight boundary of a large plate; (b) a circle of
constant radial stress.
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By setting o = 7/2 in Eq. (3.43), the result

B 2P cos@ B B
g, = — = o a;, =0, T = 0




(3.48)

is an expression for radial stress distribution in a very large plate (semi-infinite solid) under normal
load at its horizontal surface. For a circle of any diameter d with center on the x axis and tangent to
the y axis, as shown in Fig. 3.11b, we have, for point 4 of the circle, d - cos 8 = r. Equation (3.48)
then becomes

2P

F = — —
’ el

(3.49)
We thus observe that, except for the point of load application, the stress is the same at all points on
the circle.

The stress components in Cartesian coordinates may be obtained readily by following a procedure
similar to that described previously for a wedge:

2r 2P -2
g, = ——c¢cos 0= —— ——FF73
X LA et
. 2 2P xy?
g, = ——sin*fcos* = —— 5
; T T (xhet v
2 3 2P X’y
IR e Ll R o o
- mX AN e e T

(3.50)
The state of stress is shown on a properly oriented element in Fig. 3.11a.

3.11 Stress Distribution Near Concentrated Load Acting on a Beam

The elastic flexure formula for beams gives satisfactory results only at some distance away from the
point of load application. Near this point, however, there is a significant perturbation in stress
distribution, which is very important. In the case of a beam of narrow rectangular cross section, these
irregularities can be studied by using the equations developed in Section 3.10.

Consider the case of a simply supported beam of depth 4, length L, and width b, loaded at the
midspan (Fig. 3.12a). The origin of coordinates 1s taken to be the center of the beam, with x the axial
axis as shown in the figure. Both force P and the supporting reactions are applied along lines across
the width of the beam. The bending stress distribution, using the flexure formula, is expressed by

- E(L § )
i [ p\2 ")
Figure 3.12. Beam subjected to a concentrated load P at the midspan.
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where I = bh3/12 is the moment of inertia of the cross section. The stress at the loaded section is
obtained by substituting x = 0 into the preceding equation:
3P,
= o
bh

o, =

(2)

To obtain the total stress along section 4B, we apply the superposition of the bending stress
distribution and stresses created by the line load, given by Eq. (3.48) for a semi-infinite plate.
Observe that the radial pressure distribution created by a line load over quadrant ab of cylindrical
surface abc at point 4 (Fig. 3.12b) produces a horizontal force

= a2 Z.P .P
/ (o, sin 8)r df = [ — sin f cos Bdf = —
Jo Jo T w

(b)

and a vertical force

w2 a2 1 p
/ (o, cos 8)r dfl = / 2_ cos’Bdo = P

w2

(c)

applied at 4 (Fig. 3.12¢). In the case of a beam (Fig. 3.12a), the latter force is balanced by the
supporting reactions that give rise to the bending stresses [Eq. (2)]. On the other hand, the horizontal
forces create tensile stresses at the midsection of the beam of
—d
T rbh

(d)

as well as bending stresses of
Ph vy oF

gl s

2a I whh*

i_!'

(e)
Here Ph/2x 1s the bending moment of forces P/ about the point 0.

Combining the stresses of Egs. (d) and (e) with the bending stress given by Eq. (a), we obtain the
axial normal stress distribution over beam cross section AB:

3P ( i 2!:)} 5 P
o= —F7 mm— I P—
b T /) whh

At point B(0, /#/2), the tensile stress is

(3.51)

3PL 4h IPL P
(o) )p = 5=

: == — 0.637—
2bi’ 2bi’ bh

3wl

(3.52)

The second term represents a correction to the simple beam formula owing to the presence of the line



load. It is observed that for short beams this stress is of considerable magnitude. The axial normal
stresses at other points in the midsection are determined in a like manner.

The foregoing procedure leads to the poorest accuracy for point B, the point of maximum tensile
stress. A better approximation [see Ref. 3.7] of this stress is given by
3PL

F
g = s RESHB
(o2 )p PYRY. 0.508 2

(3.53)

Another more detailed study demonstrates that the local stresses decrease very rapidly with increase
of the distance (x) from the point of load application. At a distance equal to the depth of the beam,
they are usually negligible. Furthermore, along the loaded section, the normal stress o, does not obey

a linear law.

In the preceding discussion, the disturbance caused by the reactions at the ends of the beam, which are
also applied as line loads, are not taken into account. To determine the radial stress distribution at the
supports of the beam of narrow rectangular cross section, Eq. (3.47) can be used. Clearly, for the
beam under consideration, we use F' = 0 and replace P by P/2 in this expression.

3.12 Stress Concentration Factors

The discussion in Section 3.10 shows that, for situations in which the cross section of a load-carrying
member varies gradually, reasonably accurate results can be expected if we apply equations derived
on the basis of constant section. On the other hand, where abrupt changes in the cross section exist,
the mechanics of materials approach cannot predict the high values of stress that actually exist. The
condition referred to occurs in such frequently encountered configurations as holes, notches, and
fillets. While the stresses in these regions can in some cases (for example, Fig. 3.13) be analyzed by
applying the theory of elasticity, it is more usual to rely on experimental techniques and, in particular,
photoelastic methods. The finite element method (Chap. 7) is very efficient for this purpose.

Figure 3.13. Circular hole in a plate subjected to uniaxial tension: (a) tangential stress
distribution for 0 = +x/2; (b) tangential stress distribution along periphery of the hole.
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It is to be noted that irregularities in stress distribution associated with abrupt changes in cross
section are of practical importance in the design of machine elements subject to variable external
forces and stress reversal. Under the action of stress reversal, progressive cracks (Sec. 4.4) are
likely to start at certain points at which the stress is far above the average value. The majority of
fractures in machine elements in service can be attributed to such progressive cracks.



A geometric or theoretical stress concentration factor K is used to relate the maximum stress at the
discontinuity to the nominal stress. The factor is defined by

K = Maximum Stress O,y
nominal stress '

(3.54)

In the foregoing, the nominal stress is the stress that occurs if the abrupt change in the cross section
did not exist or had no influence on stress distribution. It is important that a stress concentration factor
is applied to the stress computed for the net or reduced cross section. Equation (3.54) is valid as long
as computed values of maximum stress do not exceed the proportional limit of the material.

We note that for ductile materials statically loaded beyond the yield point, the stress concentration
factors decrease to a value approaching unity because of the redistribution of stress around a

discontinuity. That 1s, the effect of an abrupt change in geometry is nullified, and o,,,, = 6,4y, OT K =

1; a nearly uniform stress distribution exists across the net section. This is referred to as a fully
plastic condition (Chap. 12). Therefore, the stress-concentration factor is of no significance in design
of a ductile material under static loading. However, for dynamic (such as repeated, impact, or
thermal) loading, even a ductile material may fail as a result of propagation of cracks originating at
points of high stress. So, the presence of stress concentration in the case of dynamic loading must not
be ignored, regardless of whether the material is brittle or ductile. More 1s said about this in Chapter
4.

Circular Hole in a Large Plate in Simple Tension

The theory of elasticity can be applied to evaluate the stress concentration associated with some
incomplex geometric configurations under static loadings. One solution is that of a large, thin plate
containing a small circular hole of radius a subjected to a tension (Fig. 3.13a). In the following, we
determine the field of stress and compare 1t with those of Example 3.3.

The boundary conditions appropriate to the circumference of the hole are
fTrZTr,u:{}.. r=d
(a)
For large distances away from the origin, we set o,, 6y, and 7, equal to the values found for a solid
plate in Example 3.3. Thus, from Eq. (3.42), for » = oo,

o, = _I-T(T”{l + cos 26)

F

o, = 30,(1 — cos28), T, = —j0,sin26
(b)
For this case, we assume a stress function analogous to Eq. (h) of Example 3.3,
@O = fi(r) + f,(r) cos 20
(©)

in which £} and f, are yet to be determined. Substituting Eq. (¢) into the biharmonic equation (3.40)
and noting the validity of the resulting expression for all 8, we have
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The solutions of Egs. (d) and (e) are (Prob. 3.35)

fi=crllnr + o + c;Inr + ¢,

()
fo = e + cgrt + C—: + cg
2

(8)

where the ¢’s are the constants of integration. The stress function is then obtained by introducing Eqs.
(f) and (g) into (c). By substituting @ into Eq. (3.32), the stresses are found to be

Cy bc; Aoy
o.=c¢f{l +2Inr) + 2¢; + = — | 2¢5 + —— + — | cos 26
r r

= [ T f}f"'.'
gy =3 +2Inr) +2¢, —— + (255 sl o el )CGSEH
re F

4 2z

. 6oy 2¢4y .
Trg = (25,; e i j‘) sin 26
r !

(h)
The absence of ¢, indicates that it has no influence on the solution.

According to the boundary conditions (b), ¢; = ¢, = 0 1n Eq. (h), because as » — oo, the stresses must
assume finite values. Then, according to the conditions (a), the equations (h) yield

C b, 4o b 2c
2-(?3 + _: = (], 2(.'_—7' + __.; + -_, = {}, 2-(3'_—'._._ = _4 = : = (}
as a as a a-
Also, from Egs. (b) and (h) we have
o, = —dce, o, = 4o,

Solving the preceding five expressions, we obtain ¢, = o,/4, c; = —a’c,/2, cs = —0,/4, c; = —a%c,/4,
and cg = a’0,/2. The determination of the stress distribution in a large plate containing a small
circular hole 1s completed by substituting these constants into Eq. (h):

2 34 42
a-,.:l:u;,K1 - a—j) + (I + % - I{)ms?ﬂ}
r r r
2 34
o, :_:J“KI + H—J - (l + %)mﬂﬂ}
- F r

(3.55a)

(3.55b)
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The tangential stress distribution along the edge of the hole, » = a, is shown in Fig. 3.13b using Eq.
(3.55b). We observe from the figure that

(0y)pax = 30, 0= +mw2

(8 Jmin = —Fo» @6=0 0=41r
The latter indicates that there exists a small area experiencing compressive stress. On the other hand,
from Eq. (3.42), for 0 = +n/2, (04) nax = 0,- The stress concentration factor, defined as the ratio of the
maximum stress at the hole to the nominal stress o, 1s therefore K =30,/0, = 3.

To depict the variation of o,(r, 7/2) and o,(r, 7/2) over the distance from the origin, dimensionless
stresses are plotted against the dimensionless radius in Fig. 3.14. The shearing stress 7,47, 7/2) = 0.
At a distance of twice the diameter of the hole, that 1s, r = 4a, we obtain oy~ 1.0370, and 0, =
0.088¢,. Similarly, at a distance » = 9a, we have o5~ 1.0060, and o, = 0.0180,, as is observed in the
figure. Thus, simple tension prevails at a distance of approximately nine radii; the hole has a local
effect on the distribution of stress. This is a verification of Saint-Venant’s principle.

Figure 3.14. Graph of tangential and radial stresses for & = 7/2 versus the distance from the

center of the plate shown in Fig. 3.13a.
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Circular Hole in a Large Plate in Biaxial Stresses

The results expressed by Egs. (3.55) are applied, together with the method of superposition, to the

case of biaxial loading. Distributions of maximum stress o7, 7/2), obtained in this way (Prob. 3.36),

are given in Fig. 3.15. Such conditions of stress concentration occur in a thin-walled spherical

pressure vessel with a small circular hole (Fig. 3.15a) and in the torsion of a thin-walled circular

tube with a small circular hole (Fig. 3.15b).

Figure 3.15. Tangential stress distribution for § = £7/2 in the plate with the circular hole subject
to biaxial stresses: (a) uniform tension; (b) pure shear.
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Elliptic Hole in a Large Plate in Tension

Several simple geometries of practical importance were the subject of stress concentration
determination by Inglis and Neuber on the basis of mathematical analysis discussed in the preceding.
We note that a similar concentration of stress is caused by a small elliptic hole in a thin, large plate
(Fig. 3.16). It can be shown that stress concentration factor at the ends of the major axis of the hole is

given by
K=1+ Z(E)
il

(3.56)
Figure 3.16. Elliptical hole in a plate under uniaxial tension.
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The maximum tensile stress is thus
r'J.-I11a"!"\f = r'rﬂ (]‘ + 2 I[_J)
a
(3.57)

where a is the half-width of the ellipse and b 1s the half-height.

Clearly, the stress increases with the ratio b/a. In the limit, as a — 0, the ellipse becomes a narrow
crack of length 2b, and a very high stress concentration is produced; material will yield plastically
around the ends of the crack or the crack will propagate. To prevent such spreading, holes may be
drilled at the ends of the crack to effectively increase the radii to correspond to a smaller b/a. Thus, a

high stress concentration is replaced by a relatively smaller one. When the hole is a circle, a = b and
K=3.

Graphs for Stress Concentration Factors

Technical literature contains an abundance of specialized information on stress concentration factors

in the form of graphs, tables, and formulas.” Values of the calculated stress concentration factors for
bars with fillets, holes, and grooves under axial, bending, or torsion loading may be obtained from the
diagram (a nomograph) given by Neuber (1958). The best source book on stress-concentration
factors is Peterson [Ref. 3.8], which compiles the theoretical and experimental results of many
researchers into useful design charts. Some examples of most commonly used graphs for stress



concentration factors for a variety of geometries are provided in Appendix D. Observe that these
charts indicate the advisability of streamlining junctures and transitions of portions that make up a
member; that is, stress concentration can be reduced in intensity by properly proportioning the parts.
Large fillet radii help at reentrant corners. There are many other well-established techniques for
smoothing out the stress distribution in a part and thus reducing the stress-concentration factor.

Example 3.4. Stresses at the Groove in a Circular Shaft

A circular shaft of diameter D with a circumferential circular groove (of diameter d and radius 7)
is subjected to axial force P, bending moment M, and torque 7 (Fig. 3.17). Determine the
maximum principal stress.

Figure 3.17. Example 3.4. A grooved circular shaft with combined loadings.

Solution

For the loading described, the principal stresses occur at a point at the root of the notch, which,
from Eq. (1.20), are given by

[{ox ”
T2 = % == \.‘I (T) + Tays ay; =0
(M)
where o, and 7,,, represent the normal and shear stresses in the reduced cross section of the shaft,
respectively. We have

i My TIr
oy = Krr; + Ky I’ Tiy — K.'T
or
P 4M 2T
o, = K:a 5 F Kn'? 14 Tey = II‘:.' T
wb* wh ’ b

()
Here K, K;,, and K, denote the stress concentration factors for axial force, bending moment, and

torque, respectively. These factors are determined from Figures D.5, D.7, and D.6, respectively.
Thus, given a set of shaft dimensions and the loading, formulas (1) and (j) lead to the value of the
maximum principal stress o; (see Problem 3.46).

In addition, note that a shear force ¥ may also act on the shaft, as in Fig. 5.11 (Chap. 5). For
slender members, however, this shear contributes very little to the deflection (Sec. 5.4) and to the
maximum stress.



3.13 Contact Stresses

Application of a load over a small area of contact results in unusually high stresses. Situations of this
nature are found on a microscopic scale whenever force is transmitted through bodies in contact.
There are important practical cases when the geometry of the contacting bodies results in large
stresses, disregarding the stresses associated with the asperities found on any nominally smooth
surface. The original analysis of elastic contact stresses, by H. Hertz, was published in 1881. In his
honor, the stresses at the mating surfaces of curved bodies in compression are called Hertz contact
stresses, or simply referred to as the contact stresses. The Hertz problem relates to the stresses
owing to the contact of a sphere on a plane, a sphere on a sphere, a cylinder on a cylinder, and the
like. The practical implications with respect to ball and roller bearings, locomotive wheels, valve
tappets, gear teeth, pin joints in linkages, cams, push rod mechanisms, and numerous machine
components are apparent.

Consider, in this regard, the contact without deformation of two bodies having spherical surfaces of
radii 7; and 7, in the vicinity of contact. If now a collinear pair of forces F acts to press the bodies

together, deformation will occur, and the point of contact will be replaced by a small area of contact.
The first steps taken toward the solution of this problem are the determination of the size and shape of
the contact area as well as the distribution of normal pressure acting on the area. The stresses and
deformations resulting from the interfacial pressure are then evaluated.

The following basic assumptions are generally made in the solution of the contact problem:
1. The contacting bodies are isotropic and elastic.

2. The contact areas are essentially flat and small relative to the radii of curvature of the undeformed
bodies in the vicinity of the interface.

3. The contacting bodies are perfectly smooth, and therefore only normal pressures need be taken into
account.

The foregoing set of assumptions enables an elastic analysis to be conducted. Without going into the

derivations, we shall, in the following sections, introduce some of the results.” It is important to note
that, in all instances, the contact pressure varies from zero at the side of the contact area to a
maximum value p, at its center.

3.14 Spherical and Cylindrical Contacts

In this section, maximum contact pressure and deflection of two bodies held in contact by normal
forces to the area of contact will be discussed. The deflection is the relative displacement 6 of
centers of the two bodies. It represents the sum of the deflections of the two bodies as they approach
each other.

Two Spheres in Contact

The contact area and corresponding stress distribution between two spheres, loaded with a force F, is
illustrated in Fig. 3.18. Observe that the contact pressure within each sphere has a semi-elliptical
distribution. It varies from O at the side of the contact area to a maximum value p,, on the load axis z at

its center. Here a is the radius of the circular contact area (za?). Because of forces F, the contact



pressure is distributed over a small circular area of radius a given by

Figure 3.18. (a) Spherical surfaces of two members held in contact by force F; (b) contact stress
distribution. Note: The contact area is a circle of radius a.

(b}
[3.-"' (1 — AVE, + (1 - vi}.fEl]"'-"‘
a=|—

4 lr, + 1r,
(3.58)

where E;, r;, and v; (withi = 1, 2) are respective moduli of elasticity, radii, and Poisson’s ratios of
the spheres.

For simplicity, Poisson’s ratios v and v, will be taken as 0.3 in the following equations. In so doing,
Eq. (3.58) becomes

{F{EJ + E;}r.r:]'“‘
a = 0. e
E\Ey(ry + 13)

(3.59)

The force F causing the contact pressure acts in the direction of the normal axis, perpendicular to the
tangent plane passing through the contact area. The maximum contact pressure is found to be
F

Po = Iq_‘-
i

(3.60)

This is the maximum principal stress owing to the fact that at the center of the contact area, material is
compressed not only in the normal direction but also in the lateral directions. The relationship
between the force of contact F'and the relative displacement of the centers of the two elastic spheres,

owing to local deformation, is
Hf 1 1 %3 1
8 = ﬂ,??lF (EI + E:) (r, + rgﬂ
(3.61)

In the special case of a sphere of radius » contacting a body of the same material but having a flat
surface (Fig. 3.19a), substitution of r; = r, ¥, =0 and E| = E, = E into Egs. (3.59) through (3.61)

leads to

13
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Figure 3.19. Contact load: (a) in sphere on a plane; (b) in ball in a spherical seat.
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For the case of a sphere in a spherical seat of the same material (Fig. 3.19b), substituting r, =—r,
and E| = E, = E in Egs. (3.59) through (3.61), we obtain

: 3 13
2Frr; i 2
a =088 ¢] L p, = D.ﬁzi[Fﬂ"(r‘ r') ]
LE(r; — 1) rira
Fry, — r) 13
§ =154 #}
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(3.63)

Two Parallel Cylinders in Contact

Figure 3.20a shows the contact area and corresponding stress distribution between two spheres,
loaded with a force F. It is seen from the figure that the contact pressure within each cylinder has a
semi-elliptical distribution; it varies from 0 at the side of the contact area to the largest value p,, at its

center. The quantity a represents the half-width of a narrow rectangular contact area (2al). Note that
the maximum contact pressure p, occurs on the load axis z.

Figure 3.20. Contact load: (a) in two cylindrical rollers; (b) in cylinder on a plane.
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The maximum contact pressure 1s given by

_aF
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(3.64)

where

l AFryr; (I — v 1 - v%)J"'E
a = +
Tf_p[f'] 1= rlj E| E'_j
(3.65)

In this expression, £,(v;) and r;, withi = 1, 2, are the moduli of elasticity (Poisson’s ratio) of the two

rollers and the corresponding radii, respectively. If the cylinders have the same elastic modulus £ and
Poisson’s ratio v = 0.3, these expressions reduce to

II'_'-'—-l_'.\ ||"—
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(3.66)

Figure 3.20b depicts the special case of contact between a circular cylinder of radius r and a flat
surface, both bodies of the same material. After rearranging the terms and taking »; = and r, = o in
Egs. (3.66), we have

[FE [Fr

— a=1.52

= (}.4] -
Bo, =118 72 VEL

(3.67)

In Table 3.2, the preceding and some additional results are presented as an aid in solving problems.
Table 3.2. Maximum Pressure P, and Deflection 6 of Two Bodies in Contact
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where the modulus of c[ﬁ!iii.l:'it}" (&) and radius (r) are for the contacting members, | and 2. The L. represents the length
of the cylinder. The total force pressing two spheres of evlinders s F. Poisson's ratio » in the formulas 15 taken as 0.3,

Source: Ref. 3.13.
3.15 Contact Stress Distribution

The material along the axis compressed in the z direction tends to expand in the x and y directions.
But, the surrounding material does not permit this expansion. Thus, the compressive stresses are
produced in the x and y directions. The maximum stresses occur along the load axis z, and they are the
principal stresses, as shown in Fig. 3.21. These and the maximum shearing stresses are given in terms
of the maximum contact pressure p, by the following equations [Ref. 3.14].

Figure 3.21. Principal stresses below the surface along the load axis z.
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Two Spheres in Contact (Figure 3.18a)



(3.68a)
L pl’-’
1 +(z/a)*
(3.68b)
We have z,, = 0 and
T T = é—({r,. ]
(3.68¢)

Figure 3.22a shows a plot of the preceding equations.

Figure 3.22. Stresses below the surface along the load axis (for v =0.3): (a) two spheres; (b) two
parallel cylinders. Note: All normal stresses are compressive stresses.
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Two Parallel Cylinders in Contact (Figure 3.20a)

el 1o (ZX_Z
o, = —2vp, \ H—(ﬂ) ﬂ]
(3.692)
_ ] 142 =52
S e {ld | + [za‘ajll\" I +(a) - a}
(3.69b)
pl".l‘
g / 3
V 1+ (z/a)"
(3.69¢)
Tey — 5_{“—.1.' = ‘T_'.':ls Tyz = é_{g_'r' —Fls TS ;_{ﬂ—.n.' T "J—.’.]
(3.69d)

A plot of Egs. (3.69a—) and the second of Egs. (3.69d) is given in Fig. 3.22b.

For each case, observe how principal stress decreases below the surface. Figure 3.22 also illustrates
how the shearing stress reaches a maximum value slightly below the surface and decreases. The



maximum shear stresses act on the planes bisecting the planes of maximum and minimum principal
stresses (Sec. 1.15). As already pointed out, all stresses considered in this section exist along the
load axis z. The states of stress off the z axis are not required for design purposes, because the
maxima occur on the z axis.

Example 3.5. Cam and Follower

A camshaft and follower of an intermittent motion mechanism is illustrated in Fig. 3.23. For the
position depicted, the cam exerts a force F,,, on the follower. Determine (a) the maximum stress
at the contact line between the cam and follower; (b) the deflection. Data: F,, = 8 kN, r. =40
mm, D=L = 35 mm, £ =200 GPa, and Oyp = 510 MPa. Assumptions: The material of all parts is

hardened on the surface. Frictional forces can be omitted. The rotational speed is slow so that the
loading is considered static.

Figure 3.23. Example 3.5. Schematic representation of camshaft and follower.

Shaft
s . rotation
= : =

Bearing
Solution

Formulas on the second column of case A of Table 3.2 apply. We begin by calculating the half-
width a of the contact patch. Inasmuch as E; = E, = E and A = 2/E, hence,

2
-
I

II
/
|

a = 1.076 \

Introducing the given numerical values results in

1800 2 112
=Ll ['a_i LY (Eﬂﬂ X m”ﬂ

= 0.325 (107 )m = 0.325 mm
a. The largest contact pressure is therefore

_ E JLER

ﬂl.l TT HL

2 8000
7 (0.325)(35)

b. The deflection o0 of the cam and follower at the line of contact is given by

0.579F, . {1 o,
§=——mu(_ 4 |p—=

EL, \3 a

= 448 MPa



Inserting the given data,

0.579( 8000) (| e 7w .ﬂ{_})
(2000 X 10°) (35 % 107) \3 = " 0325

[~

=3.9(10 % m = 0.0039 mm
Comments

The maximum contact stress is calculated to be smaller than the yield strength of 510 MPa; the
design is satisfactory. Deflection obtained between the cam and the follower is very small and
does not affect the performance of the mechanism.

3.16 General Contact

Consider now two rigid bodies of equal elastic moduli £, compressed by force F' (Fig. 3.24). The
load lies along the axis passing through the centers of the bodies and through the point of contact and
is perpendicular to the plane tangent to both bodies at the point of contact. The minimum and
maximum radii of curvature of the surface of the upper body are r; and 1; those of the lower body are

r, and 72 at the point of contact. Thus, 1/r, 1/, 1/r,, and 1/r> are the principal curvatures. The sign

convention of the curvature is such that it is positive if the corresponding center of curvature is
inside the body. If the center of the curvature is outside the body, the curvature is negative. (For
example, in Fig. 3.25a, |, 11 are positive, while r,, 2 are negative.)

Figure 3.24. Curved surfaces of different radii of two bodies compressed by forces F.

Let 0 be the angle between the normal planes in which radii | and r, lie. Subsequent to loading, the

area of contact will be an ellipse with semiaxes a and b (Table C.1). The maximum contact pressure
1s

(3.70)

In this expression the semiaxes are given by



_ Fm_ Em
a = ':'r."t.“l 1ot - {FJ‘\Il n
3.71)
Here
m = A fl = il
l+l.+l+l. 3(1 = )
r F ) ra
(3.72)
The constants ¢, and ¢, are read in Table 3.3. The first column of the table lists values of a,
calculated from
B
COsx = —
(3.73)

Table 3.3. Factors for Use in Egs. (3.71)

a (degrees) Ci Ch
20 3.778 0.408
30 2.731 0.493
35 2.397 0.530
40 2.136 0.567
45 1.926 0.604
50 1.754 0.641
55 1.611 0.678
60 1.486 0.717
65 1.378 0.759
70 1.284 0.802
N 1.202 0.846
80 1.128 0.893
85 1.061 0.944
90 1.000 1.000

where



(3.74)

By applying Eq. (3.70), many problems of practical importance may be treated, for example, contact
stresses in ball bearings (Fig. 3.25a), contact stresses between a cylindrical wheel and a rail (Fig.
3.25b), and contact stresses in cam and pushrod mechanisms.

Figure 3.25. Contact load: (a) in a single-row ball bearing; (b) in a cylindrical wheel and rail

v |
Wheel

r=rid T f

b

| Railroad !
rail :

(a) {b)

Example 3.6. Steel Railway Car Wheel
A railway car wheel rolls on a rail. Both rail and wheel are made of steel for which £ =210 GPa
and v = 0.3. The wheel has a radius of ; = 0.4 m, and the cross radius of the rail top surface is r,

= (0.3 m (Fig. 3.25b). Determine the size of the contact area and the maximum contact pressure,
given a compression load of /=90 kN.

Solution

For the situation described, 1/#'; = 1/r', = 0, and, because the axes of the members are mutually
perpendicular, § = /2. The first of Egs. (3.72) and Egs. (3.74) reduce to

4 1/ 1 1 1/ 1 1
i=—, A=A—+—), B=tA—-—
e 1/ry + 1/r; Z(rj rg) 2(’”1 f'z)
(3.75)

The proper sign in B must be chosen so that its values are positive. Now Eq. (3.73) has the form
Iu'l.f'l - ]..'rrz

Cosex = + —
Iu‘lf'l + Url

(3.76)

Substituting the given numerical values into Egs. (3.75), (3.76), and the second of (3.72), we
obtain

4 4210 X 107)

T T AR SR, [ (R U et R T, UV, VT
1/0.4 + 103 3(0.91) ’
1/0.4 — 1/0.3 i :
Y — ———— e i a = Ml. o
COS - 04+ 103 .1428 01 a = 81.79

Corresponding to this value of a interpolating in Table 3.3, we have
c, = 1.1040, ¢, = 09113



The semiaxes of the elliptical contact are found by applying Eqgs. (3.71):

(90,000 x 0.6857 7

a= 11040 : = (.00646 m
L 3.07692 x 10" |
[90,000 x 0.6857 117 .

b =05113 = 0.00533 m
L 3.07692 x 10" |

The maximum contact pressure, or maximum principal stress, is thus
. 90,000
o =15 = 1248 MPa

© w(0.00646 x 0.00533)
Comment

A hardened steel material is capable of resisting this or somewhat higher stress levels for the
body geometries and loading conditions described in this section.
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Problems

Sections 3.1 through 3.8
3.1. A stress distribution is given by

3
o, = pyx = 2cixy + ¢y
ay = pxy — 2px’y

R 3y ]
Ty = =50V + oy +3px° +

(2)

where the p and ¢’s are constants. (a) Verify that this field represents a solution for a thin plate
of thickness ¢ (Fig. P3.1); (b) obtain the corresponding stress function; (¢) find the resultant
normal and shearing boundary forces (P, and V) along edges y = 0 and y = b of the plate.

Figure P3.1.
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3.2. If the stress field given by Eq. (a) of Prob. 3.1 acts in the thin plate shown in Fig. P3.1 and p
1s a known constant, determine the ¢’s so that edges x = +a are free of shearing stress and no
normal stress acts on edge x = a.

3.3. In bending of a rectangular plate (Fig. P3.3), the state of stress is expressed by
T, = 1y + €xy Ty = C3(BY = ¥7)
Figure P3.3.

YA

.,
7

k
w
Y



(a) What conditions among the constants (the ¢’s) make the preceding expressions possible?
Body forces may be neglected. (b) Draw a sketch showing the boundary stresses on the plate.

3.4. Given the following stress field within a structural member,
o, = a[y* + b(x? — y*)] Ty = —20DXY
o, = a[x* + b(y* — x%)] T8 = =l
T, = ab(x* + )
where a and b are constants, determine whether this stress distribution represents a solution
for a plane strain problem. The body forces are omitted.

3.5. Determine whether the following stress functions satisfy the conditions of compatibility for a
two-dimensional problem:

D, = ax® + bx y + L‘;.-'E
(a)
@, = ax’ + bxly + cxy’ + dy’
(b)
Here a, b, ¢, and d are constants. Also obtain the stress fields that arise from @, and ©,.

3.6. Figure P3.6 shows a long, thin steel plate of thickness ¢, width 24, and length 2a. The plate is
subjected to loads that produce the uniform stresses o, at the ends. The edges at y = +h are

placed between the two rigid walls. Show that, by using an inverse method, the displacements
are expressed by

] — »* y(l + »)
g == 3 s o 08 v =10, w = 2 [ P-4
3.7. Determine whether the following stress distribution is a valid solution for a two-dimensional
problem:
, | - ;
o, = —ax-y == _:_Iay' Ty = AEY

where a is a constant. Body forces may be neglected.
3.8. The strain distribution in a thin plate has the form

ax’ u_r}-'z'}

axy’ ax’y
in which a 1s a small constant. Show whether this strain field i1s a valid solution of an
elasticity problem. Body forces may be disregarded.

3.9. The components of the displacement of a thin plate (Fig. P3.9) are given by
u=—c{y* + vx) v = 2exy

Figure P3.6.
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Figure P3.9.
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Here ¢ is a constant and v represents Poisson’s ratio. Determine the stresses oy, 0,,, and 7,,,.
Draw a sketch showing the boundary stresses on the plate.

3.10. Consider a rectangular plate with sides a and b of thickness ¢ (Fig. P3.10). (a) Determine the
stresses oy, 0,, and 7., for the stress function © = px3y, where p is a constant. (b) Draw a
sketch showing the boundary stresses on the plate. (¢) Find the resultant normal and shearing
boundary forces (P, P, V,, and V) along all edges of the plate.

Figure P3.10.
]
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3.11. Redo Prob. 3.10 for the case of a square plate of side dimensions a and

) ’ :
b = "i-: (2%y? + xvY)
2a

where p is a constant.
3.12. Resolve Prob. 3.10 a and b for the stress function of the form

i
o = — £ 1236 - 2y)
b

where p represents a constant.
3.13. A vertical force P per unit thickness is applied on the horizontal boundary of a semi-infinite
solid plate of unit thickness (Fig. 3.11a). Show that the stress function ® = —(P/z)y tan! (y/x)
results in the following stress field within the plate:
2P ¥ 2P  xy
F, = —- — o, = —- :
7 (22 + ) |

Also plot the resulting stress distribution for o, and 7,,, at a constant depth L below the

2P y¥

r '|.'.|" [ ' ¥ 3 3
T [-1__ : }I_}_ Ty bod |:_'l" -+ },_}_

b

boundary.



3.14. The thin cantilever shown in Fig. P3.14 is subjected to uniform shearing stress 7, along its

upper surface (y = +h), while surfaces y = —h and x = L are free of stress. Determine whether
the Airy stress function

- xy Lyt L yi)
® =7, |xy — = - =+ -
(o5 e

Figure P3.14.
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satisfies the required conditions for this problem.
Figure P3.15.
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3.15. Figure P3.15 shows a thin cantilever beam of unit thickness carrying a uniform load of
intensity p per unit length. Assume that the stress function is expressed by

® = ax? + bx?y + ¢y’ + dy° + exHy?
in which a,..., e are constants. Determine (a) the requirements on a,..., e so that @ is
biharmonic; (b) the stresses o,, oy, and Type

3.16. Consider a thin square plate with sides a. For a stress function ® = (P/a*)(3x*y* — {y*),
determine the stress field and sketch it along the boundaries of the plate. Here p represents a

uniformly distributed loading per unit length. Note that the origin of the x, y coordinate system
is located at the lower-left corner of the plate.

3.17. Consider a thin cantilever loaded as shown in Fig. P3.17. Assume that the bending stress is
given by

(P3.17)
Figure P3.17.
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and o, =7,, = 7, = 0. Determine the stress components o), and z,,, as functions of x and y.

3.18. Show that for the case of plane stress, in the absence of body forces, the equations of
equilibrium may be expressed in terms of displacements « and v as follows:

Fu Fu 1l + v a/fou an
=+ + =g == =)

axr gyt 1 —vax\ax ay

. 4

gvr dv 1+erafdwr av
—eb gk ,—(.—+.—)=U
ay- ax- 1 —way\ay ax

(P3.18)

[Hint: Substitute Eqs. (3.10) together with (2.3) into (3.6).]

3.19. Determine whether the following compatible stress field is possible within an elastic
uniformly loaded cantilever beam (Fig. P3.17):

14 3 3 P ;
= — ——(5x2 4+ 2% KL
N B =57
T.Tln ZIII: -
(P3.19)
o, = - 5{2&“ — 32y + ¥

Here I = 2¢4%/3 and the body forces are omitted. Givenp = 10 kN/m, L=2m, /=100 mm, ¢ =
40 mm, v = 0.3, and £ =200 GPa, calculate the magnitude and direction of the maximum
principal strain at point Q.

3.20. A prismatic bar is restrained in the x (axial) and y directions but free to expand in z
direction. Determine the stresses and strains in the bar for a temperature rise of 7 degrees.

3.21. Under free thermal expansion, the strain components within a given elastic solid are ¢, = ¢, =

¢, =oT and y,, =v,, =7, = 0. Show that the temperature field associated with this condition
1s of the form

al=cix+ceyteztey
in which the ¢’s are constants.

3.22. Redo Prob. 3.6 adding a temperature change 7'}, with all other conditions remaining
unchanged.

3.23. Determine the axial force P, and moment M, that the walls in Fig. 3.6b apply to the beam for
T'=a,y + a,, where a; and a, are constant.

3.24. A copper tube of 800-mm? cross-sectional area is held at both ends as in Fig. P3.24. If at
20°C no axial force P, exists in the tube, what will P, be when the temperature rises to
120°C? Let E = 120 GPa and a = 16.8 x 10 %per °C.

Figure P3.24.



Sections 3.9 through 3.11

3.25. Show that the case of a concentrated load on a straight boundary (Fig. 3.11a) is represented
by the stress function

F
$r = — —rfsinf
T

and derive Eqgs. (3.48) from the result.

3.26. Verify that Egs. (3.37) are determined from the equilibrium of forces acting on the elements
shown in Fig. P3.26.

Figure P3.26.
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3.27. Demonstrate that the b1harmon1c equation V4® =0 in polar coordinates can be written as

£ . % . 1 N PR 180 1 P
ow i R ovaly T i e ] S )
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3.28. Show that the compatibility equation in polar coordinates, for the axisym-metrical problem
of thermal elasticity, is given by

1 d dd
—lr— |+ EaT =10
rdr(r ﬂ’r) =

(P3.28)

3.29. Assume that moment M acts in the plane and at the vertex of the wedge—cantilever shown in
Fig. P3.29. Given a stress function

M(sin 260 — 26 cos 2« )

2(sin 2a — 2a cos 2a)

= —

(P3.29a)
Figure P3.29.
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determine (a) whether @ satisfies the condition of compatibility; (b) the stress components o,
oy, and 7,5, and (c) whether the expressions
2M sin 26 2M cos™ 0
S ay = 0, =

mr wr

o, =

(P3.29h)

represent the stress field in a semi-infinite plate (that is, for a = 7/2).

3.30. Referring to Fig. P3.30, verify the results given by Eqgs. (b) and (c) of Section 3.11.
Figure P3.30.

3.31. Consider the pivot of unit thickness subject to force P per unit thickness at its vertex (Fig.

3.10a). Determine the maximum values of o, and 7,,, on a plane a distance L from the apex
through the use of o, given by Eq. (3.43) and the formulas of the elementary theory: (a) take o
=15°; (b) take o = 60°. Compare the results given by the two approaches.

3.32. Solve Prob. 3.31 for a = 30°.

3.33. Redo Prob. 3.31 in its entirety for the wedge—cantilever shown in Fig. 3.10b.

3.34. A uniformly distributed load of intensity p is applied over a short distance on the straight

edge of a large plate (Fig. P3.34). Determine stresses oy, 0, and 7, in terms of p, 0}, and 0,
as required. [Hint: Let dP = pdy denote the load acting on an infinitesimal length dy = rd 6/cos
6 (from geometry) and hence dP = prd 6/cos 6. Substitute this into Egs. (3.50) and integrate

the resulting expressions. ]
Figure P3.34.



Sections 3.12 through 3.16

3.35. Verify the result given by Egs. (f) and (g) of Section 3.12 (a) by rewriting Egs. (d) and (e) in
the following forms, respectively,

L)
rodr ’zfr r odr "ﬂ’r B
d(Ldf df1d . _
rd_r(? E{r drlr" n’r(r fﬂ]}) -0
(P3.35)

and by integrating (P3.35); (b) by expanding Eqgs. (d) and (e), setting ¢ = In r, and thereby
transforming the resulting expressions into two ordinary differential equations with constant
coefficients.

3.36. Verify the results given in Fig. 3.15 by employing Eq. (3.55b) and the method of
superposition.

3.37. A 20-mm-thick steel bar with a slot (25-mm radii at ends) is subjected to an axial load P, as
shown in Fig. P3.37. What is the maximum stress for P = 180 kN? Use Fig. D.8B to estimate
the value of the K.

Figure P3.37.

50 mm
‘Iﬁﬂr!ﬁmg/ ( ‘P" ]i — P
]
g slot = T

3.38. What is the full-fillet radius » and width d of the steel plate with D/d = 1.5 in tension (Fig.
P3.38)? Use a maximum allowable stress of 130 MPa and an allowable nominal stress in the
reduced section of 80 MPa.

Figure P3.38.
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3.39. For the 20-mm-thick full-filleted steel bar (o, = 250 MPa) shown in Fig. P3.38, given the
ratio of v/d = 0.15, find the maximum axial load P that can be applied without causing



permanent deformation.

3.40. As seen in Fig. P3.40, a stepped shaft ABC with built-in end at A4 carries the torques 7 and
T sections B and C. Based on a stress concentration factor K = 1.6, determine the maximum
shearing stress in the shaft. Given: d; =50 mm, d, =40 mm, 73 =3 kN - m, and 7-=1 kN -
m.

Figure P3.40.

3.41. Figure 3.17 illustrates a circular shaft consisting of diameters D and d and a groove of radius
r carries a torque 7 with M =0 and P = (0. What is the minimum yield strength in shear
required for the shaft material? Given: D =40 mm, d =35 mm, » =2 mm, and 7= 100 N - m.

3.42. A circular shaft having diameters D and d and a groove of radius 7 (see Fig. 3.17, with M =0
and P = 0) 1s made of steel with the allowable shear stress 7,;. Find the maximum torque T

that can be transmitted by the shaft. Given: D =40 mm, d = 16 mm, » = 8 mm, and 7,; = 250
MPa.

3.43. For a flat bar consisting of two portions, both 10-mm thick, and respectively 25-mm and

37.5-mm wide, connected by fillets of radius » = 5 mm (see Fig. D.1), determine the largest
axial load P that can be supported by the bar. Given: o, =210 l\/ﬂ’a and a factor of safety of n
=1.4.
Figure P3.44.
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3.44. Figure P3.44 depicts a filleted cantilever spring. Find the largest bending stress for two
cases: (a) the fillet radius is » =5 mm; (b) the fillet radius is » = 10 mm. Given: b =12 mm
and P =400 N.

3.45. A thin-walled circular cylindrical vessel of diameter d and wall thickness 7 1s subjected to
internal pressure p (see Table 1.1). Given a small circular hole in the vessel wall, show that
the maximum tangential and axial stresses at the hole are oy = 5pd/4t and o, = pd/4t,

respectively.
3.46. The shaft shown in Fig. 3.17 has the following dimensions: » =20 mm, d = 400 mm, and D =
440 mm. The shaft is subjected simultaneously to a torque 7'=20 kN - m, a bending moment

M =10 kN - m, and an axial force P =50 kN. Calculate at the root of the notch (a) the
maximum principal stress, (b) the maximum shear stress, and (c¢) the octahedral stresses.



3.47. Redo Prob. 3.46 for » =10 mm, d =250 mm, D =500 mm, 7=5 kN - m, M =20 kN - m, and
P=0.

3.48. A 50-mm-diameter ball is pressed into a spherical seat of diameter 75 mm by a force of 500
N. The material is steel (£ =200 GPa, v =0.3). Calculate (a) the radius of the contact area,
(b) the maximum contact pressure, and (c¢) the relative displacement of the centers of the ball
and seat.

3.49. Calculate the maximum contact pressure p, in Prob. 3.48 for the cases when the 50-mm-
diameter ball is pressed against (a) a flat surface and (b) an identical ball.

3.50. Calculate the maximum pressure between a steel wheel of radius 7; = 400 mm and a steel
rail of crown radius of the head r, = 250 mm (Fig. 3.25b) for P =4 kN. Use £ = 200 GPa and
v=0.3.

3.51. A concentrated load of 2.5 kN at the center of a deep steel beam is applied through a 10-mm-
diameter steel rod laid across the 100-mm beam width. Compute the maximum contact

pressure and the width of the contact between rod and beam surface. Use £ =200 GPa and v =
0.3.

3.52. Two identical 400-mm-diameter steel rollers of a rolling mill are pressed together with a
force of 2 MN/m. Using £ = 200 GPa and v = 0.25, compute the maximum contact pressure
and width of contact.

3.53. Determine the size of the contact area and the maximum pressure between two circular
cylinders with mutually perpendicular axes. Denote by 7, and r, the radii of the cylinders. Use

r1 =500 mm, r, =200 mm, =5 kN, £=210 GPa, and v = 0.25.
3.54. Solve Prob. 3.53 for the case of two cylinders of equal radii, r; = r, = 200 mm.

3.55. Two 340-mm-diameter balls of a rolling mill are pressed together with a force of 400 N.
Calculate (a) the half-width of contact, (b) the maximum contact pressure, (¢) the maximum
principal stresses and shear stress in the center of the contact area. Assumption: Both balls
are made of steel of £=210 GPa and v=0.3.

3.56. A 16-mm-diameter cylindrical roller runs on the inside of a ring of inner diameter 100 mm.
Determine (a) the width a of the contact area, (b) the maximum contact pressure. Given.: The
roller load is F' =240 kN per meter of axial length. Assumption: Both roller and ring are
made of steel having £ =210 GPa and v=0.3.

3.57. It 1s seen in Fig. P3.25b, a wheel of radius »; =480 mm and a rail of crown radius of the
head r, = 340 mm. Calculate the maximum contact pressure p, between the members. Given:

Contact force F' =4 kN. Assumption.: Both roller and ring are made of steel having £ =210
GPa and v=0.3.

3.58. Determine the maximum pressure at the contact point between the outer race and a ball in the
single-row ball bearing assembly shown in Fig. 3.25a. The ball diameter is 50 mm; the radius
of the grooves, 30 mm; the diameter of the outer race, 250 mm; and the highest compressive
force on the ball, /= 1.8 kN. Take £ =200 GPa and v = 0.3.

3.59. Redo Prob. 3.58 for a ball diameter of 40 mm and a groove radius of 22 mm. Assume the
remaining data to be unchanged.



Chapter 4. Failure Criteria

4.1 Introduction

The efficiency of design relies in great measure on an ability to predict the circumstances under
which failure is likely to occur. The important variables connected with structural failure include the
nature of the material; the load configuration; the rate of loading; the shape, surface peculiarities, and
temperature of the member; and the characteristics of the medium surrounding the member
(environmental conditions). Exact quantitative formulation of the problem of failure and accurate
means for predicting failure represent areas of current research.

In Chapter 2 the stress—strain properties and characteristics of engineering materials were presented.
We now discuss the mechanical behavior of materials associated with failure. The relations
introduced for each theory are represented in a graphical form, which are extremely useful in
visualizing impending failure in a stressed member. Note that a yield criterion is a part of plasticity
theory (see Sec. 12.1). An introduction to fracture mechanics theory that provides a means to predict
a sudden failure as the basis of a computed stress-intensity factor compared to a tested toughness
criterion for the material is given in Section 4.13. Theories of failure for repeated loading and
response of materials to dynamic loading and temperature change are taken up in the remaining
sections.

4.2 Failure

In the most general terms, failure refers to any action leading to an inability on the part of the structure
or machine to function in the manner intended. It follows that permanent deformation, fracture, or even
excessive linear elastic deflection may be regarded as modes of failure, the last being the most easily
predicted. Another way in which a member may fail is through instability, by undergoing large
displacements from its design configuration when the applied load reaches a critical value, the
buckling load (Chap. 11). In this chapter, the failure of homogeneous materials by yielding or

permanent deformation and by fracture are given particular emphasis.”

Among the variables cited, one of the most important factors in regard to influencing the threshold of
failure is the rate at which the load is applied. Loading at high rate, that is, dynamic loading, may lead
to a variety of adverse phenomena associated with impact, acceleration, and vibration, and with the
concomitant high levels of stress and strain, as well as rapid reversal of stress. In a conventional
tension test, the rate referred to may relate to either the application of load or changes in strain.

Ordinarily, strain rates on the order of 10~ s~! are regarded as “static” loading.

Our primary concern in this chapter and in this text is with polycrystalline structural metals or
alloys, which are composed of crystals or grains built up of atoms. It is reasonable to expect that very
small volumes of a given metal will not exhibit isotropy in such properties as elastic modulus.
Nevertheless, we adhere to the basic assumption of isotrophy and homogeneity, because we deal
primarily with an entire body or a large enough segment of the body to contain many randomly
distributed crystals, which behave as an isotropic material would.

The brittle or ductile character of a metal has relevance to the mechanism of failure. If a metal is
capable of undergoing an appreciable amount of yielding or permanent deformation, it is regarded as
ductile. Such materials include mild steel, aluminum and some of its alloys, copper, magnesium, lead,



Teflon, and many others. If, prior to fracture, the material can suffer only small yielding (less than
5%), the material is classified as brittle. Examples are concrete, stone, cast iron, glass, ceramic
materials, and many common metallic alloys. The distinction between ductile and brittle materials is
not as simple as might be inferred from this discussion. The nature of the stress, the temperature, and
the material itself all play a role, as discussed in Section 4.17, in defining the boundary between
ductility and brittleness.

4.3 Failure by Yielding

Whether because of material inhomogeneity or nonuniformity of loading, regions of high stress may be
present in which /ocalized yielding occurs. As the load increases, the inelastic action becomes more
widespread, resulting eventually in a state of general yielding, The rapidity with which the transition
from localized to general yielding occurs depends on the service conditions as well as the
distribution of stress and the properties of the materials. Among the various service conditions,
temperature represents a particularly significant factor.

The relative motion or sl/ip between two planes of atoms (and the relative displacement of two
sections of a crystal that results) represents the most common mechanism of yielding. Slip occurs
most readily along certain crystallographic planes, termed s/ip or shear planes. The planes along
which slip takes place easily are generally those containing the largest number of atoms per unit area.
Inasmuch as the gross yielding of material represents the total effect of slip occurring along many
randomly oriented planes, the yield strength is clearly a statistical quantity, as are other material
properties such as the modulus of elasticity. If a metal fails by yielding, one can, on the basis of the
preceding considerations, expect the shearing stress to play an important role.

It is characteristic of most ductile materials that after yielding has taken place, the load must be
increased to produce further deformation. In other words, the material exhibits a strengthening termed
strain hardening or cold working, as shown in Section 2.8. The slip occurring on intersecting planes
of randomly oriented crystals and their resulting interaction is believed to be a factor of prime
importance in strain hardening.

Creep

The deformation of a material under short-time loading (as occurs in a simple tension test) is
simultaneous with the increase in load. Under certain circumstances, deformation may continue with
time while the load remains constant. This deformation, beyond that experienced as the material is
initially loaded, is termed creep. Turbine disks and reinforced concrete floors offer examples in
which creep may be a problem. In materials such as lead, rubber, and certain plastics, creep may
occur at ordinary temperatures. Most metals, on the other hand, begin to evidence a loss of strain
hardening and manifest appreciable creep only when the absolute temperature is roughly 35 to 50% of
the melting temperature. The rate at which creep proceeds in a given material depends on the stress,
temperature, and history of loading.

A deformation time curve (creep curve), as in Fig. 4.1, typically displays a segment of decelerating
creep rate (stage 0 to 1), a segment of essentially constant deformation or minimum creep rate (stage
1 to 2), and finally a segment of accelerating creep rate (stage 2 to 3). In the figure, curve 4 might
correspond to a condition of either higher stress or higher temperature than curve B. Both curves
terminate in fracture at point 3. The creep strength refers to the maximum employable strength of the
material at a prescribed elevated temperature. This value of stress corresponds to a given rate of



creep in the second stage (2 to 3), for example, 1% creep in 10,000 hours. Inasmuch as the creep
stress and creep strain are not linearly related, calculations involving such material behavior are
generally not routine.

Figure 4.1. Typical creep curves for a bar in tension.
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Stress relaxation refers to a loss of stress with time at a constant strain or deformation level. It is
essentially a relief of stress through the mechanism of internal creep. Bolted flange connections and
assemblies with shrink or press fits operating at high temperatures are examples of this variable
stress condition. Insight into the behavior of viscoelastic models, briefly described in Section 2.6,
can be achieved by subjecting models to standard creep and relaxation tests [Ref. 4.5]. In any event,
allowable stresses should be kept low in order to prevent intolerable deformations caused by creep.

4.4 Failure by Fracture

Separation of a material under stress into two or more parts (thereby creating new surface area) is
referred to as fracture. The determination of the conditions of combined stress that lead to either
elastic or inelastic termination of deformation, that is, predicting the failure strength of a material, is
difficult. In 1920, A. A. Griffith was the first to equate the strain energy associated with material
failure to that required for the formation of new surfaces. He also concluded that, with respect to its
capacity to cause failure, tensile stress represents a more important influence than does compressive
stress. The Griffith theory assumes the presence in brittle materials of minute cracks, which as a
result of applied stress are caused to grow to macroscopic size, leading eventually to failure.

Although Griffith’s experiments dealt primarily with glass, his results have been widely applied to
other materials. Application to metals requires modification of the theory, however, because failure
does not occur in an entirely brittle manner. Due to major catastrophic failures of ships, buildings,
trains, airplanes, pressure vessels, and bridges in the 1940s and 1950s, increasing attention has been
given by design engineers to the conditions of the growth of a crack. Griffith’s concept has been
considerably expanded by G. R. Irwin [Ref. 4.6].

Brittle materials most commonly fracture through the grains in what is termed a transcrystalline
failure. Here the tensile stress is usually regarded as playing the most significant role. Examination of
the failed material reveals very little deformation prior to fracture.

Types of Fracture in Tension

There are two types of fractures to be considered in tensile tests of polycrystalline specimens: brittle
fracture, as in the case of cast iron, and shear fracture, as in the case of mild steel, aluminum, and
other metals. In the former case, fracture occurs essentially without yielding over a cross section
perpendicular to the axis of the specimen. In the latter case, fracture occurs only after considerable



plastic stretching and subsequent local reduction of the cross-sectional area (necking) of the
specimen, and the familiar cup-and-cone formation is observed.

At the narrowest neck section in cup-and-cone fracture, the tensile forces in the longitudinal fibers
exhibit directions, as shown in Fig. 4.2a. The horizontal components of these forces produce radial
tangential stresses, so each infinitesimal element is in a condition of three-dimensional stress (Fig.
4.2b). Based on the assumption that plastic flow requires a constant maximum shearing stress, we
conclude that the axial tensile stresses o are nonuniformly distributed over the minimum cross section
of the specimen. These stresses have a maximum value o,,,, at the center of the minimum cross
section, where o, and o, are also maximum, and a minimum value o,,,;, at the surface (Fig. 4.2a). The

magnitudes of the maximum and minimum axial stresses depend on the radius a of the minimum cross
section and the radius of the curvature r of the neck. The following relationships are used to calculate
Opmax a0Nd 0, [Ref. 4.7]:
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Figure 4.2. Necking of a bar in tension: (a) the distribution of the axial stresses; (b) stress
element in the plane of the minimum cross section.
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Here 0,,, = P/ma? and represents the average stress.

Note that, owing to the condition of three-dimensional stress, the material near the center of the
minimum cross section of the tensile specimen has its ductility reduced. During stretching, therefore,
the crack begins in that region, while the material near the surface continues to stretch plastically.
This explains why the central portion of a cup-and-cone fracture is of brittle character, while near the
surface a ductile type of failure is observed.

Progressive Fracture: Fatigue

Multiple application and removal of load, usually measured in thousands of episodes or more, are
referred to as repeated loading. Machine and structural members subjected to repeated, fluctuating,
or alternating stresses, which are below the ultimate tensile strength or even the yield strength, may



nevertheless manifest diminished strength and ductility. Since the phenomenon described, termed
fatigue, is difficult to predict and is often influenced by factors eluding recognition, increased
uncertainty in strength and in service life must be dealt with [Ref. 4.8]. As is true for brittle behavior
in general, fatigue 1s importantly influenced by minor structural discontinuities, the quality of surface
finish, and the chemical nature of the environment.

The types of fracture produced in ductile metals subjected to repeated loading differs greatly from
that of fracture under static loading discussed in Section 2.7. In fatigue fractures, two zones of failure
can be obtained: the beachmarks (so called because the resemble ripples left on sand by retracting
waves) region produced by the gradual development of a crack and the sudden fracture region. As the
name suggest, the fracture region is the portion that fails suddenly when the crack reaches its size
limit. The appearance of the surfaces of fracture greatly helps in identifying the cause of crack
initiation to be corrected in redesign.

A fatigue crack is generally observed to have, as its origin, a point of high stress concentration, for
example, the corner of a keyway or a groove. This failure, through the involvement of slip planes and
spreading cracks, is progressive in nature. For this reason, progressive fracture is probably a more
appropriate term than fatigue failure. Tensile stress, and to a lesser degree shearing stress, lead to
fatigue crack propagation, while compressive stress probably does not. The fatigue life or endurance
of a material is defined as the number of stress repetitions or cycles prior to fracture. The fatigue life
of a given material depends on the magnitudes (and the algebraic signs) of the stresses at the extremes
of a stress cycle.

Experimental determination is made of the number of cycles (V) required to break a specimen at a
particular stress level (S) under a fluctuating load. From such tests, called fatigue tests, curves
termed S—N diagrams can be constructed. Various types of simple fatigue stress-testing machines
have been developed. Detailed information on this kind of equipment may be found in publications
such as cited in the footnote of Section 4.2. The simplest is a rotating bar fatigue-testing machine on
which a specimen (usually of circular cross section) is held so that it rotates while under condition of
alternating pure bending. A complete reversal (tension to compression) of stress thus results.

It is usual practice to plot stress versus number of cycles with semilogarithmic scales (that is, o
against log N). For most steels, the S—N diagram obtained in a simple fatigue test performed on a
number of nominally identical specimens loaded at different stress levels has the appearance shown
in Fig. 4.3. The stress at which the curve levels off is called the fatigue or endurance limit o,.

Beyond the point (o,, N,) failure will not take place no matter how great the number of cycles. For a
lower number of cycles N < N the loading is regarded as static. At N = N, cycles, failure occurs at
static tensile fracture stress oy The fatigue strength for complete stress reversal at a specified

number of cycles N,

> 1s designated o, on the diagram. The S—N curve relationships are utilized in

Section 4.15, in which combined stress fatigue properties are discussed.

Figure 4.3. Typical S—N diagram for steel.
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While yielding and fracture may well depend on the rate of load application or the rate at which the
small permanent strains form, we shall, with the exception of Sections 4.16, 4.17, and 12.13, assume
that yielding and fracture in solids are functions solely of the states of stress or strain.

4.5 Yield and Fracture Criteria

As the tensile loading of a ductile member is increased, a point is eventually reached at which
changes in geometry are no longer entirely reversible. The beginning of inelastic behavior (yield) is
thus marked. The extent of the inelastic deformation preceding fracture very much depends on the
material involved.

Consider an element subjected to a general state of stress, where o; > 0, > 5. Recall that subscripts
1, 2, and 3 refer to the principal directions. The state of stress in uniaxial loading 1s described by oy,
equal to the normal force divided by the cross-sectional area, and ¢, = o3 = 0. Corresponding to the
start of the yielding event in this simple tension test are the quantities pertinent to stress and strain

energy shown in the second column of Table 4.1. Note that the items listed in this column, expressed
in terms of the uniaxial yield point stress o,,,, have special significance in predicting failure involving
multiaxial states of stress. In the case of a material in simple torsion, the state of stress is given by 7=
o, =—03 and g, = 0. In the foregoing, 7 is calculated using the standard torsion formula.
Corresponding to this case of pure shear, at the onset of yielding, are the quantities shown in the third
column of the table, expressed in terms of yield point stress in torsion, 7,
Table 4.1. Shear Stress and Strain Energy at the Start of Yielding

Cuaniity Tension iest Torsion test

Maximum shear stress Tip = -:r‘.p;?

Typ

Maximum energy of distortion Uy =[(1+ p}ﬂﬂ]rﬁl, Upi = 1"_:.'.,{] + v)/E
Maximum octahedral shear stress Toat = (‘vf?ﬂ:lrrw Toa = \;”KE."VI?:}T}.I,

The behavior of materials subjected to uniaxial normal stresses or pure shearing stresses is readily
presented on stress—strain diagrams. The onset of yielding or fracture in these cases is considerably
more apparent than in situations involving combined stress. From the viewpoint of mechanical design,
it is imperative that some practical guides be available to predict yielding or fracture under the
conditions of stress as they are likely to exist in service. To meet this need and to understand the basis
of material failure, a number of failure criteria have been developed. In this chapter we discuss only
the classical idealizations of yield and fracture criteria of materials. These strength theories are
structured to apply to particular classes of materials. The three most widely accepted theories to
predict the onset of inelastic behavior for ductile materials under combined stress are described first
in Sections 4.6 through 4.9. This is followed by a presentation of three fracture theories pertaining to



brittle materials under combined stress (Secs. 4.10 through 4.12).

In addition to the failure theories, failure is sometimes predicted conveniently using the interaction
curves discussed in Section 12.7. Experimentally obtained curves of this kind, unless complicated by
a buckling phenomenon, are equivalent to the strength criteria considered here.

4.6 Maximum Shearing Stress Theory

The maximum shearing stress theory is an outgrowth of the experimental observation that a ductile
material yields as a result of slip or shear along crystalline planes. Proposed by C. A. Coulomb
(1736-1806), it is also referred to as the Tresca yield criterion in recognition of the contribution of
H. E. Tresca (1814—1885) to its application. This theory predicts that yielding will start when the
maximum shearing stress in the material equals the maximum shearing stress at yielding in a simple
tension test. Thus, by applying Eq. (1.45) and Table 4.1, we obtain

1 1
f|(‘r| o O'_'.;l = T:..'l'l = j":r-;p
or
|U| = lT_';! = Ty

4.1)

In the case of plane stress, a3 = 0, there are two combinations of stresses to be considered. When o,
and o, are of opposite sign, that is, one tensile and the other compressive, the maximum shearing
stress is (o] — 0,)/2. Thus, the yield condition is given by

|rf| == ISTEI = Oyp
(4.2a)
which may be restated as
ry F
- = = 4]
T Oy
(4.2b)

When o, and o, carry the same sign, the maximum shearing stress equals (o, — 03)/2 = /2. Then, for
lo1| > |o,| and |o,| > |o], we have the following yield conditions, respectively:

loy| = a,, and ozl = Typ
4.3)

Figure 4.4 is a plot of Egs. (4.2) and (4.3). Note that Eq. (4.2) applies to the second and fourth
quadrants, while Eq. (4.3) applies to the first and third quadrants. The boundary of the hexagon thus
marks the onset of yielding, with points outside the shaded region representing a yielded state. The
foregoing describes the Tresca yield condition. Good agreement with experiment has been realized
for ductile materials. The theory offers an additional advantage in its ease of application.

Figure 4.4. Yield criterion based on maximum shearing stress.



4.7 Maximum Distortion Energy Theory

The maximum distortion energy theory, also known as the von Mises theory, was proposed by M. T.
Huber in 1904 and further developed by R. von Mises (1913) and H. Hencky (1925). In this theory,
failure by yielding occurs when, at any point in the body, the distortion energy per unit volume in a
state of combined stress becomes equal to that associated with yielding in a simple tension test.
Equation (2.65) and Table 4.1 thus lead to

(0, —0,) + (0, —0) + (0, — 0, + 6(%, + T, + 7%,) =20%,
(4.4a)
or, in terms of principal stresses,
(o = @2)* + (02 — 03)* + (03 — )* = 2 3,
(4.4b)
For plane stress o3 = 0, and the criterion for yielding becomes
ai — ooy + o3 = oy,
(4.52)
or, alternatively,
(&) -] 2]~
Typ Oyp/ \Oyp Yyp
(4.5b)

Expression (4.5b) defines the ellipse shown in Fig. 4.5a. We note that, for simplification, Eq. (4.4b)
or (4.5a) may be written o, = o, where o, 1s known as the von Mises stress or the effective stress
(Sec. 12.12). For example, in the latter case we have % = (01 — 0105 + 03)*,
Figure 4.5. Yield criterion based on distortion energy: (a) plane stress yield ellipse; (b) a state of
stress defined by position; (c) yield surface for triaxial state of stress.
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Returning to Eq. (4.4b), it is observed that only the differences of the principal stresses are involved.
Consequently, addition of an equal amount to each stress does not affect the conclusion with respect
to whether or not yielding will occur. In other words, yielding does not depend on hydrostatic tensile
or compressive stresses. Now consider Fig. 4.5b, in which a state of stress is defined by the position
P(oy, 05, 03) In a principal stress coordinate system as shown. It is clear that a hydrostatic alteration

of the stress at point P requires shifting of this point along a direction parallel to direction n, making
equal angles with coordinate axes. This is because changes in hydrostatic stress involve changes of
the normal stresses by equal amounts. On the basis of the foregoing, it is concluded that the yield
criterion is properly described by the cylinder shown in Fig. 4.5¢ and that the surface of the cylinder
is the yield surface. Points within the surface represent states of nonyielding. The ellipse of Fig. 4.5a
1s defined by the intersection of the cylinder with the o, o, plane. Note that the yield surface
appropriate to the maximum shearing stress criterion (shown by the dashed lines for plane stress) is
described by a hexagonal surface placed within the cylinder.

The maximum distortion energy theory of failure finds considerable experimental support in situations
involving ductile materials and plane stress. For this reason, it is in common use in design.

4.8 Octahedral Shearing Stress Theory

The octahedral shearing stress theory (also referred to as the Mises—Hencky or simply the von Mises
criterion) predicts failure by yielding when the octahedral shearing stress at a point achieves a
particular value. This value is determined by the relationship of 7 to o, in a simple tension test.

yp
Referring to Table 4.1, we obtain

Toa = 0470,
(4.6)
where 7., for a general state of stress 1s given by Eq. (2.66).
The Mises—Hencky criterion may also be viewed in terms of distortion energy [Eq. (2.65)]:
U _ ;-:r 1 + p 4
Yod T 2 E Toct
(2)

If it 1s now asserted that yielding will, in a general state of stress, occur when U, ; defined by Eq. (a)

is equal to the value given in Table 4.1, then Eq. (4.6) will again be obtained. We conclude, therefore,
that the octahedral shearing stress theory enables us to apply the distortion energy theory while
dealing with stress rather than energy.

Example 4.1. Circular Shaft under Combined Loads

A circular shaft of tensile strength oy, = 350 MPa is subjected to a combined state of loading

defined by bending moment M = 8 kN - m and torque 7= 24 kN - m (Fig. 4.6a). Calculate the
required shaft diameter d in order to achieve a factor of safety n = 2. Apply (a) the maximum
shearing stress theory and (b) the maximum distortion energy theory.

Figure 4.6. Example 4.1. (a) Torsion—flexure of a shaft; (b) Mohr’s circle for torsion—flexure
loading.
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Solution
For the situation described, the principal stresses are
Ty = % + iVl +47,0,=0
(b)
where
My 32M Tr 16T
o, = = — Ty = —— = -
[ wd’ I wd
Therefore
16 5
T2 = —(M + VM + T?)
ad
4.7)

a. Maximum shearing stress theory: For the state of stress under consideration, it may be
observed from Mohr’s circle, shown in Fig. 4.6b, that g, 1s tensile and o, is compressive.

Thus, through the use of Egs. (b) and (4.2a),

Typ T
= Vot dn,
1 ’
(4.82)
or
R T
n mrd-
(4.8b)
After substitution of the numerical values, Eq. (4.8b) gives d = 113.8 mm.
b. Maximum distortion energy theory: From Egs. (4.5a), (b), and (4.7),
i = Vo + 3",*2.1.
L ’
(4.9a)
or
N T

n wd”



(4.9b)

This result may also be obtained from the octahedral shearing stress theory by applying Eqgs.
(4.6) and (4.7). Substituting the data into Eq. (4.9b) and solving for d, we have d = 109 mm.

Comments

The diameter based on the shearing stress theory is thus 4.4% larger than that based on the
maximum energy of distortion theory. A 114-mm shaft should be used to prevent initiation of
yielding.

Example 4.2. Conical Tank filled with Liquid

A steel conical tank, supported at its edges, is filled with a liquid of density y (Fig. P13.32.). The
yield point stress (oy;,) of the material is known. The cone angle is 2a. Determine the required

wall thickness ¢ of the tank based on a factor of safety n. Apply (a) the maximum shear stress
theory and (b) the maximum energy of distortion theory.

Solution

The variations of the circumferential and longitudinal principal, stresses oy = 0| and 6, = 55, in
the tank are, respectively (Prob. 13.32),

( } tan ( 2 } tan o
o, = yla — y)y i o, = yla — 5y)y
: Y 7T rcosa 2= 3y“2fcnsn
(c)
These stresses have the largest magnitude:
'}fﬂl lan o },”3 Lan o it i
oo , Ty = —— ,aty = —
Lmax = gt cosa’ ° 12t cosa R
E'rm: tan o }’HE tan o » 3a
% e — , o = — ,aty = —
o 16t cosa’ 4 cos @ : 4
(d)

a. Maximum shear stress theory: Because o and o0, are of the same sign and |o;| > |o,|, we have,
from the first equations of (4.3) and (d),

Ty va© tan o

n 4r cosa
The thickness of the tank 1s found from this equation to be

el
AR TAan o
okl Dot

Ty cos aor

(e)

b. Maximum distortion energy theory: It is observed in Eq. (d) that the largest values of
principal stress are found at different locations. We shall therefore first locate the section at



which the combined principal stresses are at a critical value. For this purpose, we insert Eq.
(c) into Eq. (4.5a):

U*_:| 3 [ T tana | l o By tan a r
n’ ¥ T rcosa ¥ 3207 21 cos a
_[ im0 tan a ” i i _tana l
e =Y rcosa L ™ 3 cosa
®
Upon differentiating Eq. (f) with respect to the variable y and equating the result to zero, we
obtain
y=0.52a
Upon substitution of this value of y into Eq. (f), the thickness of the tank 1s determined:
£ = 0225 YA H tan o
U'”! COSs
(8

Comments

The thickness based on the maximum shear stress theory is thus 10% larger than that based on the
maximum energy of distortion theory.

4.9 Comparison of the Yielding Theories

Two approaches may be employed to compare the theories of yielding heretofore discussed. The first
comparison equates, for each theory, the critical values corresponding to uniaxial loading and torsion.
Referring to Table 4.1, we have

Maximum shearing stress theory: Ty — US0ary,
Maximum energy of distortion theory, or 118
equivalent, the octahedral shearing stress theory: Ty — 2T gy

Observe that the difference in strength predicted by these theories is not substantial. A second
comparison may be made by means of a superposition of Figs. 4.4 and 4.5a. This is left as an exercise
for the reader.

Experiment shows that, for ductile materials, the yield stress obtained from a torsion test is 0.5 to 0.6
times that determined from a simple tension test. We conclude, therefore, that the energy of distortion
theory, or the octahedral shearing stress theory, is most suitable for ductile materials. However, the
shearing stress theory, which gives z,, = 0.500,,, is in widespread use because it is simple to apply

and offers a conservative result in design.

Consider, as an example, a solid shaft of diameter ¢ and tensile yield strength o, subjected to

combined loading consisting of tension P and torque 7. The yield criteria based on the maximum
shearing stress and energy of distortion theories, for n = 1, are given by Egs. (4.8a) and (4.9a):

oy — Vg ¥ g, T el i o



where
4P _ 16T

T.L'_'r

o md* md’
A comparison of a dimensionless plot of Egs. (a) with some experimental results is shown in Fig. 4.7.
Note again the particularly good agreement between the maximum distortion energy theory and

experimental data for ductile materials.

Figure 4.7. Yield curves for torsion—tension shaft. The points indicated in this figure are based
on experimental data obtained by G. L. Taylor and H. Quinney [Ref. 4.9].
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4.10 Maximum Principal Stress Theory

According to the maximum principal stress theory, credited to W. J. M. Rankine (1820-1872), a
material fails by fracturing when the largest principal stress exceeds the ultimate strength o, ina

simple tension test. That is, at the onset of fracture,

|ILT|I =, or |'—T'?| = Oy
(4.10)

Thus, a crack will start at the most highly stressed point in a brittle material when the largest
principal stress at that point reaches o,,.

Note that, while a material may be weak in simple compression, it may nevertheless sustain very high
hydrostatic pressure without fracturing. Furthermore, brittle materials are much stronger in
compression than in tension, while the maximum principal stress criterion is based on the assumption
that the ultimate strength of a material is the same in tension and compression. Clearly, these are
inconsistent with the theory. Moreover, the theory makes no allowance for influences on the failure
mechanism other than those of normal stresses. However, for brittle materials in all stress ranges, the
maximum principal stress theory has good experimental verification, provided that there exists a
tensile principal stress.

In the case of plane stress (a3 = 0), Eq. (4.10) becomes

CAR A A



(4.11a)

This may be rewritten as
LR s

—=z1 or —= %]

o, o,

(4.11b)

The foregoing is depicted in Fig. 4.8 with points a, b, and ¢, d indicating the tensile and compressive
principal stresses, respectively. For this case, the boundaries represent the onset of failure due to
fracture. The area within the boundary of the figure is thus a region of no failure.

Figure 4.8. Fracture criterion based on maximum principal stress.

A ®la,

4.11 Mohr’s Theory

The Mohr theory of failure is used to predict the fracture of a material having different properties in
tension and compression when results of various types of tests are available for that material. This
criterion makes use of the well-known Mohr’s circles of stress. As discussed in Section 1.15, ina
Mohr’s circle representation, the shear and normal components of stress acting on a particular plane
are specified by the coordinates of a point within the shaded area of Fig. 4.9a. Note that 7 depends on
o; that is, |1| = f(0).

Figure 4.9. (a) Mohr’s circles of stress; (b) Mohr’s envelopes.

T

A Simple
Simple H/tensian
¥ Fla, 1) compression
=
I g
A C| B A’ Torsion

= T
ﬂ'_a I;'J';J I:'F"| .
Failure envelope

{a) {b)
The figure indicates that a vertical line such as PC represents the states of stress on planes with the
same o but with differing 7. It follows that the weakest of all these planes is the one on which the
maximum shearing stress acts, designated P. The same conclusion can be drawn regardless of the
position of the vertical line between 4 and B; the points on the outer circle correspond to the weakest
planes. On these planes, the maximum and minimum principal stresses alone are sufficient to decide
whether or not failure will occur, because these stresses determine the outer circle shown in Fig.
4.9a. Using these extreme values of principal stress thus enables us to apply the Mohr approach to
either two- or three-dimensional situations.

The foregoing provides a background for the Mohr theory of failure, which relies on stress plots in o,



t coordinates. The particulars of the Mohr approach are presented next.

Experiments are performed on a given material to determine the states of stress that result in failure.
Each such stress state defines a Mohr’s circle. If the data describing states of limiting stress are
derived from only simple tension, simple compression, and pure shear tests, the three resulting circles
are adequate to construct the envelope, denoted by lines 4B and A'B' in Fig. 4.9b. The Mohr envelope
thus represents the locus of all possible failure states. Many solids, particularly those that are brittle,
exhibit greater resistance to compression than to tension. As a consequence, higher limiting shear
stresses will, for these materials, be found to the left of the origin, as shown in the figure.

4.12 Coulomb—Mohr Theory

The Coulomb—Mohr or internal friction theory assumes that the critical shearing stress is related to
internal friction. If the frictional force is regarded as a function of the normal stress acting on a shear
plane, the critical shearing stress and normal stress can be connected by an equation of the following

form (Fig. 4.10a):

T=ac + b
(a)
Figure 4.10. (a) Straight-line Mohr’s envelopes; (b) Coulomb-Mohr fracture criterion.
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The constants a and b represent properties of the particular material. This expression may also be
viewed as a straight-line version of the Mohr envelope.

For the case of plane stress, o3 = 0 when o, 1s tensile and o, is compressive. The maximum shearing
stress 7 and the normal stress o acting on the shear plane are, from Eqs. (1.22) and (1.23), given by

oy — g F 0
o — = 5 r = 2
(b)
Introducing these expressions into Eq. (a), we obtain
ol —a) — ol +a) =20
(c)
To evaluate the material constants, the following conditions are applied:
o =0, when o, =0
a, = —a, when o =10
(d)

Here 0, and 7. represent the ultimate strength of the material in tension and compression,



respectively. If now Egs. (d) are inserted into Eq. (¢), the results are
all —a)=2b and ol +a)=2b

from which
Ou = Ou

a=————mr-H b= r
[Trr + I:‘lhfl' Cr“ + LTH

‘-Trr ﬂJH

(e)

These constants are now introduced into Eq. (c) to complete the equation of the envelope of failure by
fracturing. When this 1s done, the following expression is obtained, applicable for ¢; > 0, 0, <O0:

(4.122)

For any given ratio g,/0,, the individual stresses at fracture, o; and o,, can be calculated by applying
expression (4.12a) (Prob. 4.22).

Relationships for the case where the principal stresses have the same sign (o, >0, 0, > 0 or 0 <0, o,

< 0) may be deduced from Fig. 4.10a without resort to the preceding procedure. In the case of biaxial
tension (now o, = 03 = 0, o1 and o, are tensile), the corresponding Mohr’s circle is represented by

diameter OD. Therefore, fracture occurs if either of the two tensile stresses achieves the value o,,.
That is,
o = oy, o = oy

(4.12b)

For biaxial compression (now o, = 03 = 0, 0; and o, are compressive), a Mohr’s circle of diameter
OC is obtained. Failure by fracture occurs if either of the compressive stresses attains the value @u:

Ty = _ﬂ-;l" = _frrlr
(4.12¢)

Figure 4.10b is a graphical representation of the Coulomb—Mohr theory plotted in the ;, o, plane.

Lines ab and af represent Eq. (4.12b), and lines dc and de, Eq. (4.12¢). The boundary bc is obtained
through the application of Eq. (4.12a). Line ef completes the hexagon in a manner analogous to Fig.
4.4. Points lying within the shaded area should not represent failure, according to the theory. In the
case of pure shear, the corresponding limiting point is g. The magnitude of the limiting shear stress
may be graphically determined from the figure or calculated from Eq. (4.12a) by letting o, = —05:

o, (0,

Y P 4

(4.13)

Example 4.3. Tube Torque Requirement

A thin-walled tube is fabricated of a brittle material having ultimate tensile and compressive
strengths o, = 300 MPa and ¢, = 700 MPa_ The radius and thickness of the tube are » = 100 mm and



¢t =5 mm. Calculate the limiting torque that can be applied without causing failure by fracture.
Apply (a) the maximum principal stress theory and (b) the Coulomb—Mohr theory.

Solution

The torque and maximum shearing stress are related by the torsion formula:

J
T = =7 = 2ar’tr = 2a(0.1)%(0.005)r = 314 X 10757

I

®

The state of stress 1s described by o, =—0, =17, 03 = 0.

a. Maximum principal stress theory: Equations (4.10) are applied with o5 replaced by o,
because the latter is negative: |oy| = |o,| = 0,. Because we have ;= ¢, = 300 x 10% =, from
Eq. (),

T=314 x107%300 x 10%) =94.2 kN - m

b. Coulomb—Mohr theory: Applying Eq. (4.12a),

T e

300 x 10 700 x 10°
from which 7 = 210 MPa. Equation (f) gives 7=314 x 107 (210 x 10%) = 65.9 kN - m.
Based on the maximum principal stress theory, the torque that can be applied to the tube is thus

30% larger than that based on the Coulomb—Mohr theory. To prevent fracture, the torque
should not exceed 65.9 kN - m.

Example 4.4. Design of a Cast Iron Torsion Bar

A torsion-bar spring made of ASTM grade A-48 cast iron is loaded as shown in Fig. 4.11. The

stress concentration factors are 1.7 for bending and 1.4 for torsion. Determine the diameter d to
resist loads P=25Nand 7= 10 N - m, using a factor of safety n = 2.5. Apply (a) the maximum
principal stress theory and (b) the Coulomb—Mohr theory.

Figure 4.11. Example 4.4. A torsion-bar sprlng
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Solution
The stresses produced by bending moment M = 0.1P and torque T at the shoulder are
2M 167
o, = K, T = Ky——=
wd” : wd”

(4.14)



The principal stresses, using Eq. (4.7), are then

o= ]—ﬁx(mm + VKIM? + KIT?)
-
4.15)
Substituting the given data, we have
Ty, = —Ijt 1.7(0.1 X 25) = w’{l,? x 0.1 % 25)* + (1.4 x 10)?
-
The foregoing results in
06.16 52.8
e e Ty = ———
d d
(8

The allowable ultimate strengths of the material in tension and compression are 170/2.5 = 68
MPa and 650/2.5 = 260 MPa, respectively (see Table D.1).
a. Maximum principal stress theory.: On the basis of Egs. (g) and (4.10),

96.16

3

Similarly, 52.87/d> = 68 x 10 gives d = 9.2 mm.

b. Coulomb—Mohr theory: Using Egs. (g) and (4.12a),

96.16 —52.87
o i = ] or d = 11.7 mm
68(10%)d*  260(10%)d-

= 68 % 10° or d =112 mm

Comments

The diameter of the spring based on the Coulomb—Mohr theory is therefore about 4.5% larger
than that based on the maximum principal stress theory. A 12-mm-diameter bar, a commercial
size, should be used to prevent fracture.

4.13 Fracture Mechanics

As noted in Section 4.4, fracture is defined as the separation of a part into two or more pieces. It
normally constitutes a “pulling apart” associated with the tensile stress. This type of failure often
occurs in some materials in an instant. The mechanisms of brittle fracture are the concern of fracture
mechanics, which is based on a stress analysis in the vicinity of a crack or defect of unknown small
radius in a part. A crack 1s a microscopic flaw that may exist under normal conditions on the surface
or within the material. These may vary from nonmetallic inclusions and microvoids to weld defects,
grinding cracks, and so on. Scratches in the surface due to mishandling can also serve as incipient
cracks.

Recall that the stress concentration factors are limited to elastic structures for which all dimensions
are precisely known, particularly the radius of the curvature in regions of high stress concentrations.
When exists a crack, the stress concentration factor approaches infinity as the root radius approaches
0. Therefore, analysis from the viewpoint of stress concentration factors is inadequate when cracks
are present. Space limitations preclude our including more detailed treatment of the subject of



fracture mechanics. However, the basic principles and some important results are briefly stated.

The fracture mechanics approach starts with an assumed initial minute crack (or cracks), for which
the size, shape, and location can be defined. If brittle failure occurs, it is because the conditions of
loading and environment are such that they cause an almost sudden propagation to failure of the
original crack. When there is fatigue loading, the initial crack may grow slowly until it reaches a
critical size at which the rapid fracture occurs [Ref. 4.8].

Stress-Intensity Factors

In the fracture mechanics approach, a stress-intensity factor, K, is evaluated. This can be thought of as
a measure of the effective local stress at the crack root. The three modes of crack deformation of a
plate are shown in Fig. 4.12. The most currently available values of K are for tensile loading normal
to the crack, which is called mode I (Fig. 4.12a) and denoted as K;. Modes II and III are essentially

associated with the in-plane and out-of-plane loads, respectively (Figs. 4.12b and 4.12c¢). The
treatment here is concerned only with mode I. We eliminate the subscript and let K = K.

Figure 4.12. Crack deformation types: (a) mode I, opening; (b) mode II, sliding; (¢) mode III,

tearing.
:i
J

(a) (b) (c)
Solutions for numerous configurations, specific initial crack shapes, and orientations have been
developed analytically and by computational techniques, including finite element analysis (FEA)
[Ref. 4.10 and 4.11]. For plates and beams, the stress-intensity factor is defined as

K =AcvV ‘na

(4.16)

In the foregoing, we have ¢ = normal stress; A = geometry factor, depends on a/w, listed in Table 4.2;
a = crack length (or half crack length); w = member width (or half width of member). It is seen from
Eq. (4.16) and Table 4.2 that the stress-intensity factor depends on the applied load and geometry of
the specimen as well as on the size and shape of the crack. The units of the stress-intensity factors are
commonly MPa v'm in SI and ksi Vin. in U.S. customary system.

Table 4.2. Geometry Factors A for Initial Crack Shapes



Case A Tension of a fong plate with cemtral crack

o A
0.1 1.001
0.2 1.03
0.3 1.0¢6
0.4 1.11
0.5 1.19
(.6 1.30
Casc B
W A
0 {w— o0) 1.12
0.2 1.37
04 211
0.5 2.83
Case C
' A
0 {(w—00) 1.12
0.2 1.12
0.4 1.14
0.5 1.15
XS] 1.22
Case D
ww A
t (1 1.02
p. / -+ 0.2 1.06
(Lj [ 2l L ﬂ) 03 1.16
| 0.4 1.32
bR T L - »
0.5 1.62
X 2.10

It is obvious that most cracks may not be as basic as shown in Table 4.2. They may be at an angle
embedded in a member or sunken into surface. A shallow surface crack in a component may be
considered semi-elliptical. A circular or elliptical form has proven to be adequate for many studies.
Publications on fracture mechanics provide methods of analysis, applications, and extensive
references [Ref. 4.8 through 4.12].

Interestingly, crack propagation occurring after an increase in load may be interrupted if a small zone
forms ahead of the crack. However, stress intensity has risen with the increase in crack length and, in
time, the crack may advance again a short amount. When stress continues to increase owing to the
reduced load-carrying area or different manner, the crack may grow, leading to failure. A final point
to be noted is that the stress-intensity factors are also used to predict the rate of growth of a fatigue
crack.

4.14 Fracture Toughness

In a toughness test of a given material, the stress-intensity factor at which a crack will propagate is
measured. This is the critical stress-intensity factor, referred to as the fracture toughness and denoted
by the symbol K. Ordinarily, testing 1s done on an ASTM standard specimen, either a beam or



tension member with an edge crack at the root of a notch. Loading is increased slowly, and a record is
made of load versus notch opening. The data are interpreted for the value of fracture toughness [Ref.
4.13].

For a known applied stress acting on a member of known or assumed crack length, when the
magnitude of stress-intensity factor K reaches fracture toughness K, the crack will propagate, leading

to rupture in an instant. The factor of safety for fracture mechanics n, strength-to-stress ratio, is thus

_ %
n = K
4.17)
Introducing the stress-intensity factor from Eq. (4.16), this becomes
- K.
Ao\ ma
(4.18)

Table 4.3 furnishes the values of the yield strength and fracture toughness for some metal alloys,
measured at room temperature in a single edge-notch test specimen.

Table 4.3. Yield Strength o,,, and Fatigue Toughness K. for Some Materials

Typ K. Minimum Values of a and ¢

Metals M Fa {ksi) M Pa "'..ffm (ksi \,f}'n. ) " firn.)
Steel

AISI 4340 1503 (218) 39 (53.7) 39 (0.15)
Stainless steel

AISI 403 690  (100) 77 (70.1) 1 (1:22)
Aluminum

2024-T851 444 (64.4) 23 (20.9) 6.7 (0.26)

7075-T7351 392 (56.9) 3l {28.2) 156 (0.61)
Titanium

Ti-6Al-6V 1149 (167) 66 {(60.1) 82 (0.32)

Ti-6AI-4V 798  (116) 111 (101) 484 (1.91)

For consistency of results, the ASTM specifications require a crack length a or member thickness ¢

Hﬁf .— s
] Ve

This ensures plane strain and flat crack surfaces. The values of a and ¢ found by Eq. (4.19) are also
included in Table 4.3.

Application of the foregoing equations is demonstrated in the solution of the following numerical
problems.

Example 4.5. Aluminum Bracket with an Edge Crack



A 2024-T851 aluminum alloy frame with an edge crack supports a concentrated load (Fig. 4.13a).
Determine the magnitude of the fracture load P based on a safety factor of n = 1.5 for crack length
of a =4 mm. The dimensions are w =50 mm, d = 125 mm, and # = 25 mm.

Figure 4.13. Example 4.5. Aluminum bracket with an edge crack under a concentrated load.
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Solution

From Table 4.3, we have
K.=23MPaVm o, = 444 MPa

Note that that values of @ and ¢ both satisfy the table. At the section through the point B (Fig.
4.13b), the bending moment equals M = Pd = 0.125P. Nominal stress, by superposition of two

states of stress for axial force P and moment M, is Ao = A0, + A0y, Thus
P 6M

Ao = ':"-.f.l_ T "}'-.TJ 3
wi W

(2)
in which w and ¢ represent the width and thickness of the member, respectively.
The ratio of crack length to bracket width 1s a/w = 0.08. For cases of B and C of Table 4.2, 1, =
1.12 and A, = 1.02, respectively. Substitution of the numerical values into Eq. (4.19) results in
P s 6(0.125P)
(0.05)(0.025) 7 (0.025)(0.05)?
= 896P + 12,000P = 12,896P

Ao =1.12

(b)
Therefore, by Eq. (4.17):
o 23(10°
ﬁf_; 12,896P = _[ )
n'\ ma 1.5V 7(0.004)

The foregoing gives P =10.61 kN. Note that the normal stress at fracture, 10.61/1(0.05 — 0.004)
=9.226 MPa 1s well below the yield strength of the material.

Ao =

Example 4.6. Titanium Panel with a Central Crack



A long plate of width 2w is subjected to a tensile force P in longitudinal direction with a safety
factor of n (see case A, Table 4.2). Determine the thickness ¢ required (a) to resist yielding, (b) to
prevent a central crack from growing to a length of 2a. Given: w =50 mm, P =50 kN, n = 3, and
a = 10 mm. Assumption: The plate will be made of Ti-6AI-6V alloy.

Solution

Through the use of Table 4.2, we have K = 66VT000 MPa\/mm and oy, = 1149 MPa.

a. The permissible tensile stress on the basis of the net area is

Typ P
(T =  — e
T 2(w —at

Therefore
Pn 150(10°)(3) p—-
' 2Aw—a)o,,  2(50—6)1149 i

b. From the case A of Table 4.2,

a 10
— T wme— T g =
= ===, A =103
Applying Eq. (4.18), the stress at fracture is
s f——
e K. 66VI1000 — 120.5 MPa

anVma  1.03(3)Va(10)
Inasmuch as this stress 1s smaller than the yield strength, the fracture governs the design; o, =
120.5 MPa. Hence,
P 150(10%)
“t " Do 2(50)(120.5)

i = 12.45 mm

Comment

Use a thickness of 13 mm. Both values of a and ¢ satisfy Table 4.3.

4.15 Failure Criteria for Metal Fatigue

A very common type of fatigue loading consists of an alternating sinusoidal stress superimposed on a
uniform stress (Fig. 4.14). Such variation of stress with time occurs, for example, if a forced
vibration of constant amplitude is applied to a structural member already transmitting a constant load.

Referring to the figure, we define the mean stress and the alternating or range stress as follows:

i
Ty = -iI:’r-Tnupc T 'r-rmin}

oot
0, = ,"_l:('rumx o G-I'Ilil'l}

(4.20)

Figure 4.14. Typical stress—time variation in fatigue.



Stress

Time
In the case of complete stress reversal, it is clear that the average stress equals zero. The alternating
stress component is the most important factor in determining the number of cycles of load the material
can withstand before fracture; the mean stress level is less important, particularly if ¢,, is negative
(compressive).
As mentioned in Section 4.4, the local character of fatigue phenomena makes it necessary to analyze
carefully the stress field within an element. A fatigue crack can start in one small region of high
alternating stress and propagate, producing complete failure regardless of how adequately
proportioned the remainder of the member may be. To predict whether the state of stress at a critical
point will result in failure, a criterion is employed on the basis of the mean and alternating stresses
and utilizing the simple S—N curve relationships.

Single Loading

Many approaches have been suggested for interpreting fatigue data. Table 4.4 lists commonly
employed criteria, also referred to as mean stress—alternating stress relations. In each case, fatigue
strength for complete stress reversal at a specified number of cycles may have a value between the
fracture stress and endurance stress; that is, o, < 0., < o, (Fig. 4.3).

Table 4.4.2 Failure Criteria for Fatigue

Fatigue Modified
criterion Goodman Soderberg Gerber SAE
7
Equation S 190 _ ¢ Yo% 5 o (ﬂ) S BN R
Ter Ty Ter Tyn Ter Ty Ter oy

Experience has shown that for steel, the Soderberg or modified Goodman relations are the most
reliable for predicting fatigue failure. The Gerber criterion leads to more liberal results and, hence,
1s less safe to use. For hard steels, the SAE and modified Goodman relations result in identical
solutions, since for brittle materials o, = 0.

Relationships presented in Table 4.4 together with specified material properties form the basis for
practical fatigue calculations for members under single loading.

Example 4.7. Fatigue Load of Tension-Bending Bar

A square prismatic bar of sides 0.05 mis subjected to an axial thrust (tension) F,, = 90 kN (Fig

4.15). The fatigue strength for completely reversed stress at 10° cycles is 210 MPa, and the static
tensile yield strength is 280 MPa. Apply the Soderberg criterion to determine the limiting value
of completely reversed axial load F, that can be superimposed to F, at the midpoint of a side of

the cross section without causing fatigue failure at 10° cycles.



Figure 4.15. Example 4.7. Bar subjected to axial tension F,, and eccentric alternating F,
loads.
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The alternating and mean stresses are given by

Solution

Me  0.025F,(0.025)
g, = —= = . = 1200F,
! (0.05)%12
F 90,000
Ty = = — =3 MFa

A 0.05 % 0.05
Applying the Soderberg criterion,

1200F, , 36 x 10°
210 x 10° 280 x 10°
we obtain F, = 152.5 kN.

Combined Loading

Often structural and machine elements are subjected to combined fluctuating bending, torsion, and
axial loading. Examples include crankshafts, propeller shafts, and aircraft wings. Under cyclic
conditions of a general state of stress, it is common practice to modify the static failure theories for
purposes of analysis, substituting the subscripts a, m, and e in the expressions developed in the
preceding sections. In so doing, the maximum distortion energy theory, for example, is expressed as

1

for— rr.n_,b" + [ t‘.il'_.”}": t oy — f:rm}" * O(Taa T *."z_,", + *r_:_.,,] = 2 tr:',,
(T — Tl + (O — T + (O — Oy + (T + Togm + Toam) = 2 05,
(4.21)
or
forg —or Yt g g P b (g g =12 0
(Ol = O2m)” + (C2m — Tam)’ + (O3 — O1w)” = 200,
(4.22)

Here o,, and o, the equivalent alternating stress and equivalent mean stress, respectively, replace
the quantity o, (or 0,)) used thus far. Relations for other failure theories can be written in a like
manner.



The equivalent mean stress—equivalent alternating stress fatigue failure relations are represented in
Table 4.4, replacing o, and o,, with 0,, and o,,,. These criteria together with modified static failure

theories are used to compute fatigue strength under combined loading,

Example 4.8. Fatigue Pressure of a Cylindrical Tank

Consider a thin-walled cylindrical tank of radius » = 120 mm and thickness # = 5 mm, subject to
an internal pressure varying from a value of —p/4 to p. Employ the octahedral shear theory

together with the Soderberg criterion to compute the value of p producing failure after 103 cycles.
The material tensile yield strength is 300 MPa and the fatigue strength is o, = 250 MPa at 10%
cycles.

Solution

The maximum and minimum values of the tangential and axial principal stresses are given by

pr [—pld)r
Tpomi™ ™ 24p, To. min = : = —@p
pr (—pld)r
T o — 5 = sz}1 T min — 2 = _3}0
The alternating and mean stresses are therefore
1 = 1 ¢ )
Ty = E[’J—ﬂ.mut = @y.min) = 15p, T — AT, max T g, min) = 9P
1 _ 1 —
Tpg — E(ﬂ—:.mm — Oy min) = 1P, Ty = f':{T_-__ sine i) =4 5p

The octahedral shearing stress theory, Eq. (4.6), for cyclic combined stress is expressed as

J I.' g

4 9
EﬂTm = gy Ty 2 ﬂ?.'f} = gy

a

I:Grﬁm - 'TF'rrl ':*T:.';'! + ":r.;rrljll:l2 = E:rq*rr.'
(4.23)

In terms of computed alternating and mean stresses, Eqs. (4.23) appear as
(225p° — 112.5p% + 5625p°)2 = o,
(81pF — 40.5p% + 2025p1)2 = o,
fromwhicho,, =12.99p and o, = 7.794p.

The Soderberg relation then leads to
12.99p % T7.794p
250 X 10° 300 x 10°
Solving this equation, p = 12.82 MPa.

Fatigue Life

Combined stress conditions can lower fatigue life appreciably. The approach described here predicts
the durability of a structural or machine element loaded in fatigue. The procedure applies to any
uniaxial, biaxial, or general state of stress. According to the method, fatigue life N, (Fig. 4.3) is

defined by the formula”



(4.24)
in which
In(o/o,)
b=
In{ N /N,)

(4.25)

Here the values of g, and oy are specified in terms of material static tensile strengths, while N, and N,

are given in cycles (Table 4.5). The fatigue-strength reduction factor K, listed in the table, can be
ascertained on the basis of tests or from finite element analysis. The data will be scattered (in
general, K > 0.3), and considerable variance requires the stress analyst to use a statistically
acceptable value. The reversed stress o, 1s computed applying the relations of Table 4.4, as required.

Table 4.5. Fracture Stress o, (Fracture Cycles Ny and Fatigue Strength o, (Fatigue Life V,) for
Steels

End poinis for 5-N diagram (Fig. 4.3)

Ductile steels Britde (hard) steels
(er, = 1750 MFPa) {:rF = 1750 MPa)
Fatigue
Criterion o N, . N, T N i, N,
Modified
Goodman 0.90, 10° Ke, 10° 090, 100 1Ke, 10°
Soderberg 0.9, 107 Ke, 10° 090, 10° Ko, 10°
Gerber 0.90, 100 1Ke, 10° 09¢, 10° Ko, 10°
SAE o, +350 % 10° 1 3Ke, 10° o, 1 Ko, 10°

Alternatively, the fatigue life may be determined graphically from the S—N diagram (Fig. 4.3)
constructed by connecting points with coordinates (s, Ny) and (o, N,). Interestingly, b represents the

slope of the diagram. Following is a solution of a triaxial stress problem illustrating the use of the
preceding approach.

Example 4.9. Fatigue Life of an Assembly

A rotating hub and shaft assembly is subjected to bending moment, axial thrust, bidirectional
torque, and a uniform shrink fit pressure so that the following stress levels (in megapascals)
occur at an outer critical point of the shaft:

700 14 0 =600 —~7 {0
14 =350 JHiIR =§ =350 0
0 0 =350 0 0 -350

These matrices represent the maximum and minimum stress components, respectively. Determine
the fatigue life, using the maximum energy of distortion theory of failure together with (a) the SAE
fatigue criterion and (b) the Gerber criterion. The material properties are o, = 2400 MPa and K =



1.

Solution

From Table 4.5, we have o, = 1(2400 x 10°)/3 = 800 MPa, N¢=1 cycle for SAE, N,= 103 cycles
for Gerber, and NV, = 108 cycles. The alternating and mean values of the stress components are

700 + 660) = 680 MPa
700 — 660) = 20 MPa

Tyg =

——

] R

Ir‘r'l.'.'i'i' =

., = o, =3—=350 + 350) =0

':ra'.l'l' 2
G—J'm = gy — E(_JJ‘U s 350} = _‘150 MPa
Tl‘_l.'u = %[]4 o .J'r) = ]ﬁ:} MPE{
T.r_m.' = %[14 = ?]l = 35 Mpd

Upon application of Eq. (4.21), the equivalent alternating and mean stresses are found to be
o, = {3[(680 — 0)* + (0 — 680) + 6(10.5)°]}'? = 680.24 MPa

o = {3[(20 + 350)2 + (=350 — 20)% + 6(3.5%)]}'* = 370.05 MPa
a. The fatigue strength for complete reversal of stress, referring to Table 4.4, is

680.24 x 10°
O = > — = 804.24 MPa
1 — (Guloy) 1 — (370.05 X 1062400 X 10°)
Equation (4.25) yields
In(2400/800)
b=— = —(.059

In(1/10%)
The fatigue life, from Eq. (4.24), is thus
: —{1M0.05%)
N, = 1(%) = 02.6 % 10° cycles
b. From Table 4.4, we now apply

: 24 x 100
T = e = Lo ; — = §696.81 MPa
1 = (odo,)* 1 — (370.05/2400)°
and
In(0.9 x 2400/800)
b = — = —(.0863
In(10°/10%)

It follows that

11.557
[ 696.81
N, = 10| ——— = 493,34 x 10° cycles
a ](D.Q x 24rm) 1 2 107 cycles

Comment

Upon comparison of the results of (a) and (b), we observe that the Gerber criterion overestimates

the fatigue life.

4.16 Impact or Dynamic Loads



Forces suddenly applied to structures and machines are termed shock or impact 1oads and result in
dynamic loading. Examples include rapidly moving loads, such as those caused by a railroad train
passing over a bridge or a high-speed rocket-propelled test sled moving on a track, or direct impact
loads, such as result from a drop hammer. In machine service, impact loads are due to gradually
increasing clearances that develop between mating parts with progressive wear, for example, steering
gears and axle journals of automobiles.

A dynamic force acts to modify the static stress and strain fields as well as the resistance properties
of'a material. Shock loading is usually produced by a sudden application of force or motion to a
member, whereas impact loading results from the collision of bodies. When the time of application of
a load is equal to or smaller than the largest natural period of vibration of the structural element,
shock or impact loading is produced.

Although following a shock or impact loading, vibrations commence, our concern here is only with
the influence of impact forces on the maximum stress and deformation of the body. It is important to
observe that the design of engineering structures subject to suddenly applied loads is complicated by
a number of factors, and theoretical considerations generally serve only qualitatively to guide the
design [Ref. 4.18]. Note that the effect of shock loading on members has been neglected in the
preceding sections. For example, various failure criteria for metal fatigue result in shaft design
equations that include stresses due to fluctuating loads but ignore shock loads. To take into account
shock conditions, correction factors should be used in the design equations. The use of static material
properties in the design of members under impact loading is regarded as conservative and
satisfactory. Details concerning the behavior of materials under impact loading are presented in the
next section.

The impact problem is analyzed using the elementary theory together with the following assumptions:
1. The displacement is proportional to the applied forces, static and dynamic.
2. The inertia of a member subjected to impact loading may be neglected.

3. The material behaves elastically. In addition, it is assumed that there is no energy loss associated
with the local inelastic deformation occurring at the point of impact or at the supports. Energy is
thus conserved within the system.

To idealize an elastic system subjected to an impact force, consider Fig. 4.16, in which is shown a
weight W, which falls through a distance 4, striking the end of a freestanding spring. As the velocity
of the weight is zero initially and is again zero at the instant of maximum deflection of the spring
(Jmax)> the change in kinetic energy of the system is zero, and likewise the work done on the system.
The total work consists of the work done by gravity on the mass as it falls and the resisting work done
by the spring:

¥

W{h T 3111;1.1:;' - %kﬁﬁ'ﬁl-“ = ﬂ

(a)
Figure 4.16. A falling weight W striking a spring.



W=mg

| i

77777,
where k is known as the spring constant.

Note that the weight is assumed to remain in contact with the spring. The deflection corresponding to
a static force equal to the weight of the body 1s simply W/k. This is termed the static deflection, o.

Then the general expression of maximum dynamic deflection is, from Eq. (a),

T Iy
Smel:-c = ﬁsl + V ':h.w'!}h T zﬁﬁlh

(4.26)
or, by rearrangement,
B/ aﬁ.(l i N"'Ill i i—’:) = K8,
(4.27)
The impact factor K, the ratio of the maximum dynamic deflection to the static deflection, d,,,,/d, 1S
given by
K=1+ \"'III] + z—i
(4.28)
Multiplication of the impact factor by W yields an equivalent static or dynamic load:
Pyn = KW
(4.29)

To compute the maximum stress and deflection resulting from impact loading, the preceding load may
be used in the relationships derived for static loading.

the work term, Wo

Two extreme cases are clearly of particular interest. When 4 2> 6 maxe 111 EQ.

max>

(a) may be neglected, reducing the expression to Fmax = V26,h On the other hand, when / = 0, the
load 1s suddenly applied, and Eq. (a) becomes 0,,,, = 20;.

The expressions derived may readily be applied to analyze the dynamic effects produced by a falling
weight causing axial, flexural, or torsional loading. Where bending is concerned, the results obtained
are acceptable for the deflections but poor in accuracy for predictions of maximum stress, with the
error increasing as /h/dy becomes larger or & 2> J . This departure is attributable to the variation in

the shape of the actual static deflection curve. Thus, the curvature of the beam axis and, in turn, the
maximum stress at the location of the impact may differ considerably from that obtained through



application of the strength of materials approach.

An analysis similar to the preceding may be employed to derive expressions for the case of a weight
W in horizontal motion with a velocity v, arrested by an elastic body. In this instance, the kinetic

energy Wv?/2g replaces W(h + J,....), the work done by W, in Eq. (a). Here g is the gravitational
acceleration. By so doing, the maximum dynamic load and deflection are found to be, respectively,

3 R
| © [ @

P gyn = W"\’u'l E= Oy = By 1,1|.||' E

(4.30)

where J; 1s the static deflection caused by a horizontal force W.

Example 4.10. Dynamic Stress and Deflection of a Metal Beam

A weight W= 180 N is dropped a height # = 0.1 m, striking at midspan a simply supported beam
of length L = 1.16 m. The beam is of rectangular cross section: a = 25 mm width and b =75 mm
depth. For a material with modulus of elasticity £ = 200 GPa, determine the instantaneous
maximum deflection and maximum stress for the following cases: (a) the beam is rigidly
supported (Fig. 4.17); (b) the beam is supported at each end by springs of stiftness &£ = 180 kN/m.

Figure 4.17. Example 4.10. A simple beam under center impact due to a falling weight W.

i
¥

L L/2 — L/2
Solution
The deflection of a point at midspan, owing to a statically applied load, is
—_ wi? _ 180(1.16)%(12)
O 48EI  48(200 x 10%)(0.025)(0.075)°

The maximum static stress, also occurring at midspan, is calculated from
_ Mc _ 180(1.16)(0.0375)(12)
Wi ! 4(0.025)(0.075)°

a. The impact factor is, from Eq. (4.28),

= 0.033 X 10 m

= 2.23 MPa

I
K=1+.,/1 +Lj_.a=?8.86
Y 0.033 x 10~

We thus have



8. = 0.033 X 78.86 = 2.602 mm
Omax = 2.23 X 78.86 = 175.86 MPa
b. The static deflection of the beam due to its own bending and the deformation of the spring is

. 90
8 = 0.033 x 107 + = .53 e
8y = 0.033 x I 130,000 0533 x 107 m
The impact factor is thus
f
K=1+,.{1+ _Z(G” - = 20.40
Vo 0533 -
Hence,
O = 0.533 % 20,40 = 10.87 mm
Oy = 2.23 X 2040 = 45.49 MPa
Comments

It is observed from a comparison of the results that dynamic loading increases the value of
deflection and stress considerably. Also noted is a reduction in stress with increased flexibility
attributable to the springs added to the supports. The values calculated for the dynamic stress are
probably somewhat high, because 4 2> J in both cases.

4.17 Dynamic and Thermal Effects

We now explore the conditions under which metals may manifest a change from ductile to brittle
behavior, and vice versa. The matter of ductile-brittle transition has important application where the
operating environment includes a wide variation in temperature or when the rate of loading changes.

Let us, to begin with, identify two tensile stresses. The first, o, leads to brittle fracture, that is, failure
by cleavage or separation. The second, g, corresponds to failure by yielding or permanent

deformation. These stresses are shown in Fig. 4.18a as functions of material temperature. Referring to
the figure, the point of intersection of the two stress curves defines the critical temperature, 7,. If, at

a given temperature above T, the stress 1s progressively increased, failure will occur by yielding,
and the fracture curve will never be encountered. Similarly, for a test conducted at 7 < T, the yield
curve 1s not intercepted, inasmuch as failure occurs by fracture. The principal factors governing
whether failure will occur by fracture or yielding are summarized as follows:

Figure 4.18. Typical transition curves for metals.
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Temperature

If the temperature of the specimen exceeds 7., resistance to yielding is less than resistance to fracture

I

(0, < 0y), and the specimen yields. If the temperature is less than 7, then o, < g, and the specimen

I

fractures without yielding. Note that o, exhibits only a small decrease with increasing temperature.

Loading Rate

Increasing the rate at which the load is applied increases a material’s ability to resist yielding, while
leaving comparatively unaffected its resistance to fracture. The increased loading rate thus results in a
shift to the position occupied by the dashed curve. Point C moves to (', meaning that accompanying
the increasing loading rate an increase occurs in the critical temperature. In impact tests, brittle
fractures are thus observed to occur at higher temperatures than in static tests.

Triaxiality

The effect on the transition of a three-dimensional stress condition, or ¢riaxiality, is similar to that of
loading rate. This phenomenon may be illustrated by comparing the tendency to yield in a uniform
cylindrical tensile specimen with that of a specimen containing a circumferential groove. The
unstressed region above and below the groove tends to resist the deformation associated with the
tensile loading of the central region, therefore contributing to a radial stress field in addition to the
longitudinal stress. This state of triaxial stress is thus indicative of a tendency to resist yielding
(become less ductile), the material behaving in a more brittle fashion.

Referring once more to Fig. 4.18b, in the region to the right of 7, the material behaves in a ductile
manner, while to the left of 7, it is brittle. At temperatures close to 7., the material generally
exhibits some yielding prior to a partially brittle fracture. The width of the temperature range over
which the transition from brittle to ductile failure occurs is material dependent.

Transition phenomena may also be examined from the viewpoint of the energy required to fracture the
material, the foughness rather than the stress (Fig. 4.18b). Notches and grooves serve to reduce the
energy required to cause fracture and to shift the transition temperature, normally very low, to the
range of normal temperatures. This is one reason that experiments are normally performed on notched
specimens.
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Problems
Sections 4.1 through 4.9

4.1. A steel circular bar (o, =250 MPa) of d = 60-mm diameter is acted upon by combined
moments M and axial compressive loads P at its ends. Taking M = 1.5 kN - m, determine,
based on the maximum energy of distortion theory of failure, the largest allowable value of P.

4.2. A 5-m-long steel shaft of allowable strength (o,; = 100 MPa) supports a torque of 7=325 N
- mand its own weight. Find the required shaft diameter d applying the von Mises theory of

failure. Assumptions: Use p = 7.86 Mg/m® as the mass per unit volume for steel (see Table
D.1). The shaft is supported by frictionless bearings that act as simple supports at its ends.

4.3. At a critical point in a loaded ASTM-A36 structural steel bracket, the plane stresses have the
magnitudes and directions depicted on element A in Fig. P4.3. Calculate whether the loadings
will cause the shaft to fail, based on a safety factor of n = 1.5, applying (a) the maximum shear
stress theory; (b) the maximum energy of distortion theory.

Figure P4.3.
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4.4. A steel circular cylindrical bar of 0.1-m diameter is subject to compound bending and tension




at its ends. The material yield strength 1s 221 MPa. Assume failure to occur by yielding and
take the value of the applied moment to be M = 17 kN - m. Using the octahedral shear stress
theory, determine the limiting value of P that can be applied to the bar without causing
permanent deformation.

4.5. The state of stress at a critical point in a ASTM-A36 steel member is shown in Fig. P4.5.
Determine the factor of safety using (a) the maximum shearing stress criterion; (b) the
maximum energy of distortion criterion.

Figure P4.5.
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4.6. At a point in a structural member, yielding occurred under a state of stress given by

{ 4() 0
40 50 —60 | MPa
0  —60 0

Determine the uniaxial tensile yield strength of the material according to (a) maximum
shearing stress theory, and (b) octahedral shear stress theory.

4.7. A circular shaft of 120-mm diameter is subjected to end loads P =45 kN, M =4 kN - m, and
I'=11.2kN - m. Let oy, = 280 MPa. What is the factor of safety, assuming failure to occur in
accordance with the octahedral shear stress theory?

4.8. Determine the width ¢ of the cantilever of height 2¢ and length 0.25 m subjected to a 450-N

concentrated force at its free end. Apply the maximum energy of distortion theory. The tensile
and compressive strengths of the material are both 280 MPa.

4.9. Determine the required diameter of a steel transmission shaft 10 m in length and of yield
strength 350 MPa in order to resist a torque of up to 500 N - m. The shaft is supported by
frictionless bearings at its ends. Design the shaft according to the maximum shear stress
theory, selecting a factor of safety of 1.5, (a) neglecting the shaft weight, and (b) including the

effect of shaft weight. Use y = 77 kN/m’ as the weight per unit volume of steel.
4.10. The state of stress at a point is described by

634 0 (
0 0.53 0 MPa
0 0 s 7

Using Oyp = 90 MPa, v =0.3, and a factor of safety of 1.2, determine whether failure occurs at

the point for (a) the maximum shearing stress theory, and (b) the maximum distortion energy
theory.

4.11. A solid cylinder of radius 50 mm is subjected to a twisting moment 7 and an axial load P.
Assume that the energy of distortion theory governs and that the yield strength of the material



is oy, = 280 MPa. Determine the maximum twisting moment consistent with elastic behavior
of the bar for (a) P =0 and (b) P =400z kN.

4.12. A simply supported nonmetallic beam of 0.25-m height, 0.1-m width, and 1.5-m span is
subjected to a uniform loading of 6 kN/m. Determine the factor of safety for this loading

according to (a) the maximum distortion energy theory, and (b) the maximum shearing stress
theory. Use o, = 28 MPa.

4.13. The state of stress at a point in a machine element of irregular shape, subjected to combined
loading, is given by

6
5 | MPa
1

A torsion test performed on a specimen made of the same material shows that yielding occurs
at a shearing stress of 9 MPa. Assuming the same ratios are maintained between the stress
components, predict the values of the normal stresses o, and o, at which yielding occurs at the
point. Use maximum distortion energy theory.

4.14. A steel rod of diameter d = 50 mm (o, = 260 MPa) supports an axial load P = 50R and

vertical load R acting at the end of an 0.8-m-long arm (Fig. P4.14). Given a factor of safety n
= 2, compute the largest permissible value of R using the following criteria: (a) maximum
shearing stress and (b) maximum energy of distortion.

o S
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Figure P4.14.

4.15. Redo Prob. 4.13 for the case in which the stresses at a point in the member are described by

50 60 100
60 40 80 | MPa
100 80 20

and yielding occurs at a shearing stress of 140 MPa.

4.16. A thin-walled cylindrical pressure vessel of diameter d = 0.5 m and wall thickness # = 5 mm
is fabricated of a material with 280-MPa tensile yield strength. Determine the internal

pressure p required according to the following theories of failure: (a) maximum distortion
energy and (b) maximum shear stress.



4.17. The state of stress at a point is given by

28 7 14
7 21 35| MPa
14 35 28

Taking oy, = 82 MPa and a factor of safety of 1.2, determine whether failure takes place at the
point, using (a) the maximum shearing stress theory and (b) the maximum distortion energy
theory.

4.18. A structural member is subjected to combined loading so that the following stress occur at a
critical point:

120 50 30
50 80 20 |MPa
30 20 10

The tensile yield strength of the material is 300 MPa. Determine the factor of safety n
according to (a) maximum shearing stress theory and (b) maximum energy of distortion theory.

4.19. Solve Prob. 4.18 assuming that the state of stress at a critical point in the member 1s given by

100 50 40
50 80 20| MPa
40 20 30

The yield strength is o,, = 220 MPa.

Sections 4.10 through 4.12

4.20. A thin-walled, closed-ended metal tube with ultimate strengths in tension ¢, and compression

., outer and inner diameters D and d, respectively, is under an internal pressure of p and a
torque of 7. Calculate the factor of safety n according to the maximum principal stress theory.
Given: o, =250 MPa, 7, = 520 MPa, D =210 mm, d =200 mm, p =5 MPa, and 7= 50 kN -
m.

4.21. Design the cross section of a rectangular beam b meters wide by 25 meter deep, supported
and uniformly loaded as illustrated in Fig. P4.21. Assumptions: o,;= 120 MPa and w =150

kN/m. Apply the maximum principal stress theory of failure.
Figure P4.21.
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4.22. Simple tension and compression tests on a brittle material reveal that failure occurs by
fracture at g, = 260 MPa and o, = 420 MPa_respectively. In an actual application, the material

1s subjected to perpendicular tensile and compressive stresses, o; and o,, respectively, such

that 91/7> = = 3. Determine the limiting values of o; and o, according to (a) the Mohr theory



for an ultimate stress in torsion of 7, = 175 MPa and (b) the Coulomb—Mohr theory. [Hint: For
case (a), the circle representing the given loading is drawn by a trial-and-error procedure. ]

4.23. The state of stress at a point in a cast-iron structure (o, = 290 MPa, @ = 650 MPa) jg
described by o, = 0, 0, = —180 MPa, and 7,;, = 200 MPa. Determine whether failure occurs at
the point according to (a) the maximum principal stress criterion and (b) the Coulomb—Mohr
criterion.

4.24. A thin-walled cylindrical pressure vessel of 250-mm diameter and 5-mm thickness 1s
subjected to an internal pressure p; = 2.8 MPa, a twisting moment of 31.36 kN - m, and an
axial end thrust (tension) P =45 kN. The ultimate strengths in tension and compression are
210 and 500 MPa, respectively. Apply the following theories to evaluate the ability of the
tube to resist failure by fracture: (a) Coulomb—Mohr and (b) maximum principal stress.

4.25. A piece of chalk of ultimate strength o, 1s subjected to an axial force producing a tensile
stress of 30,/4. Applying the principal stress theory of failure, determine the shear stress
produced by a torque that acts simultaneously on the chalk and the orientation of the fracture
surface.

4.26. The ultimate strengths in tension and compression of a material are 420 and 900 MPa,
respectively. If the stress at a point within a member made of this material is

200 1507,
[ 150 EﬁJ Wt
determine the factor of safety according to the following theories of failure: (a) maximum
principal stress and (b) Coulomb—Mohr.

4.27. A plate, ¢t meters thick, is fabricated of a material having ultimate strengths in tension and

compression of o, and . Pa, respectively. Calculate the force P required to punch a hole of d

meters in diameter through the plate (Fig. P4.27). Employ (a) the maximum principal stress
theory and (b) the Mohr—Coulomb theory. Assume that the shear force is uniformly distributed
through the thickness of the plate.

Figure P4.27.
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Sections 4.13 through 4.17

4.28. A 2024-T851 aluminum alloy panel, 125-mm wide and 20-mm thick, is loaded in tension in
longitudinal direction. Approximate the maximum axial load P that can be applied without
causing sudden fracture when an edge crack grows to a 25-mm length (Case B, Table 4.2).

4.29. An AISI 4340 steel ship deck, 10-mm wide and 5-mm thick, is subjected to longitudinal
tensile stress of 100 MPa. If a 60-mm-long central transverse crack is present (Case A, Table
4.2), estimate (a) the factor of safety against crack; (b) tensile stress at fracture.



4.30. A long Ti-6Al-6V alloy plate of 130-mm width is loaded by a 200-kN tensile force in
longitudinal direction with a safety factor of 2.2. Determine the thickness ¢ required to prevent
a central crack to grow to a length of 200 mm (Case A, Table 4.2).

4.31. Resolve Example 4.5 if the frame 1s made of AISI 4340 steel. Use a = 8 mm, d = 170 mm, w
=40 mm, =10 mm, and n = 1.8.

4.32. A 2024-T851 aluminum-alloy plate, w = 150 mm wide and ¢ = 30 mm thick, 1s under a
tensile loading. It has a 24-mm-long transverse crack on one edge (Case B, Table 4.2).
Determine the maximum allowable axial load P when the plate will undergo sudden fracture.
Also find the nominal stress at fracture.

4.33. An AISI-4340 steel pressure vessel of 60-mm diameter and 5-mm wall thickness contains a
12-mm-long crack (Fig. P4.33). Calculate the pressure that will cause fracture when (a) the
crack is longitudinal; (b) the crack is circumferential. Assumption: A factor of safety n =2
and geometry factor A = 1.01 are used (Table 4.2).

Figure P4.33.

4.34. A7075-T7351 aluminum alloy beam with @ = 48-mm-long edge crack is in pure bending
(see Case D, Table 4.2). Using w = 120 mm and ¢ = 30 mm, find the maximum moment A/ that
can be applied without causing sudden fracture.

4.35. Redo Example 4.7 using the SAE criterion. Take ,=700 MPa, o . =240 MPa, and F,, =
120 kN.

4.36. Redo Example 4.8 employing the maximum shear stress theory together with the Soderberg

criterion.

4.37. A bolt 1s subjected to an alternating axial load of maximum and minimum values F,, and

ax
F i, The static tensile ultimate and fatigue strength for completely reversed stress of the
material are o, and o,. Verify that, according to the modified Goodman relation, the
expression

l 1 T

7 T _E(Fmem £ Fmin](l s )]

UL'I {TII

(P4.37)

represents the required cross-sectional area of the bolt.

4.38. An electrical contact contains a flat spring in the form of a cantilever beam, » = 5 mm wide
by L = 50 mm long by # mm thick, is subjected at its free end to a load P that varies
continuously from 0 to 10 N (Fig. P4.38). Employ the Soderberg criterion to calculate the
value of # based on yield strength o, = 1050 MPa, fatigue strength o, = 510 MPa, and a



factor of safety n = 1.5.
Figure P4.38.
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4.39. A small leaf spring » = 10 mm wide by L = 125 mm long by # mm thick is simply supported
at its ends and subjected to a center load P that varies continuously from 0 to 20 N (Fig.

P4.39). Using the modified Goodman criterion, determine the value of ¢, given a fatigue
strength o, = 740 MPa, ultimate tensile strength o, = 1500 MPa, and safety factor of n =2.5.

Figure P4.39.
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4.40. A circular rotating shaft is subjected to a static bending moment M and a torque that varies
from a value of zero to 7. Apply the energy of distortion theory together with Soderberg’s
relation to obtain the following expression for the required shaft radius:
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(P4.40)

4.41. Compute the fatigue life of the rotating hub and shaft assembly described in Example 4.9 if at
a critical point in the shaft the state of stress is described by o, 1, = 1000 MPa, o, i, =—
800 MPa, 7,), 1.y =300 MPa, 7., 1, =—100 MPa, and 0, = 0, = 7,, = 7,,, = 0. Employ the
maximum shear stress theory of failure together with the four criteria given in Table 4.4. Take

oy, = 1600 MPa, g, = 2400 MPa, and K = 1.

4.42. Determine the fatigue life of a machine element subjected to the following respective
maximum and minimum stresses (in megapascals):

[Rﬂ{] Eﬂﬂ l—t’u{]ﬂ —Iﬁﬂ]

200 500 [ =150 =300
Use the maximum energy of distortion theory of failure together with the (a) modified
Goodman criterion and (b) Soderberg criterion. Let g, = 1600 MPa, o,,, = 1000 MPa, and K =
1.

4.43. A steel cantilever of width # = 0.05 m, height 2¢ = 0.1 m, and length L = 1.2 m s subjected to
a downward-acting alternating end load of maximum and minimum values P, ,, and P, = 10

kN. The static tensile yield and fatigue strengths for the completely reversed stress of the
material are oy, =300 MPa and o, = 200 MPa. Use the Soderberg criterion to determine the

value of P, that will result in failure.

max



4.44. A sliding collar of m = 80 kg falls onto a flange at the bottom of a vertical rod (Fig. P4.44).
Calculate the height / through which the mass m should drop to produce a maximum stress in

the rod of 350 MPa. The rod has length L = 2m, cross-sectional area 4 = 250 mm?, and
modulus of elasticity £ = 105 GPa.

Figure P4.44.
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4.45. A sliding collar Wis dropped from a distance /4 onto a flange at the bottom of the rod of
length L, cross-sectional area 4, and modulus of elasticity £ (Fig. 4.44). Verify that the weight
may be expressed in the form

Collar
"‘-\,\.‘l

Rod H-.._H

lange

W = "'-:'.Ejl:::ac"'qI
a E

/
E(IT + ﬂ'ﬂlilx)

in which o, represents the maximum stress in the rod.

(P4.45)

4.46. A 0.125-m-diameter and 1.5-m-long circular shaft has a flywheel at one end and rotates at
240 rpm. The shaft is suddenly stopped at the free end. Determine the maximum shear stress
and the maximum angle of twist produced by the impact. It is given that the shaft is made of
steel with G = 80.5 GPa, v = 0.3, the weight of the flywheel is W =1.09 kN, and the
flywheel’s radius of gyration is 7 = 0.35 m. [Note that kinetic energy E, = Wew?r?/2g = Tp/2.
Here w, g, T, ¢ represent the angular velocity, acceleration of gravity, torque, and angle of
twist, respectively.]

4.47. A weight W is dropped from a height # = 0.75 m onto the free end of a cantilever beam of
length L = 1.2 m. The beam is of 50-mm by 50-mm square cross section. Determine the value
of W required to result in yielding. Omit the weight of the beam. Let o, = 280 MPa and E' =
200 GPa.



Chapter 5. Bending of Beams

5.1 Introduction

In this chapter we are concerned with the bending of straight as well as curved beams—that is,
structural elements possessing one dimension significantly greater than the other two, usually loaded
in a direction normal to the longitudinal axis. The elasticity or “exact” solutions of beams that are
straight and made of homogeneous, linearly elastic materials are taken up first. Then, solutions for
straight beams using mechanics of materials or elementary theory, special cases involving members
made of composite materials, and the shear center are considered. The deflections and stresses in
beams caused by pure bending as well as those due to lateral loading are discussed. We analyze
stresses in curved beams using both exact and elementary methods, and compare the results of the
various theories.

Except in the case of very simple shapes and loading systems, the theory of elasticity yields beam
solutions only with considerable difficulty. Practical considerations often lead to assumptions with
regard to stress and deformation that result in mechanics of materials or elementary theory solutions.
The theory of elasticit