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Preface

Introduction
This text is a development of classroom notes prepared in connection with advanced undergraduate
and first-year graduate courses in elasticity and the mechanics of solids. It is designed to satisfy the
requirements of courses subsequent to an elementary treatment of the strength of materials. In addition
to its applicability to aeronautical, civil, and mechanical engineering and to engineering mechanics
curricula, the text is useful to practicing engineers. Emphasis is given to numerical techniques
(which lend themselves to computerization) in the solution of problems resisting analytical
treatment. The stress placed on numerical solutions is not intended to deny the value of classical
analysis, which is given a rather full treatment. It instead attempts to fill what the authors believe to
be a void in the world of textbooks.
An effort has been made to present a balance between the theory necessary to gain insight into the
mechanics, but which can often offer no more than crude approximations to real problems because of
simplifications related to geometry and conditions of loading, and numerical solutions, which are so
useful in presenting stress analysis in a more realistic setting. This text emphasizes those aspects of
theory and application that prepare a student for more advanced study or for professional practice in
design and analysis.
The theory of elasticity plays three important roles in the text: it provides exact solutions where the
configurations of loading and boundary are relatively simple; it provides a check on the limitations of
the mechanics of materials approach; and it serves as the basis of approximate solutions employing
numerical analysis.
To make the text as clear as possible, attention is given to the presentation of the fundamentals of the
mechanics of materials. The physical significance of the solutions and practical applications are
given emphasis. A special effort was made to illustrate important principles and applications with
numerical examples. Consistent with announced national policy, problems are included in the text in
which the physical quantities are expressed in the International System of Units (SI). All important
quantities are defined in both SI and U.S. Customary System of units. A sign convention, consistent
with vector mechanics, is employed throughout for loads, internal forces, and stresses. This
convention conforms to that used in most classical strength of materials and elasticity texts, as well as
to that most often employed in the numerical analysis of complex structures.

Text Arrangement
Because of the extensive subdivision into a variety of topics and the employment of alternative
methods of analysis, the text should provide flexibility in the choice of assignments to cover courses
of varying length and content. Most chapters are substantially self-contained. Hence, the order of
presentation can be smoothly altered to meet an instructor’s preference. It is suggested, however, that
Chapters 1 and 2, which address the analysis of basic concepts, should be studied first. The emphasis
placed on the treatment of two-dimensional problems in elasticity (Chapter 3) may differ according to
the scope of the course.
This fifth edition of Advanced Mechanics of Materials and Applied Elasticity seeks to preserve the
objectives and emphases of the previous editions. Every effort has been made to provide a more



complete and current text through the inclusion of new material dealing with the fundamental
principles of stress analysis and design: stress concentrations, contact stresses, failure criteria,
fracture mechanics, compound cylinders, finite element analysis (FEA), energy and variational
methods, buckling of stepped columns, and common shell types. The entire text has been reexamined
and many improvements have been made throughout by a process of elimination and rearrangement.
Some sections have been expanded to improve on previous expositions.
The references, provided as an aid to the student who wishes to further pursue certain aspects of a
subject, have been updated and identified at the end of each chapter. We have resisted the temptation
to increase the material covered except where absolutely necessary. However, it was considered
desirable to add a number of illustrative examples and a large number of problems important in
engineering practice and design. Extra care has been taken in the presentation and solution of the
sample problems. All the problem sets have been reviewed and checked to ensure both their clarity
and numerical accuracy. Most changes in subject-matter coverage were prompted by the suggestions
of faculty familiar with earlier editions.
It is hoped that we have maintained clarity of presentation, simplicity as the subject permits,
unpretentious depth, an effort to encourage intuitive understanding, and a shunning of the irrelevant. In
this context, as throughout, emphasis is placed on the use of fundamentals in order to build student
understanding and an ability to solve the more complex problems.

Supplements
The book is accompanied by a comprehensive Solutions Manual available to instructors. It features
complete solutions to all problems in the text. Answers to selected problems are given at the end of
the book. PowerPoint slides of figures and tables and a password-protected Solutions Manual are
available for instructors at the Pearson Instructor Resource Center, pearsonhighered.com/irc.

http://pearsonhighered.com/irc
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Chapter 1. Analysis of Stress

1.1 Introduction
There are two major parts to this chapter. Review of some important fundamentals of statics and
mechanics of solids, the concept of stress, modes of load transmission, general sign convention for
stress and force resultants that will be used throughout the book, and analysis and design principles
are provided first. This is followed with treatment for changing the components of the state of stress
given in one set of coordinate axes to any other set of rotated axes, as well as variation of stress
within and on the boundaries of a load-carrying member. Plane stress and its transformation are of
basic importance, since these conditions are most common in engineering practice. The chapter is
thus also a brief guide and introduction to the remainder of the text.

Mechanics of Materials and Theory of Elasticity
The basic structure of matter is characterized by nonuniformity and discontinuity attributable to its
various subdivisions: molecules, atoms, and subatomic particles. Our concern in this text is not with
the particulate structure, however, and it will be assumed that the matter with which we are
concerned is homogeneous and continuously distributed over its volume. There is the clear
implication in such an approach that the smallest element cut from the body possesses the same
properties as the body. Random fluctuations in the properties of the material are thus of no
consequence. This approach is that of continuum mechanics, in which solid elastic materials are
treated as though they are continuous media rather than composed of discrete molecules. Of the states
of matter, we are here concerned only with the solid, with its ability to maintain its shape without the
need of a container and to resist continuous shear, tension, and compression.
In contrast with rigid-body statics and dynamics, which treat the external behavior of bodies (that is,
the equilibrium and motion of bodies without regard to small deformations associated with the
application of load), the mechanics of solids is concerned with the relationships of external effect
(forces and moments) to internal stresses and strains. Two different approaches used in solid
mechanics are the mechanics of materials or elementary theory (also called the technical theory)
and the theory of elasticity. The mechanics of materials focuses mainly on the more or less
approximate solutions of practical problems. The theory of elasticity concerns itself largely with
more mathematical analysis to determine the “exact” stress and strain distributions in a loaded body.
The difference between these approaches is primarily in the nature of the simplifying assumptions
used, described in Section 3.1.
External forces acting on a body may be classified as surface forces and body forces. A surface force
is of the concentrated type when it acts at a point; a surface force may also be distributed uniformly
or nonuniformly over a finite area. Body forces are associated with the mass rather than the surfaces
of a body, and are distributed throughout the volume of a body. Gravitational, magnetic, and inertia
forces are all body forces. They are specified in terms of force per unit volume. All forces acting on a
body, including the reactive forces caused by supports and body forces, are considered to be external
forces. Internal forces are the forces that hold together the particles forming the body. Unless
otherwise stated, we assume in this text that body forces can be neglected and that forces are applied
steadily and slowly. The latter is referred to as static loading.
In the International System of Units (SI), force is measured in newtons (N). Because the newton is a



small quantity, the kilonewton (kN) is often used in practice. In the U.S. Customary System, force is
expressed in pounds (lb) or kilopounds (kips). We define all important quantities in both systems of
units. However, in numerical examples and problems, SI units are used throughout the text consistent
with international convention. (Table D.2 compares the two systems.)

Historical Development
The study of the behavior of members in tension, compression, and bending began with Leonardo da
Vinci (1452–1519) and Galileo Galilei (1564–1642). For a proper understanding, however, it was
necessary to establish accurate experimental description of a material’s properties. Robert Hooke
(1615–1703) was the first to point out that a body is deformed subject to the action of a force. Sir
Isaac Newton (1642–1727) developed the concepts of Newtonian mechanics that became key
elements of the strength of materials.
Leonard Euler (1707–1783) presented the mathematical theory of columns in 1744. The renowned
mathematician Joseph-Louis Lagrange (1736–1813) received credit in developing a partial
differential equation to describe plate vibrations. Thomas Young (1773–1829) established a
coefficient of elasticity, Young’s modulus. The advent of railroads in the late 1800s provided the
impetus for much of the basic work in this area. Many famous scientists and engineers, including
Coulomb, Poisson, Navier, St. Venant, Kirchhoff, and Cauchy, were responsible for advances in
mechanics of materials during the eighteenth and nineteenth centuries. The British physicist William
Thomas Kelvin (1824–1907), better known by his knighted name, Sir Lord Kelvin, first demonstrated
that torsional moments acting at the edges of plates could be decomposed into shearing forces. The
prominent English mathematician Augustus Edward Hough Love (1863–1940) introduced simple
analysis of shells, known as Love’s approximate theory.
Over the years, most basic problems of solid mechanics had been solved. Stephan P. Timoshenko
(1878–1972) made numerous original contributions to the field of applied mechanics and wrote
pioneering textbooks on the mechanics of materials, theory of elasticity, and theory of elastic stability.
The theoretical base for modern strength of materials had been developed by the end of the nineteenth
century. Following this, problems associated with the design of aircraft, space vehicles, and nuclear
reactors have led to many studies of the more advanced phases of the subject. Consequently, the
mechanics of materials is being expanded into the theories of elasticity and plasticity.
In 1956, Turner, Clough, Martin, and Topp introduced the finite element method, which permits the
numerical solution of complex problems in solid mechanics in an economical way. Many
contributions in this area are owing to Argyris and Zienkiewicz. The recent trend in the development
is characterized by heavy reliance on high-speed computers and by the introduction of more rigorous
theories. Numerical methods presented in Chapter 7 and applied in the chapters following have clear
application to computation by means of electronic digital computers. Research in the foregoing areas
is ongoing, not only to meet demands for treating complex problems but to justify further use and
limitations on which the theory of solid mechanics is based. Although a widespread body of
knowledge exists at present, mechanics of materials and elasticity remain fascinating subjects as their
areas of application are continuously expanded.* The literature dealing with various aspects of solid
mechanics is voluminous. For those seeking more thorough treatment, selected references are
identified in brackets and compiled at the end of each chapter.

1.2 Scope of Treatment



As stated in the preface, this book is intended for advanced undergraduate and graduate engineering
students as well as engineering professionals. To make the text as clear as possible, attention is given
to the fundamentals of solid mechanics and chapter objectives. A special effort has been made to
illustrate important principles and applications with numerical examples. Emphasis is placed on a
thorough presentation of several classical topics in advanced mechanics of materials and applied
elasticity and of selected advanced topics. Understanding is based on the explanation of the physical
behavior of members and then modeling this behavior to develop the theory.
The usual objective of mechanics of material and theory of elasticity is the examination of the load-
carrying capacity of a body from three standpoints: strength, stiffness, and stability. Recall that these
quantities relate, respectively, to the ability of a member to resist permanent deformation or fracture,
to resist deflection, and to retain its equilibrium configuration. For instance, when loading produces
an abrupt shape change of a member, instability occurs; similarly, an inelastic deformation or an
excessive magnitude of deflection in a member will cause malfunction in normal service. The
foregoing matters, by using the fundamental principles (Sec. 1.3), are discussed in later chapters for
various types of structural members. Failure by yielding and fracture of the materials under combined
loading is taken up in detail in Chapter 4.
Our main concern is the analysis of stress and deformation within a loaded body, which is
accomplished by application of one of the methods described in the next section. For this purpose, the
analysis of loads is essential. A structure or machine cannot be satisfactory unless its design is based
on realistic operating loads. The principal topics under the heading of mechanics of solids may be
summarized as follows:
1. Analysis of the stresses and deformations within a body subject to a prescribed system of forces.

This is accomplished by solving the governing equations that describe the stress and strain fields
(theoretical stress analysis). It is often advantageous, where the shape of the structure or conditions
of loading preclude a theoretical solution or where verification is required, to apply the laboratory
techniques of experimental stress analysis.

2. Determination by theoretical analysis or by experiment of the limiting values of load that a
structural element can sustain without suffering damage, failure, or compromise of function.

3. Determination of the body shape and selection of the materials that are most efficient for resisting a
prescribed system of forces under specified conditions of operation such as temperature, humidity,
vibration, and ambient pressure. This is the design function.

The design function, item 3, clearly relies on the performance of the theoretical analyses under items
1 and 2, and it is to these that this text is directed. Particularly, emphasis is placed on the
development of the equations and methods by which detailed analysis can be accomplished.
The ever-increasing industrial demand for more sophisticated structures and machines calls for a
good grasp of the concepts of stress and strain and the behavior of materials—and a considerable
degree of ingenuity. This text, at the very least, provides the student with the ideas and information
necessary for an understanding of the advanced mechanics of solids and encourages the creative
process on the basis of that understanding. Complete, carefully drawn free-body diagrams facilitate
visualization, and these we have provided, all the while knowing that the subject matter can be
learned best only by solving problems of practical importance. A thorough grasp of fundamentals will
prove of great value in attacking new and unfamiliar problems.



1.3 Analysis and Design
Throughout this text, a fundamental procedure for analysis in solving mechanics of solids problems is
used repeatedly. The complete analysis of load-carrying structural members by the method of
equilibrium requires consideration of three conditions relating to certain laws of forces, laws of
material deformation, and geometric compatibility. These essential relationships, called the basic
principles of analysis, are:
1. Equilibrium Conditions. The equations of equilibrium of forces must be satisfied throughout the

member.
2. Material Behavior. The stress–strain or force-deformation relations (for example, Hooke’s law)

must apply to the material behavior of which the member is constructed.
3. Geometry of Deformation. The compatibility conditions of deformations must be satisfied: that

is, each deformed portion of the member must fit together with adjacent portions. (Matter of
compatibility is not always broached in mechanics of materials analysis.)

The stress and deformation obtained through the use of the three principles must conform to the
conditions of loading imposed at the boundaries of a member. This is known as satisfying the
boundary conditions. Applications of the preceding procedure are illustrated in the problems
presented as the subject unfolds. Note, however, that it is not always necessary to execute an analysis
in the exact order of steps listed previously.
As an alternative to the equilibrium methods, the analysis of stress and deformation can be
accomplished by employing energy methods (Chap. 10), which are based on the concept of strain
energy. The aspect of both the equilibrium and the energy approaches is twofold. These methods can
provide solutions of acceptable accuracy where configurations of loading and member shape are
regular, and they can be used as the basis of numerical methods (Chap. 7) in the solution of more
realistic problems.
Engineering design is the process of applying science and engineering techniques to define a
structure or system in detail to allow its realization. The objective of a mechanical design procedure
includes finding of proper materials, dimensions, and shapes of the members of a structure or machine
so that they will support prescribed loads and perform without failure. Machine design is creating
new or improved machines to accomplish specific purposes. Usually, structural design deals with
any engineering discipline that requires a structural member or system.
Design is the essence, art, and intent of engineering. A good design satisfies performance, cost, and
safety requirements. An optimum design is the best solution to a design problem within given
restrictions. Efficiency of the optimization may be gaged by such criteria as minimum weight or
volume, optimum cost, and/or any other standard deemed appropriate. For a design problem with
many choices, a designer may often make decisions on the basis of experience, to reduce the problem
to a single variable. A solution to determine the optimum result becomes straightforward in such a
situation.
A plan for satisfying a need usually includes preparation of individual preliminary design. Each
preliminary design involves a thorough consideration of the loads and actions that the structure or
machine has to support. For each situation, an analysis is necessary. Design decisions, or choosing
reasonable values of the safety factors and material properties, are significant in the preliminary
design process.



The role of analysis in design may be observed best in examining the phases of a design process.
This text provides an elementary treatment of the concept of “design to meet strength requirements” as
those requirements relate to individual machine or structural components. That is, the geometrical
configuration and material of a component are preselected and the applied loads are specified. Then,
the basic formulas for stress are employed to select members of adequate size in each case. The
following is rational procedure in the design of a load-carrying member:
1. Evaluate the most likely modes of failure of the member. Failure criteria that predict the various

modes of failure under anticipated conditions of service are discussed in Chapter 4.
2. Determine the expressions relating applied loading to such effects as stress, strain, and

deformation. Often, the member under consideration and conditions of loading are so significant or
so amenable to solution as to have been the subject of prior analysis. For these situations,
textbooks, handbooks, journal articles, and technical papers are good sources of information.
Where the situation is unique, a mathematical derivation specific to the case at hand is required.

3. Determine the maximum usable value of stress, strain, or energy. This value is obtained either by
reference to compilations of material properties or by experimental means such as simple tension
test and is used in connection with the relationship derived in step 2.

4. Select a design factor of safety. This is to account for uncertainties in a number of aspects of the
design, including those related to the actual service loads, material properties, or environmental
factors. An important area of uncertainty is connected with the assumptions made in the analysis of
stress and deformation. Also, we are not likely to have a secure knowledge of the stresses that may
be introduced during machining, assembly, and shipment of the element.
The design factor of safety also reflects the consequences of failure; for example, the possibility
that failure will result in loss of human life or injury or in costly repairs or danger to other
components of the overall system. For these reasons, the design factor of safety is also sometimes
called the factor of ignorance. The uncertainties encountered during the design phase may be of
such magnitude as to lead to a design carrying extreme weight, volume, or cost penalties. It may
then be advantageous to perform thorough tests or more exacting analysis rather to rely on overly
large design factors of safety.
The true factor of safety, usually referred to simply as the factor of safety, can be determined only
after the member is constructed and tested. This factor is the ratio of the maximum load the member
can sustain under severe testing without failure to the maximum load actually carried under normal
service conditions, the working load. When a linear relationship exists between the load and the
stress produced by the load, the factor of safety n may be expressed as

(1.1)
Maximum usable stress represents either the yield stress or the ultimate stress. The allowable
stress is the working stress. The factor of safety must be greater than 1.0 if failure is to be avoided.
Values for factor of safety, selected by the designer on the basis of experience and judgment, are
about 1.5 or greater. For most applications, appropriate factors of safety are found in various
construction and manufacturing codes.

The foregoing procedure is not always conducted in as formal a fashion as may be implied. In some



design procedures, one or more steps may be regarded as unnecessary or obvious on the basis of
previous experience. Suffice it to say that complete design solutions are not unique, involve a
consideration of many factors, and often require a trial-and-error process [Ref. 1.6]. Stress is only
one consideration in design. Other phases of the design of components are the prediction of the
deformation of a given component under given loading and the consideration of buckling (Chap. 11).
The methods of determining deformation are discussed in later chapters. Note that there is a very
close relationship between analysis and design, and the examples and problems that appear
throughout this book illustrate that connection.
We conclude this section with an appeal for the reader to exercise a degree of skepticism with regard
to the application of formulas for which there is uncertainty as to the limitations of use or the areas of
applicability. The relatively simple form of many formulas usually results from rather severe
restrictions in its derivation. These relate to simplified boundary conditions and shapes, limitations
on stress and strain, and the neglect of certain complicating factors. Designers and stress analysts
must be aware of such restrictions lest their work be of no value or, worse, lead to dangerous
inadequacies.
In this chapter, we are concerned with the state of stress at a point and the variation of stress
throughout an elastic body. The latter is dealt with in Sections 1.8 and 1.16 and the former in the
balance of the chapter.

1.4 Conditions of Equilibrium
A structure is a unit consisting of interconnected members supported in such a way that it is capable
of carrying loads in static equilibrium. Structures are of four general types: frames, trusses, machines,
and thin-walled (plate and shell) structures. Frames and machines are structures containing
multiforce members. The former support loads and are usually stationary, fully restrained structures.
The latter transmit and modify forces (or power) and always contain moving parts. The truss
provides both a practical and economical solution, particularly in the design of bridges and buildings.
When the truss is loaded at its joints, the only force in each member is an axial force, either tensile or
compressive.
The analysis and design of structural and machine components require a knowledge of the distribution
of forces within such members. Fundamental concepts and conditions of static equilibrium provide
the necessary background for the determination of internal as well as external forces. In Section 1.6,
we shall see that components of internal-forces resultants have special meaning in terms of the type of
deformations they cause, as applied, for example, to slender members. We note that surface forces
that develop at support points of a structure are called reactions. They equilibrate the effects of the
applied loads on the structures.
The equilibrium of forces is the state in which the forces applied on a body are in balance. Newton’s
first law states that if the resultant force acting on a particle (the simplest body) is zero, the particle
will remain at rest or will move with constant velocity. Statics is concerned essentially with the case
where the particle or body remains at rest. A complete free-body diagram is essential in the solution
of problems concerning the equilibrium.
Let us consider the equilibrium of a body in space. In this three-dimensional case, the conditions of
equilibrium require the satisfaction of the following equations of statics:



(1.2)

The foregoing state that the sum of all forces acting on a body in any direction must be zero; the sum
of all moments about any axis must be zero.
In a planar problem, where all forces act in a single (xy) plane, there are only three independent
equations of statics:

(1.3)

That is, the sum of all forces in any (x, y) directions must be zero, and the resultant moment about axis
z or any point A in the plane must be zero. By replacing a force summation with an equivalent moment
summation in Eqs. (1.3), the following alternative sets of conditions are obtained:

(1.4a)

provided that the line connecting the points A and B is not perpendicular to the x axis, or

(1.4b)
Here points A, B, and C are not collinear. Clearly, the judicious selection of points for taking
moments can often simplify the algebraic computations.
A structure is statically determinate when all forces on its members can be found by using only the
conditions of equilibrium. If there are more unknowns than available equations of statics, the problem
is called statically indeterminate. The degree of static indeterminacy is equal to the difference
between the number of unknown forces and the number of relevant equilibrium conditions. Any
reaction that is in excess of those that can be obtained by statics alone is termed redundant. The
number of redundants is therefore the same as the degree of indeterminacy.

1.5 Definition and Components of Stress
Stress and strain are most important concepts for a comprehension of the mechanics of solids. They
permit the mechanical behavior of load-carrying components to be described in terms fundamental to
the engineer. Both the analysis and design of a given machine or structural element involve the
determination of stress and material stress–strain relationships. The latter is taken up in Chapter 2.
Consider a body in equilibrium subject to a system of external forces, as shown in Fig. 1.1a. Under
the action of these forces, internal forces are developed within the body. To examine the latter at some
interior point Q, we use an imaginary plane to cut the body at a section a–a through Q, dividing the
body into two parts. As the forces acting on the entire body are in equilibrium, the forces acting on
one part alone must be in equilibrium: this requires the presence of forces on plane a–a. These
internal forces, applied to both parts, are distributed continuously over the cut surface. This process,
referred to as the method of sections (Fig. 1.1), is relied on as a first step in solving all problems
involving the investigation of internal forces.



Figure 1.1. Method of sections: (a) Sectioning of a loaded body; (b) free body with external and
internal forces; (c) enlarged area ΔA with components of the force ΔF.

A free-body diagram is simply a sketch of a body with all the appropriate forces, both known and
unknown, acting on it. Figure 1.1b shows such a plot of the isolated left part of the body. An element
of area ΔA, located at point Q on the cut surface, is acted on by force ΔF. Let the origin of
coordinates be placed at point Q, with x normal and y, z tangent to ΔA. In general, ΔF does not lie
along x, y, or z.
Decomposing ΔF into components parallel to x, y, and z (Fig. 1.1c), we define the normal stress σx
and the shearing stresses τxy and τxz:

(1.5)

These definitions provide the stress components at a point Q to which the area ΔA is reduced in the
limit. Clearly, the expression ΔA → 0 depends on the idealization discussed in Section 1.1. Our
consideration is with the average stress on areas, which, while small as compared with the size of the
body, is large compared with interatomic distances in the solid. Stress is thus defined adequately for
engineering purposes. As shown in Eq. (1.5), the intensity of force perpendicular, or normal, to the
surface is termed the normal stress at a point, while the intensity of force parallel to the surface is the
shearing stress at a point.
The values obtained in the limiting process of Eq. (1.5) differ from point to point on the surface as
ΔF varies. The stress components depend not only on ΔF, however, but also on the orientation of the
plane on which it acts at point Q. Even at a given point, therefore, the stresses will differ as different
planes are considered. The complete description of stress at a point thus requires the specification of
the stress on all planes passing through the point.
Because the stress (σ or τ) is obtained by dividing the force by area, it has units of force per unit
area. In SI units, stress is measured in newtons per square meter (N/m2), or pascals (Pa). As the
pascal is a very small quantity, the megapascal (MPa) is commonly used. When U.S. Customary
System units are used, stress is expressed in pounds per square inch (psi) or kips per square inch
(ksi).
It is verified in Section 1.12 that in order to enable the determination of the stresses on an infinite
number of planes passing through a point Q, thus defining the stresses at that point, we need only
specify the stress components on three mutually perpendicular planes passing through the point. These



three planes, perpendicular to the coordinate axes, contain three hidden sides of an infinitesimal cube
(Fig. 1.2). We emphasize that when we move from point Q to point Q′ the values of stress will, in
general, change. Also, body forces can exist. However, these cases are not discussed here (see Sec.
1.8), as we are now merely interested in establishing the terminology necessary to specify a stress
component.

Figure 1.2. Element subjected to three-dimensional stress. All stresses have positive sense.

The general case of a three-dimensional state of stress is shown in Fig. 1.2. Consider the stresses to
be identical at points Q and Q′ and uniformly distributed on each face, represented by a single vector
acting at the center of each face. In accordance with the foregoing, a total of nine scalar stress
components defines the state of stress at a point. The stress components can be assembled in the
following matrix form, wherein each row represents the group of stresses acting on a plane passing
through Q(x, y, z):

(1.6)

We note that in indicial notation (refer to Sec. 1.17), a stress component is written as τij, where the
subscripts i and j each assume the values of x, y, and z as required by the foregoing equation. The
double subscript notation is interpreted as follows: The first subscript indicates the direction of a
normal to the plane or face on which the stress component acts; the second subscript relates to the
direction of the stress itself. Repetitive subscripts are avoided in this text, so the normal stresses τxx,
τyy, and τzz are designated σx, σy, and σz, as indicated in Eq. (1.6). A face or plane is usually
identified by the axis normal to it; for example, the x faces are perpendicular to the x axis.

Sign Convention
Referring again to Fig. 1.2, we observe that both stresses labeled τyx tend to twist the element in a
clockwise direction. It would be convenient, therefore, if a sign convention were adopted under
which these stresses carried the same sign. Applying a convention relying solely on the coordinate
direction of the stresses would clearly not produce the desired result, inasmuch as the τyx stress acting
on the upper surface is directed in the positive x direction, while τyx acting on the lower surface is
directed in the negative x direction. The following sign convention, which applies to both normal and
shear stresses, is related to the deformational influence of a stress and is based on the relationship



between the direction of an outward normal drawn to a particular surface and the directions of the
stress components on the same surface.
When both the outer normal and the stress component face in a positive direction relative to the
coordinate axes, the stress is positive. When both the outer normal and the stress component face in a
negative direction relative to the coordinate axes, the stress is positive. When the normal points in a
positive direction while the stress points in a negative direction (or vice versa), the stress is negative.
In accordance with this sign convention, tensile stresses are always positive and compressive
stresses always negative. Figure 1.2 depicts a system of positive normal and shear stresses.

Equality of Shearing Stresses
We now examine properties of shearing stress by studying the equilibrium of forces (see Sec. 1.4)
acting on the cubic element shown in Fig. 1.2. As the stresses acting on opposite faces (which are of
equal area) are equal in magnitude but opposite in direction, translational equilibrium in all
directions is assured; that is, ΣFx = 0, ΣFy = 0, and ΣFz = 0. Rotational equilibrium is established by
taking moments of the x-, y-, and z-directed forces about point Q, for example. From ΣMz = 0,

(–τxy dy dz)dx + (τyx dx dz)dy = 0

Simplifying,

(1.7a)
Likewise, from ΣMy = 0 and ΣMx = 0, we have

(1.7b)

Hence, the subscripts for the shearing stresses are commutative, and the stress tensor is symmetric.
This means that shearing stresses on mutually perpendicular planes of the element are equal.
Therefore, no distinction will hereafter be made between the stress components τxy and τyx, τxz and
τzx, or τyz and τzy. In Section 1.8, it is shown rigorously that the foregoing is valid even when stress
components vary from one point to another.

Some Special Cases of Stress
Under particular circumstances, the general state of stress (Fig. 1.2) reduces to simpler stress states,
as briefly described here. These stresses, which are commonly encountered in practice, are given
detailed consideration throughout the text.
a. Triaxial Stress. We shall observe in Section 1.13 that an element subjected to only stresses σ1, σ2,

and σ3 acting in mutually perpendicular directions is said to be in a state of triaxial stress. Such a
state of stress can be written as

(a)



The absence of shearing stresses indicates that the preceding stresses are the principal stresses for
the element. A special case of triaxial stress, known as spherical or dilatational stress, occurs if
all principal stresses are equal (see Sec. 1.14). Equal triaxial tension is sometimes called
hydrostatic tension. An example of equal triaxial compression is found in a small element of liquid
under static pressure.

b. Two-Dimensional or Plane Stress. In this case, only the x and y faces of the element are subjected
to stress, and all the stresses act parallel to the x and y axes, as shown in Fig. 1.3a. The plane stress
matrix is written

(1.8)

Figure 1.3. (a) Element in plane stress; (b) two-dimensional presentation of plane stress; (c)
element in pure shear.

Although the three-dimensional nature of the element under stress should not be forgotten, for the
sake of convenience we usually draw only a two-dimensional view of the plane stress element
(Fig. 1.3b). When only two normal stresses are present, the state of stress is called biaxial. These
stresses occur in thin plates stressed in two mutually perpendicular directions.

c. Pure Shear. In this case, the element is subjected to plane shearing stresses only, for example, τxy
and τyx (Fig. 1.3c). Typical pure shear occurs over the cross sections and on longitudinal planes of
a circular shaft subjected to torsion.

d. Uniaxial Stress. When normal stresses act along one direction only, the one-dimensional state of
stress is referred to as a uniaxial tension or compression.

1.6 Internal Force-Resultant and Stress Relations
Distributed forces within a load-carrying member can be represented by a statically equivalent
system consisting of a force and a moment vector acting at any arbitrary point (usually the centroid) of
a section. These internal force resultants, also called stress resultants, exposed by an imaginary
cutting plane containing the point through the member, are usually resolved into components normal
and tangent to the cut section (Fig. 1.4). The sense of moments follows the right-hand screw rule,
often represented by double-headed vectors, as shown in the figure. Each component can be
associated with one of four modes of force transmission:
1. The axial force P or N tends to lengthen or shorten the member.
2. The shear forces Vy and Vz tend to shear one part of the member relative to the adjacent part and

are often designated by the letter V.



3. The torque or twisting moment T is responsible for twisting the member.
4. The bending moments My and Mz cause the member to bend and are often identified by the letter

M.
Figure 1.4. Positive forces and moments on a cut section of a body and components of the force

dF on an infinitesimal area dA.

A member may be subject to any or all of the modes simultaneously. Note that the same sign
convention is used for the force and moment components that is used for stress; a positive force (or
moment) component acts on the positive face in the positive coordinate direction or on a negative
face in the negative coordinate direction.
A typical infinitesimal area dA of the cut section shown in Fig. 1.4 is acted on by the components of
an arbitrarily directed force dF, expressed using Eq. (1.5) as dFx = σx dA, dFy = τxy dA, and dFz = τxz
dA. Clearly, the stress components on the cut section cause the internal force resultants on that section.
Thus, the incremental forces are summed in the x, y, and z directions to give

(1.9a)

In a like manner, the sums of the moments of the same forces about the x, y, and z axes lead to

(1.9b)
where the integrations proceed over area A of the cut section. Equations (1.9) represent the relations
between the internal force resultants and the stresses. In the next paragraph, we illustrate the
fundamental concept of stress and observe how Eqs. (1.9) connect internal force resultants and the
state of stress in a specific case.
Consider a homogeneous prismatic bar loaded by axial forces P at the ends (Fig. 1.5a). A prismatic
bar is a straight member having constant cross-sectional area throughout its length. To obtain an
expression for the normal stress, we make an imaginary cut (section a–a) through the member at right
angles to its axis. A free-body diagram of the isolated part is shown in Fig. 1.5b, wherein the stress is
substituted on the cut section as a replacement for the effect of the removed part. Equilibrium of axial
forces requires that P = ∫ σx dA or P = Aσx. The normal stress is therefore



(1.10)

Figure 1.5. (a) Prismatic bar in tension; (b) Stress distribution across cross section.

where A is the cross-sectional area of the bar. Because Vy, Vz, and T all are equal to zero, the second
and third of Eqs. (1.9a) and the first of Eqs. (1.9b) are satisfied by τxy = τxz = 0. Also, My = Mz = 0 in
Eqs. (1.9b) requires only that σx be symmetrically distributed about the y and z axes, as depicted in
Fig. 1.5b. When the member is being extended as in the figure, the resulting stress is a uniaxial
tensile stress; if the direction of forces were reversed, the bar would be in compression under
uniaxial compressive stress. In the latter case, Eq. (1.10) is applicable only to chunky or short
members owing to other effects that take place in longer members.*

Similarly, application of Eqs. (1.9) to torsion members, beams, plates, and shells is presented as the
subject unfolds, following the derivation of stress–strain relations and examination of the geometric
behavior of a particular member. Applying the method of mechanics of materials, we develop other
elementary formulas for stress and deformation. These, also called the basic formulas of mechanics
of materials, are often used and extended for application to more complex problems in advanced
mechanics of materials and the theory of elasticity. For reference purposes to preliminary
discussions, Table 1.1 lists some commonly encountered cases. Note that in thin-walled vessels (r/t ≤
10) there is often no distinction made between the inner and outer radii because they are nearly equal.
In mechanics of materials, r denotes the inner radius. However, the more accurate shell theory (Sec.
13.11) is based on the average radius, which we use throughout this text. Each equation presented in
the table describes a state of stress associated with a single force, torque, moment component, or
pressure at a section of a typical homogeneous and elastic structural member [Ref. 1.7]. When a
member is acted on simultaneously by two or more load types, causing various internal force
resultants on a section, it is assumed that each load produces the stress as if it were the only load
acting on the member. The final or combined stress is then determined by superposition of the several
states of stress, as discussed in Section 2.2.

Table 1.1. Commonly Used Elementary Formulas for Stressa



The mechanics of materials theory is based on the simplifying assumptions related to the pattern of
deformation so that the strain distributions for a cross section of the member can be determined. It is a
basic assumption that plane sections before loading remain plane after loading. The assumption can
be shown to be exact for axially loaded prismatic bars, for prismatic circular torsion members, and
for prismatic beams subjected to pure bending. The assumption is approximate for other beam
situations. However, it is emphasized that there is an extraordinarily large variety of cases in which
applications of the basic formulas of mechanics of materials lead to useful results. In this text we
hope to provide greater insight into the meaning and limitations of stress analysis by solving problems
using both the elementary and exact methods of analysis.

1.7 Stresses on Inclined Sections
The stresses in bars, shafts, beams, and other structural members can be obtained by using the basic
formulas, such as those listed in Table 1.1. The values found by these equations are for stresses that
occur on cross sections of the members. Recall that all of the formulas for stress are limited to
isotropic, homogeneous, and elastic materials that behave linearly. This section deals with the states
of stress at points located on inclined sections or planes under axial loading. As before, we use
stress elements to represent the state of stress at a point in a member. However, we now wish to find



normal and shear stresses acting on the sides of an element in any direction.
The directional nature of more general states of stress and finding maximum and minimum values of
stress are discussed in Sections 1.10 and 1.13. Usually, the failure of a member may be brought about
by a certain magnitude of stress in a certain direction. For proper design, it is necessary to determine
where and in what direction the largest stress occurs. The equations derived and the graphical
technique introduced here and in the sections to follow are helpful in analyzing the stress at a point
under various types of loading. Note that the transformation equations for stress are developed on the
basis of equilibrium conditions only and do not depend on material properties or on the geometry of
deformation.

Axially Loaded Members
We now consider the stresses on an inclined plane a–a of the bar in uniaxial tension shown in Fig.
1.6a, where the normal x′ to the plane forms an angle θ with the axial direction. On an isolated part of
the bar to the left of section a–a, the resultant P may be resolved into two components: the normal
force Px′ = P cos θ and the shear force Py′ = –P sin θ, as indicated in Fig. 1.6b. Thus, the normal and
shearing stresses, uniformly distributed over the area Ax′ = A/cos θ of the inclined plane (Fig. 1.6c),
are given by

(1.11a)

(1.11b)

Figure 1.6. (a) Prismatic bar in tension; (b, c) side views of a part cut from the bar.

where σx = P/A. The negative sign in Eq. (1.11b) agrees with the sign convention for shearing stresses
described in Section 1.5. The foregoing process of determining the stress in proceeding from one set
of coordinate axes to another is called stress transformation.
Equations (1.11) indicate how the stresses vary as the inclined plane is cut at various angles. As



expected, σx′ is a maximum (σmax) when θ is 0° or 180°, and τx′y′ is maximum (τmax) when θ is 45° or
135°. Also, . The maximum stresses are thus

(1.12)
Observe that the normal stress is either maximum or a minimum on planes for which the shearing
stress is zero.
Figure 1.7 shows the manner in which the stresses vary as the section is cut at angles varying from θ =
0° to 180°. Clearly, when θ > 90°, the sign of τx′y′ in Eq. (1.11b) changes; the shearing stress changes
sense. However, the magnitude of the shearing stress for any angle θ determined from Eq. (1.11b) is
equal to that for θ + 90°. This agrees with the general conclusion reached in the preceding section:
shearing stresses on mutually perpendicular planes must be equal.
Figure 1.7. Example 1.1. Variation of stress at a point with the inclined section in the bar shown

in Fig. 1.6a.

We note that Eqs. (1.11) can also be used for uniaxial compression by assigning to P a negative value.
The sense of each stress direction is then reversed in Fig. 1.6c.

Example 1.1. State of Stress in a Tensile Bar
Compute the stresses on the inclined plane with θ = 35° for a prismatic bar of a cross-sectional
area 800 mm2, subjected to a tensile load of 60 kN (Fig. 1.6a). Then determine the state of stress
for θ = 35° by calculating the stresses on an adjoining face of a stress element. Sketch the stress
configuration.

Solution

The normal stress on a cross section is

Introducing this value in Eqs. (1.11) and using θ = 35°, we have

The normal and shearing stresses acting on the adjoining y′ face are, respectively, 24.67 MPa and
35.24 MPa, as calculated from Eqs. (1.11) by substituting the angle θ + 90° = 125°. The values of
σx′ and τx′y′ are the same on opposite sides of the element. On the basis of the established sign
convention for stress, the required sketch is shown in Fig. 1.8.



Figure 1.8. Example 1.1. Stress element for θ = 35°.

1.8 Variation of Stress within a Body
As pointed out in Section 1.5, the components of stress generally vary from point to point in a
stressed body. These variations are governed by the conditions of equilibrium of statics. Fulfillment
of these conditions establishes certain relationships, known as the differential equations of
equilibrium, which involve the derivatives of the stress components.
Consider a thin element of sides dx and dy (Fig. 1.9), and assume that σx, σy, τxy, and τyx are functions
of x, y but do not vary throughout the thickness (are independent of z) and that the other stress
components are zero. Also assume that the x and y components of the body forces per unit volume, Fx
and Fy, are independent of z and that the z component of the body force Fz = 0. This combination of
stresses, satisfying the conditions described, is the plane stress. Note that because the element is very
small, for the sake of simplicity, the stress components may be considered to be distributed uniformly
over each face. In the figure they are shown by a single vector representing the mean values applied at
the center of each face.

Figure 1.9. Element with stresses and body forces.

As we move from one point to another, for example, from the lower-left corner to the upper-right
corner of the element, one stress component, say σx, acting on the negative x face, changes in value on
the positive x face. The stresses σy, τxy, and τyx similarly change. The variation of stress with position
may be expressed by a truncated Taylor’s expansion:

(a)
The partial derivative is used because σx is a function of x and y. Treating all the components



similarly, the state of stress shown in Fig. 1.9 is obtained.
We consider now the equilibrium of an element of unit thickness, taking moments of force about the
lower-left corner. Thus, ΣMz = 0 yields

Neglecting the triple products involving dx and dy, this reduces to τxy = τyx. In a like manner, it may
be shown that τyz = τzy and τxz = τzx, as already obtained in Section 1.5. From the equilibrium of x
forces, ΣFx = 0, we have

(b)
Upon simplification, Eq. (b) becomes

(c)

Inasmuch as dx dy is nonzero, the quantity in the parentheses must vanish. A similar expression is
written to describe the equilibrium of y forces. The x and y equations yield the following differential
equations of equilibrium for two-dimensional stress:

(1.13)

The differential equations of equilibrium for the case of three-dimensional stress may be generalized
from the preceding expressions as follows:

(1.14)
A succinct representation of these expressions, on the basis of the range and summation conventions
(Sec. 1.17), may be written as



(1.15a)

where xx = x, xy = y, and xz = z. The repeated subscript is j, indicating summation. The unrepeated
subscript is i. Here i is termed the free index, and j, the dummy index.
If in the foregoing expression the symbol ∂/∂x is replaced by a comma, we have

(1.15b)

where the subscript after the comma denotes the coordinate with respect to which differentiation is
performed. If no body forces exist, Eq. (1.15b) reduces to τij,j = 0, indicating that the sum of the three
stress derivatives is zero. As the two equilibrium relations of Eqs. (1.13) contain three unknowns
(σx, σy, τxy) and the three expressions of Eqs. (1.14) involve the six unknown stress components,
problems in stress analysis are internally statically indeterminate.
In a number of practical applications, the weight of the member is the only body force. If we take the
y axis as upward and designate by ρ the mass density per unit volume of the member and by g, the
gravitational acceleration, then Fx = Fz = 0 and Fy = –ρg in Eqs. (1.13) and (1.14). The resultant of
this force over the volume of the member is usually so small compared with the surface forces that it
can be ignored, as stated in Section 1.1. However, in dynamic systems, the stresses caused by body
forces may far exceed those associated with surface forces so as to be the principal influence on the
stress field.*

Application of Eqs. (1.13) and (1.14) to a variety of loaded members is presented in sections
employing the approach of the theory of elasticity, beginning with Chapter 3. The following sample
problem shows the pattern of the body force distribution for an arbitrary state of stress in equilibrium.

Example 1.2. The Body Forces in a Structure

The stress field within an elastic structural member is expressed as follows:

(d)

Determine the body force distribution required for equilibrium.

Solution

Substitution of the given stresses into Eq. (1.14) yields

The body force distribution, as obtained from these expressions, is therefore

(e)



The state of stress and body force at any specific point within the member may be obtained by
substituting the specific values of x, y, and z into Eqs. (d) and (e), respectively.

1.9 Plane-Stress Transformation
A two-dimensional state of stress exists when the stresses and body forces are independent of one of
the coordinates, here taken as z. Such a state is described by stresses σx, σy, and τxy and the x and y
body forces. Two-dimensional problems are of two classes: plane stress and plane strain. In the
case of plane stress, as described in the previous section, the stresses σz, τxz, and τyz, and the z-
directed body forces are assumed to be zero. The condition that occurs in a thin plate subjected to
loading uniformly distributed over the thickness and parallel to the plane of the plate typifies the state
of plane stress (Fig. 1.10). In the case of plane strain, the stresses τxz and τyz and the body force Fz are
likewise taken to be zero, but σz does not vanish* and can be determined from stresses σx and σy.

Figure 1.10. Thin Plate in-plane loads.

We shall now determine the equations for transformation of the stress components σx, σy, and τxy at
any point of a body represented by an infinitesimal element, isolated from the plate illustrated in Fig.
1.10. The z-directed normal stress σz, even if it is nonzero, need not be considered here. In the
following derivations, the angle θ locating the x′ axis is assumed positive when measured from the x
axis in a counterclockwise direction. Note that, according to our sign convention (see Sec. 1.5), the
stresses are indicated as positive values.
Consider an infinitesimal wedge cut from the loaded body shown in Fig. 1.11a, b. It is required to
determine the stresses σx′ and τx′y′, which refer to axes x′, y′ making an angle θ with axes x, y, as
shown in the figure. Let side AB be normal to the x′ axis. Note that in accordance with the sign
convention, σx′ and τx′y′ are positive stresses, as shown in the figure. If the area of side AB is taken as
unity, then sides QA and QB have area cos θ and sin θ, respectively.

Figure 1.11. Elements in plane stress.



Equilibrium of forces in the x and y directions requires that

(1.16)

where px and py are the components of stress resultant acting on AB in the x and y directions,
respectively. The normal and shear stresses on the x′ plane (AB plane) are obtained by projecting px
and py in the x′ and y′ directions:

(a)

From the foregoing it is clear that . Upon substitution of the stress resultants from
Eq. (1.16), Eqs. (a) become

(1.17a)

(1.17b)
Note that the normal stress σy′ acting on the y′ face of an inclined element (Fig. 1.11c) may readily be
obtained by substituting θ + π/2 for θ in the expression for σx′. In so doing, we have

(1.17c)

Equations (1.17) can be converted to a useful form by introducing the following trigonometric
identities:

The transformation equations for plane stress now become

(1.18a)



(1.18b)

(1.18c)
The foregoing expressions permit the computation of stresses acting on all possible planes AB (the
state of stress at a point) provided that three stress components on a set of orthogonal faces are
known.
Stress tensor. It is important to note that addition of Eqs. (1.17a) and (1.17c) gives the relationships

σx + σy = σx′ + σy′ = constant

In words then, the sum of the normal stresses on two perpendicular planes is invariant—that is,
independent of θ. This conclusion is also valid in the case of a three-dimensional state of stress, as
shown in Section 1.13. In mathematical terms, the stress whose components transform in the
preceding way by rotation of axes is termed tensor. Some examples of other quantities are strain and
moment of inertia. The similarities between the transformation equations for these quantities are
observed in Sections 2.5 and C.4. Mohr’s circle (Sec. 1.11) is a graphical representation of a stress
tensor transformation.

Polar Representations of State of Plane Stress
Consider, for example, the possible states of stress corresponding to σx = 14 MPa, σy = 4 MPa, and
τxy = 10 MPa. Substituting these values into Eq. (1.18) and permitting θ to vary from 0° to 360° yields
the data upon which the curves shown in Fig. 1.12 are based. The plots shown, called stress
trajectories, are polar representations: σx′ versus θ (Fig. 1.12a) and τx′y′ versus θ (Fig. 1.12b). It is
observed that the direction of each maximum shear stress bisects the angle between the maximum and
minimum normal stresses. Note that the normal stress is either a maximum or a minimum on planes at
θ = 31.66° and θ = 31.66° + 90°, respectively, for which the shearing stress is zero. The conclusions
drawn from this example are valid for any two-dimensional (or three-dimensional) state of stress and
are observed in the sections to follow.

Figure 1.12. Polar representations of σx′ and τx′y′ (in megapascals) versus θ.

Cartesian Representation of State of Plane Stress
Now let us examine a two-dimensional condition of stress at a point in a loaded machine component
on an element illustrated in Fig. 1.13a. Introducing the given values into the first two of Eqs. (1.18),



gives

Figure 1.13. Graph of normal stress σx′ and shearing stress τx′y′ with angle θ (for θ ≤ 180°).

In the foregoing, permitting θ to vary from 0° to 180° in increments of 15° leads to the data from
which the graphs illustrated in Fig. 1.13b are obtained [Ref. 1.7]. This Cartesian representation
demonstrates the variation of the normal and shearing stresses versus θ ≤ 180°. Observe that the
direction of maximum (and minimum) shear stress bisects the angle between the maximum and
minimum normal stresses. Moreover, the normal stress is either a maximum or a minimum on planes θ
= 31.7° and θ = 31.7° + 90°, respectively, for which the shear stress is zero. Note as a check that σx +
σy = σmax + σmin = 9 MPa, as expected.

The conclusions drawn from the foregoing polar and Cartesian representations are valid for any state
of stress, as will be seen in the next section. A more convenient approach to the graphical
transformation for stress is considered in Sections 1.11 and 1.15. The manner in which the three-
dimensional normal and shearing stresses vary is discussed in Sections 1.12 through 1.14.

1.10 Principal Stresses and Maximum In-Plane Shear Stress
The transformation equations for two-dimensional stress indicate that the normal stress σx′ and
shearing stress τx′y′ vary continuously as the axes are rotated through the angle θ. To ascertain the
orientation of x′y′ corresponding to maximum or minimum σx′, the necessary condition dσx′/dθ = 0 is
applied to Eq. (1.18a). In so doing, we have

(a)
This yields

(1.19)

Inasmuch as tan 2θ = tan(π + 2θ), two directions, mutually perpendicular, are found to satisfy Eq.



(1.19). These are the principal directions, along which the principal or maximum and minimum
normal stresses act. Two values of θp, corresponding to the σ1 and σ2 planes, are represented by 
and , respectively.
When Eq. (1.18b) is compared with Eq. (a), it becomes clear that τx′y′ = 0 on a principal plane. A
principal plane is thus a plane of zero shear. The principal stresses are determined by substituting
Eq. (1.19) into Eq. (1.18a):

(1.20)

Note that the algebraically larger stress given here is the maximum principal stress, denoted by σ1.
The minimum principal stress is represented by σ2. It is necessary to substitute one of the values θp
into Eq. (1.18a) to determine which of the two corresponds to σ1.

Similarly, employing the preceding approach and Eq. (1.18b), we determine the planes of maximum
shearing stress. Thus, setting dτx′y′/dθ = 0, we now have (σx – σy)cos 2θ + 2τxy sin 2θ = 0 or

(1.21)

The foregoing expression defines two values of θs that are 90° apart. These directions may again be
denoted by attaching a prime or a double prime notation to θs. Comparing Eqs. (1.19) and (1.21), we
also observe that the planes of maximum shearing stress are inclined at 45° with respect to the planes
of principal stress. Now, from Eqs. (1.21) and (1.18b), we obtain the extreme values of shearing
stress as follows:

(1.22)
Here the largest shearing stress, regardless of sign, is referred to as the maximum shearing stress,
designated τmax. Normal stresses acting on the planes of maximum shearing stress can be determined
by substituting the values of 2θs from Eq. (1.21) into Eqs. (1.18a) and (1.18c):

(1.23)

The results are illustrated in Fig. 1.14. Note that the diagonal of a stress element toward which the
shearing stresses act is called the shear diagonal. The shear diagonal of the element on which the
maximum shearing stresses act lies in the direction of the algebraically larger principal stress as
shown in the figure. This assists in predicting the proper direction of the maximum shearing stress.

Figure 1.14. Planes of principal and maximum shearing stresses.



1.11 Mohr’s Circle for Two-Dimensional Stress
A graphical technique, predicated on Eq. (1.18), permits the rapid transformation of stress from one
plane to another and leads also to the determination of the maximum normal and shear stresses. In this
approach, Eqs. (1.18) are depicted by a stress circle, called Mohr’s circle.* In the Mohr
representation, the normal stresses obey the sign convention of Section 1.5. However, for the
purposes only of constructing and reading values of stress from Mohr’s circle, the sign convention
for shear stress is as follows: If the shearing stresses on opposite faces of an element would produce
shearing forces that result in a clockwise couple, as shown in Fig. 1.15c, these stresses are regarded
as positive. Accordingly, the shearing stresses on the y faces of the element in Fig. 1.15a are taken as
positive (as before), but those on the x faces are now negative.

Figure 1.15. (a) Stress element; (b) Mohr’s circle of stress; (c) interpretation of positive
shearing stresses.

Given σx, σy, and τxy with algebraic sign in accordance with the foregoing sign convention, the
procedure for obtaining Mohr’s circle (Fig. 1.15b) is as follows:
1. Establish a rectangular coordinate system, indicating +τ and +σ. Both stress scales must be

identical.

2. Locate the center C of the circle on the horizontal axis a distance  from the origin.
3. Locate point A by coordinates σx and –τxy. These stresses may correspond to any face of an element

such as in Fig. 1.15a. It is usual to specify the stresses on the positive x face, however.
4. Draw a circle with center at C and of radius equal to CA.
5. Draw line AB through C.
The angles on the circle are measured in the same direction as θ is measured in Fig. 1.15a. An angle
of 2θ on the circle corresponds to an angle of θ on the element. The state of stress associated with the
original x and y planes corresponds to points A and B on the circle, respectively. Points lying on



diameters other than AB, such as A′ and B′, define states of stress with respect to any other set of x′
and y′ planes rotated relative to the original set through an angle θ.
It is clear that points A1 and B1 on the circle locate the principal stresses and provide their magnitudes
as defined by Eqs. (1.19) and (1.20), while D and E represent the maximum shearing stresses, defined
by Eqs. (1.21) and (1.22). The radius of the circle is

(a)

where

Thus, the radius equals the magnitude of the maximum shearing stress. Mohr’s circle shows that the
planes of maximum shear are always located at 45° from planes of principal stress, as already
indicated in Fig. 1.14. The use of Mohr’s circle is illustrated in the first two of the following
examples.

Example 1.3. Principal Stresses in a Member

At a point in the structural member, the stresses are represented as in Fig. 1.16a. Employ Mohr’s
circle to determine (a) the magnitude and orientation of the principal stresses and (b) the
magnitude and orientation of the maximum shearing stresses and associated normal stresses. In
each case, show the results on a properly oriented element; represent the stress tensor in matrix
form.

Figure 1.16. Example 1.3. (a) Element in plane stress; (b) Mohr’s circle of stress; (c)
principal stresses; (d) maximum shear stress.



Solution

Mohr’s circle, constructed in accordance with the procedure outlined, is shown in Fig. 1.16b.
The center of the circle is at (40 + 80)/2 = 60 MPa on the σ axis.
a. The principal stresses are represented by points A1 and B1 Hence, the maximum and minimum

principal stresses, referring to the circle, are

or

The planes on which the principal stresses act are given by

Hence

Mohr’s circle clearly indicates that  locates the σ1 plane. The results may readily be checked
by substituting the two values of θp into Eq. (1.18a). The state of principal stress is shown in
Fig. 1.16c.

b. The maximum shearing stresses are given by points D and E. Thus,

It is seen that (σ1 – σ2)/2 yields the same result. The planes on which these stresses act are
represented by

As Mohr’s circle indicates, the positive maximum shearing stress acts on a plane whose
normal x′ makes an angle  with the normal to the original plane (x plane). Thus, +τmax on two
opposite x′ faces of the element will be directed so that a clockwise couple results. The
normal stresses acting on maximum shear planes are represented by OC, σ′ = 60 MPa on each
face. The state of maximum shearing stress is shown in Fig. 1.16d. The direction of the τmax’s
may also be readily predicted by recalling that they act toward the shear diagonal. We note
that, according to the general sign convention (Sec. 1.5), the shearing stress acting on the x′
plane in Fig. 1.16d is negative. As a check, if  and the given initial data are
substituted into Eq. (1.18b), we obtain τx′y′ = –36.05 MPa, as already found.

We may now describe the state of stress at the point in the following matrix forms:

These three representations, associated with the θ = 0°, θ = 28.15°, and θ = 73.15° planes
passing through the point, are equivalent.

Note that if we assume σz = 0 in this example, a much higher shearing stress is obtained in the
planes bisecting the x′ and z planes (Problem 1.56). Thus, three-dimensional analysis, Section
1.15, should be considered for determining the true maximum shearing stress at a point.



Example 1.4. Stresses in a Frame

The stresses acting on an element of a loaded frame are shown in Fig. 1.17a. Apply Mohr’s circle
to determine the normal and shear stresses acting on a plane defined by θ = 30°.

Figure 1.17. Example 1.4. (a) Element in biaxial stresses; (b) Mohr’s circle of stress; (c)
stress element for θ = 30°.

Solution
Mohr’s circle of Fig. 1.17b describes the state of stress given in Fig. 1.17a. Points A1 and B1
represent the stress components on the x and y faces, respectively. The radius of the circle is (14
+ 28)/2 = 21. Corresponding to the 30° plane within the element, it is necessary to rotate through
60° counterclockwise on the circle to locate point A′. A 240° counterclockwise rotation locates
point B′. Referring to the circle,

Figure 1.17c indicates the orientation of the stresses. The results can be checked by applying Eq.
(1.18), using the initial data.

Example 1.5. Cylindrical Vessel Under Combined Loads

A thin-walled cylindrical pressure vessel of 250-mm diameter and 5-mm wall thickness is rigidly
attached to a wall, forming a cantilever (Fig. 1.18a). Determine the maximum shearing stresses



and the associated normal stresses at point A of the cylindrical wall. The following loads are
applied: internal pressure p = 1.2 MPa, torque T = 3 kN · m, and direct force P = 20 kN. Show
the results on a properly oriented element.
Figure 1.18. Example 1.5. Combined stresses in a thin-walled cylindrical pressure vessel: (a)

side view; (b) free body of a segment; (c) and (d) element A (viewed from top).

Solution

The internal force resultants on a transverse section through point A are found from the
equilibrium conditions of the free-body diagram of Fig. 1.18b. They are V = 20 kN, M = 8 kN ·
m, and T = 3 kN · m. In Fig. 1.18c, the combined axial, tangential, and shearing stresses are
shown acting on a small element at point A. These stresses are (Tables 1.1 and C.1)

We thus have σx = 47.6 MPa, σy = 30 MPa, and τxy = –6.112 MPa. Note that for element A, Q = 0;
hence, the direct shearing stress τd = τxz = VQ/Ib = 0.

The maximum shearing stresses are from Eq. (1.22):

Equation (1.23) yields

To locate the maximum shear planes, we use Eq. (1.21):



Applying Eq. (1.18b) with the given data and 2θs = 55.2°, τx′y′ = –10.71 MPa. Hence, ,
and the stresses are shown in their proper directions in Fig. 1.18d.

1.12 Three-Dimensional Stress Transformation
The physical elements studied are always three dimensional, and hence it is desirable to consider
three planes and their associated stresses, as illustrated in Fig. 1.2. We note that equations governing
the transformation of stress in the three-dimensional case may be obtained by the use of a similar
approach to that used for the two-dimensional state of stress.
Consider a small tetrahedron isolated from a continuous medium (Fig. 1.19a), subject to a general
state of stress. The body forces are taken to be negligible. In the figure, px, py, and pz are the
Cartesian components of stress resultant p acting on oblique plane ABC. It is required to relate the
stresses on the perpendicular planes intersecting at the origin to the normal and shear stresses on
ABC.

Figure 1.19. Stress components on a tetrahedron.

The orientation of plane ABC may be defined in terms of the angles between a unit normal n to the
plane and the x, y, and z directions (Fig. 1.19b). The direction cosines associated with these angles
are

(1.24)
The three direction cosines for the n direction are related by

(1.25)

The area of the perpendicular plane QAB, QAC, QBC may now be expressed in terms of A, the area of
ABC, and the direction cosines:



AQAB = Ax = A · i = A(li + mj + nk) · i = Al

The other two areas are similarly obtained. In so doing, we have altogether

(a)

Here i, j, and k are unit vectors in the x, y, and z directions, respectively.
Next, from the equilibrium of x, y, z-directed forces together with Eq. (a), we obtain, after canceling
A,

(1.26)

The stress resultant on A is thus determined on the basis of known stresses σx, σy, σz, τxy, τxz, and τyz
and a knowledge of the orientation of A. In the limit as the sides of the tetrahedron approach zero,
plane A contains point Q. It is thus demonstrated that the stress resultant at a point is specified. This in
turn gives the stress components acting on any three mutually perpendicular planes passing through Q
as shown next. Although perpendicular planes have been used there for convenience, these planes
need not be perpendicular to define the stress at a point.
Consider now a Cartesian coordinate system x′, y′, z′, wherein x′ coincides with n and y′, z′ lie on an
oblique plane. The x′ y′ z′ and xyz systems are related by the direction cosines: l1 = cos (x′, x), m1 =
cos(x′, y), and so on. The notation corresponding to a complete set of direction cosines is shown in
Table 1.2. The normal stress σx′ is found by projecting px, py, and pz in the x′ direction and adding

(1.27)

Table 1.2. Notation for Direction Cosines

Equations (1.26) and (1.27) are combined to yield

(1.28a)

Similarly, by projecting px, py, and pz in the y′ and z′ directions, we obtain, respectively,

(1.28b)



(1.28c)

Recalling that the stresses on three mutually perpendicular planes are required to specify the stress at
a point (one of these planes being the oblique plane in question), the remaining components are found
by considering those planes perpendicular to the oblique plane. For one such plane, n would now
coincide with the y′ direction, and expressions for the stresses σy′, τy′x′, and τy′z′ would be derived. In
a similar manner, the stresses σz′, τz′x′, and τz′y′ are determined when n coincides with the z′ direction.
Owing to the symmetry of the stress tensor, only six of the nine stress components thus developed are
unique. The remaining stress components are as follows:

(1.28d)

(1.28e)

(1.28f)
Equations (1.28) represent expressions transforming the quantities σx, σy, σz, τxy, τxz, and τyz which,
as we have noted, completely define the state of stress. Quantities such as stress (and moment of
inertia, Appendix C), which are subject to such transformations, are tensors of second rank (see Sec.
1.9).
The equations of transformation of the components of a stress tensor, in indicial notation, are
represented by

(1.29a)
Alternatively,

(1.29b)

The repeated subscripts i and j imply the double summation in Eq. (1.29a), which, upon expansion,
yields

(1.29c)

By assigning r, s = x, y, z and noting that τrs = τsr, the foregoing leads to the six expressions of Eq.



(1.28).
It is interesting to note that, because x′, y′, and z′ are orthogonal, the nine direction cosines must
satisfy trigonometric relations of the following form:

(1.30a)

and

(1.30b)
From Table 1.2, observe that Eqs. (1.30a) are the sums of the squares of the cosines in each row, and
Eqs. (1.30b) are the sums of the products of the adjacent cosines in any two rows.

1.13 Principal Stresses in Three Dimensions
For the three-dimensional case, it is now demonstrated that three planes of zero shear stress exist, that
these planes are mutually perpendicular, and that on these planes the normal stresses have maximum
or minimum values. As has been discussed, these normal stresses are referred to as principal
stresses, usually denoted σ1, σ2, and σ3. The algebraically largest stress is represented by σ1, and the
smallest by σ3: σ1 > σ2 > σ3.

We begin by again considering an oblique x′ plane. The normal stress acting on this plane is given by
Eq. (1.28a):

(a)

The problem at hand is the determination of extreme or stationary values of σx′. To accomplish this,
we examine the variation of σx′ relative to the direction cosines. Inasmuch as l, m, and n are not
independent, but connected by l2 + m2 + n2 = 1, only l and m may be regarded as independent
variables. Thus,

(b)
Differentiating Eq. (a) as indicated by Eqs. (b) in terms of the quantities in Eq. (1.26), we obtain

(c)

From n2 = 1 – l2 – m2, we have ∂n/∂l = –l/n and ∂n/∂m = –m/n. Introducing these into Eq. (c), the
following relationships between the components of p and n are determined:



(d)

These proportionalities indicate that the stress resultant must be parallel to the unit normal and
therefore contains no shear component. It is concluded that, on a plane for which σx′ has an extreme or
principal value, a principal plane, the shearing stress vanishes.
It is now shown that three principal stresses and three principal planes exist. Denoting the principal
stresses by σp, Eq. (d) may be written as

(e)

These expressions, together with Eq. (1.26), lead to

(1.31)

A nontrivial solution for the direction cosines requires that the characteristic determinant vanish:

(1.32)
Expanding Eq. (1.32) leads to

(1.33)

where

(1.34a)

(1.34b)

(1.34c)
The three roots of the stress cubic equation (1.33) are the principal stresses, corresponding to which
are three sets of direction cosines, which establish the relationship of the principal planes to the
origin of the nonprincipal axes. The principal stresses are the characteristic values or eigenvalues of



the stress tensor τij. Since the stress tensor is a symmetric tensor whose elements are all real, it has
real eigenvalues. That is, the three principal stresses are real [Refs. 1.8 and 1.9]. The direction
cosines l, m, and n are the eigenvectors of τij.

It is clear that the principal stresses are independent of the orientation of the original coordinate
system. It follows from Eq. (1.33) that the coefficients I1, I2, and I3 must likewise be independent of
x, y, and z, since otherwise the principal stresses would change. For example, we can demonstrate
that adding the expressions for σx′, σy′, and σz′ given by Eq. (1.28) and making use of Eq. (1.30a) leads
to I1 = σx′ + σy′ + σz′ = σx + σy + σz. Thus, the coefficients I1, I2, and I3 represent three invariants of the
stress tensor in three dimensions or, briefly, the stress invariants. For plane stress, it is a simple
matter to show that the following quantities are invariant (Prob. 1.27):

(1.35)

Equations (1.34) and (1.35) are particularly helpful in checking the results of a stress transformation,
as illustrated in Example 1.7.
If now one of the principal stresses, say σ1 obtained from Eq. (1.33), is substituted into Eq. (1.31), the
resulting expressions, together with l2 + m2 + n2 = 1, provide enough information to solve for the
direction cosines, thus specifying the orientation of σ1 relative to the xyz system. The direction
cosines of σ2 and σ3 are similarly obtained. A convenient way of determining the roots of the stress
cubic equation and solving for the direction cosines is presented in Appendix B, where a related
computer program is also included (see Table B.1).

Example 1.6. Three-Dimensional Stress in a Hub
A steel shaft is to be force fitted into a fixed-ended cast-iron hub. The shaft is subjected to a
bending moment M, a torque T, and a vertical force P, Fig. 1.20a. Suppose that at a point Q in the
hub, the stress field is as shown in Fig. 1.20b, represented by the matrix

Figure 1.20. Example 1.6. (a) Hub-shaft assembly. (b) Element in three-dimensional stress.



Determine the principal stresses and their orientation with respect to the original coordinate
system.

Solution

Substituting the given stresses into Eq. (1.33) we obtain from Eqs. (B.2)

Successive introduction of these values into Eq. (1.31), together with Eq. (1.30a), or application
of Eqs. (B.6) yields the direction cosines that define the orientation of the planes on which σ1, σ2,
and σ3 act:

Note that the directions of the principal stresses are seldom required for purposes of predicting
the behavior of structural members.

Example 1.7. Three-Dimensional Stress in a Machine Component

The stress tensor at a point in a machine element with respect to a Cartesian coordinate system is
given by the following array:

(f)

Determine the state of stress and I1, I2, and I3 for an x′, y′, z′ coordinate system defined by rotating
x, y through an angle of θ = 45° counterclockwise about the z axis (Fig. 1.21a).

Figure 1.21. Example 1.7. Direction cosines for θ = 45°.

Solution

The direction cosines corresponding to the prescribed rotation of axes are given in Fig. 1.21b.
Thus, through the use of Eq. (1.28) we obtain



(g)

It is seen that the arrays (f) and (g), when substituted into Eq. (1.34), both yield I1 = 100 MPa, I2

= 1400 (MPa)2, and I3 = –53,000 (MPa)3, and the invariance of I1, I2, and I3 under the orthogonal
transformation is confirmed.

1.14 Normal and Shear Stresses on an Oblique Plane
A cubic element subjected to principal stresses σ1, σ2, and σ3 acting on mutually perpendicular
principal planes is called in a state of triaxial stress (Fig. 1.22a). In the figure, the x, y, and z axes are
parallel to the principal axes. Clearly, this stress condition is not the general case of three-
dimensional stress, which was taken up in the last two sections. It is sometimes required to determine
the shearing and normal stresses acting on an arbitrary oblique plane of a tetrahedron, as in Fig.
1.22b, given the principal stresses or triaxial stresses acting on perpendicular planes. In the figure,
the x, y, and z axes are parallel to the principal axes. Denoting the direction cosines of plane ABC by
l, m, and n, Eqs. (1.26) with σx = σ1, τxy = τxz = 0, and so on, reduce to

(a)

Figure 1.22. Elements in triaxial stress.

Referring to Fig. 1.22a and definitions (a), the stress resultant p is related to the principal stresses
and the stress components on the oblique plane by the expression

(1.36)

The normal stress σ on this plane, from Eq. (1.28a), is found as

(1.37)

Substitution of this expression into Eq. (1.36) leads to

(1.38a)



or

(1.38b)

Expanding and using the expressions 1 – l2 = m2 + n2, 1 – n2 = l2 + m2, and so on, the following result
is obtained for the shearing stress τ on the oblique plane:

(1.39)

This clearly indicates that if the principal stresses are all equal, the shear stress vanishes, regardless
of the choices of the direction cosines.
For situations in which shear as well as normal stresses act on perpendicular planes (Fig. 1.22b),
we have px, py, and pz defined by Eqs. (1.26). Then, Eq. (1.37) becomes

(1.40)

Hence,

(1.41)

where σ is given by Eq. (1.40). Formulas (1.37) through (1.41) represent the simplified
transformation expressions for the three-dimensional stress.
It is interesting to note that substitution of the direction cosines from Eqs. (a) into Eq. (1.25) leads to

(1.42)

which is a stress ellipsoid having its three semiaxes as the principal stresses (Fig. 1.23). This
geometrical interpretation helps to explain the earlier conclusion that the principal stresses are the
extreme values of the normal stress. In the event that σ1 = σ2 = σ3, a state of hydrostatic stress exists,
and the stress ellipsoid becomes a sphere. In this case, note again that any three mutually
perpendicular axes can be taken as the principal axes.

Figure 1.23. Stress ellipsoid.



Octahedral Stresses
The stresses acting on an octahedral plane is represented by face ABC in Fig. 1.22b with QA = QB =
QC. The normal to this oblique face thus has equal direction cosines relative to the principal axes.
Since l2 + m2 + n2 = 1, we have

(b)
Plane ABC is clearly one of eight such faces of a regular octahedron (Fig. 1.24). Equations (1.39) and
(b) are now applied to provide an expression for the octahedral shearing stress, which may be
rearranged to the form

(1.43)

Figure 1.24. Stresses on an octahedron.

Through the use of Eqs. (1.37) and (b), we obtain the octahedral normal stress:

(1.44)
The normal stress acting on an octahedral plane is thus the average of the principal stresses, the mean
stress. The orientations of σoct and τoct are indicated in Fig. 1.24. That the normal and shear stresses
are the same for the eight planes is a powerful tool for failure analysis of ductile materials (see Sec.
4.8). Another useful form of Eq. (1.43) is developed in Section 2.15.

1.15 Mohr’s Circles in Three Dimensions
Consider a wedge shown in Fig. 1.25a, cut from the cubic element subjected to triaxial stresses (Fig.
1.22a). The only stresses on the inclined x′ face (parallel to the z axis) are the normal stress σx′ and



the shear stress τx′y′ acting in the x′y′ plane. Inasmuch as the foregoing stresses are determined from
force equilibrium equations in the x′y′ plane, they are independent of the stress σ3. Thus, the
transformation equations of plane stress (Sec. 1.9) and Mohr’s circle can be employed to obtain the
stresses σx′ and τx′y′. The foregoing conclusion is also valid for normal and shear stresses acting on
inclined faces cut through the element parallel to the x and y axes.

Figure 1.25. Triaxial state of stress: (a) wedge; (b) planes of maximum shear stress.

The stresses acting on elements oriented at various angles to the principal axes can be visualized with
the aid of Mohr’s circle. The cubic element (Fig. 1.22a) viewed from three different directions is
sketched in Figs. 1.26a to c. A Mohr’s circle is drawn corresponding to each projection of an
element. The cluster of three circles represents Mohr’s circles for triaxial stress (Fig. 1.26d). The
radii of the circles are equal to the maximum shear stresses, as indicated in the figure. The normal
stresses acting on the planes of maximum shear stresses have the magnitudes given by the abscissa as
of the centers of the circles.
Figure 1.26. (a–c) Views of elements in triaxial stresses on different principal axes; (d) Mohr’s

circles for three-dimensional stress.



The largest shear stresses occur on planes oriented at 45° to the principal planes. The shear stress is
a maximum located as the highest point on the outer circle. The value of the absolute maximum
shearing stress is therefore

(1.45)
acting on the planes that bisect the planes of the maximum and minimum principal stresses, as shown
in Fig. 1.25b. It is noted that the planes of maximum shear stress may also be ascertained by
substituting n2 = 1 – l2 – m2 into Eq. (1.38b), differentiating with respect to l and m, and equating the
resulting expressions to zero (Prob. 1.80).
Determining the absolute value of maximum shear stress is significant when designing members made
of ductile materials, since the strength of the material depends on its ability to resist shear stress (Sec.
4.6). Obviously, as far as the stress magnitudes are concerned, the largest circle is the most
significant one. However, all stresses in their various transformations may play a role in causing
failure, and it is usually instructive to plot all three principal circles of stress, as depicted in the
figure. An example of this type occurs in thin-walled pressurized cylinders, where σθ = σ1, σa = σ2,
and σr = σ3 = 0 at the outer surface (Table 1.1). It is also interesting to note that, in special cases,
where two or all principal stresses are equal, a Mohr’s circle becomes a point.

Equations of Three Mohr’s Circles for Stress
It has been demonstrated that, given the values of the principal stresses and of the direction cosines
for any oblique plane (Fig. 1.22b), the normal and shear stresses on the plane may be ascertained
through the application of Eqs. (1.37) and (1.38). This may also be accomplished by means of a
graphical technique due to Mohr [Refs. 1.10 through 1.12]. The latter procedure was used in the early
history of stress analysis, but today it is employed only as a heuristic device.
In the following discussion, we demonstrate that the aforementioned equations together with the
relation l2 + m2 + n2 = 1 are represented by three circles of stress, and the coordinates (σ, τ) locate a
point in the shaded area of Fig. 1.26d [Ref. 1.13]. These simultaneous equations are

(a)

where l2 ≥ 0, m2 ≥ 0, and n2 ≥ 0. Solving for the direction cosines, results in

(1.46)



Inasmuch as σ1 > σ2 > σ3, the numerators of Eqs. (1.46) satisfy

(b)
as the denominators of Eqs. (1.46) are (σ1 – σ2) > 0 and (σ1 – σ3) > 0, (σ2 – σ3) > 0 and (σ2 – σ1) < 0,
(σ3 – σ1) < 0 and (σ3 – σ2) < 0, respectively.

Finally, the preceding inequalities may be expressed as follows

(1.47)
Equations (1.47) represent the formulas of the three Mohr’s circles for stress, shown in Fig. 1.26d.
Stress points (σ, τ) satisfying the equations for circles centered at C1 and C2 lie on or outside circles,
but for the circle centered at C3 lie on or inside circle. We conclude therefore that an admissible state
of stress must lie on Mohr’s circles or within the shaded area enclosed by these circles.

Example 1.8. Analysis of Three-Dimensional Stresses in a Member

The state of stress on an element of a structure is illustrated in Fig. 1.27a. Using Mohr’s circle,
determine (a) the principal stresses and (b) the maximum shearing stresses. Show results on a
properly oriented element. Also, (c) apply the equations developed in Section 1.14 to calculate
the octahedral stresses.

Figure 1.27. Example 1.8. (a) Element in three-dimensional stress; (b) Mohr’s circles of
stress; (c) stress element for .



Solution

a. First, Mohr’s circle for the transformation of stress in the xy plane is sketched in the usual
manner as shown, centered at C2 with diameter A2A3 (Fig. 1.27b). Next, we complete the three-
dimensional Mohr’s circle by drawing two additional circles of diameters A1A2 and A1A3 in the
figure. Referring to the circle, the principal stresses are σ1 = 100 MPa, σ2 = 40 MPa, and σ3 = –
60 MPa. Angle , as tan . The results are sketched on a properly oriented
element in Fig. 1.27c.

b. The absolute maximum shearing stress, point B3, equals the radius of the circle centered at C3
of diameter A1 A3. Thus,

The maximum shearing stress occurs on the planes 45° from the y′ and z faces of the element of
Fig. 1.27c.

c. The octahedral normal stress, from Eq. (1.44), is

The octahedral shearing stress, using Eq. (1.43), is

Comments
A comparison of the results (see Fig. 1.27b) shows that

That is, the maximum principal stress and absolute maximum shear stress are greater than their
octahedral counterparts.

1.16 Boundary Conditions in Terms of Surface Forces
We now consider the relationship between the stress components and the given surface forces acting



on the boundary of a body. The equations of equilibrium that must be satisfied within a body are
derived in Section 1.8. The distribution of stress in a body must also be such as to accommodate the
conditions of equilibrium with respect to externally applied forces. The external forces may thus be
regarded as a continuation of the internal stress distribution.
Consider the equilibrium of the forces acting on the tetrahedron shown in Fig. 1.19b, and assume that
oblique face ABC is coincident with the surface of the body. The components of the stress resultant p
are thus now the surface forces per unit area, or surface tractions, px, py, and pz. The equations of
equilibrium for this element, representing boundary conditions, are, from Eqs. (1.26),

(1.48)

For example, if the boundary is a plane with an x-directed surface normal, Eqs. (1.48) give px = σx,
py = τxy, and pz = τxz; under these circumstances, the applied surface force components px, py, and pz
are balanced by σx, τxy, and τxz, respectively.

It is of interest to note that, instead of prescribing the distribution of surface forces on the boundary,
the boundary conditions of a body may also be given in terms of displacement components.
Furthermore, we may be given boundary conditions that prescribe surface forces on one part of the
boundary and displacements on another. When displacement boundary conditions are given, the
equations of equilibrium express the situation in terms of strain, through the use of Hooke’s law and
subsequently in terms of the displacements by means of strain–displacement relations (Sec. 2.3). It is
usual in engineering problems, however, to specify the boundary conditions in terms of surface
forces, as in Eq. (1.48), rather than surface displacements. This practice is adhered to in this text.

1.17 Indicial Notation
A system of symbols, called indicial notation, index notation, also known as tensor notation, to
represent components of force, stress, displacement, and strain is used throughout this text. Note that a
particular class of tensor, a vector, requires only a single subscript to describe each of its
components. Often the components of a tensor require more than a single subscript for definition. For
example, second-order or second-rank tensors, such as those of stress or inertia, require double
subscripting: τij, Iij. Quantities such as temperature and mass are scalars, classified as tensors of zero
rank.
Tensor or indicial notation, here briefly explored, offers the advantage of succinct representation of
lengthy equations through the minimization of symbols. In addition, physical laws expressed in tensor
form are independent of the choice of coordinate system, and therefore similarities in seemingly
different physical systems are often made more apparent. That is, indicial notation generally provides
insight and understanding not readily apparent to the relative newcomer to the field. It results in a
saving of space and serves as an aid in nonnumerical computation.
The displacement components u, v, and w, for instance, are written u1, u2, u3 (or ux, uy, uz) and
collectively as ui, with the understanding that the subscript i can be 1, 2, and 3 (or x, y, z). Similarly,
the coordinates themselves are represented by x1, x2, x3, or simply xi(i = 1, 2, 3), and xx, xy, xz, or xi (i



= x, y, z). Many equations of elasticity become unwieldy when written in full, unabbreviated term;
see, for example, Eqs. (1.28). As the complexity of the situation described increases, so does that of
the formulations, tending to obscure the fundamentals in a mass of symbols. For this reason, the more
compact indicial notation is sometimes found in publications.
Two simple conventions enable us to write most equations developed in this text in indicial notation.
These conventions, relative to range and summation, are as follows:

Range convention: When a lowercase alphabetic subscript is unrepeated, it takes on all values
indicated.
Summation convention: When a lowercase alphabetic subscript is repeated in a term, then
summation over the range of that subscript is indicated, making unnecessary the use of the
summation symbol.

The introduction of the summation convention is attributable to A. Einstein (1879–1955). This
notation, in conjunction with the tensor concept, has far-reaching consequences not restricted to its
notational convenience [Refs. 1.14 and 1.15].
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Problems
Sections 1.1 through 1.8

1.1. Two prismatic bars of a by b rectangular cross section are glued as shown in Fig. P1.1. The
allowable normal and shearing stresses for the glued joint are 700 and 560 kPa, respectively.
Assuming that the strength of the joint controls the design, what is the largest axial load P that
may be applied? Use φ = 40°, a = 50 mm, and b = 75 mm.

Figure P1.1.

1.2. A prismatic steel bar of a = b = 50-mm square cross section is subjected to an axial tensile
load P = 125 kN (Fig. P1.1). Calculate the normal and shearing stresses on all faces of an
element oriented at (a) φ = 70°, and (b) φ = 45°.

1.3. A prismatic bar is under an axial load, producing a compressive stress of 75 MPa on a plane
at an angle θ = 30° (Fig. P1.3). Determine the normal and shearing stresses on all faces of an
element at an angle of θ = 50°.

Figure P1.3.

1.4. A square prismatic bar of 1300-mm2 cross-sectional area is composed of two pieces of
wood glued together along the x′ plane, which makes an angle θ with the axial direction (Fig.
1.6a). The normal and shearing stresses acting simultaneously on the joint are limited to 20
and 10 MPa, respectively, and on the bar itself, to 56 and 28 MPa, respectively. Determine the
maximum allowable axial load that the bar can carry and the corresponding value of the angle
θ.

1.5. Calculate the maximum normal and shearing stresses in a circular bar of diameter d = 50 mm
subjected to an axial compression load of P = 150 kN through rigid end plates at its ends.

1.6. A frame is formed by two metallic rectangular cross sectional parts soldered along their
inclined planes as illustrated in Fig. P1.6. What is the permissible axial load Pall that can be
applied to the frame, without exceeding a normal stress of σall or a shearing stress of τall on the
inclined plane? Given: a = 10 mm, b = 75 mm, t = 20 mm, θ = 55°, σall = 25 MPa, and τall = 12
MPa. Assumption: Material strength in tension is 90 MPa.



Figure P1.6.

1.7. Redo Prob. 1.6 for the case in which σall = 20 MPa, τall = 8 MPa, and θ = 40°.

1.8. Determine the normal and shearing stresses on an inclined plane at an angle φ through the bar
subjected to an axial tensile force of P (Fig. P1.1). Given: a = 15 mm, b = 30 mm, φ = 50°, P
= 120 kN.

1.9. Redo Prob. 1.8, for an angle of φ = 30° and P = –100 kN.
1.10. A cylindrical pipe of 160-mm outside diameter and 10-mm thickness, spirally welded at an

angle of φ = 40° with the axial (x) direction, is subjected to an axial compressive load of P =
150 kN through the rigid end plates (Fig. P1.10). Determine the normal σx′ and shearing
stresses τx′y′ acting simultaneously in the plane of the weld.

Figure P1.10.

1.11. The following describes the stress distribution in a body (in megapascals):

Determine the body force distribution required for equilibrium and the magnitude of its
resultant at the point x = –10 mm, y = 30 mm, z = 60 mm.

1.12. Given zero body forces, determine whether the following stress distribution can exist for a
body in equilibrium:

Here the c’s are constants.
1.13. Determine whether the following stress fields are possible within an elastic structural

member in equilibrium:



a. 

b. 
The c’s are constant, and it is assumed that the body forces are negligible.

1.14. For what body forces will the following stress field describe a state of equilibrium?

Sections 1.9 through 1.11
1.15. and 1.16. The states of stress at two points in a loaded body are represented in Figs. P1.15

and P1.16. Calculate for each point the normal and shearing stresses acting on the indicated
inclined plane. As is done in the derivations given in Section 1.9, use an approach based on
the equilibrium equations applied to the wedge-shaped element shown.

Figure P1.15.

Figure P1.16.

1.17. and 1.18. Resolve Probs. 1.15 and 1.16 using Eqs. (1.18).
1.19. At a point in a loaded machine, the normal and shear stresses have the magnitudes and

directions acting on the inclined element shown in Fig. P1.19. What are the stresses σx, σy,
and τxy on an element whose sides are parallel to the xy axes?

Figure P1.19.



1.20. The stresses at a point in the enclosure plate of a tank are as depicted in the element of Fig.
P1.20. Find the normal and shear stresses at the point on the indicated inclined plane. Show
the results on a sketch of properly oriented element.

Figure P1.20.

1.21. A welded plate carries the uniform biaxial tension illustrated in Fig. P1.21. Determine the
maximum stress σ for two cases: (a) The weld has an allowable shear stress of 30 MPa. (b)
The weld has an allowable normal stress of 80 MPa.

Figure P1.21.

1.22. Using Mohr’s circle, solve Prob. 1.15.
1.23. Using Mohr’s circle, solve Prob. 1.16.
1.24. Using Mohr’s circle, solve Prob. 1.20.
1.25. Using Mohr’s circle, solve Prob. 1.21.
1.26. The states of stress at two points in a loaded beam are represented in Fig. P1.26a and b.

Determine the following for each point: (a) The magnitude of the maximum and minimum
principal stresses and the maximum shearing stress; use Mohr’s circle. (b) The orientation of
the principal and maximum shear planes; use Mohr’s circle. (c) Sketch the results on properly
oriented elements. Check the values found in (a) and (b) by applying the appropriate



equations.
Figure P1.26.

1.27. By means of Mohr’s circle, verify the results given by Eqs. (1.35).
1.28. An element in plane stress (Fig. 1.3b) is subjected to stresses σx = 50 MPa, σy = –190 MPa,

and τxy = –70 MPa. Determine the principal stresses and show them on a sketch of a properly
oriented element.

1.29. For an element in plane stress (Fig. 1.3b), the normal stresses are σx = 60 MPa and σy = –
100 MPa. What is the maximum permissible value of shearing stress τxy if the shearing stress
in the material is not to exceed 140 MPa?

1.30. The state of stress on an element oriented at θ = 60° is shown in Fig. P1.30. Calculate the
normal and shearing stresses on an element oriented at θ = 0°.

Figure P1.30.

1.31. A thin skewed plate is subjected to a uniform distribution of stress along its sides, as shown
in Fig. P1.31. Calculate (a) the stresses σx, σy, σxy, and (b) the principal stresses and their
orientations.

Figure P1.31.

1.32. The stress acting uniformly over the sides of a rectangular block is shown in Fig. P1.32.
Calculate the stress components on planes parallel and perpendicular to mn. Show the results
on a properly oriented element.



Figure P1.32.

1.33. Redo Prob. 1.31 for the stress distribution shown in Fig. P1.33.
Figure P1.33.

1.34. A thin-walled cylindrical tank of radius r is subjected simultaneously to internal pressure p
and a compressive force P through rigid end plates. Determine the magnitude of force P to
produce pure shear in the cylindrical wall.

1.35. A thin-walled cylindrical pressure vessel of radius 120 mm and a wall thickness of 5 mm is
subjected to an internal pressure of p = 4 MPa. In addition, an axial compression load of P =
30π kN and a torque of T = 10π kN · m are applied to the vessel through the rigid end plates
(Fig. P1.35). Determine the maximum shearing stresses and associated normal stresses in the
cylindrical wall. Show the results on a properly oriented element.

Figure P1.35.

1.36. A pressurized thin-walled cylindrical tank of radius r = 60 mm and wall thickness t = 4 mm
is acted on by end torques T = 600 N · m and tensile forces P (Fig. P1.35 with sense of P
reversed). The internal pressure is p = 5 MPa. Calculate the maximum permissible value of P
if the allowable tensile stress in the cylinder wall is 80 MPa.

1.37. A shaft of diameter d carries an axial compressive load P and two torques T1, T2 (Fig.
P1.37). Determine the maximum shear stress at a point A on the surface of the shaft. Given: d
= 100 mm, P = 400 kN, T1 = 10 kN · m, and T2 = 2 kN · m.

Figure P1.37.



1.38. What are the normal and shearing stresses on the spiral weld of the aluminum shaft of
diameter d subjected to an axial load P and a torque T (Fig. P1.38)? Given: P = 120 kN, T =
1.5 kN · m, d = 40 mm, and φ = 50°.

Figure P1.38.

1.39. A hollow generator shaft of 180-mm outer diameter and 120-mm inner diameter carries
simultaneously a torque T = 20 kN · m and axial compressive load P = 700 kN. What is the
maximum tensile stress?

1.40. A cantilever beam of thickness t is subjected to a constant traction τ0 (force per unit area) at
its upper surface, as shown in Fig. P1.40. Determine, in terms of τ0, h, and L, the principal
stresses and the maximum shearing stress at the corner points A and B.

Figure P1.40.

1.41. A hollow shaft of 60-mm outer diameter and 30-mm inner diameter is acted on by an axial
tensile load of 50 kN, a torque of 500 N · m and a bending moment of 200 N · m Use Mohr’s
circle to determine the principal stresses and their directions.

1.42. Given the stress acting uniformly over the sides of a thin, flat plate (Fig. P1.42), determine
(a) the stresses on planes inclined at 20° to the horizontal and (b) the principal stresses and
their orientations.

Figure P1.42.



1.43. A steel shaft of radius r = 75 mm is subjected to an axial compression P = 81 kN, a twisting
couple T = 15.6 kN · m, and a bending moment M = 13 kN · m at both ends. Calculate the
magnitude of the principal stresses, the maximum shear stress, and the planes on which they
act in the shaft.

1.44. A structural member is subjected to a set of forces and moments. Each separately produces
the stress conditions at a point shown in Fig. P1.44. Determine the principal stresses and their
orientations at the point under the effect of combined loading.

Figure P1.44.

1.45. Redo Prob. 1.44 for the case shown in Fig. P1.45.
Figure P1.45.

1.46. Redo Prob. 1.44 for the case shown in Fig. P1.46.
Figure P1.46.

1.47. The shearing stress at a point in a loaded structure is τxy = 40 MPa. Also, it is known that the
principal stresses at this point are σ1 = 40 MPa and σ2 = –60 MPa. Determine σx
(compression) and σy and indicate the principal and maximum shearing stresses on an
appropriate sketch.



1.48. The state of stress at a point in a structure is depicted in Fig. P1.48. Calculate the normal
stress σ and the angle θ.

Figure P1.48.

1.49. Acting at a point on a horizontal plane in a loaded machine part are normal stress σy = 20
MPa and a (negative) shearing stress. One principal stress at the point is 10 MPa (tensile),
and the maximum shearing stress is of magnitude 50 MPa. Find, by the use of Mohr’s circle,
(a) the unknown stresses on the horizontal and vertical planes and (b) the unknown principal
stress. Show the principal stresses on a sketch of a properly oriented element.

1.50. For a state of stress at a point in a structure, certain stress components are given for each of
the two orientations (Fig. P1.50). Applying transformation equations, calculate stress
components σy′ and τx′y′ and the angle θ1 between zero and 90°.

Figure P1.50.

1.51. A solid shaft 200 mm in diameter rotates at f = 20 rps and is subjected to a bending moment
of 21π kN · m. Determine the torque T and power P that can also act simultaneously on the
shaft without exceeding a resultant shearing stress of 56 MPa and a resultant normal stress of
98 MPa (with f expressed in rps and torque in N · m, P = 2πf · T in watts).

1.52. The cylindrical portion of a compressed-air tank is made of 5-mm-thick plate welded along a
helix at an angle of φ = 60° with the axial direction (Fig. P1.52). The radius of the tank is 250
mm. If the allowable shearing stress parallel to the weld is 30 MPa, calculate the largest
internal pressure p that may be applied.

Figure P1.52.



1.53. A thin-walled cylindrical tank is subjected to an internal pressure p and uniform axial tensile
load P (Fig. P1.53). The radius and thickness of the tank are r = 0.45 m and t = 5 mm. The
normal stresses at a point A on the surface of the tank are restricted to σx′ = 84 MPa and σy′ =
56 MPa, while shearing stress τx′y′ is not specified. Determine the values of p and P. Use θ =
30°.

Figure P1.53.

1.54. For a given state of stress at a point in a frame, certain stress components are known for each
of the two orientations shown in Fig. P1.54. Using Mohr’s circle, determine the following
stress components: (a) τxy and (b) τx′y′ and σy′.

Figure P1.54.

1.55. The state of stress at a point in a machine member is shown in Fig. P1.55. The allowable
compression stress at the point is 14 MPa. Determine (a) the tensile stress σx and (b) the
maximum principal and maximum shearing stresses in the member. Sketch the results on
properly oriented elements.

Figure P1.55.



1.56. In Example 1.3, taking σz = 0, investigate the maximum shearing stresses on all possible
(three-dimensional) planes.

1.57. A thin-walled pressure vessel of 60-mm radius and 4-mm thickness is made from spirally
welded pipe and fitted with two rigid end plates (Fig. P1.57). The vessel is subjected to an
internal pressure of p = 2 MPa and a P = 50 kN a axial load. Calculate (a) the normal stress
perpendicular to the weld; (b) the shearing stress parallel to the weld.

Figure P1.57.

1.58. A thin-walled cylindrical pressure vessel of 0.3-m radius and 6-mm wall thickness has a
welded spiral seam at an angle of φ = 30° with the axial direction (Fig. P1.10). The vessel is
subjected to an internal gage pressure of p Pa and an axial compressive load of P = 9π kN
applied through rigid end plates. Find the allowable value of p if the normal and shearing
stresses acting simultaneously in the plane of welding are limited to 21 and 7 MPa,
respectively.

Sections 1.12 and 1.13
1.59. The state of stress at a point in an x, y, z coordinate system is

Determine the stresses and stress invariants relative to the x′, y′, z′ coordinate system defined
by rotating x, y through an angle of 30° counterclockwise about the z axis.

1.60. Redo Prob. 1.59 for the case in which the state of stress at a point in an x, y, z coordinate
system is

1.61. The state of stress at a point relative to an x, y, z coordinate system is given by

Calculate the maximum shearing stress at the point.
1.62. At a point in a loaded member, the stresses relative to an x, y, z coordinate system are given

by



Calculate the magnitude and direction of maximum principal stress.
1.63. For the stresses given in Prob. 1.59, calculate the maximum shearing stress.
1.64. At a specified point in a member, the state of stress with respect to a Cartesian coordinate

system is given by

Calculate the magnitude and direction of the maximum principal stress.
1.65. At a point in a loaded structure, the stresses relative to an x, y, z coordinate system are given

by

Determine by expanding the characteristic stress determinant: (a) the principal stresses; (b)
the direction cosines of the maximum principal stress.

1.66. The stresses (in megapascals) with respect to an x, y, z coordinate system are described by

At point (3, 1, 5), determine (a) the stress components with respect to x′, y′, z′ if

and (b) the stress components with respect to x″, y″, z″ if , , and n3 = 1.
Show that the quantities given by Eq. (1.34) are invariant under the transformations (a) and
(b).

1.67. Determine the stresses with respect to the x′, y′, z′ axes in the element of Prob. 1.64 if

1.68. For the case of plane stress, verify that Eq. (1.33) reduces to Eq. (1.20).
1.69. Obtain the principal stresses and the related direction cosines for the following cases:

a. 

b. 



Sections 1.14 through 1.17
1.70. The stress at a point in a machine component relative to an x, y, z coordinate system is given

by

Referring to the parallelepiped shown in Fig. P1.70, calculate the normal stress σ and the
shear stress τ at point Q for the surface parallel to the following planes: (a) CEBG, (b) ABEF,
(c) AEG. [Hint: The position vectors of points G, E, A and any point on plane AEG are,
respectively, rg = 3i, re = 4j, ra = 2k, r = xi + yj + zk. The equation of the plane is given by

(P1.70)

Figure P1.70.

from which

The direction cosines are then

1.71. Re-solve Prob. 1.70 for the case in which the dimensions of the parallelepiped are as shown
in Fig. P1.71.

Figure P1.71.

1.72. The state of stress at a point in a member relative to an x, y, z coordinate system is



Determine the normal stress σ and the shearing stress τ on the surface intersecting the point
and parallel to the plane: 2x + y – 3z = 9.

1.73. For the stresses given in Prob. 1.62, calculate the normal stress σ and the shearing stress τ on
a plane whose outward normal is oriented at angles 35°, 60°, and 73.6° with the x, y, and z
axes, respectively.

1.74. At a point in a loaded body, the stresses relative to an x, y, z coordinate system are

Determine the normal stress σ and the shearing stress τ on a plane whose outward normal is
oriented at angles of 40°, 75°, and 54° with the x, y, and z axes, respectively.

1.75. Determine the magnitude and direction of the maximum shearing stress for the cases given in
Prob. 1.69.

1.76. The stresses at a point in a loaded machine bracket with respect to the x, y, z axes are given
as

Determine (a) the octahedral stresses; (b) the maximum shearing stresses.
1.77. The state of stress at a point in a member relative to an x, y, z coordinate system is given by

Calculate (a) the principal stresses by expansion of the characteristic stress determinant; (b)
the octahedral stresses and the maximum shearing stress.

1.78. Given the principal stresses σ1, σ2, and σ3 at a point in an elastic solid, prove that the
maximum shearing stress at the point always exceeds the octahedral shearing stress.

1.79. Determine the value of the octahedral stresses of Prob. 1.64.
1.80. By using Eq. (1.38b), verify that the planes of maximum shearing stress in three dimensions

bisect the planes of maximum and minimum principal stresses. Also find the normal stresses
associated with the shearing plane by applying Eq. (1.37).

1.81. A point in a structural member is under three-dimensional stress with σx = 100 MPa, σy = 20
MPa, τxy = 60 MPa, and σz, as shown in Fig. P1.81. Calculate (a) the absolute maximum shear
stress for σz = 30 MPa; (b) the absolute maximum shear stress for σz = –30 MPa.

Figure P1.81.



1.82. Consider a point in a loaded body subjected to the stress field represented in Fig. P1.82.
Determine, using only Mohr’s circle, the principal stresses and their orientation with respect
to the original system.

Figure P1.82.

1.83. Re-solve Prob. 1.82 for the case of a point in a loaded body subjected to the following
nonzero stress components: σx = 80 MPa, σz = –60 MPa, and τxy = 40 MPa.

1.84. The state of stress at a point in a loaded structure is represented in Fig. P1.84. Determine (a)
the principal stresses; (b) the octahedral stresses and maximum shearing stress.

Figure P1.84.

1.85. Find the normal and shearing stresses on an oblique plane defined by ,  and 

.
The principal stresses are σ1 = 35 MPa, σ2 = –14 MPa, and σ3 = –28 MPa. If this plane is on
the boundary of a structural member, what should be the values of surface forces px, py, and px
on the plane?

1.86. Redo Prob. 1.85 for an octahedral plane, σ1 = 40 MPa, σ2 = 15 MPa, and σ3 = 25 MPa.



Chapter 2. Strain and Material Properties

2.1 Introduction
In Chapter 1, our concern was with the stresses within a body subject to a system of external forces.
We now turn to the deformations caused by these forces and to a measure of deformational intensity
called strain, discussed in Sections 2.3 through 2.5. Deformations and strains, which are necessary to
an analysis of stress, are also important quantities in themselves, for they relate to changes in the size
and shape of a body.
Recall that the state of stress at a point can be determined if the stress components on mutually
perpendicular planes are given. A similar operation applies to the state of strain to develop the
transformation relations that give two-dimensional and three-dimensional strains in inclined
directions in terms of the strains in the coordinate directions. The plane strain transformation
equations are especially important in experimental investigations, where normal strains are measured
with strain gages. It is usually necessary to use some combination of strain gages or a strain rosette,
with each gage measuring the strain in a different direction.
The mechanical properties of engineering materials, as determined from tension test, are considered
in Sections 2.6 through 2.8. Material selection and stress–strain curves in tension, compression, and
shear are also briefly discussed. Following this, there is a discussion of the relationship between
strain and stress under uniaxial, shear, and multiaxial loading conditions. The measurement of strain
and the concept of strain energy are taken up in Sections 2.12 through 2.15. Finally, Saint-Venant’s
principle, which is extremely useful in the solution of practical problems, is introduced in Section
2.16.

2.2 Deformation
Let us consider a body subjected to external loading that causes it to take up the position pictured by
the dashed lines in Fig. 2.1, in which A is displaced to A′, B to B′, and so on, until all the points in the
body are displaced to new positions. The displacements of any two points such as A and B are simply
AA′ and BB′, respectively, and may be a consequence of deformation (straining), rigid-body motion
(translation and rotation), or some combination. The body is said to be strained if the relative
positions of points in the body are altered. If no straining has taken place, displacements AA′ and BB′
are attributable to rigid-body motion. In the latter case, the distance between A and B remains fixed;
that is, L0 = L. Such displacements are not discussed in this chapter.

Figure 2.1. Plane displacement and strain in a body.

To describe the magnitude and direction of the displacements, points within the body are located with
respect to an appropriate coordinate reference as, for example, the xyz system. Therefore, in the two-



dimensional case shown in Fig. 2.1, the components of displacement of point A to A′ can be
represented by u and v in the x and y coordinate directions, respectively. In general, the components
of displacement at a point, occurring in the x, y, and z directions, are denoted by u, v, and w,
respectively. The displacement at every point within the body constitutes the displacement field, u =
u(x, y, z), v = v(x, y, z), and w = w(x, y, z). In this text, mainly small displacements are considered, a
simplification consistent with the magnitude of deformation commonly found in engineering
structures. The strains produced by small deformations are small compared to unity, and their
products (higher-order terms) are neglected. For purposes of clarity, small displacements with which
we are concerned will be shown highly exaggerated on all diagrams.

Superposition
The small displacement assumption leads to one of the basic fundamentals of solid mechanics, called
the principle of superposition. This principle is valid whenever the quantity (stress or displacement)
to be determined is a linear function of the loads that produce it. For the foregoing condition to exist,
material must be linearly elastic. In such situations, the total quantity owing to the combined loads
acting simultaneously on a member may be obtained by determining separately the quantity
attributable to each load and combining the individual results.
For example, normal stresses caused by axial forces and bending simultaneously (see Table 1.1) may
be obtained by superposition, provided that the combined stresses do not exceed the proportional
limit of the material. Likewise, shearing stresses caused by a torque and a vertical shear force acting
simultaneously in a beam may be treated by superposition. Clearly, superposition cannot be applied
to plastic deformations. The principle of superposition is employed repeatedly in this text. The
motivation for superposition is the replacement of a complex load configuration by two or more
simpler loads.

2.3 Strain Defined
For purposes of defining normal strain, refer to Fig. 2.2, where line AB of an axially loaded member
has suffered deformation to become A′B′. The length of AB is Δx (Fig. 2.2a). As shown in Fig. 2.2b,
points A and B have each been displaced: A an amount u, and B, u + Δu. Stated differently, point B
has been displaced by an amount Δu in addition to displacement of point A, and the length Δx has
been increased by Δu. Normal strain, the unit change in length, is defined as

(2.1)

Figure 2.2. Normal strain in a prismatic bar: (a) undeformed state; (b) deformed state.



In view of the limiting process, Eq. (2.1) represents the strain at a point, the point to which Δx
shrinks.
If the deformation is distributed uniformly over the original length, the normal strain may be written

(2.2)

where L, Lo and δ are the final length, the original length, and the change of length of the member,
respectively. When uniform deformation does not occur, the aforementioned is the average strain.

Plane Strain
We now investigate the case of two-dimensional or plane strain, wherein all points in the body,
before and after application of load, remain in the same plane. Two-dimensional views of an element
with edges of unit lengths subjected to plane strain are shown in three parts in Fig. 2.3. We note that
this element has no normal strain εz and no shearing strains γxz and γyz in the xz and yz planes,
respectively.

Figure 2.3. Strain components εx, εy, and γxy in the xy plane.

Referring to Fig. 2.4, consider an element with dimensions dx, dy and of unit thickness. The total
deformation may be regarded as possessing the following features: a change in length experienced by
the sides (Fig. 2.4a) and a relative rotation without accompanying changes of length (Fig. 2.4b).

Figure 2.4. Deformations of an element: (a) normal strain; (b) shearing strain.

Recalling the basis of Eq. (2.1), two normal or longitudinal strains are apparent upon examination of
Fig. 2.4a:

(2.3a)

A positive sign is applied to elongation; a negative sign, to contraction.



Now consider the change experienced by right angle DAB (Fig. 2.4b). We shall assume the angle αx
between AB and A′B′ to be so small as to permit the approximation αx ≈ tan αx. Also, in view of the
smallness of αx, the normal strain is small, so AB ≈ A′B′. As a consequence of the aforementioned
considerations, αx ≈ ∂v/∂x, where the counterclockwise rotation is defined as positive. Similar
analysis leads to –αy ≈ ∂u/∂y. The total angular change of angle DAB, the angular change between
lines in the x and y directions, is defined as the shearing strain and denoted by γxy:

(2.3b)
The shear strain is positive when the right angle between two positive (or negative) axes decreases.
That is, if the angle between +x and +y or –x and –y decreases, we have positive γxy; otherwise the
shear strain is negative.

Three-Dimensional Strain
In the case of a three-dimensional element, a rectangular prism with sides dx, dy, dz, an essentially
identical analysis leads to the following normal and shearing strains:

(2.4)

Clearly, the angular change is not different if it is said to occur between the x and y directions or
between the y and x directions; γxy = γyx. The remaining components of shearing strain are similarly
related:

The symmetry of shearing strains may also be deduced from an examination of Eq. (2.4). The
expressions (2.4) are the strain–displacement relations of continuum mechanics. They are also
referred to as the kinematic relations, treating the geometry of strain rather than the matter of cause
and effect.
A succinct statement of Eq. (2.3) is made possible by tensor notation:

(2.5a)

or expressed more concisely by using commas,

(2.5b)

where ux = u, uy = v, xx = x, and so on. The factor  in Eq. (2.5) facilitates the representation of the
strain transformation equations in indicial notation. The longitudinal strains are obtained when i = j;



the shearing strains are found when i ≠ j and εij = εji. It is apparent from Eqs. (2.4) and (2.5) that

(2.6)
Just as the state of stress at a point is described by a nine-term array, so Eq. (2.5) represents nine
strains composing the symmetric strain tensor (εij = εji):

(2.7)

It is interesting to observe that the Cartesian coordinate systems of Chapters 1 and 2 are not identical.
In Chapter 1, the equations of statics pertain to the deformed state, and the coordinate set is thus
established in a deformed body; xyz is, in this instance, a Eulerian coordinate system. In discussing
the kinematics of deformation in this chapter, recall that the xyz set is established in the undeformed
body. In this case, xyz is referred to as a Lagrangian coordinate system. Although these systems are
clearly not the same, the assumption of small deformation permits us to regard x, y, and z, the
coordinates in the undeformed body, as applicable to equations of stress or strain. Choice of the
Lagrangian system should lead to no errors of consequence unless applications in finite elasticity or
large deformation theory are attempted. Under such circumstances, the approximation discussed is not
valid, and the resulting equations are more difficult to formulate [Refs. 2.1 and 2.2].
Throughout the text, strains are indicated as dimensionless quantities. The normal and shearing strains
are also frequently described in terms of units such as inches per inch or micrometers per meter and
radians or microradians, respectively. The strains for engineering materials in ordinary use seldom
exceed 0.002, which is equivalent to 2000 × 10–6 or 2000 μ. We read this as “2000 micros.”

Example 2.1. Plane Strains in a Plate

A 0.8-m by 0.6-m rectangle ABCD is drawn on a thin plate prior to loading. Subsequent to
loading, the deformed geometry is shown by the dashed lines in Fig. 2.5. Determine the
components of plane strain at point A.

Figure 2.5. Example 2.1. Deformation of a thin plate.

Solution

The following approximate version of the strain–displacement relations of Eqs. (2.3) must be
used:



(2.8)

Thus, by setting Δx = 800 mm and Δy = 600 mm, the normal strains are calculated as follows:

In a like manner, we obtain the shearing strain:

The positive sign indicates that angle BAD has decreased.

Large Strains
As pointed out in Section 2.1, the small deformations or deflections are considered in most
applications of this book. The preceding is consistent with the magnitude of deformations usually
found in engineering practice. The following more general large or finite strain–displacement
relationships are included here so that the reader may better understand the approximations resulting
in the relations of small-deformation theory.
When displacements are relatively large, the strain components are given in terms of the square of the
element length instead of the length itself. Therefore, with reference to Fig. 2.4b, we write

(2.9)

in which

and AD = dx.
Carrying the foregoing terms into Eq. (2.9) leads to a two-dimensional finite normal strain–
displacement relationship:

(2.10a)

Likewise, we have



(2.10b)

It can also be verified [Refs. 2.3 and 2.4], that the finite shearing strain–displacement relation is

(2.10c)

In small displacement theory, the higher-order terms in Eqs. (2.10) are omitted. In so doing, these
equations reduce to Eqs. (2.4), as expected. The expressions for three-dimensional state of strain may
readily be generalized from the preceding equations.

2.4 Equations of Compatibility
The concept of compatibility has both mathematical and physical significance. From a mathematical
point of view, it asserts that the displacements u, v, and w match the geometrical boundary conditions
and are single-valued and continuous functions of position with which the strain components are
associated [Refs. 2.1 and 2.2]. Physically, this means that the body must be pieced together; no voids
are created in the deformed body.
Recall, for instance, the uniform state of stress at a section a–a of an axially loaded member as shown
in Fig. 1.5b (Sec. 1.6). This, as well as any other stress distribution symmetric with respect to the
centroidal axis, such as a parabolic distribution, can ensure equilibrium provided that ∫ σx dA = P.
However, the reason the uniform distribution is the acceptable or correct one is that it also ensures a
piece-wise-continuous strain and displacement field consistent with the boundary conditions of the
axially loaded member, the essential characteristic of compatibility.
We now develop the equations of compatibility, which establish the geometrically possible form of
variation of strains from point to point within a body. The kinematic relations, Eqs. (2.4), connect six
components of strain to only three components of displacement. We cannot therefore arbitrarily
specify all the strains as functions of x, y, and z. As the strains are evidently not independent of one
another, in what way are they related? In two-dimensional strain, differentiation of εx twice with
respect to y, εy twice with respect to x, and γxy with respect to x and y results in

or

(2.11)

This is the condition of compatibility of the two-dimensional problem, expressed in terms of strain.
The three-dimensional equations of compatibility are obtained in a like manner:



(2.12)

These equations were first derived by Saint-Venant in 1860. The application of the equations of
compatibility is illustrated in Example 2.2(a) and in various sections that use the method of the theory
of elasticity.
To gain further insight into the meaning of compatibility, imagine an elastic body subdivided into a
number of small cubic elements prior to deformation. These cubes may, upon loading, be deformed
into a system of parallelepipeds. The deformed system will, in general, be impossible to arrange in
such a way as to compose a continuous body unless the components of strain satisfy the equations of
compatibility.

2.5 State of Strain at a Point
Recall from Chapter 1 that, given the components of stress at a point, it is possible to determine the
stresses on any plane passing through the point. A similar operation pertains to the strains at a point.
Consider a small linear element AB of length ds is an unstrained body (Fig. 2.6a). The projections of
the element on the coordinate axes are dx and dy. After straining, AB is displaced to position A′B′ and
is now ds′ long. The x and y displacements are u + du and v + dv, respectively. The variation with
position of the displacement is expressed by a truncated Taylor’s expansion as follows:

(a)

Figure 2.6. Plane straining of an element.

Figure 2.6b shows the relative displacement of B with respect to A, the straining of AB. It is observed
that AB has been translated so that A coincides with A′; it is now in the position A′B″. Here B″ D = du
and DB′ = dv are the components of displacement.

Transformation of Two-Dimensional Strain
We now choose a new coordinate system x′ y′, as shown in Fig. 2.6, and examine the components of



strain with respect to it: εx′, εy′, γx′y′. First we determine the unit elongation of ds′, εx′. The projections
of du and dv on the x′ axis, after taking EB′ cos α = EB′(1) by virtue of the small angle approximation,
lead to the approximation (Fig. 2.6b)

(b)
By definition, εx′ is found from EB′/ds. Thus, applying Eq. (b) together with Eqs. (a), we obtain

Substituting cos θ for dx/ds, sin θ for dy/ds, and Eq. (2.3) into this equation, we have

(2.13a)

This represents the transformation equation for the x-directed normal strain, which, through the use of
trigonometric identities, may be converted to the form

(2.14a)
The normal strain εy′ is determined by replacing θ by θ + π/2 in Eq. (2.14a).

To derive an expression for the shearing strain γx′y′, we first determine the angle α through which AB
(the x′ axis) is rotated. Referring again to Fig. 2.6b, tan α = B″ E/ds, where B″E = dv cos θ – du sin θ
– EB′ sin α. By letting sin α = tan α = α, we have EB′ sin α = εx′ ds α = 0. The latter is a consequence
of the smallness of both εx′ and α. Substituting Eqs. (a) and (2.3) into B″E, α = B″ E/ds may be written
as follows:

(c)
Next, the angular displacement of y′ is readily derived by replacing θ by θ + π/2 in Eq. (c):

Now, taking counterclockwise rotations to be positive (see Fig. 2.4b), it is necessary, in finding the
shear strain γx′y′, to add α and –αθ + π/2. By so doing and substituting γxy = ∂v/∂x + ∂u/∂y, we obtain

(2.13b)

Through the use of trigonometric identities, this expression for the transformation of the shear strain
becomes

(2.14b)



Comparison of Eqs. (1.18) with Eqs. (2.14), the two-dimensional transformation equations of strain,
reveals an identity of form. It is observed that transformations expressions for stress are converted
into strain relationships by replacing

These substitutions can be made in all the analogous relations. For instance, the principal strain
directions (where γx′y′ = 0) are found from Eq. (1.19):

(2.15)

Similarly, the magnitudes of the principal strains are

(2.16)

The maximum shearing strains are found on planes 45° relative to the principal planes and are given
by

(2.17)

Transformation of Three-Dimensional Strain
This case may also proceed from the corresponding stress relations by replacing σ by ε and τ by γ/2.
Therefore, using Eqs. (1.28), we have

(2.18a)

(2.18b)

(2.18c)

(2.18d)

(2.18e)



(2.18f)

where l1 is the cosine of the angle between x and x′, m1 is the cosine of the angle between y and x′,
and so on (see Table 1.2). The foregoing equations are succinctly expressed, referring to Eqs. (1.29),
as follow:

(2.19a)

Conversely,

(2.19b)
These equations represent the law of transformation for a strain tensor of rank 2.
Also, referring to Eqs. (1.33) and (1.34), the principal strains in three dimensions are the roots of the
following cubic equation:

(2.20)
The strain invariants are

(2.21)

For a given state of strain, the three roots ε1, ε2, and ε3 of Eqs. (2.20) and the corresponding direction
cosines may conveniently be computed using Table B.1 with some notation modification.

Example 2.2. Three-Dimensional Strain in a Block
A 2-m by 1.5-m by 1-m parallelepiped is deformed by movement of corner point A to A′ (1.9985,
1.4988, 1.0009), as shown by the dashed lines in Fig. 2.7. Calculate the following quantities at
point A: (a) the strain components; (b) the normal strain in the direction of line AB; and (c) the
shearing strain for perpendicular lines AB and AC.

Figure 2.7. Example 2.2. Deformation of a parallelpiped.



Solution

The components of displacement of point A are given by

(d)

a. We can readily obtain the strain components, by using an approximate version of Eqs. (2.4) and
Eqs. (d), as in Example 2.1. Alternatively, these strains can be determined as follows. First,
referring to Fig. 2.7, we represent the displacement field in the form

(2.22)

where c1, c2, and c3 are constants. From these and Eqs. (d), –1.5(10–3) = c1(2 × 1.5 × 1) or c1

= –500(10–6); similarly, c2 = –400(10–6), and c3 = 300(10–6). Therefore,

(e)

Applying Eqs. (2.4) and substituting 10–6 = μ, we have

(f)

By introducing the foregoing into Eqs. (2.12), we readily find that these conditions are
satisfied and the strain field obtained is therefore possible. The calculations proceed as
follows:

b. Let the x′ axis be placed along the line from A to B. The direction cosines of AB are l1 = –0.8,
m1 = –0.6, and n1 = 0. Applying Eq. (2.18a), we thus have

c. Let the y′ axis be placed along the line A to C. The direction cosines of AC are l2 = 0, m2 = 0,



and n2 = –1. Thus, from Eq. (2.18b),

where the negative sign indicates that angle BAC has increased.

Mohr’s Circle for Plane Strain
Because we have concluded that the transformation properties of stress and strain are identical, it is
apparent that a Mohr’s circle for strain may be drawn and that the construction technique does not
differ from that of Mohr’s circle for stress. In Mohr’s circle for strain, the normal strains are plotted
on the horizontal axis, positive to the right. When the shear strain is positive, the point representing
the x axis strains is plotted a distance γ/2 below the ε line, and the y axis point a distance γ/2 above
the ε line, and vice versa when the shear strain is negative. Note that this convention for shear strain,
used only in constructing and reading values from Mohr’s circle, agrees with the convention
employed for stress in Section 1.11.
An illustration of the use of Mohr’s circle of strain is given in the solution of the following numerical
problem.

Example 2.3. State of Plane Strain in a Plate

The state of strain at a point on a thin plate is given by εx = 510 μ, εy = 120 μ, and γxy = 260 μ.
Determine, using Mohr’s circle of strain, (a) the state of strain associated with axes x′, y′, which
make an angle θ = 30° with the axes x, y (Fig. 2.8a); (b) the principal strains and directions of the
principal axes; (c) the maximum shear strains and associated normal strains; (d) display the given
data and the results obtained on properly oriented elements of unit dimensions.

Figure 2.8. Example 2.3: (a) Axes rotated for θ = 30°; (b) Mohr’s circle of strain.

Solution



A sketch of Mohr’s circle of strain is shown in Fig. 2.8b, constructed by determining the position
of point C at  and A at  from the origin O. Note that γxy/2 is positive, so point A,
representing x-axis strains, is plotted below the ε axis (or B above). Carrying out calculations
similar to that for Mohr’s circle of stress (Sec. 1.11), the required quantities are determined. The
radius of the circle is r = (1952 + 1302)1/2 μ = 234 μ, and the angle .
a. At a position 60° counterclockwise from the x axis lies the x′ axis on Mohr’s circle,

corresponding to twice the angle on the plate. The angle A′CA1 is 60° – 33.7° = 26.3°. The
strain components associated with x′y′ are therefore

(g)

The shear strain is taken as negative because the point representing the x axis strains, A′, is
above the ε axis. The negative sign indicates that the angle between the element faces x′ and y′
at the origin increases (Sec. 2.3). As a check, Eq. (2.14b) is applied with the given data to
obtain –207 μ as before.

b. The principal strains, represented by points A1 and B1 on the circle, are found to be

The axes of ε1 and ε2 are directed at 16.85° and 106.85° from the x axis, respectively.

c. Points D and E represent the maximum shear strains. Thus,
γmax = ±468 μ

Observe from the circle that the axes of maximum shear strain make an angle of 45° with
respect to the principal axes. The normal strains associated with the axes of γmax are equal,
represented by OC on the circle: 315 μ.

d. The given data is depicted in Fig. 2.9a. The strain components obtained, Eqs. (g), are
portrayed in Fig. 2.9b for an element at θ = 30°. Observe that the angle at the corner Q of the
element at the origin increases because γxy is negative. The principal strains are given in Fig.
2.9c. The sketch of the maximum shearing strain element is shown in Fig. 2.9d.

Figure 2.9. Example 2.3. (a) Element with edges of unit lengths in plane strain; (b) element
at θ = 30°; (c) principal strains; and (d) maximum shearing strains.



2.6 Engineering Materials
The equations of equilibrium derived in Chapter 1 and the kinematic relations of this chapter together
represent nine equations involving 15 unknowns (six stresses, six strains, and three displacements).
The insufficiency noted in the number of available equations is made up for by a set of material-
dependent relationships, discussed in Section 2.9, that connect stress with strain. We first define some
important characteristics of engineering materials, such as those in widespread commercial usage,
including a variety of metals, plastics, and concretes. Table 2.1 gives a general classification of
materials commonly used in engineering [Refs. 2.5 through 2.8]. Following this, the tension test is
discussed (Sec. 2.7), providing information basic to material behavior.

Table 2.1. Typical Engineering Materials

An elastic material is one that returns to its original (unloaded) shape upon the removal of applied



forces. Elastic behavior thus precludes permanent or plastic deformation. In many cases, the elastic
range includes a region throughout which stress and strain bear a linear relationship. This portion of
the stress–strain variation ends at a point termed the proportional limit. Such materials are linearly
elastic. It is not necessary for a material to possess such linearity for it to be elastic. In a viscoelastic
material, the state of stress is a function not only of the strains but of the time rates of change of stress
and strain as well.
Combinations of elastic (springlike) and viscous (dashpotlike) elements form a viscous–elastic
model. Glasses, ceramics, biomaterials, synthetic rubbers, and plastics may frequently be considered
to be linear viscoelastic materials. Also, most rocks exhibit properties that can be represented by
inclusion of viscous terms in the stress–strain relationship. Viscoelastic solids return to their original
state when unloaded. A plastically deformed solid, on the other hand, does not return to its original
shape when the load is removed; there is some permanent deformation. With the exception of Chapter
12, our considerations will be limited to the behavior of elastic materials.
Leaving out Section 5.9, it is also assumed in this text that the material is homogeneous and isotropic.
A homogeneous material displays identical properties throughout. If the properties are identical in all
directions at a point, the material is termed isotropic. A nonisotropic or anisotropic solid such as
wood displays direction-dependent properties. An orthotropic material, such as wood, is a special
case of an anisotropic material, which has greater strength in a direction parallel to the grain than
perpendicular to the grain (see Sec. 2.11). Single crystals also display pronounced anisotropy,
manifesting different properties along the various crystallographic directions.
Materials composed of many crystals (polycrystalline aggregates) may exhibit either isotropy or
anisotropy. Isotropy results when the crystal size is small relative to the size of the sample, provided
that nothing has acted to disturb the random distribution of crystal orientations within the aggregate.
Mechanical processing operations such as cold rolling may contribute to minor anisotropy, which in
practice is often disregarded. These processes may also result in high internal stress, termed residual
stress. In the cases treated in this volume, materials are assumed initially entirely free of such stress.

General Properties of Some Common Materials
There are various engineering materials, as listed in Table 2.1. The following is a brief description of
a few frequently employed materials. The common classes of materials of engineering interest are
metals, plastics, ceramics, and composites. Each group generally has similar properties (such as
chemical makeup and atomic structure) and applications. Selection of materials plays a significant
role in mechanical design. The choice of a particular material for the members depends on the
purpose and type of operation as well as on mode of failure of this component. Strength and stiffness
are principal factors considered in selection of a material. But selecting a material from both its
functional and economical standpoints is very important. Material properties are determined by
standardized test methods outlined by the American Society for Testing Materials (ASTM).
Metals

Metals can be made stronger by alloying and by various mechanical and heat treatments. Most metals
are ductile and good conductors of electricity and heat. Cast iron and steel are iron alloys containing
over 2% carbon and less than 2% carbon, respectively. Cast irons constitute a whole family of
materials including carbon. Steels can be grouped as plain carbon steels, alloy steels, high-strength
steels, cast steels, and special-purpose steels. Low-carbon steels or mild steels are also known as the



structural steels. There are many effects of adding any alloy to a basic carbon steel. Stainless steels
(in addition to carbon) contain at least 12% chromium as the basic alloying element. Aluminum and
magnesium alloys possess a high strength-to-weight ratio.
Plastics

Plastics are synthetic materials, also known as polymers. They are used increasingly for structural
purposes, and many different types are available. Polymers are corrosion resistant and have low
coefficient of friction. The mechanical characteristics of these materials vary notably, with some
plastics being brittle and others ductile. The polymers are of two classes: thermoplastics and
thermosets. Thermoplastics include acetal, acrylic, nylon, teflon, polypropylene, polystyrene, PVC,
and saran. Examples of thermosets are epoxy, polyster, polyurethane, and bakelite. Thermoplastic
materials repeatedly soften when heated and harden when cooled. There are also highly elastic
flexible materials known as thermoplastic elastomers. A common elastomer is a rubber band.
Thermosets sustain structural change during processing; they can be shaped only by cutting or
machining.
Ceramics

Ceramics represent ordinary compounds of nonmetallic as well as metallic elements, mostly oxides,
nitrides, and carbides. They are considered an important class of engineering materials for use in
machine and structural parts. Ceramics have high hardness and brittleness, high compressive but low
tensile strengths. High temperature and chemical resistance, high dielectric strength, and low weight
characterize many of these materials. Glasses are also made of metallic and nonmetallic elements,
just as are ceramics. But glasses and ceramics have different structural forms. Glass ceramics are
widely used as electrical, electronic, and laboratory ware.
Composites

Composites are made up of two or more distinct constituents. They often consist of a high-strength
material (for example, fiber made of steel, glass, graphite, or polymers) embedded in a surrounding
material (such as resin or concrete), which is termed a matrix. Therefore, a composite material shows
a relatively large strength-to-weight ratio compared with a homogeneous material; composite
materials generally have other desirable characteristics and are widely used in various structures,
pressure vessels, and machine components. A composite is designed to display a combination of the
best characteristics of each component material. A fiber-reinforced composite is formed by
imbedding fibers of a strong, stiff material into a weaker reinforcing material. A layer or lamina of a
composite material consists of a variety of arbitrarily oriented bonded layers or laminas. If all fibers
in all layers are given the same orientation, the laminate is orthotropic. A typical composite usually
consists of bonded three-layer orthotropic material. Our discussions will include isotropic
composites like reinforced-concrete beam and multilayered members, single-layer orthotropic
materials, and compound cylinders.

2.7 Stress–Strain Diagrams
Let us now discuss briefly the nature of the typical static tensile test. In such a test, a specimen is
inserted into the jaws of a machine that permits tensile straining at a relatively low rate (since
material strength is strain-rate dependent). Normally, the stress–strain curve resulting from a tensile
test is predicated on engineering (conventional) stress as the ordinate and engineering
(conventional) strain as the abscissa. The latter is defined by Eq. (2.2). The former is the load or



tensile force (P) divided by the original cross-sectional area (Ao) of the specimen and, as such, is
simply a measure of load (force divided by a constant) rather than true stress. True stress is the load
divided by the actual instantaneous or current area (A) of the specimen.

Ductile Materials in Tension
Figure 2.10a shows two stress–strain plots, one (indicated by a solid line) based on engineering
stress, the other on true stress. The material tested is a relatively ductile, polycrystalline metal such
as steel. A ductile metal is capable of substantial elongation prior to failure, as in a drawing process.
The converse applies to brittle materials. Note that beyond the point labeled “proportional limit” is a
point labeled “yield point” (for most cases these two points are taken as one). At the yield point, a
great deal of deformation occurs while the applied loading remains essentially constant. The
engineering stress curve for the material when strained beyond the yield point shows a characteristic
maximum termed the ultimate tensile stress and a lower value, the rupture stress, at which failure
occurs. Bearing in mind the definition of engineering stress, this decrease is indicative of a decreased
load-carrying capacity of the specimen with continued straining beyond the ultimate tensile stress.

Figure 2.10. (a) Stress–strain diagram of a typical ductile material; (b) determination of yield
strength by the offset method.

For materials such as heat-treated steel, aluminum, and copper that do not exhibit a distinctive yield
point, it is usual to employ a quasi-yield point. According to the 0.2-percent offset method, a line is
drawn through a strain of 0.002, parallel to the initial straight line portion of the curve (Fig. 2.10b).
The intersection of this line with the stress–strain curve defines the yield point as shown.
Corresponding yield stress is commonly referred to as the yield strength.
Geometry Change of Specimen

In the vicinity of the ultimate stress, the reduction of the cross-sectional area becomes clearly visible,
and a necking of the specimen occurs in the range between ultimate and rupture stresses. Figure 2.11
shows the geometric change in the portion of a ductile specimen under tensile loading. The local
elongation is always greater in the necking zone than elsewhere. The standard measures of ductility of
a material are expressed as follows:

(2.23a)

Figure 2.11. A typical round specimen of ductile material in tension: (a) necking; (b) fractured.



(2.23b)
Here Ao and Lo designate, respectively, the initial cross-sectional area and gage length between two
punch marks of the specimen. The ruptured bar must be pieced together in order to measure the final
gage length Lf. Similarly, the final area Af is measured at the fracture site where the cross section is
minimum. The elongation is not uniform over the length of the specimen but concentrated on the region
of necking. Percentage of elongation thus depends on the gage length. For structural steel, about 25
percent elongation (for a 50-mm gage length) and 50 percent reduction in area usually occur.

True Stress and True Strain
The large disparity between the engineering stress and true stress curves in the region of a large strain
is attributable to the significant localized decrease in area (necking down) prior to fracture. In the
area of large strain, particularly that occurring in the plastic range, the engineering strain, based on
small deformation, is clearly inadequate. It is thus convenient to introduce true or logarithmic strain.
The true strain, denoted by ε, is defined by

(2.24)

This strain is observed to represent the sum of the increments of deformation divided by the length L
corresponding to a particular increment of length dL. Here Lo is the original length and εo is the
engineering strain.
For small strains, Eqs. (2.2) and (2.24) yield approximately the same results. Note that the curve of
true stress versus true strain is more informative in examining plastic behavior and will be discussed
in detail in Chapter 12. In the plastic range, the material is assumed to be incompressible and the
volume constant (Sec. 2.10). Hence,

(a)

where the left and right sides of this equation represent the original and the current volume,
respectively. If P is the current load, then

But, from Eq. (2.2), we have L/Lo = 1 + εo. The true stress is thus defined by



(2.25)

That is, the true stress is equal to the engineering stress multiplied by 1 plus the engineering
strain.
A comparison of a true and nominal stress–strain plot is given in Fig. 2.12 [Ref. 2.8]. The true σ – ε
curve shows that as straining progresses, more and more stress develops. On the contrary, in the
nominal σ – ε curve, beyond the ultimate strength the stress decreases with the increase in strain. This
is particularly important for large deformations involved in metal-forming operations [Ref. 2.7].

Figure 2.12. Stress–strain curves for a low-carbon (0.05%) steel in tension.

Brittle Materials in Tension
Brittle materials are characterized by the fact that rupture occurs with little deformation. The
behavior of typical brittle materials, such as magnesium alloy and cast iron, under axial tensile
loading is shown in Figs. 2.13a. Observe from the diagrams that there is no well-defined linear
region, rupture takes place with no noticeable prior change in the rate of elongation, there is no
difference between the ultimate stress and the fracture stress, and the strain at rupture is much smaller
than in ductile materials. The fracture of a brittle material is associated with the tensile stress. A
brittle material thus breaks normal to the axis of the specimen, as depicted in Fig. 2.13b, because this
is the plane of maximum tensile stress.

Figure 2.13. Cast iron in tension: (a) Stress–strain diagram; (b) fractured specimen.



Materials in Compression
Diagrams analogous to those in tension may also be obtained for various materials in compression.
Most ductile materials behave approximately the same in tension and compression over the elastic
range, and the yield-point stress is about the same in tension as in compression. But, in plastic range,
the behavior is notably different. Many brittle materials have ultimate stresses in compression that
are much greater than in tension. Their entire compression stress–strain diagram has a form similar to
the form of the tensile diagram. In compression, as the load increases, the brittle material, such as
gray cast iron, will generally bulge out or become barrel shaped.

Materials in Shear
Shear stress–strain diagrams can be determined from the results of direct-shear or torsion tests [Ref.
2.9]. These diagrams of torque (T) versus shear strain (γ) are analogous to those seen in Fig. 2.10 for
the same materials. But properties such as yield stress and ultimate stress are often half as large in
shear as they are in tension. For ductile materials, yield stress in shear is about 0.5 to 0.6 times the
yield stress in tension.

2.8 Elastic versus Plastic Behavior
The preceding section dealt with the behavior of a variety of materials as they are loaded statically
under tension, compression, or shear. We now discuss what happens when the load is slowly
removed and the material is unloaded. Let us consider the stress–stain curve in Fig. 2.14, where E
and F represent the elastic limit and point of fracture, respectively. The elastic strain is designated by
εe. It is seen from Fig. 2.14a that when the load is removed at (or under) point E, the material follows
exactly same curve back to the origin O. This elastic characteristic of a material, by which it returns
to its original size and shape during unloading, is called the elasticity. Inasmuch as the stress–strain
curve from O to E is not a straight line, the material is nonlinearly elastic.
Figure 2.14. Stress–strain diagrams showing (a) elastic behavior; (b) partially elastic behavior.



When unloaded at a point A beyond E, the material follows the line AB on the curve (Fig. 2.14b). The
slope of this line is parallel to the tangent to the stress–strain curve at the origin. Note that ε does not
return to zero after the load has been removed. This means that a residual strain or permanent strain
remains in the material. The corresponding elongation of the specimen is called permanent set. The
property of a material that experiences strains beyond those at the elastic limit is called the plasticity.
On the stress–strain curve, an elastic range is therefore followed by a plastic region (Fig. 2.14a), in
which total recovery of the size and shape of a material does not occur.
Upon reloading (BA), the unloading path is retracted and further loading results in a continuation of
the original stress–strain curve. It is seen that the material behaves in a linearly elastic manner in this
second loading. There is now proportional limit (A) that is higher than before but reduced ductility,
inasmuch as the amount of yielding from E to F is less than from A to F. This process can be repeated
until the material becomes brittle and fractures. A significant implication of the preceding is that the
strength and ductility characteristics of metals change considerably during fabrication process
involving cold working.
A final point to be noted is that, so far, we discussed the behavior of a test specimen subjected to only
static loading; passage of time and change in temperatures did not enter into our considerations.
However, under certain circumstances, some materials may continue to deform permanently. On the
contrary, a loss of stress is observed with time though strain level remains constant in a load-carrying
member. The study of material behavior under various loading and environmental conditions is taken
up in Chapters 4 and 12.

2.9 Hooke’s Law and Poisson’s Ratio
Most structural materials exhibit an initial region of the stress–strain diagram in which the material
behaves both elastically and linearly. This linear elasticity is extremely important in engineering
because many structures and machines are designed to experience relatively small deformations. For
that straight-line portion of the diagram (Fig. 2.10a), stress is directly proportional to strain. If the
normal stress acts in the x direction,



(2.26)

This relationship is known as Hooke’s law, after Robert Hooke (1635–1703). The constant E is
called the modulus of elasticity, or Young’s modulus, in honor of Thomas Young (1773–1829). As ε
is a dimensionless quantity, E has the units of σ. Thus, E is expressed in pascals (or gigapascals) in SI
units and in pounds (or kilo-pounds) per square inch in the U.S. Customary System. Graphically, E is
the slope of the stress–strain diagram in the linearly elastic region, as shown Fig. 2.10a. It differs
from material to material. For most materials, E in compression is the same as that in tension (Table
D.1).
Elasticity can similarly be measured in two-dimensional pure shear (Fig. 1.3c). It is found
experimentally that, in the linearly elastic range, stress and strain are related by Hooke’s law in
shear:

(2.27)

Here G is the shear modulus of elasticity or modulus of rigidity. Like E, G is a constant for a given
material.
It was stated in Section 2.7 that axial tensile loading induces a reduction or lateral contraction of a
specimen’s cross-sectional area. Similarly, a contraction owing to an axial compressive load is
accompanied by a lateral extension. In the linearly elastic region, it is found experimentally that
lateral strains, say in the y and z directions, are related by a constant of proportionality, v, to the axial
strain caused by uniaxial stress only εx = σx/E, in the x direction:

(a)

Alternatively, the definition of v may be stated as

(2.28)

Here v is known as Poisson’s ratio, after S. D. Poisson (1781–1840), who calculated v to be  for
isotropic materials employing molecular theory. Note that more recent calculations based on a model
of atomic structure yield . Both values given here are close to the actual measured values, 0.25
to 0.35 for most metals. Extreme cases range from a low of 0.1 (for some concretes) to a high of 0.5
(for rubber).

Volume Change
The lateral contraction of a cubic element from a bar in tension is illustrated in Fig. 2.15, where it is
assumed that the faces of the element at the origin are fixed in position. From the figure, subsequent to
straining, the final volume is

(b)



Figure 2.15. Lateral contraction of an element in tension.

Expanding the right side and neglecting higher-order terms involving  and , we have
Vf = [1 + (εx – 2νεx)]dx dy dz = Vo + ΔV

where Vo is the initial volume dx dy dz and ΔV is the change in volume. The unit volume change e,
also referred to as the dilatation, may now be expressed in the form

(2.29)

Observe from this equation that a tensile force increases and a compressive force decreases the
volume of the element.

Example 2.4. Deformation of a Tension Bar

An aluminum alloy bar of circular cross-sectional area A and length L is subjected to an axial
tensile force P (Fig. 2.16). The modulus of elasticity and Poisson’s ratio of the material are E and
v, respectively. For the bar, determine (a) the axial deformation; (b) the change in diameter d; and
(c) the change in volume ΔV. (d) Evaluate the numerical values of the quantities obtained in (a)
through (c) for the case in which P = 60 kN, d = 25 mm, L = 3 m, E = 70 GPa, ν = 0.3, and the
yield strength σyp = 260 MPa.

Figure 2.16. Example 2.4. A bar under tensile forces.

Solution
If the resulting axial stress σ = P/A does not exceed the proportional limit of the material, we may
apply Hooke’s law and write σ = Eε. Also, the axial strain is defined by ε = δ/L.
a. The preceding expressions can be combined to yield the axial deformation,



(2.30)

where the product AE is known as the axial rigidity of the bar.
b. The change in diameter equals the product of transverse or lateral strain and diameter: εtd = –

νεd. Thus,

(2.31a)

c. The change in volume, substituting Vo = AL and εx = P/AE into Eq. (2.29), is

(2.31b)

d. For A = (π/4)(252) = 490.9(10–6) m2, the axial stress σ in the bar is obtained from

which is well below the yield strength of 260 MPa. Thus, introducing the given data into the
preceding equations, we have

Comment
A positive sign indicates an increase in length and volume; the negative sign means that the
diameter has decreased.

2.10 Generalized Hooke’s Law
For a three-dimensional state of stress, each of the six stress components is expressed as a linear
function of six components of strain within the linear elastic range, and vice versa. We thus express
the generalized Hooke’s law for any homogeneous elastic material as follows:

(2.32)



The coefficients cij(i, j = 1, 2, 3..., 6) are the material-dependent elastic constants. A succinct
representation of the preceding stress–strain relationships are given in the following form:

(2.33)
which is valid in all coordinate systems. Thus, it follows that the cmnij, requiring four subscripts for
definition, are components of a tensor of rank 4. We note that, to avoid repetitive subscripts, the
material constants c1111, c1122, ..., c6666 are denoted c11, c12, ..., c66, as indicated in Eqs. (2.32).

In a homogeneous body, each of the 36 constants cij has the same value at all points. A material
without any planes of symmetry is fully anisotropic. Strain energy considerations can be used to show
that for such materials, cij = cji; thus the number of independent material constants can be as large as
21 (see Sec. 2.13). In case of a general orthotropic material, the number of constants reduces to nine,
as shown in Section 2.11. For a homogeneous isotropic material, the constants must be identical in all
directions at any point. An isotropic material has every plane as a plane of symmetry. Next, it is
observed that if the material is isotropic, the number of essential elastic constants reduces to two.
In the following derivation, we rely on certain experimental evidence: a normal stress (σx) creates no
shear strain whatsoever, and a shear stress (τxy) creates only a shear strain (γxy). Also, according to
the small deformation assumption, the principle of superposition applies under multiaxial stressing.
Consider now a two-dimensional homogeneous isotropic rectangular element of unit thickness,
subjected to a biaxial state of stress (Fig. 2.17). Were σx to act, not only would the direct strain σx/E
but a y contraction would take place as well, –νσx/E. Application of σy alone would result in an x
contraction –νσy/E and a y strain σy/E. The simultaneous action of σx and σy, applying the principle of
superposition, leads to the following strains:

(a)

Figure 2.17. Element deformations caused by biaxial stresses.

For pure shear (Fig. 1.3c), it is noted in Section 2.9 that, in the linearly elastic range, stress and strain
are related by

Similar analysis enables us to express the components εz, γyz, and γxz of strain in terms of stress and
material properties. In the case of a three-dimensional state of stress, this procedure leads to the
generalized Hooke’s law, valid for an isotropic homogeneous material:



(2.34)

It is demonstrated next that the elastic constants E, v, and G are related, serving to reduce the number
of independent constants in Eq. (2.34) to two. For this purpose, refer again to the element subjected to
pure shear (Fig. 1.3c). In accordance with Section 1.9, a pure shearing stress τxy can be expressed in
terms of the principal stresses acting on planes (in the x′ and y′ directions) making an angle of 45°
with the shear planes: σx′ = τxy and σy′ = –τxy. Then, applying Hooke’s law, we find that

(b)

On the other hand, because εx = εy = 0 for pure shear, Eq. (2.13a) yields, for θ = 45°, εx′ = γxy/2, or

(c)
Equating the alternative relations for εx′ in Eqs. (b) and (c), we find that

(2.35)

It is seen that, when any two of the constants ν, E, and G are determined experimentally, the third may
be found from Eq. (2.35). From Eq. (2.34) together with Eq. (2.35), we obtain the following stress–
strain relationships:

(2.36)

Here

(2.37)
and



(2.38)

The shear modulus G and the quantity λ are referred to as the Lamé constants. Following a procedure
similar to that used for axial stress in Section 2.9, it can be shown that Eq. (2.37) represents the unit
volume change or dilatation of an element in triaxial stress.
The bulk modulus of elasticity is another important constant. The physical significance of this quantity
is observed by considering, for example, the case of a cubic element subjected to hydrostatic pressure
p. Because the stress field is described by σx = σy = σz = –p and τxy = τyz = τxz = 0, Eq. (2.37) reduces
to e = –3(1 – 2ν)p/E. The foregoing may be written in the form

(2.39)

where K is the modulus of volumetric expansion or bulk modulus of elasticity. It is seen that the unit
volume contraction is proportional to the pressure and inversely proportional to K. Equation (2.39)
also indicates that for incompressible materials, for which e = 0, Poisson’s ratio is 1/2. For all
common materials, however, ν < 1/2, since they demonstrate some change in volume, e ≠ 0. Table D.1
lists average mechanical properties for a number of common materials. The relationships connecting
the elastic constants introduced in this section are given by Eqs. (P2.51) in Prob. 2.51.

Example 2.5. Volume Change of a Metal Block
Calculate the volumetric change of the metal block shown in Fig. 2.18 subjected to uniform
pressure p = 160 MPa acting on all faces. Use E = 210 GPa and ν = 0.3.

Figure 2.18. Example 2.5. A parallelpiped under pressure.

Solution

The bulk modulus of elasticity of the material, using Eq. (2.39), is

and the dilatation is

Since the initial volume of the block (Fig. 2.18) is Vo = 2 × 1.5 × 1 = 3 m3, Eq. (2.29) yields

ΔV = eVo = (–9.14 × 10–4)(3 × 109) = –2.74 × 106 mm3



where a minus sign means that the block experiences a decrease in the volume, as expected
intuitively.

2.11 Hooke’s Law for Orthotropic Materials
A general orthotropic material has three planes of symmetry and three corresponding orthogonal axes
called the orthotropic axes. Within each plane of symmetry, material properties may be different and
independent of direction. A familiar example of such an orthotropic material is wood. Strength and
stiffness of wood along its grain and in each of the two perpendicular directions vary. These
properties are greater in a direction parallel to the fibers than in the transverse direction. A polymer
reinforced by parallel glass or graphite fibers represents a typical orthotropic material with two axes
of symmetry.
Materials such as corrugated and rolled metal sheet, reinforced concrete, various composites,
gridwork, and particularly laminates can also be treated as orthotropic [Refs. 2.8 and 2.10]. We note
that a gridwork consists of two systems of equally spaced parallel ribs (beams), mutually
perpendicular and attached rigidly at the points of intersection. For an elastic orthotropic material, the
elastic coefficients cij remain invariant at a point under a rotation of 180° about any of the
orthotropic axes. In the following derivations, we shall assume that the directions of orthotropic axes
are parallel to the directions of the x, y, and z coordinates.*

First, let the xy plane be a plane material symmetry and rotate Oz through 180° (Fig. 2.19a).
Accordingly, under the coordinate transformation x: x′, y: y′, and z: –z′, the direction cosines (see
Table 1.1) are

(a)

Figure 2.19. Orthotropic coordinates x, y, z: (a) with Oz rotated 180°; (b) with Oy rotated 180°.

Carrying Eqs. (a) into Eqs. (1.28) and (2.18), we have

(b)
and

(c)

Inasmuch as the cij remain the same, the first of Eqs. (2.28) may be written as



(d)

Inserting Eqs. (b) and (c) into Eq. (d) gives

(e)

Comparing Eq. (e) with the first of Eqs. (2.28) shows that c15 = –c15, c16 = –c16, implying that c15 =
c16 = 0. Likewise, considering σy′, σz′, τx′y′, τy′z′, τx′z′, we obtain that c25 = c26 = c35 = c36 = c45 = c46 =
0. The elastic coefficient matrix [cij] is therefore

(f)
Next, consider the xz plane of elastic symmetry by rotating Oy through a 180° angle (Fig. 2.19b).
This gives l1 = n3 = 1, m2 = –1 and l2 = l3 = m1 = m3 = n1 = n2 = 0. Upon following a procedure
similar to that in the preceding, we now obtain c14 = c24 = c34 = c56 = 0. The matrix of elastic
coefficients, Eqs. (f), become then

(2.40)

Finally, letting yz be the plane of elastic symmetry and repeating the foregoing procedure do not lead
to further reduction in the number of nine elastic coefficients of Eqs. (2.40). Hence, the generalized
Hooke’s law for the most general orthotropic elastic material is given by



(2.41)

The inversed form of Eqs. (2.41), referring to Eqs. (2.34), may be expressed in terms of orthotropic
moduli and orthotropic Poisson’s ratios as follows:

(2.42)

Because of symmetry in the material constants (Sec. 2.13), we have

(2.43)
In the foregoing, the quantities Ex, Ey, Ez designate the orthotropic moduli of elasticity, and Gxy, Gyz,
Gxz are the orthotropic shear moduli in the orthotropic coordinate system. Poisson’s ratio νxy
indicates the strain in the y direction produced by the stress in the x direction. The remaining
Poisson’s ratios νxz, νyz, ..., νxz are interpreted in a like manner. We observe from Eqs. (2.42) that, in
an orthotropic material, there is no interaction between the normal stresses and the shearing strains.

2.12 Measurement of Strain: Strain Rosette
A wide variety of mechanical, electrical, and optical systems has been developed for measuring the
normal strain at a point on a free surface of a member [Ref. 2.12]. The method in widest use
employs the bonded electric wire or foil resistance strain gages. The bonded wire gage consists of a
grid of fine wire filament cemented between two sheets of treated paper or plastic backing (Fig.
2.20a). The backing insulates the grid from the metal surface on which it is to be bonded and
functions as a carrier so that the filament may be conveniently handled. Generally, 0.025-mm diameter
wire is used. The grid in the case of bonded foil gages is constructed of very thin metal foil
(approximately 0.0025 mm) rather than wire. Because the filament cross section of a foil gage is
rectangular, the ratio of surface area to cross-sectional area is higher than that of a round wire. This
results in increased heat dissipation and improved adhesion between the grid and the backing
material. Foil gages are readily manufactured in a variety of configurations. In general, the selection
of a particular bonded gage depends on the specific service application.
Figure 2.20. (a) Strain gage (courtesy of Micro-Measurements Division, Vishay Intertechnology,



Inc.) and (b) schematic representation of a strain rosette.

The ratio of the unit change in the resistance of the gage to the unit change in length (strain) of the gage
is called the gage factor. The metal of which the filament element is made is the principal factor
determining the magnitude of this factor. Constantan, an alloy composed of 60% copper and 40%
nickel, produces wire or foil gages with a gage factor of approximately 2.
The operation of the bonded strain gage is based on the change in electrical resistance of the filament
that accompanies a change in the strain. Deformation of the surface on which the gage is bonded
results in a deformation of the backing and the grid as well. Thus, with straining, a variation in the
resistance of the grid will manifest itself as a change in the voltage across the grid. An electrical
bridge circuit, attached to the gage by means of lead wires, is then used to translate electrical changes
into strains. The Wheatstone bridge, one of the most accurate and convenient systems of this type
employed, is capable of measuring strains as small as 1 μ.

Strain Rosette
Special combination gages are available for the measurement of the state of strain at a point on a
surface simultaneously in three or more directions. It is usual to cluster together three gages to form a
strain rosette, which may be cemented on the surface of a member. Generally, these consist of three
gages whose axes are either 45° or 60° apart. Consider three strain gages located at angles θa, θb, and
θc with respect to reference axis x (Fig. 2.20b). The a-, b-, and c-directed normal strains are, from
Eq. (2.13a),

(2.44)
When the values of εa, εb, and εc are measured for given gage orientations θa, θb, and θc the values
of εx, εy, and γxy can be obtained by simultaneous solution of Eqs. (2.44). The arrangement of gages
employed for this kind of measurement is called a strain rosette.
Once strain components are known, we can apply Eq. (3.11b) of Section 3.4 to determine the out-of-
plane principal strain εz. The in-plane principal strains and their orientations may be obtained
readily using Eqs. (2.15) and (2.16), as illustrated next, or Mohr’s circle for strain.

Example 2.6. Principal Strains on Surface of a Steel Frame



Strain rosette readings are made at a critical point on the free surface in a structural steel member.
The 60° rosette contains three wire gages positioned at 0°, 60°, and 120° (Fig. 2.20b). The
readings are

(a)
Determine (a) the in-plane principal strains and stresses and their directions, and (b) the true
maximum shearing strain. The material properties are E = 200 GPa and ν = 0.3.

Solution

For the situation described, Eq. (2.44) provides three simultaneous expressions:

From these,

(b)

Note that the relationships among εa, εb, and εc may be observed from a Mohr’s circle
construction corresponding to the state of strain εx, εy, and γxy at the point under consideration.

a. Upon substituting numerical values, we obtain εx = 190 μ, εy = –130 μ, and γxy = 577 μ. Then,
from Eq. (2.16), the principal strains are

or

(c)

The maximum shear strain is found from
γmax = ±(ε1 – ε2) = ±[360 – (–300)]μ = ±660 μ

The orientations of the principal axes are given by Eq. (2.15):

(d)



When  is substituted into Eq. (2.14) together with Eq. (b), we obtain 360 μ. Therefore, 30.5°
and 120.5° are the respective directions of ε1 and ε2, measured from the horizontal axis in a
counterclockwise direction. The principal stresses may now be found from the generalized
Hooke’s law. Thus, the first two equations of (2.34) for plane stress, letting σz = 0, σx = σ1, and
σy = σ2, together with Eqs. (c), yield

The directions of σ1 and σ2 are given by Eq. (d). From Eq. (2.36), the maximum shear stress is

Note as a check that (σ1 – σ2)/2 yields the same result.

b. Applying Eq. (3.11b), the out-of-plane principal strain is

The principal strain ε2 found in part (a) is redesignated ε3 = –300 μ so that algebraically ε2 >
ε3, where ε2 = –26 μ. The true or absolute maximum shearing strain

(2.45)

is therefore ±660 μ, as already calculated in part (a).

Employing a procedure similar to that used in the preceding numerical example, it is possible to
develop expressions relating three-element gage outputs of various rosettes to principal strains and
stresses. Table 2.2 provides two typical cases: equations for the rectangular rosette (θa = 0°, θb =
45°, and θc = 90°, Fig. 2.20b) and the delta rosette (θa = 0°, θb = 60°, and θc = 120°, Fig. 2.20b).
Experimental stress analysis is facilitated by this kind of compilation.

Table 2.2. Strain Rosette Equations

1. Rectangular rosette or 45° strain rosette
Principal strains:

(2.46a)

Principal stresses:

(2.46b)



Directions of principal planes:

(2.46c)

2. Delta rosette or 60° strain rosette
Principal strains:

(2.47a)

Principal stresses:

(2.47b)
Directions of principal planes:

(2.47c)

2.13 Strain Energy
The work done by external forces in causing deformation is stored within the body in the form of
strain energy. In an ideal elastic process, no dissipation of energy takes place, and all the stored
energy is recoverable upon unloading. The concept of elastic strain energy, introduced in this section,
is useful as applied to the solution of problems involving both static and dynamic loads. It is
particularly significant for predicting failure in members under combined loading.

Strain Energy Density for Normal and Shear Stresses
We begin our analysis by considering a rectangular prism of dimensions dx, dy, dz subjected to
uniaxial tension. The front view of the prism is represented in Fig. 2.21a. If the stress is applied very
slowly, as is generally the case in this text, it is reasonable to assume that equilibrium is maintained at
all times. In evaluating the work done by stresses σx on either side of the element, it is noted that each
stress acts through a different displacement. Clearly, the work done by oppositely directed forces (σx
dy dz) through positive displacement (u) cancel one another. The net work done on the element by
force (σx dy dz) is therefore

Figure 2.21. (a) Displacement under uniaxial stress; (b) work done by uniaxial stress.



where ∂u/∂x = εx. Note that dW is the work done on dx dy dz, and dU is the corresponding increase in
strain energy. Designating the strain energy per unit volume (strain energy density) as Uo, for a
linearly elastic material we have

(a)

After integration, Eq. (a) yields

(2.48)
This quantity represents the shaded area in Fig. 2.21b. The area above the stress–strain curve, termed
the complementary energy density, may be determined from

(2.49)

For a linearly elastic material,  but for a nonlinearly elastic material, Uo and  will differ, as
seen in the figure. The unit of strain energy density in SI units is the joules per cubic meter (J/m3), or
pascals; in U.S. Customary Units, it is expressed in inch-pounds per cubic inch (in. · lb/in.3), or
pounds per square inch (psi).
When the material is stressed to the proportional limit, the strain energy density is referred to as the
modulus of resilience. It is equal to the area under the straight-line portion of the stress–strain
diagram (Fig. 2.10a) and represents a measure of the material’s ability to store or absorb energy
without permanent deformation. Similarly, the area under an entire stress–strain diagram provides a
measure of a material’s ability to absorb energy up to the point of fracture; it is called the modulus of
toughness. The greater the total area under a stress–strain diagram, the tougher the material.
In the case in which σx, σy, and σz act simultaneously, the total work done by these normal stresses is
simply the sum of expressions similar to Eq. (2.48) for each direction. This is because an x-directed
stress does no work in the y or z directions. The total strain energy per volume is thus

(b)



The elastic strain energy associated with shear deformation is now analyzed by considering an
element of thickness dz subject only to shearing stresses τxy (Fig. 2.22). From the figure, we note that
shearing force τxy dxdz causes a displacement of γxy dy. The strain energy due to shear is 

, where the factor  arises because the stress varies linearly with strain from zero to its
final value, as before. The strain energy density is therefore

Figure 2.22. Deformation due to pure shear.

(2.50)
Because the work done by τxy accompanying perpendicular strains γyz and γxz is zero, the total strain
energy density attributable to shear alone is found by superposition of three terms identical in form
with Eq. (2.50):

(c)

Strain Energy Density for Three-Dimensional Stresses
Given a general state of stress, the strain energy density is found by adding Eqs. (b) and (c):

(2.51)
Introducing Hooke’s law into Eq. (2.51) leads to the following form involving only stresses and
elastic constants:

(2.52)

An alternative form of Eq. (2.51), written in terms of strains, is

(2.53)

The quantities λ and e are defined by Eqs. (2.38) and (2.37), respectively.



It is interesting to observe that we have the relationships

(2.54)
Here Uo(τ) and Uo(ε) designate the strain energy densities expressed in terms of stress and strain,
respectively [Eqs. (2.52) and (2.53)]. Derivatives of this type will be discussed again in connection
with energy methods in Chapter 10. We note that Eqs. (2.54) and (2.32) give

(2.55)

Differentiations of these equations as indicated result in

(2.56)

We are led to conclude from these results that cij = cji(i, j = 1, 2, ..., 6). Because of this symmetry of
elastic constants, there can be at most [(36 – 6)/2] + 6 = 21 independent elastic constants for an
anisotropic elastic body.

2.14 Strain Energy in Common Structural Members
To determine the elastic strain energy stored within an entire body, the elastic energy density is
integrated over the original or undeformed volume V. Therefore,

(2.57)

The foregoing shows that the energy-absorbing capacity of a body (that is, the failure resistance),
which is critical when loads are dynamic in character, is a function of material volume. This contrasts
with the resistance to failure under static loading, which depends on the cross-sectional area or the
section modulus.
Equation (2.57) permits the strain energy to be readily evaluated for a number of commonly
encountered geometries and loadings. Note especially that the strain energy is a nonlinear (quadratic)
function of load or deformation. The principle of superposition is thus not valid for the strain energy.
That is, the effects of several forces (or moments) on strain energy are not simply additive, as



demonstrated in Example 2.7. Some special cases of Eq. (2.57) follow.

Strain Energy for Axially Loaded Bars
The normal stress at any given transverse section through a nonprismatic bar subjected to an axial
force P is σx = P/A, where A represents the cross-sectional area (Fig. 2.23). Substituting this and Eq.
(2.48) into Eq. (2.57) and setting dV = A dx, we have

(2.58)

Figure 2.23. Nonprismatic bar with varying axial loading.

When a prismatic bar is subjected at its ends to equal and opposite forces of magnitude P, the
foregoing becomes

(2.59)

where L is the length of the bar.

Example 2.7. Strain Energy in a Bar under Combined Loading

A prismatic bar suspended from one end carries, in addition to its own weight, an axial load Po
(Fig. 2.24). Determine the strain energy U stored in the bar.

Figure 2.24. Example 2.7. A prismatic bar loaded by its weight and load Po.

Solution



The axial force P acting on the shaded element indicated is expressed

(a)
where γ is the specific weight of the material and A, the cross-sectional area of the bar. Inserting
Eq. (a) into Eq. (2.58), we have

(2.60)

The first and the third terms on the right side represent the strain energy of the bar subjected to its
own weight and the strain energy of a bar supporting only axial force Po respectively. The
presence of the middle term indicates that the strain energy produced by the two loads acting
simultaneously is not simply equal to the sum of the strain energies associated with the loads
acting separately.

Strain Energy of Circular Bars in Torsion
Consider a circular bar of varying cross section and varying torque along its axis (Fig. 2.23, with
double-headed torque vector T replacing force vector P). The state of stress is pure shear. The
torsion formula (Table 1.1) for an arbitrary distance ρ from the centroid of the cross section results in
τ = Tρ/J. The strain energy density, Eq. (2.50), becomes then Uo = T2ρ2/2J2G. When this is introduced
into Eq. (2.57), we obtain

(b)
where dV = dA dx; dA represents the cross-sectional area of an element. By definition, the term in
parentheses is the polar moment of inertia J of the cross-sectional area. The strain energy is therefore

(2.61)

In the case of a prismatic shaft subjected at its ends to equal and opposite torques T, Eq. (2.61)
yields

(2.62)

where L is the length of the bar.

Strain Energy for Beams in Bending



For the case of a beam in pure bending, the flexure formula gives us the axial normal stress σx =
–My/I (see Table 1.1). From Eq. (2.48), the strain energy density is Uo = M2y2/2EI2. Upon
substituting this into Eq. (2.57) and noting that M2/2EI2 is a function of x alone, we have

(c)
Here, as before, dV = dA dx, and dA represents an element of the cross-sectional area. Recalling that
the integral in parentheses defines the moment of inertia I of the cross-sectional area about the neutral
axis, the strain energy is expressed as

(2.63)

where integration along beam length L gives the required quantity.

2.15 Components of Strain Energy
A new perspective on strain energy may be gained by viewing the general state of stress (Fig. 2.25a)
in terms of the superposition shown in Fig. 2.25. The state of stress in Fig. 2.25b, represented by

(a)

Figure 2.25. Resolution of (a) state of stress into (b) dilatational stresses and (c) distortional
stresses.

results in volume change without distortion and is termed the dilatational stress tensor. Here 
 is the mean stress defined by Eq. (1.44). Associated with σm is the mean strain, 
. The sum of the normal strains accompanying the application of the dilatational

stress tensor is the dilatation e = εx + εy + εz, representing a change in volume only. Thus, the
dilatational strain energy absorbed per unit volume is given by



(2.64)

where K is defined by Eq. (2.39).
The state of stress in Fig. 2.25c, represented by

(b)

is called the deviator or distortional stress tensor. This produces deviator strains or distortion
without change in volume because the sum of the normal strains is (εx – εm) + (εy – εm) + (εz – εm) = 0.
The distortional energy per unit volume, Uod, associated with the deviator stress tensor is attributable
to the change of shape of the unit volume, while the volume remains constant. Since Uov and Uod are
the only components of the strain energy, we have Uo = Uov + Uod. By subtracting Eq. (2.64) from Eq.
(2.52), the distortional energy is readily found to be

(2.65)

This is the elastic strain energy absorbed by the unit volume as a result of its change in shape
(distortion). In the preceding, the octahedral shearing stress τoct is given by

(2.66)
The planes where the τoct acts are shown in Fig. 1.24 of Section 1.14. The strain energy of distortion
plays an important role in the theory of failure of a ductile metal under any condition of stress. This is
discussed further in Chapter 4. The stresses and strains associated with both components of the strain
energy are also very useful in describing the plastic deformation (Chap. 12).

Example 2.8. Strain Energy Components in a Tensile Bar

A mild steel bar of uniform cross section A is subjected to an axial tensile load P. Derive an
expression for the strain energy density, its components, and the total strain energy stored in the
bar. Let ν = 0.25.

Solution

The state of stress at any point in the bar is axial tension, τxy = τxz = τyz = σy = σz = 0, σx = σ = P/A
(Fig. 2.25a). We therefore have the stresses associated with volume change σm = σ/3 and shape
change σx – σm = 2σ/3, σy – σm = σz – σm = –σ/3 (Fig. 2.25b, c). The strain energy densities for the
state of stress in cases a, b, and c are found, respectively, as follows:



(c)

Observe from these expressions that Uo = Uov + Uod and that 5Uov = Uod. Thus, we see that in
changing the shape of a unit volume element under uniaxial stressing, five times more energy is
absorbed than in changing the volume.

2.16 Saint-Venant’s Principle
The reader will recall from a study of Newtonian mechanics that, for purposes of analyzing the statics
or dynamics of a body, one force system may be replaced by an equivalent force system whose force
and moment resultants are identical. It is often added in discussing this point that the force resultants,
while equivalent, need not cause an identical distribution of strain, owing to difference in the
arrangement of the forces. Saint-Venant’s principle, named for Barré de Saint-Venant (1797–1886),
a famous French mathematician and elastician, permits the use of an equivalent loading for the
calculation of stress and strain. This principle or rule states that if an actual distribution of forces is
replaced by a statically equivalent system, the distribution of stress and strain throughout the body is
altered only near the regions of load application.*

The contribution of Saint-Venant’s principle to the solution of engineering problems is very important,
for it often frees the analyst of the burden of prescribing the boundary conditions very precisely when
it is difficult to do so. Furthermore, where a certain solution is predicated on a particular boundary
loading, the solution can serve equally for another type of statically equivalent boundary loading, not
quite the same as the first. That is, when an analytical solution calls for a certain distribution of stress
on a boundary (such as σx in Sec. 5.5), we need not discard the solution merely because the boundary
distribution is not quite the same as that required by the solution. The value of existing solutions is
thus greatly extended.
Saint-Venant’s principle is confirmed in Fig. 2.26, which shows the stress distribution, obtained using
the methods of the theory of elasticity, across three sections of a rectangular elastic plate of width b
subjected to a concentrated load [Ref. 2.15]. The average stress σavg as given by Eq. (1.10) is also
sketched in the diagrams. From these, note that the maximum stress σmax greatly exceeds the average
stress near the point of application of the load and diminishes as we move along the vertical center
axis of the plate away from an end. At a distance equal to the width of the plate, the stress is nearly
uniform. With rare exceptions, this rule applies to members made of linearly elastic materials.

Figure 2.26. Stress distribution due to a concentrated load in a rectangular elastic plate,
confirming the Saint-Venant’s principle.



The foregoing observation also holds true for most stress concentrations and practically any type of
loading. Thus, the basic formulas of the mechanics of materials give the stress in a member with high
accuracy, provided that the cross section in question is at least a distance b (or h) away from any
concentrated load or discontinuity of shape. Here, b (or h) denotes the largest lateral dimension of a
member. We note that within this distance the stresses depend on the details of loading, boundary
conditions, and geometry of the stress concentrations, as is seen in Chapter 3.
Consider, for example, the substitution of a uniform distribution of stress at the ends of a tensile test
specimen for the actual irregular distribution that results from end clamping. If we require the stress
in a region away from the ends, the stress variation at the ends need not be of concern, since it does
not lead to significant variation in the region of interest. As a further example, according to Saint-
Venant’s principle, the complex distribution of force supplied by the wall to a cantilever beam (Fig.
2.27a) may be replaced by vertical and horizontal forces and a moment (Fig. 2.27b) for purposes of
determining the stresses acting at a distance from the wall equal to or greater than the depth h of the
beam.
Figure 2.27. Cantilever beam illustrating use of Saint-Venant’s principle: (a) actual support; (b)

statical equivalent.
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Problems
Sections 2.1 through 2.8

2.1. Determine whether the following strain fields are possible in a continuous material:

a. ,

b. 
Here c is a small constant, and it is assumed that εz = γxz = γyz = 0.

2.2. Rectangle ABCD is scribed on the surface of a member prior to loading (Fig. P2.2).
Following the application of the load, the displacement field is expressed by

Figure P2.2.

where c = 10–4. Subsequent to the loading, determine (a) the length of the sides AB and AD;
(b) the change in the angle between sides AB and AD; and (c) the coordinates of point A.

2.3. A displacement field in a body is given by



where c = 10–4. Determine the state of strain on an element positioned at (0, 2, 1).
2.4. The displacement field and strain distribution in a member have the form

What relationships connecting the constants (a’s, b’s, and c’s) make the foregoing expressions
possible?

2.5. Redo Prob. 2.4 for the following system of strains:

2.6. A rigid horizontal bar BE is supported as illustrated in Fig. P2.6. After the load P is applied,
point E moves 3 mm down and the axial strain in the bar AB is –500 μ. Calculate the axial
strain in the bar CD.

Figure P2.6.

2.7. Find the normal strain in the members AB and CB of the pin-connected plane structure (Fig.
P2.7) if point B is moved leftward 2.5 mm. Assume that axial deformation is uniform
throughout the length of each member.

Figure P2.7.

2.8. The thin, triangular plate ABC is uniformly deformed into a shape ABC as depicted by the
dashed lines in Fig. P2.8. Determine (a) the plane stress components εx, εy, and γxy; (b) the



shearing strain between edges AC and BC.
Figure P2.8.

2.9. A 100-mm by 150-mm rectangular plate QABC is deformed into the shape shown by the
dashed lines in Fig. P2.9. All dimensions shown in the figure are in millimeters. Determine at
point Q (a) the strain components εx, εy, γxy, and (b) the principal strains and the direction of
the principal axes.

Figure P2.9.

2.10. Calculate the principal strains and their orientations at point A of the deformed rectangular
plate shown in Fig. 2.5 of Example 2.1.

2.11. As a result of loading, the rectangle shown in Fig. P2.11 deforms into a parallelogram in
which sides QA and BC shorten 0.003 mm and rotate 500 μ radian counterclockwise while
sides AB and QC elongate 0.004 mm and rotate 1000 μ radian clockwise. Determine the
principal strains and the direction of the principal axes at point Q. Take a = 20 mm and b =
12mm.

Figure P2.11.

2.12. A thin rectangular plate a = 20 mm × b = 12 mm (Fig. P2.11) is acted upon by a stress
distribution resulting in the uniform strains εx = 300 μ, εy = 500 μ, and γxy = 200 μ. Determine
the changes in length of diagonals QB and AC.



2.13. Redo Prob. 2.12 using the following information: a = 30 mm, b = 15 mm, εx = 400 μ, εy =
200 μ, and γxy = –300 μ.

2.14. A thin plate is subjected to uniform shear stress τo = 70 MPa (Fig. P1.42 of Chap. 1). Let E =
200 GPa, ν = 0.3, AB = 40 mm, and BC = 60 mm. Determine (a) the change in length AB, (b)
the changes in length of diagonals AC and BD, and (c) the principal strains and their directions
at point A.

2.15. The principal strains at a point are ε1 = 400 μ and ε2 = 200 μ. Determine (a) the maximum
shear strain and the direction along which it occurs and (b) the strains in the directions at θ =
30° from the principal axes. Solve the problem by using the formulas developed and check the
results by employing Mohr’s circle.

2.16. A 3-m by 2-m rectangular thin plate is deformed by the movement of point B to B′ as shown
by the dashed lines in Fig. P2.16. Assuming a displacement field of the form u = c1xy and v =
c2xy, wherein c1 and c2 are constants, determine (a) expressions for displacements u and v;
(b) strain components εx, εy, and γxy at point B; and (c) the normal strain εx′ in the direction of
line QB. Verify that the strain field is possible.

Figure P2.16.

2.17. If the strains at a point are εx = –900 μ, εy = –300 μ, and γxy = 900 μ, what are the principal
strains, and in what direction do they occur? Use Mohr’s circle of strain.

2.18. Solve Prob. 2.17 for εx = 300 μ, εy = 900 μ, and γxy = –900 μ.

2.19. A 3-m by 1-m by 2-m parallelepiped is deformed by movement of corner A to A′ (2.9995,
1.0003, 1.9994), as shown in Fig. P2.19. Assuming that the displacement field is given by
Eqs. (2.22), calculate at point A (a) the strain components and ascertain whether this strain
distribution is possible; (b) the normal strain in the direction of line AB; and (c) the shearing
strain for the perpendicular lines AB and AC.

Figure P2.19.

2.20. Redo Prob. 2.19 for the case in which corner point A is moved to A′ (3.0006, 0.9997,
1.9996).

2.21. At a point in a stressed body, the strains, related to the coordinate set xyz, are given by



Determine (a) the strain invariants; (b) the normal strain in the x′ direction, which is directed
at an angle θ = 30° from the x axis; (c) the principal strains ε1, ε2, and ε3; and (d) the maximum
shear strain.

2.22. Solve Prob. 2.21 for a state of strain given by

2.23. The following describes the state of strain at a point in a structural member:

Determine the magnitudes and directions of the principal strains.
2.24. A tensile test is performed on a 12-mm-diameter aluminum alloy specimen (ν = 0.33) using a

50-mm gage length. When an axial tensile load reaches a value of 16 kN, the gage length has
increased by 0.10 mm. Determine (a) the modulus of elasticity; (b) the decrease Δd in
diameter and the dilatation e of the bar.

2.25. A 12-mm-diameter specimen is subjected to tensile loading. The increase in length resulting
from a load of 9 kN is 0.025 mm for an original length Lo of 75 mm. What are the true and
conventional strains and stresses? Calculate the modulus of elasticity.

Sections 2.9 through 2.12
2.26. Find the smallest diameter and shortest length that may be selected for a steel control rod of a

machine under an axial load of 5 kN if the rod must stretch 2 mm. Use E = 210 GPa and σall =
160 MPa.

2.27. A 40-mm diameter bar ABC is composed of an aluminum part AB and a steel part BC (Fig.
P2.27). After axial force P is applied, a strain gage attached to the steel measures normal
strain at the longitudinal direction as εs = 600 μ. Determine (a) the magnitude of the applied
force P; (b) the total elongation of the bar if each material behaves elastically. Take Ea = 70
GPa and Es = 210 GPa.

Figure P2.27.



2.28. A 5-m-long truss member is made of two 40-mm-diameter steel bars. For a tensile load of
600 kN, find (a) the change in the length of the member; (b) the change in the diameter of the
member. Use E = 200 GPa, σyp = 250 MPa, and ν = 0.3.

2.29. The cast-iron pipe of length L, outer diameter D, and thickness t is subjected to an axial
compressive P. Calculate (a) the change in length ΔL; (b) the change in outer diameter D; (c)
the change in thickness Δt. Given: D = 100 mm, t = 10 mm, L = 0.4 m, P = 150 kN, E = 70
GPa, and ν = 0.3.

2.30. A typical vibration isolation device consists of rubber cylinder of diameter d compressed
inside of a steel cylinder by a force Q applied to a steel rod, as schematically depicted in Fig.
P2.30. Find, in terms of d, Q, and Poisson’s ratio ν for the rubber, as needed: (a) an
expression for the lateral pressure p between the rubber and the steel cylinder; (b) the lateral
pressure p between the rubber and the steel cylinder for d = 50 mm, ν = 0.3, and Q = 5 kN.
Assumptions: 1. Friction between the rubber and steel can be neglected; 2. Steel cylinder and
rod are rigid.

Figure P2.30.

2.31. A solid sphere of diameter d experiences a uniform pressure of p. Determine (a) the decrease
in circumference of the sphere; (b) the decrease in volume of the sphere ΔV. Given: d = 250
mm, p = 160 MPa, E = 70 GPa, and ν = 0.3. Note: Volume of a sphere is , where r =
d/2.

2.32. The state of strain at a point in a thin steel plate is εx = 500 μ, εy = –100 μ, and γxy = 150 μ.
Determine (a) the in-plane principal strains and the maximum in-plane shear strain; (b) true
maximum shearing strain ν = 0.3. Sketch the results found in part (a) on properly oriented
deformed elements.



2.33. An element at a point on a loaded frame has strains as follows: εx = 480 μ, εy = 800 μ and γxy
= –1120 μ. Determine (a) the principal strains; (b) the maximum shear strain; (c) the true
maximum shearing strain.

2.34. A metallic plate of width w and thickness t is subjected to a uniform axial force P as shown
in Fig. P2.34. Two strain gages placed at point A measure the strains εx′ and at 30° and 60°,
respectively, to the axis of the plate. Calculate (a) the normal strains εx and εy; (b) the normal
strains εx′ and εy′; (c) the shearing strain γx′y′. Given: w = 60 mm, t = 6 mm, E = 200 GPa, ν =
0.3, and P = 25 kN.

Figure P2.34.

2.35. During the static test of a panel, a 45° rosette reads the following normal strains on the free
surface (Fig. P2.35): εa = –800 μ, εb = –1000 μ, and εc = 400 μ. Find the principal strains and
show the results on a properly oriented deformed element.

Figure P2.35.

Figure P2.36.

2.36. A 50-mm-square plate is subjected to the stresses shown in Fig. P2.36. What deformation is
experienced by diagonal BD? Express the solution, in terms of E, for ν = 0.3 using two
approaches: (a) determine the components of strain along the x and y directions and then
employ the equations governing the transformation of strain; (b) determine the stress on planes
perpendicular and parallel to BD and then employ the generalized Hooke’s law.



2.37. A uniform pressure p acts over the entire straight edge of a large plate (Fig. P2.37). What are
normal stress components σx and σz acting on a volumetric element at some distance from the
loading in terms of Poisson’s ratio ν and p, as required? Assume that εx = εz = 0 and σy = –p
everywhere.

Figure P2.37.

2.38. A 45° rosette is used to measure strain at a critical point on the surface of a loaded beam.
The readings are εa = –100 μ, εb = 50 μ, εc = 100 μ for θa = 0°, θb = 45°, and θc = 90° (Fig.
2.20b). Calculate the principal strains and stresses and their directions. Use E = 200 GPa and
ν = 0.3.

2.39. The following state of strain has been measured at a point on the surface of a crane hook: εa
= 1000 μ, εb = –250 μ, and εc = 200 μ for θa = –15°, θb = 30°, and θc = 75° (Fig. 2.20b).
Determine strain components εx, εy, and γxy.

2.40. The strains measured at a point on the surface of a machine element are εa = 400 μ, εb = 300
μ, and εc = –50 μ for θa= 30°, θb = –30°, and θc = 90° (Fig. 2.20b). Calculate (a) the in-plane
maximum shearing strain, and (b) the true maximum shearing strain. Use .

2.41. For a given steel, E = 200 GPa and G = 80 GPa. If the state of strain at a point within this
material is given by

ascertain the corresponding components of the stress tensor.
2.42. For a material with G = 80 GPa and E = 200 GPa, determine the strain tensor for a state of

stress given by

2.43. The distribution of stress in an aluminum machine component is given (in megapascals) by

Calculate the state of strain of a point positioned at (1, 2, 4). Use E = 70 GPa and ν = 0.3.
2.44. The distribution of stress in a structural member is given (in megapascals) by Eqs. (d) of

Example 1.2 of Chapter 1. Calculate the strains at the specified point  for E = 200 GPa
and ν = 0.25.



2.45. An aluminum alloy plate (E = 70 GPa, ν = 1/3) of dimensions a = 300 mm, b = 400 mm, and
thickness t = 10 mm is subjected to biaxial stresses as shown in Fig. P2.45. Calculate the
change in (a) the length AB; (b) the volume of the plate.

Figure P2.45.

2.46. The steel rectangular parallelepiped (E = 200 GPa and ν = 0.3) shown in Fig. P2.46 has
dimensions a = 250 mm, b = 200 mm, and c = 150 mm. It is subjected to triaxial stresses σx =
–60 MPa, σy = –50 MPa, and σz = –40 MPa acting on the x, y, and z faces, respectively.
Determine (a) the changes Δa, Δb, and Δc in the dimensions of the block, and (b) the change
ΔV in the volume.

Figure P2.46.

2.47. Redo Prob. 2.46 for an aluminum block (E = 70 GPa and ) for which a = 150 mm, b =
100 mm, and c = 75 mm, subjected to stresses σx = 70 MPa, σy = –30 MPa, and σz = –15 MPa.

2.48. At a point in an elastic body, the principal strains ε3, ε2, ε1 are in the ratio 3: 4: 5; the largest
principal stress is σ1 = 140 MPa. Determine the ratio σ3: σ2: σ1 and the values of σ2 and σ3.
Take ν = 0.3 and E = 200 GPa.

2.49. A rectangular plate is subjected to uniform tensile stress σ along its upper and lower edges,
as shown in Fig. P2.49. Determine the displacements u and ν in terms of x, y, and material
properties (E, ν): (a) using Eqs. (2.3) and the appropriate conditions at the origin; (b) by the
mechanics of materials approach.

Figure P2.49.



2.50. The stress field in an elastic body is given by

where c is a constant. Derive expressions for the displacement components u(x, y) and v(x, y)
in the body.

2.51. Derive the following relations involving the elastic constants:

(P2.51)

2.52. As shown in Fig. P2.52, a thin prismatical bar of specific weight γ and constant cross section
hangs in the vertical plane. Under the effect of its own weight, the displacement field is
described by

Figure P2.52.

The z displacement and stresses may be neglected. Find the strain and stress components in
the bar. Check to see whether the boundary conditions [Eq. (1.48)] are satisfied by the
stresses found.

2.53. A uniform bar of rectangular cross section 2h × b and specific weight γ hangs in the vertical
plane (Fig. P2.53). Its weight results in displacements

Demonstrate whether this solution satisfies the 15 equations of elasticity and the boundary



conditions.
Figure P2.53.

Sections 2.13 through 2.16
2.54. A bar of uniform cross-sectional area A, modulus of elasticity E, and length L is fixed at its

right end and subjected to axial forces P1 and P2 at its free end. Verify that the total strain
energy stored in the bar is given by

(P2.54)
Note that U is not the sum of the strain energies due to P1 and P2 acting separately. Find the
components of the energy for P1 = P2 = P and ν = 0.25.

2.55. Three bars of successively larger volume are to support the same load P (Fig. P2.55). Note
that the first bar has a uniform cross-sectional area A over its length L. Neglecting stress
concentrations, compare the strain energy stored in the three bars.

Figure P2.55.

2.56. A solid bronze sphere (E = 110 GPa, , r = 150 mm) is subjected to hydrostatic pressure
p so that its volume is reduced by 0.5%. Determine (a) the pressure p, and (b) the strain
energy U stored in the sphere. (Note: volume of a sphere .)

2.57. Calculate the total strain energy U stored in the block described in Prob. 2.46.
2.58. A round bar is composed of three segments of the same material (Fig. P2.58). The diameter

is d for the lengths BC and DE and nd for length CD, where n is the ratio of the two diameters.
Neglecting the stress concentrations, verify that the strain energy of the bar when subjected to
axial load P is



(P2.58)

Figure P2.58.

where A = πd2/4. Compare the result for n = 1 with those for  and n = 2.
2.59. (a) Taking into account only the effect of normal stress, determine the strain energy of

prismatic beam AB due to the axial force P and moment Mo acting simultaneously (Fig.
P2.59). (b) Evaluate the strain energy for the case in which the beam is rectangular, 100-mm
deep by 75-mm wide, P = 8 kN, Mo = 2 kN · m, L = 1.2 m, a = 0.3 m, b = 0.9 m, and E = 70
GPa.

Figure P2.59.

2.60. A stepped shaft is subjected to pure torsion, as shown in Fig. P2.60. Neglecting the stress
concentrations, develop the following equation for energy stored in the shaft:

(P2.60)

Figure P2.60.

Here φ is the angle of twist and G represents the modulus of rigidity.
2.61. (a) Determine the strain energy of a solid brass circular shaft ABC loaded as shown in Fig.

P2.61, assuming that the stress concentrations may be omitted. (b) Calculate the strain energy
for T = 1.4 kN · m, a = 500 mm, d = 20 mm, and G = 42 GPa.

Figure P2.61.



2.62. Consider a simply supported rectangular beam of depth h, width b, and length L subjected to
a uniform load of intensity p. Verify that the maximum strain energy density equals

(P2.62)

in which U is the strain energy of the beam and V its volume.
2.63. Consider a beam with simple supports at B and C and an overhang AB (Fig. P2.63). What is

the strain energy in the beam due to the load P?
Figure P2.63.

2.64. A simply supported beam carries a concentrated force P and a moment Mo as shown in Fig.
P2.64. How much strain energy is stored in the beam owing to the loads acting
simultaneously?

Figure P2.64.

2.65. Consider the state of stress given in Fig. 1.20b. Determine how many times more energy is
absorbed in changing the shape than in changing the volume of a unit element. Let E = 200
GPa and ν = 0.3.

2.66. The state of stress at a point is

Decompose this array into a set of dilatational stresses and a set of deviator stresses.
Determine the values of principal deviator stress.

2.67. Calculate the strain energy per unit volume in changing the volume and in changing the shape
of the material at any point on the surface of a steel shaft 120 mm in diameter subjected to
torques of 20 kN · m and moments of 15 kN · m at its ends. Use E = 200 GPa and ν = 0.25.

2.68. The state of stress at a point in a loaded member is represented in Fig. P2.68. Express the
dilatational energy density and the distortional energy density in terms of the given stresses (σ,
τ) at the point and the material properties (E, ν).



Figure P2.68.

2.69. A circular prismatic cantilever is subjected to a torque T and an axial force P at its free end.
The length of the bar is L, the radius is r, and the modulus of elasticity of the material is E.
Determine the total strain energy stored in the bar and its components. Assume  for the
material.



Chapter 3. Problems in Elasticity

3.1 Introduction
As pointed out in Section 1.1, the approaches in widespread use for determining the influence of
applied loads on elastic bodies are the mechanics of materials or elementary theory (also known as
technical theory) and the theory of elasticity. Both must rely on the conditions of equilibrium and
make use of a relationship between stress and strain that is usually considered to be associated with
elastic materials. The essential difference between these methods lies in the extent to which the strain
is described and in the types of simplifications employed.
The mechanics of materials approach uses an assumed deformation mode or strain distribution in the
body as a whole and hence yields the average stress at a section under a given loading. Moreover, it
usually treats separately each simple type of complex loading, for example, axial centric, bending, or
torsion. Although of practical importance, the formulas of the mechanics of materials are best suited
for relatively slender members and are derived on the basis of very restrictive conditions. On the
other hand, the method of elasticity does not rely on a prescribed deformation mode and deals with
the general equations to be satisfied by a body in equilibrium under any external force system.
The theory of elasticity is preferred when critical design constraints such as minimum weight,
minimum cost, or high reliability dictate more exact treatment or when prior experience is limited and
intuition does not serve adequately to supply the needed simplifications with any degree of assurance.
If properly applied, the theory of elasticity should yield solutions more closely approximating the
actual distribution of strain, stress, and displacement. Thus, elasticity theory provides a check on the
limitations of the mechanics of materials solutions. We emphasize, however, that both techniques
cited are approximations of nature, each of considerable value and each supplementing the other. The
influences of material anisotropy, the extent to which boundary conditions depart from reality, and
numerous other factors all contribute to error.
In this chapter, we present the applied theory of elasticity, emphasizing physical significance and
employing engineering notations in Cartesian and polar coordinates. The main purpose here is to give
the reader a clear and basic understanding of methods for solving typical problems in elasticity. The
high localized stresses created by abrupt changes in cross section, as well as the high stresses
produced by concentrated loads and reactions, are treated. Our analysis is carried out for isotropic
and linearly elastic materials under ordinary and elevated temperatures. The later chapters include
solutions by the theory of elasticity on bending of beams, noncircular torsion, and various
axisymmetrically loaded structural and machine components, plates, and shells.

3.2 Fundamental Principles of Analysis
To ascertain the distribution of stress, strain, and displacement within an elastic body subject to a
prescribed system of forces requires consideration of a number of conditions relating to certain
physical laws, material properties, and geometry. These fundamental principles of analysis, also
called the three aspects of solid mechanics problems, summarized in Section 1.3, are conditions of
equilibrium, material behavior or stress–strain relations, and conditions of compatibility.
In addition, the stress, strain, and displacement fields must be such as to satisfy the boundary
conditions for a particular problem. If the problem is dynamic, the equations of equilibrium become



the more general conservation of momentum; conservation of energy may be a further requirement.

Three-Dimensional Problems
The conditions described, and stated mathematically in the previous chapters, are used to derive the
equations of elasticity. In the case of a three-dimensional problem in elasticity, it is required that the
following 15 quantities be ascertained: six stress components, six strain components, and three
displacement components. These components must satisfy 15 governing equations throughout the body
in addition to the boundary conditions: three equations of equilibrium, six stress–strain relations, and
six strain–displacement relations. Note that the equations of compatibility are derived from the
strain–displacement relations, which are already included in the preceding description. Thus, if the
15 expressions are satisfied, the equations of compatibility will also be satisfied. Three-dimensional
problems in elasticity are often very complex. It may not always be possible to use the direct method
of solution in treating the general equations and given boundary conditions. Only a useful indirect
method of solution will be presented in Sections 6.4 and 6.5.

Two-Dimensional Problems
In many engineering applications, ample justification may be found for simplifying assumptions with
respect to the state of strain and stress. Of special importance, because of the resulting decrease in
complexity, are those reducing a three-dimensional problem to one involving only two dimensions. In
this regard, we discuss throughout the text various plane strain and plane stress problems.
This chapter is subdivided into two parts. In Part A, derivations of the governing differential
equations and various approaches for solution of two-dimensional problems in Cartesian and polar
coordinates are considered. Part B treats stress concentrations in members whose cross sections
manifest pronounced changes and cases of load application over small areas.

Part A—Formulation and Methods of Solution

3.3 Plane Strain Problems
Consider a long prismatic member subject to lateral loading (for example, a cylinder under pressure),
held between fixed, smooth, rigid planes (Fig. 3.1). Assume the external force to be functions of the x
and y coordinates only. As a consequence, we expect all cross sections to experience identical
deformation, including those sections near the ends. The frictionless nature of the end constraint
permits x, y deformation but precludes z displacement; that is, w = 0 at z = ±L/2. Considerations of
symmetry dictate that w must also be zero at midspan. Symmetry arguments can again be used to infer
that w = 0 at ±L/4, and so on, until every cross section is taken into account. For the case described,
the strain depends on x and y only:

(3.1)

(3.2)

Figure 3.1. Plane strain in a cylindrical body.



The latter expressions depend on ∂u/∂z and ∂v/∂z vanishing, since w and its derivatives are zero. A
state of plane strain has thus been described wherein each point remains within its transverse plane,
following application of the load. We next develop the equations governing the behavior of bodies
under plane strain.
Substitution of εz = γyz = γxz = 0 into Eq. (2.36) provides the following stress–strain relationships:

(3.3)

and

(3.4)

Because σz is not contained in the other governing expressions for plane strain, it is determined
independently by applying Eq. (3.4). The strain–stress relations, Eqs. (2.34), for this case become

(3.5)
Inasmuch as these stress components are functions of x and y only, the first two equations of (1.14)
yield the following equations of equilibrium of plane strain:

(3.6)

The third equation of (1.14) is satisfied if Fz = 0. In the case of plane strain, therefore, no body force



in the axial direction can exist.
A similar restriction is imposed on the surface forces. That is, plane strain will result in a prismatic
body if the surface forces px and py are each functions of x and y and pz = 0. On the lateral surface, n
= 0 (Fig. 3.2). The boundary conditions, from the first two equations of (1.41), are thus given by

(3.7)

Figure 3.2. Surface forces.

Clearly, the last equation of (1.48) is also satisfied.
In the case of a plane strain problem, therefore, eight quantities, σx, σy, τxy, εx, εy, γxy, u and v, must
be determined so as to satisfy Eqs. (3.1), (3.3), and (3.6) and the boundary conditions (3.7). How
eight governing equations, (3.1), (3.3), and (3.6), may be reduced to three is now discussed.
Three expressions for two-dimensional strain at a point [Eq. (3.1)] are functions of only two
displacements, u and v, and therefore a compatibility relationship exists among the strains [Eq.
(2.11)]:

(3.8)

This equation must be satisfied for the strain components to be related to the displacements as in Eqs.
(3.1). The condition as expressed by Eq. (3.8) may be transformed into one involving components of
stress by substituting the strain–stress relations and employing the equations of equilibrium.
Performing the operations indicated, using Eqs. (3.5) and (3.8), we have

(a)
Next, the first and second equations of (3.6) are differentiated with respect to x and y, respectively,
and added to yield

Finally, substitution of this into Eq. (a) results in



(3.9)

This is the equation of compatibility in terms of stress.
We now have three expressions, Eqs. (3.6) and (3.9), in terms of three unknown quantities: σx, σy,
and τxy. This set of equations, together with the boundary conditions (3.7), is used in the solution of
plane strain problems. For a given situation, after determining the stress, Eqs. (3.5) and (3.1) yield
the strain and displacement, respectively. In Section 3.6, Eqs. (3.6) and (3.9) will further be reduced
to one equation containing a single variable.

3.4 Plane Stress Problems
In many problems of practical importance, the stress condition is one of plane stress. The basic
definition of this state of stress was given in Section 1.8. In this section we present the governing
equations for the solution of plane stress problems.
To exemplify the case of plane stress, consider a thin plate, as in Fig. 3.3, wherein the loading is
uniformly distributed over the thickness, parallel to the plane of the plate. This geometry contrasts
with that of the long prism previously discussed, which is in a state of plane strain. To arrive at
tentative conclusions with regard to the stress within the plate, consider the fact that σz, yxz, and τyz
are zero on both faces of the plate. Because the plate is thin, the stress distribution may be very
closely approximated by assuming that the foregoing is likewise true throughout the plate.

Figure 3.3. Thin plate under plane stress.

We shall, as a condition of the problem, take the body force Fz = 0 and Fx and Fy each to be functions
of x and y only. As a consequence of the preceding, the stress is specified by

(a)

The nonzero stress components remain constant over the thickness of the plate and are functions of x
and y only. This situation describes a state of plane stress. Equations (1.14) and (1.48), together with
this combination of stress, again reduce to the forms found in Section 3.3. Thus, Eqs. (3.6) and (3.7)
describe the equations of equilibrium and the boundary conditions in this case, as in the case of plane
strain.



Substitution of Eq. (a) into Eq. (2.34) yields the following stress–strain relations for plane stress:

(3.10)
and

(3.11a)

Solving for σx + σy from the sum of the first two of Eqs. (3.10) and inserting the result into Eq.
(3.11a), we obtain

(3.11b)

Equations (3.11) define the out-of-plane principal strain in terms of the in-plane stresses (σx, σy) or
strains (εx, εy).

Because εz is not contained in the other governing expressions for plane stress, it can be obtained
independently from Eqs. (3.11); then εz = ∂w/∂z may be applied to yield w. That is, only u and v are
considered as independent variables in the governing equations. In the case of plane stress, therefore,
the basic strain–displacement relations are again given by Eqs. (3.1). Exclusion from Eq. (2.4) of εz =
∂w/∂z makes the plane stress equations approximate, as is demonstrated in the section that follows.
The governing equations of plane stress will now be reduced, as in the case of plane strain, to three
equations involving stress components only. Since Eqs. (3.1) apply to plane strain and plane stress,
the compatibility condition represented by Eq. (3.8) applies in both cases. The latter expression may
be written as follows, substituting strains from Eqs. (3.10) and employing Eqs. (3.6):

(3.12)

This equation of compatibility, together with the equations of equilibrium, represents a useful form
of the governing equations for problems of plane stress.

Stress–Strain Relations for Orthotropic Materials
Three-dimensional stress–strain relations for orthotropic materials in terms of orthotropic moduli of
elasticity and orthotropic Poisson’s ratios were developed in Section 2.11. Now consider an
orthotropic member with orthotropic axes x, y, z subjected to state of stress relative to the xy plane.
Thus, for the orthotropic material in state of plane stress, introducing Eqs. (a) into Eqs. (2.42), we
obtain the strain–stress relations:



(3.13)

and

(3.14)

It is recalled that Ex, Ey, denote the orthotropic moduli of elasticity, Gxy the orthotropic shear modulus
of elasticity, and vxy, vxz, vyz are the orthotropic Poisson ratios. Through the inversion of Eqs. (3.13),
the stress–strain relations are found as

(3.15)
Having the preceding equations, the plane stress orthotropic problems are treated similarly to plane
stress problems for isotropic materials.

3.5 Comparison of Two-Dimensional Isotropic Problems
To summarize the two-dimensional situations discussed, the equations of equilibrium [Eqs. (3.6)],
together with those of compatibility [Eq. (3.9) for plane strain and Eq. (3.12) for plane stress] and the
boundary conditions [Eqs. (3.7)], provide a system of equations sufficient for determination of the
complete stress distribution. It can be shown that a solution satisfying all these equations is, for a
given problem, unique [Ref. 3.1]. That is, it is the only solution to the problem.
In the absence of body forces or in the case of constant body forces, the compatibility equations for
plane strain and plane stress are the same. In these cases, the equations governing the distribution of
stress do not contain the elastic constants. Given identical geometry and loading, a bar of steel and
one of Lucite should thus display identical stress distributions. This characteristic is important in that
any convenient isotropic material may be used to substitute for the actual material, as, for example, in
photoelastic studies.
It is of interest to note that by comparing Eqs. (3.5) with Eqs. (3.10) we can form Table 3.1, which
facilitates the conversion of a plane stress solution into a plane strain solution, and vice versa. For
instance, conditions of plane stress and plane strain prevail in a narrow beam and a very wide beam,
respectively. Hence, in a result pertaining to a thin beam, EI would become EI/(1 – v2) for the case of



a wide beam. The stiffness in the latter case is, for v = 0.3, about 10% greater owing to the prevention
of sidewise displacement (Secs. 5.2 and 13.4).

Table 3.1. Conversion between Plane Stress and Plane Strain Solutions

3.6 Airy’s Stress Function
The preceding sections demonstrated that the solution of two-dimensional problems in elasticity
requires integration of the differential equations of equilibrium [Eqs. (3.6)], together with the
compatibility equation [Eq. (3.9) or (3.12)] and the boundary conditions [Eqs. (3.7)]. In the event that
the body forces Fx and Fy are negligible, these equations reduce to

(a)

(b)

together with the boundary conditions (3.7). The equations of equilibrium are identically satisfied by
the stress function, Φ(x, y), introduced by G. B. Airy, related to the stresses as follows:

(3.16)

Substitution of (3.16) into the compatibility equation, Eq. (b), yields

(3.17)
What has been accomplished is the formulation of a two-dimensional problem in which body forces
are absent, in such a way as to require the solution of a single biharmonic equation, which must of
course satisfy the boundary conditions.
It should be noted that in the case of plane stress we have σz = τxz = τyz = 0 and σx, σy, and τxy
independent of z. As a consequence, γxz = γyz = 0, and εx, εy, εz, and γxy are independent of z. In
accordance with the foregoing, from Eq. (2.12), it is seen that in addition to Eq. (3.17), the following
compatibility equations also hold:



(c)

Clearly, these additional conditions will not be satisfied in a case of plane stress by a solution of Eq.
(3.17) alone. Therefore, such a solution of a plane stress problem has an approximate character.
However, it can be shown that for thin plates the error introduced is negligibly small.

Generalized Plane Strain Problems
It is also important to note that if the ends of the cylinder shown in Fig. 3.1 are free to expand, we
may assume the longitudinal strain εz to be a constant. Such a state may be called that of generalized
plane strain. Therefore, we now have

(3.18)

and

(3.19)
Introducing Eqs. (3.18) into Eq. (3.8) and simplifying, we again obtain Eq. (3.17) as the governing
differential equation. Having determined σx and σy, the constant value of εz can be found from the
condition that the resultant force in the z direction acting on the ends of the cylinder is zero. That is,

(d)

where σz is given by Eq. (3.19). A detailed discussion of pressured thick-cylinders is given in
Section 8.2.

3.7 Solution of Elasticity Problems
Unfortunately, solving directly the equations of elasticity derived may be a formidable task, and it is
often advisable to attempt a solution by an indirect method: the inverse or semi-inverse method. The
inverse method requires examination of the assumed solutions with a view toward finding one that
will satisfy the governing equations and boundary conditions. The semi-inverse method requires the
assumption of a partial solution formed by expressing stress, strain, displacement, or stress function
in terms of known or undetermined coefficients. The governing equations are thus rendered more
manageable.
It is important to note that the preceding assumptions, based on the mechanics of a particular problem,
are subject to later verification. This is in contrast with the mechanics of materials approach, in
which analytical verification does not occur. The applications of indirect and direct methods are
found in examples to follow and in Chapters 5, 6, and 8.
A number of problems may be solved by using a linear combination of polynomials in x and y and



undetermined coefficients of the stress function Clearly, an assumed polynomial form must satisfy the
biharmonic equation and must be of second degree or higher in order to yield a nonzero stress
solution of Eq. (3.16), as described in the following paragraphs. In general, finding the desirable
polynomial form is laborious and requires a systematic approach [Refs. 3.2 and 3.3]. The Fourier
series, indispensible in the analytical treatment of many problems in the field of applied mechanics,
is also often employed (Secs. 10.10 and 13.7).
Another way to overcome the difficulty involved in the solution of Eq. (3.17) is to use the method of
finite differences. Here the governing equation is replaced by series of finite difference equations
(Sec. 7.3), which relate the stress function at stations that are removed from one another by finite
distances. These equations, although not exact, frequently lead to solutions that are close to the exact
solution. The results obtained are, however, applicable only to specific numerical problems.

Polynomial Solutions
An elementary approach to obtaining solutions of the biharmonic equation uses polynomial functions
of various degree with their coefficients adjusted so that ∇4Φ = 0 is satisfied. A brief discussion of
this procedure follows.
A polynomial of the second degree,

(3.20)

satisfies Eq. (3.14). The associated stresses are

All three stress components are constant throughout the body. For a rectangular plate (Fig. 3.4a), it is
apparent that the foregoing may be adapted to represent simple tension (c2 ≠ 0), double tension (c2 ≠
0, a2 ≠ 0), or pure shear (b2 ≠ 0).

A polynomial of the third degree

(3.21)

Figure 3.4. Stress fields of (a) Eq. (3.20) and (b) Eq. (3.21).

fulfills Eq. (3.17). It leads to stresses



For a3 = b3 = c3 = 0, these expressions reduce to

representing the case of pure bending of the rectangular plate (Fig. 3.4b).
A polynomial of the fourth degree,

(3.22)
satisfies Eq. (3.17) if e4 = –(2c4 + a4). The corresponding stresses are

A polynomial of the fifth degree

(3.23)

fulfills Eq. (3.17) provided that
(3a5 + 2c5 + e5)x + (b5 + 2d5 + 3f5)y = 0

It follows that

The components of stress are then

Problems of practical importance may be solved by combining functions (3.20) through (3.23), as
required. With experience, the analyst begins to understand the types of stress distributions arising
from a variety of polynomials.

Example 3.1. Stress Distribution in a Cantilever Beam
A narrow cantilever of rectangular cross section is loaded by a concentrated force at its free end
of such magnitude that the beam weight may be neglected (Fig. 3.5a). Determine the stress
distribution in the beam.
Figure 3.5. Example 3.1. (a) End-loaded cantilever beam; (b) stress distribution away from

ends.



Solution

The situation described may be regarded as a case of plane stress provided that the beam
thickness t is small relative to the beam depth 2h.
The following boundary conditions are consistent with the coordinate system in Fig. 3.5a:

(a)

These conditions simply express the fact that the top and bottom edges of the beam are not loaded.
In addition to Eq. (a), it is necessary, on the basis of zero external loading in the x direction at x =
0, that σx = 0 along the vertical surface at x = 0. Finally, the applied load P must be equal to the
resultant of the shearing forces distributed across the free end:

(b)

The negative sign agrees with the convention for stress discussed in Section 1.5.
For purposes of illustration, three approaches are employed to determine the distribution of stress
within the beam.
Method 1. Inasmuch as the bending moment varies linearly with x and σx at any section depends
on y, it is reasonable to assume a general expression of the form

(c)

in which c1 represents a constant. Integrating twice with respect to y,

(d)

where f1(x) and f2(x) are functions of x to be determined. Introducing the Φ thus obtained into Eq.
(3.17), we have

Since the second term is independent of y, a solution exists for all x and y provided that d4f1/dx4 =



0 and d4f2/dx4 = 0, which, upon integrating, leads to

f1(x) = c2x3 + c3x2 + c4x + c5

f2(x) = c6x3 + c7x2 + c8x + c9

where c2, c3,..., are constants of integration. Substitution of f1(x) and f2(x) into Eq. (d) gives

Expressions for σy and τxy follow from Eq. (3.16):

(e)

At this point, we are prepared to apply the boundary conditions. Substituting Eqs. (a) into (e), we
obtain c2 = c3 = c6 = c7 = 0 and . The final condition, Eq. (b), may now be written as

from which

where  is the moment of inertia of the cross section about the neutral axis. From Eqs. (c)
and (e), together with the values of the constants, the stresses are found to be

(3.24)

The distribution of these stresses at sections away from the ends is shown in Fig. 3.5b.
Method 2. Beginning with bending moments Mz = Px, we may assume a stress field similar to that
for the case of pure bending:

(f)

Equation of compatibility (3.12) is satisfied by these stresses. On the basis of Eqs. (f), the
equations of equilibrium lead to

(g)

From the second expression, τxy can depend only on y. The first equation of (g) together with Eqs.



(f) yields

from which

Here c is determined on the basis of (τxy)y+±h = 0: c = –Ph2/2I. The resulting expression for τxy
satisfies Eq. (b) and is identical with the result previously obtained.
Method 3. The problem may be treated by superimposing the polynomials Φ2 and Φ4,

a2 = c2 = a4 = b4 = c4 = e4 = 0

Thus,

The corresponding stress components are

It is seen that the foregoing satisfies the second condition of Eqs. (a). The first of Eqs. (a) leads to
d4 = –2b2/h2. We then obtain

which when substituted into condition (b) results in b2 = –3P/4ht = Ph2/2I. As before, τxy is as
given in Eqs. (3.24).

Comments
Observe that the stress distribution obtained is the same as that found by employing the
elementary theory. If the boundary forces result in a stress distribution as indicated in Fig. 3.5b,
the solution is exact. Otherwise, the solution is not exact. In any case, however, recall that Saint-
Venant’s principle permits us to regard the result as quite accurate for sections away from the
ends.
Section 5.4 illustrates the determination of the displacement field after derivation of the
curvature–moment relation.

3.8 Thermal Stresses
Consider the consequences of increasing or decreasing the uniform temperature of an entirely
unconstrained elastic body. The resultant expansion or contraction occurs in such a way as to cause a
cubic element of the solid to remain cubic, while experiencing changes of length on each of its sides.
Normal strains occur in each direction unaccompanied by normal stresses. In addition, there are
neither shear strains nor shear stresses. If the body is heated in such a way as to produce a nonuniform
temperature field, or if the thermal expansions are prohibited from taking place freely because of
restrictions placed on the boundary even if the temperature is uniform, or if the material exhibits



anisotropy in a uniform temperature field, thermal stresses will occur. The effects of such stresses can
be severe, especially since the most adverse thermal environments are often associated with design
requirements involving unusually stringent constraints as to weight and volume. This is especially
true in aerospace applications but is of considerable importance, too, in many everyday machine
design applications.

Equations of Thermoelasticity
Solution of thermal stress problems requires reformulation of the stress–strain relationships
accomplished by superposition of the strain attributable to stress and that due to temperature. For a
change in temperature T(x, y), the change of length, δL, of a small linear element of length L in an
unconstrained body is δL = αLT. Here α, usually a positive number, is termed the coefficient of linear
thermal expansion. The thermal strain εt associated with the free expansion at a point is then

(3.25)
The total x and y strains, εx and εy, are obtained by adding to the thermal strains of the type described,
the strains due to stress resulting from external forces:

(3.26a)

In terms of strain components, these expressions become

(3.26b)

Because free thermal expansion results in no angular distortion in an isotropic material, the shearing
strain is unaffected, as indicated. Equations (3.26) represent modified strain–stress relations for
plane stress. Similar expressions may be written for the case of plane strain. The differential
equations of equilibrium (3.6) are based on purely mechanical considerations and are unchanged for
thermoelasticity. The same is true of the strain–displacement relations (2.3) and the compatibility
equation (3.8), which are geometrical in character. Thus, for given boundary conditions (expressed
either as surface forces or displacements) and temperature distribution, thermoelasticity and ordinary
elasticity differ only to the extent of the strain–stress relationship.
By substituting the strains given by Eq. (3.26a) into the equation of compatibility (3.8), employing Eq.
(3.6) as well, and neglecting body forces, a compatibility equation is derived in terms of stress:



(3.27)

Introducing Eq. (3.16), we now have

(3.28)

This expression is valid for plane strain or plane stress provided that the body forces are negligible.
It has been implicit in treating the matter of thermoelasticity as a superposition problem that the
distribution of stress or strain plays a negligible role in influencing the temperature field [Refs. 3.4
and 3.5]. This lack of coupling enables the temperature field to be determined independently of any
consideration of stress or strain. If the effect of the temperature distribution on material properties
cannot be disregarded, the equations become coupled and analytical solutions are significantly more
complex, occupying an area of considerable interest and importance. Numerical solutions can,
however, be obtained in a relatively simple manner through the use of finite difference methods.

Example 3.2. Thermal Stress and Strain in a Beam
A rectangular beam of small thickness t, depth 2h, and length 2L is subjected to an arbitrary
variation of temperature throughout its depth, T = T(y). Determine the distribution of stress and
strain for the case in which (a) the beam is entirely free of surface forces (Fig. 3.6a) and (b) the
beam is held by rigid walls that prevent the x-directed displacement only (Fig. 3.6b).

Figure 3.6. Example 3.2. Rectangular beam in plane thermal stress: (a) unsupported; (b)
placed between two rigid walls.

Solution

The beam geometry indicates a problem of plane stress. We begin with the assumptions

(a)
Direct substitution of Eqs. (a) into Eqs. (3.6) indicates that the equations of equilibrium are
satisfied. Equations (a) reduce the compatibility equation (3.27) to the form

(b)

from which



(c)

where c1 and c2 are constants of integration. The requirement that faces y = ±h be free of surface
forces is obviously fulfilled by Eq. (b).
a. The boundary conditions at the end faces are satisfied by determining the constants that assume

zero resultant force and moment at x = ±L:

(d)

Substituting Eq. (c) into Eqs. (d), it is found that  and .
The normal stress, upon substituting the values of the constants obtained, together with the
moment of inertia I = 2h3t/3 and area A = 2ht, into Eq. (c), is thus

(3.29)

The corresponding strains are

(e)

The displacements can readily be determined from Eqs. (3.1).
From Eq. (3.29), observe that the temperature distribution for T = constant results in zero
stress, as expected. Of course, the strains (e) and the displacements will, in this case, not be
zero. It is also noted that when the temperature is symmetrical about the midsurface (y = 0),
that is, T(y) = T(–y), the final integral in Eq. (3.29) vanishes. For an antisymmetrical
temperature distribution about the mid-surface, T(y) = –T(–y), and the first integral in Eq.
(3.29) is zero.

b. For the situation described, εx = 0 for all y. With σy = τxy = 0 and Eq. (c), Eqs. (3.26a) lead to
c1 = c2 = 0, regardless of how T varies with y. Thus,

(3.30)

and

(f)

Comment
Note that the axial stress obtained here can be large even for modest temperature changes, as can
be verified by substituting properties of a given material.



3.9 Basic Relations in Polar Coordinates
Geometrical considerations related either to the loading or to the boundary of a loaded system often
make it preferable to employ polar coordinates rather than the Cartesian system used exclusively thus
far. In general, polar coordinates are used advantageously where a degree of axial symmetry exists.
Examples include a cylinder, a disk, a wedge, a curved beam, and a large thin plate containing a
circular hole.
The polar coordinate system (r, θ) and the Cartesian system (x, y) are related by the following
expressions (Fig. 3.7a):

(a)

Figure 3.7. (a) Polar coordinates; (b) stress element in polar coordinates.

These equations yield

(b)

Any derivatives with respect to x and y in the Cartesian system may be transformed into derivatives
with respect to r and θ by applying the chain rule:

(c)

Relations governing properties at a point not containing any derivatives are not affected by the
curvilinear nature of the coordinates, as is observed next.

Equations of Equilibrium



Consider the state of stress on an infinitesimal element abcd of unit thickness described by polar
coordinates (Fig. 3.7b). The r and θ-directed body forces are denoted by Fr and Fθ. Equilibrium of
radial forces requires that

Inasmuch as dθ is small, sin(dθ/2) may be replaced by dθ/2 and cos(dθ/2) by 1. Additional
simplication is achieved by dropping terms containing higher-order infinitesimals. A similar analysis
may be performed for the tangential direction. When both equilibrium equations are divided by r dr
dθ, the results are

(3.31)

In the absence of body forces, Eqs. (3.31) are satisfied by a stress function Φ(r, θ) for which the
stress components in the radial and tangential directions are given by

(3.32)

Strain–Displacement Relations
Consider now the deformation of the infinitesimal element abcd, denoting the r and θ displacements
by u and v, respectively. The general deformation experienced by an element may be regarded as
composed of (1) a change in length of the sides, as in Figs. 3.8a and b, and (2) rotation of the sides, as
in Figs. 3.8c and d.

Figure 3.8. Deformation and displacement of an element in polar coordinates.



In the analysis that follows, the small angle approximation sin θ ≈ θ is employed, and arcs ab and cd
are regarded as straight lines. Referring to Fig. 3.8a, it is observed that a u displacement of side ab
results in both radial and tangential strain. The radial strain εr, the deformation per unit length of side
ad, is associated only with the u displacement:

(3.33a)

The tangential strain owing to u, the deformation per unit length of ab, is

(d)
Clearly, a v displacement of element abcd (Fig. 3.8b) also produces a tangential strain,

(e)

since the increase in length of ab is (∂v/∂θ)dθ. The resultant tangential strain, combining Eqs. (d) and
(e), is

(3.33b)

Figure 3.8c shows the angle of rotation eb′f of side a′b′ due to a u displacement. The associated strain
is

(f)
The rotation of side bc associated with a v displacement alone is shown in Fig. 3.8d. Since an initial
rotation of b″ through an angle v/r has occurred, the relative rotation gb″ h of side bc is



(g)

The sum of Eqs. (f) and (g) provides the total shearing strain

(3.33c)

The strain–displacement relationships in polar coordinates are thus given by Eqs. (3.33).

Hooke’s Law
To write Hooke’s law in polar coordinates, we need only replace subscripts x with r and y with θ in
the appropriate Cartesian equations. In the case of plane stress, from Eqs. (3.10) we have

(3.34)
For plane strain, Eqs. (3.5) lead to

(3.35)

Transformation Equations
Replacement of the subscripts x′ with r and y′ with θ in Eqs. (1.17) results in

(3.36)
We can also express σx, τxy, and σy in terms of σr, τrθ, and σθ (Problem 3.26) by replacing θ with –θ in
Eqs. (1.17). Thus,



(3.37)

Similar transformation equations may also be written for the strains and εr, γrθ, and εθ.

Compatibility Equation
It can be shown that Eqs. (3.33) result in the following form of the equation of compatibility:

(3.38)

To arrive at a compatibility equation expressed in terms of the stress function Φ, it is necessary to
evaluate the partial derivatives ∂2Φ/∂x2 and ∂2Φ/∂y2 in terms of r and θ by means of the chain rule
together with Eqs. (a). These derivatives lead to the Laplacian operator:

(3.39)
The equation of compatibility in alternative form is thus

(3.40)

For the axisymmetrical, zero body force case, the compatibility equation is, from Eq. (3.9) [referring
to (3.39)],

(3.41)

The remaining relationships appropriate to two-dimensional elasticity are found in a manner similar
to that outlined in the foregoing discussion.

Example 3.3. State of Stress in a Plate in Tension

A large thin plate is subjected to uniform tensile stress σo at its ends, as shown in Fig. 3.9.
Determine the field of stress existing within the plate.

Figure 3.9. Example 3.3. A plate in uniaxial tension.

Solution



For purposes of this analysis, it will prove convenient to locate the origin of coordinate axes at
the center of the plate as shown. The state of stress in the plate is expressed by

The stress function, Φ = σoy2/2, satisfies the biharmonic equation, Eq. (3.17). The geometry
suggests polar form. The stress function Φ may be transformed by substituting y = r sin θ, with the
following result:

(h)

The stresses in the plate now follow from Eqs. (h) and (3.32):

(3.42)

Clearly, substitution of σy = τxy = 0 could have led directly to the foregoing result, using the
transformation expressions of stress, Eqs. (3.36).

Part B—Stress Concentrations

3.10 Stresses Due to Concentrated Loads
Let us now consider a concentrated force P or F acting at the vertex of a very large or semi-infinite
wedge (Fig. 3.10). The load distribution along the thickness (z direction) is uniform. The thickness of
the wedge is taken as unity, so P or F is the load per unit thickness. In such situations, it is
convenient to use polar coordinates and the semi-inverse method.

Figure 3.10. Wedge of unit thickness subjected to a concentrated load per unit thickness: (a)
knife edge or pivot; (b) wedge cantilever.

In actuality, the concentrated load is assumed to be a theoretical line load and will be spread over an
area of small finite width. Plastic deformation may occur locally. Thus, the solutions that follow are
not valid in the immediate vicinity of the application of load.



Compression of a Wedge (Fig. 3.10a)
Assume the stress function

(a)
where c is a constant. It can be verified that Eq. (a) satisfies Eq. (3.40) and compatibility is ensured.
For equilibrium, the stresses from Eqs. (3.32) are

(b)

The force resultant acting on a cylindrical surface of small radius, shown by the dashed lines in Fig.
3.10a, must balance P. The boundary conditions are therefore expressed by

(c)

(d)

Conditions (c) are fulfilled by the last two of Eqs. (b). Substituting the first of Eqs. (b) into condition
(d) results in

Integrating and solving for c: c = –1/(2α + sin 2α). The stress distribution in the knife edge is
therefore

(3.43)
This solution is due to J. H. Mitchell [Ref. 3.6].
The distribution of the normal stresses σx over any cross section m – n perpendicular to the axis of
symmetry of the wedge is not uniform (Fig. 3.10a). Applying Eq. (3.37) and substituting r = L/cos θ
in Eq. (3.43), we have

(3.44)
The foregoing shows that the stresses increase as L decreases. Observe also that the normal stress is
maximum at the center of the cross section (θ = 0) and minimum at θ = α. The difference between the
maximum and minimum stress, Δσx, is from Eq. (3.44),



(e)

For instance, if α = 10°, Δσx = –0.172P/L is about 6% of the average normal stress calculated from
the elementary formula (σx)elem = –P/A = –P/2L tan α = –2.836P/L. For larger angles, the difference
is greater; the error in the mechanics of materials solution increases (Prob. 3.31). It may be
demonstrated that the stress distribution over the cross section approaches uniformity as the taper of
the wedge diminishes. Analogous conclusions may also be drawn for a conical bar. Note that Eqs.
(3.43) can be applied as well for the uniaxial tension of tapered members by assigning σr a positive
value.

Bending of a Wedge (Fig. 3.10b)
We now employ Φ = cFrθ1 sin θ1, with θ1 measured from the line of action of the force. The
equilibrium condition is

from which, after integration, c = –1/(2α – sin 2α). Thus, by replacing θ1 with 90° – θ, we have

(3.45)
It is seen that if θ1 is larger than π/2, the radial stress is positive, that is, tension exists. Because sin θ
= y/r, cos θ = x/r, and , the normal and shearing stresses at a point over any cross
section m – n, using Eqs. (3.37) and (3.45), may be expressed as

(3.46)

Using Eqs. (3.46), it can be shown that (Prob. 3.33) across a transverse section x = L of the wedge:
σx is a maximum for θ = ±30°, σy is a maximum for θ = ±60°, and τxy is a maximum for θ = ±45°.

To compare the results given by Eqs. (3.46) with the results given by the elementary formulas for
stress, consider the series



It follows that, for small angle α, we can disregard all but the first two terms of this series to obtain

(f)

By introducing the moment of inertia of the cross section m – n, , and Eq. (f), we find
from Eqs. (3.46) that

(g)
For small values of α, the factor in the bracket is approximately equal to unity. The expression for σx
then coincides with that given by the flexure formula, –My/I, of the mechanics of materials. In the
elementary theory, the lateral stress σy given by the second of Eqs. (3.46) is ignored. The maximum
shearing stress τxy obtained from Eq. (g) is twice as great as the shearing stress calculated from
VQ/Ib of the elementary theory and occurs at the extreme fibers (at points m and n) rather than the
neutral axis of the rectangular cross section.
In the case of loading in both compression and bending, superposition of the effects of P and F results
in the following expression for combined stress in a pivot or in a wedge–cantilever:

(3.47)
The foregoing provides the local stresses at the support of a beam of narrow rectangular cross
section.

Concentrated Load on a Straight Boundary (Fig. 3.11a)
Figure 3.11. (a) Concentrated load on a straight boundary of a large plate; (b) a circle of

constant radial stress.

By setting α = π/2 in Eq. (3.43), the result



(3.48)

is an expression for radial stress distribution in a very large plate (semi-infinite solid) under normal
load at its horizontal surface. For a circle of any diameter d with center on the x axis and tangent to
the y axis, as shown in Fig. 3.11b, we have, for point A of the circle, d · cos θ = r. Equation (3.48)
then becomes

(3.49)

We thus observe that, except for the point of load application, the stress is the same at all points on
the circle.
The stress components in Cartesian coordinates may be obtained readily by following a procedure
similar to that described previously for a wedge:

(3.50)

The state of stress is shown on a properly oriented element in Fig. 3.11a.

3.11 Stress Distribution Near Concentrated Load Acting on a Beam
The elastic flexure formula for beams gives satisfactory results only at some distance away from the
point of load application. Near this point, however, there is a significant perturbation in stress
distribution, which is very important. In the case of a beam of narrow rectangular cross section, these
irregularities can be studied by using the equations developed in Section 3.10.
Consider the case of a simply supported beam of depth h, length L, and width b, loaded at the
midspan (Fig. 3.12a). The origin of coordinates is taken to be the center of the beam, with x the axial
axis as shown in the figure. Both force P and the supporting reactions are applied along lines across
the width of the beam. The bending stress distribution, using the flexure formula, is expressed by

Figure 3.12. Beam subjected to a concentrated load P at the midspan.



where I = bh3/12 is the moment of inertia of the cross section. The stress at the loaded section is
obtained by substituting x = 0 into the preceding equation:

(a)
To obtain the total stress along section AB, we apply the superposition of the bending stress
distribution and stresses created by the line load, given by Eq. (3.48) for a semi-infinite plate.
Observe that the radial pressure distribution created by a line load over quadrant ab of cylindrical
surface abc at point A (Fig. 3.12b) produces a horizontal force

(b)

and a vertical force

(c)

applied at A (Fig. 3.12c). In the case of a beam (Fig. 3.12a), the latter force is balanced by the
supporting reactions that give rise to the bending stresses [Eq. (a)]. On the other hand, the horizontal
forces create tensile stresses at the midsection of the beam of

(d)
as well as bending stresses of

(e)

Here Ph/2π is the bending moment of forces P/π about the point 0.
Combining the stresses of Eqs. (d) and (e) with the bending stress given by Eq. (a), we obtain the
axial normal stress distribution over beam cross section AB:

(3.51)

At point B(0, h/2), the tensile stress is

(3.52)

The second term represents a correction to the simple beam formula owing to the presence of the line



load. It is observed that for short beams this stress is of considerable magnitude. The axial normal
stresses at other points in the midsection are determined in a like manner.
The foregoing procedure leads to the poorest accuracy for point B, the point of maximum tensile
stress. A better approximation [see Ref. 3.7] of this stress is given by

(3.53)

Another more detailed study demonstrates that the local stresses decrease very rapidly with increase
of the distance (x) from the point of load application. At a distance equal to the depth of the beam,
they are usually negligible. Furthermore, along the loaded section, the normal stress σx does not obey
a linear law.
In the preceding discussion, the disturbance caused by the reactions at the ends of the beam, which are
also applied as line loads, are not taken into account. To determine the radial stress distribution at the
supports of the beam of narrow rectangular cross section, Eq. (3.47) can be used. Clearly, for the
beam under consideration, we use F = 0 and replace P by P/2 in this expression.

3.12 Stress Concentration Factors
The discussion in Section 3.10 shows that, for situations in which the cross section of a load-carrying
member varies gradually, reasonably accurate results can be expected if we apply equations derived
on the basis of constant section. On the other hand, where abrupt changes in the cross section exist,
the mechanics of materials approach cannot predict the high values of stress that actually exist. The
condition referred to occurs in such frequently encountered configurations as holes, notches, and
fillets. While the stresses in these regions can in some cases (for example, Fig. 3.13) be analyzed by
applying the theory of elasticity, it is more usual to rely on experimental techniques and, in particular,
photoelastic methods. The finite element method (Chap. 7) is very efficient for this purpose.

Figure 3.13. Circular hole in a plate subjected to uniaxial tension: (a) tangential stress
distribution for θ = ±π/2; (b) tangential stress distribution along periphery of the hole.

It is to be noted that irregularities in stress distribution associated with abrupt changes in cross
section are of practical importance in the design of machine elements subject to variable external
forces and stress reversal. Under the action of stress reversal, progressive cracks (Sec. 4.4) are
likely to start at certain points at which the stress is far above the average value. The majority of
fractures in machine elements in service can be attributed to such progressive cracks.



A geometric or theoretical stress concentration factor K is used to relate the maximum stress at the
discontinuity to the nominal stress. The factor is defined by

(3.54)
In the foregoing, the nominal stress is the stress that occurs if the abrupt change in the cross section
did not exist or had no influence on stress distribution. It is important that a stress concentration factor
is applied to the stress computed for the net or reduced cross section. Equation (3.54) is valid as long
as computed values of maximum stress do not exceed the proportional limit of the material.
We note that for ductile materials statically loaded beyond the yield point, the stress concentration
factors decrease to a value approaching unity because of the redistribution of stress around a
discontinuity. That is, the effect of an abrupt change in geometry is nullified, and σmax = σnom, or K =
1; a nearly uniform stress distribution exists across the net section. This is referred to as a fully
plastic condition (Chap. 12). Therefore, the stress-concentration factor is of no significance in design
of a ductile material under static loading. However, for dynamic (such as repeated, impact, or
thermal) loading, even a ductile material may fail as a result of propagation of cracks originating at
points of high stress. So, the presence of stress concentration in the case of dynamic loading must not
be ignored, regardless of whether the material is brittle or ductile. More is said about this in Chapter
4.

Circular Hole in a Large Plate in Simple Tension
The theory of elasticity can be applied to evaluate the stress concentration associated with some
incomplex geometric configurations under static loadings. One solution is that of a large, thin plate
containing a small circular hole of radius a subjected to a tension (Fig. 3.13a). In the following, we
determine the field of stress and compare it with those of Example 3.3.
The boundary conditions appropriate to the circumference of the hole are

(a)

For large distances away from the origin, we set σr, σθ, and τrθ equal to the values found for a solid
plate in Example 3.3. Thus, from Eq. (3.42), for r = ∞,

(b)
For this case, we assume a stress function analogous to Eq. (h) of Example 3.3,

(c)

in which f1 and f2 are yet to be determined. Substituting Eq. (c) into the biharmonic equation (3.40)
and noting the validity of the resulting expression for all θ, we have



(d)

(e)
The solutions of Eqs. (d) and (e) are (Prob. 3.35)

(f)

(g)
where the c’s are the constants of integration. The stress function is then obtained by introducing Eqs.
(f) and (g) into (c). By substituting Φ into Eq. (3.32), the stresses are found to be

(h)

The absence of c4 indicates that it has no influence on the solution.

According to the boundary conditions (b), c1 = c6 = 0 in Eq. (h), because as r → ∞, the stresses must
assume finite values. Then, according to the conditions (a), the equations (h) yield

Also, from Eqs. (b) and (h) we have

Solving the preceding five expressions, we obtain c2 = σo/4, c3 = –a2σo/2, c5 = –σo/4, c7 = –a4σo/4,
and c8 = a2σo/2. The determination of the stress distribution in a large plate containing a small
circular hole is completed by substituting these constants into Eq. (h):

(3.55a)

(3.55b)



(3.55c)

The tangential stress distribution along the edge of the hole, r = a, is shown in Fig. 3.13b using Eq.
(3.55b). We observe from the figure that

The latter indicates that there exists a small area experiencing compressive stress. On the other hand,
from Eq. (3.42), for θ = ±π/2, (σθ)max = σo. The stress concentration factor, defined as the ratio of the
maximum stress at the hole to the nominal stress σo, is therefore K = 3σo/σo = 3.

To depict the variation of σr(r, π/2) and σθ(r, π/2) over the distance from the origin, dimensionless
stresses are plotted against the dimensionless radius in Fig. 3.14. The shearing stress τrθ(r, π/2) = 0.
At a distance of twice the diameter of the hole, that is, r = 4a, we obtain σθ ≈ 1.037σo and σr ≈
0.088σo. Similarly, at a distance r = 9a, we have σθ ≈ 1.006σo and σr ≈ 0.018σo, as is observed in the
figure. Thus, simple tension prevails at a distance of approximately nine radii; the hole has a local
effect on the distribution of stress. This is a verification of Saint-Venant’s principle.

Figure 3.14. Graph of tangential and radial stresses for θ = π/2 versus the distance from the
center of the plate shown in Fig. 3.13a.

Circular Hole in a Large Plate in Biaxial Stresses
The results expressed by Eqs. (3.55) are applied, together with the method of superposition, to the
case of biaxial loading. Distributions of maximum stress σθ(r, π/2), obtained in this way (Prob. 3.36),
are given in Fig. 3.15. Such conditions of stress concentration occur in a thin-walled spherical
pressure vessel with a small circular hole (Fig. 3.15a) and in the torsion of a thin-walled circular
tube with a small circular hole (Fig. 3.15b).
Figure 3.15. Tangential stress distribution for θ = ±π/2 in the plate with the circular hole subject

to biaxial stresses: (a) uniform tension; (b) pure shear.



Elliptic Hole in a Large Plate in Tension
Several simple geometries of practical importance were the subject of stress concentration
determination by Inglis and Neuber on the basis of mathematical analysis discussed in the preceding.
We note that a similar concentration of stress is caused by a small elliptic hole in a thin, large plate
(Fig. 3.16). It can be shown that stress concentration factor at the ends of the major axis of the hole is
given by

(3.56)

Figure 3.16. Elliptical hole in a plate under uniaxial tension.

The maximum tensile stress is thus

(3.57)

where a is the half-width of the ellipse and b is the half-height.
Clearly, the stress increases with the ratio b/a. In the limit, as a → 0, the ellipse becomes a narrow
crack of length 2b, and a very high stress concentration is produced; material will yield plastically
around the ends of the crack or the crack will propagate. To prevent such spreading, holes may be
drilled at the ends of the crack to effectively increase the radii to correspond to a smaller b/a. Thus, a
high stress concentration is replaced by a relatively smaller one. When the hole is a circle, a = b and
K = 3.

Graphs for Stress Concentration Factors
Technical literature contains an abundance of specialized information on stress concentration factors
in the form of graphs, tables, and formulas.* Values of the calculated stress concentration factors for
bars with fillets, holes, and grooves under axial, bending, or torsion loading may be obtained from the
diagram (a nomograph) given by Neuber (1958). The best source book on stress-concentration
factors is Peterson [Ref. 3.8], which compiles the theoretical and experimental results of many
researchers into useful design charts. Some examples of most commonly used graphs for stress



concentration factors for a variety of geometries are provided in Appendix D. Observe that these
charts indicate the advisability of streamlining junctures and transitions of portions that make up a
member; that is, stress concentration can be reduced in intensity by properly proportioning the parts.
Large fillet radii help at reentrant corners. There are many other well-established techniques for
smoothing out the stress distribution in a part and thus reducing the stress-concentration factor.

Example 3.4. Stresses at the Groove in a Circular Shaft

A circular shaft of diameter D with a circumferential circular groove (of diameter d and radius r)
is subjected to axial force P, bending moment M, and torque T (Fig. 3.17). Determine the
maximum principal stress.

Figure 3.17. Example 3.4. A grooved circular shaft with combined loadings.

Solution
For the loading described, the principal stresses occur at a point at the root of the notch, which,
from Eq. (1.20), are given by

(i)

where σx and τxy represent the normal and shear stresses in the reduced cross section of the shaft,
respectively. We have

or

(j)
Here Ka, Kb, and Kt denote the stress concentration factors for axial force, bending moment, and
torque, respectively. These factors are determined from Figures D.5, D.7, and D.6, respectively.
Thus, given a set of shaft dimensions and the loading, formulas (i) and (j) lead to the value of the
maximum principal stress σ1 (see Problem 3.46).

In addition, note that a shear force V may also act on the shaft, as in Fig. 5.11 (Chap. 5). For
slender members, however, this shear contributes very little to the deflection (Sec. 5.4) and to the
maximum stress.



3.13 Contact Stresses
Application of a load over a small area of contact results in unusually high stresses. Situations of this
nature are found on a microscopic scale whenever force is transmitted through bodies in contact.
There are important practical cases when the geometry of the contacting bodies results in large
stresses, disregarding the stresses associated with the asperities found on any nominally smooth
surface. The original analysis of elastic contact stresses, by H. Hertz, was published in 1881. In his
honor, the stresses at the mating surfaces of curved bodies in compression are called Hertz contact
stresses, or simply referred to as the contact stresses. The Hertz problem relates to the stresses
owing to the contact of a sphere on a plane, a sphere on a sphere, a cylinder on a cylinder, and the
like. The practical implications with respect to ball and roller bearings, locomotive wheels, valve
tappets, gear teeth, pin joints in linkages, cams, push rod mechanisms, and numerous machine
components are apparent.
Consider, in this regard, the contact without deformation of two bodies having spherical surfaces of
radii r1 and r2, in the vicinity of contact. If now a collinear pair of forces F acts to press the bodies
together, deformation will occur, and the point of contact will be replaced by a small area of contact.
The first steps taken toward the solution of this problem are the determination of the size and shape of
the contact area as well as the distribution of normal pressure acting on the area. The stresses and
deformations resulting from the interfacial pressure are then evaluated.
The following basic assumptions are generally made in the solution of the contact problem:
1. The contacting bodies are isotropic and elastic.
2. The contact areas are essentially flat and small relative to the radii of curvature of the undeformed

bodies in the vicinity of the interface.
3. The contacting bodies are perfectly smooth, and therefore only normal pressures need be taken into

account.
The foregoing set of assumptions enables an elastic analysis to be conducted. Without going into the
derivations, we shall, in the following sections, introduce some of the results.* It is important to note
that, in all instances, the contact pressure varies from zero at the side of the contact area to a
maximum value po at its center.

3.14 Spherical and Cylindrical Contacts
In this section, maximum contact pressure and deflection of two bodies held in contact by normal
forces to the area of contact will be discussed. The deflection is the relative displacement δ of
centers of the two bodies. It represents the sum of the deflections of the two bodies as they approach
each other.

Two Spheres in Contact
The contact area and corresponding stress distribution between two spheres, loaded with a force F, is
illustrated in Fig. 3.18. Observe that the contact pressure within each sphere has a semi-elliptical
distribution. It varies from 0 at the side of the contact area to a maximum value po on the load axis z at
its center. Here a is the radius of the circular contact area (πa2). Because of forces F, the contact



pressure is distributed over a small circular area of radius a given by
Figure 3.18. (a) Spherical surfaces of two members held in contact by force F; (b) contact stress

distribution. Note: The contact area is a circle of radius a.

(3.58)
where Ei, ri, and vi (with i = 1, 2) are respective moduli of elasticity, radii, and Poisson’s ratios of
the spheres.
For simplicity, Poisson’s ratios v1 and v2 will be taken as 0.3 in the following equations. In so doing,
Eq. (3.58) becomes

(3.59)
The force F causing the contact pressure acts in the direction of the normal axis, perpendicular to the
tangent plane passing through the contact area. The maximum contact pressure is found to be

(3.60)

This is the maximum principal stress owing to the fact that at the center of the contact area, material is
compressed not only in the normal direction but also in the lateral directions. The relationship
between the force of contact F and the relative displacement of the centers of the two elastic spheres,
owing to local deformation, is

(3.61)

In the special case of a sphere of radius r contacting a body of the same material but having a flat
surface (Fig. 3.19a), substitution of r1 = r, r2 = ∞ and E1 = E2 = E into Eqs. (3.59) through (3.61)
leads to



(3.62)

Figure 3.19. Contact load: (a) in sphere on a plane; (b) in ball in a spherical seat.

For the case of a sphere in a spherical seat of the same material (Fig. 3.19b), substituting r2 = –r2
and E1 = E2 = E in Eqs. (3.59) through (3.61), we obtain

(3.63)

Two Parallel Cylinders in Contact
Figure 3.20a shows the contact area and corresponding stress distribution between two spheres,
loaded with a force F. It is seen from the figure that the contact pressure within each cylinder has a
semi-elliptical distribution; it varies from 0 at the side of the contact area to the largest value po at its
center. The quantity a represents the half-width of a narrow rectangular contact area (2aL). Note that
the maximum contact pressure po occurs on the load axis z.

Figure 3.20. Contact load: (a) in two cylindrical rollers; (b) in cylinder on a plane.

The maximum contact pressure is given by



(3.64)

where

(3.65)

In this expression, Ei(νi) and ri, with i = 1, 2, are the moduli of elasticity (Poisson’s ratio) of the two
rollers and the corresponding radii, respectively. If the cylinders have the same elastic modulus E and
Poisson’s ratio v = 0.3, these expressions reduce to

(3.66)
Figure 3.20b depicts the special case of contact between a circular cylinder of radius r and a flat
surface, both bodies of the same material. After rearranging the terms and taking r1 = r and r2 = ∞ in
Eqs. (3.66), we have

(3.67)

In Table 3.2, the preceding and some additional results are presented as an aid in solving problems.
Table 3.2. Maximum Pressure Po and Deflection δ of Two Bodies in Contact



3.15 Contact Stress Distribution
The material along the axis compressed in the z direction tends to expand in the x and y directions.
But, the surrounding material does not permit this expansion. Thus, the compressive stresses are
produced in the x and y directions. The maximum stresses occur along the load axis z, and they are the
principal stresses, as shown in Fig. 3.21. These and the maximum shearing stresses are given in terms
of the maximum contact pressure po by the following equations [Ref. 3.14].

Figure 3.21. Principal stresses below the surface along the load axis z.

Two Spheres in Contact (Figure 3.18a)



(3.68a)

(3.68b)
We have τxy = 0 and

(3.68c)

Figure 3.22a shows a plot of the preceding equations.
Figure 3.22. Stresses below the surface along the load axis (for v = 0.3): (a) two spheres; (b) two

parallel cylinders. Note: All normal stresses are compressive stresses.

Two Parallel Cylinders in Contact (Figure 3.20a)

(3.69a)

(3.69b)

(3.69c)

(3.69d)
A plot of Eqs. (3.69a–c) and the second of Eqs. (3.69d) is given in Fig. 3.22b.
For each case, observe how principal stress decreases below the surface. Figure 3.22 also illustrates
how the shearing stress reaches a maximum value slightly below the surface and decreases. The



maximum shear stresses act on the planes bisecting the planes of maximum and minimum principal
stresses (Sec. 1.15). As already pointed out, all stresses considered in this section exist along the
load axis z. The states of stress off the z axis are not required for design purposes, because the
maxima occur on the z axis.

Example 3.5. Cam and Follower

A camshaft and follower of an intermittent motion mechanism is illustrated in Fig. 3.23. For the
position depicted, the cam exerts a force Fmax on the follower. Determine (a) the maximum stress
at the contact line between the cam and follower; (b) the deflection. Data: Fmax = 8 kN, rc = 40
mm, Df = L = 35 mm, E = 200 GPa, and σyp = 510 MPa. Assumptions: The material of all parts is
hardened on the surface. Frictional forces can be omitted. The rotational speed is slow so that the
loading is considered static.

Figure 3.23. Example 3.5. Schematic representation of camshaft and follower.

Solution
Formulas on the second column of case A of Table 3.2 apply. We begin by calculating the half-
width a of the contact patch. Inasmuch as E1 = E2 = E and Δ = 2/E, hence,

Introducing the given numerical values results in

a. The largest contact pressure is therefore

b. The deflection δ of the cam and follower at the line of contact is given by



Inserting the given data,

Comments
The maximum contact stress is calculated to be smaller than the yield strength of 510 MPa; the
design is satisfactory. Deflection obtained between the cam and the follower is very small and
does not affect the performance of the mechanism.

3.16 General Contact
Consider now two rigid bodies of equal elastic moduli E, compressed by force F (Fig. 3.24). The
load lies along the axis passing through the centers of the bodies and through the point of contact and
is perpendicular to the plane tangent to both bodies at the point of contact. The minimum and
maximum radii of curvature of the surface of the upper body are r1 and ; those of the lower body are
r2 and  at the point of contact. Thus, 1/r1, , 1/r2, and  are the principal curvatures. The sign
convention of the curvature is such that it is positive if the corresponding center of curvature is
inside the body. If the center of the curvature is outside the body, the curvature is negative. (For
example, in Fig. 3.25a, r1,  are positive, while r2,  are negative.)

Figure 3.24. Curved surfaces of different radii of two bodies compressed by forces F.

Let θ be the angle between the normal planes in which radii r1 and r2 lie. Subsequent to loading, the
area of contact will be an ellipse with semiaxes a and b (Table C.1). The maximum contact pressure
is

(3.70)
In this expression the semiaxes are given by



(3.71)

Here

(3.72)

The constants ca and cb are read in Table 3.3. The first column of the table lists values of α,
calculated from

(3.73)

Table 3.3. Factors for Use in Eqs. (3.71)

where



(3.74)

By applying Eq. (3.70), many problems of practical importance may be treated, for example, contact
stresses in ball bearings (Fig. 3.25a), contact stresses between a cylindrical wheel and a rail (Fig.
3.25b), and contact stresses in cam and pushrod mechanisms.

Figure 3.25. Contact load: (a) in a single-row ball bearing; (b) in a cylindrical wheel and rail.

Example 3.6. Steel Railway Car Wheel
A railway car wheel rolls on a rail. Both rail and wheel are made of steel for which E = 210 GPa
and v = 0.3. The wheel has a radius of r1 = 0.4 m, and the cross radius of the rail top surface is r2
= 0.3 m (Fig. 3.25b). Determine the size of the contact area and the maximum contact pressure,
given a compression load of F = 90 kN.

Solution

For the situation described, 1/r′1 = 1/r′2 = 0, and, because the axes of the members are mutually
perpendicular, θ = π/2. The first of Eqs. (3.72) and Eqs. (3.74) reduce to

(3.75)
The proper sign in B must be chosen so that its values are positive. Now Eq. (3.73) has the form

(3.76)

Substituting the given numerical values into Eqs. (3.75), (3.76), and the second of (3.72), we
obtain

Corresponding to this value of α interpolating in Table 3.3, we have



The semiaxes of the elliptical contact are found by applying Eqs. (3.71):

The maximum contact pressure, or maximum principal stress, is thus

Comment

A hardened steel material is capable of resisting this or somewhat higher stress levels for the
body geometries and loading conditions described in this section.
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Problems
Sections 3.1 through 3.8

3.1. A stress distribution is given by

(a)

where the p and c’s are constants. (a) Verify that this field represents a solution for a thin plate
of thickness t (Fig. P3.1); (b) obtain the corresponding stress function; (c) find the resultant
normal and shearing boundary forces (Py and Vx) along edges y = 0 and y = b of the plate.

Figure P3.1.

3.2. If the stress field given by Eq. (a) of Prob. 3.1 acts in the thin plate shown in Fig. P3.1 and p
is a known constant, determine the c’s so that edges x = ±a are free of shearing stress and no
normal stress acts on edge x = a.

3.3. In bending of a rectangular plate (Fig. P3.3), the state of stress is expressed by

Figure P3.3.



(a) What conditions among the constants (the c’s) make the preceding expressions possible?
Body forces may be neglected. (b) Draw a sketch showing the boundary stresses on the plate.

3.4. Given the following stress field within a structural member,

where a and b are constants, determine whether this stress distribution represents a solution
for a plane strain problem. The body forces are omitted.

3.5. Determine whether the following stress functions satisfy the conditions of compatibility for a
two-dimensional problem:

(a)

(b)

Here a, b, c, and d are constants. Also obtain the stress fields that arise from Φ1 and Φ2.

3.6. Figure P3.6 shows a long, thin steel plate of thickness t, width 2h, and length 2a. The plate is
subjected to loads that produce the uniform stresses σo at the ends. The edges at y = ±h are
placed between the two rigid walls. Show that, by using an inverse method, the displacements
are expressed by

3.7. Determine whether the following stress distribution is a valid solution for a two-dimensional
problem:

where a is a constant. Body forces may be neglected.
3.8. The strain distribution in a thin plate has the form

in which a is a small constant. Show whether this strain field is a valid solution of an
elasticity problem. Body forces may be disregarded.

3.9. The components of the displacement of a thin plate (Fig. P3.9) are given by

Figure P3.6.



Figure P3.9.

Here c is a constant and v represents Poisson’s ratio. Determine the stresses σx, σy, and τxy.
Draw a sketch showing the boundary stresses on the plate.

3.10. Consider a rectangular plate with sides a and b of thickness t (Fig. P3.10). (a) Determine the
stresses σx, σy, and τxy for the stress function Φ = px3y, where p is a constant. (b) Draw a
sketch showing the boundary stresses on the plate. (c) Find the resultant normal and shearing
boundary forces (Px, Py, Vx, and Vy) along all edges of the plate.

Figure P3.10.

3.11. Redo Prob. 3.10 for the case of a square plate of side dimensions a and

where p is a constant.
3.12. Resolve Prob. 3.10 a and b for the stress function of the form

where p represents a constant.
3.13. A vertical force P per unit thickness is applied on the horizontal boundary of a semi-infinite

solid plate of unit thickness (Fig. 3.11a). Show that the stress function Φ = –(P/π)y tan–1 (y/x)
results in the following stress field within the plate:

Also plot the resulting stress distribution for σx and τxy at a constant depth L below the
boundary.



3.14. The thin cantilever shown in Fig. P3.14 is subjected to uniform shearing stress τo along its
upper surface (y = +h), while surfaces y = –h and x = L are free of stress. Determine whether
the Airy stress function

Figure P3.14.

satisfies the required conditions for this problem.
Figure P3.15.

3.15. Figure P3.15 shows a thin cantilever beam of unit thickness carrying a uniform load of
intensity p per unit length. Assume that the stress function is expressed by

Φ = ax2 + bx2y + cy3 + dy5 + ex2y3

in which a,..., e are constants. Determine (a) the requirements on a,..., e so that Φ is
biharmonic; (b) the stresses σx, σy, and τxy.

3.16. Consider a thin square plate with sides a. For a stress function ,
determine the stress field and sketch it along the boundaries of the plate. Here p represents a
uniformly distributed loading per unit length. Note that the origin of the x, y coordinate system
is located at the lower-left corner of the plate.

3.17. Consider a thin cantilever loaded as shown in Fig. P3.17. Assume that the bending stress is
given by

(P3.17)

Figure P3.17.



and σz = τxz = τyz = 0. Determine the stress components σy and τxy as functions of x and y.

3.18. Show that for the case of plane stress, in the absence of body forces, the equations of
equilibrium may be expressed in terms of displacements u and v as follows:

(P3.18)

[Hint: Substitute Eqs. (3.10) together with (2.3) into (3.6).]
3.19. Determine whether the following compatible stress field is possible within an elastic

uniformly loaded cantilever beam (Fig. P3.17):

(P3.19)

Here I = 2th3/3 and the body forces are omitted. Given p = 10 kN/m, L = 2 m, h = 100 mm, t =
40 mm, v = 0.3, and E = 200 GPa, calculate the magnitude and direction of the maximum
principal strain at point Q.

3.20. A prismatic bar is restrained in the x (axial) and y directions but free to expand in z
direction. Determine the stresses and strains in the bar for a temperature rise of T1 degrees.

3.21. Under free thermal expansion, the strain components within a given elastic solid are εx = εy =
εz = αT and γxy = γyz = γxz = 0. Show that the temperature field associated with this condition
is of the form

αT = c1x + c2y + c3z + c4

in which the c’s are constants.
3.22. Redo Prob. 3.6 adding a temperature change T1, with all other conditions remaining

unchanged.
3.23. Determine the axial force Px and moment Mz that the walls in Fig. 3.6b apply to the beam for

T = a1y + a2, where a1 and a2 are constant.

3.24. A copper tube of 800-mm2 cross-sectional area is held at both ends as in Fig. P3.24. If at
20°C no axial force Px exists in the tube, what will Px be when the temperature rises to
120°C? Let E = 120 GPa and α = 16.8 × 10–6per °C.

Figure P3.24.



Sections 3.9 through 3.11
3.25. Show that the case of a concentrated load on a straight boundary (Fig. 3.11a) is represented

by the stress function

and derive Eqs. (3.48) from the result.
3.26. Verify that Eqs. (3.37) are determined from the equilibrium of forces acting on the elements

shown in Fig. P3.26.
Figure P3.26.

3.27. Demonstrate that the biharmonic equation ∇4Φ = 0 in polar coordinates can be written as

3.28. Show that the compatibility equation in polar coordinates, for the axisym-metrical problem
of thermal elasticity, is given by

(P3.28)

3.29. Assume that moment M acts in the plane and at the vertex of the wedge–cantilever shown in
Fig. P3.29. Given a stress function

(P3.29a)

Figure P3.29.



determine (a) whether Φ satisfies the condition of compatibility; (b) the stress components σr,
σθ, and τrθ; and (c) whether the expressions

(P3.29b)

represent the stress field in a semi-infinite plate (that is, for α = π/2).
3.30. Referring to Fig. P3.30, verify the results given by Eqs. (b) and (c) of Section 3.11.

Figure P3.30.

3.31. Consider the pivot of unit thickness subject to force P per unit thickness at its vertex (Fig.
3.10a). Determine the maximum values of σx and τxy on a plane a distance L from the apex
through the use of σr given by Eq. (3.43) and the formulas of the elementary theory: (a) take α
= 15°; (b) take α = 60°. Compare the results given by the two approaches.

3.32. Solve Prob. 3.31 for α = 30°.
3.33. Redo Prob. 3.31 in its entirety for the wedge–cantilever shown in Fig. 3.10b.
3.34. A uniformly distributed load of intensity p is applied over a short distance on the straight

edge of a large plate (Fig. P3.34). Determine stresses σx, σy, and τxy in terms of p, θ1, and θ2,
as required. [Hint: Let dP = pdy denote the load acting on an infinitesimal length dy = rd θ/cos
θ (from geometry) and hence dP = prd θ/cos θ. Substitute this into Eqs. (3.50) and integrate
the resulting expressions.]

Figure P3.34.



Sections 3.12 through 3.16
3.35. Verify the result given by Eqs. (f) and (g) of Section 3.12 (a) by rewriting Eqs. (d) and (e) in

the following forms, respectively,

(P3.35)
and by integrating (P3.35); (b) by expanding Eqs. (d) and (e), setting t = In r, and thereby
transforming the resulting expressions into two ordinary differential equations with constant
coefficients.

3.36. Verify the results given in Fig. 3.15 by employing Eq. (3.55b) and the method of
superposition.

3.37. A 20-mm-thick steel bar with a slot (25-mm radii at ends) is subjected to an axial load P, as
shown in Fig. P3.37. What is the maximum stress for P = 180 kN? Use Fig. D.8B to estimate
the value of the K.

Figure P3.37.

3.38. What is the full-fillet radius r and width d of the steel plate with D/d = 1.5 in tension (Fig.
P3.38)? Use a maximum allowable stress of 130 MPa and an allowable nominal stress in the
reduced section of 80 MPa.

Figure P3.38.

3.39. For the 20-mm-thick full-filleted steel bar (σyp = 250 MPa) shown in Fig. P3.38, given the
ratio of r/d = 0.15, find the maximum axial load P that can be applied without causing



permanent deformation.
3.40. As seen in Fig. P3.40, a stepped shaft ABC with built-in end at A carries the torques TB and

TC sections B and C. Based on a stress concentration factor K = 1.6, determine the maximum
shearing stress in the shaft. Given: d1 = 50 mm, d2 = 40 mm, TB = 3 kN · m, and TC = 1 kN ·
m.

Figure P3.40.

3.41. Figure 3.17 illustrates a circular shaft consisting of diameters D and d and a groove of radius
r carries a torque T with M = 0 and P = 0. What is the minimum yield strength in shear
required for the shaft material? Given: D = 40 mm, d = 35 mm, r = 2 mm, and T = 100 N · m.

3.42. A circular shaft having diameters D and d and a groove of radius r (see Fig. 3.17, with M = 0
and P = 0) is made of steel with the allowable shear stress τall. Find the maximum torque T
that can be transmitted by the shaft. Given: D = 40 mm, d = 16 mm, r = 8 mm, and τall = 250
MPa.

3.43. For a flat bar consisting of two portions, both 10-mm thick, and respectively 25-mm and
37.5-mm wide, connected by fillets of radius r = 5 mm (see Fig. D.1), determine the largest
axial load P that can be supported by the bar. Given: σyp = 210 MPa and a factor of safety of n
= 1.4.

Figure P3.44.

3.44. Figure P3.44 depicts a filleted cantilever spring. Find the largest bending stress for two
cases: (a) the fillet radius is r = 5 mm; (b) the fillet radius is r = 10 mm. Given: b = 12 mm
and P = 400 N.

3.45. A thin-walled circular cylindrical vessel of diameter d and wall thickness t is subjected to
internal pressure p (see Table 1.1). Given a small circular hole in the vessel wall, show that
the maximum tangential and axial stresses at the hole are σθ = 5pd/4t and σa = pd/4t,
respectively.

3.46. The shaft shown in Fig. 3.17 has the following dimensions: r = 20 mm, d = 400 mm, and D =
440 mm. The shaft is subjected simultaneously to a torque T = 20 kN · m, a bending moment
M = 10 kN · m, and an axial force P = 50 kN. Calculate at the root of the notch (a) the
maximum principal stress, (b) the maximum shear stress, and (c) the octahedral stresses.



3.47. Redo Prob. 3.46 for r = 10 mm, d = 250 mm, D = 500 mm, T = 5 kN · m, M = 20 kN · m, and
P = 0.

3.48. A 50-mm-diameter ball is pressed into a spherical seat of diameter 75 mm by a force of 500
N. The material is steel (E = 200 GPa, ν = 0.3). Calculate (a) the radius of the contact area,
(b) the maximum contact pressure, and (c) the relative displacement of the centers of the ball
and seat.

3.49. Calculate the maximum contact pressure po in Prob. 3.48 for the cases when the 50-mm-
diameter ball is pressed against (a) a flat surface and (b) an identical ball.

3.50. Calculate the maximum pressure between a steel wheel of radius r1 = 400 mm and a steel
rail of crown radius of the head r2 = 250 mm (Fig. 3.25b) for P = 4 kN. Use E = 200 GPa and
ν = 0.3.

3.51. A concentrated load of 2.5 kN at the center of a deep steel beam is applied through a 10-mm-
diameter steel rod laid across the 100-mm beam width. Compute the maximum contact
pressure and the width of the contact between rod and beam surface. Use E = 200 GPa and ν =
0.3.

3.52. Two identical 400-mm-diameter steel rollers of a rolling mill are pressed together with a
force of 2 MN/m. Using E = 200 GPa and ν = 0.25, compute the maximum contact pressure
and width of contact.

3.53. Determine the size of the contact area and the maximum pressure between two circular
cylinders with mutually perpendicular axes. Denote by r1 and r2 the radii of the cylinders. Use
r1 = 500 mm, r2 = 200 mm, F = 5 kN, E = 210 GPa, and ν = 0.25.

3.54. Solve Prob. 3.53 for the case of two cylinders of equal radii, r1 = r2 = 200 mm.

3.55. Two 340-mm-diameter balls of a rolling mill are pressed together with a force of 400 N.
Calculate (a) the half-width of contact, (b) the maximum contact pressure, (c) the maximum
principal stresses and shear stress in the center of the contact area. Assumption: Both balls
are made of steel of E = 210 GPa and ν = 0.3.

3.56. A 16-mm-diameter cylindrical roller runs on the inside of a ring of inner diameter 100 mm.
Determine (a) the width a of the contact area, (b) the maximum contact pressure. Given: The
roller load is F = 240 kN per meter of axial length. Assumption: Both roller and ring are
made of steel having E = 210 GPa and ν = 0.3.

3.57. It is seen in Fig. P3.25b, a wheel of radius r1 = 480 mm and a rail of crown radius of the
head r2 = 340 mm. Calculate the maximum contact pressure po between the members. Given:
Contact force F = 4 kN. Assumption: Both roller and ring are made of steel having E = 210
GPa and ν = 0.3.

3.58. Determine the maximum pressure at the contact point between the outer race and a ball in the
single-row ball bearing assembly shown in Fig. 3.25a. The ball diameter is 50 mm; the radius
of the grooves, 30 mm; the diameter of the outer race, 250 mm; and the highest compressive
force on the ball, F = 1.8 kN. Take E = 200 GPa and ν = 0.3.

3.59. Redo Prob. 3.58 for a ball diameter of 40 mm and a groove radius of 22 mm. Assume the
remaining data to be unchanged.



Chapter 4. Failure Criteria

4.1 Introduction
The efficiency of design relies in great measure on an ability to predict the circumstances under
which failure is likely to occur. The important variables connected with structural failure include the
nature of the material; the load configuration; the rate of loading; the shape, surface peculiarities, and
temperature of the member; and the characteristics of the medium surrounding the member
(environmental conditions). Exact quantitative formulation of the problem of failure and accurate
means for predicting failure represent areas of current research.
In Chapter 2 the stress–strain properties and characteristics of engineering materials were presented.
We now discuss the mechanical behavior of materials associated with failure. The relations
introduced for each theory are represented in a graphical form, which are extremely useful in
visualizing impending failure in a stressed member. Note that a yield criterion is a part of plasticity
theory (see Sec. 12.1). An introduction to fracture mechanics theory that provides a means to predict
a sudden failure as the basis of a computed stress-intensity factor compared to a tested toughness
criterion for the material is given in Section 4.13. Theories of failure for repeated loading and
response of materials to dynamic loading and temperature change are taken up in the remaining
sections.

4.2 Failure
In the most general terms, failure refers to any action leading to an inability on the part of the structure
or machine to function in the manner intended. It follows that permanent deformation, fracture, or even
excessive linear elastic deflection may be regarded as modes of failure, the last being the most easily
predicted. Another way in which a member may fail is through instability, by undergoing large
displacements from its design configuration when the applied load reaches a critical value, the
buckling load (Chap. 11). In this chapter, the failure of homogeneous materials by yielding or
permanent deformation and by fracture are given particular emphasis.*

Among the variables cited, one of the most important factors in regard to influencing the threshold of
failure is the rate at which the load is applied. Loading at high rate, that is, dynamic loading, may lead
to a variety of adverse phenomena associated with impact, acceleration, and vibration, and with the
concomitant high levels of stress and strain, as well as rapid reversal of stress. In a conventional
tension test, the rate referred to may relate to either the application of load or changes in strain.
Ordinarily, strain rates on the order of 10–4 s–1 are regarded as “static” loading.
Our primary concern in this chapter and in this text is with polycrystalline structural metals or
alloys, which are composed of crystals or grains built up of atoms. It is reasonable to expect that very
small volumes of a given metal will not exhibit isotropy in such properties as elastic modulus.
Nevertheless, we adhere to the basic assumption of isotrophy and homogeneity, because we deal
primarily with an entire body or a large enough segment of the body to contain many randomly
distributed crystals, which behave as an isotropic material would.
The brittle or ductile character of a metal has relevance to the mechanism of failure. If a metal is
capable of undergoing an appreciable amount of yielding or permanent deformation, it is regarded as
ductile. Such materials include mild steel, aluminum and some of its alloys, copper, magnesium, lead,



Teflon, and many others. If, prior to fracture, the material can suffer only small yielding (less than
5%), the material is classified as brittle. Examples are concrete, stone, cast iron, glass, ceramic
materials, and many common metallic alloys. The distinction between ductile and brittle materials is
not as simple as might be inferred from this discussion. The nature of the stress, the temperature, and
the material itself all play a role, as discussed in Section 4.17, in defining the boundary between
ductility and brittleness.

4.3 Failure by Yielding
Whether because of material inhomogeneity or nonuniformity of loading, regions of high stress may be
present in which localized yielding occurs. As the load increases, the inelastic action becomes more
widespread, resulting eventually in a state of general yielding. The rapidity with which the transition
from localized to general yielding occurs depends on the service conditions as well as the
distribution of stress and the properties of the materials. Among the various service conditions,
temperature represents a particularly significant factor.
The relative motion or slip between two planes of atoms (and the relative displacement of two
sections of a crystal that results) represents the most common mechanism of yielding. Slip occurs
most readily along certain crystallographic planes, termed slip or shear planes. The planes along
which slip takes place easily are generally those containing the largest number of atoms per unit area.
Inasmuch as the gross yielding of material represents the total effect of slip occurring along many
randomly oriented planes, the yield strength is clearly a statistical quantity, as are other material
properties such as the modulus of elasticity. If a metal fails by yielding, one can, on the basis of the
preceding considerations, expect the shearing stress to play an important role.
It is characteristic of most ductile materials that after yielding has taken place, the load must be
increased to produce further deformation. In other words, the material exhibits a strengthening termed
strain hardening or cold working, as shown in Section 2.8. The slip occurring on intersecting planes
of randomly oriented crystals and their resulting interaction is believed to be a factor of prime
importance in strain hardening.

Creep
The deformation of a material under short-time loading (as occurs in a simple tension test) is
simultaneous with the increase in load. Under certain circumstances, deformation may continue with
time while the load remains constant. This deformation, beyond that experienced as the material is
initially loaded, is termed creep. Turbine disks and reinforced concrete floors offer examples in
which creep may be a problem. In materials such as lead, rubber, and certain plastics, creep may
occur at ordinary temperatures. Most metals, on the other hand, begin to evidence a loss of strain
hardening and manifest appreciable creep only when the absolute temperature is roughly 35 to 50% of
the melting temperature. The rate at which creep proceeds in a given material depends on the stress,
temperature, and history of loading.
A deformation time curve (creep curve), as in Fig. 4.1, typically displays a segment of decelerating
creep rate (stage 0 to 1), a segment of essentially constant deformation or minimum creep rate (stage
1 to 2), and finally a segment of accelerating creep rate (stage 2 to 3). In the figure, curve A might
correspond to a condition of either higher stress or higher temperature than curve B. Both curves
terminate in fracture at point 3. The creep strength refers to the maximum employable strength of the
material at a prescribed elevated temperature. This value of stress corresponds to a given rate of



creep in the second stage (2 to 3), for example, 1% creep in 10,000 hours. Inasmuch as the creep
stress and creep strain are not linearly related, calculations involving such material behavior are
generally not routine.

Figure 4.1. Typical creep curves for a bar in tension.

Stress relaxation refers to a loss of stress with time at a constant strain or deformation level. It is
essentially a relief of stress through the mechanism of internal creep. Bolted flange connections and
assemblies with shrink or press fits operating at high temperatures are examples of this variable
stress condition. Insight into the behavior of viscoelastic models, briefly described in Section 2.6,
can be achieved by subjecting models to standard creep and relaxation tests [Ref. 4.5]. In any event,
allowable stresses should be kept low in order to prevent intolerable deformations caused by creep.

4.4 Failure by Fracture
Separation of a material under stress into two or more parts (thereby creating new surface area) is
referred to as fracture. The determination of the conditions of combined stress that lead to either
elastic or inelastic termination of deformation, that is, predicting the failure strength of a material, is
difficult. In 1920, A. A. Griffith was the first to equate the strain energy associated with material
failure to that required for the formation of new surfaces. He also concluded that, with respect to its
capacity to cause failure, tensile stress represents a more important influence than does compressive
stress. The Griffith theory assumes the presence in brittle materials of minute cracks, which as a
result of applied stress are caused to grow to macroscopic size, leading eventually to failure.
Although Griffith’s experiments dealt primarily with glass, his results have been widely applied to
other materials. Application to metals requires modification of the theory, however, because failure
does not occur in an entirely brittle manner. Due to major catastrophic failures of ships, buildings,
trains, airplanes, pressure vessels, and bridges in the 1940s and 1950s, increasing attention has been
given by design engineers to the conditions of the growth of a crack. Griffith’s concept has been
considerably expanded by G. R. Irwin [Ref. 4.6].
Brittle materials most commonly fracture through the grains in what is termed a transcrystalline
failure. Here the tensile stress is usually regarded as playing the most significant role. Examination of
the failed material reveals very little deformation prior to fracture.

Types of Fracture in Tension
There are two types of fractures to be considered in tensile tests of polycrystalline specimens: brittle
fracture, as in the case of cast iron, and shear fracture, as in the case of mild steel, aluminum, and
other metals. In the former case, fracture occurs essentially without yielding over a cross section
perpendicular to the axis of the specimen. In the latter case, fracture occurs only after considerable



plastic stretching and subsequent local reduction of the cross-sectional area (necking) of the
specimen, and the familiar cup-and-cone formation is observed.
At the narrowest neck section in cup-and-cone fracture, the tensile forces in the longitudinal fibers
exhibit directions, as shown in Fig. 4.2a. The horizontal components of these forces produce radial
tangential stresses, so each infinitesimal element is in a condition of three-dimensional stress (Fig.
4.2b). Based on the assumption that plastic flow requires a constant maximum shearing stress, we
conclude that the axial tensile stresses σ are nonuniformly distributed over the minimum cross section
of the specimen. These stresses have a maximum value σmax at the center of the minimum cross
section, where σr and σθ are also maximum, and a minimum value σmin at the surface (Fig. 4.2a). The
magnitudes of the maximum and minimum axial stresses depend on the radius a of the minimum cross
section and the radius of the curvature r of the neck. The following relationships are used to calculate
σmax and σmin [Ref. 4.7]:

(a)

Figure 4.2. Necking of a bar in tension: (a) the distribution of the axial stresses; (b) stress
element in the plane of the minimum cross section.

Here σavg = P/πa2 and represents the average stress.

Note that, owing to the condition of three-dimensional stress, the material near the center of the
minimum cross section of the tensile specimen has its ductility reduced. During stretching, therefore,
the crack begins in that region, while the material near the surface continues to stretch plastically.
This explains why the central portion of a cup-and-cone fracture is of brittle character, while near the
surface a ductile type of failure is observed.

Progressive Fracture: Fatigue
Multiple application and removal of load, usually measured in thousands of episodes or more, are
referred to as repeated loading. Machine and structural members subjected to repeated, fluctuating,
or alternating stresses, which are below the ultimate tensile strength or even the yield strength, may



nevertheless manifest diminished strength and ductility. Since the phenomenon described, termed
fatigue, is difficult to predict and is often influenced by factors eluding recognition, increased
uncertainty in strength and in service life must be dealt with [Ref. 4.8]. As is true for brittle behavior
in general, fatigue is importantly influenced by minor structural discontinuities, the quality of surface
finish, and the chemical nature of the environment.
The types of fracture produced in ductile metals subjected to repeated loading differs greatly from
that of fracture under static loading discussed in Section 2.7. In fatigue fractures, two zones of failure
can be obtained: the beachmarks (so called because the resemble ripples left on sand by retracting
waves) region produced by the gradual development of a crack and the sudden fracture region. As the
name suggest, the fracture region is the portion that fails suddenly when the crack reaches its size
limit. The appearance of the surfaces of fracture greatly helps in identifying the cause of crack
initiation to be corrected in redesign.
A fatigue crack is generally observed to have, as its origin, a point of high stress concentration, for
example, the corner of a keyway or a groove. This failure, through the involvement of slip planes and
spreading cracks, is progressive in nature. For this reason, progressive fracture is probably a more
appropriate term than fatigue failure. Tensile stress, and to a lesser degree shearing stress, lead to
fatigue crack propagation, while compressive stress probably does not. The fatigue life or endurance
of a material is defined as the number of stress repetitions or cycles prior to fracture. The fatigue life
of a given material depends on the magnitudes (and the algebraic signs) of the stresses at the extremes
of a stress cycle.
Experimental determination is made of the number of cycles (N) required to break a specimen at a
particular stress level (S) under a fluctuating load. From such tests, called fatigue tests, curves
termed S–N diagrams can be constructed. Various types of simple fatigue stress-testing machines
have been developed. Detailed information on this kind of equipment may be found in publications
such as cited in the footnote of Section 4.2. The simplest is a rotating bar fatigue-testing machine on
which a specimen (usually of circular cross section) is held so that it rotates while under condition of
alternating pure bending. A complete reversal (tension to compression) of stress thus results.
It is usual practice to plot stress versus number of cycles with semilogarithmic scales (that is, σ
against log N). For most steels, the S–N diagram obtained in a simple fatigue test performed on a
number of nominally identical specimens loaded at different stress levels has the appearance shown
in Fig. 4.3. The stress at which the curve levels off is called the fatigue or endurance limit σe.
Beyond the point (σe, Ne) failure will not take place no matter how great the number of cycles. For a
lower number of cycles N < Nf, the loading is regarded as static. At N = Nf cycles, failure occurs at
static tensile fracture stress σf. The fatigue strength for complete stress reversal at a specified
number of cycles Ncr, is designated σcr on the diagram. The S–N curve relationships are utilized in
Section 4.15, in which combined stress fatigue properties are discussed.

Figure 4.3. Typical S–N diagram for steel.



While yielding and fracture may well depend on the rate of load application or the rate at which the
small permanent strains form, we shall, with the exception of Sections 4.16, 4.17, and 12.13, assume
that yielding and fracture in solids are functions solely of the states of stress or strain.

4.5 Yield and Fracture Criteria
As the tensile loading of a ductile member is increased, a point is eventually reached at which
changes in geometry are no longer entirely reversible. The beginning of inelastic behavior (yield) is
thus marked. The extent of the inelastic deformation preceding fracture very much depends on the
material involved.
Consider an element subjected to a general state of stress, where σ1 > σ2 > σ3. Recall that subscripts
1, 2, and 3 refer to the principal directions. The state of stress in uniaxial loading is described by σ1,
equal to the normal force divided by the cross-sectional area, and σ2 = σ3 = 0. Corresponding to the
start of the yielding event in this simple tension test are the quantities pertinent to stress and strain
energy shown in the second column of Table 4.1. Note that the items listed in this column, expressed
in terms of the uniaxial yield point stress σyp, have special significance in predicting failure involving
multiaxial states of stress. In the case of a material in simple torsion, the state of stress is given by τ =
σ1 = –σ3 and σ2 = 0. In the foregoing, τ is calculated using the standard torsion formula.
Corresponding to this case of pure shear, at the onset of yielding, are the quantities shown in the third
column of the table, expressed in terms of yield point stress in torsion, τyp.

Table 4.1. Shear Stress and Strain Energy at the Start of Yielding

The behavior of materials subjected to uniaxial normal stresses or pure shearing stresses is readily
presented on stress–strain diagrams. The onset of yielding or fracture in these cases is considerably
more apparent than in situations involving combined stress. From the viewpoint of mechanical design,
it is imperative that some practical guides be available to predict yielding or fracture under the
conditions of stress as they are likely to exist in service. To meet this need and to understand the basis
of material failure, a number of failure criteria have been developed. In this chapter we discuss only
the classical idealizations of yield and fracture criteria of materials. These strength theories are
structured to apply to particular classes of materials. The three most widely accepted theories to
predict the onset of inelastic behavior for ductile materials under combined stress are described first
in Sections 4.6 through 4.9. This is followed by a presentation of three fracture theories pertaining to



brittle materials under combined stress (Secs. 4.10 through 4.12).
In addition to the failure theories, failure is sometimes predicted conveniently using the interaction
curves discussed in Section 12.7. Experimentally obtained curves of this kind, unless complicated by
a buckling phenomenon, are equivalent to the strength criteria considered here.

4.6 Maximum Shearing Stress Theory
The maximum shearing stress theory is an outgrowth of the experimental observation that a ductile
material yields as a result of slip or shear along crystalline planes. Proposed by C. A. Coulomb
(1736–1806), it is also referred to as the Tresca yield criterion in recognition of the contribution of
H. E. Tresca (1814–1885) to its application. This theory predicts that yielding will start when the
maximum shearing stress in the material equals the maximum shearing stress at yielding in a simple
tension test. Thus, by applying Eq. (1.45) and Table 4.1, we obtain

or

(4.1)

In the case of plane stress, σ3 = 0, there are two combinations of stresses to be considered. When σ1
and σ2 are of opposite sign, that is, one tensile and the other compressive, the maximum shearing
stress is (σ1 – σ2)/2. Thus, the yield condition is given by

(4.2a)
which may be restated as

(4.2b)

When σ1 and σ2 carry the same sign, the maximum shearing stress equals (σ1 – σ3)/2 = σ1/2. Then, for
|σ1| > |σ2| and |σ2| > |σ1|, we have the following yield conditions, respectively:

(4.3)

Figure 4.4 is a plot of Eqs. (4.2) and (4.3). Note that Eq. (4.2) applies to the second and fourth
quadrants, while Eq. (4.3) applies to the first and third quadrants. The boundary of the hexagon thus
marks the onset of yielding, with points outside the shaded region representing a yielded state. The
foregoing describes the Tresca yield condition. Good agreement with experiment has been realized
for ductile materials. The theory offers an additional advantage in its ease of application.

Figure 4.4. Yield criterion based on maximum shearing stress.



4.7 Maximum Distortion Energy Theory
The maximum distortion energy theory, also known as the von Mises theory, was proposed by M. T.
Huber in 1904 and further developed by R. von Mises (1913) and H. Hencky (1925). In this theory,
failure by yielding occurs when, at any point in the body, the distortion energy per unit volume in a
state of combined stress becomes equal to that associated with yielding in a simple tension test.
Equation (2.65) and Table 4.1 thus lead to

(4.4a)

or, in terms of principal stresses,

(4.4b)
For plane stress σ3 = 0, and the criterion for yielding becomes

(4.5a)

or, alternatively,

(4.5b)

Expression (4.5b) defines the ellipse shown in Fig. 4.5a. We note that, for simplification, Eq. (4.4b)
or (4.5a) may be written σe = σyp, where σe is known as the von Mises stress or the effective stress
(Sec. 12.12). For example, in the latter case we have .
Figure 4.5. Yield criterion based on distortion energy: (a) plane stress yield ellipse; (b) a state of

stress defined by position; (c) yield surface for triaxial state of stress.



Returning to Eq. (4.4b), it is observed that only the differences of the principal stresses are involved.
Consequently, addition of an equal amount to each stress does not affect the conclusion with respect
to whether or not yielding will occur. In other words, yielding does not depend on hydrostatic tensile
or compressive stresses. Now consider Fig. 4.5b, in which a state of stress is defined by the position
P(σ1, σ2, σ3) in a principal stress coordinate system as shown. It is clear that a hydrostatic alteration
of the stress at point P requires shifting of this point along a direction parallel to direction n, making
equal angles with coordinate axes. This is because changes in hydrostatic stress involve changes of
the normal stresses by equal amounts. On the basis of the foregoing, it is concluded that the yield
criterion is properly described by the cylinder shown in Fig. 4.5c and that the surface of the cylinder
is the yield surface. Points within the surface represent states of nonyielding. The ellipse of Fig. 4.5a
is defined by the intersection of the cylinder with the σ1, σ2 plane. Note that the yield surface
appropriate to the maximum shearing stress criterion (shown by the dashed lines for plane stress) is
described by a hexagonal surface placed within the cylinder.
The maximum distortion energy theory of failure finds considerable experimental support in situations
involving ductile materials and plane stress. For this reason, it is in common use in design.

4.8 Octahedral Shearing Stress Theory
The octahedral shearing stress theory (also referred to as the Mises–Hencky or simply the von Mises
criterion) predicts failure by yielding when the octahedral shearing stress at a point achieves a
particular value. This value is determined by the relationship of τoct to σyp in a simple tension test.
Referring to Table 4.1, we obtain

(4.6)

where τoct for a general state of stress is given by Eq. (2.66).

The Mises–Hencky criterion may also be viewed in terms of distortion energy [Eq. (2.65)]:

(a)

If it is now asserted that yielding will, in a general state of stress, occur when Uod defined by Eq. (a)
is equal to the value given in Table 4.1, then Eq. (4.6) will again be obtained. We conclude, therefore,
that the octahedral shearing stress theory enables us to apply the distortion energy theory while
dealing with stress rather than energy.

Example 4.1. Circular Shaft under Combined Loads
A circular shaft of tensile strength σyp = 350 MPa is subjected to a combined state of loading
defined by bending moment M = 8 kN · m and torque T = 24 kN · m (Fig. 4.6a). Calculate the
required shaft diameter d in order to achieve a factor of safety n = 2. Apply (a) the maximum
shearing stress theory and (b) the maximum distortion energy theory.
Figure 4.6. Example 4.1. (a) Torsion–flexure of a shaft; (b) Mohr’s circle for torsion–flexure

loading.



Solution

For the situation described, the principal stresses are

(b)

where

Therefore

(4.7)

a. Maximum shearing stress theory: For the state of stress under consideration, it may be
observed from Mohr’s circle, shown in Fig. 4.6b, that σ1 is tensile and σ2 is compressive.
Thus, through the use of Eqs. (b) and (4.2a),

(4.8a)

or

(4.8b)
After substitution of the numerical values, Eq. (4.8b) gives d = 113.8 mm.

b. Maximum distortion energy theory: From Eqs. (4.5a), (b), and (4.7),

(4.9a)

or



(4.9b)

This result may also be obtained from the octahedral shearing stress theory by applying Eqs.
(4.6) and (4.7). Substituting the data into Eq. (4.9b) and solving for d, we have d = 109 mm.

Comments
The diameter based on the shearing stress theory is thus 4.4% larger than that based on the
maximum energy of distortion theory. A 114-mm shaft should be used to prevent initiation of
yielding.

Example 4.2. Conical Tank filled with Liquid

A steel conical tank, supported at its edges, is filled with a liquid of density γ (Fig. P13.32.). The
yield point stress (σyp) of the material is known. The cone angle is 2α. Determine the required
wall thickness t of the tank based on a factor of safety n. Apply (a) the maximum shear stress
theory and (b) the maximum energy of distortion theory.

Solution
The variations of the circumferential and longitudinal principal, stresses σθ = σ1 and σφ = σ2, in
the tank are, respectively (Prob. 13.32),

(c)

These stresses have the largest magnitude:

(d)

a. Maximum shear stress theory: Because σ1 and σ2 are of the same sign and |σ1| > |σ2|, we have,
from the first equations of (4.3) and (d),

The thickness of the tank is found from this equation to be

(e)

b. Maximum distortion energy theory: It is observed in Eq. (d) that the largest values of
principal stress are found at different locations. We shall therefore first locate the section at



which the combined principal stresses are at a critical value. For this purpose, we insert Eq.
(c) into Eq. (4.5a):

(f)
Upon differentiating Eq. (f) with respect to the variable y and equating the result to zero, we
obtain

y = 0.52a
Upon substitution of this value of y into Eq. (f), the thickness of the tank is determined:

(g)

Comments

The thickness based on the maximum shear stress theory is thus 10% larger than that based on the
maximum energy of distortion theory.

4.9 Comparison of the Yielding Theories
Two approaches may be employed to compare the theories of yielding heretofore discussed. The first
comparison equates, for each theory, the critical values corresponding to uniaxial loading and torsion.
Referring to Table 4.1, we have

Observe that the difference in strength predicted by these theories is not substantial. A second
comparison may be made by means of a superposition of Figs. 4.4 and 4.5a. This is left as an exercise
for the reader.
Experiment shows that, for ductile materials, the yield stress obtained from a torsion test is 0.5 to 0.6
times that determined from a simple tension test. We conclude, therefore, that the energy of distortion
theory, or the octahedral shearing stress theory, is most suitable for ductile materials. However, the
shearing stress theory, which gives τyp = 0.50σyp, is in widespread use because it is simple to apply
and offers a conservative result in design.
Consider, as an example, a solid shaft of diameter d and tensile yield strength σyp, subjected to
combined loading consisting of tension P and torque T. The yield criteria based on the maximum
shearing stress and energy of distortion theories, for n = 1, are given by Eqs. (4.8a) and (4.9a):



(a)

where

A comparison of a dimensionless plot of Eqs. (a) with some experimental results is shown in Fig. 4.7.
Note again the particularly good agreement between the maximum distortion energy theory and
experimental data for ductile materials.

Figure 4.7. Yield curves for torsion–tension shaft. The points indicated in this figure are based
on experimental data obtained by G. I. Taylor and H. Quinney [Ref. 4.9].

4.10 Maximum Principal Stress Theory
According to the maximum principal stress theory, credited to W. J. M. Rankine (1820–1872), a
material fails by fracturing when the largest principal stress exceeds the ultimate strength σu in a
simple tension test. That is, at the onset of fracture,

(4.10)

Thus, a crack will start at the most highly stressed point in a brittle material when the largest
principal stress at that point reaches σu.

Note that, while a material may be weak in simple compression, it may nevertheless sustain very high
hydrostatic pressure without fracturing. Furthermore, brittle materials are much stronger in
compression than in tension, while the maximum principal stress criterion is based on the assumption
that the ultimate strength of a material is the same in tension and compression. Clearly, these are
inconsistent with the theory. Moreover, the theory makes no allowance for influences on the failure
mechanism other than those of normal stresses. However, for brittle materials in all stress ranges, the
maximum principal stress theory has good experimental verification, provided that there exists a
tensile principal stress.
In the case of plane stress (σ3 = 0), Eq. (4.10) becomes



(4.11a)

This may be rewritten as

(4.11b)

The foregoing is depicted in Fig. 4.8 with points a, b, and c, d indicating the tensile and compressive
principal stresses, respectively. For this case, the boundaries represent the onset of failure due to
fracture. The area within the boundary of the figure is thus a region of no failure.

Figure 4.8. Fracture criterion based on maximum principal stress.

4.11 Mohr’s Theory
The Mohr theory of failure is used to predict the fracture of a material having different properties in
tension and compression when results of various types of tests are available for that material. This
criterion makes use of the well-known Mohr’s circles of stress. As discussed in Section 1.15, in a
Mohr’s circle representation, the shear and normal components of stress acting on a particular plane
are specified by the coordinates of a point within the shaded area of Fig. 4.9a. Note that τ depends on
σ; that is, |τ| = f(σ).

Figure 4.9. (a) Mohr’s circles of stress; (b) Mohr’s envelopes.

The figure indicates that a vertical line such as PC represents the states of stress on planes with the
same σ but with differing τ. It follows that the weakest of all these planes is the one on which the
maximum shearing stress acts, designated P. The same conclusion can be drawn regardless of the
position of the vertical line between A and B; the points on the outer circle correspond to the weakest
planes. On these planes, the maximum and minimum principal stresses alone are sufficient to decide
whether or not failure will occur, because these stresses determine the outer circle shown in Fig.
4.9a. Using these extreme values of principal stress thus enables us to apply the Mohr approach to
either two- or three-dimensional situations.
The foregoing provides a background for the Mohr theory of failure, which relies on stress plots in σ,



τ coordinates. The particulars of the Mohr approach are presented next.
Experiments are performed on a given material to determine the states of stress that result in failure.
Each such stress state defines a Mohr’s circle. If the data describing states of limiting stress are
derived from only simple tension, simple compression, and pure shear tests, the three resulting circles
are adequate to construct the envelope, denoted by lines AB and A′B′ in Fig. 4.9b. The Mohr envelope
thus represents the locus of all possible failure states. Many solids, particularly those that are brittle,
exhibit greater resistance to compression than to tension. As a consequence, higher limiting shear
stresses will, for these materials, be found to the left of the origin, as shown in the figure.

4.12 Coulomb–Mohr Theory
The Coulomb–Mohr or internal friction theory assumes that the critical shearing stress is related to
internal friction. If the frictional force is regarded as a function of the normal stress acting on a shear
plane, the critical shearing stress and normal stress can be connected by an equation of the following
form (Fig. 4.10a):

(a)

Figure 4.10. (a) Straight-line Mohr’s envelopes; (b) Coulomb–Mohr fracture criterion.

The constants a and b represent properties of the particular material. This expression may also be
viewed as a straight-line version of the Mohr envelope.
For the case of plane stress, σ3 = 0 when σ1 is tensile and σ2 is compressive. The maximum shearing
stress τ and the normal stress σ acting on the shear plane are, from Eqs. (1.22) and (1.23), given by

(b)

Introducing these expressions into Eq. (a), we obtain

(c)
To evaluate the material constants, the following conditions are applied:

(d)

Here σu and  represent the ultimate strength of the material in tension and compression,



respectively. If now Eqs. (d) are inserted into Eq. (c), the results are

from which

(e)

These constants are now introduced into Eq. (c) to complete the equation of the envelope of failure by
fracturing. When this is done, the following expression is obtained, applicable for σ1 > 0, σ2 < 0:

(4.12a)

For any given ratio σ1/σ2, the individual stresses at fracture, σ1 and σ2, can be calculated by applying
expression (4.12a) (Prob. 4.22).
Relationships for the case where the principal stresses have the same sign (σ1 > 0, σ2 > 0 or σ1 < 0, σ2
< 0) may be deduced from Fig. 4.10a without resort to the preceding procedure. In the case of biaxial
tension (now σmin = σ3 = 0, σ1 and σ2 are tensile), the corresponding Mohr’s circle is represented by
diameter OD. Therefore, fracture occurs if either of the two tensile stresses achieves the value σu.
That is,

(4.12b)

For biaxial compression (now σmax = σ3 = 0, σ1 and σ2 are compressive), a Mohr’s circle of diameter
OC is obtained. Failure by fracture occurs if either of the compressive stresses attains the value :

(4.12c)
Figure 4.10b is a graphical representation of the Coulomb–Mohr theory plotted in the σ1, σ2 plane.
Lines ab and af represent Eq. (4.12b), and lines dc and de, Eq. (4.12c). The boundary bc is obtained
through the application of Eq. (4.12a). Line ef completes the hexagon in a manner analogous to Fig.
4.4. Points lying within the shaded area should not represent failure, according to the theory. In the
case of pure shear, the corresponding limiting point is g. The magnitude of the limiting shear stress
may be graphically determined from the figure or calculated from Eq. (4.12a) by letting σ1 = –σ2:

(4.13)

Example 4.3. Tube Torque Requirement

A thin-walled tube is fabricated of a brittle material having ultimate tensile and compressive
strengths σu = 300 MPa and . The radius and thickness of the tube are r = 100 mm and



t = 5 mm. Calculate the limiting torque that can be applied without causing failure by fracture.
Apply (a) the maximum principal stress theory and (b) the Coulomb–Mohr theory.

Solution

The torque and maximum shearing stress are related by the torsion formula:

(f)

The state of stress is described by σ1 = –σ2 = τ, σ3 = 0.

a. Maximum principal stress theory: Equations (4.10) are applied with σ3 replaced by σ2

because the latter is negative: |σ1| = |σ2| = σu. Because we have σ1 = σu = 300 × 106 = τ, from
Eq. (f),

T = 314 × 10–6(300 × 106) = 94.2 kN · m
b. Coulomb–Mohr theory: Applying Eq. (4.12a),

from which τ = 210 MPa. Equation (f) gives T = 314 × 10–6 (210 × 106) = 65.9 kN · m.
Based on the maximum principal stress theory, the torque that can be applied to the tube is thus
30% larger than that based on the Coulomb–Mohr theory. To prevent fracture, the torque
should not exceed 65.9 kN · m.

Example 4.4. Design of a Cast Iron Torsion Bar
A torsion-bar spring made of ASTM grade A-48 cast iron is loaded as shown in Fig. 4.11. The
stress concentration factors are 1.7 for bending and 1.4 for torsion. Determine the diameter d to
resist loads P = 25 N and T = 10 N · m, using a factor of safety n = 2.5. Apply (a) the maximum
principal stress theory and (b) the Coulomb–Mohr theory.

Figure 4.11. Example 4.4. A torsion-bar spring.

Solution

The stresses produced by bending moment M = 0.1P and torque T at the shoulder are

(4.14)



The principal stresses, using Eq. (4.7), are then

(4.15)
Substituting the given data, we have

The foregoing results in

(g)

The allowable ultimate strengths of the material in tension and compression are 170/2.5 = 68
MPa and 650/2.5 = 260 MPa, respectively (see Table D.1).
a. Maximum principal stress theory: On the basis of Eqs. (g) and (4.10),

Similarly, 52.87/d3 = 68 × 106 gives d = 9.2 mm.
b. Coulomb–Mohr theory: Using Eqs. (g) and (4.12a),

Comments
The diameter of the spring based on the Coulomb–Mohr theory is therefore about 4.5% larger
than that based on the maximum principal stress theory. A 12-mm-diameter bar, a commercial
size, should be used to prevent fracture.

4.13 Fracture Mechanics
As noted in Section 4.4, fracture is defined as the separation of a part into two or more pieces. It
normally constitutes a “pulling apart” associated with the tensile stress. This type of failure often
occurs in some materials in an instant. The mechanisms of brittle fracture are the concern of fracture
mechanics, which is based on a stress analysis in the vicinity of a crack or defect of unknown small
radius in a part. A crack is a microscopic flaw that may exist under normal conditions on the surface
or within the material. These may vary from nonmetallic inclusions and microvoids to weld defects,
grinding cracks, and so on. Scratches in the surface due to mishandling can also serve as incipient
cracks.
Recall that the stress concentration factors are limited to elastic structures for which all dimensions
are precisely known, particularly the radius of the curvature in regions of high stress concentrations.
When exists a crack, the stress concentration factor approaches infinity as the root radius approaches
0. Therefore, analysis from the viewpoint of stress concentration factors is inadequate when cracks
are present. Space limitations preclude our including more detailed treatment of the subject of



fracture mechanics. However, the basic principles and some important results are briefly stated.
The fracture mechanics approach starts with an assumed initial minute crack (or cracks), for which
the size, shape, and location can be defined. If brittle failure occurs, it is because the conditions of
loading and environment are such that they cause an almost sudden propagation to failure of the
original crack. When there is fatigue loading, the initial crack may grow slowly until it reaches a
critical size at which the rapid fracture occurs [Ref. 4.8].

Stress-Intensity Factors
In the fracture mechanics approach, a stress-intensity factor, K, is evaluated. This can be thought of as
a measure of the effective local stress at the crack root. The three modes of crack deformation of a
plate are shown in Fig. 4.12. The most currently available values of K are for tensile loading normal
to the crack, which is called mode I (Fig. 4.12a) and denoted as KI. Modes II and III are essentially
associated with the in-plane and out-of-plane loads, respectively (Figs. 4.12b and 4.12c). The
treatment here is concerned only with mode I. We eliminate the subscript and let K = KI.

Figure 4.12. Crack deformation types: (a) mode I, opening; (b) mode II, sliding; (c) mode III,
tearing.

Solutions for numerous configurations, specific initial crack shapes, and orientations have been
developed analytically and by computational techniques, including finite element analysis (FEA)
[Ref. 4.10 and 4.11]. For plates and beams, the stress-intensity factor is defined as

(4.16)

In the foregoing, we have σ = normal stress; λ = geometry factor, depends on a/w, listed in Table 4.2;
a = crack length (or half crack length); w = member width (or half width of member). It is seen from
Eq. (4.16) and Table 4.2 that the stress-intensity factor depends on the applied load and geometry of
the specimen as well as on the size and shape of the crack. The units of the stress-intensity factors are
commonly MPa  in SI and ksi . in U.S. customary system.

Table 4.2. Geometry Factors λ for Initial Crack Shapes



It is obvious that most cracks may not be as basic as shown in Table 4.2. They may be at an angle
embedded in a member or sunken into surface. A shallow surface crack in a component may be
considered semi-elliptical. A circular or elliptical form has proven to be adequate for many studies.
Publications on fracture mechanics provide methods of analysis, applications, and extensive
references [Ref. 4.8 through 4.12].
Interestingly, crack propagation occurring after an increase in load may be interrupted if a small zone
forms ahead of the crack. However, stress intensity has risen with the increase in crack length and, in
time, the crack may advance again a short amount. When stress continues to increase owing to the
reduced load-carrying area or different manner, the crack may grow, leading to failure. A final point
to be noted is that the stress-intensity factors are also used to predict the rate of growth of a fatigue
crack.

4.14 Fracture Toughness
In a toughness test of a given material, the stress-intensity factor at which a crack will propagate is
measured. This is the critical stress-intensity factor, referred to as the fracture toughness and denoted
by the symbol Kc. Ordinarily, testing is done on an ASTM standard specimen, either a beam or



tension member with an edge crack at the root of a notch. Loading is increased slowly, and a record is
made of load versus notch opening. The data are interpreted for the value of fracture toughness [Ref.
4.13].
For a known applied stress acting on a member of known or assumed crack length, when the
magnitude of stress-intensity factor K reaches fracture toughness Kc, the crack will propagate, leading
to rupture in an instant. The factor of safety for fracture mechanics n, strength-to-stress ratio, is thus

(4.17)

Introducing the stress-intensity factor from Eq. (4.16), this becomes

(4.18)
Table 4.3 furnishes the values of the yield strength and fracture toughness for some metal alloys,
measured at room temperature in a single edge-notch test specimen.

Table 4.3. Yield Strength σyp and Fatigue Toughness Kc for Some Materials

For consistency of results, the ASTM specifications require a crack length a or member thickness t
are defined as

(4.19)
This ensures plane strain and flat crack surfaces. The values of a and t found by Eq. (4.19) are also
included in Table 4.3.
Application of the foregoing equations is demonstrated in the solution of the following numerical
problems.

Example 4.5. Aluminum Bracket with an Edge Crack



A 2024-T851 aluminum alloy frame with an edge crack supports a concentrated load (Fig. 4.13a).
Determine the magnitude of the fracture load P based on a safety factor of n = 1.5 for crack length
of a = 4 mm. The dimensions are w = 50 mm, d = 125 mm, and t = 25 mm.
Figure 4.13. Example 4.5. Aluminum bracket with an edge crack under a concentrated load.

Solution

From Table 4.3, we have

Note that that values of a and t both satisfy the table. At the section through the point B (Fig.
4.13b), the bending moment equals M = Pd = 0.125P. Nominal stress, by superposition of two
states of stress for axial force P and moment M, is λσ = λaσa + λbσb. Thus

(a)
in which w and t represent the width and thickness of the member, respectively.
The ratio of crack length to bracket width is a/w = 0.08. For cases of B and C of Table 4.2, λa =
1.12 and λb = 1.02, respectively. Substitution of the numerical values into Eq. (4.19) results in

(b)
Therefore, by Eq. (4.17):

The foregoing gives P = 10.61 kN. Note that the normal stress at fracture, 10.61/1(0.05 – 0.004)
= 9.226 MPa is well below the yield strength of the material.

Example 4.6. Titanium Panel with a Central Crack



A long plate of width 2w is subjected to a tensile force P in longitudinal direction with a safety
factor of n (see case A, Table 4.2). Determine the thickness t required (a) to resist yielding, (b) to
prevent a central crack from growing to a length of 2a. Given: w = 50 mm, P = 50 kN, n = 3, and
a = 10 mm. Assumption: The plate will be made of Ti-6AI-6V alloy.

Solution

Through the use of Table 4.2, we have  and σyp = 1149 MPa.

a. The permissible tensile stress on the basis of the net area is

Therefore

b. From the case A of Table 4.2,

Applying Eq. (4.18), the stress at fracture is

Inasmuch as this stress is smaller than the yield strength, the fracture governs the design; σall =
120.5 MPa. Hence,

Comment

Use a thickness of 13 mm. Both values of a and t satisfy Table 4.3.

4.15 Failure Criteria for Metal Fatigue
A very common type of fatigue loading consists of an alternating sinusoidal stress superimposed on a
uniform stress (Fig. 4.14). Such variation of stress with time occurs, for example, if a forced
vibration of constant amplitude is applied to a structural member already transmitting a constant load.
Referring to the figure, we define the mean stress and the alternating or range stress as follows:

(4.20)

Figure 4.14. Typical stress–time variation in fatigue.



In the case of complete stress reversal, it is clear that the average stress equals zero. The alternating
stress component is the most important factor in determining the number of cycles of load the material
can withstand before fracture; the mean stress level is less important, particularly if σm is negative
(compressive).
As mentioned in Section 4.4, the local character of fatigue phenomena makes it necessary to analyze
carefully the stress field within an element. A fatigue crack can start in one small region of high
alternating stress and propagate, producing complete failure regardless of how adequately
proportioned the remainder of the member may be. To predict whether the state of stress at a critical
point will result in failure, a criterion is employed on the basis of the mean and alternating stresses
and utilizing the simple S–N curve relationships.

Single Loading
Many approaches have been suggested for interpreting fatigue data. Table 4.4 lists commonly
employed criteria, also referred to as mean stress–alternating stress relations. In each case, fatigue
strength for complete stress reversal at a specified number of cycles may have a value between the
fracture stress and endurance stress; that is, σe ≤ σcr ≤ σf (Fig. 4.3).

Table 4.4.a Failure Criteria for Fatigue

Experience has shown that for steel, the Soderberg or modified Goodman relations are the most
reliable for predicting fatigue failure. The Gerber criterion leads to more liberal results and, hence,
is less safe to use. For hard steels, the SAE and modified Goodman relations result in identical
solutions, since for brittle materials σu = σf.

Relationships presented in Table 4.4 together with specified material properties form the basis for
practical fatigue calculations for members under single loading.

Example 4.7. Fatigue Load of Tension-Bending Bar
A square prismatic bar of sides 0.05 m is subjected to an axial thrust (tension) Fm = 90 kN (Fig
4.15). The fatigue strength for completely reversed stress at 106 cycles is 210 MPa, and the static
tensile yield strength is 280 MPa. Apply the Soderberg criterion to determine the limiting value
of completely reversed axial load Fa that can be superimposed to Fm at the midpoint of a side of
the cross section without causing fatigue failure at 106 cycles.



Figure 4.15. Example 4.7. Bar subjected to axial tension Fm and eccentric alternating Fa
loads.

Solution
The alternating and mean stresses are given by

Applying the Soderberg criterion,

we obtain Fa = 152.5 kN.

Combined Loading
Often structural and machine elements are subjected to combined fluctuating bending, torsion, and
axial loading. Examples include crankshafts, propeller shafts, and aircraft wings. Under cyclic
conditions of a general state of stress, it is common practice to modify the static failure theories for
purposes of analysis, substituting the subscripts a, m, and e in the expressions developed in the
preceding sections. In so doing, the maximum distortion energy theory, for example, is expressed as

(4.21)

or

(4.22)

Here σea and σem, the equivalent alternating stress and equivalent mean stress, respectively, replace
the quantity σyp (or σu) used thus far. Relations for other failure theories can be written in a like
manner.



The equivalent mean stress–equivalent alternating stress fatigue failure relations are represented in
Table 4.4, replacing σa and σm with σea and σem. These criteria together with modified static failure
theories are used to compute fatigue strength under combined loading.

Example 4.8. Fatigue Pressure of a Cylindrical Tank

Consider a thin-walled cylindrical tank of radius r = 120 mm and thickness t = 5 mm, subject to
an internal pressure varying from a value of –p/4 to p. Employ the octahedral shear theory
together with the Soderberg criterion to compute the value of p producing failure after 108 cycles.
The material tensile yield strength is 300 MPa and the fatigue strength is σcr = 250 MPa at 108

cycles.

Solution
The maximum and minimum values of the tangential and axial principal stresses are given by

The alternating and mean stresses are therefore

The octahedral shearing stress theory, Eq. (4.6), for cyclic combined stress is expressed as

(4.23)

In terms of computed alternating and mean stresses, Eqs. (4.23) appear as

from which σea = 12.99p and σem = 7.794p.

The Soderberg relation then leads to

Solving this equation, p = 12.82 MPa.

Fatigue Life
Combined stress conditions can lower fatigue life appreciably. The approach described here predicts
the durability of a structural or machine element loaded in fatigue. The procedure applies to any
uniaxial, biaxial, or general state of stress. According to the method, fatigue life Ncr (Fig. 4.3) is
defined by the formula*



(4.24)

in which

(4.25)

Here the values of σe and σf are specified in terms of material static tensile strengths, while Ne and Nf
are given in cycles (Table 4.5). The fatigue-strength reduction factor K, listed in the table, can be
ascertained on the basis of tests or from finite element analysis. The data will be scattered (in
general, K > 0.3), and considerable variance requires the stress analyst to use a statistically
acceptable value. The reversed stress σcr is computed applying the relations of Table 4.4, as required.

Table 4.5. Fracture Stress σf (Fracture Cycles Nf) and Fatigue Strength σe (Fatigue Life Ne) for
Steels

Alternatively, the fatigue life may be determined graphically from the S–N diagram (Fig. 4.3)
constructed by connecting points with coordinates (σf, Nf) and (σe, Ne). Interestingly, b represents the
slope of the diagram. Following is a solution of a triaxial stress problem illustrating the use of the
preceding approach.

Example 4.9. Fatigue Life of an Assembly
A rotating hub and shaft assembly is subjected to bending moment, axial thrust, bidirectional
torque, and a uniform shrink fit pressure so that the following stress levels (in megapascals)
occur at an outer critical point of the shaft:

These matrices represent the maximum and minimum stress components, respectively. Determine
the fatigue life, using the maximum energy of distortion theory of failure together with (a) the SAE
fatigue criterion and (b) the Gerber criterion. The material properties are σu = 2400 MPa and K =



1.

Solution

From Table 4.5, we have σe = 1(2400 × 106)/3 = 800 MPa, Nf = 1 cycle for SAE, Nf = 103 cycles
for Gerber, and Ne = 108 cycles. The alternating and mean values of the stress components are

Upon application of Eq. (4.21), the equivalent alternating and mean stresses are found to be

a. The fatigue strength for complete reversal of stress, referring to Table 4.4, is

Equation (4.25) yields

The fatigue life, from Eq. (4.24), is thus

b. From Table 4.4, we now apply

and

It follows that

Comment
Upon comparison of the results of (a) and (b), we observe that the Gerber criterion overestimates
the fatigue life.

4.16 Impact or Dynamic Loads



Forces suddenly applied to structures and machines are termed shock or impact loads and result in
dynamic loading. Examples include rapidly moving loads, such as those caused by a railroad train
passing over a bridge or a high-speed rocket-propelled test sled moving on a track, or direct impact
loads, such as result from a drop hammer. In machine service, impact loads are due to gradually
increasing clearances that develop between mating parts with progressive wear, for example, steering
gears and axle journals of automobiles.
A dynamic force acts to modify the static stress and strain fields as well as the resistance properties
of a material. Shock loading is usually produced by a sudden application of force or motion to a
member, whereas impact loading results from the collision of bodies. When the time of application of
a load is equal to or smaller than the largest natural period of vibration of the structural element,
shock or impact loading is produced.
Although following a shock or impact loading, vibrations commence, our concern here is only with
the influence of impact forces on the maximum stress and deformation of the body. It is important to
observe that the design of engineering structures subject to suddenly applied loads is complicated by
a number of factors, and theoretical considerations generally serve only qualitatively to guide the
design [Ref. 4.18]. Note that the effect of shock loading on members has been neglected in the
preceding sections. For example, various failure criteria for metal fatigue result in shaft design
equations that include stresses due to fluctuating loads but ignore shock loads. To take into account
shock conditions, correction factors should be used in the design equations. The use of static material
properties in the design of members under impact loading is regarded as conservative and
satisfactory. Details concerning the behavior of materials under impact loading are presented in the
next section.
The impact problem is analyzed using the elementary theory together with the following assumptions:
1. The displacement is proportional to the applied forces, static and dynamic.
2. The inertia of a member subjected to impact loading may be neglected.
3. The material behaves elastically. In addition, it is assumed that there is no energy loss associated

with the local inelastic deformation occurring at the point of impact or at the supports. Energy is
thus conserved within the system.

To idealize an elastic system subjected to an impact force, consider Fig. 4.16, in which is shown a
weight W, which falls through a distance h, striking the end of a freestanding spring. As the velocity
of the weight is zero initially and is again zero at the instant of maximum deflection of the spring
(δmax), the change in kinetic energy of the system is zero, and likewise the work done on the system.
The total work consists of the work done by gravity on the mass as it falls and the resisting work done
by the spring:

(a)

Figure 4.16. A falling weight W striking a spring.



where k is known as the spring constant.
Note that the weight is assumed to remain in contact with the spring. The deflection corresponding to
a static force equal to the weight of the body is simply W/k. This is termed the static deflection, δst.
Then the general expression of maximum dynamic deflection is, from Eq. (a),

(4.26)

or, by rearrangement,

(4.27)

The impact factor K, the ratio of the maximum dynamic deflection to the static deflection, δmax/δst, is
given by

(4.28)
Multiplication of the impact factor by W yields an equivalent static or dynamic load:

(4.29)

To compute the maximum stress and deflection resulting from impact loading, the preceding load may
be used in the relationships derived for static loading.
Two extreme cases are clearly of particular interest. When h ≫ δmax, the work term, Wδmax, in Eq.

(a) may be neglected, reducing the expression to . On the other hand, when h = 0, the
load is suddenly applied, and Eq. (a) becomes δmax = 2δst.

The expressions derived may readily be applied to analyze the dynamic effects produced by a falling
weight causing axial, flexural, or torsional loading. Where bending is concerned, the results obtained
are acceptable for the deflections but poor in accuracy for predictions of maximum stress, with the
error increasing as h/δst becomes larger or h ≫ δst. This departure is attributable to the variation in
the shape of the actual static deflection curve. Thus, the curvature of the beam axis and, in turn, the
maximum stress at the location of the impact may differ considerably from that obtained through



application of the strength of materials approach.
An analysis similar to the preceding may be employed to derive expressions for the case of a weight
W in horizontal motion with a velocity v, arrested by an elastic body. In this instance, the kinetic
energy Wv2/2g replaces W(h + δmax), the work done by W, in Eq. (a). Here g is the gravitational
acceleration. By so doing, the maximum dynamic load and deflection are found to be, respectively,

(4.30)

where δst is the static deflection caused by a horizontal force W.

Example 4.10. Dynamic Stress and Deflection of a Metal Beam

A weight W = 180 N is dropped a height h = 0.1 m, striking at midspan a simply supported beam
of length L = 1.16 m. The beam is of rectangular cross section: a = 25 mm width and b = 75 mm
depth. For a material with modulus of elasticity E = 200 GPa, determine the instantaneous
maximum deflection and maximum stress for the following cases: (a) the beam is rigidly
supported (Fig. 4.17); (b) the beam is supported at each end by springs of stiffness k = 180 kN/m.

Figure 4.17. Example 4.10. A simple beam under center impact due to a falling weight W.

Solution
The deflection of a point at midspan, owing to a statically applied load, is

The maximum static stress, also occurring at midspan, is calculated from

a. The impact factor is, from Eq. (4.28),

We thus have



b. The static deflection of the beam due to its own bending and the deformation of the spring is

The impact factor is thus

Hence,

Comments

It is observed from a comparison of the results that dynamic loading increases the value of
deflection and stress considerably. Also noted is a reduction in stress with increased flexibility
attributable to the springs added to the supports. The values calculated for the dynamic stress are
probably somewhat high, because h ≫ δst in both cases.

4.17 Dynamic and Thermal Effects
We now explore the conditions under which metals may manifest a change from ductile to brittle
behavior, and vice versa. The matter of ductile–brittle transition has important application where the
operating environment includes a wide variation in temperature or when the rate of loading changes.
Let us, to begin with, identify two tensile stresses. The first, σf, leads to brittle fracture, that is, failure
by cleavage or separation. The second, σy, corresponds to failure by yielding or permanent
deformation. These stresses are shown in Fig. 4.18a as functions of material temperature. Referring to
the figure, the point of intersection of the two stress curves defines the critical temperature, Tcr. If, at
a given temperature above Tcr, the stress is progressively increased, failure will occur by yielding,
and the fracture curve will never be encountered. Similarly, for a test conducted at T < Tcr, the yield
curve is not intercepted, inasmuch as failure occurs by fracture. The principal factors governing
whether failure will occur by fracture or yielding are summarized as follows:

Figure 4.18. Typical transition curves for metals.



Temperature
If the temperature of the specimen exceeds Tcr, resistance to yielding is less than resistance to fracture
(σy < σf), and the specimen yields. If the temperature is less than Tcr, then σf < σy, and the specimen
fractures without yielding. Note that σf exhibits only a small decrease with increasing temperature.

Loading Rate
Increasing the rate at which the load is applied increases a material’s ability to resist yielding, while
leaving comparatively unaffected its resistance to fracture. The increased loading rate thus results in a
shift to the position occupied by the dashed curve. Point C moves to C′, meaning that accompanying
the increasing loading rate an increase occurs in the critical temperature. In impact tests, brittle
fractures are thus observed to occur at higher temperatures than in static tests.

Triaxiality
The effect on the transition of a three-dimensional stress condition, or triaxiality, is similar to that of
loading rate. This phenomenon may be illustrated by comparing the tendency to yield in a uniform
cylindrical tensile specimen with that of a specimen containing a circumferential groove. The
unstressed region above and below the groove tends to resist the deformation associated with the
tensile loading of the central region, therefore contributing to a radial stress field in addition to the
longitudinal stress. This state of triaxial stress is thus indicative of a tendency to resist yielding
(become less ductile), the material behaving in a more brittle fashion.
Referring once more to Fig. 4.18b, in the region to the right of Tcr the material behaves in a ductile
manner, while to the left of Tcr it is brittle. At temperatures close to Tcr, the material generally
exhibits some yielding prior to a partially brittle fracture. The width of the temperature range over
which the transition from brittle to ductile failure occurs is material dependent.
Transition phenomena may also be examined from the viewpoint of the energy required to fracture the
material, the toughness rather than the stress (Fig. 4.18b). Notches and grooves serve to reduce the
energy required to cause fracture and to shift the transition temperature, normally very low, to the
range of normal temperatures. This is one reason that experiments are normally performed on notched
specimens.
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Problems
Sections 4.1 through 4.9

4.1. A steel circular bar (σyp = 250 MPa) of d = 60-mm diameter is acted upon by combined
moments M and axial compressive loads P at its ends. Taking M = 1.5 kN · m, determine,
based on the maximum energy of distortion theory of failure, the largest allowable value of P.

4.2. A 5-m-long steel shaft of allowable strength (σall = 100 MPa) supports a torque of T = 325 N
· m and its own weight. Find the required shaft diameter d applying the von Mises theory of
failure. Assumptions: Use ρ = 7.86 Mg/m3 as the mass per unit volume for steel (see Table
D.1). The shaft is supported by frictionless bearings that act as simple supports at its ends.

4.3. At a critical point in a loaded ASTM-A36 structural steel bracket, the plane stresses have the
magnitudes and directions depicted on element A in Fig. P4.3. Calculate whether the loadings
will cause the shaft to fail, based on a safety factor of n = 1.5, applying (a) the maximum shear
stress theory; (b) the maximum energy of distortion theory.

Figure P4.3.

4.4. A steel circular cylindrical bar of 0.1-m diameter is subject to compound bending and tension



at its ends. The material yield strength is 221 MPa. Assume failure to occur by yielding and
take the value of the applied moment to be M = 17 kN · m. Using the octahedral shear stress
theory, determine the limiting value of P that can be applied to the bar without causing
permanent deformation.

4.5. The state of stress at a critical point in a ASTM-A36 steel member is shown in Fig. P4.5.
Determine the factor of safety using (a) the maximum shearing stress criterion; (b) the
maximum energy of distortion criterion.

Figure P4.5.

4.6. At a point in a structural member, yielding occurred under a state of stress given by

Determine the uniaxial tensile yield strength of the material according to (a) maximum
shearing stress theory, and (b) octahedral shear stress theory.

4.7. A circular shaft of 120-mm diameter is subjected to end loads P = 45 kN, M = 4 kN · m, and
T = 11.2 kN · m. Let σyp = 280 MPa. What is the factor of safety, assuming failure to occur in
accordance with the octahedral shear stress theory?

4.8. Determine the width t of the cantilever of height 2t and length 0.25 m subjected to a 450-N
concentrated force at its free end. Apply the maximum energy of distortion theory. The tensile
and compressive strengths of the material are both 280 MPa.

4.9. Determine the required diameter of a steel transmission shaft 10 m in length and of yield
strength 350 MPa in order to resist a torque of up to 500 N · m. The shaft is supported by
frictionless bearings at its ends. Design the shaft according to the maximum shear stress
theory, selecting a factor of safety of 1.5, (a) neglecting the shaft weight, and (b) including the
effect of shaft weight. Use γ = 77 kN/m3 as the weight per unit volume of steel.

4.10. The state of stress at a point is described by

Using σyp = 90 MPa, ν = 0.3, and a factor of safety of 1.2, determine whether failure occurs at
the point for (a) the maximum shearing stress theory, and (b) the maximum distortion energy
theory.

4.11. A solid cylinder of radius 50 mm is subjected to a twisting moment T and an axial load P.
Assume that the energy of distortion theory governs and that the yield strength of the material



is σyp = 280 MPa. Determine the maximum twisting moment consistent with elastic behavior
of the bar for (a) P = 0 and (b) P = 400π kN.

4.12. A simply supported nonmetallic beam of 0.25-m height, 0.1-m width, and 1.5-m span is
subjected to a uniform loading of 6 kN/m. Determine the factor of safety for this loading
according to (a) the maximum distortion energy theory, and (b) the maximum shearing stress
theory. Use σyp = 28 MPa.

4.13. The state of stress at a point in a machine element of irregular shape, subjected to combined
loading, is given by

A torsion test performed on a specimen made of the same material shows that yielding occurs
at a shearing stress of 9 MPa. Assuming the same ratios are maintained between the stress
components, predict the values of the normal stresses σy and σx at which yielding occurs at the
point. Use maximum distortion energy theory.

4.14. A steel rod of diameter d = 50 mm (σyp = 260 MPa) supports an axial load P = 50R and
vertical load R acting at the end of an 0.8-m-long arm (Fig. P4.14). Given a factor of safety n
= 2, compute the largest permissible value of R using the following criteria: (a) maximum
shearing stress and (b) maximum energy of distortion.

Figure P4.14.

4.15. Redo Prob. 4.13 for the case in which the stresses at a point in the member are described by

and yielding occurs at a shearing stress of 140 MPa.
4.16. A thin-walled cylindrical pressure vessel of diameter d = 0.5 m and wall thickness t = 5 mm

is fabricated of a material with 280-MPa tensile yield strength. Determine the internal
pressure p required according to the following theories of failure: (a) maximum distortion
energy and (b) maximum shear stress.



4.17. The state of stress at a point is given by

Taking σyp = 82 MPa and a factor of safety of 1.2, determine whether failure takes place at the
point, using (a) the maximum shearing stress theory and (b) the maximum distortion energy
theory.

4.18. A structural member is subjected to combined loading so that the following stress occur at a
critical point:

The tensile yield strength of the material is 300 MPa. Determine the factor of safety n
according to (a) maximum shearing stress theory and (b) maximum energy of distortion theory.

4.19. Solve Prob. 4.18 assuming that the state of stress at a critical point in the member is given by

The yield strength is σyp = 220 MPa.

Sections 4.10 through 4.12
4.20. A thin-walled, closed-ended metal tube with ultimate strengths in tension σu and compression

, outer and inner diameters D and d, respectively, is under an internal pressure of p and a
torque of T. Calculate the factor of safety n according to the maximum principal stress theory.
Given: σu = 250 MPa,  = 520 MPa, D = 210 mm, d = 200 mm, p = 5 MPa, and T = 50 kN ·
m.

4.21. Design the cross section of a rectangular beam b meters wide by 2b meter deep, supported
and uniformly loaded as illustrated in Fig. P4.21. Assumptions: σall = 120 MPa and w = 150
kN/m. Apply the maximum principal stress theory of failure.

Figure P4.21.

4.22. Simple tension and compression tests on a brittle material reveal that failure occurs by
fracture at σu = 260 MPa and , respectively. In an actual application, the material
is subjected to perpendicular tensile and compressive stresses, σ1 and σ2, respectively, such

that . Determine the limiting values of σ1 and σ2 according to (a) the Mohr theory



for an ultimate stress in torsion of τu = 175 MPa and (b) the Coulomb–Mohr theory. [Hint: For
case (a), the circle representing the given loading is drawn by a trial-and-error procedure.]

4.23. The state of stress at a point in a cast-iron structure (σu = 290 MPa, ) is
described by σx = 0, σy = –180 MPa, and τxy = 200 MPa. Determine whether failure occurs at
the point according to (a) the maximum principal stress criterion and (b) the Coulomb–Mohr
criterion.

4.24. A thin-walled cylindrical pressure vessel of 250-mm diameter and 5-mm thickness is
subjected to an internal pressure pi = 2.8 MPa, a twisting moment of 31.36 kN · m, and an
axial end thrust (tension) P = 45 kN. The ultimate strengths in tension and compression are
210 and 500 MPa, respectively. Apply the following theories to evaluate the ability of the
tube to resist failure by fracture: (a) Coulomb–Mohr and (b) maximum principal stress.

4.25. A piece of chalk of ultimate strength σu is subjected to an axial force producing a tensile
stress of 3σu/4. Applying the principal stress theory of failure, determine the shear stress
produced by a torque that acts simultaneously on the chalk and the orientation of the fracture
surface.

4.26. The ultimate strengths in tension and compression of a material are 420 and 900 MPa,
respectively. If the stress at a point within a member made of this material is

determine the factor of safety according to the following theories of failure: (a) maximum
principal stress and (b) Coulomb–Mohr.

4.27. A plate, t meters thick, is fabricated of a material having ultimate strengths in tension and
compression of σu and  Pa, respectively. Calculate the force P required to punch a hole of d
meters in diameter through the plate (Fig. P4.27). Employ (a) the maximum principal stress
theory and (b) the Mohr–Coulomb theory. Assume that the shear force is uniformly distributed
through the thickness of the plate.

Figure P4.27.

Sections 4.13 through 4.17
4.28. A 2024-T851 aluminum alloy panel, 125-mm wide and 20-mm thick, is loaded in tension in

longitudinal direction. Approximate the maximum axial load P that can be applied without
causing sudden fracture when an edge crack grows to a 25-mm length (Case B, Table 4.2).

4.29. An AISI 4340 steel ship deck, 10-mm wide and 5-mm thick, is subjected to longitudinal
tensile stress of 100 MPa. If a 60-mm-long central transverse crack is present (Case A, Table
4.2), estimate (a) the factor of safety against crack; (b) tensile stress at fracture.



4.30. A long Ti-6Al-6V alloy plate of 130-mm width is loaded by a 200-kN tensile force in
longitudinal direction with a safety factor of 2.2. Determine the thickness t required to prevent
a central crack to grow to a length of 200 mm (Case A, Table 4.2).

4.31. Resolve Example 4.5 if the frame is made of AISI 4340 steel. Use a = 8 mm, d = 170 mm, w
= 40 mm, t = 10 mm, and n = 1.8.

4.32. A 2024-T851 aluminum-alloy plate, w = 150 mm wide and t = 30 mm thick, is under a
tensile loading. It has a 24-mm-long transverse crack on one edge (Case B, Table 4.2).
Determine the maximum allowable axial load P when the plate will undergo sudden fracture.
Also find the nominal stress at fracture.

4.33. An AISI-4340 steel pressure vessel of 60-mm diameter and 5-mm wall thickness contains a
12-mm-long crack (Fig. P4.33). Calculate the pressure that will cause fracture when (a) the
crack is longitudinal; (b) the crack is circumferential. Assumption: A factor of safety n = 2
and geometry factor λ = 1.01 are used (Table 4.2).

Figure P4.33.

4.34. A 7075-T7351 aluminum alloy beam with a = 48-mm-long edge crack is in pure bending
(see Case D, Table 4.2). Using w = 120 mm and t = 30 mm, find the maximum moment M that
can be applied without causing sudden fracture.

4.35. Redo Example 4.7 using the SAE criterion. Take σf = 700 MPa, σcr = 240 MPa, and Fm =
120 kN.

4.36. Redo Example 4.8 employing the maximum shear stress theory together with the Soderberg
criterion.

4.37. A bolt is subjected to an alternating axial load of maximum and minimum values Fmax and
Fmin. The static tensile ultimate and fatigue strength for completely reversed stress of the
material are σu and σcr. Verify that, according to the modified Goodman relation, the
expression

(P4.37)

represents the required cross-sectional area of the bolt.
4.38. An electrical contact contains a flat spring in the form of a cantilever beam, b = 5 mm wide

by L = 50 mm long by t mm thick, is subjected at its free end to a load P that varies
continuously from 0 to 10 N (Fig. P4.38). Employ the Soderberg criterion to calculate the
value of t based on yield strength σyp = 1050 MPa, fatigue strength σcr = 510 MPa, and a



factor of safety n = 1.5.
Figure P4.38.

4.39. A small leaf spring b = 10 mm wide by L = 125 mm long by t mm thick is simply supported
at its ends and subjected to a center load P that varies continuously from 0 to 20 N (Fig.
P4.39). Using the modified Goodman criterion, determine the value of t, given a fatigue
strength σcr = 740 MPa, ultimate tensile strength σu = 1500 MPa, and safety factor of n = 2.5.

Figure P4.39.

4.40. A circular rotating shaft is subjected to a static bending moment M and a torque that varies
from a value of zero to T. Apply the energy of distortion theory together with Soderberg’s
relation to obtain the following expression for the required shaft radius:

(P4.40)

4.41. Compute the fatigue life of the rotating hub and shaft assembly described in Example 4.9 if at
a critical point in the shaft the state of stress is described by σx, max = 1000 MPa, σx, min = –
800 MPa, τxy, max = 300 MPa, τxy, min = –100 MPa, and σy = σz = τxz = τyz = 0. Employ the
maximum shear stress theory of failure together with the four criteria given in Table 4.4. Take
σyp = 1600 MPa, σu = 2400 MPa, and K = 1.

4.42. Determine the fatigue life of a machine element subjected to the following respective
maximum and minimum stresses (in megapascals):

Use the maximum energy of distortion theory of failure together with the (a) modified
Goodman criterion and (b) Soderberg criterion. Let σu = 1600 MPa, σyp = 1000 MPa, and K =
1.

4.43. A steel cantilever of width t = 0.05 m, height 2c = 0.1 m, and length L = 1.2 m is subjected to
a downward-acting alternating end load of maximum and minimum values Pmax and Pmin = 10
kN. The static tensile yield and fatigue strengths for the completely reversed stress of the
material are σyp = 300 MPa and σcr = 200 MPa. Use the Soderberg criterion to determine the
value of Pmax that will result in failure.



4.44. A sliding collar of m = 80 kg falls onto a flange at the bottom of a vertical rod (Fig. P4.44).
Calculate the height h through which the mass m should drop to produce a maximum stress in
the rod of 350 MPa. The rod has length L = 2m, cross-sectional area A = 250 mm2, and
modulus of elasticity E = 105 GPa.

Figure P4.44.

4.45. A sliding collar W is dropped from a distance h onto a flange at the bottom of the rod of
length L, cross-sectional area A, and modulus of elasticity E (Fig. 4.44). Verify that the weight
may be expressed in the form

(P4.45)

in which σmax represents the maximum stress in the rod.

4.46. A 0.125-m-diameter and 1.5-m-long circular shaft has a flywheel at one end and rotates at
240 rpm. The shaft is suddenly stopped at the free end. Determine the maximum shear stress
and the maximum angle of twist produced by the impact. It is given that the shaft is made of
steel with G = 80.5 GPa, ν = 0.3, the weight of the flywheel is W = 1.09 kN, and the
flywheel’s radius of gyration is r = 0.35 m. [Note that kinetic energy Ek = Wω2r2/2g = Tφ/2.
Here ω, g, T, φ represent the angular velocity, acceleration of gravity, torque, and angle of
twist, respectively.]

4.47. A weight W is dropped from a height h = 0.75 m onto the free end of a cantilever beam of
length L = 1.2 m. The beam is of 50-mm by 50-mm square cross section. Determine the value
of W required to result in yielding. Omit the weight of the beam. Let σyp = 280 MPa and E =
200 GPa.



Chapter 5. Bending of Beams

5.1 Introduction
In this chapter we are concerned with the bending of straight as well as curved beams—that is,
structural elements possessing one dimension significantly greater than the other two, usually loaded
in a direction normal to the longitudinal axis. The elasticity or “exact” solutions of beams that are
straight and made of homogeneous, linearly elastic materials are taken up first. Then, solutions for
straight beams using mechanics of materials or elementary theory, special cases involving members
made of composite materials, and the shear center are considered. The deflections and stresses in
beams caused by pure bending as well as those due to lateral loading are discussed. We analyze
stresses in curved beams using both exact and elementary methods, and compare the results of the
various theories.
Except in the case of very simple shapes and loading systems, the theory of elasticity yields beam
solutions only with considerable difficulty. Practical considerations often lead to assumptions with
regard to stress and deformation that result in mechanics of materials or elementary theory solutions.
The theory of elasticity can sometimes be applied to test the validity of such assumptions. The role of
the theory of elasticity is then threefold. It can serve to place limitations on the use of the elementary
theory, it can be used as the basis of approximate solutions through numerical analysis, and it can
provide exact solutions when configurations of loading and shape are simple.

Part A—Exact Solutions

5.2 Pure Bending of Beams of Symmetrical Cross Section
The simplest case of pure bending is that of a beam possessing a vertical axis of symmetry, subjected
to equal and opposite end couples (Fig. 5.1a). The semi-inverse method is now applied to analyze
this problem. The moment Mz shown in the figure is defined as positive, because it acts on a positive
(negative) face with its vector in the positive (negative) coordinate direction. This sign convention
agrees with that of stress (Sec. 1.5). We shall assume that the normal stress over the cross section
varies linearly with y and that the remaining stress components are zero:

(5.1)

Figure 5.1. (a) Beam of singly symmetric cross section in pure bending; (b) stress distribution
across cross section of the beam.

Here k is a constant, and y = 0 contains the neutral surface, that is, the surface along which σx = 0.
The intersection of the neutral surface and the cross section locates the neutral axis (abbreviated
N.A.). Figure 5.1b shows the linear stress field in a section located an arbitrary distance a from the
left end.



Since Eqs. (5.1) indicate that the lateral surfaces are free of stress, we need only be assured that the
stresses are consistent with the boundary conditions at the ends. These conditions of equilibrium
require that the resultant of the internal forces be zero and that the moments of the internal forces
about the neutral axis equal the applied moment Mz:

(5.2)
where A is the cross-sectional area. It should be noted that the zero stress components τxy, τxz in Eqs.
(5.1) satisfy the conditions that no y- and z-directed forces exist at the end faces, and because of the y
symmetry of the section, σx = ky produces no moment about the y axis. The negative sign in the second
expression implies that a positive moment Mz is one that results in compressive (negative) stress at
points of positive y. Substitution of Eqs. (5.1) into Eqs. (5.2) yields

(5.3a, b)

Inasmuch as k ≠ 0, Eq. (5.3a) indicates that the first moment of cross-sectional area about the neutral
axis is zero. This requires that the neutral and centroidal axes of the cross section coincide.
Neglecting body forces, it is clear that the equations of equilibrium (3.4), are satisfied by Eqs. (5.1).
It may readily be verified also that Eqs. (5.1) together with Hooke’s law fulfill the compatibility
conditions, Eq. (2.12). Thus, Eqs. (5.1) represent an exact solution.
The integral in Eq. (5.3b) defines the moment of inertia Iz of the cross section about the z axis of the
beam cross section (Appendix C); therefore

(a)

An expression for normal stress can now be written by combining Eqs. (5.1) and (a):

(5.4)

This is the familiar elastic flexure formula applicable to straight beams.
Since, at a given section, M and I are constant, the maximum stress is obtained from Eq. (5.4) by
taking |y|max = c:

(5.5)

Here S is the elastic section modulus. Formula (5.5) is widely employed in practice because of its
simplicity. To facilitate its use, section moduli for numerous common sections are tabulated in various
handbooks. A fictitious stress in extreme fibers, computed from Eq. (5.5) for experimentally obtained



ultimate bending moment (Sec. 12.7), is termed the modulus of rupture of the material in bending.
This, σmax = Mu/S, is frequently used as a measure of the bending strength of materials.

Kinematic Relationships
To gain further insight into the beam problem, consideration is now given to the geometry of
deformation, that is, beam kinematics. Fundamental to this discussion is the hypothesis that sections
originally plane remain so subsequent to bending. For a beam of symmetrical cross section, Hooke’s
law and Eq. (5.4) lead to

(5.6)
where EIz is the flexural rigidity.

Let us examine the deflection of the beam axis, the axial deformation of which is zero. Figure 5.2a
shows an element of an initially straight beam, now in a deformed state. Because the beam is
subjected to pure bending, uniform throughout, each element of infinitesimal length experiences
identical deformation, with the result that the beam curvature is everywhere the same. The deflected
axis of the beam or the deflection curve is thus shown deformed, with radius of curvature rx. The
curvature of the beam axis in the xy plane in terms of the y deflection v is

(5.7)

Figure 5.2. (a) Segment of a bent beam; (b) geometry of deformation.

where the approximate form is valid for small deformations (dv/dx ≪ 1). The sign convention for
curvature of the beam axis is such that it is positive when the beam is bent concave downward as
shown in the figure. From the geometry of Fig. 5.2b, the shaded sectors are similar. Hence, the radius
of curvature and the strain are related as follows:



(5.8)

Here ds is the arc length mn along the longitudinal axis of the beam. For small displacement, ds ≈ dx,
and θ represents the slope dv/dx of the beam axis. Clearly, for the positive curvature shown, θ
increases as we move from left to right along the beam axis. On the basis of Eqs. (5.6) and (5.8),

(5.9a)

Following a similar procedure and noting that εz ≈ –νεx, we may also obtain the curvature in the yz
plane as

(5.9b)
The basic equation of the deflection curve of a beam is obtained by combining Eqs. (5.7) and (5.9a)
as follows:

(5.10)

This expression, relating the beam curvature to the bending moment, is known as the Bernoulli–Euler
law of elementary bending theory. It is observed from Fig. 5.2 and Eq. (5.10) that a positive moment
produces positive curvature. If the sign convention adopted in this section for either moment or
deflection (and curvature) should be reversed, the plus sign in Eq. (5.10) should likewise be
reversed.
Reference to Fig. 5.2a reveals that the top and bottom lateral surfaces have been deformed into
saddle-shaped or anticlastic surfaces of curvature 1/rz. The vertical sides have been simultaneously
rotated as a result of bending. Examining Eq. (5.9b) suggests a method for determining Poisson’s ratio
[Ref. 5.1, Sec. 102]. For a given beam and bending moment, a measurement of 1/rz leads directly to v.
The effect of anticlastic curvature is small when the beam depth is comparable to its width.

Timoshenko Beam Theory
The Timoshenko theory of beams, developed by S. P. Timoshenko in the beginning of the 20th century,
constitutes an improvement over the Euler–Bernoulli theory. In static case, the difference between the
two hypotheses is that the former includes the effect of shear stresses on the deformation by assuming
a constant shear over the beam height. The latter ignores the influence of transverse shear on beam
deformation. The Timoshenko theory is also said to be an extension of the ordinary beam theory to
allow for the effect of the transverse shear deformation while relaxing the assumption that plane
sections remain plane and normal to the deformed beam axis.
The Timoshenko beam theory is highly suited for describing the behavior of short beams and
sandwich composite beams. In dynamic case, the theory incorporates shear deformation as well as
rotational inertia effects, and it will be more accurate for not very slender beams. By taking into
account mechanism of deformation effectively, Timoshenko’s theory lowers the stiffness of the beam,



while the result is a larger deflection under static load and lower predicted fundamental frequencies
of vibration for a prescribed set of boundary conditions.

5.3 Pure Bending of Beams of Asymmetrical Cross Section
The development of Section 5.2 is now extended to the more general case in which a beam of
arbitrary cross section is subjected to end couples My and Mz about the y and z axes, respectively
(Fig. 5.3). Following a procedure similar to that of Section 5.2, plane sections are again taken to
remain plane. Assume that the normal stress σx acting at a point within dA is a linear function of the y
and z coordinates of the point; assume further that the remaining stresses are zero. The stress field is
thus

(5.11)

Figure 5.3. Pure bending of beams of asymmetrical cross section.

where c1, c2, c3 are constants to be evaluated.

The equilibrium conditions at the beam ends, as before, relate to the force and bending moment:

(a)

(b, c)

Substitution of σx, as given by Eq. (5.11), into Eqs. (a), (b), and (c) results in the following
expressions:

(d)



(e)

(f)
For the origin of the y and z axes to be coincident with the centroid of the section, it is required that

(g)

We conclude, therefore, from Eq. (d) that c1 = 0, and from Eqs. (5.11) that σx = 0 at the origin. The
neutral axis is thus observed to pass through the centroid, as in the beam of symmetrical section. It
may be verified that the field of stress by Eqs. (5.11) satisfies the equations of equilibrium and
compatibility and that the lateral surfaces are free of stress. Now consider the defining relationships

(5.12)

where Iy and Iz are the moments of inertia about the y and z axes, respectively, and Iyz is the product
of inertia about the y and z axes. From Eqs. (e) and (f), together with Eqs. (5.12), we obtain
expressions for c2 and c3.

Substitution of the constants into Eqs. (5.11) results in the following generalized flexure formula:

(5.13)

The equation of the neutral axis is found by equating this expression to zero:

(5.14)
This is an inclined line through the centroid C. The angle φ between the neutral axis and the z axis is
determined as follows:

(5.15)

The angle φ (measured from the z axis) is positive in the clockwise direction, as shown in Fig. 5.3.
The highest bending stress occurs at a point located farthest from the neutral axis.
There is a specific orientation of the y and z axes for which the product of inertia Iyz vanishes.
Labeling the axes so oriented y′ and z′, we have Iy′z′ = 0. The flexure formula under these
circumstances becomes



(5.16)

The y′ and z′ axes now coincide with the principal axes of inertia of the cross section. The stresses at
any point can now be ascertained by applying Eq. (5.13) or (5.16).
The kinematic relationships discussed in Section 5.2 are valid for beams of asymmetrical section
provided that y and z represent principal axes.
Recall that the two-dimensional stress (or strain) and the moment of inertia of an area are second-
order tensors (Sec. 1.17). Thus, the transformation equations for stress and moment of inertia are
analogous (Sec. C.4). The Mohr’s circle analysis and all conclusions drawn for stress therefore
apply to the moment of inertia. With reference to the coordinate axes shown in Fig. 5.3, applying Eq.
(C.12a), the moment of inertia about the y′ axis is found to be

(5.17)
From Eq. (C.13) the orientation of the principal axes is given by

(5.18)

The principal moment of inertia, I1 and I2, from Eq. (C.14) are

(5.19)

Subscripts 1 and 2 refer to the maximum and minimum values, respectively.
Determination of the moments of inertia and stresses in an asymmetrical section will now be
illustrated.

Example 5.1. Analysis of an Angle in Pure Bending
A 150- by 150-mm slender angle of 20-mm thickness is subjected to oppositely directed end
couples Mz = 11 kN · m at the centroid of the cross section. What bending stresses exist at points
A and B on a section away from the ends (Fig. 5.4a)? Determine the orientation of the neutral axis.

Figure 5.4. Example 5.1. An equal leg angle cross section of beam.



Solution

Equations (5.13) and (5.16) are applied to ascertain the normal stress. This requires first the
determination of a number of section properties through the use of familiar expressions of
mechanics given in Appendix C. Note that the FORTRAN computer program presented in Table C.2
provides a check of the numerical values obtained here for the area characteristics and may easily
be extended to compute the stresses.
Location of the Centroid C. Let  and  represent the distances from C to arbitrary reference
lines (denoted Z and Y):

Here  represents the z distance from the Y reference line to the centroid of each subarea (A1 and
A2) composing the total cross section. Since the section is symmetrical, .

Moments and Products of Inertia. For a rectangular section of depth h and width b, the moment
of inertia about the neutral  axis is  (Table C.1). We now use yz axes as reference axes
through C. Representing the distances from C to the centroids of each subarea by dy1, dy2, dz1, and
dz2, we obtain the moments of inertia with respect to these axes using the parallel-axis theorem.
Applying Eq. (C.9),

Thus, referring to Fig. 5.4a,

The transfer formula (C.11) for a product of inertia yields

Stresses Using Formula (5.13). We have yA = 0.105 m, yB = –0.045 m, zA = –0.045 m, zB = –
0.045 m, and My = 0. Thus,



(h)

Similarly,

Alternatively, these stresses may be calculated by proceeding as follows.
Directions of the Principal Axes and the Principal Moments of Inertia. Employing Eq. (5.18),
we have

Therefore, the two values of θp are 45° and 135°. Substituting the first of these values into Eq.
(5.17), we obtain Iy′ = [11.596 + 6.79 sin 90°] 106 = 18.386 × 106 mm4. Since the principal
moments of inertia are, by application of Eq. (5.19),

it is observed that I1 = Iy′ = 18.386 × 106 mm4 and I2 = Iz′ = 4.806 × 106 mm4. The principal axes
are indicated in Fig. 5.4b as the y′z′ axes.
Stresses Using Formula (5.16). The components of bending moment about the principal axes are

Equation (5.16) is now applied, referring to Fig. 5.4b, with , , 
, and z′B = 0, determined from geometrical considerations:

as before.
Direction of the Neutral Axis. From Eq. (5.15), with My = 0,

The negative sign indicates that the neutral is located counterclockwise from the z axis (Fig.
5.4b).

5.4 Bending of a Cantilever of Narrow Section
Consider a narrow cantilever beam of rectangular cross section, loaded at its free end by a



concentrated force of such magnitude that the beam weight may be neglected (Fig. 5.5). The situation
described may be regarded as a case of plane stress provided that the beam thickness t is small
relative to beam depth 2h. The distribution of stress in the beam, as we have already found in
Example 3.1, is given by

(3.21)

Figure 5.5. Deflections of an end-loaded cantilever beam.

To derive expressions for the beam displacement, it is necessary to relate stress, described by Eq.
(3.21), to strain. This is accomplished through the use of the strain–displacement relations and
Hooke’s law:

(a, b)

(c)

Integration of Eqs. (a) and (b) yields

(d)

(e)

Differentiating Eqs. (d) and (e) with respect to y and x, respectively, and substituting into Eq. (c), we
have

In this expression, note that the left and right sides depend only on y and x, respectively. These
variables are independent of one another, and it is therefore concluded that the equation can be valid
only if each side is equal to the same constant:



These are integrated to yield

in which a2 and a3 are constants of integration. The displacements may now be written

(5.20a)

(5.20b)
The constants a1, a2, and a3 depend on known conditions. If, for example, the situation at the fixed end
is such that

then, from Eqs. (5.20),

The beam displacement is therefore

(5.21)

(5.22)

It is clear on examining these equations that u and v do not obey a simple linear relationship with y
and x. We conclude, therefore, that plane sections do not, as assumed in elementary theory, remain
plane subsequent to bending.

Comparison of the Results with That of Elementary Theory
The vertical displacement of the beam axis is obtained by substituting y = 0 into Eq. (5.22):

(5.23)
Introducing the foregoing into Eq. (5.7), the radius of curvature is given by



provided that dv/dx is a small quantity. Once again we obtain Eq. (5.9a), the beam curvature–moment
relationship of elementary bending theory.
It is also a simple matter to compare the total vertical deflection at the free end (x = 0) with the
deflection derived in elementary theory. Substituting x = 0 into Eq. (5.23), the total deflection is

(5.24)

wherein the deflection associated with shear is clearly Ph2L/2GI = 3PL/2GA. The ratio of the shear
deflection to the bending deflection at x = 0 provides a measure of beam slenderness:

If, for example, L = 10(2h), the preceding quotient is only . For a slender beam, 2h ≪ L, and it is
clear that the deflection is mainly due to bending. It should be mentioned here, however, that in
vibration at higher modes, and in wave propagation, the effect of shear is of great importance in
slender as well as in other beams.
In the case of wide beams (t ≫ 2h), Eq. (5.24) must be modified by replacing E and v as indicated in
Table 3.1.

5.5 Bending of a Simply Supported Narrow Beam
Consideration is now given to the stress distribution in a narrow beam of thickness t and depth 2h
subjected to a uniformly distributed loading (Fig. 5.6). The situation as described is one of plane
stress, subject to the following boundary conditions, consistent with the origin of an x, y coordinate
system located at midspan and mid-height of the beam, as shown:

(a)

Figure 5.6. Bending of a simply supported beam with a uniform load.

Since at the ends no longitudinal load is applied, it would appear reasonable to state that σx = 0 at x =
±L. However, this boundary condition leads to a complicated solution, and a less severe statement is
instead used:

(b)



The corresponding condition for bending couples at x = ±L is

(c)
For y equilibrium, it is required that

(d)

The problem is treated by superimposing the solutions Φ2, Φ3, and Φ5 (Sec. 3.6), with

c2 = b2 = a3 = c3 = a5 = b5 = c5 = e5 = 0

We then have

The stresses are

(e)

The conditions (a) are

and the solution is

The constant d3 is obtained from condition (c) as follows:

or

Expressions (e) together with the values obtained for the constants also fulfill conditions (b) and (d).
The state of stress is thus represented by



(5.25a)

(5.25b)

(5.25c)

Here  is the area moment of inertia taken about a line through the centroid, parallel to the z
axis. Although the solutions given by Eqs. (5.25) satisfy the equations of elasticity and the boundary
conditions, they are nevertheless not exact. This is indicated by substituting x = ±L into Eq. (5.25a) to
obtain the following expression for the normal distributed forces per unit area at the ends:

which cannot exist, as no forces act at the ends. From Saint-Venant’s principle we may conclude,
however, that the solutions do predict the correct stresses throughout the beam, except near the
supports.

Comparison of the Results with That of Elementary Theory
Recall that the longitudinal normal stress derived from elementary beam theory is σx = –My/I; this is
equivalent to the first term of Eq. (5.25a). The second term is then the difference between the
longitudinal stress results given by the two approaches. To gauge the magnitude of the deviation,
consider the ratio of the second term of Eq. (5.25a) to the result of elementary theory at x = 0. At this
point, the bending moment is a maximum. Substituting y = h for the condition of maximum stress, we
obtain

For a beam of length 10 times its depth, the ratio is small, . For beams of ordinary proportions, we
can conclude that elementary theory provides a result of sufficient accuracy for σx. As for σy, this
stress is not found in the elementary theory. The result for τxy is, on the other hand, the same as that of
elementary beam theory.
The displacement of the beam may be determined in a manner similar to that described for a
cantilever beam (Sec. 5.4).

Part B—Approximate Solutions

5.6 Elementary Theory of Bending
We may conclude, on the basis of the previous sections, that exact solutions are difficult to obtain. It
was also observed that for a slender beam the results of the exact theory do not differ markedly from



that of the mechanics of materials or elementary approach provided that solutions close to the ends
are not required. The bending deflection was found to be very much larger than the shear deflection.
Thus, the stress associated with the former predominates. We deduce therefore that the normal strain
εy resulting from transverse loading may be neglected. Because it is more easily applied, the
elementary approach is usually preferred in engineering practice. The exact and elementary theories
should be regarded as complementary rather than competitive approaches, enabling the analyst to
obtain the degree of accuracy required in the context of the specific problem at hand.
The basic assumptions of the elementary theory [Ref. 5.2], for a slender beam whose cross section is
symmetrical about the vertical plane of loading, are

(5.26)

(5.27)

The first equation of (5.26) is equivalent to the assertion v = v(x). Thus, all points in a beam at a
given longitudinal location x experience identical deformation. The second equation of (5.26),
together with v = v(x), yields, after integration,

(a)

The third equation of (5.26) and Eqs. (5.27) imply that the beam is considered narrow, and we have a
case of plane stress.
At y = 0, the bending deformation should vanish. Referring to Eq. (a), it is clear, therefore, that u0(x)
must represent axial deformation. The term dv/dx is the slope θ of the beam axis, as shown in Fig.
5.7a, and is very much smaller than unity. Therefore,

Figure 5.7. (a) Longitudinal displacements in a beam due to rotation of a plane section; (b)
element between adjoining sections of a beam.

The slope is positive when clockwise, provided that the x and y axes have the directions shown.
Since u is a linear function of y, this equation restates the kinematic hypothesis of the elementary
theory of bending: Plane sections perpendicular to the longitudinal axis of the beam remain plane



subsequent to bending. This assumption is confirmed by the exact theory only in the case of pure
bending.

Method of Integration
In the next section, we obtain the stress distribution in a beam according to the elementary theory. We
now derive some useful relations involving the shear force V, the bending moment M, the load per
unit length p, the slope θ, and the deflection v. Consider a beam element of length dx subjected to a
distributed loading (Fig. 5.7b). Note that as dx is small, the variation in the load per unit length p is
omitted. In the free-body diagram, all the forces and the moments are positive. The shear force obeys
the sign convention discussed in Section 1.4; the bending moment is in agreement with the convention
adopted in Section 5.2. In general, the shear force and bending moment vary with the distance x, and it
thus follows that these quantities will have different values on each face of the element. The
increments in shear force and bending moment are denoted by dV and dM, respectively. Equilibrium
of forces in the vertical direction is governed by V – (V + dV) – p dx = 0, or

(5.28)
That is, the rate of change of shear force with respect to x is equal to the algebraic value of the
distributed loading. Equilibrium of the moments about a z axis through the left end of the element,
neglecting the higher-order infinitesimals, leads to

(5.29)

This relation states that the rate of change of bending moment is equal to the algebraic value of the
shear force, valid only if a distributed load or no load acts on the beam segment. Combining Eqs.
(5.28) and (5.29), we have

(5.30)

The basic equation of bending of a beam, Eq. (5.10), combined with Eq. (5.30), may now be written
as

(5.31)
For a beam of constant flexural rigidity EI, the beam equations derived here may be expressed as



(5.32)

These relationships also apply to wide beams provided that E/(1 – ν2) is substituted for E (Table
3.1).
In many problems of practical importance, the deflection due to transverse loading of a beam may be
obtained through successive integration of the beam equation:

(5.33)

Alternatively, we could begin with EIv″ = M(x) and integrate twice to obtain

(5.34)

In either case, the constants, c1, c2, c3, and c4, which correspond to the homogeneous solution of the
differential equations, may be evaluated from the boundary conditions. The constants c1, c2, c3/EI, and
c4/EI represent the values at the origin of V, M, θ, and v, respectively. In the method of successive
integration, there is no need to distinguish between statically determinate and statically indeterminate
systems (Sec. 5.11), because the equilibrium equations represent only two of the boundary conditions
(on the first two integrals), and because the total number of boundary conditions is always equal to
the total number of unknowns.

Example 5.2. Displacements of a Cantilever Beam

A cantilever beam AB of length L and constant flexural rigidity EI carries a moment Mo at its free
end A (Fig. 5.8a). Derive the equation of the deflection curve and determine the slope and
deflection at A.

Figure 5.8. Example 5.2. (a) A cantilever beam is subjected to moment at its free end; (b)



free-body diagram of part AO.

Solution
From the free-body diagram of Fig. 5.8b, observe that the bending moment is +Mo throughout the
beam. Thus, the third of Eqs. (5.32) becomes

EIv″ = Mo

Integrating, we obtain
EIv′ = Mox + c1

The constant of integration c1 can be found from the condition that the slope is zero at the support;
therefore, we have v′ (L) = 0, from which c1 = –MoL. The slope is then

(5.35)
Integrating, we obtain

The boundary condition on the deflection at the support is v(L) = 0, which yields c2 = MoL2/2EI.
The equation of the deflection curve is thus a parabola:

(5.36)

However, every element of the beam experiences equal moments and deforms alike. The
deflection curve should therefore be part of a circle. This inconsistancy results from the use of an
approximation for the curvature, Eq. (5.7). The error is very small, however, when the
deformation v is small [Ref. 5.1].
The slope and deflection at A are readily found by letting x = 0 into Eqs. (5.35) and (5.36):

(5.37)

The minus sign indicates that the angle of rotation is counterclockwise (Fig. 5.8a).

5.7 Normal and Shear Stresses
When a beam is bent by transverse loads, usually both a bending moment M and a shear force V act



on each cross section. The distribution of the normal stress associated with the bending moment is
given by the flexure formula, Eq. (5.4):

(5.38)
where M and I are taken with respect to the z axis (Fig. 5.7).
In accordance with the assumptions of elementary bending, Eqs. (5.26) and (5.27), the contribution of
the shear strains to beam deformation is omitted. However, shear stresses do exist, and the shearing
forces are the resultant of the stresses. The shearing stress τxy acting at section mn, assumed uniformly
distributed over the area b · dx, can be determined on the basis of equilibrium of forces acting on the
shaded part of the beam element (Fig. 5.9). Here b is the width of the beam a distance y1 from the
neutral axis and dx is the length of the element. The distribution of normal stresses produced by M
and M + dM is indicated in the figure. The normal force distributed over the left face mr on the
shaded area A* is equal to

(a)

Figure 5.9. (a) Beam segment for analyzing shear stress; (b) cross section of beam.

Similarly, an expression for the normal force on the right face ns may be written in terms of M + dM.
The equilibrium of x-directed forces acting on the beam element is governed by

from which we have

Upon substitution of Eq. (5.29), we obtain the shear formula for beams:

(5.39)

The integral represented by Q is the first moment of the shaded area A* with respect to the neutral
axis z:



(5.40)

By definition,  is the distance from the neutral axis to the centroid of A*. In the case of sections of
regular geometry, A*  provides a convenient means of calculating Q. Note that the shear force acting
across the width of the beam per unit length q = τxy b = VQ/I is called the shear flow.
For example, in the case of a rectangular cross section of width b and depth 2h, the shear stress at y1
is

(5.41)

This shows that the shear stress varies parabolically with y1; it is zero when y1 = ±h and has its
maximum value at the neutral axis, y1 = 0:

(5.42)

Here, 2bh is the area of the rectangular cross section. It is observed that the maximum shear stress
(either horizontal or vertical: τxy = τyx) is 1.5 times larger than the average shear stress V/A. As
observed in Section 5.4, for a thin rectangular beam, Eq. (5.42) is the exact distribution of shear
stress. However, in general, for wide rectangular sections and for other sections, Eq. (5.39) yields
only approximate values of the shearing stress.
It should be pointed out that the maximum shear stress does not always occur at the neutral axis. For
instance, in the case of a cross section having nonparallel sides, such as a triangular section, the
maximum value of Q/b (and thus τxy) takes place at midheight, h/2, while the neutral axis is located at
a distance h/3 from the base.
The following sample problem illustrates the application of the shear stress formula.

Example 5.3. Shear Stresses in a Flanged Beam

A cantilever wide-flange beam is loaded by a force P at the free end acting through the centroid
of the section. The beam is of constant thickness t (Fig. 5.10a). Determine the shear stress
distribution in the section.

Figure 5.10. Example 5.3. (a) Cross section of a wide-flange beam; (b) shearing stress
distribution.



Solution

The vertical shear force at every section is P. It is assumed that the shear stress τxy is uniformly
distributed over the web thickness. Then, in the web, for 0 ≤ y1 ≤ h1, applying Eq. (5.39),

This equation may be written as

(b)
The shearing stress thus varies parabolically in the web (Fig. 5.10b). The extreme values of τxy
found at y1 = 0 and y1 = ±h1, are, from Eq. (b), as follows:

Note that it is usual that t ≪ b, and therefore the maximum and minimum stresses do not differ
appreciably, as is seen in the figure. Similarly, the shear stress in the flange, for h1 < y1 ≤ h, is

(c)

This is the parabolic equation for the variation of stress in the flange, shown by the dashed lines
in the figure.

Comments

Clearly, for a thin flange, the shear stress is very small as compared with the shear stress in the
web. It is concluded that the approximate average value of shear stress in the beam may be found
by dividing P by the web cross section with the web height assumed equal to the beam’s overall
height: τavg = P/2th. The preceding is indicated by the dotted lines in the figure. The distribution
of stress given by Eq. (c) is fictitious, because the inner planes of the flanges must be free of
shearing stress, as they are load-free boundaries of the beam. This contradiction cannot be
resolved by the elementary theory; the theory of elasticity must be applied to obtain the correct
solution. Fortunately, this defect of the shearing stress formula does not lead to serious error
since, as pointed out previously, the web carries almost all the shear force. To reduce the stress
concentration at the juncture of the web and the flange, the sharp corners should be rounded.



Example 5.4. Beam of Circular Cross Section
A cantilever beam of circular cross section supporting a concentrated load P at its free end (Fig.
5.11a). The shear force V in this beam is constant and equal to the magnitude of the load P = V.
Determine the maximum shearing stresses (a) in a solid cross section; (b) in a hollow cross
section. Assumptions: All shear stresses do not act parallel to the y. At a point such as a or b on
the boundary of the cross section, the shear stress τ must act parallel to the boundary. The shear
stresses at line ab across the cross section are not parallel to the y axis and cannot be determined
by the shear formula, τ = VQ/Ib. The maximum shear stresses occur along the neutral axis z,
uniformly distributed, and act parallel to the y axis. These stresses are within about 5% of their
true value [Ref. 5.1, Sec. 122].
Figure 5.11. Example 5.4. (a) A cantilever beam under a load P; (b) shear stress distribution

on a circular cross section; (c) hollow circular cross section.

Solution

a. Solid Cross Section (Fig. 5.11b). The shear formula may be used to calculate with reasonable
accuracy of the shear stresses at the neutral axis. The area properties for a circular cross
section of radius c (see Table C.1) are

(d)
and b = 2c. The maximum shear stress is thus

(5.43)

in which A is the cross-sectional area of the beam.

Comment
The result shows that the largest shear stress in a circular beam is 4/3 times the average shear
stress τavg = V/A.

b. Hollow Circular Cross Section (Fig. 5.11c). Equation (5.43) applies with equal rigor to
circular tubes, since the same assumptions stated in the foregoing are valid. But in this case, by
Eq. (C.3), we have



and

So, the maximum shear stress may be written in the form:

(e)

Comment
Observe that for c1 = 0, Eq. (e) reduces to Eq. (5.43) for a solid circular beam, as expected. In
the special case of a thin-walled tube, we have r/t > 10, where r and t represent the mean radius
and thickness, respectively. As a theoretical limiting case, setting c2 = c1 = r, the Eq. (e) results in
τmax = 2V/A.

5.8 Effect of Transverse Normal Stress
When a beam is subjected to a transverse load, there is a resulting transverse normal stress.
According to Eq. (5.26), this stress is not related to the normal strain εy and thus cannot be
determined from Hooke’s law. However, an expression for the average transverse normal stress can
be obtained from the equilibrium requirement of force balance along the axis of the beam. For this
purpose, a procedure is used similar to that employed for determining the shear stress in Section 5.7.
Consider, for example, a rectangular cantilever beam of width b and depth 2h subject to a uniform
load of intensity p (Fig. 5.12a). The free-body diagram of an isolated beam segment of length dx is
shown in Fig. 5.12b. Passing a horizontal plane through this segment results in the free-body diagram
of Fig. 5.11c, for which the condition of statics Σ Fy = 0 yields

(a)

Figure 5.12. (a) Uniformly loaded cantilever beam of rectangular cross section; (b) free-body
diagram of a segment; (c) stresses in a beam element.

Here, the shear stress is defined by Eq. (5.41) as



(b)

Upon substitution of Eqs. (5.28) and (b) into Eq. (a), we have

Integration yields the transverse normal stress in the form

(5.44a)
We see that this stress varies as a cubic parabola from –p/b at the surface (y = –h), where the load
acts, to zero at the opposite surface (y = h).
The distribution of the bending and the shear stresses in a uniformly loaded cantilever beam (Fig.
5.12a) is determined from Eqs. (5.38) and (b):

(5.44b)
The largest values of the σx, τxy, and σy given by Eqs. (5.44) are

(c)

To compare the magnitudes of the maximum stresses, consider the ratios

(d,e)

Because L is much greater than h in most beams, L ≥ 20h, it is observed from the preceding that the
shear and the transverse normal stresses will usually be orders of magnitude smaller than the bending
stresses. This is justification for assuming γxy = 0 and εy = 0 in the technical theory of bending. Note
that Eq. (e) results in even smaller values than Eq. (d). Therefore, in practice it is reasonable to
neglect σy.

The foregoing conclusion applies, in most cases, to beams of a variety of cross-sectional shapes and
under various load configurations. Clearly, the factor of proportionality in Eqs. (d) and (e) will differ
for beams of different sectional forms and for different loadings of a given beam.

5.9 Composite Beams



Beams constructed of two or more materials having different moduli of elasticity are referred to as
composite beams. Examples include multilayer beams made by bonding together multiple sheets,
sandwich beams consisting of high-strength material faces separated by a relatively thick layer of
low-strength material such as plastic foam, and reinforced concrete beams. The assumptions of the
technical theory for a homogeneous beam (Sec. 5.6) are valid for a beam of more than one material.
We shall employ the common transformed-section method to analyze a composite beam. In this
technique, the cross section of several materials is transformed into an equivalent cross section of
one material on which the resisting forces and the neutral axis are the same as on the original section.
The usual flexure formula is then applied to the new section. To illustrate the method, a frequently
used beam with a symmetrical cross section built of two different materials is considered (Fig.
5.13a).

Figure 5.13. Beam of two materials: (a) composite cross section; (b) strain distribution; (d)
transformed cross section.

The cross sections of the beam remain plane during bending. Hence, geometric compatibility of
deformation is satisfied. It follows that the normal strain εx varies linearly with the distance y from
the neutral axis of the section; that is, εx = ky (Figs. 5.13a and b). The location of the neutral axis is
yet to be determined. Both materials of the beam are assumed to obey Hooke’s law, and their moduli
of elasticity are designated E1 and E2. Then, the stress–strain relation gives

(5.45a, b)

This result is sketched in Fig. 5.13c for the assumption that E2 > E1. We introduce the notation

(5.46)

where n is called the modular ratio. Note that n > 1 in Eq. (5.46). However, this choice is arbitrary;
the technique applies as well for n < 1.
Referring to the cross section (Figs. 5.13a and c), equilibrium equations ΣFx = 0 and ΣMz = 0 lead
to

(a)



(b)

wherein A1 and A2 denote the cross-sectional areas for materials 1 and 2, respectively. Substituting
into Eq. (a) σx1, σx2, and n as given by Eqs. (5.45) and (5.46) results in

(5.47)

Electing the top of the section as a reference (Fig. 5.13a), from Eq. (5.47) with ,

or, setting

we have

The foregoing yields an alterative form of Eq. (5.47):

(5.47′)
Expression (5.47) or (5.47′) can be used to locate the neutral axis for a beam of two materials. These
equations show that the transformed section will have the same neutral axis as the original beam,
provided the width of area 2 is changed by a factor n and area 1 remains the same (Fig. 5.13d).
Clearly, this widening must be effected in a direction parallel to the neutral axis, since the distance 
to the centroid of area 2 is unchanged. The new section constructed this way represents the cross
section of a beam made of a homogeneous material with a modulus of elasticity E1, and the neutral
axis passes through its centroid, as shown in the figure.
Similarly, condition (b) together with Eqs. (5.45) and (5.46) leads to

or

(5.48)

where I1 and I2 are the moments of inertia about the neutral axis of the cross-sectional areas 1 and 2,
respectively. Note that

(5.49)



is the moment of inertia of the entire transformed area about the neutral axis. From Eq. (5.48), we
have

The flexure formulas for a composite beam are obtained upon introduction of this relation into Eqs.
(5.45):

(5.50)

in which σx1 and σx2 are the stresses in materials 1 and 2, respectively. Note that when E1 = E2 = E,
Eqs. (5.50) reduce to the flexure formula for a beam of homogeneous material, as expected.
The preceding discussion may be extended to include composite beams of more than two materials. It
is readily shown that for m different materials, Eqs. (5.47′), (5.49), and (5.50) take the forms

(5.51)

(5.52)

(5.53)

where i = 2, 3, ..., m denotes the ith material.
The use of the formulas developed in this section is demonstrated in the solutions of two numerical
problems that follow.

Example 5.5. Aluminum-Reinforced Wood Beam
A wood beam Ew = 8.75 GPa, 100-mm wide by 220-mm deep, has an aluminum plate Ea = 70
GPa with a net section 80 mm by 20 mm securely fastened to its bottom face, as shown in Fig.
5.14a. Dimensions are given in millimeters. The beam is subjected to a bending moment of 20 kN
· m around a horizontal axis. Calculate the maximum stresses in both materials (a) using a
transformed section of wood and (b) using a transformed section of aluminum.
Figure 5.14. Example 5.5. (a) Composite cross section; (b) equivalent wood cross section; (c)

equivalent aluminum cross section.



Solution

a. The modular ratio n = Ea/Ew = 8. The centroid and the moment of inertia about the neutral axis
of the transformed section (Fig. 5.14b) are

The maximum stresses in the wood and aluminum portions are therefore

It is noted that at the juncture of the two parts:

b. For this case, the modular ratio n = Ew/Ea = 1/8 and the transformed area is shown in Fig.
5.14c. We now have

Then

as have already been found in part (a).

Example 5.6. Steel-Reinforced-Concrete Beam

A concrete beam of width b = 250 mm and effective depth d = 400 mm is reinforced with three



steel bars providing a total cross-sectional area As = 1000 mm2 (Fig. 5.15a). Dimensions are
given in millimeters. Note that it is usual for an approximate allowance a = 50 mm to be used to
protect the steel from corrosion and fire. Let n = Es/Ec = 10. Calculate the maximum stresses in
the materials produced by a negative bending moment of M = 60 kN · m.

Figure 5.15. Example 5.6. (a) Reinforced-concrete cross section; (b) equivalent concrete
cross section; (c) compressive force C in concrete and tensile force T in the steel rods.

Solution

Concrete is very weak in tension but strong in compression. Thus, only the portion of the cross
section located a distance kd above the neutral axis is used in the transformed section (Fig.
5.15b); the concrete is assumed to take no tension. Notice that the transformed area of the steel
nAs is located by a single dimension from the neutral axis to its centroid. The compressive stress
in the concrete is assumed to vary linearly from the neutral axis. The steel is taken to be uniformly
stressed.
The condition that the first moment of the transformed section with respect to the neutral axis be
zero is satisfied by

or

(5.54)

Solving this quadratic expression for kd, the position of the neutral axis is obtained.
Introducing the data given, Eq. (5.54) reduces to

(kd)2 + 80(kd) – 32 × 103 = 0
from which

(c)
The moment of inertia of the transformed cross section about the neutral axis is

Thus, the peak compressive stress in the concrete and the tensile stress in the steel are



The stresses act as shown in Fig. 5.15c.
An alternative method of solution is to obtain σc, max and σs from a free-body diagram of the
portion of the beam (Fig. 5.15c) without computing It. The first equilibrium condition, ΣFx = 0,
gives C = T, where

(d)

are the compressive and tensile stress resultants, respectively. From the second requirement of
statics, ΣMz = 0, we have

(e)

Equations (d) and (e) result in

(5.55)
Substitution of the data given and Eq. (c) into Eq. (5.55) yields

as before.

5.10 Shear Center
Given any cross-sectional configuration, one point may be found in the plane of the cross section
through which passes the resultant of the transverse shearing stresses. A transverse load applied on
the beam must act through this point, called the shear center or flexural center, if no twisting is to
occur.* The center of shear is sometimes defined as the point in the end section of a cantilever beam
at which an applied load results in bending only. When the load does not act through the shear center,
in addition to bending, a twisting action results (Sec. 6.1). The location of the shear center is
independent of the direction and magnitude of the transverse forces. For singly symmetrical sections,
the shear center lies on the axis of symmetry, while for a beam with two axes of symmetry, the shear
center coincides with their point of intersection (also the centroid). It is not necessary, in general, for
the shear center to lie on a principal axis, and it may be located outside the cross section of the beam.

Thin-Walled Open Cross Sections



For thin-walled sections, the shearing stresses are taken to be distributed uniformly over the thickness
of the wall and directed so as to parallel the boundary of the cross section. If the shear center S for
the typical section of Fig. 5.16a is required, we begin by calculating the shear stresses by means of
Eq. (5.39). The moment Mx of these stresses about arbitrary point A is then obtained. Inasmuch as the
external moment attributable to Vy about A is Vy e, the distance between A and the shear center is
given by

(5.56)

Figure 5.16. Shear centers.

If the force is parallel to the z axis rather than the y axis, the position of the line of action may be
established in the manner discussed previously. In the event that both Vy and Vz exist, the intersection
of the two lines of action locates the shear center.
The determination of Mx is simplified by propitious selection of point A, such as in Fig. 5.16b. Here
it is observed that the moment Mx of the shear forces about A is zero; point A is also the shear center.
For all sections consisting of two intersecting rectangular elements, the same situation exists.
For the thin-walled box-beams (with boxlike cross section), the point or points in the wall where the
shear flow q = 0 (or τxy = 0) is unknown. Here shear flow is represented by the superposition of
transverse and torsional flow (see Sec. 6.8). Hence, the unit angle of twist equation, Eq. (6.23), along
with q = VQ/I is required to find the shear flow for a cross section of a box beam. The analysis
procedure is as follows: First, introduce a free edge by cutting the section open; second, close it
again by obtaining the shear flow that makes the angle of twist in the beam zero [Refs. 5.4 through
5.6].

Arbitrary Solid Cross Sections
The preceding considerations can be extended to beams of arbitrary solid cross section, in which the
shearing stress varies with both cross-sectional coordinates y and z. For these sections, the exact
theory can, in some cases, be successfully applied to locate the shear center. Examine the section of
Fig. 5.16c, subjected to the shear force Vz, which produces the stresses indicated. Denote y and z as
the principal directions. The moment about the x axis is

(5.57)



Vz must be located a distance e from the z axis, where e = Mx/Vz.

In the following examples, the determination of the shear center of an open, thin-walled section is
illustrated in the solution for two typical situations. The first refers to a section having only one axis
of symmetry, the second to an asymmetrical section.

Example 5.7. Shearing Stress Distribution in a Channel Section
Locate the shear center of the channel section loaded as a cantilever (Fig. 5.17a). Assume that the
flange thicknesses are small when compared with the depth and width of the section.
Figure 5.17. Example 5.7. (a) Cantilever beam with a concentrated load at free end; (b) an

element of upper flange; (c) shear distribution; (d) location of shear center S.

Solution

The shearing stress in the upper flange at any section nn will be found first. This section is
located a distance s from the free edge m, as shown in the figure. At m the shearing stress is zero.
The first moment of area st1 about the z axis is Qz = st1h. The shear stress at nn, from Eq. (5.39),
is thus

(a)
The direction of τ along the flange can be determined from the equilibrium of the forces acting on
an element of length dx and width s (Fig. 5.17b). Here the normal force N = t1sσx, owing to the
bending of the beam, increases with dx by dN. Hence, the x equilibrium of the element requires
that τt1 · dx must be directed as shown. As a consequence, this flange force is directed to the left,
because the shear forces must intersect at the corner of the element.
The distribution of the shear stress τxz on the flange, as Eq. (a) indicates, is linear with s. Its
maximum value occurs at s = b:



(b)

Similarly, the value of stress τxy at the top of the web is

(c)

The stress varies parabolically over the web, and its maximum value is found at the neutral axis.
A sketch of the shear stress distribution in the channel is shown in Fig. 5.17c. As the shear stress
is linearly distributed across the flange length, from Eq. (b), the flange force is expressed by

(d)
Symmetry of the section dictates that F1 = F3 (Fig. 5.17d). We shall assume that the web force F2
= P, since the vertical shearing force transmitted by the flange is negligibly small, as shown in
Example 5.3. The shearing force components acting in the section must be statically equivalent to
the resultant shear load P. Thus, the principle of the moments for the system of forces in Fig.
5.17d or Eq. (5.56), applied at A, yields Mx = Pe = 2F1h. Upon substituting F1 from Eq. (d) into
this expression, we obtain

where

The shear center is thus located by the expression

(e)

Comments
Note that e depends on only section dimensions. Examination reveals that e may vary from a
minimum of zero to a maximum of b/2. A zero or near-zero value of e corresponds to either a
flangeless beam (b = 0, e = 0) or an especially deep beam (h ≫ b). The extreme case, e = b/2, is
obtained for an infinitely wide beam.

Example 5.8. Shear Flow in an Asymmetrical Channel Section

Locate the shear center S for the asymmetrical channel section shown in Fig. 5.18a. All
dimensions are in millimeters. Assume that the beam thickness t = 1.25 mm is constant.
Figure 5.18. Example 5.8. (a) Portion of a beam with channel cross section; (b) shear flow;

(c) location of shear center S.



Solution

The centroid C of the section is located by  and  with respect to nonprincipal axes z and y. By
performing the procedure given in Example 5.1, we obtain , , Iy = 4765.62
mm4, Iz = 21,054.69 mm4, and Iyz = 3984.37 mm4. Equation (5.18) then yields the direction of the
principal axis x′, y′ as θp = 13.05°, and Eq. (5.19), the principal moments of inertia Iy′ = 3828.12
mm4, Iz′ = 21,953.12 mm4 (Fig. 5.18a).

Let us now assume that a shear load Vy′ is applied in the y′, z′ plane (Fig. 5.18b). This force may
be considered the resultant of force components F1, F2, and F3 acting in the flanges and web in
the directions indicated in the figure. The algebra will be minimized if we choose point A, where
F2 and F3 intersect, in finding the line of action of Vy′ by applying the principle of moments. In so
doing, we need to determine the value of F1 acting in the upper flange. The shear stress τxz in this
flange, from Eq. (5.39), is

(f)

where s is measured from right to left along the flange. Note that Qz′, the bracketed expression, is
the first moment of the shaded flange element area with respect to the z′ axis. The constant 19.55
is obtained from the geometry of the section. Upon substituting the numerical values and
integrating Eq. (f), the total shear force in the upper flange is found to be

(g)

Application of the principle of moments at A gives Vy′ez′ = 37.5F1. Introducing F1 from Eq. (g)
into this equation, the distance ez′, which locates the line of action Vy′ of from A, is

(h)



Next, assume that the shear loading Vz′ acts on the beam (Fig. 5.18c). The distance ey′ may be
obtained as in the situation just described. Because of Vz′, the force components F1 to F4 will be
produced in the section. The shear stress in the upper flange is given by

(i)
Here Qy′ represents the first moment of the flange segment area with respect to the y′ axis, and
12.05 is found from the geometry of the section. The total force F1 in the flange is

The principle of moments applied at A, Vz′ey′ = 37.5F1 = 7.65Vz′, leads to

(j)

Thus, the intersection of the lines of action of Vy′ and Vz′, and ez′ and ey′, locates the shear center S
of the asymmetrical channel section.

5.11 Statically Indeterminate Systems
A large class of problems of considerable practical interest relates to structural systems for which the
equations of statics are not sufficient (though are necessary) for determination of the reactions or
other unknown forces. Such systems are statically indeterminate, requiring supplementary
information for solution. Additional equations usually describe certain geometrical conditions
associated with displacement or strain. These equations of compatibility state that the strain owing to
deflection or rotation must be such as to preserve continuity. With this additional information, the
solution proceeds in essentially the same manner as for statically determinate systems. The number of
reactions in excess of the number of equilibrium equations is called the degree of statical
indeterminacy. Any reaction in excess of that which can be obtained by statics alone is said to be
redundant. Thus, the number of redundants is the same as the degree of indeterminacy.
Several methods are available to analyze statically indeterminate structures. The principle of
superposition, briefly discussed next, offers for many cases an effective approach. In Section 5.6 and
in Chapters 7 and 10, a number of commonly employed methods are discussed for the solution of the
indeterminate beam, frame, and truss problems.

The Method of Superposition
In the event of complicated load configurations, the method of superposition may be used to good
advantage to simplify the analysis. Consider, for example, the continuous beam of Fig. 5.19a,
replaced by the beams shown in Fig. 5.19b and c. At point A, the beam now experiences the
deflections (vA)P and (vA)R due respectively to P and R. Subject to the restrictions imposed by small
deformation theory and a material obeying Hooke’s law, the deflections and stresses are linear
functions of transverse loadings, and superposition is valid:



Figure 5.19. Superposition of displacements in a continuous beam.

The procedure may in principle be extended to situations involving any degree of indeterminacy.

Example 5.9. Displacements of a Propped Cantilever Beam

A propped cantilever beam AB subject to a uniform load of intensity p is shown in Fig. 5.20.
Determine (a) the reactions, (b) the equation of the deflection curve, and (c) the slope at A.

Figure 5.20. Example 5.9. A propped beam under uniform load.

Solution
Reactions RA, RB, and MB are statically indeterminate because there are only two equilibrium
conditions (Σ Fy = 0, Σ Mz = 0); the beam is statically indeterminate to the first degree. With the
origin of coordinates taken at the left support, the equation for the beam moment is

The third of Eqs. (5.32) then becomes

and successive integrations yield

(a)
There are three unknown quantities in these equations (c1, c2, and RA) and three boundary



conditions:

(b)

a. Introducing Eqs. (b) into the preceding expressions, we obtain c2 = 0, c1 = pL3/48, and

(5.58a)

We can now determine the remaining reactions from the equations of equilibrium:

(5.58b, c)

b. Substituting for RA, c1, and c2 in Eq. (a), the equation of the deflection curve is obtained:

(5.59)

c. Differentiating the foregoing with respect to x, the equation of the angle of rotation is

(5.60)

Setting x = 0, we have the slope at A:

(5.61)

Example 5.10. Reactions of a Propped Cantilever Beam
Consider again the statically indeterminate beam of Fig. 5.20. Determine the reactions using the
method of superposition.

Solution

Reaction RA is selected as redundant and is considered an unknown load by eliminating the
support at A (Fig. 5.21a). The loading is resolved into those shown in Fig. 5.21b. The solution for
each case is (see Table D.4)

Figure 5.21. Example 5.10. Method of superposition: (a) reaction RA is selected as
redundant; (b) deflection at end A due to load P; (c) deflection at end A due to reaction RA.



The compatibility condition for the original beam requires that

from which RA = 3pL/8. Reaction RB and moment MB can now be found from the equilibrium
requirements. The results correspond to those of Example 5.9.

5.12 Energy Method for Deflections
Strain energy methods are frequently employed to analyze the deflections of beams and other
structural elements. Of the many approaches available, Castigliano’s second theorem is one of the
most widely used. In applying this theory, the strain energy must be represented as a function of
loading. Detailed discussions of energy techniques are found in Chapter 10. In this section we limit
ourselves to a simple example to illustrate how the strain energy in a beam is evaluated and how the
deflection is obtained by the use of Castigliano’s theorem (Sec. 10.4).

The strain energy stored in a beam under bending stress σx only, substituting M = EI(d2v/dx2) into Eq.
(2.63), is expressed in the form

(5.62)

Here the integrations are carried out over the beam length. We next determine the strain energy stored
in a beam, only due to the shear loading V. As we described in Section 5.7, this force produces shear
stress τxy at every point in the beam. The strain energy density is, from Eq. (2.50), .
Substituting τxy as expressed by Eq. (5.39), we have Uo = V2Q2/2GI2b2. Integrating this expression
over the volume of the beam of cross-sectional area A, we obtain

(a)
Let us denote

(5.63)

This is termed the form factor for shear, which when substituted in Eq. (a) yields



(5.64)

where the integration is carried over the beam length.
The form factor is a dimensionless quantity specific to a given cross-section geometry. For example,
for a rectangular cross section of width b and height 2h, the first moment Q, from Eq. (5.41), is 

. Because A/I2 = 9/2bh5, Eq. (5.63) provides the following result:

(b)

In a like manner, the form factor for other cross sections can be determined. Table 5.1 lists several
typical cases. Following the determination of α, the strain energy is evaluated by applying Eq. (5.64).
For a linearly elastic beam, Castigliano’s theorem, from Eq. (10.3), is expressed by

(c)

Table 5.1. Form Factor for Shear for Various Beam Cross Sections

where P is a load acting on the beam and δ is the displacement of the point of application in the
direction of P. Note that the strain energy U = Ub + Us is expressed as a function of the externally
applied forces (or moments).
As an illustration, consider the bending of a cantilever beam of rectangular cross section and length L,
subjected to a concentrated force P at the free end (Fig. 5.5). The bending moment at any section is M
= Px, and the shear force V is equal in magnitude to P. Upon substituting these together with 
into Eqs. (5.62) and (5.64) and integrating, the strain energy stored in the cantilever is found to be

The displacement of the free end owing to bending and shear is, by application of Castigliano’s
theorem, therefore

The exact solution is given by Eq. (5.24).



Part C—Curved Beams

5.13 Elasticity Theory
Our treatment of stresses and deflections caused by the bending has been restricted so far to straight
members. But many members, such as crane hooks, chain links, C-lamps, and punch-press frames, are
curved and loaded as beams. Part C deals with the stresses caused by the bending of bars that are
initially curved.
A curved bar or beam is a structural element for which the locus of the centroids of the cross sections
is a curved line. This section concerns itself with an application of the theory of elasticity. We deal
here with a bar characterized by a constant narrow rectangular cross section and a circular axis. The
axis of symmetry of the cross section lies in a single plane throughout the length of the member.
Consider a beam subjected to equal end couples M such that bending takes place in the plane of
curvature, as shown in Fig. 5.22a. Inasmuch as the bending moment is constant along the length of the
bar, the stress distribution should be identical in any radial cross section. Stated differently, we seek
a distribution of stress displaying θ independence. It is clear that the appropriate expression of
equilibrium is Eq. (8.2),

(a)

Figure 5.22. Pure bending of a curved beam of rectangular cross section.

and that the condition of compatibility for plane stress, Eq. (3.41),

must also be satisfied. The latter is an equidimensional equation, reducible to a second-order
equation with constant coefficients by substituting r = et or t = In r. Direct integration then leads to σr

+ σθ = c″ + c′ In r, which may be written in the form σr + σθ = c‴ + c′ In (r/a). Solving this expression
together with Eq. (a) results in the following equations for the radial and tangential stress:

(5.65)
To evaluate the constants of integration, the boundary conditions are applied as follows:



1. No normal forces act along the curved boundaries at r = a and r = b, and therefore

(b)

2. Because there is no force acting at the ends, the normal stresses acting at the straight edges of the
bar must be distributed to yield a zero resultant:

(c)

where t represents the beam thickness.
3. The normal stresses at the ends must produce a couple M:

(d)
The conditions (c) and (d) apply not only at the ends, but because of σθ independence, at any θ. In
addition, shearing stresses have been assumed zero throughout the beam, and τrθ = 0 is thus satisfied
at the boundaries, where no tangential forces exist.
Combining the first equation of (5.65) with the conditions (b), we find that

These constants together with the second of Eqs. (5.65) satisfy condition (c). Thus, we have

(e)

Finally, substitution of the second of Eqs. (5.65) and (e) into (d) provides

(f)

where

(5.66)
When the expressions for constants c1, c2, and c3 are inserted into Eq. (5.65), the following equations
are obtained for the radial stress and tangential stress:



(5.67)

If the end moments are applied so that the force couples producing them are distributed in the manner
indicated by Eq. (5.67), then these equations are applicable throughout the bar. If the distribution of
applied stress (to produce M) differs from Eq. (5.67), the results may be regarded as valid in regions
away from the ends, in accordance with Saint-Venant’s principle. The foregoing results, when applied
to a beam with radius a, large relative to its depth h, yield an interesting comparison between straight
and curved beam theory. For slender beams h ≪ a, radial stress σr in Eq. (5.67) becomes negligible,
and tangential stress σθ is approximately the same as that obtained from My/I. Note that radial
stresses developed in nonslender curved beams made of isotropic materials are small enough that
they can be neglected in analysis and design.
The bending moment is taken as positive when it tends to decrease the radius of curvature of the
beam, as in Fig. 5.22a. Employing this sign convention, σr as determined from Eq. (5.67) is always
negative, indicating that it is compressive. Similarly, when σθ is found to be positive, it is tensile;
otherwise, compressive. In Fig. 5.22b, a plot of the stresses at section mn is presented. Note that the
maximum stress magnitude is found at the extreme fiber of the concave side.

Deflections
Substitution of σr and σθ from Eq. (5.67) into Hooke’s law provides expressions for the strains εθ, εr,
and γrθ. The displacements u and v then follow, upon integration, from the strain–displacement
relationships, Eqs. (3.33). The resulting displacements indicate that plane sections of the curved
beam subjected to pure bending remain plane subsequent to bending. Castigliano’s theorem (Sec.
5.12) is particularly attractive for determining the deflection of curved members.
For beams in which the depth of the member is small relative to the radius of curvature or, as is
usually assumed, , the initial curvature may be neglected in evaluating the strain energy. Here 
represents the radius to the centroid, and c is the distance from the centroid to the extreme fiber on the
concave side. Thus, the strain energy due to the bending of a straight beam [Eq. (5.62)] is a good
approximation also for curved, slender beams.

5.14 Curved Beam Formula
The approach to curved beams now explored is due to E. Winkler (1835–1888). As an extension of
the elementary theory of straight beams, in Winkler’s theory it will be assumed that all conditions
required to make the straight-beam formula applicable are satisfied except that the beam is initially
curved. Consider the pure bending of a curved beam as in Fig. 5.23a. The distance from the center of
curvature to the centroidal axis is . Observe that the positive y coordinate is measured toward the
center of curvature O from the neutral axis (Fig. 5.23b). The outer and inner fibers are at distances of
ro and ri from the center of curvature, respectively. Derivation of the stress in the beam is again based
on the three principles of solid mechanics and the familiar assumptions:



1. All cross sections possess a vertical axis of symmetry lying in the plane of the centroidal axis
passing through C.

2. The beam is subjected to end couples M. The bending moment vector is everywhere normal to the
plane of symmetry of the beam.

3. Sections originally plane and perpendicular to the centroidal beam axis remain so subsequent to
bending. (The influence of transverse shear on beam deformation is not taken into account.)

Figure 5.23. (a) Curved beam in pure bending with a cross-sectional vertical (y) axis of
symmetry; (b) cross section; (c) stress distributions over the cross section.

Referring to assumption (3), note the relationship in Fig. 5.23a between lines bc and ef representing
plane sections before and after the bending of an initially curved beam. Note also that the initial
length of a beam fiber such as gh depends on the distance r from the center of curvature O. On the
basis of plane sections remaining plane, we can state that the total deformation of a beam fiber obeys
a linear law, as the beam element rotates through small angle dθ.

Location of the Neutral Axis
It may be seen from Fig. 5.23a that the initial length of any arbitrary fiber gh of the beam depends on
the distance r from the center of curvature O. On this basis, we can state that the total deformation of a
beam fiber obeys a linear law, as the beam element rotates through a small angle dθ. However, the
normal or tangential strain εθ does not follow a linear relationship. The contraction of fiber gh equals
– (R – r)dθ, in which R is the distance from O to the neutral axis (yet to be determined) and its initial
length rθ. So, the normal strain of this fiber is given by εθ = –(R – r)dθ/rθ. For convenience, we
denote λ = dθ/θ, which is constant for any element.
The tangential normal stress, acting on an area dA of the cross section can now be obtained through
the use of Hooke’s law σθ = Eεθ. It follows that

(a)
The equations of equilibrium, ΣFx = 0 and ΣMz = 0 are, respectively,

(b)



(c)

When the tangential stress of Eq. (a) is inserted into Eq. (b), we obtain

(d)

Inasmuch as E λ and R are constants, they may be taken outside of the integral sign, as

The radius of the neutral axis R is then written in the form

(5.68)

in which A is the cross-sectional area of the beam. The integral in Eq.(5.68) may be evaluated for
various cross-sectional shapes (see Example 5.11 and Problems 5.39 to 5.41). For reference, Table
5.2 lists explicit formulas for R and A for some commonly used cases.
The distance e between the centroidal axis and the neutral axis (y = 0) of the cross section of a
curved beam (Fig. 5.23b) is equal to

(5.69)

Table 5.2. Properties for Various Cross-Sectional Shapes



Thus, it is we concluded that, in a curved member, the neutral axis does not coincide with the
centriodal axis. This differs from the situation found to be true for straight elastic beams.

Tangential Stress
Having the location of the neutral axis known, the equation for the stress distribution is found by
introducing Eq. (a) into Eq. (c). Therefore,

Expanding this equation, we have

Here, the first integral is equivalent to A/R as determined by Eq. (5.68), and the second integral
equals the cross-sectional area A. The third integral, by definition, represents A in which  is the
radius of the centroidal axis. So,

We now introduce E from Eq. (a) into the preceding and solve for σθ from the resulting expression.
Then, the tangential stress in a curved beam, subject to pure bending at a distance r from the center
of curvature, is expressed in the form:

(5.70)



where e is defined by Eq. (5.69). Alternatively, substituting y = R – r or r = R – y (Fig. 5.23a) into
Eq. (5.70) results in

(5.71)
Equations (5.70) or (5.71) represent two forms of the so-called curved-beam formula. Another
alternate form of these equations is often referred to as Winkler’s formula. The variation of stress
over the cross section is hyperbolic, as sketched in Fig. 5.23c. The sign convention applied to
bending moment is the same as that used in Section 5.13. The bending moment is positive when
directed toward the concave side of the beam, as shown in the figure. If Eq. (5.70) or (5.71) results in
a positive value, it is indicative of a tensile stress.

5.15 Comparison of the Results of Various Theories
We now compare the solutions obtained in Sections 5.13 and 5.14 with results determined using the
flexure formula for straight beams. To do this, consider a curved beam of rectangular cross section
and unit thickness experiencing pure bending. The tangential stress predicted by the elementary theory
(based on a linear distribution of stress) is My/I. The Winkler approach, leading to a hyperbolic
distribution, is given by Eq. (5.70) or (5.71), while the exact theory results in Eqs. (5.67). In each
case, the maximum and minimum values of stress are expressible by

(5.72)
In Table 5.3, values of m are listed as a function of b/a for the four cases cited [Ref. 5.1], in which b
= ro and a = ri; see Figs. 5.22 and 5.23. Observe that there is good agreement between the exact and
Winkler results. On this basis as well as from more extensive comparisons, it may be concluded that
the Winkler approach is adequate for practical applications. Its advantage lies in the relative ease
with which it may be applied to any symmetric section.

Table 5.3. The Values of m for Typical Ratios of Outer Radius b to Inner Radius a

The agreement between the Winkler and exact analyses is not as good in situations of combined
loading, as for the case of pure bending. As might be expected, for beams of only slight curvature, the
simple flexure formula provides good results while requiring only simple computation. The linear
and hyperbolic stress distributions are approximately the same for b/a = 1.1. As the curvature of
the beam increases (b/a > 1.3), the stress on the concave side rapidly increases over the one given by
the flexure formula.

Correction of σθ for Beams with Thin-Walled Cross Sections



It is noted that where I-, T-, or thin-walled tubular curved beams are involved, the stresses predicted
by the approaches developed in this chapter will be in error. This is attributable to high stresses
existing in certain sections such as the flanges, which cause significant beam distortion. A modified
Winkler’s equation finds application in such situations if more accurate results are required [Ref.
5.6]. The distortion, and thus error in σθ, is reduced if the flange thickness is increased. Inasmuch as
material yielding is highly localized, its effect is not of concern unless the curved beam is under
fatigue loading.

Example 5.11. Maximum Stress in a Curved Rectangular Bar

A rectangular aluminum bar having mean radius  carries end moments M, as illustrated in Fig.
5.24. Calculate the stresses in the member (a) using the flexure formula; (b) by the curved beam
formula. Given: M = 1.2 kN · m, b = 30 mm, h = 50 mm, and .
Figure 5.24. Example 5.11. (a) Rectangular curved beam in pure bending; (b) cross section.

Solution
The subscripts i and o refer to the quantities of the inside and outside fibers, respectively.
a. Applying the flexure formula, Eq. (5.38) with y = h/2, we obtain

which is the result we would get for a straight beam.
b. We first derive the expression for the radius R of the neutral axis. From Fig. 5.24: A = bh and

dA = bdr. Integration of Eq. (5.68) between the limits ri and ro results in

or



(5.73)

The given data leads to

Then, Eqs. (5.73) and (5.69) yield, respectively,

It is important to note that the radius of the neutral axis R must be calculated with five
significant figures.
The maximum compressive and tensile stresses are calculated through the use of Eq. (5.70) as
follows:

The negative sign means a compressive stress.

Comment

The maximum stress 96 MPa obtained in part (a) by the flexure formula represents an error of
about 13% from the more accurate value for the maximum stress 110.7 found in part (b).

5.16 Combined Tangential and Normal Stresses
Curved beams are often loaded so that there is an axial force as well as a moment on the cross
section, as is shown in the example to follow. The tangential stress given by Eq. (5.70) may then be
algebraically added to the stress due to an axial force P acting through the centroid of cross-sectional
area A. For this simple case of superposition, the total stress at a point located at distance r from the
center of curvature O may be expressed in the form

(5.74)

As before, a negative sign would be associated with a compressive load P. The theory developed in
this section applies, of course, only to the elastic stress distribution in curved beams. Stresses in
straight members under various combined loads are discussed in detail throughout this text.
The following sample problems illustrate the application of the formulas developed to statically



determinate and statically indeterminate beams under combined loadings. Observe that, in the latter
case, the energy method (Sec. 10.4) facilitates the determination of the unknown, redundant moment in
the member.

Example 5.12. Stresses in a Steel Crane Hook by Various Methods

A load P is applied to the simple steel hook having a rectangular cross section, as illustrated in
Fig. 5.25a. Calculate the tangential stresses at points A and B, using (a) the curved beam formula;
(b) the flexure formula; (c) elasticity theory. Given: P = 6 kN, , b = 25 mm, and h = 32
mm.

Figure 5.25. Example 5.12. A crane hook of rectangular cross section.

Solution

a. Curved Beam Formula. For the given numerical values, we obtain (Fig. 5.25b):

Then, Eqs. (5.73) and (5.69) result in

In order to maintain applied force P in equilibrium, there must be an axial tensile force P and a
moment M = –Pr at the centroid of the section (Fig. 5.25c). Thus, by Eq. (5.74), the stress at
the inner edge (r = ri) of the section A–B:



(5.75a)

Likewise, the stress at the outer edge (r = ro),

(5.75b)

The negative sign of (σθ)B means a compressive stress. The maximum tensile stress is at A and
equals 97 MPa.

Comment

The stress due to the axial force,

which is negligibly small compared to the combined stresses at points A and B of the cross
section.
b. Flexure Formula. Equation (5.5), with , gives

c. Elasticity Theory. Using Eq. (5.66) with a = ri = 34 mm and b = ro = 66 mm, we find

Superposition of –P/A and the second of Eqs. (5.67) with t = 25 mm at r = a leads to

Similarly, at r = b, we find (σθ)B = –7.5 + 58.1 = 50.6 MPa

Comments

The preceding indicates that the results of the curved beam formula and elasticity theory are in
good agreement. But the flexure formula provides a result of unacceptable accuracy for the
tangential stress in this nonslender curved beam.

Example 5.13. Ring with a Diametral Bar
A steel ring of 350-mm mean diameter and of uniform rectangular section 60-mm wide and 12-
mm thick is shown in Fig. 5.26a. A rigid bar is fitted across diameter AB, and a tensile force P
applied to the ring as shown. Assuming an allowable stress of 140 MPa, determine the maximum
tensile force that can be carried by the ring.



Figure 5.26. Example 5.13. (a) Ring with a bar AB is subjected to a concentrated load P; (b)
moment at a section.

Solution
Let the thrust induced in bar AB be denoted by 2F. The moment at any section a–a (Fig. 5.26b) is
then

(a)

Note that before and after deformation, the relative slope between B and C remains unchanged.
Therefore, the relative angular rotation between B and C is zero. Applying Eq. (5.32), we
therefore obtain

where dx = ds = R dθ is the length of beam segment corresponding to dθ. Upon substitution of Eq.
(a), this becomes, after integrating,

(b)
This expression involves two unknowns, MB and F. Another expression in terms of MB and F is
found by recognizing that the deflection at B is zero. By application of Castigliano’s theorem,

where U is the strain energy of the segment. This expression, upon introduction of Eq. (a), takes
the form

After integration,



(c)

Solution of Eqs. (b) and (c) yields MB = 0.1106PR and FR = 0.4591PR. Substituting Eq. (a)
gives, for θ = 90°,

Thus, MC > MB. Since R/c = 0.175/0.006 = 29, the simple flexure formula offers the most
efficient means of computation. The maximum stress is found at points A and B:

Similarly, at C and D,

Hence σθC > σθB. Since σmax = 140 MPa, 140 × 106 = 18,411P. The maximum tensile load is
therefore P = 7.604 kN.
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Problems
Sections 5.1 through 5.5

5.1. A simply supported beam constructed of a 0.15 × 0.15 × 0.015 m angle is loaded by
concentrated force P = 22.5 kN at its midspan (Fig. P5.1). Calculate stress σx at A and the
orientation of the neutral axis. Neglect the effect of shear in bending and assume that beam
twisting is prevented.

Figure P5.1.



5.2. A wood cantilever beam with cross section as shown in Fig. P5.2 is subjected to an inclined
load P at its free end. Determine (a) the orientation of the neutral axis; (b) the maximum
bending stress. Given: P = 1 kN, α = 30°, b = 80 mm, h = 150 mm, and length L = 1.2 m.

Figure P5.2.

5.3. A moment Mo is applied to a beam of the cross section shown in Fig. P5.3 with its vector
forming an angle of α. Use b = 100 mm, h = 40 mm, Mo = 800 N · m, and α = 25°. Calculate
(a) the orientation of the neutral axis; (b) the maximum bending stress.

Figure P5.3.

5.4. Couples My = Mo and Mz = 1.5Mo are applied to a beam of cross section shown in Fig. P5.4.
Determine the largest allowable value of Mo for the maximum stress not to exceed 80 MPa.
All dimensions are in millimeters.

Figure P5.4.

5.5. For the simply supported beam of Fig. P5.5, determine the bending stress at points D and E.
The cross section is a 0.15 × 0.15 × 0.02 m angle (Fig. 5.4).

Figure P5.5.



5.6. A concentrated load P acts on a cantilever, as shown in Fig. P5.6. The beam is constructed of
a 2024-T4 aluminum alloy having a yield strength σyp = 290 MPa, L = 1.5 m, t = 20 mm, c =
60 mm, and b = 80 mm. Based on a factor of safety n = 1.2 against initiation of yielding,
calculate the magnitude of P for (a) α = 0° and (b) α = 15°. Neglect the effect of shear in
bending and assume that beam twisting is prevented.

Figure P5.6.

5.7. Redo Prob. 5.6 for α = 30°. Assume the remaining data to be unchanged.

5.8. A cantilever beam has a Z section of uniform thickness for which , , and Iyz =
–th3. Determine the maximum bending stress in the beam subjected to a load P at its free end
(Fig. P5.8).

Figure P5.8.

5.9. A beam with cross section as shown in Fig. P5.9 is acted on by a moment Mo = 3 kN · m with
its vector forming an angle α = 20°. Determine (a) the orientation of the neutral axis, and (b)
the maximum bending stress.

Figure P5.9.

5.10. For the thin cantilever of Fig. P5.10, the stress function is given by



a. Determine the stresses σx, σy, and τxy by using the elasticity method.

b. Determine the stress σx by using the elementary method.

c. Compare the values of maximum stress obtained by the preceding approaches for L = 10h.
Figure P5.10.

5.11. Consider a cantilever beam of constant unit thickness subjected to a uniform load of p = 2000
kN per unit length (Fig. P5.11). Determine the maximum stress in the beam:
a. Based on a stress function

b. Based on the elementary theory. Compare the results of (a) and (b).
Figure P5.11.

Sections 5.6 through 5.11
5.12. A bending moment acting about the z axis is applied to a T-beam shown in Fig. P5.12. Take

the thickness t = 15 mm and depth h = 90 mm. Determine the width b of the flange in order that
the stresses at the bottom and top of the beam will be in the ratio 3 : 1, respectively.

Figure P5.12.

5.13. A wooden, simply supported beam of length L is subjected to a uniform load p. Determine
the beam length and the loading necessary to develop simultaneously σmax = 8.4 MPa and τmax
= 0.7 MPa. Take thickness t = 0.05 m and depth h = 0.15 m.

5.14. A box beam supports the loading shown in Fig. P5.14. Determine the maximum value of P



such that a flexural stress σ = 7 MPa or a shearing stress τ = 0.7 MPa will not be exceeded.
Figure P5.14.

5.15. A steel beam of the tubular cross section seen in Fig. P5.15 is subjected to the bending
moment M about the z axis. Determine (a) the bending moment M; (b) the radius of curvature
rx of the beam. Given: σall = 150 MPa, E = 70 GPa, b = 120 mm, h = 170 mm, and t = 10 mm.

Figure P5.15.

5.16. An aluminum alloy beam of hollow circular cross section is subjected to a bending moment
M about the z axis (Fig. 5.16). Determine (a) the normal stress at point A; (b) the normal stress
at point B; (c) the radius of curvature rz of the beam of a transverse cross section. Given: M =
600 N · m, D = 60 mm, d = 40 mm, E = 70 GPa, and ν = 0.29.

5.17. A simply supported beam AB of the channel cross section carries a concentrated load P at
midpoint (Fig. P5.17). Find the maximum allowable load P based on an allowable normal
stress of σall = 60 MPa in the beam.

Figure P5.16.



Figure P5.17.

5.18. A uniformly loaded, simply supported rectangular beam has two 15-mm deep vertical
grooves opposite each other on the edges at midspan, as illustrated in Fig. P5.18. Find the
smallest permissible radius of the grooves for the case in which the normal stress is limited to
σmax = 95 MPa. Given: p = 12 kN/m, L = 3 m, b = 80 mm, and h = 120 mm.

Figure P5.18.

5.19. A simple wooden beam is under a uniform load of intensity p, as illustrated in Fig. P5.19. (a)
Find the ratio of the maximum shearing stress to the largest bending stress in terms of the
depth h and length L of the beam. (b) Using σall = 9 MPa, τall = 1.4 MPa, b = 50 mm, and h =
160 mm, also calculate the maximum permissible length L and the largest permissible
distributed load of intensity p.

Figure P5.19.

5.20. A composite cantilever beam 140-mm wide, 300-mm deep, and 3-m long is fabricated by
fastening two timber planks (Et = 10 GPa), 60 mm × 300 mm, to the sides of a steel plate (Es
= 200 GPa), 20-mm wide by 300-mm deep. Note that the 300-mm dimension is vertical. The
allowable stresses in bending for timber and steel are 7 and 120 MPa, respectively. Calculate
the maximum vertical load P the beam can carry at its free end.

5.21. A 180-mm-wide by 300-mm-deep wood beam (Ew = 10 GPa) 4-m long is reinforced with
180-mm-wide and 10-mm-deep aluminum plates (Ea = 70 GPa) on the top and bottom faces.
The beam is simply supported and subject to a uniform load of intensity 25 kN/m over its
entire length. Calculate the maximum stresses in each material.

5.22. Referring to the reinforced concrete beam of Fig. 5.15a, b = 300 mm, d = 450 mm, As = 1200
mm2, and n = 10. Given allowable stresses in steel and concrete of 150 and 12 MPa,
respectively, calculate the maximum bending moment the section can carry.

5.23. Referring to the reinforced concrete beam of Fig. 5.15a, b = 300 mm, d = 500 mm, and n = 8.
Given the actual maximum stresses developed to be σs = 80 MPa and σc = 5 MPa, calculate
the applied bending moment and the steel area required.

5.24. A beam is constructed of half a hollow tube of mean radius R and wall thickness t (Fig.



P5.24). Assuming t ≪ R, locate the shear center S. The moment of inertia of the section about
the z axis is Iz = πR3t/2.

Figure P5.24.

5.25. An H-section beam with unequal flanges is subjected to a vertical load P (Fig. P5.25). The
following assumptions are applicable:
1. The total resisting shear occurs in the flanges.
2. The rotation of a plane section during bending occurs about the symmetry axis so that the

radii of curvature of both flanges are equal.
Figure P5.25.

Determine the location of the shear center S.
5.26. Determine the shear center S of the section shown in Fig. P5.26. All dimensions are in

millimeters.
Figure P5.26.

5.27. A cantilever beam AB supports a triangularly distributed load of maximum intensity po (Fig.
P5.27). Determine (a) the equation of the deflection curve, (b) the deflection at the free end,
and (c) the slope at the free end.

Figure P5.27.



5.28. The slope at the wall of a built-in beam (Fig. P5.28a) is as shown in Fig. P5.28b and is given
by pL3/96EI. Determine the force acting at the simple support, expressed in terms of p and L.

Figure P5.28.

5.29. A fixed-ended beam of length L is subjected to a concentrated force P at a distance c away
from the left end. Derive the equations of the elastic curve.

5.30. A propped cantilever beam AB is subjected to a couple Mo acting at support B, as shown in
Fig. P5.30. Derive the equation of the deflection curve and determine the reaction at the roller
support.

Figure P5.30.

5.31. A welded bimetallic strip (Fig. P5.31) is initially straight. A temperature increment ΔT
causes the element to curve. The coefficients of thermal expansion of the constituent metals
are α1 and α2. Assuming elastic deformation and α2 > α1, determine (a) the radius of curvature
to which the strip bends, (b) the maximum stress occurring at the interface, and (c) the
temperature increase that would result in the simultaneous yielding of both elements.

Figure P5.31.

Sections 5.12 through 5.16
5.32. Verify the values of α for cases B, C, and D of Table 5.1.
5.33. Consider a curved bar subjected to pure bending (Fig. 5.22). Assume the stress function

Φ = A ln r + Br2 ln r + Cr2 + D
to rederive the stress field in the bar given by Eqs. (5.67).

5.34. The allowable stress in tension and compression for the clamp body shown in Fig. P5.34 is
80 MPa. Calculate the maximum permissible load the member can resist. Dimensions are in



millimeters.
Figure P5.34.

5.35. A curved frame of rectangular cross section is loaded as shown in Fig. P5.35. Determine the
maximum tangential stress (a) using the second of Eqs. (5.67) together with the method of
superposition; (b) applying Eq. (5.73). Given: h = 100 mm, , and P = 70 kN.

Figure P5.35.

5.36. A curved frame having a channel-shaped cross section is subjected to bending by end
moments M, as illustrated in Fig. P5.36. Determine the dimension b required if the tangential
stresses at points A and B of the beam are equal in magnitude.

Figure P5.36.

5.37. A curved beam of a circular cross section of diameter d is fixed at one end and subjected to a
concentrated load P at the free end (Fig. P5.37). Calculate (a) the tangential stress at point A;
(b) the tangential stress at point B. Given: P = 800 N, d = 20 mm, a = 25 mm, and b = 15 mm.

Figure P5.37.

5.38. The circular steel frame has a cross section approximated by the trapezoidal form shown in
Fig. P5.38. Calculate (a) the tangential stress at point A; (b) the tangential stress at point B.
Given: ri = 100 mm, ro = 250 mm, b = 75 mm, b = 50 mm, and P = 50 kN.



Figure P5.38.

5.39. The triangular cross section of a curved beam is shown in Fig. P5.39. Derive the expression
for the radius R along the neutral axis. Compare the result with that given for Fig. D in Table
5.2.

Figure P5.39.

5.40. The circular cross section of a curved beam is illustrated in Fig. P5.40. Derive the
expression for the radius R along the neutral axis. Compare the result with that given for Fig.
B in Table 5.2.

Figure P5.40.

5.41. The trapezoidal cross section of a curved beam is depicted in Fig. P5.41. Derive the
expression for the radius R along the neutral axis. Compare the result with that given for Fig.
E in Table 5.2.

Figure P5.41.

5.42. A machine component of channel cross-sectional area is loaded as shown in Fig. P5.42.



Calculate the tangential stress at points A and B. All dimensions are in millimeters.
Figure P5.42.

5.43. A load P is applied to an eye bar with rigid insert for the purpose of pulling (Fig. P5.43).
Determine the tangential stress at points A and B (a) by the elasticity theory, (b) by Winkler’s
theory, and (c) by the elementary theory. Compare the results obtained.

Figure P5.43.

5.44. A ring of mean radius R and constant rectangular section is subjected to a concentrated load
(Fig. P5.44). You may omit the effect of shear in bending. Derive the following general
expression for the tangential stress at any section of the ring:

(P5.44)

Figure P5.44.

where

Use Castigliano’s theorem.
5.45. The ring shown in Fig. P5.44 has the following dimensions: , t = 50 mm, and h =

100 mm. Taking , determine (a) the tangential stress on the inner fiber at θ = π/4 and (b)
the deflection along the line of action of the load P, considering the effects of the normal and
shear forces, as well as bending moment (Sec. 10.4).



Chapter 6. Torsion of Prismatic Bars

6.1 Introduction
In this chapter, consideration is given to stresses and deformations in prismatic members subject to
equal and opposite end torques. In general, these bars are assumed free of end constraint. Usually,
members that transmit torque, such as propeller shafts and torque tubes of power equipment, are
circular or tubular in cross section. For circular cylindrical bars, the torsion formulas are readily
derived employing the method of mechanics of materials, as illustrated in the next section. We shall
observe that a shaft having a circular cross section is most efficient compared to a shaft having an
arbitrary cross section.
Slender members with other than circular cross sections are also often used. In treating noncircular
prismatic bars, cross sections initially plane (Fig. 6.1a) experience out-of-plane deformation or
warping (Fig. 6.1b), and the basic kinematic assumptions of the elementary theory are no longer
appropriate. Consequently, the theory of elasticity, a general analytic approach, is employed, as
discussed in Section 6.4. The governing differential equations derived using this method are
applicable to both the linear elastic and the fully plastic torsion problems. The latter is treated in
Section 12.10.

Figure 6.1. Rectangular bar: (a) before loading; (b) after a torque is applied.

For cases that cannot be conveniently solved analytically, the governing expressions are used in
conjunction with the membrane and fluid flow analogies, as will be treated in Sections 6.6 through
6.9. Computer-oriented numerical approaches (Chap. 7) are also very efficient for such situations.
The chapter concludes with discussions of warping of thin-walled open cross sections and combined
torsion and bending of curved bars.

6.2 Elementary Theory of Torsion of Circular Bars
Consider a torsion bar or shaft of circular cross section (Fig. 6.2). Assume that the right end twists
relative to the left end so that longitudinal line AB deforms to AB′. This results in a shearing stress τ
and an angle of twist or angular deformation φ. The reader will recall from an earlier study of
mechanics of materials [Ref. 6.1] the basic assumptions underlying the formulations for the torsional
loading of circular bars:
1. All plane sections perpendicular to the longitudinal axis of the bar remain plane following the

application of torque; that is, points in a given cross-sectional plane remain in that plane after



twisting.
2. Subsequent to twisting, cross sections are undistorted in their individual planes; that is, the

shearing strain γ varies linearly from zero at the center to a maximum on the outer surface.
The preceding assumptions hold for both elastic and inelastic material behavior. In the elastic case,
the following also applies:

3. The material is homogeneous and obeys Hooke’s law; hence, the magnitude of the maximum shear
angle γmax must be less than the yield angle.

Figure 6.2. Variation of stress and angular rotation of a circular member in torsion.

We now derive the elastic stress and deformation relationships for circular bars in torsion in a
manner similar to the most fundamental equations of the mechanics of materials: by employing the
previously considered procedures and the foregoing assumptions. In the case of these elementary
formulas, there is complete agreement between the experimentally obtained and the computed
quantities. Moreover, their validity can be demonstrated through application of the theory of elasticity
(see Example 6.3).

Shearing Stress
On any bar cross section, the resultant of the stress distribution must be equal to the applied torque T
(Fig. 6.2). That is,

where the integration proceeds over the entire area of the cross section. At any given section, the
maximum shearing stress τmax and the distance r from the center are constant. Hence, the foregoing
can be written

(a)

in which ∫ρ2dA = J is the polar moment of inertia of the circular cross section (Sec. C.2). For circle of
radius r, J = πr4/2. Thus,

(6.1)



This is the well-known torsion formula for circular bars. The shearing stress at a distance ρ from the
center is

(6.2)
The transverse shearing stress obtained by Eq. (6.1) or (6.2) is accompanied by a longitudinal
shearing stress of equal value, as shown on a surface element in the figure.
We note that, when a shaft is subjected to torques at several points along its length, the internal
torques will vary from section to section. A graph showing the variation of torque along the axis of
the shaft is called the torque diagram. That is, this diagram represents a plot of the internal torque T
versus its position x along the shaft length. As a sign convention, T will be positive if its vector is in
the direction of a positive coordinate axis. However, the diagram is not used commonly, because in
practice, only a few variations in torque occur along the length of a given shaft.

Angle of Twist
According to Hooke’s law, γmax = τmax/G; introducing the torsion formula, γmax = Tr/JG, where G is
the modulus of elasticity in shear. For small deformations, tan γmax = γmax, and we may write γmax =
rφ/L (Fig. 6.2). The foregoing expressions lead to the angle of twist, the angle through which one
cross section of a circular bar rotates with respect to another:

(6.3)
Angle φ is measured in radians. The product JG is termed the torsional rigidity of the member. Note
that Eqs. (6.1) through (6.3) are valid for both solid and hollow circular bars; this follows from the
assumptions used in the derivations. For a circular tube of inner radius ri and outer radius ro, we have

.

Example 6.1. Stress and Deformation in an Aluminum Shaft

A hollow aluminum alloy 6061-T6 shaft of outer radius c = 40 mm, inner radius b = 30 mm, and
length L = 1.2 m is fixed at one end and subjected to a torque T at the other end, as shown in Fig.
6.3. If the shearing stress is limited to τmax = 140 MPa, determine (a) the largest value of the
torque; (b) the corresponding minimum value of shear stress; (c) the angle of twist that will create
a shear stress τmin = 100 MPa on the inner surface.

Figure 6.3. Example 6.1. A tubular circular bar in torsion.



Solution

From Table D.1, we have the shear modulus of elasticity G = 72 GPa and τyp = 220 MPa.

a. Inasmuch as τmax < τyp, we can apply Eq. (6.1) with r = c to obtain

(b)
By Table C.1, the polar moment of inertia of the hollow circular tube is

Inserting J and τmax into Eq. (b) results in

b. The smallest value of the shear stress takes place on the inner surface of the shaft, and τmin and
τmax are respectively proportional to b and c. Therefore,

c. Through the use of Eq. (2.27), the shear strain on the inner surface of the shaft is equal to

Referring to Fig. 6.2,

or
φ = 3.19°

Example 6.2. Redundantly Supported Shaft

A solid circular shaft AB is fixed to rigid walls at both ends and subjected to a torque T at section
C, as shown in Fig. 6.4a. The shaft diameters are da and db for segments AC and CB, respectively.
Determine the lengths a and b if the maximum shearing stress in both shaft segments is to be the



same for da = 20 mm, db = 12 mm, and L = 600 mm.
Figure 6.4. Example 6.2. (a) A fixed-ended circular shaft in torsion; (b) free-body diagram of

the entire shaft.

Solution

From the free-body diagram of Fig. 6.4a, we observe that the problem is statically indeterminate
to the first degree; the one equation of equilibrium available is not sufficient to obtain the two
unknown reactions TA and TB.

Condition of Equilibrium. Using the free-body diagram of Fig. 6.4b,

(c)

Torque-Displacement Relations. The angle of twist at section C is expressed in terms of the left
and right segments of the solid shaft, respectively, as

(d)

Here, the polar moments of inertia are  and .
Condition of Compatibility. The two segments must have the same angle of twist where they join.
Thus,

(e)

Equations (c) and (e) can be solved simultaneously to yield the reactions

(f)
The maximum shearing stresses in each segment of the shaft are obtained from the torsion
formula:



(g)

For the case under consideration, τa = τb, or

Introducing Eqs. (f) into the foregoing and simplifying, we obtain

from which

(h)

where L = a + b. Insertion of the given data results in

For a prescribed value of torque T, we can now compute the reactions, angle of twist at section
C, and maximum shearing stress from Eqs. (f), (d), and (g), respectively.

Axial and Transverse Shear Stresses
In the foregoing, we considered shear stresses acting in the plane of a cut perpendicular to the axis of
the shaft, defined by Eqs. (6.1) and (6.2). Their directions coincide with the direction of the internal
torque T on the cross section (Fig. 6.2). These stresses must be accompanied by equal shear stresses
occurring on the axial planes of the shaft, since equal shear stresses always exist on mutually
perpendicular planes.
Consider the state of stress as depicted in Fig. 6.5a. Note that τ is the only stress component acting on
this element removed from the bar; the element is in the state of pure shear. Observe that τ = τxz = τzx
denotes the shear stresses in the tangential and axial directions. So, the internal torque develops not
only a transverse shear stress along radial lines or in the cross section but also an associated axial
shear stress distribution along a longitudinal plane. The variation of these stresses on the mutually
perpendicular planes is illustrated in Fig. 6.5b, where a portion of the shaft has been removed for the
purposes of illustration. Consequently, if a material is weaker in shear axially than laterally (such as
wood), the failure in a twisted bar occurs longitudinally along axial planes.

Figure 6.5. Shearing stresses on transverse (xz) and axial (zx) planes of a shaft (Fig. 6.2): (a)
shaft element in pure shear; (b) shaft segment in pure shear.



6.3 Stresses on Inclined Planes
Our treatment thus far has been limited to shearing stresses on planes at a point parallel or
perpendicular to the axis of a shaft, defined by the torsion formula. This state of stress is depicted
acting on a surface element on the left of the shaft in Fig. 6.6a. Alternatively, representation of the
stresses at the same point may be given on an infinitesimal two-dimensional wedge whose outer
normal (x′) on its oblique face makes an angle θ with the axial axis (x), as shown in Fig. 6.6b.

Figure 6.6. (a) Stresses acting on the surface elements of a shaft in torsion; (b) free-body
diagram of wedge cut from the shaft; (c) Mohr’s circle for torsional loading.

We shall analyze the stresses σx′ and τx′y′ that must act on the inclined plane to keep the isolated body,
as discussed in Sections 1.7 and 1.9. The equilibrium conditions of forces in the x′ and y′ directions,
Eqs. (1.18a and 1.18b) with σx = σy = 0 and τxy = –τmax, give

(6.4a)

(6.4b)
These are the equations of transformation for stress in a shaft under torsion.
Figure 6.6c, a Mohr’s circle for torsional loading provides a convenient way of checking the
preceding results. Observe that the center C of the circle is at the origin of the coordinates σ and τ. It
is recalled that points A′ and B′ define the states of stress about any other set of x′ and y′ planes
relative to the set through an angle θ. Similarly, the points A(0, τmax) and B(0, τmin) are located on the
τ axis, while A1 and B1 define the principal planes and the principal stresses. The radius of the circle
is equal to the magnitude of the maximum shearing stress.
The variation in the stresses σx′ and σx′y′ with the orientation of the inclined plane is demonstrated in
Fig. 6.7. It is seen that τmax = τ and τx′y′ = 0 when θ = 45° and σmin = –τ, and τx′y′ = 0 when θ = 135°.
That is, the maximum normal stress equals σ1 = Tr/J, and the minimum normal stress equals σ2 =



–Tr/J, acting in the directions shown in Fig. 6.6a. Also, no shearing stress greater than τ is developed.
Figure 6.7. Graph of normal stress σx′ and shear stress τx′y′ versus angle θ of the inclined plane.

It is clear that, for a brittle material such as cast iron, which is weaker in tension than in shear, failure
occurs in tension along a helix as indicated by the dashed lines in Fig. 6.6a. Ordinary chalk behaves
in this manner. On the contrary, shafts made of ductile materials weak in shearing strength (for
example, mild steel) break along a line perpendicular to the axis. The preceding is consistent with the
types of tensile failures discussed in Section 2.7.

6.4 General Solution of the Torsion Problem
Consider a prismatic bar of constant arbitrary cross section subjected to equal and opposite twisting
moments applied at the ends, as in Fig. 6.8a. The origin of x, y, and z in the figure is located at the
center of twist of the cross section, about which the cross section rotates during twisting. It is
sometimes defined as the point at rest in every cross section of a bar in which one end is fixed and the
other twisted by a couple. At this point, u and v, the x and y displacements, are thus zero. The location
of the center of twist is a function of the shape of the cross section. Note that while the center of twist
is referred to in the derivations of the basic relationships, it is not dealt with explicitly in the solution
of torsion problems (see Prob. 6.19). The z passes through the centers of twist of all cross sections.

Figure 6.8. Torsion member of arbitrary cross section.

Geometry of Deformation
In general, the cross sections warp, as already noted. We now explore the problem of torsion with
free warping, applying the Saint-Venant semi-inverse method [Refs. 6.2 and 6.3]. As a fundamental
assumption, the warping deformation is taken to be independent of axial location, that is, identical for
any cross section:



(a)

It is also assumed that the projection on the xy plane of any warped cross section rotates as a rigid
body and that the angle of twist per unit length of the bar, θ, is constant.
We refer now to Fig. 6.8b, which shows the partial end view of the bar (and could represent any
section). An arbitrary point on the cross section, point P(x, y), located a distance r from center of
twist A, has moved to P′ = (x – u, y + v) as a result of torsion. Assuming that no rotation occurs at end
z = 0 and that θ is small, the x and y displacements of P are, respectively,

(b)

where the angular displacement of AP at a distance z from the left end is θz; then x, y, and z are the
coordinates of point P, and α is the angle between AP and the x axis. Clearly, Eqs. (b) specify the
rigid body rotation of any cross section through a small angle θz. By substituting Eqs. (a) and (b) into
Eq. (2.4), we have

(c)

Equation (2.36) together with this expression leads to the following:

(d)

(e)

Equations of Equilibrium
By now substituting Eq. (d) into the equations of equilibrium (1.14), assuming negligible body forces,
we obtain

(6.5)

Equations of Compatibility
Differentiating the first equation of (e) with respect to y and the second with respect to x and
subtracting the second from the first, we obtain an equation of compatibility:



(6.6)

where

(6.7)

The stress in a bar of arbitrary section may thus be determined by solving Eqs. (6.5) and (6.6) along
with the given boundary conditions.

6.5 Prandtl’s Stress Function
As in the case of beams, the torsion problem formulated in the preceding is commonly solved by
introducing a single stress function. If a function Φ(x, y), the Prandtl stress function, is assumed to
exist, such that

(6.8)

then the equations of equilibrium (6.5) are satisfied. The equation of compatibility (6.6) becomes,
upon substitution of Eq. (6.8),

(6.9)
The stress function Φ must therefore satisfy Poisson’s equation if the compatibility requirement is to
be satisfied.

Boundary Conditions
We are now prepared to consider the boundary conditions, treating first the load-free lateral surface.
Recall from Section 1.5 that τxz is a z-directed shearing stress acting on a plane whose normal is
parallel to the x axis, that is, the yz plane. Similarly, τzx acts on the xy plane and is x-directed. By
virtue of the symmetry of the stress tensor, we have τxz = τzx and τyz = τzy. Therefore, the stresses given
by Eq. (e) may be indicated on the xy plane near the boundary, as shown in Fig. 6.9. The boundary
element is associated with arc length ds. Note that ds increases in the counterclockwise direction.
When ds is zero, the element represents a point at the boundary. Then, referring to Fig. 6.9 together
with Eq. (1.48), which relates the surface forces to the internal stress, and noting that the cosine of the
angle between z and a unit normal n to the surface is zero [that is, cos(n, z) = 0], we have

(a)

Figure 6.9. Arbitrary cross section of a prismatic member in torsion.



According to Eq. (a), the resultant shear stress τ must be tangent to the boundary (Fig. 6.9). From the
figure, it is clear that

(b)

Note that as we proceed in the direction of increasing s, x decreases and y increases. This accounts
for the algebraic sign in front of dx and dy in Fig. 6.9. Substitution of Eqs. (6.8) and (b) into Eq. (a)
yields

(6.10)
This expression states that the directional deviation along a boundary curve is zero. Thus, the function
Φ(x, y) must be an arbitrary constant on the lateral surface of the prism. Examination of Eq. (6.8)
indicates that the stresses remain the same regardless of additive constants; that is, if Φ + constant is
substituted for Φ, the stresses will not change. For solid cross sections, we are therefore free to set Φ
equal to zero at the boundary. In the case of multiply connected cross sections, such as hollow or
tubular members, an arbitrary value may be assigned at the boundary of only one of the contours s0,
s1,..., sn. For such members it is necessary to extend the mathematical formulation presented in this
section. Solutions for thin-walled, multiply connected cross sections are treated in Section 6.8 by use
of the membrane analogy.
Returning to the member of solid cross section, we complete discussion of the boundary conditions by
considering the ends, at which the normals are parallel to the z axis and therefore cos(n, z) = n = ± 1,
l = m = 0. Equation (1.48) now gives, for pz = 0,

(c)
where the algebraic sign depends on the relationship between the outer normal and the positive z
direction. For example, it is negative for the end face at the origin in Fig. 6.8a.
We now confirm that the summation of forces over the ends of the bar is zero:

Here y1 and y2 represent the y coordinates of points located on the surface. Inasmuch as Φ = constant



on the surface of the bar, the values of Φ corresponding to y1 and y2 must be equal to a constant, Φ1 =
Φ2 = constant. Similarly it may be shown that

The end forces, while adding to zero, must nevertheless provide the required twisting moment or
externally applied torque about the z axis:

Integrating by parts,

Since Φ = constant at the boundary and x1, x2, y1, and y2 denote points on the lateral surface, it
follows that

(6.11)
Inasmuch as Φ(x, y) has a value at each point on the cross section, it is clear that Eq. (6.11)
represents twice the volume beneath the Φ surface.
What has resulted from the foregoing development is a set of equations satisfying all the conditions of
the prescribed torsion problem. Equilibrium is governed by Eqs. (6.8), compatibility by Eq. (6.9),
and the boundary condition by Eq. (6.10). Torque is related to stress by Eq. (6.11). To ascertain the
distribution of stress, it is necessary to determine a stress function that satisfies Eqs. (6.9) and (6.10),
as is demonstrated in the following example.

Example 6.3. Analysis of an Elliptical Torsion Bar

Consider a solid bar of elliptical cross section (Fig. 6.10a). Determine the maximum shearing
stress and the angle of twist per unit length. Also, derive an expression for the warping w(x, y).

Figure 6.10. Example 6.3. Elliptical cross section: (a) shear stress distribution; (b) out-of
plane deformation or warping.

Solution



Equations (6.9) and (6.10) are satisfied by selecting the stress function

where k is a constant. Substituting this into Eq. (6.9), we obtain

Hence,

(d)

and Eq. (6.11) yields

where A is the cross-sectional area. Inserting expressions for Ix, Iy, and A (Table C.1) results in

(e)

from which

(f)

The stress function is now expressed as

and the shearing stresses are found readily from Eq. (6.8):

(g)

The ratio of these stress components is proportional to y/x and thus constant along any radius of
the ellipse:

The resultant shearing stress,



(h)

has a direction parallel to a tangent drawn at the boundary at its point of intersection with the
radius containing the point under consideration. Note that α represents an arbitrary angle (Fig.
6.10a).
To determine the location of the maximum resultant shear, which from Eq. (g) is somewhere on
the boundary, consider a point P′(x′, y′) located on a diameter conjugate to that containing P(x, y)
(Fig. 6.10a). Note that OP′ is parallel to the tangent line at P. The coordinates of P and P′ are
related by

When these expressions are substituted into Eq. (h), we have

(i)

Clearly, τzα will have its maximum value corresponding to the largest value of the conjugate
semidiameter r′. This occurs where r′ = a or r = b. The maximum resultant shearing stress thus
occurs at P(x, y), corresponding to the extremities of the minor axis as follows: x = 0, y = ± b.
From Eq. (i),

(6.12a)
The angle of twist per unit length is obtained by substituting Eq. (f) into Eq. (6.7):

(6.12b)

We note that the factor by which the twisting moment is divided to determine the twist per unit
length is called the torsional rigidity, commonly denoted C. That is,

(6.13)

The torsional rigidity for an elliptical cross section, from Eq. (6.12b), is thus

Here A = πab and J = πab(a2 + b2)/4 are the area and polar moment of inertia of the cross section.
The components of displacement u and v are then found from Eq. (b) of Section 6.4. To obtain the
warpage w(x, y), consider Eq. (e) of Section 6.4 into which have been substituted the previously



derived relations for τzx, τzy, and θ:

Integration of these equations leads to identical expressions for w(x, y), except that the first also
yields an arbitrary function of y, f(y), and the second an arbitrary function of x, f(x). Since w(x, y)
must give the same value for a given P(x, y), we conclude that f(x) = f(y) = 0; what remains is

(6.14)

The contour lines, obtained by setting w = constant, are the hyperbolas shown in Fig. 6.10b. The
solid lines indicate the portions of the section that become convex, and the dashed lines indicate
the portions of the section that become concave when the bar is subjected to a torque in the
direction shown.

Circular Cross Section
The results obtained in this example for an elliptical section may readily be reduced to the case of a
circular section by setting a and b equal to the radius of a circle r (Fig. 6.6a). Equations (6.12a and b)
thus become

where the polar moment of inertia, J = πr4/2. Similarly, Eq. (6.14) gives w = 0, verifying assumption
(1) of Section 6.2.

Example 6.4. Equilateral Triangle Bar under Torsion

An equilateral cross-sectional solid bar is subjected to pure torsion (Fig. 6.11). What are the
maximum shearing stress and the angle of twist per unit length?

Figure 6.11. Example 6.4. Equilateral triangle cross section.

Solution



The equations of the boundaries are expressed as

Therefore, the stress function that vanishes at the boundary may be written in the form:

(j)

in which k is constant.
Proceeding as in Example 6.3, it can readily be shown (see Prob. 6.23) that the largest shearing
stress at the middle of the sides of the triangle is equal to

(k)

At the corners of the triangle, the shearing stress is zero, as shown in Fig. 6.11. Angle of twist per
unit length is given by

(l)

The torsional rigidity is therefore . Note that, for an equilateral triangle of
sides a, we have . (Fig. 6.11).

Example 6.5. Rectangular Bar Subjected to Torsion
A torque T acts on a bar having rectangular cross section of sides a and b (Fig. 6.12). Outline the
derivations of the expressions for the maximum shearing stress τmax and the angle of twist per unit
length θ.

Figure 6.12. Example 6.5. Shear stress distribution in the rectangular cross section of
atorsion bar.



Solution

The indirect method employed in the preceding examples does not apply to the rectangular cross
sections. Mathematical solution of the problem is lengthy. For situations that cannot be
conveniently solved by applying the theory of elasticity, the governing equations are used in
conjunction with the experimental methods, such as membrane analogy (Ref. 6.4). Finite element
analysis is also very efficient for this purpose.
The shear stress distribution along three radial lines initiating from the center of a rectangular
section of a bar in torsion are shown in Fig. 6.12, where the largest stresses are along the center
line of each face. The difference in this stress distribution compared with that of a circular
section is very clear. For the latter, the stress is a maximum at the most remote point, but for the
former, the stress is zero at the most remote point. The values of the maximum shearing stress τmax
in a rectangular cross section and the angle of twist per unit length θ are given in the next section
(see Table 6.2).
Interestingly, a corner element of the cross section of a rectangular shaft under torsion does not
distort at all, and hence the shear stresses are zero at the corners, as illustrated in Fig. 6.13. This
is possible because outside surfaces are free of all stresses. The same considerations can be
applied to the other points on the boundary. The shear stresses acting on three outermost cubic
elements isolated from the bar are illustrated in the figure. Here stress-free surfaces are indicated
as shaded. Observe that all shear stresses τxy and τxz in the plane of a cut near the boundaries act
on them.

Figure 6.13. Example 6.5. Deformation and stress in a rectangular bar segment under
torsion. Note that the original plane cross sections have warped out of their own plane.



6.6 Prandtl’s Membrane Analogy
It is demonstrated next that the differential equation for the stress function, Eq. (6.9), is of the same
form as the equation describing the deflection of a membrane or soap film subject to pressure. Hence,
an analogy exists between the torsion and membrane problems, serving as the basis of a number of
experimental techniques. Consider an edge-supported homogeneous membrane, given its boundary
contour by a hole cut in a plate (Fig. 6.14a). The shape of the hole is the same as that of the twisted
bar to be studied; the sizes need not be identical.

Figure 6.14. Membrane analogy for torsion members of solid cross section.

Equation of Equilibrium
The equation describing the z deflection of the membrane is derived from considerations of
equilibrium applied to the isolated element abcd. Let the tensile forces per unit membrane length be
denoted by S. From a small z deflection, the inclination of S acting on side ab may be expressed as β
≈ ∂z/∂x. Since z varies from point to point, the angle at which S is inclined on side dc is

Similarly, on sides ad and bc, the angles of inclination for the tensile forces are ∂z/∂y and ∂z/∂y +
(∂2z/∂y2) dy, respectively. In the development that follows, S is regarded as a constant, and the weight
of the membrane is ignored. For a uniform lateral pressure p, the equation of vertical equilibrium is
then



leading to

(6.15)

This is again Poisson’s equation. Upon comparison of Eq. (6.15) with Eqs. (6.9) and (6.8), the
quantities shown in Table 6.1 are observed to be analogous. The membrane, subject to the conditions
outlined, thus represents the Φ surface (Fig. 6.14b). In view of the derivation, the restriction with
regard to smallness of slope must be borne in mind.

Table 6.1. Analogy between Membrane and Torsion Problems

Shearing Stress and Angle of Twist
We outline next one method by which the foregoing theory can be reduced to a useful experiment. In
two thin, stiff plates, bolted together, are cut two adjacent holes; one conforms to the outline of the
irregular cross section and the other is circular. The plates are then separated and a thin sheet of
rubber stretched across the holes (with approximately uniform and equal tension). The assembly is
then bolted together. Subjecting one side of the membrane to a uniform pressure p causes a different
distribution of deformation for each cross section, with the circular hole providing calibration data.
The measured geometric quantities associated with the circular hole, together with the known
solution, provide the needed proportionalities between pressure and angle of twist, slope and stress,
volume and torque. These are then applied to the irregular cross section, for which the measured
slopes and volume yield τ and T. The need for precise information concerning the membrane stress is
thus obviated.
The membrane analogy provides more than a useful experimental technique. As is demonstrated in
the next section, it also serves as the basis for obtaining approximate analytical solutions for bars of
narrow cross section as well as for members of open thin-walled section.
For reference purposes, Table 6.2 presents the shearing stress and angle of twist for a number of
commonly encountered shapes [Ref. 6.4]. Note that the values of coefficients α and β depend on the
ratio of the length of the long side or depth a to the width b of the short side of a rectangular section.



For thin sections, where a is much greater than b, their values approach 1/3. We observe that, in all
cases, the maximum shearing stresses occur at a point on the edge of the cross section that is closest
to the center axis of the shaft. A circular shaft is the most efficient; it is subjected to both smaller
maximum shear stress and a smaller angle of twist than the corresponding noncircular shaft of the
same cross-sectional area and carrying the same torque.

Table 6.2. Shear Stress and Angle of Twist of Various Members in Torsion



Example 6.6. Analysis of a Stepped Bar in Torsion

A rectangular bar of width b consists of two segments: one with depth a1 = 60 mm and length L1 =
2.5 m and the other with depth a2 = 45 mm and length L2 = 1.5 m (Fig. 6.15). The bar is to be
designed using an allowable shearing stress τall = 50 MPa and an allowable angle of twist per unit
length θall = 1.5° per meter. Determine (a) the maximum permissible applied torque Tmax,
assuming b = 30 mm and G = 80 GPa, and (b) the corresponding angle of twist between the end
sections, φmax.

Figure 6.15. Example 6.6. A stepped rectangular torsion bar.

Solution
The values of the torsion parameters from Table 6.2 are

a. Segment BC governs because it is of smaller depth. The permissible torque T based on the
allowable shearing stress is obtained from τmax = T/αab2. Thus,

T = α2a2b2τmax = 0.231(0.045)(0.03)2(50 × 106) = 468 N · m

The allowable torque T corresponding to the allowable angle of twist per unit length is
determined from θ = T/βab3G:

The maximum permissible torque, equal to the smaller of the two preceding values, is Tmax =
468 N · m.

b. The angle of twist is equal to the sum of the angles of twist for the two segments:

Clearly, had the allowable torque been based on the angle of twist per unit length, we would
have found that φmax = θall(L1 + L2) = 1.5(4) = 6°.

6.7 Torsion of Narrow Rectangular Cross Section



In applying the analogy to a bar of narrow rectangular cross section, it is usual to assume a constant
cylindrical membrane shape over the entire dimension b (Fig. 6.16). Subject to this approximation,
∂z/∂y = 0, and Eq. (6.15) reduces to d2z/dx2 = –p/S, which is twice integrated to yield the parabolic
deflection

(a)

Figure 6.16. Membrane analogy for a torsional member of narrow rectangular cross section.

To arrive at Eq. (a), the boundary conditions that dz/dx = 0 at x = 0 and z = 0 at x = t/2 have been
employed. The volume bounded by the parabolic cylindrical membrane and the xy plane is given by V
= pbt3/12S. According to the analogy, p is replaced by 2θ and 1/S by G, and consequently 

. The torsional rigidity for a thin rectangular section is therefore

(6.16)

Here Je represents the effective polar moment of inertia of the section. The analogy also requires that

(b)
The angle of twist per unit length is, from Eq. (6.16),

(6.17)

Maximum shear occurs at ±t/2 is

(6.18)

or

(6.19)
According to Eq. (b), the shearing stress is linear in x, as in Fig. 6.9, producing a twisting moment T
about z given by



This is exactly one-half the torque given by Eq. (6.19). The remaining applied torque is evidently
resisted by the shearing stresses τzx, neglected in the original analysis in which the membrane is taken
as cylindrical. The membrane slope at y = ±b/2 is smaller than that at x = ±t/2 or, equivalently,
(τzx)max < (τzy)max. It is clear, therefore, that Eq. (6.18) represents the maximum shearing stress in the
bar, of a magnitude unaffected by the original approximation. That the lower τzx stresses can provide
a resisting torque equal to that of the τzy stresses is explained on the basis of the longer moment arm
for the stresses near y = ±b/2.

Thin-Walled Open Cross Sections
Equations (6.17) and (6.18) are also applicable to thin-walled open sections such as those shown in
Fig. 6.17. Because the foregoing expressions neglect stress concentration, the points of interest should
be reasonably distant from the corners of the section (Figs. 6.17b and c). The validity of the foregoing
approach depends on the degree of similarity between the membrane shape of Fig. 6.16 and that of the
geometry of the component section. Consider, for example, the I-section of Fig. 6.17c. Because the
section is of varying thickness, the effective polar moment of inertia is written as

(6.20)

Figure 6.17. Thin-walled open sections.

or

We thus have

(6.21a)

(6.21b)

where ti is the larger of t1 and t2. The effect of the stress concentrations at the corners will be
examined in Section 6.9.



6.8 Torsion of Multiply Connected Thin-Walled Sections
The membrane analogy may be applied to good advantage to analyze the torsion of thin tubular
members, provided that some care is taken. Consider the deformation that would occur if a membrane
subject to pressure were to span a hollow tube of arbitrary section (Fig. 6.18a). Since the membrane
surface is to describe the stress function (and its slope, the stress at any point), arc ab cannot
represent a meaningful stress function. This is simply because in the region ab the stress must be zero,
because no material exists there. If the curved surface ab is now replaced by a plane representing
constant Φ, the zero-stress requirement is satisfied. For bars containing multiply connected regions,
each boundary is also a line of constant Φ of different value. The absolute value of Φ is meaningless,
and therefore at one boundary, Φ may arbitrarily be equated to zero and the others adjusting
accordingly.

Figure 6.18. Membrane analogy for tubular torsion members: (a) and (b) one-cell section; (c)
two-cell section.

Shearing Stress
Based on the foregoing considerations, the membrane analogy is extended to a thin tubular member
(Fig. 6.18b), in which the fixed plate to which the membrane is attached has the same contour as the
outer boundary of the tube. The membrane is also attached to a “weightless” horizontal plate having
the same shape as the inner boundary nn of the tube, thus bridging the inner and outer contours over a
distance t. The inner horizontal plate, made “weightless” by a counterbalance system, is permitted to
seek its own vertical position but is guided so as not to experience sideward motion. Because we
have assumed the tube to be thin walled, the membrane curvature may be disregarded; that is, lines nn
may be considered straight. We are thus led to conclude that the slope is constant over a given
thickness t, and consequently the shearing stress is likewise constant, given by

(a)

where h is the membrane deflection and t the tube thickness. Note that the tube thickness may vary
circumferentially.
The dashed line in Fig. 6.18b indicates the mean perimeter, which may be used to determine the
volume bounded by the membrane. Letting A represent the area enclosed by the mean perimeter, the
volume mnnm is simply Ah, and the analogy gives

(b)



Combining Eqs. (a) and (b), we have

(6.22)
The application of Eq. (6.22) is limited to thin-walled members displaying no abrupt variations in
thickness and no reentrant corners in their cross sections.

Angle of Twist
To develop a relationship for the angle of twist from the membrane analogy, we again consider Fig.
6.18b, in which h ≪ t and consequently tan(h/t) ≈ h/t = τ. Vertical equilibrium therefore yields

Here s is the length of the mean perimeter of the tube. Since the membrane tension is constant, h is
independent of S. The preceding is then written

where the last term follows from the analogy. The angle of twist per unit length is now found directly:

(6.23)
Equations (6.22) and (6.23) are known as Bredt’s formulas.
In Eqs. (a), (b), and (6.23), the quantity h possesses the dimensions of force per unit length,
representing the resisting force per unit length along the tube perimeter. For this reason, h is referred
to as the shear flow.

Example 6.7. Rectangular Torsion Tube

An aluminum tube of rectangular cross section (Fig. 6.19a) is subjected to a torque of 56.5 kN · m
along its longitudinal axis. Determine the shearing stresses and the angle of twist. Assume G = 28
GPa.

Figure 6.19. Example 6.7. (a) Cross section; (b) membrane.



Solution

Referring to Fig. 6.19b, which shows the membrane surface mnnm (representing Φ), the applied
torque is, according to Eq. (b),

T = 2Ah = 2(0.125h) = 56,500 N · m
from which h = 226,000 N/m. The shearing stresses are found from Eq. (a) as follows:

Applying Eq. (6.23), the angle of twist per unit length is

If multiply connected regions exist within a tubular member, as in Fig. 6.18c, the foregoing techniques
are again appropriate. As before, the thicknesses are assumed small, so lines such as mn, np, and pm
are regarded as straight. The stress function is then represented by the membrane surface mnnppm. As
in the case of a simple hollow tube, lines nn and pp are straight by virtue of flat, weightless plates
with contours corresponding to the inner openings. Referring to the figure, the shearing stresses are

(c)

(d)
The stresses are produced by a torque equal to twice the volume beneath surface mnnppm,

(e)

or, upon substitution of Eqs. (c),

(f)

Assuming the thicknesses t1, t2, and t3 constant, application of Eq. (6.23) yields

(g)



(h)

where s1, s2, and s3 represent the paths of integration indicated by the dashed lines. Note the
relationship among the algebraic sign, the assumed direction of stress, and the direction in which
integration proceeds. There are thus four equations [(d), (f), (g), and (h)] containing four unknowns:
τ1, τ2, τ3, and θ.

If now Eq. (d) is written in the form

(i)

it is observed that the shear flow h = τt is constant and distributes itself in a manner analogous to a
liquid circulating through a channel of shape identical with that of the tubular bar. This analogy
proves very useful in writing expressions for shear flow in tubular sections of considerably greater
complexity.

Example 6.8. Three-Cell Torsion Tube
A multiply connected steel tube (Fig. 6.20) resists a torque of 12 kN · m. The wall thicknesses
are t1 = t2 = t3 = 6 mm and t4 = t5 = 3 mm. Determine the maximum shearing stresses and the angle
of twist per unit length. Let G = 80 GPa. Dimensions are given in millimeters.

Figure 6.20. Example 6.8. Three-cell section.

Solution

Assuming the shearing stresses directed as shown, consideration of shear flow yields

(j)
The torque associated with the shearing stresses must resist the externally applied torque, and an
expression similar to Eq. (f) is obtained:

(k)

Three more equations are available through application of Eq. (6.23) over areas A1, A2, and A3:



(l)

Here, s1 = 0.7069 m, s2 = 0.2136 m, s3 = 0.4272 m, s4 = 0.45 m, s5 = 0.3 m, A1 = 0.079522 m2, A2

= 0.075 m2, and A3 = 0.06 m2. There are six equations in the five unknown stresses and the angle
of twist per unit length. Thus, simultaneous solution of Eqs. (j), (k), and (l) leads to the following
rounded values: τ1 = 4.902 MPa, τ2 = 5.088 MPa, τ3 = 3.809 MPa, τ4 = –0.373 MPa, τ5 = 2.558
MPa, and θ = 0.0002591 rad/m. The positive values obtained for τ1, τ2, τ3, and τ5 indicate that the
directions of these stresses have been correctly assumed in Fig. 6.20. The negative sign of τ4
means that the direction initially assumed was incorrect; that is, τ4 is actually upward directed.

6.9 Fluid Flow Analogy and Stress Concentration
Examination of Eq. 6.8 suggests a similarity between the stress function Φ and the stream function ψ
of fluid mechanics:

(6.24)

In Eqs. (6.24), vx and vy represent the x and y components of the fluid velocity v. Recall that, for an
incompressible fluid, the equation of continuity may be written

Continuity is thus satisfied when ψ(x, y) is defined as in Eqs. (6.24). The vorticity  is for
two-dimensional flow,

where ∇ = (∂/∂x)i + (∂/∂y)j. In terms of the stream function, we obtain

(6.25)

The expression is clearly analogous to Eq. (6.9) with –2ω replacing –2Gθ. The completeness of the
analogy is assured if it can be demonstrated that ψ is constant along a streamline (and hence on a
boundary), just as Φ is constant over a boundary. Since the equation of a streamline in two-
dimensional flow is

in terms of the stream function, we have



(6.26)

This is simply the total differential dψ, and therefore ψ is constant along a streamline.
Based on the foregoing, experimental techniques have been developed in which the analogy between
the motion of an ideal fluid of constant vorticity and the torsion of a bar is successfully exploited. The
tube in which the fluid flows and the cross section of the twisted member are identical in these
experiments and useful in visualizing stress patterns in torsion. Moreover, a vast body of literature
exists that deals with flow patterns around bodies of various shapes, and the results presented are
often directly applicable to the torsion problem.
The fluid flow or hydrodynamic analogy is especially valuable in dealing with stress concentration
in shear, which we have heretofore neglected. In this regard, consider first the torsion of a circular
bar containing a small circular hole (Fig. 6.21a). Figure 6.21b shows the analogous flow pattern
produced by a solid cylindrical obstacle placed in a circulating fluid. From hydrodynamic theory, it is
found that the maximum velocity (at points a and b) is twice the value in the undisturbed stream at the
respective radii. From this, it is concluded that a small hole has the effect of doubling the shearing
stress normally found at a given radius.
Figure 6.21. (a) Circular shaft with hole; (b) fluid-flow pattern around small cylindrical obstacle;

(c) circular shaft with keyway.

Of great importance also is the shaft keyway shown in Fig. 6.21c. According to the hydrodynamic
analogy, the points a ought to have zero stress, since they are stagnation points of the fluid stream. In
this sense, the material in the immediate vicinity of points a is excess. On the other hand, the velocity
at the points b is theoretically infinite and, by analogy, so is the stress. It is therefore not surprising
that most torsional fatigue failures have their origins at these sharp corners, and the lesson is thus
supplied that it is profitable to round such corners.

6.10 Torsion of Restrained Thin-Walled Members of Open Cross Section
It is a basic premise of previous sections of this chapter that all cross sections of a bar subject to
torques applied at the ends suffer free warpage. As a consequence, we must assume that the torque is
produced by pure shearing stresses distributed over the ends as well as all other cross sections of the
member. In this way, the stress distribution is obtained from Eq. (6.9) and satisfies the boundary
conditions, Eq. (6.10).
If any section of the bar is held rigidly, it is clear that the rate of change of the angle of twist as well
as the warpage will now vary in the longitudinal direction. The longitudinal fibers are therefore
subject to tensile or compressive stresses. Equations (6.9) and (6.10) are, in this instance, applied
with satisfactory results in regions away from the restrained section of the bar. While this restraint
has negligible influence on the torsional resistance of members of solid section such as rectangles and
ellipses, it is significant when dealing with open thin-walled sections such as channels of I-beams.
Consider, for example, the case of a cantilever I-beam, shown in Fig. 6.22a. The applied torque



causes each cross section to rotate about the axis of twist (z), thereby resulting in bending of the
flanges. According to beam theory, the associated bending stresses in the flanges are zero at the
juncture with the web. Consequently, the web does not depart from a state of simple torsion. In
resisting the bending of the flanges or the warpage of a cross section, considerable torsional stiffness
can, however, be imparted to the beam.

Figure 6.22. I-section torsion member: (a) warping is prevented of the section at x = 0; (b)
partly lateral shear and partly torsional shear at arbitrary cross section AB.

Torsional and Lateral Shears
Referring to Fig. 6.22a, the applied torque T is balanced in part by the action of torsional shearing
stresses and in part by the resistance of the flanges to bending. At the representative section AB (Fig.
6.22b), consider the influence of torques T1 and T2. The former is attributable to pure torsional
shearing stresses in the entire cross section, assumed to occur as though each cross section were free
to warp. Torque T1 is thus related to the angle of twist of section AB by the expression

(a)
in which C is the torsional rigidity of the beam. The right-hand rule should be applied to furnish the
sign convention for both torque and angle of twist. A pair of lateral shearing forces owing to bending
of the flanges acting through the moment arm h gives rise to torque T2:

(b)

An expression for Vf may be derived by considering the x displacement, u. Because the beam cross
section is symmetrical and the deformation small, we have u = (h/2)φ, and

(c)



Thus, the bending moment Mf and shear Vf in the flange are

(d)

(e)

where If is the moment of inertia of one flange about the y axis. Now Eq. (b) becomes

(f)
The total torque is therefore

(6.27)

Boundary Conditions
The conditions appropriate to the flange ends are

indicating that the slope and bending moment are zero at the fixed and free ends, respectively. The
solution of Eq. (6.27) is, upon satisfying these conditions,

(g)

where

(6.28)

Long Beams
For a beam of infinite length, Eq. (g) reduces to

(h)

By substituting Eq. (h) into Eqs. (a) and (f), the following expressions result:



(6.29)

From this, it is noted that at the fixed end (z = 0) T1 = 0 and T2 = T. At this end, the applied torque is
counterbalanced by the effect of shearing forces only, which from Eq. (b) are given by Vf = T2/h =
T/h. The torque distribution, Eq. (6.29), indicates that sections such as EF, close to the fixed end,
contain predominantly lateral shearing forces (Fig. 6.22a). Sections such as CD, near the free end,
contain mainly torsional shearing stresses (as Eq. 6.29 indicates for z → ∞).
The flange bending moment, obtained from Eqs. (d) and (h), is a maximum at z = 0:

(i)

The maximum bending moment, occurring at the fixed end of the flange, is found by substituting the
relations (6.28) into (i):

(6.30)

An expression for the angle of twist is determined by integrating Eq. (h) and satisfying the condition
φ = 0 at z = 0:

(j)

For relatively long beams, for which e–αz may be neglected, the total angle of twist at the free end is,
from Eq. (j),

(6.31)

In this equation the term 1/α indicates the influence of flange bending on the angle of twist. Since for
pure torsion the total angle of twist is given by φ = TL/C, it is clear that end restraint increases the
stiffness of the beam in torsion.

Example 6.9. Analysis of I-Beam Under Torsion
A cantilever I-beam with the idealized cross section shown in Fig. 6.22 is subjected to a torque
of 1.2 kN · m. Determine (a) the maximum longitudinal stress, and (b) the total angle of twist, φ.
Take G = 80 GPa and E = 200 GPa. Let tf = 10 mm, tw = 7 mm, b = 0.1 m, h = 0.2 m, and L = 2.4
m.

Solution



a. The torsional rigidity of the beam is, from Eq. (6.21a),

The flexural rigidity of one flange is

Hence, from Eq. (6.28) we have

From Eq. (6.30), the bending moment in the flange is found to be 3.43 times larger than the
applied torque, T. Thus, the maximum longitudinal bending stress in the flange is

b. Since e–αL = 0.03, we can apply Eq. (6.31) to calculate the angle of twist at the free end:

It is interesting to note that if the ends of the beam were both free, the total angle of twist
would be φ = TL/C = 0.4073 rad, and the beam would experience φfree/φfixed = 1.4 times more
twist under the same torque.

6.11 Curved Circular Bars: Helical Springs
The assumptions of Section 6.2 are also valid for a curved, circular bar, provided that the radius r of
the bar is small in comparison with the radius of curvature R. When , for example, the
maximum stress computed on the basis of the torsion formula, τ = Tr/J, is approximately 5% too low.
On the other hand, if the diameter of the bar is large relative to the radius of curvature, the length
differential of the longitudinal surface elements must be taken into consideration, and there is a stress
concentration at the inner point of the bar. We are concerned here with the torsion of slender curved
members for which r/R ≪ 1.
Frequently, a curved bar is subjected to loads that at any cross section produce a twisting moment as
well as a bending moment. Expressions for the strain energy in torsion and bending have already been
developed (Secs. 2.14 and 5.12), and application of Castigliano’s theorem (Sec. 10.4) leads readily
to the displacements. Note that, in the design of springs manufactured from curved bars or wires,
deflection is as important as strength. Springs are employed to apply forces or torques in a
mechanism or to absorb the energy owing to suddenly applied loads.*

Consider the case of a cylindrical rod or bar bent into a quarter-circle of radius R, as shown in Fig.
6.23a. The rod is fixed at one end and loaded at the free end by a twisting moment T. The bending and
twisting moments at any section are (Fig. 6.23b)



(a)

Figure 6.23. Twisting of a curved, circular bar.

Substituting these quantities into Eqs. (2.63) and (2.61) together with dx = ds = Rdθ yields

(b)
or

where J = πd4/32 = 2I. The strain energy in the entire rod is obtained by integrating:

(6.32)

Upon application of φ = ∂U/∂T, it is found that

(6.33)
for the angle of twist at the free end.
A helical spring, produced by wrapping a wire around a cylinder in such a way that the wire forms a
helix of uniformly spaced turns, as typifies a curved bar, is discussed in the following example.

Example 6.10. Analysis of a Helical Spring

An open-coiled helical spring wound from wire of diameter d, with pitch angle α and n number
of coils of radius R, is extended by an axial load P (Fig. 6.24). (a) Develop expressions for
maximum stress and deflection. (b) Redo part (a) for the spring closely coiled. Assumption: Load
is applied steadily at a rigid hook and loop at ends.

Figure 6.24. Example 6.10. Helical spring under tension.



Solution

An element of the spring located between two adjoining sections of the wire may be treated as a
straight circular bar in torsion and bending. This is because a tangent to the coil at any point such
as A is not perpendicular to the load. At cross section A, components P cos α and P sin α produce
the following respective torque and moment:

(c)

a. The stresses, from Eq. (4.7), are given by

The maximum normal stress and the maximum shear stress are thus

(6.34a)

and

(6.34b)

The deflection is computed by applying Castigliano’s theorem together with Eqs. (b) and (c):

where the length of the coil L = 2πRn. It follows that the relationship

or

(6.35)

defines the axial end deflection of an open-coil helical spring.
b. For a closely coiled helical spring, the angle of pitch α of the coil is very small. The

deflection is now produced entirely by the torsional stresses induced in the coil. To derive



expressions for the stress and deflection, let α = sin α = 0 and cos α = 1 in Eqs. (6.34) and
(6.35). In so doing, we obtain

(6.36)
and

(6.37)

Comment

The foregoing results are applicable to both tension and compression helical springs, the wire
diameters of which are small in relation to coil radius.

References
6.1. UGURAL, A. C., Mechanics of Materials, Wiley, Hoboken, N. J., 2008, Sec. 6. 2.
6.2. TODHUNTER, I. and PEARSON, K., History of the Theory of Elasticity and the Strength of

Materials, Dover, New York, 1960, Vols. I and II.
6.3. TIMOSHENKO, S. P., and GOODIER, J. N., Theory of Elasticity, 3rd ed., McGraw-Hill, New

York, 1970.
6.4. YOUNG, W. C. and BUDYNAS, R. G., Roark’s Formulas for Stress and Strain, 6th ed., McGraw-

Hill, New York, 1989.
6.5. UGURAL, A. C., Mechanical Design: An Integrated Approach, McGraw-Hill, New York, 2004,

Chap. 14.
6.6. WAHL, A. M., Mechanical Springs, McGraw-Hill, New York, 1963.

Problems
Sections 6.1 through 6.3

6.1. A hollow steel shaft of outer radius c = 35 mm is fixed at one end and subjected to a torque T
= 3 kN · m at the other end. Calculate the required inner radius b, knowing that the average
shearing stress is limited to 100 MPa.

6.2. A solid shaft of 40-mm diameter is to be replaced by a hollow circular tube of the same
material, resisting the same maximum shear stress and the same torque. Determine the outer
diameter D of the tube for the case in which its wall thickness is t = D/25.

6.3. A solid shaft of diameter d and a hollow shaft of outer diameter D = 60 mm and thickness t =
D/4 are to transmit the same torque at the same maximum shear stress. What is the required
diameter d the shaft?

6.4. Figure P6.4 shows four pulleys, attached to a solid stepped shaft, transmit the torques. Find
the maximum shear stress for each shaft segment.



Figure P6.4.

6.5. Resolve Prob. 6.4, for the case in which a hole of 16-mm diameter drilled axially through the
shaft to form a tube.

6.6. As seen in Fig. P6.6, a stepped shaft ABC with built-in end at A is subjected to the torques TB
= 3 kN · m and TC = 1 kN · m at sections B and C. Based on a stress concentration factor K =
1.6 at the step B, what is the maximum shearing stress in the shaft? Given: d1 = 50 mm and d2
= 40 mm.

Figure P6.6.

6.7. A brass rod AB (Gb = 42 GPa) is bonded to an aluminum rod BC (Gd = 28 GPa), as
illustrated in Fig. P6.6. Determine the angle of twist at C, for the case in which TB = 2TC = 8
kN · m, d1 = 2d2 = 100 mm, and L1 = 2L2 = 0.7 m.

6.8. A hollow shaft is made by rolling a metal plate of thickness t into a cylindrical form and
welding the edges along the helical seams oriented at an angle of φ to the axis of the member
(Fig. P6.8). Calculate the maximum torque that can be applied to the shaft. Assumption: The
allowable tensile and shear stresses in the weld are 120 MPa and 50 MPa, respectively.
Given: D = 100 mm, t = 5 mm, and φ = 50°.

Figure P6.8.



6.9. Resolve Prob. 6.8 for the case in which the helical seam is oriented at an angle of φ = 35° to
the axis of the member (Fig. P6.8).

6.10. What is the required diameter d1 for the segment AB of the shaft illustrated in Fig. P6.6 if the
permissible shear stress is τall = 50 MPa and the total angle of twist between A and C is
limited to φ = 0.02 rad? Given: G = 39 GPa, TB = 3 kN · m, TC = 1 kN · m, L1 = 2 m, L2 = 1
m, and d2 = 25 mm.

6.11. Redo Prob. 6.10 for the case in which the torque applied at B is TB = 2 kN · m and TC = 0.5
kN · m.

6.12. A stepped shaft of diameters D and d is under a torque T, as shown in Fig. P6.12. The shaft
has a fillet of radius r (see Fig. D.4). Determine (a) the maximum shear stress in the shaft for r
= 1.0 mm; (b) the maximum shear stress in the shaft for r = 5 mm. Given: D = 60 mm, d = 50
mm, and T = 2 kN · m.

Figure P6.12.

6.13. A stepped shaft having solid circular parts with diameters D and d is in pure torsion (Fig.
P6.12). The two parts are joined with a fillet of radius r (see Fig. D.4). If the shaft is made of
brass with allowable shear strength 80 MPa, determine the largest torque capacity of the shaft.
Given: D = 100 mm, d = 50 mm, r = 10 mm.

6.14. Consider two bars, one having a circular section of radius b, the other an elliptic section
with semiaxes a, b (Figure P6.14). Determine (a) for equal angles of twist, which bar
experiences the larger shearing stress, and (b) for equal allowable shearing stresses, which
bar resists a larger torque.

Figure P6.14.



6.15. A hollow (ri = b, r0 = c) and a solid (r0 = a) cylindrical shaft are constructed of the same
material. The shafts are of identical length and cross-sectional area and both are subjected to
pure torsion. Determine the ratio of the largest torques that may be applied to the shafts for c =
1.4b (a) if the allowable stress is τa and (b) if the allowable angle of twist is θa.

6.16. A solid circular shaft AB, held rigidly at both ends, has two different diameters (Fig. 6.4a).
For a maximum permissible shearing stress τall = 150 MPa, calculate the allowable torque T
that may be applied at section C. Use da = 20 mm, db = 15 mm, and a = 2b = 0.4 m.

6.17. Redo Problem 6.16 for τall = 70 MPa, da = 25 mm, db = 15 mm, and a = 1.6b = 0.8 m.

Sections 6.4 through 6.7
6.18. The stress function appropriate to a solid bar subjected to torques at its free ends is given by

Φ = k(a2 – x2 + by2)(a2 + bx2 – y2)
where a and b are constants. Determine the value of k.

6.19. Show that Eqs. (6.6) through (6.11) are not altered by a shift of the origin of x, y, z from the
center of twist to any point within the cross section defined by x = a and y = b, where a and b
are constants. [Hint: The displacements are now expressed as u = –θz(y – b), v = θz(x – a),
and w = w(x, y).]

6.20. Rederive Eq. (6.11) for the case in which the stress function Φ = c on the boundary, where c
is a nonzero constant.

6.21. The thin circular ring of cross-sectional radius r, shown in Fig. P6.21, is subjected to a
distributed torque per unit length, Tθ = Tcos2θ. Determine the angle of twist at sections A and
B in terms of T, a, and r. Assume that the radius a is large enough to permit the effect of
curvature on the torsion formula to be neglected.

Figure P6.21.

6.22. Consider two bars of the same material, one circular of radius c, the other of rectangular
section with dimensions a × 2a. Determine the radius c so that, for an applied torque, both the
maximum shear stress and the angle of twist will not exceed the corresponding quantities in
the rectangular bar.

6.23. The torsion solution for a cylinder of equilateral triangular section (Fig. 6.11) is derivable



from the stress function, Eq. (j) of Section 6.5:

Derive expressions for the maximum and minimum shearing stresses and the twisting angle.
6.24. The torsional rigidity of a circle, an ellipse, and an equilateral triangle (Fig. 6.11) are

denoted by Cc, Ce, and Ct, respectively. If the cross-sectional areas of these sections are
equal, demonstrate that the following relationships exist:

where a and b are the semiaxes of the ellipse in the x and y directions.
6.25. Two thin-walled circular tubes, one having a seamless section, the other (Fig. 6.17a) a split

section, are subjected to the action of identical twisting moments. Both tubes have equal outer
diameter do, inner diameter di, and thickness t. Determine the ratio of their angles of twist.

6.26. A steel bar of slender rectangular cross section (5mm × 125 mm) is subjected to twisting
moments of 80 N · m at the ends. Calculate the maximum shearing stress and the angle of twist
per unit length. Take G = 80 GPa.

6.27. The torque T produces a rotation of 15° at free end of the steel bar shown in Fig. P6.27. Use
a = 24 mm, b = 16 mm, L = 400 m, and G = 80 GPa. What is the maximum shearing stress in
the bar?

Figure P6.27.

6.28. Determine the largest permissible b × b square cross section of a steel shaft of length L = 3
m, for the shearing stress is not to exceed 120 MPa and the shaft is twisted through 25° (Fig.
P6.27). Take G = 75 GPa.

6.29. A steel bar (G = 200 GPa) of cross section as shown in Fig. P6.29 is subjected to a torque of
500 N · m. Determine the maximum shearing stress and the angle of twist per unit length. The
dimensions are b1 = 100 mm, b2 = 125 mm, t1 = 10 mm, and t2 = 4 mm.

Figure P6.29.

6.30. Rework Example 6.6 for the case in which segments AC and CB of torsion member AB have
as a cross section an equilateral triangular of sides a1 = 60 mm and a2 = 45 mm, respectively.



6.31. Derive an approximate expression for the twisting moment in terms of G, θ, b, and to for the
thin triangular section shown in Fig. P6.31. Assume that at any y the expression for the stress
function Φ corresponds to a parabolic membrane appropriate to the width at that y: Φ =
Gθ[(t/2)2 – x2].

Figure P6.31.

6.32. Consider the following sections: (a) a hollow tube of 50-mm outside diameter and 2.5-mm
wall thickness, (b) an equal-leg angle, having the same perimeter and thickness as in (a), (c) a
square box section with 50-mm sides and 2.5-mm wall thickness. Compare the torsional
rigidities and the maximum shearing stresses for the same applied torque.

6.33. The cross section of a 3-m-long steel bar is an equilateral triangle with 50-mm sides. The
bar is subjected to end twisting couples causing a maximum shearing stress equal to two-
thirds of the elastic strength in shear (τyp = 420 MPa). Using Table 6.2, determine the angle of
twist between the ends. Let G = 80 GPa.

Sections 6.8 through 6.11
6.34. Show that when Eq. (6.2) is applied to a thin-walled tube, it reduces to Eq. (6.22).
6.35. A torque T is applied to a thin-walled tube of a cross section in the form of a regular hexagon

of constant wall thickness t and mean side length a. Derive relationships for the shearing
stress τ and the angle of twist θ per unit length.

6.36. Redo Example 6.7 with a 0.01-m-thick vertical wall at the middle of the section.
6.37. The cross section of a thin-walled aluminum tube is an equilateral triangular section of mean

side length 50 mm and wall thickness 3.5 mm. If the tube is subjected to a torque of 40 N · m,
what are the maximum shearing stress and angle of twist per unit length? Let G = 28 GPa.

6.38. A square thin-walled tube of mean dimensions a × a and a circular thin-walled tube of mean
radius c, both of the same material, length, thickness t, and cross-sectional area, are subjected
to the same torque. Determine the ratios of the shearing stresses and the angle of twist of the
tubes.

6.39. A hollow, multicell aluminum tube (cross section shown in Fig. P6.39) resists a torque of 4
kN · m. The wall thicknesses are t1 = t2 = t4 = t5 = 0.5 mm and t3 = 0.75 mm. Determine the
maximum shearing stresses and the angle of twist per unit length. Let G = 28 GPa.

Figure P6.39.



6.40. Consider two closely coiled helical springs, one made of steel, the other of copper, each
0.01 m in wire diameter, one fitting within the other. Each has an identical number of coils, n
= 20, and ends constrained to deflect the same amount. The steel outer spring has a diameter
of 0.124 m, and the copper inner spring, a diameter of 0.1 m. Determine (a) the total axial
load the two springs can jointly sustain if the shear stresses in the steel and the copper are not
to exceed 500 and 300 MPa, respectively, and (b) the ratio of spring constants. For steel and
copper, use shear moduli of elasticity Gs = 79 GPa and Gc = 41 GPa, respectively.



Chapter 7. Numerical Methods

7.1 Introduction
This chapter is subdivided into two parts. The finite difference method is treated briefly first. Then,
the most commonly employed numerical technique, the finite element method, is discussed. We shall
apply both approaches to the solution of problems in elasticity and the mechanics of materials. The
use of these numerical methods enables the engineer to expand his or her ability to solve practical
design problems. The engineer may now treat real shapes as distinct from the somewhat limited
variety of shapes amenable to simple analytic solution. Similarly, the engineer need no longer force a
complex loading system to fit a more regular load configuration to conform to the dictates of a purely
academic situation. Numerical analysis thus provides a tool with which the engineer may feel freer to
undertake the solution of problems as they are found in practice.
Analytical solutions of the type discussed in earlier chapters have much to offer beyond the specific
cases for which they have been derived. For example, they enable us to gain insight into the variation
of stress and deformation with basic shape and property changes. In addition, they provide the basis
for rough approximations in preliminary design even though there is only crude similarity between the
analytical model and the actual case. In other situations, analytical methods provide a starting point or
guide in numerical solutions.
Numerical analyses lead often to a system of linear algebraic equations. The most appropriate method
of solution then depends on the nature and the number of such equations, as well as the type of
computing equipment available. The techniques introduced in this chapter and applied in the chapters
following have clear application to computation by means of electronic digital computer. Formulating
and solving a problem (Appendix A), and tools used for computations, discussed in Section 7.16, are
important. Observe that fundamentals of matrix algebra, a subset of the finite element method, will be
extensively used.

Part A—Finite Difference Method

7.2 Finite Differences
The numerical solution of a differential equation is essentially a table in which values of the required
function are listed next to corresponding values of the independent variable(s). In the case of an
ordinary differential equation, the unknown function (y) is listed at specific pivot or nodal points
spaced along the x axis. For a two-dimensional partial differential equation, the nodal points will be
in the xy plane.
The basic finite difference expressions follow logically from the fundamental rules of calculus.
Consider the definition of the first derivative with respect to x of a continuous function y = f(x) (Fig.
7.1):

Figure 7.1. Finite difference approximation of f(x).



The subscript n denotes any point on the curve. If the increment in the independent variable does not
become vanishingly small but instead assumes a finite Δx = h, the preceding expression represents an
approximation to the derivative:

Here Δyn is termed the first difference of y at point xn:

(7.1)
Because the relationship (Fig. 7.1) is expressed in terms of the numerical value of the function at the
point in question (n) and a point ahead of it (n + 1), the difference is termed a forward difference.
The backward difference at n, denoted ∇yn, is given by

(7.2)

Central differences involve pivot points symmetrically located with respect to xn and often result in
more accurate approximations than forward or backward differences. The latter are especially useful
where, because of geometrical limitations (as near boundaries), central differences cannot be
employed. In terms of symmetrical pivot points, the derivative of y at xn is

(7.3)

The first central difference δy is thus

(7.4)
A procedure similar to that just used will yield the higher-order derivatives.
The second forward difference at xn is expressed in the form

(7.5)
The second backward difference is found in the same way:



(7.6)

It is a simple matter to verify that the coefficients of the pivot values in the mth forward and backward
differences are the same as the coefficients of the binomial expansion (a – b)m. Using this scheme,
higher-order forward and backward differences are easily written.
The second central difference at xn is the difference of the first central differences. Therefore,

(7.7)

In a like manner, the third and fourth central differences are readily determined:

(7.8)

(7.9)

Examination of Eqs. (7.7) and (7.9) reveals that for even-order derivatives, the coefficients of yn,
yn+1 are equal to the coefficients in the binomial expansion (a – b)m.

Unless otherwise specified, we use the term finite differences to refer to central differences.
We now discuss a continuous function w(x, y) of two variables. The partial derivatives may be
approximated by the following procedures, similar to those discussed in the previous chapter. For
purposes of illustration, consider a rectangular boundary as in Fig. 7.2. By taking Δx = Δy = h, a
square mesh or net is formed by the horizontal and vertical lines. The intersection points of these
lines are the nodal points. Equation (7.7) yields

(7.10)



(7.11)

Figure 7.2. Rectangular boundary divided into a square mesh.

The subscripts x and y applied to the δ’s indicate the coordinate direction appropriate to the
difference being formed. The preceding expressions written for the point 0 are

(7.12)
and

(7.13)

(7.14)
Similarly, Eqs. (7.8) and (7.9) lead to expressions for approximating the third- and fourth-order
partial derivatives.

7.3 Finite Difference Equations
We are now in a position to transform a differential equation into an algebraic equation. This is
accomplished by substituting the appropriate finite difference expressions into the differential
equation. At the same time, the boundary conditions must also be converted to finite difference form.
The solution of a differential equation thus reduces to the simultaneous solution of a set of linear,
algebraic equations, written for every nodal point within the boundary.

Example 7.1. Torsion Bar with Square Cross Section



Analyze the torsion of a bar of square section using finite difference techniques.

Solution

The governing partial differential equation is (see Sec. 6.3)

(7.15)

where Φ may be assigned the value of zero at the boundary. Referring to Fig. 7.2, the finite
difference equation about the point 0, corresponding to Eq. (7.15), is

(7.16)
A similar expression is written for every other nodal point within the section. The solution of the
problem then requires the determination of those values of Φ that satisfy the system of algebraic
equations.
The domain is now divided into a number of small squares, 16 for example. In labeling nodal
points, it is important to take into account any conditions of symmetry that may exist. This has
been done in Fig. 7.3. Note that Φ = 0 has been substituted at the boundary. Equation (7.16) is
now applied to nodal points b, c, and d, resulting in the following set of expressions:

Figure 7.3. Example 7.1. A square cross section of a torsion bar.

Simultaneous solution yields

(a)

The results for points b and d are tabulated in the second column of Table 7.1.
Table 7.1. Values of the Forward Differences for Given Φ’s



To determine the partial derivatives of the stress function, we shall assume a smooth curve
containing the values in Eq. (a) to represent the function Φ. Newton’s interpolation formula [Ref.
7.1], used for fitting such a curve, is

(7.17)

Here the ΔΦ0’s are the forward differences calculated at x = 0 as follows:

(b)
The differences are also calculated at x = h, x = 2h, and so on, and are listed in Table 7.1. Note
that we can readily obtain the values given in Table 7.1 (for the given Φ’s) by starting at node x =
4h: 0 – 1.75 = –1.75, 1.75 – 2.25 = –0.5, –1.75 – (–0.5) = –1.25, and so on.
The maximum shear stress, which occurs at x = 0, is obtained from (∂Φ/∂x)0. Thus, differentiating
Eq. (7.17) with respect to x and then setting x = 0, the result is

(c)
Substituting the values in the first row of Table 7.1 into Eq. (c), we obtain

The exact value, given in Table 6.2 as τmax = 0.678Gθa, differs from this approximation by only
4.7%.
By means of a finer network, we expect to improve the result. For example, selecting h = a/6, six
nodal equations are obtained. It can be shown that the maximum stress in this case, 0.661Gθa, is



within 2.5% of the exact solution. On the basis of results for h = a/4 and h = a/6, a still better
approximation can be found by applying extrapolation techniques.

7.4 Curved Boundaries
It has already been mentioned that one important strength of numerical analysis is its adaptability to
irregular geometries. We now turn, therefore, from the straight and parallel boundaries of previous
problems to situations involving curved or irregular boundaries. Examination of one segment of such
a boundary (Fig. 7.4) reveals that the standard five-point operator, in which all arms are of equal
length, is not appropriate because of the unequal lengths of arms bc, bd, be, and bf. When at least one
arm is of nonstandard length, the pattern is referred to as an irregular star. One method for
constructing irregular star operators is discussed next.

Figure 7.4. Curved boundary and irregular star operator.

Assume that, in the vicinity of point b, w(x, y) can be approximated by the second-degree polynomial

(7.18)

Referring to Fig. 7.4, this expression leads to approximations of the function w at points c, d, e, and f:

(a)
At nodal point b(x = y = 0), Eq. (7.18) yields

(b)

Combining Eqs. (a) and (b), we have



Introducing this into the Laplace operator, we obtain

(7.19)
In this expression, α1 = h1/h and α2 = h2/h. It is clear that for irregular stars, 0 ≤ αi ≤ 1(i = 1, 2).

The foregoing result may readily be reduced for one-dimensional problems with irregularly spaced
nodal points. For example, in the case of a beam, Eq. (7.19), with reference to Fig. 7.4, simplifies to

(7.20)
where x represents the longitudinal direction. This expression, setting α = α1, may be written

(7.21)

Example 7.2. Elliptical Bar Under Torsion

Find the shearing stresses at the points A and B of the torsional member of the elliptical section
shown in Fig. 7.5. Let a = 15 mm, b = 10 mm, and h = 5 mm.

Figure 7.5. Example 7.2. Elliptical cross section of a torsion member.

Solution
Because of symmetry, only a quarter of the section need be considered. From the equation of the
ellipse with the given values of a, b, and h, it is found that h1 = 4.4 mm, h2 = 2.45 mm, h3 = 3 mm.
At points b, e, f, and g, the standard finite difference equation (7.18) applies, while at c and d, we
use a modified equation found from Eq. (7.15) with reference to Eq. (7.19). We can therefore
write six equations presented in the following matrix form:



These equations are solved to yield

The solution then proceeds as in Example 7.1. The following forward differences at point B are
first evaluated:

Similarly, for point A, we obtain

Thus,

Comment

Note that, according to the exact theory, the maximum stress occurs at y = b and is equal to
1.384Gθb (see Example 6.3), indicating excellent agreement with τB.

7.5 Boundary Conditions
Our concern has thus far been limited to problems in which the boundaries have been assumed free of
constraint. Many practical situations involve boundary conditions related to the deformation, force, or
moment at one or more points. Application of numerical methods under these circumstances may
become more complex.
To solve beam deflection problems, the boundary conditions as well as the differential equations
must be transformed into central differences. Two types of homogeneous boundary conditions,
obtained from v = 0, dv/dx = 0, and v = 0, d2v/dx2 = 0 at a support (n), are depicted in Fig. 7.6a and
b, respectively. At a free edge (n), the finite difference boundary conditions are similarly written
from d2v/dx2 = 0 and d3v/dx3 = 0 as follows



(a)

Figure 7.6. Boundary conditions in finite differences: (a) clamped or fixed support; (b) simple
support.

Let us consider the deflection of a nonprismatic cantilever beam with depth varying arbitrarily and of
constant width. We shall divide the beam into m segments of length h = L/m and replace the variable
loading by a load changing linearly between nodes (Fig. 7.7). The finite difference equations at a
nodal point n may now be written as follows. Referring to Eq. (7.7), we find the difference equation
corresponding to EI(d2v/dx2) = M to be of the form

(7.22)

Figure 7.7. Finite-difference representation of a nonprismatic cantilever beam with varying
load.

The quantities Mn and (IE)n represent the moment and the flexural rigidity, respectively, of the beam
at n. In a like manner, the equation EI(d4v/dx4) = p is expressed as

(7.23)

wherein pn is the load intensity at n. Equations identical with the foregoing can be established at each
remaining point in the beam. There will be m such expressions; the problem involves the solution of
m unknowns, v1, ..., vm.

Applying Eq. (7.4), the slope at any point along the beam is

(7.24)

The following simple examples illustrate the method of solution.



Example 7.3. Displacements of a Simple Beam

Use a finite difference approach to determine the deflection and the slope at the midspan of the
beam shown in Fig. 7.8a.

Figure 7.8. Example 7.3. Simply supported beam with varying load.

Solution
For simplicity, take h = L/4 (Fig. 7.8b). The boundary conditions v(0) = v(L) = 0 and v″(0) = v″
(L) = 0 are replaced by finite difference conditions by setting v(0) = v0, v(L) = v4 and applying
Eq. (7.7):

(b)

When Eq. (7.23) is used at points 1, 2, and 3, the following expressions are obtained:

(c)

Simultaneous solution of Eqs. (b) and (c) yields

Then, from Eq. (7.24), we obtain

Note that, by successive integration of EId4v/dx4 = p(x), the result v2 = 0.0185pL4/EI is obtained.
Thus, even a coarse segmentation leads to a satisfactory solution in this case.



Example 7.4. Reactions of a Continuous Beam

Determine the redundant reaction R for the beam depicted in Fig. 7.9a.
Figure 7.9. Example 7.4. Statically indeterminate beam: (a) load diagram; (b) and (c)

moment diagrams.

Solution

The bending diagrams associated with the applied loads 2P and the redundant reaction R are
given in Figs. 7.9b and c, respectively.
For h = L/2, Eq. (7.22) results in the following expressions at points 1, 2, and 3:

(d)
The number of unknowns in this set of equations is reduced from five to three through application
of the conditions of symmetry, v1 = v3, and the support conditions, v0 = v2 = v4 = 0. Solution of Eq.
(d) now yields R = 8P/3.

Example 7.5. Stepped Cantilever Beam

Determine the deflection of the free end of the stepped cantilever beam loaded as depicted in Fig.
7.10a. Take h = a/2 (Fig. 7.10b).

Figure 7.10. Example 7.5. Nonprismatic cantilever beam under concentrated loads.



Solution

The boundary conditions v(0) = 0 and v′(0) = 0, referring to Fig. 7.6a, lead to

(e)

The moments are M0 = 3Pa, M1 = 2Pa, M2 = Pa, and M3 = Pa/2. Applying Eq. (7.22) at nodes 0,
1, 2, and 3, we obtain

(f)
Observe that at point 2, the average flexural rigidity is used. Solving Eqs. (e) and (f) gives v1 =
3C/4, v2 = 5C/2, v3 = 59C/12, and v4 = 47C/6, in which C = (Pa/EI)h2. Therefore, after setting h
= a/2, we have

The foregoing deflection is about 2.2% larger than the exact value.

Part B—Finite Element Method

7.6 Fundamentals
Structural analysis involves the determination of the forces and deflections within a structure or its
members. The earliest demands for structural analysis led to a host of so-called classical methods.
The specialization of the classical methods was replaced by generalities of the modern matrix
methods. The presentation of this chapter is limited to the most widely used of these techniques: the
finite element stiffness or displacement method. Unless otherwise specified, we shall refer to it as
the finite element method (FEM). The finite element analysis (FEA) is a numerical approach and
well suited to digital computers. The method relies on the formulations of a simultaneous set of
algebraic equations relating forces to corresponding displacements at discrete preselected points



(called nodes) on the structure. These governing algebraic equations, also called the force–
displacement relations, are expressed in matrix notations.
The powerful finite element method had its beginnings in the 1980s, and with the advent of high-
speed, large-storage-capacity digital computers, it has gained great prominence throughout the
industries in the solution of practical analysis and design problems of high complexity. The FEA
offers many advantages. The structural geometry can be readily described, and combined load
conditions can be easily handled. It offers the ability to treat discontinuities, to handle composite and
anisotropic materials, to handle unlimited numbers and kinds of boundary conditions, to handle
dynamic and thermal loadings, and to treat nonlinear structural problems. It also has the capacity for
complete automation. The literature related to the FEA is extensive. See, for example, Refs. 7.2
through 7.20. Numerous commercial FEA software programs are available, as described in Section
7.16, including some directed at the learning process.
The basic concept of the finite element approach is that the real structure can be divided or
discretized by a finite number of elements, connected not only at their nodes but along the
interelement boundaries as well. Triangular, rectangular, tetrahedron, quadrilateral, or hexagonal
forms of elements are often employed in the finite element method. The types of elements that are
commonly used in structural idealization are the truss, beam, two-dimensional elements, shell and
plate bending, and three-dimensional elements. Figure 7.11a depicts how a multistory hotel building
is modeled using bar, beam, column, and plate elements, which can be employed for static, free
vibration, earthquake response, and wind response analysis [Ref. 7.2]. A model of a nozzle in a thin-
walled cylinder, created using triangular shell elements, is shown in Fig. 7.11b. Similarly, large
structural systems, such as air-crafts or ships, are usually analyzed by dividing the structure into
smaller units or substructures (e.g., wing of an airplane). When the stiffness of each unit has been
determined, the analysis of the system follows the familiar procedure of matrix methods used in
structural mechanics.

Figure 7.11. Finite element models of two structures: (a) Multistory building; (b) pipe
connection (Ref. 7.8).



The network of elements and nodes that discretize the region is called a mesh. The density of a mesh
increases as more elements are placed within a given region. Mesh refinement is when the mesh is
modified in an analysis of a model to give improved solutions. Mesh density is increased in areas of
high stress concentrations and when geometric transition zones are meshed smoothly (Fig. 7.11b).
Usually, the FEA results converge toward the exact results as the mesh is continuously refined. To
discuss adequately the subject of the FEA would require a far more lengthy presentation than could be
justified here. However, the subject is sufficiently important that engineers concerned with the
analysis and design of members should have at least an understanding of the FEA. The fundamentals
presented can clearly show the potential of the FEA as well as its complexities. It can be covered as
an option, used as a “teaser” for a student’s advance study of the topic, or used as a professional
reference.

7.7 The Bar Element
A bar element, also called a truss bar element or axial element, represents the simplest form of
structural finite element. An element of this type of length L, modulus of elasticity E, and cross-
sectional area A, is denoted by e (Fig. 7.12). The two ends or joints or nodes are numbered 1 and 2,
respectively. A set of two equations in matrix form are required to relate the nodal forces (  and )
to the nodal displacements (  and ).

Figure 7.12. The one-dimensional axial element (e).

Equilibrium Method



The direct equilibrium approach is simple and physically clear, but it is practically well suited only
for truss, beam, and frame elements. The equilibrium of the x-directed forces requires that 
(Fig. 7.12). In terms of the spring rate AE/L of the element, we have

This may be written in matrix form,

(7.25a)

or symbolically,

(7.25b)

The quantity  is called the element stiffness matrix with dimensions of force per unit displacement.
It relates the nodal displacements  to the nodal forces  on the element.

Energy Method
The energy approach is more general, easier to apply, and more powerful than the direct method
discussed in the foregoing, particularly for complex kinds of finite elements (see Ref. 7.2). Using this
technique, it is necessary to first define a displacement function for the element (Fig. 7.12):

(7.26)
where a1 and a2 are constants. Clearly, Eq. (7.26) represents a continuous linear displacement
variation along the x axis of the element that corresponds to that of engineering formulation for a bar
under axial loading. The axial displacements of joints 1 (at x = 0) and 2 (at ), respectively, are

Solving, we have  and . Carrying these results into Eq. (7.26), we obtain

(7.27)

Using Eq. (7.27), we write

(7.28)
Thus, the axial force in the element is

(7.29)

Substituting Eq. (7.29) into Eq. (2.58), the strain energy in the element may be expressed as follows



(7.30)

Then, Castigliano’s first theorem, Eq. (10.22), gives

The matrix form of these equations is the same as that given by Eqs. (7.25).

7.8 Arbitrarily Oriented Bar Element
The global stiffness matrix for an element oriented arbitrarily in a two-dimensional plane is
developed in this section. The local coordinates are chosen to conveniently represent the individual
element. On the other hand, the reference or global coordinates are chosen to be convenient for the
entire structure (Fig. 7.13). The local and global coordinates systems for an axial element are
designated by ,  and x, y, respectively.

Figure 7.13. Global coordinates (x, y) for plane truss and local coordinates ( , ) for a bar
element 1-2.

Coordinate Transformation
A typical axial element e lying along the x axis, which is oriented at an angle θ, measured
counterclockwise from the reference axis x, is shown in Fig. 7.14. In the local coordinate system,
each joint has an axial force , a transverse force , an axial displacement , and a transverse
displacement . Referring to the figure, Eq. (7.25a) may be expanded as follows:

(7.31a)

Figure 7.14. Local ( , ) and global (x, y) coordinates for a two-dimensional bar element (e).



or concisely,

(7.31b)

The quantities  and  are the stiffness and nodal displacement matrices, respectively, in the local
coordinate system.

Force Transformation
It is seen from Fig. 7.14 that the two local and global forces at joint 1 may be related by the following
expressions:

Similar equations apply at joint 2. For brevity, let

(a)

Hence, the local and global forces are related in the matrix form as

(7.32a)

or symbolically,

(7.32b)
In Eq. (7.32b), [T] represents the coordinate transformation matrix:



(7.33)

The {F}e is the global nodal force matrix

(7.34)

We note that the coordinate transformation matrix satisfies the following conditions of orthogonality:
c2 + s2 = 1, (–s)2 + c2 = 1, and (–s)(c) + (c)(s) = 0. Thus, the [T] is an orthogonal matrix.

Displacement Transformation
Inasmuch as the displacement transforms in an identical way as forces, we can write

(7.35a)
The concise form of this is

(7.35b)

where {δ} is the global nodal displacements. Carrying Eqs. (7.35b) and (7.32b) into (7.31b) results
in

from which

The inverse of the orthogonal matrix [T] is the same as its transpose: [T] = [T]T. Here the superscript
T denotes the transpose. It is recalled that the transpose of a matrix is found by interchanging the rows
and columns of the matrix.

Governing Equations
The global force–displacement relations or the governing equations for an element e are thus
expressed in the form

(7.36)

where

(7.37)

The global stiffness matrix for the element, substituting Eq. (7.33) and [k] from Eq. (7.31a) into Eq.



(7.37), may be written as

(7.38)
The foregoing indicates that the element stiffness matrix depends on its dimensions, orientation, and
material property.

7.9 Axial Force Equation
Reconsider the general case of a truss element 1–2 oriented arbitrarily in a two-dimensional plane,
shown in Fig. 7.14. We multiply the third and fourth expressions in Eq. (7.36) to obtain the global
forces at node 2 as

The axial tensile force in the element with nodes 1 and 2, designated by F12, is then

F12 = F2xc + F2ys

in which cosθ = c and sinθ = s. It is seen that this force is equivalent to the nodal force  or 
associated with local coordinates 1 and 2.

Combining the preceding relationships leads to

(a)

or
F12 = (spring rate)(total axial elongation)

Here, the quantities (u2 – u1) and (v2 – v1) are, respectively, the horizontal and vertical components of
the axial elongation. Equation (a) may be expressed in the matrix form

The axial force in the bar element with nodes ij is thus

(7.39)

A positive (negative) value obtained for Fij indicates that the element is in tension (compression).



The axial stress, in element of cross-sectional area A, then is σij = Qij/A.

Example 7.6. Properties of a Truss Bar Element

The element 1–2 of the steel truss shown in Fig. 7.13 with a length L, cross-sectional area A, and
modulus of elasticity E, is oriented at angle θ counterclockwise from the x axis. Given:

Calculate (a) the global stiffness matrix for the element; (b) the local displacements , , , and 
 of the element; (c) the axial stress in the element.

Solution

The free-body diagram of the element 1–2 is shown in Fig. 7.15. The spring rate of the element is

Figure 7.15. Example 7.6. An axially loaded bar.

and

a. Element Stiffness Matrix. Applying Eq. (7.38),

or

b. Element Displacements. Equations (7.35b), , results in

c. Axial Force. Substituting the given numerical values into Eq. (7.39) with i = 1 and j = 2, we



find

It follows that axial stress in the element is equal to σ1 = F1/A = –244 MPa.

Comment

The negative sign indicates a compression.

7.10 Force-Displacement Relations for a Truss
We now develop the finite element method by considering a plane truss. A truss is a structure
composed of differently oriented straight bars connected at their joints (or nodes) by means of pins,
such as shown Fig. 7.13. It is easier to understand the basic procedures of treatment by referring to
this simple system. The general derivation of the FEM will be discussed in Section 7.13. To derive
truss equations, the global element relations for the axial element given by Eq. (7.36) will be
assembled. This gives the following force-displacement relations for the entire truss or the system
equations:

(7.40)
The global nodal matrix {F} and the global stiffness matrix [K] are expressed as

(7.41)

and

(7.42)

Here the quantity e designates an element and n is the number of elements comprising the truss.
Observe that [K] relates the global nodal force {F} to the global displacement {δ} for the entire
truss.

The Assembly Process
The element stiffness matrices [k]e in Eq. (7.38) must be properly added together or superimposed.
To perform direct addition, a convenient method is to label the columns and rows of each element
stiffness matrix in accordance to the displacement components related with it. The truss stiffness
matrix [K] is then found simply by summing terms from the individual element stiffness matrix into
their corresponding locations in [K]. Alternatively, expand the [k]e for each element to the order of
the truss stiffness matrix by adding rows and columns of zeros. We shall employ this process of
assemblage of the element stiffness matrices. It is obvious that, for the problems involving a large
number of elements, to implement the assembly of the [K] requires a digital computer.



The use of the fundamental equations developed are illustrated in the solution of the following sample
numerical problems.

Example 7.7. Stepped Axially Loaded Bar

A bar consists of two prismatic parts, fixed at the left end, and supports a load P at the right end,
as illustrated in Fig. 7.16a. Determine the nodal displacements and nodal forces in the bar.

Figure 7.16. Example 7.7. (a) A stepped bar under an axial load; (b) two-element model.

Solution
In this case, the global coordinates (x, y) coincide with local ( , ) coordinates. The bar is
discretized into elements with nodes 1, 2, and 3 (Fig. 7.16b). The axial rigidities of the elements
1 and 2 are 2AE and AE, respectively. Therefore, (AE/L)1 = 2AE/L and (AE/L)2 = AE/L.

Element Stiffness Matrices. Through the use of Eq. (7.25), the stiffness for the elements 1 and 2
is expressed as

It is seen that the column and row of each stiffness matrix are labeled according to the nodal
displacements associated with them. There are three displacement components (u1, u2, u3), and
hence the order of the system matrix must be 3 × 3. In terms of the bar displacements, we write



In the foregoing matrices, the last row and first column of zeros are added, respectively (boxed in
by the dashed lines).
Stiffness Matrix System. The superposition of the terms of each stiffness matrix leads to

Force–Displacement Relations. Equations (7.40) are expressed as

(a)

The displacement and force boundary conditions are u1 = 0, F2x = 0, and F3x = P. Then, Eqs. (a),
referring to Fig. 7.16b,

Displacements. To determine u2 and u3, only the part of this equations is considered:

Solution of this equation equals

Comment

With the displacements available, the axial force and stress in the element 1 (or 2) can readily be
found as described in Example 7.6.
Nodal Forces. Equations (a) gives

Comment



The results indicate that the reaction F1x = –P is equal in magnitude but opposite in direction to
the applied force at node 3, F3x = P. Also, F2x = 0 shows that no force is applied at node 2.
Equilibrium of the bar assembly is thus satisfied.

Example 7.8. Analysis of a Three-Bar Truss
A steel plane truss in which all members have the same axial rigidity AE supports a horizontal
force P and a load W acting at joint 2, as shown in Fig. 7.17a. Find the nodal displacements,
reactions, and stresses in each member. Given:

Figure 7.17. Example 7.8. (a) Basic plane truss; (b) finite element model.

Solution

The reactions are marked and the nodes numbered arbitrarily for elements in Fig. 7.17a.
Input Data. At each node there are two displacements and two nodal force components (Fig.
7.17b). It is recalled that θ is measured counterclockwise from the positive x axis to each element
(Table 7.2).

Table 7.2. Data for the Truss of Fig. 7.17

Element Stiffness Matrix. Applying Eq. (7.38) and Table 7.2, we have for the bars 1, 2, and 3,
respectively:



In the preceding, the column and row of each stiffness matrix are labeled according to the nodal
displacements associated with them. It is seen that displacements u3 and v3 are not involved in
element 1; the u2 and v2 are not involved in element 2; the u1 and v1 are not involved in element 3.
Thus, prior to adding [k]1, [k]2, and [k]3 to obtain the system matrix, two rows and columns of
zeros must be added to each of the element matrices to account for the absence of these
displacements. It follows that, using a common factor 107, element stiffness matrices take the
forms



System Stiffness Matrix. There are a total of six components of displacement for the truss before
boundary constraints are imposed. Hence, the order of the truss stiffness matrix must be 6 × 6.
After adding the terms from each element stiffness matrix into their corresponding locations in
[K], we readily determine the global stiffness matrix for the truss as

(b)

System Force–Displacement Relationship. With reference to Fig. 7.11, the boundary conditions
are u1 = 0, v1= 0, u3 = 0. In addition, we have F3y = 0. Then, Eq. (7.40) becomes



(c)

where [K] is given by Eq. (b).
Displacements. To find u2, v2, and v3, only part of Eq. (c) associated with these displacements is
considered. In so doing, we have

(d)

Inversion of the preceding gives

Reactions. Carrying the foregoing values of u2, v2, and v3 into Eq. (c) results in the reactional
forces as

The results may be verified by applying the equilibrium equations to the free-body diagram of the
entire truss, Fig. 7.17a.
Axial Forces in Elements. From Eqs. (7.39) and (d) and Table 7.2, we obtain

Stresses in Elements. By dividing the preceding element forces by the cross-sectional area of
each bar, we obtain

The negative sign indicates a compressive stress.

Comment

The results indicate that member axial stresses are well below the yield strength for the material
considered. Observe that the FEA permits the calculation of displacements, forces, and stresses



in the truss with unprecedented ease and precision. It is evident, however, that the FEA, even in
the simplest cases, requires considerable algebra. For any significant problem, the electronic
digital computer must be used.

7.11 Beam Element
This section provides only a brief discussion of the development of a stiffness matrix for beam
elements. Let us consider an initially straight beam element of uniform flexural rigidity EI and length
L (Fig. 7.18a). The element has a transverse deflection v and a slope θ = dv/dx at each end or node.
Corresponding to these displacements, a transverse shear force F and a bending moment M act at
each node. The deflected configuration of the beam element is depicted in Fig. 7.18b.
Figure 7.18. The beam element with nodal forces and displacements: (a) before deformation; (b)

after deformation.

The linearly elastic behavior of a beam element is governed by Eq. (5.32) as d4v/dx4 = 0. Observe
that the right-hand side of this equation is zero because in the formulation of the stiffness matrix
equations, we assume no loading between nodes. In the elements where there is a distributed load
(see Example 7.9) or a concentrated load between the nodes, the equivalent nodal load components
listed in Table D.5 of Appendix D are employed. Note that the equivalent nodal loads correspond to
the (oppositely directed) reactions provided by a beam subject to the distributed or concentrated
loading under fixed-fixed boundary conditions. For further details, see Ref. 7.6.
The solution of the governing equation is assumed, a cubic polynomial function of x, as follows

(a)

It is seen that the number of terms in the preceding expression is the same as the number of nodal
displacements of the element. Equation (a) satisfies the basic beam equation, the conditions of
displacement, and the continuity of interelement nodes. The coefficients a1, a2, a3, and a4 are obtained
from the conditions at both nodes:

(b)

Introducing Eq. (a) into (b) leads to



The inverse of these equations is

Substituting the foregoing expressions into Eq. (a) yields the displacement function in the form

(7.43)
The bending moment M and shear force V in an elastic beam with cross section that is symmetrical
about the plane of loading are related to the displacement function by Eqs. (5.32). Therefore,

(7.44)

in which the minus signs in the second and third expressions are due to opposite to the sign
conventions adopted for V and M in Figs. 5.7b and 7.18.
It can be verified [Ref. 7.2] that inserting Eq. (7.43) into Eqs. (7.44) gives the nodal force
(moment)–deflection (slope) relations in the matrix form as

(7.45a)

or symbolically,

(7.45b)

in which the matrix [k]e represents the force and moment components. Likewise, {δ}e represents both
deflections and slopes. The element stiffness matrix lying along a coordinate x is then



(7.46)

With development of the stiffness matrix, formulation and solution of problems involving beam
elements proceeds like that of bar elements, as demonstrated in the examples to follow.

Example 7.9. Displacements of a Uniformly Loaded Cantilever Beam
A cantilever beam of length L and flexural rigidity EI carries a uniformly distributed load of
intensity p, as illustrated in Fig. 7.19a. Find the vertical deflection and rotation at the free end.

Figure 7.19. Example 7.9. (a) Beam with distributed load; (b) the equivalent nodal forces.

Solution

Only one finite element to represent the entire beam is used. The distributed load is replaced by
the equivalent forces and moments, as shown in Fig. 7.19b (see case 3 in Table D.4). The
boundary conditions are given by

It is noted that

Then, the force–displacement relations, Eqs. (7.45a), simplifies to

Solving for the displacements,

Subsequent to the multiplication, we obtain



Comment

The minus sign indicates a downward deflection and a clockwise rotation at the right end, node 2.

Example 7.10. Analysis of a Statically Indeterminate Stepped Beam

A propped cantilever beam of flexural rigidity EI and 2EI for the parts 1–2 and 2–3, respectively,
supports a concentrated load P at point 2 (Fig. 7.20a). Calculate (a) the nodal displacements; (b)
the nodal forces and moments.

Figure 7.20. Example 7.10. (a) Stepped beam with a load; (b) shear diagram; (c) bending
moment diagram.

Solution

The beam is discretized into elements 1 and 2 with nodes 1, 2, and 3, as illustrated in Fig. 7.20a.
There are a total of six displacement components for the beam before the boundary conditions are
applied. The order of the system stiffness matrix must therefore be 6 × 6.
Applying Eq. (7.46), the stiffness matrix for the element 1, with (EI/L3)1 = EI/L3 and L1 = L, may
be written as



(c)

Likewise, with (EI/L3)2 = EI/4L3 and L2 = 2L, for element 2, after rearrangement:

Note that, in the preceding, the nodal displacements are shown to indicate the associativity of the
rows and columns of the member stiffness matrices. Hence, rows and columns of zeros are added
(boxed in by the dashed lines).
a. The system stiffness matrix of the beam can now be superimposed [K] = [k]1 + [k]2. The beam

governing equations, with F2y = –P (Fig. 7.20b), are therefore

(7.47)

The boundary conditions are v1 = 0, θ1 = 0, and v3 = 0. After multiplying these equations with
the corresponding unknown displacements, we obtain

(d)

and

(e)



Solving Eqs. (d), we find deflection and slopes as follows:

The minus sign means a downward deflection at node 2 and clockwise rotation of left end 1;
the positive sign means a counterclockwise rotation at right end 3 (Fig. 7.20), as appreciated
intuitively.

b. Substituting the displacements found into Eq. (e), after multiplying and simplifying, nodal
forces and moments are

Comment

Usually, it is necessary to obtain the nodal forces and moments associated with each element to
analyze the whole structure. For the case under consideration, it may readily be seen from a free-
body diagram of element 2 that M2 = R3 (2L) = 8PL/23. So, we have the shear and moment
diagrams for the beam, as shown in Figs. 7.20b and c, respectively.

7.12 Properties of Two-Dimensional Elements
Now we define a number of basic quantities relevant to an individual finite element of an isotropic
elastic body. In the interest of simple presentation, in this section the relationships are written only for
the two-dimensional case. The general formulation of the finite element method applicable to any
structure is presented in the next section. Solutions of plane stress and plane strain problems are
illustrated in detail in Section 7.14. The analyses of axisymmetric structures and thin plates
employing the finite element are given in Chapters 8 and 13, respectively.
To begin with, the relatively thin, continuous body shown in Fig. 7.21a is replaced or discretized by
an assembly of finite elements (triangles, for example) indicated by the dashed lines (Fig. 7.21b).
These elements are connected not only at their corners or nodes but along the interelement boundaries
as well. The basic unknowns are the nodal displacements.

Figure 7.21. Plane stress region (a) before and (b) after division into finite elements.

Displacement Matrix



The nodal displacements are related to the internal displacements throughout the entire element by
means of a displacement function. Consider the typical element e in Fig. 7.21b, shown isolated in
Fig. 7.22a. Designating the nodes i, j, and m, the element nodal displacement matrix is

(7.48a)

Figure 7.22. Triangular finite element.

or, for convenience, expressed in terms of submatrices δu and δv,

(7.48b)

where the braces indicate a column matrix. The displacement function defining the displacement at
any point within the element, {f}e, is given by

(7.49)
which may also be expressed as

(7.50)

where the matrix [N] is a function of position, to be obtained later for a specific element. It is
desirable that a displacement function {f}e be selected such that the true displacement field will be
represented as closely as possible. The approximation should result in a finite element solution that
converges to the exact solution as the element size is progressively decreased.

Strain, Stress, and Elasticity Matrices
The strain, and hence the stress, are defined uniquely in terms of displacement functions (see Chap.
2). The strain matrix is of the form

(7.51a)

or



(7.51b)

where [B] is also yet to be defined.
Similarly, the state of stress throughout the element is, from Hooke’s law,

(a)

Succinctly,

(7.52)

where [D], an elasticity matrix, contains material properties. If the element is subjected to thermal or
initial strain, the stress matrix becomes

(7.53)
The thermal strain matrix, for the case of plane stress, is given by {ε0} = {αT, αT, 0} (Sec. 3.8).
Comparing Eqs. (a) and (7.52), it is clear that

(7.54)

In general, the elasticity matrix may be represented in the form

(7.55)

It is recalled from Section 3.5 that two-dimensional problems are of two classes: plane stress and
plane strain. The constants λ, D12, and D33 for a two-dimensional problem are given in Table 7.3.

Table 7.3. Elastic Constants for Two-Dimensional Problems



7.13 General Formulation of the Finite Element Method
A convenient method for executing the finite element procedure relies on the minimization of the total
potential energy of the system, expressed in terms of displacement functions. Consider again in this
regard an elastic body (Fig. 7.21). The principle of potential energy, from Eq. (10.21), is expressed
for the entire body as follows:

(7.56)

Note that variation notation δ has been replaced by Δ to avoid confusing it with nodal displacement.
In Eq. (7.56),

Through the use of Eq. (7.49), Eq. (7.56) may be expressed in the following matrix form:

(a)

where superscript T denotes the transpose of a matrix. Now, using Eqs. (7.50), (7.51), and (7.53), Eq.
(a) becomes

(b)

The element stiffness matrix [k]e and element nodal force matrix {Q}e (due to body force, initial
strain, and surface traction) are

(7.57)

(7.58)

It is clear that the variations in {δ}e are independent and arbitrary, and from Eq. (b) we may therefore
write



(7.59)

We next derive the governing equations appropriate to the entire continuous body. The assembled
form of Eq. (b) is

(c)

This expression must be satisfied for arbitrary variations of all nodal displacements {Δδ}. This leads
to the following equations of equilibrium for nodal forces for the entire structure, the system
equations:

(7.60)
where

(7.61)

It is noted that structural matrix [K] and the total or equivalent nodal force matrix {Q} are found by
proper superposition of all element stiffness and nodal force matrices, respectively, as discussed in
Section 7.10 for trusses.

Outline of General Finite Element Analysis
We can now summarize the general procedure for solving a problem by application of the finite
element method as follows:
1. Calculate [k]e from Eq. (7.57) in terms of the given element properties. Generate [K] = Σ[k]e.

2. Calculate {Q}e from Eq. (7.58) in terms of the applied loading. Generate {Q} = Σ{Q}e.

3. Calculate the nodal displacements from Eq. (7.60) by satisfying the boundary conditions: {δ} =
[K]–1{Q}.

4. Calculate the element strain using Eq. (7.51): {ε}e = [B]{δ}e.

5. Calculate the element stress using Eq. (7.53): {σ}e = [D]({ε} – {ε0})e.

A simple block diagram of finite element analysis is shown in Fig. 7.23.
Figure 7.23. The finite element analysis block diagram [Ref. 7.8].



When the stress found is uniform throughout each element, this result is usually interpreted two ways:
the stress obtained for an element is assigned to its centroid; if the material properties of the elements
connected at a node are the same, the average of the stresses in the elements is assigned to the
common node.
The foregoing outline will be better understood when applied to a triangular element in the next
section. Formulation of the properties of a simple one-dimensional element, using relations



developed in this section, is illustrated in the following example.

Example 7.11. Deflection of a Bar under Combined Loading

A bar element of constant cross-sectional area A, length L, and modulus of elasticity E is
subjected to a distributed load px per unit length and a uniform temperature change T (Fig. 7.24a).
Determine (a) the stiffness matrix, (b) the total nodal force matrix, and (c) the deflection of the
right end u2 for fixed left end and px = 0 (Fig. 7.24b).

Figure 7.24. Example 7.11. (a) Bar element subjected to an axial load px and uniform
temperature change T; (b) fixed end bar.

Solution

a. As before (see Sec. 7.7), we shall assume that the displacement u at any point within the
element varies linearly with x:

(d)

wherein a1 and a2 are constants. The axial displacements of nodes 1 and 2 are u1 = a1 and u2 =
a1 + a2L from which a2 = – (u1 – u2)/L. Substituting this into Eq. (d),

(e)

Applying Eq. (7.51a), the strain in the element is

or in matrix form

(f)

For a one-dimensional element, we have D = E, and the stress from Eq. (7.52) equals

The element stiffness matrix is obtained upon introduction of [B] from Eq. (f) into Eq. (7.57):



(7.62)

b. Referring to Fig. 7.24a,

(7.63)

where p1 and p2 are the intensities of the load per unit length at nodes 1 and 2, respectively.
Substitution of [N] from Eq. (e) together with Eq. (7.63) into Eq. (7.58) yields

The distributed load effects are obtained by integrating the preceding equations:

(g)

The strain due to the temperature change is ε0 = αT, where α is the coefficient of thermal
expansion. Inserting [B] from Eq. (f) into Eq. (7.58),

The thermal strain effects are then

(h)
The total element nodal matrix is obtained by adding Eqs. (g) and (h):

(7.64)

c. The nodal force-displacement relations (7.60) now take the form

from which the elongation of the bar equals u2 = α(T)L, a predictable result.

7.14 Triangular Finite Element
Because of the relative ease with which the region within an arbitrary boundary can be approximated,
the triangle is used extensively in finite element assemblies. Before deriving the properties of the
triangular element, we describe area or triangular coordinates, which are very useful for the
simplification of the displacement functions.
In this section, we derive the basic constant strain triangular (CST) plane stress and strain element.



Note that there are a variety of two-dimensional finite element types that lead to better solutions.
Examples are linear strain triangular (LST) elements, triangular elements having additional side and
interior nodes, rectangular elements with corner nodes, and rectangular elements having additional
side nodes [Refs. 7.4, 7.6]. The LST element has six nodes: the usual corner nodes plus three
additional nodes located at the midpoints of the sides. The procedures for the development of the LST
element equations follow the identical steps as that of the CST element.
Consider the triangular finite element 1 2 3 (where i = 1, j = 2, and m = 3) shown in Fig. 7.22b, in
which the counterclockwise numbering convention of nodes and sides is indicated. A point P located
within the element, by connection with the corners of the element, forms three subareas denoted A1,
A2, and A3. The ratios of these areas to the total area A of the triangle locate P and represent the area
coordinates:

(7.65)

It follows from this that

(7.66)
and consequently only two of the three coordinates are independent. A useful property of area
coordinates is observed through reference to Fig. 7.22b and Eq. (7.65):

and

The area A of the triangle may be expressed in terms of the coordinates of two sides, for example, 2
and 3:

or

(7.67a)

Here i, j, and k are the unit vectors in the x, y, and z directions, respectively. Two additional
expressions are similarly found. In general, we have

(7.67b)

where



(7.68)

Note that aj, am, bj, and bm can be found from definitions of ai and bi with the permutation of the
subscripts in the order ijmijm, and so on.
Similar equations are derivable for subareas A1, A2, and A3. The resulting expressions, together with
Eq. (7.65), lead to the following relationship between area and Cartesian coordinates:

(7.69)

where

(7.70)

Note again that, given any of these expressions for cij, the others may be obtained by permutation of
the subscripts.
Now we explore the properties of an ordinary triangular element of a continuous body in a state of
plane stress or plane strain (Fig. 7.22). The nodal displacements are

(a)

The displacement throughout the element is provided by

(7.71)
Matrices [N] and [B] of Eqs. (7.50) and (7.51b) are next evaluated, beginning with

(b)

(c)
We observe that Eqs. (7.71) and (b) are equal, provided that



(7.72)

The strain matrix is obtained by substituting Eqs. (7.71) and (7.69) into Eq. (7.51a):

(d)

Here A, ai, and bi are defined by Eqs. (7.67) and (7.68). The strain (stress) is observed to be constant
throughout, and the element of Fig. 7.22 is thus referred to as a constant strain triangle. Comparing
Eqs. (c) and (d), we have

(7.73)
The stiffness of the element can now be obtained through the use of Eq. (7.57):

(e)

Let us now define

(7.74)

where [D] is given by Eq. (7.54) for plane stress. Assembling Eq. (e) together with Eqs. (7.73) and
(7.74) and expanding, the stiffness matrix is expressed in the following partitioned form of order 6 ×
6:

(7.75)
where the submatrices are



(7.76)

Element Nodal Forces
Finally, we consider the determination of the element nodal force matrices. The nodal force owing to
a constant body force per unit volume is, from Eqs. (7.58) and (7.72),

(f)

For an element of constant thickness, this expression is readily integrated to yield*

(7.77)

The nodal forces associated with the weight of an element are observed to be equally distributed at
the nodes.
The element nodal forces attributable to applied external loading may be determined either by
evaluating the static resultants or by application of Eq. (7.58). Nodal force expressions for arbitrary
nodes j and m are given next for a number of common cases (Prob. 7.40).
Linear load, p(y) per unit area, Fig. 7.25a:

(7.78a)

Figure 7.25. Nodal forces due to (a) linearly distributed load and (b) shear load.

where t is the thickness of the element.
Uniform load is a special case of the preceding with pj = pm = p:

(7.78b)

End shear load, P, the resultant of a parabolic shear stress distribution defined by Eq. (3.24) (see
Fig. 7.25b):



(7.79)

Equation (7.75), together with those expressions given for the nodal forces, characterizes the constant
strain element. These are substituted into Eq. (7.61) and subsequently into Eq. (7.60) in order to
evaluate the nodal displacements by satisfying the boundary conditions.
The basic procedure employed in the finite element method is illustrated in the following simple
problems.

Example 7.12. Nodal Forces of a Plate Segment under Combined Loading

The element e shown in Fig. 7.26 represents a segment of a thin elastic plate having side 2–3
adjacent to its boundary. The plate is subjected to several loads as well as a uniform temperature
rise of 50°C. Determine (a) the stiffness matrix and (b) the equivalent (or total) nodal force
matrix for the element if a pressure of p = 14 MPa acts on side 2–3. Let t = 0.3 cm, E = 200 GPa,
v = 0.3, specific weight γ = 77 kN/m3, and α = 12 × 10–6/°C.

Figure 7.26. Example 7.12. A triangular plate.

Solution

The origin of the coordinates is located at midlength of side 1–3, for convenience. However, it
may be placed at any point in the x, y plane. Applying Eq. (7.74), we have (in N/cm3)

(g)

a. Stiffness matrix: The nodal points are located at

(h)
Using Eq. (7.68) and referring to Fig. 7.26, we obtain



(i)

Next, the first equation of (7.76), together with Eqs. (g) and (i), yields

The submatrix kuu is thus

Similarly, from the second and third equations of (7.76), we obtain the following matrices:

Assembling the preceding equations, the stiffness matrix of the element (in newtons per
centimeter) is

(j)

b. We next determine the nodal forces of the element owing to various loadings. The components
of body force are Fx = 0 and Fy = 0.077 N/cm3.
Body force effects: Through the application of Eq. (7.77), it is found that

Surface traction effects: The total load, 
, is equally divided between



nodes 2 and 3. The nodal forces can therefore be expressed as

Thermal strain effects: The initial strain associated with the 50°C temperature rise is ε0 = αT
= 0.0006. From Eq. (7.59),

Substituting matrix [B], given by Eq. (7.73), into this equation, and the values of the other
constants already determined, the nodal force is calculated as follows:

or

Equivalent nodal force matrix: Summation of the nodal matrices due to the several effects
yields the total element nodal force matrix:

If, in addition, there are any actual node forces, these must also be added to the value obtained.

7.15 Case Studies in Plane Stress
A good engineering case study includes all necessary data to analyze a problem in details and may
come in many varieties [Refs. 7.8 and 7.9]. Obviously, in solid mechanics it deals with stress and
deformation in load-carrying members or structures. In this section we briefly present four case
studies limited to plane stress situations and CST finite elements. A cantilever beam supporting a
concentrated load, a deep beam or plate in pure bending, a plate with a hole subjected to an axial
loading, and a disk carrying concentrated diametral compression are members considered.
Recall from Chapter 3 that there are very few elasticity or “exact” solutions to two-dimensional
problems, especially for any but the simplest shapes. As will become evident from the following
discussion, the stress analyst and designer can reach a very accurate solution by employing proper
techniques and modeling. Accuracy is often limited by the willingness to model all the significant
features of the problem and pursue the FEA until convergence is reached.

Case Study 7.1 Stresses in a Cantilever Beam under a Concentrated Load

A 0.3-cm-thick cantilever beam is subjected to a parabolically varying end shearing stress resulting in a total load of 5000 N (Fig.
7.27a). Divide the beam into two constant strain triangles and calculate the deflections. Let E = 200 GPa and v = 0.3.



Figure 7.27. Case Study 7.1. Cantilever beam (a) before and (b) after being discretized.

Solution

The discretized beam is shown in Fig. 7.27b.

Stiffness matrix: Inasmuch as the dimensions and material properties of element a are the same as those given in the previous
example, [k]a is defined by Eq. (j) of Example 7.12. For element b, assignment of i = 2, j = 4, and m = 3 [Eq. (7.68)] leads to

Substitution of these and Eq. (g) of Example 7.12 into Eqs. (7.76) yields

Thus,

Similarly, we obtain

The stiffness matrix of element b is therefore



(a)

The displacements u4, v4 and u1, v1 are not involved in elements a and b, respectively. Therefore, prior to the addition of [k]a
and [k]b to form the system stiffness matrix, rows and columns of zeros must be added to each element matrix to account for
the absence of these displacements. In doing so, Eqs. (j) of Example 7.12 and (a) become

(b)

and

(c)

Then, addition of Eqs. (b) and (c) yields the system matrix (in newtons per centimeter):

(d)

Nodal forces: Referring to Fig. 7.27b and applying Eq. (7.79), we obtain



Because no other external force exists, the system nodal force matrix is
{Q} = {0, 0, 0, 0, 0 –2500, 0 –2500}

Nodal displacements: The boundary conditions are
u1 = u3 = v1 = v3 = 0

The force-displacement relationship of the system is therefore

(e)

Equation (e) is readily reduced to the form

(f)

From this we obtain

(g)

The strains {ε}a may now be found upon introduction of Eqs. (i) of Example 7.12 and (g) into Eq. (d) of Section 7.14 as

Finally, the stress is determined by multiplying [D] by {ε}a:

Element b is treated similarly.

Note that the model employed in the foregoing solution is quite crude. The effect of element size on solution accuracy is



illustrated in the following case study.

Case Study 7.2 Analysis of a Deep Beam by the Theory of Elasticity and FEM

By means of (a) exact and (b) finite element approaches, investigate the stresses and displacements in a thin beam subjected to
end moments applied about the centroidal axis (Fig. 7.28a). Let L = 76.2 mm, h = 50.8 mm, thickness t = 25.4 mm, p = 6895 kPa,
E = 207 GPa, and v = 0.15. Neglect the weight of the member.

Figure 7.28. Case Study 7.2. (a) Beam in pure bending; (b) moment is replaced by a
statically equivalent load.

Solution

a. Exact solution: Replacing the end moments with the statically equivalent load per unit area p = Mh/I (Fig. 7.28b), the stress
distribution from Eq. (5.5) is

(h)

From Hooke’s law and Eq. (2.4), we have

By now following a procedure similar to that of Section 5.4, satisfying the conditions u(0, 0) = v(0, 0) = 0 and u(L, 0) = 0, we
obtain

(i)

Substituting the data into Eqs. (h) and (i), the results are

(j)

b. Finite element solution: Considerations of symmetry and antisymmetry indicate that only any one-quarter (shown as shaded
portion in the figure) of the beam need be analyzed.
Displacement boundary conditions:Figure 7.29a shows the quarter-plate discretized to contain 12 triangular elements. The
origin of coordinates is located at node 3. As no axial deformation occurs along the x and y axes, nodes 1, 2, 6, 9, and 12 are
restrained against u deformation; node 3 is restrained against both u and v deformation. The boundary conditions are thus

Figure 7.29. Case Study 7.2. Influence of element size and orientation on stress
(megapascals) in beam shown in Fig. 7.28.



Nodal forces: For the loading system of Fig. 7.28b, Eq. (7.78a) applies. Upon substitution of numerical values,

The remaining Q’s are zero.

Results: The nodal displacements are determined following a procedure similar to that of Case Study 7.1. The stresses are then
evaluated and representative values (in megapascals) given in Fig. 7.29b. Note that the stress obtained for an element is assigned
to the centroid. Observe that there is considerable difference between the exact solution, Eq. (j), and that resulting from the
coarse mesh arrangement employed. To demonstrate the influence of element size and orientation, calculations have also been
carried out for the grid configurations shown in Figs. 7.29c and d. For purposes of comparison, the deflections corresponding to
Figs. 7.29b through d are presented in Table 7.4.

Table 7.4. Comparison of Deflections Obtained by FEM and the Elasticity Theory



Comment

The effect of element orientation is shown in Figs. 7.29b and c for an equal number of elements and node locations. Figure 7.29d
reveals that elements characterized by large differences between their side lengths, weak elements, lead to unfavorable results
even though the number of nodes is larger than those of Figs. 7.29b and c. The employment of equilateral or nearly equilateral
well-formed elements of finer mesh leads to solutions approaching the exact values.
Note that, owing to the approximate nature of the finite element method, nonzero values are found for σy and τxy. These are not
listed in the figures. As the mesh becomes finer, these stresses do essentially vanish.

It is clear that we cannot reduce element size to extremely small values, as this would tend to increase
to significant magnitudes the computer error incurred. An “exact” solution is thus unattainable, and
we seek instead an acceptable solution. The goal is then the establishment of a finite element that
ensures convergence to the exact solution in the absence of round-off error. The literature contains
many comparisons between the various basic elements. The efficiency of a finite element solution
can, in certain situations, be enhanced through the use of a “mix” of elements. For example, a denser
mesh within a region of severely changing or localized stress may save much time and effort.

Case Study 7.3 Stress Concentration in a Plate with a Hole in Uniaxial Tension

A thin aluminum alloy 6061-T6 plate containing a small circular hole of radius a is under uniform tensile stress σo at its edges
(Fig. 7.30a). Through the use of the finite element analysis, outline the determination of the stress concentration factor K.
Compare the result with that obtained by the theory of elasticity in Section 3.12. Given: L = 600 mm, a = 50 mm, h = 500 mm,
σo = 42 MPa, γ = 0.3, and from Table D.1: E = 70 GPa.

Figure 7.30. Case Study 7.3. (a) Circular hole in a plate under uniaxial tension; (b) one-
quadrant plate model; (c) uniaxial stress (σx) distribution.



Solution

Due to symmetry, only any one-quarter of the plate need be analyzed, as illustrated in Fig. 7.30b. We note that for this case, the
quarter plate is discretized into 202 CST elements [Ref. 7.2]. The roller boundary conditions are also shown in the figure. The
values of the edge stress σx, calculated by the FEM and the theory of elasticity are plotted in Fig. 7.30c for comparison [Ref.
7.9]. Observe that the agreement is reasonably good. The stress concentration factor for σx is equal to K ≈ 3 σ0/σ0 = 3.

7.16 Computational Tools
Various computational tools can be employed to carry out analysis calculations with success. A
quality scientific calculator may be the best tool for solving most of the problems in this text.
General-purpose analysis tools such as spreadsheets and equation solvers are very useful for certain
computational tasks. Mathematical software packages of these types include MATLAB, TK Solver,
and MathCAD. The tools offer the advantage of allowing the user to document and save the detailed
completed work
The computer-aided drafting or design (CAD) software packages can produce realistic three-
dimensional representations of a member. Most CAD software provides an interface to one or more
FEA programs. They permit direct transfer of the member’s geometry to an FEA package for analysis
of stress and vibration as well as fluid and thermal analysis. Computer programs (such as
NASTRAN, ANSYS, ABAQUS, GT-STRUDL) are used widely for performing the numerical
computations required in the analysis and design of structural and mechanical systems.



With the proper use of computer aided engineering (CAE) software, problems can be solved more
quickly and more accurately. Clearly, the results are subject to the accuracy of the various
assumptions that must necessarily be made in the analysis and design. The foregoing computer-based
software may be used as a tool to assist students with lengthy homework assignments. But it is
important that basics be thoroughly understood, and analysts must make checks on computer solutions.

References
7.1. SOKOLNIKOFF, I. S. and REDHEFFER, R. M., Mathematics of Physics and Modern Engineering,

2nd ed., McGraw-Hill, New York, 1966, p. 665.
7.2. YANG, T. Y., Finite Element Structural Analysis, Prentice Hall, Upper Saddle River, N. J.,

1986.
7.3. WEAVER, W. JR. and JOHNSTON, P. R., Finite Element for Structural Analysis, Prentice Hall,

Upper Saddle River, N. J., 1984.
7.4. GALLAGHER, R. H., Finite Element Analysis: Fundamentals, Prentice Hall, Englewood Cliffs,

N. J., 1975.
7.5. MARTIN, H. C. and CAREY, G. F., Introduction to Finite Element Analysis, McGraw-Hill, New

York, 1973.
7.6. LOGAN, D. L., A First Course in the Finite Element Method, PWS-Kent, Boston, Mass., 1986.
7.7. KNIGHT, E., The Finite Element Method in Mechanical Design, PWS-Kent, Boston, Mass.,

1993.
7.8. UGURAL, A. C., Mechanics of Materials, Wiley, Hoboken, N. J., 2008.
7.9. UGURAL, A. C., Mechanical Design: An Integrated Approach, McGraw-Hill, New York, 2004.

7.10. BORESI, A. P. and SCHMIDT, R. J., Advanced Mechanics of Materials, 6th ed., Wiley, New
York, 2003.

7.11. UGURAL, A. C., Stresses in Beams, Plates and Shells, 3rd ed., CRC Press, Taylor & Francis,
Boca Raton, Fla. 2010.

7.12. ZIENKIEWICZ, O. C. and TAYLOR, R. I., The Finite Element Method, 4th ed., Vol. 2 (Solid and
Fluid Mechanics, Dynamics and Nonlinearity), McGraw-Hill, London, 1991.

7.13. COOK, R. D. and MALKUS, D. S., Concepts and Applications of Finite Element Analysis, 3rd
ed., Wiley, Hoboken, N. J., 1989.

7.14. SEGERLIND, L. J., Applied Finite Element Analysis, 2nd ed., Wiley, Hoboken, N. J., 1984.
7.15. BATHE, K. I., Finite Element Procedures in Engineering Analysis, Prentice Hall, Upper Saddle

River, N. J., 1996.
7.16. SEGERLIND, L. J., Applied Finite Element Analysis, 2nd ed., Wiley, New York, 1984.
7.17. BAKER, A. J. and PEPPER, D. W., Finite Elements, McGraw-Hill, New York, 1991.
7.18. BERNADOU, M., Finite Element Methods for Thin Shell Problems, Wiley, Chichester, U. K.,

1996.
7.19. DUNHAM, R. S. and NICKELL, R. E., “Finite element analysis of axisymmetric solids with

arbitrary loadings,” Report AD 655 253, National Technical Information Service, Springfield,
Va., June 1967.



7.20. UTKU, S., Explicit expressions for triangular torus element stiffness matrix, AIAA Journal, 6/6,
1174–1176, June 1968.

Problems
Sections 7.1 through 7.4

7.1. Referring to Fig. 7.2, demonstrate that the biharmonic equation

takes the following finite difference form:

(p7.1)

7.2. Consider a torsional bar having rectangular cross section of width 4a and depth 2a. Divide
the cross section into equal nets with h = a/2. Assume that the origin of coordinates is located
at the centroid. Find the shear stresses at points x = ±2a and y = ±a. Use the direct finite
difference approach. Note that the exact value of stress at y = ±a is, from Table 6.2, τmax =
1.860Gθa.

7.3. For the torsional member of cross section shown in Fig. P7.3, find the shear stresses at point
B. Take h = 5 mm and h1 = h2 = 3.5 mm.

Figure P7.3.

7.4. Redo Prob. 7.3 to find the shear stress at point A. Let h = 4.25 mm; then h1 = h and h2 = 2.25
mm.

7.5. Calculate the maximum shear stress in a torsional member of rectangular cross section of
sides a and b (a = 1.5b). Employ the finite difference method, taking h = a/4. Compare the
results with that given in Table 6.2.

Section 7.5
7.6. A force P is applied at the free end of a stepped cantilever beam of length L (Fig. P7.6).

Determine the deflection of the free end using the finite difference method, taking n = 3.
Compare the result with the exact solution v(L) = 3PL3/16EI.

Figure P7.6.



7.7. A stepped simple beam is loaded as shown in Fig. P7.7. Apply the finite difference
approach, with h = L/4, to determine (a) the slope at point C; (b) the deflection at point C.

Figure P7.7.

7.8. A stepped simple beam carries a uniform loading of intensity p, as shown in Fig. P7.8. Use
the finite difference method to calculate the deflection at point C. Let h = a/2.

Figure P7.8.

7.9. Cantilever beam AB carries a distributed load that varies linearly as shown in Fig. P7.9.
Determine the deflection at the free end by applying the finite difference method. Use n = 4.
Compare the result with the “exact” solution w(L) = 11poL4/120EI.

Figure P7.9.

7.10. Applying Eq. (7.22), determine the deflection at points 1 through 5 for beam and loading
shown in Fig. P7.10.

Figure P7.10.

7.11. Employ the finite difference method to obtain the maximum deflection and the slope of the
simply supported beam loaded as shown in Fig. P7.11. Let h = L/4.

Figure P7.11.



7.12. Determine the deflection at a point B and the slope at point A of the overhanging beam loaded
as shown in Fig. P7.12. Use the finite difference approach, with n = 6. Compare the deflection
with its “exact” value vB = Pa3/12EI.

Figure P7.12.

7.13. Redo Prob. 7.6 with the beam subjected to a uniform load p per unit length and P = 0. The
exact solution is v(L) = 3pL4/32EI.

7.14. A beam is supported and loaded as depicted in Fig. P7.14. Use the finite difference
approach, with h = L/4, to compute the maximum deflection and slope.

Figure P7.14.

7.15. A fixed-ended beam supports a concentrated load P at its midspan as shown in Fig. P7.15.
Apply the finite difference method to determine the reactions. Let h = L/4.

Figure P7.15.

7.16. Use the finite difference method to calculate the maximum deflection and the slope of a fixed-
ended beam of length L carrying a uniform load of intensity p (Fig. P7.16). Let h = L/4.

Figure P7.16.

Sections 7.6 through 7.16
7.17. The bar element 4–1 of length L and the cross-sectional area A is oriented at an angle α

clockwise from the x axis (Fig. P7.17). Calculate (a) the global stiffness matrix of the bar; (b)



the axial force in the bar; (c) the local displacements at the ends of the bar. Given: A = 1350
mm2, L = 1.7 m, α = 60°, E = 96 GPa, u4 = –1.1 mm, v4 = –1.2 mm, u1 = 2 mm, and v1 = 1.5
mm.

Figure P7.17.

7.18. The axially loaded bar 1–4 of constant axial rigidity AE is held between two rigid supports
and under a concentrated load P at node 3, as illustrated in Fig. P7.18. Find (a) the system
stiffness matrix; (b) the displacements at nodes 2 and 3; (c) the nodal forces and reactions at
the supports.

Figure P7.18.

7.19. The axially loaded composite bar 1–4 is held between two rigid supports and subjected to a
concentrated load P at node 2, as depicted in Fig. P7.19. The steel bar 1–3 has cross-
sectional area A and modulus of elasticity E. The brass bar 3–4 is with cross-sectional area
2A and elastic modulus E/2. Determine (a) the system stiffness matrix; (b) the displacements
of nodes 2 and 3; (c) the nodal forces and reactions at the supports.

Figure P7.19.

7.20. A stepped bar 1–4 is held between rigid supports and carries a concentrated load P at node
3, as illustrated in Fig. P7.20. Find (a) the system stiffness matrix; (b) the displacements of
nodes 2 and 3; (c) the nodal forces and reactions at the supports.

Figure P7.20.

7.21. A planar truss containing five members with axial rigidity AE is supported at joints 1 and 4,
as shown in Fig. P7.21. What is the global stiffness matrix for each element?

Figure P7.21.



7.22. The plane truss is loaded and supported as illustrated in Fig. P7.22. Each element has an
axial rigidity AE. Find (a) the global stiffness matrix for each element; (b) the system stiffness
matrix; (c) the system force-displacement relations.

Figure P7.22.

7.23. A two-bar planar truss is supported by a spring of stiffness k at joint 1, as depicted in Fig.
P7.23. Each element has an axial rigidity AE. Calculate (a) the stiffness matrix for bars 1 and
2, and spring 3; (b) the system stiffness matrix; (c) the force-displacement equations. Given:
L2 = L, (AE)2 = AE, , .

Figure P7.23.

7.24. A vertical concentrated load P = 6 kN is applied at joint 2 of the two-bar plane truss
supported as shown in Fig. P7.24. Take AE = 20 MN for each member. Find (a) the global
stiffness matrix of each bar; (b) the system stiffness matrix; (c) the nodal displacements; (d)
the support reactions; (e) the axial forces in each bar.

Figure P7.24.



7.25. In a two-bar plane truss, its support at joint 1 settles vertically by an amount of u = 15 mm
downward when loaded by a horizontal concentrated load P (Fig. P7.25). Calculate (a) the
global stiffness matrix of each element; (b) the system stiffness matrix; (c) the nodal
displacements; (d) the support reactions. Given: E = 105 GPa, A = 10 × 10–4 m2, P = 10 kN.

Figure P7.25.

7.26. A cantilever of constant flexural rigidity EI carries a concentrated load P at its free end, as
shown in Fig. P7.26. Find (a) the deflection v1 and angle of rotation θ1 at the free end; (b) the
reactions R2 and M2 at the fixed end.

Figure P7.26.

7.27. A simple beam 1–3 of length L and flexural rigidity EI is supports a uniformly distributed
load of intensity p, as illustrated in Fig. P7.27. Determine the deflection of the beam at
midpoint 2 by replacing the applied load with the equivalent nodal loads (see Table D.5).

Figure P7.27.



7.28. A beam supported by a pin, a spring of stiffness k, and a roller at points 1, 2, and 3,
respectively, is under a concentrated load P at point 2 (Fig. P7.28). Calculate (a) the nodal
displacements; (b) the nodal forces and spring force. Given: L = 4 m, P = 12 kN, EI = 14 MN
· m2, and k = 200 kN/m.

Figure P7.28.

7.29. A cantilever beam 1–2 of length L and constant flexural rigidity EI is subjected to a
concentrated load P at the midspan, as shown in Fig. P7.29. Find the vertical deflection v2 and
angle of rotation θ2 at the free end by replacing the applied load with the equivalent nodal
loads acting at each end of the beam (see Table D.5).

Figure P7.29.

7.30. A propped cantilever beam with flexural rigidities EI and EI/2 for the parts 1–2 and 2–3,
respectively, carries concentrated load P and moment 3PL at point 2 (Fig. P7.30). Calculate
the displacements v2, θ2, and θ3. Given: L = 1.2 m, P = 30 kN, E = 207 GPa, and I = 15 × 106

mm4.
Figure P7.30.

7.31. A continuous beam of constant flexural rigidity EI is loaded and supported as seen in Fig.
P7.31. Determine (a) the stiffness matrix for each element; (b) the system stiffness matrix and
the force-displacement relations.



Figure P7.31.

7.32. A propped cantilever beam with an overhang is subjected to a concentrated load P, as
illustrated in Fig. P7.32. The beam has a constant flexural rigidity EI. Determine (a) the
stiffness matrix for each element; (b) the system stiffness matrix; (c) the nodal displacements;
(d) the forces and moments at the ends of each member; (e) the shear and moment diagrams.

Figure P7.32.

7.33. A plane truss consisting of five members having the same axial rigidity AE is supported at
joints 1 and 4, as seen in Fig. P7.33. Find the global stiffness matrix for each element.

Figure P7.33.

7.34. The planar truss, with the axial rigidity AE the same for each element, is loaded and
supported as illustrated in Fig. P7.34. Determine (a) the global stiffness matrix for each
element; (b) the system matrix and the system force-displacement equations.

Figure P7.34.

7.35. A vertical load P = 20 kN acts at joint 2 of the two-bar (1–2 and 2–3) truss shown in Fig.



P7.35. Find (a) the global stiffness matrix for each member; (b) the system stiffness matrix; (c)
the nodal displacements; (d) reactions; (e) the axial forces in each member, and show the
results on a sketch of each member. Assumption: The axial rigidity AE = 60 MN is the same
for each bar.

Figure P7.35.

7.36. A plate with a hole is under an axial tension loading P (Fig. P7.36). Dimensions are in
millimeters. Given: P = 5 kN and plate thickness t = 12 mm. (a) Analyze the stresses using a
computer program with the CST (or LST) elements. (b) Compare the stress concentration
factor K obtained in part (a) with that found from Fig. D.8.

Figure P7.36.

7.37. Resolve Prob. 7.36 for the plate shown in Fig. P7.37.
Figure P7.37.

7.38. A simple beam is under a uniform loading of intensity p (Fig. P7.38). Let L = 10h, t = 1, and
v = 0.3. Refine meshes to calculate the stress and deflection within 5% accuracy, by using a
computer program with the CST (or LST) elements. Given: Exact solution [Ref. 7.7] is of the
form:

(p7.38)

Figure P7.38.



where t represents the thickness.
7.39. Resolve Prob. 7.38 for the case in which a cantilever beam is under a uniform loading of

intensity p (Fig. P7.39). Given: Exact solution [Ref. 7.7] is given by

(p7.39)

Figure P7.39.

in which t is the thickness.
7.40. Verify Eqs. (7.78) and (7.79) by determining the static resultant of the applied loading. [Hint:

For Eq. (7.79), apply the principle of virtual work.]

with

to obtain

7.41. Redo Case Study 7.1 for the beam subjected to a uniform additional load throughout its span,
p = –7 MPa, and a temperature rise of 50°C. Let γ = 77 kN/m3 and α = 12 × 10–6/°C.

7.42. A -cm-thick cantilever beam is subjected to a parabolically varying end shear stress
resulting in a load of P N and a linearly distributed load p N/cm (Fig. P7.42). Dividing the
beam into two triangles as shown, calculate the stresses in the member. The beam is made of a
transversely isotropic material, in which a rotational symmetry of properties exists within the
xz plane:

Figure P7.42.



Here E1 is associated with the behavior in the xz plane, and E2, G2, and v2 with the direction
perpendicular to the xz plane. Now the elasticity matrix, Eq. (7.54), becomes

where n = E1/E2 and m = G2/E2.

7.43. Redo Case Study 7.1 if the discretized beam consists of triangular elements 1 4 3 and 1 2 4
(Fig. 7.27b). Assume the remaining data to be unchanged.



Chapter 8. Axisymmetrically Loaded Members

8.1 Introduction
In the class of axisymmerically loaded members, the fundamental problem may be defined in terms of
the radial coordinate. There are numerous practical situations in which the distribution of stress
manifests symmetry about an axis. Examples include pressure vessels, compound cylinders, clad
reactor elements, chemical reaction vessels, heat exchanger tubes, solid or hollow spherical
structures, turbine disks, and components of many other machines used in aerospace to household.
This chapter concerns mainly “exact” stress distribution in various axisymmetrically loaded machine
and structural components. The methods of mechanics of materials, the theory of elasticity, and finite
elements are used. The displacements, strains, and stresses at locations far removed from the ends
due to pressure, thermal, and dynamic loadings are discussed. Applications to compound press or
shrink-fit cylinders, disk flywheels, and design of hydraulic cylinders are included. Before doing
these, however, we begin with an analysis of stress developed in thick-walled vessels.

Basic Relations
Consider a large thin plate having a small circular hole subjected to uniform pressure, as shown in
Fig. 8.1. Note that axial loading is absent, and therefore σz = 0. The stresses are clearly symmetrical
about the z axis, and the deformations likewise display θ independence. The symmetry argument also
dictates that the shearing stresses τrθ must be zero. Assuming z independence for this thin plate, the
polar equations of equilibrium (3.31), reduce to

(8.1)

Figure 8.1. Large thin plate with a small circular hole.

Here σθ and σr denote the tangential (circumferential) and radial stresses acting normal to the sides of
the element, and Fr represents the radial body force per unit volume, for example, the inertia force
associated with rotation. In the absence of body forces, Eq. (8.1) reduces to

(8.2)

Consider now the radial and tangential displacements u and v, respectively. There can be no
tangential displacement in the symmetrical field; that is, v = 0. A point represented by the shaded
element abcd in the figure will thus move radially as a consequence of loading, but not tangentially.



On the basis of displacements indicated, the strains given by Eqs. (3.33) become

(8.3)
Substituting u = rεθ into the first expression in Eq. (8.3), a simple compatibility equation is obtained:

or

(8.4)

The equation of equilibrium [Eq. (8.1) or (8.2)], the strain–displacement or compatibility relations
[Eqs. (8.3) or (8.4)], and Hooke’s law are sufficient to obtain a unique solution to any axisymmetrical
problem with specified boundary conditions.

8.2 Thick-Walled Cylinders
The circular cylinder, of special importance in engineering, is usually divided into thin-walled and
thick-walled classifications. A thin-walled cylinder is defined as one in which the tangential stress
may, within certain prescribed limits, be regarded as constant with thickness. The following familiar
expression applies to the case of a thin-walled cylinder subject to internal pressure:

Here p is the internal pressure, r the mean radius (see Sec. 13.13), and t the thickness. If the wall
thickness exceeds the inner radius by more than approximately 10%, the cylinder is generally
classified as thick walled, and the variation of stress with radius can no longer be disregarded (see
Prob. 8.1).
In the case of a thick-walled cylinder subject to uniform internal or external pressure, the deformation
is symmetrical about the axial (z) axis. Therefore, the equilibrium and strain–displacement equations,
Eqs. (8.2) and (8.3), apply to any point on a ring of unit length cut from the cylinder (Fig. 8.2).
Assuming that the ends of the cylinder are open and unconstrained, σz = 0, as is subsequently
demonstrated. Thus, the cylinder is in a condition of plane stress and, according to Hooke’s law
(3.34), the strains are given by

(8.5)

Figure 8.2. Thick-walled cylinder.



From these, σr and σθ are as follows:

(8.6)

Substituting this into Eq. (8.2) results in the following equidimensional equation in radial
displacement:

(8.7)
having a solution

(a)

The radial and tangential stresses may now be written in terms of the constants of integration c1 and c2
by combining Eqs. (a) and (8.6):

(b)

(c)

The constants are determined from consideration of the conditions pertaining to the inner and outer
surfaces.
Observe that the sum of the radial and tangential stresses is constant, regardless of radial position: σr
+ σθ = 2Ec1/(1 – ν). Hence, the longitudinal strain is constant:



We conclude, therefore, that plane sections remain plane subsequent to loading. Then σz = Eεz =
constant = c. But if the ends of the cylinder are open and free,

or c = σz = 0, as already assumed previously.

For a cylinder subjected to internal and external pressures pi and po, respectively, the boundary
conditions are

(d)
where the negative sign connotes compressive stress. The constants are evaluated by substitution of
Eqs. (d) into (b):

(e)

leading finally to

(8.8)

These expressions were first derived by French engineer G. Lamé in 1833, for whom they are named.
The maximum numerical value of σr is found at r = a to be pi, provided that pi exceeds po. If po > pi,
the maximum σr occurs at r = b and equals po. On the other hand, the maximum σθ occurs at either the
inner or outer edge according to the pressure ratio, as discussed in Section 8.3.
Recall that the maximum shearing stress at any point equals one-half the algebraic difference between
the maximum and minimum principal stresses. At any point in the cylinder, we may therefore state that

(8.9)

The largest value of τmax is found at r = a, the inner surface. The effect of reducing po is clearly to
increase τmax. Consequently, the greatest τmax corresponds to r = a and po = 0:

(8.10)



Because σr and σθ are principal stresses, τmax occurs on planes making an angle of 45° with the plane
on which σr and σθ act, as depicted in Fig. 8.3. This is quickly confirmed by a Mohr’s circle
construction. The pressure pyp that initiates yielding at the inner surface is obtained by setting τmax =
σyp/2 in Eq. (8.10):

(8.11)

Figure 8.3. (a) Thick-walled cylinder under pi; (b) an element at the inner edge in which τmax
occurs.

Here σyp is the yield stress in uniaxial tension.

Special Cases
Internal Pressure Only

If only internal pressure acts, Eqs. (8.8) reduce to

(8.12)

(8.13)

(8.14)

Since b2/r2 ≥ 1, σr is negative (compressive) for all r except r = b, in which case σr = 0, the
maximum radial stress occurs at r = a. As for σθ, it is positive (tensile) for all radii and also has a
maximum at r = a.
To illustrate the variation of stress and radial displacement for the case of zero external pressure,



dimensionless stress and displacement are plotted against dimensionless radius in Fig. 8.4a for b/a =
4.

Figure 8.4. Distribution of stress and displacement in a thick-walled cylinder with b/a = 4: (a)
under internal pressure; (b) under external pressure.

External Pressure Only

In this case, pi = 0, and Eq. (8.8) becomes

(8.15)

(8.16)

(8.17)

The maximum radial stress occurs at r = b and is compressive for all r. The maximum σθ is found at r
= a and is likewise compressive.
For a cylinder with b/a = 4 and subjected to external pressure only, the stress and displacement
variations over the wall thickness are shown in Fig. 8.4b.

Example 8.1. Analysis of a Thick-Walled Cylinder

A thick-walled cylinder with 0.3-m and 0.4-m internal and external diameters is fabricated of a
material whose ultimate strength is 250 MPa. Let ν = 0.3. Determine (a) for po = 0, the maximum
internal pressure to which the cylinder may be subjected without exceeding the ultimate strength,
(b) for pi = 0, the maximum external pressure to which the cylinder can be subjected without
exceeding the ultimate strength, and (c) the radial displacement of a point on the inner surface for
case (a).



Solution

a. From Eq. (8.13), with r = a,

(8.18)

or

b. From Eq. (8.16), with r = a,

(8.19)

Then

c. Using Eq. (8.14), we obtain

Closed-Ended Cylinder
In the case of a closed-ended cylinder subjected to internal and external pressures, longitudinal or z-
directed stresses exist in addition to the radial and tangential stresses. For a transverse section some
distance from the ends, this stress may be assumed uniformly distributed over the wall thickness. The
magnitude of σz is then determined by equating the net force acting on an end attributable to pressure
loading to the internal z-directed force in the cylinder wall:

piπa2 – poπb2 = (πb2 – πa2)σz

The resulting expression for longitudinal stress, applicable only away from the ends, is

(8.20)

Clearly, here it is again assumed that the ends of the cylinder are not constrained: εz ≠ 0 (see Prob.
8.13).

8.3 Maximum Tangential Stress
An examination of Figs. 8.4a and b shows that if either internal pressure or external pressure acts
alone, the maximum tangential stress occurs at the innermost fibers, r = a. This conclusion is not
always valid, however, if both internal and external pressures act simultaneously. There are



situations, explored next, in which the maximum tangential stress occurs at r = b [Ref. 8.1].
Consider a thick-walled cylinder, as in Fig. 8.2, subject to pi and po. Denote the ratio b/a by R, po/pi
by P, and the ratio of tangential stress at the inner and outer surfaces by S. The tangential stress, given
by Eqs. (8.8), is written

(a)

Hence,

(8.21)
The variation of the tangential stress σθ over the wall thickness is shown in Fig. 8.5 for several values
of S and P. Note that for pressure ratios P, indicated by dashed lines, the maximum magnitude of the
circumferential stress occurs at the outer surface of the cylinder.
Figure 8.5. Maximum tangential stress distribution in a thick-walled cylinder under internal and

external pressures.

8.4 Application of Failure Theories
Unless we are content to grossly overdesign, it is necessary to predict, as best possible, the most
probable failure mechanism. Thus, while examination of Fig. 8.5 indicates that failure is likely to
originate at the innermost or outermost fibers of the cylinder, it cannot predict at what pressure or
stresses failure will occur. To do this, consideration must be given the stresses determined from
Lamé’s equations, the material strength, and an appropriate theory of failure consistent with the nature
of the material.

Example 8.2. Thick-Walled Cylinder Pressure Requirement

A steel cylinder is subjected to an internal pressure four times greater than the external pressure.



The tensile elastic strength of the steel is σyp = 340 MPa, and the shearing elastic strength τyp =
σyp/2 = 170 MPa. Calculate the allowable internal pressure according to the various yielding
theories of failure. The dimensions are a = 0.1 m and b = 0.15 m. Let ν = 0.3.

Solution

The maximum stresses occur at the innermost fibers. From Eqs. (8.8), for r = a and pi = 4po, we
have

(a)

The value of internal pressure at which yielding begins is predicted according to the various
theories of failure, as follows:
a. Maximum shearing stress theory:

b. Energy of distortion theory [Eq. (4.5a)]:

c. Octahedral shearing stress theory: By use of Eqs. (4.6) and (1.38), we have

Comment
The results found in (b) and (c) are identical as expected (Sec. 4.8). The onset of inelastic action
is governed by the maximum shearing stress: the allowable value of internal pressure is limited to
125.9 MPa, modified by an appropriate factor of safety.

8.5 Compound Cylinders: Press or Shrink Fits
If properly designed, a system of multiple cylinders resists relatively large pressures more efficiently,
that is, requires less material, than a single cylinder. To assure the integrity of the compound cylinder,
one of several methods of prestressing is employed. For example, the inner radius of the outer
member or jacket may be made smaller than the outer radius of the inner cylinder. The cylinders are
assembled after the outer cylinder is heated, contact being effected upon cooling. The magnitude of
the resulting contact pressure p, or interface pressure, between members may be calculated by use of
the equations of Section 8.2. Examples of compound cylinders, carrying very high pressures, are seen
in compressors, extrusion presses, and the like.
Referring to Fig. 8.6, assume the external radius of the inner cylinder to be larger, in its unstressed
state, than the internal radius of the jacket, by an amount δ. The quantity δ is called the shrinking



allowance, or also known as the radial interference. Subsequent to assembly, the contact pressure,
acting equally on both members, causes the sum of the increase in the inner radius of the jacket and
decrease in the outer radius of the inner member to exactly equal δ. By using Eqs. (8.14) and (8.17),
we obtain

(8.22)

Figure 8.6. Compound cylinder.

Here Eo, νo and Ei, νi represent the material properties of the outer and inner cylinders, respectively.
When both cylinders are made of the same materials, we have Eo = Ei = E and νo = νi = ν. In such a
case, from Eq. (8.22),

(8.23)

The stresses in the jacket are then determined from Eqs. (8.12) and (8.13) by treating the contact
pressure as pi. Similarly, by regarding the contact pressure as po, the stresses in the inner cylinder are
calculated from Eqs. (8.15) and (8.16).

Example 8.3. Stresses in a Compound Cylinder under Internal Pressure

A compound cylinder with a = 150 mm, b = 200 mm, c = 250 mm, E = 200 GPa, and δ = 0.1 mm
is subjected to an internal pressure of 140 MPa. Determine the distribution of tangential stress
throughout the composite wall.

Solution
In the absence of applied internal pressure, the contact pressure is, from Eq. (8.23),

The tangential stresses in the outer cylinder associated with this pressure are found by using Eq.
(8.13)



The stresses in the inner cylinder are, from Eq. (8.16),

These stresses are plotted in Fig. 8.7, indicated by the dashed lines kk and mm. The stresses
owing to internal pressure alone, through the use of Eq. (8.13) with b = c, are found to be (σθ)r =

0.15 = 297.5 MPa, (σθ)r = 0.2 = 201.8 MPa, (σθ)r = 0.25 = 157.5 MPa, and are shown as the dashed
line nn. The stress resultant is obtained by superposition of the two distributions, represented by
the solid line. The use of a compound prestressed cylinder has thus reduced the maximum stress
from 297.5 to 257.8 MPa. Based on the maximum principal stress theory of elastic failure,
significant weight savings can apparently be effected through such configurations.
Figure 8.7. Example 8.3. Tangential stress distribution produced by a combination of shrink-

fit and internal pressure in a thick-walled compound cylinder. Dashed lines nn represent
stresses due to pi alone.

It is interesting to note that additional jackets prove not as effective, in that regard, as the first one.
Multilayered shrink-fit cylinders, each of small wall thickness, are, however, considerably stronger
than a single jacket of the same total thickness. These assemblies can, in fact, be designed so that
prestressing owing to shrinking combines with stresses due to loading to produce a nearly uniform
distribution of stress throughout.* The closer this uniform stress is to the allowable stress for the
given material, the more efficiently is the material utilized. A single cylinder cannot be uniformly
stressed and consequently must be stressed considerably below its allowable value, contributing to
inefficient use of material.

Example 8.4. Design of a Duplex Hydraulic Conduit

Figure 8.8 shows a duplex hydraulic conduit composed of a thin steel cylindrical liner in a
concrete pipe. For the steel and concrete, the properties are Es and Ec, νc, respectively. The



conduit is subjected to an internal pressure pi. Determine the interface pressure p transmitted to
the concrete shell.

Figure 8.8. Example 8.4. Thick-walled concrete pipe with a steel cylindrical liner.

Solution

The radial displacement at the bore (r = a) of the concrete pipe is, from Eq. (8.14),

(a)

The steel sleeve experiences an internal pressure pi and an external pressure p. Thus,

(b)
On the other hand, Hooke’s law together with Eq. (8.2) yields at r = a

(c)

Finally, evaluation of u from Eqs. (b) and (c) and substitution into Eq. (a) result in the interface
pressure in the form:

(8.24)

Comment

Note that, for practical purposes, we can use Es/Ec = 15, νc = 0.2, and 2t/(2a – t) = t/a. Equation
(8.24) then becomes

(8.25)
where R = b/a. From the foregoing, observe that, as the thickness t of the liner increases, the



pressure p transmitted to the concrete decreases. However, for any given t/a ratio, the p increases
as the diameter ratio (R) of the concrete increases.

8.6 Rotating Disks of Constant Thickness
The equation of equilibrium, Eq. (8.1), can be used to treat the case of a rotating disk, provided that
the centrifugal “inertia force” is included as a body force. Again, stresses induced by rotation are
distributed symmetrically about the axis of rotation and assumed independent of disk thickness. Thus,
application of Eq. (8.1), with the body force per unit volume Fr equated to the centrifugal force ρω2r,
yields

(8.26)
where ρ is the mass density and ω the constant angular speed of the disk in radians per second. Note
that the gravitational body force ρg has been neglected. Substituting Eq. (8.6) into Eq. (8.26), we
have

(a)

requiring a homogeneous and particular solution. The former is given by Eq. (a) of Section 8.2.
It is easily demonstrated that the particular solution is

The complete solution is therefore

(8.27a)

which, upon substitution into Eq. (8.6), provides the following expressions for radial and tangential
stress:

(8.27b)

(8.27c)



The constants of integration may now be evaluated on the basis of the boundary conditions.

Annular Disk
In the case of an annular disk with zero pressure at the inner (r = a) and outer (r = b) boundaries
(Fig. 8.9) the distribution of stress is due entirely to rotational effects. The boundary conditions are

(b)

Figure 8.9. Annular rotating disk of constant thickness.

These conditions, combined with Eq. (8.27b), yield two equations in the two unknown constants,

(c)

from which

(d)
The stresses and displacement are therefore

(8.28 a–c)

Applying the condition dσr/dr = 0 to the first of these equations, it is readily verified that the
maximum radial stress occurs at . Then, substituting the foregoing into Eq. (8.28a), the
maximum radial stress is given by



(8.29)

Figure 8.10a is a dimensionless representation of stress and displacement as a function of radius for
an annular disk described by b/a = 4.
Figure 8.10. Distribution of stress and displacement in a rotating disk of constant thickness: (a)

annular disk; (b) solid disk.

Solid Disk
In this case, a = 0, and the boundary conditions are

(e)

To satisfy the condition on the displacement, it is clear from Eq. (8.27a) that c2 must be zero. The
remaining constant is now evaluated from the first expression of Eq. (d):

Combining these constants with Eqs. (8.27), the following results are obtained:

(8.30 a–c)

The stress and displacement of a solid rotating disk are displayed in a dimensionless representation
(Fig. 8.10b) as functions of radial location.
The constant thickness disks discussed in this section are generally employed when stresses or speeds
are low and, as is clearly shown in Fig. 8.10b, do not make optimum use of material. Other types of
rotating disks, offering many advantages over flat disks, are discussed in the sections to follow.
Clearly, the sharp rise of the tangential stress near r = a is observed in Fig. 8.10a. It can be shown
that, by setting r = a in Eq. (8.29b) and letting a approach zero, the resulting σθ is twice that given by
Eq. (8.30b). The foregoing conclusion applies to the radial stress as well. Thus, a small hole doubles
the stress over the case of no hole.



8.7 Design of Disk Flywheels
A flywheel is usually employed to smooth out changes in the speed of a shaft caused by torque
fluctuations (Fig. 8.11). Flywheels are thus found in small and large machinery, such as compressors,
internal combustion engines, punch presses, and rock crushers. At high speeds, considerable stresses
may be induced in these components. Since failure of a rotating disk is particularly hazardous,
analysis of the stress effects is important. Designing of energy-storing flywheels for hybrid-electric
cars is an active area of contemporary research. Disk flywheels, that is, rotating annular disks of
constant thickness, are made of high-strength steel plate.

Figure 8.11. A flywheel shrunk onto a shaft.

An interference fit produces stress concentration in the shaft and in the (hub of) the disk, owing to the
abrupt change from uncompressed to compressed material. Various design modifications are usually
made in the faces of the disk close to the shaft diameter to decrease the stress concentrations at each
sharp corner. Often, for a press or shrink fit, a stress concentration factor K is used. The value of K,
depending on the contact pressure, the design of the disk, and the maximum bending stress in the shaft,
rarely exceeds 2 [Ref. 8.3]. It should be noted that an approximation of the torque capacity of the
assembly may be made on the basis of a coefficient of friction of about f = 0.15 between shaft and
disk. The American Gear and Manufacturing Association (AGMA) standard suggests a value of 0.15
< f < 0.20 for shrink or press fits having a smooth finish on both surfaces.

The Method of Superposition
Combined radial stress, tangential stress, and displacement of an annular disk due to internal pressure
p between the disk and the shaft and angular speed ω may readily be obtained through the use of
superposition of the results obtained previously. Therefore, we have

(8.31a)

(8.31b)

(8.31c)

In the foregoing, the quantities (σr)p, (σθ)p, and (u)p are given by Eqs. (8.8). The tangential stress σθ



often controls the design. It is a maximum at the inner boundary (r = a). Hence,

(8.32)

As noted previously, owing to rotation alone, maximum radial stress occurs at  and is given
by Eq. (8.29). On the other hand, due to the internal pressure only, the largest radial stress is at the
inner boundary and equals σr,max = –p.

It is customary to neglect the inertial stress and displacement of a shaft. Hence, for a shaft, we
approximately have

(8.33)
We note, however, that the contact pressure p depends on angular speed ω. For a prescribed contact
pressure p at angular speed ω, the required initial radial interference δ may be found from Eqs.
(8.31c) and (8.33) for the displacement u. In so doing, with r = a, we obtain

(8.34)

Here the quantities Ed and Es represent the moduli of elasticity of the disk and shaft, respectively.
Clearly, the preceding equation is valid as long as a positive contact pressure is maintained.

Example 8.5. Torque and Power Capacity of a Flywheel
A flat steel disk with t = 20 mm and a = 50 mm is shrunk onto a shaft, causing a contact pressure
p (Fig. 8.11). The coefficient of static friction is f = 0.15. Determine the torque T carried by the
fit and power P transmitted to the disk when the assembly is rotating at n = 2400 rpm and p = 25
Mpa.

Solution

The force (axial or tangential) required for the assembly may be written in the form

(8.35a)
The torque capacity of the fit is therefore

(8.35b)

Substituting the given numerical values,
T = 2π(502)(0.15)(25)(0.02) = 1.178 kN · m



Power transmitted is expressed by

(8.35c)
Here the angular velocity of the disk ω = 24000(2π)/60 = 251.3 rad/s. We thus have P = (1.178)
(251.3) = 296 kW.

Example 8.6. Rotating Shrink-Fit Performance Analysis

A flat 0.5-m outer diameter, 0.1-m inner diameter, and 0.075-m-thick steel disk is shrunk onto a
steel shaft (Fig. 8.12). If the assembly is to run at speeds up to n = 6900 rpm, determine (a) the
shrinking allowance, (b) the maximum stress when not rotating, and (c) the maximum stress when
rotating. The material properties are ρ = 7.8 kN · s2/m4, E = 200 GPa, and ν = 0.3.

Figure 8.12. Example 8.6. Tangential stresses produced by the combination of a shrink fit
and rotation in a disk of constant thickness.

Solution

a. The radial displacements of the disk (ud) and shaft (us) are, from Eqs. (8.28) and (8.30),

We observe that us may be neglected, as it is less than 1% of ud of the disk at the common
radius. The exact allowance is

b. Applying Eq. (8.23), we have



Therefore, from Eq. (8.18),

c. From Eq. (8.28), for r = 0.05,

A plot of the variation of stress in the rotating disk is shown in Fig. 8.12.

Example 8.7. Maximum Speed of a Flywheel Assembly

A flywheel of 380-mm diameter is to be shrunk onto a 60-mm diameter shaft (Fig. 8.11). Both
members are made of steel with ρ = 7.8 kN · s2/m4, E = 200 GPa, and ν = 0.3. At a maximum
speed of n = 6000 rpm, a contact pressure of p = 20 MPa is to be maintained. Find (a) the
required radial interference; (b) the maximum tangential stress in the assembly; (c) the speed at
which the fit loosens, that is, contact pressure becomes zero.
a. Through the use of Eq. (8.34), we obtain

(a)
Substituting the given numerical values p = 20 MPa and ω = 6000(2π/60) = 628.32 rad/s, Eq.
(a) results in δ = 0.02 mm.

b. Applying Eq. (8.32), we obtain

c. Carrying δ = 0.02 × 10–3 m and p = 0 into Eq. (a) leads to

We thus have . Note that, at this speed, the shrink fit becomes completely
ineffective.

8.8 Rotating Disks of Variable Thickness
In Section 8.6, the maximum stress in a flat rotating disk was observed to occur at the innermost



fibers. This explains the general shape of many disks: thick near the hub, tapering down in thickness
toward the periphery, as in a steam turbine. This not only has the effect of reducing weight but also
results in lower rotational inertia.
The approach employed in the analysis of flat disks can be extended to variable thickness disks. Let
the profile of a radial section be represented by the general hyperbola (Fig. 8.13),

(8.36)

Figure 8.13. Disk of hyperbolic profile.

where t1 represents a constant and s a positive number. The shape of the curve depends on the value
selected for s; for example, for s = 1, the profile is that of an equilateral hyperbola. The constant t1 is
simply the thickness at radius equal to unity. If the thickness at r = a is ti and that at r = b is to, as
shown in the figure, the hyperbolic curve is fitted by forming the ratio

and solving for s. Clearly, Eq. (8.36) does not apply to solid disks, as all values of s except zero
yield infinite thickness at r = 0.
In a turbine application, the actual configuration may have a thickened outer rim to which blades are
affixed and a hub for attachment to a shaft. The hyperbolic relationship cannot describe such a
situation exactly, but sometimes serves as an adequate approximation. If greater accuracy is required,
the hub and outer ring may be approximated as flat disks, with the elements of the assembly related by
the appropriate boundary conditions.
The differential equation of equilibrium (Eq. 8.26) must now include t(r) and takes the form

(8.37)
Equation (8.37) is satisfied by a stress function of the form

(a)



Then the compatibility equation (8.4), using Eqs. (a) and Hooke’s law, becomes

(b)
Introducing Eq. (8.36), we have

(c)

This is an equidimensional equation, which the transformation r = eα reduces to a linear differential
equation with constant coefficients:

(d)

The auxiliary equation corresponding to Eq. (d) is given by

m2 + sm – (1 + νs) = 0
and has the roots

(8.38)

The general solution of Eq. (d) is then

(e)

The stress components for a disk of variable thickness are therefore, from Eqs. (a),

(8.39)
Note that, for a flat disk, t = constant; consequently, s = 0 in Eq. (8.36) and m = 1 in Eq. (8.38). Thus,
Eqs. (8.39) reduce to Eqs. (8.30), as expected. The constants c1 and c2 are determined from the
boundary conditions

(f)

The evaluation of the constants is illustrated in the next example.



Example 8.8. Rotating Hyperbolic Disk

The cross section of the disk in the assembly given in Example 8.6 is hyperbolic with ti = 0.075
m and to = 0.015 m; a = 0.05 m, b = 0.25 m, and δ = 0.05 mm. The rotational speed is 6900 rpm.
Determine (a) the maximum stress owing to rotation and (b) the maximum radial displacement at
the bore of the disk.

Solution

a. The value of the positive number s is obtained by the use of Eq. (8.36):

Substituting ti/to = 5 and b/a = 5, we obtain s = 1. The profile will thus be given by t = ti/r.
From Eq. (8.38), we have

Hence the radial stresses, using Eqs. (8.39) and (f) for r = 0.05 and 0.25, are

from which

The stress components in the disk, substituting these values into Eqs. (8.39), are therefore

(g)

The maximum stress occurs at the bore of the disk and from Eqs. (g) is equal to (σθ)r = 0.05 =
0.0294 ρω2. Note that it was 0.052 ρω2 in Example 8.6. For the same speed, we conclude that
the maximum stress is reduced considerably by tapering the disk.

b. The radial displacement is obtained from the second equation of (8.5), which together with Eq.
(g) gives ur = 0.05 = (rσθ/E)r = 0.05 = 0.00147ρω2/E. Again, this is advantageous relative to the
value of 0.0026 ρω2/E found in Example 8.6.

8.9 Rotating Disks of Uniform Stress
If every element of a rotating disk is stressed to a prescribed allowable value, presumed constant
throughout, the disk material will clearly be used in the most efficient manner. For a given material,
such a design is of minimum mass, offering the distinct advantage of reduced inertia loading as well
as lower weight. What is sought, then, is a thickness variation t(r) such that σr = σθ = σ = constant
everywhere in the body. Under such a condition of stress, the strains, according to Hooke’s law, are εr



= εθ = ε = constant, and the compatibility equation (8.4) is satisfied.

The equation of equilibrium (8.37) may, under the conditions outlined, be written

or

(8.40)
which is easily integrated to yield

(8.41)

This variation assures that σθ = σr = σ = constant throughout the disk. To obtain the value of the
constant in Eq. (8.41), the boundary condition t = t1 at r = 0 is applied, resulting in c1 = t1 (Fig. 8.14).

Figure 8.14. Profile of disk of uniform strength.

Example 8.9. Rotating Disk of Uniform Strength
A steel disk of the same outer radius, b = 0.25 m, and rotational speed, 6900 rpm, as the disk of
Example 8.6 is to be designed for uniform stress. The thicknesses are t1 = 0.075 m at the center
and t2 = 0.015 m at the periphery. Determine the stress and disk profile.

Solution

From Eq. (8.41),

or

Thus,

t = c1e–ρ(ω2/2σ)r2 = 0.075e–25.752r2

Recall that the maximum stress in the hyperbolic disk of Example 8.8 was 0.0294 ρω2. The
uniformly stressed disk is thus about 34% stronger than a hyperbolic disk with a small hole at its
center.



In actual practice, fabrication and design constraints make it impractical to produce a section of
exactly constant stress in a solid disk. On the other hand, in an annular disk, if the boundary condition
is applied such that the radial stress is zero at the inner radius, constancy of stress dictates that σθ and
σr be zero everywhere. This is clearly not a useful result for the situation as described. For these
reasons, the hyperbolic variation in thickness is often used.

8.10 Thermal Stresses in Thin Disks
In this section, our concern is with the stresses associated with a radial temperature field T(r) that is
independent of the axial dimension. The practical applications are numerous and include annular fins
and turbine disks. Because the temperature field is symmetrical with respect to a central axis, it is
valid to assume that the stresses and displacements are distributed in the same way as those of
Section 8.1, and therefore the equations of that section apply here as well.
In this case of plane stress, the applicable equations of stress and strain are obtained from Eq. (3.37)
with reference to Eq. (3.26):

(8.42)

The equation of equilibrium, Eq. (8.2), is now

(a)
Introduction of Eq. (8.3) into expression (a) yields the following differential equation in radial
displacement:

(b)

This is rewritten

(c)

to render it easily integrable. The solution is

(8.43)
where a, the inner radius of an annular disk, is taken as zero for a solid disk, and ν and α have been



treated as constants.

Annular Disk
The radial and tangential stresses in the annular disk of inner radius a and an outer radius b may be
found by substituting Eq. (8.43) into Eq. (8.3) and the results into Eq. (8.42):

(d)

(e)

The constants c1 and cs are determined on the basis of the boundary conditions (σr)r = a = (σr)r = b =
0. Equation (d) thus gives

The stresses are therefore

(8.44)

Solid Disk
In the case of a solid disk of radius b, the displacement must vanish at r = 0 in order to preserve the
continuity of material. The value of c2 in Eq. (8.43) must therefore be zero. To evaluate c1, the
boundary condition (σr)r=b = 0 is employed, and Eq. (d) now gives

Substituting c1 and c2 into Eqs. (d) and (e), the stresses in a solid disk are found to be

(8.45)

Given a temperature distribution T(r), the stresses in a solid or annular disk can thus be determined
from Eqs. (8.44) or (8.45). Note that T(r) need not be limited to those functions that can be
analytically integrated. A numerical integration can easily be carried out for σr, σθ to provide results
of acceptable accuracy.



8.11 Thermal Stress in Long Circular Cylinders
Consider a long cylinder with ends assumed restrained so that w = 0. This is another example of
plane strain, for which εz = 0. The stress–strain relations are, from Hooke’s law,

(8.46)

For εz = 0, the final expression yields

(a)
Substitution of Eq. (a) into the first two of Eqs. (8.46) leads to the following forms in which z stress
does not appear:

(8.47)

Inasmuch as Eqs. (8.2) and (8.3) are valid for the case under discussion, the solutions for u, σr, and σθ
proceed as in Section 8.10, resulting in

(b)

(c)

(d)
Finally, from Eq. (a), we obtain

(e)

Solid Cylinder



For the radial displacement of a solid cylinder of radius b to vanish at r = 0, the constant c2 in Eq. (b)
must clearly be zero. Applying the boundary condition (σr)r = b = 0, Eq. (c) may be solved for the
remaining constant of integration,

(f)
and the stress distributions determined from Eqs. (c), (d), and (e):

(8.48)

(8.49a)
To derive an expression for the radial displacement, c2 = 0 and Eq. (f) are introduced into Eq. (b).

The longitudinal stress given by Eq. (8.49a) is valid only for the case of a fixed-ended cylinder. In the
event the ends are free, a uniform axial stress σz = s0 may be superimposed to cause the force
resultant at each end to vanish:

This expression together with Eq. (e) yields

(g)

The longitudinal stress for a free-ended cylinder is now obtained by adding s0 to the stress given by
Eq. (e):

(8-49b)

Stress components σr and σθ remain as before. The axial displacement is obtained by adding u0 = –
νs0r/E, a displacement due to uniform axial stress, s0, to the right side of Eq. (b).

Cylinder with Central Circular Hole
When the inner (r = a) and outer (r = b) surfaces of a hollow cylinder are free of applied load, the
boundary conditions (σr)r = a = (σr)r = b = 0 apply. Introducing these into Eq. (c), the constants of



integration are

(h)
Equations (c), (d), and (e) thus provide

(8.50)

(8.51a)
If the ends are free, proceeding as in the case of a solid cylinder, the longitudinal stress is described
by

(8.51b)

Implementation of the foregoing analyses depends on a knowledge of the radial distribution of
temperature T(r).

Example 8.10. Thermal Stresses in a Cylinder
Determine the stress distribution in a hollow free-ended cylinder, subject to constant temperatures
Ta and Tb at the inner and outer surfaces, respectively.

Solution

The radial steady-state heat flow through an arbitrary internal cylindrical surface is given by
Fourier’s law of conduction:

(i)
Here Q is the heat flow per unit axial length and K the thermal conductivity. Assuming Q and K to
be constant,



This is easily integrated upon separation:

(j)
Here c1 and c2, the constants of integration, are determined by applying the temperature boundary
conditions (T)r = a = Ta and (T)r = b = Tb. By so doing, Eq. (j) may be written in the form

(8.52)

When this is substituted into Eqs. (8.50) and (8.51a), the following stresses are obtained:

(8.53)

We note that, for ν = 0, Eqs. (8.53) provide a solution for a thin hollow disk. In the event the heat
flow is outward, that is, Ta > Tb, examination of Eqs. (8.53) indicates that the stresses σθ and σz
are compressive (negative) on the inner surface and tensile (positive) on the outer surface. They
exhibit their maximum values at the inner and outer surfaces. On the other hand, the radial stress
is compressive at all points and becomes zero at the inner and outer surfaces of the cylinder.

In practice, a pressure loading is often superimposed on the thermal stresses, as in the case of
chemical reaction vessels. An approach is to follow similarly to that already discussed, with
boundary conditions modified to reflect the pressure; for example, (σr)r = a = –pi, (σr)r = b = 0. In this
instance, the internal pressure results in a circumferential tensile stress (Fig. 8.4a), causing a partial
cancellation of compressive stress owing to temperature.
Note that, when a rotating disk is subjected to inertia, loading combined with an axisymmetrical
distribution of temperature T(r), the stresses and displacements may be determined by superposition
of the two cases.

8.12 Finite Element Solution
In the previous sections, the cases of axisymmetry discussed were ones in which along the axis of
revolution (z) there was uniformity of structural geometry and loading. In this section, the finite
element approach of Chapter 7 is applied for computation of displacement, strain, and stress in a
general axisymmetric structural system, formed as a solid of revolution having material properties,
support conditions, and loading, all of which are symmetrical about the z axis, but that may vary along



this axis. A simple illustration of this situation is a sphere uniformly loaded by gravity forces.
“Elements” of the body of revolution (rings or, more generally, tori) are used to discretize the
axisymmetric structure. We shall here employ an element of triangular cross section, as shown in Fig.
8.15. Note that a node is now in fact a circle; for example, node i is the circle with ri as radius. Thus,
the elemental volume dV appearing in the expressions of Section 7.13 is the volume of the ring
element (2πr dr dz).

Figure 8.15. Triangular cross section of axisymmetric solid finite element.

The element clearly lies in three-dimensional space. Any randomly selected vertical cross section of
the element, however, is a plane triangle. As already discussed in Section 8.1, no tangential
displacement can exist in the symmetrical system; that is, v = 0. Inasmuch as only the radial
displacement u and the axial displacement w in a plane are involved (rz plane), the expressions for
displacement established for plane stress and plane strain may readily be extended to the
axisymmetric analysis [Ref. 8.4].

8.13 Axisymmetric Element
The theoretical development follows essentially the procedure given in Chapter 7, with the exception
that, in the present case, cylindrical coordinates are employed (r, θ, z), as shown in Fig. 8.15.

Strain, Stress, and Elasticity Matrices
The strain matrix, from Eqs. (2.4), (3.33a), and (3.33b), may be defined as follows:

(8.54)
The initial strain owing to a temperature change is expressed in the form

{ε0}e = {αT, αT, αT, 0}

It is observed from Eq. (8.54) that the tangential strain εθ becomes infinite for a zero value of r. Thus,
if the structural geometry is continuous at the z axis, as in the case of a solid sphere, r is generally
assigned a small value (for example, 0.1 mm) for the node located at this axis.
It can be demonstrated that the state of stress throughout the element {σ}e is expressible as follows:



(8.55)

A comparison of Eqs. (8.55) and (7.58) yields the elasticity matrix

(8.56)

Displacement Function
The nodal displacements of the element are written in terms of submatrices δu and δv:

(a)

The displacement function {f}e, which describes the behavior of the element, is given by

(8.57a)

or

(8.57b)
Here the α’s are the constants, which can be evaluated as follows. First, we express the nodal
displacements {δ}e:

Then, by the inversion of these linear equations,



(8.58)

where A is defined by Eq. (7.67) and

(8.59)

Finally, upon substitution of Eqs. (8.58) into (8.57), the displacement function is represented in the
following convenient form:

(8.60)
or

{f}e = [N]{δ}e

with

(8.61)

The element strain matrix is found by introducing Eq. (8.60) together with (8.61) into (8.54):

(8.62)
where

(8.63)

with



It is observed that the matrix [B] includes the coordinates r and z. Thus, the strains are not constant,
as is the case with plane stress and plane strain.

The Stiffness Matrix
The element stiffness matrix, from Eq. (7.61), is given by

(8.64a)

and must be integrated along the circumferential or ring boundary. This may thus be rewritten

(8.64b)
where the matrices [D] and [B] are defined by Eqs. (8.56) and (8.63), respectively. It is observed that
integration is not easily performed as in the case of plane stress problems, because [B] is also a
function of r and z. Although tedious, the integration can be carried out explicitly. Alternatively,
approximate numerical approaches may be used. In a simple approximate procedure, [B] is evaluated
for a centroidal point of the element. To accomplish this, we substitute fixed centroidal coordinates of
the element

(8.65)

into Eq. (8.63) in place of r and z to obtain . Then, by letting , from Eqs. (8.64), the
element stiffness is found to be

(8.66)

This simple procedure leads to results of acceptable accuracy.

External Nodal Forces
In the axisymmetric case, “concentrated” or “nodal” forces are actually loads axisymmetrically
located around the body. Let qr and qz represent the radial and axial components of force per unit
length, respectively, of the circumferential boundary of a node or a radius r. The total nodal force in
the radial direction is

(8.67a)
Similarly, the total nodal force in the axial direction is

(8.67b)



Other external load components can be treated analogously. When the approximation leading to Eq.
(8.66) is used, we can, from Eq. (7.58), readily obtain expressions for nodal forces owing to the
initial strains, body forces, and any surface tractions (see Prob. 8.49).
In summary, the solution of an axisymmetric problem can be obtained, having generated the total
stiffness matrix [K], from Eq. (8.64) or (8.66), and the load matrices {Q}. Then Eq. (7.60) provides
the numerical values of nodal displacements {δ} = [K]–1{Q}. The expression (8.62) together with
Eq. (8.63) yields values of the element strains. Finally, Eq. (8.55), upon substitution of Eq. (8.62), is
used to determine the element stresses.

Case Study 8.1 Thick-Walled High-Pressure Steel Cylinder

Figure 8.16a illustrates a thick-walled pipe having the inner radius a and outer radius b under external pressure po. Plot the
distribution of stress, as found by the FEA and equations obtained by the theory of elasticity in Section 8.2, across the wall of the
cylinder. Given: b = 2a and v = 0.3.

Figure 8.16. Case Study 8.1. (a) Thick-walled cylinder subjected to external pressure and
modeling of a slice at section A–B; (b) distribution of tangential and radial stresses in the

cylinder for b = 2a.

Solution

Only a thin segment or slice of the cylinder need be analyzed. We shall use a total of 20 triangular elements, gradually decreasing
in size toward the region under pressure, as shown at a section A–B in Fig. 8.16a. The boundary conditions for the mesh system
may be depicted by rollers at the nodes along the top and bottom faces of the slice, so that at these nodes the displacements w
are to be constrained to vanish.
Employing a general-purpose finite element program [Refs. 8.5 through 8.9], the tangential stresses σθ and radial stresses σr are
calculated. The nondimensional results are sketched in Fig. 8.16b. In addition, the exact results given by Eqs. (8.15) and (8.16)
are shown. Observe the excellent agreement between the solutions found by the two approaches.
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Problems
Sections 8.1 through 8.5

8.1. A cylinder of internal radius a and external radius b = 1.10a is subjected to (a) internal
pressure pi only and (b) external pressure po only. Determine for each case the ratio of
maximum to minimum tangential stress.

8.2. A thick-walled cylinder with closed ends is subjected to internal pressure pi only. Knowing
that a = 0.6 m, b = 1 m, σall = 140 MPa, and τall = 80 MPa, determine the allowable value of
pi.

8.3. A cylinder of inner radius a and outer radius na, where n is an integer, has been designed to
resist a specific internal pressure, but reboring becomes necessary. (a) Find the new inner
radius rx required so that the maximum tangential stress does not exceed the previous value by
more than Δσθ, while the internal pressure is the same as before. (b) If a = 25 mm and n = 2
and after reboring the tangential stress is increased by 10%, determine the new diameter.

8.4. A steel tank having an internal diameter of 1.2 m is subjected to an internal pressure of 7
MPa. The tensile and compressive elastic strengths of the material are 280 MPa. Assuming a
factor of safety of 2, determine the wall thickness.

8.5. Two thick-walled, closed-ended cylinders of the same dimensions are subjected to internal
and external pressure, respectively. The outer diameter of each is twice the inner diameter.
What is the ratio of the pressures for the following cases? (a) The maximum tangential stress
has the same absolute value in each cylinder. (b) The maximum tangential strain has the same
absolute value in each cylinder. Take .

8.6. Determine the radial displacement of a point on the inner surface of the tank described in
Prob. 8.4. Assume that outer diameter 2b = 1.2616 m, E = 200 GPa, and ν = 0.3.

8.7. Derive expressions for the maximum circumferential strains of a thick-walled cylinder
subject to internal pressure pi only, for two cases: (a) an open-ended cylinder and (b) a
closed-ended cylinder. Then, assuming that the allowable strain is limited to 1000 μ, pi = 60

MPa, and b = 2 m, determine the required wall thickness. Use E = 200 GPa and .



8.8. An aluminum cylinder (E = 72 GPa, ν = 0.3) with closed and free ends has a 500-mm
external diameter and a 100-mm internal diameter. Determine maximum tangential, radial,
shearing, and longitudinal stresses and the change in the internal diameter at a section away
from the ends for an internal pressure of pi = 60 MPa.

8.9. Rework Prob. 8.8 with pi = 0 and po = 60 MPa.

8.10. A steel cylinder of 0.3-m radius is shrunk over a solid steel shaft of 0.1-m radius. The
shrinking allowance is 0.001 m/m. Determine the external pressure po on the outside of the
cylinder required to reduce to zero the circumferential tension at the inside of the cylinder.
Use Es = 200 GPa.

8.11. A steel cylinder is subjected to an internal pressure only. (a) Obtain the ratio of the wall
thickness to the inner diameter if the internal pressure is three-quarters of the maximum
allowable tangential stress. (b) Determine the increase in inner diameter of such a cylinder,
0.15 m in internal diameter, for an internal pressure of 6.3 MPa. Take E = 210 GPa and .

8.12. Verify the results shown in Fig. 8.5 using Eqs. (a) and (8.21) of Section 8.3.
8.13. A thick-walled cylinder is subjected to internal pressure pi and external pressure po. Find (a)

the longitudinal stress σz if the longitudinal strain is zero and (b) the longitudinal strain if σz is
zero.

8.14. A cylinder, subjected to internal pressure only, is constructed of aluminum having a tensile
strength σyp. The internal radius of the cylinder is a, and the outer radius is 2a. Based on the
maximum energy of distortion and maximum shear stress theories of failure, predict the
limiting values of internal pressure.

8.15. A cylinder, subjected to internal pressure pi only, is made of cast iron having ultimate
strengths in tension and compression of σu = 350 MPa and  MPa, respectively. The
inner and outer radii are a and 3a. Determine the allowable value of pi using (a) the maximum
principal stress theory and (b) the Coulomb–Mohr theory.

8.16. A flywheel of 0.5-m outer diameter and 0.1-m inner diameter is pressed onto a solid shaft.
The maximum tangential stress induced in the flywheel is 35 MPa. The length of the flywheel
parallel to the shaft axis is 0.05 m. Assuming a coefficient of static friction of 0.2 at the
common surface, find the maximum torque that may be transmitted by the flywheel without
slippage.

8.17. A solid steel shaft of 0.1-m diameter is pressed onto a steel cylinder, inducing a contact
pressure p1 and a maximum tangential stress 2p1 in the cylinder. If an axial tensile load of PL

= 45 kN is applied to the shaft, what change in contact pressure occurs? Let .
8.18. A brass cylinder of outer radius c and inner radius b is to be press-fitted over a steel

cylinder of outer radius b + δ and inner radius a (Fig. 8.6). Calculate the maximum stresses in
both materials for δ = 0.02 mm, a = 40 mm, b = 80 mm, and c = 140 mm. Let Eb = 110 GPa, νb
= 0.32, Es = 200 GPa, and νs = 0.28.

8.19. An aluminum alloy cylinder (Ea = 72 GPa, νa = 0.33) of outer and inner diameters of 300



and 200 mm is to be press-fitted over a solid steel shaft (Es = 200 GPa, νs = 0.29) of diameter
200.5 mm. Calculate (a) the interface pressure p and (b) the change in the outer diameter of
the aluminum cylinder.

8.20. A thin circular disk of inner radius a and outer radius b is shrunk onto a rigid plug of radius a
+ δo (Fig. P8.20). Determine (a) the interface pressure; (b) the radial and tangential stresses.

Figure P8.20.

8.21. When a steel sleeve of external diameter 3b is shrunk onto a solid steel shaft of diameter 2b,
the internal diameter of the sleeve is increased by an amount δ0. What reduction occurs in the

diameter of the shaft? Let .
8.22. A cylinder of inner diameter b is shrunk onto a solid shaft. Find (a) the initial difference in

diameters if the contact pressure is p and the maximum tangential stress is 2p in the cylinder
and (b) the axial compressive load that should be applied to the shaft to increase the contact
pressure from p to p1. Let .

8.23. A brass solid cylinder is a firm fit within a steel tube of inner diameter 2b and outer diameter
4b at a temperature T1°C. If now the temperature of both elements is increased to T2°C, find
the maximum tangential stresses in the cylinder and in the tube. Take αs = 11.7 × 10–6/°C, αb =

19.5 × 10–6/°C, and , and neglect longitudinal friction forces at the interface.
8.24. A thick-walled, closed-ended cylinder of inner radius a and outer radius b is subjected to an

internal pressure pi only (Fig. P8.24). The cylinder is made of a material with permissible
tensile strength σall and shear strength τall. Determine the allowable value of pi. Given: a = 0.8
m, b = 1.2 m, σall = 80 MPa, and τall = 50 MPa.

Figure P8.24.

8.25. A thick-walled cylindrical tank of inner radius a and outer radius b is made of ASTM A-48
cast iron (see Table D.1) having a modulus of elasticity E and Poisson’s ratio of v. Calculate
the maximum radial displacement of the tank, if it is under an internal pressure of pi, as



illustrated in Fig. P8.24. Given: a = 0.5 m, b = 0.8 m, pi = 60 MPa, E = 70 GPa and v = 0.3.
8.26. A steel cylinder (σyp = 350 MPa) having inner radius a and outer radius 3a is subjected to an

internal pressure pi (Fig. P8.24). Find the limiting values of the pi, using (a) the maximum
shear stress theory; (b) the maximum energy of distortion theory.

8.27. A cylinder with inner radius a and outer radius 2a is subjected to an internal pressure pi (Fig.
P8.24). Determine the allowable value of pi, applying (a) the maximum principal stress
theory; (b) the Coulomb–Mohr theory. Assumptions: The cylinder is made of aluminum of σu
= 320 MPa and .

8.28. A bronze bushing 60 mm in outer diameter and 40 mm in inner diameter is to be pressed into
a hollow steel cylinder of 120-mm outer diameter. Calculate the tangential stresses for steel
and bronze at the boundary between the two parts. Given: Eb = 105 GPa, Es = 210 GPa, v =
0.3. Assumption: The radial interference is equal to δ = 0.05 mm.

8.29. A cast-iron disk is to be shrunk on a 100-mm-diameter steel shaft. Find (a) the contact
pressure; (b) the minimum allowable outside diameter of the disk. Assumption: The tangential
stress in the disk is limited to 80 MPa. Given: The radial interference is δ = 0.06 mm, Ec =
100 GPa, Es = 200 GPa, and v = 0.3.

8.30. A cast-iron cylinder of outer radius 140 mm is to be shrink-fitted over a 50-mm-radius steel
shaft. Find the maximum tangential and radial stresses in both parts. Given: Ec = 120 GPa, vc
= 0.2, Es = 210 G Pa, vs = 0.3. Assumption: The radial interference is δ = 0.04 mm.

8.31. In the case of which a steel disk (v = 0.3) of external diameter 4b is shrunk onto a steel shaft
of diameter of b, internal diameter of the disk is increased by an amount λ. Find the reduction
in the diameter of the shaft.

8.32. A gear of inner and outer radii 0.1 and 0.15 m, respectively, is shrunk onto a hollow shaft of
inner radius 0.05 m. The maximum tangential stress induced in the gear wheel is 0.21 MPa.
The length of the gear wheel parallel to shaft axis is 0.1 m. Assuming a coefficient of static
friction of f = 0.2 at the common surface, what maximum torque may be transmitted by the gear
without slip?

Sections 8.6 through 8.13
8.33. A solid steel shaft of radius b is pressed into a steel disk of outer radius 2b and the length of

hub engagement t = 3b (Figure 8.11). Calculate the value of the radial interference in terms of
b. Given: The shearing stress in the shaft caused by the torque that the joint is to carry equals
120 MPa; E = 200 GPa, and f = 0.2.

8.34. A cast-iron gear with 100-mm effective diameter and t = 40 mm hub engagement length is to
transmit a maximum torque of 120 N · m at low speeds (Fig. 8.11). Determine (a) the required
radial interference on a 20-mm diameter steel shaft; (b) the maximum stress in the gear due to
a press fit. Given: Ec = 100 GPa, Es = 200 GPa, v = 0.3, and f = 0.16.

8.35. Show that for an annular rotating disk, the ratio of the maximum tangential stress to the
maximum radial stress is given by



(P8.35)

8.36. Determine the allowable speed ωall in rpm of a flat solid disk employing the maximum energy
of distortion criterion. The disk is constructed of an aluminum alloy with σyp = 260 MPa, 

, ρ = 2.7 kN · s2/m4, and b = 125 mm.
8.37. A rotating flat disk has 60-mm inner diameter and 200-mm outer diameter. If the maximum

shearing stress is not to exceed 90 MPa, calculate the allowable speed in rpm. Let ν = 1/3 and
ρ = 7.8 kN · s2/m4.

8.38. A flat disk of outer radius b = 125 mm and inner radius a = 25 mm is shrink-fitted onto a
shaft of radius 25.05 mm. Both members are made of steel with E = 200 GPa, ν = 0.3, and ρ =
7.8 kN · s2/m4. Determine (a) the speed in rpm at which the interface pressure becomes zero
and (b) the maximum stress at this speed.

8.39. A flat annular steel disk (ρ = 7.8 kN · s2/m4, ν = 0.3) of 4c outer diameter and c inner
diameter rotates at 5000 rpm. If the maximum radial stress in the disk is not to exceed 50
MPa, determine (a) the radial wall thickness and (b) the corresponding maximum tangential
stress.

8.40. A flat annular steel disk of 0.8-m outer diameter and 0.15-m inner diameter is to be shrunk
around a solid steel shaft. The shrinking allowance is 1 part per 1000. For ν = 0.3, E = 210
GPa, and ρ = 7.8 kN · s2/m4, determine, neglecting shaft expansion, (a) the maximum stress in
the system at standstill and (b) the rpm at which the shrink fit will loosen as a result of
rotation.

8.41. Show that in a solid disk of diameter 2b, rotating with a tangential velocity v, the maximum
stress is . Take .

8.42. A steel disk of 500-mm outer diameter and 50-mm inner diameter is shrunk onto a solid shaft
of 50.04-mm diameter. Calculate the speed (in rpm) at which the disk will become loose on
the shaft. Take ν = 0.3, E = 210 GPa, and ρ = 7.8 kN · s2/m4.

8.43. Consider a steel rotating disk of hyperbolic cross section (Fig. 8.13) with a = 0.125 m, b =
0.625 m, ti = 0.125 m, and to = 0.0625 m. Determine the maximum tangential force that can
occur at the outer surface in newtons per meter of circumference if the maximum stress at the
bore is not to exceed 140 MPa. Assume that outer and inner edges are free of pressure.

8.44. A steel turbine disk with b = 0.5 m, a = 0.0625 m, and to = 0.05 m rotates at 5000 rpm
carrying blades weighing a total of 540 N. The center of gravity of each blade lies on a circle
of 0.575-m radius. Assuming zero pressure at the bore, determine (a) the maximum stress for a
disk of constant thickness and (b) the maximum stress for a disk of hyperbolic cross section.
The thickness at the hub and tip are ti = 0.4 m and to = 0.05 m, respectively. (c) For a
thickness at the axis ti = 0.02425 m, determine the thickness at the outer edge, to, for a disk
under uniform stress, 84 MPa. Take ρ = 7.8 kN · s2/m4 and g = 9.81 m/s2.

8.45. A solid, thin flat disk is restrained against displacement at its outer edge and heated



uniformly to temperature T. Determine the radial and tangential stresses in the disk.
8.46. Show that for a hollow disk or cylinder, when subjected to a temperature distribution given

by T = (Ta – Tb) ln (b/r)/ln (b/a), the maximum radial stress occurs at

(P8.46)

8.47. Calculate the maximum thermal stress in a gray cast-iron cylinder for which the inner
temperature is Ta = –8°C and the outer temperature is zero. Let a = 10 mm, b = 15 mm, E = 90
GPa, α = 10.4 × 10–6 per °C, and ν = 0.3.

8.48. Verify that the distribution of stress in a solid disk in which the temperature varies linearly
with the radial dimension, T(r) = T0(b – r)/b, is given by

(P8.48)
Here T0 represents the temperature rise at r = 0.

8.49. Redo Example 7.12 with the element shown in Fig. 7.26 representing a segment adjacent to
the boundary of a sphere subjected to external pressure p = 14 MPa.

8.50. A cylinder of hydraulic device having inner radius a and outer radius 4a is subjected to an
internal pressure pi. Using a finite element program with CST (or LST) elements, determine
the distribution of the tangential and radial stresses. Compare the results with the exact
solution shown in Fig. 8.4a.

8.51. A cylinder of a hydraulic device with inner radius a and outer radius 4a is under an external
pressure po. Employing a finite element computer program with CST (or LST) elements,
calculate the distribution of tangential and radial stresses.

8.52. Redo Prob. 8.51 if the cylinder is under an internal pressure pi. Compare the results with the
exact solution shown in Fig. 8.4.

8.53. Resolve Prob. 8.51 for the case in which the cylinder is subjected to internal pressure pi and
external pressure po = 0.5pi.



Chapter 9. Beams on Elastic Foundations

9.1 Introduction
In the problems involving beams previously considered, support was provided at a number of
discrete locations, and the beam was usually assumed to suffer no deflection at these points of
support. We now explore the case of a prismatic beam supported continuously along its length by a
foundation, itself assumed to experience elastic deformation. We shall take the reaction forces of the
elastic foundation to be linearly proportional to the beam deflection at any point. This simple
analytical model of a continuous elastic foundation is often referred to as the Winkler model.
The foregoing assumption not only leads to equations amenable to solution but also represents an
idealization closely approximating many real situations. Examples include a railroad track, where the
elastic support consists of the cross ties, the ballast, and the subgrade; concrete footings on an earth
foundation; long steel pipes resting on earth or on a series of elastic springs; ship hulls; or a
bridgedeck or floor structure consisting of a network of closely spaced bars.

9.2 General Theory
Let us consider a beam on elastic foundation subject to a variable loading, as depicted in Fig. 9.1.
The force q per unit length, resisting the displacement of the beam, is equal to –kv. Here v is the beam
deflection, positive downward as in the figure. The quantity k represents a constant, usually referred
to as the modulus of the foundation, possessing the dimensions of force per unit length of beam per
unit of deflection (for example, newtons per square meter or pascals).

Figure 9.1. Beam on elastic (Winkler) foundation.

The analysis of a beam whose length is very much greater than its depth and width serves as the basis
of the treatment of all beams on elastic foundations. Referring again to Fig. 9.1, which shows a beam
of constant section supported by an elastic foundation, the x axis passes through the centroid, and the y
axis is a principal axis of the cross section. The deflection v, subject to reaction q and applied load
per unit length p, for a condition of small slope, must satisfy the beam equation:

(9.1)
For those parts of the beam on which no distributed load acts, p = 0, and Eq. (9.1) takes the form

(9.2)

It will suffice to consider the general solution of Eq. (9.2) only, requiring the addition of a particular
integral to satisfy Eq. (9.1) as well. Selecting v = eax as a trial solution, it is found that Eq. (9.2) is



satisfied if

requiring that
a = ± β (1 ± i)

where

(9.3)

The general solution of Eq. (9.2) may now be written as

(9.4)
where A, B, C, and D are the constants of integration.
In the developments that follow, the case of a single load acting on an infinitely long beam is treated
first. The solution of problems involving a variety of loading combinations will then rely on the
principle of superposition.

9.3 Infinite Beams
Consider an infinitely long beam resting on a continuous elastic foundation, loaded by a concentrated
force P (Fig. 9.2). The variation of the reaction kv is unknown, and the equations of static equilibrium
are not sufficient for its determination. The problem is therefore statically indeterminate and
requires additional formulation, which is available from the equation of the deflection curve of the
beam. Owing to beam symmetry, only that portion to the right of the load P need be considered. The
two boundary conditions for this segment are deduced from the fact that as x → ∞, the deflection and
all derivatives of v with respect to x must vanish. On this basis, it is clear that the constants A and B
in Eq. (9.4) must equal zero. What remains is

(9.5)

Figure 9.2. Infinite beam on an elastic foundation and loaded at the origin.

The conditions applicable a very small distance to the right of P are

(a)

where the minus sign is consistent with the general convention adopted in Section 1.3. Substitution of
Eq. (a) into Eq. (9.5) yields



Introduction of the expressions for the constants into Eq. (9.5) provides the following equation,
applicable to an infinite beam subject to a concentrated force P at midlength:

(9.6a)

or

(9.6b)
Equation (9.6b) indicates clearly that the characteristic of the deflection is an exponential decay of a
sine wave of wavelength

To simplify the equations for deflection, rotation, moment, and shear, the following notations and
relations are introduced:

(9.7)

Table 9.1 lists numerical values of the foregoing functions for various values of the argument βx. The
solution of Eq. (9.5) for specific problems is facilitated by this table and the graphs of the functions
of βx [Ref. 9.1]. Equation (9.6) and its derivatives, together with Eq. (9.7), yield the following
expressions for deflection, slope, moment, and shearing force:

(9.8)

Table 9.1. Selected Values of the Functions Defined by Eqs. (9.7)



These expressions are valid for x ≥ 0.

Example 9.1. Long Beam with a Partial Uniform Load

A very long rectangular beam of width 0.1 m and depth 0.15 m (Fig. 9.3) is subject to a uniform
loading over 4 m of its length of p = 175 kN/m. The beam is supported on an elastic foundation
having a modulus k = 14 MPa. Derive an expression for the deflection at an arbitrary point Q



within length L. Calculate the maximum deflection and the maximum force per unit length between
beam and foundation. Use E = 200 GPa.

Figure 9.3. Example 9.1. Uniformly distributed load segment on an infinite beam on an
Elastic foundation.

Solution

The deflection Δv at point Q due to the load Px = p dx is, from Eq. (9.8);

The deflection at point Q resulting from the entire distributed load is then

or

(b)

Although the algebraic sign of the distance a in Eq. (b) is negative, in accordance with the
placement of the origin in Fig. 9.3, we shall treat it as a positive number because Eq. (9.8) gives
the deflection for positive x only. This is justified on the basis that the beam deflection under a
concentrated load is the same at equal distances from the load, whether these distances are
positive or negative. By the use of Eq. (9.3),

From this value of β, βL = (0.888)(4) = 3.552 = β(a + b). We are interested in the maximum
deflection and therefore locate the origin at point Q, the center of the distributed loading. Now a
and b represent equal lengths, so βa = βb = 1.776, and Eq. (b) gives

The maximum force per unit of length between beam and foundation is then kvmax = 14 ×
106(0.0129) = 180.6 kN/m.

Example 9.2. Long Beam with a Moment

A very long beam is supported on an elastic foundation and is subjected to a concentrated moment



Mo (Fig. 9.4). Determine the equations describing the deflection, slope, moment, and shear.
Figure 9.4. Example 9.2. Infinite beam resting on an elastic foundation subjected to M.

Solution

Observe that the couple P · e is equivalent to Mo for the case in which e approaches zero
(indicated by the dashed lines in the figure). Applying Eq. (9.8), we have therefore

Successive differentiation yields

(9.9)
which are the deflection, slope, moment, and shear, respectively.

9.4 Semi-Infinite Beams
The theory of Section 9.3 is now applied to a semi-infinite beam, having one end at the origin and the
other extending indefinitely in a positive x direction, as in Fig. 9.5. At x = 0, the beam is subjected to
a concentrated load P and a moment MA. The constants C and D of Eq. (9.5) can be ascertained by
applying the following conditions at the left end of the beam:

Figure 9.5. Semi-infinite end-loaded beam on elastic foundation.

The results are

The deflection is now found by substituting C and D into Eq. (9.5) as



(9.10)

At x = 0,

(9.11)

Finally, successively differentiating Eq. (9.10) yields expressions for slope, moment, and shear:

(9.12)
Application of these equations together with the principle of superposition permits the solution of
more complex problems, as is illustrated next.

Example 9.3. Semi-Infinite Beam with a Concentrated Load Near Its End

Determine the equation of the deflection curve of a semi-infinite beam on an elastic foundation
loaded by concentrated force P a distance c from the free end (Fig. 9.6a).

Figure 9.6. Example 9.3. Semi-infinite beam on an elastic foundation under load P.

Solution

The problem may be restated as the sum of the cases shown in Figs. 9.6b and c. Applying Eqs.
(9.8) and the conditions of symmetry, the reactions appropriate to the infinite beam of Fig. 9.6b
are



(a)

Superposition of the deflections of Fig. 9.6b and c [see Eqs. (9.8) and (9.12)] results in

Introducing Eqs. (a) into this, the following expression for deflection, applicable for positive x, is
obtained:

This is clearly applicable for negative x as well, provided that x is replaced by |x|.

Example 9.4. Semi-Infinite Beam Loaded at Its End

A 2-m-long steel bar (E = 210 GPa) of 75-mm by 75-mm square cross section rests with a side
on a rubber foundation (k = 24 MPa). If a concentrated load P = 20 kN is applied at the left end
of the beam (Fig. 9.5), determine (a) the maximum deflection and (b) the maximum bending stress.

Solution
Applying Eq. (9.3), we have

Inasmuch as pL = 1.814(2) = 3.638 > 3, the beam can be considered to be a long beam (see Sec.
9.4); Eqs. (9.12) with MA = 0 thus apply.

a. The maximum deflection occurs at the left end for which f4(βx) is a maximum or βx = 0. The
first of Eqs. (9.12) is therefore

b. Referring to Table 9.1, f2(βx) has its maximum of 0.3224 at βx = π/4. Using the third of Eqs.
(9.12),

The maximum stress in the beam is obtained from the flexure formula:

The location of this stress is at x = π/4β = 433 mm from the left end.



9.5 Finite Beams
The bending of a finite beam on elastic foundation may also be treated by application of the general
solution, Eq. (9.4). In this instance, four constants of integration must be evaluated. To accomplish
this, two boundary conditions at each end may be applied, usually resulting in rather lengthy
formulations. Results have been obtained applying this approach and are tabulated for numerous
cases.*

An alternative approach to the solution of problems of finite beams with simply supported and
clamped ends employs equations derived for infinite and semi-infinite beams, together with the
principle of superposition. The use of this method was demonstrated in connection with semi-inverse
beams in Example 9.3. Energy methods can also be employed in the analysis of beams whose ends
are subjected to any type of support conditions [Ref. 9.4]. Solution by trigonometric series results in
formulas that are particularly simple, as will be seen in Example 10.12. Design tables for short
beams with free ends on elastic foundation have been provided by Iyengar and Ramu [Ref. 9.5].
Let us consider a finite beam on an elastic foundation, centrally loaded by a concentrated force P
(Fig. 9.7) and compare the deflections occurring at the center and end of the beam. Note that the beam
deflection is symmetrical with respect to C.

Figure 9.7. Comparison of the center and end deflections of a finite beam on an elastic
foundation subjected to a concentrated center load.

The appropriate boundary conditions are, for x ≥ 0, v′(L/2) = 0, EIv‴(L/2) = P/2, EIv′′ (0) = 0, and
EIv‴(0) = 0. Substituting these into the proper derivatives of Eq. (9.4) leads to four equations with
unknown constants A, B, C, and D. After routine but somewhat lengthy algebraic manipulation, the
following expressions are determined:

(9.13)

(9.14)

From Eqs. (9.13) and (9.14), we have



(9.15)

This result is sketched in Fig. 9.7.

9.6 Classification of Beams
The plot of Eq. (9.15) permits the establishment of a stiffness criterion for beams resting on elastic
foundation. It also serves well to readily discern a rationale for the classification of beams on elastic
foundation. Referring to Fig. 9.7, we conclude that
1. Short beams, βL < 1: Inasmuch as the end deflection is essentially equal to that at the center, the

deflection of the foundation can be determined to good accuracy by regarding the beam as infinitely
rigid.

2. Intermediate beams, 1 < βL < 3: In this region, the influence of the central force at the ends of the
beam is substantial, and the beam must be treated as finite in length.

3. Long beams, βL > 3: It is clear from the figure that the ends are not affected appreciably by the
central loading. Therefore, if we are concerned with one end of the beam, the other end or the
middle may be regarded as being an infinite distance away; that is, the beam may be treated as
infinite in length.

The foregoing groups do not relate only to the special case of loading shown in Fig. 9.7 but are quite
general. Should greater accuracy be required, the upper limit of group 1 may be placed at βL = 0.6
and the lower limit of group 3 at βL = 5.

9.7 Beams Supported by Equally Spaced Elastic Elements
In the event that a long beam is supported by individual elastic elements, as in Fig. 9.8a, the problem
is simplified if the separate supports are replaced by an equivalent continuous elastic foundation. To
accomplish this, it is assumed that the distance a between each support and the next is small, and that
the concentrated reactions Ri = Kvi are replaced by equivalent uniform or stepped distributed forces
shown by the dashed lines of Fig. 9.8b. Here K represents a spring constant (for example, newtons
per meter).
Figure 9.8. Infinite beam supported by equally spaced elastic springs. Loading diagram: (a) with

concentrated reactions; (b) with average continuous reaction force distribution.

For practical calculations, the usual limitation is a ≤ π/4β. The average continuous reaction force
distribution is shown by the solid line in the figure. The intensity of the latter distribution is
ascertained as follows:



or

(a)

where the foundation modulus of the equivalent continuous elastic support is

(9.16)
The solution for the case of a beam on individual elastic support is then obtained through the use of
Eq. 9.2, in which the value of k is that given by Eq. (9.16).

Example 9.5. Finite-Length Beam with a Concentrated Load Supported by Springs

A series of springs, spaced so that a = 1.5 m, supports a long thin-walled steel tube having E =
206.8 GPa. A weight of 6.7 kN acts down at midlength of the tube. The average diameter of the
tube is 0.1 m, and the moment of inertia of its section is 6 × 10–6 m4. Take the spring constant of
each support to be K = 10 kN/m. Find the maximum moment and the maximum deflection,
assuming negligible tube weight.

Solution

Applying Eqs. (9.3) and (9.16), we obtain

From Eq. (9.8),

9.8 Simplified Solutions for Relatively Stiff Beams
Examination of the analyses of the previous sections and of Fig. 9.7 leads us to conclude that the
distribution of force acting on the beam by the foundation is, in general, a nonlinear function of the
beam length coordinate. This distribution approaches linearity as the beam length decreases or as the
beam becomes stiffer. Reasonably good results can be expected, therefore, by assuming a linearized
elastic foundation pressure for stiff beams. The foundation pressure is then predicated on beam
displacement in the manner of a rigid body [Ref. 9.6], and the reaction is, as a consequence, statically
determinate.
To illustrate the approach, consider once more the beam of Fig. 9.7, this time with a linearized
foundation pressure (Fig. 9.9). Because of loading symmetry, the foundation pressure is, in this case,



not only linear but constant as well. We shall compare the results thus obtained with those found
earlier.
The exact theory states that points E and C deflect in accordance with Eqs. (9.13) and (9.14). The
relative deflection of these points is simply

(a)

Figure 9.9. Relatively stiff finite beam on elastic foundation and loaded at the center.

For the simplified load configuration shown in Fig. 9.9, the relative beam deflection may be
determined by considering the elementary solution for a beam subjected to a uniformly distributed
loading and a concentrated force. For this case, we label the relative deflection v1 as follows:

(b)

The ratio of the relative deflections obtained by the exact and approximate analyses now serves to
indicate the validity of the approximations. Consider

(c)

where v and v1 are given by Eqs. (a) and (b). The trigonometric and hyperbolic functions may be
expanded as follows:

(d)
Introducing these into Eq. (c), we obtain

(e)

Substituting various values of βL into Eq. (e) discloses that, for βL < 1.0, v/v1 differs from unity by no



more than 1%, and the linearization is seen to yield good results. It can be shown that for values of βL
< 1, the ratio of the moment (or slope) obtained by the linearized analysis to that obtained from the
exact analysis differs from unity by less than 1%.
Analysis of a finite beam, centrally loaded by a concentrated moment, also reveals results similar to
those given here. We conclude, therefore, that when βL is small (< 1.0) no significant error is
introduced by assuming a linear distribution of foundation pressure.

9.9 Solution by Finite Differences
Because of the considerable time and effort required in the analytical solution of practical problems
involving beams on elastic foundations, approximate methods employing numerical analysis are
frequently applied. A solution utilizing the method of finite differences is illustrated in the next
example.

Figure 9.10. Example 9.6. (a) Uniformly loaded beam on an elastic foundation; (b) deflection
curve for m = 2; (c) deflection curve for m = 3.

Example 9.6. Finite Beam under Uniform Loading

Determine the deflection of the built-in beam on an elastic foundation shown in Fig. 9.10a. The
beam is subjected to a uniformly distributed loading p and is simply supported at x = L.

Solution

The deflection is governed by Eq. (9.1), for which the applicable boundary conditions are

(a)

The solution will be obtained by replacing Eqs. (9.1) and (a) by a system of finite difference
equations. It is convenient to first transform Eq. (9.1) into dimensionless form through the
introduction of the following quantities:

The deflection equation is therefore



(b)

We next divide the interval of z(0, 1) into n equal parts of length h = 1/m, where m represents an
integer. Multiplying Eq. (b) by h4 = 1/m4, we have

(c)

Employing Eq. (7.23), Eq. (c) assumes the following finite difference form:

(d)

Upon setting C = kL4/EI, this becomes

(e)

The boundary conditions, Eqs. (a), are transformed into difference conditions by employing Eq.
(7.4):

(f)

Equations (e) and (f) represent the set required for a solution, with the degree of accuracy
increased as the magnitude of m is increased. Any desired accuracy can thus be attained.

For purposes of illustration, let k = 2.1 MPa, E = 200 GPa, I = 3.5 × 10–4 m4, L = 3.8 m, and p =
540 kN/m. Determine the deflections for m = 2, m = 3, and m = 4. Equation (e) thus becomes

(g)

For m = 2, the deflection curve, satisfying Eq. (f), is sketched in Fig. 9.10b. At z = , we have vn
= v1. Equation (g) then yields

from which v1 = 16 mm.

For m = 3, the deflection curve satisfying Eq. (f) is now as in Fig. 9.10c. Hence, Eq. (g) at 
(by setting vn = v1) and at  (by setting vn = v2) leads to



from which v1 = 9 mm and v2 = 11 mm.

For m = 4, a similar procedure yields v1 = 5.3 mm, v2 = 9.7 mm, and v3 = 7.5 mm.

9.10 Applications
The theory of beams on elastic foundation is applicable to many problems of practical importance, of
which one is discussed next. The concept of a beam on elastic foundation may also be employed to
approximate stress and deflection in axisymmetrically loaded cylindrical shells, to be discussed in
Chapter 13. The governing equations of the two problems are of the same form. This means that
solutions of one problem become solutions of the other problem through a simple change of constants
[Ref. 9.7].

Grid Configurations of Beams
The ability of a floor to sustain extreme loads without undue deflection, as in a machine shop, is
significantly enhanced by combining the floor beams in a particular array or grid configuration. Such
a design is illustrated in the ensuing problem.

Example 9.7. Machine Room Floor
A single concentrated load P acts at the center of a machine room floor composed of 79
transverse beams (spaced a = 0.3 m apart) and one longitudinal beam, as shown in Fig. 9.11. If
all beams have the same modulus of rigidity EI, determine the deflection and the distribution of
load over the various transverse beams supporting the longitudinal beam. Assume that the
transverse and longitudinal beams are attached so that they deform together.

Solution

The spring constant K of an individual elastic support such as beam AA is

Figure 9.11. Example 9.7. Long beam supported by several identical and equally spaced
cross-beams. All beams are simply supported at their ends.



where vC is the central deflection of a simply supported beam of length Lt carrying a center load
RC. From Eq. (9.16), the modulus k of the equivalent continuous elastic foundation is found to be

Thus,

and

In accordance with the criteria discussed in Sections 9.4 and 9.5, the longitudinal beam may be
classified as a long beam resting on a continuous elastic support of modulus k. Consequently,
from Eqs. (9.8), the deflection at midspan is

The deflection of a transverse beam depends on its distance x from the center of the longitudinal
beam, as shown in the following tabulation:

We are now in a position to calculate the load Rcc supported by the central transverse beam.
Since the midspan deflection vM of the central transverse beam is equal to vP, we have

and

The remaining transverse beam loads are now readily calculated on the basis of the deflections in
the previous tabulation, recalling that the loads are linearly proportional to the deflections.
We observe that, beyond beam 11, it is possible for a transverse beam to be pulled up as a result
of the central loading. This is indicated by the negative value of the deflection. The longitudinal
beam thus serves to decrease transverse beam deflection only if it is sufficiently rigid.
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Problems
Sections 9.1 through 9.4

9.1. A very long S127 × 15 steel I-beam, 0.127-m deep, resting on a foundation for which k = 1.4
MPa, is subjected to a concentrated load at midlength. The flange is 0.0762-m wide, and the
cross-sectional moment of inertia is 5.04 × 10–6 m4. What is the maximum load that can be
applied to the beam without causing the elastic limit to be exceeded? Assume that E = 200
GPa and σyp = 210 MPa.

9.2. A long steel beam (E = 200 GPa) of depth 2.5b and width b is to rest on an elastic foundation
(k = 20 MPa) and support a 40-kN load at its center (Fig. 9.2). Design the beam (compute b)
if the bending stress is not to exceed 250 MPa.

9.3. A long beam on an elastic foundation is subjected to a sinusoidal loading p = p1 sin (2πx/L),
where p1 and L are the peak intensity and wavelength of loading, respectively. Determine the
equation of the elastic deflection curve in terms of k and β.

9.4. If point Q is taken to the right of the loaded portion of the beam shown in Fig. 9.3, what is the
deflection at this point?

9.5. A single train wheel exerts a load of 135 kN on a rail assumed to be supported by an elastic
foundation. For a modulus of foundation k = 16.8 MPa, determine the maximum deflection and
maximum bending stress in the rail. The respective values of the section modulus and modulus
of rigidity are S = 3.9 × 10–4 m3 and EI = 8.437 MN · m2.

9.6. Resolve Prob. 9.1 based on a safety factor of n = 2.5 with respect to yielding of the beam and
using the modulus of foundation of k = 12 MPa.

9.7. An infinite 6061-T6 aluminum alloy beam of b × b square cross section resting on an elastic
foundation of k carries a concentrated load P at its center (Fig. 9.2). Using a factor of safety of
n with respect to yielding of the beam, compute the allowable value of b. Given: E = 70 GPa,
σyp = 260 MPa (Table D.1), k = 7 MPa, P = 50 kN, and n = 1.8.

9.8. Redo Prob. 9.5 for the case in which a single train wheel exerts a concentrated load of P =
250 kN on a rail resting on an elastic foundation having k = 15 MPa.

9.9. A long rail is subjected to a concentrated load at its center (Fig. 9.2). Determine the effect on
maximum deflection and maximum stress of overestimating the modulus of foundation k by (a)
25% and (b) 40%.

9.10. Calculate the maximum resultant bending moment and deflection in the rail of Prob. 9.5 if



two wheel loads spaced 1.66 m apart act on the rail. The remaining conditions of the problem
are unchanged.

9.11. Determine the deflection at any point Q under the triangular loading acting on an infinite
beam on an elastic foundation (Fig. P9.11).

Figure P9.11.

9.12. What are the reactions acting on a semi-infinite beam built in at the left end and subjected to
a uniformly distributed loading p? Use the method of superposition. [Hint: At a large distance
from the left end, the deflection is p/k.]

9.13. A semi-infinite beam on elastic foundation is subjected to a moment MA at its end (Fig. 9.5
with P = 0). Determine (a) the ratio of the maximum upward and maximum downward
deflections; (b) the ratio of the maximum and minimum moments.

9.14. A semi-infinite beam on an elastic foundation is hinged at the left end and subjected to a
moment ML at that end. Determine the equation of the deflection curve, slope, moment, and
shear force.

Sections 9.5 through 9.10
9.15. A machine base consists partly of a 5.4-m-long S127 × 15 steel I-beam supported by coil

springs spaced a = 0.625 m apart. The constant for each spring is K = 180 kN/m. The moment
of inertia of the I-section is 5.4 × 10–6 m4, the depth is 0.127 m, and the flange width is 0.0762
m. Assuming that a concentrated force of 6.75 kN transmitted from the machine acts at
midspan, determine the maximum deflection, maximum bending moment, and maximum stress
in the beam.

9.16. A steel beam of 0.75-m length and 0.05-m square cross section is supported on three coil
springs spaced a = 0.375 m apart. For each spring, K = 18 kN/m. Determine (a) the deflection
of the beam if a load P = 540 N is applied at midspan and (b) the deflection at the ends of the
beam if a load P = 540 N acts 0.25 m from the left end.

9.17. A finite beam with EI = 8.4 MN · m2 rests on an elastic foundation for which k = 14 MPa.
The length L of the beam is 0.6 m. If the beam is subjected to a concentrated load P = 4.5 kN
at its midpoint, determine the maximum deflection.

9.18. A finite beam is subjected to a concentrated force P = 9 kN at its mid-length and a uniform
loading p = 7.5 kN/m. Determine the maximum deflection and slope if L = 0.15 m, EI = 8.4
MN · m2, and k = 14 MPa.

9.19. A finite beam of length L = 0.8 m and EI = 10 MN m resting on an elastic foundation (k = 8
MPa) is under a concentrated load P = 15 kN at its midlength. What is the maximum
deflection?

9.20. A finite cast-iron beam of width b, depth h, and length L, resting on an elastic foundation of



modulus k, is subjected to a concentrated load P at midlength and a uniform load of intensity
p. Calculate the maximum deflection and the slope. Given: E = 70 GPa (Table D.1), b = 100
mm, h = 180 mm, L = 400 mm, P = 8 kN, p = 7 kN/m, and k = 20 MPa.

9.21. Redo Example 9.6 for the case in which both ends of the beam are simply supported.
9.22. Assume that all the data of Example 9.7 are unchanged except that a uniformly distributed

load p replaces the concentrated force on the longitudinal beam. Compute the load RCC
supported by the central transverse beam.



Chapter 10. Applications of Energy Methods

10.1 Introduction
As an alternative to the methods based on differential equations as outlined in Section 3.1, the
analysis of stress and deformation can be accomplished through the use of energy methods. The latter
are predicated on the fact that the equations governing a given stress or strain configuration are
derivable from consideration of the minimization of energy associated with deformation, stress, or
deformation and stress. Applications of energy methods are effective in situations involving a variety
of shapes and variable cross sections and in complex problems involving elastic stability and
multielement structures. In particular, strain energy methods offer concise and relatively simple
approaches for computation of the displacements of slender structural and machine elements
subjected to combined loading.

We shall deal with two principal energy methods.* The first is concerned with the finite deformation
experienced by an element under load (Secs. 10.2 to 10.7). The second relies on a hypothetical or
virtual variation in stress or deformation and represents one of the variational methods (Secs. 10.8 to
10.11). Energy principles are in widespread use in determining solutions to elasticity problems and
obtaining deflections of structures and machines. In this chapter, energy methods are used to
determine elastic displacements of statically determinate structures as well as to find the redundant
reactions and deflections of statically indeterminate systems. With the exception of Section 10.6, our
consideration is limited to linearly elastic material behavior and small displacements.

10.2 Work Done in Deformation
Consider a set of forces (applied forces and reactions) Pk(k ≈ 1, 2,..., m), acting on an elastic body
(Fig. 10.1), for example, a beam, truss, or frame. Let the displacement in the direction of Pk of the
point at which the force Pk is applied be designated δk. It is clear that δk is attributable to the action
of the entire force set, and not to Pk alone. Suppose that all the forces are applied statically, and let
the final values of load and displacement be designated Pk and δk. Based on the linear relationship of
load and deflection, the work W done by the external force system in deforming the body is given by 

.
Figure 10.1. Displacements of an elastic body acted on by several forces.

If no energy is dissipated during loading (which is certainly true of a conservative system), we may
equate the work done on the body to the strain energy U gained by the body. Thus



(10.1)

While the force set Pk (k = 1, 2, ..., m) includes applied forces and reactions, it is noted that the
support displacements are zero, and therefore the support reactions do no work and do not contribute
to the preceding summation. Equation (10.1) states simply that the work done by the forces acting on
the body manifests itself as elastic strain energy.
To further explore the foregoing concept, consider the body as a combination of small cubic elements.
Owing to surface loading, the faces of an element are displaced, and stresses acting on these faces do
work equal to the strain energy stored in the element. Consider two adjacent elements within the
body. The work done by the stresses acting on two contiguous internal faces is equal but of opposite
algebraic sign. We conclude therefore, that the work done on all adjacent faces of the elements will
cancel. All that remains is the work done by the stresses acting on the faces that lie on the surface of
the body. As the internal stresses balance the external forces at the boundary, the work, whether
expressed in terms of external forces (W) or internal stresses (U), is the same.

10.3 Reciprocity Theorem
Consider now two sets of applied forces and reactions:  (k = 1, 2,..., m), set 1;  (j = 1, 2,..., n), set
2. If only the first set is applied, the strain energy is, from Eq. (10.1),

(a)
where  are the displacements corresponding to the set . Application of only set 2 results in the
strain energy

(b)

in which  corresponds to the set .
Suppose that the first force system  is applied, followed by the second force system . The total
strain energy is

(c)

where U1,2 is the strain energy attributable to the work done by the first force system as a result of
deformations associated with the application of the second force system. Because the forces
comprising the first set are unaffected by the action of the second set, we may write

(d)

Here  represents the displacements caused by the forces of the second set at the points of



application of , the first set. If now the forces are applied in reverse order, we have

(e)
where

(f)

Here  represents the displacements caused by the forces of set 1 at the points of application of the
forces , set 2.
The loading processes described must, according to the principle of superposition, cause identical
stresses within the body. The strain energy must therefore be independent of the order of loading, and
it is concluded from Eqs. (c) and (e) that U1,2 = U2,1. We thus have

(10.2)

Expression (10.2) is the reciprocity or reciprocal theorem credited to E. Betti and Lord Rayleigh:
The work done by one set of forces owing to displacements due to a second set is equal to the work
done by the second system of forces owing to displacements due to the first.
The utility of the reciprocal theorem lies principally in its application to the derivation of various
approaches rather than as a method in itself.

10.4 Castigliano’s Theorem
First formulated in 1879, Castigliano’s theorem is in widespread use because of the ease with which
it is applied to a variety of problems involving the deformation of structural elements, especially
those classed as statically indeterminate. There are two theorems credited to Castigliano. In this
section we discuss the one restricted to structures composed of linearly elastic materials, that is,
those obeying Hooke’s law. For these materials, the strain energy is equal to the complementary
energy: U = U*. In Section 10.9, another form of Castigliano’s theorem is introduced that is
appropriate to structures that behave nonlinearly as well as linearly. Both theorems are valid for the
cases where any change in structure geometry owing to loading is so small that the action of the loads
is not affected.
Refer again to Fig. 10.1, which shows an elastic body subjected to applied forces and reactions, Pk(k
= 1, 2, ..., m). This set of forces will be designated set 1. Now let one force of set 1, Pi, experience an
infinitesimal increment ΔPi. We designate as set 2 the increment ΔPi. According to the reciprocity
theorem, Eq. (10.2), we may write

(a)

where Δδk is the displacement in the direction and, at the point of application, of Pk attributable to the



forces of set 2, and δi is the displacement in the direction and, at the point of application, of Pi due to
the forces of set 1.
The incremental strain energy ΔU = ΔU2 + ΔU1,2 associated with the application of ΔPi is, from Eqs.
(b) and (d) of Section 10.3, . Substituting Eq. (a) into this, we have 

. Now divide this expression by ΔPi and take the limit as the force ΔPi
approaches zero. In the limit, the displacement Δδi produced by ΔPi vanishes, leaving

(10.3)

This is known as Castigliano’s second theorem: For a linear structure, the partial derivative of the
strain energy with respect to an applied force is equal to the component of displacement at the point
of application of the force that is in the direction of the force.
It can similarly be demonstrated that

(10.4)

where Ci and θi are, respectively, the couple (bending or twisting) moment and the associated rotation
(slope or angle of twist) at a point.
In applying Castigliano’s theorem, the strain energy must be expressed as a function of the load. For
example, the expression for the strain energy in a straight or curved slender bar (Sec. 5.13) subjected
to a number of common loads (axial force N, bending moment M, shearing force V, and torque T) is,
from Eqs. (2.59), (2.63), (5.64), and (2.62),

(10.5)

in which the integrations are carried out over the length of the bar. Recall that the term given by the
last integral is valid only for a circular cross-sectional area. The displacement at any point in the bar
may then readily be found by applying Castigliano’s theorem. Inasmuch as the force P is not a function
of x, we can perform the differentiation of U with respect to P under the integral. In so doing, the
displacement is obtained in the following convenient form:

(10.6)
Similarly, an expression may be written for the angle of rotation:

(10.7)

For a slender beam, as observed in Section 5.4, the contribution of the shear force V to the



displacement is negligible.
Referring to Section 2.13, in the case of a plane truss consisting of n members of length Lj, axial
rigidity AjEj, and internal axial force Nj, the strain energy can be found from Eq. (2.59) as follows:

(10.8)

The displacement δi of the point of application of load P is therefore

(10.9)
Here the axial force Nj in each member may readily be determined using the method of joints or
method of sections. The former consists of analyzing the truss joint by joint to find the forces in
members by applying the equations of equilibrium at each joint. The latter is often employed for
problems where the forces in only a few members are to be obtained.
A final point to be noted that, when it is necessary to determine the deflection at a point at which no
load acts, the problem is treated as follows. A fictitious load Q (or C) is introduced at the point in
question in the direction of the desired displacement δ (or θ). The displacement is then found by
applying Castigliano’s theorem, setting Q = 0 (or C = 0) in the final result. Consider, for example, the
cantilever beam AB supporting a uniformly distributed load of intensity p (Fig. 10.2). To determine
the deflection at A, we apply a fictitious load Q, as shown by the dashed line in the figure.
Expressions for the moment and its derivative with respect to Q are, respectively,

Substituting these into Eq. (10.6) and making Q = 0 results in

Since the fictitious load was directed downward, the positive sign means that the deflection δA is also
downward.

Figure 10.2. A cantilever beam with a uniform load.

Example 10.1. Slope of a Beam with an Overhang
Determine the slope of the elastic curve at the left support of the uniformly loaded beam shown in
Fig. 10.3.



Figure 10.3. Example 10.1. Uniformly loaded beam with an overhang.

Solution
As a slope is sought, a fictitious couple moment C is introduced at point A. Applying the
equations of statics, the reactions are found to be

The following expressions for the moments are thus available:

The slope at A is now found from Eq. (10.7):

Setting C = 0 and integrating, we obtain θA = 7pL3/192 EI.

Example 10.2. Deflection of a Pin-Connected Structure

A load P is applied at B to two bars of equal length L but different cross-sectional areas and
modulii of elasticity (Fig. 10.4a). Determine the horizontal displacement δB of point B.

Figure 10.4. Example 10.2. Two-bar structure carries a load P.

Solution
A fictitious load Q is applied at B. The forces in the bars are determined by considering the
equilibrium of the free-body diagram of pin B (Fig. 10.4b):

(NBC + NBD)sinθ = P

(NBC – NBD)cosθ = Q



or

(b)
Differentiating these expressions with respect to Q,

Applying Castigliano’s theorem, Eq. (10.6),

Introducing Eqs. (b) and setting Q = 0 yields the horizontal displacement of the pin under the
given load P:

(c)
A check is provided in that, in the case of two identical rods, the preceding expression gives δB =
0, a predictable result.

Example 10.3. Three-Bar Truss

The simple pin-connected truss shown in Fig. 10.5 supports a force P. If all members are of equal
rigidity AE, what is the deflection of point D?

Figure 10.5. Example 10.3. A truss supports a load P.

Solution
Applying the method of joints at points A and C and taking symmetry into account, we obtain N1 =
N2 = 5P/8, N4 = N5 = 3P/8, and N3 = P. Castigliano’s theorem, Eq. (10.9), may be written

(d)



where n = 5. Substituting the values of axial forces in terms of applied load into Eq. (d) leads to

from which δD = 35p/4AE.

Example 10.4. Thick-Walled Half Ring

A load P of 5 kN is applied to a steel curved bar as depicted in Fig. 10.6a. Determine the vertical
deflection of the free end by considering the effects of the internal normal and shear forces in
addition to the bending moment. Let E = 200 GPa and G = 80 GPa.
Figure 10.6. Example 10.4. (a) A thick-walled curved bar is fixed at one end and supports a

load P at its free end; (b) segment of the bar.

Solution
A free-body diagram of a portion of the bar subtended by angle θ is shown in Fig. 10.6b, where
the internal forces (N and V) and moment (M) are positive as indicated. Referring to the figure,

(10.10)

Thus,

The form factor for shear for the rectangular section is  (Table 5.1). Substituting the
preceding expressions into Eq. (10.6) with dx = R dθ, we have

Integration of the foregoing results in

(10.11)

Geometric properties of the section of the bar are



Insertion of the data into Eq. (10.11) gives

δv = (2.21 + 0.03 + 0.01) × 10–3 = 2.25 mm

Comment
Note that if the effects of the normal and shear forces are omitted

δv = 2.21 mm

with a resultant error in deflection of approximately 1.8%. For this curved bar, in which R/c = 5,
the contribution of V and N to the displacement can thus be neglected. It is common practice to
omit the first and the third terms in Eqs. (10.6) and (10.7) when R/c > 4 (Sec. 5.13).

Example 10.5. Analysis of a Piping System

A piping system expansion loop is fabricated of pipe of constant size and subjected to a
temperature differential ΔT (Fig. 10.7). The overall length of the loop and the coefficient of
thermal expansion of the tubing material are L and α, respectively.

Figure 10.7. Example 10.5. Expansion loop is subjected to a temperature change.

Determine, for each end of the loop, the restraining bending moment M and force N induced by
the temperature change.

Solution
In labeling the end points for each segment, the symmetry about a vertical axis through point A is
taken into account, as shown in the figure. Expressions for the moments, associated with segments
DC, CB, and BA, are, respectively,

(e)

Upon application of Eqs. (10.3) and (10.4), the end deflection and end slope are found to be

(f)



(g)

Substitution of Eqs. (e) into Eq. (f) results in

(h)

Similarly, Eqs. (g) and (e) lead to

(10.12a)
The deflections at G owing to the temperature variation and end restraints must be equal; that is,

(10.12b)

Expressions (h) and (10.12) are then solved to yield the unknown reactions N and M in terms of
the given properties and loop dimensions.

10.5 Unit- or Dummy-Load Method
Recall that the deformation at a point in an elastic body subjected to external loading Pi, expressed in
terms of the moment produced by the force system, is, according to Castigliano’s theorem,

(a)

For small deformations of linearly elastic materials, the moment is linearly proportional to the
external loads, and consequently we are justified in writing M = mPi, with m independent of Pi. It
follows that ∂M/∂Pi = m, the change in the bending moment per unit change in Pi, that is, the moment
caused by a unit load.
The foregoing considerations lead to the unit-load or dummy-load approach, which finds extensive
application in structural analysis. From Eq. (a),



(10.13)

In a similar manner, the following expression is obtained for the change of slope:

(10.14)

Here m′ = ∂M/∂Ci represents the change in the bending moment per unit change in Ci, that is, the
change in bending moment caused by a unit-couple moment.
Analogous derivations can be made for the effects of axial, shear, and torsional deformations by
replacing m in Eq. (10.13) with n = ∂N/∂Pi, v = ∂V/∂Pi, and t = ∂T/∂Pi, respectively. It can also
readily be demonstrated that, in the case of truss, Eq. (10.9) has the form

(10.15)

wherein AE is the axial rigidity. The quantity nj = ∂Nj/∂Pi represents the change in the axial forces Nj
owing to a unit value of load Pi.

Example 10.6. Deflection of a Simple Beam with Two Loads

Derive an expression for the deflection of point C of the simply supported beam shown in Fig.
10.8a.

Figure 10.8. Example 10.6. (a) Actual loading; (b) unit loading.

Solution
Figure 10.8b shows the dummy load of 1 N and the reactions it produces. Note that the unit load
is applied at C because it is the deflection of C that is required. Referring to the figure, the
following moment distributions are obtained:



Here the M’s refer to Fig. 10.8a and the m’s to Fig. 10.8b. The vertical deflection at C is then,
from Eq. (10.14),

The solution, after integration, is found to be δC = 5PL3/162EI.

10.6 Crotti–Engesser Theorem
Consider a set of forces acting on a structure that behaves nonlinearly. Let the displacement of the
point at which the force Pi is applied, in the direction of Pi, be designated δi. This displacement is to
be determined. The problem is the same as that stated in Section 10.4, but now it will be expressed in
terms of Pi and the complementary energy U* of the structure, the latter being given by Eq. (2.49).

In deriving the theorem, a procedure is employed similar to that given in Section 10.4. Thus, U is
replaced by U* in Castigliano’s second theorem, Eq. (10.3), to obtain

(10.16)

This equation is known as the Crotti–Engesser theorem: The partial derivative of the complementary
energy with respect to an applied force is equal to the component of the displacement at the point of
application of the force that is in the direction of the force. Obviously, here the complementary energy
must be expressed in terms of the loads.

Example 10.7. Nonlinearly Elastic Structure

A simple truss, constructed of pin-connected members 1 and 2, is subjected to a vertical force P
at joint B (Fig. 10.9a). The bars are made of a nonlinearly elastic material displaying the stress–
strain relation σ = Kε1/2 equally in tension and compression (Fig. 10.9b). Here the strength
coefficient K is a constant. The cross-sectional area of each member is A. Determine the vertical
deflection of joint B.

Figure 10.9. Example 10.7. Two-bar structure with material nonlinearity.



Solution

The volume of member 1 is Ab and that of member 2 is . The total complementary energy of
the structure is therefore

(a)

The complementary energy densities are, from Eq. (2.49),

(b)
where σ1 and σ2 are the stresses in bars 1 and 2. Upon introduction of Eqs. (b) into (a), we have

(c)

From static equilibrium, the axial forces in 1 and 2 are found to be P and , respectively.
Thus, σ1 = P/A (tension) and  (compression), which when introduced into Eq. (c)
yields

(d)

Applying Eq. (10.16), the vertical deflection of B is found to be

Another approach to the solution of this problem is given in Example 10.11.

10.7 Statically Indeterminate Systems
To supplement the discussion of statically indeterminate systems given in Section 5.11, energy
methods are now applied to obtain the unknown, redundant forces (moments) in such systems.
Consider, for example, the beam system of Fig. 10.3 rendered statically indeterminate by the addition
of an extra or redundant support at the right end (not shown in the figure). The strain energy is, as



before, written as a function of all external forces, including both applied loads and reactions.
Castigliano’s theorem may then be applied to derive an expression for the deflection at point B, which
is clearly zero:

(a)
Expression (a) and the two equations of statics available for this force system provide the three
equations required for the determination of the three unknown reactions.
Extending this reasoning to the case of a statically indeterminate beam with n redundant reactions, we
write

(b)
The equations of statics together with the equations of the type given by Eq. (b) constitute a set
sufficient for solution of all the reactions. This basic concept is fundamental to the analysis of
structures of considerable complexity.

Example 10.8. Spring-Propped Cantilever Beam

The built-in beam shown in Fig. 10.10 is supported at one end by a spring of constant k.
Determine the redundant reaction.

Figure 10.10. Example 10.8. A propped cantilever beam with load P.

Solution

The expressions for the moments are

Applying Castigliano’s theorem to obtain the deflection at point D, δD = ∂U/∂RD, we have

from which . Equilibrium of vertical forces yields



(10.17)

Note that were the right end rigidly supported, δD would be equated to zero.

Example 10.9. Rectangular Frame

A rectangular frame of constant EI is loaded as shown in Fig. 10.11a. Assuming the strain energy
to be attributable to bending alone, determine the increase in distance between the points of
application of the load.

Figure 10.11. Example 10.9. (a) A frame; (b) free-body diagram of part AB.

Solution

The situation described is statically indeterminate. For reasons of symmetry, we need analyze
only one quadrant. Because the slope B is zero before and after application of the load, the
segment may be treated as fixed at B (Fig. 10.11b). The moment distributions are

Since the slope is zero at A, we have

from which MA = Pb2/4(a + b). By applying Castigliano’s theorem, the relative displacement
between the points of application of load is then found to be δ = Pb3(4a + b)/12EI(a + b).

Example 10.10. Member Forces in a Three-Bar Truss

A symmetric plane structure constructed of three bars of equal axial rigidity AE is subjected to a
load P at joint D, as illustrated in Fig. 10.12a. Using Castigliano’s theorem, find the force in each
bar.

Figure 10.12. Example 10.10. (a) A plane structure; (b) free-body diagram of joint D.



Solution

The structure is statically indeterminate to the first degree. The reaction R at B, which is equal to
the force in the bar BD, is selected as redundant. Due to symmetry, the forces AD and CD are each
equal to N. The condition of equilibrium of forces at joint D (Fig. 10.12b), gives

(c)

Substituting the foregoing relation and the given numerical values into Eq. (10.34), we find the
deflection at joint B in the form

(d)
Since the support B does not move, we set δB = 0 in Eq. (d). In so doing, the reaction at B is
determined as follows R = 0.494P. The forces in the members, from Eq. (c), are thus

and
NBD = R = 0.494P

10.8 Principle of Virtual Work
In this section a second type of energy approach is explored, based on a hypothetical variation of
deformation. This method, as is demonstrated, lends itself to the expeditious solution of a variety of
important problems.
Consider a body in equilibrium under a system of forces. Accompanying a small displacement within
the body, we expect a change in the original force system. Suppose now that an arbitrary incremental
displacement occurs, termed a virtual displacement. This displacement need not actually take place
and need not be infinitesimal. If we assume the displacement to be infinitesimal, as is usually done, it
is reasonable to regard the system of forces as unchanged. In connection with virtual work, we shall
use the symbol δ to denote a virtual infinitesimally small quantity.



Recall from particle mechanics that for a point mass, unconstrained and thereby free to experience
arbitrary virtual displacements δu, δv, and δw, the virtual work accompanying these displacements is
ΣFx δu, ΣFyδv, and ΣFz δw, where ΣFx, ΣFy, and ΣFz are the force resultants. If the particle is in
equilibrium, it follows that the virtual work must vanish, since ΣFx = ΣFy = ΣFz = 0. This is the
principle of virtual work.
For an elastic body, it is necessary to impose a number of restrictions on the arbitrary virtual
displacements. To begin with, these displacements must be continuous and their derivatives must
exist. In this way, material continuity is assured. Because certain displacements on the boundary may
be dictated by the circumstances of a given situation (boundary conditions), the virtual displacements
at such points on the boundary must be zero. A virtual displacement results in no alteration in the
magnitude or direction of external and internal forces. The imposition of a virtual displacement field
on an elastic body does, however, result in the imposition of an increment in the strain field.
To determine the virtual strains, replace the displacements u, v, and w by virtual displacements δu,
δv, and δw in the definition of the actual strains, Eq. (2.4):

The strain energy δU acquired by a body of volume V as a result of virtual straining is, by application
of Eq. (2.47) together with the second of Eqs. (2.44),

(10.18)

Note the absence in this equation of any term involving a variation in stress. This is attributable to the
assumption that the stress remains constant during application of virtual displacement.
The variation in strain energy may be viewed as the work done against the mutual actions between the
infinitesimal elements composing the body, owing to the virtual displacements (Sec. 10.2). The
virtual work done in an elastic body by these mutual actions is therefore –δU.
Consider next the virtual work done by external forces. Again suppose that the body experiences
virtual displacements δu, δv, and δw. The virtual work done by a body force F per unit volume and a
surface force p per unit area is

(10.19)

where A is the boundary surface. We have already stated that the total work done during the virtual
displacement is zero: δW – δU = 0. The principle of virtual work for an elastic body is therefore
expressed as follows:

(10.20)

10.9 Principle of Minimum Potential Energy



As the virtual displacements result in no geometric alteration of the body and as the external forces
are regarded as constants, Eq. (10.20) may be rewritten

(10.21a)
or, briefly,

(10.21b)

Here it is noted that δ has been removed from under the integral sign. The term Π = U – W is called
the potential energy, and Eq. (10.21) represents a condition of stationary potential energy of the
system.
It can be demonstrated that, for stable equilibrium, the potential energy is a minimum. Only for
displacements that satisfy the boundary conditions and the equilibrium conditions will Π assume a
minimum value. This is called the principle of minimum potential energy.
Consider now the case in which the loading system consists only of forces applied at points on the
surface of the body, denoting each point force by Pi and the displacement in the direction of this force
by δi (corresponding to the equilibrium state). From Eq. (10.21), we have

The principle of minimum potential energy thus leads to

(10.22)

The preceding means that the partial derivative of the stain energy with respect to a displacement δi
equals the force acting in the direction of δi at the point of application of Pi. Equation (10.22) is
known as Castigliano’s first theorem. This theorem, as with the Crotti–Engesser theorem, may be
applied to any structure, linear or nonlinear.

Example 10.11. Nonlinearly Elastic Basic Truss
Determine the vertical displacement δv and the horizontal displacement δh of the joint B of the
truss described in Example 10.7.

Solution

First introduce the unknown vertical and horizontal displacements at the joint shown by dashed
lines in Fig. 10.9a. Under the influence of δv, member 1 does not deform, while member 2 is
contracted by δv/2b per unit length. Under the influence of δh, member 1 elongates by δh/b, and
member 2 by δh/2b per unit length. The strains produced in members 1 and 2 under the effect of
both displacements are then calculated from



(a)

where ε1 is an elongation and ε2 is a shortening. Members 1 and 2 have volumes Ab and ,
respectively. Next, the total strain energy of the truss, from Eq. (a) of Section 2.13, is determined
as follows:

Upon substituting σ = Kε1/2 and Eqs. (a), and integrating, this becomes

Now we apply Castigliano’s theorem in the horizontal and vertical directions at B, respectively:

Simplifying and solving these expressions simultaneously, the joint displacements are found to be

(b)

The stress–strain law, together with Eqs. (a) and (b), yields the stresses in the members if
required:

The axial forces are therefore

Here N1 is tensile and N2 is compressive. It is noted that, for the statically determinate problem
under consideration, the axial forces could readily be determined from static equilibrium. The
solution procedure given here applies similarly to statically indeterminate structures as well as to
linearly elastic structures.

10.10 Deflections by Trigonometric Series
Certain problems in the analysis of structural deformation, mechanical vibration, heat transfer, and the
like, are amenable to solution by means of trigonometric series. This approach offers an important
advantage: a single expression may apply to the entire length of the member. The method is now
illustrated using the case of a simply supported beam subjected to a moment at point A (Fig. 10.13a).
The solution by trigonometric series can also be employed in the analysis of beams having any other
type of end condition and beams under combined loading [Refs. 10.5 and 10.9], as demonstrated in
Examples 10.12 and 10.13.
Figure 10.13. (a) Simple beam subjected to a moment Mo at an arbitrary distance c from the left

support; (b) and (c) deflection curve represented by the first and second terms of a Fourier



series, respectively.

The deflection curve can be represented by a Fourier sine series:

(10.23)

The end conditions of the beam (v = 0, v″ = 0 at x = 0, x = L) are observed to be satisfied by each
term of this infinite series. The first and second terms of the series are represented by the curves in
Fig. 10.13b and c, respectively. As a physical interpretation of Eq. (10.23), consider the true
deflection curve of the beam to be the superposition of sinusoidal curves of n different configurations.
The coefficients an of the series are the maximum coordinates of the sine curves, and the n’s indicate
the number of half-waves in the sine curves. It is demonstrable that, when the coefficients an are
determined properly, the series given by Eq. (10.23) can be used to represent any deflection curve
[Ref. 10.10]. By increasing the number of terms in the series, the accuracy can be improved.
To evaluate the coefficients, the principle of virtual work will be applied. The strain energy of the
system, from Eqs. (5.62) and (10.23), is written

(a)

Expanding the term in brackets,

Since for the orthogonal functions sin(mπx/L) and sin(nπx/L) it can be shown by direct integration that

(10.24)
Eq. (a) gives then

(10.25)



The virtual work done by a moment Mo acting through a virtual rotation at A increases the strain
energy of the beam by δU:

(b)
Therefore, from Eqs. (10.25) and (b), we have

which leads to

Upon substitution of this for an in the series given by Eq. (10.23), the equation for the deflection
curve is obtained in the form

(10.26)
Through the use of this infinite series, the deflection for any given value of x can be calculated.

Example 10.12. Cantilever Beam under an End Load

Derive an expression for the deflection of a cantilever beam of length L subjected to a
concentrated force P at its free end (Fig. 10.14).

Figure 10.14. Example 10.12. Cantilever beam with a load P at its end.

Solution

The origin of the coordinates is located at the fixed end. Let us represent the deflection by the
infinite series

(10.27)

It is clear that Eq. (10.27) satisfies the conditions related to the slope and deflection at x = 0: v =
0, dv/dx = 0. The strain energy of the system is

Squaring the bracketed term and noting that the orthogonality relationship yields



(10.28)

we obtain

(c)

Application of the principle of virtual work gives P δvE = δU. Thus,

from which an = 32PL3/n4π4EI. The beam deflection is obtained by substituting the value of an
obtained into Eq. (10.27). At x = L, disregarding terms beyond the first three, we obtain vmax =
PL3/3.001EI. The exact solution due to bending is PL3/3EI (Sec. 5.4).

Example 10.13. Beam on Elastic Foundation with a Concentrated Load

Determine the equation of the deflection curve of a beam supported at its ends and lying on an
elastic foundation of modulus k, subjected to concentrated load P and axial tensile load N (Fig.
10.15).

Figure 10.15. Example 10.13. A simply supported beam resting on an elastic foundation.

Solution
Assume, as the deflection curve, a Fourier sine series, given by Eq. (10.23), which satisfies the
end conditions. Denote the arc length of beam segment by ds (Fig. 10.15). To determine the work
done by this load, we require the displacement du = ds – dx experienced by the beam in the
direction of axial load N:

Noting that for (dv/dx)2 ≪ 1,

we obtain



(10.29)

The total energy will be composed of four principal sources: beam bending, tension, transverse
loading, and foundation displacement. Strain energy in bending in the beam, from Eq. (10.25), is

(c)

Strain energy owing to the deformation of the elastic foundation is determined as follows:

(10.30)
Work done against the axial load due to shortening u of the span, using Eq. (10.29), is

(10.31)

Work done by the load P is

(10.32)

Application of the principle of virtual work, Eq. (10.20), leads to the following expression:

After determining an from the preceding and substituting in the series Eq. (10.23), we obtain the
deflection curve of the beam:

(10.33)

When the axial load is compressive, contrary to this example, we need to reverse the sign of N in
Eq. (10.33). Clearly, the same relationship applies if there is no axial load present (N = 0) or
when the foundation is absent (k = 0) and the beam is merely supported at its ends.
Consider, for instance, the case in which load P is applied at the center of the span of a simply
supported beam. To calculate the deflection under the load, the values x = c = L/2, N = 0, and k =
0 are substituted into Eq. (10.33):

The series is rapidly converging, and the first few terms provide the deflection to a high degree of
accuracy. Using only the first term of the series, we have



Comment

Comparing this with the exact solution, we obtain 48.7 instead of 48 in the denominator of the
expression. The error in using only the first term of the series is thus approximately 1.5%; the
accuracy is sufficient for many practical purposes.

10.11 Rayleigh–Ritz Method
The Rayleigh–Ritz method offers a convenient procedure for obtaining solutions by the principle of
minimum potential energy. This method was originated by Lord Rayleigh, and a generalization was
contributed by W. Ritz. In this section, application of the method to the determination of the beam
displacements is discussed. In Chapters 11 and 13, respectively, the procedure will also be applied
to problems involving buckling of columns and bending of plates.
The essentials of the Rayleigh–Ritz method may be described as follows. First assume an expression
for the deflection curve, also called the displacement function of the beam, in the form of a series
containing unknown parameters an(n = 1, 2, ...). This series function is such that it satisfies the
geometric boundary conditions. These describe any end constraints pertaining to deflections and
slopes. Another kind of condition, a static boundary condition, which equates the internal forces (and
moments) at the edges of the member to prescribed external forces (and moments), need not be
fulfilled. Next, using the assumed solution, determine the potential energy Π in terms of an. This
indicates that the an’s govern the variation of the potential energy. As the potential energy must be a
minimum at equilibrium, the Rayleigh–Ritz method is stated as follows:

(10.34)

This condition represents a set of algebraic equations that are solved to yield the parameters an.
Substituting these values into the assumed function, we obtain the solution for a given problem. In
general, only a finite number of parameters can be employed, and the solution found is thus only
approximate. The accuracy of approximation depends on how closely the assumed deflection shape
matches the exact shape. With some experience, the analyst will be able to select a satisfactory
displacement function.
The method is illustrated in the solution of the following sample problem.

Example 10.14. Analysis of a Simple Beam under Uniform Load

A simply supported beam of length L is subjected to uniform loading p per unit length. Determine
the deflection v(x) by employing (a) a power series and (b) a Fourier series.

Solution

Let the origin of the coordinates be placed at the left support (Fig. 10.16).
Figure 10.16. Example 10.14. A simple beam carries a load of intensity p.



a. Assume a solution of polynomial form:

(a)

Note that this choice enables the deflection to vanish at either boundary. Consider now only the
first term of the series:

(b)
The corresponding potential energy, Π= U – W, is

From the minimizing condition, Eq. (10.34), we obtain a1 = pL2/24EI. The approximate
displacement is therefore

which at midspan becomes vmax = pL4/96EI. This result may be compared with the exact
solution due to bending, vmax = pL4/76.8EI, indicating an error in maximum deflection of
roughly 17%. An improved approximation is obtained when two terms of the series given by
Eq. (a) are retained. The same procedure now yields a1 = pL2/24EI and a2 = p/24EI, so that

(10.35)
At midspan, expression (10.35) provides the exact solution. The foregoing is laborious and not
considered practical when compared with the approach given next.

b. Now suppose a solution of the form

(c)

The boundary conditions are satisfied inasmuch as v and v″ both vanish at either end of the
beam. We now substitute v and its derivatives into Π = U – W. Employing Eq. (10.24), we
obtain, after integration,

Observe that if n is even, the second term vanishes. Thus,



and Eq. (10.34) yields an = 4pL4/EI(nπ)5, n = 1, 3, 5, .... The deflection at midspan is, from
Eq. (c),

(10.36)

Dropping all but the first term, vmax = pL4/76.5EI. The exact solution is obtained when all
terms in the series (c) are retained. Evaluation of all terms in the series may not always be
possible, however.

Comment

It should be noted that the results obtained in this example, based on only one or two terms of the
series, are remarkably accurate. So few terms will not, in general, result in such accuracy when
applying the Rayleigh–Ritz method.
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Problems
Sections 10.1 through 10.7

10.1. A cantilever beam of constant AE and EI is loaded as shown in Fig. P10.1. Determine the
vertical and horizontal deflections and the angular rotation of the free end, considering the



effects of normal force and bending moment. Employ Castigliano’s theorem.
Figure P10.1.

10.2. The truss shown in Fig. P10.2 supports concentrated forces of P1 = P2 = P3 = 45 kN.
Assuming all members are of the same cross section and material, find the vertical deflection
of point B in terms of AE. Take L = 3 m. Use Castigliano’s theorem.

Figure P10.2.

10.3. The moments of inertia of the tapered and constant area segments of the cantilever beam
shown in Fig. P10.3 are given by I1 = (c1x + c2)–1 and I2, respectively. Determine the
deflection of the beam under a load P. Use Castigliano’s theorem.

Figure P10.3.

10.4. Determine the vertical deflection and slope at point A of the cantilever loaded as shown in
Fig. P10.4. Use Castigliano’s theorem.

Figure P10.4.

10.5. Redo Prob. 10.4 for the case in which an additional uniformly distributed load of intensity p
is applied to the beam.

10.6. Rework Prob. 10.4 for the stepped cantilever shown in Fig. P10.6.
Figure P10.6.



10.7. A square slender bar in the form of a quarter ring of radius R is fixed at one end (Fig. P10.7).
At the free end, force P and moment Mo are applied, both in the plane of the bar. Using
Castigliano’s theorem, determine (a) the horizontal and the vertical displacements of the free
end and (b) the rotation of the free end.

Figure P10.7.

10.8. The curved steel bar shown in Fig. 10.6 is subjected to a rightward horizontal force F of 4
kN at its free end and P = 0. Using E = 200 GPa and G = 80 GPa, compute the horizontal
deflection of the free end taking into account the effects of V and N, as well as M. What is the
error in deflection if the contributions of V and N are omitted?

10.9. It is required to determine the horizontal deflection of point D of the frame shown in Fig.
P10.9, subject to downward load F, applied at the top. The moment of inertia of segment BC
is twice that of the remaining sections. Use Castigliano’s theorem.

Figure P10.9.

10.10. A steel spring of constant flexural rigidity is described by Fig. P10.10. If a force P is
applied, determine the increase in the distance between the ends. Use Castigliano’s theorem.

Figure P10.10.

10.11. A cylindrical circular rod in the form of a quarter-ring of radius R is fixed at one end (Fig.



P10.11). At the free end, a concentrated force P is applied in a diametral plane perpendicular
to the plane of the ring. What is the deflection of the free end? Use the unit load method. [Hint:
At any section, Mθ = PR sin θ and Tθ = PR(1 – cosθ).]

Figure P10.11.

10.12. Redo Prob. 10.11 if the curved bar is a split circular ring, as shown in Fig. P10.12.
Figure P10.12.

10.13. For the cantilever beam loaded as shown in Fig. P10.13, using Castigliano’s theorem, find
the vertical deflection δA of the free end.

Figure P10.13.

10.14. A five-member plane truss in which all members have the same axial rigidity AE is loaded as
shown in Fig. P10.14. Apply Castigliano’s theorem to obtain the vertical displacement of point
D.

Figure P10.14.

10.15. For the beam and loading shown in Fig. P10.15, use Castigliano’s theorem to determine (a)
the deflection at point C; (b) the slope at point C.

Figure P10.15.

10.16. and 10.17. A beam is loaded and supported as illustrated in Figs. P10.16 and P10.17. Apply
Castigliano’s theorem to find the deflection at point C.



Figure P10.16.

Figure P10.17.

10.18. A load P is carried at joint B of a structure consisting of three bars of equal axial rigidity AE,
as shown in Fig. P10.18. Apply Castigliano’s theorem to determine the force in each bar.

Figure P10.18.

10.19. Applying the unit-load method, determine the support reactions RA and MA for the beam
loaded and supported as shown in Fig. P10.19.

Figure P10.19.

10.20. A propped cantilever beam AB is supported at one end by a spring of constant stiffness k and
subjected to a uniform load of intensity p, as shown in Fig. P10.20. Use the unit-load method
to find the reaction at A.

Figure P10.20.

10.21. A beam is supported and loaded as illustrated in Figs. P10.21. Use Castigliano’s theorem to
determine the reactions.



Figure P10.21.

10.22. Redo Prob. 10.19, using Castigliano’s theorem.
10.23. A beam is supported and loaded as shown in Fig. P10.23. Apply Castigliano’s theorem to

determine the reactions.
Figure P10.23.

10.24. Determine the deflection and slope at midspan of the beam described in Example 10.8.
10.25. A circular shaft is fixed at both ends and subjected to a torque T applied at point C, as shown

in Fig. P10.25. Determine the reactions at supports A and B, employing Castigliano’s theorem.
Figure P10.25.

10.26. A steel rod of constant flexural rigidity is described by Fig. P10.26. For force P applied at
the simply supported end, derive a formula for roller reaction Q. Apply Castigliano’s theorem.

Figure P10.26.

10.27. A cantilever beam of length L subject to a linearly varying loading per unit length, having the
value zero at the free end and po at the fixed end, is supported on a roller at its free end (Fig.
P10.27). Find the reactions using Castigliano’s theorem.

Figure P10.27.

10.28. Using Castigliano’s theorem, find the slope of the deflection curve at midlength C of a beam
due to applied couple moment Mo (Fig. P10.28).

Figure P10.28.



10.29. The symmetrical frame shown in Fig. P10.29 supports a uniform loading of p per unit length.
Assume that each horizontal and vertical member has the modulus of rigidity E1I1 and E2I2,
respectively. Determine the resultant reaction RA at the left support, employing Castigliano’s
theorem.

Figure P10.29.

10.30. Forces P are applied to a compound loop or link of constant flexural rigidity EI (Fig.
P10.30). Assuming that the dimension perpendicular to the plane of the page is small in
comparison with radius R and taking into account only the strain energy due to bending,
determine the maximum moment.

Figure P10.30.

10.31. A planar truss shown in Fig. P10.31 carries two vertical loads P acting at points B and E.
Use Castigliano’s theorem to obtain (a) the horizontal displacement of joint E; (b) the rotation
of member DE.

Figure P10.31.

10.32. Calculate the vertical displacement of joint E of the truss depicted in Fig. P10.32. Each
member is made of a nonlinearly elastic material having the stress–strain relation σ = Kε1/3

and the cross-sectional area A. Apply the Crotti–Engesser theorem.
Figure P10.32.



10.33. A basic truss supports a load P, as shown in Fig. P10.33. Determine the horizontal
displacement of joint C, applying the unit-load method.

Figure P10.33.

10.34. A frame of constant flexural rigidity EI carries a concentrated load P at point E (Fig.
P10.34). Determine (a) the reaction R at support A, using Castigliano’s theorem; (b) the
horizontal displacement δh at support A, using the unit-load method.

Figure P10.34.

10.35. A bent bar ABC with fixed and roller supported ends is subjected to a bending moment Mo,
as shown in Fig. P10.35. Obtain the reaction R at the roller. Apply the unit-load method.

Figure P10.35.

10.36. A planar curved frame having rectangular cross section and mean radius R is fixed at one end
and supports a load P at the free end (Fig. P10.36). Employ the unit-load method to determine
the vertical component of the deflection at point B, taking into account the effects of normal
force, shear, and bending.



Figure P10.36.

10.37. A large ring is loaded as shown in Fig. P10.37. Taking into account only the strain energy
associated with bending, determine the bending moment and the force within the ring at the
point of application of P. Employ the unit-load method.

Figure P10.37.

Sections 10.8 through 10.11
10.38. Redo Problem 10.25, employing Castigliano’s first theorem. [Hint: Strain energy is

expressed by

(P10.38)

where θ is the angle of twist and GJ represents the torsional rigidity.]
10.39. Apply Castigliano’s first theorem to compute the force P required to cause a vertical

displacement of 5 mm in the hinge-connected structure of Fig. P10.39. Let α = 45°, Lo = 3 m,
and E = 200 GPa. The area of each member is 6.25 × 10–4 m2.

Figure P10.39.

10.40. A hinge-ended beam of length L rests on an elastic foundation and is subjected to a uniformly
distributed load of intensity p. Derive the equation of the deflection curve by applying the
principle of virtual work.



10.41. Determine the deflection of the free end of the cantilever beam loaded as shown in Fig.
10.14. Assume that the deflection shape of the beam takes the form

(P10.41)
where a1 is an unknown coefficient. Use the principle of virtual work.

10.42. A cantilever beam carries a uniform load of intensity p (Fig. P10.42). Take the displacement
v in the form

(P10.42)

where a is an unknown constant. Apply the Rayleigh–Ritz method to find the deflection at the
free end.

Figure P10.42.

10.43. Determine the equation of the deflection curve of the cantilever beam loaded as shown in
Fig. 10.14. Use as the deflection shape of the loaded beam

(P10.43)

where a1 and a2 are constants. Apply the Rayleigh–Ritz method.

10.44. A simply supported beam carries a load P at a distance c away from its left end. Obtain the
beam deflection at the point where P is applied. Use the Rayleigh–Ritz method. Assume a
deflection curve of the form v = ax(L – x), where a is to be determined.

10.45. Determine the midspan deflection for the fixed-ended symmetrical beam of stepped section
shown in Fig. P10.45. Take v = a1x3 + a2x2 + a3x + a4. Employ the Rayleigh–Ritz method.

Figure P10.45.

10.46. Redo Prob. 10.45 for the case in which the beam is uniform and of flexural rigidity EI. Use

(P10.46)

where the an’s are unknown coefficients.



Chapter 11. Stability of Columns

11.1 Introduction
We have up to now dealt primarily with the prediction of stress and deformation in structural
elements subject to various load configurations. Failure criteria have been based on a number of
theories relying on the attainment of a particular stress, strain, or energy level within the body. This
chapter demonstrates that the beginnings of structural failure may occur prior to the onset of any
seriously high levels of stress. We thus explore failure owing to buckling or elastic instability and
seek to determine those conditions of load and geometry that lead to a compromise of structural
integrity.
We are concerned only with beams and slender members subject to axial compression. The problem
is essentially one of ascertaining those configurations of the system that lead to sustainable patterns of
deformation. The principal difference between the theories of linear elasticity and linear stability is
that, in the former, equilibrium is based on the undeformed geometry, whereas in the latter the
deformed geometry must be considered. Our treatment primarily concerns ideal columns. We define
an ideal column as a perfectly constructed, perfectly straight column that is built of material that
follows Hooke’s law and that is under centric loading. Practical formulas and graphs are presented to
facilitate improved understanding of the behavior of both elastic and inelastic actual columns.

11.2 Critical Load
To demonstrate the concepts of stability and critical load, consider the idealized structure: a rigid,
weightless bar AB, shown in Fig. 11.1a. This member is pinned at B and acted on by a force P. In the
absence of restoring influences such as the spring shown, any small lateral disturbance (causing a
displacement δ) will result in rotation of the bar, as illustrated in Fig. 11.1b, with no possibility of
return to the original configuration. Without the spring, therefore, the situation depicted in the figure is
one of unstable equilibrium. With a spring present, different possibilities arise.

Figure 11.1. Buckling behavior of a rigid bar: (a) vertical configuration; (b) displacement
configuration; (c) equilibrium diagram.

Equilibrium Method
A small momentary disturbance δ can now be sustained by the system (provided that P is also small)



because the disturbing moment Pδ is smaller than the restoring moment FL = kδL (where k represents
the linear spring constant, force per unit of deformation). For a small enough value of P, the moment
kδL will thus be sufficient to return the bar to δ = 0. Since the system reacts to a small disturbance by
creating a counterbalancing effect acting to diminish the disturbance, the configuration is in stable
equilibrium.
If now the load is increased to the point where

(a)

it is clear that any small disturbance δ will be neither diminished nor amplified. The system is now in
neutral equilibrium at any small value of δ. Expression (a) defines the critical load:

(b)
If P > Pcr, the net moment acting will be such as to increase δ, tending to further increase the
disturbing moment Pδ, and so on. For P > Pcr, the system is in unstable equilibrium because any
lateral disturbance will be amplified, as in the springless case discussed earlier.
The equilibrium regimes are shown in Fig. 11.1c. Note that C, termed the bifurcation point, marks the
two branches of the equilibrium solution. One is the vertical branch (P ≤ Pcr, δ = 0), and the other is
the horizontal (P = Pcr, δ > 0).

Energy Method
Stability may also be interpreted in terms of energy concepts, however. Referring again to Fig. 11.1b,
the work done by P as it acts through a distance L(1 – cos θ) is

The elastic energy acquired as a result of the corresponding spring elongation Lθ is

If ΔU > ΔW, the configuration is stable; the work done is insufficient to result in a displacement that
grows subsequent to a lateral disturbance. However, if ΔW > ΔU, the system is unstable because
now the work is large enough to cause the displacement to grow following a disturbance. The
boundary between stable and unstable configurations corresponds to ΔW = ΔU,

Pcr = kL

as before.
The buckling analysis of compression members usually follows in essentially the same manner. Either
the static equilibrium or the energy approach may be used for determination of the critical load. The
choice depends on the particulars of the situation under analysis. Although the static equilibrium
method leads to exact solutions, the results offered by the energy approach (sometimes approximate)
are often preferable because of the physical insights that may be more readily gained.

11.3 Buckling of Pinned-End Columns



Consideration is now given to a relatively slender straight bar subject to axial compression. This
member, a column, is similar to the element shown in Fig. 11.1a, in that it too can experience unstable
behavior. In the case of a column, the restoring force or moment is provided by elastic forces
established within the member rather than by springs external to it.
Refer to Fig. 11.2a, in which is shown a straight, homogeneous, pin-ended column. For such a
column, the end moments are zero. This is regarded as the fundamental or most basic case. It is
reasonable to suppose that the column can be held in a deformed configuration by a load P while
remaining in the elastic range (Fig. 11.2b). Note that the requisite axial motion is permitted by the
movable end support. In Fig. 11.2c, the postulated deflection is shown, having been caused by
collinear forces P acting at the centroid of the cross section. The bending moment at any section, M =
–Pv, when inserted into the equation for the elastic behavior of a beam, EIv″ = M, yields

(11.1)

Figure 11.2. Pinned-end column: (a) initial form; (b) buckled form; (c) free-body diagram of
column segment.

The solution of this differential equation is

(a)

where the constants of integration, c1 and c2, are determined from the end conditions: v(0) = v(L) = 0.
From v(0) = 0, we find that c2 = 0. Substituting the second condition into Eq. (a), we obtain

(b)

It must be concluded that either c1 = 0, in which case v = 0 for all x and the column remains straight
regardless of load, or sin . The case of c1 = 0 corresponds to a condition of no buckling and
yields a trivial solution [the energy approach (Sec. 11.10) sheds further light on this case]. The latter
is the acceptable alternative because it is consistent with column deflection. It is satisfied if



(c)

The value of P ascertained from Eq. (c), that is, the load for which the column may be maintained in a
deflected shape, is the critical load,

(11.2)

where L represents the original length of the column. Assuming that column deflection is in no way
restricted to a particular plane, the deflection may be expected to occur about an axis through the
centroid for which the second moment of area is a minimum. The lowest critical load or Euler
buckling load of the pin-ended column is of greatest interest; for n = 1,

(11.3)
The preceding, after L. Euler (1707–1783), represents the maximum theoretical load that an idealized
column can expect to resist. Recall that a centrically loaded column in which the deflections are
small, the construction is perfect, and the material follows Hooke’s law is called an ideal column.
The deflection is found by combining Eqs. (a) and (c) and inserting the values of c1 and c2:

(11.4)
in which c1 represents the amplitude of the elastic curve. It is noted that a slender pin-ended elastic
column has more than one critical load, as indicated in Eq. (11.2). When the column is restrained
from buckling into a single lobe by a lateral support, it may buckle at a load higher than Pcr. A column
with pinned ends can buckle in the shape of a single sine lobe (n = 1) at the critical load Pcr. But if it
is prevented from bending in the form of one lobe by one lateral support, the load can increase until it
buckles into two lobes (n = 2). Applying Eq. (11.2), for n = 2, the critical load is (Pcr)2 = 4(π2EI/L) =
4Pcr. Figure 11.3 illustrates the buckling modes for n = 1 and 2. The higher buckling modes (n = 3, ...)
are sketched similarly. Observe that, as n increases, the number of nodal points and critical buckling
load also increase. However, usually the lowest buckling mode is significant.

Figure 11.3. First two buckling modes for a pin-ended column.



We conclude this section by recalling that the boundary conditions employed in the solution of the
differential equation led to an infinite set of discrete values of load, (Pcr)n. These solutions, typical of
many engineering problems, are termed eigenvalues, and the corresponding deflections v are the
eigenfunctions.

11.4 Deflection Response of Columns
The conclusions of the preceding section are predicated on the linearized beam theory with which the
analysis began. Recall from Section 5.2 that, in Eq. (11.1), the term d2v/dx2 is actually an
approximation to the curvature. Inasmuch as c1 in Eq. (11.4) is undefined (and independent of Pcr), the
critical load and deflection are independent, and Pcr will sustain any small lateral deflection, a
condition represented by the horizontal line AB in Fig. 11.4. It is clear that, in this figure, we show
only the right-hand half of the diagram; however, the two halves are symmetric about the vertical axis.
Note that the effects of temperature and time on buckling are not considered in the following
discussion. Essentially, these effects may be very significant and often act to lower the critical load.

Figure 11.4. Relation between load and deflection for columns.

Effects of Large Deflections
Were the exact curvature used, the differential equation derived would apply to large deformations
within the elastic range, and the result would be less restricted. For this case, it is found that P
depends on the magnitude of the deflection or c1. Exact or large deflection analysis also reveals



values of P exceeding Pcr, as shown with the curve AC in Fig. 11.4. That is, after an elastic column
begins to buckle, a larger and larger load is required to cause an increase in the deflections.
However, the bending stresses accompanying large deflection could carry the material into inelastic
regime, thus leading to diminishing buckling loads [Ref. 11.1]. So, the load-deflection curve AC
drops (as indicated by the dashed lines), and the column fails either by excessive yielding or fracture.
Thus, in most applications, Pcr is usually regarded as the maximum load sustainable by a column.

Effects of Imperfections
The column that poses deviations from ideal conditions assumed in the preceding is called an
imperfect column. Such a column is not constructed perfectly; for example, it could have an
imperfection in the form of a misalignment of load or a small initial curvature or crookedness (see
Secs. 11.8 and 11.9). An imperfection produces deflections from the start of loading, as depicted by
curve OD in Fig. 11.4. For the case in which deflections are small, curve OD approaches line AB; as
the deflections become large, it approaches curve AC. The larger the imperfections, the further curve
OD moves to the right. For the case in which the column is constructed with great accuracy, curve OD
approaches more closely to the straight lines OA and AB. Observe from these lines and curves AC and
OD that Pcr represents the maximum load-carrying capacity of an elastic column for practical
purposes, because large deflections generally are not permitted to occur in structures.

Effects of Inelastic Behavior
We now consider the situation where the stresses exceed the proportional limit and the column
material no longer follows Hooke’s law. Obviously, the load-deflection curve is unchanged up to the
level of load at which the proportional limit is reached. Then the curve for inelastic behavior (curve
OE) deviates from the elastic curve, continues upward, reaches a maximum, and turns downward, as
seen in Fig. 11.4. The specific forms of these curves depend on the material properties and column
dimensions; however, the usual nature of the behavior is exemplified by the curves depicted.
Empirical methods are often used in conjunction with analysis to develop an efficient design criteria.
Very slender columns alone remain elastic up to the critical load Pcr. If the load is slightly eccentric,
a slender column will undergo lateral deflection as soon as load is applied. For intermediate
columns, instability and inelastic collapse take place at relatively small lateral deflections. Short
columns behave inelastically and follow a curve such as OD. Observe that the maximum load P that
can be carried by an inelastic column may be considerably less than the critical load Pcr. A final point
to note is that the descending part of curve OE leads to a plastic collapse or fracture, because it takes
smaller and smaller loads to maintain larger and larger deflections. On the contrary, the curves for
elastic columns are quite stable, since they continue upward as the deflections increase. Thus, it takes
larger and larger loads to produce an increase in deflection.

11.5 Columns with Different End Conditions
It is evident from the foregoing derivation that Pcr depends on the end conditions of the column. For
other than the pin-ended, fundamental case discussed, we need only substitute the appropriate
conditions into Eq. (a) of Section 11.3 and proceed as before.
Consider an alternative approach, beginning with the following revised form of the Euler buckling
formula for a pin-ended column and applicable to a variety of end conditions:



(11.5)

Here Le denotes the effective column length, which for the pin-ended column is the column length L.
The effective length, shown in Fig. 11.5 for several end conditions, is determined by noting the length
of a segment corresponding to a pin-ended column. In so doing we seek the distance between points
of inflection on the elastic curve or the distance between hinges, if any exist.

Figure 11.5. Effective lengths of columns with different restraints: (a) fixed-free; (b) pinned-
pinned; (c) fixed-pinned; (d) fixed-fixed.

Regardless of end condition, it is observed that the critical load depends not on material strength but
on the flexural rigidity, EI. Buckling resistance can thus be enhanced by deploying material so as to
maximize the moment of inertia, but not to the point where the section thickness is so small as to result
in local buckling or wrinkling. Setting I = Ar2, the preceding equation may be written as

(11.6)

where A is the cross-sectional area and r is the radius of gyration. The quantity Le/r, called the
effective slenderness ratio, is an important parameter in the classification of compression members.

Example 11.1. Load-Carrying Capacity of a Wood Column
A pinned-end wood bar of width b by depth h rectangular cross section (Fig. 11.6) and length L is
subjected to an axial compressive load. Determine (a) the slenderness ratio; (b) the allowable
load, using a factor safety of n. Data: b = 60 mm, h = 120 mm, L = 1.8 m, n = 1.4, E = 12 GPa,
and σu = 55 MPa (by Table D.1).

Figure 11.6. Example 11.1. Cross section of wooden column.



Solution

The properties of the cross-sectional area are A = bh, Ix = hb3/12, Iy = hb3/12, and .

a. Slenderness ratio: The smallest value of r is found when the centroidal axis is parallel to the
longer side of the rectangle. Therefore,

(a)
Substituting the given numerical value, we obtain

Since L = Le, it follows that

b. Permissible load: Applying Eq. (11.6), the Euler buckling load with ry = r and A = 60 × 120 =
7.2 × 103 mm2 is

Comment
The largest load the column can support equals, then, P = 79/1.4 = 56.4 kN. Observe that, based
on material strength, the allowable load equals

This, compared with 56.4 kN, shows the importance of buckling analysis in predicting the safe
working load.

11.6 Critical Stress: Classification of Columns
The behavior of an ideal column is often represented on a plot of average compressive stress P/A
versus slenderness ratio Le/r (Fig. 11.7). Such a representation offers a clear rationale for the
classification of compression bars. Tests of columns verify each portion of the curve with reasonable
accuracy. The range of Le/r is a function of the material under consideration. We note that the regions



AB, BC, and CD represent the strength limit in compression, inelastic buckling limit, and elastic
buckling limit, respectively.

Figure 11.7. Critical stress versus slenderness ratio.

Long Columns
For a member of sufficiently large slenderness ratio or long column, buckling occurs elastically at a
stress that does not exceed the proportional limit of the material.
Consequently, the Euler’s load of Eq. (11.6) is appropriate to this case. The critical stress is
therefore

(11.7)

The associated portion CD of the curve (Fig. 11.7) is labeled as Euler’s curve. The critical value of
slenderness ratio that fixes the lower limit of this curve, found by equating σcr to the proportional
limit (σpl) of the specific material, is given by

(a)
In the case of a structural steel with modulus of elasticity E = 210 GPa and yield strength σyp ≈ σpl =
250 MPa (Table D.1), for instance, the foregoing gives (Le/r)c = 91.

It is seen from Fig. 11.7 that very slender columns buckle at low levels of stress; they are much less
stable than short columns. Use of a higher strength material does not improve this situation.
Interestingly, Eq. (11.7) shows that the critical stress is increased by using a material of higher
modulus elasticity E or by increasing the radius of gyration r.

Short Columns
Compression members having low slenderness ratios (for example, steel rods with L/r < 30) exhibit
essentially no instability and are referred to as short columns or struts. For these bars, failure occurs



by crushing, without buckling, at stresses exceeding the proportional limit of the material. The
maximum stress is thus

(11.8)
This represents the strength limit of a short column, represented by horizontal line AB in Fig. 11.7.
Clearly, it is equal to the ultimate stress in compression.

Intermediate Columns: Inelastic Buckling
Most structural columns lie in a region between short and long classifications represented by the part
BC in Fig. 11.7. Such intermediate-length columns* do not fail by direct compression or by elastic
instability. Hence, Eqs. (11.7) and (11.8) do not apply, and a separate analysis is required. The
failure of an intermediate column occurs by inelastic buckling at stress levels exceeding the
proportional limit. Over the years, numerous empirical formulas have been developed for the
intermediate slenderness ratios. Presented here are two practical methods for finding critical stress in
inelastic buckling.
Tangent Modulus Theory

Consider the concentric compression of an intermediate column, and imagine the loading to occur in
small increments until such time as the buckling load Pt is achieved. As we would expect, the column
does not remain perfectly straight but displays slight curvature as the increments in load are imposed.
It is fundamental to the tangent modulus theory to assume that accompanying the increasing loads and
curvature is a continuous increase, or no decrease, in the longitudinal stress and strain in every fiber
of the column. That this should happen is not at all obvious, for it is reasonable to suppose that fibers
on the convex side of the member might elongate, thereby reducing the stress. Accepting the former
assumption, the stress distribution is as shown in Fig 11.8a. The increment of stress, Δσ, is
attributable to bending effects; σcr is the value of stress associated with the attainment of the critical
load Pt. The distribution of strain will display a pattern similar to that shown in Fig. 11.8b.

Figure 11.8. (a) Stress distribution for tangent-modulus load; (b) stress–strain diagram.

For small deformations Δv, the increments of stress and strain will likewise be small, and as in the
case of elastic bending, sections originally plane are assumed to remain plane subsequent to bending.
The change of stress Δσ is thus assumed proportional to the increment of strain, Δε; that is, Δσ = Et



Δε. The constant of proportionality Et is the slope of the stress–strain diagram beyond the
proportional limit, termed the tangent modulus (Fig. 11.8b). Note that within the linearly elastic
range, Et = E. The stress–strain relationship beyond the proportional limit during the change in strain
from ε to ε + Δε is thus assumed linear, as in the case of elastic buckling. The critical or Engesser
stress may, on the basis of the foregoing rationale, be expressed by means of a modification of Eq.
(11.6) in which Et replaces E. Hence the critical stress may be expressed by the generalized Euler
buckling formula, or the tangent modulus formula:

(11.9)
This is the so-called Engesser formula, proposed by F. Engesser in 1889. The buckling load Pt
predicted by Eq. (11.9) is in good agreement with test results and therefore recommended for design
purposes [Ref. 11.2].
When the critical stress is known and the slenderness ratio required, the application of Eq. (11.9) is
straightforward. The value of Et corresponding to σcr is read from the stress–strain curve obtained
from a simple compression test, following which Le/r is calculated using Eq. (11.9). If, however, Le/r
is known and σcr is to be ascertained, a trial-and-error approach is necessary (see Prob. 11.20).

Johnson’s Buckling Criterion

Many formulas are based on the use of linear or parabolic relationship between the slenderness ratio
and the critical stress for intermediate columns. The most widely employed modification of the
parabola, proposed by J. B. Johnson around 1900, is the Johnson formula:

(11.10a)
In terms of the critical load, we write

(11.10b)

where A is the cross-sectional area of the column. The Johnson’s equation has been found to agree
reasonably well with experimental results. But the dimensionless form of tangent modulus curves
have very distinct advantages when structures of new materials are analyzed [Refs. 11.3 and 11.4].
Specific Johnson formula for regular cross-sectional shapes may be developed by substituting
pertinent values of radius of gyration r and area A into Eq. (11.10). It can be readily shown that (see
Prob. 11.8), in case of a solid circular section of diameter d:

(11.11)



Likewise, for a rectangular section of height h and depth b:

(11.12)
in which, it is assumed that h ≤ b.
We note that Eqs. (11.7) through (11.10) determine the ultimate stresses, not the working stresses. It
is thus necessary to divide the right side of each formula by an appropriate factor of safety, usually 2
to 3, depending on the material, in order to obtain the allowable values. Some typical relationships
for allowable stress are introduced in the next section.

11.7 Allowable Stress
The foregoing discussion and analysis have related to ideal, homogeneous, concentrically loaded
columns. Inasmuch as such columns are not likely candidates for application in structures, actual
design requires the use of empirical formulas based on a strong background of test and experience.
Care must be exercised in applying such special-purpose formulas. The designer should be prepared
to respond to the following questions:

To what material does the formula apply?
Does the formula already contain a factor of safety, or is the factor of safety separately applied?
For what range of slenderness ratios is the formula valid?

Included among the many special-purpose relationships developed are the following, recommended
by the American Institute of Steel Construction (AISC) and valid for a structural steel column:*

(11.13)

Here σall, σyp, Cc, and n denote, respectively, the allowable and yield stresses, a material constant,
and the factor of safety. The values of Cc and n are given by

(11.14)

This relationship provides a smaller n for a short strut than for a column of higher Le/r, recognizing
that the former fails by yielding and the latter by buckling. The use of a variable factor of safety
provides a consistent buckling formula for various ranges of Le/r. The second equation of (11.13)
includes a constant factor of safety and gives the value of allowable stress in pascals. Both formulas
apply to principal load-carrying (main) members.



Example 11.2. Buckling of the Boom of a Crane

The boom of a crane, shown in Fig. 11.9, is constructed of steel, E = 210 GPa; the yield point
stress is 250 MPa. The cross section is rectangular with a depth of 100 mm and a thickness of 50
mm. Determine the buckling load of the column.

Figure 11.9. Example 11.2. A boom and cable assembly carrying a load W.

Solution

The moments of inertia of the section are Iz = 0.05(0.1)3/12 = 4.17 × 10–6 m4 and Iy =

0.1(0.05)3/12 = 1.04 × 10–6 m4. The least radius of gyration is thus , and the
slenderness ratio is L/r = 194. The Euler formula is applicable in this range. From statics, the
axial force in terms of W is P = W/tan 15° = 3.732W. Applying the formula for a hinged-end
column, Eq. (11.5), for buckling in the yx plane, we have

or
W = 305.9 kN

To calculate the load required for buckling in the xz plane, we must take note of the fact that the
line of action of the compressive force passes through the joint and thus causes no moment about
the y axis at the fixed end. Therefore, Eq. (11.5) may again be applied:

or
W = 76.3 kN

The member will thus fail by lateral buckling when the load W exceeds 76.3 kN. Note that the
critical stress Pcr/A = 76.3/0.005 = 15.26 MPa. This, compared with the yield strength of 250
MPa, indicates the importance of buckling analysis in predicting the safe working load.

11.8 Imperfections in Columns
As might be expected, the load-carrying capacity and deformation under load of a column are
significantly affected by even a small initial curvature (see Fig. 11.4). In the preceding section, we
described how to account for the effects of imperfections in construction of the column. To ascertain
the extent of this influence, consider a pin-ended column for which the unloaded shape is described
by



(a)

as shown by the dashed lines in Fig. 11.10. Here ao is the maximum initial deflection, or crookedness
of the column. An additional deflection v1 will accompany a subsequently applied load P, so the total
deflection is

(b)

Figure 11.10. (a) Initially curved column with pinned ends; (b) the cross section.

The differential equation of the column is thus

(c)

which together with Eq. (a) becomes

When the trial particular solution

is substituted into Eq. (c), it is found that

(d)

The general solution of Eq. (c) is therefore

(e)

The constants c1 and c2 are evaluated upon consideration of the end conditions v1(0) = v1(L) = 0. The
result of substituting these conditions is c1 = c2 = 0; the column deflection is thus

(11.15)



As for the critical stress, we begin with the expression applicable to combined axial loading and
bending: σx = (P/A) ± (My/I), where A and I are the cross-sectional area and the moment of inertia.
On substitution of Eqs. (c) and (11.15) into this expression, the maximum compressive stress at
midspan is found to be

(11.16)
Here S is the section modulus I/c, where c represents the distance measured in the y direction from
the centroid of the cross section to the extreme fibers. In Eq. (11.16), σmax is limited to the
proportional or yield stress of the column material. Thus, setting σmax = σyp and P = PL, we rewrite
Eq. (11.16) as follows:

(11.17)

where PL is the limit load that results in impending yielding and subsequent failure. Given σyp, ao, E,
and the column dimensions, Eq. (11.17) may be solved exactly by solving a quadratic or by trial and
error for PL. The allowable load Pall can then be found by dividing PL by an appropriate factor of
safety, n. Interestingly, in Eqs. (11.16) and (11.17), the term ao A/S = aoc/r2 is known as the
imperfection ratio, where r is the radius of gyration. Another approach to account for the effect of
imperfections due to eccentricities in the line of application of the load is discussed in the next
section.

11.9 Eccentrically Loaded Columns: Secant Formula
In contrast with the cases considered up to this point, we now analyze columns that are loaded
eccentrically, that is, those in which the load is not applied at the centroid of the cross section. This
situation is clearly of great practical importance, since we ordinarily have no assurance that loads are
truly concentric. As seen in Fig. 11.11a, the bending moment at any section is –P(v + e), where e is
the eccentricity, defined in the figure. It follows that the beam equation is given by

(a)

or

Figure 11.11. (a) Eccentrically loaded column; (b) graph of secant formula.



The general solution is

(b)

To determine the constants c1 and c2, the end conditions v(L/2) = v(–L/2) = 0 are applied, with the
result

Substituting these values into Eq. (b) provides an expression for the column deflection:

(c)

In terms of the critical load Pcr = π2EI/L2, the midspan deflection is

(11.18)

As P approaches Pcr, the maximum deflection is thus observed to approach infinity.

The maximum compressive stress, (P/A) + (Mc/I), occurs at x = 0 on the concave side of the column;
it is given by the so-called secant formula:

(11.19)

where r represents the radius of gyration and c is the distance from the centroid of the cross section to
the extreme fibers, both in the direction of eccentricity. When the eccentricity is zero, this formula no
longer applies. Then, we have an ideal column with centric loading, and Eq. (11.7) is to be used.
Expression (11.19) gives σmax in the column as a function of the average stress (P/A), the eccentricity
ratio (ec/r2), and the slenderness ratio (L/r). As in the case of initially curved columns, if we let σmax



= σyp and the limit load P = PL, Eq. (11.19) becomes

(11.20)
For any prescribed yield stress and eccentricity ratio, Eq. (11.20) can be solved by trial and error, or
by a root-finding technique using numerical methods, and PL/A plotted as a function of L/r with E held
constant (Fig. 11.11b). The allowable value of the average compressive load is found from Pall =
PL/n. The development on which Eq. (11.19) is based assumes buckling to occur in the xy plane. It is
also necessary to investigate buckling in the xz plane, for which Eq. (11.19) does not apply. This
possibility relates especially to narrow columns.
The behavior of a beam subjected to simultaneous axial and lateral loading, the beam column, is
analogous to that of the bar shown in Fig. 11.1a, with an additional force acting transverse to the bar.
For problems of this type, energy methods are usually more efficient than the equilibrium approach
previously employed.

11.10 Energy Methods Applied to Buckling
Energy techniques usually offer considerable ease of solution compared with equilibrium approaches
to the analysis of elastic stability and the determination of critical loads. Recall from Chapter 10 that
energy methods are especially useful in treating members of variable cross section, where the
variation can be expressed as a function of the beam axial coordinate.
To illustrate the method, let us apply the principle of virtual work in analyzing the stability of a
straight, pin-ended column. Locate the origin of coordinates at the stationary end. Recall from Section
10.8 that the principle of virtual work may be stated as

(a)

where W and U are the virtual work and strain energy, respectively. Consider the configuration of the
column in the first buckling mode, denoting the arc length of a column segment by ds. The
displacement, δu = ds – dx, experienced by the column in the direction of applied load P is given by
Eq. (10.29). Since the load remains constant, the work done is therefore

(11.21)

Next, the strain energy must be evaluated. There are components of strain energy associated with
column bending, compression, and shear. We shall neglect the last. From Eq. (5.62), the bending
component is

(11.22)
The energy due to a uniform compressive loading P is, according to Eq. (2.59),



(11.23)

Inasmuch as U2 is constant, it plays no role in the analysis. The change in the strain energy as the
column proceeds from its original to its buckled configuration is therefore

(b)

since the initial strain energy is zero. Substituting Eqs. (11.21) and (b) into Eq. (a), we have

(11.24a)
from which

(11.24b)

This result applies to a column with any end condition. The end conditions specific to this problem
will be satisfied by a solution

where a1 is a constant. After substituting this assumed deflection into Eq. (11.24b) and integrating, we
obtain

The minimum critical load and the deflection to which this corresponds are

(c)

It is apparent from Eq. (11.24a) that for P > Pcr, the work done by P exceeds the strain energy stored
in the column. The assertion can therefore be made that a straight column is unstable when P > Pcr.
This point, with regard to stability, corresponds to c1 = 0 in Eq. (b) of Section 11.3; it could not be
obtained as readily from the equilibrium approach. In the event that P = Pcr, the column exists in
neutral equilibrium. For P < Pcr, a straight column is in stable equilibrium.

Example 11.3. Deflection of a Beam Column



A simply supported beam is subjected to a moment Mo at point A and axial loading P, as shown in
Fig. 11.12. Determine the equation of the elastic curve.

Figure 11.12. Example 11.3. A beam column supports loads Mo and P.

Solution

The displacement of the right end, which occurs during the deformation of the beam from its
initially straight configuration to the equilibrium curve, is given by Eq. (b). The total work done
is evaluated by adding to Eq. (11.21) the work due to the moment. In Section 10.9, we already
solved this problem for P = 0 by using the following Fourier series for displacement:

(d)

Proceeding in the same manner, Eq. (b) of Section 10.9, representing δU = δW, now takes the
form

From this expression,

(e)

For purposes of simplification, let b denote the ratio of the axial force to its critical value:

(11.25)

Then, by substituting Eqs. (11.25) and (e) into Eq. (d), the following expression for deflection
results:

(11.26)
Note that, when P approaches its critical value in Eq. (11.25), b → 1. The first term in Eq.
(11.26) is then



(11.27)

indicating that the deflection becomes infinite, as expected.
Comparison of Eq. (11.27) with the solution found in Section 10.10 (corresponding to P = 0 and
n = 1) indicates that the axial force P serves to increase the deflection produced by the lateral
load (moment Mo) by a factor of 1/(1 – b).

In general, if we have a beam subjected to several moments or lateral loads in addition to an axial
load P, the deflections owing to the lateral moments or forces are found for the P = 0 case. This
usually involves superposition. The resulting deflection is then multiplied by the factor 1/(1 – b) to
account for the deflection effect due to P. This procedure is valid for any lateral load configuration
composed of moments, concentrated forces, and distributed forces.

Example 11.4. Critical Load of a Fixed-Free Column
Apply the Rayleigh–Ritz method to determine the buckling load of a straight, uniform cantilever
column carrying a vertical load (Fig. 11.13).

Figure 11.13. Example 11.4. A column fixed at the base and free at the top.

Solution

The analysis begins with an assumed parabolic deflection curve,

(f)
where a represents the deflection of the free end and L the column length. (The parabola is
actually a very poor approximation to the true curve, since it describes a beam of constant
curvature, whereas the curvature of the actual beam is zero at the top and a maximum at the
bottom.) The assumed deflection satisfies the geometric boundary conditions pertaining to
deflection and slope: v(0) = 0, v′(0) = 0. In accordance with the Rayleigh–Ritz procedure (see
Sec. 10.11), it may therefore be used as a trial solution. The static boundary conditions, such as v
″ (0) ≠ 0 or M ≠ 0, need not be satisfied.
The work done by the load P and the strain energy gained are given by Eqs. (11.21) and (11.22).



The potential energy function Π is thus given by

(g)
Substituting Eq. (f) into this expression and integrating, we have

(h)

Applying Eq. (10.34), ∂Π/∂a = 0, we find that

(i)

Let us rework this problem by replacing the strain–energy expression due to bending,

(j)
with one containing the moment deduced from Fig. 11.13, M = P(a – v):

(k)

Equation (h) becomes

Substituting Eq. (f) into this expression and integrating, we obtain

Now, ∂Π/∂a = 0 yields

(l)

Comparison with the exact solution, 2.4674EI/L2, reveals errors for the solutions (i) and (l) of
about 22% and 1.3%, respectively. The latter result is satisfactory, although it is predicated on an
assumed deflection curve differing considerably in shape from the true curve.

It is apparent from the foregoing example and a knowledge of the exact solution that one solution is
quite a bit more accurate than the other. It can be shown that the expressions (j) and (k) will be
identical only when the true deflection is initially assumed. Otherwise, Eq. (k) will give better



accuracy. This is because when we choose Eq. (k), the accuracy of the solution depends on the
closeness of the assumed deflection to the actual deflection; with Eq. (j), the accuracy depends
instead on the rate of change of slope, d2v/dx2.
An additional point of interest relates to the consequences, in terms of the critical load, of selecting a
deflection that departs from the actual curve. When other than the true deflection is used, not every
beam element is in equilibrium. The approximate beam curve can be maintained only through the
introduction of additional constraints that tend to render the beam more rigid. The critical loads thus
obtained will be higher than those derived from exact analysis. It may be concluded that energy
methods always yield buckling loads higher than the exact values if the assumed beam deflection
differs from the true curve.
More efficient application of energy techniques may be realized by selecting a series approximation
for the deflection, as in Example 11.3. Inasmuch as a series involves a number of parameters, as for
instance in Eq. (d), the approximation can be varied by appropriate manipulation of these parameters,
that is, by changing the number of terms in the series.

Example 11.5. Critical Load of a Tapered Column

A pin-ended, tapered bar of constant thickness is subjected to axial compression (Fig. 11.14).
Determine the critical load. The variation of the moment of inertia is given by

Figure 11.14. Example 11.5. Tapered column with pinned ends.

where I1 is the constant moment of inertia at x = 0 and x = L.

Solution
As before, we begin by representing the deflection by

Taking symmetry into account, the variation of strain energy and the work done [Eqs. (11.21) and
(11.22)] are expressed by



From the principle of virtual work, δW = δU, we have

or

In Example 11.8, this problem is solved by numerical analysis, revealing that the preceding
solution overestimates the buckling load.

Example 11.6. Critical Load of a Rail on a Track
Consider the beam of Fig. 11.15, representing a rail on a track experiencing compression owing
to a rise in temperature. Determine the critical load.

Figure 11.15. Example 11.6. Beam with hinged ends, embedded in an elastic foundation of
modulus k, subjected to compressive end forces.

Solution

We choose the deflection shape in the form of a series given by Eq. (10.23). The solution
proceeds as in Example 10.13. Now the total energy consists of three sources: beam bending and
compression and foundation displacement. The strain energy in bending, from Eq. (10.25), is

The strain energy due to the deformation of the elastic foundation is given by Eq. (10.30):

The work done by the forces P in shortening the span, using Eq. (10.31), is

Applying the principle of virtual work, δW = δ(U1 + U2), we obtain



The foregoing results in the critical load:

(11.28)

Note that this expression yields exact results. The lowest critical load may occur with n = 1, 2, 3,
..., depending on the properties of the beam and the foundation [Ref. 11.1].
Interestingly, taking n = 1, Eq. (11.28) becomes

(m)

which is substantially greater than the Euler load. The Euler buckling load is the first term; it is
augmented by kL2/π2 due to the foundation.

11.11 Solution by Finite Differences
The equilibrium analysis of buckling often leads to differential equations that resist solution. Even
energy methods are limited in that they require that the moment of inertia be expressible as a function
of the column length coordinate. Therefore, to enable the analyst to cope with the numerous and
varied columns of practical interest, numerical techniques must be relied on. The examples that
follow apply the method of finite differences to the differential equation of a column.

Example 11.7. Analysis of a Simple Column

Determine the buckling load of a pin-ended column of length L and constant cross section. Use
four subdivisions of equal length. Denote the nodal points by 0, 1, 2, 3, and 4, with 0 and 4
located at the ends. Locate the origin of coordinates at the stationary end.

Solution
The governing differential equation (11.1) may be put into the form

by substituting λ2 = P/EI. The boundary conditions are v(0) = v(L) = 0. The corresponding finite
difference equation is, according to Eq. (7.9),

(11.29)

valid at every node along the length. Here the integer m denotes the nodal points, and h the
segment length. Applying Eq. (11.29) at points 1, 2, and 3, we have



(a)

or, in convenient matrix form,

(b)

This set of simultaneous equations has a nontrivial solution for v1, v2, and v3 only if the
determinant of the coefficients vanishes:

(c)
The solution of the buckling problem is thus reduced to determination of the roots (the λ’s of the
characteristic equation) resulting from the expansion of the determinant.
To expedite the solution, we take into account the symmetry of deflection. For the lowest critical
load, the buckling configuration is given by the first mode, shown in Fig. 11.3a. Thus, v1 = v3, and
the Eqs. (a) become

(λ2h2 – 2)v1 + v2 = 0

2v1 + (λ2h2 – 2)v2 = 0

Setting equal to zero the characteristic determinant of this set, we find that (λ2h2 – 2)2 – 2 = 0,
which has the solution . Selecting  to obtain a minimum critical value and
letting h = L/4, we obtain . Thus,

This result differs from the exact solution by approximately 5%. By increasing the number of
segments, the accuracy may be improved.
If required, the critical load corresponding to second-mode buckling, indicated in Fig. 11.3b, may
be determined by recognizing that for this case v0 = v2 = v4 = 0 and v1 = –v3. We then proceed
from Eqs. (a) as before. For buckling of higher than second mode, a similar procedure is
followed, in which the number of segments is increased and the appropriate conditions of
symmetry satisfied.



Example 11.8. Critical Load of a Tapered Column

What load will cause buckling of the tapered pin-ended column shown in Fig. 11.14?

Solution
The finite difference equation is given by Eq. (11.29):

(d)

The foregoing becomes, after substitution of I(x),

(e)

where λ2 = P/EI1. Note that the coefficient of vm is a variable, dependent on x. This introduces no
additional difficulties, however.
Dividing the beam into two segments, we have h = L/2 (Fig. 11.16a). Applying Eq. (e) at x = L/2,

Figure 11.16. Example 11.8. Division of the column of Fig. 11.14 into a number of segments.

The nontrivial solution corresponds to v1 ≠ 0; then (λ2L2/10) – 2 = 0 or, by letting λ2 = P/EI,

(f)

Similarly, for three segments h = L/3 (Fig. 11.16b). From symmetry, we have v1 = v2, and v0 = v3
= 0. Thus, Eq. (e) applied at x = L/3 yields

The nontrivial solution is

(g)



For h = L/4, referring to Fig. 11.16c, Eq. (e) leads to

For a nontrivial solution, the characteristic determinant is zero:

Expansion yields
λ4L4 – 136λ2L2 + 2240 = 0

for which

(h)
Similar procedures considering the symmetry shown in Figs. 11.16d and e lead to the following
results:
For h = L/5,

(i)
For h = L/6,

(j)

Results (f) through (j) indicate that, for columns of variable moment of inertia, increasing the
number of segments does not necessarily lead to improved Pcr. An energy approach to this
problem (Example 11.5) gives the result Pcr = 20.25EI1/L2. Because this value is higher than
those obtained here, we conclude that the column does not deflect into the half sine curve
assumed in Example 11.5.

Example 11.9. Critical Load of a Fixed-Pinned Column

Figure 11.17 shows a column of constant moment of inertia I and of length L, fixed at the left end
and simply supported at the right end, subjected to an axial compressive load P. Determine the
critical value of P using m = 3.

Figure 11.17. Example 11.9. Fixed-Pinned column.



Solution

The characteristic value problem is defined by

(k)

where the first equation is found from Eq. (P11.34) by setting p = 0; the second expression
represents the end conditions related to deflection, slope, and moment. Equations (k), referring to
Section 7.2 and letting λ2 = P/EI, may be written in the finite difference form as follows:

(l)
and

(m)

The quantities v–1 and vm + 1 represent the deflections at the nodal points of the column prolonged
by h beyond the supports. By dividing the column into three subintervals, the pattern of the
deflection curve and the conditions (m) are represented in the figure by dashed lines. Now, Eq.
(l) is applied at nodes 1 and 2 to yield, respectively,

v1 + (6 – 2λ2h2)v1 + (λ2h2 – 4)v2 = 0

(λ2h2 – 4)v1 + (6 – 2λ2h2)v2 – v2 = 0

We have a nonzero solution if the determinant of the coefficients of these equations vanishes:

From this and setting h = L/3, we obtain λ2 = 16.063/L. Thus,

(n)

The exact solution is 20.187EI/L2. By increasing the number of segments and by employing an
extrapolation technique, the results may be improved.

11.12 Finite Difference Solution for Unevenly Spaced Nodes
It is often advantageous, primarily because of geometrical considerations, to divide a structural
element so as to produce uneven spacing between nodal points. In some problems, uneven spacing
provides more than a saving in time and effort. As seen in Section 7.4, some situations cannot be
solved without resort to this approach.
Consider the problem of the buckling of a straight pin-ended column governed by



Upon substitution from Eq. (7.21), the following corresponding finite difference equation is obtained:

(11.30)

where

(11.31)
Equation (11.30), valid throughout the length of the column, is illustrated in the example to follow.

Example 11.10. Critical Load of a Stepped Column

Determine the buckling load of a stepped pin-ended column (Fig. 11.18a). The variation of the
moment of inertia is indicated in the figure.

Figure 11.18. Example 11.10. Stepped column with pinned ends.

Solution

The nodal points are shown in Fig. 11.18b and are numbered in a manner consistent with the
symmetry of the beam. Note that the nodes are unevenly spaced. From Eq. (11.31), we have α1 =
2 and α2 = 1. Application of Eq. (11.30) at points 1 and 2 leads to

or

For a nontrivial solution, it is required that



Solving, we find that the root corresponding to minimum P is

Employing additional nodal points may result in greater accuracy. This procedure lends itself to
columns of arbitrarily varying section and various end conditions.

We conclude our discussion by noting that column buckling represents but one case of structural
instability. Other examples include the lateral buckling of a narrow beam; the buckling of a flat plate
compressed in its plane; the buckling of a circular ring subject to radial compression; the buckling of
a cylinder loaded by torsion, compression, bending, or internal pressure; and the snap buckling of
arches. Buckling analyses for these cases are often not performed as readily as in the examples
presented in this chapter. The solutions more often involve considerable difficulty and subtlety.*
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Problems
Sections 11.1 through 11.7

11.1. In the assembly shown in Figure P11.1, a 50-mm outer-diameter and 40-mm inner-diameter
steel pipe (E = 200 GPa) that is 1-m long acts as a spreader member. For a factor of safety n
= 2.5, what is the value of F that will cause buckling of the pipe?

Figure P11.1.



11.2. Figure P11.2 shows the cross sections of two aluminum alloy 2114-T6 bars that are used as
compression members, each with effective length of Le. Find (a) the wall thickness the hollow
square bar so that the bars have the same cross-sectional area; (b) the critical load of each
bar. Given: Le = 3 m and E = 72 GPa (from Table D.1).

Figure P11.2.

11.3. Based on a factor of safety n = 1.8, determine the maximum load F that can be applied to the
truss shown in Figs. P11.3. Given: Each column is of 50-mm-diameter aluminum bar having E
= 70 GPa.

Figure P11.3.

11.4. Figure P11.4 shows a column AB of length L and flexural rigidity EI with a support at its
base that does not permit rotation but allows horizontal displacement and is pinned at its top.
What is the critical load Pcr?

Figure P11.4.

11.5. Figure P11.5 shows the tube of uniform thickness t = 25 mm cross section of a fixed-ended
rectangular steel (E = 200 GPa) of a 9-m-long column. Determine the critical stress in the
column.



Figure P11.5.

11.6. Resolve Prob. 11.5 for the case in which the column is pinned at one end and fixed at the
other.

11.7. Brace BD of the structure illustrated in Fig. P11.7 is made of a steel rod (E = 210 GPa and
σyp = 250 MPa) with a square cross section (50 mm on a side). Calculate the factor of safety n
against failure by buckling.

Figure P11.7.

11.8. Verify the specific Johnson’s formulas, given by Eqs. (11.11) and (11.12), for the
intermediate sizes of columns with solid circular and rectangular cross sections, respectively.

11.9. A steel column with pinned ends supports an axial load P = 90 kN. Calculate the longest
allowable column length. Given: Cross-sectional area A = 3 × 103 mm2 and radius of gyration
r = 25 mm; the material properties are E = 200 GPa and σyp = 250 MPa.

11.10. Compute the allowable axial load P for a wide-flange steel column with fixed-fixed ends
and a length of 12 m, braced at midpoint C (Fig. P11.10). Given: Material properties E = 210
GPa, σyp = 280 MPa; cross-sectional area A = 27 × 103 mm2 and radius of gyration r = 100
mm.

Figure P11.10.



Sections 11.1 through 11.7
11.11. A column of length 3L is approximated by three bars of equal length connected by a torsional

spring of appropriate stiffness k at each joint. The column is supported by a torsional spring of
stiffness k at one end and is free at the other end. Derive an expression for determining the
critical load of the system. Generalize the problem to the case of n connected bars.

11.12. A 3-m-long fixed-ended column (Le = 1.5 m) is made of a solid bronze rod (E = 110 GPa) of
diameter D = 30 mm. To reduce the weight of the column by 25%, the solid rod is replaced by
the hollow rod of cross section shown in Fig. P11.12. Compute (a) the percentage of reduction
in the critical load and (b) the critical load for the hollow rod.

Figure P11.12.

11.13. A 2-m-long pin-ended column of square cross section is to be constructed of timber for
which E = 11 GPa and σall = 15 MPa for compression parallel to the grain. Using a factor of
safety of 2 in computing Euler’s buckling load, determine the size of the cross section if the
column is to safely support (a) a 100-kN load and (b) a 200-kN load.

11.14. A horizontal rigid bar AB is supported by a pin-ended column CD and carries a load F (Fig.
P11.14). The column is made of steel bar having 50- by 50-mm square cross section, 3 m
length, and E = 200 GPa. What is the allowable value of F based a factor of safety of n = 2.2
with respect to buckling of the column?

Figure P11.14.



11.15. A uniform steel column, with fixed- and hinge-connected ends, is subjected to a vertical load
P = 450 kN. The cross section of the column is 0.05 by 0.075 m and the length is 3.6 m. Taking
σyp = 280 MPa and E = 210 GPa, calculate (a) the critical load and critical Euler stress,
assuming a factor of safety of 2, and (b) the allowable stress according to the AISC formula,
Eq. (11.13).

11.16. Figure P11.16 shows a square frame. Determine the critical value of the compressive forces
P. All members are of equal length L and of equal modulus of rigidity EI. Assume that
symmetrical buckling, indicated by the dashed lines in the figure, occurs.

Figure P11.16.

11.17. A rigid block of weight W is to be supported by three identical steel bars. The bars are fixed
at each end (Fig. P11.17). Assume that sidesway is not prevented and that, when an additional
downward force of 2W is applied at the middle of the block, buckling will take place as
indicated by the dashed lines in the figure. Find the effective lengths of the columns by solving
the differential equation for deflection of the column axis.

Figure P11.17.

11.18. A simply supported beam of flexural rigidity EIb is propped up at its center by a column of
flexural rigidity EIc (Fig. P11.18). Determine the midspan deflection of the beam if it is
subjected to a uniform load p per unit length.



Figure P11.18.

11.19. Two in-line identical cantilevers of cross-sectional area A, rigidity EI, and coefficient of
thermal expansion α are separated by a small gap δ. What temperature rise will cause the
beams to (a) just touch and (b) buckle elastically?

11.20. A W203 × 25 column fixed at both ends has a minimum radius of gyration r = 29.4 mm,
cross-sectional area A = 3230 mm2, and length 1.94 m. It is made of a material whose
compression stress–strain diagram is given in Fig. P11.20 by dashed lines. Find the critical
load. The stress–strain diagram may be approximated by a series of tangentlike segments, the
accuracy improving as the number of segments increases. For simplicity, use four segments, as
indicated in the figure. The modulus of elasticity and various tangent moduli (the slopes) are
labeled.

Figure P11.20.

11.21. The pin-jointed structure shown in Fig. P11.21 is constructed of two 0.025-m-diameter tubes
having the following properties: A = 5.4 × 10–5 m2, I = 3.91 × 10–9 m4, E = 210 GPa. The
stress–strain curve for the tube material can be accurately approximated by three straight lines
as shown. If the load P is increased until the structure fails, which tube fails first? Describe
the nature of the failure and determine the critical load.

Figure P11.21.



11.22. Two 0.075- by 0.075-m equal leg angles, positioned with the legs 0.025 m apart back to
back, as shown in Fig. P11.22, are used as a column. The angles are made of structural steel
with σyp = 203 MPa and E = 210 GPa. The area properties of an angle are thickness t = 0.0125
m, A = 1.719 × 10–3 m2, Ic = 8.6 × 10–7m4, I/c = S = 1.719 × 10–5 m3, rc = 0.0225 m, and  = 
= 0.02325 m. Assume that the columns are connected by lacing bars that cause them to act as a
unit. Determine the critical stress of the column by using the AISC formula, Eq. (11.13), for
effective column lengths (a) 2.1 m and (b) 4.2 m.

Figure P11.22.

11.23. Redo Prob. 11.22(b) using the Euler formula.
11.24. A 1.2-m-long, 0.025- by 0.05-m rectangular column with rounded ends fits perfectly between

a rigid ceiling and a rigid floor. Compute the change in temperature that will cause the column
to buckle. Let α = 10 × 10–6/°C, E = 140 GPa, and σyp = 280 MPa.

11.25. A pin-ended W150 × 24 rolled-steel column of cross section shown in Fig. P11.25 (A = 3.06
× 103 mm2, rx = 66 mm, and ry = 24.6 mm) carries an axial load of 125 kN. What is the longest
allowable column length according to the AISC formula? Use E = 200 GPa and σyp = 250 Pa.

Figure P11.25.

Sections 11.8 and 11.9
11.26. A pinned-end rod AB of diameter d supports an eccentrically applied load of P, as depicted

in Fig. P11.26. Assuming that the maximum deflection at the midlength is vmax, determine (a)



the eccentricity e; (b) the maximum stress in the rod. Given: d = 40 mm, P = 80 kN, vmax = 1.0
mm, and E = 200 GPa.

Figure P11.26.

11.27. Redo Prob. 11.26 for the case in which column AB is fixed at base B and free at top A.
11.28. A cast-iron hollow-box column of length L is fixed at its base and free at its top, as depicted

in Fig. P11.28. Assuming that an eccentric load P acts at the middle of side AB (that is, e = 50
mm) of the free end, determine the maximum stress σmax in the column. Given: P = 250 kN, L =
1.8 m, E = 70 GPa, and e = 50 mm.

Figure P11.28.

11.29. Resolve Prob. 11.28, knowing that the load acts at the middle of side AC (that is, e = 100
mm).

11.30. A steel bar (E = 210 GPa) of b = 50 mm by h = 25 mm rectangular cross section (Fig.
P11.30) and length L = 1.5 m is eccentrically compressed by axial loads P = 10 kN. The
forces are applied at the middle of the long edge of the cross section. What are the maximum
deflection vmax and maximum bending moment Mmax?

Figure P11.30.



11.31. A 0.05-m square, horizontal steel bar, 9-m long, is simply supported at each end. The only
force acting is the weight of the bar. (a) Find the maximum stress and deflection. (b) Assume
that an axial compressive load of 4.5 kN is also applied at each end through the centroid of
cross-sectional area. Determine the stress and deflection under this combined loading. For
steel, the specific weight is 77 kN/m3, E = 210 GPa, and v = 0.3.

11.32. The properties of a W203 × 46 steel link are A = 5880 mm2, Iz ≈ 45.66 × 106 mm4, Iy ≈ 15.4
× 106 mm4, depth = 203.2 mm, width of flange = 203.2 mm, and E = 210 GPa. What maximum
end load P can be applied at both ends, given an eccentricity of 0.05 m along axis yy? A stress
of 210 MPa is not to be exceeded. Assume that the effective column length of the link is 4.5 m.

11.33. A hinge-ended bar of length L and stiffness EI has an initial curvature expressed by v0 = a1
sin(πx/L) + 5a1 sin(2πx/L). If this bar is subjected to an increasing axial load P, what value of
the load P, expressed in terms of L, E, and I, will result in zero deflection at x = 3L/4?

11.34. Employing the equilibrium approach, derive the following differential equation for a simply
supported beam column subjected to an arbitrary distributed transverse loading p(x) and axial
force P:

(P11.34)
Demonstrate that the homogeneous solution for this equation is

where the four constants of integration will require, for evaluation, four boundary conditions.

Section 11.10

11.35. Assuming v = a0[1 – (2x/L)2], determine the buckling load of a pin-ended column. Employ
the Rayleigh–Ritz method, placing the origin at midspan.

11.36. The cross section of a pin-ended column varies as in Fig. P11.36. Determine the critical load
using an energy approach.

Figure P11.36.

11.37. A cantilever column has a moment of inertia varying as I = I1(1 – x/2L), where I1 is the
constant moment of inertia at the fixed end (x = 0). Find the buckling load by choosing v =



v1(x/L)2. Here v1 is the deflection of the free end.
11.38. Derive an expression for the deflection of the uniform pin-ended beam-column of length L,

subjected to a uniform transverse load p and axial compressive force P. Use an energy
approach.

11.39. A simply supported beam column of length L is subjected to compression forces P at both
ends and lateral loads F and 2F at quarter-length and midlength, respectively. Employ the
Rayleigh–Ritz method to determine the beam deflection.

11.40. Determine the critical compressive load P that can be carried by a cantilever at its free end
(x = L). Use the Rayleigh–Ritz method and let v = x2(L – x)(a + bx), where a and b are
constants.

Sections 11.11 and 11.12
11.41. A stepped cantilever beam with a hinged end, subjected to the axial compressive load P, is

shown in Fig. P11.41. Determine the critical value of P, applying the method of finite
differences. Let m = 3 and L1 = L2 = L/2.

Figure P11.41.

11.42. A uniform cantilever column is subjected to axial compression at the free end (x = L).
Determine the critical load. Employ the finite differences, using m = 2. [Hint: The boundary
conditions are v(0) = v′(0) = v″(L) = v″′(L) = 0.]

11.43. The cross section of a pin-ended column varies as in Fig. P11.36. Determine the critical load
using the method of finite differences. Let m = 4.

11.44. Find the critical value of the load P in Fig. P11.41 if both ends of the beam are simply
supported. Let L1 = L/4 and L2 = 3L/4. Employ the method of finite differences by taking the
nodes at x = 0, x = L/4, x = L/2, and x = L.



Chapter 12. Plastic Behavior of Materials

12.1 Introduction
Thus far, we have considered loadings that cause the material of a member to behave elastically. We
are now concern with the behavior of machine and structural components when stresses exceed the
proportional limit. In such cases it is necessary to make use of the stress–strain diagrams obtained
from an actual test of the material, or an idealized stress–strain diagram. For purposes of analysis, a
single mathematical expression will often be employed for the entire stress–strain diagram.
Deformations and stresses in members made of elastic–plastic and rigid-plastic materials having
various forms will be determined under single and combined loadings. Applications include collapse
load of structures, limit design, membrane analogy, rotating disks, and pressure vessels.
The plasticity describes the inelastic behavior of a material that retains permanent yielding on
complete unloading. The subject of plasticity is perhaps best introduced by recalling the principal
characteristics of elastic behavior. First, a material subjected to stressing within the elastic regime
will return to its original state upon removal of those external influences causing application of load
or displacement. Second, the deformation corresponding to a given stress depends solely on that
stress and not on the history of strain or load. In plastic behavior, opposite characteristics are
observed. The permanent distortion that takes place in the plastic range of a material can assume
considerable proportions. This distortion depends not only on the final state of stress but on the stress
states existing from the start of the loading process as well.
The equations of equilibrium (1.14), the conditions of compatibility (2.12), and the strain–
displacement relationships (2.4) are all valid in plastic theory. New relationships must, however, be
derived to connect stress and strain. The various yield criteria (discussed in Chap. 4), which strictly
speaking are not required in solving a problem in elasticity, play a direct and important role in
plasticity. This chapter can provide only an introduction to what is an active area of contemporary
design and research in the mechanics of solids.* The basics presented can, however, indicate the
potential of the field, as well as its complexities.

12.2 Plastic Deformation
We shall here deal with the permanent alteration in the shape of a polycrystalline solid subject to
external loading. The crystals are assumed to be randomly oriented. As has been demonstrated in
Section 2.15, the stresses acting on an elemental cube can be resolved into those associated with
change of volume (dilatation) and those causing distortion or change of shape. The distortional
stresses are usually referred to as the deviator stresses.
The dilatational stresses, such as hydrostatic pressures, can clearly decrease the volume while they
are applied. The volume change is recoverable, however, upon removal of external load. This is
because the material cannot be compelled to assume, in the absence of external loading, interatomic
distances different from the initial values. When the dilatational stresses are removed, therefore, the
atoms revert to their original position. Under the conditions described, no plastic behavior is noted,
and the volume is essentially unchanged upon removal of load.
In contrast with the situation described, during change of shape, the atoms within a crystal of a
polycrystalline solid slide over one another. This slip action, referred to as dislocation, is a complex



phenomenon. Dislocation can occur only by the shearing of atomic layers, and consequently it is
primarily the shear component of the deviator stresses that controls plastic deformation. Experimental
evidence supports the assumption that associated with plastic deformation essentially no volume
change occurs; that is, the material is incompressible (Sec. 2.10):

(12.1)

Therefore, from Eq. (2.39), Poisson’s ratio  for a plastic material.
Slip begins at an imperfection in the lattice, for example, along a plane separating two regions, one
having one more atom per row than the other. Because slip does not occur simultaneously along every
atomic plane, the deformation appears discontinuous on the microscopic level of the crystal grains.
The overall effect, however, is plastic shear along certain slip planes, and the behavior described is
approximately that of the ideal plastic solid. As the deformation continues, a locking of the
dislocations takes place, resulting in strain hardening or cold working.
In performing engineering analyses of stresses in the plastic range, we do not usually need to consider
dislocation theory, and the explanation offered previously, while overly simple, will suffice. What is
of great importance to the analyst, however, is the experimentally determined curves of stress and
strain.

12.3 Idealized Stress–Strain Diagrams
The bulk of present-day analysis in plasticity is predicated on materials displaying idealized stress–
strain curves as in Fig. 12.1a and c. Such materials are referred to as rigid, perfectly plastic and
elastic-perfectly plastic, respectively. Examples include mild steel, clay, and nylon, which exhibit
negligible elastic strains in comparison with large plastic deformations at practically constant stress.
A more realistic portrayal including strain hardening is given in Fig. 12.1b for what is called a rigid-
plastic solid. In the curves, a and b designate the tensile yield and ultimate stresses, σyp and σu,
respectively. The curves of Fig. 12.1c and d do not ignore the elastic strain, which must be included
in a more general stress–strain depiction. The latter figures thus represent idealized elastic–plastic
diagrams for the perfectly plastic and plastic materials, respectively. The material in Figs. 12.c and d
is also called a strain-hardening or work-hardening material. For a linearly strain-hardening
material, the regions ab of the diagrams become a sloped straight line.

Figure 12.1. Idealized stress–strain diagrams: (a) rigid, perfectly plastic material; (b) rigid-
plastic material; (c) elastic, perfectly plastic material; and (d) elastic, rigid-plastic material.

True Stress–True Strain Relationships
Consider the idealized true stress–strain diagram given in Fig. 12.2. The fracture stress and fracture
strain are denoted by σf and εf, respectively. The fundamental design utility of the plot ends at the
ultimate stress σu. Note that a comparison of a true and nominal σ – ε plot is shown in Fig. 2.12. In



addition to the preceding idealized cases, various theoretical analyses have been advanced to predict
plastic behavior. Equations relating stress and strain beyond the proportional limit range from the
rather empirical to those leading to complex mathematical approaches applicable to materials of
specific type and structure. For purposes of an accurate analysis, a single mathematical expression is
frequently employed for the entire stress–strain curve. An equation representing the range of σ – ε
diagrams, especially useful for aluminum and magnesium, has been developed by Ramberg and
Osgood [Ref. 12.4]. We confine our discussion to that of a perfectly plastic material displaying a
horizontal straight-line relationship and to the parabolic relationship described next.

Figure 12.2. Idealized true stress–strain diagram.

For many materials, the entire true stress–true strain curve may be represented by the parabolic form

(12.2)

where n and K are the strain-hardening index and the strength coefficient, respectively. The
definitions of true stress and true strain are given in Section 2.7. The curves of Eq. (12.2) are shown
in Fig. 12.3a. We observe from the figure that the slope dσ/dε grows without limit as ε approaches
zero for n ≠ 1. Thus, Eq. (12.2) should not be used for small strains when n ≠ 1. The stress–strain
diagram of a perfectly plastic material is represented by this equation when n = 0 (and hence K =
σyp). Clearly, for elastic materials (n = 1 and hence K = E), Eq. (12.2) represents Hooke’s law,
wherein E is the modulus of elasticity.

Figure 12.3. (a) Graphical representation of σ = Kεn; (b) true stress versus true strain on log–
log coordinates.



For a particular material, with true stress–true strain data available, K and n are readily evaluated
inasmuch as Eq. (12.2) plots as a straight line on logarithmic coordinates. We can thus rewrite Eq.
(12.2) in the form

(a)
Here n is the slope of the line and K the true stress associated with the true strain at 1.0 on the log–
log plot (Fig. 12.3b). The strain-hardening coefficient n for commercially used materials falls
between 0.2 and 0.5. Fortunately, with the use of computers, much refined modeling of the stress–
strain relations for real material is possible.

12.4 Instability in Simple Tension
We now describe an instability phenomenon in uniaxial tension of practical importance in predicting
the maximum allowable plastic stress in a rigid-plastic material. At the ultimate stress σu in a tensile
test (Fig. 12.2), an unstable flow results from the effects of strain hardening and the decreasing cross-
sectional area of the specimen. These tend to weaken the material. When the rate of the former effect
is less than the latter, an instability occurs. This point corresponds to the maximum tensile load and
is defined by

(a)
Since axial load P is a function of both the true stress and the area (P = σA), Eq. (a) is rewritten

(b)

The condition of incompressibility, Ao Lo = AL, also yields

(c)

as the original volume Ao Lo is constant. Expressions (b) and (c) result in

(d)
From Eqs. (2.25) and (d), we thus obtain the relationships

(12.3)

for the instability of a tensile member. Here the subscript o denotes the engineering strain and stress
(Sec. 2.7).
Introduction of Eq. (12.2) into Eq. (12.3) results in



or

(12.4)
That is, at the instant of instability of flow in tension, the true strain ε has the same numerical value
as the strain-hardening index. The state of true stress and the true strain under uniaxial tension are
therefore

(e)

The problem of instability under simple compression or plastic buckling is discussed in Section
11.6. The instability condition for cases involving biaxial tension is derived in Sections 12.12 and
12.13.

Example 12.1. Three-Bar Structure
Determine the maximum allowable plastic stress and strain in the pin-jointed structure sustaining
a vertical load P, shown in Fig. 12.4. Assume that α = 45° and that each element is constructed of
an aluminum alloy with the following properties:

σyp = 350 MPa, K = 840 MPa, n = 0.2

AAD = ACD = 10 × 10–5 m2, ABD = 15 × 10–5 m2, h = 3 m

Figure 12.4. Example 12.1. Pin-connected structure in axial tension.

Solution
The structure is elastically statically indeterminate, and the solution may readily be obtained on
applying Castigliano’s theorem (Sec. 10.7). Plastic yielding begins upon loading:

On applying Eqs. (e), the maximum allowable stress
σ = Knn = 840 × 106(0.2)0.2 = 608.9 MPa

occurs at the following axial and transverse strains:
ε1 = n = 0.2, ε2 = ε3 = –0.1



We have L = h/cos α. The total elongations for instability of the bars are thus δBD = 3(0.2) = 0.6
m and δAB = δCD = (3/cos 45°)(0.2) = 0.85 m.

Example 12.2. Tube in Axial Tension
A tube of original mean diameter do and thickness to is subjected to axial tensile loading. Assume
a true stress–engineering strain relation of the form  and derive expressions for the
thickness and diameter at the instant of instability. Let n = 0.3.

Solution

Differentiating the given expression for stress,

This result and Eq. (12.3) yield the engineering axial strain at instability:

(f)

The transverse strains are –εo/2, and hence the decrease of wall thickness equals nto/2(1 – n).
The thickness at instability is thus

(g)

Similarly, the diameter at instability is

(h)
From Eqs. (g) and (h), with n = 0.3, we have t = 0.79to and d = 0.79do. Thus, for the tube under
axial tension, the diameter and thickness decrease approximately 21% at the instant of instability.

12.5 Plastic Axial Deformation and Residual Stress
As pointed out earlier, if the stress in any part of the member exceeds the yield strength of the
material, plastic deformations occur. The stress that remains in a structural member upon removal of
external loads is referred to as the residual stress. The presence of residual stress may be very
harmful or, if properly controlled, may result in substantial benefit.
Plastic behavior of ductile materials may be conveniently represented by considering an idealized
elastoplastic material shown in Fig. 12.5, where σyp and εyp designate the yield strength and yield
strain, respectively. The Y corresponds to the onset of yield in the material. The part OB is the strain



corresponding to the plastic deformation that results from the loading and unloading of the specimen
along line AB parallel to the initial portion OY of the loading curve.

Figure 12.5. Tensile stress–strain diagram for elastoplastic material.

The distribution of residual stresses can be found by superposition of the stresses owing to loading
and the reverse, or rebound, stresses due to unloading. (The strains corresponding to the latter are the
reverse, or rebound, strains.) The reverse stress pattern is assumed to be fully elastic and
consequently can be obtained applying Hooke’s law. That means the linear relationship between σ
and ε remains valid, as illustrated by line AB in the figure. We note that this superposition approach is
not valid if the residual stresses thereby found exceed the yield strength.
The nonuniform deformations that may be caused in a material by plastic bending and plastic torsion
are considered in Sections 12.7 and 12.9. This section is concerned with a restrained or statically
indeterminate structure that is axially loaded beyond the elastic range. For such a case, some
members of the structure experience different plastic deformation, and these members retain stress
following the release of load.
The magnitude of the axial load at the onset of yielding, or yield load Pyp, in a statically determinate
ductile bar of cross-sectional area A is σyp A. This also is equal to the plastic, limit, or ultimate load
Pu of the bar. For a statically indeterminate structure, however, after one member yields, additional
load is applied until the remaining members also reach their yield limits. At this time, unrestricted or
uncontained plastic flow occurs, and the limit load Pu is reached. Therefore, the ultimate load is the
load at which yielding begins in all materials.
Examples 12.3, 12.7, and 12.12 illustrate how plastic deformations and residual stresses are
produced and how the limit load is determined in axially loaded members, beams, and torsional
members, respectively.

Example 12.3. Residual Stresses in an Assembly

Figure 12.6a shows a steel bar of 750-mm2 cross-sectional area placed between two aluminum
bars, each of 500-mm2 cross-sectional area. The ends of the bars are attached to a rigid support
on one side and a rigid thick plate on the other. Given: Es = 210 GPa, (σs)yp = 240 MPa, Ea = 70
GPa, and (σa)yp = 320 MPa. Assumption: The material is elastic–plastic.

Figure 12.6. Example 12.3. (a) Plastic analysis of a statically indeterminate three-bar
structure; (b) free-body diagram of end plate.



Calculate the residual stress, for the case in which applied load P is increased from zero to Pu
and removed.

Solution
Material Behavior. At ultimate load Pu both materials yield. Either material yielding by itself
will not result in failure because the other material is still in the elastic range. We therefore have

Pa = 500(320) = 160 kN, Ps = 750(240) = 180 kN

Hence,
Pu = 2(160) + 180 = 500 kN

Applying an equal and opposite load of this amount, equivalent to a release load (Fig. 12.6b),
causes each bar to rebound elastically.
Geometry of Deformation. Condition of geometric fit, δa = δs gives

(a)

Condition of Equilibrium. From the free-body diagram of Fig. 12.6b,

(b)
Solving Eqs. (a) and (b) we obtain

Superposition of the initial forces at ultimate load Pu and the elastic rebound forces owing to
release of Pu results in:

(Pa)res = 79.1 – 160 = –80.9 kN

(Ps)res = 341.7 – 180 = 161.7 kN

The associated residual stresses are thus

Comment



We note that after this prestressing process, the assembly remains elastic as long as the value of
Pu = 500 kN is not exceeded.

12.6 Plastic Deflection of Beams
In this section we treat the inelastic deflection of a beam, employing the mechanics of materials
approach. Consider a beam of rectangular section, as in Fig. 12.7a, wherein the bending moment M
produces a radius of curvature r. The longitudinal strain of any fiber located a distance y from the
neutral surface, from Eq. (5.9), is given by

Figure 12.7. (a) Inelastic bending of a rectangular beam in pure bending; (b) stress–strain
diagram for an elastic-rigid plastic material.

(12.5)
Assume the beam material to possess equal properties in tension and compression. Then, the
longitudinal tensile and compressive forces cancel, and the equilibrium of axial forces is satisfied.
The following describes the equilibrium of moments about the z axis (Fig. 12.7a):

(a)

For any specific distribution of stress, as, for example, that shown in Fig. 12.7b, Eq. (a) provides M
and then the deflection, as is demonstrated next.
Consider the true stress–true strain relationship of the form σ = Kεn. Introducing this together with Eq.
(12.5) into Eq. (a), we obtain

(b)

where

(12.6)

From Eqs. (12.5), σ = Kεn, and (b) the following is derived:



(c)

In addition, on the basis of the elementary beam theory, we have, from Eq. (5.7),

(d)

Upon substituting Eq. (c) into Eq. (d), we obtain the following equation for a rigid plastic beam:

(12.7)
It is noted that when n = 1 (and hence K = E), this expression, as expected, reduces to that of an
elastic beam [Eq. (5.10)].

Example 12.4. Rigid-Plastic Simple Beam

Determine the deflection of a rigid-plastic simply supported beam subjected to a downward
concentrated force P at its midlength. The beam has a rectangular cross section of depth 2h and
width b (Fig. 12.8).

Figure 12.8. Examples 12.4 and 12.8.

Solution

The bending moment for segment AC is given by

(e)

where the minus sign is due to the sign convention of Section 5.2.
Substituting Eq. (e) into Eq. (12.7) and integrating, we have

(f)

where



(g)

The constants of integration c1 and c2 depend on the boundary conditions v(0) = dv/dx(L/2) = 0:

Upon introduction of c1 and c2 into Eq. (f), the beam deflection is found to be

(12.8)
Interestingly, in the case of an elastic beam, this becomes

For x = L/2, the familiar result is

The foregoing procedure is applicable to the determination of the deflection of beams subject to a
variety of end conditions and load configurations. It is clear, however, that owing to the nonlinearity
of the stress law, σ = Kεn, the principle of superposition cannot validly be applied.

12.7 Analysis of Perfectly Plastic Beams
By neglecting strain hardening, that is, by assuming a perfectly plastic material, considerable
simplification can be realized. We shall, in this section, focus our attention on the analysis of a
perfectly plastic straight beam of rectangular section subject to pure bending (Fig. 12.7a).
The bending moment at which plastic deformation impends, Myp, may be found directly from the
flexure relationship:

(12.9a)
or

(12.9b)

Here σyp represents the stress at which yielding begins (and at which deformation continues in a
perfectly plastic material). The quantity S is the elastic modulus of the cross section. Clearly, for the
beam considered, . The stress distribution corresponding to Myp,
assuming identical material properties in tension and compression, is shown in Fig. 12.9a. As the



bending moment is increased, the region of the beam that has yielded progresses in toward the neutral
surface (Fig. 12.9b). The distance from the neutral surface to the point at which yielding begins is
denoted by the symbol e, as shown.

Figure 12.9. Stress distribution in a rectangular beam with increase in bending moment: (a)
elastic; (b) partially plastic; (c) fully plastic.

It is clear, upon examining Fig. 12.9b, that the normal stress varies in accordance with the relations

(a)

and

(b)
It is useful to determine the manner in which the bending moment M relates to the distance e. To do
this, we begin with a statement of the x equilibrium of forces:

Cancelling the first and third integrals and combining the remaining integral with Eq. (a), we have

This expression indicates that the neutral and centroidal axes of the cross section coincide, as in the
case of an entirely elastic distribution of stress. Note that in the case of a nonsymmetrical cross
section, the neutral axis is generally in a location different from that of the centroidal axis [Ref. 12.5].
Next, the equilibrium of moments about the neutral axis provides the following relation:

Substituting σx from Eq. (a) into this equation gives the elastic–plastic moment, after integration,

(12.10a)
Alternatively, using Eq. (12.9a), we have



(12.10b)

The general stress distribution is thus defined in terms of the applied moment, inasmuch as e is
connected to σx by Eq. (a). For the case in which e = h, Eq. (12.10) reduces to Eq. (12.9) and M =
Myp. For e = 0, which applies to a totally plastic beam, Eq. (12.10a) becomes

(12.11)

where Mu is the ultimate moment. It is also referred to as the plastic moment.

Through application of the foregoing analysis, similar relationships can be derived for other cross-
sectional shapes. In general, for any cross section, the plastic or ultimate resisting moment for a beam
is

(12.12)

where Z is the plastic section modulus. Clearly, for the rectangular beam analyzed here, Z = bh2. The
Steel Construction Manual (Sec. 11.7) lists plastic section moduli for many common geometries.
Interestingly, the ratio of the ultimate moment to yield moment for a beam depends on the geometric
form of the cross section, called the shape factor:

(12.13)
For instance, in the case of a perfectly plastic beam with (b × 2h) with rectangular cross section, we
have  and Z = bh2. Substitution of these area properties into the preceding equation
results in f = 3/2. Observe that the plastic modulus represents the sum of the first moments of the
areas (defined in Sec. C.1) of the cross section above and below the neutral axis z (Fig. 12.7a): Z =
bh(h/2 + h/2) = bh2.
As noted earlier, when a beam is bent inelastically, some plastic deformation is produced, and the
beam does not return to its initial configuration after load is released. There will be some residual
stresses in the beam (see Example 12.7). The foregoing stresses are found by using the principle of
superposition in a way similar to that described in Section 12.5 for axial loading. The unloading
phase may be analyzed by assuming the beam to be fully plastic, using the flexure formula, Eq. (5.4).

Plastic Hinge
We now consider the moment–curvature relation of an elastoplastic rectangular beam in pure
bending (Fig. 12.7a). As described in Section 5.2, the applied bending moment M produces a
curvature which is the reciprocal of the radius of curvature r. At the elastic–plastic boundary of the
beam (Fig. 12.9b), the yield strain is εx = εyp. Then, Eq. (12.5) leads to



(c)

The quantities 1/r and 1/ryp correspond to the curvatures of the beam after and at the onset of
yielding, respectively. Through the use of Eqs. (c),

(12.14)

Carrying Eqs. (12.14) and (12.9) into Eq. (12.10b) give the required moment–curvature relationship
in the form:

(12.15)
We note that Eq. (12.15) is valid only if the bending moment becomes greater than Myp. When M <
Myp, Eq. (5.9a) applies. The variation of M with curvature is illustrated in Fig. 12.10. Observe that
M rapidly approaches the asymptotic value , which is the plastic moment Mu. If 1/r = 2/ryp or e =
h/2, eleven-twelfths of Mu has already been reached. Obviously, positions A, B, and E of the curve
correspond to the stress distributions depicted in Fig. 12.9. Removing the load at C, for example,
elastic rebound occurs along the line CD, and point D is the residual curvature.

Figure 12.10. Moment–curvature relationship for a rectangular beam.

Figure 12.10 depicts the three stages of loading. There is an initial range of linear elastic response.
This is followed by a curved line representing the region in which the member is partially plastic and
partially elastic. This is the region of contained plastic flow. Finally, the member continues to yield
with no increase of applied bending moment. Note the rapid ascent of each curve toward its
asymptote as the section approaches the fully plastic condition. At this stage, unrestricted plastic
flow occurs and the corresponding moment is the ultimate or plastic hinge moment Mu. Therefore, the
cross section will abruptly continue to rotate; the beam is said to have developed a plastic hinge. The
rationale for the term hinge becomes apparent upon describing the behavior of a beam under a
concentrated loading, discussed next.
Consider a simply supported beam of rectangular cross section, subjected to a load P at its midspan



(Fig. 12.11a). The corresponding bending moment diagram is shown in Fig. 12.11b. Clearly, when
Myp < |PL/4| < Mu, a region of plastic deformation occurs, as indicated in the figure by the shaded
areas. The depth of penetration of these zones can be found from h – e, where e is determined using
Eq. (12.10a), because M at midspan is known. The length of the middle portion of the beam where
plastic deformation occurs can be readily determined with reference to the figure. The magnitude of
bending moment at the edge of the plastic zone is Myp = (P/2) (L – Lp)/2, from which
Figure 12.11. Bending of a rectangular beam: (a) plastic region; (b) moment diagram; (c) plastic

hinge.

(d)
With the increase of P, Mmax → Mu, and the plastic region extends farther inward. When the
magnitude of the maximum moment PL/4 is equal to Mu, the cross section at the midspan becomes
fully plastic (Fig. 12.11c). Then, as in the case of pure bending, the curvature at the center of the beam
grows without limit, and the beam fails. The beam halves on either side of the midspan experience
rotation in the manner of a rigid body about the neutral axis, as about a plastic hinge, under the
influence of the constant ultimate moment Mu. For a plastic hinge, P = 4Mu/L is substituted into Eq.
(d), leading to Lp = L(1 – Myp/Mu).

The capacity of a beam to resist collapse is revealed by comparing Eqs. (12.9a) and (12.11). Note
that the Mu is 1.5 times as large as Myp. Elastic design is thus conservative. Considerations such as
this lead to concepts of limit design in structures, discussed in the next section.

Example 12.5. Elastic–Plastic Analysis of a Link: Interaction Curves

A link of rectangular cross section is subjected to a load N (Fig. 12.12a). Derive general
relationships involving N and M that govern, first, the case of initial yielding and, then, fully
plastic deformation for the straight part of the link of length L.
Figure 12.12. Example 12.5. (a) A link of rectangular cross section carries load P at its ends;

(b) elastic stress distribution; (c) fully plastic stress distribution.



Solution

Suppose N and M are such that the state of stress is as shown in Fig. 12.12b at any straight beam
section. The maximum stress in the beam is then, by superposition of the axial and bending
stresses,

(e)

The upper limits on N (M = 0) and M (N = 0), corresponding to the condition of yielding, are

(f)
Substituting 2hb and I/h from Eq. (f) into Eq. (e) and rearranging terms, we have

(12.16)

If N1 is zero, then M1 must achieve its maximum value Myp for yielding to impend. Similarly, for
M1 = 0, it is necessary for N1 to equal Nyp to initiate yielding. Between these extremes, Eq.
(12.16) provides the infinity of combinations of N1 and M1 that will result in σyp.

For the fully plastic case (Fig. 12.12c), we shall denote the state of loading by N2 and M2. It is
apparent that the stresses acting within the range –e < y < e contribute pure axial load only. The
stresses within the range e < y < h and –e > y > –h form a couple, however. For the total load
system described, we may write

(g)

(h)
Introducing Eqs. (12.11) and (g) into Eq. (h), we have

Finally, dividing by Mu and noting that  and Nyp = 2bhσyp, we obtain



(12.17)

Figure 12.13 is a plot of Eqs. (12.16) and (12.17). By employing these interaction curves, any
combination of limiting values of bending moment and axial force is easily arrived at.

Figure 12.13. Example 12.5 (continued). Interaction curves for N and M for a rectangular
cross-sectional member.

Let, for instance, d = h, h = 2b = 24 mm (Fig. 12.12a), and σyp = 280 MPa. Then the value of 

 and, from Eq. (e), Myp/Nyp = h/3 = 8. The radial line representing 
is indicated by the dashed line in the figure. This line intersects the interaction curves at A(0.75,
0.25) and B(1.24, 0.41). Thus, yielding impends for N1 = 0.25Nyp = 0.25 (2bh · σyp) = 40.32 kN,
and for fully plastic deformation, N2 = 0.41Nyp = 66.125 kN.

Note that the distance d is assumed constant and the values of N found are conservative. If the link
deflection were taken into account, d would be smaller and the calculations would yield larger N.

Example 12.6. Shape Factor of an I-Beam
An I-beam (Fig. 12.14a) is subjected to pure bending resulting from end couples. Determine the
moment causing initial yielding and that results in complete plastic deformation.

Figure 12.14. Example 12.6. (a) Cross section; (b) fully plastic stress distribution.



Solution

The moment corresponding to σyp is, from Eq. (12.9a),

Refer now to the completely plastic stress distribution of Fig. 12.14b. The moments of force
owing to σyp, taken about the neutral axis, provide

Combining the preceding equations, we have

(i)

From this expression, it is seen that , while it is  for a beam of rectangular section (h1
= 0). We conclude, therefore, that if a rectangular beam and an I-beam are designed plastically,
the former will be more resistant to complete plastic failure.

Example 12.7. Residual Stresses in a Rectangular Beam

Figure 12.15 shows an elastoplastic beam of rectangular cross section 40 mm by 100 mm
carrying a bending moment of M. Determine (a) the thickness of the elastic core; (b) the residual
stresses following removal of the bending moment. Given: b = 40 mm, h = 50 mm, M = 21 kN ·
m, σyp = 240 MPa, and E = 200 GPa.

Figure 12.15. Example 12.7. Finding the thickness (2e) of the elastic core.

Solution

a. Through the use of Eq. (12.9a), we have

Then Eq. (12.10b) leads to

Solving,



e = 31 × 10–3 m = 31 mm and 2e = 62 mm
Elastic core depicted as shaded in Fig. 12.15.

b. The stress distribution corresponding to moment M = 21 kN · m is illustrated in Fig. 12.16a.
The release of moment M produces elastic stresses, and the flexure formula applies (Fig.
12.16b). Equation (5.5) is therefore

Figure 12.16. Example 12.7. Stress distribution in a rectangular beam: (a) elastic–plastic; (b)
elastic rebound; (c) residual.

By the superimposition of the two stress distributions, we can find the residual stresses (Fig.
12.16c). Observe that both tensile and compressive residual stresses remain in the beam.

Example 12.8. Deflection of a Perfectly Plastic Simple Beam

Determine the maximum deflection due to an applied force P acting on the perfectly plastic
simply supported rectangular beam (Fig. 12.8).

Solution
The center deflection in the elastic range is given by

(j)

At the start of yielding,

(k)

Expression (j), together with Eqs. (k) and (12.9a), leads to

(l)
In a like manner, we obtain



(m)

for the center deflection at the instant of plastic collapse.

12.8 Collapse Load of Structures: Limit Design
On the basis of the simple examples in the previous section, it may be deduced that structures may
withstand loads in excess of those that lead to initial yielding. We recognize that, while such loads
need not cause structural collapse, they will result in some amount of permanent deformation. If no
permanent deformation is to be permitted, the load configuration must be such that the stress does not
attain the yield point anywhere in the structure. This is, of course, the basis of elastic design.
When a limited amount of permanent deformation may be tolerated in a structure, the design can be
predicated on higher loads than correspond to initiation of yielding. On the basis of the ultimate or
plastic load determination, safe dimensions can be determined in what is termed limit design.
Clearly, such design requires higher than usual factors of safety. Examples of ultimate load
determination are presented next.
Consider first a built-in beam subjected to a concentrated load at midspan (Fig. 12.17a). The general
bending moment variation is sketched in Fig. 12.17b. As the load is progressively increased, we may
anticipate plastic hinges at points 1, 2, and 3, because these are the points at which maximum bending
moments are found. The configuration indicating the assumed location of the plastic hinges (Fig.
12.17c) is the mechanism of collapse. At every hinge, the hinge moment must clearly be the same.
Figure 12.17. (a) Beam with built-in ends; (b) elastic bending moment diagram; (c) mechanism of

collapse with plastic hinges at 1 through 3.

The equilibrium and the energy approaches are available for determination of the ultimate loading.
Electing the latter, we refer to Fig. 12.17c and note that the change in energy associated with rotation
at points 1 and 2 is Mu · δθ, while at point 3, it is Mu(2δθ). The work done by the concentrated force
is P · δv. According to the principle of virtual work, we may write

Pu(δv) = Mu(δθ) + Mu(δθ) + Mu(2δθ) = 4Mu(δθ)

where Pu represents the ultimate load. Because the deformations are limited to small values, it may



be stated that  and . Substituting in the preceding expression for δv, it is found that

(a)
where Mu is calculated for a given beam using Eq. (12.12). It is interesting that, by introduction of the
plastic hinges, the originally statically indeterminate beam is rendered determinate. The determination
of Pu is thus simpler than that of Pyp, on which elastic analysis is based. An advantage of limit design
may also be found in noting that a small rotation at either end of the beam or a slight lowering of a
support will not influence the value of Pu. Moderate departures from the ideal case, such as these,
will, however, have a pronounced effect on the value of Pyp in a statically indeterminate system.

While the positioning of the plastic hinges in the preceding problem is limited to the single possibility
shown in Fig. 12.17c, more than one possibility will exist for situations in which several forces act.
Correspondingly, a number of collapse mechanisms may exist, and it is incumbent on the designer to
select from among them the one associated with the lowest load.

Example 12.9. Collapse Analysis of a Continuous Beam

Determine the collapse load of the continuous beam shown in Fig. 12.18a.
Figure 12.18. Example 12.9. (a) A beam is subjected to loads P and 2P; (b–d) mechanisms of

collapse with plastic hinges at 2 through 4.

Solution
The four possibilities of collapse are indicated in Figs. 12.18b through d. We first consider the
mechanism of Fig. 12.18b. In this system, motion occurs because of rotations at hinges 1, 2, and 3.
The remainder of the beam remains rigid. Applying the principle of virtual work, noting that the



moment at point 1 is zero, we have
P(δv) = Mu(2δθ) + Mu(δθ) = 3Mu(δθ)

Because

this equation yields Pu = 6Mu/L.

For the collapse mode of Fig. 12.18c,

and thus Pu = 2Mu/L.

The collapse mechanisms indicated by the solid and dashed lines of Fig. 12.18d are unacceptable
because they imply a zero bending moment at section 3. We conclude that collapse will occur as
in Fig. 12.17c, when P → 2Mu/L.

Example 12.10. Collapse Load of a Continuous Beam

Determine the collapse load of the beam shown in Fig. 12.19a.
Figure 12.19. Example 12.10. (a) Variously loaded beam; (b) mechanism of collapse with

plastic hinges at 2 and 3.

Solution
There are a number of collapse possibilities, of which one is indicated in Fig. 12.19b. Let us
suppose that there exists a hinge at point 2, a distance e from the left support. Then examination of
the geometry leads to θ1 = θ2(L – e)/e or θ1 + θ2 = Lθ2/e. Applying the principle of virtual work,

or

from which



(b)

The minimization condition for p in Eq. (b), dp/de = 0, results in

(c)

Thus, Eqs. (b) and (c) provide a possible collapse configuration. The remaining possibilities are
similar to those discussed in the previous example and should be checked to ascertain the
minimum collapse load.

Determination of the collapse load of frames involves much the same analysis. For complex frames,
however, the approaches used in the foregoing examples would lead to extremely cumbersome
calculations. For these, special-purpose methods are available to provide approximate solutions
[Ref. 12.6].

Example 12.11. Collapse Analysis of a Frame

Apply the method of virtual work to determine the collapse load of the structure shown in Fig.
12.20a. Assume that the rigidity of member BC is 1.2 times greater than that of the vertical
members AB and CD.
Figure 12.20. Example 12.11. (a) A frame with concentrated loads; (b and c) mechanism of

collapse with plastic hinges at A, B, C, and D.



Solution

Of the several collapse modes, we consider only the two given in Figs. 12.20b and c. On the
basis of Fig. 12.20b, plastic hinges will be formed at the ends of the vertical members. Thus,
from the principle of virtual work,

Substituting u = Lθ, this expression leads to Pu = 8Mu/L.

Referring to Fig. 12.20c, we have MuE = 1.2Mu, where Mu is the collapse moment of the vertical
elements. Applying the principle of virtual work,

Noting that u = Lθ and , this equation provides the following expression for the collapse
load: Pu = 2.56Mu/L.

12.9 Elastic–Plastic Torsion of Circular Shafts
We now consider the torsion of circular bars of ductile materials, which are idealized as
elastoplastic, stressed into the plastic range. In this case, the first two basic assumptions associated
with small deformations of circular bars in torsion (see Sec. 6.2) are still valid. This means that the
circular cross sections remain plane and their radii remain straight. Consequently, strains vary
linearly from the shaft axis. The shearing stress–strain curve of plastic materials is shown in Fig.
12.21. Referring to this diagram, we can proceed as discussed before and determine the stress
distribution across a section of the shaft for any given value of the torque T.



Figure 12.21. Idealized shear stress–shear strain diagrams for (a) perfectly plastic materials;
(b) elastoplastic materials.

The basic relationships given in Section 6.2 are applicable as long as the shear strain in the bar does
not exceed the yield strain γyp. It is recalled that the condition of torque equilibrium for the entire
shaft (Fig. 6.2) requires

(a)

Here ρ, τ are any arbitrary distance and shearing stress from the center O, respectively, and A the
entire area of a cross section of the shaft. Increasing in the applied torque, yielding impends on the
boundary and moves progressively toward the interior. The cross-sectional stress distribution will be
as shown in Fig. 12.22.
Figure 12.22. Stress distribution in a shaft as torque is increased: (a) onset of yield; (b) partially

plastic; and (c) fully plastic.

At the start of yielding (Fig. 12.22a), the torque Typ, through the use of Eq. (6.1), may be written in the
form:

(12.18)

The quantity J = πc4/2 is the polar moment of inertia for a solid shaft with radius r = c. Equation
(12.18) is called the maximum elastic torque, or yield torque. It represents the largest torque for
which the deformation remains fully elastic.
If the twist is increased further, an inelastic or plastic portion develops in the bar around an elastic
core of radius ρ0 (Fig. 12.22b). Using Eq. (a), we obtain that the torque resisted by the elastic core
equals



(b)

The outer portion is subjected to constant yield stress τyp and resists the torque,

(c)

The elastic–plastic or total torque T, the sum of T1 and T2, may now be expressed as follows

(12.19)
When twisting becomes very large, the region of yielding will approach the middle of the shaft and
will approach zero (Fig. 12.22c). The corresponding torque Tu is the plastic, or ultimate, shaft torque,
and its value from the foregoing equation is

(12.20)

It is thus seen that only one-third of the torque-carrying capacity remains after τyp is reached at the
outermost fibers of a shaft.
The radius of elastic core (Fig. 12.22b) is found, referring to Fig. 6.2, by setting γ = γyp and ρ = ρ0. It
follows that

(12.21a)

in which L is the length of the shaft. The angle of twist at the onset of yielding φyp (when ρ0 = c) is
therefore

(12.21b)

Equations (12.21) lead to the relation,

(12.22)
Using Eq. (12.19), the ultimate torque may then be expressed in the form:



(12.23)

This is valid for φ > φyp. When φ < φyp, linear relation (6.3) applies.

A sketch of Eqs. (6.3) and (12.23) is illustrated in Fig. 12.23. Observe that after yielding torque Typ is
reached, T and φ are related nonlinearly. As T approaches Tu, the angle of twist grows without limit.
A final point to be noted, however, is that the value of Tu is approached very rapidly (for instance, Tu
= 1.32 Typ when φ = 3φyp).

Figure 12.23. Torque–angle of twist relationship for a circular shaft.

When a shaft is strained beyond the elastic limit (point A in Fig. 12.23) and the applied torque is then
removed, rebound is assumed to follow Hooke’s law. Thus, once a portion of a shaft has yielded,
residual stresses and residual rotations (φB) will develop. This process and the application of the
preceding relationships are demonstrated in Example 12.12. Statically indeterminate, inelastic torsion
problems are dealt with similarly to those of axial load, as was discussed in Section 12.5.

Example 12.12. Residual Stress in a Shaft

Figure 12.24 shows a solid circular steel shaft of diameter d and length L carrying a torque T.
Determine (a) the radius of the elastic core; (b) the angle of twist of the shaft; (c) the residual
stresses and the residual rotation when the shaft is unloaded. Assumption: The steel is taken to be
an elastoplastic material. Given: d = 60 mm, L = 1.4 m, T = 7.75 kN · m, τyp = 145 MPa, and G =
80 GPa.

Figure 12.24. Example 12.13. Torsion of a circular bar of elastoplastic material.



Solution

We have c = 30 mm and J = π(0.03)4/2 = 1272 × 10–9 m4.
a. Radius of Elastic Core. The yield torque, applying Eq. (12.18), equals

Equation (12.19), substituting the values of T and τyp, gives

Solving, ρ0 = 0.604 (30) = 18.1 mm. The elastic–plastic stress distribution in the loaded shaft
is illustrated in Fig. 12.25a.
Figure 12.25. Example 5.13 (continued). (a) Partial plastic stresses; (b) elastic rebound

stresses; (c) residual stresses.

b. Yield Twist Angle. Through the use of Eq. (6.3), the angle of twist at the onset of yielding,

Introducing the value found for φyp into Eq. (12.22), we have

c. Residual Stresses and Rotation. The removal of the torque produces elastic stresses as
depicted in Fig. 12.25b, and the torsion formula, Eq. (6.1), leads to reversed stress as

Superposition of the two distributions of stress results in the residual stresses (Fig. 12.25c).
Permanent Twist. The elastic rebound rotation, using Eq. (6.3), equals

The preceding results indicate that residual rotation of the shaft is
φres = 8.03° – 6.11° = 1.92°

Comment



We see that even though the reversed stresses τ′max exceed the yield strength τyp, the assumption of
linear distribution of these stresses is valid, inasmuch as they do not exceed 2τyp.

12.10 Plastic Torsion: Membrane Analogy
Recall from Chapter 6 that the maximum shearing stress in a slender bar of arbitrary section subject to
pure torsion is always found on the boundary. As the applied torque is increased, we expect yielding
to occur on the boundary and to move progressively toward the interior, as sketched in Fig. 12.26a for
a bar of rectangular section. We now determine the ultimate torque Tu that can be carried. This torque
corresponds to the totally plastic state of the bar, as was the case of the beams previously discussed.
Our analysis treats only perfectly plastic materials.

Figure 12.26. (a) Partially yielded rectangular section; (b) membrane–roof analogy applied to
elastic–plastic torsion of a rectangular bar; (c) sand hill analogy applied to plastic torsion of a

circular bar.

The stress distribution within the elastic region of the bar is governed by Eq. (6.9),

(12.24)

where Φ represents the stress function (Φ = 0 at the boundary) and θ is the angle of twist. The
shearing stresses, in terms of Φ, are

(a)
Inasmuch as the bar is in a state of pure shear, the stress field in the plastic region is, according to the
Mises yield criterion, expressed by

(12.25)

where τyp is the yield stress in shear. This expression indicates that the slope of the Φ surface remains
constant throughout the plastic region and is equal to τyp.



Membrane–Roof Analogy
Bearing in mind the condition imposed on Φ by Eq. (12.25), the membrane analogy (Sec. 6.6) may be
extended from the purely elastic to the elastic–plastic case. As shown in Fig. 12.26b, a roof abc of
constant slope is erected with the membrane as its base. Figure 12.26c shows such a roof for a
circular section. As the pressure acting beneath the membrane increases, more and more contact is
made between the membrane and the roof. In the fully plastic state, the membrane is in total contact
with the roof, membrane and roof being of identical slope. Whether the membrane makes partial or
complete contact with the roof clearly depends on the pressure. The membrane–roof analogy thus
permits solution of elastic–plastic torsion problems.

Sand Hill Analogy
For the case of a totally yielded bar, the membrane–roof analogy leads quite naturally to the sand hill
analogy. We need not construct a roof at all, using this method. Instead, sand is heaped on a plate
whose outline is cut into the shape of the cross section of the torsion member. The torque is,
according to the membrane analogy, proportional to twice the volume of the sand figure so formed.
The ultimate torque corresponding to the fully plastic state is thus found.
Referring to Fig. 12.26c, let us apply the sand hill analogy to determine the ultimate torque for a
circular bar of radius r. The volume of the corresponding cone is , where h is the height of
the sand hill. The slope h/r represents the yield point stress τyp. The ultimate torque is therefore

(12.26)

Note that the maximum elastic torque is Typ = (πr3/2)τyp. We may thus form the ratio

(12.27)
Other solid sections may be treated similarly [Ref. 12.7]. Table 12.1 lists the ultimate torques for
bars of various cross-sectional geometry.

Table 12.1. Torque Capacity for Various Common Sections

The procedure may also be applied to members having a symmetrically located hole. In this situation,
the plate representing the cross section must contain the same hole as the actual cross section.



12.11 Elastic–Plastic Stresses in Rotating Disks
This section treats the stresses in a flat disk fabricated of a perfectly plastic material, rotating at
constant angular velocity. The maximum elastic stresses for this geometry are, from Eqs. (8.30) and
(8.28) as follows:
For the solid disk at r = 0,

(a)

For the annular disk at r = a,

(b)

Here a and b represent the inner and outer radii, respectively, ρ the mass density, and ω the angular
speed. The following discussion relates to initial, partial, and complete yielding of an annular disk.
Analysis of the solid disk is treated in a very similar manner.

Initial Yielding
According to the Tresca yield condition, yielding impends when the maximum stress is equal to the
yield stress. Denoting the critical speed as ω0 and using , we have, from Eq. (b),

(12.28)

Partial Yielding
For angular speeds in excess of ω0 but lower than speeds resulting in total plasticity, the disk contains
both an elastic and a plastic region, as shown in Fig. 12.27a. In the plastic range, the equation of
radial equilibrium, Eq. (8.26), with σyp replacing the maximum stress σθ, becomes

Figure 12.27. (a) Partially yielded rotating annular disk; (b) stress distribution in complete
yielding.



(12.29)

or

The solution is given by

(c)
By satisfying the boundary condition σr = 0 at r = a, Eq. (c) provides an expression for the constant
c1, which when introduced here results in

(d)

The stress within the plastic region is now determined by letting r = c in Eq. (d):

(12.30)

Referring to the elastic region, the distribution of stress is determined from Eq. (8.27) with σr = σc at
r = c, and σr = 0 at r = b. Applying these conditions, we obtain

(e)
The stresses in the outer region are then obtained by substituting Eqs. (e) into Eq. (8.27):

(12.31)

To determine the value of ω that causes yielding up to radius c, we need only substitute σθ for σyp in
Eq. (12.31) and introduce σc as given by Eq. (12.30).

Complete Yielding



We turn finally to a determination of the speed ω1 at which the disk becomes fully plastic. First, Eq.
(c) is rewritten

(f)
Applying the boundary conditions, σr = 0 at r = a and r = b in Eq. (f), we have

(g)

and the critical speed (ω = ω1) is given by

(12.32)

Substitution of Eqs. (g) and (12.32) into Eq. (f) provides the radial stress in a fully plastic disk:

(12.33)
The distributions of radial and tangential stress are plotted in Fig. 12.27b.

12.12 Plastic Stress–Strain Relations
Consider an element subject to true stresses σ1, σ2, and σ3 with corresponding true straining. The true
strain, which is plastic, is denoted ε1, ε2, and ε3. A simple way to derive expressions relating true

stress and strain is to replace the elastic constants E and v by Es and , respectively, in Eqs. (2.34). In
so doing, we obtain equations of the total strain theory or the deformational theory, also known as
Hencky’s plastic stress–strain relations:

(12.34a)
The foregoing may be restated as

(12.34b)



Here Es, a function of the state of plastic stress, is termed the modulus of plasticity or secant
modulus. It is defined by Fig. 12.28

(12.35)

Figure 12.28. True stress–true strain diagram for a rigid-plastic material.

in which the quantities σe and εe are the effective stress and the effective strain, respectively.

Although other yield theories may be employed to determine σe, the maximum energy of distortion or
Mises theory (Sec. 4.7) is most suitable. According to the Mises theory, the following relationship
connects the uniaxial yield stress to the general state of stress at a point:

(12.36)

where the effective stress σe is also referred to as the von Mises stress. It is assumed that expression
(12.36) applies not only to yielding or the beginning of inelastic action (σe = σyp) but to any stage of
plastic behavior. That is, σe has the value σyp at yielding, and as inelastic deformation progresses, σe
increases in accordance with the right side of Eq. (12.36). Equation (12.36) then represents the
logical extension of the yield condition to describe plastic deformation after the yield stress is
exceeded.
Collecting terms of Eqs. (12.34), we have

(a)

The foregoing, together with Eqs. (12.35) and (12.36), leads to the definition

(12.37a)

or (on the basis of ε1 + ε2 + ε3 = 0), in different form,

(12.37b)



relating the effective plastic strain and the true strain components. Note that, for simple tension, σ2 =
σ3 = 0, ε2 = ε3 = –ε1/2, and Eqs. (12.36) and (12.37) result in

(b)
Therefore, for a given σe, εe can be read directly from true stress–strain diagram (Fig. 12.28).

Hencky’s equations as they appear in Eqs. (12.34) have little utility. To give these expressions
generality and convert them to a more convenient form, it is useful to employ the empirical
relationship (12.2)

σe = K(εe)n

from which

(c)

The true stress–strain relations, upon substitution of Eqs. (12.36) and (c) into (12.34), then assume
the following more useful form:

(12.38a)

(12.38b)

(12.38c)
where α = σ2/σ1 and β = σ3/σ1.

In the case of an elastic material (K = E and n = 1), it is observed that Eqs. (12.38) reduce to the
familiar generalized Hooke’s law.

Example 12.13. Analysis of Cylindrical Tube by Hencky’s Relations

A thin-walled cylindrical tube of initial radius ro is subjected to internal pressure p. Assume that
the values of ro, p, and the material properties (K and n) are given. Apply Hencky’s relations to
determine (a) the maximum allowable stress and (b) the initial thickness to for the cylinder to
become unstable at internal pressure p.

Solution
The current radius, thickness, and the length are denoted by r, t, and L, respectively. In the plastic



range, the hoop, axial, and radial stresses are

(d)
We thus have α = σ2/σ1 and β = 0 in Eqs. (12.38).

Corresponding to these stresses, the components of true strain are, from Eq. (2.24),

(e)
Based on the constancy of volume, Eq. (12.1), we then have

or

(f)

The first of Eqs. (e) gives

(g)
The tangential stress, the first of Eqs. (d), is therefore

from which

(h)

Simultaneous solution of Eqs. (12.38) leads readily to

(i)
Equation (h) then appears as

(j)



For material instability,

which, upon substitution of ∂ p/∂ σ1 and ∂ p/∂ ε1 derived from Eq. (j), becomes

or

(k)

In Eqs. (12.38) it is observed that σ1 depends on α and . That is,

(l)
Differentiating, we have

(m)

Expressions (k), (l), and (m) lead to the instability condition:

(12.39)

a. Equating expressions (12.39) and (12.38a), we obtain

and the true tangential stress is thus

(12.40)

b. On the other hand, Eqs. (d), (f), (g), and (12.38) yield

From this expression, the required original thickness is found to be

(12.41)

wherein σ1 is given by Eq. (12.40).



In the case under consideration, α = 1/2 and Eqs. (12.39), (12.40), and (12.41) thus become

(12.42)
For a thin-walled spherical shell under internal pressure, the two principal stresses are equal
and hence α = 1. Equations (12.39), (12.40), and (12.41) then reduce to

(12.43)

Based on the relations derived in this example, the effective stress and the effective strain are
determined readily. Table 12.2 furnishes the maximum true and effective stresses and strains in
a thin-walled cylinder and a thin-walled sphere. For purposes of comparison, the table also
lists the results (Sec. 12.4) pertaining to simple tension. We observe that at instability, the
maximum true strains in a sphere and cylinder are much lower than the corresponding
longitudinal strain in uniaxial tension.

Table 12.2. Stress and Strain in Pressurized Plastic Tubes

It is significant that, for loading situations in which the components of stress do not increase
continuously, Hencky’s equations provide results that are somewhat in error, and the incremental
theory (Sec. 12.13) must be used. Under these circumstances, Eqs. (12.34) or (12.38) cannot describe
the complete plastic behavior of the material. The latter is made clearer by considering the
following. Suppose that subsequent to a given plastic deformation the material is unloaded, either



partially or completely, and then reloaded to a new state of stress that does not result in yielding. We
expect no change to occur in the plastic strains; but Hencky’s equations indicate different values of the
plastic strain, because the stress components have changed. The latter cannot be valid because during
the unloading–loading process, the plastic strains have, in reality, not been affected.

12.13 Plastic Stress–Strain Increment Relations
We have already discussed the limitations of the deformational theory in connection with a situation
in which the loading does not continuously increase. The incremental theory offers another approach,
treating not the total strain associated with a state of stress but rather the increment of strain.
Suppose now that the true stresses at a point experience very small changes in magnitude dσ1, dσ2,
and dσ3. As a consequence of these increments, the effective stress σe will be altered by dσe and the
effective strain εe by dεe. The plastic strains thus suffer increments dε1, dε2, and dε3.

The following modification of Hencky’s equations, due to Lévy and Mises, describe the foregoing and
give good results in metals:

(12.44a)
An alternative form is

(12.44b)

The plastic strain is, as before, to occur at constant volume; that is,
dε1 + dε2 + dε3 = 0

The effective strain increment, referring to Eq. (12.37b), may be written

(12.45)
The effective stress σe is given by Eq. (12.36). Alternatively, to ascertain dεe from a uniaxial true
stress–strain curve such as Fig. 12.28, it is necessary to know the increase of equivalent stress dσe.
Given σe and dεe, it then follows that at any point in the loading process, application of Eqs. (12.44)
provides the increment of strain as a unique function of the state of stress and the increment of the
stress. According to the Lévy–Mises theory, therefore, the deformation suffered by an element varies
in accordance with the specific loading path taken.
In a particular case of straining of sheet metal under biaxial tension, the Lévy–Mises equations



(12.44) become

(12.46)
where α = σ2/σ1 and σ3 taken as zero. The effective stress and strain increment, Eqs. (12.36) and
(12.45), is now written

(12.47)

(12.48)
Combining Eqs. (12.46) and (12.48) and integrating yields

(12.49)

To generalize this result, it is useful to employ Eq. (12.2), σe = K(εe)n, to include strain-hardening
characteristics. Differentiating this expression, we have

(12.50)

Note that, for simple tension, n = εe = ε and Eq. (12.50) reduces to Eq. (12.3).

The utility of the foregoing development is illustrated in Examples 12.14 and 12.15. In closing, we
note that the total (elastic–plastic) strains are determined by adding the elastic strains to the plastic
strains. The elastic–plastic strain relations, together with the equations of equilibrium and
compatibility and appropriate boundary conditions, completely describe a given situation. The
general form of the Lévy–Mises relationships, including the elastic incremental components of strain,
are referred to as the Prandtl and Reuss equations.

Example 12.14. Analysis of Tube by Lévy–Mises Equations
Redo Example 12.13 employing the Lévy–Mises stress–strain increment relations.

Solution

For the thin-walled cylinder under internal pressure, the plastic stresses are

(a)
where r and t are the current radius and the thickness. At instability,



(b)

Because , introduction of Eqs. (a) into Eq. (b) provides

(12.51)

Clearly, dr/r is the hoop strain increment dε2, and dt/t is the incremental thickness strain or radial
strain increment dε3. Equation (12.51) is the condition of instability for the cylinder material.

Upon application of Eqs. (12.47) and (12.48), the effective stress and the effective strains are
found to be

(c)

It is observed that axial strain does not occur and the situation is one of plane strain. The first of
Eqs. (c) leads to , and condition (12.51) gives

from which

A comparison of this result with Eq. (12.50) shows that

(12.52)

The true stresses and true strains are then obtained from Eqs. (c) and σe = K(εe)n and the results
found to be identical with that obtained using Hencky’s relations (Table 12.2).
For a spherical shell subjected to internal pressure σ1 = σ2 = pr/2t, α = 1 and dε1 = dε2 = –dε3/2.
At stability dp = 0, and we now have

(d)

Equations (12.47) and (12.48) result in



(e)

Equations (d) and (e) are combined to yield

(f)

From Eqs. (f) and (12.50), it is concluded that

(12.53)
True stress and true strain are easily obtained, and are the same as the values determined by a
different method (Table 12.2).

12.14 Stresses in Perfectly Plastic Thick-Walled Cylinders
The case of a thick-walled cylinder under internal pressure alone was considered in Section 8.2.
Equation (8.11) was derived for the onset of yielding at the inner surface of the cylinder owing to
maximum shear. This was followed by a discussion of the strengthening of a cylinder by shrinking a
jacket on it (Sec. 8.5). The same goal can be achieved by applying sufficient pressure to cause some
or all of the material to deform plastically and then releasing the pressure. This is briefly described
next [Ref. 12.8].
A continuing increase in internal pressure will result in yielding at the inner surface. As the pressure
increases, the plastic zone will spread toward the outer surface, and an elastic–plastic state will
prevail in the cylinder with a limiting radius c beyond which the cross section remains elastic. As the
pressure increases further, the radius c also increases until, eventually, the entire cross section
becomes fully plastic at the ultimate pressure. When the pressure is reduced, the material unloads
elastically. Thus, elastic and plastic stresses are superimposed to produce a residual stress pattern
(see Example 12.15). The generation of such stresses by plastic action is called autofrettage. Upon
reloading, the pressure needed to produce renewed yielding is greater than the pressure that
produced initial yielding; the cylinder is thus strengthened by autofrettage.
This section concerns the fully plastic and elastic–plastic actions in a thick-walled cylinder
fabricated of a perfectly plastic material of yield strength σyp under internal pressure p as shown in
Fig. 12.29a.
Figure 12.29. (a) Thick-walled cylinder of perfectly plastic material under internal pressure; (b)

fully plastic stress distribution in the cylinder at the ultimate pressure for b = 4a; (c) partially
yielded cylinder.



Complete Yielding
The fully plastic or ultimate pressure as well as the stress distribution corresponding to this pressure
is determined by application of the Lévy–Mises relations with σe = σyp. In polar coordinates, the axial
strain increment is

(12.54)
If the ends of the cylinder are restrained so that the axial displacement w = 0, the problem may be
regarded as a case of plane strain, for which εz = 0. It follows that dεz = 0 and Eq. (12.54) gives

(a)

The equation of equilibrium is, from Eq. (8.2),

(b)

subject to the following boundary conditions:

(c)
Based on the maximum energy of distortion theory of failure, Eqs. (4.4b) or (12.36), setting σ1 = σθ,
σ3 = σr, and  results in . From this, we obtain the yield condition:

(12.55)

Alternatively, according to the maximum shearing stress theory of failure (Sec. 4.6), the yield
condition is

(12.56)



Introducing Eq. (12.55) or (12.56) into Eq. (b), we obtain dσr/dr = kσyp/r, which has the solution

(d)
The constant of integration is determined by applying the second of Eqs. (c):

c1 = –kσyp ln b

Equation (d) is thus

(e)

The first of conditions (c) now leads to the ultimate pressure:

(12.57)
An expression for σθ can now be obtained by substituting Eq. (e) into Eqs. (12.55) or (12.56).
Consequently, Eq. (a) provides σz. The complete plastic stress distribution for a specified σyp is thus
found to be

(12.58)

The stresses given by Eqs. (12.58) are plotted in Fig. 12.29, whereas the distribution of elastic
tangential and radial stresses is shown in Fig. 8.4a.

Example 12.15. Residual Stresses in a Pressurized Cylinder
A perfectly plastic closed-ended cylinder (σyp = 400 MPa) with 50- and 100-mm internal and
external diameters is subjected to an internal pressure p (Fig. 12.29a). On the basis of the
maximum distortion energy theory of failure, determine (a) the complete plastic stresses at the
inner surface and (b) the residual tangential and axial stresses at the inner surface when the
cylinder is unloaded from the ultimate pressure pu.

Solution

The magnitude of the ultimate pressure is, using Eq. (12.57),



a. From Eqs. (12.58), with r = a,

Note, as a check, that σz = (σr + σθ)/2 yields the same result.

b. Unloading is assumed to be linearly elastic. Thus, we have the following elastic stresses at r =
a, using Eqs. (8.13) and (8.20):

The residual stresses at the inner surface are therefore
(σθ)res = 141.7 – 533.7 = –392 MPa

(σz)res = –89.2 – 106.7 = –195.9 MPa

The stresses at any other location may be obtained in a like manner.

Partial Yielding
For the elastic segment for which c ≤ r ≤ b (Fig. 12.29c), the tangential and radial stresses are
determined using Eqs. (8.12) and (8.13) with a = c. In so doing, we obtain

(12.59a)

(12.59b)

Here pc is the magnitude of the (compressive) radial stress at the elastic–plastic boundary r = c
where yielding impends. Accordingly, by substituting these expressions into the yield condition σθ –
σr = kσyp, we have

(12.60)
This pressure represents the boundary condition for a fully plastic segment with inner radius a and
outer radius c. That is, constant c1 in Eq. (d) is obtained by applying (σr)r = c = –pc:



Substituting this value of c1 into Eq. (d), the radial stress in the plastic zone becomes

(12.61a)
Then, using the yield condition, the tangential stress in the plastic zone is obtained in the following
form:

(12.61b)

Equations (12.59) and (12.61), for a given elastic–plastic boundary radius c, provide the
relationships necessary for calculation of the elastic–plastic stress distribution in the cylinder wall
(Fig. 12.29c).
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Problems
Sections 12.1 through 12.6

12.1. A solid circular cylinder of 100-mm diameter is subjected to a bending moment M = 3.375
kN · m, an axial tensile force P = 90 kN, and a twisting end couple T = 4.5 kN · m. Determine
the stress deviator tensor. [Hint: Refer to Sec. 2.15.]

12.2. In the pin-connected structure shown in Fig. 12.4, the true stress–engineering strain curves of
the members are expressed by  and . Verify that, for all three bars
to reach tensile instability simultaneously, they should be set initially at an angle described by

(P12.2)



Calculate the value of this initial angle for n1 = 0.2 and n2 = 0.3.

12.3. Determine the deflection of a uniformly loaded rigid-plastic cantilever beam of length L.
Locate the origin of coordinates at the fixed end, and denote the loading by p.

12.4. Redo Prob. 12.3 for p = 0 and a concentrated load P applied at the free end.
12.5. Consider a beam of rectangular section, subjected to end moments as shown in Fig. 12.7a.

Assuming that the relationship for tensile and compressive stress for the material is
approximated by σ = Kε1/4, determine the maximum stress.

12.6. A simply supported rigid-plastic beam is described in Fig. P12.6. Compute the maximum
deflection. Reduce the result to the case of a linearly elastic material. 

. Let P = 8 kN, E = 200 GPa, L = 1.2 m, and a = 0.45 m. Cross-
sectional dimensions shown are in millimeters.

Figure P12.6.

12.7. Figure P12.7 shows a stepped steel bar ABC, axially loaded until it elongates 10 mm, and
then unloaded. Determine (a) the largest value of P; (b) the plastic axial deformation of
segments AB and BC. Given: d1 = 60 mm, d2 = 50 mm, E = 210 GPa, and σyp = 240 MPa.

Figure P12.7.

12.8. Resolve Prob. 12.7, knowing that d1 = 30 mm, d2 = 20 mm, and σyp = 280 MPa.

12.9. The assembly of three steel bars shown in Fig. 12.4 supports a vertical load P. It can be
verified that [see Ref. 12.5], the forces in the bars AD = CD and BD are, respectively,

(P12.9)
Using these equations, calculate the value of ultimate load Pu. Given: Each member is made
of mild steel with σyp = 250 MPa and has the same cross-sectional area A = 400 mm2, and α =
40°.

12.10. When a load P = 400 kN is applied and then removed, calculate the residual stress in each
bar of the assembly described in Example 12.3.

12.11. Figure P12.11 depicts a cylindrical rod of cross-sectional area A inserted into a tube of the
same length L and of cross-sectional area At; the left ends of the members are attached to rigid



support and the right ends to a rigid plate. When an axial load P is applied as shown,
determine the maximum deflection and draw the load-deflection diagram of the rod–tube
assembly. Given: L = 1.2 m, Ar = 45 mm2, At = 60 mm2, Er = 200 GPa, Et = 100 GPa, (σr)yp =
250 MPa, and (σt)yp = 310 MPa. Assumption: The rod and tube are both made of elastoplastic
materials.

Figure P12.11.

Sections 12.7 and 12.8
12.12. A ductile bar (σyp = 350 MPa) of square cross section with sides a = 12 mm is subjected to

bending moments M about the z axis at its ends (Fig. P12.12). Determine the magnitude of M at
which (a) yielding impends; (b) the plastic zones at top and bottom of the bar are 2-mm thick.

Figure P12.12.

12.13. A beam of rectangular cross section (width a, depth h) is subjected to bending moments M at
its ends. The beam is constructed of a material displaying the stress–strain relationship shown
in Fig. P12.13. What value of M can be carried by the beam?

Figure P12.13.

12.14. A perfectly plastic beam is supported as shown in Fig. P12.14. Determine the maximum
deflection at the start of yielding.

Figure P12.14.



12.15. Figure P12.15 shows the cross section of a rectangular beam made of mild steel with σyp =
240 MPa. For bending about the z axis, find (a) the yield moment; (b) the moment producing a
e = 20-mm-thick plastic zone at the top and bottom of the beam. Given: b = 60 mm and h = 40
mm.

Figure P12.15.

12.16. A steel rectangular beam, the cross section shown in Fig. P12.15, is subjected to a moment
about the z axis 1.3 times greater than M. Calculate (a) the distance from the neutral axis to the
point at which elastic core ends, e; (b) the residual stress pattern following release of loading.

12.17. A singly symmetric aluminum beam has the cross section shown in Fig. P12.17. (Dimensions
are in millimeters.) Determine the ultimate moment Mu. Assumption: The aluminum is to be
elastoplastic with a yield stress of σyp = 260 MPa.

Figure P12.17.

12.18 and 12.19. Find the shape factor f for an elastoplastic beam of the cross sections shown in
Figs. P12.18 and P12.19 (Refer to Table C.1).

Figure P12.18.

Figure P12.19.



12.20. A rectangular beam with b = 70 mm and h = 120 mm (Fig. P12.15) is subjected to an
ultimate moment Mu. Knowing that σyp = 250 MPa for this beam of ductile material, determine
the residual stresses at the upper and lower faces if the loading has been removed.

12.21. Consider a uniform bar of solid circular cross section with radius r, subjected to axial
tension and bending moments at both ends. Derive general relationships involving N and M
that govern, first, the case of initial yielding and, then, fully plastic deformation. Sketch the
interaction curves.

12.22. Figure P12.22 shows a hook made of steel with σyp = 280 MPa, equal in tension and
compression. What load P results in complete plastic deformation in section A–B? Neglect the
effect of curvature on the stress distribution.

Figure P12.22.

12.23. A propped cantilever beam made of ductile material is loaded as shown in Fig. P12.23.
What are the values of the collapse load pu and the distance x?

Figure P12.23.

12.24. Obtain the interaction curves for the beam cross section shown in Fig. 12.14a. The beam is
subjected to a bending moment M and an axial load N at both ends. Take b = 2h, b1 = 1.8h, and
h1 = 0.7h.

12.25. Obtain the collapse load of the structure shown in Fig. P12.25. Assume that plastic hinges
form at 1, 3, and 4.

Figure P12.25.



12.26. What is the collapse load of the beam shown in Fig. P12.26? Assume two possible modes of
collapse such that plastic hinges form at 2, 3, and 4.

Figure P12.26.

12.27. A propped cantilever beam AB, made of ductile material, supports a uniform load of intensity
p (Fig. P12.27). What is the ultimate limit load pu?

Figure P12.27.

12.28. Figure P12.28 shows two beam cross sections. Determine Mu/Myp for each case.

Figure P12.28.

Sections 12.9 through 12.14
12.29. Figure 12.24 shows a circular elastoplastic shaft with yield strength in shear τyp, shear

modulus of elasticity G, diameter d, and length L. The shaft is twisted until the maximum
shearing strain equals 6000μ. Determine (a) the magnitude of the corresponding angle of twist
φ; (b) the value of the applied torque T. Given: L = 0.5 m, d = 60 mm, G = 70 GPa, and τyp =
180 MPa.

12.30. A circular shaft of diameter d and length L is subjected to a torque of T, as shown in Fig.
12.24. The shaft is made of 6061-T6 aluminum alloy (see Table D.1), which is assumed to be
elastoplastic. Find (a) the radius of the elastic core ρ0; (b) the angle of twist φ. Given: d = 25
mm, L = 1.2 m, and T = 4.5 kN · m.

12.31. The fixed-ended shaft illustrated in Fig. P12.31 is made of an elastoplastic material for
which the shear modulus of elasticity is G and the yield stress in shear is τyp. Find the
magnitude of the applied torque T. Assumption: The angle of twist at step C is φyp = 0.25 rad.



Given: a = 2 m, b = 1.5 m, d1 = 80 mm, d2 = 50 mm, G = 80 MPa, and τyp = 240 MPa.
Figure P12.31.

12.32. Determine the elastic–plastic stresses in a rotating solid disk.
12.33. For a rectangular bar of sides a and b, determine the ultimate torque corresponding to the

fully plastic state (Table 12.1). Use the sand hill analogy.
12.34. For an equilateral triangular bar of sides 2a, determine (a) the ultimate torque corresponding

to the fully plastic state (Table 12.1) (use the sand hill analogy) and (b) the maximum elastic
torque by referring to Table 6.2. (c) Compare the results found in (a) and (b).

12.35. An annular disk of equilateral hyperbolic profile with outer and inner radii b and a (Fig.
8.13) is shrunk onto a solid shaft so that the interfacial pressure is pi. Demonstrate that,
according to the Tresca yield criterion, when the disk becomes fully plastic,

(P12.35)

Here σyp is the yield point stress and r represents any arbitrary radius.

12.36. Consider a thin-walled cylinder of original radius ro, subjected to internal pressure p.
Determine the value of the required original thickness at instability employing Hencky’s
relations. Use the following:

12.37. Redo Example 12.13 for the cylinder under uniform axial tensile load P and p = 0.
12.38. A thin-walled tube of original thickness to and outer radius Ro just fits over a rigid rod of

radius ro. Employ the Lévy–Mises relations to verify that the axial load the tube can sustain
before instability occurs is represented by

(P12.38)

Assume the tube–rod interface to be frictionless. Use σ = Kεn as the true stress–true strain
relationship of the tube material in simple tension.

12.39. A thick-walled cylinder (σyp = 250 MPa) of inner radius a = 50 mm is subjected to an
internal pressure of pi = 60 MPa. Determine the outer radius b such as to provide (a) a factor
of safety n = 2.5 against yielding; (b) a factor of safety n = 3 against ultimate collapse based
on maximum shearing stress theory of failure.

12.40. A thick-walled cylinder has an inner radius a and outer radius b = 2a. What is the internal



pressure at which the elastic–plastic boundary is at r = 1.4a, based on maximum energy of
distortion criterion? Let σyp = 260 MPa.

12.41. Consider a perfectly plastic pipe (σyp = 420 MPa) having an outer radius of 60 mm and inner
radius of 50 mm. Determine the maximum internal pressures at the onset of yielding and for
complete yielding on the basis of a factor of safety n = 3 and the following theories of failure:
(a) maximum shearing stress and (b) maximum energy of distortion.

12.42. A perfectly plastic, closed-ended cylinder is under internal pressure p (Fig. 12.29a).
Applying the maximum shearing stress criterion of failure, calculate the residual stress
components at r = 0.25 m when the cylinder is unloaded from pu. Use a = 0.2 m, b = 0.3 m,
and σyp = 400 MPa.

12.43. A thick-walled compound cylinder having a = 20 mm, b = 30 mm, and c = 50 mm is
subjected to internal pressure. Material yield strengths are 280 MPa and 400 MPa for inner
and outer cylinders, respectively. Determine the fully plastic pressure on the basis of the
maximum shearing stress criterion of failure.

12.44. A perfectly plastic cylinder for which b/a = 3 is subjected to internal pressure causing
yielding of the material to the mid-depth c = (a + b)/2. In terms of k and σyp, determine (a) the
pressure between the elastic and plastic zones, (b) the radial stress at r = a, and (c) the
tangential stresses at r = b, r = c, and r = a. Note: Relationships derived (Sec. 12.14) depend
on the ratios of the radii rather than on their magnitudes. Accordingly, convenient numbers
such as a = 1, c = 2, and b = 3 may be employed.



Chapter 13. Plates and Shells

13.1 Introduction
This chapter is subdivided into two parts. In Part A, we develop the governing equations and methods
of solution of deflection for rectangular and circular plates. Applications of the energy and finite
element methods for computation of deflection and stress in plates are also included. Membrane
stresses in shells are taken up in Part B. Load-carrying mechanism of a shell, which differs from that
of other elements, is demonstrated first. This is followed with a discussion of stress distribution in
spherical, conical, and cylindrical shells. Thermal stresses in compound cylindrical shells are also
considered.

Part A—Bending of Thin Plates

13.2 Basic Assumptions
Plates and shells are initially flat and curved structural elements, respectively, with thicknesses small
compared with the remaining dimensions. We first consider plates, for which it is usual to divide the
thickness t into equal halves by a plane parallel to the faces. This plane is termed the midsurface of
the plate. The plate thickness is measured in a direction normal to the midsurface at each point under
consideration. Plates of technical significance are often defined as thin when the ratio of the thickness
to the smaller span length is less than 1/20. We here treat the small deflection theory of homogeneous,
uniform thin plates, leaving for the numerical approach of Section 13.10 a discussion of plates of
nonuniform thickness and irregular shape.
Consider now a plate prior to deformation, shown in Fig. 13.1a, in which the xy plane coincides with
the midsurface and hence the z deflection is zero. When, owing to external loading, deformation
occurs, the midsurface at any point xA, yA suffers a deflection w. Referring to the coordinate system
shown, the fundamental assumptions of the small deflection theory of bending for isotropic,
homogeneous, thin plates may be summarized as follows:
1. The deflection of the midsurface is small in comparison with the thickness of the plate. The slope

of the deflected surface is much less than unity.
2. Straight lines initially normal to the midsurface remain straight and normal to that surface

subsequent to bending. This is equivalent to stating that the vertical shear strains γxz and γyz are
negligible. The deflection of the plate is thus associated principally with bending strains, with the
implication that the normal strain εz owing to vertical loading may also be neglected.

3. No midsurface straining or in-plane straining, stretching, or contracting occurs as a result of
bending.

4. The component of stress normal to the midsurface, σz, is negligible.

Figure 13.1. Deformation of a plate in bending.



These presuppositions are analogous to those associated with simple bending theory of beams.

13.3 Strain–Curvature Relations
We here develop fundamental relationships between the strains and curvatures of the midsurface of
thin plates. On the basis of assumption 2 stated in the preceding section, the strain–displacement
relations of Eq. (2.4) reduce to

(a)

Integration of εz = ∂w/∂z = 0 yields

(13.1)

indicating that the lateral deflection does not vary throughout the plate thickness. Similarly, integrating
the expressions for γxz and γyz, we obtain

(b)
It is clear that f2(x, y) and f3(x, y) represent, respectively, the values of u and v corresponding to z = 0
(the midsurface). Because assumption 3 precludes such in-plane straining, we conclude that f2 = f3 =
0, and therefore

(13.2)

where ∂w/∂x and ∂w/∂y are the slopes of the midsurface. The expression for u is represented in Fig.



13.1b at section mn passing through arbitrary point A(xA, yA). A similar interpretation applies for v in
the zy plane. It is observed that Eqs. (13.2) are consistent with assumption 2. Combining the first
three equations of (a) with Eq. (13.2), we have

(13.3a)
which provide the strains at any point.
Because in small deflection theory the square of a slope may be regarded as negligible, the partial
derivatives of Eqs. (13.3a) represent the curvatures of the plate (see Eq. 5.7). Therefore, the
curvatures at the midsurface in planes parallel to the xz (Fig. 13.1b), yz, and xy planes are,
respectively,

(13.4)
The foregoing are simply the rates at which the slopes vary over the plate.
In terms of the radii of curvature, the strain–deflection relations (13.3a) may be written

(13.3b)
Examining these equations, we are led to conclude that a circle of curvature can be constructed
similarly to Mohr’s circle of strain. The curvatures therefore transform in the same manner as the
strains. It can be verified by employing Mohr’s circle that (1/rx) + (1/ry) = ∇2w. The sum of the
curvatures in perpendicular directions, called the average curvature, is invariant with respect to
rotation of the coordinate axis. This assertion is valid at any location on the midsurface.

13.4 Stress, Curvature, and Moment Relations
The stress components σx, σy, and τxy = τyx are related to the strains by Hooke’s law, which for a thin
plate becomes



(13.5)

These expressions demonstrate clearly that the stresses vanish at the midsurface and vary linearly
over the thickness of the plate.
The stresses distributed over the side surfaces of the plate, while producing no net force, do result in
bending and twisting moments. These moment resultants per unit length (for example, newtons times
meters divided by meters, or simply newtons) are denoted Mx, My, and Mxy. Referring to Fig. 13.2a,

Figure 13.2. (a) Plate segment in pure bending; (b) positive stresses on an element in the bottom
half of a plate.

Expressions involving My and Mxy = Myx are similarly derived. The bending and twisting moments
per unit length are thus

(13.6)

Introducing into Eq. (13.6) the stresses given by Eqs. (13.5), and taking into account the fact that w =
w(x, y), we obtain



(13.7)

where

(13.8)

is the flexural rigidity of the plate. Note that, if a plate element of unit width were free to expand
sidewise under the given loading, anticlastic curvature would not be prevented; the flexural rigidity
would be Et3/12. The remainder of the plate does not permit this action, however. Because of this, a
plate manifests greater stiffness than a narrow beam by a factor 1/(1 – ν2) or about 10%. Under the
sign convention, a positive moment is one that results in positive stresses in the positive (bottom) half
of the plate (Sec. 1.5), as shown in Fig. 13.2b.
Substitution of z = t/2 into Eq. (13.5), together with the use of Eq. (13.7), provides expressions for
the maximum stress (which occurs on the surface of the plate):

(13.9)

Employing a new set of coordinates in which x′, y′ replaces x, y and z′ = z, we first transform σx, σy,
τxy into σx′, σy′, τx′y′ through the use of Eq. (1.18). These are then substituted into Eq. (13.6) to obtain
the corresponding Mx′, My′, Mx′y′. Examination of Eqs. (13.6) and (13.9) indicates a direct
correspondence between the moments and stresses. It is concluded, therefore, that the equation for
transforming the stresses should be identical with that used for the moments. Mohr’s circle may thus
be applied to moments as well as to stresses.

13.5 Governing Equations of Plate Deflection
Consider now a plate element dx dy subject to a uniformly distributed lateral load per unit area p
(Fig. 13.3). In addition to the moments Mx, My, and Mxy previously discussed, we now find vertical
shearing forces Qx and Qy (force per unit length) acting on the sides of the element. These forces are
related directly to the vertical shearing stresses:

(13.10)

Figure 13.3. Positive moments and shear forces (per unit length) and distributed lateral load



(per unit area) on a plate element.

The sign convention associated with Qx and Qy is identical with that for the shearing stresses τxz and
τyz: A positive shearing force acts on a positive face in the positive z direction (or on a negative face
in the negative z direction). The bending moment sign convention is as previously given. On this
basis, all forces and moments shown in Fig. 13.3 are positive.
It is appropriate to emphasize that while the simple theory of thin plates neglects the effect on bending
of σz, γxz = τxz/G, and γyz = τyz/G (as discussed in Sec. 13.2), the vertical forces Qx and Qy resulting
from τxz and τyz are not negligible. In fact, they are of the same order of magnitude as the lateral
loading and moments.
It is our next task to obtain the equation of equilibrium for an element and eventually to reduce the
system of equations to a single expression involving the deflection w. Referring to Fig. 13.3, we note
that body forces are assumed negligible relative to the surface loading and that no horizontal shear
and normal forces act on the sides of the element. The equilibrium of z-directed forces is governed by

or

(a)
For the equilibrium of moments about the x axis,

from which

(b)

Higher-order terms, such as the moment of p and the moment owing to the change in Qy, have been
neglected. The equilibrium of moments about the y axis yields an expression similar to Eq. (b):



(c)

Equations (b) and (c), when combined with Eq. (13.7), lead to

(13.11)

Finally, substituting Eq. (13.11) into Eq. (a) results in the governing equation of plate theory
(Lagrange, 1811):

(13.12a)
or, in concise form,

(13-12b)

The bending of plates subject to a lateral loading p per unit area thus reduces to a single differential
equation. Determination of w(x, y) relies on the integration of Eq. (13.12) with the constants of
integration dependent on the identification of appropriate boundary conditions. The shearing stresses
τxz and τyz can be readily determined by applying Eqs. (13.11) and (13.10) once w(x, y) is known.
These stresses display a parabolic variation over the thickness of the plate. The maximum shearing
stress, as in the case of a beam of rectangular section, occurs at z = 0:

(13.13)

The key to evaluating all the stresses, employing Eqs. (13.5) or (13.9) and (13.3), is thus the solution
of Eq. (13.12) for w(x, y). As already indicated, τxz and τyz are regarded as small compared with the
remaining plane stresses.

13.6 Boundary Conditions
Solution of the plate equation requires that two boundary conditions be satisfied at each edge. These
may relate to deflection and slope, or to forces and moments, or to some combination. The principal
feature distinguishing the boundary conditions applied to plates from those applied to beams relates
to the existence along the plate edge of twisting moment resultants. These moments, as demonstrated
next, may be replaced by an equivalent vertical force, which when added to the vertical shearing
force produces an effective vertical force.
Consider two successive elements of lengths dy on edge x = a of the plate shown in Fig. 13.4a. On the
right element, a twisting moment Mxy dy acts, while the left element is subject to a moment [Mxy +



(∂Mxy/∂y) dy]dy. In Fig. 13.4b, we observe that these twisting moments have been replaced by
equivalent force couples that produce only local differences in the distribution of stress on the edge x
= a. The stress distribution elsewhere in the plate is unaffected by this substitution. Acting at the left
edge of the right element is an upward directed force Mxy. Adjacent to this force is a downward
directed force Mxy + (∂Mxy/∂y) dy acting at the right edge of the left element. The difference between
these forces (expressed per unit length), ∂Mxy/∂y, may be combined with the transverse shearing
force Qx to produce an effective transverse edge force per unit length, Vx, known as Kirchhoff ’s force
(Fig. 13.4c):

Figure 13.4. Edge effect of twisting moment.

Substitution of Eqs. (13.7) and (13.11) into this leads to

(13.14)

We are now in a position to formulate a variety of commonly encountered situations. Consider first
the conditions that apply along the clamped edge x = a of the rectangular plate with edges parallel to
the x and y axes (Fig. 13.5a). As both the deflection and slope are zero,

(13.15)

Figure 13.5. Various boundary conditions: (a) fixed edge; (b) simple support; (c) free edge.

For the simply supported edge (Fig. 13.5b), the deflection and bending moment are both zero:



(13.16a)

Because the first of these equations implies that along edge x = a, ∂w/∂y = 0 and ∂2w/∂y2 = 0, the
conditions expressed by Eq. (13.16a) may be restated in the following equivalent form:

(13.16b)

For the case of the free edge (Fig. 13.5c), the moment and vertical edge force are zero:

(13.17)

Example 13.1. Simply Supported Plate Strip
Derive the equation describing the deflection of a long and narrow plate, simply supported at
edges y = 0 and y = b (Fig. 13.6). The plate is subjected to nonuniform loading

(a)

Figure 13.6. Example 13.1. A long and narrow simply supported plate.

so that it deforms into a cylindrical surface with its generating line parallel to the x axis. The
constant po thus represents the load intensity along the line passing through y = b/2, parallel to x.

Solution

Because for this situation ∂w/∂x = 0 and ∂2w/∂x∂y = 0, Eq. (13.7) reduces to

(b)

while Eq. (13.12) becomes

(c)
The latter expression is the same as the wide beam equation, and we conclude that the solution



proceeds as in the case of a beam. A wide beam shall, in the context of this chapter, mean a
rectangular plate supported on one edge or on two opposite edges in such a way that these edges
are free to approach one another as deflection occurs.
Substituting Eq. (a) into Eq. (c), integrating, and satisfying the boundary conditions at y = 0 and y
= b, we obtain

(d)

The stresses are now readily determined through application of Eqs. (13.5) or (13.9) and Eq.
(13.13).

13.7 Simply Supported Rectangular Plates
In general, the solution of the plate problem for a geometry as in Fig. 13.7a, with simple supports
along all edges, may be obtained by the application of Fourier series for load and deflection:*

(13.18a)

(13.18b)

Figure 13.7. Simply supported rectangular plate: (a) location of coordinate system for Navier’s
method; (b) deflection of the simply supported plate into half-sine curves of m = 1 and n = 2.

Here pmn and amn represent coefficients to be determined. The problem at hand is described by

(a)

and



(b)

The boundary conditions given are satisfied by Eq. (13.18b), and the coefficients amn must be such as
to satisfy Eq. (a). The solution corresponding to the loading p(x, y) thus requires a determination of
pmn and amn. Let us consider, as an interpretation of Eq. (13.18b), the true deflection surface of the
plate to be the superposition of sinusoidal curves m and n different configurations in the x and y
directions. The coefficients amn of the series are the maximum central coordinates of the sine series,
and the m’s and the n’s mean the number of the half-sine curves in the x and y directions, respectively.
For instance, the terms a a12 sin (πx/a) sin (2πy/b) of the series is shown in Fig. 13.7b. By increasing
the number of terms in the series, the accuracy can be improved.
We proceed by dealing first with a general load configuration, subsequently treating specific
loadings. To determine the coefficients pmn, each side of Eq. (13.18a) is multiplied by

Integrating between the limits 0, a and 0, b yields

Applying the orthogonality relation (10.24) and integrating the right side of the preceding equation,
we obtain

(13.19)
Evaluation of amn in Eq. (13.18b) requires substitution of Eqs. (13.18a) and (13.18b) into Eq. (a),
with the result

This expression must apply for all x and y; we conclude therefore that

(c)

Solving for amn and substituting into Eq. (13.18b), the equation of the deflection surface of a thin plate
is



(13.20)

in which pmn is given by Eq. (13.19).

Example 13.2. Analysis of Uniformly Loaded Rectangular Plate
(a) Determine the deflections and moments in a simply supported rectangular plate of thickness t
(Fig. 13.7a). The plate is subjected to a uniformly distributed load po. (b) Setting a = b, obtain the
deflections, moments, and stresses in the plate.

Solution

a. For this case, p(x, y) = po, and Eq. (13.19) is thus

It is seen that, because pmn = 0 for even values of m and n, they can be taken as odd integers.
Substituting pmn into Eq. (13.20) results in

(13.21)

We know that on physical grounds, the uniformly loaded plate must deflect into a symmetrical
shape. Such a configuration results when m and n are odd. The maximum deflection occurs at x
= a/2, y = b/2. From Eq. (13.21), we thus have

(13.22)

By substituting Eq. (13.21) into Eq. (13.7), the bending moments Mx, My are obtained:

(13.23)

b. For the case of a square plate (setting a = b), substituting ν = 0.3, the first term of Eq. (13.22)
gives

The rapid convergence of Eq. (13.22) is demonstrated by noting that retaining the first four



terms gives the results wmax = 0.0443po(a4/Et3).
The bending moments occurring at the center of the plate are found from Eq. (13.23). Retaining
only the first term, the result is

Mx, max = My, max = 0.0534poa2

while the first four terms yield

Mx, max = My, max = 0.0472poa2

Observe from a comparison of these values that the series given by Eq. (13.23) does not
converge as rapidly as that of Eq. (13.22).

13.8 Axisymmetrically Loaded Circular Plates
The deflection w of a circular plate will manifest dependence on radial position r only if the applied
load and conditions of end restraint are independent of the angle θ. In other words, symmetry in plate
deflection follows from symmetry in applied load. For this case, only radial and tangential moments
Mr and Mθ per unit length and force Qr per unit length act on the circular plate element shown in Fig.
13.8. To derive the fundamental equations of a circular plate, we need only transform the appropriate
formulations of previous sections from Cartesian to polar coordinates.
Figure 13.8. Axisymmetrically loaded circular plate element. (Only shear force and moments on

the positive faces are shown.)

Through the application of the coordinate transformation relationships of Section 3.8, the bending
moments and vertical shear forces are found from Eqs. (13.7) and (13.11) to be Qθ = 0, Mrθ = 0, and

(13.24a)

(13.24b)

(13.24c)

The differential equation describing the surface deflection is obtained from Eq. (13.12) in a similar
fashion:



(13.25a)

where p, as before, represents the load acting per unit of surface area, and D is the plate rigidity. By
introducing the identity

(a)

Eq. (13.25a) assumes the form

(13.25b)
For applied loads varying with radius, p(r), representation (13.25b) is preferred.
The boundary conditions at the edge of the plate of radius a may readily be written by referring to
Eqs. (13.15) to (13.17) and (13.24):

(13.26a)

(13.26b)

(13.26c)

Equation (13.25), together with the boundary conditions, is sufficient to solve the axisymmetrically
loaded circular plate problem.

Example 13.3. Circular Plate with Fixed-Edge
Determine the stress and deflection for a built-in circular plate of radius a subjected to uniformly
distributed loading po (Fig. 13.9).

Figure 13.9. Example 13.3. Uniformly loaded clamped circular plate: (a) top view; (b) front
view.



Solution

The origin of coordinates is located at the center of the plate. The displacement w is obtained by
successive integration of Eq. (13.25b):

or

(b)
where the c’s are constants of integration.
The boundary conditions are

(c)
The terms involving logarithms in Eq. (b) lead to an infinite displacement at the center of the
plate (r = 0) for all values of c1 and c3 except zero; therefore, c1 = c3 = 0. Satisfying the boundary
conditions (c), we find that c2 = –a2/8 and c4 = a4/64. The deflection is then

(13.27)

The maximum deflection occurs at the center of the plate:

Substituting the deflection given by Eq. (13.27) into Eq. (13.24), we have



(13.28)

The extreme values of the moments are found at the center and edge. At the center,

At the edges, Eq. (13.28) yields

Examining these results, it is clear that the maximum stress occurs at the edge:

(13.29)

A similar procedure may be applied to symmetrically loaded circular plates subject to different
end conditions.

13.9 Deflections of Rectangular Plates by the Strain-Energy Method
Based on the assumptions of Section 13.2, for thin plates, stress components σz, τxz, and τyz can be
neglected. Therefore, the strain energy in pure bending of plates, from Eq. (2.52), has the form

(a)

Integration extends over the entire plate volume. For a plate of uniform thickness, this expression
may be written in terms of deflection w, applying Eqs. (13.5) and (13.8), as follows:

(13.30)
Alternatively,

(13.31)

where A is the area of the plate surface.



If the edges of the plate are fixed or simply supported, the second term on the right of Eq. (13.31)
becomes zero [Ref. 13.1]. Hence, the strain energy simplifies to

(13.32)
The work done by the lateral load p is

(13.33)

The potential energy of the system is then

(13.34)

Application of a strain-energy method in calculating deflections of a rectangular plate is illustrated
next.

Example 13.4. Deflection of a Rectangular Plate

Rework Example 13.2 using the Rayleigh–Ritz method.

Solution
From the discussion of Section 13.7, the deflection of the simply supported plate (Fig. 13.7a) can
always be represented in the form of a double trigonometric series given by Eq. (13.18b).
Introducing this series for w and setting p = po, Eq. (13.34) becomes

(b)

Observing the orthogonality relation [Eq. (10.24)], we conclude that, in calculating the first term
of the preceding integral, we need to consider only the squares of the terms of the infinite series
in the parentheses (Prob. 13.19). Hence, integrating Eq. (b), we have

(c)

From the minimizing conditions ∂Π/∂amn = 0, it follows that



(d)

Substitution of these coefficients into Eq. (13.18b) leads to the same expression as given by Eq.
(13.21).

13.10 Finite Element Solution
In this section we present the finite element method (Chapter 7) for computation of deflection, strain,
and stress in a thin plate. For details, see, for example, Refs. 13.3 through 13.6. The plate, in general,
may have any irregular geometry and loading. The derivations are based on the assumptions of small
deformation theory, described in Section 13.2. A triangular plate element ijm coinciding with the xy
plane will be employed as the finite element model (Fig. 13.10). Each nodal displacement of the
element possesses three components: a displacement in the z direction, w; a rotation about the x axis,
θx; and a rotation about the y axis, θy. Positive directions of the rotations are determined by the right-
hand rule, as illustrated in the figure. It is clear that rotations θx and θy represent the slopes of w: ∂w/
∂y and ∂w/∂x, respectively.

Figure 13.10. (a) Positive directions of displacements; (b) triangular finite plate element.

Strain, Stress, and Elasticity Matrices
Referring to Eqs. (13.3), we define, for the finite element analysis, a generalized “strain”-
displacement matrix as follows:

(13.35)

The moment generalized “strain” relationship, from Eq. (13.7), is given in matrix form as

(13.36)
where



(13.37)

The stresses {σ}e and the moments {M}e are related by Eq. (13.9).

Displacement Function
The nodal displacement can be defined, for node i, as follows:

(a)

The element nodal displacements are expressed in terms of submatrices θi, θj, and θm:

(b)
The displacement function {f} = w is assumed to be a modified third-order polynomial of the form

(c)

Note that the number of terms is the same as the number of nodal displacements of the element. This
function satisfies displacement compatibility at interfaces between elements but does not satisfy the
compatibility of slopes at these boundaries. Solutions based on Eq. (c) do, however, yield results of
acceptable accuracy.
The constants a1 through a9 can be evaluated by writing the nine equations involving the values of w
and θ at the nodes:

(13.38a)

or

(13.38b)

Inverting,



(13.39)

It is observed in Eq. (13.38) that the matrix [C] depends on the coordinate dimensions of the nodal
points.
Note that the displacement function may now be written in the usual form of Eq. (7.50) as

(13.40)

in which

(13.41)

Introducing Eq. (c) into Eq. (13.35), we have

(13.42a)
or

(13.42b)

Upon substituting the values of the constants {a} from Eq. (13.39) into (13.42b), we can obtain the
generalized “strain”–displacement matrix in the following common form:

{ε}e = [B]{θ}e = [H][C]–1{θ}e

Thus,

(13.43)

Stiffness Matrix
The element stiffness matrix given by Eq. (7.34), treating the thickness t as a constant within the
element and introducing [B] from Eq. (13.43), becomes

(13.44)

where the matrices [H], [D], and [C]–1 are defined by Eqs. (13.42), (13.37), and (13.38),
respectively. After expansion of the expression under the integral sign, the integrations can be carried
out to obtain the element stiffness matrix.

External Nodal Forces



As in two-dimensional and axisymmetrical problems, the nodal forces due to the distributed surface
loading may also be obtained through the use of Eq. (7.58) or by physical intuition.
The standard finite element method procedure described in Section 7.13 may now be followed to
obtain the unknown displacement, strain, and stress in any element of the plate.

Part B—Membrane Stresses in Thin Shells

13.11 Theories and Behavior of Shells
Structural elements resembling curved plates are referred to as shells. Included among the more
familiar examples of shells are soap bubbles, incandescent lamps, aircraft fuselages, pressure
vessels, and a variety of metal, glass, and plastic containers. As was the case for plates, we limit our
treatment to isotropic, homogeneous, elastic shells having a constant thickness that is small relative to
the remaining dimensions. The surface bisecting the shell thickness is referred to as the midsurface.
To specify the geometry of a shell, we need only know the configuration of the midsurface and the
thickness of the shell at each point. According to the criterion often applied to define a thin shell (for
purposes of technical calculations), the ratio of thickness t to radius of curvature r should be equal to
or less than .
The stress analysis of shells normally embraces two distinct theories. The membrane theory is
limited to moment-free membranes, which often applies to a rather large proportion of the entire
shell. The bending theory or general theory includes the influences of bending and thus enables us to
treat discontinuities in the field of stress occurring in a limited region in the vicinity of a load
application or a structural discontinuity. This method generally involves a membrane solution,
corrected in those areas in which discontinuity effects are pronounced. The principal objective is thus
not the improvement of the membrane solution but the analysis of stresses associated with edge
loading, which cannot be accomplished by the membrane theory alone [Ref. 13.1].
The following assumptions are generally made in the small deflection analysis of thin shells:
1. The ratio of the shell thickness to the radius of curvature of the midsurface is small compared with

unity.
2. Displacements are very small compared with the shell thickness.
3. Straight sections of an element, which are perpendicular to the midsurface, remain perpendicular

and straight to the deformed midsurface subsequent to bending. The implication of this assumption
is that the strains γxz and γyz are negligible. Normal strain, εz, due to transverse loading may also be
omitted.

4. The z-directed stress σz is negligible.

13.12 Simple Membrane Action
As testimony to the fact that the load-carrying mechanism of a shell differs from that of other
elements, we have only to note the extraordinary capacity of an eggshell to withstand normal forces,
despite its thinness and fragility. This contrasts markedly with a similar material in a plate
configuration subjected to lateral loading.
To understand the phenomenon, consider a portion of a spherical shell of radius r and thickness t,
subjected to a uniform pressure p (Fig. 13.11). Denoting by N the normal force per unit length



required to maintain the shell in a state of equilibrium, static equilibrium of vertical forces is
expressed by

or

Figure 13.11. Truncated spherical shell under uniform pressure.

This result is valid anywhere in the shell, because N is observed not to vary with φ. Note that, in
contrast with the case of plates, it is the midsurface that sustains the applied load.
Once again referring to the simple shell shown in Fig. 13.11, we demonstrate that the bending stresses
play an insignificant role in the load-carrying mechanism. On the basis of the symmetry of the shell
and the loading, the stresses (equal at any point) are given by

(a)

Here σn represents the compressive, in-plane stress. The stress normal to the mid-surface is
negligible, and thus the in-plane strain involves only σn:

(b)
The reduced circumference associated with this strain is

2πr′ = 2π(r + rεn)

so
r′ = r(1 + εn)

The change in curvature is therefore

Dropping higher-order terms because of their negligible magnitude and substituting Eq. (b), this
expression becomes



(c)

The bending moment in the shell is determined from the plate equations. Noting that 1/rx and 1/ry in
Eq. (13.7) refer to the change in plate curvatures between the undeformed and deformed conditions,
we see that for the spherical shell under consideration, Δ(1/r) = 1/rx = 1/ry. Therefore, Eq. (13.7)
yields

(d)

and the maximum corresponding stress is

(e)
Comparing σb and σn [Eqs. (e) and (a)], we have

(13.45)

demonstrating that the in-plane or direct stress is very much larger than the bending stress, inasmuch
as t/2r ≪ 1. It may be concluded, therefore, that the applied load is resisted primarily by the in-
plane stressing of the shell.
Although the preceding discussion relates to the simplest shell configuration, the conclusions drawn
with respect to the fundamental mechanism apply to any shape and loading at locations away from the
boundaries or points of concentrated load application. If there are asymmetries in load or geometry,
shearing stresses will exist in addition to the normal and bending stresses.
In the following sections we discuss the membrane theory of two common structures: the shell of
revolution and cylindrical shells.

13.13 Symmetrically Loaded Shells of Revolution
A surface of revolution, such as in Fig. 13.12a, is formed by the rotation of a meridian curve (eo′)
about the OO axis. As shown, a point on the shell is located by coordinates θ, φ, r0. This figure
indicates that the elemental surface abcd is defined by two meridian and two parallel circles. The
planes containing the principal radii of curvature at any point on the surface of the shell are the
meridian plane and a plane perpendicular to it at the point in question. The meridian plane will thus
contain rθ, which is related to side ab. The other principal radius of curvature, rφ, is found in the
perpendicular plane and is therefore related to side bd. Thus, length ab = (rθ sin θ)dθ = r0 dθ, and
length bd = rφ dφ.

Figure 13.12. Diagrams for analysis of symmetrically loaded shells of revolution: (a) geometry
of the shell; (b) membrane forces (per unit length) and distributed loading (per unit area) acting
on a shell element; (c) meridian forces and resultant of the loading acting on a truncated shell.



The condition of symmetry prescribes that no shearing forces act on the element and that the normal
forces Nθ and Nφ per unit length display no variation with θ (Fig. 13.12b). These membrane forces
are also referred to as the tangential or hoop and meridian forces, respectively. The name arises
from the fact that forces of this kind exist in true membranes, such as soap films or thin sheets of
rubber. The externally applied load is represented by the perpendicular components py and pz. We
turn now to a derivation of the equations governing the force equilibrium of the element.

Equations of Equilibrium
To describe equilibrium in the z direction, it is necessary to consider the z components of the external
loading as well as of the forces acting on each edge of the element. The external z-directed load
acting on an element of area (r0 dθ)(rφdφ) is

(a)

The force acting on the top edge of the element is Nφ r0 dθ. Neglecting terms of higher order, the
force acting on the bottom edge is also Nφ r0 dθ. The z component at each edge is then Nφ r0 dθ
sin(dφ/2), which may be approximated by Nφ r0 dθ dφ/2, leading to a resultant for both edges of

(b)
The force on each side of the element is Nθrφ dφ. The radial resultant for both such forces is (Nθ rφ
dφ)dθ, having a z-directed component

(c)

Adding the z forces, equating to zero, and canceling dθ dφ, we obtain



Nφr0 + Nθrφ sin φ + pzr0rφ = 0

Dividing by r0rφ and replacing r0 by rθ sin φ, this expression is converted to the following form:

(13.46a)

Similarly, an equation for the y equilibrium of the element of the shell may also be derived. But
instead of solving the z and y equilibrium equations simultaneously, it is more convenient to obtain Nφ
from the equilibrium of the portion of the shell corresponding to the angle φ (Fig. 13.12c):

(13.46b)
Then calculate Nθ from Eq. (13.46a). Here F represents the resultant of all external loading acting on
the portion of the shell.

Conditions of Compatibility
For the axisymmetrical shells considered, owing to their freedom of motion in the z direction, strains
are produced such as to assure consistency with the field of stress. These strains are compatible with
one another. It is clear that, when a shell is subjected to concentrated surface loadings or is
constrained at its boundaries, membrane theory cannot satisfy the conditions on deformation
everywhere. In such cases, however, the departure from membrane behavior is limited to a narrow
zone in the vicinity of the boundary or the loading. Membrane theory remains valid for the major
portion of the shell, but the complete solution can be obtained only through application of bending
theory.

13.14 Some Common Cases of Shells of Revolution
The membrane stresses in any particular axisymmetrically loaded shell in the form of a surface of
revolution may be obtained readily from Eqs. (13.46). Treated next are three common structural
members. It is interesting to note that, for the circular cylinder and the cone, the meridian is a straight
line.

Spherical Shell (Fig. 13.13a)
We need only set the mean radius r = rθ = rφ and hence r0 = r sin φ. Equations (13.46) then become

(13.47)

Figure 13.13. Typical shells of revolution: (a) spherical shells; (b) conical shell under uniform
pressure; (c) cylindrical shell.



Example 13.6 illustrates an application of this equation.
The simplest case is that of a spherical shell subjected to internal pressure p. We now have p = –pz, φ
= 90°, and F = –πr2p. As is evident from the symmetry of a spherical shell, Nφ = Nθ = N. These
quantities, introduced into Eqs. (13.47), lead to the membrane stress in a spherical pressure vessel:

(13.48)

where t is the thickness of the shell. Clearly, this equation represents uniform stresses in all directions
of a pressurized sphere.

Conical Shell (Fig. 13.13b)
We need only set rφ = ∞ in Eq. (13.46a). This, together with Eq. (13.46b), provides the following
pair of equations for determining the membrane forces under uniformly distributed load pz = pr:

(13.49)

Here x represents the direction of the generator. The hoop and meridian stresses in a conical shell are
found by dividing Nθ and Nx by t, wherein t is the thickness of the shell.

Circular Cylindrical Shell (Fig. 13.13c)
To determine the membrane forces in a circular cylindrical shell, we begin with the cone equations,
setting φ = π/2, pz = pr, and mean radius r = r0 = constant. Equations (13.49) are therefore

(13.50)
Here x represents the axial direction of the cylinder.

For a closed-ended cylindrical vessel under internal pressure, p = –pr and F = –πr2p. The preceding
equations then result in the membrane stresses:



(13.51)

Here t is the thickness of the shell. Because of its direction, σθ is called the tangential,
circumferential, or hoop stress; similarly, σx is the axial or the longitudinal stress. Note that for
thin-walled cylindrical pressure vessels, σθ = 2σx. From Hooke’s law, the radial extension ∂ of the
cylinder, under the action of tangential and axial stresses σθ and σx, is

(13.52)

where E and ν represent modulus of elasticity and Poisson’s ratio.
Observe that tangential stresses in the sphere are half the magnitude of the tangential stresses in the
cylinder. Thus, a sphere is an optimum shape for an internally pressurized closed vessel.

Example 13.5. Compressed Air Tank
A steel cylindrical vessel with hemispherical ends or so-called heads, supported by two cradles
(Fig. 13.14), contains air at a pressure of p. Calculate (a) the stresses in the tank if each portion
has the same mean radius r and the thickness t; (b) radial extension of the cylinder. Given: r = 0.5
m, t = 10 mm, p = 1.5 MPa, E = 200 GPa, and ν = 0.3. Assumptions: One of the cradles is
designed so that it does not exert any axial force on the vessel; the cradles act as simple supports.
The weight of the tank may be disregarded.

Figure 13.14. Example 13.5. Cylindrical vessel with spherical ends.

Solution

a. The axial stress in the cylinder and the tangential stresses in the spherical heads are the same.
Referring to Eqs. (13.51), we write

The tangential stress in the cylinder is therefore

b. Through the use of Eq. (13.52), we have

Comment



The largest radial stress, occurring on the surface of the tank, σr = p, is negligibly small compared
with the tangential and axial stresses. The state of stress in the wall of a thin-walled vessel is thus
taken to be biaxial.

Example 13.6. Hemispherical Dome
Derive expressions for the stress resultants in a hemispherical dome of radius a and thickness t,
loaded only by its own weight, p per unit area (Fig. 13.15).

Figure 13.15. Example 13.6. Simply supported hemispherical dome carries its own weight.

Solution

The weight of that portion of the dome intercepted by φ is

In addition,
pz = p cos φ

Substituting into Eqs. (13.46) for pz and F, we obtain

(13.53)

where the negative signs indicate compression. It is clear that Nφ is always compressive. The
sign of Nθ, on the other hand, depends on φ. From the second expression, when Nθ = 0, φ =
51°50′. For φ smaller than this value, Nθ is compressive. For φ > 51°50′, Nθ is tensile.

13.15 Thermal Stresses in Compound Cylinders
This section provides the basis for design of composite or compound multishell cylinders,
constructed of a number of concentric, thin-walled shells. In the development that follows, each
component shell is assumed homogeneous and isotropic. Each may have a different thickness and
different material properties and be subjected to different uniform or variable temperature
differentials [Refs. 13.7 and 13.8].
In the case of a free-edged multishell cylinder undergoing a uniform temperature change ΔT, the free



motion of any shell having different material properties is restricted by components adjacent to it.
Only a tangential or hoop stress σθ and corresponding strain εθ are then produced in the cylinder
walls. Through the use of Eqs. (3.26a), with σy = σθ, εy = εθ, and T = ΔT, we write

(13.54)
where α is the coefficient of thermal expansion. In a cylinder subjected to a temperature gradient,
both axial and hoop stresses occur, and σx = σθ = σ. Hence, Eq. (3.26b) leads to

(13.55)

Let us consider a compound cylinder consisting of three components, each under different temperature
gradients (the ΔTs), as depicted in Fig. 13.16. Applying Eq. (13.55), the stresses may be expressed in
the following form:

(13.56a-f)

Figure 13.16. Compound cylinder under a uniform temperature change.

Here the subscripts a, b, and c refer to individual shells.
The axial forces corresponding to each layer are next determined from the stresses given by Eqs.
(13.56) as

(a)

in which the A’s are the cross-sectional area of each component. The condition that the sum of the



axial forces be equal to zero is satisfied when

(b)
Equations (13.56) together with Eqs. (a) and (b), for the case in which νa = νb = νc, lead to the
following expression for the tangential strain:

(13.57)

Here the quantities (ΔT)a, (ΔT)b, and (ΔT)c represent the average of the temperature differentials at

the boundaries of elements a, b, and c, respectively, for instance, . The stresses
at the inner and outer surfaces of each shell may be obtained readily on carrying Eq. (13.57) into Eqs.
(13.56).
A final point to be noted is that near the ends there will often be some bending of the composite
cylinder, and the total thermal stresses will be obtained by superimposing on Eqs. (13.56) such
stresses as may be necessary to satisfy the boundary conditions [Ref. 13.1].

Example 13.7. Brass-Steel Cylinder

The cylindrical part of a jet nozzle is made by just slipping a steel tube over a brass tube with
each shell uniformly heated and the temperature raised by ΔT (Figure 13.17). Determine the hoop
stress that develops in each component on cooling. Assumptions: Coefficient of thermal
expansion of the brass is larger than that of steel (see Table D.1). Each tube is a thin-walled shell
with a mean radius of r.

Figure 13.17. Example 13.7. Two-layer compound cylinder.

Solution

For the condition described, the composite cylinder is contracting. Equation (13.54) is therefore

(13.58)

from which



(13.59)

We have Ab = 2πrtb and As = 2πrts, in which tb and ts represent the wall thickness of the brass and
steel tubes, respectively. Hoop strain, referring to Eqs. (13.57) and (13.59), is written as

(13.60)

Finally, hoop stresses, through the use of Eqs. (13.58) and (13.60) and after simplification, are
determined as follows:

(13.61)

(13.62)

Comment

Observe that the stresses in the brass and steel tubes are tensile and compressive, respectively,
since αb > αs, and ΔT is a negative quantity because of cooling.

13.16 Cylindrical Shells of General Shape
A cylindrical shell generated as a straight line, the generator, moves parallel to itself along a closed
path. Figure 13.18 shows an element isolated from a cylindrical shell of arbitrary cross section. The
element is located by coordinates x (axial) and θ on the cylindrical surface.

Figure 13.18. Membrane forces (per unit length) and distributed axial, radial, and tangential
loads (per unit area) on a cylindrical shell element.

The forces acting on the sides of the element are depicted in the figure. The x and θ components of the
externally applied forces per unit area are denoted px and pθ and are shown to act in the directions of
increasing x and θ (or y). In addition, a radial (or normal) component of the external loading pr acts in
the positive z direction. The following expressions describe the requirements for equilibrium in the x,
θ, and r directions:



Canceling the differential quantities, we obtain the equations of a cylindrical shell:

(13.63)

Given the external loading, Nθ is readily determined from the first equation of (13.63). Following
this, by integrating the second and the third equations, Nxθ and Nx are found:

(13.64)
Here f1(θ) and f2(θ) represent arbitrary functions of integration to be evaluated on the basis of the
boundary conditions. They arise, of course, as a result of the integration of partial derivatives.

Example 13.8. Liquid Tank

Determine the stress resultants in a circular, simply supported tube of thickness t filled to
capacity with a liquid of specific weight γ (Fig. 13.19a).

Figure 13.19. Example 13.8. Cylindrical tube filled with liquid.

Solution

The pressure at any point in the tube equals the weight of a column of unit cross-sectional area of
the liquid at that point. At the arbitrary level mn (Fig. 13.19b), the outward pressure is –γa(1 –
cos θ), where the pressure is positive radially inward; hence the minus sign. Then



(a)

Substituting the foregoing into Eqs. (13.64), we obtain

(b)

The boundary conditions are

(c)
The introduction of Eq. (b) into Eq. (c) leads to

Addition and subtraction of these give, respectively,

(d)

We observe from the second equation of (b) that c in the second equation of (d) represents the
value of the uniform shear load Nxθ at x = 0. This load is zero because the tube is subjected to no
torque; thus c = 0. Then, Eq. (b), together with Eq. (d), provides the solution:

(13-65)
The stresses are determined upon dividing these stress resultants by the shell thickness. It is
observed that the shear Nxθ and the normal force Nx exhibit the same spanwise distribution as do
the shear force and the bending moment of a beam. Their values, as may be readily verified, are
identical with those obtained by application of the beam formulas, Eqs. (5.39) and (5.38),
respectively.



It has been noted that membrane theory cannot, in all cases, provide solutions compatible with the
actual conditions of deformation. This theory also fails to predict the state of stress in certain areas of
the shell. To overcome these shortcomings, bending theory is applied in the case of cylindrical shells,
taking into account the stress resultants such as the types shown in Fig. 13.3 and Nx, Nθ, and Nxθ.
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Problems
Sections 13.1 through 13.10

13.1. A uniform load po acts on a long and narrow rectangular plate with edges at y = 0 and y = b
both clamped (Fig. 13.6). Determine (a) the equation of the surface deflection and (b) the
maximum stress σy at the clamped edge. Use .

13.2. An initially straight steel band 30-mm wide and t = 0.3-mm thick is used to lash together two
drums of radii r = 120 mm (Fig. P13.2). Using E = 200 GPa and ν = 0.3, calculate the
maximum bending strain and maximum stress developed in the band.

Figure P13.2.

13.3. For the plate described in Example 13.1, for po = 20 kN/m2, b = 0.6 m, t = 12 mm, E = 200
GPa, and , calculate the maximum deflection wmax, maximum strain εy, max, maximum
stress σy, max, and the radius of the midsurface.

13.4. A thin rectangular plate is subjected to uniformly distributed bending moments Ma and Mb
applied along edges a and b, respectively. Derive the equations governing the surface



deflection for two cases: (a) Ma ≠ Mb and (b) Ma = –Mb.

13.5. The simply supported rectangular plate shown in Fig. 13.7a is subjected to a distributed load
p given by

Derive an expression for the deflection of the plate in terms of the constants P, a, b, and D.
13.6. A simply supported square plate (a = b) carries the loading

(a) Determine the maximum deflection. (b) Retaining the first two terms of the series
solutions, evaluate the value of po for which the maximum deflection is not to exceed 8 mm.
The following data apply: a = 3 m, t = 25 mm, E = 210 GPa, and ν = 0.3.

13.7. A clamped circular plate of radius a and thickness t is to close a circuit by deflecting 1.5 mm
at the center at a pressure of p = 10 MPa. (Fig. 13.9). What is the required value of t? Take a
= 50 mm, E = 200 GPa, and ν = 0.3.

13.8. A simply supported circular plate of radius a and thickness t is deformed by a moment Mo
uniformly distributed along the edge. Derive an expression for the deflection w as well as for
the maximum radial and tangential stresses.

13.9. Given a simply supported circular plate containing a circular hole (r = b), supported at its
outer edge (r = a) and subjected to uniformly distributed inner edge moments Mo, derive an
expression for the plate deflection.

13.10. A brass flat clamped disk valve of 0.4-m diameter and 20-mm thickness is subjected to a
liquid pressure of 400 kPa (Fig. 13.9). Determine the factor of safety, assuming that failure
occurs in accordance with the maximum shear stress theory. The yield strength of the material
is 100 MPa and .

13.11. A circular plate of radius a is simply supported at its edge and subjected to uniform loading
po. Determine the center point deflection.

13.12. A rectangular aluminum alloy sheet of 6-mm thickness is bent into a circular cylinder with
radius r. Calculate the diameter of the cylinder and the maximum moment developed in the
member if the allowable stress is not to exceed 120 MPa, E = 70 GPa, and ν = 0.3.

13.13. The uniform load p0 acts on a long and narrow rectangular plate with edge y = 0 simply
supported and edge y = b clamped, as depicted in Figure P13.13. Find (a) the equation of the
surface deflection w; (b) the maximum bending stress.

Figure P13.13.

13.14. An approximate expression for the deflection surface of a clamped triangular plate (Figure
P13.14) is given as follows:



(P13.14)

Figure P13.14.

in which c is a constant. (a) Show that Equation P13.14 satisfies the boundary conditions. (b)
Find the approximate maximum plane stress components at points A and B.

13.15. A square instrument panel (Figure P13.15) is under uniformly distributed twisting moment
Mxy = M0 at all four edges. Find an expression for the deflection surface w.

Figure P13.15.

13.16. A cylindrical thick-walled vessel of 0.2-m radius and flat, thin plate head is subjected to all
internal pressure of 1.5 MPa. Calculate (a) the thickness of the cylinder head if the allowable
stress is limited to 135 MPa; (b) the maximum deflection of the cylinder head. Given: E = 200
GPa and ν = 0.3.

13.17. A high-strength, ASTM-A242 steel plate covers a circular opening of diameter d = 2a.
Assumptions: The plate is fixed at its edge and carries a uniform pressure po. Given: E = 200
GPa, σyp = 345 MPa (Table D.1), v = 0.3, t = 10 mm, a = 125 mm. Calculate (a) the pressure
po, and maximum deflection at the onset of yield in the plate; (b) allowable pressure based on
a safety factor of n = 1.2 with respect to yielding of the plate.

13.18. A 500-mm simply supported square aluminum panel of 20-mm thickness is under uniform
pressure po. For E = 70 GPa, ν = 0.3, and σyp = 240 MPa and taking into account only the first
term of the series solution, calculate the limiting value of po that can be applied to the plate
without causing yielding and the maximum deflection w that would be produced when po
reaches its limiting value.

13.19. Verify that integrating Eq. (b) of Section 13.9 results in Eq. (c).
13.20. Apply the Rayleigh–Ritz method to determine the maximum deflection of a simply supported



square plate subjected to a lateral load in the form of a triangular prism (Fig. P13.20).
Figure P13.20.

Sections 13.11 through 13.16
13.21. Consider two pressurized vessels of cylindrical and spherical shapes of mean radius r = 150

mm (Figure 13.13), constructed of 6-mm-thick plastic material. Find the limiting value of the
pressure differential the shells can resist given a maximum stress of 15 MPa.

13.22. A spherical vessel of radius r = 1 m and wall thickness t = 50 mm is submerged in water
having density γ = 9.81 kN/m3. On the basis of a factor of safety of n = 2, calculate the water
depth at which the tangential stress σθ in the sphere would be 30 MPa.

13.23. Figure P13.23 shows a closed-ended cylindrical steel tank of a radius r = 4 m and a height h
= 18 m. The vessel is completely filled with a liquid of density γ = 15 kN/m3 and is subjected
to an additional internal gas pressure of p = 500 kPa. Based on an allowable stress of 180
MPa, calculate the wall thickness needed (a) at the top of the tank; (b) at quarter-height of the
tank; (c) at the bottom of the tank.

Figure P13.23.

13.24. Resolve Prob. 13.23, assuming that the gas pressure is p = 200 kPa.
13.25. A cylinder of 1.2 m in diameter, made of steel with maximum strength σmax = 240 MPa, is

under an internal pressure of p = 1.2 kPa. Calculate the required thickness t of the vessel on
the basis of a factor of safety n = 2.4.

13.26. A pipe for conveying water (density γ = 9.81 kN/m3) to a turbine, called penstock, operates
at a head of 150 m. The pipe has a 0.8-m diameter and a wall thickness of t. Find the minimum
required value of t for a material strength of 120 MPa based on a safety factor of n = 1.8.

13.27. Resolve Prob. 13.26 if the allowable stress is 100 MPa.
13.28. A closed cylindrical tank fabricated of 12-mm-thick plate is under an internal pressure of p =

10 MPa. Calculate (a) the maximum diameter if the maximum shear stress is limited to 35
MPa; (b) the limiting value of tensile stress for the diameter found in part (a).

13.29. Given an internal pressure of 80 kPa, calculate the maximum stress at point A of a football of



uniform skin thickness t = 2 mm (Fig. P13.29).
Figure P13.29.

13.30. For the toroidal shell of Fig. P13.30 subjected to internal pressure p, determine the
membrane forces Nφ and Nθ.

Figure P13.30.

13.31. A toroidal pressure vessel of outer and inner diameters 1 and 0.7 m, respectively, is to be
used to store air at a pressure of 2 MPa. Determine the required minimum thickness of the
vessel if the allowable stress is not to exceed 210 MPa.

13.32. Show that the tangential (circumferential) and longitudinal stresses in a simply supported
conical tank filled with liquid of specific weight γ (Fig. P13.32) are given by

(13.32)

Figure P13.32.

13.33. A simply supported circular cylindrical shell of radius a and length L carries its own weight
p per unit area (that is, px = 0, pθ = –p cos θ, and pr = p sin θ). Determine the membrane
forces. The angle θ is measured from the horizontal axis.

13.34. Redo Example 13.8 for the case in which the ends of the cylinder are fixed.
13.35. An edge-supported conical shell carries its own weight p per unit area and is subjected to an

external pressure pr (Fig. 13.13b). Determine the membrane forces and the maximum stresses



in the shell.



Appendix A. Problem Formulation and Solution

A consistent, systematic procedure is required for solving problems in the mechanics of solids. A
basic method of attack for any analysis problems is to define (or understand) the problem.
Formulation of the problem requires consideration of the physical situations and an idealized
description by the pertinent diagrams that approximate the actual component under consideration. The
following five steps may be helpful in formulation and solution of a problem:
1. Define the problem and state briefly what is given.
2. State consistently what is to be determined.
3. List simplifying assumptions to be made.
4. Apply the appropriate equations to find the unknowns.
5. Comment on the results briefly.
Problem statement should indicate clearly what information is required. Free-body diagrams must be
complete, showing all essential quantities involved. Assumptions or idealizations expand on the
given information to further constrain the problem. For example, one might take the effects of friction
to be disregarded or the weight of the member can be omitted in a particular situation. Solutions must
be based on the principles of mechanics solids, formulas, tables, and diagrams. Comments present the
key aspects of the solution.

Numerical Accuracy
In engineering problems of practical significance, the data are seldom known with an accuracy
greater than 0.2%. Hence, the answers to such problems should not be written with an accuracy
greater than 0.2%. Calculations are often performed by electronic calculators and computers, usually
carrying eight or nine digits. So, the possibility exists that numerical result will be reported to an
accuracy that has no physical meaning. Throughout this book, we usually follow a common
engineering rule to report the final results of calculations:
• Numbers beginning with “1” are recorded to four significant digits.
• All other numbers (that begin with “2” through “9”) are recorded to three significant digits.
Consequently, a force of 18 N, for example, should read 18.00 N, and a force of 56 N should read
56.0 N. Intermediate results, if retained for further calculations, are recorded to many additional
digits to maintain the numerical accuracy. The values of π and trigonometric functions are calculated
to several significant digits (10 or more) within the calculator or computer. We note that, in some
cases, such as when data is read from a graph, fewer significant digits may be recorded. In these
situations, given data are assumed to be accurate to the number of significant digits indicated in the
preceding. Various computational tools that may be used to perform analysis calculations are
discussed in Section 7.16.

Daily Planning
Learning to pay attention to our own internal body clock, or brain cells controlling the timing of our
behavior, and daily planning can help us make the best of our time. A tentative schedule for the
“morning person” who prefers to wake up early and go to sleep early is given in Table A.1 (Ref.



A.1). The “evening person” works late and wakes up late. Most individuals may shift times from one
to another and others combine some characteristics of both.

Table A.1. The Best Time to Do Everything

We note that creativity serves well for open-ended thinking. Rejuvenation is renewing the mind with
activities like reading, art work, and puzzle solving. It is unsuitable to concentrate when the body’s
biological clock changes. During times suitable for problem solving, concentration is the highest for
analysis.

Reference
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Appendix B. Solution of the Stress Cubic Equation

B.1 Principal Stresses
There are many methods in common usage for solving a cubic equation. A simple approach for
dealing with Eq. (1.33) is to find one root, say σ1, by plotting it (σ as abscissa) or by trial and error.
The cubic equation is then factored by dividing by (σp – σ1) to arrive at a quadratic equation. The
remaining roots can be obtained by applying the familiar general solution of a quadratic equation.
This process requires considerable time and algebraic work, however.
What follows is a practical approach for determining the roots-of-stress cubic equation (1.33):

(a)

where

(B.1)
According to the method, expressions that provide direct means for solving both two- and three-
dimensional stress problems are [Refs. B.1 and B.2]

(B.2)

Here the constants are given by

(B.3)

and invariants I1, I2, and I3 are represented in terms of the given stress components by Eqs. (B.1).

The principal stresses found from Eqs. (B.2) are redesignated using numerical subscripts so that σ1 >
σ2 > σ3. This procedure is well adapted to a pocket calculator or digital computer.

B.2 Direction Cosines



The values of the direction cosines of a principal stress are determined through the use of Eqs. (1.31)
and (1.25), as discussed in Section 1.13. That is, substitution of a principal stress, say σ1, into Eqs.
(1.31) results in two independent equations in three unknown direction cosines. From these
expressions, together with , we obtain l1, m1, and n1.

However, instead of solving one second-order and two linear equations simultaneously, the following
simpler approach is preferred. Expressions (1.31) are expressed in matrix form as follows:

The cofactors of the determinant of this matrix on the elements of the first row are

(B.4)
Upon introduction of the notation

(B.5)

the direction cosines are then expressed as

(B.6)

It is clear that Eqs. (B.6) lead to .
Application of Eqs. (B.2) and (B.6) to the sample problem described in Example 1.6 provides some
algebraic exercise. Substitution of the given data into Eqs. (B.1) results in

We then have

Hence, Eqs. (B.2) give

Reordering and redesignating these values,



from which it follows that

and

Thus, Eqs. (B.6) yield

As a check, . Repeating the same procedure for σ2 and σ3, we obtain the
values of direction cosines given in Example 1.6.
A FORTRAN computer program is listed in Table B.1 to expedite the solution for the principal stresses
and associated direction cosines. Input data and output values are also provided. The program was
written and tested on a digital computer. Note that this listing may readily be extended to obtain the
factors of safety according to the various theories of failure (Chap. 4).

Table B.1. FORTRAN Program for Principal Stresses
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Appendix C. Moments of Composite Areas

C.1 Centroid
This appendix is concerned with the geometric properties of cross sections of a member. These plane
area characteristics have special significance in various relationships governing stress and deflection
of beams, columns, and shafts. Geometric properties for most areas encountered in practice are listed
in numerous reference works [Ref. C.1]. Table C.1 presents several typical cases.

Table C.1. Properties of Some Plane Areas

The first step in evaluating the characteristics of a plane area is to locate the centroid of the area.
The centroid is the point in the plane about which the area is equally distributed. For area A shown in
Fig. C.1, the first moments about the x and y axes, respectively, are given by

(C.1)

Figure C.1. Plane area A with centroid C.



These properties are expressed in cubic meters or cubic millimeters in SI units and in cubic feet or
cubic inches in U.S. Customary Units. The centroid of area A is denoted by point C, whose
coordinates  and  satisfy the relations

(C.2)

When an axis possesses an axis of symmetry, the centroid is located on that axis, as the first moment
about an axis of symmetry equals zero. When there are two axes of symmetry, the centroid lies at the
intersection of the two axes. If an area possesses no axes of symmetry but does have a center of
symmetry, the centroid coincides with the center of symmetry.

Example C.1. Centroid of Triangular Area

Determine the ordinate  of the centroid of the triangular area shown in Fig. C.2.
Figure C.2. Example C.1. Triangular area.

Solution
A horizontal element with area of length x and height dy is selected (Fig. C.2). Considering
similar triangles, x = (h – y)b/h, and

The first moment of the area with respect to the x axis is

The second of Eqs. (C.2), with A = bh/2, then yields



(a)

Therefore, the centroidal axis  of the triangular area is located a distance of one-third the
altitude from the base of the triangle.
Similarly, choosing the element of area dA as a vertical strip, it can be shown that the abscissa of
the centroid is  = b/3. The location of the centroid C is shown in the figure.

Frequently, an area can be divided into simple geometric shapes (for example, rectangles, circles,
and triangles) whose areas and centroidal coordinates are known or easily determined. When a
composite area is considered as an assemblage of n elementary shapes, the resultant or total area is
the algebraic sum of the separate areas, and the resultant moment about any axis is the algebraic sum
of the moments of the component areas. Thus, the centroid of a composite area has the coordinates

(C.3)

in which  and  represent the coordinates of the centroids of the component areas Ai(i = 1, 2, ..., n).

In applying formulas (C.3), it is important to sketch the simple geometric forms into which the
composite area is resolved, as shown next.

Example C.2. Centroid of an Angle
Locate the centroid of the angle section depicted in Fig. C.3. The dimensions are given in
millimeters.

Figure C.3. Example C.2. Area consisting of two parts.

Solution

The composite area is divided into two rectangles, A1 and A2, for which the centroids are known
(Fig. C.3). Taking the X,Y axes as reference, Eqs. (C.3) are applied to calculate the coordinates of
the centroid. The computation is conveniently carried out in the following tabular form. Note that
when an area is divided into only two parts, the centroid C of the entire area always lies on the
line connecting the centroids C1 and C2 of the components, as indicated in Fig. C.3.



C.2 Moments of Inertia
We now consider the second moment or moment of inertia of an area (a relative measure of the
manner in which the area is distributed about any axis of interest). The moments of inertia of a plane
area A with respect to the x and y axes, respectively, are defined by the following integrals:

(C.4)
where x and y are the coordinates of the element of area dA (Fig. C.1).
Similarly, the polar moment of inertia of a plane area A with respect to an axis through O
perpendicular to the area is given by

(C.5)

Here ρ is the distance from point O to the element dA, and ρ2 = x2 + y2. The product of inertia of a
plane area A with respect to the x and y axes is defined as

(C.6)

In the foregoing, each element of area dA is multiplied by the product of its coordinates (Fig. C.1).
The product of inertia of an area about any pair of axes is zero when either of the axes is an axis of
symmetry.
From Eqs. (C.4) and (C.5), it is clear that the moments of inertia are always positive quantities
because coordinates x and y are squared. Their dimensions are length raised to the fourth power;
typical units are meters4, millimeters4, and inches4. The dimensions of the product of inertia are the
same as for the moments of inertia; however, the product of inertia can be positive, negative, or zero
depending on the values of the product xy.
The radius of gyration is a distance from a reference axis or a point at which the entire area of a
section may be considered to be concentrated and still possess the same moment of inertia as the
original area. Therefore, the radii of gyration of an area A about the x and y axes and the origin O
(Fig. C.1) are defined as the quantities rx, ry, and ro, respectively:



(C.7)

Substituting Ix, Iy, and Jo from Eqs. (C.7) into Eq. (C.5) results in

(C.8)

The radius of gyration has the dimension of length, expressed in meters.

C.3 Parallel-Axis Theorem
The moment of inertia of an area with respect to any axis is related to the moment of inertia around a
parallel axis through the centroid by the parallel-axis theorem, sometimes called the transfer
formula. It is useful for determining the moment of inertia of an area composed of several simple
shapes.
To develop the parallel-axis theorem, consider the area A depicted in Fig. C.4. Let  and  represent
the centroidal axes of the area, parallel to the axes x and y, respectively. The distances between the
two sets of axes and the origin are dx, dy, and do. The moment of inertia with respect to the x axis is

Figure C.4. Plane area for deriving the parallel-axis theorem.

The first integral on the right side equals the moment of inertia  about the  axis. As y is measured
from the centroid axis , ∫Ay dA is zero. Hence,

(C.9a)
Similarly,

(C.9b)

The parallel-axis theorem is thus stated as follows: The moment of inertia of an area with respect to
any axis is equal to the moment of inertia around a parallel centroidal axis, plus the product of the
area and the square of the distance between the two axes.
In a like manner, a relationship may be developed connecting the polar moment of inertia Jo of an
area about an arbitrary point O and the polar moment of inertia Jc about the centroid of the area (Fig.
C.4):



(C.10)

It can be shown that the product of inertia of an area Ixy with respect to any set of axes is given by the
transfer formula

(C.11)

where  denotes the product of inertia around the centroidal axes. Note that the parallel-axis
theorems, Eqs. (C.9) through (C.11), may be employed only if one of the two axes involved is a
centroidal axis.
For elementary shapes, the integrals appearing in the equations of this and preceding sections can
usually be evaluated easily and the geometric properties of the area thus obtained (Table C.1). Cross-
sectional areas employed in practice can often be broken into a combination of these simple shapes.

Example C.3. Moments of Inertia for a Triangular Area
For the triangular area shown in Fig. C.2, determine (a) the moment of inertia about the  and x
axes and (b) the products of inertia with respect to the  and xy axes.

Solution

The area of a horizontal strip selected is

(a)
and the coordinates are related by

(b)

as already found in Example C.1.
a. Then the moment of inertia about the centroidal  axis is (Fig. C.2)

(c)
Similarly, the moment of inertia with respect to the x axis equals

(d)

This solution may also be obtained by applying the parallel-axis theorem:



where dy =  is the distance between the x and  axes.

b. From considerations of symmetry, the product of inertia of the horizontal strip with respect to
the axes through its own centroid and parallel to the xy axes is zero. Its product of inertia about
the xy axes, using Eq. (C.11), is then

Here  and  are the distances to the centroid of the strip. Referring to Fig. C.2, we have 
 and . Substituting these together with Eqs. (a) and (b) into the preceding

equation, we have

(e)

The transfer formula now yields the product of inertia with respect to the centroidal axes:

Example C.4. Moment of Inertia for a T Section

Determine the moment of inertia of the T section shown in Fig. C.5a around the horizontal axis
passing through its centroid. The dimensions are given in millimeters.

Figure C.5. Example C.4. (a) T section; (b) channel section.

Solution
Location of centroid: The area is divided into component parts A1 and A2 for which the centroids
are known (Fig. C.5a). Because the y axis is an axis of symmetry, , and

Centroidal moment of inertia: Application of the transfer formula to Fig. C.5a results in



Interestingly, the properties of this T section about the centroidal x axis are the same as those of
the channel (Fig. C.5b). Both sections possess an axis of symmetry.

C.4 Principal Moments of Inertia
The moments of inertia of a plane area depend not only on the location of the reference axis but also
on the orientation of the axes about the origin. The variation of these properties with respect to axis
location are governed by the parallel-axis theorem, as described in Section C.3. We now derive the
equations for transformation of the moments and product of inertia at any point of a plane area.
The area shown in Fig C.6 has the moments and product of inertia Ix, Iy, Ixy with respect to the x and y
axes defined by Eqs. (C.4) and (C.6). It is required to determine the moments and product of inertia Ix

′, Iy′, and Ix′y′ about axes x′, y′ making an angle θ with the original x, y axes. The new coordinates of an
element dA can be expressed by projecting x and y onto the rotated axes (Fig. C.6):

(a)

Figure C.6. Rotation of axes.

Then, by definition

Upon substituting Eqs. (C.4) and (C.6), the foregoing becomes

(b)

The moment of inertia Iy′ may be found readily by substituting θ + π/2 for θ in the expression for Ix′.
Similarly, using the definition Ix′y′ = ∫Ax′y′dA, we obtain

(c)

The transformation equations for the moments and product of inertia may be rewritten by introducing



double-angle trigonometric relations in the form

(C.12a)

(C.12b)

(C.12c)

In comparing the expressions here and in Chapter 1, it is observed that moments of inertia (Ix, Iy, Ix′,
Iy′) correspond to the normal stresses (σx, σy, σx′, σy′) the negative of the products of inertia (–Ixy, –Ix

′y′) correspond to the shear stresses (τxy, τx′y′), and the polar moment of inertia (Jo) corresponds to the
sum of the normal stresses (σx + σy). Thus, Mohr’s circle analysis and the characteristics for stress
apply to these properties of area.
The angle θ at which the moment of inertia Ix′ of Eq. (C.12a) assumes an extreme value may be
obtained from the condition dIx′/dθ = 0:

(d)

The foregoing yields

(C.13)

Here θp represents the two values of θ that locate the principal axes about which the principal or
maximum and minimum moments of inertia occur.
When Eq. (C.12c) is compared with Eq. (d), it becomes clear that the product of inertia is zero for the
principal axes. If the origin of axes is located at the centroid of the area, they are referred to as the
centroidal principal axes. It was observed in Section 3.2 that the products of inertia relative to the
axes of symmetry are zero. Thus, an axis of symmetry coincides with a centroidal principal axis.
The principal moments of inertia are determined by introducing the two values of θp into Eq. (C.12a).
The sine and cosine of angles 2θp defined by Eq. (C.13) are

(e)

where . When these expressions are inserted into Eq. (C.12a), we obtain



(C.14)

wherein I1 and I2 denote the maximum and minimum principal moments of inertia, respectively.

Example C.5. Principal Moments of Inertia for Angular Section
Calculate the centroidal principal moments of inertia for the angular section shown in Fig. C.7a.
The dimensions are given in millimeters.

Figure C.7. Example C.5. (a) Angle section; (b) Mohr’s circle for moments of inertia.

Solution

Location of centroid: The x, y axes are the reference axes through the centroid C (Fig. C.7a), the
location of which has already been determined in Example C.2. Again, the area is divided into
rectangles A1 and A2.

Moments of inertia: Applying the parallel-axis theorem, with reference to the x and y axes, we
have

The product of inertia about the xy axes is obtained as described in Section C.3:

Principal moments of inertia: Equation (C.13) yields



Thus, the two values of θp are –35.54° and –125.54°. Using the first of these values, Eq. (C.12a)
results in Ix′ = 1184(104) mm4. The principal moments of inertia are, from Eq. (C.14),

or I1 = Ix′ = 1184(104) mm4 and I2 = Iy′ = 296(104) mm4. The principal axes are indicated in Fig.
C.7a as the x′y′ axes.
The principal moments of inertia may also be determined readily by means of Mohr’s circle,
following a procedure similar to that described in Section 1.10, as shown in Fig. C.7b. Note that
the quantities indicated are expressed in cm4 and the results are obtained analytically from the
geometry of the circle.

Example C.6. General Formulation of Moments of Inertia for Angle Section

Derive general expressions for the centroidal moments and product of inertia for the angle section
shown in Fig. C.7a. Write a computer program for the centroidal principal moments of inertia.

Solution

Using the X, Y axes as reference (Fig. C.7a), Eqs. (C.3) yield

(f)

(g)

The transfer formula (C.9a) results in

(h)

Similarly,

(i)



(j)

For convenience in programming, we employ the notation

and

Equations (h), (i), (j), (C.13), and (C.14) are thus

The required computer program, written in FORTRAN, is presented in Table C.2, along with input
data (from Example C.5) and output values. The program was written and tested on a digital
computer.

Table C.2. FORTRAN Program for Moments of Inertia



Reference
C.1. YOUNG, W. C., Roark’s Formulas for Stress and Strain, 6th ed., McGraw-Hill, New York,

1989, Chap. 5.



Appendix D. Tables and Charts

The properties of materials vary widely depending on numerous factors, including chemical
composition, manufacturing processes, internal defects, temperature, and dimensions of test
specimens. Hence, the approximate values presented in Table D.1 are not necessarily suitable for
specific application. Tabulated data are for reference in solving problems in the text. For details, see,
for example, Refs. D.1 and D.2.
The International System of Units (SI) replaces the U.S. Customary Units, which have long been used
by engineers in this country. The basic quantities in the two systems are as follows:

In the SI system, the acceleration due to gravity near Earth’s surface equals approximately 9.81 m/s2.
A mass of 1 kilogram on Earth’s surface will experience a gravitational force of 9.81 N. Thus, a mass
of 1 kg has, owing to the gravitational force of Earth, a weight of 9.81 N. Interestingly, one newton is
approximately the weight of (or Earth’s gravitional force on) an average apple. Tables D.2 and D.3
contain conversion factors and SI unit prefixes in common usage.

Table D.1. Average Properties of Common Engineering Materialsa (SI Units)



Table D.1. Average Properties of Common Engineering Materialsa (U.S. Customary Units)

Table D.2. Conversion Factors: SI Units to U.S. Customary Units

Table D.3. SI Unit Prefixes



The expressions for deflection and slope for selected members given in Tables D.4 and D.5 are
representative of results found in a number of handbooks [Ref. D.3]. Restrictions on the application
of these formulas include constancy of the flexural rigidity EI, symmetry of the cross section about the
vertical y axis, and the magnitude of displacement v of the beam. In addition, the expressions apply to
beams long in proportion to their depth and not disproportionally wide (see Secs. 5.4 and 5.6). The
stress concentration factors K (Figures D.1 through D.8) were selected from extensive charts found in
Refs. D.4 and D.5.

Table D.4. Deflections and Slopes of Beams



Table D.5. Reactions Deflections of Statically Indeterminate Beams



D.6 Stress Concentration Factors for Bars and Shafts with Fillets, Grooves, and
Holes
Figure D.1. Stress concentration factor K for a filleted bar in axial tension.



Approximate formula , where:

Figure D.2. Stress concentration factor K for a filleted bar in bending.

Approximate formula , where:

Figure D.3. Stress concentration factor K for a notched bar in bending.



Approximate formula , where:

Figure D.4. Stress concentration factor K for a shaft with a shoulder fillet in torsion.

Approximate formula , where:

Figure D.5. Stress concentration factor K for a grooved shaft in axial tension.



Figure D.6. Stress concentration factor K for a grooved shaft in torsion.

Approximate formula , where:

Figure D.7. Stress concentration factor K for a grooved shaft in bending.



Approximate formula , where:

Figure D.8. Stress concentration factor K; A—for a flat bar loaded in tension by a pin through
the transverse hole; B—for a flat bar with a transverse hole in axial tension.
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Answers to Selected Problems

Chapter 1 Analysis of Stress
1.1. P = 4.27 kN
1.4. P = 32.5 kN, θ = 26.56°
1.6. Pall = 38.3 kN

1.8. σx′ = 156 MPa, τx′y′ = –131 MPa

1.10. σx′ = –13.15 MPa, τx′y′ = –15.67 MPa

1.11. F = 67.32 kN/m3

1.14. Fx = Fy = Fz = 0

1.21.
a. σ = 153.3 MPa,
b. σ = 23.1 MPa

1.26.
a. σ1 = 121 MPa, σ = –71 MPa, τmax = 96 MPa

b. σ1 = 200 MPa, σ2 = –50 MPa, τmax = 125 MPa

1.31.
a. σx = 38.68 MPa, σy = 12.12 MPa, τxy = 7 MPa

b. σ1 = 40.41 MPa, σ2 = 10.39 MPa, 

1.34. P = 3πpr2

1.37. τmax = 48 MPa, θp = 29°

1.38. σw = 61.5 MPa, τw = 26.3 MPa

1.42.
a. σ = –0.237τo, τ = 0.347τo

b. σ1 = 3.732τo, σ2 = –0.268τo, 

1.44. σ1 = –σ2 = 51.96 MPa, 

1.46. σ1 = 46.17 MPa, σ2 = 13.83 MPa, 

1.49.
a. σx = 100 MPa, τxy = –30 MPa

b. σ1 = 110 MPa, 

1.53. P = 1069 kN, p = 467 kPa
1.55.



a. σx = 186 MPa,

b. σ1 = 188 MPa, τmax = 101 MPa, 

1.58. p = 494 kPa
1.62. σ1 = 66.06 MPa, l1 = 0.956, m1 = 0.169, n1 = 0.242

1.64. σ1 = 24.747 MPa, σ2 = 8.48 MPa, σ3 = 2.773 MPa, l1 = 0.647, m1 = 0.396, n1 = 0.652

1.69.
a. σ1 = 12.049 MPa, σ2 = –1.521 MPa, σ3 = –4.528 MPa, l1 = 0.618, m1 = 0.533, n1 = 0.577

1.73. σ = 52.25 MPa, τ = 36.56 MPa
1.75.

a. τ13 = 8.288 MPa, τ12 = 6.785 MPa, τ23 = 1.503 MPa

1.79. σoct = 12 MPa, τoct = 9.31 MPa

1.82.
a. σ1 = 108.3 MPa, σ2 = 51.7 MPa, σ3 = –50 MPa, 

1.85. σ = –12.39 MPa, τ = 26.2 MPa, px = 16.81 MPa, py = –3.88 MPa, pz = –23.30 MPa

Chapter 2 Strain and Material Properties
2.4. c0 = 2a0, c1 = 2(a1 + b0)

2.9.
a. εx = 667 μ, εy = 750 μ, γxy = –1250 μ
b. ε1 = 1335 μ, ε2 = 82 μ, 

2.11. ε1 = 758 μ, ε2 = –808 μ, 

2.13. ΔQB = 0.008 mm, ΔAC = 0.016 mm

2.15.
a. γmax = 200 μ, θs = 45°

b. εx = 350 μ, εy = 250 μ, γxy = –173 μ
2.17. ε1 = –59 μ, ε2 = –1141 μ, 

2.21.
a. J1 = –3 × 10–4, J2 = –44 × 10–8, J3 = 58 × 10–12

b. εx′ = 385 μ
c. ε1 = 598 μ, ε2 = –126 μ, ε3 = –772 μ

d. γmax = 1370 μ
2.28.

a. ΔL = 5.98 mm,



b. Δd = –0.014 mm
2.33.

a. ε1 = 1222 μ, ε2 = 58 μ
b. γmax = 1164 μ,

c. (γmax)t = 1222 μ

2.36. ΔBD = 0.283/E m

2.39. εx = 522 μ, εy = 678 μ, γxy = –1873 μ
2.41. σx = 72 MPa, σy = 88 MPa, σz = 40 MPa, τxy = 16 MPa, τyz = 64 MPa, τxz = 0

2.46. (b) ΔV = –2250 mm3

2.48. σ3: σ2: σ1 = 1 : 1.086:1.171, σ1 = 139.947 MPa, σ2 = 129.757 MPa, σ3 = 119.513 MPa

2.52. εx = γ(a – x)/E, εy = –vεx, σx = γ(a – x), γxy = τxy = σy = 0. Yes.

2.55. U1 = P2L/2EA, U2 = 5U1/8, U3 = 5U1/12

2.61.
a. U = 60.981T2a/πd4G,
b. U = 2.831 kN · m

2.67. Uov = 3.258 kPa, Uod = 38.01 kPa

2.69. 

Chapter 3 Problems in Elasticity
3.1.

3.2.

3.14. All conditions, except on edge x = L, are satisfied.
3.16.

3.19. Yes, ε1 = 32.8 μ, 

3.20. σx = σy = EαT1/(v – 1), εz = 2vαT1/(1 – v) + αT1

3.24. Px = –161.3 kN

3.31.
a. (σx)elast. = P/0.512L, (σx)elem. = P/0.536L



b. (σx)elast. = P/1.48L, (σx)elem. = P/3.464L
3.33.

a. (σ)elast. = 19.43F/L, (σx)elem. = 20.89F/L
(τxy)elast. = 5.21F/L, (τxy)elem. = 2.8F/L

3.38. r = 6.67 mm, d = 26.7 mm
3.42. T = 153.5 N · m
3.47.

a. σ1 = 36.5 MPa,

b. τmax = 16.96 MPa,

c. σoct = 11.3 MPa, τoct = 17.85 MPa

3.49.
a. σc = 1233 MPa,

b. σc = 1959 MPa

3.51. σc = 418 MPa, b = 0.038 mm

3.53. a = 2.994 mm, b = 1.605 mm, σc = 505.2 MPa

3.58. σc = 1014.7 MPa

Chapter 4 Failure Criteria
4.1. Pall = 707 kN

4.3.
a. Yes,
b. No

4.6.
a. σyp = 152.6 MPa,

b. σyp = 134.9 MPa

4.8. t = 8.45 mm
4.9.

a. d = 27.95 mm,
b. d = 36.8 mm

4.11.
a. T = 31.74 kN · m,
b. T = 26.05 kN · m

4.14.
a. R = 932 N,



b. R = 959 N
4.16.

a. p = 6.466 MPa,
b. p = 5.6 MPa

4.22. (b) σ1 = 75 MPa, σ2 = –300 MPa

4.25.
a. τ = σu/2,

b. 
4.30. t = 9.27 mm
4.36. p = 11.11 MPa
4.39. t = 0.973 mm
4.43. Pmax = 18.7 kN

4.46. τmax = 274.3 MPa, φmax = 4.76°

Chapter 5 Bending of Beams
5.4. Mo = 266.8 N · m

5.6.
a. P = 3.6 kN,
b. P = 3.36 kN

5.9.
a. φ = –12.17°,
b. σA = 136.5 MPa

5.10. (b) σx = px3/Lth2,
(c) (σx)elast. = 0.998(σx)elem.

5.13. p = 3.88 kN/m
5.14. P = 9320 N
5.16. (a) σA = 35.3 MPa,

(b) σB = 23.5 MPa
(b) rZ = –205.48 m

5.19.
a. τmax/σmax = h/L,

b. pall = 10.34 kN/m

5.20. P = 15.6 kN
5.24. e = 4R/π



5.28. R = –13pL/32
5.30. v = Mox2(x – L)/4EIL, RB = 3Mo/2L

5.34. P = 1.614 kN
5.35.

a. σmax = –177 MPa,

b. σmax = –176.2 MPa

5.45.
a. σθ = –182.3P,

b. δp = 215.65P/E m

Chapter 6 Torsion of Prismatic Bars
6.2. D = 60.9 mm
6.6. (τmax)B = 130.4 MPa

6.13. T = 1.571 kN · m
6.14.

a. τe > τc;

b. Te > Tc

6.16. T = 256.5 kN · m
6.18. k = Gθ/2a2(b –1)
6.21. θA = aT/2r4G, θB = 2θA

6.23.

6.26. τmax = 76.8 MPa, θ = 0.192 rad/m

6.32.
a. C = 2.1 × 10–7G, τmax = 112,860T

6.33. θ = 0.1617 rad/m
6.35. θ = 2T/9Ga3t
6.37. τmax = 5.279 MPa, θ = 0.0131 rad/m

6.39. τ2 = τ4 = τmax = 50.88 MPa, θ = 0.01914 rad/m

Chapter 7 Numerical Methods
7.3. τB = 0.0107Gθ

7.6. v(L) = 7PL3/32EI
7.10. vmax = 0.01852pL3/EI



7.12. vB = –Pa3/16EI, θA = –Pa2/16EI

7.14. vmax = 1.68182ph4/EI, θmax = –0.02131pL3/EI
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Footnotes

* Historical reviews of mechanics of materials and the theory of elasticity are given in Refs. 1.1 through 1.5.
* Further discussion of uniaxial compression stress is found in Section 11.6, where we take up the classification of columns.
* In this case, the body is not in static equilibrium, and the inertia force terms –ρax, –ρay, and –ρaz (where ax, ay, and az are the
components of acceleration) must be included in the body force components Fx, Fy, and Fz, respectively, in Eqs. (1.14).

* More details and illustrations of these assumptions are given in Chapter 3.
* After Otto Mohr (1835–1918), professor at Dresden Polytechnic. For further details, see Ref. 1.7, for example.

* For a detailed discussion of the elastic properties of various classes of materials, see, for example, Refs. 2.1 and 2.11.
* See, for example, Refs. 2.13 and 2.14.

* See, for example, Refs. 3.8 through 3.14.
* A summary and complete list of publications dealing with contact stress problems are given by Refs. 3.13 through 3.19.

* For further details, see Ref. 4.1 and texts on material science, for example, Refs. 4.2 through 4.4.
* From Ref. 4.14. For further details related to failure criteria for metal fatigue, see Refs. 4.8 and 4.15 through 4.17.

* For a detailed discussion, see Ref. 5.3.

* For an extensive discussion of springs, see Refs. 6.5 and 6.6.

* For a general function , defined in area coordinates, the integral of f over any triangular area A is given by

where α, β, γ are constants.

* Refer, for example, to Ref. 8.2.

* For a detailed presentation of a number of practical problems, see Refs. 9.1 through 9.3.

* For a more rigorous mathematical treatment and an extensive exposition of energy methods, see Refs. 10.1 through 10.8.

* The range of Le/r depends on the material under consideration. In the case of structural steel, for example, long columns are those for
which about Le/r > 100; for intermediate columns, 30 < Le/r < 100, and for short struts, Le/r < 30.

* The specifications of the AISC are given in Ref. 11.5. Similar formulas are available for aluminum and timber columns; see, for
example, Ref. 11.6.
* For a complete discussion of this subject, see Refs. 11.7 through 11.10.

* For a detailed discussion of problems in plasticity, see Refs. 12.1 through 12.3.

* This approach was introduced by Navier in 1820. For details, see Refs. 13.1 and 13.2.
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