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Preface

The market for undergraduate textbooks on quantum mechanics is oversaturated as
one can literally choose from tens, if not hundreds, of different titles, with several
of them being accepted as a standard. Writing yet another textbook on this subject
might appear as a reckless and time-consuming adventure, and whoever got engaged
in it can be rightfully suspected in arrogance and self-aggrandizement. Be that as
it may, after 15 years of teaching an undergraduate quantum mechanics course at
Queens College of the City University of New York, I finally came to realization
that neither I nor my students are particularly happy with the existing standards.
It also occurred to me that my approaches to teaching various topics in quantum
mechanics, along with the lecture notes I have accumulated over these years, could
form the foundation of a textbook that would be different from those I saw on the
market. In many cases, students treat their physics textbooks as a reference source
for formulas and postulates—used to solve problems rather than as actual reading
material. I, on the other hand, dreamed about writing a book that would actually be
read; and in order to achieve that, I have devoted a significant amount of time to the
explanation of the most minute technical details of various technical derivations.
The level of technical detail in the book would ideally allow students to use it
without the need for a lecturer’s explanations, allowing professors to use precious
lecture time on something more productive and fun. But quantum mechanics is not
just about derivations of formulas (though these might be fun, of course, for the
mathematically inclined). The physical content of the derived results is immensely
more important and interesting, if you ask me. Thus, I have included in the text
extensive qualitative discussions of the physical significance of derived formulas
and equations. Finally, to make reading even more enjoyable, I tried to preserve the
informal, colloquial style of my lectures, addressing readers directly and avoiding
the dry, impersonal manner found in too many formal scientific texts.

Most physics textbooks present ideas and concepts without more than a passing
mention of the people who discovered them. Such an approach aims to emphasize
the objectivity of the laws and principles that physics deals with. The essence of
these laws does not depend on the personal traits and ideologies of their discoverers,
which is not always the case in humanities. While I agree that such a cold, formal

ix



x Preface

approach is justified by the objective nature of the laws of physics, I am still not sure
that it is the best way to present the material to students. This approach dehumanizes
physics, preventing people from relating to it on a personal level and seeing physics
as part of the general human experience. In this book, I tried to break out of this
tradition and introduced some personal details about the lives of those scientists
who were responsible for developing quantum theory and changing our views of the
universe along the way. I would like the readers to see that the complex technical and
philosophical ideas in quantum mechanics were generated by mortal human beings
with strengths and weaknesses—that they experienced struggles and made mistakes
for which they had to bear full responsibility. Obviously, it would be impossible to
talk about all these great (and sometimes not so great) men1 in detail. But whenever
possible, I have tried to provide bits and pieces about the personal lives of scientists
whose names appear in the text.

Anyone writing a textbook on such an immense subject as quantum mechanics
always struggles with the question of which topics to include and which to leave out.
There are, of course, some standard concepts that cannot be avoided, but beyond
those, the choice is always a function of the author’s personal predilections. These
predilections led me to include some topics that are not usually covered in under-
graduate textbooks, such as the Heisenberg equations, the transfer-matrix method
for one-dimensional problems, optical transitions in semiconductors, Landau levels,
and the Hall conductivity. At the same time, I left out such popular topics as WKB
and variational methods. The total contents of the book were chosen to satisfy the
needs of a two-semester course for students who have already been exposed to
some quantum ideas in a modern physics course or its equivalent. At the same
time, the book can also be used for a one-semester course. While each instructor
deciding to adopt this book can choose whatever material they prefer for their one-
semester course, my suggestion would be to include Chaps. 1 through 9, as well as
Chaps. 11 and 15, which can be taught almost independently of other chapters of the
book. (While there are some cross-references between these and other chapters, they
shouldn’t impede the student’s or instructor’s ability to get through the arguments.)
Finally, I would like to emphasize that the problems offered for solution by the
students are an integral part of the text and must be treated as such.

Quantum mechanics is one of the ultimate triumphs of the human mind. I enjoyed
writing this book, trying to convey the awesomeness of quantum ideas and of the
people who contributed to their development, and I hope that you will enjoy reading

1Needless to say, at the time of birth of quantum physics, most of the scientists were, indeed, men.
Even more remarkable are achievements of a few women who left their marks on the twentieth-
century physics. Nobel Prize winners Marie and Irene Curie have since become household
names, but other female scientists such as German mathematician Emmy Noether and Austrian-
Swedish experimental physicist Lise Meitner also deserve to be remembered. Unfortunately,
the contributions of Noether, who uncovered the intimate relationship between symmetries and
conservation laws, and Meitner, who together with Otto Hahn discovered the fusion of uranium,
are too advanced for an introductory quantum mechanics book, preventing me from talking about
these scientists in more detail.
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it. While physics students, unlike their brethren from humanity departments, are not
accustomed to actually reading their assigned texts, I would like to encourage you
to overcome the established habits and give this book a chance. Who knows, you
might like it.

New York, NY, USA Lev I. Deych
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Part I
Language and Formalism

of Quantum Mechanics



Chapter 1
Introduction

1.1 The Rise of Quantum Physics and Its Many Oddities

In 1890, Scots-Irish physicist Lord Kelvin (born William Thomson, knighted in
1866 by Queen Victoria for his work on transatlantic telegraph, ennobled in 1892 for
his achievements in thermodynamics, and became the first British scientist elevated
to the House of Lords of the British Parliament) gave his famous speech identifying
only two “clouds” in the clear sky of classical physics. One of them was the problem
of luminous ether undetected in the series of experiments carried out between 1881
and 1887 by Americans Albert Michelson and Edward Morley, and the second
one was the problem of the black-body radiation. Classical physics predicted that
the amount of electromagnetic energy emitted by warm bodies increases with a
decreased wavelength of radiation, making the total emitted energy infinite. This
problem was dubbed an ultraviolet catastrophe by Paul Ehrenfest in 1911. As it
turned out, both these little clouds spelled the end of the classical physics: the first
of them resulted in the special relativity theory, and the solution of the second one
achieved by German Physicist Max Planck laid the first stone in the foundation of
quantum physics.

To explain the radiation of the black bodies, Planck had to introduce unusual
entities—oscillators whose energy cannot be changed continuously, but must be a
multiple of an elementary energy quantum h�, where h D 6:55 � 10�34 J s is a
fundamental constant of nature introduced by Planck and � is the classical frequency
of the oscillator. (This expression is often written as „!, where „ (h-bar) is “the
reduced” Planck’s constant and ! is the angular frequency of the oscillator. Given
that ! D 2��, you can easily find that „ D h=2� .) Using this assumption and the
apparatus of classical statistical physics, Planck has derived his famous formula for
the spectral energy density of the black-body radiation:
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u.�;T/ D 8�h�3

c3
1

exp
�

h�
kBT

�
� 1

; (1.1)

where u.�;T/d� is the energy density of electromagnetic waves with frequencies
within the interval Œ�; � C d��, kB is the Boltzmann constant, and T is the absolute
temperature.1 The original value of the constant h which Planck derived by fitting
his formula to the experimental data turned out to be quite close to the modern value,
which is currently believed to be

h D 6:62607004 � 10�34 J s:

The idea that the energy of a classical particle cannot take an arbitrary continuously
changing value seemed to Planck quite revolutionary, so much so that he refused
to believe that his quantized oscillators are related to any real physical objects,
such as atoms or molecules, thinking of them as of a purely mathematical trick,
which works. It took Einstein’s theory of photoelectric effect (1905), where
Einstein explicitly postulated that electromagnetic energy propagates in the form
of quantized and indivisible portions, his 1907 theory of specific heat in solids, and
other developments, for Planck to finally declare in 1911 that the hypothesis of the
quanta reflects physical reality and marks the beginning of a new era in physics.

From this point on, quantum ideas started rolling down the unsuspected physi-
cists like an avalanche burying underneath the entire classical world of objective
reality and certainty. Or so it seemed. Einstein opened the can of worms by
proposing the notion of light quanta, which introduced into the conscience of
physicists the idea of the wave–particle duality. In 1923 this idea was picked
up by a young French Ph.D. student Louis de Broglie who in his dissertation
suggested that not only light, normally thought to be a wave, can behave as a
stream of particles, but also regular particles—electrons, neutrons, atoms, etc.—
can manifest wavelike properties. He postulated that Einstein’s relations connecting
the wave characteristics of light (frequency, �, and wavelength, �) with its particle’s
characteristics (energy E and momentum p)

E D h� (1.2)

p D h=� (1.3)

1The actual story of this formula and Planck’s contribution to quantum physics is not quite that
simple. First, the ultraviolet catastrophe apparently did not motivate Planck at all as he did not
think that it was an unavoidable logical consequence of classical physics. Second, Planck first
obtained his formula empirically by trying to fit the experimental data and only after that found
a theoretical “explanation” for it. Third, he did not believe that his quantized oscillators represent
real atoms or molecules for quite some time and accepted the reality of energy quantization only
very reluctantly. This story is described in more detail in the article by H. Kragh “Max Planck: the
reluctant revolutionary” published in December 2000 in Physics World.

http://physicsworld.com/cws/article/print/2000/dec/01/max-planck-the-reluctant-revolutionary
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can be reversed and applied to electrons, protons, and other material particles. A
significant difference between light and electrons, of course, is that the latter have
a finite mass and obey a quadratic relation between energy and momentum, E D
p2=2me, where me is the mass of the particle, while the former is characterized by
the linear relation E D pc, where c is the speed of light, following from the relativity
theory for particles with zero rest mass. This difference as you will see later plays a
crucial role in quantum theory.

The revolutionary matter wave idea of de Broglie was confirmed experimentally
short 4 years later, in 1927, by American physicists Clinton Davisson and Lester
Germer working at Bell Labs and independently by British scientist George
Paget Thomson at the University of Aberdeen. Davisson and Germer observed
diffraction of electrons propagating through crystalline nickel, while Thomson
studied electrons propagating through a metal film.2 These achievements resulted
in the 1929 Nobel Prize for de Broglie and the shared 1937 Nobel prize for
Davisson and Thomson. So, if you thought that the quantization of energy was a
revolutionary idea, then the wave–particle dualism must really blow your mind: how
can something be simultaneously a particle (localized, indivisible, countable entity)
and a wave (extended, continuous, arbitrarily divisible excitation of a medium)? To
wrap his mind around this oddity of the quantum world, Danish physicist Niels Bohr
came up with his famed complementarity principle, which essentially states that all
experiments that one can conduct with objects of atomic scale can be divided into
two never-overlapping groups. In the experiments belonging to the first group, the
material objects reveal their particle-like side, and in the experiments of the second
group, they present to the world their wavelike quality, and it is impossible to design
an experiment, in which both sides are manifested together. In the book Evolution of
Physics by L. Infeld and A. Einstein, this principle was presented in the following
way:

But what is light really? Is it a wave or a shower of photons? There seems no likelihood for
forming a consistent description of the phenomena of light by a choice of only one of the
two languages. It seems as though we must use sometimes the one theory and sometimes
the other, while at times we may use either. We are faced with a new kind of difficulty.
We have two contradictory pictures of reality; separately neither of them fully explains the
phenomena of light, but together they do.

Even though this quote refers to the properties of light, it can be repeated almost
verbatim for the quantum description of any atomic object. Bohr’s own formulation
of the complementarity as presented in his famous 1927 lecture at a conference in
the Italian town of Como is somewhat deeper even if more vague when taken out of
the broader context:

any given application of classical concepts precludes the simultaneous use of other classical
concepts which in a different connection are equally necessary for the elucidation of the
phenomena.

2Here is a historical irony for you: George Thomson, who got the Nobel Prize for proving that
electrons are waves, is a son of J.J. Thomson (not to be confused with W. Thomson—Lord Kelvin),
a prominent English physicist, who got the Nobel Prize for proving that an electron is a particle.
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What Bohr is implying here is that by virtue of the macroscopic size of an
observer (that would be us, humans), any measurement is necessarily conducted
by a large macroscopic apparatus, which is supposed to be fully describable by the
laws of classical physics. The results of the measurements, therefore, are interpreted
in terms of classical concepts such as momentum, position, energy, time, etc. Then
the complementarity principle poses that one cannot design a single experiment in
which classical quantities belonging to complementary classes such as momentum
and position, energy and time, etc. can be determined. Thus measuring a position of
a quantum object, i.e., trying to localize it at a point in space and time, reveals
this object’s particle-like characteristics simultaneously destroying any traces of
its wavelike behavior. The most frequently discussed illustration of this idea is
a double-slit interference experiment beautifully analyzed, for instance, in the
famous The Feynman Lectures on Physics, which are now freely available online
at http://www.feynmanlectures.caltech.edu/, and I encourage you to go ahead and
peruse them. The scale disparity between observers and atomic objects is what
makes quantum theory so difficult to “understand”—our vocabulary developed to
reflect the macroscopic world of our own scale fails when we try to apply it to the
world of atoms and electrons. This is how Richard Feynman describes it:

Because atomic behavior is so unlike ordinary experience, it is very difficult to get used
to, and it appears peculiar and mysterious to everyone—both to the novice and to the
experienced physicist. Even the experts do not understand it the way they would like to,
and it is perfectly reasonable that they should not, because all of direct, human experience
and of human intuition applies to large objects. We know how large objects will act, but
things on a small scale just do not act that way. So we have to learn about them in a sort of
abstract or imaginative fashion and not by connection with our direct experience.3

In 1927 Heisenberg found himself locked in the battle of ideas with Austrian
physicist Erwin Schrödinger, the author of the famed Schrödinger equation, who
took the de Broglie matter wave idea close to his heart and introduced a wave
function satisfying a simple differential equation, which he tried to interpret quite
literally as a quantity representing an actual electron smeared over some small but
finite region of space. It differed strongly from Heisenberg’s approach based upon
the idea of “quantum jumps” introduced in Bohr’s model of a hydrogen atom (I
am sure you heard about Bohr’s quantization postulates and his planetary model of
an atom so I do not have to reproduce it here), which he described using abstract
algebraic quantities later found by Heisenberg’s collaborators and compatriots Ernst
Pascual Jordan and Max Born to be matrices. Schrödinger’s interpretation of the
matter waves was very appealing, especially to older physicists, because it preserved
most of the classical world view—continuous evolution of electron’s charge density
in space–time with no incomprehensible discontinuities introduced by quantum
jumps. You might be amused by the following exchange between Schrödinger and
Bohr that took place during Schrödinger’s visit to Copenhagen in October of 1926 4:

3R. Feynman, R. Leighton, M. Sands, Feynman Lectures on Physics, vol. 1, Ch. 37, online edition
available at http://www.feynmanlectures.caltech.edu/.
4Quoted from the book by W. Moore, Schrödinger. Life and Thought (Cambridge University Press,
Cambridge, 1989).

http://www.feynmanlectures.caltech.edu/
http://www.feynmanlectures.caltech.edu/
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Schrödinger: “You surely must understand, Bohr, that the whole idea of quantum jumps
necessarily leads to nonsense. . . . the electron jumps from this orbit to another one and
thereby radiates. Does this transition occur gradually or suddenly? If it occurs gradually,
then the electron must gradually change its rotation frequency and energy. It is not
comprehensible how this can give sharp frequencies for spectral lines. If the transition
occurs suddenly, in a jump so to speak, . . . one must ask how the electron moves in a jump.
Why doesn’t it emit a continuous spectrum? And what laws determine its motion in this
jump?”

Bohr: “Yes, in what you say you are completely right. But that doesn’t prove that there
are no quantum jumps. It only proves that we can’t visualize them, that means that the
pictorial concepts we use to describe the events of everyday life and the experiments of
the old physics do not suffice also to represent the process of a quantum jump. That is not
surprising when one considers that the processes with which we are concerned here cannot
be the subject of direct experience . . . and our concepts do not apply to them”.

Schrödinger: “I do not want to get into a philosophical discussion with you about the
formation of concepts . . . but I should simply like to know what happens in an atom. It’s all
the same to me in what language you talk about it. If there are electrons in atoms, which
are particles, as we have so far supposed, they must also move about in some way. At the
moment, it’s not important to me to describe this motion exactly; but it must at least be
possible to bring out how they behave in a stationary state or in a transition from one state
to another. But one sees from the mathematical formalism of wave or quantum mechanics
that it gives no rational answer to this questions. As soon, however, as we are ready to
change the picture, so as to say that there are no electrons as particles but rather electron
waves or matter waves, everything looks different. We no longer wonder about the sharp
frequencies. The radiation of light becomes as easy to understand as the emission of radio
waves by an antenna. . . ”

Bohr: “No, unfortunately, that is not true. The contradictions do not disappear, they are
simply shifted to another place. . . Think of the Planck radiation law. For the derivation
of this law, it is essential that the energy of the atom have discrete values and change
discontinuously . . . You can’t seriously wish to question the entire foundation of quantum
theory.”

Schrödinger: “Naturally, I do not maintain that all these relations are already completely
understood . . . but I think that the application of thermodynamics to the theory of matter
waves may eventually lead to a good explanation of Planck’s formula”

Bohr: “No, one cannot hope for that. For we have known for 25 years what the Planck
formula means. And also we see the discontinuities, the jumps, quite directly in atomic
phenomena, perhaps on the scintillation screen or in a cloud chamber . . . You can’t simply
wave away these discontinuous phenomena as though they didn’t exist.”

Schrödinger: “If we are still going to have to put up with these damn quantum jumps, I
am sorry that I ever had anything to do with quantum theory.”

Bohr: “But the rest of us are very thankful for it—that you have—and your wave
mechanics in its mathematical clarity and simplicity is a gigantic progress over the previous
form of quantum mechanics.”

By the end of this discussion, Schrödinger fell ill and for a few days had to stay as a
guest in Bohr’s house where Bohr’s wife, Margrethe, was taking care of him. In the
same year Schrödinger wrote:5

My theory was inspired by L de Broglie . . . and by short but incomplete remarks by A
Einstein. . . . No genetic relation whatever with Heisenberg is known to me. I knew of his
theory, of course, but felt discouraged not to say repelled, by the methods of transcendental
algebra, which appeared very difficult to me and by the lack of visualizability.

5E. Schrödinger, On the relationship between the Heisenberg-Born-Jordan quantum mechanics and
mine. Ann. Phys. 70, 734 (1926).
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Heisenberg fully understood the weakness of the matrix theory, writing in his 1925
paper, coauthored with Born and Jordan6:

Admittedly, such a system of quantum-theoretical relations between observable quantities
. . . would labor under the disadvantage that there can be no directly intuitive geometrical
interpretation because the motion of electrons cannot be described in terms of the familiar
concepts of space and time.

The popularity of Schrödinger’s matter waves not only spelled for him purely
scientific troubles as a competing theory but also jeopardized his career: he was
ripe to search for a permanent university position, and fondness of professors in
charge of the academic appointments for Schrödinger’s views created problems for
Heisenberg. Thus, in 1927, Heisenberg undertook concentrated efforts to remedy
the perceived weaknesses of his approach to quantum theory, which resulted in the
celebrated Uncertainty Paper,7 where his now famous uncertainty principle

4x4p � „
2

(1.4)

was shown to be an unavoidable consequence of the inner structure of his quantum
formalism (4x and 4p are loosely defined “uncertainties” of the position and
momentum). An equally important portion of the paper was devoted to expounding
the connections between the formalism and the real world. Heisenberg made a point
to emphasize that in the end the goal of the theory is to predict values of those
quantities, which can be observed by a clearly defined physical process. Considering
operational and physical details of an observation of the coordinate, Heisenberg
showed that it is impossible to carry out such an observation without disturbing the
velocity of the electron, and therefore, such concepts as trajectory or continuous
time dependence of a particle’s coordinate shall have no place in the theory of
the electron’s properties. He illustrated these ideas with a thought experiment
involving observation of an electron using a gamma-ray microscope. The idea of the
experiment is that in order to actually observe (“see”) a position of the electron, one
has to shine light on it and detect the reflected (or scattered if you prefer) rays using
a microscope. The accuracy in measuring the position is limited by the microscope’s
resolution (electron can be anywhere within a region resolved by the microscope),
which is proportional to the wavelength of light: the shorter the wavelength, the
smaller region of space it is able to resolve. Thus to determine the precise position
of the electron, one must use light of a very short wavelength (hence, the gamma-
ray microscope in Heisenberg’s paper). The problem is, however, that light of very
short wavelength has very large momentum (see Eq. 1.3), which it transfers to the
electron changing its momentum by the amount which is inversely proportional to
the wavelength. The precise value of the electron’s new momentum and its direction

6M. Born, W. Heisenberg, P. Jordan, Zeitschr. Phys. 35, 557 (1926).
7W. Heisenberg, The physical content of quantum kinematics and mechanics. Zeitschr. Phys. 43,
172 (1927).
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are completely unknown, and, therefore, trying to improve our knowledge about
electron’s position, we destroy our ability to know its momentum.

Heisenberg’s uncertainty principle and the idea that it is the process of mea-
surement that defines what can be known about the system contributed to Bohr’s
thinking about his complementarity principle. Taken together with the uncertainty
principle and Born’s interpretation of the results of quantum measurements in terms
of probabilities,8 it eventually resulted in the complete mathematical and conceptual
framework of quantum theory known as the Copenhagen interpretation. According
to this interpretation, the observable quantities describing a quantum system do
not have any definite value before they are actually measured and can randomly
take one of the allowed values only after a measurement is performed. The act of
measurement abruptly changes the system bringing it in the state corresponding to
the realized value of the measured quantity.

Not everyone was happy with the Copenhagen interpretation, including one of
the originators of the quantum revolution, Albert Einstein. He couldn’t reconcile
himself with the loss of the classical determinism—the idea that the true laws of
nature must provide us with complete and precise information about all essential
characteristics of material objects and that given the right tools, we can always
experimentally measure them. Einstein wrote to Max Born in 19269:

Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the
real thing. The theory says a lot, but does not really bring us any closer to the secret of the
“old one.” I, at any rate, am convinced that He does not throw dice.

“He” in this context is a direct reference to the Creator, who appears explicitly
in a catchier and better known expression of the same idea recorded in the book
Einstein and the Poet by William Hermann: “God does not play dice with the world.”
Leaving aside the issue of religious beliefs of Einstein, you need to understand
why this particular feature of the quantum theory bothered him that much. After
all, Einstein had no objections to using probability in classical statistical physics
and successfully used probabilistic concepts himself in his work on Brownian
motion. The difference of course comes from the fact that the probabilities in
classical statistical physics reflect the objective lack of information about positions
and velocities of individual molecules, and in the absence of this information, the
language of the distribution functions and probabilities is the best way to deal
with this situation. In the Copenhagen interpretation of quantum mechanics, the
statistical uncertainty was made inherent to the nature of the universe, and Einstein
had difficulty with this idea. For many years, Einstein and Bohr participated in
public discussions and exchanged letters, in which Einstein tried to find a counter-
example to the Copenhagen interpretation and Bohr debunked all of them. These
exchanges between Einstein and Bohr are the finest example of the scientific oral
and epistolary debates.

8M. Born, On the quantum mechanics of collisions. Zeitschr. Phys. 37, 863 (1926).
9Letter to Max Born (4 December 1926); The Born-Einstein Letters (translated by Irene Born)
(Walker and Company, New York, 1971).
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In this book, I will rely on the traditional Copenhagen interpretation of quantum
theory and will present it taking the “bull by the horns”: in spirit of Heisenberg’s
views that only those quantities which can be really observed in a particular set of
experiments shall be used to describe quantum systems, I will start with the abstract
concept of the quantum state defined by a set of such observable quantities. Then I
will place this concept within a mathematical structure of a linear vector space and
will proceed from there. The Schrödinger wave function will appear much later in
the text (as compared to most other undergraduate-level textbooks) as one of many
alternative and equivalent ways of describing the states of quantum systems.

However, before plunging into the depth of the quantum formalism and its
application, I would like to provide you with the historical background on the times
when quantum theory was born. While it will not help you understand the physics
better, it will help you see that advances in physics were not an isolated incident but a
part of a general trend in the movement of humanity toward modernity. You will also
be able to appreciate that people responsible for the birth of quantum theory are not
just abstract great names—they are real people with different views on life, different
political preferences, and moral principles, people forced to make difficult choices
outside of their professional lives and bearing responsibility for their choices.

1.2 Brief Overview of the Historical Background

The history of quantum theory from earlier childhood to maturity covers the time
period between 1900 and 1930 and involves such countries as Germany, Austria,
France, Italy, Denmark, the UK, and the USA. During this time, not only the
facade of classical physics crumbled, but the entire world changed drastically.
It was the time of great upheavals and great discoveries, unendurable misery,
and unbeatable achievements in science, architecture, arts, music, and literature.
The period between 1900 and 1914 was the time of inter-European and even
transcontinental integration (or what we would call now globalization) with free
flow of goods, people, and capital across the borders and the time of liberalization
and democratization, when even monarchic regimes of Germany, Austria-Hungary,
and Russia provided more political rights and more freedom to their citizens. The
liberalization and the growth of wealth that accompanied it were beneficial for
developments in science, arts, music, and literature. Physics was not an exception—
the free travel between countries and free exchange of ideas created fertile ground
for new developments, which included relativity theory and quantum mechanics.

At the same time, the wealth and prosperity weren’t shared by all, and the
socialist ideas started attracting a significant number of followers. The Austro-
Hungarian Empire proved to be the less stable and vulnerable to the rising
nationalism of smaller nations comprising it. On the surface, the everyday life of
people in European countries appeared to follow the normal “business like usual”
path; underneath of this placidity the tensions were rising, especially in the Balkans.
This was the calm before the storm as everything came crushing down on June
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28, 1914, with the assassination of the heir to Austro-Hungarian throne, Archduke
Franz Ferdinand, at the hands of a Serbian teenage nationalist. On July 28 Austria
declared war on Serbia, and on August 1 and 3, Germany declared war on Russia
and France correspondingly and invaded Belgium. On August 4 Britain declared
war on Germany and World War I was in full swing.

In response to the war, the nationalist and militarist fever was rising even
among intellectuals: scientists, artists, and poets. Such prominent German physi-
cists as Nobel Prize winners Max Planck, Philipp Lenard (photoelectric effect),
Walther Nernst (third law of thermodynamics), Wilhelm Roentgen (X-rays), and
Wilhelm Wien (black-body radiation) signed the infamous Manifesto of 93 declaring
unequivocal support of the German occupation of Belgium, the actions known in
history as the Rape of Belgium. The war devastated Europe: 18 million died (11
million military personnel and 7 million civilians), and 23 million were wounded.
This war witnessed the first widespread use of chemical weapons on the battle field,
most effectively by the German Army but also by the Austrians, French, and British.
The chemical terms chlorine and mustard gas became household names.

During the war, not surprisingly, there was a lull in the development of physics in
general and quantum theory in particular as many scientists on all sides participated
in the war efforts. In addition to direct deaths, suffering, and destruction, the war
started a chain of events that led to the even greater horrors of World War II.
The Austrio-Hungarian Empire disintegrated, leaving in its wake a multitude of
smaller countries in Central and Eastern Europe (Austria, Hungary, Yugoslavia,
Czechoslovakia, Poland); the Russian Empire went through the bloody “Bolshevik”
revolution, which gave birth to a cruel totalitarian regime under the guise of the
“Dictatorship of Proletariat.” Germany lost the war and was forced to sign the
harsh Versailles peace treaty. By the terms of the treaty, Germany and her allies
took all responsibility for all the losses and damages during the war, had to pay
heavy reparations, and lost significant territory, especially Alsace-Lorraine, and
output of coalmines of Saar to France, Upper Silesia, Eastern Pomerania, and part
of Eastern Prussia to Poland. The treaty left Germany humiliated and fostered
feelings of resentment and a desire for revenge among large segments of the
German population.

The German Empire disintegrated and was replaced by the weak and ineffective
Weimar Republic, which survived until 1933, when Hitler, newly appointed as
Chancellor, suspended democratic procedures and declared himself Fuhrer of the
Third German Reich. In Germany and to a lesser extent in Austria, the period
of Weimar Republic was the time of high unemployment, hyperinflation, and
intense and often violent political struggles between socialists, liberal democrats,
communists, conservatives, and national socialists. But it was also the time of
unprecedented explosion of creativity in science, architecture, literature, film,
music, and arts. Berlin became a thriving cosmopolitan city, the center of attraction
for artistic and scientific elites. In addition to quantum theory, this time produced
significant advancements in nuclear physics and radioactivity, and engineering, but
also gave rise to eugenics and radical racial theories.
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Fig. 1.1 From back to front and from left to right: Auguste Piccard, Émile Henriot, Paul
Ehrenfest, Édouard Herzen, Théophile de Donder, Erwin Schrödinger, Jules-Émile Verschaffelt,
Wolfgang Pauli, Werner Heisenberg, Ralph Howard Fowler, Léon Brillouin, Peter Debye, Martin
Knudsen, William Lawrence Bragg, Hendrik Anthony Kramers, Paul Dirac, Arthur Compton,
Louis de Broglie, Max Born, Niels Bohr, Irving Langmuir, Max Planck, Marie Skłodowska
Curie, Hendrik Lorentz, Albert Einstein, Paul Langevin, Charles-Eugène Guye, Charles Thomson
Rees Wilson, Owen Willans Richardson

Quantum theory reached its maturity between 1923 and 1930, thanks to the
resumption of international contacts and free flow of information. A big role in
fostering the progress was played by Solvay conferences that took place in Brussels
and financed by Belgian industrialist Ernest Solvay. The first two conferences took
place in 1911 and 1913 and resumed in 1921 after an 8-year interruption due to
the war. These conferences were attended by all the main players in physics and
chemistry of the times. The photograph above (Fig. 1.1) shows the attendees of the
fifth conference that took place in 1927 and was a culmination of a struggle between
Bohr and Einstein’s views on the interpretation of quantum mechanics. Bohr won,
and from that time on, the Copenhagen interpretation dominated physicists thinking
about quantum theory.

By the end of the 1920s, the economic situation in Germany started improving,
but the market crash of 1929 and the start of Great Depression in the USA
interrupted the recovery. The economics of Weimar Republic fell into the abyss
facilitating the rise of Nazis to power in 1933. The intellectual atmosphere in
Germany and Austria had already begun to deteriorate in the beginning of the 1930s
with the rise of the movement for Aryan physics spearheaded by such luminaries
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as Philipp Lenard and Johannes Stark, but after 1933 the situation for German
physicists of Jewish origin became intolerable. Albert Einstein visited the USA in
1933 and never returned; the same year, Max Born was suspended from his position
at the University of Göttingen and immigrated first to England and then to the USA.
Nazis drove away Jewish scientists not only from Germany and Austria but also
from all of Central and Eastern Europe. Here is the incomplete list of the refugee
physicists: Hans Bethe, John von Neumann, Leo Szilard, James Franck, Edward
Teller, Rudolf Peierls, and Klaus Fuchs. Enrico Fermi, whose wife was Jewish, fled
fascist Italy. Ironically, while trying to preserve the racial purity of their science,
Nazis destroyed German predominance in physics (as well as in other areas of
intellectual and artistic pursuit) and made America into a science powerhouse.

Not only physicists of Jewish origin bore the wrath of the Nazis in Germany and
Austria. Erwin Schrödinger, who was known to oppose Nazism, was ordered not
to leave the country after Hitler declared Anschluss (union) between Germany and
Austria in 1938. Luckily, he managed to escape to Italy, from where he moved to the
UK and finally settled in Dublin as the Head of the Institute for Advanced Studies.
During this time, he tried to develop a unified field theory, but his most important
work of this period was the book What Is Life, where he introduced the idea that
complex molecules can contain genetic information. He returned to Vienna in 1956.

However, not all physicists fled, and some even joined the National Socialist
Party. Among the most prominent Nazi physicists was the aforementioned Philipp
Lenard, who contributed to the discovery of photoelectric effect and won the Nobel
Prize in 1905. He was an ardent anti-Semite and dismissed Einstein’s works as
“Jewish science.” Lenard lived through the war and was demoted from his emeritus
position at Heidelberg University in 1945 by Allied forces.

Especially sad is the case of Born’s student and collaborator Pascual Jordan.
He joined the Nazi party in 1933 and even became the member of its SA unit10

and enlisted in Luftwaffe (German Air Force) in 1939. During World War II, he
attempted to interest party officials in various weapon schemes but was deemed
politically unreliable. Indeed, to his honor, he refused to condemn Einstein and
other Jewish physicists. After the war, Wolfgang Pauli interceded on Jordan’s behalf
declaring him rehabilitated. This allowed Jordan to continue his academic career
and even secure a tenured position in 1953. Still, flirting with Nazism costed him
the Nobel Prize, which he would have probably shared with Born.

I also feel obliged to mention that some German physicists who remained in
Germany during the Nazi era, while not actively opposing the regime (which would
be akin to signing a death sentence), still behaved in a very noble way. Arnold
Sommerfeld, who was nominated 84 times for the Nobel Prize, but never won, and
was among the earlier contributors to quantum theory, was an admirer of Einstein
and made special efforts to help his Jewish students and assistants, such as Rudolf
Peierls and Hans Bethe, find employment outside of Germany. Another patriarch

10Sturmabteilung, or SA—the original paramilitary wing of the Nazi party—played a significant
role in Hitler’s rise to power.
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of German science, Otto Hahn, who made significant contributions to physics and
chemistry of radioactivity and won the 1944 Nobel Prize, was an opponent of
national socialism. Einstein wrote that Hahn was “one of the very few who stood
upright and did the best he could in these years of evil.” For instance, he fostered a
longtime collaboration with an Austrian physicist with Jewish roots, Lise Meitner.
In 1938, Hahn helped her escape from Berlin to the Netherlands, giving her his
mother’s diamond ring to bribe the frontier guards if needed. After the war, Hahn
became the founding president of the Max Planck Society in the new Federal
Republic of Germany and one of the most respected citizens of the new country.

Werner Heisenberg, on the other hand, found himself in a very difficult situation.
While not a Nazi, he thought of himself as a German patriot and believed that Hitler
was a necessary evil to save Germany. So, he stayed put during the Nazi period
justifying it by the desire to preserve German physics. He also agreed to lead the
Nazi nuclear program. Obviously, his relationship with former friends became very
strained. It is known that he visited Bohr in 1941 while Denmark was under Nazi
occupation. The content of the meeting remains a mystery, and Bohr refused to
provide his account of what transpired, but the meeting did not go too well and Bohr
was visibly upset. Bohr wrote down his account of the meeting, but it was sealed
in his personal papers by the decision of his family. The mystery of this meeting
inspired an award-winning play Copenhagen by Michael Frayn, and of the film by
the same name, where the role of Heisenberg was played by Daniel Craig (future
James Bond in the last three installations of the series: Casino Royale, Quantum of
Solace, and Skyfall). I personally found Craig very convincing as Heisenberg, even
when he talked about scientific matters. After the war, Heisenberg was cleared of
accusations in Nazi collaboration in the course of the denazification process and
was allowed to continue his scientific career. However, his behavior during the Nazi
time isolated him from other European and American physicists.



Chapter 2
Quantum States

2.1 Classical and Quantum States

The task of any physical theory is to develop the means to predict the results of
the measurements of a physical quantity sometime in the future based upon the
information about the current state of the system under study and knowledge about
interaction of this system with its environment. The term “state” has many different
uses in physics—it is used to describe different states of matter (solids, liquids,
etc.)—in thermodynamics we derive various equations of state, relations between
various thermodynamic parameters. We can also talk about a particular state of a
system, meaning specific values of a set of quantities important for a problem at
hand. In this book I will consider, for the most part, systems consisting of a small
number of particles, placed in a variety of different environments. The states, which
I will be dealing with here, are “mechanical states,” but the precise meaning of this
term depends upon the choice of a conceptual framework, classical or quantum, with
which the problem is approached.

In classical physics a mechanical state is most completely described by specify-
ing coordinates and velocities of the particles at any given time. As Laplace said:

Given for one instant an intelligence which could comprehend all the forces by which nature
is animated and the respective positions of the beings which compose it, if moreover this
intelligence were vast enough to submit these data to analysis, it would embrace in the same
formula both the movements of the largest bodies in the universe and those of the lightest
atom; to it nothing would be uncertain, and the future as the past would be present to its
eyes.

In modern language it means that acting forces and initial coordinates and velocities
determine future positions of all bodies in the universe with any accuracy limited
only by the accuracy of the available experimental and computational instruments.
Mathematically, the evolution of classical states of a single particle is described
by ordinary differential equations of the second order, where given values of
coordinates and velocities form a set of initial conditions necessary to find their
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unique solution. I am ignoring here complications arising in the cases of nonlinear
chaotic dynamics, when a uniquely existing solution becomes unstable with respect
to small variations in initial conditions, so that practical predictability of the
equations of motion is lost. These situations are excluded from consideration in
this book.

Finding states of a classical particle can be significantly simplified if the system
under consideration possesses conserving quantities, called integrals of motion,
such as energy or angular momentum. These quantities do not change in the course
of the time evolution of the system, and, therefore, their values are determined by
the initial conditions. Knowledge of these quantities makes solving the equations
of motion easier: for instance, a differential equation of the second order can be
reduced to the equation of the first order, or a three-dimensional problem can be
converted into its one-dimensional equivalent. At the same time, while simplifying
the technical task of solving equations of motion, the existence of integrals of
motion does not change the fundamental nature of the classical description of the
system.

In a quantum world, we are forced to give up the ability to have complete
knowledge of all desirable parameters (coordinates, velocities, energy, etc.) and,
therefore, have to redefine the meaning of term “state.” To develop the concept of
quantum state, I first introduce the idea of an observable defined as any quantity
whose numerical value can be experimentally measured. The list of possible
observables is essentially the same as the list of classical parameters: it can include
coordinates, momentums, energies, angular momentums, etc. The main difference
between quantum and classical descriptions appears, however, when you recognize
that in the quantum world, according to the complementarity principle discussed
in the Introduction, not all observables can be measured within the same set of
experiments. For instance, reinterpreting the Heisenberg’s uncertainty principle,
you may say that if a system is in a state with precisely known coordinate,
its momentum cannot be prescribed any definite value and vice versa—if the
system is in the state with precisely known momentum, its coordinate remains
completely undefined. However, you can imagine that there might exist more than
one observable, whose values can be found with certainty for the same state of
the system (an obvious example of such observables is three components of the
position vector or three components of the vector of momentum). Such observables,
called mutually consistent, play an important role in quantum theory. The largest set
of such observables is called a complete set of mutually consistent observables.
Mutually consistent observables often correspond to classical integrals of motion
such as energy, angular momentum, etc., which in quantum theory are of much
greater importance than in classical mechanics. The complete set of mutually
consistent observables is all the information which we can have about a quantum
state of a system, and therefore, it seems reasonable to define a quantum state simply
as a collection of values of these observables.

To proceed I need to translate the words into some kind of mathematical formulas
or at least something which looks like mathematical formulas. So, embrace yourself
as I am going to hit you with some heavy formal stuff. Let’s say that the complete
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set of compatible observables contains Nmax elements
˚
q.i/
�
, 1 � i � Nmax: Let q.i/k

represent a k-th value of i-th observable, and let us assume that any given observable
qi can either change continuously or take a discrete set of values. In the former
case, we say that the observable has a continuous spectrum, while in the latter case,
observables are said to have a discrete spectrum. A British scientist Paul Dirac (I will
tell you more about him later in the book), one of the founding fathers of quantum
theory who shared the 1933 Nobel Prize in Physics with Schrödinger, suggested a
rather picturesque and intuitively appealing way of representing a quantum state as

ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
: (2.1)

For now this is just a fancy notation, but as I will continue to develop quantum
formalism, its utility will become more and more apparent. Information contained
in Eq. 2.1 is quite transparent: this expression tells us that if the system is in the state
given by Eq. 2.1 and we measure observable q.i/, the result of the measurement will
be value q.i/k : States, in which at least one of the observables has different values,
are mutually exclusive, in a sense that if you repeat the measurement over and over,
you will never observe two distinct values of the same observable as long as the
measurement is performed on the system in the state described by Eq. 2.1.

The states of the type presented in Eq. 2.1, in which all mutually consistent
observables have definite values, are the simplest, but not the only possible states
of quantum systems. Actually, as you already know, the whole brouhaha about
quantum mechanics and Einstein’s rejection of it was because of the fact that
frequently observables would not have definite values, so that one could not predict
with certainty an outcome of a measurement. If a measurement is performed
on an ensemble of identical systems, all placed in such a state (same for all
systems), different members of the ensemble would generate different outcomes
in an unpredictable manner. A similar situation arises in the case of repeating
measurements on the same system provided it is returned back to its initial state after
each measurement. From a theoretical point of view, states with uncertain outcomes
of a measurement can be described as a linear superposition of the simple states as
discussed in the next section.

2.2 Quantum States and Hilbert Vector Space

2.2.1 Superposition Principle

Experimental evidence of existence of quantum superposition states comes from
observations of interference of electrons or neutrons described in any textbook
dealing with the basic ideas of quantum mechanics. To explain the connection
between interference and superposition, we usually draw on an analogy with
electromagnetic waves, where interference is a result of the addition of two spatially



18 2 Quantum States

overlapping coherent waves. Depending upon the phase difference between the
waves at any particular point in space, one can observe either bright interference
fringes (constructive interference resulting from the phase difference 2�n, where n
is an integer) or dark fringes (destructive interference resulting at points where the
phase difference is .2nC1/�). Thus, the argument goes, the interference of quantum
particles must also result from the superposition of something having wavelike
properties. The particle–wave duality was briefly described in the Introduction, and
it is also discussed in lots of other textbooks including the already quoted The
Feynman Lectures on Physics, so I will not dwell any longer on that. I will, however,
use the existence of quantum interference to justify introducing superposition of the
states defined in Eq. 2.1. While interference experiments provide convincing but
indirect evidence for quantum superposition, recently, superposition states of few
photons and atoms have been observed directly.

Let me assume that a quantum system can be in one of two states jq1i and jq2i
characterized by different values q1 and q2 of some observable, q, with a discrete
spectrum. According to the superposition principle, this system can also be in a state
formed by a linear superposition of these two states:

jsuperpositioni D a1 jq1i C a2 jq2i (2.2)

where a1 and a2 are, in general, complex numbers. Equation 2.2 can be interpreted
verbally by saying that in order to form a superposition state jsuperpositioni, one
must “multiply” each of the states jq1i and jq2i by complex numbers a1 and a2,
respectively, and then “add” the results. The problem here is, of course, that since
we have no idea about the mathematical nature of the object I call “quantum state”
(is it a function, or a number, or some other mathematical object?), I cannot actually
tell you how to perform operations I called multiplication and addition and what
they actually mean (this is why I surrounded “add” and “multiply” by the quotation
marks). Is it possible to make sense of Eq. 2.2 without first assigning some more
concrete mathematical meaning to these “quantum states”? It might surprise you,
but the answer is yes, it is possible, and mathematicians do this all the time. It is not
really necessary to know either the mathematical nature of the state objects or the
meaning of algebraic operations we want to perform with them. All what we need
is to postulate that these objects and operations exist and possess certain properties.
If this sounds too abstract for you, consider this. Modern object-oriented computer
languages such as C++ are based exactly on this idea—they introduce an “object,”
which can be anything (a number, a matrix, a word, a figure), and define various
operations with them such as addition, multiplication, etc. All these operations have
well-defined properties, but their concrete meaning depends upon an object to which
they are applied. Thus, symbol “C” between two numbers means one thing, while
the same symbol between words or matrices mean something completely different,
but it still is the same operation because it has the same basic properties.
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2.2.2 Linear Vector Spaces

I am afraid that now I have to get a bit more abstract with you than you would have
probably liked, but do not get too frustrated about it. After all you probably have
passed a bunch of calculus classes taught by math professors forcing you to learn
proofs of all those theorems of existence and uniqueness. The stuff I am feeding you
here is just small potatoes compared to that. Anyway, I will begin by postulating that
all quantum states can be represented by special objects belonging to a certain class
or “space” defined in such a way that if objects given by Eq. 2.1 belong to this
“space,” then the objects defined by Eq. 2.2 also belong to it. (Note that the word
“space” here has a completely different meaning than in our everyday language or
even in the language of the introductory physics courses and replaces such words as
class or set of objects with special properties.) I will also assume that there exists a
null object j0i such that jqi C j0i D jqi, 0 � jqi D j0i (where 0 in the last expression
is just a number zero unlike j0i, which is used to designate the null state object, and
a dot � means multiplication by a number). I will also postulate a few distributive
and associative properties (ditching the dot � for the sake of compactness and out of
habit) such as

a .jq1i C jq2i/ D a jq1i C a jq2i (2.3)

a1 jqii C a2 jqii D .a1 C a2/ jqii (2.4)

a1 .a2 jqii/ D .a1a2/ jqii (2.5)

which allows carrying out standard algebraic operations with the quantum state
objects.

A familiar example of objects, which possess all the properties specified in
Eqs. 2.2–2.5 provided that the coefficients ai are confined to the set of real numbers,
is given by the usual three-dimensional vectors, such as displacement, or velocity
vectors used in elementary mechanics. All operations used in Eqs. 2.2–2.5 have in
this case specific definitions: multiplication by a number is defined as multiplication
of a vector’s length by a number while keeping its direction intact for positive
coefficients and reversed for negative coefficients, and the addition of vectors is
defined by a triangle or parallelogram rule. It is a matter of simple geometry and
algebra to prove the distributive and associative properties of these operations as
presented in Eqs. 2.3–2.5.

Abstract objects satisfying the abovementioned quantities are also called vectors
and are said to belong to a linear vector space. I will use notation based on Greek
letters such as j˛i, jˇi, etc. to represent generic elements of the vector space (not
necessarily vectors based on values of certain physical observables). Even though
these abstract vectors are quite different from what you are used to calling vectors
in classical mechanics (e.g., they do not point to any direction in our regular
three-dimensional space and can have infinitely many components, represented by
complex numbers), I am going to use some of what you know about regular vectors
to help you infer additional properties of our abstract vector objects.
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For instance, you know that regular three-dimensional vectors can be presented
as a sum of three mutually perpendicular unit vectors, whose directions are
predetermined by an arbitrary choice of three coordinate axes (X, Y , and Z). These
unit vectors form what is called a basis in the three-dimensional space—a set
of vectors which cannot be expressed as linear combinations of one another but
can be used to present any other vector in this space as their linear combination:
A D Axex C Ayey C Azez, where ex; ey; ez are the unit vectors in the direction of
X, Y , and Z axes, respectively. In order to expand the idea of basis to the arbitrary
space of abstract linear vectors, I first have to acquaint you with the concept of
linear independence of vectors. A set of vectors jq1i ; jq2i ; � � � jqNi is called linearly
independent if none of the vectors in the set can be presented as a linear combination
of others. A set of linearly independent vectors is complete if adding any other
distinct vector to the set makes it linearly dependent. The number of linearly
independent vectors in the complete set determines the dimension of the space. This
number does not need to be finite—there are spaces with infinite number of linearly
independent vectors. From the definition of the complete set of linearly independent
vectors, it follows that any other vector in a given space can be presented as their
linear combination:

j˛i D
X

i

ai jqii (2.6)

where summation is over all vectors in the complete set. Such a set of vectors is
called a basis in a given space. Apparently, representation of an arbitrary vector
in the form of Eq. 2.6 is a formal generalization of the physical superposition
principle. I can also identify the set of states characterized by different values
of the complete set of mutually consistent observables with a set of linearly
independent vectors. Indeed, these states are mutually exclusive and correspond to
certain values of the corresponding observables so that they cannot be presented
as a superposition since the superposition generates states with uncertain values of
the corresponding observables. In addition, since I am assuming that I am dealing
with a complete set of consistent observables, I cannot add any more states to the
set, which means that the set is linearly independent and complete, i.e., can be
considered as a basis. Starting with a basis based on the complete set of mutually
consistent observables, I can, in principle, form such linear combinations, which
would remain linearly independent among themselves even though they would not
any longer correspond to definite values of any physical observables. From a purely
mathematical standpoint, this set still forms a basis, so that the choice of the basis is
not unique.

In addition to generalizing the concept of the basis, I can use the example of
three-dimensional geometrical vectors to introduce one more operation involving
vectors. You, of course, know that two three-dimensional vectors can be combined
to form a “dot” or “scalar” product, which plays an important role in physics.
Consider, for instance, the vector of force F and position vector r. Assuming that the
force is constant, you can define its work, W, as the scalar product of the force and
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the position vector: W D F�r. You know how to compute this dot product, actually
you know even two different equivalent ways of doing so. The dot product can be
computed either as

W D jFj jrj cos� (2.7)

where jFj or jrj are magnitudes of the force and of the position vector, while � is
the angle between these two vectors, or as

W D Fxx C Fyy C Fzz (2.8)

where Fx;y;z are components of the force along X, Y , and Z axes of a specified
coordinate system correspondingly, while x, y, and z are corresponding components
of the position vector (or coordinates, if you wish). The magnitudes of the force
and position vectors can be defined via the scalar products of the vectors with
themselves, e.g., jFj D p

F�F. The magnitudes of the vectors and their dot products
possess certain important properties expressed by inequalities listed below:

jAj � 0 (2.9)

jA�Bj � jAj jBj (2.10)

jACBj � jAj C jBj : (2.11)

The first of these inequalities as well as the statement that the equality in it is only
reached for a null vector is quite trivial for regular vectors. Equation 2.10 follows
from the limitation on the values of the cosine function, cos� � 1, and the last of
these inequalities expresses a well-known geometrical fact that the sum of any two
sides of a triangle is always larger than the third side. The equality in this case can
only be reached for degenerate triangles, in which all its sides are aligned along a
single line.

Since the magnitude and the dot product play such an important role in
application of regular vectors, you would be correct to think that it is a clever idea
to introduce the similar operation for the abstract vectors as well. The problem is
that since I do not know what my abstract vectors actually are, I cannot give the
magnitude and the dot product an operational definition (meaning a prescription
how to compute them similar to Eq. 2.7 or 2.8). What I can and will do is to
postulate that these operations exist and define them by requiring that whatever they
are operationally, they must have the same properties as those given in Eqs. 2.9–
2.11. When talking about abstract vectors, however, it is customary to use the term
“norm” instead of the magnitude and “inner product” instead of the dot product.
Notation usually used for the norm of an abstract vector j˛i is k˛k, so that Eq. 2.9
takes the form of

k˛k � 0 (2.12)
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which obviously implies that the norm is necessarily real-valued (as opposed to
complex-valued). However, an attempt at defining the norm as an inner product of
the vector with itself, as well as defining the inner product by simply extending
Eq. 2.8 to an arbitrary number of components, results in a problem.

It turns out that unlike the case of regular three-dimensional vectors, in general it
is not possible to define the inner product using only vectors belonging to the same
vector space. To see why this is so, consider an example of single-column matrices,
k; with N rows (1 � N matrix or a column vector) with complex-valued elements.
Multiplication by a complex number a�k in this case is defined obviously as

a� k � a

2
666664

k1
k2
:::

kN�1
kN

3
777775

D

2
666664

ak1
ak2
:::

akN�1
akN

3
777775

(2.13)

and produces another column vector. The addition of two column vectors kCp is
defined as

k C p �

2
666664

k1
k2
:::

kN�1
kN

3
777775

C

2
666664

p1
p2
:::

pN�1
pN

3
777775

D

2
666664

k1 C p1
k2 C p2
:::

kN�1 C pN�1
kN C pN

3
777775

(2.14)

and also produces a column vector. Obviously, column vectors form a linear space.
Now, in the regular matrix algebra, you can define two types of products, inner
product and outer product, but neither of them can be introduced using only column
vectors. To introduce either of these two operations, you need to combine a column
vector with a row vector (matrix N � 1). Now, if you place the row vector to the
left of the column vector and use regular matrix multiplication rules (row by the
column), you can convert the two vector objects into a number:

�
k1 k2 � � � kN�1 kN

�

2
666664

p1
p2
:::

pN�1
pN

3
777775

D
NX

iD1
kipi: (2.15)

This is the inner product of the row and the column vectors. If you swap the two
objects placing the column to the left of the row, you can generate a N � N matrix
using the following rule:
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2
666664

p1
p2
:::

pN�1
pN

3
777775
�
k1 k2 � � � kN�1 kN

� D

2
6664

p1k1 p1k2 � � � p1kN

p2k1 p2k2 � � � p2kN
:::

: : :
: : :

:::

pNk1 pNk2 � � � pNkN

3
7775 : (2.16)

What you get here is the so-called outer or tensor product of the row and the column
vectors.

The row vectors do not belong to the same vector space as column vectors (you
cannot add a column and a row): they form their own space called adjoint space. In
order to establish a proper relationship between the row space and the column space,
we need to determine how to convert a column vector into a row vector. It appears
that the answer is almost trivial—one can do it using matrix operation known as
transposition, which transforms a column vector k into a respective row vector kT .
However, it is easy to see that by using simple transposition, you will not be able
to generate the inner product and the norm satisfying the conditions presented in
Eq. 2.12. Indeed, generalizing Eq. 2.9, you can try introducing the norm using an
inner product of a row obtained by transposition of the initial column and the column
itself. This procedure will yield

kT � k � �
k1 k2 � � � kN�1 kN

�

2
666664

k1
k2
:::

kN�1
kN

3
777775

D
NX

iD1
.ki/

2: (2.17)

If ki are complex-valued quantities, the result of this multiplication is not necessarily
real-valued in clear contradiction with the required property of the norm. The
problem, however, can be fixed if in addition to transposing a column vector,
you would also complex conjugate its elements. The resulting operation is called
Hermitian transposition or Hermitian conjugation, and it turns a column vector k
into its adjoint or Hermitian conjugate row vector k�. Using Hermitian conjugation
rather than simple transposition turns Eq. 2.17 into

k� � k � �
k�
1 k�

2 � � � k�
N�1 k�

N

�

2
666664

k1
k2
:::

kN�1
kN

3
777775

D
NX

iD1
jkij 2 (2.18)

where jkij means the absolute value of the respective complex number. Now you
can define the inner product of two column vectors, k and p .k; p/, as an operation
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which involves Hermitian conjugation of a vector on the left and forming an inner
product of the resulting row with the parent column: .k; p/ D k��p. It is obvious that
the inner product defined this way is not commutative, meaning that .k; p/ ¤ .p; k/.
Actually, it is easy to see that .k; p/ D .p; k/�. Using Hermitian conjugation one
can also define a new kind of the outer product as well, but I will leave the discussion
of the latter till later.

A linear vector space with a defined inner product and a norm becomes
something which mathematicians call Hilbert space. (There are some mathematical
niceties and details concerning the exact definition of the Hilbert space, but they
are of no concern to us here.) I hope that the example with column and row vectors
helps you to realize that in order to define the norm and the inner product for our
abstract vectors j˛i, you need complimentary vectors inhabiting an adjoint space.
Again following Dirac I will designate a vector adjoint to jˇi as hˇj and use notation˝
ˇ
ˇ̌
˛
˛

for the inner product. In the case of abstract vectors, we do not really know
how to actually compute the inner product, but whatever its operational definition
might be, we require that it obeys the following condition:

˝
ˇ
ˇ̌
˛
˛ D �˝

˛
ˇ̌
ˇ
˛��
: (2.19)

This property ensures that the norm defined as

k˛k �
q˝
˛
ˇ̌
˛
˛

(2.20)

is real and nonnegative. Indeed, applying Eq. 2.20 to the case when jˇi D j˛i, you
have h˛j ˛i D .h˛j ˛i/�, proving that h˛j ˛i is real-valued.

To distinguish between adjoint vectors in speech, we call j˛i a ket vector and
h˛j—a bra vector. These terms have been introduced by Paul Dirac together with
the respective notation. Their origin can be traced to word “bracket” split in two
halves “bra - ket” just like angular brackets in h˛j ˛i are split in two vectors (what
happened to letter “c” in the process is anybody’s guess).

So far, we have no operational prescription on converting a single generic ket into
a respective bra: all what you need to do is just to change the orientation and position
of the angular bracket from ji to hj. However, an important question which we need
to figure out now is how to do this conversion in the case of such expressions as
a j˛i or even more complex expressions of the kind of Eq. 2.2. What is clear is that
the adjoint of this expression must look like

.a j˛i/� Dea h˛j ;

where I used symbol � to designate conversion to the adjoint space (or performing
Hermitian conjugation just like in Eq. 2.18). Now I need to find how coefficientsea
are related to a. To this end let me compute the norm ka˛k:

ka˛k2 Deaa h˛j ˛i Deaa k˛k2 :
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For this expression to be real-valued for all possible coefficients a, I have no choice
but to require that ea D a�. This yields a simple rule for Hermitian conjugation
of complex expressions involving ket vectors: convert all kets into bras by simply
replacing one angular bracket with the other and complex conjugate all numerical
coefficients appearing in the original expression. Here are a few examples of
application of this rule:

Example 1 (Hermitian Conjugation) Perform Hermitian conjugation of the follow-
ing expression:

j˛i D .2i C 3/ jq1i C 5i jq2i :

Solution

h˛j D .�2i C 3/ hq1j � 5i hq2j :

Example 2 (Norm Calculation) If kq1k D 2, kq2k D 4, and hq1j q2i D i � 1, find
the norm of j˛i defined in the previous example.

Solution

k˛k2 D ..�2i C 3/ hq1j � 5i hq2j/ ..2i C 3/ jq1i C 5i jq2i/ D
.�2i C 3/ .2i C 3/ kq1k2 C 5i .�5i/ kq2k2 C
5i .�2i C 3/ hq1j q2i � 5i .2i C 3/ hq2j q1i D

13 � 4C 25 � 16C .10C 15i/ .i � 1/C .10 � 15i/ .�i � 1/ D 402

k˛k D p
402:

It will be shown in the future development of the formalism that vectors j˛i and
a j˛i, where a is an arbitrary complex coefficient, describe the same quantum state,
i.e., contain the same information about the system. Therefore, it is often convenient
to deal only with the states whose norm is equal to unity (in a way such states are
analogous to unit vectors in a regular three-dimensional space). Such vectors can
be produced via normalization procedure, which consist in replacing an original
vector j˛i with the vector j˛i = k˛k. In the future, we shall assume that all abstract
vectors used in calculations are normalized, and those which are not will have to be
normalized before any calculations with them are performed.

Example 3 (Normalization) Normalize the following state:

j˛i D 2 jq1i C 3i jq2i � 2

3
jq3i ;
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assuming that the norm of all vectors jqii is unity and that inner products involving
pairs of different vectors are all equal to zero.

Solution

1st step: Hermitian conjugation

h˛j D 2 hq1j � 3i hq2j � 2

3
hq3j :

2nd step: Forming the inner product

k˛k2 D h˛j ˛i D
	
2 hq1j � 3i hq2j � 2

3
hq3j


	
2 jq1i C 3i jq2i � 2

3
jq3i



D

4C 9C 4

9
D 121

9
:

3rd step: The normalization

k˛k D
r
121

9
D 11

3

j˛iN D 3

11

	
2 jq1i C 3i jq2i � 2

3
jq3i



:

I will complete this discussion of vector states in their ket and bra reincarnations
by considering another important example of vector spaces and respective inner
products and norms. Consider a class of complex functions,  .x/, of a single
variable x defined over domain x 2 Œ�1;1�, which also satisfy the condition
that

´ 1
�1 j .x/j2 dx < 1. It is very easy to show that linear combinations of such

functions also belong to the same class, so they do form a linear vector space. The
inner product of two functions  .x/ and '.x/ defined as

. ; '/ D
ˆ 1

�1
 �.x/'.x/dx (2.21)

satisfies condition presented by Eq. 2.19, and the respective norm

k k D
sˆ 1

�1
j .x/j2 dx

is obviously real-valued and nonnegative. Thus, these functions, called square-
integrable, do form a Hilbert vector space, in which for each ket vector j˛i �  .x/,
there is an adjoint bra vector h˛j �  �.x/ with an inner product and a norm defined
as respective integrals.
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So, I gave you two very different concrete realizations of abstract Hilbert space:
column vectors and square-integrable functions with two different operational
definitions of the inner product. Despite the difference in the operational meaning
of inner product in these two cases, they all had the same defining properties.

2.2.3 Superposition Principle and Probabilities

States characterized by definite values of the complete set of mutually consistent
observables have an important mathematical property, which I cannot yet prove (it
will be done later), but it is important for the argument I am trying to present, so
you will have to trust me on this for now. So, here is the property:

D
q.1/l ; q

.2/
n ; � � � q.Nmax/

r

ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
D ıl;kın;m � � � ır;p; (2.22)

where I assumed that the state vectors are normalized (ıl;k is Kronecker delta, which
is equal to unity for coinciding indexes, and zero otherwise). This equation surely
looks rather mysterious, but its actual content is rather simple. To see this imagine
that you are dealing with a system described by a single observable, say, energy. To
make the matter even simpler, assume also that the energy can only take two values
0 and 1. Then you are dealing with only two states with definite values of energy j1i
and j0i. Equation 2.22 in this case simply states that

h0 j1i D 0; h0 j0i D h1 j1i D 1:

Abstract vectors, whose inner product is equal to zero, are called orthogonal in
the obvious generalization of the concept of orthogonality for regular perpendicular
three-dimensional vectors, whose dot product is equal to zero. What I am driving
at here is the connection between the mathematical concept of orthogonality and
the physical notion of mutual exclusivity discussed in Sect. 2.1: Eq. 2.22 does say
that mutually exclusive states are also orthogonal. If the basis is constructed of
mutually orthogonal and normalized vectors, it is called orthonormalized. Such
bases are particularly convenient to work with, and, therefore, they are used almost
exclusively in practical calculations. Here is an example of a system of vectors
forming an orthonormal basis, which you are quite familiar with.

Example 4 (Fourier Series: Examples of a Discrete Orthonormal Basis) Consider
a set of functions of a single variable x defined on a finite interval Œ0;L�. These
functions obviously form a linear space with an inner product defined as

h f j gi D
Lˆ

0

f �.x/g.x/dx:
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It is well known that these functions can be expended into a Fourier series1

f .x/ D
r
1

L

1X
�1

anei2�nx=L

with expansion coefficients given by

an D
r
1

L

Lˆ

0

f .x/e�2i�nx=Ldx:

One can identify j�ni �
q

1
L ei2�nx=L with vectors of an orthonormal basis so that

the Fourier series expansion of the function can be presented in the form of Eq. 2.6.
Indeed, it is easy to see that

h�mj �ni D 1

L

Lˆ

0

dxe�2i�mx=Le2i�nx=L D
(
1 m D n

0 m ¤ n
:

Mutual exclusivity can be more formally expressed in terms of probabilities: if a
quantum system is in a state with prescribed values q.1/l ; q

.2/
n ; � � � q.Nmax/

r of a complete
set of mutually consistent observables, then the measurement of the observables q.s/

will produce value q.s/p appearing in the definition of the state with a probability
equal to 1, while the probability of any other value is equal to zero. Now, let’s
turn our attention to the superposition state of the type presented in Eq. 2.2 and ask
a question: what should we expect if we measure observable q and the system is
in the state given by this equation? You already know that the exact result of the
measurement cannot be predicted, but it is intuitively clear that it must be either q1
or q2. The only question you need to ponder on now is that if the measurement is
repeated multiple times with the system always brought back to the same initial state
(or if, instead of one system, you got your hands on an ensemble of identical systems
all in the same state), what are the fractions of measurement outcomes yielding q1
and q2? It seems reasonable to assume that it is coefficients a1;2 in the superposition
which will determine an answer to this question. Indeed, if I set either a1 or a2 to
zero, I will take you back to the state in which all measurements yield either q1or
q2, respectively, while its counterpart is never observed. It is natural to describe this
situation in terms of probabilities and assume that these probabilities are determined

1There are some conditions on the required smoothness of the functions for their Fourier series
actually to represent them accurately, but leave it to mathematicians to worry about these details.
Here I just want to mention that the representation as a Fourier series actually works even for
functions, which are not necessarily continuous.
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by the coefficients ai. However, it is clear that I cannot identify the coefficients
themselves with the probabilities because ai are not necessarily positive or even real
(if this were not the case, we could not describe both constructive interference and
destructive interference just like in the case of electromagnetic waves). At the same
time, you can recall that in the case of wave interference, it is not the amplitudes
of the waves but their intensities proportional to the absolute values of the squared
amplitudes that determine the brightness of the interference fringes. Thus, we can
surmise that in the case of quantum superposition, respective probabilities are given
by jaij2:

p.qi/ D jaij2 : (2.23)

Multiplying Eq. 2.2 by hq1j or hq2j (the bra counterparts of respective vectors jqii)
from the left and using the orthogonality condition, Eq. 2.22, I can derive for the
coefficients ai

hq1j˛
˛ D hq1j .a1 jq1i C a2 jq2i/ D a1

��q1
��2 ) a1 D hq1j˛

˛

hq2j˛
˛ D hq2j .a1 jq1i C a2 jq2i/ D a1

��q2
��2 ) a2 D hq2j˛

˛
; (2.24)

where I took into account the convention that all vectors describing quantum states
are presumed to be normalized. Expressions derived in Eq. 2.24 allow presenting
Eq. 2.23 for probability in a more generic form:

p.qi/ D ˇ̌hqij˛
˛ˇ̌2
: (2.25)

Applying Eq. 2.25 to the case of j˛i D ˇ̌
qj
˛
, you find p .qi/ D ıi;j establishing

formal correspondence between notions of mutual exclusivity and orthogonality.
Computation of the norm of the state

ˇ̌
˛
˛

yields

��˛��2 D ˇ̌
a1
ˇ̌2 C ˇ̌

a2
ˇ̌2 � p1 C p2:

If
��˛�� D 1, i.e., the state j˛i is normalized as presumed, then you obtain relation

p1 C p2 D 1 in complete agreement with what is expected of the probabilities. This
result reinforces my (well, actually Max Born’s) suggestion to interpret

ˇ̌hqij˛
˛ˇ̌2

as a probability that the measurement of observable q on a system in state j˛i will
produce qi.

It is important to emphasize that any uncertainty in the result of the measurement
of the observable q exists only before the measurement has taken place and that the
probability referred to in this discussion describes the number of given outcomes in
the series of such measurements. After the measurement is carried out, and one of
the values of the observable is actually observed, all uncertainty has disappeared.
We now know that the measurement yielded a particular value qi, which, according
to our earlier proposition, is only possible if the system is in the respective state
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jqii. Thus we have to conclude that the act of measurement has destroyed the initial
state j˛i and “collapsed” it into state jqii. The most intriguing question, of course,
is what determines the state in which the system collapses into. This question has
been debated during the entire 100+ year-long history of quantum mechanics and is
being debated still. The orthodox Copenhagen interpretation of quantum mechanics
essentially leaves this question without an answer claiming that the choice of the
final (after measurement) state is completely random.2 I propose that you accept
this interpretation as quite sufficient for most practical purposes, while it does leave
people with a philosophical state of mind somewhat unsatisfied.

Equation 2.2 describes superposition of only two states. It is not too difficult
to imagine that it can be extended to the case of the arbitrary number of statesˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
generated by mutually consistent observables with discrete

spectrum:

j˛i D
X

k;m��� ;p
ak;m��� ;p

ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
: (2.26)

This sum, in principle, can contain any number of terms, including an infinite
amount. In the latter case, of course, one have to start worrying about its con-
vergence, but I will leave these worries to mathematicians. Coefficients ak;m��� ;p
appearing in this equation have the same meaning as the coefficients in the two-state
superposition expressed by Eq. 2.25, in which jqii is replaced with a more general
state appearing in Eq. 2.26.

2At a talk given at the physics department of Queens College in New York in 2014, British
mathematician J.H. Conway (currently Professor Emeritus of Mathematics at Princeton University)
dismissed the randomness postulate of the Copenhagen interpretation as a “cop-out” and also
because the use of probabilities only makes sense when one deals with a well-defined ensemble
of events or particles, which is not true in the case of a single electron or photon. At the same
time, he and S. Kochen (Canada) proved a mathematical theorem asserting that the entire structure
of quantum mechanics is inconsistent with the idea of existence of some unknown characteristics
of quantum systems, which would, shall we find them, provide deterministic description of the
system. In this sense, they proved completeness of the existing structure of quantum theory
and buried the idea of “hidden variables”—unknown elements of reality, which could restore
determinism to the quantum world—provided that we are unwilling to throw away the entire
conceptual structure of quantum mechanics, which, so far, gave excellent quantitative explanation
of a vast number of the experimental data. The Conway and Kochen theorem is called “free will
theorem” because it can be interpreted as an assertion that electrons, just like humans, have “free
will,” which in strict mathematical sense means that electron’s future behavior might not be a
deterministic function of its past. The description of the theorem can be found here: https://en.
wikipedia.org/wiki/Free_will_theorem.

https://en.wikipedia.org/wiki/Free_will_theorem
https://en.wikipedia.org/wiki/Free_will_theorem
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2.3 States Characterized by Observables with Continuous
Spectrum

In the previous section, I considered only states generated by observables with
discrete spectrum. As a result, even though the number of states in Eq. 2.26 can
be infinite, they are still countable (one can enumerate them using natural numbers
1; 2; 3; � � � ). Some observables, however, have continuous spectrum, meaning that
they can take values from a continuous (finite or infinite) interval of values. One of
such important observables is a particle’s position, measured by its position vector r
or a set of Cartesian coordinates .x; y; z/, defined in a particular coordinate system.
It is interesting to note in this regard that while in classical mechanics, descriptions
using Cartesian coordinates are largely equivalent to those relying on spherical or
polar coordinates, it is not so in quantum description, where angular coordinates
in spherical or cylindrical systems do not easily submit to quantum treatment.
This comment obviously appears somewhat cryptic here, but its meaning will be
clarified in the subsequent chapters. Another peculiarity of the position observable
is the need to carefully distinguish between coordinates being characteristics of a
particle’s position and coordinates being markers of various points in space, needed
to describe position dependence of various mathematical and physical quantities.

Other observables, such as energy or momentum, might have either continuous or
discrete spectrum depending upon the environment, in which a particle finds itself,
or might have mixed spectrum, where an interval of discretely defined values crosses
over into an interval of continuously distributed values.

Two main peculiarities of states characterized by observables with continuous
spectrum are that (1) they cannot be normalized in a regular sense of the word and
(2) the concept of probability as defined by Eq. 2.25 loses its meaning because in
the case of continuous random variables, the probability can only be defined for an
interval (which might be infinitesimally small) of values, but not for any particular
value of the variable. These two features are not independent and are related to each
other as it will be seen from the future analysis.

I will illustrate the properties of states corresponding to observables with
continuous spectrum using the position of a particle as an example. Assuming that
there are no other observables mutually consistent with the position, I will present
a state in which this observable has a definite value r as jri. In order to construct
a superposition state using these vectors, I have to replace the sum in Eq. 2.26
with an integral over all possible values of position vector r introducing instead
of coefficients ak with discrete indexes a function  .r/ of a continuous variable:

j˛i D
ˆ

d3r .r/ jri : (2.27)

Now I want to compute the norm k˛k of the superposition state given by Eq. 2.27.
The Hermitian conjugation of Eq. 2.27 produces the respective bra vector

h˛j D
ˆ

d3r �.r/ hrj (2.28)
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so that the norm becomes

k˛k2 � h˛j ˛i D
“

d3r1d
3r2 

� .r1/  .r2/ hr1j r2i ; (2.29)

where I had to rename the integration variables in order to be able to replace the
product of integrals with a double integral (note that r1 appears in those parts of
Eq. 2.29, which originate from the bra vector of Eq. 2.28, and r2 appears in the ket-
related parts of the integral). States jr1i and jr2i remain mutually exclusive even in
the case of continuous spectrum as long as r1 ¤ r2. Thus I can write based on the
discussion in the previous sections that hr1j r2i D 0 for r1 ¤ r2. If I now require
that hr1j r2i D 1 for r1 D r2, which would correspond to the “regular” normalization
condition, I will end up with an integral, in which the integrand is zero everywhere
with exception of one point, where it is finite. Clearly such an integral would be
zero in contradiction with the properties of the norm (it can only be zero for null-
vector). To save the situation, something has to give, and I have to reject one of
the assumptions made when evaluating Eq. 2.29. The mutual exclusivity of jr1i and
jr2i and the related requirement that hr1j r2i D 0 for r1 ¤ r2 are connected with
the basic ideas discussed in Sect. 2.2.3 and, therefore, appears untouchable. So, the
only choice left to me is to reject the assumption that hr1j r1i is equal to unity or
takes any other finite value. As a result we are left with the following requirements
on hr1j r2i: this expression must be zero for unequal values of its arguments while
producing a non-zero result when being integrated with any “normal” function.

These requirements are satisfied by an object called Dirac’s delta-function. Dirac
introduced notation ı .x/ for its simplest single-variable version and presented most
of its properties in the form useful for physicists in his influential 1930 book
The Principles of Quantum Mechanics, which since then has been reissued many
times (it is the same Paul Dirac who introduced the bra-ket notation for quantum
states). It seems a bit unfair to name this object after him because it was already
known to such mathematicians as Poisson and Fourier in the nineteenth century, but
physicists learned about it from Dirac, so we stick to our guns and call it a Dirac’s
function. The first thing one needs to understand about the delta-function is that
it is not a function in any reasonable sense of the word. Therefore, the meaning
of such operations as integration or differentiation involving this object cannot be
defined following the standard rules of regular calculus. Nevertheless, physicists
keep working with this object as though nothing is wrong (giving nightmares to
rigor-sensitive mathematicians) with the only requirements that the results of all
performed operations must make sense (that is from a physicist’s perspective).
Mathematicians call such objects “distributions” or treat them as examples of
“functionals.” Below I supply you with all properties of the delta-functions you will
need to know.

The main defining property of the delta-function of a single variable is

x2ˆ

x1

f .x/ı.x/dx D
(

f .0/; 0 2 Œx1; x2�
0 0 … Œx1; x2�

(2.30)
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with its immediate generalization to

x2ˆ

x1

f .x/ı.x � x0/dx D
(

f .x0/; x0 2 Œx1; x2�
0 x0 … Œx1; x2� :

(2.31)

These equations express the main property of the delta-function—it acts as a selector
singling out the value of function f .x/ at x D x0; where the argument of the delta-
function vanishes. In a particular case of f .x/ D 1, Eq. 2.31 yields another important
characteristics of the delta-function:

x2ˆ

x1

ı.x � x0/dx D
(
1; x0 2 Œx1; x2�
0 x0 … Œx1; x2� ;

which expresses the idea that while the “width” of the delta-function is zero and
its “height” is infinite, the area covered by it is equal to unity. An example of actual
limiting procedure producing a delta-function out of a regular function based on this
idea can be found in the exercises in this chapter.

One can also define the delta-function of a more complex argument such as
ı Œg.x/�, where g.x/ is an arbitrary function. If g.x/ has only one zero at x D x0,
I can define ı Œg.x/� by replacing g.x/ with the first term of its Taylor expansion
around x0: g.x/ � b.x � x0/, where b � .dg=dx/xDx0 , and making a substitution of
variableex D b .x � x0/, which yields

x2ˆ

x1

f .x/ı Œg.x/� dx D 1

jbj

g.x2/ˆ

g.x1/

f

	ex
b

C x0



ı .ex/ dex D 1

jbj f .x0/; (2.32)

The expansion of g.x/ in the Taylor series is justified here because the value of the
integral is determined by the behavior of this function in the immediate vicinity
of x0.

If the function g.x/ has multiple zeroes within the interval of integration, then we
must isolate each zero and perform the procedure described above for each of them.
The result will look something like this:

x2ˆ

x1

f .x/ı Œg.x/� dx D
X

i

1

jbij f .x.i/0 / (2.33)

where bi is the value of the derivative of g.x/ at the respective i-th zero x.i/0 . To
illustrate this procedure, consider an example.
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Example 5 (Delta-function With Two Zeros) Consider

g.x/ D x2 � x20:

In this case the method outlined above yields

x2ˆ

x1

f .x/ı
�
x2 � x20

�
dx � 1

2x0

2
4

x2ˆ

x1

f .x/ı .x � x0/ dx C
x2ˆ

x1

f .x/ı .x C x0/ dx

3
5

(2.34)
where I assumed that both x0 and �x0 belong to the interval between x1 and x2. I can
also define a derivative of the delta-function using integration by parts and assuming
that integral of df=dx is still equal to f .x/ even if f .x/ � ı .x/. This is how it goes:

x2ˆ

x1

f .x/ı0.x � x0/dx D f .x/ı.x � x0/jx2x1 �
x2ˆ

x1

ı.x � x0/f
0.x/dx

D
8<
:

� df
dx

ˇ̌
ˇ
xDx0

; x0 2 Œx1; x2�
0 x0 … Œx1; x2� :

(2.35)

Similarly one can define higher derivatives of the delta-function.
We will also need an important representation of the delta-function as a Fourier

transform:

ı.x/ D 1

2�

1̂

�1
eikxdk: (2.36)

To demonstrate that this representation of the delta-function actually makes sense,
consider direct and inverse Fourier transforms:

f .x/ D 1p
2�

1̂

�1
Qf .k/eikxdk (2.37)

Qf .k/ D 1p
2�

1̂

�1
f .x/e�ikxdx: (2.38)

Substituting Eq. 2.38 into Eq. 2.37, I get

f .x/ D 1

2�

1̂

�1
f .x1/e

�ikx1eikxdkdx1 D 1

2�

1̂

�1
dx1f .x1/

1̂

�1
eik.x�x1/dk
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and the only way to make this into an identity for any function is to accept Eq. 2.36
for the integral over k.

Finally, you will need a generalization of the delta-function to the case of
several variables. For instance, delta-function involving position vectors in Cartesian
coordinates can be defined as

ı .r1 � r2/ � ı .x1 � x2/ ı . y1 � y2/ ı .z1 � z2/ ; (2.39)

in which case its representation in the form of a Fourier transform becomes

ı .r1 � r2/ D 1

.2�/3

1̂

�1
eikx.x1�x2/eiky. y1�y2/eikz.z1�z2/dkxdkydkz D

1

.2�/3

1̂

�1
eik�.r1�r2/d3k: (2.40)

Now back to the calculation of the norm, i.e., to Eq. 2.29. To complete this
calculation, I will introduce a generalized, so-called delta-function normalization
condition for states jri by requiring that

hr1j r2i D ı .r1 � r2/ : (2.41)

Substituting Eq. 2.41 into Eq. 2.29 and using the properties of the delta-function, I
finally arrive at

k˛k2 D
ˆ

d3r � .r/  .r/ : (2.42)

Now, in order to ensure correct normalization of the state j˛i, you only need to
require that function  .r/ is chosen to be normalized such that

ˆ
d3r j .r/j2 D 1: (2.43)

Example 6 (Normalization of a Wave Function) Normalize the state j˛i presented
by the following function.

 .x/ D eikxe�ax2=2:
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Solution

Using the definition of the norm, Eq. 2.42, I have

k˛k2 D
1̂

�1
 �.x/ .x/dx D

1̂

�1
e�ax2dx D

r
�

a

where I used the substitution of variables y D p
ax and the well-known integral

1̂

�1
exp

��y2
�

dy D p
�:

Thus, the normalized form of the state can be written as

j˛i D
� a

�

�1=4 1̂

�1
eikxe�ax2=2 jxi :

Function  .r/ in these expressions is called the wave function and is often cited
in quantum mechanics textbooks as the descriptor of a quantum state. You can see
now that this is not quite the case—the definition of the wave function involves
two different states: the actual state of the system j˛i and a state, jri, in which a
particle would have a definite position. You can think of the wave function as a
projection of j˛i on jri. If the position r could only take discrete values, we would
have interpreted j .r/j2 as a probability. In the continuous case, however, we can
only ask about a probability that the measurement of position would produce a result
within a certain (possibly infinitesimally small) volume around some central point r.
The answer to this question is well expressed in terms of differential probability

dP .r/ � d3r j .r/j2 ;

where j .r/j2 can be interpreted as the position probability density. The probability
that the measured position vector belongs to some finite volume V is given by
expression

P.V/ D
•

V

d3r j .r/j2 ; (2.44)

while the normalization condition 2.43 simply states the fact that the measurement
of the particle’s position will produce some value within the entire volume available
to the particle with probability equal to one.
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2.4 Problems

Problem 1 Consider two states:

j 1i D j	1i C i j	2i � 2 j	3i
j 2i D � j	1i C 2 j	2i � i j	3i ;

where j	1;2;3i are all normalized and orthogonal to each other.

1. Normalize states j 1i and j 2i.
2. Find adjoint counterparts of these states h 1j and h 2j.
3. Compute inner products h 1j  2i and h 2j  1i and verify that h 1j  2i D

h 2j  1i�.
4. Find a linear combination of states j 1i and j 2i that would be orthogonal to

j 1i.
5. Compute .h 1j C h 2j/ .j 1i C j 2i/. Do it in two ways: (a) by computing the

sums first and then taking the inner product and (b) using the distributive property
of the inner product, remove the parenthesis and compute the inner products of
the resulting individual terms.

Problem 2 Determine if the following sets of vectors, defined by their components
in some basis, are linearly dependent or independent:

1. .2; 2; 0/, .1; 0; 1/, .0; i;�1/
2. .0; 0; 1/, .i; 0; 0/, .0; 0;�1/
3. .1; i; 2/, .1; i;�1/, .i;�i; 2i/

Problem 3 Consider the set of functions

fn.x/ D A sin
�nx

L
;

where L is a positive quantity.

1. Prove that these functions form an orthogonal system with the inner product
defined as

h fnj fmi �
Lˆ

0

fn.x/fm.x/dx:

2. Normalize these functions.
3. Find an expression for coefficients cn in the expansion

 .x/ D
1X

nD0
cnfn.x/;
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where fn.x/ is given by the expression from the first part of the problem with
amplitude A replaced by the normalization coefficient found in Part 2.

Problem 4 Repeat problem 3 with the set of functions

'n.x/ D exp

	
i
2�nx

L



;

and the inner product defined as

h'nj 'mi �
Lˆ

0

'�
n .x/'m.x/dx:

Problem 5 Consider functions g1.x/ D x, g2.x/ D x2, and g3.x/ D x3 defined on
an interval x 2 Œ�1; 1� with inner product defined as

hgnj gmi D
1ˆ

�1
dxgn.x/gm.x/:

1. Which of these three functions are mutually orthogonal, and which are not?
2. Consider linear combination of functions g1.x/ and g3.x/: ag1.x/ C bg3.x/ and

find coefficients a and b which would make this function orthogonal to g1.x/.
3. Find a different linear combination of the same functions, which would be

orthogonal to g3.x/.
4. Are these two new functions orthogonal to each other?

Problem 6 Consider a wave function of the form

 .x/ D Aeikxxe�x2=2:

1. Normalize this function using the standard definition of the inner product for the
square-integrable functions.

2. Find the probability that a measurement of the x-coordinate of the particle will
produce a value between 0 � x � p

2.
3. Find the probability that a measurement of the x-coordinate of the particle will

produce a value such that x > 2. Use mathematical tables or any available
computational tools to obtain the numerical values.

Problem 7 Consider a function of the form

f .x/ D
(

1
4 jxj < 4=2
0 jxj > 4=2:

Show that this function turns into a Dirac’s ı-function in the limit 4 ! 0.
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Problem 8 Compute the following integrals:

1.

1ˆ

0

�
x3 C 5x

�
ı .x � 2/ dx

2.

3ˆ

0

.sin 2x C 2 tan 3x/ ı
�
x2 � 5x C 4

�
dx

3.

1̂

�1
xe�x2ı0 .x C 5/ dx

Problem 9 Evaluate the following expression:

1̂

�1
dxf .x/

1̂

�1
dkkeik.x�x0/:

Hint: Use the representation of the delta-function as a Fourier integral to figure out
the integral with respect to k.



Chapter 3
Observables and Operators

3.1 Hamiltonian Formulation of Classical Mechanics

The version of classical mechanics based on forces and Newton’s laws resists any
meaningful reformation into a quantum theory because it depends critically on such
concepts (trajectory, acceleration, etc.) that do not correspond to any observable
reality in the quantum world. More productive for finding links between classical
and quantum realms is an alternative formulation, where energy rather than force
takes the central role. There are two essential elements in this formulation of
classical mechanics. One is the idea of canonical coordinates in the so-called phase
space (as opposed to regular three-dimensional configuration space), and the other
is the concept of Hamiltonian.

Points in the phase space represent classical states of the system, characterized,
for instance, by its coordinates xi and components of the momentum vector pi. For
a single particle moving along a straight line (one-dimensional motion), the phase
space is two-dimensional; for the fully three-dimensional motion, the phase space is
six-dimensional; and for a three-dimensional motion of N particles, the dimension
of the phase space is 6N. Each point in the phase space represents the most complete
information about a classical system—its coordinates and velocities. When particles
move, their coordinates and momentums change, drawing a phase trajectory of the
system in the phase space. For a single particle allowed to move only along a
straight line, this trajectory is a curve in two-dimensional space. If the motion of the
particle is conservative, i.e., its energy is a conserving quantity, each phase trajectory
is an equienergetic line—each point on the trajectory corresponds to the state of
the system with exactly the same energy (energy does not change, while particles
change their position and momentum). Using the phase space, we effectively put
space coordinates and momentum of the particles on equal footing without imposing
any a priori relationships between them (as opposed to elementary mechanics, when
the momentum is defined via the time derivative of coordinates). You shall see that
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the relationship between coordinate and momentum, called canonically conjugate
variables, arising within this framework is much closer to its quantum version than
it would have been in the Newtonian approach.

The Hamiltonian is essentially the energy of a conservative system expressed in
terms of coordinates and momentum H.p;r/, which in the case of a single particle
takes the form of

H.p; r/ D p2

2m
C V.r/; (3.1)

where p is the momentum vector1 and V.r/ is the potential energy of the particle in
the external field. The Hamiltonian occupies a special place in classical mechanics
(as compared, for instance, to angular momentum, which can also be a conserving
quantity under certain circumstances) because it determines system’s dynamics via
Hamiltonian equations, which can be formulated as

dpi

dt
D �@H

@ri
(3.2)

dri

dt
D @H

@pi
; (3.3)

where ri and pi (i D 1; 2; 3/ are Cartesian components of the position and
momentum vectors x; y; z and px; py; pz, respectively. Hamiltonian equations can be
rewritten in another interesting form using so-called Poisson brackets f f ; gg defined
for two arbitrary functions of canonical variables:

f f ; gg D
NX

iD1

	
@f

@ri

@g

@pi
� @f

@pi

@g

@ri



: (3.4)

Summation in Eq. 3.4 is over all relevant canonical conjugated pairs of coordinates.
It is easy to see that the Poisson brackets for momentum and corresponding
coordinates are

˚
ri; pj

� D ıi;j: (3.5)

This form of Poisson brackets is called canonical: any pair of variables possessing
Poisson brackets of this form form a canonically conjugated pair and satisfy
Hamiltonian equations 3.2 and 3.3.

Applying the definition of the Poisson brackets, Eq. 3.4, to the pair of functions
pi, H and ri, H, you can find (check it out!)

1p2 is defined as usual as the square of the magnitude of the vector in Cartesian coordinates p2x C
p2y C p2z .
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f pi;Hg D �@H

@ri
;

fri;Hg D @H

@pi
;

so that Hamiltonian equations 3.2 and 3.3 can be rewritten even in a more symmetric
form:

dpi

dt
D f pi;Hg ; (3.6)

dri

dt
D fri;Hg : (3.7)

Finally, the time derivative of an arbitrary function of canonical coordinates can
be expressed in terms of Poisson brackets involving Hamiltonian. I illustrate this
statement for a function of only one pair of coordinates f .x; p; t/:

df

dt
D @f

@t
C @f

@p

dp

dt
C @f

@x

dx

dt
D @f

@t
� @f

@p

@H

@x
C @f

@x

@H

@p
D @f

@t
C f f ;Hg : (3.8)

3.2 Operators in Quantum Mechanics

3.2.1 General Definitions

The main task of quantum theory is to be able to predict (or explain) results of
experiments conducted with quantum systems. All such experiments involve taking
a system in some initial state, subjecting it to external influences, which change
its environment, and observing a reaction of the system to these changes. A theo-
retician in me would say that by doing all these manipulations and measurements,
experimentalists change the quantum state of the system, but so far the formalism I
have at my disposal does not have any theoretical representation of all these turning
knobs and dials, lasers, which go on and off, magnets, thermostats, and all other real
material objects in the arsenal of an experimentalist. I need additional mathematical
tools, which would allow me to describe theoretically all these changes inflicted
upon an unsuspecting system by the men in lab coats. Since the quantum states are
presented in the theory by vectors of a linear vector space, what I need are objects
that can change these vectors. Such objects are known to mathematicians—they
call them operators. The role of operators in quantum theory is twofold. On one
hand, they are used to describe transformations of state vectors, and on the other
hand, they provide the theoretical means to predict the outcomes of measurements
of observables.
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From the mathematical standpoint, an operator is a rule prescribing how to
change one abstract vector of a linear vector space, say, j˛i, into another abstract
vector, say, jˇi of the same or a different vector space. Symbolically this can be
represented as,

jˇi D OT j˛i ; (3.9)

where the “hat” O above a capital letter (in this case T) signifies that OT represents
such a rule, or an operator, “acting” on j˛i and converting it into jˇi. Note that the
symbol of the operator appears in Eq. 3.9 next to the vertical line marking the “tail”
of the ket j˛i.

The special role in quantum mechanics and other applications is played by linear
operators—the class of rules satisfying the following condition:

OT .a1 j˛1i C a2 j˛2i/ D a1 OT j˛1i C a2 OT j˛2i : (3.10)

Here are a few examples of linear operators:

1. Differentiation operator d=dx converting a function f .x/ into its derivative g.x/ D
.d=dx/ f � df=dx (note how the operator symbol appears on the left of the
function)

2. Gradient operator
�!r D ex@=@x C ey@=@y C ez@=@z, where ex;y;z are unit vectors

in the directions of the respective coordinate axes, converting a scalar function of
three spatial variables into a vector:

�!r f .x; y; z/ D ex@f=@x C ey@f=@y C ez@f=@z

3. Integration operator, OK, which is defined by its kernel K.x1; x2/ and converts one
function to another as

jgi D OK j f i ” g.x1/ D
1̂

�1
K .x1; x2/ f .x2/ dx2

4. Rotation operator OR, which changes the orientation of a vector without changing
its length

Linearity of the first three operators is evident from linearity of differentiation and
integration, and the proof of linearity of rotations is a simple exercise in geometry
and is left to the readers to perform.

Equation 3.9 defines an operator by its action on a ket vector. It is also possible
to define an operator acting on bra vectors. One can, for instance, perform formal
Hermitian conjugation of Eq. 3.9 and introduce Hermitian conjugate operator OT�:

hˇj D h˛j OT�: (3.11)
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Notice that now operator OT� stands to the right of the respective bra vector but still
next to its tail, “acting” to the left. Thus, Hermitian conjugation in this case involves
also the change in the order, in which the participating objects are written, as well
as the “direction” of “action” of the operators from right to left.

In order to help you develop intuition regarding transition between Eqs. 3.9
and 3.11, consider a linear space of column vectors—1 � N matrices. For operators
you can take N � N matrices and define its action on a vector as regular matrix
multiplication. For this definition to make sense from the point of view of matrix
multiplication rules, the matrix must be placed to the left of the column vector. The
result of this operation is another column vector:

2
66664

t11 t12 � � � t1N

t21 t22 � � � t2N

:::
:::
: : :

:::

tN1 tN2 � � � tNN

3
77775

2
66664

a1
a2
:::

aN

3
77775

D

2
66664

b1
b2
:::

bN

3
77775
: (3.12)

The Hermitian conjugate of a column vector is a row vector (N � 1 matrix) with
complex-conjugated elements. Equation 3.12 contains two column vectors, and
its Hermitian conjugated version must describe the relation between two rows�
a�
1 a�

2 � � � a�
N

�
and

�
b�
1 b�

2 � � � b�
N

�
. However, in order to be able to multiply a square

matrix and a row vector, I must place the former to the left of the latter:

�
a�
1 a�

2 � � � a�
N

�

2
666664

t�11 t�12 � � � t�1N

t�21 t�22 � � � t�2N

:::
:::
: : :

:::

t�N1 t�N2 � � � t�NN

3
777775

D �
b�
1 b�

2 � � � b�
N

�
; (3.13)

where t�ij represents elements of a Hermitian conjugate operator matrix OT�. If I want
(and I certainly do) that the relation between elements a�

i and b�
i expressed by

Eq. 3.13 reproduce complex-conjugated relations given by Eq. 3.12, I must require
that the rows of the matrix in Eq. 3.12 coincide with the complex-conjugated
columns of the matrix in Eq. 3.13: t�ij D t�ji . This gives me an operational (not
just formal) rule for performing the Hermitian conjugation of the matrix operator:
it consists in regular matrix transposition and complex conjugation of all matrix
elements. This example serves two important purposes: first, it demonstrates
why reversal of the order in which vectors and operators appear after Hermitian
conjugation makes sense, and, second, it yields a rule for Hermitian conjugation of
a matrix.

In a general case, Eq. 3.11 does not give us any clue on how to actually generate
Hermitian conjugate operators. In order to derive such a rule, I need to relate both
(initial and Hermitian conjugate) operators to a quantity, which I know how to
transform and which does not depend on any concrete realization of the vector space
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or an operator. The only quantity of this kind, which I know of, is an inner product,
and I, in order to get to it, will multiply Eq. 3.9 by a bra vector hˇj from the left.
This will leave me with expression hˇj OT j˛i, which can be understood as a product
of a bra vector hˇj and a ket vector OT j˛i. Complex conjugating this expression and
applying Eq. 2.19, I get

hˇj OT j˛i� D h˛j OT� jˇi ; (3.14)

where I also used Eq. 3.11 to convert ket OT j˛i into a corresponding bra h˛j OT�.
Equation 3.14 can be used to find a Hermitian conjugate of any particular operator
as illustrated by the following examples.

Example 7 (Hermitian Conjugation) Consider differentiation operator OD acting on
differentiable square-integrable functions as

OD j f i � df

dx
;

Using the definition of the inner product defined by Eq. 2.21, you can present the
expression in Eq. 3.14 as

hgj OD j f i �
1̂

�1
dxg�.x/

df

dx
:

Integration by parts converts this expression into the following form:

�
hgj OD j f i

�� D
0
@

1̂

�1
dxg�.x/

df

dx

1
A

�

D g.x/f �.x/j1�1 �
1̂

�1
dxf �.x/

dg

dx
D

�
1̂

�1
dxf �.x/

dg

dx
;

where I took into account that any square-integrable functions must vanish at both
positive and negative infinities. Presenting this result in the form of the right side of
Eq. 3.14 h f j OD� jgi, you can identify OD� as OD� D �d=dx.

If an operator and its Hermitian conjugate coincide

hˇj OT j˛i� D h˛j OT jˇi (3.15)

or OT D OT�, the respective operator is called Hermitian or self-adjoint operator.
Hermitian operators have a number of important properties, which will be discussed
in more detail in Sect. 3.3. Here I shall note just one important property of Hermitian
operators, which trivially follows from Eq. 3.15: a quantity defined as h˛j OT j˛i is a
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real-valued number for any choice of state j˛i. Expressions of this type are called
expectation values of the operator in a given state. The origin of this name will
become clear in Sect. 3.3. A few examples of Hermitian operators follow below.

Example 8 (Hermitian Operators) Let me prove that operator i OD, where OD is the
differentiation operator, introduced in the previous example, is Hermitian. To this
end I just need to repeat computations from Example 7:

�
hgj i OD j f i

�� D
0
@i

1̂

�1
dxg�.x/

df

dx

1
A

�

D g.x/f �.x/j1�1 C i

1̂

�1
dxf �.x/

dg

dx
�

h f j i OD jgi :

Example 9 (Hermitian Operators) As a second example of the Hermitian operator,
I consider a 3 � 3 matrix M acting on vectors in a three-dimensional vector space:

M D
2
4
1 i 2

�i 1 4i
2 �4i 0

3
5 :

I will demonstrate that this matrix is Hermitian by directly remembering that Her-
mitian conjugation of matrices consists of transposition and complex conjugation.
Consequently carrying out these operations, you can convince yourselves that they
yield the same matrix M:

2
4
1 i 2

�i 1 4i
2 �4i 0

3
5 !

2
4
1 �i 2

i 1 �4i
2 4i 0

3
5 !

2
4
1 i 2

�i 1 4i
2 �4i 0

3
5 :

You can also compute expression a��M � a, where a is an arbitrary column vector
and a� its Hermitian conjugate:

�
a�
1 a�

2 a�
3

�
2
4
1 i 2

�i 1 4i
2 �4i 0

3
5
2
4

a1
a2
a3

3
5 D �

a�
1 a�

2 a�
3

�
2
4

a1 C ia2 C 2a3
�ia1 C a2 C 4ia3
2a1 � 4ia2

3
5 D

a�
1a1 C ia�

1a2 C 2a�
1a3 � ia�

2a1 C a�
2a2 C 4ia�

2a3 C 2a1a
�
3 � 4ia2a

�
3 D

ja1j2 C ja2j2 C ja3j2 C 2
�
a�
1a3 C a1a

�
3

�C i
�
a�
1a2 � a�

2a1 C 4a�
2a3 � 4a2a

�
3

�
:

It is obvious that the final expression is real-valued as promised.
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3.2.2 Commutators, Functions of Operators, and Operator
Identities

In addition to Hermitian conjugation, you will need to perform on operators other,
less exotic, operations, such as multiplication. The product of two operators OT1 and
OT2 is defined as consecutive action of the operators. If you consider action on a ket
vector, the first operator to do the work is the one on the right:

� OT2 OT1
�

j˛i � OT2
� OT1 j˛i

�
:

In the case of operators acting on the bra vector, the order is opposite: the first to act
is the leftmost operator:

h˛j
� OT2 OT1

�
�
�
h˛j OT2

� OT1:

The most important property of the operator multiplication is actually the absence
of a property: multiplication of operator is not, in general, commutative2:

OT2 OT1 ¤ OT1 OT2:

The non-commutative nature of operator multiplication is of extreme importance
in quantum mechanics, and as you will see, it is the main mathematical feature
responsible, for instance, for the uncertainty relation. For the same reason, sets
of operators that do commute with each other also play an important role in the
quantum formalism.

The non-commutativity of operator multiplication is expressed quantitatively via

the notion of a commutator. The commutator of two operators
h OT1 O;T2

i
is defined as

h OT1 O;T2
i

D OT1 OT2 � OT2 OT1: (3.16)

The knowledge of the commutator or, as it is sometimes called, a commutation
relation between two operators is essential and, often, the most important informa-
tion about operators that you can have. You will see throughout the course how the
commutation relations of different operators are used in a variety of applications
and calculations.

Commutators have a few important properties, the most frequently used of which
are the following:

2We all are used to deal with commutative multiplication of numbers: the result does not depend
on the order, in which multiplication is performed. The lack of commutativity of multiplication
was one of the features of the Heisenberg theory, which especially freaked out Schrödinger.
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h OT1 O;T2
i

D �
h OT2 O;T1

i
(3.17)

h OT1 C OT2; OT3
i

D
h OT1 O;T3

i
C
h OT2 O;T3

i
(3.18)

h
c1 OT1; c2 OT2

i
D c1c2

h OT1 O;T2
i
: (3.19)

The proof of all these identities is quite obvious, and I shall leave it for you as an
exercise.

Having defined a product of two operators, I can introduce a power function for
the operators: OTn simply means applying the same operator n times. The power
function is important because it allows defining other, more complex, functions

of the operators. In general, expression f
� OT
�

, where f .x/ is an arbitrary function,

which has infinitely many derivatives at x D 0, can be expended in the infinite

Taylor series. Using this series one can define the operator function f
� OT
�

by simply

substituting the operator instead of x in the series:

f
� OT
�

D
1X

nD0

1

nŠ

dnf

dxn

ˇ̌
ˇ̌
xD0

OTn:

However, a number of important functions, which you are used to dealing with
routinely, cannot be defined this way and, therefore, do not make sense for operators.

Among them are
p OT , ln

� OT
�

and other similar functions with singularities at zero.

An important exception is function OT�1, called inverse operator, which is defined by
equation

OT OT�1 D OT�1 OT D OI; (3.20)

where OI is a unity operator, i.e., an operator which does not change a vector it
acts upon. The meaning of the inverse operator can be illustrated by the following
expressions:

OT j˛i D jˇi
OT�1 jˇi D j˛i ;

where the second line is obtained from the first one by multiplying both sides of the
latter by OT�1. Finding inverse operators is usually a difficult task and often amounts
to solving an entire problem. If an operator has a form of a matrix, its inverse can
be found according to standard rules for inverting matrices.

Finding inverse operators is significantly simplified for a special class of
operators called unitary operators. These operators, defined by the condition

OU� D OU�1;
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play an extremely important role in quantum theory (we value them, of course, not
just because their inverse is easy to find). The main property of unitary operators
is that they do not change the norm of the vectors or their inner products. Indeed,

consider vectors j˛i and jˇi, and define new vectors j Q̨ i D OU j˛i and
ˇ̌
ˇ Q̌E D OU jˇi,

where OU is a unitary operator. Direct computation of h Q̨ j Q̌E proves this statement:

h Q̨ j D h˛j OU� ) h Q̨ j Q̌E D h˛j OU� OU jˇi D h˛j OU�1 OU jˇi D h˛j ˇi :

Unitary operators are a generalization of the rotation operator acting on regular
three-dimensional vectors: rotation of two vectors by the same angle does not
change their lengths as well as an angle between them. As a result, the dot product
of these vectors also does not change. Here is an example of a unitary operator based
on the two-dimensional rotation matrix.

Example 10 (Unitary Operators) Consider the well-known matrix used to relate
the coordinates of a two-dimensional vector rotated by an angle � from its initial
position:

R D
"

cos � � sin �

sin � cos �

#

Its Hermitian conjugate is

R� D
"

cos � sin �

� sin � cos �

#
:

Simple computation shows that product R�R is a unity matrix:

R�R D
"

cos � sin �

� sin � cos �

#"
cos � � sin �

sin � cos �

#
D

"
cos2 � C sin � � cos � sin � C cos � sin �

� cos � sin � C cos � sin � cos2 � C sin �

#
D
"
1 0

0 1

#
:

This proves, of course, that R� D R�1.
An important example of an operator function is an exponential function defined

as

exp
� OT
�

�
1X

nD0

1

nŠ
OTn: (3.21)
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Some of the familiar properties of this function remain valid even when its argument

is an operator. For instance, the derivative of the expression f .�/ D exp
�
� OT
�

with

respect to the parameter � is calculated as though OT were a regular number:

df=d� D OT exp
�
� OT
�
:

You should be warned, however, that a very convenient property of exponential
functions

exp .x C y/ D exp .x/ exp. y/ (3.22)

does not hold for operator arguments. One way to understand the reason for
this unfortunate circumstance is to notice that if two operators OT1 and OT2 in the

argument of the exponential function exp
� OT1 C OT2

�
do not commute, expressions

exp
� OT1

�
exp. OT2/ and exp

� OT2
�

exp. OT1/ are not equivalent, so they both cannot be

equal to the exponential of the sum of these operators. Generalization of Eq. 3.22
to the case of operator arguments is, in general, very complicated and will not
be considered here. There is, however, one case, when such a generalization has
a relatively simple form and can be derived without too much efforts, while
some work is still required, of course. This simplification takes place when the
commutator of the operators OT1 and OT2 commutes with both of them. In most cases,
this means that the commutator is a regular number, but it does not have to be.

So, suppose that the commutator of two operators OT1 and OT2 is
h OT1; OT2

i
D OC,

where OC is such that
h OT1; OC

i
D
h OT2; OC

i
D 0. This assumption appears to be quite

restrictive, but in reality, it is fulfilled in a great many pairs of operators that are
important for quantum mechanics. In order to derive the promised generalization
of Eq. 3.22, I have to, first, prove two intermediate identities, which, however, are
useful in their own right. Let me begin by computing the following expression:

h OT1; e� OT2
i

D
1X

nD0

1

nŠ

h OT1; �n OT2n
i

D
1X

nD0

�n

nŠ

h OT1; OT2n
i
: (3.23)

To proceed I need to prove the following identity for the commutators:

h OT1; OT2n
i

D n OC OT2n�1
: (3.24)

The easiest way to do it is to use the method of mathematical induction. For those
who have forgotten how this method works, the first step is to prove the statement for
the first nontrivial value of the index (n D 2 in this case). After that you assume that
the statement is correct for n D k and, using this assumption, prove it for n D k C1.
Thus, the first step—consider n D 2:
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h OT1; OT22
i

D OT1 OT22 � OT22 OT1 D OT1 OT2 OT2 � OT2 OT1 OT2 C OT2 OT1 OT2 � OT2 OT2 OT1

D
� OT1 OT2 � OT2 OT1

� OT2 C OT2
� OT1 OT2 � OT2 OT1

�
D 2 OC OT2:

(Note that it works because OC commutes with OT2.) Next, n D k assumption:

h OT1; OT2k
i

D k OC OT2k�1

The final step—proof for n D k C 1:

h OT1; OT2kC1i D OT1 OT2kC1 � OT2kC1 OT1 D OT1 OT2kC1 � OT2 OT1 OT2k C OT2 OT1 OT2k � OT2kC1 OT1

D
h OT1; OT2

i OT2k C OT2
h OT1; OT2k

i
D OC OT2k C k OC OT2k D .k C 1/ OC OT2k

:

Using this identity I can transform Eq. 3.23 into

h OT1; e� OT2
i

D OC
1X

nD0

�nn

nŠ
OT2n�1 D OC�

1X
nD1

�n�1

.n � 1/Š
OT2n�1 D � OCe� OT2 (3.25)

This result can be used to derive another important identity. Multiply Eq. 3.25 by
e�� OT2 from the left:

e�� OT2
h OT1; e� OT2

i
D e�� OT2� OCe� OT2 :

The right-hand side of this expression simplifies to OC�: e�� OT2e� OT2 D e�� OT2C� OT2 D
OI, since Eq. 3.22 is applicable for any commuting operators and any operator
commutes with itself. Now you can expand the commutator on the left of the
expression above to get

e�� OT2 OT1e� OT2 � OT1 D OC�

or

e�� OT2 OT1e� OT2 D OT1 C OC�: (3.26)

Now I am ready to approach my main target and to prove that

e OT1COT2 D e OT1e OT2e� 1
2 Œ OT1; OT2�: (3.27)
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The proof of this identity is more involved than the two previous derivations. Direct
proof (for instance, by using series expansions of the exponential functions on
both sides of Eq. 3.27) results in expressions too cumbersome to allow for fruitful
analysis. Therefore, I am going to use an indirect approach, which was invented by
Harvard Professor Roy Glauber, winner of the 2005 Nobel Prize for his contribution
in quantum optics. Glauber considered function f .x/ D e OxT1ex OT2 , for which he
derived a differential equation by computing its derivative:

df

dx
D OT1e OxT1ex OT2 C e OxT1 OT2ex OT2 :

Note how operators OT1 and OT2 are placed in this expression: OT1 appears in front of
the exponent containing OT2 because it originates from the exponential function of
OT1 positioned to the left of ex OT2 . At the same time, OT2 appears behind e OxT1 following
the respective position of e OxT2 . Relative positions of e OxTi and respective OTi are
not important because these operators commute (any operator commutes with any
function of the same operator). Now the derivative can be rewritten in the following
way:

df

dx
D e OxT1ex OT2e O�xT2e�x OT1

� OT1e OxT1ex OT2 C e OxT1 OT2ex OT2
�
:

It is not too difficult to see that the expression in front of the brackets is equal to
unity so writing it there does not change anything. Continue

df

dx
D f .x/

�
e O�xT2 OT1ex OT2 C OT2

�
D f .x/

� OT1 C x
h OT1; OT2

i
C OT2

�
;

where the identity given by Eq. 3.26 is used and OC is replaced with
h OT1; OT2

i
: This

differential equation can now be solved for function f .x/:

ˆ
df

f
D

ˆ
dx
� OT1 C OT2 C x

h OT1; OT2
i�

)

ln
f

f0
D x

� OT1 C OT2
�

C 1

2
x2
h OT1; OT2

i
;

where integration constant f0 is chosen to satisfy the obvious initial condition:
f .0/ D 1. With this in mind, function f can be written as

f D ex. OT1COT2/C 1
2 x2Œ OT1; OT2�:

Setting x D 1 in this expression and multiplying it by e� 1
2 Œ OT1; OT2�, Eq. 3.27 is finally

obtained, completing the proof.



54 3 Observables and Operators

I want to finish this section with two important technical statements about
Hermitian operators. The first one is concerned with Hermitian conjugation of a
product of two Hermitian operators. It can be shown that

� OT1 OT2
�� D OT2 OT1: (3.28)

This statement can be proven as follows. By definition

˝
˛j
� OT1 OT2

�� jˇ˛ D
�˝
ˇj OT1 OT2j˛

˛��
:

Introducing
˝
ˇj OT1 D ˝ Q̌j; OT2j˛

˛ D j Q̨ ˛ and using Eq. 2.19, you can write the right-
hand side of this expression as

�˝ Q̌j Q̨ ˛
�� D ˝ Q̨ j Q̌˛:

Rules for Hermitian conjugation yield j Q̌˛ D OT�1 jˇ˛ and
˝ Q̨ j D ˝

˛j OT�2 , which allows
to proceed as follows:

�˝
ˇj OT1 OT2j˛

˛�� D
�˝ Q̌ ˇ̌ Q̨ ˛

�� D ˝ Q̨ j Q̌˛ D ˝
˛j OT�2 OT�1 jˇ˛:

By the way, you may have noticed that I had actually proved a more general
statement. Indeed, the last equation means that

� OT1 OT2
�� D OT�2 OT�1 ;

which is valid for any linear, not necessarily Hermitian, operator. Equation 3.28
follows from this result if OT1 and OT2 are Hermitian. An immediate corollary of this
result is the following:

h OT1; OT2
i� D �

h OT2; OT1
i
: (3.29)

Operators which change sign upon Hermitian conjugation are called anti-Hermitian,
so the commutator of two Hermitian operators is also anti-Hermitian. It is now easy
to demonstrate that a commutator of two Hermitian operators can be presented as

h OT1; OT2
i

D i OA; (3.30)
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where OA is Hermitian. If the commutator is a number, Eq. 3.30 is reduced to

h OT1; OT2
i

D ic; (3.31)

where c is real.

3.2.3 Eigenvalues and Eigenvectors

When an operator acts on a generic vector, the result is a different vector. For
instance, differentiation operator acting on function e�x2 : ODe�x2 D �2xe�x2—
produces a different function. If, however, you apply the same operator to function
e
x, the result will be the same function, multiplied by a number: ODe
x D 
e
x. This
example illustrates a general phenomenon: among many vectors that are changed
by operators in completely different vectors, there are some that are only being
multiplied by a number. This special class of vectors, called eigenvectors, plays
an important role in the application of operators in quantum physics. The number,
which appears as a factor in front of an eigenvector, is specific for each vector (or
a limited subset thereof) and is called an eigenvalue. The formal definition of an
eigenvector and an eigenvalue is as follows: vector j˛i is an eigenvector of operator
OT with a respective eigenvalue �˛ if

OT j˛i D �˛ j˛i : (3.32)

For each eigenvector there might be one and only one corresponding eigenvalue,
but the opposite of this statement is not always true. If for each eigenvalue there
exists only a single eigenvector, we describe this eigenvalue as non-degenerate. If
an opposite happens, and several eigenvectors “belong” to the same eigenvalue, the
respective eigenvalue is naturally called “degenerate.” In the non-degenerate case,
an eigenvalue describes a respective eigenvector with an accuracy to a constant
factor (a vector appearing in Eq. 3.32 can be multiplied by any number without
destroying the equation). If we, however, require that all eigenvectors be normalized,
then the eigenvalue will define the respective eigenvector uniquely (with accuracy
to an arbitrary phase factor, which cannot be fixed by normalization but which does
not affect any physical results) so that I can designate it simply as j�i.

To distinguish between different eigenvectors belonging to the same eigenvalue,
I need an additional index so that Eq. 3.32 becomes

OT j�;�i D � j�;�i : (3.33)

The physical meaning of the additional index will become clear later, but for
now, it is just a way to distinguish between different eigenvectors belonging to
the same eigenvalue. An important property of degenerate eigenvectors is that any
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linear combination of these vectors is again an eigenvector belonging to the same
eigenvalue. Indeed, consider a vector

j˛i D a�1 j�;�1i C a�2 j�;�2i

and apply operator OT to it

OT j˛i D OT �a�1 j�;�1i C a�2 j�;�2i
� D a�1� j�;�1i C a�2� j�;�2i D � j˛i

where I used Eq. 3.33. Using mathematical lingo, you can say that eigenvectors
belonging to a degenerate eigenvalue form a subspace of the total linear space
because by forming any linear combination thereof you remain within the same
set of vectors in complete agreement with the definition of a vector space.

Now I shall prove an important theorem concerning eigenvectors of commuting
operators and discuss its consequences.

Theorem 1 (Eigenvectors of Commuting Operators) Consider two operators OT1
and OT2 such that OT1 OT2 D OT2 OT1. Also assume that �T1 is a non-degenerate eigenvalue
of OT1 with eigenvector j�T1i. Then, this vector is also an eigenvector of the operator
OT2.
Proof Consider

OT2 OT1 j�T1i D �T1
OT2 j�T1i D OT1 OT2 j�T1i

where at the last step I used the commutative property of the operators. The obtained
result means that OT2 j�T1i is also an eigenvector of OT1 with the same eigenvalue �T1 .
However, since it was assumed that �T1 is non-degenerate, this new eigenvector
might differ from j�T1i only by a constant factor:

OT2 j�T1i D �T2 j�T1i ;

which means that j�T1i is an eigenvector of OT2.
The non-degenerate nature of the eigenvalue of OT1 is essential for this proof to

work. Thus, if eigenvalues of OT1 are degenerate, not all eigenvectors of OT1 will also
be eigenvectors of OT2. However, it can be proven (though the proof is much more
involved and will not be reproduced here) that one can always form such a linear
combination of these degenerate eigenvectors which will become an eigenvector of
OT2, with its own eigenvalue �T2 . In this case, assigning eigenvalues of both OT1 and
OT2 might provide a unique characterization of a vector, which is a simultaneous
eigenvector of both operators and can be notated as j�T1 ; �T2i. Comparing this
notation to Eq. 3.33, one can see that the index � in that equation can be understood
as an eigenvalue of a commuting partner operator. If there exists a third operator,
OT3, commuting with both OT1 and OT2, one can find common eigenvectors for all three
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operators, in which case a full unique characterization of such a state would require
specifying three eigenvalues: j�T1 ; �T2 ; �T3i, where

OT1 j�T1 ; �T2 ; �T3i D �T1 j�T1 ; �T2 ; �T3i
OT2 j�T1 ; �T2 ; �T3i D �T2 j�T1 ; �T2 ; �T3i
OT3 j�T1 ; �T2 ; �T3i D �T3 j�T1 ; �T2 ; �T3i :

In general, in order to fully uniquely characterize an eigenvector of an operator with
degenerate eigenvalues, one needs to find the complete set of commuting operators
(CSCO), i.e., all operators which commute with each other.

To help you visualize these rather abstract concepts, I will illustrate them with
a simple example involving commuting matrices, but you have to be prepared for
some lengthy computations. So, embrace yourself! This example will also illustrate
the process of finding eigenvalues and eigenvectors of operators in a matrix form.

Example 11 (Eigenvectors of Commuting Matrices) Consider two 3 � 3 matrices

M1 D

2
664

5
4

1

2
p
2

1
4

1

2
p
2

3
2

1

2
p
2

1
4

1

2
p
2

5
4

3
775 I M2 D

2
664

1 � 1p
2

�1
� 1p

2
0 � 1p

2

�1 � 1p
2

1

3
775 : (3.34)

It does not take much effort to compute their products (you can use symbolic
computational platform such as Mathematica or Maple if you are too lazy to do
it yourself) and to see that the matrices, indeed, commute:

M1 � M2 D M2 � M1 D

2
664

3
4

� 3

2
p
2

� 5
4

� 3

2
p
2

� 1
2

� 3

2
p
2

� 5
4

� 3

2
p
2

3
4

3
775 :

Vectors in this case are single columns with three elements:

j˛i D

2
64

u1
u2
u3

3
75 :

and the eigenvector equation 3.32 takes the form of a matrix equation. For M1 this
equation is

2
64

5
4

1

2
p
2

1
4

1

2
p
2

3
2

1

2
p
2

1
4

1

2
p
2

5
4

3
75

2
64

u1
u2
u3

3
75 D �

2
64

u1
u2
u3

3
75 :
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It is convenient to collect all terms on one side and present this equation in the form

2
664

5
4

� � 1

2
p
2

1
4

1

2
p
2

3
2

� � 1

2
p
2

1
4

1

2
p
2

5
4

� �

3
775

2
664

u1

u2

u3

3
775 D 0: (3.35)

What we have here is a matrix form of a system of three linear homogeneous
equations, which always has at least one solution: u1 D u2 D u3 D 0. This solution,
however, is not what I had in mind when introducing the concept of eigenvectors.
We need non-zero solutions, but they might exist only if the determinant of the
matrix representing coefficients of this equation is equal to zero. (Cramer’s rule of
linear algebra, anyone?) Computing the determinant and setting it to zero, I arrive
at the following equation:

�3 � 4�2 C 5� � 2 D 0;

which has three solutions, �1;2 D 1I �3 D 2, two of which coincide signifying
that the matrix does have degenerate eigenvalues. (These solutions can be found by
factoring the determinant as .� � 1/2 .� � 2/.)

Now, for each eigenvalue, I will find a respective eigenvector, beginning with a
non-degenerate eigenvalue �3 D 2. Substituting this eigenvalue in Eq. 3.35, I reduce
it to

2
664

� 3
4

1

2
p
2

1
4

1

2
p
2

� 1
2

1

2
p
2

1
4

1

2
p
2

� 3
4

3
775

2
664

u.3/1

u.3/2

u.3/3

3
775 D 0:

where added upper index in u.3/i indicates that this eigenvector belongs to the third
eigenvalue. Expanding the matrix equation in an explicit system of linear equations
yields

�3
4

u.3/1 C 1

2
p
2

u.3/2 C 1

4
u.3/3 D 0 ) �3u.3/1 C p

2u.3/2 C u.3/3 D 0

1

2
p
2

u.3/1 � 1

2
u.3/2 C 1

2
p
2

u.3/3 D 0 ) u.3/1 � p
2u.3/2 C u.3/3 D 0

1

4
u.3/1 C 1

2
p
2

u.3/2 � 3

4
u.3/3 D 0 ) u.3/1 C p

2u.3/2 � 3u.3/3 D 0:

Combining the last two equations, I get 2u.3/1 � 2u.3/3 D 0 ) u.3/1 D u.3/3 . Then, the
first two equations are reduced to two identical equations:



3.2 Operators in Quantum Mechanics 59

�2u.3/1 C p
2u.3/2 D 0

2u.3/1 � p
2u.3/2 D 0;

which means that the value for one of the coefficients u.3/1;2 can be chosen arbitrarily.

For instance, you can express these coefficients in terms of yet undefined u.3/1 :

u.3/2 D p
2u.3/1 I u.3/3 D u.3/1 . Using notation j2i to designate this eigenvector (2

in this notation refers to the value of the respective eigenvalue), I can write

j2i D u.3/1

2
64
1p
2

1

3
75 :

The value of the remaining coefficient can be fixed (if the undefined coefficients
make you nervous) by requiring that the vector is normalized:

ˇ̌
ˇu.3/1

ˇ̌
ˇ
2 �
1

p
2 1
�
2
664
1p
2

1

3
775 D

ˇ̌
ˇu.3/1

ˇ̌
ˇ
2

4 D 1 ) u.3/1 D 1

2
:

Thus, the normalized eigenvector belonging to the eigenvalue � D 2 is found to be

j2i D 1

2

2
664
1p
2

1

3
775 : (3.36)

Now let me deal with degenerate eigenvalue �1;2 D 1. In this case, the eigenvector
equation becomes

2
664

1
4

1

2
p
2

1
4

1

2
p
2

1
2

1

2
p
2

1
4

1

2
p
2

1
4

3
775

2
664

u.1;2/1

u.1;2/2

u.1;2/3

3
775 D 0

or in the expanded form

1

4
u.1;2/1 C 1

2
p
2

u.1;2/2 C 1

4
u.1;2/3 D 0 ) u.1;2/1 C p

2u.1;2/2 C u.1;2/3 D 0

1

2
p
2

u.1;2/1 C 1

2
u.1;2/2 C 1

2
p
2

u.1;2/3 D 0 ) u.1;2/1 C p
2u.1;2/2 C u.1;2/3 D 0
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1

4
u.1;2/1 C 1

2
p
2

u.1;2/2 C 1

4
u.1;2/3 D 0 ) u.1;2/1 C p

2u.1;2/2 C u.1;2/3 D 0:

In this case, all three equations coincide, meaning that I can choose arbitrarily two
coefficients, e.g., u.1;2/1 and u.1;2/3 , while expressing the remaining coefficients as

u.1;2/2 D �
�

u.1;2/1 C u.1;2/3

�
=
p
2:

Choosing different values of the remaining coefficients, I can generate different
eigenvectors all belonging to the same eigenvalue. For instance, choosing u.2/3 D 0

and u.1/1 D 0, I generate distinct vectors:

j1i1 D u.2/3

2
664

0

� 1p
2

1

3
775 I j1i2 D u.1/3

2
664

1

� 1p
2

0

3
775 ; (3.37)

which can also be normalized. Any linear combination of these vectors will also be
an eigenvector.

Now I turn my attention to matrix M2. Again computing the determinant

��������

1 � � � 1p
2

�1
� 1p

2
�� � 1p

2

�1 � 1p
2
1 � �

��������

and setting it to zero, I end up with the equation

�3 � 2�2 � �C 2 D 0

which again can be solved by factorization and yields �1 D 2; �2 D �1; �3 D
1. Each of these eigenvalues (which, by the way, are non-degenerate) has its own
eigenvector, which can be found in the same way as above. I will leave the actual
calculations as an exercise and present here only the final answers for the normalized
eigenvectors:

j2i D 1p
2

2
664

�1
0

1

3
775 ; j�1i D 1

2

2
664
1p
2

1

3
775 ; j1i D 1

2

2
664

1

�p
2

1

3
775 ; (3.38)

where eigenvectors are again labeled by their respective eigenvalues. Now, it is
obvious that eigenvector j�1i of matrix M2 is also an eigenvector of M1, so I only
need to check the remaining vectors:
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2
664

5
4

1

2
p
2

1
4

1

2
p
2

3
2

1

2
p
2

1
4

1

2
p
2

5
4

3
775

2
664

�1
0

1

3
775 D

2
664

�1
0

1

3
775 ;

so this vector is an eigenvector of M1 with eigenvalue � D 1. Note that the

elements of this vector obey condition u.1;2/2 D �
�

u.1;2/1 C u.1;2/3

�
=
p
2 derived for

the degenerate eigenvectors of M1 with u2 D 0, u1 D �u3 D 1. Now, for the
remaining eigenvector of M2, I have

2
664

5
4

1

2
p
2

1
4

1

2
p
2

3
2

1

2
p
2

1
4

1

2
p
2

5
4

3
775

2
664

1

�p
2

1

3
775 D

2
664

1

�p
2

1

3
775 ;

i.e., this is also an eigenvector of M1 with the same eigenvalue. For this vector
I also have u2 D � .u1 C u3/ =

p
2 with u1 D u3 D 1. Thus, I can present

the system of common eigenvectors of these two matrices, in which degenerate
eigenvectors become uniquely defined by the virtue of their belonging to the
eigenvalues of a second commuting matrix. Now, all these eigenvectors can be
designated as j1; 2i ; j1; 1i, and j2;�1i, where the first and second numbers refer to
the eigenvalues of M1 and M2, respectively.

3.3 Operators and Observables

3.3.1 Hermitian Operators

One might notice a striking similarity between CSCO and the concept of the
complete set of mutually consistent observables discussed in Sect. 2.1. Also, the
state vectors characterized by definite values of compatible observables look like
eigenvectors of operators characterized by eigenvalues of commuting operators.
It appears reasonable, therefore, to expect that one can establish a connection
between physical observables and quantum states characterized by the values of
the observables on one hand and the mathematical concepts of operators and
their eigenvalues and eigenvectors on the other hand. This connection is indeed
established by the following postulates laying down the foundation of formalism of
quantum mechanics.

Postulate 1 (Observables and Hermitian Operators) Every observable is
represented in quantum theory by a Hermitian operator.
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Postulate 2 Eigenvalues of operators constructed to represent an observable
determine values, which a measurement of the observable might yield, and
eigenvectors define states, in which a measurement of the observable represented
by the operator will with certainty produce the corresponding value.

The first question which might pop up in someone’s mind after reading the first
of these postulates is, why does it single out Hermitian operators? The fact of the
matter is that Hermitian operators possess a number of special properties, which
make them practically suitable for their intended use as representative of physical
observables. These properties can be formulated in the form of several theorems.

Theorem 2 (Theorem of the Eigenvalues) Eigenvalues of Hermitian operators
with discrete spectrum are necessarily real-valued.

Proof Let j�ni be an eigenvector of a Hermitian operator OT corresponding to
eigenvalue �n:

OT j�ni D �n j�ni :

Premultiplying this expression by h�nj, I get

h�nj OT j�ni D �n h�n j�ni :

Performing complex conjugation of this expression and using the definition of the
Hermitian conjugate operator, Eq. 3.14, I derive

�
h�nj OT j�ni

�� D h�nj OT� j�ni D ��
n h�nj�ni

where it is assumed that the norm of the vector exists and is a real-valued quantity.
For Hermitian operators OT� D OT , in which case left-hand sides of the last two
equations coincide yielding ��

n D �n, which means, of course, that �n is a real
number.

The importance of this theorem for association between physical observables
and operators is obvious—results of any measurements are always expressed by real
numbers, and the theorem guarantees that the mathematical constructs (eigenvalues)
used to connect the formalism with the real world of experiments and observations
are consistent with this natural requirement. The assumption that the norm of
the respective eigenvectors exists, which is a critical element of the proof of the
theorem, can be rigorously validated only for Hermitian operators with discrete
spectrum.3

Eigenvectors of operators with continuous spectrum are not normalizable in the
usual sense (see Sect. 2.3), so this theorem does not apply to them. At the same
time, we need such continuous spectrum operators as momentum or coordinate

3I borrowed this fact without proof from the branch of mathematics called functional analysis that
studies the properties of linear operators.
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to describe physical reality, so we have to find a way to avoid having to deal
with unrealistic complex eigenvalues. Leaving the mathematical intricacies of this
problem to mathematicians, I solve it here by a sleight of hand. I simply postulate
that only real eigenvalues and their corresponding eigenvectors of such operators
can be used to represent quantum states and the results of measurements. It can
be shown that the eigenvectors corresponding to real eigenvalues of Hermitian
operators with continuous spectrum can be normalized in the sense of Eq. 2.41. To
illustrate the last point, consider operator id=dx that I have previously proved to be
Hermitian. The eigenvectors of this operator have the form of e�ikx, with k being an
eigenvalue:

id.e�ikx/=dx D ke�ikx:

If I force k to be a real number, I can use the properties of the delta-function to write

ˆ
dxeix.k�k1/ D 2�ı .k � k1/ ;

which is the orthonormalization requirement for the eigenvectors belonging to
continuous spectrum. You may want to notice that the integral in this expression
is reduced to the delta-function only for real-valued k.

Theorem 3 (Theorem of Eigenvectors) Eigenvectors of Hermitian operators with
discrete spectrum belonging to different eigenvalues are necessarily orthogonal.

Proof Consider two different eigenvalues �1 and �2 of a Hermitian operator OT
together with their eigenvectors j�1i and j�2i:

OT j�1i D �1 j�1i
OT j�2i D �2 j�2i :

Premultiply first of these equations by h�2j and the second one by h�1j:

h�2j OT j�1i D �1 h�2 j�1i
h�1j OT j�2i D �2 h�1 j�2i :

Complex conjugate the second of these equations, use Eq. 3.14 (which defines the
Hermitian conjugate operator), and take into account that OT is Hermitian. This yields

h�2j OT j�1i D .�2/
� h�1 j�2i� :

so that the pair of equations from above can be written as

h�2j OT j�1i D �1 h�2 j�1i
h�2j OT j�1i D .�2/

� h�1 j�2i�
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Taking into account that the eigenvalues of the Hermitian operators are real and that
according to the property of the inner product h�2 j�1i D h�1 j�2i�, you finally
obtain

�1 h�2 j�1i D �2 h�2 j�1i :

If �1 ¤ �2, you have no choice but to conclude that h�2 j�1i D 0.
In the case of Hermitian operators with degenerate spectrum, the situation is more

complex because, as we saw in the matrix example in Sect. 3.2.3, one can generate
multiple sets of linearly independent vectors belonging to the same eigenvalue,
and they do not have to be orthogonal. At the same time, we also saw that one
can always find such a set, in which eigenvectors are orthogonal. These special
sets of orthogonal vectors belonging to the degenerate eigenvalues are usually also
eigenvectors of another operator from the respective CSCO. Thus, you can be rest
assured that for any Hermitian operator, there exists a set of mutually orthogonal
eigenvectors. I already mentioned that the physical meaning of the mathematical
concept of orthogonality is mutual exclusivity of values of the observables used to
characterize the states, and this comment essentially completes our identification
of mutually exclusive states characterized by a set of mutually consistent set of
observables with eigenvectors of operators belonging to a complete set of mutually
commuting operators.

Theorem 4 (Completeness of Eigenvectors) The set of eigenvectors of Hermitian
operators is complete in a sense that any state in the respective Hilbert vector space
can be presented as a linear combination of these eigenvectors.

The completeness property gives a rigorous mathematical justification to the
generalization of the superposition principle expressed by Eq. 2.26. This property
essentially states that eigenvectors of Hermitian operators with discrete spectrum
form a countable basis in the Hilbert vector space. It can also be expressed in the
form of a so-called completeness or “closure” relation, which can be presented as
a useful operator identity. To derive it, I, first, rewrite Eq. 2.26 in a more compact
form as

j˛i D
X

n

an j�ni ; (3.39)

where index n enumerates the eigenvectors and each eigenvector j�ni, which is
assumed to be normalized, is characterized by all available eigenvalues of the
respective CSCO. Expansion coefficients an in this expression can be found as
an D h�nj˛˛ as established in Eq. 2.24. After substitution of this expression back
into Eq. 3.39, the latter becomes

j˛i D
X

n

j�ni h�nj˛˛ �
 X

n

j�ni h�nj
! ˇ̌
˛
˛
: (3.40)



3.3 Operators and Observables 65

In the last expression here, I split off ket vector j˛i from the bra h�nj and combined
the latter with another ket j�ni. The ket and bra vectors enclosed in the brackets
are in unusual positions: the bra is on the left of the ket, which is opposite to
their regular positions in the standard inner product. As you can guess, expression
OP.n/ D j�ni h�nj is not an inner product, but does it have any sensible meaning
at all? In the matrix example of the vectors, this expression corresponds to the
situation in which the column vector is written down to the left of the row vector—
the arrangement used to form the outer or tensor product mentioned in the previous
section. Respectively, in the case of abstract generic ket and bra vectors, j�ni h�nj
can be understood as an outer product of two vectors. Naturally, just as the outer
product of rows and columns yields a matrix, the outer product of bras and kets
generates an operator: indeed, if you bring the split-off ket vector back, you can
construct the following expression:

OP.n/ ˇ̌˛˛ D j�ni h�nj˛˛: (3.41)

i.e., the result of the action of OP.n/ on j˛i is vector j�ni multiplied by a number.
If j˛i and j�ni were a regular three-dimensional vector and one of the unit vectors
specifying a particular direction correspondingly, you could say that OP.n/ projects
j˛i on j�ni and generates a component of j˛i in the direction specified by j�ni. It
is customary to maintain the same terminology and call operator OP.n/ a projection
operator.

Example 12 (Projection Operators) To get accustomed to working with operators
of the form OP.n/ D j�ni h�nj, let me prove the main property of the projection

operators,
h OP.n/

i2 D OP.n/:
h OP.n/

i2 D j�ni h�nj �ni h�nj :

The expression in the middle looks like an inner product of a basis vector with itself,
and as such it is equal to unity. Thus, we have

h OP.n/
i2 D j�ni h�nj D OP.n/:

The expression inside the parentheses in Eq. 3.40 is a sum of projection operators,
but most importantly, it is easy to see that this sum is identical to a unity operator:
it acts on vector

ˇ̌
˛
˛

and generates the same vector. This statement can be written as
the following identity:

X
n

j�ni h�nj D OI; (3.42)

which is the completeness or closure relation. This is a useful operator identity,
which will be frequently used in what follows.
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Not all vector spaces used in quantum mechanics can be described by a discrete
basis, and sometimes we have to use as a basis eigenvectors of operators with
continuous spectrum. I have already discussed this possibility in Sect. 2.3 using
states characterized by a definite value of particle’s position jri. Now you can
associate these states with eigenvectors of a position operator Or. In general, if jqi
is an eigenvector of some Hermitian operator with continuous spectrum and q is the
respective eigenvalue, you can present an arbitrary state j˛i as an integral instead of
a sum:

j˛i D
ˆ

dq .q/ jqi : (3.43)

Premultiplying Eq. 3.43 by bra hq1j and using the orthogonality condition for
continuous spectrum, Eq. 2.41, you will obtain

hq1 j˛i D
ˆ

dq .q/ hq1 jqi D
ˆ

dq .q/ı .q1 � q/ D  .q1/: (3.44)

Replacing  .q/ in Eq. 3.43 with its expression derived in Eq. 3.44, you end up with

j˛i D
ˆ

dq jqi hq j˛i :

Considering expression
´

dq jqi hqj as an operator, you can, similarly to the case of
discrete basis, write

ˆ
dq jqi hqj D OI: (3.45)

Equation 3.45 constitutes a completeness condition for eigenvectors of operators
with continuous spectrum.

Example 13 (Expansion in Terms of Continuous Basis) To illustrate Eq. 3.43,
consider again a linear vector space of integrable functions of a single variable:
j˛i � f .x/. The Fourier transform of this function can be defined as

f .x/ D 1p
2�

1̂

�1
dkQf .k/eikx;

where the “coefficient” function Qf .k/ is defined via the inverse transform

Qf .k/ D 1p
2�

1̂

�1
dxf .x/e�ikx:
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The role of the continuous basis is played here by functions

jki � 1p
2�

eikx;

which are eigenvectors of Hermitian operator �id=dx with continuous spectrum
consisting of real numbers k. These eigenvectors are orthogonal and delta-function
normalized:

1

2�

1̂

�1
dxei.k1�k/x D ı .k � k1/ :

The completeness condition, Eq. 3.45, for these functions takes the form of

1

2�

1̂

�1
dkei.x1�x/k D ı .x � x1/ ;

with delta-function ı .x � x1/ playing the role of the identity operator OI in this space:
ˆ

f .x/ı .x � x1/ dx D f .x1/:

Some operators have a mixed spectrum: it is discrete for one range of eigenvalues
and continuous for another range. Completeness relation in this case will be a
combination of Eq. 3.42 and Eq. 3.45 with sum over all discrete eigenvectors and
the integral over the continuous one.

3.3.2 Quantization Postulate

Most physical observables can be constructed from just two elements: position
vector r and momentum p. I have already introduced states with definite values of the
position vector, jri, which are supposed to be eigenvectors of a respective Hermitian
operator Or. Similarly, I can introduce states with definite values of momentum jpi,
which are supposed to be eigenvectors of the Hermitian momentum operator Op. The
first question, of course, which you shall want to know is what these operators do
to quantum states. You could have guessed the answer for the states represented by
eigenvectors of respective operators: Or jQri D Qr jQri , Op jQpi D Qp jQpi, where I placed 	
above r and p to better distinguish between symbols of respective operators and their
eigenvalues and eigenvectors. Using these results I can compute expressions like
Or j˛i or Op j˛i by expanding the state j˛i in terms of eigenvectors of the respective
operators. For instance, by presenting

j˛i D
ˆ

dQr .Qr/ jQri ;
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I can find

Or j˛i D
ˆ

dQr .Qr/ Or jQri D
ˆ

dQr .Qr/ Qr jQri :

Similar treatment for the momentum operator yields

Op j˛i D
ˆ

d Qp' .Qp/ Op jQpi D
ˆ

d Qp' .Qp/ Qp jQpi :

The problem arises when both position and momentum operators appear in the
same expression and we have to figure out how to operate, say, Op, on a state
expanded in terms of eigenvectors of Or or vice versa. I will discuss this issue
later in the book, in the section devoted to “representations” of the state vectors
and operators. For now I would just like to say that the solution to this problem
depends on the fundamental assumptions about commutation relations involving
position and momentum operators. Essentially, the quantization procedure, i.e., the
rules determining how to replace classical observables with their representation as
quantum operators, consists in the postulation of these commutation relations. You
will see many times in this text that the knowledge of the commutators of various
operators is all what you need to know to perform quantum mechanical calculations.
So, please meet the fundamental commutation relations of quantum mechanics.

Postulate 3 (Quantization Postulate) Operators, corresponding to various
Cartesian components of position vector and momentum, obey the following
commutation relations:

�Ori; Orj
� D 0I �Opi; Opj

� D 0 (3.46)
�Ori; Opj

� D i„ıi;j; (3.47)

where subindexes take values 1; 2; 3 indicating x; y; z Cartesian components of
the position and momentum vectors, respectively.

The first of the commutators in Eq. 3.46 indicates that the Cartesian components
of the position vectors are mutually consistent observables. In other words, it means
that if a system is in the state with a certain position, all three components of the
position vector are well-defined. The same is true for the vector of momentum as
expressed by the second of the commutators in Eq. 3.46. These commutators reflect
our desire born out of empirical experience for the position and momentum of the
quantum systems to be genuinely well-defined quantities, at least when measured
independently of each other.

The commutators presented in Eq. 3.47 are often called canonical commutation
relations, and they also express our empiric experience, namely, the fact that the
same Cartesian components of position and momentum vectors of a quantum system
are not mutually consistent observables and cannot, therefore, be described by
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commuting operators. The actual form of the commutator is chosen to reproduce
Heisenberg’s uncertainty principle, which is discussed in the next section. You
will also see later that the empirical foundation for this form of the commutator
can be traced to the de Broglie relation, Eq. 1.3. It is interesting to note a striking
similarity between commutators given in Eqs. 3.46 and 3.47 and canonical Poisson
brackets of classical mechanics, Eq. 3.5. This similarity lies in the foundation
of the so-called canonical quantization rule: any classical conjugated quantities
satisfying Eq. 3.5 in quantum theory are promoted to quantum operators obeying the
canonical commutation relation 3.47. Therefore, canonically conjugated variables
never belong to the same class of mutually consistent observables and are found on
the opposite sides of the Bohr complementarity principle.

3.3.3 Constructing the Observables: A Few Important
Examples

Using coordinate and momentum operators, I can construct operators for other
observables, which is done according to the standard quantization rule.

Quantization Rule To turn a classical observable into an operator, replace
all coordinate and momentums appearing in its classical definition with corre-
sponding operators respecting the requirements of hermiticity and the order of
multiplication, when necessary.

In many situations, the issues related to hermiticity or to the multiplication order
of observables are resolved automatically, but in some cases one needs to pay special
attention to them. To have you started, consider several simplest examples.

Kinetic Energy
Kinetic energy of a single particle with mass me is described by operator

OK D Op2

2me
;

which is obtained from the corresponding classical expression by replacing classical
momentum with the momentum operator. The eigenvectors of this operator coincide
with the eigenvectors of the momentum operator, and its eigenvalues, which form
a continuous spectrum, provide values of kinetic energy that can be observed for a
system under study.

Potential Energy
Potential energy is obtained from the respective classical potential energy func-
tion by replacing classical coordinate argument of the function with its operator
equivalent: U.r/ ! U .Or/. It is assumed here, of course, that the potential energy
function can be presented as a series of positive and negative powers of r, in
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which case the corresponding operator expression would have an easily identifiable
meaning. Examples of such transformations are one-dimensional harmonic potential
(kx2 ! kOx2) and Coulomb potential (k=r ! kOr�1), where r is the absolute value
of the position vector.4 The eigenvectors of this operator are the same as of the
position operator, and the respective eigenvalues determine the possible values of
the potential energy of the system.

Hamiltonian
Hamiltonian, which in classical mechanics is defined as the energy of the system
expressed in terms of canonically conjugated coordinate and momentum, in quan-
tum mechanics becomes, in a single particle case, an operator of the form

OH D Op2

2m
C U .Or/ : (3.48)

Since position and momentum operators do not commute, the eigenvectors of
the Hamiltonian are usually different from the eigenvectors of both position
and momentum operators. Eigenvalues of Hamiltonian can belong to discrete,
continuous, or mixed spectrum and determine the values of energy, which the system
can have in the given environment. This is the most important operator in all of the
quantum physics: just like classical Hamiltonian, its quantum counterpart controls
the dynamics of the quantum objects.

Angular Momentum
Angular momentum is a very special kind of an observable. Classical angular
momentum is a vector defined as a cross product of the position and momentum
operators L D r � p. The quantization rule requires that the quantum mechanical
angular momentum operator is constructed by promoting position and momentum
vectors to the corresponding operators:

OL D Or � Op: (3.49)

However, since this expression involves the product of the potentially non-
commuting operators, one has to be careful with the order of the multiplication.
One also needs to make sure that the resulting operator is Hermitian. To address
both these concerns, I will expand the angular momentum vector in its Cartesian
components:

OLx D OyOpz � OzOpy (3.50)

4This transformation is not as trivial as it might seem since taking absolute value of a vector
involves operation of square root, which is not well defined for operators. Practically it is not
a problem, however, because usually one works in the basis of the eigenvectors of the position
operator, in which case Or�1 becomes simply 1=r. If you are not concerned with any of this, this
note is not for you. I mention it here simply in order to avoid accusations in sweeping something
under the rug.
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OLy D OzOpx � OxOpz (3.51)

OLz D OxOpy � OyOpx: (3.52)

(One can use as a useful mnemonic device representation of the vector product as a
determinant:

r� p �

�������

ex ey ez

x y z

px py pz

�������
;

where the first line is formed by unit vectors defining corresponding axes of a
Cartesian coordinate system.)

The first thing to notice in Eqs. 3.50–3.52 is that operators that are actually being
multiplied correspond to commuting components of the position and momentum
vectors; thus, the order, in which you place these operators, is not important. Next,
you need to verify that each of the components of the angular momentum operator
is a Hermitian operator. Hermitian conjugation, e.g., on x-component yields

OL�x D .OyOpz/
� � �OzOpy

�� D Opz Oy � OpyOz D OLx

proving hermiticity of this operator. Similarly, you can demonstrate the Hermitian
nature of two other components. The most unusual property of the angular
momentum, however, is that different components of the angular momentum do

not commute. To illustrate this point, compute commutator
h OLx; OLy

i
:

h OLx; OLy

i
D �OyOpz � OzOpy

�
.OzOpx � OxOpz/ � .OzOpx � OxOpz/

�OyOpz � OzOpy
� D

OyOpzOzOpx C OzOpy OxOpz � OzOpyOzOpx � OyOpz OxOpz � OzOpx OyOpz � OxOpzOzOpy C OzOpxOzOpy C OxOpz OyOpz D

OyOpx OpzOz C Opy OxOzOpz ����Oz2 Opy Opz ��
�Op2z OxOy � OyOpxOzOpz � Opy OxOpzOz C���Oz2 Opy Opz C�

�Op2z OxOy D

OyOpx .OpzOz � OzOpz/C Opy Ox .OzOpz � OpzOz/ D i„ �Opy Ox � OyOpx
� D i„OLz; (3.53)

where, when transitioning from the second line to the third, I took into account that
different components of the coordinate and momentum operators do commute, so
that their order can be changed at will. Similarly, you will find (do it!)

h OLz; OLx

i
D i„OLy (3.54)

h OLy; OLz

i
D i„OLx: (3.55)
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These results indicate that the vector of the angular momentum in quantum theory
is quite different from regular classical vectors as well as from vector operators
of position and momentum: different components of this vector do not belong to
the same group of mutually commuting operators and do not represent mutually
consistent observables, meaning that this vector is not really well-defined. More
specifically, if a quantum system is in a state in which one of the Cartesian
components of the angular momentum is known with certainty, measurements of
two other components will produce statistically uncertain results. This conclusion,
in addition to making the direction of the angular momentum vector uncertain, also
raises a question about its magnitude. Indeed, the magnitude of a generic classical

3-D vector is defined as jAj D
q

A2x C A2y C A2z . Formal quantization of this

expression is not possible because the square root of an operator
q

OA2x C OA2y C OA2z
is not a well-defined object. In the case of position and momentum operators,
this problem did not arise because different components of these operators are
commuting so that one can always choose a coordinate system in which all but one
component of the position or momentum operators are equal to zero. The possible
values of the remaining non-zero component will define the magnitude of the entire
vector. This approach is not possible in the case of angular momentum because of
the incompatibility of its components. This problem is circumvented by choosing
the operator of the square of angular momentum defined as

OL2 D OL2x C OL2y C OL2z (3.56)

to represent its magnitude. Computing commutators
h OL2;Lx;y;z

i
you will find that all

three commutators vanish. (The proof of this statement is left to you as an exercise.)
This means that operators of the square of the angular momentum and one (any)
component of the angular momentum are compatible observables, so that a quantum
system can be created in a state in which one of the components and the magnitude
of the angular momentum are known with certainty. Obviously such a state would
be a common eigenvector of OL2 and OLz.

Quantization of p � r
As a last example, consider a classical expression of the form p � r, which appears in
some applications. An attempt to directly transform this expression in the quantum
form by promoting the momentum and position vectors to operators faces two
obstacles. First, the operators in this expression do not commute, and so it is
unclear what is the correct order of multiplication. Second, even if I arbitrarily
impose a particular order, say, Op � Or, the resulting operator is not Hermitian because
.Op � Or/� D Or � Op ¤ Op � Or. To carry out the quantization procedure in this case, you need
to come up with an expression, which would coincide with its original classical
version but would not depend on the order of the operators, and be Hermitian. One
way to achieve this is to introduce operator

1

2
.Op � Or C Or�Op/
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which satisfies all these conditions. However, this quantization procedure is not
unique, and it might (and does) create problems down the road, but luckily for us
this is not the road I choose for us to travel.

3.3.4 Eigenvalues of the Angular Momentum

The operators of the angular momentum play an extraordinary role in quantum
theory, both on the fundamental level and for applications. The fundamental role
of the angular momentum is derived from its relation to the rotation operator and
rotational symmetry of quantum systems, but discussion of this topic is well above
your pay grade. Those interested in the topic are free to consult any graduate level
quantum mechanics text. From the point of view of applications, the importance
of the angular momentum stems from the fact that many fundamental interactions
in nature are described by so-called central potentials. The potential energy of
such interactions depends only on the absolute value of the distance between two
interacting particles, but not on the orientation of the vector of their relative position.
This text is mostly concerned with quantum mechanics of a single particle in an
external potential (a two-particle problem can often be presented in this form as
well). If the external potential belongs to the class of central potentials, it can be
shown that the Hamiltonian of such a system commutes with all components of the
angular momentum as well as with operator OL2. The proof of this statement requires
proving it separately for kinetic energy operator (essentially for operator Op2) and for
the potential energy operator V .Or/. I believe that the readers of this text are already

equipped to prove that
h OLx;y;z; Op2

i
D
h OL2; Op2

i
D 0, so I leave it to you as an exercise.

As far as the commutators with the potential energy operator go, this proof will have
to be left till later.

Vanishing of the commutators of angular momentum operators and the Hamil-
tonian means that the Hamiltonian, OL2, and one of the components of the angular
momentum form a system of commuting operators and that the eigenvectors of OL2
and, say, OLz are also eigenvectors of the Hamiltonian. This fact can significantly
simplify finding eigenvalues and eigenvectors of the Hamiltonian.

It is also remarkable that the eigenvalues of OL2 and, for instance, OLz can be found
using only commutation relations given by Eqs. 3.53–3.55. The choice of the z-
component here is a random historical occasion and does not have any physical
significance. By choosing this particular component, which, you shall understand,
is attached to a particular choice of the coordinate system, we essentially say
to the experimentalists that if the quantum system is in a state described by the
eigenvectors of OLz as defined by this coordinate system, then a measurement of a
component of the angular momentum in the same direction will produce results
corresponding to the respective eigenvalue with certainty, while measurements of
any other component of the angular momentum will have quantum uncertainty.
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I begin the search for the eigenvalues by introducing abstract vectors j�L; �zi
defined as common eigenvectors of operators OL2 and OLz characterized by some yet
unknown eigenvalues �L and �z:

OL2 j�L; �zi D �L j�L; �zi ; (3.57)

OLz j�L; �zi D �z j�L; �zi : (3.58)

It is convenient to present these eigenvalues as �L D „2p and �z D „m. Pulling out
factors „2 and „ from eigenvalues of OL2 and OLz, respectively, makes the remaining
quantities p and m dimensionless since the dimension of the angular momentum is
the same as that of Planck’s constant. Apparently, I will need to invoke, somehow,
two remaining components of the angular momentum. It is not right away obvious
how to do it, but let’s say that I have had a divine intervention or premonition that
the following two new operators might be useful:

OLC D OLx C i OLy; (3.59)

OL� D OLx � i OLy: (3.60)

The first thing I need to do with these operators is to compute their commutators
with operators OL2 and OLz:

h OLC; OLz

i
D
h OLx; OLz

i
C i

h OLy; OLz

i
D �i„OLy � „OLx D �„OLC; (3.61)

h OL�; OLz

i
D
h OLx; OLz

i
� i

h OLy; OLz

i
D �i„OLy C „OLx D „OL�: (3.62)

It is also easy to see that commutators
h OL2; OL˙

i
vanish. Indeed, OL2 commutes with

all component operators and, therefore, with OL˙, which are combinations of OLx and
OLy. Now, the new operators for a theoretician are like new toys for a child, and I am
eager to play with them and see what they can do. So, to satisfy the urge, and in
hopes to learn something new, I want to apply operators OL˙ to Eq. 3.57:

OL˙ OL2 j�L; �zi D OL2 OL˙ j�L; �zi D „2p OL˙ j�L; �zi ; (3.63)

where I used OL2L˙ D OL˙ OL2. OK, and what did we learn from this exercise? Well, I
know now that if j�L; �zi is the eigenvector of OL2 with eigenvalue „2p, then vector
OL˙ j�L; �zi is still the eigenvector of OL2 with the same eigenvalue, which is not really
surprising because L˙ do commute with OL2. So far, it is not much, and you would
be right to say that so far operators OL˙ have not given us any particular advantages
because we would have gotten the same result with operators OLx;y. But let’s not jump
the gun—always a bad idea—while patience and persistence are virtues. Instead, let
me play another game and apply OLC to Eq. 3.58:

OLC OLz j�L; �zi D „m OLC j�L; �zi ;
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� OLz OLC � „OLC
�

j�L; �zi D „m OLC j�L; �zi ;
OLz OLC j�L; �zi D „ .m C 1/ OLC j�L; �zi ; (3.64)

where I used commutation relation 3.61 to make the transition from the first to the
second line. Now, the last line in Eq. 3.64 tells us that OLC j�L; �zi is an eigenvector
of OLz with eigenvalue „m C „. This is a quite exciting result: it means that if I start
with some eigenvector with a known eigenvalue, I can generate new eigenvectors
with progressively increasing eigenvalues: „m C „; „m C 2„; „m C 3„ : : : . This is
already something new, which we could not have gotten without the operator OLC.
The secret of this operator lies in its commutator with OLz, which is proportional to
OLC itself. The same is true for operator OL�, so it is worth looking into what this
operator can do:

OL� OLz j�L; �zi D „m OL� j�L; �zi ;
� OLz OL� C „OL�

�
j�L; �zi D „m OL� j�L; �zi ;

OLz OL� j�L; �zi D „ .m � 1/ OL� j�L; �zi : (3.65)

When deriving Eq. 3.65, I again applied commutator from Eq. 3.62 to its first line.
The final result of this calculation indicates that operator OL� also generates new
eigenvectors of OLz but with progressively decreasing eigenvalues. Not surprisingly
operators OLC and OL� are called raising and lowering ladder operators.

Now, the question arises: will this process of generating new eigenvectors and
eigenvalues ever stop? In other words, can operator OLz have arbitrary large and
arbitrary small eigenvalues? Intuitively, it is clear that the answer to this question
must be negative and that the possible eigenvalues of OLz must be limited both
from above and from below. Indeed, these eigenvalues represent possible results
of the measurement of one component of a vector, while eigenvalues of OL2 represent
possible experimentally observable values of the squared magnitude of the same
vector. It is difficult to imagine that the component of a vector can be larger than
the magnitude of the same vector, and therefore one should expect that there must
be some kind of a relation between these two eigenvalues, e.g., something like this
m2 < p. In order to see if such a relation, indeed, exists, consider the following
expression:

h�L; �zj OL2 j�L; �zi D h�L; �zj OL2x j�L; �zi C h�L; �zj OL2y j�L; �zi
C h�L; �zj OL2z j�L; �zi :

Taking into account Eqs. 3.57 and 3.58, this can be written as

„2p D h�L; �zj OL2x j p; �zi C h�L; �zj OL2y j p; �zi C „2m2: (3.66)
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Since the expectation values of operators OL2x and OL2y in any state are positive
quantities, Eq. 3.66 yields that p > m2. This means that there exists the smallest m,
which I will designate as l, and there exists the largest m, for which I will use symbol
l. Now, assume that you are dealing with the eigenvector

ˇ̌
�L; „Nl˛ and applying

operator OL� to it. Generally speaking, this operator must lower the eigenvalue, but
we assumed that this eigenvalue is already the lowest. The only way to reconcile
Eq. 3.65 with this assumption is to require that

OL�
ˇ̌
�L; „Nl˛ D 0: (3.67)

In order to figure out how to use this important piece of information, I again need a
bit of divine inspiration, or I can just notice that the product of operators OLC OL� can
be expressed in terms of operators OL2 and OLz:

OLC OL� D OL2x C OL2y C i OLy OLx � i OLx OLy D OL2 � OL2z C „OLz:

Rewriting this expression as

OL2 D OL2z � „OLz C OLC OL�; (3.68)

and applying it to vector
ˇ̌
�L; „Nl˛ while taking into account Eq. 3.67, I obtain

OL2 ˇ̌�L; „Nl˛ D OL2z
ˇ̌
�L; „Nl˛ � „OLz

ˇ̌
�L; „Nl˛C OLC OL�

ˇ̌
�L; „Nl˛ )

„2p ˇ̌�L; „Nl˛ D „2Nl2 ˇ̌�L; „Nl˛ � „2Nl ˇ̌�L; „Nl˛ )
p D Nl2 � Nl: (3.69)

Now, consider the state characterized by the largest values of m, j�L; „li. Attempting
to act on this vector with operator OLC leaves you with the same conundrum
encountered when discussing vector

ˇ̌
�L; „Nl˛, but by now you know the way out:

you must require that

OLC j�L; „li D 0: (3.70)

The derivation of Eq. 3.69 based on Eq. 3.67 was successful because the lowering
operator OL� appears in this equation after operator OLC. Consequently, when the
product OLC OL� is made to act on

ˇ̌
�L; „Nl˛, the resulting expression vanishes. In order

to achieve the same effect with state j�L; „li and Eq. 3.70, I need to modify Eq. 3.68
in such a way that it would contain combination OL� OLC instead of OLC OL�. To achieve
this, consider

OL� OLC D OL2x C OL2y � i OLy OLx C i OLx OLy D OL2 � OL2z � „OLz (3.71)
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which can be rewritten in the desired form

OL2 D OL2z C „OLz C OL� OLC: (3.72)

Now applying OL2 to j�L; „li and using Eqs. 3.72 and 3.70, I get

p D l2 C l: (3.73)

Comparing Eq. 3.69 with Eq. 3.73, I infer that smallest and largest eigenvalues of OLz

are related to each other as

l2 C l D Nl2 � Nl:

It is easy to see (one can always just solve the quadratic equation for Nl) that this
relation implies that Nl D �l or Nl D l C 1. The latter solution contradicts to
the assumption that Nl is the smallest eigenvalue and l is the largest; thus the only
possibility which makes sense is Nl D �l.

Now imagine that you have found the smallest eigenvalue �l and you start
applying operator OLC to state j�L;�„li. After each application of the operator, the
eigenvalue of OLz increases by one, so that after applying it N times, you end up with
eigenvalue �l C N. Eventually you must reach the largest eigenvalue l, at which
point you will have �l C N D l ) 2l D N. N is apparently an integer number, so l
can be either integer, if N is even, or half-integer, if N is odd.

Now, let us gather our thoughts and try to summarize what it is that we have
got:

1. The eigenvalue of operator OL2 is equal to „2l.l C 1/, where l determines the
maximum eigenvalue of the operator OLz, „l.

2. l can take either integer or half-integer values, forming two non-overlapping
series of allowed values: 0; 1; 2; 3 � � � or 1=2; 3=2; 5=2 � � � .

3. Allowed values of m start at �l and advance increasing by one until it reaches l.
For instance, for l D 0; the only possible value of m is zero; for l D 1=2, m can
be �1=2; 1=2; and for l D 1, we can have states with m D �1; 0; 1. In general
for a state characterized by the same eigenvalue of operator OL2, „2l.l C 1/, there
are 2l C 1 possible states with different eigenvalues of OLz.

It is interesting to note that if I were talking about a classical vector, the maximum
magnitude of its component along an axis would simply equal to the length of the
vector. If we interpret expression „l as such a component’s length, then the squared
length of the entire vector would have been „2l2, which is different from the quantum
result „2l2 C „2l. One can see that the “extra” contribution to the “length” comes
from fluctuations of two other components of the angular momentum. Indeed, using
what you have learned from Eq. 3.66, you can write
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„2l2 C „2l D „2l2 C hl; lj OL2x jl; li C hl; lj OL2y jl; li )
hl; lj OL2x jl; li C hl; lj OL2y jl; li D „2l )
hl; lj OL2x jl; li D hl; lj OL2y jl; li D „2l=2:

In the last expression, I introduced a shortcut notation for the common eigenvectors
of operators OL2 and OLz, which in general looks like jl;mi with the first number
indicating that this vector belongs to the eigenvalue „2l.l C 1/ of OL2 and the second
number pointing at the eigenvalue „m of OLz. For brevity, l is often referred to as
the “angular momentum,” and m is often called a “magnetic” quantum number. The
origin of this name will become clear later, when we get to consider the behavior of
atoms in the magnetic field.

Finally, let me note that even though we know now that ladder operators OL˙
generate eigenvectors of OLz, there is no guarantee that the resulting eigenvectors
will be normalized even if the initial vector is. So, in order to finalize the rule for
obtaining normalized eigenvectors using ladder operators, we have to analyze their
action more carefully. First, it is easy to see that they are Hermitian conjugates of
each other:

OL� D OL�C: (3.74)

Assuming that vectors jl;mi and jl;m C 1i are normalized and introducing yet
unknown normalization coefficient, I can write

OLC jl;mi D Al;m jl;m C 1i :

The Hermitian conjugation of this expression yields

hl;mj OL� D hl;m C 1j A�
l;m:

Multiplying the left-hand side of this equation by the left-hand side of the previous
one and doing the same to their right-hand sides yields

hl;mj OL� OLC jl;mi D A�
l;mAl;m hl;m C 1j jl;m C 1i :

Since it was assumed that all ket vectors are normalized, I now immediately have
for jAlmj2:

jAlmj2 D hl;mj OL� OLC jl;mi :

Taking into account Eq. 3.71, and the fact that kets in this expression are eigenvec-
tors of OL2 and OLz, I find

jAlmj2 D „2 Œl .l C 1/ � m .m C 1/�
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which allows to establish the final rule for the generation of new eigenvectors from
the known ones:

OLC jl;mi D „
p

l .l C 1/ � m .m C 1/ jl;m C 1i : (3.75)

I will leave it to you to show that

OL� jl;mi D „
p

l .l C 1/ � m .m � 1/ jl;m � 1i : (3.76)

To conclude this section, let me just emphasize once again that we were able to
find eigenvalues for the system of operators, as well as a rule for generating their
eigenvectors, using nothing but their commutation relations. The key to successful
completion of this task was the existence of the ladder operators with their very
special commutation relations given by Eqs. 3.61 and 3.62.

3.3.5 Statistical Interpretation

In Chap. 2 I have already introduced the relation between coefficients in the
superposition states and probabilities of various outcomes of the measurements on
quantum systems. This time I will elaborate those ideas in a more precise way by
formulating two postulates introducing statistical interpretation to the formalism of
quantum mechanics.

Postulate 4 (Born’s Rule) A measurement of an observable can only yield a
value from the set of the eigenvalues of the operator representing the measured
observable. If a system before the measurement is not in a state described by
one of the eigenvectors of this operator, the result of the measurement cannot
be predicted a priori. Only a probability (or probability density for observables
with continuous spectrum) of a particular outcome can be known. If the measured
eigenvalue is not degenerate, this probability is given by

pn D jh˛j �nij2 ; (3.77)

where j˛i represents a state of the system before the measurement, �n is one of
the eigenvalues, and j�ni is the corresponding eigenvector. If the eigenvalue is
degenerate, the probabilities given by Eq. 3.77 must be summed up with other
degenerate states belonging to this eigenvalue. In the case of observables with
continuous spectrum, the probability is replaced with probability density p.q/:

p.q/ D jh˛j qij2 ;

which determines a differential probability dP that the measured value of the
observable lies within interval of values Œq; q C dq� as dp D p.q/dq.
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Postulate 5 Regardless of the state in which the system was before an observable
is measured, immediately after the measurement, the system will be in a state
represented by the eigenvector of the corresponding operator belonging to the
observed non-degenerate eigenvalue. If the measured eigenvalue is degenerate,
all we can state is that after the measurement the system will be in a state in the
subspace of eigenvectors belonging to this eigenvalue.

Both these postulates are essentially more accurate restatements of the proposi-
tions already discussed in Sect. 2.2.3, where somewhat vague notion of “the state
with definite values of an observable” is replaced with its mathematical representa-
tion as an eigenvector of a respective operator. This more formal approach allows
carrying out a more comprehensive exploration of the statistical interpretation of
quantum mechanical formalism.

I begin by considering an expression of the form h˛j OT j˛i, where j˛i is an
arbitrary state and OT is a Hermitian operator representing a certain observable. I have
already mentioned that this expression is often referred to as “expectation value,” but
now I can demonstrate what it actually means. Expanding this state into eigenvectors
of OT (Eq. 3.39), I can present h˛j OT j˛i as

h˛j OT j˛i D
X

n

X
m

a�
n am h�nj OT j�mi D

X
n

X
m

�ma�
n am h�nj �mi D

X
n

�n janj2 ; (3.78)

where I first took advantage of the fact that j�mi is an eigenvector of OT with
eigenvalue �m: OT j�mi D �m j�mi and then used orthonormalization condition for
the eigenvectors, h�nj �mi D ınm. According to Born’s rule, janj2 is the probability
that the measurement of the observable will produce �n. Then, it becomes clear that
the final result in Eq. 3.78 has the meaning of the average value of the observable,
which one would “expect” to find if the same measurement is repeated multiple
times or if an experimentalist carries out the measurement on multiple identical
copies of the same system. The simplest measure of the statistical uncertainty of
such measurements would be the standard deviation, which in regular probability
theory would be defined as

�T D
q
�2 � �2

where the bar above the letters means statistical averaging with probabilities given

by pn D janj2: �2 D P
n pn�

2
n; �

2 D �P
n pn�n

�2
. In the context of quantum theory,

the measure of uncertainty of a measurement can be described as

�T D
r

h˛j OT2 j˛i �
�
h˛j OT j˛i

�2
: (3.79)
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Indeed,

h˛j OT2 j˛i D
X

n

X
m

a�
n am h�nj OT OT j�mi D

X
n

X
m

�ma�
n am h�nj OT j�mi

D
X

n

X
m

�2ma�
n am h�nj �mi D

X
n

�2n janj2 :

This shows that the measure of uncertainty expressed by Eq. 3.79 does agree with
the probabilistic definition of the standard deviation. If state j˛i is one of the
eigenvectors j�n0i, all coefficients an are zeroes, with the exception of an0 D 1.

In this case, we have h˛j OT2 j˛i D �2n0 D
�
h˛j OT j˛i

�2
, and uncertainty �T vanishes.

This justifies calling states represented by eigenvectors determinant states or states
in which the observable has a definite value. If there are several mutually consistent
observables represented by commuting operators, we can have a state, which is a
common eigenvector of all operators, in which all observables will have definite
values.

If two observables are not mutually consistent and are described by operators OT1
and OT2 that do not commute, one can derive the following inequality for uncertainties
of these operators �T1 and �T2 :

�T1�T2 � 1

2
h˛j

ˇ̌
ˇ
h OT1; OT2

iˇ̌
ˇ j˛i (3.80)

which is valid for an arbitrary state j˛i. This is the so-called generalized uncertainty
principle. Using canonical commutation relations 3.47, I can immediately reproduce
the Heisenberg inequality

�x�p � 1

2
„ (3.81)

which now becomes a particular case of a more general result presented by
Eq. 3.80. It is interesting that using Heisenberg uncertainty principle, Eq. 1.4, as
an empiric formula and combining it with Eq. 3.80, I can “derive” or justify, if you
want, the canonical commutator between the coordinate and momentum operators.
Indeed, since Eq. 3.81 is valid for an arbitrary state, in order to reconcile Eq. 3.81
with Eq. 3.80, I have to admit that the commutator of coordinate and momentum
operators must be a regular number (only in this case the right-hand side of Eq. 3.81
becomes proportional to h˛j ˛i D 1, so that the dependence on the state vanishes).
The absolute value of this number must obviously be equal to „, but recalling that if
the commutator of two Hermitian operators is a number, it must be an imaginary
number (see Eq. 3.31), I can conclude that ŒOx; Opx� D i„, which is the canonical
commutation relation given in Eq. 3.47. Of course, these arguments are not sufficient
to show if this commutator is Ci„ or �i„, but the choice of the sign is, actually, the
matter of convention, and the standard agreement is to write this commutator as
given in Eq. 3.47.
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To illustrate all these rather abstract postulates, I will finish this section with an
example, in which, to save time, I will again use matrices M1 and M2 defined by
Eq. 3.37.

Example 14 (Probabilities of Measurements) Assume that these matrices represent
two observables of some quantum system and that you intend to measure these
observables. It is given that the system is prepared in the state ji represented by the
column

ji D 1p
7

2
4
2i
1

1 � i

3
5

and you are asked to predict the results of the different sequence of measurements
of observables M1 and M2. The first step you have to do is to verify that your
initial state is normalized, which is just a good housekeeping habit. The norm of
this vector is (do not forget to do complex conjugation when converting ket into a
bra—for some reason even good students keep forgetting about it)

kk D 1

7

��2i 1 1C i
�
2
64
2i

1

1 � i

3
75 D

1

7
..�2i/ .2i/C 1C .1C i/ .1 � i// D

1

7
.4C 1C 2/ D 1:

Once normalization is verified, you are ready for the next step. Let’s say you
first want to measure the observable represented by M2. We found earlier that the
eigenvalues of this matrix are �1 D 2, �2 D 1, and �3 D �1. Thus, these are
the values that you can expect to see on the dial of your measuring device (more
or less, experimental errors are unavoidable, of course). The actual issue is to find
the corresponding probabilities. Using Born’s rule, Eq. 3.77, and the corresponding
eigenvectors given in Eq. 3.38, you can find for each of the eigenvalues

p�1 D jhj 2ij2 D

ˇ̌
ˇ̌
ˇ̌
ˇ
1p
2

1p
7

��2i 1 1C i
�
2
64

�1
0

1

3
75

ˇ̌
ˇ̌
ˇ̌
ˇ

2

D

1

14
j2i C 1C ij2 D 5

7
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p�2 D jhj �1ij2 D

ˇ̌
ˇ̌
ˇ̌
ˇ
1

2

1p
7

��2i 1 1C i
�
2
64
1p
2

1

3
75

ˇ̌
ˇ̌
ˇ̌
ˇ

2

D

1

28

ˇ̌
ˇ�2i C p

2C 1C i
ˇ̌
ˇ
2 D

�
1C p

2
�2 C 1

28
D 2C p

2

14

and

p�3 D jhj 1ij2 D

ˇ̌
ˇ̌
ˇ̌
ˇ
1

2

1p
7

��2i 1 1C i
�
2
64

1

�p
2

1

3
75

ˇ̌
ˇ̌
ˇ̌
ˇ

2

D

1

28

ˇ̌
ˇ�2i � p

2C 1C i
ˇ̌
ˇ
2 D

�
1 � p

2
�2 C 1

28
D 2 � p

2

14
:

It is always a good idea to run a quick check:

p�1 C p�2 C p�3 D 5

7
C 2C p

2

14
C 2 � p

2

14
D 5

7
C 2

7
D 1;

as it should be. So far so good. The expectation value of M2 can be computed in two
different ways. First, I will use the standard probabilistic definition of the average

hM2i D . p�1�1 C p�2�2 C p�3�3/ D

2 � 5

7
C .�1/2C p

2

14
C 1

2 � p
2

14
D 10 � p

2

7
:

And I will also compute this quantity using quantum-mechanical definition:

hM2i � hj cM2 ji D

1

7

��2i 1 1C i
�
2
664

1 � 1p
2

�1
� 1p

2
0 � 1p

2

�1 � 1p
2

1

3
775

2
64
2i

1

1 � i

3
75 D

1

7

��2i 1 1C i
�
2
664
2i � 1p

2
� 1C i

� 2ip
2

� 1�ip
2

�2i � 1p
2

C 1 � i

3
775 D
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1

7

��2i 1 1C i
�
2
664
3i � 1p

2
� 1

� 1Cip
2

�3i � 1p
2

C 1

3
775 D

1

7

	
6C 2ip

2
C 2i � 1C ip

2
� 2i � 1p

2
C 4 � ip

2



D 1

7

�
10 � p

2
�
;

again, exactly as promised. If immediately after measuring M2 you will attempt to
measure M1 and are interested in probabilities of various outcomes (now you are
talking about outcomes consisting of pairs of measurements, which are given by all
nine possible pairs of eigenvalues .�.M2/i ; �

.M2/
j /), you have to take into account

that after the first measurement, the system is no longer in the initial state ji.
Depending on the outcome of the first measurement, it will be in a state presented
by one of the eigenvectors of M2. However, since these two matrices commute, and
the eigenvectors of M1 are also eigenvectors of M2, the outcomes of the second
measurement are completely determined by the outcome of the first, and there are
only three possible results. For instance, if the first measurement produced for M2
value �1 (probability .2 � p

2/=14), the measurement of M1 will be guaranteed
to yield 2 (the state corresponding to eigenvalue �1 of matrix M2 is described by
the same vector as the eigenvector of M1 belonging to its eigenvalue 2). Thus, the
probability of getting the pair .�1; 2/ is still .2 � p

2/=14.
If you measure M1 first, the situation is a bit more complex since M1 has degener-

ate eigenvalues. So, if you want, for instance, to find the probability of getting 1 after
measuring M1, you have to compute two probabilities—one for each degenerate
state—and sum them up. To do that you can use the corresponding orthogonal and
normalized vectors given in Eq. 3.38, which are common eigenvectors of both M1
and M2. This will yield

p1 D

ˇ̌
ˇ̌
ˇ̌
ˇ
1p
2

1p
7

��2i 1 1C i
�
2
64

�1
0

1

3
75

ˇ̌
ˇ̌
ˇ̌
ˇ

2

C

ˇ̌
ˇ̌
ˇ̌
ˇ
1

2

1p
7

��2i 1 1C i
�
2
64

1

�p
2

1

3
75

ˇ̌
ˇ̌
ˇ̌
ˇ

2

D 10

14
C 4 � 2p2

28
D 12 � p

2

14
:

At this point a question might pop up in your head, if this result is unique. Indeed,
you already know that degenerate eigenvalues can be characterized by an infinite
number of different normalized and orthogonal eigenvectors. It would be nice if the
probability would not depend on this arbitrary choice, but is it really so? I will give
you a chance to answer this question as an exercise.
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Finally let me compute the uncertainty of the observable M2 in this experiment.
For this computation I need to first find M22, which is

M22 D

2
64

5
2
0 � 3

2

0 1 0

� 3
2
0 5

2

3
75 :

Now you can compute

hj cM22 ji D 1

7

��2i 1 1C i
�
2
64

5
2
0 � 3

2

0 1 0

� 3
2
0 5

2

3
75

2
64
2i

1

1 � i

3
75 D

1

7

��2i 1 1C i
�
2
64

� 3
2

C 13
2

i

1

� 5
2

� 11
2

i

3
75 D 17

7

so that the uncertainty �2M2 is found to be

�2M2 D hj cM22 ji � hj cM2 ji2 D 17

7
� 1

49

�
10 � p

2
�2 D 17C 20

p
2

49
:

3.4 Problems

Section 3.1

Problem 10 A constant force F is acting on a particle of mass m. Derive an
expression for the potential energy associated with this force, write down the
Hamiltonian of the system, and derive Hamiltonian equations.

Problem 11 Consider a particle moving in a central potential field with Hamilto-
nian

H D p2

2m
C V .jrj/ :

Compute the following Poisson bracket:

fLx;Hg ; ˚Ly;H
�
; fLz;Hg ;

where Lx;y;z are Cartesian coordinates of angular momentum of the particle in some
arbitrarily chosen coordinate system. Interpret the results.
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Section 3.2.1

Problem 12 Which of the following is a linear operator?

1. Inversion operator OP, which acts on functions of coordinates according to the rule
OPf .r/ D f .�r/.

2. Square operator OS defined as OSf D f 2.
3. Determinant operator bDet, which when applied to a square matrix turns it into

the matrix’s determinant.
4. Exchange operator OE acting on functions of two variables as OEf .x1; x2/ D

f .x2; x1/.
5. Trace operator bTr, which acts on a matrix and turns it into the sum of its diagonal

elements.

Problem 13 Prove the linearity of the rotation operator.

Problem 14 Find a Hermitian conjugate for the integral operator OK acting on
integrable functions of a single variable and defined by kernel K .x1; x2/:

OKf D
1̂

�1
K.x1; x2/f .x2/:

The inner product is defined in a regular way: hgj f i D ´ 1
�1 g�.x/f .x/dx. Determine

under which condition on the kernel this operator is Hermitian.

Problem 15 Expression OP D j˛i hˇj can be understood as an operator acting in the
following way:

OP j�i � j˛i hˇj �i :

Find its Hermitian conjugate.

Section 3.2.2

Problem 16 Specify the condition that must be obeyed by an operator so that it is
both unitary and Hermitian.
Consider the following matrices:

"
1 0

0 �1

#
;

"
0 1

1 0

#
;

"
0 i

�i 0

#
:

Do they satisfy this condition?
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Problem 17 For three operators OA; OB, and OC, prove the following identity (known
as Jacobi identity):

hh OA; OB
i
; OC
i

C
hh OC; OA

i
; OB
i

C
hh OB; OC

i
; OA
i

D 0:

Problem 18 Which of the following matrices are Hermitian?

1.

2
64
3i 5i 7

�5i 2 3

7 3 0

3
75

2.

2
64
1 i 2i

�i 0 3

�2i 3 2

3
75

3.

2
64

p
2 1 �2

�1 2 4
p
5

7 �4p5 p
3

3
75

4.

2
64
7 4 2

4 2 1

2 1 �4

3
75

Problem 19 Prove the identity

� OA OB
��1 D OB�1 OA�1:

Problem 20 Prove the following properties of the commutators:

h OT1 O;T2
i

D �
h OT2 O;T1

i

h OT1 C OT2; ; OT3
i

D
h OT1 O;T3

i
C
h OT2 O;T3

i

h
c1 OT1; c2 OT2

i
D c1c2

h OT1 O;T2
i
:
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Problem 21 If operator OD is defined as

ODf .x/ D df

dx
;

what would be an inverse of this operator?

Problem 22 Find an inverse of the following matrices:

1.

2
64
1 i 2i

�i 0 3

�2i 3 2

3
75

2.

2
64
0 i 2

�i 0 1

�i i 0

3
75

Problem 23 Consider an operator O� characterized by the following property: O�2 D
OI, where OI is a unity operator. Using power series expansion, find the closed-form
expression (not in the form of a series) for the operator exp .i O� t/.

Problem 24 Prove that if the commutator of two Hermitian operators is a number,
this number is necessarily imaginary.

Problem 25 Given that ŒOx; Op� D i„, compute

�Ox2; Op2� :

Section 3.2.3

Problem 26 Consider matrices

"
0 i

�i 0

#
and

"
0 1

1 0

#
.

1. Find the eigenvalues and normalized eigenvectors of these matrices.
2. Check orthogonality of the found vectors.

Problem 27 Consider two matrices:

A1 D

2
64
1 0 0

0 �1 0

0 0 �1

3
75 I A2 D

2
64
1 0 0

0 0 1

0 1 0

3
75 :



3.4 Problems 89

1. Show that these operators commute.
2. Find a set of eigenvectors common for both of them.

Problem 28 Find eigenvalues and normalized eigenvectors of the following matrix:

2
664

1 � 1p
2

�1
� 1p

2
0 � 1p

2

�1 � 1p
2

1

3
775 :

Problem 29 Consider the following matrix:

A D

2
64
0 0 �1
0 1 0

�1 0 0

3
75 :

1. Find its eigenvalues. Are there degenerate ones?
2. Construct a system of normalized and orthogonal eigenvectors.
3. Show that

exA D cosh x C A sinh x:

Section 3.3.1

Problem 30 Consider an operator defined as

OA D j	1i h	1j C j	2i h	2j C j	3i h	3j �
i j	1i h	2j � j	1i h	3j C i j	2i h	1j � j	3i h	1j

where j	1i ; j	2i, and j	3i form an orthonormalized basis.

1. Check if this operator is Hermitian by computing OA�.
2. Compute OA2.
3. What are the possible values an experimentalist can observe when measuring an

observable represented by this operator?
4. Find states in which the system will be immediately after the measurement for

each of the possible outcomes. Verify that the states are presented by orthogonal
vectors.

Problem 31 Show that if OP is a projection operator, OI � OP is also a projection
operator.
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Section 3.3.2

Problem 32 Derive the commutation relations
h OLz; OLx

i
D i„OLy

h OLy; OLz

i
D i„OLx:

Problem 33 Prove that the commutator of the operator of the square of angular
momentum OL2 commutes with all components of the angular momentum operator,
OLx;y;z.

Problem 34 Compute commutators

h OLz; Ox
i
;
h OLz; Oy

i
;
h OLz; Oz

i

h OLz; Opx

i
;
h OLz; Opy

i
;
h OLz; Opz

i

h OL2; Ox
i
;
h OL2; Oy

i
;
h OL2; Oz

i

h OL2; Opx

i
;
h OL2; Opy

i
;
h OL2; Opz

i
:

Problem 35 Prove that
h OLx;y;z; Op2

i
D
h OL2; Op2

i
D 0:

Section 3.3.4

Problem 36 Prove that

OL� jl;mi D „
p

l .l C 1/ � m .m � 1/ jl;m � 1i :

Problem 37 Compute the following expressions:

hl;m0j OL� jl;mi
hl;m0j OLC jl;mi :

For l D 1 present the results as a matrix.
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Problem 38 Compute
˝
l;m0 ˇ̌ OL2x jl;mi :

Hint: Use the representation of OLx in terms of raising and lowering ladder operators.

Section 3.3.5

Problem 39 An observable A represented by an operator OA can be in two mutually
exclusive states represented by eigenvectors of OA ja1i and ja2i, where a1;2 are
corresponding eigenvalues. The second observable B represented by an operator
OB also can be in two mutually exclusive states represented by eigenvectors of OB
jb1i and jb2i, where b1;2 are corresponding eigenvalues. These eigenvectors can be
related to each other as

ja1i D 1

5
.3 jb1i C 4 jb2i/

ja2i D 1

5
.4 jb1i � 3i jb2i/ :

1. If observable A is measured and value a1 is obtained, what is the state of the
system immediately after the measurement?

2. If now B is measured, what are the possible outcomes, and what are their
probabilities?

3. Right after B was measured, A is measured again. What is the probability of
getting a1 for different possible outcomes of the first measurement?

Problem 40 A quantum system is in a state described by a vector

j˛1i D ip
3

j�1i C
p
2p
3

j�2i :

Find the probability that a measurement of some observable will bring the system
to state described by a vector

j˛2i D 1C ip
3

j�1i C 1p
6

j�2i C 1p
6

j�3i

where j�1;2;3i form an orthonormalized basis.

Problem 41 Consider a quantum system in a state described by a column vector

j i D 1p
5

2
64

�i

2

0

3
75 :
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The system is characterized by two observables T1 and T2 presented by matrices

T1 D

2
64
1 i 1

�i 0 0

1 0 0

3
75 I T2 D

2
64
3 0 0

0 1 i

0 �i 0

3
75 :

1. If T1 is measured first and T2 immediately afterward, what is the probability of
obtaining �1 for T1 and 3 for T2?

2. What are the probabilities of getting the same values if the order of measurements
is reversed? Discuss the result in terms of commutation properties of the two
matrices.

Problem 42 Consider a system described by the Hamiltonian

H D 1p
2

2
64
0 �i 0

i 3 3

0 3 0

3
75

placed in a quantum state described by a column vector

j i D

2
64
4 � i

�2C 5i

3C 2i

3
75 :

1. Find the expectation value of energy in this state.
2. Find the uncertainty of energy in this state.
3. Find the possible values of energy measurements and their probabilities.
4. Use the results of the previous task to calculate the expectation value and

uncertainty of energy again. Compare the results with results of tasks 1 and 2.

Problem 43 Go back to Example 14 at the end of the chapter, and using a different
set of orthogonal and normalized eigenvectors of M1 (you will have to find it first,
of course), compute the probability of getting the degenerate eigenvalue of M1. Is
the result the same?

Problem 44 Consider a system described by a Hamiltonian

OH D �1
2

d2

dx2
C 1

2
x2

presented by an operator acting on square-integrable functions of a single variable
x forming a Hilbert space with an inner product defined in Sect. 2.1. This system is
prepared in state

j i D 1p
3

j	1i C
p
2p
3

j	2i
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where vectors j	1;2i are defined as the following functions:

j	1i D exp

	
�x2

2



I j	2i D �

1 � 2x2
�

exp

	
�x2

2



:

1. Verify that these functions are eigenvectors of the Hamiltonian, determine the
respective eigenvalues, and normalize the eigenvectors.

2. Rewrite the expression for the state j i in terms of normalized versions of the
vectors j	1;2i.

3. If the energy of the system is measured, what are the possible outcomes, and
what are their probabilities?

4. Find expectation values and uncertainties of the operators

O� f .x/ D �i
df

dx
I Oxf .x/ D xf .x/

in state j i.



Chapter 4
Unitary Operators and Quantum
Dynamics

In the previous section, I explained how one can dig out experimentally relevant
information using states of a quantum system and operators representing the observ-
ables. The remaining burning question, however, is how can we find these states
so that we could use these methods. In a typical experiment, an experimentalist
begins by “preparing” a quantum system in some state, which they believe they
know.1 After that they smash the system with a hammer, or hit it by a laser light,
or subject it to an electric or magnetic field, wait for some time, and measure
new values of the selected observables. In order to predict the results of new
measurements, you must be able to describe how the quantum system changes
between the time of preparation and the time of subsequent measurement, or,
speaking more scientifically, you must know its dynamics. As it has been made clear
in the previous section, you need two objects to predict the results of a measurement:
a state of the system and the operator assigned to the measured observable. Now
you can ask an interesting question: “When the quantum system evolves in time,
what is actually changing—the state or the operator?” To make this question more
specific, consider an expectation value of an observable described by operator OT:
h˛j OT j˛i. When your system evolves, this expectation value becomes a function of
time. The question is, which element of the expression for the expectation value, OT
or j˛i, must be considered as a time-dependent quantity to describe the dynamics
of the expectation value? It turns out that time dependence can be ascribed to either
of these two elements, and depending on the choice, it will generate two different
but equivalent pictures of quantum mechanics. In the so-called Schrödinger picture,
the state vectors are treated as time-dependent quantities, while operators remain
fixed rules transforming the states. In the Heisenberg picture, the state vector is
considered as a constant, and all the dynamics of the system is ascribed to the time-
dependent operators. The origins of these two pictures can be found in the earlier

1Preparation of a quantum system in a predefined state usually consists in carrying out a
measurement, but it is not an easy task to prepare a system in a state we want.
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days of quantum theory with the Heisenberg matrix mechanics competing against
Schrödinger’s matter wave theory. The first attempt to prove equivalence of the two
pictures was undertaken by Schrödinger as early as in 1926, but the rigorous math-
ematical proof of the equivalence did not exist until John von Neumann published
in 1932 his definitive book Mathematical Foundations of Quantum Mechanics.

Von Neumann was one of the major figures in mathematics and mathematical
physics of the twentieth century. Born to a rich Jewish family in Hungary, which
was elevated to nobility by Austro-Hungary Emperor Franz Joseph (hence the prefix
von in his name), he was a child prodigy, got his Ph.D. in mathematics at the age
of 23, and became the youngest privatdocent at the University of Berlin. In 1929 he
got an offer from Princeton University and moved to the USA. He brought his entire
family to America in 1938 saving them from certain death. In addition to laying
rigorous mathematical foundation to quantum theory, von Neumann is famous for
his role in the Manhattan Project and developing the concept of digital computers
(among other things).

After this brief historical detour, I begin presentation of quantum dynamics
starting with the Schrödinger picture.

4.1 Schrödinger Picture

4.1.1 Time-Evolution Operator and Schrödinger Equation

The statistical interpretation of quantum mechanical formalism makes sense only
if all vectors describing states of quantum system remain normalized at all times. I
will begin digging deeper into this issue by computing the norm of a generic vector
k˛k using Eq. 3.39. First, I need the corresponding bra vector:

h˛j D
X

n

a�
n h�nj

so that I can write for the norm

k˛k2 D h˛j ˛i D
X

m

X
n

ama�
n h�nj �mi D

X
m

X
n

ama�
n ınm D

X
n

janj2 :
(4.1)

According to the postulate 4 in Sect. 3.3.5, janj2 is equal to probability pn that the
respective eigenvalue will be observed. Equation 4.1 in this case can be interpreted
as a statement that the norm of a generic vector is equal to the sum of probabilities
of all possible measurement outcomes. The latter must obviously be equal to unityP

n pn D 1 regardless of the time dependence of state j˛i. This result has quite a
profound consequence. Indeed, time dependence of a state vector can be considered
as a transformation of a vector j˛ .t0/i defined at some initial instant of time t0 into
another vector j˛ .t/i at time t under the action of an operator:
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j˛ .t/i D OU .t; t0/ j˛ .t0/i : (4.2)

In order to keep the norm of the vector unchanged, the operator OU .t; t0/ must be
unitary, which significantly limits the class of operators that can be used to describe
the dynamics of quantum states. It also must obey an obvious condition:

OU .t0; t0/ D OI: (4.3)

Now, consider an evolution of the system from state j˛ .t0/i to state j˛ .t1/i and then
to state

ˇ̌
˛
�
tf
�˛

, which can be described as

j˛ .t1/i D OU .t1; t0/ j˛ .t0/iˇ̌
˛
�
tf
�˛ D OU �

tf ; t1
� j˛ .t1/i :

I can also describe a system’s dynamics from the initial state to the final, bypassing
the intermediate state:

ˇ̌
˛
�
tf
�˛ D OU �

tf ; t0
� j˛ .t0/i :

Comparing this with the first two lines of the previous equation, you can infer an
important property of the time-evolution operator OU:

OU �
tf ; t0

� D OU �
tf ; t1

� OU .t1; t0/ : (4.4)

An important corollary of Eq. 4.4 is obtained by setting tf D t0, which yields

OU .t0; t1/ OU .t1; t0/ D OI ) OU .t0; t1/ D OU�1 .t1; t0/ (4.5)

where I also used Eq. 4.3. In other words, the reversal of time in quantum dynamics
is equivalent to replacing the time-evolution operator with its inverse. This idea
can also be expressed by saying that by inverting the time-evolution operator, you
describe the evolution of the system from present to the past. This property can also
be described as reversibility of quantum dynamics: taking a system from t0 to tf and
back brings the system in its original state completely reversing its initial evolution.

Now, let me consider the action of OU .t1; t0/ over an infinitesimally small time
interval t0; t1 D t0 C dt. Expanding this operator over the small interval dt and using
Eq. 4.3, I can write:

OU .t0 C dt; t0/ D OI C OGdt (4.6)

where OG � d OU=dt
ˇ̌
ˇ
tDt0

is an operator obtained by differentiating the time-evolution

operator with respect to time. Inverse to the operator defined by Eq. 4.6 can be found



98 4 Unitary Operators and Quantum Dynamics

by expanding function .1C x/�1 with respect to x and keeping only linear in x terms:

.1C x/�1 ' 1 � x. Applying this to operator
�OI C OGdt

��1
, I get

OU�1 .t0 C dt; t0/ D OI � OGdt:

At the same time, Hermitian conjugation of Eq. 4.6 returns

OU� .t0 C dt; t0/ D OI C OG�dt:

Since the time-evolution operator is unitary ( OU�1 D OU�), operator OG has to be anti-
Hermitian: OG� D � OG, so that it can be presented as OG D �i OH=„ (see Eq. 3.30),
where OH is a Hermitian operator and „ is introduced to ensure that OH has the
dimension of energy. Indeed, since the time-evolution operator is dimensionless,
it is clear that operator OG has the dimension of inverse time. The dimension of the
Planck’s constant is that of energy multiplied by time, so it is clear that OH has indeed
the dimension of energy. This simple analysis leads the way to the next postulate of
quantum theory.

Postulate 6 Hermitian operator OH in the expansion of the time-evolution operator
is the operator version of Hamiltonian function of classical mechanics.

Thus, Eq. 4.6 can now be rewritten as

OU .t0 C dt; t0/ D OI � i
OH
„ dt: (4.7)

Taking advantage of the composition rule, Eq. 4.4, I can write:

OU .t C dt; t0/ D OU .t C dt; t/ OU .t; t0/ D
 

OI � i
OH
„ dt

!
OU .t; t0/ D OU .t; t0/ � i

OH
„

OU .t; t0/ dt

where I also used Eq. 4.7. The main difference between this last expression and
Eq. 4.7 is that t in the latter can be separated from t0 by a finite interval. The last
equation can be rewritten in the form of differential equation:

d OU .t; t0/
dt

D �i
OH
„

OU .t; t0/ : (4.8)

Applying Eq. 4.7 to Eq. 4.2, I can also derive:

j˛ .t C dt/i D
	

OI � i

„
OHdt



j˛ .t/i ) j˛ .t C dt/i � j˛ .t/i

dt
D � i

„
OH j˛ .t/i
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which can be rewritten in a standard form

i„d j˛i
dt

D OH j˛i (4.9)

called Schrödinger equation. As any differential equation, Eq. 4.9 has to be com-
plemented by an initial condition specifying the state of the system at an arbitrary
chosen initial time. Given the role of Hamiltonian in classical mechanics discussed
in Sect. 3.1, it is not very surprising that the same quantity (in its operator
reincarnation) determines the dynamics of quantum systems as well.

4.1.2 Stationary States

If Hamiltonian does not contain explicit time dependence, which might appear, for
instance, if an atom interacts with a time-dependent electric field E.t/, Eq. 4.9 has a
very simple formal solution:

j˛.t/i D exp

 
�i

OH
„ t

!
j˛0i ; (4.10)

where j˛0i is the state of the system at time t D 0. For practical calculations,
however, this solution is not very helpful because the action of the exponent of
an operator on an arbitrary vector in general is not easy to compute. Situation
becomes much simpler if the initial state is presented by one of the eigenvectors of
the Hamiltonian. If j˛0i D j�ni, where j�ni is an eigenvector of OH with respective
eigenvalue En

OH j�ni D En j�ni ; (4.11)

the right-hand side of Eq. 4.10 can be computed as follows:

j˛.t/i D exp

 
�i

OH
„ t

!
j�ni D

1X
mD0

1

mŠ

	�it

„

m

OHm j�ni D

1X
mD0

1

mŠ

	�it

„

m

Em
n j�ni D exp

	
�i

En

„ t



j�ni ; (4.12)

where I used the definition of the exponential function of an operator, Eq. 3.21, and
the fact that

OHm j�ni D Em
n j�ni ;

which is easily proved. (You will have a chance to prove it when doing your
homework.) Thus, if a system is initially in a state represented by an eigenvector of
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the Hamiltonian, it remains in this state forever and ever. The time-dependent factor
in this case is a complex number with absolute value equal to unity (pure phase
as physicists like to say) and does not affect, therefore, any measurable quantities.
Indeed, consider, for instance, an expectation value of some generic operator OT when
a system is in the state described by Eq. 4.12:

h˛.t/j OT j˛.t/i D exp

	
i
En

„ t



h�nj OT j�ni exp

	
�i

En

„ t



D h�nj OT j�ni :

The eigenvector equation 4.11 is often called time-independent Schrödinger
equation, and it’s solutions represent the very same stationary states, which were
postulated by Bohr, whose existence was proven in Davisson–Germer experiments
mentioned in the Introduction, and which became the main object of the Schrödinger
wave mechanics. The corresponding eigenvalues are called energy levels or simply
energies. Here I will use the term stationary states to designate solutions of the
time-independent Schrödinger equation with exponential time dependence attached
to the eigenvectors and given by Eq. 4.12. As you just saw, this time dependence
does not affect experimentally observable quantities, which remain independent of
time, justifying the name “stationary” for these states.

I need to point out at a general ambiguity of relation between quantum states
and vectors representing them: the latter are always defined with accuracy to a
phase, meaning that all vectors can be multiplied by a complex number of unit
magnitude without affecting any physical results. This is obvious from Eq. 4.10,
which does not change upon multiplying the state vector by any constant factor.
But since it is required that the states are normalized, this constant factor is limited
to have a magnitude equal to unity, i.e., to be a pure phase. However, in the case
presented in Eq. 4.12, the multiplying factor is not constant and, therefore, cannot
be simply dismissed making it physically significant. This significance manifests
itself, however, only when we have to deal with several stationary states. Indeed,
since energy is always defined with an accuracy up to a constant factor, one can
always make the energy eigenvalue corresponding to any one of stationary states
to vanish killing thereby the time dependence of the corresponding stationary state.
This vanishing trick, however, can be achieved only for one state, while all others
will retain their exponential factor albeit with different energy values equal to the
difference between their initial values and the one you chose to be equal to zero.2

In order to demonstrate that this general property of energies retain its meaning in
quantum theory as well, I will consider a state evolving from a superposition of
two eigenvectors of a Hamiltonian with different eigenvalues. Thus, assume that the
initial state of the system is

j˛0i D a1 j�1i C a2 j�2i :

2Technically this can be achieved by subtracting one of the energy eigenvalues from the potential
appearing in the Hamiltonian, which is equivalent to simple change of the zero level of the energies.
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Using linearity of the time-evolution operator and results from Eq. 4.12, I can easily
compute:

j˛.t/i D a1 exp

 
�i

OH
„ t

!
j�1i C a2 exp

 
�i

OH
„ t

!
j�2i D

a1 exp

	
�i

E1
„ t



j�1i C a2 exp

	
�i

E2
„ t



j�2i D

exp

	
�i

E1
„ t


	
a1 j�1i C a2 exp

	
�i

E2 � E1
„ t



j�2i :



(4.13)

Equation 4.13 shows that an initial vector in the form of a superposition of two
eigenvectors of a Hamiltonian evolves by “dressing up” each of the initial state with
the exponential time factor containing the energy eigenvalue corresponding to the
respective eigenvector. However, the absolute values of these energy eigenvalues
are again not important as the dynamics of the state is determined by the difference
between them. I emphasized this point in the last line of Eq. 4.13 by factoring out
one of the time-dependent exponential factors. It is clear that the overall phase factor
will again disappear from all experimentally relevant expressions, and the entire
time dependence will be determined by exp

��i E2�E1„ t
�
. Apparently, it would not

matter for this dynamic if I factored out the other exponential factor. To illustrate
this point, I will now compute an expectation value of some generic operator with
the state described by Eq. 4.13:

h˛.t/j OT j˛.t/i D exp

	
i
E1
„ t


	
a�
1 h�1j C a�

2

�
�2 exp

	
i
E2 � E1

„ t


ˇ̌
ˇ̌



OT
	

a1 j�1i C a2 exp

	
�i

E2 � E1
„ t



j�2i



exp

	
�i

E1
„ t




ja1j2 T11 C ja2j2 T22C

T12a
�
1a2 exp

	
�i

E2 � E1
„ t



C T21a

�
2a1 exp

	
i
E2 � E1

„ t




where Tij D h�ij OT ˇ̌�j
˛
. Taking into account that for Hermitian operators diagonal

elements are real-valued and nondiagonal are complex conjugates of their trans-
posed elements (Tij D T�

ji ), this can be written down as

h˛.t/j OT j˛.t/i D ja1j2 T11 C ja2j2 T22C

2 jT12j ja1j ja2j cos

	
E2 � E1

„ t C ıT21 C ıa1 � ıa2



; (4.14)
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where ıs are phases of elements appearing in the corresponding subindexes.
This expression is explicitly real and is periodic with frequency dependent on
the difference of energies .E2 � E1/ =„. I will leave it to you as an exercise to
demonstrate that this result wouldn’t change if you factor out exp

�
i E2„ t

�
instead

of exp
�
i E1„ t

�
.

In a general case, expanding an arbitrary initial state vector in the basis of
the eigenvectors of the Hamiltonian, you can see that a time dependence of the
vector representing the state of the system is obtained by adding the corresponding
exponential factors exp

��i En„ t
�

in front of each j�ni term in this expansion:

j˛.t/i D
X

n

an exp

	
�i

En

„ t



j�ni : (4.15)

Expansion coefficients an are determined by the initial state j˛0i with the help
of Eq. 2.24. Equation 4.15 essentially solves the problem of quantum dynamics
provided one knows eigenvalues and eigenvectors of the system’s Hamiltonian. For
this reason solving the time-independent Schrödinger equation is one of the main
technical problems in quantum theory. Respectively, much of this text as well as of
all other books on quantum mechanics will be devoted to devising various ways of
doing so.

If the Hamiltonian has a continuous spectrum of energy, the same idea for
generating the time-dependent state from an initial state still works. One only needs
to replace the sum over the discrete index in Eq. 4.15 by an integral over a relevant
continuous quantity k labeling states of the system to get

j˛.t/i D
ˆ

dka.k/ exp

	
�i

Ek

„ t



j�ki : (4.16)

Coefficients a.k/ are again determined by an initial state in exactly the same way
as in the discrete case (you will be well advised to remember though that the
operational definitions of the inner product can be very different in the discrete and
continuous cases).

4.1.3 Ehrenfest Theorem and Correspondence Principle

I want to finish the discussion of the Schrödinger picture by deriving the so-
called Ehrenfest theorem, which is concerned with the dynamics of the expectation
value of a generic Hermitian operator OA.t/, which might have its own explicit time
dependence. Assuming that the system is in state j˛.t/i, I will derive a differential

equation for quantity
D OA.t/

E
D h˛.t/j OA j˛.t/i, where

D OA.t/
E

is a frequently used

shortened notation for the expectation values. This expression can be differentiated
using standard rules for differentiation of a product of several functions:
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d
D OA.t/

E

dt
D d h˛.t/j

dt
OA j˛.t/i C h˛.t/j @

OA
@t

j˛.t/i C h˛.t/j OAd j˛.t/i
dt

D

i

„ h˛.t/j OH OA j˛.t/i � i

„ h˛.t/j OA OH j˛.t/i C h˛.t/j @
OA
@t

j˛.t/i D

� i

„
Dh OA; OH

iE
C
*
@ OA
@t

+
: (4.17)

In the Schrödinger picture, the operators are devoid of their own dynamics. The time
derivative in the last term of the Ehrenfest theorem takes into account a possibility
of an external time dependence of an operator, which is not related to their internal
dynamics. This explicit time dependence is a reflection of the changing environment
of the system, such as a time-dependent electromagnetic field interacting with an
atom. If operator OA does not have such an externally imposed time dependence,
then the last term in Eq. 4.17 vanishes, and the dynamics of the expectation value of
the observable represented by OA is completely determined by its commutator with
the Hamiltonian.

There is a special class of observables, whose operators commute with Hamilto-
nian. You already know that such observables are compatible with Hamiltonian,
i.e., they would have a definite value if the system is in one of its stationary
states. Ehrenfest theorem shows that such observables have an additional property—
regardless of the state of the system, their expectation values do not depend on time.
In other words, the expectation values of observables whose operators commute
with the Hamiltonian are conserving quantities.

Finally, I would like you to note a remarkable similarity between the Ehrenfest
theorem and Eq. 3.8 expressing time derivative of a classical function of coordinate
and momentum in terms of its Poisson brackets with the classical Hamiltonian: the
two equations become identical if one makes a substitution f� � � g ! � .i=„/ Œ� � � �.
This similarity is physically significant as illustrated by the following example.
Let me apply Ehrenfest theorem to a very special but extremely important case
of coordinate and momentum operators of a single particle described by a time-
independent Hamiltonian, like the one given in Eq. 3.48. For simplicity I will limit
myself to a one-dimensional case, so that I will only need to consider one component
of the position and momentum operators and can treat the potential energy as a
function of a single coordinate only. The Ehrenfest theorem involves commutators
of the respective operators with the Hamiltonian. In the case under consideration, I
have to compute ŒOx; OH� and ŒOpx; OH� for OH given by the one-dimensional version of
Eq. 3.48, which I reproduce below for your convenience:

OH D Op2x
2m

C V.Ox/:
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The easiest commutator to compute is ŒOx; OH�:
h
Ox; OH

i
D


Ox; Op2x
2m

�
D i„

m
Opx (4.18)

where I used the fact that Ox commutes with V.Ox/ as well as identity 3.24 and
canonical commutation relation, Eq. 3.47. It takes a bit more labor to compute
ŒOp; OH� D ŒOp;V.Ox/�. In order to evaluate this commutator, I first present the potential
energy as a power series:

V.Ox/ D
1X

nD0

1

nŠ

dnV

dxn
Oxn

so that I can write

ŒOpx;V.Ox/� D
1X

nD0

1

nŠ

dnV

dxn
ŒOpx; Oxn� :

Again using identity 3.24 to evaluate commutator ŒOp; Oxn�, I get

ŒOp; Oxn� D �i„nOxn�1;

substitution of which into the previous equation yields

ŒOpx;V.Ox/� D �i„
1X

nD1

1

.n � 1/Š
dnV

dxn
Oxn�1 � �i„

1X
nD0

1

nŠ

dnC1V
dxnC1 Oxn:

Here I took into account that n D 0 term of the initial series is a constant and
vanishes upon the differentiation. Correspondingly the summation in the middle
expression above begins with n D 1. In the next step, I changed the dummy index
of summation n � 1 ! n, turning n D 1 term into n D 0; n D 2 into n D 1; and
so on. This process naturally forces to replace n � th derivative with n C 1th and Oxn

with OxnC1. All what is now left is to recognize that the final resulting power series is
the expansion of the derivative of function V.x/:

dV

dx
D

1X
nD0

1

nŠ

dnC1V
dxnC1 Oxn:

Thus, I can proudly present

ŒOpx;V.Ox/� D �i„dV

dx
: (4.19)
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Now, the Ehrenfest theorem for these two operators becomes

d hOxi
dt

D hOpxi
m

d hOpxi
dt

D �
�

dV

dx

�
:

Repeating the same calculations for all three components of the position and the
momentum vectors, you can easily obtain the three-dimensional version of these
equations:

d hOri
dt

D hOpi
m

(4.20)

d hOpi
dt

D � hrVi (4.21)

where rV (in case you forgot) is a gradient of V defined in the Cartesian coordinates
with unit vectors ex, ey, and ez in the direction of the corresponding axes X;Y , and
Z as

rV D ex
@V

@x
C ey

@V

@y
C ez

@V

@z
:

The obtained equations resemble classical Hamiltonian equations, but it actually
would be wrong to say (as many textbooks do) that Ehrenfest equations make
expectation values of position and momentum operators to behave like correspond-
ing classical quantities. In reality these equations do not even constitute a closed
system of equations, which becomes almost obvious once you realize that generally
speaking hV .Ox/i ¤ V .hOxi/. Equality here is realized only if the potential energy
is either a linear or a quadratic function of the coordinates. In the former case
�d OV=dx D F D const, so that the Ehrenfest equations have a simple solution:

hOpi D p0 C FtI
hOxi D x0 C . p0=m/ t C .1=2/ .F=m/ t2;

reproducing classical equations for a particle moving with constant acceleration. In
the case of a quadratic potential (harmonic oscillator)

�d OV=dx D kOx

so that

�
D
d OV=dx

E
D k hOxi
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reducing the Ehrenfest equations to classical equations describing a harmonic
oscillator. To illustrate the difficulty arising in a more general situation, consider
V.x/ D ax3=3. In this case Ehrenfest equations become

d hOxi
dt

D hOpi
m

d hOpi
dt

D �a
˝
x2
˛
:

Since
˝
x2
˛ ¤ hxi2, the resulting system of equations is not complete, because now

you need to derive a separate equation for
˝
x2
˛
. Trying to do so (see the exercises)

will appear as a recurring nightmare—you will end up with new variables at each
step, and this process will never end. You might wonder, of course, that maybe it is
possible to find such a state for which hOxni D hOxin, in which case Ehrenfest equations
will literally coincide with the Hamiltonian equations. It is not very difficult to
prove that the only state in which this might be true is the state represented by
the eigenvector of the coordinate operator. Unfortunately, even if at some time
t D 0 you can create a system in such a state, it will lose this property as it
evolves in time. To see that this is indeed the case, imagine a state jx.t/i such that
Ox jx.t/i D x.t/ jx.t/i and try to plug it in Eq. 4.9 describing the dynamics of quantum
states. You will immediately see that since the coordinate and momentum operators
do not commute, this state cannot be a solution of the time-dependent Schrödinger
equation.

There is, however, another way to make Ehrenfest equations identical to their
classical Hamiltonian counterparts. All what you need to do is to neglect quantum
uncertainty of coordinate and momentum. Since technically these uncertainties arise
from the canonical commutation relation, you can do away with them by passing to
the limit „ ! 0. The emergence of Hamiltonian equations, in this so-called classical
limit, is a very attractive and soothing feature of quantum formalism indicating that
the developed theory adheres to the correspondence principle formulated (again!) by
Niels Bohr. This principle played an important heuristic and philosophical role in the
development of quantum theory. It states that the quantum theory must reproduce
the results of classical physics in situations where classical physics is known to be
valid. Even though the concrete mathematical expressions defining situations when
the quantum description must reduce to the classical one vary from phenomenon
to phenomenon, they all involve taking the limit „ ! 0. In this limit, for instance,
the quantum of energy „! introduced by Planck vanishes, or de Broglie wavelength
� D h=p goes to zero, and quantum uncertainties of various observables, which
prevented you from replacing hOxni ! hOxin, disappear.



4.2 Heisenberg Picture 107

4.2 Heisenberg Picture

As I mentioned in the beginning of this chapter, quantum dynamics can be described
by imposing a time dependence on operators rather than on the states. This
approach, a version of which was designed by Heisenberg, Born, and Jordan, was
historically first, is directly connected with classical Hamiltonian equations, and
is quite popular in current research literature on quantum mechanics, especially in
quantum optics. However, for some reasons it rarely appears in undergraduate texts
on quantum theory. Probably, it is believed that the idea of time-dependent operators
is too complicated for infirm minds of undergraduate physics majors to comprehend,
but I personally do not see why this must be the case. So, let’s try to remove the veil
of mystery from this alternative version of quantum theory, called the Heisenberg
picture.

At first glance, the idea of time-dependent operators seems indeed quite strange:
if an operator is, e.g., a prescription to differentiate a function, how can this rule
change with time? The best way to answer this type of question is to first develop
a formal way to describe the time dependence of operators and, then, to illustrate it
using a few simple examples.

I begin by considering an expectation value of some arbitrary operator OA in state
j˛.t/i: h˛.t/j OA j˛.t/i. Using the time-evolution operator defined in Eq. 4.2, I can
present this expectation value as

hA.t/i D h˛0j OU�.t; 0/ OA.t/ OU.t; 0/ j˛0i : (4.22)

Lumping together all three operators appearing between the bra and ket vectors in
Eq. 4.22 into a new operator

OAH.t/ D OU�.t; 0/ OA.t/ OU.t; 0/ (4.23)

yields a time-dependent Heisenberg representation of the initial operator. This
time dependence has, in general, two sources: an external time dependence of the
initial Schrödinger operator discussed in the previous section and an internal time
dependence responsible for the quantum dynamics of the system represented by the
time-evolution operators. Differentiating this equation with respect to time, I obtain

d OAH.t/

dt
D

OdU
�
.t; 0/

dt
OA.t/ OU.t; 0/C

OU�.t; 0/ OA.t/d OU.t; 0/
dt

C OU�.t; 0/
@ OA.t/
@t

OU.t; 0/:



108 4 Unitary Operators and Quantum Dynamics

Using Eq. 4.8 this can be rewritten as

d OAH.t/

dt
D i

„
OU�.t; 0/ OH OA.t/ OU.t; 0/�

i

„
OU�.t; 0/ OA.t/ OH OU.t; 0/C OU�.t; 0/

@ OA.t/
@t

OU.t; 0/:

Taking advantage of the unitarity of the time-evolution operator, I insert combina-
tion OU OU� � OI between the Hamiltonian and operator OA in the first two terms of the
equation above. This procedure yields

d OAH.t/

dt
D i

„
OU�.t; 0/ OH OU„ ƒ‚ … OU� OA.t/ OU.t; 0/„ ƒ‚ …�

i

„
OU�.t; 0/ OA.t/ OU„ ƒ‚ … OU� OH OU.t; 0/„ ƒ‚ …C OU�.t; 0/

@ OA.t/
@t

OU.t; 0/
„ ƒ‚ …

where each of the bracketed terms defines, according to Eq. 4.23, a Heisenberg
representation of the corresponding operator. Therefore, the last equation can be
rewritten as

d OAH.t/

dt
D � i

„
h OAH; OHH

i
C @ OAH.t/

@t
: (4.24)

The resulting equation is called the Heisenberg equation for time-dependent
operators. It looks very much like the Ehrenfest theorem, and just like the latter, it
resembles the classical Eq. 3.8. However, unlike Ehrenfest theorem, the Heisenberg
equation describes the time evolution of operators rather than of the expectation
values and, therefore, does not suffer from perpetual emergence of new variables.
The Ehrenfest theorem can be obtained from Eq. 4.24 by computing the expectation
values of both sides of this equation with an initial state j˛0i. The initial condition
for the Heisenberg equation can be easily ascertained from Eq. 4.23: setting t D 0 in
this equation immediately yields that the initial conditions for Heisenberg operators
are given by the corresponding Schrödinger operators, establishing an intimate
connection between the two pictures. Now you can answer the question posed in
the beginning of this section: how can a rule representing an operator change with
time? The time dependence comes from combinations of various immutable rules
with time-dependent coefficients. You will see the example of this a few paragraphs
below.

Hamiltonian appearing in Eq. 4.24 is the Heisenberg representation of the regular
Schrödinger Hamiltonian and must be evaluated before Heisenberg equations can
be used. However, in the special important case of a time-independent Schrödinger
Hamiltonian, one can easily show that OHH � OH. Indeed, one can easily infer from
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Eq. 4.10 that the time-evolution operator for time-independent Hamiltonian is

OU.t; 0/ D exp
�
�i OHt=„

�
: (4.25)

This operator obviously commutes with Hamiltonian, and as a result we have

OHH D OU� OH OU D OU� OU OH D OH:

The same arguments apply to any Schrödinger operator commuting with Hamilto-
nian, so all such operators remain independent of time. This result also obviously
follows from Eq. 4.24. Thus, one can say that operators commuting with Hamilto-
nian represent quantum conserving observables not only at the level of expectation
values as in the Ehrenfest theorem but at a deeper level of operators themselves.

In the case of Hamiltonians with explicit time dependence, you can no longer
claim that the Heisenberg representation of the Hamiltonian coincides with the
Schrödinger one. The Heisenberg picture in this case loses its immediate appeal, and
people often prefer a picture, intermediate between Schrödinger’s and Heisenberg’s,
called interaction representation. In this representation the Hamiltonian is divided
into time-independent and time-dependent parts:

OH.t/ D OH0 C OV.t/:

The transition to new operators is carried out now using the time-evolution operator
OU.t; 0/ D exp

�
�i OH0t=„

�
. As a result one ends up with both operators and the

state of the system displaying dependence of time: the dynamics of the operators is
defined by operator OH0 and the dynamics of the states by OV.t/. However, something
tells me that continuing with this line of thought would bring me way over the line
allowed in the undergraduate course. So, consider this as a teaser and preview of
things to come if you decide to deepen your knowledge of quantum theory.

Now back to the time-independent Hamiltonians. The same calculations as in
the case of Ehrenfest equations yield the following Heisenberg equations for the
one-dimensional motion of a quantum particle:

dOx
dt

D Opx

me
(4.26)

d Opx

dt
D �d OV

dx
(4.27)

which coincide with the respective Hamiltonian equations of classical mechanics.
Again just like in the case of Ehrenfest theorem, these equations can be easily
generalized for the three-dimensional case:
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dOr
dt

D Op
me

(4.28)

d Op
dt

D �r OV: (4.29)

To illustrate how Heisenberg equations work, let me consider the case of a one-
dimensional harmonic oscillator—a particle moving in a quadratic potential of the
form V D 1

2
m!2x2, in which case Eq. 4.27 becomes

d Opx

dt
D �m!2 Ox: (4.30)

Differentiation of this equation with respect to time yields a differential equation of
the second order:

d2 Opx

dt2
D �!2 Opx

where the term dOx=dt is replaced with Op=m with the help of Eq. 4.26. It is
straightforward to verify that the equation for the momentum operator is solved
by

Op.t/ D O�1 cos!t C O�2 sin!t (4.31)

while an expression for the coordinate operator is obtained from Eq. 4.30 by simple
differentiation:

Ox.t/ D O�1
m!

sin!t � O�2
m!

cos!t: (4.32)

Unknown operators O�1;2 in Eqs. 4.31 and 4.32 are to be determined from the initial
conditions. (General solution of any linear differential equation is a combination of
particular solutions with undefined constant coefficients. Since we are dealing with
operator equations, these unknown coefficients must also be operators.) Substituting
t D 0 in the found solutions, you can see that

O�1 D Opx0

O�2 D �m! Ox0
so that, just as I advertised, the time-dependent momentum and coordinate operators
are expressed as linear combinations of Schrödinger operators Opx0 and Ox0 with time-
dependent coefficients
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Op.t/ D Opx0 cos!t � m! Ox0 sin!t

Ox.t/ D Opx0

m!
sin!t C Ox0 cos!t: (4.33)

The obtained solution for the Heisenberg operators looks identical to the solution of
the classical harmonic oscillator problem, but do not get deceived by this similarity.
For instance, in classical case one can envision initial conditions such that either
xo or px0 (not both, of course) are zeroes. In quantum case these are operators and
cannot be set to zero. At this point you do not know enough about properties of the
quantum harmonic oscillator to analyze this result any further, so I will postpone
doing this till later. Still, we can have a bit of fun and, as an exercise, calculate the
commutator between operators Op.t/ and Ox.t/, taken not necessarily at the same time.

Example 15 (Commutator of Heisenberg Operators for Harmonic Oscillator)

ŒOx.t1/; Op.t2/� D sin!t1 cos!t2

 Opx0

m!
; Opx0

�
C cos!t1 cos!t2 ŒOx0; Opx0��

sin!t1 sin!t2 ŒOpx0; Ox0� � sin!t2 cos!t1 ŒOx0;m! Ox0� D
i„ cos!t1 cos!t2 C i„ sin!t1 sin!t2 D i„ cos Œ! .t1 � t2/�

It is interesting to note that this commutator depends only on the time interval t1� t2
and not on t1 and t2 separately. The equal time commutator (t1 D t2/ coincides with
the canonical commutator for Schrödinger coordinate and momentum operators.

It is also fun to think about eigenvectors and eigenvalues of the Heisenberg
operators in Eq. 4.33, but I will let you play this game as an exercise.

4.3 Problems

Section 4.1.1

Problem 45 Consider a Hamiltonian presented by a 2 � 2 matrix

OH D „!


cos � sin � exp .i'/
sin � exp .�i'/ � cos �

�
:

1. Find Hermitian conjugate and inverse matrix and convince yourself that this
operator is simultaneously Hermitian and unitary.

2. Using representation of an exponential function as a power series, evaluate the
time-evolution operator for this Hamiltonian.
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3. Assume that the initial state of the system is given by a vector

j˛0i D 1p
2

"
1

1

#

and find j˛.t/i using the time-evolution operator.

Section 4.1.2

Problem 46 Prove that if OH j�ni D En j�ni, then OHm j�ni D Em
n j�ni.

Problem 47 Consider a system with Hamiltonian

OH D Op2
2me

C V.r/:

Assume that you know its eigenvalues and eigenvectors j�ni and En. Show that if
you change the potential in this Hamiltonian to V.r/ � E0, all the eigenvectors will
stay the same, the eigenvalue E0 will become equal to zero, and all other eigenvalues
will become En � E0.

Problem 48 Re-derive Eq. 4.14 factoring out exp
�
i E2„ t

�
instead of exp

�
i E1„ t

�
, and

demonstrate that this result does not change.

Problem 49 Consider a system described by a Hamiltonian

OH D E0

"
1 ia

�ia 1

#
:

1. Find stationary states of this Hamiltonian.
2. Assuming that at t D 0 the system is in the state

j˛0i D 1p
2

"
1

i

#
;

find j˛.t/i using stationary states of the Hamiltonian.

Section 4.1.3

Problem 50 Prove that h˛j Ox2 j˛i D .h˛j Ox j˛i/2 if and only if Ox j˛i D x j˛i. It is
not very difficult to prove that Ox j˛i D x j˛i implies h˛j Ox2 j˛i D .h˛j Ox j˛i/2, but
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the proof of the opposite statement requires a bit more ingenuity. You can try to
prove it by demonstrating that if Ox j˛i ¤ x j˛i, then h˛j Ox2 j˛i cannot be equal to
.h˛j Ox j˛i/2.
Problem 51 Go back to the problem involving a one-dimensional motion of a
particle in the cubic potential OV D aOx3=3 discussed in Sect. 3.3.1. It has been shown
in the text that the Ehrenfest equation for hOpi involves the expectation value of

˝
x2
˛
.

Derive the Ehrenfest equation for this quantity. Do you see expectation values of
any new operators or a combination of operators in the equation for

˝
x2
˛
? Derive

Ehrenfest equations for those new quantities. Comment on the results.

Section 4.2

Problem 52 You will learn in the following section that quantum states can be
described by functions of coordinates—wave functions, in which case Schrödinger
momentum operator becomes

Opx0 .x/ D �i„d 

dx

while the coordinate operator becomes simple multiplication by the coordinate
Ox0 .x/ D x .x/. Using this form of time-independent operators, find the functions
representing eigenvectors of their time-dependent Heisenberg counterparts:

Op.t/ D Opx0 cos!t � m! Ox0 sin!t

Ox.t/ D Opx0

m!
sin!t C Ox0 cos!t:

Analyze the behavior of these eigenvectors as functions of time; especially, consider
limits t D �n and t D �=2C�n, where n D 0; 1; 2 � � � . Hint: Time-dependent terms
here are just parameters, and their time dependence does not affect how you shall
solve the respective differential equations.

Problem 53 Derive Heisenberg equations for operators Oa, Oa� and Ob, Ob� appearing
in the following Hamiltonian:

OH D „! Oa� Oa C „�Ob� Ob C 

�

Oa� Ob C Ob� Oa
�
:

Commutation relations for these operators are as follows:

�Oa; Oa�� D 1I
hOb; Ob�

i
D 1I

h
Oa; Ob�

i
D 0I

h
Oa; Ob
i

D 0:



Chapter 5
Representations of Vectors and Operators

5.1 Representation in Continuous Basis

We have managed to get through four chapters of this text without specifying
any concrete form of the state vectors, and treating them as some abstractions
defined only by the rules of the games that we could play with them. This
approach is very convenient and rewarding from a theoretical point of view as it
emphasizes the generality of quantum approach to the world and allows to derive a
number of important general results with relative ease. However, when it comes
to responding to experimentalists’ requests to explain/predict their quantitative
experimental results, we do need to have something a bit more concrete and tangible
than the idea of an abstract vector. The similar situation actually arises also in the
case of our regular three-dimensional geometric vectors. It is often convenient to
think of them as purely geometrical objects (arrows, for instance) and derive results
independent of any choice of coordinate system. However, at some point, eventually,
you will need to get to some “down-to-earth” computations, and to carry them out,
you will have to choose a coordinate system and replace the “arrows” with a set of
numbers—the vector components.

In the case of abstract vectors that live in an abstract linear vector space, you can
use the same idea to get a more concrete and handy representation of the quantum
states. All these representations require that we use a basis in our abstract space.
It seems more logical to begin with representations based on discrete bases, but in
reality, we are somewhat forced to start with continuous bases. The reason for this
is that two main observables in quantum mechanics, from which almost all of them
can be constructed, are the position and the momentum (see Sect. 3.3.2). Operators
corresponding to these observables have continuous spectrum, and, therefore, you
will have to learn how to represent these operators using continuous bases.
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5.1.1 Position and Momentum Operators in a Continuous
Basis

Let me begin with some abstract operator OC and a continuous basis formed by
orthonormalized vectors jqi:

hqj q0˛ D ı
�
q � q0� ;

where q is a continuously changing parameter. You already know from Sect. 2.3 that
an abstract ket vector j˛i can be presented as an integral:

j˛i D
ˆ

dq'˛.q/ jqi : (5.1)

Hermitian conjugation of this expression produces its bra counterpart:

h˛j D
ˆ

dq'�̨.q/ hqj : (5.2)

I can now write down the inner product between vectors j˛i and jˇi as

h˛j ˇi D
ˆ

dq
ˆ

dq0'�̨.q/'ˇ.q0/ hqj q0˛ D
ˆ

dq
ˆ

dq0'�̨.q/'ˇ.q0/ı
�
q � q0� D

ˆ
dq'�̨.q/'ˇ.q/: (5.3)

Subindexes ˛ and ˇ in these expressions indicate the correspondence between an
abstract vector and the respective function appearing in the superposition given by
Eq. 5.1. Applying Eq. 5.3 to the case when j˛i D jˇi, I reproduce Eq. 2.42, and by
recalling that all state vectors must be normalized, I end up with condition

ˆ
dq'�̨.q/'˛.q/ D 1 (5.4)

generalizing Eq. 2.43, which was originally derived only for the functions of
coordinates. It should be noted here that while I am using a single variable q as
an argument of the functions ' .q/, you must understand that it is just a convenient
notation, and in reality, q can represent several variables. For instance, eigenvectors
of the position operator depend on three components of the position vector, but we
have been using the single symbol r to designate them all.

As long as we all agree on the choice of the basis, and do not change it in the
middle of a conversation (or calculations), we have a one-to-one correspondence
between abstract vectors and the respective superposition coefficients. This function
'˛.q/ provides a complete description of the corresponding vector and can be,
therefore, considered as its faithful representation. It can be expressed in terms of
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vector j˛i and the basis vectors by premultiplying Eq. 5.1 by hq0j and using the
orthonormality condition:

'˛.q/ D hqj ˛i : (5.5)

This essentially completes the discussion of the representation of vectors, but
this was an easy part. You also need to learn how to find representation of operators
appropriate for the developed representation of vectors, which is the hard part. For
starters, I need to explain to you what it means to represent an operator. Consider an
expression

jˇi D OQ j˛i

where two abstract vectors are related to each other by abstract operator OQ. It
seems reasonable to define a representation of the operator as such an object that
would yield the same relation between functions '˛.q/ and 'ˇ.q/ representing the
corresponding abstract vectors j˛i and jˇi. In order to figure it out, let me try to
insert the completeness condition for the continuous spectrum, Eq. 3.45, formed
with basis vectors jqi into three places in jˇi D OQ j˛i, in front of vector jˇi, in
front of operator OQ, and between the operator and j˛i:

ˆ
dq jqi hq jˇi D

ˆ
dq

ˆ
dq0 jqi hqj OQ ˇ̌q0˛ ˝q0 j˛i : (5.6)

(This amounts to inserting unity operators in all places, so, obviously, I have not
changed anything.) Using Eq. 5.5 I get

ˆ
dq jqi'ˇ.q/ D

ˆ
dq

ˆ
dq0 jqi hqj OQ ˇ̌q0˛'˛.q0/ jqi ;

which can be rewritten as
ˆ

dq jqi

'ˇ.q/ �

ˆ
dq0 jqi hqj OQ ˇ̌q0˛'˛.q0/

�
D 0:

Since the vectors of the basis are linearly independent, the integral in this expression
can be zero only if the integrand is zero, which yields

'ˇ.q/ D
ˆ

dq0 hqj OQ ˇ̌q0˛'˛.q0/ �
ˆ

dq0Q.q; q0/'˛.q0/ (5.7)

where I introduced Q.q; q0/ D hqj OQ jq0i. Thus, the abstract operator OQ in the
continuous basis takes the form of an integral operator with kernel hqj OQ jq0i. If we
know how this operator acts on the basis vectors, we can determine the kernel and
replace the abstract relation jˇi D OQ j˛i by an integral relation given by Eq. 5.7.
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For instance, you can easily find the kernel if the basis is formed by eigenvectors
of operator OQ. Indeed, if you know that OQ jqi D q jqi, then Q.q; q0/ D hqj OQ jq0i D
qı .q � q0/ and Eq. 5.7 simplifies to

'ˇ.q/ D
ˆ

dq0Q.q; q0/'˛.q0/ D q'˛.q/; (5.8)

i.e., the integral operator is reduced to simple multiplication by a corresponding
eigenvalue, and what can be simpler? Unfortunately, life is always more compli-
cated, and in most cases, you will have to deal simultaneously with at least two
non-commuting operators, so that eigenvectors of one operator will not be the
eigenvectors of the other. To deal with this situation, you have to learn how to
represent an operator in a basis formed by vectors that are not its eigenvectors.

Most of the bases used for practical calculations are formed by eigenvectors
of some Hermitian operator, and recognition of this fact can be quite useful. So,
in addition to the original operator OQ with eigenvectors jqi and eigenvalues q, let
me introduce another operator OS with eigenvectors jsi and eigenvalues s. The goal
now is to find an integral kernel representing operator OQ in the basis of vectors
jsi. In other words, I need to rewrite expressions hsj OQ js0i in the basis formed by
vectors jqi. It can be done by exploiting (twice) again the same old trick with the
completeness relation expressed in terms of these vectors:

hsj OQ ˇ̌s0˛ D
ˆ

dqdq0 hs jqi hqj OQ ˇ̌q0˛ ˝q0 ˇ̌ s0˛ :

Now, taking into account that kernel Q .q; q0/ in the basis of its own eigenvectors is
Q .q; q0/ D qı .q � q0/, I can simplify the above expression into

Q.s; s0/ � hsj OQ ˇ̌s0˛ D
ˆ

dqq hsj qi hqj s0˛ (5.9)

which gives me exactly what I have been looking for. For this expression to be
useful, however, you would need to know functions �q.s/ D hsj qi and �s.q/ D
hqj si. The first of them can be interpreted as the representation of eigenvector jqi
in the basis of vectors jsi, and the second one is clearly a representation of jsi in the
basis of jqi. These functions are related to each other by the property of the inner
product described by Eq. 2.19: �q.s/ D ��

s .q/. So, the whole business of finding
the kernel Q.s; s0/ is now reduced to finding representation of eigenvectors of OQ in
terms of those of OS (or vice versa).

Finding function �s.q/ is impossible without bringing in some additional
information. It can be, for instance, a commutator between operators OQ and OS,
or just outright expression for �s.q/ obtained empirically or heuristically, on the
ground of some physical arguments, or just by divine insight. Whatever method you
chose, you need to specify now which operators we are dealing with. Of biggest
interest are, of course, operators of position and momentum, so let’s agree to identify
operator OQ with x-component OPx of the momentum operator and OS with operator
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OX—x-component of the position operator. In this case function �q.s/ becomes the
coordinate representation �px.x/ of the eigenvectors of the momentum operator (its
x-component, of course).

This function represents a state of the particle with definite momentum px, which,
according to de Broglie hypothesis, corresponds to motion of a free particle and is
described by a harmonic wave with the wave vector with x-component kx D px=„.
Disregarding the time-dependent portion of such a wave, I can write its coordinate-
dependent part as �px.x/ D a exp .ikxx/ D a exp .ipxx=„/. Choice a D 1=

p
2�„

generates, according to Eq. 2.36, a delta-normalized function:

�px.x/ D 1p
2�„ exp .ipxx=„/ : (5.10)

Indeed,

1

2�„

1̂

�1
ei. px�p0

x/x=„dx D 1

2�

1̂

�1
ei. px�p0

x/QxdQx D ı
�

px � p0
x

�
(5.11)

where Qx D x=„. Similarly, you can also find that

1

2�„

1̂

�1
ei.x�x0/px=„dpx D ı

�
x � x0� : (5.12)

Now I can write Eq. 5.9 as

Px
�
x; x0� D 1

2�„

1̂

�1
dpxpxeipxx=„e�ipxx0=„ D 1

2�„

1̂

�1
dpxpxei.x�x0/px=„:

This integral might look puzzling, because it is naturally diverging. Applying a
magic trick, however, I can turn it into something that actually makes sense. The
trick is quite popular, so it is useful to have it up your sleeve. Differentiation of
Eq. 5.12 with respect to x produces

dı .x � x0/
dx

D i

2�„2
1̂

�1
dpxpxei.x�x0/px=„:

I hope that you have recognized the integral of interest on the right-hand side of this
equation, so that you can find for Px .x; x0/:

Px
�
x; x0� D „

i

dı .x � x0/
dx

: (5.13)
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Substituting Eq. 5.13 into Eq. 5.7 with variable q replaced with s (in that equation
q was just a generic variable not yet identified with eigenvalues of the operator),
I derive a relation between functions '˛.x/ and 'ˇ.x/ indicating states j˛i and
jˇi in the representation of the eigenvectors of the position operator (position
representation for brevity):

'ˇ.x/ D „
i

ˆ
dx0 dı .x � x0/

dx
'˛.x

0/ D „
i

d

dx

ˆ
dx0'˛.x0/ı

�
x � x0� D �i„d'˛.x/

dx
:

Thus, we see that the OPx operator in the position (coordinate) representation is
equivalent to a differential operator:

Opx D �i„ d

dx
(5.14)

where I used the lowercase letter for a particular representation of the operator as
opposed to the uppercase used for abstract operators. The coordinate operator in
the coordinate representation is obviously just an operator of multiplication by the
coordinate’s eigenvalue.

You can turn this analysis around and identify OS with a component of the
momentum operator and OQ with x-coordinate. Then �q.s/ becomes the momentum
representation of the eigenvector of coordinate:

�x. px/ D h p jxi D .hx j pi/� D 1p
2�„ exp .�ipxx=„/ : (5.15)

Repeating all the same manipulation as before, you will end up with the coordinate
representation of the coordinate operator in the form of a differential operator:

Ox D i„ d

dpx
: (5.16)

Equations 5.14 and 5.16 are obtained from each other by interchanging x � px and
complex conjugating the result. The complex conjugation bit is, of course, in sync
with the fact that coordinate representation of the momentum’s eigenvectors and
momentum representation of the coordinate’s eigenvectors are complex conjugates
of each other. Obviously, all the same arguments can be carried out for any other
Cartesian component of the position and momentum operators, which brings us to
the following conclusion. The position representation of the momentum operator is

given by the coordinate gradient operator
�!r as

Op D �i„�!r ; (5.17)

while the momentum representation of the position operator is

Or D i„�!r p (5.18)
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where
�!r p is defined as

�!r p D ex
@

@px
C ey

@

@py
C ez

@

@pz
(5.19)

and ex;y;z are unit vectors of Cartesian coordinate system with axes X;Y , and Z.
The functions representing the eigenvectors of the 3-D momentum operator in the
position representation and of the 3-D position operator in the momentum repre-
sentation are, obviously, obtained by multiplying their respective one-dimensional
counterparts:

�r.p/ D 1

.2�„/3=2 e�ip�r=„ (5.20)

�p.r/ D 1

.2�„/3=2 eip�r=„: (5.21)

You might be wondering how we ended up with OP and OR being represented
by differential rather than by integral operators as was my original intention. It
happened thanks to a singular nature of the kernels, hr0j OP jri and hp0j OR jpi, which
turned out to be proportional to the derivative of the delta-function. And the delta-
function derivatives are quite capable of turning integrals into derivatives, as it
happened in this particular case.

Having found representations of the coordinate and momentum operators, you
can easily compute their commutator. For instance, for the x-components in the
coordinate representation, you will easily find

h OX; OPx

i
f .x/ D �i„x

d

dx
f .x/C i„ d

dx
.xf .x// D i„f .x/ )

h OX; OPx

i
D i„: (5.22)

Since this commutator is just a number, it must not depend on the particular
representation (this is why I returned capital letters for the operators). Indeed, the
calculations carried out in the momentum representation yield

h OX; OPx

i
f . p/ D i„ d

dp
. pf . p// � i„p

d

dp
f . p/ D i„f . p/ )

h OX; OPx

i
D i„

as expected.
I will finish this section by deriving a relation between functions '˛.r/ and

Q'˛.p/ representing the same state j˛i correspondingly in the coordinate and
momentum representations. To achieve this, I am again resorting to the magic of
the completeness relation based upon the eigenvectors of momentum. Substitution
of this relation into Eq. 5.5 adapted for the eigenvectors of the position operator
gives



122 5 Representations of Vectors and Operators

'˛.r/ D hrj ˛i D
ˆ

dp hrj pi hpj ˛i D
ˆ

dp�r.p/ Q'˛.p/ (5.23)

D 1

.2�„/3=2
ˆ

d3pe�ip�r=„ Q'˛.p/

where I used Eq. 5.20 for the momentum representation of the position operator’s
eigenvector. One can easily invert Eq. 5.23 using Fourier representation of the delta-
function, Eq. 2.36, to obtain

Q'˛.p/ D 1

.2�„/3=2
ˆ

d3reip�r=„'˛.r/: (5.24)

5.1.2 Parity Operator

In this section I want to make a slight detour and define an important operator closely
related to the eigenvectors of the position operator used to introduce the position
representation of the state vectors. This operator, called parity operator, is often used
to classify wave functions arising in this representation, so it seems quite appropriate
to talk about it here.

The parity operator is defined by its action on the eigenvectors of the position
operator jri as

O… jri D j�ri ; (5.25)

the operation often called inversion. It is easy to see that this operator is Hermitian:

˝
r0 ˇ̌ O… jri D ˝

r0 j�ri D ı
�
r0 C r

�
�
hrj O… ˇ̌

r0˛�� D �hr ˇ̌�r0˛�� D ı
�
r0 C r

�

and that it is equal to its inverse, O…2 jri D O… j�ri D jri ) O…2 D OI, where OI is the
identity operator. It follows immediately from the last expression that O… D O…�1. It
also means that this operator is unitary. The action of this operator on an arbitrary
state can be defined using its position representation:

hrj O… j i D h�rj  i D  .�r/

where  .r/ D hrj  i. It is also important to know how this operator acts on the
eigenvectors of the momentum operator, which can be found out using again the
coordinate representation:
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O… jpi D
ˆ

dr hrj pi O… jri D
ˆ

dr hrj pi j�ri D
ˆ

dr h�rj pi jri :

To derive this result I used coordinate representation of jpi and changed the
integration variable r to �r in the last integral. Finally, using Eq. 5.21 I can write
h�rj pi D hrj �pi, which results in the following transformation rule for jpi:

O… jpi D j�pi : (5.26)

Parity operator has only two eigenvalues: 1 or �1. Indeed, assume that j�i is an
eigenvector with eigenvalue � W O… j�i D � j�i. Apply the parity operator to this
relation again: O…2 j�i D � O… j�i ” j�i D �2 j�i ) � D ˙1. Accordingly,
eigenvectors of O… represent those states that either do not change upon inversion (we
can call them even states) or those that change their sign (odd states). Obviously all
even and all odd functions are coordinate representations of the eigenvectors of the
parity operator.

Parity operator is one of the simplest symmetry operators, which means that it
can be used to determine that a Hamiltonian or another operator corresponding to
a quantum observable does not change, when a system is transformed in a certain
way. In fancy language, this property is called invariance with respect to a certain
transformation. To see why such invariance can be important, consider the time-
independent Schrödinger equation:

OH j˛i D E j˛i

and assume that there is an operator (usually a unitary one), which can be used
to describe a transformation of the system. Parity operator is one such example: it
generates spatial inversion of the system with respect to an origin of the coordinate
system. Rotations with respect to an axis or a point provide other examples of
transformations described by unitary operators. In what follows I will use notation
for the parity operator for the sake of concreteness, but most conclusions in the next
paragraph will be applicable to any symmetry operator.

So, let me apply operator O… to the time-independent Schrödinger equation. In
addition, I will also insert expression O…�1 O…, which is obviously equal to the identity
operator, between OH and j˛i:

O… OH O…�1 O… j˛i D E O… j˛i :

The Schrödinger equation preserves its form when rewritten in terms of new vector
Qj˛i D O… j˛i and new Hamiltonian OH0 D O… OH O…�1. This exercise demonstrates

that a relation between vectors and operators is preserved if a transformation of a
vector is accompanied by the corresponding transformation of the operator. I can
now give a formal definition of the invariance of a system, which I earlier loosely
described by saying that “the system does not change” upon certain operation,
i.e., the system is invariant under a transformation if its Hamiltonian obeys the
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following condition: OH0 D O… OH O…�1 D OH. One of the immediate consequences of
this condition is that if j˛i is the eigenvector of the Hamiltonian, then Qj˛i D O… j˛i
is also an eigenvector. This is an important conclusion, but I cannot dwell on it
for too long as it will bring us way outside of our comfort zone. What is more
important for us is that condition O… OH O…�1 D OH implies that the Hamiltonian and the
transformation operator commute O… OH D O… OH. This information can be immediately
put to use because we already know what this means—the transformation operator
and the Hamiltonian have a common set of eigenvectors. Usually eigenvectors of
the former are known, and this knowledge makes finding of the eigenvectors of the
latter easier. For instance, if I prove that my Hamiltonian is invariant with respect
to parity transformation, I can immediately conclude that all eigenvectors of the
Hamiltonian are presented by either even or odd functions, which, as you will see
in Sect. 6.2, significantly simplify their computation.

Hamiltonian is not the only operator whose behavior under parity transformation
is of interest. Other operators worthy of our consideration are position and momen-
tum operators. Let me begin with a position operator defined, as you well know, by
Or jri D r jri. Performing the same manipulation with this expression as the one to
which I just subjected Hamiltonian, I will have

O…Or O…�1 O… jri D r O… jri :

Using Eq. 5.25 I transform this into

O…Or O…�1 j�ri D r j�ri

which only makes sense if

O…Or O…�1 D �Or:

This result demonstrates that the position operator changes its sign upon inversion,
which, after some reflection, appears as almost obvious. Operators which have this
property are called “odd” as opposed to “even” operators, which do not change upon
parity transformation. Obviously, the inversion-invariant operators are by definition
“even.” I will leave it for you as an exercise to prove that the momentum operator is
also “odd.”

5.1.3 Schrödinger Equation in the Position Representation

The position representation is the most popular in practical applications of quantum
theory. This is the representation in which the original de Broglie matter waves
were described and in which Schrödinger wrote his equation. Much of the classical
physics deals with processes occurring in space and time, so it is not surprising
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that the wave functions written in the position representation hold a special place
in our hearts.1 It is also important, of course, that the potential energy operator,
which might have quite elaborate position dependence, looks the simplest in the
position representation. The momentum operator, on the other hand, does not have
a significant multiplicity of the forms appearing mostly in kinetic energy as Op2 term,
whose coordinate representation looks quite tolerable.

To derive the coordinate representation of the Hamiltonian, I need first to
resolve a few technical questions. In particular, I need to know how to generate
a representation of the product of two operators from representations of individual
factors. Consider, for instance, operator expression OQOS, whose integral kernel in
some basis j�i is h�0j OQOS j�i. Inserting a completeness relation (again!) between the
operators, I obtain

˝
�0 ˇ̌ OQOS j�i D

ˆ
d�00 ˝�0 ˇ̌ OQ j�00i h�00j OS j�i D

ˆ
d�00Q.�0; �00/S.�00; �/: (5.27)

An important example is operator OP2x , whose position representation would be useful
to know. The integral kernel for OPx was found in the previous section as Q .x0; x00/ D
i„ı0 .x0 � x00/ , where 0 on the delta-function signifies differentiation with respect to
the first argument. Substitution of these expressions into Eq. 5.27 yields

˝
x0 ˇ̌ OP2x jxi D �„2

ˆ
dx00 dı .x0 � x00/

dx0
dı .x00 � x/

dx00 D

„2 d2ı .x0 � x00/
dx0dx00

ˇ̌
ˇ̌
x00Dx

D �„2 d2ı .x0 � x/

dx02 D �„2 d2ı .x � x0/
dx2

where in the last line, I used evenness of the delta-function to switch from ı .x0 � x/
to ı .x � x0/ and the chain differentiation rule to change the differentiation variable.
If you plug this result into expression

'ˇ.x
0/ D

ˆ ˝
x0 ˇ̌ OP2x jxi'˛.x/dx;

you will get

'ˇ.x
0/ D �„2

ˆ
d2ı .x � x0/

dx2
'˛.x/dx D �„2 d2'˛.x/

dx2
(5.28)

which means that the coordinate representation of OP2x operator is just the square
of �i„d=dx operator (could have guessed this, of course, but this derivation was

1You might remember that the lack of spatial-temporal picture was the main complaints
Schrödinger leveled against Heisenberg’s “transcendental” algebraic approach.
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a nice exercise, wasn’t it?). Obviously the same result can be obtained for two

other components of the momentum, which means that operator OP2 in the position
representation is given by

Op2 D �„2r2; (5.29)

where r2 D �!r � �!r is the Laplacian operator. Using Eq. 5.19, one can easily derive

r2 D @2

@x2
C @2

@y
C @2

@z2
: (5.30)

Since the action of the position operator in the position representation amounts to
the simple multiplication by position vector r, the position representation of the
potential energy operator V .Or/ amounts to multiplication by V .r/. Thus the action
of the entire Hamiltonian in the position representation can now be described as

OHr‰˛ .r/ �
ˆ

dr0 hrj OH ˇ̌
r0˛‰˛

�
r0� D

1

2me

ˆ
dr0 hrj Op2 ˇ̌r0˛‰˛

�
r0�C

ˆ
dr0 hrj OV ˇ̌r0˛‰˛

�
r0� D

� „2
2me

r2‰˛ .r/C
ˆ

dr0V.r0/ hrj r0˛‰˛
�
r0� D

� „2
2me

r2‰˛ .r/C
ˆ

dr0V.r0/ı
�
r � r0�‰˛

�
r0� D

� „2
2me

r2‰˛ .r/C V .r/‰˛ .r/ ; (5.31)

where ‰˛ .r/ stands for hr j˛i. Correspondingly, I can write down the Hamiltonian
in the position representation simply as

OHr D � „2
2m

r2 C V.r; t/ (5.32)

which acts on functions �.r; t/ realizing the position representation of the corre-
sponding quantum states.

The time-dependent Schrödinger equation in the coordinate representation is
obtained from Eq. 4.9 by premultiplying it with the basis bra vector hrj and using
the completeness relation:

i„d hr j˛i
dt

D
ˆ

dr0 hrj OH ˇ̌
r0˛ ˝r0 j˛i :
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The left-hand side of this equation is simply �.r; t/ (I will drop the subindex ˛ from
now on), while the right-hand side was evaluated just a few lines above in Eq. 5.31.
Thus, I can write the position representation of Eq. 4.9 as

i„@�.r; t/
@t

D

� „2
2m

r2 C V.r; t/
�
�.r; t/: (5.33)

This is what most of quantum mechanics textbooks call the celebrated time-
dependent Schrödinger equation governing quantum dynamics of a single-particle
quantum state represented by wave function �.r; t/. If the potential function in
Eq. 5.33 does not depend on time, one can separate time and coordinate dependence
of the wave function as

�.r; t/ D exp

	
�i

E

„ t



 .r/ (5.34)

where  .r/ obeys equation


� „2
2m

r2 C V.r/
�
 .r/ D E .r/ (5.35)

often called time-independent Schrödinger equation. Rewritten in the form
OHr .r/ D E .r/, where subindex r points to the position representation, it
becomes reminiscent of Eq. 4.11 defining eigenvalues and eigenvectors of the
Hamiltonian. Obviously, Eq. 5.35 produces eigenvectors of the Hamiltonian in the
position representation.

This equation, which is a linear differential equation of the second order, has to be
complemented by boundary conditions specifying behavior of the wave functions at
infinity. They depend on the type of spectrum (discrete or continuous) the respective
wave functions belong to. If the eigenvalue E belongs to a discrete spectrum, we
know from the discussion in Sect. 2.2 that the corresponding states are square-
integrable, which means that integral

´ j .r/j2 dr taken over the entire volume (it
defines the norm of the state vector in the coordinate representation; see Eq. 2.43
or 5.4) is finite. Only functions which tend to zero fast enough when jrj ! 1 will
satisfy this requirement. Thus, the boundary condition for the wave functions of
discrete spectrum can be formulated as

lim
jrj!1

j .r/j D 0: (5.36)

The existence of a discrete spectrum depends on the behavior of the potential
function V.r/ and is closely related to the type of classical motion at a given energy.
Imagine, for instance, that there exists a closed surface in space separating regions
where E > V.r/ from the regions where E < V.r/. A classical particle can only
exist in the latter region, because the former would correspond to negative values of
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kinetic energies. Regions where classical kinetic energy would be positive are called
classically allowed, while regions where kinetic energy turns negative are called
classically forbidden. The boundary between these two regions, where E D V.r/,
forms a surface, which a classical particle cannot cross. Such motion of a classical
particle is called bound motion. In the quantum mechanical case, Schrödinger
Eq. 5.35 has solutions in both regions, which, however, have a completely different
behavior. An analysis in the most generic three-dimensional case is mathematically
too involved to attempt it here, so I shall illustrate this difference considering a
one-dimensional model, with the wave function and the potential depending on
a single coordinate, e.g., x. For a classically bound motion to take place in this
case, there must exist an interval of coordinates x1 < x < x2, where E > V.x/,
while everywhere else E < V.x/. The terminal points of this interval are so-called
turning points, where a classical particle would momentarily stop before reversing
its velocity.

It is convenient to analyze this situation quantum mechanically by rewriting the
Schrödinger equation as

d2 .x/

dx2
D 2m

„2 ŒV.x/ � E�  .x/: (5.37)

In the classically forbidden regions, which extend to infinity in both positive and
negative directions of the coordinate axes, the second derivative of the wave function
always has the same sign as the wave function itself. It is easier to discuss the
meaning of this result assuming that the wave function and, respectively, its second
derivative, in the classically forbidden region, are positive. In this case, if the first
derivative is positive (wave function grows), it becomes even more positive so that
the wave function bends upward growing even faster with increasing x. If, however,
the first derivative is negative (wave function decreases), it is becoming less and less
negative approaching zero. The wave function in this case must also asymptotically
approach zero without ever changing its sign. This wave function would obviously
satisfy the boundary condition given in Eq. 5.36 and, therefore, correspond to the
eigenvalue from the discrete spectrum. If the wave function is negative, all the
same arguments work, and the wave function is either monotonically decreasing,
becoming even more negative, or increasing approaching zero from the negative
side. In the classically allowed region, the second derivative is negative, and the
solution to the equation does not have to be monotonic. The main conclusion
following from these arguments is that the energy eigenvalues belonging to an
interval corresponding to a classically bound motion form, in quantum description,
a discrete spectrum.

Wave functions corresponding to the continuous spectrum of energy usually
appear in the situations when the potential approaches a constant finite value at
infinity. If energy E exceeds this limiting value of the potential, than asymptotically
for large values of x, Eq. 5.37 takes the following form:

d2 .x/

dx2
D �2m

„2 ŒE � V.1/�  .x/



5.1 Representation in Continuous Basis 129

which has two possible solutions  .x/ / exp.ikx/ or  .x/ / exp.�ikx/, where
k D p

2m ŒE � V.1/�=„. Any one of these asymptotic forms can be chosen as
a boundary condition at infinity: the actual choice is determined by the physical
problem at hand. This situation often appears in so-called scattering problems, when
one is interested in the behavior of a stream of particles incident on the potential
from infinity and being registered by a detector on the opposite side of the potential.
For this reason, wave functions with asymptotic behavior of this kind are called
scattering wave functions. I will talk much more about this situation in subsequent
chapters of the book.

Finally, you need to learn about the continuity properties of the wave functions.
This issue arises only if the potential V.r/ is not everywhere continuous (if the
potential is continuous, the wave functions are automatically continuous). We
require that the wave function remains continuous regardless of the discontinuity
of the potential. The physical foundation for such a requirement can be given as
follows. A discontinuity of wave function means that its first derivative becomes
infinite at the point of discontinuity, which creates a whole bunch of problems, e.g.,
the expectation value of the momentum of the particle at this point becomes infinite.

However, the continuity of the first derivative of the wave function is not neces-
sarily guaranteed. In one-dimensional case, one can show that if the discontinuities
of the potential only occur in the form of finite “jumps,” the first derivative of the
wave function remains continuous (provided that the mass of the particle remains
the same on both sides of the “step in the potential”). To see this one simply
needs to integrate Eq. 5.37 over an infinitesimal interval surrounding the point of
discontinuity of the potential, xd:

lim
"!0

xdC�ˆ

xd��

d2 .x/

dx2
dx D lim

"!0

 
d .x/

dx

ˇ̌
ˇ̌
xdC"

� d .x/

dx

ˇ̌
ˇ̌
xd�"

!
D

lim
"!0

2m

„2
xdC�ˆ

xd��
ŒV.x/ � E�  .x/dx )

lim
"!0

 
d .x/

dx

ˇ̌
ˇ̌
xdC"

� d .x/

dx

ˇ̌
ˇ̌
xd�"

!
D 2m

„2 Œ.V2 � V1/  .xd/" � E .xd/"� D 0 )

d .x/

dx

ˇ̌
ˇ̌
xdC0

D d .x/

dx

ˇ̌
ˇ̌
xd�0

(5.38)

where V1 D V.xd �0/ and V2 D V.xd C0/. In some semiconductor heterostructures
(alternating planar layers of different semiconductors), Eq. 5.37 is sometimes used
to describe the behavior of charged particles in the so-called effective mass
approximation. In this approximation the periodic potential of ions felt by electrons
is approximately taken into account by modifying the mass of the electrons from
their normal “free electron” value. The new “effective” masses are usually different
in different materials, and if the discontinuity of the potential occurs due to an
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electron passing from one semiconductor to another, its effective mass also changes.
Repeating previous derivation taking into account the possibility of discontinuity of
the mass, you can derive a generalized derivative continuity condition:

1

m1

d .x/

dx

ˇ̌
ˇ̌
xdC0

D 1

m2

d .x/

dx

ˇ̌
ˇ̌
xd�0

(5.39)

where m1;2 are values of the effective mass on both sides of the potential step.
The position representation allows for a useful and conceptually important gen-

eralization of the idea of probability conservation expressed by the normalization
condition 2.43. Consider the following quantity:

P.t/ D
ˆ

v

j� .r; t/j2 d3r;

which yields a probability that a measurement of the particle’s position will find it
within the integration volume v. Computing the time derivative of this quantity and
utilizing Schrödinger’s equation, Eq. 5.33, you get

@P

@t
D

ˆ

v


� .r; t/

@�� .r; t/
@t

C �� .r; t/
@� .r; t/
@t

�
d3r D

1

i„
ˆ

v

�
�� .r; t/


� „2
2m

r2 C V.r; t/
�
�.r; t/

�� .r; t/

� „2
2m

r2 C V.r; t/
�
��.r; t/

�
d3r D

i„
2m

ˆ

v

˚
�� .r; t/r2�.r; t/ � �.r; t/r2��.r; t/

�
d3r: (5.40)

To proceed you will need the following vector identity:

�� .r; t/r2�.r; t/ � �.r; t/r2��.r; t/ �

r � ��� .r; t/r�.r; t/ � �.r; t/r��.r; t/
�

which is easily proved by working it out from the right to the left. What is important
is that the expression on the right has a form of a divergence of a vector so that
Eq. 5.40 can be written as

ˆ

v

@

@t
j� .r; t/j d3r C

ˆ

v

r � jd3r D 0; (5.41)
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where I introduced a vector called probability current density

j D i„
2me

�
� .r; t/r��.r; t/ � ��.r; t/r�.r; t/� : (5.42)

One important property of this quantity is that it vanishes for the wave functions rep-
resenting a stationary state if its time-independent part is real. Indeed, substituting

‰ .r; t/ D exp .�iEt=„/  .r/ ;

you can see that the product of time-dependent factors yields unity, and, if  .r/
is real, the remaining two terms simply cancel each other. Equation 5.42 can be
rewritten in a more illuminating form: introducing a velocity operator

Ov � Op
me

D � i„
me

r

it can be presented as

j D 1

2

�
‰� Ov‰ C‰ . Ov‰/�� : (5.43)

If you do not see an immediate usefulness of bringing out the velocity operator in
the definition of j (besides a purely aesthetic fact that Eq. 5.43 is more pleasant to
the eye), let me point out that it highlights the connection between quantum and
classical concepts of the current density. As you may remember from introductory
physics course, the current density for any flowing quantity in classical physics can
be written down as �v, where � is the density of whatever does the flowing (charge,
mass, etc.) and v is the velocity of the flow. This connection becomes even more
direct for a free propagating particle with wave function:

‰ .r; t/ D A exp .�iEt=„ C ipr=„/ :
Substituting this wave function into Eq. 5.42 or 5.43, you will find for the quan-
tum j W

j D jAj2 p=m;

which is an exact reproduction of the classical expression if you identify jAj2 with �.
Using Gauss’ theorem (google it, if you do not remember!), I can rewrite

Eq. 5.41 as
ˆ

v

@

@t
j� .r; t/j2 d3r D �

ˆ

†

j � ndS (5.44)

where n is a unit vector normal to surface† enclosing volume v (directed outward).
The right-hand side of Eq. 5.44 has a meaning of a flux (just like electric field flux
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in electromagnetism) characterizing the “flow” of probability across a boundary
encompassing the volume. This equation simply states that the probability “to
locate” a particle within a given volume decreases if the probability “flows” outside
of the volume and increases if the flow of probability is reversed. In this sense, this
equation is the statement of conservation of probability, just like a similar statement
in electromagnetism would mean conservation of charge, and in hydrodynamics,
conservation of mass. An alternative expression of this statement can be obtained
if you drop the volume integration in Eq. 5.41 and introduce probability density
� .r; t/ � j� .r; t/j2:

@

@t
� .r; t/C r � j D 0: (5.45)

This equation is called probability continuity equation, and it looks very much like
any other continuity equation: in the electrodynamic context, � is the charge density,
and j is the current density; in hydrodynamics, � is a density of a fluid, and j is the
mass flux; in thermodynamics, � is local energy density, and j is energy flux; etc.
While in quantum mechanics this equation does not describe the flow of anything
material, such as charge or mass, it has very similar empirical significance. Proba-
bility current density, for instance, determines such experimentally observable char-
acteristics as scattering cross-sections or reflection and transmission coefficients.

5.1.4 Orbital Angular Momentum in Position Representation

5.1.4.1 Operators

When I first introduced angular momentum operators in Sect. 3.3.4, I emphasized
that the importance of the angular momentum is derived from the fact that it
commutes with the Hamiltonian of a particle in a central field. At that time I
did not have the tools to prove this fact as well as to study eigenvectors of the
angular momentum operators in any particular detail. Using position representation
for these operators, I can eliminate some of those gaps. This representation is
generated by substituting Eq. 5.17 for position representation of the momentum
operator to Eqs. 3.50–3.52 with additional understanding that the action of the
position operator is reduced to mere multiplication by r. This procedure generates
the following expressions for the Cartesian components of the angular momentum
defined with respect to some coordinate axes:

OLx D �i„y
@

@z
C i„z

@

@y
(5.46)

OLy D �i„z
@

@x
C i„x

@

@z
(5.47)

OLz D �i„x
@

@y
C i„y

@

@x
: (5.48)
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Fig. 5.1 Spherical
coordinate system
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These expressions imply that operators OLx;y;z act on wave functions defined in terms
of Cartesian coordinates x; y, and z of a position vector r. However, Cartesian
coordinates are not the only way to characterize a position of a point in space.
Spherical coordinates, for instance, can do the same job, and in some instances,
we might want to have operators acting on functions  .r; �; '/, where r; � , and '
are radial, polar, and azimuthal spherical coordinates (see Fig. 5.1). To make sure
that there is no confusion left, let me reiterate: I am using spherical coordinates to
describe position dependence of the wave functions in the coordinate representation,
but I keep using Cartesian coordinate system to introduce components of the vector
of the angular momentum and respective operators. It is important that the two
coordinate systems are mutually dependent: the spherical angles � and ' are defined
with respect to the same axes, which are used to define Cartesian components of the
angular momentum.

To proceed with my plan, I need to remind you the well-known relations between
Cartesian and spherical coordinates:

z D r cos � (5.49)

x D r sin � cos' (5.50)

y D r sin � sin' (5.51)

and

r D
p

x2 C y2 C z2 (5.52)

� D arccos

 
zp

x2 C y2 C z2

!
(5.53)

' D arctan
�y

x

�
: (5.54)
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To make the transition from the operators defined in space of functions f .x; y; z/
to the operators acting on functions f .r; �; '/, I shall use the regular chain rule for
differentiation of the functions of several variables, which in this case takes the
following form:

@

@x
D @r

@x

@

@r
C @�

@x

@

@�
C @'

@x

@

@'

@

@y
D @r

@y

@

@r
C @�

@y

@

@�
C @'

@y

@

@'

@

@z
D @r

@z

@

@r
C @�

@z

@

@�
C @'

@z

@

@'
:

I will illustrate this transition deriving expression for OLz in the spherical coordinates.
According to Eq. 5.48, I need derivative operators @=@x and @=@y. Using Eqs. 5.52–
5.54, as well as Eqs. 5.49–5.51, I get

@r

@x
D xp

x2 C y2 C z2
D sin � cos':

To compute derivative @�=@x, it is more convenient to transform Eq. 5.53 into

cos � D zp
x2 C y2 C z2

and differentiate it with respect to x:

� sin �
@�

@x
D � zx

.x2 C y2 C z2/3=2
:

This expression can now be transformed into

@�

@x
D r2 cos � sin � cos'

r3 sin �
D cos � cos'

r
:

Similarly, starting with tan' D y=x, I find

1

cos2 '

@'

@x
D � y

x2
D � sin'

r sin � cos2 '
) @'

@x
D � sin'

r sin �
:

Gathering all these results together, I finally have

y
@

@x
D r sin2 � cos' sin'

@

@r
C sin � sin' cos � cos'

@

@�
� sin2 '

@

@'
: (5.55)
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Now I need to repeat these calculations for x@=@y contribution to Eq. 5.48:

@r

@y
D yp

x2 C y2 C z2
D sin � sin'

� sin �
@�

@y
D � zy

.x2 C y2 C z2/3=2
) @�

@y
D cos � sin'

r

1

cos2 '

@'

@y
D 1

x
D 1

r sin � cos'
) @'

@y
D cos'

r sin �

x
@

@y
D r sin2 � cos' sin'

@

@r
C sin � sin' cos � cos'

@

@�
C cos2 '

@

@'
: (5.56)

Finally, combining Eqs. 5.55 and 5.56, I am getting my reward for all this hard work
because the derived expression for OLz is so remarkably simple:

OLz D �i„x
@

@y
C i„y

@

@x
D �i„ @

@'
: (5.57)

This result justifies going into all these troubles involved in transitioning to spherical
coordinates. One can also derive similar expressions for x- and y-components of the
angular momentum, but they are not that pretty:

OLx D i„
	

sin'
@

@�
C cot � cos'

@

@'



(5.58)

OLy D i„
	

� cos'
@

@�
C cot � sin'

@

@'



: (5.59)

The remarkable simplicity of OLz expressed in terms of the derivative with respect
to spherical coordinates is the main reason why it became customary to consider

the pair OLz; OL2 as a set of commuting operators, when dealing with the angular
momentum. Derivation of the expression for operator OL2 in terms of spherical
coordinates is quite straightforward, and while it is excruciatingly tedious, it does
lead to a really awesome answer:

OL2 D �„2

1

sin �

@

@�

	
sin �

@

@�



C 1

sin2 �

@2

@'2

�
: (5.60)

However, in order to appreciate its awesomeness, you might have to google
“Laplacian operator” unless, of course, you are also awesome and remember how
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Fig. 5.2 Breaking down a
classical momentum in
components
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it looks like in spherical coordinates (in Cartesian coordinates it was defined in
Eq. 5.30). For your convenience I will present it here:

r2 D 1

r2
@

@r

	
r2
@

@r



C 1

r2


1

sin �

@

@�

	
sin �

@

@�



C 1

sin2 �

@2

@'2

�
(5.61)

hoping that you notice that the angular part of the Laplacian (expression in square
brackets) is identical to �OL2=„2. And this fact is not left without important conse-
quences. Recall that the Laplacian operator defines the coordinate representation of
the kinetic energy operator OK D �„2r2=2me which now can be written down in
spherical coordinates as

OK D � „2
2mer2

@

@r

	
r2
@

@r



C

OL2
2mer2

: (5.62)

This presentation of the kinetic energy makes it plainly obvious that
h OK; OL2

i
D 0.

Indeed, the radial part of kinetic energy commutes with OL2 because they contain
derivatives with respect to different coordinates, and the angular part is simply
proportional to OL2, which obviously commutes with itself. To get an even better
appreciation of Eq. 5.62, it is interesting to consider a classical kinetic energy
rewritten in terms of two mutually perpendicular components of the momentum:
p� , which is normal to the particle’s position vector, and pr, which is aligned with
it. Taking into account that the momentum is tangential to the particle’s trajectory,
you can see (Fig. 5.2) that p� D p sin# , where # is the angle between the vector
of momentum and the position vector at a given point. In terms of these two
components, the kinetic energy can be presented as

K D p2�
2me

C p2r
2me

D p2 sin2 #

2me
C p2r
2me

:
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Now, let me play a bit with the first of these terms multiplying its numerator and
denominator by r2:

p2 sin2 #

2me
D p2r2 sin2 #

2mer2
:

I am sure you recognize now that the numerator of this expression is jr�pj2, which
is nothing, but the classical angular momentum L D r�p. Thus, the classical kinetic
energy can be presented as

K D p2r
2me

C L2

2mer2

where the last term “miraculously” reproduces a similar term in quantum mechani-
cal Eq. 5.62. Isn’t it true that physics (and math) work in mysterious ways?

Now I can fulfill my promise made in Sect. 3.3.4 and prove that the operators
of the angular momentum commute with the Hamiltonian if the particle’s potential
energy belongs to the class of central potentials. Actually, Eq. 5.60 makes the proof
quite trivial: the angular momentum operators in the position representation contain
only derivatives with respect to angular variables, so that if the potential energy
V.r/ depends only on the radial coordinate V.r/ (definition of the central potential!),
then neither OLz nor OL2 affects V.r/ so that OL2V.r/ .r; �; '/ D V.r/ OL2 .r; �; '/,
and the same is obviously true for OLz operator. Since I already showed that the
angular momentum commutes with the kinetic energy, the last remark completes
the required proof.

The direct consequence of vanishing commutators
h OH; OLz

i
and

h OH; OL2
i

is that

the common eigenvectors of OL2 and OLz are also eigenvectors of Hamiltonians with
a central potential, which makes the task of finding these eigenvectors especially
important. And this is what, without further ado, I am going to do now.

5.1.4.2 Eigenvectors

First of all, let me remind you that we are looking for the functions, which represent

common eigenvectors of operators OL2 and OLz. This means that these functions must
simultaneously obey both equations:

OLz lm .�; '/ D „m lm .�; '/ (5.63)

and

OL2 lm .�; '/ D „2l.l C 1/ lm .�; '/ : (5.64)

I begin with operator OLz whose eigenvectors in the coordinate representation are
particularly easy to find. First, let me notice that this operator only contains
derivatives with respect to ', so that the angular variable � plays here the role of
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“silent” parameter, a constant, as far as operator OLz is concerned. In formal language
it means that dependence of � may appear in function  lm .�; '/ only as a factor in
front of the “main” function dependent only of ':

 lm .�; '/ D Pm
l .�/ˆm .'/ : (5.65)

Substituting this form into Eq. 5.63, you can see that Pm
l .�/ indeed behaves as a

constant and can be discarded. The resulting equation for the remaining function

�i„@ˆm .'/

@'
D „mˆm .'/

has an obvious solution

ˆm .'/ D 1p
2�

exp .im'/ : (5.66)

Now consider how function ˆm .'/ evolves when the position vector rotates around
the axis Z. After one complete rotation, which corresponds to the change of ' by
2� , the position vector returns to the initial position. It would have been weird
if the wave function would not return to its initial value as well. In a somewhat
more sophisticated language, it means function ˆm .'/ is expected to be periodic
in '. This can be only achieved if you allow only for integer values of m: m D
0;˙1;˙2 � � � . This is only half of the eigenvalues of the operator OLz found by
algebraic methods in Sect. 3.3.4. The eigenvalues corresponding to half-integer
values of m result in the solutions that change its sign upon rotation by 2� and
shall be discarded. It does not mean, of course, that half-integer values m have no
place in quantum theory; it only means that they cannot correspond to eigenvectors
permitted the position representation. The factor 1=

p
2� in Eq. 5.66 ensures that the

wave function ˆm .'/ is normalized with respect to the inner products defined as

hˆm1 j ˆm2i �
2�ˆ

0

ˆ�
m1 .'/ˆm2 .'/ d' D 1

2�

2�ˆ

0

exp Œi .m2 � m1/ '� d': (5.67)

It is obvious that with this definition of the inner product, the functions representing
the eigenvectors are not only normalized but also orthogonal. The integral in
Eq. 5.67 is a part of a surface integral carried out over the surface of a sphere, which
in spherical coordinates has the following form:

h 1j  2i D
�̂

0

2�ˆ

0

d�d' sin � �
1 .�; '/  2 .�; '/ (5.68)
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where d�d' sin � is a spherical area element. The remaining integration over polar
angle � defines the inner product for yet unknown functions Pm

l .�/:

˝
Pm1

l1

ˇ̌
Pm2

l2

˛ D
�̂

0

d� sin �
�

Pm1
l1
.�/
��

Pm2
l2
.�/ : (5.69)

These functions are found by substituting  lm .�; '/ D Pm
l .�/ exp .im'/ into

Eq. 5.64, which results in the following equation:

�

1

sin �

@

@�

	
sin �

@

@�



C 1

sin2 �

@2

@'2

�
Pm

l .�/ exp .im'/ D l.lC1/P .�/ exp .im'/ :

Carrying out the differentiation with respect to ' and canceling the exponential
factor results in the following equation for Pm

l .�/:

1

sin �

@

@�

	
sin �

@Pm
l

@�



� m2

sin2 �
Pm

l C l.l C 1/Pm
l D 0:

Do you see now why I kept both indexes l and m in the notation for Pm
l ? By

introducing the new variable x D cos � , this equation can be rewritten as

d

dx

�
1 � x2

� dPm
l

dx

�
C


l.l C 1/ � m2

1 � x2

�
Pm

l D 0 (5.70)

where I used relation d=d� D .dx=d�/ d=dx D � sin �d=dx and replaced sin2 �
with 1 � cos2 � D 1 � x2.

This equation is very well known in mathematical physics as general Legendre
equation, whose solutions can be presented in the form of associated Legendre
functions, Pm

l .x/ � Pm
l .cos �/. As is clear from the relation between variables x

and cos � , functions Pm
l .x/ are defined on the interval x 2 Œ�1; 1�, where they are

orthogonal with the inner product defined as
´ 1

�1 Pm
l1
.x/Pm

l .x/dx:

1ˆ

�1
Pm

l1 .x/P
m
l .x/dx D 2 .l C m/Š

.2l C 1/ .l � m/Š
ıl;l1 : (5.71)

You may want to notice that the substitution of the integration variable x D cos �
converts this integral into the form identical to the integral in Eq. 5.69.

The proof of orthogonality of the Legendre functions is fairly standard for
differential equations of this kind, and you will benefit from learning how to carry
it out. First, copy Eq. 5.70 for Pm

l1
:

d

dx

�
1 � x2

� dPm
l1

dx

�
C


l1.l1 C 1/ � m2

1 � x2

�
Pm

l1 D 0: (5.72)
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Now, multiply Eq. 5.70 by Pm
l1

and Eq. 5.72 by Pm
l , and integrate the resulting

expressions from �1 to 1:

1ˆ

�1
Pm

l1

d

dx

�
1 � x2

� dPm
l

dx

�
dx C l.l C 1/

1ˆ

�1
Pm

l1 .x/P
m
l .x/dx�

m2

1ˆ

�1

Pm
l1
.x/Pm

l .x/

1 � x2
dx D 0

1ˆ

�1
Pm

l1

d

dx

�
1 � x2

� dPm
l1

dx

�
dx C l1.l1 C 1/

1ˆ

�1
Pm

l1 .x/P
m
l .x/dx�

m2

1ˆ

�1

Pm
l1
.x/Pm

l .x/

1 � x2
dx D 0:

Integration of the first terms in both equations by parts yields

�
1ˆ

�1

�
1 � x2

� dPm
l

dx

dPm
l1

dx
dx C l.l C 1/

1ˆ

�1
Pm

l1 .x/P
m
l .x/dx

� m2

1ˆ

�1

Pm
l1
.x/Pm

l .x/

1 � x2
dx D 0

�
1ˆ

�1

�
1 � x2

� dPm
l

dx

dPm
l1

dx
dx C l1.l1 C 1/

1ˆ

�1
Pm

l1 .x/P
m
l .x/dx

� m2

1ˆ

�1

Pm
l1
.x/Pm

l .x/

1 � x2
dx D 0;

and by subtracting these two expressions, you get

Œl.l C 1/ � l1.l1 C 1/�

1ˆ

�1
Pm

l1 .x/P
m
l .x/dx D 0:

It is quite obvious now that for l ¤ l1 this equality can only hold if

1ˆ

�1
Pm

l1 .x/P
m
l .x/dx D 0:
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The derivation of the normalization coefficient in Eq. 5.71 requires a bit more effort,
and I shall leave it for the most curious readers to discover it for themselves (google
it!). You can also notice that in the case of functions with equal l and different m,
the same line of reasoning results in a different orthogonality condition:

1ˆ

�1

Pm1
l .x/P

m
l .x/

1 � x2
dx D

8̂
<̂
ˆ̂:

0 m ¤ m1

.lCm/Š
m.l�m/Š m D m1 ¤ 0

1 m D m1 D 0

(5.73)

where, again, derivation of the normalization integral lies outside the scope of this
text.

The associated Legendre polynomials can be computed using the following
expression:

Pm
l .x/ D .�1/m �1 � x2

�m=2 dlCm

dxlCm

�
x2 � 1�l

(5.74)

where factor .�1/m is known as Condon-Shortley phase and is sometimes excluded
from the definition of Pm

l .x/. Equation 5.74 makes sense and gives non-zero results
if and only if l and m are integers and 0 � l C m � 2l , �l � m � l. The
integer part of this statement is obvious—derivatives of fractional order are not
something that we can live with at this point. The second part of this statement,
which reiterates what we have already learned about the relation between these
two quantum numbers in Sect. 3.3.4, can be understood by noticing that function�
x2 � 1�l

is a polynomial of the order 2l and, therefore, can be differentiated no
more than 2l times before it starts producing zeroes.

Legendre equation 5.70 is invariant (does not change) if you replace m to �m:
This means that solutions of this equation characterized by m and �m must be
proportional to each other. Indeed, one can show that functions defined by Eq. 5.74
satisfy the following important relation:

P�m
l .x/ D .�1/m .l � m/Š

.l C m/Š
Pm

l .x/: (5.75)

Finally, combining Eqs. 5.66 and 5.74 and adding corresponding normalization
coefficients, we end up with a set of functions  lm � Ym

l .�; '/ known as spherical
harmonics and defined as

Ym
l .�; '/ D .�1/m

s
2l C 1

4�

.l � m/Š

.l C m/Š
Pm

l .cos �/ eim': (5.76)

In light of the results presented above, the spherical harmonics are obviously
orthogonal and normalized:
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�̂

0

2�ˆ

0

�
Ym

l .�; '/
��

Ym1
l1
.�; '/ sin �d�d' D ıll1ımm1 (5.77)

providing us with the position representation of normalized common eigenvectors
of operators OL2 and OLz.

I will conclude this section with a brief description of main qualitative properties
of the spherical harmonics. Numerous identities and recursion relations involving
associated Legendre functions are well documented and are easily available in
the literature and on the Internet. However, it is important to have a qualitative
understanding of how spherical harmonics behave off the top of one’s head.

The first thing to notice is the symmetry of the spherical harmonics upon
inversion of the position vector on the sphere with respect to the origin of the
coordinate system: r ! �r. This corresponds to the transformation of the angular
spherical coordinates � ! � � �; ' ! ' C � . Upon this transformation
exp .im'/ ! .�1/m exp .im'/, while the argument x D cos � of the associated
Legendre function, Pm

l .cos �/, transforms as cos � ! cos .� � �/ D � cos � , i.e.,
we are dealing here with inversion x ! �x. Associated Legendre functions have
a definite parity: they are either even (do not change) or odd (change the sign)
when their argument changes the sign. This is quite obvious from Eq. 5.74: replacing
x ! �x does not change the function being differentiated or the factor preceding
differentiation, while the derivatives with respect to x change their sign with each
differentiation. It is obvious, therefore, that

Pm
l .�x/ D .�1/lCm Pm

l .x/: (5.78)

Combining this result with the transformation property of exp .im'/, we have for
the spherical harmonics

Ym
l .� � �; ' C �/ D .�1/l Ym

l .�; '/ (5.79)

which means that the spherical harmonics have definite parity: they are either even
with respect to inversion (for even values of l) or odd, if l is an odd number.
This behavior is consistent with the fact that the operator of the orbital angular
momentum OL D Or � Op is invariant with respect to the parity transformation, and,
therefore, its eigenvectors must also be eigenvectors of the parity operator, i.e., have
a definite parity.

It is also important to have a picture of dependence of the spherical harmonics
upon its arguments. Dependence on azimuth angle ' is trivial: the real and
imaginary parts of the spherical harmonics oscillate with frequency m, but these
oscillations are not really significant, unless we are dealing with a superposition
state comprised of several spherical harmonics with different azimuthal numbers.
For a single spherical harmonics, relevant properties are often described by its
absolute values

ˇ̌
Ym

l .�; '/
ˇ̌2

, which lose all dependence on '. Dependence on polar
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angle contained in Pm
l .cos �/ is a more interesting matter and is determined by

values of both quantum numbers l and m separately, as well as by their difference
l � m. For instance, for m D l, it is easy to see that

Pl
l .cos �/ / sinl �;

which takes zero values at � D 0; � (two poles of the sphere) and has a single
maximum at the equator � D �=2. The width of the maximum (loosely defined)
becomes smaller with increasing l (the function decreases more rapidly away from
equator for larger l). If one likes pseudoclassical mind helpers (I would not even
call them “analogies”), one can think about a particle rotating around the equator
with its angular momentum pointing in the polar direction. The larger the angular
momentum is, the more torque would be required to turn it away from the poles,
which can be kind of loosely interpreted as a smaller probability for a particle to
deviate from the equatorial trajectory. But, please, do not take these pseudoclassical
mumbo jumbo too seriously.

The case of m D 0 corresponds to the classical angular momentum lying in
the equatorial plane, while respective spherical harmonics are reduced to regular
Legendre polynomials:

Pl.x/ D dl

dxl

�
x2 � 1�l

:

These are the only spherical harmonics which do not have zeroes at the poles of the
sphere .x D ˙1, or � D 0; �), but it has zeroes between the poles, whose number is
equal to the orbital number l. Obviously, the number of minimums and maximums
of these functions is always equal to l � 1 (the only exception is l D 0, when we
are dealing with a constant). In the case of generic values of m ¤ 0, the spherical
harmonics vanish at the poles, and the number of their nods in the polar direction is
equal to l � m. In my opinion, mastering the provided information will help you not
only to have a qualitative feeling for various expressions and phenomena involving
spherical harmonics but also to make quite an impression at a cocktail party. To help
you with visualizing these properties, I plotted graphs of the associated Legendre
polynomials with l D 3 in Fig. 5.3. To make the picture prettier, I normalized all
functions in the plot to bring their maximum values closer to each other; obviously
this procedure did not change their qualitative behavior.

5.2 Representations in Discrete Basis

Now let’s talk about the representation of abstract vectors in discrete bases.
Equation 3.39, which represents vector j˛i in a basis j�ni, establishes a one-
to-one correspondence between the vector and a set of coefficients an. These
coefficients are a discrete analog of functions representing vectors in continuous
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Fig. 5.3 Graphs of
associated Legendre
polynomials with l D 3 and
0 � m � 3

basis introduced in the previous section and can be arranged in the form of a
column vector. Thus, in this case we are representing the abstract vector space by
a space of column vectors with all the rules of matrix addition and multiplication
defined for these objects. The Hermitian conjugation in this space was discussed in
Sect. 2.2.2 and includes transitioning to the adjoint space inhabited by row vectors
with complex-conjugated elements:

h˛j D
X

n

a�
n h�nj :

The inner product now becomes a standard matrix multiplication between a row
vector on the left and a column vector on the right:

h˛j ˇi D �
a�
1 a�

2 � � � a�
N � � ��

2
6666664

b1
b2
:::

bN
:::

3
7777775

D
1X

iD1
a�

i bi; (5.80)

where bn are coefficients in the expansion of ket jˇi in the same basis, while the
outer or tensor product j˛i hˇj is represented by a matrix formed according to the
rules of the matrix tensor product, Eq. 2.16:

S.˛;ˇ/nm D

2
6666664

a1
a2
:::

aN
:::

3
7777775

�
b�
1 b�

2 � � � b�
N � � �� D

2
666666664

a1b�
1 a1b�

2 � � � a1b�
N � � �

a2b�
1

: : :
: : : a2b�

N

: : :
:::

: : :
: : :

:::
: : :

aNb�
1 aNb�

2 � � � aNb�
N

: : :
:::

: : :
: : :

: : : � � �

3
777777775
: (5.81)
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Due to the normalization requirement accepted for the state vectors, the expansion
coefficients obey the following obvious “sum” rule:

X
n

janj2 D 1 (5.82)

which is, again, a discrete analog of Eq. 5.4.
If a space of states of a given quantum system can be fully described by a discrete

basis, these states can always be presented in the form of column and row vectors
reducing the problem to that of a matrix algebra (remember Heisenberg’s matrix
mechanics—this is where it finds its roots). The main difference, of course, is that
in standard linear algebra problems, the dimension of the space is always finite,
while normally spaces of quantum mechanical states have infinite dimensionality.
This creates a number of technical problems of mathematical nature, but we shall let
mathematicians to worry about them. At any rate, in most practical applications of
quantum theory, you wouldn’t have to deal with the entire infinitely dimensional
space of states. Usually, it is possible to find a way to restrict attention to a
much smaller (sometimes just two-dimensional) subspace using certain physically
meaningful assumptions about hierarchy of interactions relevant for the problem
under study.

To have you started, consider this simplest of simplest example, which, however,
often gives students a headache.

Example 16 (A Basis Vector in Its Own Basis) This example deals with the
following question: what is a representation of a vector in a basis to which this vector
itself belongs? In other words, if j�Qni is one of the set of orthogonal normalized
vectors j�ni ; n D 1; 2 � � � , which column vector will represent it in the basis formed
by these vectors? Even though the answer to this question is almost trivial, it never
fails to confuse students. Assume, for instance, that Qn D 1. In this case I have
j�1i D 1 j�1iC0 j�2iC0 j�3iC� � � . Obviously, the corresponding column vector is

2
6664

1

0

0
:::

3
7775 :

Considering Qn D 2, I will similarly find that the column representing this vector
contains unity in the second position and zeroes everywhere else. This pattern, of
course, repeats itself for all other elements of the basis: any basis vector j�Qni is
represented in the basis it is the element of, by a column, where all components but
one are zeroes, and the only component in the Qn-th place is unity.

Now, if column vectors can represent vector states, it is almost obvious that
operators must be represented by matrices, in which case the word “act” would
mean matrix multiplication. Matrices multiply column vectors from the left and row
vectors from the right. The main question is how to construct a matrix representing
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a given operator in a chosen basis. To answer this question, I will again rely on the
completeness relation (its discrete basis reincarnation, Eq. 3.42) for the basis vectors
j�ni. Insertion of this relation into jˇi D OT j˛i yields

1X
nD0

j�ni h�n jˇi D
1X

nD0
j�ni h�nj OT

1X
mD0

j�mi h�m j˛i

D
1X

nD0

1X
mD0

h�nj OT j�mi h�m j˛i j�ni :

Taking into account that coefficients bn are given by bn D h�n jˇi and coefficients
an are an D h�m j˛i, I transform the previous equation into

1X
nD0

bn j�ni D
1X

nD0

1X
mD0

h�nj OT j�mi am j�ni :

Now, thanks to the linear independence of the basis vectors, I can simply equate the
coefficients in front of each of j�ni separately:

bn D
1X

mD0
h�nj OT j�mi am: (5.83)

This expression can be rewritten in the matrix form as

b D T � a

where I am using bold Latin letters to denote columns and matrices representing
vectors and operators in a given discrete basis. This means that the required matrix
representation of the given operator is

Tnm D h�nj OT j�mi : (5.84)

To illustrate an application of this result, consider the matrix of the operator
OS D j˛i hˇj obtained by the outer product of two vectors. Using Eq. 5.84, you
immediately find

Smn D h�n j˛i hˇj �mi D amb�
n

with full agreement with the result obtained using standard matrix definition of the
outer product, Eq. 5.81.

The equation for eigenvectors OT j˛i D � j˛i in the matrix representation is
reduced to the matrix equation:
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1X
mD0

Tnmam D �an

which can be rewritten as

1X
mD0

.Tnm � �ınm/ am D 0: (5.85)

This is essentially a shortcut notation for the system of uniform linear equa-
tions, which has nontrivial (meaning non-zero) solutions, only if the determinant
kTnm � �ınmk vanishes (Cramer’s rule that had already been mentioned earlier). If
you go back to Sect. 3.2.3, you will find examples of eigenvector and eigenvalue
calculations with matrices.

The matrix representation of operators is practically useful only if you know
how the operator acts on the vectors of the chosen basis. If an operator in question
is built out of basis vectors, the problem is resolved almost trivially. For instance,
the projection operators introduced in Eq. 3.41 have a simple matrix representation
in the same basis in which it is defined:

P.n/km D h�kj �ni h�nj �mi D ıknınm

which is a matrix with a single non-zero element k D m D n on a main diagonal.
You can find other examples of matrix representations for operators of this kind, in
the exercises in this chapter.

In most cases the issue of finding how operators act on the basis vectors is not
that trivial. Often it is resolved by using position representation of operators and the
basis vectors. This approach works especially well for the class of operators, which
can be presented as a combination of position and momentum operators. This class
includes many important operators, but not all of them.

5.2.1 Discrete Representation from a Continuous One

To illustrate this point, let me consider an example of a single particle of mass me

allowed to move freely along a linear segment of finite length L. The probability
that the particle’s position can be anywhere outside of this segment is assumed to
be zero. This condition is most naturally expressed in the position representation,
where Hamiltonian, which contains only kinetic energy term, takes the form of

OH D Op2x
2m

D � „2
2m

d2

dx2
: (5.86)
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The confinement of the particle inside the specified linear segment is formally
expressed by the requirement that the wave function  .x/ representing states of the
system is equal to zero outside of the allowed interval. The continuity of the wave
function then requires that it also vanishes at the terminal points of this interval.
Choosing the origin of a coordinate system at the left end of the allowed interval,
and assigning coordinate x D L to its right end, I can express the confinement
conditions by requiring that the wave function vanished at both ends of the interval:

 .0/ D  .L/ D 0: (5.87)

It is easy to check that Schrödinger equation 5.37 for a free particle (V.x/ D 0) has
two linearly independent solutions  C.x/ D exp .ikx/ and  �.x/ D exp .�ikx/,
where k D p

2mE=„. Now I need to construct a linear combination of these
functions obeying the confinement conditions, Eq. 5.87. Beginning with a general
solution

 .x/ D Aeikx C Be�ikx;

I find that requirement  .0/ D 0 yields A C B D 0, which allows me to write the
wave function as

 .x/ D A sin kx:

(I used Euler’s formula sin kx D .exp.ikx/ � exp.�ikx// =2i and incorporated
constant 2i into coefficient A.) The condition at x D L yields

A sin kL D 0

with two possible ways to fulfill it. One is to make A D 0, in which case the entire
wave function vanishes, and we definitely do not want this to happen. Thus, you are
stuck with the only other option, namely, to require that

kL D �n; n D 1; 2 � � � :

This result means that the states of the system considered in this example can only
be presented by a discrete set of wave functions:

 n.x/ D A sin knx

characterized by parameter

kn D �n

L
(5.88)
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with corresponding discrete energy levels

En D „2�2n2
2mL2

: (5.89)

The appearance of the discrete spectrum is not surprising here, of course, since
the classical motion in this example is clearly bound. The remaining unknown
coefficient A remains unknown at this point—it cannot be fixed by the boundary
condition, which is a fairly typical situation in problems of this kind. I, however,
have one additional weapon at my disposal—the normalization condition, which
in this case reads as (using standard definition of the inner product for the square-
integrable functions)

1̂

�1
j .x/j2 dx D jAj2

Lˆ

0

sin2 knxdx D 1 ) A D
r
2

L

where at the last step, I chose A to be a real positive quantity. This choice while
pleasing to the eye does not make any difference since normalization condition only
defines A up to an arbitrary phase factor of the form exp .i'/ in alignment with the
already mentioned general principle that vectors representing quantum states are
always defined only up to a phase.

The system of wave functions

 n.x/ D
r
2

L
sin

�nx

L
(5.90)

forms a normalized orthogonal basis, which can be used to present any other
wave function defined on the interval x 2 Œ0;L� (one can recognize here just a
Fourier series expansion for a function defined on a finite interval). This basis can
also be used to represent various operators acting on such functions. For instance,
Hamiltonian, Eq. 5.86, in this basis is represented by an infinite diagonal matrix:

Hmn D � „2
2m

2

L

Lˆ

0

sin
�mx

L

d2

dx2
sin

�nx

L
dx D

„2�2n2
2mL2

2

L

Lˆ

0

sin
�mx

L
sin

�nx

L
dx D „2�2n2

2mL2
ımn: (5.91)

Now, assume that the particle that you follow is also subjected to an external
uniform electric field (with all other conditions and limitations intact). This will
add a potential energy term to the Hamiltonian of the form V.x/ D eFx, where e
is the absolute value of the particle’s charge, presumed to be negative, and F is the
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magnitude of the field. Now, I want you to try to present the new Hamiltonian of the
particle:

OH D Op2x
2m

C eFx

in the same basis of functions  n.x/ defined in Eq. 5.90. The resulting matrix would
have the diagonal part given in Eq. 5.91, and the part, which can be written as eFxmn,
where

xmn D 2

L

Lˆ

0

x sin
�nx

L
sin

�mx

L
dx D

1

L

Lˆ

0

x


cos

� .n � m/ x

L
� cos

� .n C m/ x

L

�
dx D (5.92)

1

L

L

�


x

n � m
sin

� .n � m/ x

L
� x

n C m
sin

� .n C m/ x

L

�L

0

�

1

L

L

�

2
4 1

n � m

Lˆ

0

sin
� .n � m/ x

L
dx � 1

n C m

Lˆ

0

sin
� .n C m/ x

L
dx

3
5 D

L

�2
1

.n � m/2
cos

� .n � m/ x

L

ˇ̌
ˇ̌
L

0

� L

�2
1

.n C m/2
cos

� .n C m/ x

L

ˇ̌
ˇ̌
L

0

D

L

�2
Œ.�1/n�m � 1� 4nm

.n2 � m2/
2
; n ¤ m: (5.93)

The diagonal element of this matrix, which is just an expectation value of the
coordinate, is easily found to be (from the first line of Eq. 5.93) xnn D L=2, which
has an obvious physical meaning. The total Hamiltonian in the representation based
on functions defined in Eq. 5.90 is now an infinite nondiagonal matrix:

Hmn D
	„2�2n2
2mL2

C eFL

2



ımn C eFL

�2
Œ.�1/n�m � 1� 4nm

.n2 � m2/
2

(5.94)

where the second term contributes only to the nondiagonal elements. The electric
field-related correction to the diagonal elements of the Hamiltonian is just a constant
and can be eliminated by choosing a different zero level for the energies, for
instance, by writing the electric field potential as eF.x � L=2/.

This example illustrates a rather general situation: often in order to find a
representation of an operator in one basis, we have to use its known representation
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in a different basis. This approach works especially well with observables that
can be expressed as combinations of position and momentum operators, whose
representations in continuous bases were discussed above. This approach often
leads to nondiagonal matrices, and finding the eigenvalues and eigenvectors of
the operator of interest is reduced to finding eigenvalues and eigenvectors of
the resulting matrix. In many cases this cannot be done exactly because the
dimensionality of the resulting matrices can be infinite, but it is often possible to
truncate them and solve the problem approximately. How this is done practically
will be discussed in a separate chapter.

5.2.2 Transition from One Discrete Basis to Another

Quite often you will find yourself in a situation when having found (or being given)
matrix representation of an operator in one discrete basis, you will need to find an
equivalent matrix representing this operator in a different basis. Here I will show
how this can be done.

So, let’s assume that you have an operator OT and a system of basis vectors
ˇ̌
ˇ�.old/

m

E
.

The representation of this operator in this basis, as we have already established, is
given by a matrix:

T.old/
mn D ˝

�.old/
m

ˇ̌ OT ˇ̌�.old/
n

˛
:

However, I would like to re-derive this expression in a slightly different way. Let
me multiply the operator OT by two unity operators expressed by the completeness
relation, Eq. 3.42, formed with the vectors of this basis:

OT D
1X

nD0

1X
mD0

ˇ̌
�.old/

m

˛ ˝
�.old/

m

ˇ̌ OT ˇ̌�.old/
n

˛ ˝
�.old/

n

ˇ̌ D

1X
nD0

1X
mD0

T.old/
mn

ˇ̌
�.old/

m

˛ ˝
�.old/

n

ˇ̌
: (5.95)

This representation of an operator in terms of a matrix and operators
ˇ̌
ˇ�.old/

m

E D
�
.old/
n

ˇ̌
ˇ

is akin to the expansion of a vector into a linear combination of basis vectors. Now,

let me assume that I have another basis
ˇ̌
ˇ�.new/

m

E
, and I want to relate the matrix of

the operator in this basis T.new/
mn to matrix T.old/

mn . To achieve this goal, let me express
the matrix T.new/

mn using Eq. 5.95:

T.new/
kl D

1X
nD0

1X
mD0

T.old/
mn

D
�
.new/
k

ˇ̌
�.old/

m

˛ ˝
�.old/

n

ˇ̌
�
.new/
l

E
:
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This can be rewritten with the help of two new matrices:

Unl D ˝
�.old/

n

ˇ̌
�
.new/
l

E
(5.96)

and

QUkm D
D
�
.new/
k

ˇ̌
�.old/

m

˛

as

T.new/
kl D

1X
nD0

1X
mD0

QUkmT.old/
mn Unl:

(Note the position of the indexes in this expression, which adhere to the regular rule
for the matrix multiplication.) Now I need to figure out how to construct matrices
U and QU and their relation to each other. Let me first perform complex conjugation
of each element of matrix QUkm and take advantage of the main property of the inner
product, Eq. 2.19:

QU�
km D

D
�
.new/
k

ˇ̌
�.old/

m

˛� D ˝
�.old/

m

ˇ̌
ˇ�.new/

k

E
D Umk:

Thus I can see that matrix QU can be obtained from U by complex conjugation and
transposition, or, expressing this in fewer words, QU is a Hermitian conjugate of U:
QU D U�, and the matrix transformation rule can be presented as

T.new/
kl D

1X
nD0

1X
mD0

U�
kmT.old/

mn Unl: (5.97)

Now, let me focus on one particular column of matrix U, say, column l0. Then you

can easily recognize that quantities
D
�
.old/
n

ˇ̌
ˇ �.new/

l0

E
are nothing but coefficients of

expansion of the new basis vector
ˇ̌
ˇ�.new/

l0

E
in the old basis:

ˇ̌
ˇ�.new/

l0

E
D
X

n

ˇ̌
�.old/

n

˛ ˝
�.old/

n

ˇ̌
�
.new/
l0

E
;

which gives a simple recipe for preparing matrix U: find representation of the nth
vector of a new basis in the old one and use the corresponding coefficients as a n-th
column of matrix U. Let me illustrate this rule with a simple example.

Example 17 (Transformation to a New Basis) Consider a Hermitian matrix:


1 i
�i �1

�

and rewrite it in the basis of its own eigenvectors.



5.2 Representations in Discrete Basis 153

Solution

First I need to find these eigenvectors, which are given by equation


1 i
�i 1

� 
a1
a2

�
D �


a1
a2

�
:

The corresponding eigenvalues are found from

.1 � �/2 � 1 D 0 )
�2�C �2 D 0 )
�1 D 0; �2 D 2:

Now I can find two eigenvectors:
For �1 D 0, I have

a1 C ia2 D 0 ) j0i D 1p
2


1

i

�

where I used j0i as a notation for a normalized eigenvector belonging to �1 D 0.
You can verify that this vector is indeed normalized.

For �2 D 2, the eigenvector equations become

a1 C ia2 D 2a1 ) j2i D 1p
2


1

�i

�
:

What you need to realize now (quite obvious, but always gives students a shudder)
is that the numbers in these columns are the coefficients in the representation of the
new basis (vectors j0i and j2i) in terms of the vectors of the old basis. Thus, the
transformation matrix U can be generated as

U D 1p
2


1 1

i �i

�

and its Hermitian conjugate matrix as

U� D 1p
2


1 �i
1 i

�
:

Plugging these matrices in the transformation rule, Eq. 5.97, I get

1

2


1 �i
1 i

� 
1 i
�i 1

� 
1 1

i �i

�
D
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1

2


1 �i
1 i

� 
0 2

0 �2i

�
D

0 0

0 2

�
;

which is exactly what you should have expected: a matrix in the basis of its own
eigenvectors is diagonal with eigenvalues along the main diagonal.

Sometimes the transformation rule connecting representation of operators in
different bases is presented in an alternative form

T.new/
kl D

1X
nD0

1X
mD0

QUkmT.old/
mn

QU�
nl (5.98)

with matrix QUnl defined as

QUnl D ˝
�.new/

n

ˇ̌
�
.old/
l

E
: (5.99)

Complex conjugation of Eq. 5.99 yields

QU�
nl D ˝

�.new/
n

ˇ̌
�
.old/
l

E� D
D
�
.old/
l

ˇ̌
ˇ �.new/

n

˛ D Uln

Performing matrix transposition and recalling that complex conjugation plus trans-
position yields Hermitian conjugation, you can see that

QU D U�

and that Eq. 5.98 and Eq.5.97 are equivalent to each other.
The transformation matrix in the form of Eq. 5.99 appears naturally when one is

looking for the transformation between components of the same vector written in
two different bases. Indeed, consider a vector j˛i represented in two different bases
as

j˛i D
X

l

a.old/
l

ˇ̌
ˇ�.old/

l

E
D
X

l

a.new/
l

ˇ̌
ˇ�.new/

l

E
:

The simplest way to express coefficients a.new/
l in terms of coefficients a.old/

l , which
is the goal of this exercise, is to premultiply the expression above by the bra-vectorD
�
.new/
m

ˇ̌
ˇ and take advantage of the orthogonality of the basis vectors. This yields

a.new/
m D

X
l

˝
�.new/

m

ˇ̌
ˇ�.old/

l

E
a.old/

l D
X

l

QUmla
.old/
l D

X
l

U�
mla

.old/
l :

What is left for me to do now is to show that matrix U defined by Eq. 5.96 is
unitary. To this end I need to compute the product of two matrices Unm and U�

ml,
using standard matrix multiplication rule:
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�
UU�

�
nl D

X
m

UnmU�
ml:

Substituting here Eq. 5.96 I can write

�
UU�

�
nl D

X
m

˝
�.old/

n

ˇ̌
�.new/

m

˛ ˝
�.new/

m

ˇ̌
ˇ�.old/

l

E
D ˝
�.old/

n

ˇ̌
�
.old/
l

E
D ınl;

where I replaced the sum over m with a unity operator because it is again just
a completeness condition and used the orthonormalization of the vectors of the
basis to replace their inner product with Kronecker’s delta-symbol. This calculation
reveals that U� D U�1, which is the definition of the unitary matrix. One should
not be surprised that the transformation of the vector components from one basis to
another is provided by a unitary matrix. Indeed, such a transformation clearly should
not change the norm of the vector, and it is, indeed, one of the important properties
of the unitary operators.

5.2.3 Spin Operators

The approach to generating representation of operators outlined in the previous
section would not work for operators which cannot be built out of momentum and
position. If, however, you somehow know the eigenvalues of the operator in question
(most likely this knowledge comes by distilling empirical facts), you can construct
the matrix of this operator in the basis of its own eigenvectors. Indeed, if j�mi is
the eigenvector of OT , corresponding to eigenvalue tm, i.e., OT j�mi D tm j�mi, then
Eq. 5.84 immediately gives

Tnm D h�nj OT j�mi D tm h�nj �mi D tmınm:

Thus, any operator in the basis of its own eigenvectors is presented by a diagonal
matrix with eigenvalues along the main diagonal. Unfortunately, we often have to
deal with a set of non-commuting operators, only one of which can be presented by a
diagonal matrix. The question then remains how to generate a matrix representation
of other non-commuting operators in the same basis. Fortunately, in all practical
situations, this problem can be solved if one knows commutation relations between
relevant operators. I will illustrate this approach by considering representation of
angular momentum operators in the situation when eigenvalues of the z-component
of the angular momentum can only take two values C„=2 and �„=2: Quantum
numbers m and l introduced in Sect. 3.3.4 take in this case values ˙1=2 and 1=2,
respectively. In Sect. 5.1.4, you saw that the orbital angular momentum, which
is constructed of position and momentum operators, admits only integer values
for these numbers. The suggested half-integer values, which are allowed by the
algebraic properties of these operators, can, therefore, correspond only to a very
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special angular momentum of electrons not related to their orbital motion. This
intrinsic angular momentum is known as spin. Leaving more detailed discussion
of this quantity till later, here let’s just accept its existence and use it to illustrate
a method of generating matrix representation of operators, which do not have a
position or momentum representation.

To distinguish between spin and orbital angular momentum, I will introduce
special notations for the former designating the respective operators as OSx, OSy, and OSz,
which have the same meaning as operators OLx, Ly, and Lz of Sect. 3.3.4. Accordingly,
I will replace the quantum number l with s and m with ms. It is important to realize
from the outset that, while orbital quantum number l is allowed to take any integer
values, the value of the respective spin number s is fixed at 1=2 and cannot be
changed—it is an intrinsic property of electrons just like its mass or charge. Thus,
the only quantum number which can be used to distinguish between different spin
states is ms.

Since ms takes on only two distinct values, there exist only two respective states
described by eigenvectors of operator OSz. Thus, the space occupied by different spin
states is two-dimensional, and the respective vectors are represented by 2�1 column
vectors, and operators are represented by 2 � 2 matrices. In the basis of its own
eigenvectors, OSz is simply a diagonal matrix:

Sz D
„
2
0

0 � „
2

�
; (5.100)

while the states take the form of columns

j1=2i D

1

0

�
; j�1=2i D


0

1

�
; (5.101)

where I chose to numerate the state corresponding to the positive eigenvalue as first.
(This choice determines the positions of negative and positive elements in the matrix
Sz and the ones and zeroes in the corresponding columns.) An arbitrary state in the
space of spin states can be written down as a linear combination of the basis vectors:

j�i D a


1

0

�
C b


0

1

�
: (5.102)

The result expressed by Eq. 5.100 is somewhat obvious, and our main task is to
find matrices realizing a representation of two remaining components of the spin
angular momentum, OSx and OSy in this basis. (Operator OS2 in this instance is trivial—
it is diagonal with identical diagonal elements equal to „2s.s C 1/ D 3„2=4; so it is
proportional to an identity matrix.)

I begin solving this problem by focusing on operators OS˙ D OSx ˙ iOSy, which are
spin analogs of the ladder operators OL˙ introduced in Eqs. 3.64 and 3.65. Since I
postulated that spin operators obey the same commutation relations as operators
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OLx;y;z, I can use the results obtained for these operators, in particular Eq. 3.75
describing how operator OLC acts on eigenvectors of OLz. Adapting this equation to
the case of spin states, I can write

OSC js;msi D „
r
3

4
� ms .ms C 1/ js;ms C 1i (5.103)

where I took into account that s D 1=2. Applying this equation to the only two
existing states j1=2i and j�1=2i (I dropped quantum number s, because it never
changes), I have

OSC j1=2i D 0

OSC j�1=2i D „ j1=2i (5.104)

from which you can immediately infer that the matrix representation of OSC is

SC D „

0 1

0 0

�
: (5.105)

The matrix representation for the lowering operator OS� can be derived in a similar
way using Eq. 3.76, which yields

OS� j1=2i D „ j�1=2i
OS� j�1=2i D 0; (5.106)

but it is much faster simply to recall that OS� D OS�C, so that the respective matrix is
obtained by matrix transposition and complex conjugation of Eq. 5.105:

S� D „

0 0

1 0

�
: (5.107)

Now, using the definition of the ladder operators, you can write for OSx and OSy:

OSx D 1

2

�OSC C OS�
�

(5.108)

OSy D 1

2i

�OSC � OS�
�

(5.109)

which together with Eqs. 5.105 and 5.107 generate the required matrices:

Sx D „
2


0 1

1 0

�
(5.110)
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Sy D „
2


0 �i
i 0

�
: (5.111)

Equations 5.110 and 5.111 provide the solution to the problem of finding the
matrix representation for operators, which cannot be reduced to combinations of
the position and momentum. As you can see, the commutation relations played the
crucial role in solving this problem.

5.3 Problems

Section 5.1.1

Problem 54 Reproduce calculations leading to Eq. 5.16 for the momentum repre-
sentation of the coordinate.

Problem 55 Derive Eq. 5.20 generalizing the approach that led to Eq. 5.15 in
Sect. 5.1.1.

Problem 56 Derive Eq. 5.24 using the same method which I used deriving Eq. 5.23
(do not attempt to simply invert the previous equation).

Problem 57 Assuming that function �s.q/ presenting eigenvectors of operator OS in
the basis of operator OQ is given by

�s.q/ D Aeisq�s2q2 ;

find the integral representation of the operator OS in this basis.

Section 5.1.2

Problem 58

1. Prove that the momentum operator is “odd” (changes its sign upon the parity
transformation).

2. Prove that the operator of the angular momentum is invariant with respect to the
parity transformation (“even”).

Section 5.1.3

Problem 59 Which of the following can be used as wave functions describing
states of the discrete spectrum:
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1. ex2=2

2.
�
2x2 � x4=3

�
e�x2=2

3. A sin kx
4. B exp.ikx/C C exp.�ikx/
5. xe�jxj
6. Ae�x2 cos kx

Problem 60 It is known that a potential energy of a quantum particle exhibits a
finite discontinuity at point x D 0. It is also known that for x < 0 and x > 0, the
wave functions of the particle are presented by

 .x/ D
(

A
�
x2 C 2

�
exp

��˛1x2
�

x < 0

B exp
��˛2x2

�
x > 0:

Using continuity of the wave function and its derivative, establish relations between
parameters A, B, ˛1, and ˛2.

Problem 61 Prove the following identity:

�� .r; t/r2�.r; t/ � �.r; t/r2��.r; t/ � r � ��� .r; t/r�.r; t/ � �.r; t/r��.r; t/
�
:

Problem 62 Compute probability current densities for a particle in the states
described by the following wave functions:

1.  .x/ D A exp .ikz/C B exp .�ikz/
2.  .x/ D A cos kx
3.  .r/ D A

r exp .ikr/C B
r exp .�ikr/, where r D p

x2 C y2 C z2

4.  .r/ D A exp .i k� r/C C exp .�i k� r/

Section 5.1.4

Problem 63 Derive expressions for operators OLx and OLy in spherical coordinates
presented in Eqs. 5.58 and 5.59.

Problem 64 Derive the orthogonalization condition for the associated Legendre
functions with l1 D l2 and m1 ¤ m2 (Eq. 5.73). Do not attempt to obtain the
normalization coefficient.

Problem 65 Consider a function of polar and azimuthal angles � and ' defined as

 .�; '/ D sin � .1 � cos �/ cos':

1. Normalize this function.
2. Present this function as a linear combination of spherical harmonics Ym

l .�; '/.
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3. If the observables presented by operators OL2 and OLz are measured when a particle
is in the state presented by this wave function, what would be the possible
outcomes and their probabilities?

4. Find the expectation values and uncertainties of these observables in this state.

Problem 66 Repeat the previous problem for a following function:

 .�; '/ D 3

2
sin 2� exp .�i'/C 2 sin2 � sin 2';

but do not attempt to normalize it before rewriting it as a combination of spherical
harmonics.

Problem 67 Find the coordinate representation for lowering and raising ladder
operators introduced in Sect. 3.3.4, and using found expressions, find Yl

l .�; '/ and
Y�l

l .�; '/.

Problem 68 Find all zeroes of the angular probability distribution for a particle in
angular states described by spherical harmonics Y03 .�; '/, Y13 .�; '/, Y23 .�; '/, and
Y33 .�; '/.

Problem 69 Find energy values for the system described by Hamiltonian:

H D
OL2x C OL2y
2I1

C
OL2z
2I2
:

Section 5.2

Problem 70 Using eigenvectors j1i and j2i of matrix


0 i
�i 0

�

as a basis, construct the matrix representation of operators j1i h1j and j2i h2j and
verify the closure (or completeness) condition:

j1i h1j C j2i h2j D OI

where OI is the unity operator.

Problem 71 Find the matrix of the operator:

OA D j	1i h	1j C j	2i h	2j C j	3i h	3j �
i j	1i h	2j � j	1i h	3j C i j	2i h	1j � j	3i h	1j

in the basis formed by orthonormalized vectors j	1i ; j	2i, and j	3i.
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Problem 72 Write down expressions for spherical harmonics with orbital quantum
number l D 1. You can consider them as a basis in the subspace of eigenvectors of

operator OL2 belonging to this eigenvalue in the sense that any linear combination of
them will also be an eigenvector of this operator.

1. Prove that this is indeed the case, i.e., that any linear combination of spherical

harmonics with l D 1 represents an eigenvector of OL2 with the same eigenvalue.
2. Find the matrix representation of operator OLx in this basis, and using the obtained

matrix, find the representation of this operator’s eigenvectors in this basis.
3. The found eigenvectors can also be considered as yet another basis. Find the

representation of operators OLx and OLz in this basis.

Problem 73 Present operator id=dx in the basis of spherical harmonics with l D 1.

Problem 74 Consider the matrix:

A D
2
4
0 0 �1
0 1 0

�1 0 0

3
5 :

Transform this matrix to the basis of its eigenvectors. Verify that the elements along
the diagonal of the resulting matrix are eigenvalues of A.

Problem 75 Consider two matrices:

A D
2
4
1 i 1
�i 0 0
1 0 0

3
5

and

B D
2
4
3 0 0

0 1 i
0 �i 0

3
5 :

Rewrite matrix B in the basis formed by eigenvectors of matrix A.

Section 5.2.3

Problem 76 Using the same approach, which was used in Sect. 5.2.3 for spin 1=2,
find the matrix representation for the operators of the spin s D 3=2. Hint: What is
the dimension of the space that contains the vectors representing states of this spin?



Part II
Quantum Models

In this part of the book, we will play with some of the toys, which physicists created
in order to get better insight into a variety of new and unusual properties exhibited
by real systems obeying laws of quantum mechanics. These toys rarely represent
real systems and this is why we call them models. Still, in many instances they
provide necessary first experience and conceptual understanding required to deal
with reality in all its complexity. Using models allows us to focus on those properties
of real world, which appear to be of the most significance at least for the class of
problems we are interested in. One can think of models in quantum mechanics as of
impressionist or postimpressionist paintings, when instead of painstaking attention
to details, the main focus is on capturing “the essence” of the object, whatever
this might mean. Quantum mechanical models develop physical intuition about the
phenomena under study and can often be used as a first iteration of an approximation
scheme yielding more accurate and quantitative description of nature.



Chapter 6
One-Dimensional Models

One-dimensional models might appear in quantum mechanics in two, in a way,
diametrically opposite situations. In one case, you can pretend that the potential
energy of a particle changes only in one direction, such as a potential energy
of a uniform electric field. Classically, this would mean a motion characterized
by acceleration in one direction and constant velocity in perpendicular directions.
By choosing an appropriate inertial coordinate system, you can always eliminate the
constant velocity component and consider this motion as straightlinear. Quantum
mechanically, this situation has to be described in the coordinate representation,
and the respective coordinate wave function can be presented in the form

 .r/ D ei.kxxCkyy/'.z/ (6.1)

where Z-axis of the coordinate system is arbitrarily chosen to lie along the direction,
in which the potential energy changes. The behavior of the wave function in
two perpendicular directions (X and Y) is that of a free particle with conserving
components of momentums being px D „kx and py D „ky. Substituting this
expression into Eq. 5.35, where the potential energy is taken to have the form of
V .r/ � V.z/, and canceling the exponential factors on both sides of the equation,
you will end up with the following one-dimensional equation:

� „2
2me

d2'

dz2
C V.z/' .z/ D Ez' .z/ (6.2)

where

Ez D E � p2x
2me

� p2y
2me
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Fig. 6.1 A schematic of a
semiconductor
heterostructure, in which the
motion of electrons in the
direction perpendicular to the
planes of the layers can be
described by the
one-dimensional model

GaAIAs

GaAs

GaAs

GaAs

GaAIAs

GaAIAs

GaAIAs

is the contribution of the motion in z direction to the total energy of the system E.
Values of px and py are determined by the initial state of the system, which may
or may not be one of the eigenvectors of the Hamiltonian with given values of px

and py. In the latter case, the particular solution of the time-dependent Schrödinger
equation satisfying the initial conditions will be given by the linear combination of
the functions presented in Eqs. 6.1 and 6.2, but for now I will focus only on the
stationary states, which correspond to initial conditions with definite px and py.

While for a long time this type of one-dimensional model was used mostly
in classrooms to illustrate basic quantum effects to unsuspecting students, the
technological advances of the last 50 years made this model quite relevant as
a stepping stone to understanding properties of practically important artificial
structures made of planar layers of several different semiconductors arranged in an
alternating order (see Fig. 6.1). It can be shown (way above your pay grade though)
that the motion of electrons in such structures can be approximately described by a
potential energy, which only changes in the direction perpendicular to the plane of
the layers (growth direction).

The second situation, in which the one-dimensional model can have at least some
relation to reality, is the case of potentials confining the motion of the particle in all
directions but one. One can imagine a particle moving inside of a cylindrical tube
with impenetrable walls. The motion perpendicular to the axis of the cylinder is
characterized by discrete allowed values of energy (I will show it later, for now
you will have to trust me on that), and if the radius of the tube is small enough, the
distance between adjacent energy levels can be sufficiently large that for all practical
purposes only one of this energy levels can be taken into account. In this case, the
transverse (as in perpendicular to the axes of the cylinder) motion is completely
“frozen,” and one is again left with pure one-dimensional motion. In all cases, we
are dealing with the Schrödinger equation in the form of Eq. 6.2, which is the main
object of study in this chapter.
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6.1 Free Particle and the Wave Packets

Before taking on quantum states of electrons in one-dimensional piecewise poten-
tials such as wells or barriers, it is useful to consider the simplest quantum
mechanical model—a freely propagating, i.e., not interacting with anything, parti-
cle. In classical physics, as we all know, such a particle would move with a constant
velocity, v, and can be characterized by conserving kinetic energy K D mv2=2 and
momentum p D mv. In quantum mechanics, states of a free particle are the solution
of the Schrödinger equation with zero potential

i„@ j‰i
@t

D
OP2
2me

j‰i : (6.3)

It is quite easy to see that the stationary states of a free particle are eigenvectors of
the momentum operator:

j‰i D exp

	
�i

Ep

„ t



jpi (6.4)

where jpi is defined by OP jpi D p jpi. Substitution of Eq. 6.4 into Eq. 6.3 yields

Ep D p2

2me
(6.5)

which is an expected classical relation between energy and momentum of a free
particle, often called dispersion relation. Historically, Schrödinger equation was
devised to make sure that the quantum theory respects this relation between energy
and momentum. Indeed, in the position representation, the Schrödinger equation
becomes

i„@‰ .r; t/
@t

D �„2r2

2me
‰ .r; t/ (6.6)

with stationary state solutions of the form

‰ .r; t/ D 1

.2�„/3=2 exp

	
�i

Ep

„ t C i
p � r
„



(6.7)

where I used ı-function normalized eigenvectors of momentum operator given in
Eq. 5.21. Now, one can argue that the Schrödinger equation contains the first-order
time derivative because the dispersion relation, Eq. 6.5, is linear in E, while the
derivative over coordinates must be of the second order to reproduce the term p2 in
Eq. 6.5. Further, one can argue that since the time derivative in the Schrödinger
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equation is only of the first order, the corresponding wave function must be
represented by a complex exponential function rather than by a real trigonometric
function, which, in turn, makes the factor i in front of the time derivative necessary
to compensate for the similar factor in the argument of the wave function.

The wave function of the form given in Eq. 6.7 has been conceived at the early
days of quantum mechanics as a mean to reconcile particle and wavelike properties
of quantum objects. However, it was clear from the very beginning that regardless of
the chosen interpretation (statistical due to Born or Schrödinger’s pilot wave), there
are several problems with assigning this function to represent quantum states of real
particles. First, its absolute value is uniform in space, which can hardly represent an
actual localized particle regardless of the chosen interpretation. Also, the motion of
the wave represented by Eq. 6.7 is characterized by phase velocity vph D !=k D
E=p D p=.2me/, which is half of the corresponding classical velocity vcl D p=me

making it difficult to associate it with the motion of a particle.
To get around this conundrum, it was suggested that actual states of the

particles (in either interpretation) are presented not by stationary states but by their
superposition, which still will solve the Schrödinger equation 6.6. It is quite easy to
show that by choosing an appropriate superposition, it is possible, for instance, to
localize a particle within an arbitrarily small region solving at least one of the listed
problems. To see how this comes about, consider a wave function at time t D 0 and
form a superposition of the form

 .r/ D 1

.2�„/3=2
ˆ

d3pA.p/ exp
�

i
p � r
„
�
: (6.8)

In Sect. 5.1.1, it was shown that Eq. 6.8 can be inverted to yield

A .p/ D 1

.2�„/3=2
ˆ

d3r .r/ exp
�
�i

p � r
„
�

(6.9)

so that by choosing an appropriate A .p/, I can “generate” an initial (t D 0) wave
function with an arbitrary degree of localization. Now all what I need is to consider
the time dependence of this initial superposition to see if other problems outlined
above can also be circumvented by the superposition states, which, in the case of
free propagating particles, are often called wave packets.

Here I will focus on just one particular example of the wave packets, which
despite its relative simplicity will help me to illustrate most of the relevant ideas.
First of all, I will simplify the consideration by limiting it to the case of one-
dimensional motion described by a wave function, which depends on a single
coordinate, say, z. Integrals in Eqs. 6.8 and 6.9 are in this case reduced to one-
dimensional form

 .z/ D 1p
2�„

1̂

�1
dpzA. pz/ exp

�
i
pzz

„
�

(6.10)
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A. pz/ D 1p
2�„

1̂

�1
dz .z/ exp

�
�i

pzz

„
�
: (6.11)

Next, I will assume that the initial state of the particle is described by function

 .z/ D C exp

"
� .z � Nz/2
.24z0/

2

#
exp

	
i
Npz

„ z



(6.12)

where constant C is found from the normalization condition

1̂

�1
j .z/j2 dz D jCj2

1̂

�1
exp

"
� .z � Nz/2
2 .4z0/

2

#
dz D

jCj2 p
24z0

1̂

�1
exp

��x2
�

dx D jCj2 4z0
p
2� D 1 H)

C D 1p
4z0

p
2�
:

In the course of computing the normalization integral, I introduced a new

integration variable x D .z � Nz/ =
�p

24z0
�

and used a well-known integral
´ 1

�1 exp
��x2

�
dx D p

� . Thus, my initial state is represented by the normalized
wave function, where the amplitude of the plane wave exp .iNpzz=„/ is modulated by
the so-called Gaussian function

 .z/ D 1p
4z

p
2�

exp

"
� .z � Nz/2
.24z0/

2

#
exp

	
i
Npz

„ z



: (6.13)

The probability distribution corresponding to this wave function is peaked at z D
Nz and falls off from its maximum value as z moves away from Nz. Parameter 4z0
determines how fast the decrease of the probability takes place: the larger 4z0, the
larger deviation from Nz is required to decrease the probability density by e. Varying
4z0, one can control the degree of particle localization—a smaller 4z0 corresponds
to better localized particles (see Fig. 6.2). Formally speaking, one can define Nz and
4z0 as expectation value and uncertainty of the coordinate in the state described by
this wave function. Indeed, I can easily compute
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Fig. 6.2 Normalized
Gaussian wave functions with
different values of the width
parameter 4z0: with
decreasing 4z0 the function
narrows, while its maximum
grows such that the total area
under the curve remains equal
to unity

hzi D 1

4z
p
2�

1̂

�1
dzz exp

"
� .z � Nz/2
2 .4z0/

2

#
D

1p
�

1̂

�1

�
x
p
24z0 C Nz

�
exp

��x2
�

dx D Nz

where I took into account that normalization integral computed earlier is equal to
unity and the fact that the integral of an odd function over a symmetric interval is
zero. The uncertainty takes a bit more work:

˝
z2
˛ D 1

4z
p
2�

1̂

�1
dzz2 exp

"
� .z � Nz/2
.4z0/

2

#
D

1p
�

1̂

�1

�
x
p
24z0 C Nz

�2
exp

��x2
�

dx D

Nz2 C 2 .4z0/
2

p
�

1̂

�1
x2 exp

��x2
�

dx D Nz2 C .4z0/
2

where I used another well-known integral
´ 1

�1 x2 exp
��x2

�
dx D p

�=2. Subtract-
ing Nz2 from

˝
z2
˛
, you can convince yourself that 4z0 is, indeed, the uncertainty of

the coordinate.
It shall be noticed that these arguments do not contradict to Schrödinger’s pilot

wave interpretation, according to which the wave presented by the wave packet is a
real material object accompanying a particle and whose width defines the degree of
particle localization.

Now I can find the appropriate amplitudes A.pz/ in Eq. 6.10, which would
reproduce the wave function given by Eq. 6.13. Substitution of this equation into
Eq. 6.11 yields
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This was a long calculation, but it is worth the efforts to carefully peruse it.
Some of the tricks that I used in its course were the substitution of variable
x D .z � Nz/ =.24z0/, presenting an expression of the form a2 C 2ba as a complete
square, a2 C 2ba C b2 � b2 D .a C b/2 � b2, and finally the fact that integral
´ 1

�1 dx exp
h
� .x � x0/

2
i

still equals to
p
� regardless of the value of x0: Before

continuing, I will set Nz D 0, which amounts to the choice of the zero of the
coordinate z, and introduce new parameter 4p D „= .24z0/. Then the expression
for A.pz/ becomes

A. pz/ D 1p4p .2�/1=4
exp

"
� . pz � Npz/

2

.24p/2

#
; (6.14)

and it is easy to verify (do it!) that as expected
´ 1

�1 jA.p/j2 dp D 1, while h pzi D Npz;

and parameter 4p determines the uncertainty of the particle’s momentum. Recalling
the definition of this parameter in terms of the uncertainty of coordinates, you
can see that these two parameters obey the minimum version of the Schrödinger
uncertainty principle:
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4p4z0 D „
2
: (6.15)

This is the special property of the Gaussian distribution: for all other initial states,
the product of the uncertainties would be larger than „=2.

Having found A.pz/, I can now find the time dependence of the initial wave
function by considering the superposition of the stationary states at an arbitrary
time t:

‰.z; t/ D 1p
2�„4p .2�/1=4
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dpz exp

"
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t C i
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„ z

#
;

which at t D 0 is obviously reduced to the function given in Eq. 6.12. I begin
evaluating this integral, again, by introducing a dimensionless variable

x D pz � Npz

24p

and transforming this integral into
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:

Before continuing, let me brush up this expression a bit, first, by replacing Npz=m,
which corresponds to the classical velocity of the particle with momentum Npz with
vgr, and second by introducing the notation
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1C it
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1C it

„
2me .4z0/

2
(6.16)

where in the second expression I replaced 4p with 4z0 using Eq. 6.15. As a result,
the expression for the wave function now takes a somewhat less cumbersome form:
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:

Performing integral over x (using all the same tricks as before, substitution Qx D
˛x and completion of the square), I will obtain the final expression for the wave
function ‰.z; t/
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(6.17)

where at the last step I used Eq. 6.15 to replace 4p with 4z0. Not surprisingly, at
t D 0 Eq. 6.17 is reduced to  .z/ as given by Eq. 6.13.

It is quite educational to inspect various factors in this expression separately. The
last factor is a regular plane wave with a wave number determined by the expectation
value of the momentum Npz and corresponding frequency N! D Np2z= .2„me/. This wave
propagates with standard phase velocity vph D „ N!=Npz, but its amplitude, defined
by the second exponential factor, is also time and coordinate dependent. For any
given instant t, there is coordinate zmax D vgrt, when the amplitude is the largest,
and decreases when z deviates away from it in any direction. One can say that the
amplitude factor modulates the initial plane wave turning it into a wave packet more
or less localized within a finite coordinate region. This localization region obviously
changes its position with time as is evident from the definition of zmax, and this
motion of the localization region occurs with velocity vgr D zmax=t. This velocity is
called group velocity of the wave packet because it characterizes the motion of the
entire group of waves participating in the superposition forming the packet, while
the phase velocity describes the motion of each separate wave component of this
superposition. These two velocities are different because the phase velocity vph D
p=2me depends on the momentum p and is, therefore, different for each member of
the group. To illustrate all these points, I plotted the real part of the wave function
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Fig. 6.3 The real part of the wave function representing a wave packet as a function of the
coordinate for two different instances. You can see suppression of oscillations away from the main
maximum as well as the displacement of the main maximum. The time interval is chosen to be
equal to the period of the oscillating factor so that the magnitude of the main maximums remains
the same for both instances. For other time intervals, it does not have to be the case because the
decrease of the cos function can damp the maximum’s magnitude. Also, this plot does not account
for the fact that the parameter ˛ in Eq. 6.17 is complex-valued and depends on time. See discussion
of the role of this parameter further in the text

presented in Eq. 6.17 for two distinct time instances as shown in Fig. 6.3. It is easy
to see that the expression for the group velocity vgr D Np=me can be obtained from
the dispersion relation E.p/ D p2z=2me of the free particle as

vgr D dE

dpz

ˇ̌
ˇ̌
pzDNp

: (6.18)

Equation 6.18 can also be generalized to the case of three-dimensional propagation,
in which case the derivative is replaced by a gradient vgr D rE.p/jpDNp and also
to more exotic cases of particles whose dispersion relation is different from Eq. 6.5.
If you are wondering where on earth you can find free particles with dispersion
different from standard quadratic form, here are two examples for you: (1) relation
between energy and momentum of relativistic particles is E D p

m2
ec4 C p2c2

and (2) electrons in semiconductors can be in many practically important cases
approximated as “free” particles with modified dispersion relation E.p/. In general,
the picture of a wave packet propagating with the group velocity can be generalized
to non-Gaussian wave packets as long as they can be described by a momentum
wave function A.pz/ with a single and relatively narrow maximum.

So far, the behavior of the wave packet appears to be consistent not only
with traditional Copenhagen interpretation of quantum mechanics but also with
Schrödinger’s pilot wave picture. However, when discussing the role of the ampli-
tude modulating factor in Eq. 6.17, I so far ignored an obvious “elephant in the
room,” which makes this discussion somewhat more nuanced. The parameter ˛,
which sits “quietly” in the denominator of the modulating factor (as well as in a
normalization pre-factor), is complex-valued and time dependent. The first of these
circumstances makes the expression
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2

#
(6.19)

not quite a pure amplitude because it also has a phase attached to it. This phase,
however, is of little interest, and in order to focus on the actual amplitude part of this
expression, I will consider its squared absolute value, jB.z; t/j2, which, of course,
coincides with j‰.z; t/j2 and in the Copenhagen interpretation yields the probability
distribution P.z; t/ for the coordinates of the particle at any given time in the state
described by the wave packet ‰.z; t/:
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: (6.20)

Now I define
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I can also find

1
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4
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Substitution of Eqs. 6.21 and 6.22 to Eq. 6.20 converts the expression for the
probability density in the following nice looking form:

P.z; t/ D 1p
2�4z

exp

"
�
�
vgrt � z

�2
2 .4z/2

#
: (6.23)
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Comparing this result with Eq. 6.13, it becomes clear that zmax D vgt is the
expectation value of the coordinate in the state described by the wave packet, while
4z represents its uncertainty. Rewriting Eq. 6.21, I can present this uncertainty in a
more illuminating form:

4z D 4z0

s
1C „2t2

4m2
e .4z0/

4
(6.24)

which shows that the localization range of the wave packet increases with time
with the rate (roughly defined as derivative d .4z/2 =dt2) inversely proportional
to the initial uncertainty 4z0. In other words, the tighter you try to squeeze your
particle into a smaller volume, the faster the localization volume of the particle
increases with time. This phenomenon of the wave packet spreading is what kills
Schrödinger’s pilot wave interpretation: the broadening of the wave packets would
make such a pilot wave unstable. To get an intuitive feeling for how fast this
spreading takes place, assume that an electron is initially localized in a region of
atomic dimensions with 4z0 ' 10�10 m. Substituting the values of the Planck
constant and the electron’s mass into Eq. 6.24, you will get for 4z:

4z D 10�10p1C 1:32 � 1033t2 m;

which reaches the value of 103 m in just about 3ms!
This essentially completes the discussion of the free particle wave packets, but

I cannot pass an opportunity to play with the Heisenberg picture whenever it is
possible, and this is one of the simplest situations to showcase it. You can consider
it as a reward to you for being such a good sport and wading with me through the
tedious analysis of the Gaussian wave packet.

Recalling that the Hamiltonian of a free particle is just

OH D
OP2
2me

;

you can easily derive the Heisenberg equations for the components of the position
and momentum operators

dOr
dt

D
OP
m

d OP
dt

D 0

with obvious solution

Or D Or0 C
OP0
m

t (6.25)
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where Or0 and OP0 are as usual Schrödinger picture’s operators setting initial condi-
tions in the Heisenberg picture. Assuming that the particle is in some arbitrary state
j�i, which does not change with time in the Heisenberg picture, I can immediately
derive for the expectation value of the position operator:

hOri D hOr0i C
D OP0
E

m
t

which is, of course, a three-dimensional version of the expression for the expectation
value of the coordinate found from Eq. 6.23 with z0 set to zero. Now, squaring
Eq. 6.25 I get

Or2 D Or20 C
OP20
m2

t2 C t

m

�
Or0 OP0 C OP0Or0

�
:

Using position representation for the operators Or0, OP0, and Eq. 6.13 to represent state
j�i, you can demonstrate by direct computations that

h�j Or0 OP0 C OP0Or0 j�i D 0

so that one has for the uncertainty of the position 4r2:

4r2 D 4r20 C 4p2

m2
t2; (6.26)

where 4p2 is again the uncertainty of the momentum computed with an initial state
of the particle. If this initial state is Gaussian, and limiting Eq. 6.26 to just a single
coordinate, you can use Eq. 6.15 to replace the momentum uncertainty with 4z0,
which will yield Eq. 6.24 for the spreading of the wave packet. In addition to this,
however, Eq. 6.26 demonstrates that the phenomenon of wave packet spreading is
not limited only to one-dimensional Gaussian packets and is a general feature of
free propagation of quantum particles.

6.2 Rectangular Potential Wells and Barriers

6.2.1 Potential Wells: Systems with Mixed Spectrum

The first important model, which I am going to introduce in this section, is
characterized by a potential profile shown in Fig. 6.4, and which can be described as

V.z/ D
(

Vw jzj < d=2

Vb jzj > d=2
(6.27)
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Fig. 6.4 Rectangular potential well

where I assumed for concreteness that Vb > Vw. Such a potential profile is called a
potential well. If one chooses to count the energy from the bottom of the well, then
Vw ! 0, and Vb ! Vb � Vw. The energy levels in this potential must be separated
in two different regions Vw < Ez < Vb and E > Vb with distinctly different types of
behavior (states with E < Vw do not exist). In the former case, a classical particle
would have been confined between the two “walls” of this potential well at jzj D
d=2 bouncing back and forth, while in the latter, classical motion is unbounded (the
particle can be anywhere along the Z-axis). As was already discussed in Sect. 5.1.3,
two different types of classical behavior translate in to different quantum behaviors
as well.

Bound States: Discrete Spectrum
I will begin with spectral region Vw < Ez < Vb, which corresponds to bound
classical motion, and where you should expect to see discrete spectrum of energy
eigenvalues. The potential we are dealing with is a piecewise continuous function
with finite jumps at z D ˙d=2. For the range of energies under consideration,
spatial regions defined by jzj > d=2 are classically forbidden. Therefore, as it was
discussed in Sect. 5.1.3, Eq. 5.37 must be complemented by the boundary conditions
requiring that the wave function vanishes at z ! ˙1 and by continuity conditions
at jzj D d=2.

However, before I start dirtying my hands and digging into the boring business
of actually writing down the wave functions and matching the boundary conditions
and all that, I want to play with the problem a little bit more and see if I can
make this task a bit less boring. The nice thing about this particular potential is
that it is symmetric with respect to inversion of coordinate z: V.�z/ D V.z/,
and I hope that you recognize here your old acquaintance from Sect. 5.1.2—the
parity transformation, O…V.z/ D V.�z/. And not only the potential is symmetric,
but the boundary conditions are also symmetric: ' .z/ ! 0, when jzj ! 1.
Since the kinetic energy was shown earlier to be always parity invariant (does not
change upon the parity transformation), you can confidently conclude that the entire
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Hamiltonian of this system is symmetric with respect to this transformation. And
as I have already explained in Sect. 5.1.2, it means that the Hamiltonian commutes
with the parity operator, O…, so that the wave functions representing eigenvectors
of this Hamiltonian also represent eigenvectors of O…. Wherefore, solutions of the
Schrödinger equation 5.37 with potential given by Eq. 6.27 can be classified into
even ('.�z/ D '.z/) and odd ('.�z/ D �'.z/) functions with the immediate
consequence that you only need to deal with boundary and continuity conditions
at z > 0. Indeed, the definite parity of the solutions, even or odd, ensures that the
conditions for z < 0 are satisfied simultaneously with those at z > 0. Here is the
power of the symmetry to you: I just cut the number of equations to be solved to
satisfy the continuity conditions by half without even breaking a sweat! Using the
symmetry arguments for such a simple problem might seem a bit as an overkill—it
is not too difficult to solve it by simply using the brute force. I still wanted to show
it to you so that you would be better prepared to understand the implications of
symmetry in more “sanity-threatening situations.”

Because of the discontinuity of the potential at jzj D d=2, solutions for intervals
jzj < d=2 and jzj > d=2 must be found independently and stitched afterward using
continuity conditions.

1. jzj < d=2. The Schrödinger equation for this interval takes the form

d2'

dz2
D �2me

„2 .Ez � Vw/ ' .z/

where Ez � Vw > 0. This equation is similar to that of the free particle with
positive energy Ez � Vw, and its most general solution has, therefore, the form

'.z/ D Aeikz C Be�ikz D QA sin kz C QB cos kz

where

k D
p
2me .Ez � Vw/=„ (6.28)

is a real quantity. The choice of the exponential or trigonometric functions to rep-
resent this solution is a matter of one’s taste and/or convenience: the expressions
are equivalent with QA D i.A � B/ and QB D A C B. However, since we know that
'.z/ must have a definite parity, the trigonometric form is more convenient to
take advantage of this insight. Indeed, in order to generate an even solution I can
simply make QA D 0, while an odd solution is obtained by choosing QB D 0:

'e.z/ D B cos kz; jzj < d=2 (6.29)

'o.z/ D A sin kz; jzj < d=2: (6.30)

Notation for the remaining coefficients is irrelevant, so I dropped the tildes above
the letters.
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2. jzj > d=2. In this case, the right-hand side of the corresponding Schrödinger
equation

d2'

dz2
D 2me

„2 .Vb � Ez/ ' .z/

is positive for the range of energies under consideration (Vb � Ez > 0/ so that the
general solution of this equation is given by

'.z/ D Ce
z C De�
z (6.31)

where now


 D
p
2me .Vb � Ez/=„ (6.32)

is a real quantity. As has already been mentioned, the solution of the Schrödinger
equation in the region z > d=2 must vanish at z ! C1 (Eq. 5.36). The function
presented by Eq. 6.31 satisfies this requirement only if the exponentially growing
term is gotten rid of, which I achieve by simply requiring that C D 0. Thus, the
wave function for z > d=2 becomes

'.z/ D De�
z; z > d=2 (6.33)

for both even and odd solutions. For negative values of coordinates z < �d=2,
Eq. 6.33 would produce for even and odd solutions correspondingly:

'e.z/ D De
z (6.34)

'o.z/ D �De
z: (6.35)

Before continuing with stitching the wave functions at z D d=2, let me point out
that the solutions in the classically allowed region jzj < d=2 are presented by
oscillating functions. Upon crossing to the classically forbidden region jzj > d=2,
the oscillating character of the solutions turns into a monotonic decrease. This
example illustrates generic properties discussed in Sect. 5.1.3 and can be used to
formulate a general rule of thumb applied to any piecewise constant potential: in
the classically allowed regions, the wave function is represented by combination of
trigonometric function, while in classically forbidden regions, the solution is given
by combination of exponential functions with a real argument. However, I need to
warn you to pay attention to the fact that I was able to eliminate the exponentially
growing terms in Eqs. 6.33–6.35 only because the classically forbidden region
extended all the way to positive or negative infinities. If, as it might happen in
certain problems, the potential would have another jump and a classically forbidden
region would have crossed over to a classically allowed region, you would have to
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keep both growing and decreasing exponential functions because the conditions at
infinity can only be used within a region of coordinates extending, well, to infinity.

Equation 6.33 must be stitched with either Eq. 6.29 or 6.30 to generate continuous
solution describing the wave function in the entire domain of the coordinate z. This
must be done separately for even and odd solutions. In the latter case, the continuity
of the wave function and of its derivative at z D d=2 requires that

B cos
kd

2
D De�
d=2 (6.36)

�Bk sin
kd

2
D �
De�
d=2: (6.37)

For arbitrary values of Ez, which appears in these equations via parameters k and 
,
Eqs. 6.36 and 6.37 can have only trivial solution B D D D 0. Obviously, this is not
what we want. However, if I insist on having non-zero solutions, I must impose a
special condition on the allowed values of k and 
. One way to derive this condition
is to divide Eq. 6.36 by Eq. 6.37 (this is allowed because we require that B;D ¤ 0)
yielding

k tan
kd

2
D 
: (6.38)

Taking into account Eqs. 6.28 and 6.32, you can recognize Eq. 6.38 is a transcen-
dental equation for energy Ez. Solutions of this equation determine the values of
energy permitting the existence of non-zero coefficients B and D and, hence, of
the wave functions satisfying all the boundary conditions. The solutions of Eq. 6.38
are obviously eigenvalues of the Hamiltonian also called allowed energy values or
energy levels.

Equation 6.38 does not submit to an analytical solution, but it still can be
qualitatively analyzed to help you to determine, at least, the number of solutions
it might have. To this end, it is convenient to rewrite this equation introducing
dimensionless variables, such as kd=2 and 
d=2. To facilitate the transition to these
variables, I first compute k2 C 
2 using Eqs. 6.28 and 6.32:

k2 C 
2 D 2me .Vb � Vw/

„2 :

Multiplying this expression by d2=4 and introducing dimensionless " for kd=2, I
have

"2 C 
2d2

4
D me .Vb � Vw/ d2

2„2 )

d

2
D
q
"20 � "2;
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where I introduced another dimensionless parameter "0 defined as

"0 D d

„

r
me .Vb � Vw/

2
:

Multiplying both sides of Eq. 6.38 by d=2, I can rewrite it now as

tan " D
q
"20 � "2
"

: (6.39)

You can see that "0 incorporates all relevant parameters of the system, solely
determining the allowed energy values. This is an excellent illustration of the power
of dimensionless variables: four different parameters have collapsed into a single
one, which rules them all. Without even solving the equation, I know now that all
rectangular potential wells with different values of me, Vb � Vw and d will have the
same dimensionless energy levels as long as all these parameters correspond to the
same "0.

Obviously, Eq. 6.39 only makes sense for " � "0, so it is important to understand
the physical meaning of this condition. Substituting all necessary definitions, you
can see that " D "0 turns into

me .Ez � Vw/ d2

2„2 D me .Vb � Vw/ d2

2„2 ) Ez D Vb;

i.e., at the point " D "0 an energy crosses over the potential barrier, where
assumptions used to derive Eq. 6.39 lose their validity.

In order to understand solutions to Eq. 6.39, it is useful to visualize graphs of its
left-hand and right-hand sides. As " increases from zero, the function on the right
decreases from positive infinity to zero at " D "0, where it terminates. The left-
hand side is a tangent, which grows from zero at " D 0 and reaches its asymptotic
behavior at " D �=2, where it jumps all the way to negative infinity, starts its
climb toward the next zero at � , goes to infinity at 3�=2, and so on. If "0 < � ,
the two functions will cross only once because the right-hand side will end before
the left-hand side manages to get to the positive territory again. Once "0, however,
crosses the � threshold, the second crossing becomes possible, and one more when
"0 exceeds 2� , and so on. An important point here is that at least one even solution
always exists no matter how small "0 becomes. Another important qualitative point
one may take home is that the magnitude of "0 depends on two main parameters:
the depth of the well Vb � Vw and its geometric width d; the wider and deeper
wells would be able to accommodate a large number of allowed energy levels, and
in order to decrease the number of energy eigenvalues belonging to the discrete
spectrum, one can either make the well narrower or shallower. It is important to
remember though that the geometric width of the well affects not only values of
allowed energies but also the difference between adjacent energy levels, which are
closer to each other in wider wells.
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The stitching conditions for the odd wave functions take the form

A sin
kd

2
D De�
d=2 (6.40)

Ak cos
kd

2
D �
De�
d=2 (6.41)

resulting to a different equation for allowed energy values

cot " D �
q
"20 � "2
"

: (6.42)

The right-hand side of this equation changes from negative infinity to zero at " D "0,
while the left-hand side begins at positive infinity at " D 0 and crosses to the
negative territory only for " > �=2. Thus, if "0 < �=2, this equation has no
solutions. In this case, the only allowed eigenvalue of energy corresponds to a single
even solution for the wave function. Increasing "0 beyond �=2 will produce the first
odd solution, and it will happen before the second even solution appears. Following
this line of reasoning, you can see that with increasing "0, eigenvalues corresponding
to odd and even wave functions appear in an alternating manner.

The state corresponding to the lowest energy is called the ground state, and as you
just saw, it is always represented by an even function. The next energy corresponds
to an odd solution, then you have again an energy level corresponding to the even
solution, then to an odd one again, and this pattern repeats until the last allowed
eigenvalue is reached, which can be either odd or even.

All solutions of Eqs. 6.39 and 6.42 can be enumerated as "n, where n D 1

corresponds to the ground state (even) solution, n D 2 to the lowest in energy odd
solution, and so on and so forth. Similar enumeration can be applied to the wave
functions

'n.z/ D
(

Bn cos knz jzj < d=2

Bn cos .knd=2/ e
nd=2e�
njzj jzj > d=2
; n D 1; 3; 5 : : : (6.43)

and

'n.z/ D

8̂
<̂
ˆ̂:

An sin knz jzj < d=2

An sin .knd=2/ e
nd=2e�
nz z > d=2

�An sin .knd=2/ e
nd=2e
nz z < �d=2

; n D 2; 4; 6 : : : : (6.44)

Here, kn D 2"n=d, 
n D 2

q
"20 � "2n=d, while the corresponding values of energy

Ezn are

Ezn D Vw C 2„2
md2

"2n: (6.45)
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Fig. 6.5 Graphic solution of the eigenvalue equation for even and odd wave functions

You may notice that wave functions in Eqs. 6.43 and 6.44 still contain undefined
coefficients Bn and An correspondingly, while coefficient D was eliminated using
Eqs. 6.36 and 6.40. This is, however, normal because all eigenvectors and represent-
ing their functions are always defined only up to a constant factor (I have said that
already and not once, right?). As usual, values of these coefficients can be fixed by
the normalization condition

1̂

�1
'2n.z/dz D 1:

Figure 6.5 illustrates the process of emergence of the even and odd solutions
described above. The graph on the left refers to Eq. 6.39 for energies of even
states, and the graph on the right corresponds to Eq. 6.44 for energies of the odd
states. One can see that the crossing points on the graphs signifying values of the
dimensionless energy parameter " alternate in their values between even and odd
states: the lowest energy value comes from the graph on the left, the second lowest
appears in the graph on the right, and this alternation continues throughout all the ten
energy values depicted in these plots. It is also instructive to plot the wave functions
corresponding to a few lowest energy eigenvalues. Graphs in Fig. 6.6 present (from
left to right) the ground state and the, first and second excited states. In addition to
clearly demonstrating the even and odd nature of the respective states, these graphs
reveal an important phenomenon—a transition to a higher energy level always
adds an extra zero to the corresponding wave function. This behavior is actually
a manifestation of a mathematical theorem valid for any one-dimensional problems
with discrete spectrum: the number of zeroes of a wave function corresponding to
n-th energy level (n D 1 corresponds to the ground state) is always equal to n � 1.
Since a rigorous proof of this statement is beyond our reach, I will illustrate this
point considering a limiting case of a very deep well, such that "0 
 1. In the limit
"0 ! 1, Eq. 6.39 has solutions "n D �n=2; n D 1; 3; 5 � � � , while solutions of
Eq. 6.42 are "n D �n=2; n D 2; 4; 6 � � � . The corresponding energy values from
Eq. 6.45 coincide with those given in Eq. 5.89 (if one replaces L with d) for a
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Fig. 6.6 Wave functions corresponding to the first three lowest energy eigenvalues of a rectangular
potential well

particle, whose motion is confined in a finite region of the total length d. Obviously,
this confinement corresponds to the limit of the potential well with infinitely high
barriers. The wave function in this case becomes

'n.z/ D
(

Bn cos �nz
d n D 1; 3; 5 � � �

An sin �nz
d n D 2; 4; 6 � � �

within the well jzj < d=2, and it is exact zero outside of the well (
n goes to
infinity and vanquishes the exponential terms exp 
n .�z C d=2/ for all z > d=2
and exp 
n .z C d=2/ for all z < �d=2). Now, one can clearly see how the increase
of n by 1 transforms cos into sin adding an extra zero to the function when z changes
from �d=2 to d=2.

Unbound (Scattering) States: Continuous Spectrum
The range of energies satisfying the condition Ez > Eb corresponds to an unbound
classical motion, where the entire domain �1 < z < 1 becomes classically
allowed. The motion of the classical particle depends on the combination of its
initial position and initial velocity: if a particle is initially at z < �d=2 with velocity
directed to the left or at z > d=2 with positive velocity, it will keep moving with the
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same velocity—the potential well would not affect its motion at all. If, however, the
initial motion of the particle is directed toward the well, it will experience infinite
acceleration (or deceleration) for infinitesimally short time interval when passing
points z D ˙d=2, which will result in finite increase and then decrease of the
particle’s speed. After passing the region of the well, the particle resumes its straight
linear motion with the same velocity as before.

Quantum mechanical behavior of the particle is described by the solution of the
Schrödinger equation, which in the classically allowed region can be presented as
a combination of exponential functions with complex arguments. In this spectral
region, the symmetry arguments, which I used to find discrete energy levels and
the corresponding wave functions, are no longer valid because of the inherent
asymmetry in the initial conditions. You will see soon that this asymmetry, which is
evident in the classical description of the unbound motion, will manifest itself in the
quantum description as well. Therefore, it is no longer necessary to keep the origin
of the coordinate axis at the center of the well, and the consideration becomes a bit
more convenient if I move it to the left by d=2: In this case, the left boundary of
the well corresponds to z D 0, and the coordinate regions, for which different wave
functions must be written, are now defined as z < 0, 0 < z < d, and z > d. The
most general solution for the wave function in each of these regions can be written
down as

'.z/ D

8̂
<̂
ˆ̂:

A1eik1z C B1e�ik1z z < 0

A2eik2z C B2e�ik2z 0 < z < d

A3eik1z C B3e�ik1z z > d

(6.46)

where k1 D p
2m .Ez � Vb/ and k2 D p

2m .Ez � Vw/. This expression for the wave
function has to be complemented by four stitching conditions—two at each of the
points of discontinuity. Requiring continuity of the function and its derivative at
z D 0 and z D d, I get

A1 C B1 D A2 C B2 (6.47)

k1 .A1 � B1/ D k2 .A2 � B2/ (6.48)

A2e
ik2d C B2e

�ik2d D A3e
ik1d C B3e

�ik1d (6.49)

k2
�
A2e

ik2d � B2e
�ik2d

� D k1
�
A3e

ik1d � B3e
�ik1d

�
(6.50)

where Eqs. 6.47 and 6.49 ensure continuity of the wave function at z D 0 and z D d
correspondingly, while Eqs. 6.48 and 6.50 do the same for its derivative. Simple
counting of the number of unknown coefficients and comparing it with the number
of equations tells me that I have got a problem here: there are only four equations for
six unknowns, which is one unknown too many. However, I have not yet specified a
desirable behavior of the wave function at infinity (a boundary condition), which can
be useful in eliminating extra unknowns. Unlike the case of the discrete spectrum,
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where the behavior of the wave functions at infinity is uniquely prescribed, here
I have an array of choices reflecting different physical situations for which the
problem at hand is being used.

Before digging into the issue of the boundary conditions at infinity for this
problem, it might be useful to get a better physical understanding of the terms
appearing in the expressions for '.z/. To this end, let me dust off some results from
Sect. 5.1.3, namely, the concept of the probability current, Eq. 5.42, which in its
one-dimensional reincarnation takes the form of

j D i„
2me

	
'

d'�

dz
� '� d'

dz



: (6.51)

Substituting a generic form of the wave function Aieikiz C Bie�ikiz into Eq. 6.51,
you find

j D i„
2me

��iki
�
Aie

ikiz C Bie
�ikiz

� �
A�

i e�ikiz � B�
i eikiz

�

�iki
�
A�

i e�ikiz C B�
i eikiz

� �
Aie

ikiz � Bie
ikiz
�� D

„ki

2me

�
jAij2 � jBij2 C BiA

�
i e�2ikiz � B�

i Aie
2ikiz C

C jAij2 � jBij2 � BiA
�
i e�2ikiz C B�

i Aie
2ikiz
�

D
„ki

me
jAij2 � „ki

me
jBij2 :

The first term in this expression describes a positive (directed in positive z direction)
probability current associated with term Aieikiz in the wave function, while the
second, negative, term describes a probability current in the opposite, negative z
direction and is associated with the term Bie�ikiz in the wave function. Now, imagine
a classical beam of particles of mass me all moving with the same speed v in the
positive direction of the z-axis. The current of particles in this beam (a number of
particles crossing a plane perpendicular to the flow per unit time per unit area of
the cross section of the beam) is easily found to be Nv, where N is the number of
particles in the beam per beam’s unit volume. This expression coincides with the
quantum mechanical probability current if you replace v with p=me, p with „k and
identify jAj2 with N. This comparison allows interpreting the terms of the wave
function containing eikz as corresponding to the beam of particles propagating from
left to right and terms with e�ikz as describing particles propagating in the opposite
direction.

A typical experiment involving particles with energies in the continuous segment
of the spectrum consists in sending particles created by some source, positioned far
away from the potential well, toward the well and counting the number of particles
in the beam behind the well (transmitted particles) or the number of particles in
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front of the well but propagating in the negative z direction (reflected particles). In
this case, the asymptotic behavior of the wave function at negative infinity must
contain both left- and right-propagating currents, while the wave function at the
positive infinity only contains the right-propagating particles. This gives us one
of the possible boundary conditions at infinity corresponding to this particular
experimental situation: ' .z ! 1/ D A3eik1z. For the wave function to have this
form, coefficient B3 in Eq. 6.46 must be set to zero. As a result, I end up with five
unknown coefficients and the same four equations, and what is left to realize is
that the term A1eik1z describes the current of particles created by the source, which
is external to the Schrödinger equation and is determined by an experimentalist
controlling the concentration of particles in the outgoing beam. Thus, A1 shall be
treated as a free parameter, while all remaining coefficients must be expressed in its
terms.

Quantities actually measured in the experiment, i.e., the fraction of particles
reflected by the potential or the fraction of particles transmitted past the potential,
can be interpreted quantum mechanically as probabilities of reflection R D jr=jinc

and transmission T D jtr=jinc, where I introduced notations for the reflected current
jr D „k1 jB1j2 =me, the incident current jinc D „k1 jA1j2 =me, and transmitted current
jr D „k3 jA3j2 =me. Wave number k3 D p

2me.Ez � V1/ is determined by the value
of the potential at z ! 1, V1. In the particular case I am dealing with now, the
potentials at z < 0 and z > d are the same, so that V1 D Vb and k3 D k1. One
should realize, however, that it is not always the case, so that one has to be careful
when defining the transmission probability. The most general expressions for the
reflection and transmission probabilities are

R D jB1j2
jA1j2

(6.52)

T D k3 jA3j2
k1 jA1j2

: (6.53)

Now it becomes clear that in order to obtain experimentally relevant form
for the scattering wave function, you need to solve the following system of
equations expressing all unknown coefficients in terms of amplitude of the incident
particles A1:

1C r D A2 C B2; (6.54)

k1 .1 � r/ D k2 .A2 � B2/ ; (6.55)

A2e
ik2d C B2e

�ik2d D teik1d; (6.56)

k2
�
A2e

ik2d � B2e
�ik2d

� D k1te
ik1d: (6.57)
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Here, I introduced the amplitude reflection and transmission coefficients r D B2=A1
and t D A3=A1 correspondingly and redefined amplitudes A2 and B2 as A2=A1 ! A2,
and B2=A1 ! B2. Combining the first two equations, I obtain

	
1C k1

k2



C
	
1 � k1

k2



r D 2A2;

	
1 � k1

k2



C
	
1C k1

k2



r D 2B2;

while the other two yield

	
1C k1

k2



teik1d D 2A2e

ik2d;

	
1 � k1

k2



teik1d D 2B2e

�ik2d:

Expressing A2 and B2 from the last pair of equations and substituting it in the first
ones, I get

	
1C k1

k2



C
	
1 � k1

k2



r D t

	
1C k1

k2



eik1de�ik2d;

	
1 � k1

k2



C
	
1C k1

k2



r D t

	
1 � k1

k2



eik1deik2d;

which after some brushing up yields


1C r

k2 � k1
k2 C k1

�
e�ik1deik2d D t;


1C r

k2 C k1
k2 � k1

�
e�ik1de�ik2d D t:

Equating the left-hand sides of these two equations gives

e�ik1deik2d

	
1C k2 � k1

k2 C k1
r



D e�ik1de�ik2d

	
1C k2 C k1

k2 � k1
r



)

r

	
k2 C k1
k2 � k1

e�2ik2d � k2 � k1
k2 C k1



D 1 � e�2ik2d:

Finally, some simple algebraic manipulations, which I hope you can reproduce
yourselves, yield
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r D
�
k21 � k22

�
sin k2d�

k22 C k21
�

sin k2d C 2ik2k1 cos k2d
; (6.58)

t D 2ik2k1�
k22 C k21

�
sin k2d C 2ik2k1 cos k2d

: (6.59)

Now, you can easily find two remaining coefficients A2 and B2:

A2 D 1

2

	
1C k1

k2



ei.k1�k2/d

2ik2k1�
k22 C k21

�
sin k2d C 2ik2k1 cos k2d

; (6.60)

B2 D 1

2

	
1 � k1

k2



ei.k1Ck2/d

2ik2k1�
k22 C k21

�
sin k2d C 2ik2k1 cos k2d

: (6.61)

Now, once the expressions for the coefficients of the wave function are found in
terms of A1, you might wonder if it is possible and/or necessary to fix the value of
the latter. Generally speaking, this is again a question of normalization of the wave
function, and according to our general understanding, we must be able to normalize
this function using the delta-function. However, when the wave function is not
just a plane wave, the procedure becomes rather cumbersome and requires careful
evaluation of diverging integrals. From a practical point of view, it does not make
much sense to jump from all these hoops to achieve the normalization, which would
matter only if you plan to use the resulting functions as a basis, and this almost never
happens. Thus, if you are only concerned with obtaining experimentally relevant
quantities, you will be happy leaving A1 undetermined and use Eqs. 6.58 and 6.59
to find the transmission and reflection probabilities from Eqs. 6.52 and 6.53:

R D
�
k21 � k22

�2
sin2 k2d�

k22 C k21
�2

sin2 k2d C 4k22k
2
1 cos2 k2d

(6.62)

T D 4k22k
2
1�

k22 C k21
�2

sin2 k2d C 4k22k
2
1 cos2 k2d

: (6.63)

The denominator of these expressions can be rewritten in the following form:

�
k22 C k21

�2
sin2 k2d C 4k22k

2
1 cos2 k2d D 4k22k

2
1 C �

k21 � k22
�2

sin2 k2d:

Thanks to this rearrangement, you can realize two important facts. First, you can
immediately see that

R C T D 1 (6.64)
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and, second, that the transmission, considered as a function of energy, oscillates
between its maximum value equal to unity, achieved at k2d D �n; n D 1; 2; 3 � � � ,
and its minimum value

Tmin D 4k22k
2
1�

k22 C k21
�2

which occurs at k2d D �=2 C �n. For large values of energy Ez 
 Vb, when k1
and k2 become close to each other, the minimum value of transmission differs little
from unity, so that the transmission remains close to one for almost all energies. The
reflection probability, in this case, becomes correspondingly small for all energies as
well. This is the behavior close to what you would expect from a classical particle,
so that the higher energy limit means transition to the classical regime. This behavior
is illustrated in Fig. 6.7.

Equation 6.64 is an important expression of the conservation of probability—
it simply states that since transmission and reflection are the only two mutually
exclusive events that can occur when a particle is incident on the potential, the sum
of their probabilities must be equal to unity. Even though this relation was derived
here for the particular case of the rectangular well, it is valid for a generic potential
asymptotically approaching a constant value at z ! ˙1. The validity of Eq. 6.64
serves in reality as a test on correctness of Eqs. 6.62 and 6.63. Using the definitions
of transmission and reflection coefficients in terms of the probability currents, I can
rewrite Eq. 6.64 as

jr
jinc

C jtr
jinc

D 1 ” jinc � jr D jtr: (6.65)

This equation establishes that the total probability current on the left of the potential
well is equal to the probability current on its right, which is just a general statement
of the conservation of probability, which can also be interpreted as a continuity of
the probability current across any finite discontinuity of the potential.

Fig. 6.7 Transmission
probability for the rectangular
potential well
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Fig. 6.8 Spatial dependence of j'.z/j2 for three different values of energy: low energy, high
energy, and resonance energy where transmission goes to one and reflection to zero. The absence
of reflection in the last plot is evidenced by the absence of oscillations of the probability density
due to interference of the incident and reflected waves. The vertical lines delineate the edges of the
well

The behavior of the wave function also changes with energy. Figure 6.8 illustrates
this point plotting the spatial dependence of the respective probability density
j'.z/j2 at three different energies, including the one which corresponds to zero
reflection. In the latter case, the probability distribution becomes flat at both z <
�d=2 and z > d=2 signaling the absence of interference between incident and
reflected waves. One can also notice the decrease in the period of the oscillations for
higher energies as it should be expected because higher energy means large wave
number and shorter wavelength.

6.2.2 Square Potential Barrier

Square potential barrier is a potential well turned upside down, when the higher
value of the potential energy Vb is limited to the finite interval jzj < d=2, while the
lower energy Vw corresponds to the semi-infinite regions jzj > d=2 outside of this
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interval. The first principal difference between this situation and the one considered
in the previous section is that there are no energies corresponding to a classically
bound motion in this potential, and, therefore, there are no states corresponding to
discrete energy levels. In both cases, Ez < Vb and Ez > Vb, classical motion is
unbound, and quantum mechanical states belong to the continuous spectrum (there
are no states with Ez < Vw). The difference between these energy regions is that in
the former case, the interval jzj < d=2 is classically forbidden, while in the latter,
the entire domain of z-coordinate is classically allowed. Respectively, there are two
different types of wave functions: when Vw < Ez < Vb

'.z/ D

8̂
<̂
ˆ̂:

A1eik2z C B1e�ik2z z < �d=2

A2e
1z C B2e�
1z �d=2 < z < d=2

A3eik2z z > d=2

(6.66)

where k2 is defined as in the previous section, while 
1 D p
2m .Vw � Ez/ is related

to k1 as k1 D �i
1. I already mentioned it once, but I would like to emphasize
again—you cannot eliminate either of the real exponential functions in the second
line of Eq. 6.66 because the requirement for the wave function to decay at infinity
can be used only when the classically forbidden region expands to infinity. In the
case at hand, it is limited to the region jzj < d=2, so the exponential growth of the
wave function does not have enough “room” to become a problem. For energies
Ez > Vb, the wave function has the form of

'.z/ D

8̂
<̂
ˆ̂:

A1eik2z C B1e�ik2z z < �d=2

A2eik1z C B2e�ik1z �d=2 < z < d=2

A3eik2z z > d=2:

(6.67)

This wave function is essentially equivalent to the one considered in the case of
the potential well, so you can simply copy Eqs. 6.58 and 6.59 while exchanging k1
and k2:

B1 D e�ik2d
�
k22 � k21

�
sin k1d�

k22 C k21
�

sin k1d C 2ik2k1 cos k1d
(6.68)

A3 D 2ik2k1e�ik2d

�
k22 C k21

�
sin k1d C 2ik2k1 cos k1d

: (6.69)

Transmission and reflection coefficients in this case have all the same properties as
in the case of the potential well, which I am not going to repeat again.

Going back to the case Vw < Ez < Vb, it might appear that here I would have
to carry out all the calculations from scratch because now I have to deal with real
exponential functions. But fear not, you still can use the previous result by replacing
k1 with k1 D �i
1. The negative sign in this expression is important—it ensures
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that the coefficient A2 in Eq. 6.67 goes over to the same coefficient A2 in Eq. 6.66
(the same obviously applies to coefficients B2). In order to finish the transformation
of Eqs. 6.68 and 6.69 for the under-the-barrier case, you just need to recall that
sin.ix/ D i sinh x and cos.ix/ D cosh x. With these relations in mind, you easily
obtain

B1 D � ie�ik2d
�
k22 C 
21

�
sinh 
1d

�i
�
k22 � 
21

�
sinh 
1d C 2k2
1 cosh 
1d

(6.70)

A3 D 2k2
1e�ik2d

�i
�
k22 � 
21

�
sinh 
1d C 2k2
1 cosh 
1d

: (6.71)

The respective transmission and reflection coefficients become

R D
�
k22 C 
21

�2
sinh2 
1d�

k22 � 
21
�2

sinh2 
1d C 4k22

2
1 cosh2 
1d

(6.72)

T D 4k22

2
1�

k22 � 
21
�2

sinh2 
1d C 4k22

2
1 cosh2 
1d

: (6.73)

Even though I derived Eqs. 6.70 and 6.71 by merely extending Eqs. 6.68 and 6.69
to the region of imaginary k1 (for mathematically sophisticated—this procedure is
a simple example of what is known in mathematics as analytical continuation), the
properties of the reflection and transmission coefficients given by Eq. 6.72 are very
different from those derived for the over-the-barrier transmission case Ez > Vb.
Gone are their periodic dependence on the energy and d, as well as special values
of energy, when the transmission turns to unity and reflection goes to zero. What
do we have instead? Actually quite a boring picture: transmission is exponentially
decreasing with increasing width of the barrier d and slowly approaches unity as
the energy swings between Vw and Vb because 
1 D p

2me .Vb � Ez/ vanishes at
Ez D Vb. To illustrate the exponential dependence of the transmission on d, I will
consider a case of a “thick” barrier, which in mathematical language means 
1d 

1. To find the required approximate expression for T and R, I need to remind you a
simple property of hyperbolic functions cosh x and sinh x: for large values of their
argument x, these functions can be approximated by a simple exponential, sinh x '
cosh x ' 1

2
exp x. Taking this into account, I can derive

R ' 1 (6.74)

T ' 4k22

2
1�

k22 C 
21
�2 e�4
1d: (6.75)

When deriving the expression for the reflection coefficient, I “lost” the exponentially
small term, which is supposed to be subtracted from unity to ensure conservation
of probability. At the same time, this term makes the main contribution to the
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transmission coefficient and, therefore, survives. A better approximation for the
reflection coefficient can be found simply by writing it down as R D 1 � T .
Obviously, the same results can be derived directly from Eq. 6.72 by being a bit
more careful and keeping leading exponentially small terms.

What is surprising here is, of course, not the fact that the transmission is small,
but that it is not exactly equal to zero. Because what it means is that there exists a
non-zero probability for the particle to travel across a classically forbidden region,
emerge on the other side, and keep moving as a free particle. This phenomenon,
which is a quantum mechanical version of “walking through the wall,” is called
tunneling, and you can hear physicists saying that the particle tunnels through
the barrier. The exponential nature of the dependence upon d is very important,
because exponential function is one of the fastest changing functions appearing
in mathematical description of natural processes. It means that a small change
in d results in a substantial change in transmission. This effect has vast practical
importance and is used in many applications such as tunneling diodes, tunneling
microscopy, flush memory, etc.

6.3 Delta-Functional Potential

In this section, I will present a rather peculiar model potential, which does not really
have direct analogies in the real world. I can justify spending some time on it by
making three simple points: (a) it is easily solvable, so considering it would not
take too much of our time, (b) it is useful as an illustration of a situation when the
derivative of the wave function loses its continuity property, and (c) in the case of
shallow potential wells, which are able to hold only a single bound state, it can
provide a decent qualitative understanding of real physical situations. This utterly
unrealistic potential has the form of a delta-function

V D �&ı.z/; (6.76)

where the negative sign signifies that the potential is attractive and that the states
with negative energies are possible and must belong to the discrete spectrum.
Indeed, the entire region of z except of a single point z D 0 is classically forbidden,
so the motion of a classical particle, if one can imagine being localized to a single
point as a motion, is finite. Parameter & in this expression represents a “strength”
of the potential, but one needs to understand that the dimension of this parameter is
energy � length, so it should not be interpreted as a “magnitude” of the potential.
It becomes obvious if one integrates Eq. 6.76: & D ´

V.z/dz, so it is clear that & is
the area under the potential. If one thinks of the delta-function as a limiting case of
a rectangular potential of depth Vw and width d, with Vw ! 1 and d ! 0, in such
a way that & D Vwd remains constant, the meaning of this parameter becomes even
more transparent.
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The main peculiarity of this model is that the discontinuity of the potential in this
case involves more than just a finite jump, so that my previous arguments concerning
the continuity of the derivative of the wave function are no longer applicable.
Actually, this derivative is not continuous at all, and the first matter of business
is to figure out how to “stitch” derivatives of the wave function defined at z < 0

with those defined at z > 0. To solve this puzzle, let me start with the basics—the
Schrödinger equation

� „2
2me

d2'

dz2
� &ı.z/'.z/ D E'.z/: (6.77)

Integrating this equation over infinitesimally small interval ��; � and taking into
account that an integral of a continuous function over such an interval is zero (in the
limit � ! 0), I get

� „2
2me

	
d'

dz

ˇ̌
ˇ̌
zD�

� d'

dz

ˇ̌
ˇ̌
zD��



� &'.0/ D 0:

This yields the derivative stitching rule:

d'

dz

ˇ̌
ˇ̌
zD�

� d'

dz

ˇ̌
ˇ̌
zD��

D �2me

„2 &'.0/: (6.78)

Now, all what I need is to solve the Schrödinger equation with zero potential and
negative energy separately for z < 0 and z > 0 and stitch the solutions. Since both
these regions are classically forbidden for a particle with E < 0, the solutions have
the form of real-valued exponential functions:

'.z/ D
(

A1e
z z < 0

A2e�
z z > 0

where 
 D p�2meE=„, and I discarded the contributions which would grow
exponentially at positive and negative infinities to satisfy the boundary conditions.
A continuity of the wave function at z D 0 requires that A2 D A1, and Eq. 6.78
yields

�2
A D �2me

„2 &A:

Assuming that A is non-zero (naturally) and taking into account the definition of 
,
I find that this expression is reduced to the equation for allowed energy levels:

E D �me&
2

2„2 : (6.79)
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Obviously, Eq. 6.79 shows that there is only one such energy, which is why this
model can only be useful for description of shallow potential wells with a single
discrete energy level.

Solutions with positive energies can be constructed in the same way as it was
done for the rectangular potential well or barrier

'.z/ D
(

A1eikz C B1e�ikz z < 0

A2eikz z > 0
(6.80)

where k D p
2meE=„; and the continuity of the wave function at z D 0 yields

A1 C B1 D A2:

The derivative stitching condition, Eq. 6.78, generates the following equation:

ikA2 � ik .A1 � B1/ D �2me

„2 &A2:

Solving these two equations for B1 and A2, one can obtain

A2
A1

D 1

1 � i�
;

B1
A1

D i�

1 � i�
;

where I introduced a convenient dimensionless parameter � defined as

� D me&

k„2 :

The amplitude transmission and reflection coefficients t D A2=A1 and r D B1=A1
are complex numbers, which can be presented in the exponential form using Euler
formula as

r D p
Rei�r I t D p

Tei�t

where reflection and transmission probabilities R D jrj2 and T D jtj2 and
corresponding phases �r and �t are given by

R D �2

1C �2
I T D 1

1C �2
(6.81)

�r D � arctan
1

�
I �t D arctan�: (6.82)
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While the phase of the amplitude reflection and transmission coefficients do not
affect the probabilities, they still play an important role and can be observed. The
reflected wave function interferes with the function describing incident particles
and determines the spatial distribution of relative probabilities of position mea-
surements. These phases also define the temporal behavior of the particles in the
situations involving nonstationary states, but discussion of this situation is outside
of the scope of this book.

6.4 Problems

Problems for Sect. 6.2.1

Problem 77 Derive Eq. 6.42.

Problem 78 Find the reflection and transmission coefficients for the potential
barrier shown in Fig. 6.9. Show that R C T D 1.

Problem 79 In quantum tunneling, the penetration probability is sensitive to slight
changes in the height and/or width of the barrier. Consider an electron with energy
E D 15 eV incident on a rectangular barrier of height V D 7 eV and width
d D 1:8 nm. By what factor does the penetration probability change if the width
is decreased to d D 1:7 nm?

Problem 80 Consider a step potential

V.z/ D
(
0 x < 0

V0 x > 0:

Calculate the reflection and transmission probabilities for two cases 0 < E < V0
and E > V0.

Fig. 6.9 Potential barrier with an asymmetric potential
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Problem 81 Find an equation for the energy levels of a particle of mass me moving
in a potential of the form

V.z/ D

8
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂:

1 x < �a

0 �a < x < �b

V0 �b < x < b

0 b < x < a

1 x > a:

Consider even and odd wave functions separately. Using any graphic software, find
the approximate values of the two lowest values of the energy if m D 1:78 �
10�27 kg, a D 0:12 nm, b D 0:42 nm, V0 D 1:5 eV. Sketch the respective wave
functions for each of the found eigenvalues.

Problem 82 Consider a particle moving in a potential comprised of two attractive
delta-functional potentials separated by a distance d:

V.x/ D �&ı .x C d=2/ � &ı .x � d=2/ :

1. Derive an equation for discrete energy levels in this potential, and solve it if
possible. How many discrete energy levels does this potential have? Analyze the
behavior of these energy levels when the distance d between the wells increases.

2. Find the wave functions corresponding to the continuous segment of the spec-
trum, and determine the respective transmission and reflection probabilities.



Chapter 7
Harmonic Oscillator Models

It is as difficult to overestimate the role of harmonic oscillator models in physics in
general and in quantum mechanics in particular as the influence of Beatles and Led
Zeppelin on modern popular music. Harmonic oscillators are ubiquitous and appear
every time when one is dealing with a system that has a state of equilibrium in the
vicinity of which it can oscillate, i.e., in a vast majority of physical systems—atoms,
molecules, solids, electromagnetic field, etc. It also does not hurt their popularity
that the harmonic oscillator is one of the very few models which can be solved
exactly.

Consider a particle moving in a potential V.x; y; z/, which has a minimum at
some point x D y D z D 0. Mathematically speaking, this means that at this
point @V=@x D @V=@y D @V=@z D 0, while the matrix of the second derivatives
Lij � @2V=@ri@rj

ˇ̌
xDyDzD0, where r1 � x; r2 � y, and r3 � z; is positive definite.

If you still remember the connection between the potential energy and the force in
classical mechanics, you should recognize that in this situation, point x D y D z D 0

corresponds to the particle being in the state of stable equilibrium. Stable in this
context means that a particle removed from the equilibrium by a small distance will
be forced to move back toward it rather than away from it. Expanding potential
energy in a power series in the vicinity of the equilibrium and keeping only the first
nonvanishing terms, you will get

V.x; y; z/ � 1

2

X
i;j

Li;;jrirj:

Respective classical Hamiltonian equations 3.2 and 3.3 yield for this potential:

dpi

dt
D �

X
j

Li;jrj (7.1)
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dri

dt
D pi

me
(7.2)

(i D x; y; z). They can be converted into Newton’s equations by differentiating
Eq. 7.2 (with respect to time) and eliminating the resulting time derivative of the
momentum using Eq. 7.1:

dr2i
dt2

D � 1

me

X
j

Li;jrj: (7.3)

The presence in matrix Lij of nondiagonal elements indicates that the particle’s
motion in the direction of any of the chosen axes X; Y , or Z is not independent
of its motion in other directions. In layman’s terms, it means that it is impossible
to arrange for this particle to move purely in the direction of any of the axes.
Nevertheless, solutions of these equations still can be presented in the standard
time-harmonic form ri D ai exp .i!t/ with amplitudes ai and frequency ! obeying
equations:

1

me

X
j

Li;jaj D !2ai; (7.4)

which is an eigenvalue equation for the matrix Li;j=me. It is obvious that this is
symmetric (Li;j D L;j;i), real-valued, and, therefore, Hermitian matrix. Thus, based
on the eigenvalue theorems discussed in Sect. 3.3.1, this matrix is guaranteed to
have real eigenvalues and corresponding orthogonal eigenvectors. The equation for
the eigenvalues is found by requiring that Eq. 7.4 has nontrivial solutions:

det
�
me!

2ıi;j � Li;j
� D 0

and in general has three solutions !2n , where n D 1; 2; 3. Substituting each of
these frequencies back in Eq. 7.4, you can find amplitudes a.n/x ; a.n/y a.n/z , which
form corresponding eigenvectors. These eigenvectors are regular three-dimensional
vectors defining three mutually orthogonal directions in space. Oscillations in
each of these directions, called normal modes, are characterized by their unique
frequencies !2n and can occur independently of each other. Indeed, these three
vectors can be used as a new basis, which in this particular case amounts to
introducing new coordinate axes along the directions of the normal modes. The
matrix Li;j=me transformed to this basis becomes diagonal, and introducing notation
�1; �2, and �3; to represent coordinates along these new directions, Eq. 7.3 will take
a form of three independent differential equations:

d2�n

dt2
D �!2n�n: (7.5)
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One can also show (those interested in details are welcome to read any of many text-
books on classical mechanics, or molecular oscillations, or a combination thereof)
that Hamiltonian written in terms of these new coordinates and corresponding
conjugated momentums �n takes the form

H D
X

n

	
�2n
2mn

C mn!
2
n�
2
n




which is the sum of three independent one-dimensional Hamiltonians. The transition
to this form is not so trivial, and the mass parameter mn does not have to coincide
with the actual mass of the particle. Nevertheless, as long as �n and �n are a
canonically conjugated pair characterized by the standard for the coordinate and
momentum Poisson brackets, Eq. 3.5, we can treat them as such for all practical
purposes, including quantization.

Thus, using the concept of normal modes, one can always reduce a prob-
lem involving harmonic oscillations to a simple combination of one-dimensional
problems. This is actually true even in the case involving oscillations of several
particles such as multi-atom molecules. Therefore, using the one-dimensional model
to describe harmonic oscillations is even more justified than the one-dimensional
models described in the previous chapter. And so, the one-dimensional model of the
quantum harmonic oscillator is what I am going to consider next.

7.1 One-Dimensional Harmonic Oscillator

7.1.1 Stationary States (Eigenvalues and Eigenvectors)

Classical mechanics of the one-dimensional harmonic oscillator is described by
Hamiltonian:

H D p2

2me
C 1

2
me!

2x2; (7.6)

and respective Hamiltonian equations for momentum p and coordinate x are
obtained by specializing Eqs. 7.1 and 7.2 to the one-dimensional situation:

dp

dt
D �me!

2x (7.7)

dx

dt
D p

me
(7.8)

where I replaced the corresponding diagonal element of matrix Li;j as Lxx � me!
2.

These equations are, of course, easy to solve, and the solution is well known:
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x D x0 cos!t C p0
me!

sin!t

p D �me!x0 sin!t C p0 cos!t; (7.9)

where x0 and p0 are initial values of the coordinate and momentum of the
particle. Equation 7.9 describes a familiar harmonic time dependence, which can
be presented in terms of amplitude A and initial phase ı:

x.t/ D A sin .!t C ı/ :

Both A and ı are determined by the initial conditions: the amplitude—by the total
energy E of the oscillator, which, as you know, is a conserving quantity—and phase,
by the ratio of the initial coordinate and momentum. Recalling that at the maximum
displacement E takes entirely the form of the potential energy, you can write

1

2
me!

2A2 D E D p20
2me

C 1

2
me!

2x20 )

A D
s

2E

me!2
D
s

x20 C p20
m2

e!
2
: (7.10)

The phase of the oscillator can be found by expanding sin .!t C ı/ D sin!t cos ıC
cos!t sin ı and equating the resulting terms with their counterparts in Eq. 7.9. This
yields

A cos ı D p0
me!

A sin ı D x0

and subsequently

tan ı D x0me!

p0
:

Obviously, the motion of a harmonic oscillator is bounded with the maximum
deviation from the equilibrium position given by its amplitude A, Eq. 7.10. The
coordinate x becomes equal to A at two turning points, where the velocity of the
oscillator and, respectively, its kinetic energy turn to zero. The relation between
total, potential, and kinetic energies of the harmonic oscillator can be illustrated
by a diagram shown in Fig. 7.1, where vertical lines show the turning points of the
classical motion.

Even though you all have known the solution to the harmonic oscillator problem
almost since the elementary school, you might find it useful to play with its
Hamiltonian a bit more. Let me, for instance, factorize the Hamiltonian, taking
advantage of its u2 C v2 form, which can be presented as .u C iv/ .u � iv/:
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Fig. 7.1 Energy diagram for
a classical oscillator. The
horizontal line corresponds to
its total energy E, and vertical
dashed lines indicate the
turning points and
coordinates corresponding to
two maximum displacements

H D
	

pp
2me

C i

r
me

2
!x


	
pp
2me

� i

r
me

2
!x



: (7.11)

Now, on a whim, I am going to compute the Poisson bracket involving these factors.
Designating the first of them as u,

u D pp
2me

C i

r
m

2
!x;

and the second one as u�,

u� D pp
2me

� i

r
me

2
!x;

I find, using Eq. 3.4 for Poisson bracket,

fu; u�g D @u

@x

@u�

@p
� @u

@p

@u�

@x
D i!:

Using this result as a hint, I now introduce new variables:

b D � ip
!

u D
r

me!

2
x � i

pp
2me!

(7.12)

b� D 1p
!

u� D �i

r
me!

2
x C pp

2me!
(7.13)

whose Poisson bracket, by design, of course, is

˚
b; b�

� D 1:
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This means that b and b� constitute a canonically conjugated pair (if you have
already forgotten what I am talking about, check Sect. 3.1), with b playing the role
of the coordinate and b� pretending to be the momentum. Computing bb� (do it!),
you will see that the Hamiltonian can be presented as

H D i!bb�:

The corresponding Hamiltonian equations are

db

dt
D @H

@b�
D i!b (7.14)

db�

dt
D �@H

@b
D �i!b�: (7.15)

The advantage of these equations as compared to initial Eqs. 7.7 and 7.8 is that they
are independent first-order differential equations, which can be easily solved:

b D b0e
i!tI b� D b�0e

�i!t: (7.16)

Initial coordinate and momentum can be expressed in terms of b and b� by inverting
Eqs. 7.12 and 7.13, but I will leave it for you as an exercise.

Transition between pairs x; p and b; b� is an example of a so-called canonical
transformation of variables, and the only reason I decided to bother you with it is
that it paves a way to better understanding its quantum analog, which is of crucial
importance. According to the quantization rules discussed in Sect. 3.3.2, transition
from classical to quantum description consists in promoting classical variables to
quantum operators, and the coordinate-momentum dyad plays a crucial role in the
process, namely, because it is a canonical pair. The operators replacing classical
variables are, to a large extent, defined by their commutation relations, and in the
case of canonical pairs, the commutator is directly linked to the respective Poisson
brackets, as I have already mentioned previously. In the case of the coordinate-
momentum pair, the corresponding commutator is obtained from the Poisson
bracket by multiplying it by i„: As well as any pair of variables characterized
by the canonical Poisson bracket, which play the role similar to coordinate and
momentum in classical mechanics, any quantum mechanical pair of operators with
canonical commutator i„ will have properties similar to those of the coordinate
and momentum. For instance, if I know that two Hermitian operators O� and O�
have a commutator Œ O�; O�� D i„, I can without any doubts claim that the operator
O� in the representation based on eigenvectors of O� is O�� D �i„@=@� similar
to the momentum operator in the coordinate representation. I have to emphasize,
however, the requirement that the operators must be Hermitian. Therefore, if I were
to promote b and b� to operators, it would not work, because they would not be
Hermitian. Nevertheless, operators similar to b and b� (while not exactly like them)
do play an important role in quantum theory (and not just for harmonic oscillators).
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Now I am ready to get down to our main business and start developing quantum
theory of harmonic oscillators. The goal is to develop the theory as far as possible
without resorting to any particular representation for momentum and coordinate
operators. Such an approach will produce the most general results, independent of
a representation, offer important insights into the quantum properties of oscillators,
and create a formal framework for extending this theory beyond pure mechanical
harmonic oscillators.

I start by “factorizing” the quantum Hamiltonian in a way similar to factorization
of the classic Hamiltonian in Eq. 7.11. However, to make sure that this factorization
works for operators, I would like to review the origin of the identity:

u2 C v2 D .u C iv/ .u � iv/ :

Removing the parentheses on its right-hand side, I have

.u C iv/ .u � iv/ D u2 C v2 C ivu � iuv:

If u and v are regular variables, the last two terms in this expression cancel, but if
they are non-commuting operators, it is quite obvious that the original factorization
rule is no longer true and must be corrected:

Ou2 C Ov2 D .Ou C i Ov/ .Ou � i Ov/C i ŒOu; Ov� : (7.17)

The order of the terms in the parentheses on the right-hand side of this expression
can be changed, which will result in an alternative form of the identity:

Ou2 C Ov2 D .Ou � i Ov/ .Ou C i Ov/ � i ŒOu; Ov� : (7.18)

Identifying Ou and Ov as

Ou D
r

me

2
! Ox (7.19)

Ov D Opp
2me

; (7.20)

I find

ŒOu; Ov� D 1

2
! ŒOx; Op� D 1

2
i„!: (7.21)

Operators Ou and Ov have a dimension of
p

energy, while their commutator, pro-
portional to „!, obviously has the dimension of energy. If I am not mistaken, I
have already remarked that it is often quite beneficial to work with dimensionless
quantities. Thus, taking a clue from Eqs. 7.17 and 7.18 and the experience gained
working with classical Hamiltonian, I will try to generate dimensionless operators
such as



208 7 Harmonic Oscillator Models

Oa D 1p„! .Ou C i Ov/ D
r

me!

2„ Ox C i
Opp

2me„!
(7.22)

Oa� D 1p„! .Ou � i Ov/ D
r

me!

2„ Ox � i
Opp

2me„!
: (7.23)

The commutator of these operators is

�Oa; Oa�� D �i

r
me!

2„
1p

2me„!
ŒOx; Op�C i

r
me!

2„
1p

2me„!
ŒOp; Ox� D

� i

2„ ŒOx; Op�C i

2„ ŒOp; Ox� D 1:

Due to a special importance of this result, I will reproduce it as a separate numbered
formula:

�Oa; Oa�� D 1: (7.24)

The operators Oa and Oa� are clearly not Hermitian: performing Hermitian conjugation
of Eqs. 7.22 and 7.23, you can immediately see that they are actually Hermitian
conjugates of each other, hence the notation Oa�. It will also be useful to express
coordinate and momentum operators in terms of Oa and Oa�. Adding and subtracting
Eqs. 7.22 and 7.23, I can invert these equations to get

Ox D
s

„
2!me

�Oa C Oa�� ; (7.25)

Op D i

r
„!me

2

�Oa� � Oa� : (7.26)

Using the operator factorization identities 7.17 or 7.18 with Ou and Ov defined in
Eqs. 7.19 and 7.20, I can derive two alternative forms of the Hamiltonian:

OH D „!
	
1

2
C Oa� Oa



D „!

	
�1
2

C OaOa�


:

These two expressions differ by the order of the operators in it and by the sign in
front of 1=2. Formally they are absolutely equivalent, and one can be reduced to
another using commutation relation 7.24. However, from a practical point of view
(and you will have to trust me on this for now), the first of these expressions is
much more convenient to use than the other. Thus, in what follows, I will rely on
the representation of the Hamiltonian in the form
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OH D „!
	
1

2
C Oa� Oa



: (7.27)

Our first task is to find the eigenvalues and eigenvectors of this Hamiltonian,
i.e., the stationary states of the harmonic oscillator. Since the classical motion in
the harmonic potential is bound for all values of energy, it should be expected
that the entire spectrum of the Hamiltonian is discrete so that yet unknown energy
eigenvalues can be labeled by a discrete index as En and the respective eigenvectors
as jEni:

OH jEni D En jEni : (7.28)

Since I am not allowed to use any particular representation for the coordinate and
momentum operators, all what I have to go on with are the commutation relations.
This invites me to use the same purely algebraic technique, which I successfully
used previously when searching for eigenvalues of the operators of the angular
momentum in Sect. 3.3.4. However, in the role of the angular momentum ladder
operators OL˙, I am going to cast operators Oa and Oa�, which appear to have some
similarities with OL˙: they are also non-Hermitian and are Hermitian conjugates
of each other. You might remember that operators OL˙ applied to an eigenvector
of operator OLz generate other eigenvectors with decreased or increased eigenvalue.
Will you be surprised if it turns out that operators Oa and Oa� are doing the same to the
eigenvectors of the harmonic oscillator? Probably not.

The first step is to note that eigenvectors of the Hamiltonian coincide with those
of the operator ON D Oa� Oa, which is called the number operator and is obviously
Hermitian. Indeed, once you rewrite the Hamiltonian as

OH D „!
	
1

2
C ON



;

this statement becomes pretty obvious. Moreover, you can immediately see that if
�n is the eigenvalue of ON: ON jEni D �n jEni ; then

En D „!
	
1

2
C �n



: (7.29)

Therefore, I can focus my attention on finding the eigenvalues and eigenvectors of

the number operator ON. To this end, I first compute the commutator
h ON; Oa

i
(if you

want to know what prompted me to do so, the only excuse I can offer is that there
isn’t much more for me to do, so why not do that?):

h ON; Oa
i

D Oa� Oa2 � OaOa� Oa D �Oa� Oa � OaOa�� Oa D �Oa; (7.30)
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where I took advantage of Eq. 7.24. Carrying out Hermitian conjugation of this
result, and remembering to change the order of the operators in their product after
Hermitian conjugation, I immediately obtain

h ON; Oa�
i

D Oa�: (7.31)

In the next step, I consider ON Oa jEni and use the commutation relation 7.30 to get

ON Oa jEni D �Oa jEni C Oa ON jEni D
�n Oa jEni � Oa jEni D .�n � 1/ Oa jEni :

This result shows that Oa jEni is an eigenvector of ON with eigenvalue �n � 1, i.e.,
the operator Oa generates eigenvectors of ON with eigenvalues decreasing by one with
each application of the operator. Not surprisingly, this operator is called lowering
operator. The questions, which naturally pop up at this point, are how far down in
energy one can go and how one knows when the bottom is reached. The answer to
the first question is obvious—that energy eigenvalues of the harmonic oscillator
can never be negative, and thus �n > �1=2. The second question is answered
by recycling arguments that I have already used when discussing the angular
momentum—the only way to reconcile the ability of Oa to keep decreasing �n every
time it is applied and the requirement that there must exist a smallest �n is to impose
on the eigenvector corresponding to this minimum value condition:

Oa jEmini D 0: (7.32)

Another useful relation is obtained by performing Hermitian conjugation of this
equation:

hEminj Oa� D 0: (7.33)

Now you are going to appreciate the wisdom of writing the Hamiltonian in the form
of Eq. 7.27 and of introducing operator ON. Indeed Eq. 7.32 used in ON jEmini gives
ON jEmini D 0, which means that the minimum value �min D 0, and Emin D „!=2.
So, behold the power of the lowering operator—we found the bottom, the lowest
possible energy of a harmonic oscillator, its ground state!

Just like in other examples, the lowest energy is not zero, which is, of course,
the consequence of the uncertainty principle: zero energy would require that both
kinetic and potential energies are equal to zero, which would mean that both
coordinate and momentum operators would have certain values of zero, which is
impossible. The ground state energy „!=2 is one of the clearest examples of the
energy associated with so-called quantum fluctuations.

The contribution of these fluctuations to the energy can be quantified by
computing the expectation values of Op2 and Ox2, which determine the quantum
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uncertainties of the respective observables. Using Eqs. 7.25 and 7.26 that express
operators Op and Ox in terms of operators Oa and Oa� in conjunction with Eqs. 7.32
and 7.33, you can immediately see that

hEminj Ox jEmini D hEminj Op jEmini D 0;

so that the uncertainties 4p and 4x are 4p D phOp2i and 4x D phOx2i. Squaring
Eqs. 7.25 and 7.26, and computing these expectation values with state jEmini, you
will get

hEminj Ox2 jEmini D „
2me!

�hEminj Oa2 jEmini C hEminj Oa�2 jEmini C

hEminj Oa� Oa jEmini C hEminj OaOa� jEmini� :

The first three terms in this expression vanish, thanks to Eqs. 7.32 and 7.33.
However, the last term requires some more efforts because the order of operators
Oa and Oa� in it is “wrong” in the sense that it is not conducive to the immediate
application of Eqs. 7.32 and 7.33. The situation, however, can be quite easily
rectified by using the commutation relations 7.24 to change this order and rewrite
this term as

hEminj OaOa� jEmini D hEminj 1C Oa� Oa jEmini D 1;

where I, as usual, assumed that whatever the state vector jEmini is, it is normalized.
Thus, finally, I find

hEminj Ox2 jEmini D „
2me!

: (7.34)

Similarly,

hEminj Op2 jEmini D �me!„
2

�hEminj Oa2 jEmini C hEminj Oa�2 jEmini �

hEminj Oa� Oa jEmini � hEminj OaOa� jEmini� D
me!„
2

hEminj OaOa� jEmini D me!„
2

: (7.35)

Using Eqs. 7.34 and 7.35 in expressions for kinetic and potential energies, Op2=2me

and me!
2x2=2, I immediately find that the ground state expectation values

˝Op2˛ =2me

and me!
2
˝Ox2˛ =2 are both equal to „!=4. Isn’t it remarkable that while the ground

state of harmonic oscillator is characterized by a certain value of energy „!=2, it
is formed by two fluctuating quantities, kinetic and potential energies, contributing
equal amounts? One can actually see here a certain analogy with classical harmonic
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oscillator, whose energy, while being time independent, includes contributions from
kinetic and potential energies, whose time dependencies totally compensate each
other yielding a constant sum.

OK, by finding the energy of the ground state, I took you down to the very bottom
of the energy valley. Now it is time to climb back up, and we are going to do it with
the assistance of . . . wait for it. . . , of course, the operator Oa�! Actually, there is not
much surprise or suspense here because this is exactly what happened with angular
momentum operators: we used OL� to find the lowest eigenvalue and operator OLC to
move up from there. My next step is pretty obvious now—consider ON Oa� jEni:

ON Oa� jEni D Oa� jEni C Oa� ON jEni D
�n Oa� jEni C Oa� jEni D .�n C 1/ Oa� jEni

where this time I used commutation relation from Eq. 7.31. So, as expected, Oa� jEni
is an eigenvector of the number operator with eigenvalue �n C 1, i.e., operator Oa�
does generate eigenvectors with eigenvalues increasing by one for each application
of the operator. Starting with the ground state, for which �min D 0, operator Oa� will
generate eigenvectors with eigenvalues of ON equal to 1; 2; 3 � � � . In other words, the
eigenvalues of the number operator are all natural numbers n starting with 0, which
make energy levels of quantum harmonic oscillator, according to Eq. 7.29, equal to

En D „!
	
1

2
C n



; n D 0; 1; 2 � � � : (7.36)

What is left for us now is to find the corresponding eigenvectors, for which, from
now on, I will use the simplified notation jni. All what I know at this point is that
if jni is an eigenvector corresponding to the eigenvalue of the number operator n,
then Oa� jni is an eigenvector corresponding to the eigenvalue n C 1. But I cannot
guarantee that this new eigenvector will be normalized even if jni is. Therefore,
reserving the bra and ket notation only for normalized vectors, the best I can write
for now is

Oa� jni D cn jn C 1i ; (7.37)

where jn C 1i is assumed normalized and cn is yet an unknown normalization factor.
Again, I cannot help but remind you that we encountered exactly the same situation

when discussing eigenvectors of OL2: To find cn I, first, write down a Hermitian
conjugated version of Eq. 7.37:

hnj Oa D c�
n hn C 1j : (7.38)

Then, multiplying left-hand and right-hand sides of Eqs. 7.37 and 7.38, I get

hnj OaOa� jni D jcnj2 hn C 1j n C 1i :
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Using commutation relation 7.24 and taking into account that all vectors are now
assumed normalized, I have

hnj ON C 1 jni D jcnj2 ) jcnj2 D n C 1:

Taking advantage of the freedom in the choice of the phase of the normalization
factor, I choose cn to be real positive. Now I have the rule for generating new
normalized eigenvectors:

jn C 1i D 1p
n C 1

Oa� jni :

Applying this rule sequentially starting with the ground state, I end up with the
following expression for an arbitrary eigenvector jni:

jni D 1p
nŠ

�Oa��n j0i ; (7.39)

where j0i stands for the eigenvector corresponding to the ground state. One can also
show that

Oa jni D p
n jn � 1i ; (7.40)

but I will leave a proof of this relation as an exercise.
Equation 7.39 relates eigenvectors describing excited stationary states of the

oscillator to its ground state. The latter, however, might appear to you to be
undetermined, which is true if by “determining” it you mean expressing it in terms
of some known vectors or functions. However, for most purposes, all information
that you need about the ground state is contained in Eq. 7.32, and in this sense,
this equation is the definition of the ground state. You can use it to find answers
to any specific question pertaining to this state. For instance, if you are interested
in a function representing this state in coordinate representation, you can use
the coordinate representation of the momentum and coordinate operators to turn
Eq. 7.32 into an easy-to-solve differential equation for '0.x/ � hxj Emini:

0
@
r

me!

2„ x C
s

„
2me!

d

dx

1
A'0.x/ D 0 )

d'0.x/

dx
D �me!

„ x'0.x/ )

'0 D C exp

	
� x2

2�2



: (7.41)
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Parameter � appearing in this equation is defined as

� D
s

„
me!

(7.42)

and has the dimension of length. It specifies the characteristic scale of the spatial
dependence of the wave function: for x � � the wave function is almost constant,
while for x 
 � its behavior crosses over to a steep descent. It is easy to see that
this parameter characterizes a transition between classically allowed and classically
forbidden regions of coordinates for the harmonic oscillator. Indeed, the substitution
of quantum ground state energy E D „!=2 to Eq. 7.10 for the amplitude A of
classical oscillator yields A D �, which means that for the ground state of the
oscillator x < � corresponds to the classically allowed region, and the region x > �
is classically forbidden.

Integration constant C in Eq. 7.41 is found from the normalization condition:

C2

1̂

�1
exp

	
� x2

�2



dx D C2�

1̂

�1
exp

��Qx2� dQx D C2
p
�� D 1

where I computed the integral by introducing a dimensionless variable Qx D x=� and
using a known value of the Gaussian integral

´ 1
�1 exp

��y2
�

dy D p
� . Thus, the

normalized version of the oscillator ground state wave function becomes

'0 D 1pp
��

exp

	
� x2

2�2



: (7.43)

Having found the normalized ground state wave function in the coordinate rep-
resentation, I can now use the raising operator (also rewritten in the coordinate
representation) to generate wave functions representing an arbitrary stationary state
of the Hamiltonian:

'n.x/ D 1p
2nnŠ�

p
�

	
Qx � d

dQx

n 

exp

	
� Qx2
2


�
:

Here I used the coordinate representation for the raising operator expressed in terms
of dimensionless variable Qx:

Oa� D
r

me!

2„ x � „p
2me„!

d

dx
D

xp
2�

� �p
2

d

dx
D 1p

2

	
Qx � d

dQx
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substituted in Eq. 7.39. You can easily convince yourselves that expression

	
Qx � d

dQx

n 

exp

	
� Qx2
2


�

generates polynomials multiplied by an exponential function exp
��Qx2=2� : Pulling

out this exponential factor, you end up with so-called Hermite polynomials Hn. Qx/
defined as

Hn. Qx/ D exp

	 Qx2
2


	
Qx � d

dQx

n 

exp

	
� Qx2
2


�

so that the oscillator’s wave function takes the form

'n.x/ D 1p
2nnŠ�

p
�

exp

	
� Qx2
2



Hn. Qx/: (7.44)

Hermitian polynomials are well known in mathematical physics and can be
computed from the following somewhat simpler expression:

Hn. Qx/ D .�1/n eQx2 dn

dQxn

�
e�Qx2� : (7.45)

The properties of these polynomials are well documented (google it!), so I will only
emphasize one point: these polynomials and, therefore, the entire wave function
have a definite parity—it is even for n D 0; 2; 4 � � � , and it is odd for n D 1; 3; 5 � � � .
Obviously this fact is the result of the symmetry of the harmonic oscillator potential
with respect to inversion and is an agreement with our previous discussions of the
connection between this symmetry and the parity of the quantum states. Figure 7.2
presents graphs of wave functions representing states with n D 0; 1; 2; 3, from
which you can see that another general rule is also fulfilled here: the number of
zeroes of the wave function coincides with the number of the respective energy level
n. Note that n is counted here starting from zero; therefore, the number of zeroes of
the wave function is n instead of n � 1.

Coordinate representation is, obviously, not the only possible way to present
eigenvectors of the harmonic oscillator. As a second example, I want to discuss
a representation based on eigenvectors of the Hamiltonian jni. The eigenvectors
themselves in this representation are presented, as all basis vectors, by columns
with a single entry, equal to unity, in the row corresponding to the number of the
respective basis vector. The Hamiltonian in this basis is presented by a diagonal
matrix Hnm D Enınm, where En are energy eigenvalues given by Eq. 7.36. Less
trivial is the representation of coordinate and momentum operators, and to find it I
must first compute the matrix elements of the lowering (or raising—does not really
matter) operator, amn D hmj Oa jni:

amn D hmj Oa jni D p
n hmj n � 1i D p

nım;n�1;
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Fig. 7.2 Wave functions representing states of harmonic oscillators with n D 0 (upper left graph),
n D 1 (upper right graph), n D 2 (lower left graph), and n D 3 (lower right graph)

where I used Eq. 7.40 and the fact that all eigenvectors jni are orthonormal. To
visualize this matrix correctly, it is important to remember that index n in Eq. 7.40
starts counting from zero, and it is convenient to keep it this way when numerating
matrix elements. In this case the first row is given by a0n, second by a1;n, and so
on. Respectively, the first column is given by am0. Non-zero elements in matrix amn

are characterized by column index exceeding the respective row index by one, i.e.,
a0;1; a1;2, etc.—they go parallel to the main diagonal but one element above it:

amn D

2
6666664

0
p
1 0 0 � � �

0 0
p
2 0 � � �

0 0 0
p
3 � � �

:::
:::

:::
: : :

:::

0 0 0 0
: : :

3
7777775
: (7.46)

The matrix for the raising operator

a�mn D hmj Oa� jni D p
n C 1 hmj n C 1i D p

n C 1ım;nC1
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is obtained from Eq. 7.46 by simple transposition:

a�mn D

2
6666664

0 0 0 0 � � �p
1 0 0 0 � � �
0

p
2 0 0 � � �

:::
:::
: : :

: : :
:::

0 0 0 0
: : :

3
7777775
: (7.47)

Obtaining matrices for coordinate and momentum operators is now as easy as
adding two matrices. Using Eqs. 7.25 and 7.26, I find

xmn D
s

„
2me!

2
6666664

0
p
1 0 0 � � �p

1 0
p
2 0 � � �

0
p
2 0

p
3 � � �

:::
:::

:::
: : :

:::

0 0 0 0
: : :

3
7777775

(7.48)

pmn D i

r
me„!
2

2
6666664

0 �p
1 0 0 � � �p

1 0 �p
2 0 � � �

0
p
2 0 �p

3 � � �
:::

:::
:::

: : :
:::

0 0 0 0
: : :

3
7777775
: (7.49)

Both matrices are obviously Hermitian, but for the matrix representing the momen-
tum operator, one must remember to do complex conjugation in addition to matrix
transposition.

7.1.2 Dynamics of Quantum Harmonic Oscillator

When talking (or thinking) about a harmonic oscillator, we are intuitively look-
ing for a quantity that changes periodically with time—oscillates. However, the
stationary states, which I presented to you in the preceding section, are not very
helpful in satisfying our intuitive subconscious desire to see a pendulum or at least
something oscillating. Stationary states even though they have non-zero energies
associated with them do not describe any dynamics and any physically relevant
time dependence. Any expectation values computed with stationary states are time-
independent, and those for coordinate and momentum are zeroes, not only for
the ground state but for any stationary state. This is, of course, obvious from the
coordinate and momentum matrices presented in Eqs. 7.48 and 7.49, but one can
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also make a symmetry-based argument explaining this result. Even though this is
a detour from the main goal of this section, I will take it because symmetry-based
arguments are important in many areas of quantum mechanics and also because they
are cool.

The Hamiltonian of the harmonic oscillator is invariant with respect to the
inversion operator O… (see Sect. 6.2.1), and, therefore, its eigenvectors have a definite
parity, as it was already mentioned. Any expectation value involves a bra and ket
pair of them, and, therefore, either they are odd or even, their overall contribution
is invariant with respect to O… (a product of two odd functions is even). At the
same time, coordinate and momentum operators are odd with respect to parity
transformation: O…�1 Ox O… D �Ox, O…�1 Op O… D �Op; as it was shown in Sect. 5.1.2. Thus,
on one hand, expectation values are supposed to change sign upon inversion, but
on the other hand, they must not because they represent a property of the system
invariant with respect to inversion. Thus, ponder this: you have a situation when
a quantity must simultaneously change its sign while remaining the same. Clearly,
there is only one quantity capable of this Houdini trick, and it is the great invention
of Hindu mathematicians—the zero.

Now, back to the main topics. It is clear that the only way a quantum harmonic
oscillator can actually oscillate is by being in a nonstationary state. We have dis-
cussed two approaches to dealing with nonstationary phenomena—the Schrödinger
picture (operators are time-independent, state vectors are time-dependent) and the
Heisenberg picture (operators depend on time, and state vectors do not). I will
treat the dynamics of the harmonic oscillator using both pictures beginning with
the Heisenberg approach.

Heisenberg equations 4.24 can be derived for any operator, and in Sect. 4.2 I
did that for the momentum and coordinate operators. Equation 4.33 provides you
with the complete solution of the respective Heisenberg equations and essentially
with all what you might need to describe the dynamics of any experimentally
relevant quantity. However, I would like to revisit the problem of finding time-
dependent position and momentum operators, but this time I will do it by solving
the Heisenberg equations for lowering and raising operators. The corresponding
equations are

d OaH

dt
D � i

„
h
OaH; OH

i

d Oa�H
dt

D � i

„
h
Oa�H; OH

i
:

The expression for the Hamiltonian in terms of Heisenberg operators OaH , Oa�H is the
same as in terms of Schrödinger operators:

e
i
„

OHt OHe� i
„

OHt D OH D „!
�

e
i
„

OHt Oa�e� i
„

OHte
i
„

OHt Oae
�i
„ OH

�

„!
	
1

2
C Oa�H OaH



;
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and, therefore, all the commutation relations, which we calculated for Schrödinger
operators, remain the same. In particular, using Eqs. 7.30 and 7.31, I can findh
OaH; OH

i
D „!

h
OaH; ON

i
D „! OaH , and

h
Oa�H; OH

i
D „!

h
Oa�H; ON

i
D �„! Oa�H .

Substituting it in the Heisenberg equations, I obtain the following nice-looking
equations:

d OaH

dt
D � i! OaH (7.50)

d Oa�H
dt

D i! Oa�H : (7.51)

Unlike equations for the momentum and coordinate operators, Eqs. 7.50 and 7.51
are not coupled, so they can be solved independently—in that they have a striking
resemblance to classical Eqs. 7.14 and 7.13. Solutions to these equations are easy to
write:

OaH D Oae�i!tI Oa�H D Oa�ei!t; (7.52)

where Oa and Oa� are Schrödinger operators that play the role of initial conditions
for the Heisenberg equations. Equations 7.25 and 7.26 are obviously valid for
Heisenberg operators as well so that one can obtain for time-dependent coordinate
and momentum operators:

OxH D
s

„
2me!

�Oae�i!t C Oa�ei!t
�

(7.53)

OpH D i

r
me„!
2

�Oa�ei!t � Oae�i!t
�
: (7.54)

Using the Euler relation for the exponential functions, I can rewrite this result in the
form previously derived in Eq. 4.33:

OxH D
s

„
2me!

��Oa C Oa�� cos!t C i
�Oa� � Oa� sin!t

�
(7.55)

OpH D i

r
me„!
2

��Oa� � Oa� cos!t C i
�Oa C Oa�� sin!t

�
; (7.56)

which agrees with Eq. 4.33 after one recognizes that at t D 0 these equations
reproduce coordinate and momentum operators in the Schrödinger representation.
Either of Eqs. 7.53–7.56 can be used, for instance, to compute the expectation values
of coordinate and momentum for an arbitrary initial state j�0i. This task can be
facilitated by using the basis of the eigenvectors jni to represent this state:
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j�0i D
1X

nD0
cn jni : (7.57)

It is a bit more convenient to carry out these calculations using the exponential form
of time dependence as in Eqs. 7.53 and 7.54:

hxi D
s

„
2me!

"
e�i!t

1X
n;mD0

c�
mcn hmj Oa jni C ei!t

1X
n;mD0

c�
mcn hmj Oa� jni

#
D

s
„

2me!

"
e�i!t

1X
n;mD0

c�
mcn

p
nım;n�1 C ei!t

1X
n;mD0

c�
mcn

p
n C 1ım;nC1

#
D

s
„

2me!

"
e�i!t

1X
mD0

c�
mcmC1

p
m C 1C ei!t

1X
mD0

c�
mC1cm

p
m C 1

#
; (7.58)

where I used previously derived matrix elements for the lowering and raising oper-
ators. Now, we are getting something familiar: the expectation value of coordinate
does indeed oscillate with the frequency of the harmonic oscillator !, and what is
interesting, this behavior does not depend on the actual initial state, as long as it has
contributions from at least two adjacent stationary states so that both cm and cmC1 are
different from zeroes. This requirement, of course, excludes initial stationary states,
which would have only one nonvanishing coefficient cm, as well as nonstationary
states with a definite parity, which would contain only coefficients cm with either
odd or even m. With a bit of imagination, you can recognize in Eq. 7.58 the typical
for a classical harmonic oscillator behavior which can be described as

hxi D A cos .!t C 	/ ; (7.59)

where the amplitude and phase of the oscillations are determined by the initial
conditions (as they also are in the classical case):

A D
s

„
2me!

ˇ̌
ˇ̌
ˇ

1X
mD0

c�
mcmC1

p
m C 1

ˇ̌
ˇ̌
ˇ I

	 D arctan
Im
�P1

mD0 c�
mC1cm

p
m C 1

�

Re
�P1

mD0 c�
mC1cm

p
m C 1

� : (7.60)

Similar calculations for the momentum operator produce

h pi D i

r
me„!
2

"
ei!t

1X
mD0

c�
mC1cm

p
m C 1 � e�i!t

1X
mD0

c�
mcmC1

p
m C 1

#
;

(7.61)



7.1 One-Dimensional Harmonic Oscillator 221

which can be rewritten using the same amplitude and phase as

h pi D �me!A sin .!t C 	/ (7.62)

in full agreement with the Ehrenfest theorem, Eq. 4.17.
Before shifting attention to the Schrödinger picture, let me consider a few more

examples of the application of the Heisenberg equations.

Example 18 (Uncertainties of Coordinate and Momentum of a Harmonic Oscilla-
tor) Assume that the harmonic oscillator is initially in a state described by an equal
superposition of its ground and the first excited states:

j˛0i D 1p
2
.j0i C j1i/ :

Compute uncertainties of the coordinate and momentum operators at an arbitrary
time t and demonstrate, using the Heisenberg picture, that the uncertainty relation is
fulfilled at all times.

Using Eqs. 7.59, 7.62, and 7.60 with c0 D c1 D 1=
p
2 and cm D 0 for m > 1, I

find for the expectation values

hxi D 1

2

s
„

2me!
cos!t

h pi D �1
2

r
„!me

2
sin!t:

To find the uncertainties, I first have to compute
˝
p2
˛

and
˝
x2
˛
. I begin by computing

Ox2 D „
2me!

�Oae�i!t C Oa�ei!t
�2 D

„
2me!

�
Oa2e�2i!t C OaOa� C Oa� Oa C �Oa��2 e2i!t

�
;

Op2 D �me„!
2

�Oae�i!t � Oa�ei!t
�2 D

�me„!
2

�
Oa2e�2i!t � OaOa� � Oa� Oa C �Oa��2 e2i!t

�
:

Now, remembering that Oa j0i D 0, Oa j1i D j0i, Oa j2i D p
2 j1i, Oa� j0i D j1i,

Oa� j1i D p
2 j2i, Oa� j2i D p

3 j3i, I get

Ox2 j˛0i D „
2
p
2me!

�
j0i C p

2e2i!t j2i C 2 j1i C j1i C p
6e2i!t j3i

�
;

Op2 j˛0i D �me„!
2
p
2

�
� j0i C p

2e2i!t j2i � 2 j1i � j1i C p
6e2i!t j3i

�
;
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and, finally,

h˛0j Ox2 j˛0i D „
4me!

.1C 3/ D „
me!

h˛0j Op2 j˛0i D me„!
4

.1C 3/ D me„!:

Now I can find the uncertainties:

4x D
q

hOx2i � hOxi2 D
s

„
me!

	
1 � 1

8
cos2 !t




4p D
q

hOp2i � hOpi2 D
s

me„!
	
1 � 1

8
sin2 !t




4x4p D „
2
p
2

r
7C 1

32
sin2 2!t > 0:93„

in agreement with the uncertainty principle.
There also exists an alternative approach to computing time-dependent averages

of various observables using the Heisenberg picture, which allows to establish their
dependence of time in a more generic way. To develop such an approach, let me
first rewrite Eqs. 7.55 and 7.56 using Eqs. 7.25 and 7.26 for Schrödinger versions of
the coordinate and momentum operators, which I will designate here as Ox0 and Op0 to
emphasize the fact that they serve as initial values for the Heisenberg equations:

OxH D Ox0 cos!t C 1

me!
Op0 sin!t (7.63)

OpH D Op0 cos!t � me! Ox0 sin!t: (7.64)

Now, let’s say I want to compute the uncertainty of the coordinate for an arbitrary
state j˛i. The expectation values of the coordinate and momentum in this state,
using Eqs. 7.63 and 7.64, can be written as

hxi D hOx0i cos!t C 1

me!
hOp0i sin!t

h pi D hOp0i cos!t � me! hOx0i sin!t;

where hOx0i and hOp0i are time-independent “Schrödinger” expectation values that can
be computed for a given state using any of the representations for the Schrödinger
coordinate and momentum operators. Similarly, I can find for the expectation values
of the squared operators
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˝Ox2˛ D ˝Ox20
˛
cos2 !t C 1

2me!
.hOx0 Op0i C hOp0 Ox0i/ sin 2!t C 1

m2
e!

2

˝Op20
˛
sin2 !t

˝Op2˛ D ˝Op20
˛
cos2 !t � 1

2
me! .hOx0 Op0i C hOp0 Ox0i/ sin 2!t C m2

e!
2
˝Ox20
˛
sin2 !t

which will yield the following for the uncertainties:

.4x/2 D .4Ox0/2 cos2 !t C 1

m2
e!

2
.4Op0/2 sin2 !tC

1

2me!
Œ.hOx0 Op0i C hOp0 Ox0i � 2 hOx0i hOp0i/� sin 2!t

.4p/2 D .4Op0/2 cos2 !t C m2
e!

2 .4Ox0/2 sin2 !t�
1

2
me! Œ.hOx0 Op0i C hOp0 Ox0i � 2 hOx0i hOp0i/� sin 2!t:

I already mentioned it once, but it is worth emphasizing again: all expectation values
in this expression refer to Schrödinger operators and can be computed using any
of the representations for the latter. Let me illustrate this point by considering the
following example.

Example 19 (Harmonic Oscillator with Shifted Minimum of the Potential) Consider
a harmonic oscillator with mass me and frequency ! in the ground state. Suddenly,
without disruption of the oscillator’s state, the minimum of the potential shifts by
d along the axes of oscillations and the stiffness of the potential changes such that
it is now characterized by a new classical frequency �. Find the expectation value
and uncertainty of coordinate and momentum of the electron in the potential with
the new position of its minimum.

It is convenient to solve this problem using coordinate representation for the
initial state and for the Schrödinger operators Ox and Op. First of all, let’s agree to place
the origin of the X-axis at the new position of the minimum. Then, the initial wave
function, which is the ground state wave function of the oscillator with potential in
the original position, is

 0.x/ D
�me!

�„
�1=4

exp
�
�me!

2„ .x C d/2
�
;

where x is counted from the new position of the potential. The expectation values of
the Schrödinger operators hOx0i and hOp0i are

hOx0i D
r

me!

�„

1̂

�1
x exp

�
�me!

„ .x C d/2
�

D
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r
me!

�„

1̂

�1
.x � d/ exp

�
�me!

„ x2
�

D �d

where I made a substitution of variables and took into account that the wave function
of the initial state is even. Similarly, I can find

hOp0i D �i„
r

me!

�„

1̂

�1
exp

�
�me!

2„ .x C d/2
�

�

d

dx

h
exp

�
�me!

2„ .x C d/2
�i

dx D

i„
r

me!

�„
me!

„

1̂

�1
exp

�
�me!

„ .x C d/2
�
.x C d/ dx D 0:

Thus, I have for the time-dependent expectation values

hxi D �d cos�t

h pi D me�d sin�t:

(Obviously, the dynamics of raising and lowering operators is defined by new
frequency �.) In order to find the respective uncertainties, I need to compute
4Ox0, 4Op0, and hOx0 Op0i. The uncertainties of the regular Schrödinger coordinate and
momentum operators do not depend on the position of the potential minimum with
respect to the origin of the coordinate axes, so I can simply recycle the results from
Eqs. 7.34 and 7.35:

4Ox0 D
s

„
2me!

I 4Op0 D
r

„me!

2
:

For the last expectation value, hOx0 Op0i, I will actually have to do some work:

hOx0 Op0i D �i„
�me!

�„
�1=2 �

1̂

�1
x exp

�
�me!

2„ .x C d/2
� d

dx

h
exp

�
�me!

2„ .x C d/2
�i

dx D

i„
�me!

�„
�1=2 �me!

„
� 1̂

�1
x .x C d/ exp

�
�me!

„ .x C d/2
�

dx D
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i„
�me!

�„
�1=2 �me!

„
� 1̂

�1
x .x � d/ exp

�
�me!

„ x2
�

dx

D i„
�me!

„
�	 „

2me!



D i„
2
:

In the last line of this expression, I took into account that the integral with the
linear in x factor vanishes because of the oddness of the integrand, while the integral
containing x2 together with the normalization factor of the wave function reproduces
the uncertainty of the coordinate .4Ox0/2. If you are spooked by the imaginary result
here, you shouldn’t. Operator Ox0 Op0 is not Hermitian, and its expectation value does
not have to be real. To complete this calculation, I would have to compute hOp0 Ox0i,
but I will save us some time and use the canonical commutation relation ŒOx; Op� D i„
to find

hOx0 Op0i C hOp0 Ox0i D 2 hOx0 Op0i � i„ D 0:

Oops, so much efforts to get zero in the end? Feeling disappointed and a bit cheated?
Well, you should be, because we could have guessed that the answer here is zero
without any calculations. Indeed, the momentum operator contains imaginary unity
in it, and with the wave function being completely real, this imaginary factor is not
going anywhere. But, on the other hand, the result must be real because Ox0 Op0 C Op0 Ox0
is a Hermitian operator. So, the only conclusion a reasonable person can draw from
this conundrum is that the result must be zero. Thus, we finally have for the time-
dependent uncertainties:

.4x/2 D „
2me!

cos2 �t C 1

m2
e�

2

„me!

2
sin2 �t D „

2me!

	
cos2 �t C !2

�2
sin2 �t




.4p/2 D „me!

2
cos2 !t C m2

e�
2 „
2me!

sin2 !t D „me!

2

	
cos2 �t C �2

!2
sin2 �t



;

and for their product

.4x/2 .4p/2 D „2
4


cos4 �t C sin4 �t C

	
!2

�2
C �2

!2



cos2 �t sin2 �t

�
D

„2
4


cos4 �t C sin4 �t C 2 cos2 �t sin2 �t C

	
!2

�2
C �2

!2
� 2



cos2 �t sin2 �t

�
D

„2
4


1C

	
!2

�2
C �2

!2
� 2



cos2 �t sin2 �t

�
;

where in the second line I added and subtracted term 2 cos2 �t sin2 �t and
in the third line used identity cos4 �t C sin4 �t C 2 cos2 �t sin2 �t D
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�
cos2 �t C sin2 �t

�2 D 1. Function y C 1=y, which appears in the final result,
has a minimum at y D 1 (� D !), at which point the product of the uncertainties
becomes „2=4. For all other relations between the two frequencies, the product of
the uncertainties exceeds this value in full agreement with the uncertainty principle.
It is interesting to note that as the uncertainties oscillate, their product returns to its
minimum value at times tn D �n=.2�/.

In the Schrödinger picture, the dynamics of quantum systems is described by
the time dependence of the vectors representing quantum states. For the initial state
given by Eq. 7.57, the time-dependent state can be presented as (see Eq. 4.15)

j�.t/i D
1X

nD0
cne�i!.nC1=2/ jni : (7.65)

Computing the expectation value of the coordinate with this state and using again the
representation of the coordinate operator in terms of lowering and raising operators,
I have

hxi D
s

„
2me!

" 1X
nD0

1X
mD0

c�
mcnei!.m�n/t hmj Oa jni C

1X
nD0

1X
mD0

c�
mcnei!.m�n/t hmj Oa� jni

#
D

s
„

2me!

" 1X
nD0

1X
mD0

c�
mcnei!.m�n/tpnım;n�1 C

1X
nD0

1X
mD0

c�
mcnei!.m�n/t

p
n C 1ım;nC1

#
D

s
„

2me!

"
e�i!t

1X
mD0

c�
mcmC1

p
m C 1C ei!t

1X
mD0

c�
mC1cm

p
m C 1

#
(7.66)

in full agreement with Eq. 7.61 obtained using the Heisenberg representation. What
is interesting about this result is that in the beginning of the computations, we had
complex exponential functions with all frequencies ! .m � n/. However, after the
matrix elements of the lowering and raising operators have been taken into account,
only terms with a single frequency ! survived. In the Heisenberg approach, frequen-
cies ! .m � n/ never appear because the properties of Oa and Oa� are incorporated from
the very beginning at the level of the Heisenberg equations. Similar expressions can
be easily derived for the expectation values of the momentum operator:

h pi D i

r
„me!

2

"
ei!t

1X
mD0

c�
mC1cm

p
m C 1 � e�i!t

1X
mD0

c�
mcmC1

p
m C 1

#
;
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while generic expressions for the uncertainties of the coordinate and momentum
operators in the Schrödinger picture are much more cumbersome and are more
difficult to derive. Thus, I will illustrate the derivation of the uncertainties for the
time-dependent states in the Schrödinger picture with the same example 18, which
was previously solved in the Heisenberg picture.

Example 20 (Uncertainties of the Coordinate and Momentum of the Quantum
Harmonic Oscillator in the Schrödinger Picture) Let me remind you that we are
dealing with a harmonic oscillator prepared in a state

j˛0i D 1p
2
.j0i C j1i/ ;

and we want to compute the uncertainties of the coordinate and momentum
operators at an arbitrary time t using the Schrödinger picture.

Comparing the expression for the initial state with Eq. 7.66, expansion coeffi-
cients cn in Eq. 7.65 can be identified as c0 D c1 D 1=

p
2while all other coefficients

vanish. Thus, the time-dependent state vector now becomes

j�.t/i D 1p
2


exp

	
�1
2
!t



j0i C exp

	
�3
2
!t



j1i
�
:

The expectation values are immediately found from Eq. 7.66 to be as before

hxi D 1

2

s
„

2me!
cos!tI

h pi D �1
2

r
„!me

2
sin!t:

To find the uncertainties, I need

Ox2 D „
2me!

�
Oa2 C �Oa��2 C OaOa� C Oa� Oa

�

Op2 D �„!me

2

�
Oa2 C �Oa��2 � OaOa� � Oa� Oa

�
:

Using again the properties of the lowering and raising operators, I find

Ox2 j�.t/i D „
2
p
2me!

	p
2 exp

	
�1
2
!t



j2i C exp

	
�1
2
!t



j0i C

p
6 exp

	
�3
2
!t



j3i C 3 exp

	
�3
2
!t



j1i :
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Now, premultiplying this result by h�.t/j and using orthogonality of the eigenvec-
tors, I find

˝Ox2˛ D „
me!

in complete agreement with the results obtained in the Heisenberg picture. I will
leave computing of the result for the momentum operator to you.

7.2 Isotropic Three-Dimensional Harmonic Oscillator

Using the concept of normal coordinates, any three-dimensional (or even multi-
particle) harmonic oscillator can be reduced to the collection of one-dimensional
oscillators with total Hamiltonian being the sum of one-dimensional Hamiltonians.
The spectrum of eigenvalues in this case is obtained by simply summing up the
eigenvalues of each one-dimensional component, and the respective eigenvectors
are obtained as direct product of one-dimensional eigenvectors. To illustrate this
point, consider a Hamiltonian of the form

OH D Op2x
2mex

C Op2y
2mey

C Op2z
2mez

C 1

2

�
mex!

2
x Ox2 C mey!

2
y Oy2 C mez!

2
z Oz2� (7.67)

D OHx C OHy C OHz:

I can define a state characterized by three quantum numbers
ˇ̌
nx; ny; nz

˛
which can

be considered as a “product” of the one-dimensional eigenvectors defined in the
previous section

ˇ̌
nx; ny; nz

˛ � jnxi
ˇ̌
ny
˛ jnzi, where the last notation does not presume

any kind of actual “multiplication” but just serves as a reminder that the x-dependent
part of the Hamiltonian 7.67 acts only on the jnxi portion of the eigenvector, the OHy

acts only on
ˇ̌
ny
˛
, and so on. Thus, as a result, I have

� OHx C OHy C OHz

�
jnxi

ˇ̌
ny
˛ jnzi D


„!x

	
nx C 1

2



C „!y

	
ny C 1

2



C „!z

	
nz C 1

2


�
jnxi

ˇ̌
ny
˛ jnzi ;

where nx;y;z independently take integer values starting from zero. The position
representation of the eigenvectors is obtained as

'nx;ny;nz.x; y; z/ D hx; y; z ˇ̌nx; ny; nz
˛ � hx jnxi h y

ˇ̌
ny
˛ hz jnzi D

'nx.x/'ny. y/'nz.z/;

where each 'ni.ri/ is given by Eq. 7.44.
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In the most general case, when the parameters in OHx, OHy, and OHz are all different,
we end up with distinct eigenvalues characterized by three independent integers.
The energy of the ground state is characterized by nx D ny D nz D 0 and is given
by E0;0;0 D 1

2
„ �!x C !y C !z

�
.

If, however, all masses and all three frequencies are equal to each other so that
the Hamiltonian becomes

OH D Op2x C Op2y C Op2z
2me

C 1

2
mex!

2
�Ox2 C Oy2 C Oz2� ; (7.68)

a new phenomenon emerges. The energy eigenvalues are now given by

Enx;ny;nz D „!
	
3

2
C nx C ny C nz



;

and it takes the same values for different eigenvectors as long as respective indexes
obey condition n D nx Cny Cnz. In other words, the eigenvalues in this case become
degenerate—several distinct vectors belong to the same eigenvalue. The number of
degenerate eigenvectors is relatively easy to compute: for each n you can choose nx

to be anything between 0 and n, and once nx is chosen, ny can be anything between
0 and n � nx, so there are n � nx C 1 choices. Once nx and ny are determined, the
remaining quantum number nz becomes uniquely defined. Thus, the total number of
choices of nx and ny for any given n can be found as

nxDnX
nxD0

.n � nx C 1/ D .n C 1/ .n C 1/ � n.n C 1/=2 D .n C 1/.n C 2/=2:

This degeneracy can be easily traced to the symmetry of the system, which has
emerged once I made the parameters of the oscillator independent of the direction.

7.2.1 Isotropic Oscillator in Spherical Coordinates

Even though we already know the solution to the problem of an isotropic harmonic
oscillator, it is instructive to reconsider it by working in the position representation
and using the spherical coordinate system instead of the Cartesian one. The position
representation of the Hamiltonian in this case becomes

OH D � „2
2me

r2 C 1

2
me!

2r2 D

� „2
2mer2

@

@r

	
r2
@

@r



C

OL2
2mer2

C 1

2
me!

2r2; (7.69)
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where in the second line I used Eq. 5.62 representing Laplacian operator in terms of
the radial coordinate r and operator OL2. It is obvious that the Hamiltonian commutes
with both OL2 and OLz so that the eigenvectors of the Hamiltonian in the position
representation can be written as

 nr ;l;m.r; �; '/ D Ym
l .�; '/Rnr ;l.r/: (7.70)

Substituting Eq. 7.70 into the time-independent Schrödinger equation

OH D E 

with Hamiltonian given by Eq. 7.69, you can derive for the radial function Rnr ;l.r/:

� „2
2mer2

d

dr

	
r2
@Rnr ;l

@r



C „2l.l C 1/

2mer2
Rnr ;l C 1

2
me!

2r2Rnr ;l D El;nr Rnr ;l: (7.71)

It is convenient to introduce an auxiliary function unr ;l.r/ D rRnr ;l, which, when
inserted into the radial equation above, turns it into

� „2
2me

d2unr ;l

dr2
C „2l.l C 1/

2mer2
unr ;l C 1

2
me!

2r2unr ;l D El;nr unr ;l: (7.72)

Equation 7.72 looks exactly like a one-dimensional Schrödinger equation with
effective potential:

Veff D „2l.l C 1/

2mer2
C 1

2
me!

2r2:

The plot of this potential (Fig. 7.3) shows that it possesses a minimum

Vmin
eff D „!

p
l.l C 1/

Fig. 7.3 The schematic of
the effective potential for the
radial Schrödinger equation
for isotropic 3-D harmonic
oscillator in arbitrary units
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at

r2min D „
me!

p
l.l C 1/:

(Of course, you do not need to plot this function to know that it has a minimum—
just compute the derivative and find its zero.) For any given l, the allowed values
of energy obeying inequality E > „!pl.l C 1/ correspond to the classical bound
motion; thus all energy levels in this effective potential are discrete (which, of
course, is nobody’s surprise, but still is a nice fact to know). States with l D 0 are
described by the Schrödinger equation, which is the exact replica of the equation
for the one-dimensional oscillator. You, however, should not rush to pull out of
the drawer old dusty solutions of the one-dimensional problem (OK, not that old
and dusty, but still). A huge difference with the purely one-dimensional case is the
fact that the domain of the radial coordinate r is Œ0;1�, unlike the domain of a
coordinate in the one-dimensional problem, which is Œ�1;1�. Consequently, the
wave function unr ;l must obey a boundary condition at r D 0. Given that the actual
radial function Rnr ;l must remain finite at r D 0, it is clear that unr ;l(0)=0. Now you
can go ahead, brush the dust from the solutions of the one-dimensional harmonic
oscillator problem, and see which fit this requirement. A bit of examination reveals
that we have to throw out all even solutions with quantum numbers 0; 2; 4 � � �
which do not satisfy the boundary condition at the origin. At the same time,
all odd solutions, characterized by quantum numbers 1; 3; 5 � � � , satisfy both the
Schrödinger equation and the newly minted boundary condition at r D 0, so they
(restricted to the positive values of the coordinate) do represent eigenvectors of the
isotropic oscillator with zero angular momentum.

Solving this problem with l > 0 requires a bit more work. To make it somewhat
easier to follow, I will begin by introducing a dimensionless radial coordinate
& D r=� , where � D p„=me! is the same length scale that was used in the one-
dimensional problem. The Schrödinger equation rewritten in this variable becomes

�„!
2

d2unr ;l

d&2
C „!l.l C 1/

2&2
unr ;l C 1

2
„!&2unr ;l D El;nr unr ;l

d2unr ;l

d&2
� l.l C 1/

&2
unr ;l � &2unr ;l C �l;nr unr ;l D 0 (7.73)

where I introduced dimensionless energy

�l;nr D 2El;nr=„!:

The resulting differential equation obviously does not have simple solutions
expressible in terms of elementary functions. One of the approaches to solving
it is to present a solution in the form of a power series

P
cj&

j and search for
unknown coefficients cj. In principle, knowing these coefficients is equivalent to
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knowing the entire function. Before attempting this approach, however, it would be
wise to try to extract whatever information about the solution this equation might
contain. For instance, you can ask about the solution’s behavior at very small and
very large values of & . When & � 1, the main term in Eq. 7.73 is the angular
momentum contribution to the effective potential. Neglecting all other terms, you
end up with an equation

d2unr ;l

d&2
� l.l C 1/

&2
unr ;l D 0; (7.74)

which has a simple power solution

unr ;l D A& lC1: (7.75)

You are welcome to plug it back in Eq. 7.74 and verify it by yourself. For those
who think that I used magical divination to arrive at this result, I have disappointing
news: Eq. 7.74 belongs to a well-known class of so-called homogeneous equations.
This means that if I multiply & by an arbitrary constant factor �, the equation does
not change (check it), with a consequence that if function u.&/ is the solution, so
is function u .�&/. Such equations are solved by power functions u / &%, where
power % is found by plugging this function into the equation.

In the limit of large & 
 1, the main contribution to Eq. 7.73 comes from the
harmonic potential. We know from solving the one-dimensional problem that the
respective wave functions contain an exponential term exp

��Qx2=2� for x direction
and similar terms for two other coordinates. When multiplying all these wave
functions together to obtain a three-dimensional wave function, these exponential
terms turn into exp

��&2=2�; thus it is natural to expect that the radial function unr ;l

will contain such a factor as well. To verify this assumption, I am going to substitute
exp

��&2=2� into Eq. 7.73 and see if it will satisfy the equation, at least in the limit
& ! 1. Neglecting all terms small compared to &2; I find

d2u

d&2
D �e�&2=2 C &2e�&2=2 � &2e�&2=2:

Substituting this result in Eq. 7.73, and neglecting all terms except of the harmonic
potential, I find that this function is, indeed, an asymptotically accurate solution
of this equation. I want you to really appreciate this result: in order to reproduce
exponential decay of the wave function, which, by the way, almost ensures its
normalizability, using a power series, we would have to keep track of all the infinite
number of terms in it, which is quite difficult if not outright impossible. By pulling
out this exponential term as well as the power law for small & , you might entertain
some hope that the remaining dependence on & is simple enough to be dug out.

Thus, my next step is to present function unr ;l .&/ as

ul;nr .&/ D A& lC1 exp
��&2=2� vl;nr .&/ (7.76)
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and derive a differential equation for the remaining function vnr ;l .&/. To this end, I
first compute

d2unr ;l

d&2
D d

d&

�
.l C 1/ & l exp

��&2=2� vnr ;l .&/�

& lC2 exp
��&2=2� vnr ;l .&/C & lC1 exp

��&2=2� dvnr ;l

d&

�
D

l.l C 1/& l�1 exp
��&2=2� vnr ;l .&/ � .l C 1/ & lC1 exp

��&2=2� vnr ;l .&/C

.l C 1/ & l exp
��&2=2� dvnr ;l

d&
� .l C 2/ & lC1 exp

��&2=2� vnr ;l .&/C

& lC3 exp
��&2=2� vnr ;l .&/ � & lC2 exp

��&2=2� dvnr ;l

d&
C

.l C 1/ & l exp
��&2=2� dvnr ;l

d&
� & lC2 exp

��&2=2� dvnr ;l

d&
C

& lC1 exp
��&2=2� d2vnr ;l

d&2
D

exp
��&2=2� & l�1vnr .&/

�
l.l C 1/ � &2.2l C 3/C &4

�C

& l exp
��&2=2� dvnr

d&

�
2l C 2 � 2&2�C & lC1 exp

��&2=2� d2vnr

d&2
:

Frankly speaking, I did not have to torture you with these tedious calculations: such
computational platforms as Mathematica or Maple work with symbolic expressions
and can perform this computation faster and more reliably (and, yes, I did check my
result against Mathematica’s). Substituting this expression to Eq. 7.73, I get (and
here you are on your own, or you can try computer algebra to reproduce this result)

&
dv2nr ;l

d&2
C 2

�
l C 1 � &2� dvnr;l

d&
C &vnr;l .&/ .�l;nr � 2l � 3/ D 0: (7.77)

Now I can start solving this equation by presenting the unknown function vnr ;l .&/

as a power series and trying to find the corresponding coefficients:

vnr ;l .&/ D
1X

jD0
cj&

j: (7.78)

The goal is to plug this expression into Eq. 7.77 and collect coefficients in front of
equal powers of & . First, I blindly substitute the series into Eq. 7.77 and separate all
sums with different powers of & :
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1X
jD0

cjj. j � 1/& j�1 C 2.l C 1/

1X
jD0

cjj&
j�1 � 2

1X
jD0

cjj&
jC1C

.�l;nr � 2l � 3/
1X

jD0
cj&

jC1 D 0:

Combining the first two and last two sums, I get

1X
jD0

j Œ j � 1C 2l C 2� cj&
j�1 C

1X
jD0

Œ�l;nr � 2l � 3 � 2j� cj&
jC1 D 0:

Next I notice that in the first sum, contributions from terms with j D 0 vanish, so
that this sum starts with j D 1. I can reset the count of the summation index back to
zero by introducing new index k D j � 1, so that this sum becomes

1X
kD0

ckC1 .k C 1/ .k C 2l C 2/& k:

Renaming k back to j (this is a dummy index, so you can call it whatever you want,
it does not care), we rewrite the previous equation as

1X
jD0
. j C 1/ Œ j C 2l C 2� cjC1& j C

1X
jD0

Œ�l;nr � 2l � 3 � 2j� cj&
jC1 D 0:

The first sum in this expression begins with &0 term multiplied by coefficient c1.
The second sum, however, begins with linear in & term and does not contain &0 at
all. To satisfy the equation, coefficients in front of each power of & must vanish
independently of each other, so we have to set c1 D 0. This makes the first sum
again to start with j D 1. Utilizing the same trick as before, I am replacing j with
j C 1 while restarting count from new j D 0 again. The result is as follows:

1X
jD0
. j C 2/ Œ j C 2l C 3� cjC2& jC1 C

1X
jD0

Œ�l;nr � 2l � 3 � 2j� cj&
jC1 D 0:

Now I can, finally, combine the two sums and equate the resulting coefficient in
front of & jC1 to zero:

. j C 2/ Œ j C 2l C 3� cjC2 D Œ2l C 3C 2j � �l;nr � cj
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or

cjC2 D 2l C 3C 2j � �l;nr

. j C 2/ Œ j C 2l C 3�
cj: (7.79)

This is a so-called recursion relation, which allows computing all expansion
coefficients recursively starting with the first one. It is important to note that Eq. 7.79
connects only coefficients with indexes of the same parity: all coefficients with
even indexes are expressed in terms of c0, and all coefficients with odd indexes
are expressed in terms of c1: But, wait, have not we determined a few lines back that
c1 D 0? Actually, we did determine that, and now, thanks to Eq. 7.79, I can establish
that not only c1 but all coefficients with odd indexes are zeroes. So, it looks like I
achieved the announced goal—finding all coefficients in the power series expansion
of vnr ;l. Formally speaking, I did, indeed, but it is a bit too early to dance around
the fire and celebrate. First, I still do not know what values of the dimensionless
energy �l;nr correspond to the respective eigenvectors, and, second, I have to verify
that the found solution is, indeed, normalizable. The last issue is not trivial because
we are dealing with an infinite series here, so there are always questions about its
convergence and the behavior of the function it represents. As I shall demonstrate
now, both these questions are connected and will be answered together.

Whether a function is normalizable or not is determined by its behavior for large
values of its argument. I pulled out an exponentially decreasing factor from the
solution hoping that it would be sufficient to guarantee normalization, but to be
sure I need to consider the behavior of vnr ;l at & ! 1. Any finite number of
terms in the expansion 7.78 cannot overcome the exponentially decreasing factor
exp

��&2=2�, so the anticipated danger can only come from the tail of the power
series, i.e., from coefficients cj with j ! 1. In this limit the recursion relation 7.79
can be simplified to

cjC2 � 2

j
cj; (7.80)

which, when applied repeatedly, yields

c2j0C2N D 22N

2j0.2j0 C 2/ � � � .2j0 C 2N/
c2j0 D 1

j0 . j0 C 1/ � � � . j0 C N/
c2j0 :

When writing this expression, I explicitly took into account that there are only even
indexes, which can be presented as 2j0C2k with the total number of recursive factors
being 2N. Even though this expression is only valid for j0 
 1, I can extend it to
all values of j0 because as I pointed out earlier, any finite number of terms in the
power series would not affect its asymptotic behavior. That means that the large &
behavior of the series in question is the same as that of the series:

1X
jD0

&2j

jŠ
D e&

2

:
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Even after combining this result with exp
��&2=2� factor, which was pulled out

earlier, I still end up with function unr ;l .&/ behaving as exp
�
&2=2

�
at infinity. What

a bummer! It is disappointing, but not really surprising: it is easy to check that
exp

�
&2=2

�
is the second possible asymptotic solution of Eq. 7.73, which I choose

to discard because of its non-normalizable nature. Well, this is how it often is—you
chase math out of the door, but it always comes back through the window to bite
you. So, the question now is if there is anything I can do to save the normalizability
of our solution. That light at the end of the tunnel will appear if you recall that
any power series with a finite number of terms cannot overpower an exponentially
decreasing function. Therefore, if I find a way to terminate the series at some finite
number of terms, our conundrum will be resolved. To see how this is possible, let’s
take another look at the recursion relation, Eq. 7.79. What if at some value of j,
which I will call 2nr to emphasize its evenness, the numerator of this relation turns
zero? If this were to happen, then coefficient cjmxC2 would vanish and vanquish
all subsequent coefficients as well, so that instead of an infinite series, I will end
up with a finite sum. This will surely guarantee the normalizability of the found
solution. The condition for the numerator to vanish reads as

2l C 3C 4nr � �l;nr D 0

which is immediately recognizable as an equation for the dimensionless energy �l;nr !
While resolving the normalization problem, I just automatically solved finding the
eigenvalue problem. Using

�l;nr D 3C 2.l C 2nr/

as well as the relation between �l;nr and actual energy eigenvalues, I obtain

El;nr D „!
	
3

2
C l C 2nr



:

Thus, for each l and nr, you have an energy value and a respective wave function

ul;nr .&/ D & lC1 exp
��&2=2�

2nrX
jD0

cj&
j (7.81)

where coefficients cj are given by Eq. 7.79. To get a better feeling for this result,
consider a few special examples.

1. nr D 0. In this case the sum in Eq. 7.81 contains a single term c0, so the non-
normalized wave function becomes

ul;0 .&/ D c0&
lC1 exp

��&2=2�

with respective energy value El;0 D „! � 3
2

C l
�
.
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2. nr D 1. Using Eq. 7.79 with �l;nr D 3C 2.l C 2/, I find for c2 (substituting j D 0

into Eq. 7.79):

c2 D 2l C 3 � .3C 2l C 4/

2 Œ2l C 3�
c0 D � 2

2l C 3
c0

so that

ul;1 .&/ D c0&
lC1 exp

��&2=2�
	
1 � 2&2

2l C 3



:

Following this pattern you can compute the wave functions belonging to any
eigenvalue. For higher energy eigenvalues, it would take more time and efforts,
of course, but you can always give this task to a computer. Before finishing this
section, I would like to note that the energy eigenvalues depend only on the sum
l C 2nr rather than on each of these quantum numbers separately. It makes sense,
therefore, to introduce a main quantum number n D lC2nr and use it to characterize
energy values:

En D „!
	
3

2
C n



: (7.82)

Then, the radial wave functions will be labeled by indexes l and n with a requirement
n � l D 2nr � 0, while the total wave function includes spherical harmonics and an
additional index m. In actual physical variables, it becomes

 n;l;m D 1

�

	
r

�


l

exp

	
� r2

2�2


 n�lX
jD0

cj

	
r

�


j

Ym
l .�; '/ (7.83)

where I reintroduced radial function Rnr ;l D unr;;l=r. This function is not normalized
until the value of coefficient c0 in its radial part is defined, but I am not going to
bother you with that. Instead, I will compute the degree of degeneracy of an energy
eigenvalue characterized by main number n, which is much more fun. Taking into
account that for each l there are 2l C 1 possible values of m, and that l runs all the
way down from n in increments of 2 (n � l must remain an even number), the total
number of states with given n is

X
.2l C 1/ D .n C 1/C n.n C 1/=2 D .n C 1/ .n C 2/ =2;

where the summation over l is carried with increments of 2. It is a nice feeling
to realize that this expression for degeneracy agrees with the one obtained using
Cartesian coordinates.
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The resulting expression for the wave function given by Eq. 7.83 is an alternative
way to produce a position representation of the harmonic oscillator wave function
and is quite remarkably different from the one obtained using Cartesian coordinates.
One might wonder why it is at all possible to have such distinct ways to represent a
same eigenvector. After all, isn’t a representation, once chosen, supposed to provide
a unique way to describe a quantum state? The matter of fact is that it is, indeed,
so only if a corresponding eigenvalue is non-degenerate. In the degenerate case, one
can form an infinite number of the linear combinations of the eigenvectors, and any
one of them will realize the same representation of the corresponding state. In the
case of isotropic harmonic oscillator, it means that the wave functions expressed
in spherical coordinates can be presented as linear combinations of their Cartesian
counterparts and vice versa.

7.3 Quantization of Electromagnetic Field and Harmonic
Oscillators

7.3.1 Electromagnetic Field as a Harmonic Oscillator

Even though the idea of photons—the quanta of electromagnetic field—was one
of the first quantum ideas introduced into the conscience of physicists by Einstein
in 1905,1 the full quantum description of electromagnetic field turned out to
be a rather difficult problem. The first serious attempt in developing quantum
electrodynamics was undertaken by Paul Dirac in his famous 1927 paper,2 which
was just the beginning of a long and difficult path walked by too many brilliant
physicists to be mentioned in this book. Here are just a few names of those who
made critical theoretical contributions to this field: German-American Hans Bethe,
Japanese Sin-Itiro Tomonaga, and Americans Julian Schwinger, Richard Feynman,
and Freeman Dyson. Quantum electrodynamics is a difficult subject addressed in
multiple specialized books and is beyond the scope of this text. Nevertheless, I
would love to scratch a bit from the surface of this field and demonstrate how
ideas developed in the course of studying the harmonic oscillator emerge in new
and unexpected places.

1The irony is that an explanation of photoelectric effect did not require the quantization of light
despite what you might have read or heard. All experimental data could have been explained
treating light classically while describing electrons in metals by the Schrödinger equation.
Fortunately Einstein did not have the Schrödinger equation in 1905 and couldn’t know that. The
science does evolve in mysterious ways: Einstein’s erroneous idea about the photoelectric effect
inspired de Broglie and Schrödinger and brought about the Schrödinger equation, which could
have been used to disprove the idea. Compton’s effect, on the other hand, can indeed be considered
as a proof of reality of photons.
2P.A.M. Dirac, The quantum theory of the emission and absorption of radiation. Proc. R. Soc.
Lond. 114, 243 (1927).
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To this end, I propose considering a toy model of electromagnetic field, in which
the field is described by single components of electric and magnetic fields:

Ex D aE0.t/ sin kz (7.84)

By D �1
c

aB0.t/ cos kz (7.85)

where I introduced a normalization coefficient a to be defined later; extra factor
1=c, where c is the speed of light in vacuum, in the formula for the magnetic field,
ensures that amplitudes E0 and B0 have the same dimension (you might remember
from the introductory course on electromagnetism relation E D cB between electric
and magnetic fields in a plane wave), and the negative sign is included for future
convenience. The Maxwell equations for the electromagnetic field in this simplified
case take the form

@Ex

@z
D �@By

@t

@By

@z
D � 1

c2
@Ex

@t
:

Plugging in the expressions for electric and magnetic fields given by Eqs. 7.84
and 7.85, you will find that the spatial dependence chosen for the fields in these
equations is indeed consistent with the Maxwell equations, which will be reduced
to the system of ordinary differential equations:

dB0
dt

D !E0.t/ (7.86)

dE0
dt

D �!B0.t/: (7.87)

Parameter ! appearing in these equations is defined as ! D ck. It is easy to see that
amplitudes of both electric and magnetic fields obey the same differential equation
as a harmonic oscillator. For instance, differentiating the first of these equations with
respect to time and using the second equation to replace the time derivative of the
electric field, you will get

d2B0
dt2

C !2B0 D 0:

Similar equation can be derived for E0. You can also notice that Eqs. 7.86 and 7.87
have some resemblance to the Hamiltonian equations of classical mechanics,
and this may make you wonder if they can be derived from some kind of a
Hamiltonian. If you are asking why on earth would I want to re-derive these
equations from a Hamiltonian, you were not paying attention to the first 130 pages of
the book. Hamiltonian formalism allows us to introduce canonical pairs of variables,
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which we can turn into operators obeying canonical commutation relations; thus a
Hamiltonian formulation is the key to turning classical theory of electromagnetic
field into the quantum one.

How would one go about introducing a Hamiltonian for the electromagnetic
fields? Naturally, one starts by remembering that Hamiltonian is the energy of the
system and that the energy of the electromagnetic field is given by

H D
ˆ

V

d3r

	
1

2
"0E2 C 1

2�0
B2


; (7.88)

where integration is carried over the entire space occupied by the field. However, if
you attempt to directly compute this integral using Eqs. 7.84 and 7.85 for electric
and magnetic fields, you will encounter a problem: the integral is infinite. This
happens because the field occupies the entire infinite space and does not decrease
with distance. To fix the problem, I introduce a large but finite region of volume
V D LzSxy, where Lz is the linear dimension of this region in z direction and Sxy is
the area of the limiting plane perpendicular to it, and assume that the field vanishes
outside of this region. This trick is very popular in physics, and you will encounter
it in different circumstances later in the book. It can be justified by noting that the
notion of a field occupying the entire space is by itself quite artificial with no relation
to reality. It is also natural to assume that the properties of the field far away from
the region of actual interest should not affect any observable phenomena, so that we
can choose them to be as convenient for us as possible.

With this in mind, I can write the integral in Eq. 7.88 as

H D a2Sxy

2
41
2
"0E20

Lˆ

0

dz sin2 kz C 1

2�0
B20

Lˆ

0

dz cos2 kz

3
5 D

1

4
a2"0SxyL

�E20 C B20
�
;

where I assumed that k satisfies condition kL D �n; n D 1; 2; � � � , making cos 2kz D
1 at both the lower and upper integration limits so that the respective terms cancel
out. Also, at the last step, I made a substitution .�0"0/

�1 D c2. You might, of
course, object to the artificial discretization of the wave number and imposition of
the arbitrary conditions on the values of the electric and magnetic fields at z D L.
So, what can I say in my defense? First, in the limit L ! 1, which I can make after
everything is said and done, the discretization will disappear, and as you will see in
a few short minutes, I will make the dependence on the volume which popped up in
the last expression for the Hamiltonian, disappear as well. Second, I can invoke the
same argument I just made when limiting the field to the finite volume: the behavior
of the field in any finite region of space shall not be affected by its values at an
infinitely remote plane. If you are still not convinced, I have my last line of defense:
it works!
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Now, I am ready to fix the normalization parameter a introduced in Eqs. 7.84
and 7.85. For the reasons which will become clear later, I will choose it to be

a D
p
2!= ."0V/; (7.89)

so that the final expression for the energy of the field becomes

H D !

2

�E20 C B20
�
: (7.90)

Did you notice that the dependence on the volume in the Hamiltonian is gone? This
is fiction of course, because I have simply hidden it inside formulas for the fields,
but in all expressions concerned with actual physical observables, it will vanish in
all honesty.

Equation 7.90 looks very much like the Hamiltonian of a harmonic oscillator.
The first term can be interpreted as kinetic energy with E0 playing the role of the
canonical momentum and term 1=! replacing the mass, and the second term is an
analog of the potential energy with B0 as a conjugated coordinate (note that the
coefficient me!

2=2 in the harmonic oscillator potential energy is reduced to !=2
factor in Eq. 7.90 if you replace me with 1=!). If you wonder why I chose the electric
field to represent the momentum and the magnetic field to be the coordinate, and not
vice versa, just compare Eqs. 7.86 and 7.87 with Hamiltonian equations 7.8 and 7.7,
paying attention to the placement of the negative sign in these equations. You can
easily see that the Hamiltonian equations reproduce Eqs. 7.86 and 7.87 justifying
this identification. But do not be fooled. Identifying magnetic field with coordinate
and electric field with momentum is, of course, a matter of convention resulting
from the choice to place the negative sign in Eq. 7.85.

The Hamiltonian formulation of the classical Maxwell equations allows me now
to introduce the quantum description of the fields. This is done by promoting E0 and
B0 to operators with the standard canonical commutation relation:

h OB0; OE0
i

D i„: (7.91)

As a result, the classical Hamiltonian, Eq. 7.90, becomes a Hamiltonian operator:

OH D !

2

� OE20 C OB20
�
: (7.92)

It is easy to see from Eq. 7.90 that both E0 and B0 have the dimension ofp
energy � time so that the dimension of the commutator on the left-hand side of

Eq. 7.91 is energy � time, which coincides with the dimension of Planck’s constant,
as it should. This result is not particularly surprising, of course, but it is always
useful to check your dimensions once in a while just to make sure that your theory
does not have any of the most basic problems. Using Eq. 7.91 together with Eqs. 7.84
and 7.85, I can compute the commutator of the non-zero components of the electric
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and magnetic fields, which, of course, are now also operators:

h OBy; OEx

i
D � i„!

"0cV
sin 2kz: (7.93)

One immediate consequence of this result is the uncertainty relation for these
components:

4By4Ex � „!
2"0cV

jsin 2kzj ; (7.94)

which shows that just like the coordinate and momentum, electric and magnetic
fields cannot both be known with certainty in the same quantum state.

Canonical commutator, Eq. 7.91, also indicates that in the representation using
eigenvectors of OB0 as a basis, in which states are represented by wave functions
dependent on the magnetic field amplitude OB0, the representation of the electric
field amplitude operator OE0 is

OE0 D �i„ @

@B0 ;

while the Hamiltonian takes the form

OH D !

2

	
�„2 @

2

@B20
C B20



:

Comparing this expression with the quantum Hamiltonian of the harmonic oscillator
in the coordinate representation, you can see that they are mathematically identical
if again you replace me with 1=!. The wave functions representing eigenvectors of
this Hamiltonian can be in this representation written down as

'n.B0/ D 1p
2nnŠ�em

p
�

exp

	
� B20
2�2em



Hn

	 B0
�em



(7.95)

where the characteristic scale of the quantum fluctuations of the magnetic field,
�em, is determined solely by Planck’s constant �em D p„ (this result follows from
Eq. 7.42 after the substitution me D 1=!). As with any wave function, j'n .B0/j2
determines the probability density function for the magnetic field amplitude.

While it is interesting to see how one can turn the coordinate representation
of the harmonic oscillator into the magnetic field representation of the quantum
electromagnetic theory, the practical value of this representation is quite limited.
Much more important, from both theoretical and practical points of view, is the
opportunity to introduce electromagnetic analogs of lowering and raising operators.
In order to distinguish these operators from those used in the harmonic oscillator
problem, I will use notation Ob and Ob� (do not confuse these operators with variables
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b used in the description of the classical oscillator), where

Ob D
r
1

2„
OB0 C i

OE0p
2„ (7.96)

Ob� D
r
1

2„
OB0 � i

OE0p
2„ : (7.97)

Equations 7.96 and 7.97 are obtained from Eqs. 7.22 and 7.23 by setting me! D 1

and replacing Ox and Op by OB0 and OE0 correspondingly. Hamiltonian 7.92 expressed in
terms of these operators acquires a familiar form:

OH D „!
�Ob� Ob C 1=2

�
:

All commutators, which were computed in Sect. 7.1.1, remain exactly the same, so
I can simply reproduce the results from that section: the energy eigenvalues of the
electromagnetic field are given again by

En D „!
	

n C 1

2



; (7.98)

while eigenvectors can be constructed from the ground state j0i as

jni D 1p
nŠ

�Ob�
�n j0i : (7.99)

Formally, both these results are exactly the same as in the case of the harmonic
oscillator. However, the physical interpretation of the integer n in these expressions
and, therefore, of both energy values and eigenvectors is completely different.

Indeed, in the case of a harmonic oscillator, we have a material particle, which
can be placed in states with different energies, counted by the integer n. The
electromagnetic field, on the other hand, once created, carries a certain amount of
energy, and the same field cannot be made to have “more” energy. To produce a
field with higher energy, you need to increase its amplitude, i.e., add “more” field.
The discrete nature of allowed energy levels tells us that the energy of the field can
only be increased in finite increments: to go from a state of electromagnetic field
with energy En to the state with energy EnC1, you have to add a discrete “quantum”
of field with energy „!. This discrete energy quantum is what was introduced by
Einstein in 1905 as “das Lichtquantas.” Replacing the term “quantum of light”
with the term “photon,”3 you can say that number n is the number of photons in
a given state and that going from state jni to state jn C 1i amounts to generating

3It is interesting that the term “photon” was used for the first time in an obscure paper by an
American chemist Gilbert Lewis in 1926. His paper is forgotten, but the term he coined lives on.
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or creating an extra photon, while transitioning to state jn � 1i means removing
or annihilating a photon. To emphasize this point, operators Ob� and Ob are called in
the context of quantum electromagnetic field theory “creation” and “annihilation”
operators, respectively, rather than lowering and raising operators. The ground state
j0i in this interpretation is the state with zero photons and is called, therefore, the
vacuum state. A counterintuitive aspect of the vacuum state is that even though
it is devoid of photons, it still has non-zero energy, which in our oversimplified
model is just „!=2. To one’s mind it might appear as a nonsensical result: how
can zero photons have non-zero energy? I hope it will not blow your mind away
if I say that in a more complete theory, which takes into account multiple modes
(waves with different wave vectors k) of electromagnetic field, the “vacuum” energy
might become formally infinite. In order to wrap your mind around this weird result,
consider the following.

The photon is not just “a quantum of electromagnetic field” as you might
have read in popular books and introductory physics texts. The concept of a
“photon” has a quite specific mathematically rigorous meaning: a single photon
is an eigenvector of the electromagnetic Hamiltonian characterized by n D 1.
Eigenvectors characterized by higher values of n describe n-photon states. The states
described by eigenvectors of the Hamiltonian are not the states in which the electric
or magnetic field has any definite value. Moreover, the commutation relation,
Eq. 7.93, and following from it uncertainty relation 7.94 indicate that there are no
states in which electric and magnetic fields both have definite values. Moreover, in
the states with fixed photon numbers, the expectation values of electric and magnetic
fields are zeroes just like the expectation values of coordinate and momentum
operators of the mechanical harmonic oscillator. At the same time, the expectation
values of the squares of the fields are not zeroes, and these are the quantities which
determine the energy of the fields. These are what we call vacuum fluctuations of
electromagnetic field, where vacuum has, again, a very specific meaning—it is not
just emptiness or a void; it is a state with zero photons, which is not the same as a
state with zero field.

The second issue which needs to be discussed in connection with vacuum energy
is, again, the fact that a zero level of energy is always established arbitrarily. The
vacuum energy, which we found, is counted from the (non-existent in quantum
theory) state, in which both electric and magnetic fields are presumed to be zeroes.
As long as the energy of the vacuum state does not change, while the phenomena
we are interested in play out, we can set the vacuum energy to zero with no
consequences for any physically significant results. To provide a counterexample to
this statement, let me briefly describe a situation in which this assumption might not
be true. If you consider the electromagnetic field between two conducting plates,
the modes of the field and, therefore, its vacuum energy depend on the distance
between the plates. This distance can be changed, in which case the vacuum energy
also changes. Because of this capacity to change, it becomes relevant resulting in a
tiny but observable attractive force acting between the plates known as the Casimir
force. In most other situations, however, the vacuum energy is just a constant, whose
value (finite or infinite) has no physical significance.
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Thus, the eigenvectors of the electromagnetic Hamiltonian representing states
with a definite number of photons, n, bear little resemblance to classical elec-
tromagnetic waves just like stationary states of the harmonic oscillator have no
relation to the motion of the classical pendulum. At the same time, in Sect. 7.1.2,
I demonstrated that a generic nonstationary state reproduces oscillations of the
expectation values of coordinate and momentum resembling those of their classical
counterparts. While this result is true for a generic initial state, and the behavior of
the expectation values to a large extent does not depend on their details, not all initial
states are created equal. However, to notice the difference between them, we have to
go beyond the expectation values and consider the uncertainties of both coordinate
and momentum or, in the electromagnetic context, of electric and magnetic fields.
The fact that different initial states result in different behavior of uncertainties
has already been demonstrated in the examples presented in Sect. 7.1.2. However,
out of all the multitude of various initial states, there exists one, for which these
uncertainties are minimized in a sense that their product has the smallest allowed by
the uncertainty principle value. In the electromagnetic case it means that the sign �
in Eq. 7.94 is replaced with D. These states are called “coherent” states, and they
are much more important in the electrodynamics rather than in mechanical context,
so this is where I shall deal with them.

7.3.2 Coherent States of the Electromagnetic Field

The coherent states are defined as eigenvectors of the annihilation operator:

Ob j˛i D ˛ j˛i : (7.100)

Since the annihilation operator is not Hermitian, you should not expect the
eigenvalues to be real, and we do not know yet if they are continuous or discrete.
I can, however, try to find the representation of vectors j˛i in the basis of the
eigenvectors jni of the electromagnetic Hamiltonian:

j˛i D
1X

nD0
cn jni ; (7.101)

where cn D hn j˛i. The Hermitian conjugation of Eq. 7.99 yields

hnj D 1p
nŠ

h0j
�Ob
�n

(7.102)

so that I can find for the expansion coefficients
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cn D 1p
nŠ

h0j
�Ob
�n j˛i D ˛n

p
nŠ

h0j ˛i :

The only unknown quantity here is c0 D h0j ˛i, which I find by requiring that j˛i
is normalized, which means that

P
n jcnj2 D 1. Applying this last condition, I have

jc0j2
1X

nD0

j˛j2n

nŠ
D jc0j2 exp

�
j˛j2

�
D 1

where I recalled that
P
.xn=nŠ/ is a power series expansion for the exponential

function of x. Thus, choosing c0 to be real-valued, I have the following final
expression for the expansion coefficients:

cn D e� j˛j
2

2
˛n

p
nŠ
: (7.103)

Equation 7.103 together with Eq. 7.101 completely defines a coherent state with
eigenvalue ˛. Since the derivation of the eigenvector did not produce any restrictions
on ˛, it must be presumed to be a continuous complex-valued variable. The vector
that I found describes a state which is the superposition of states with different
numbers of photons and, respectively, with different energies. Respectively, the
number of photons in this case is a random quantity with a probability distribution
given by

pn D jcnj2 D e�j˛j2 j˛j2n

nŠ
: (7.104)

Equation 7.104 describes a well-known probability distribution, called the Poisson
distribution, which appears in a large number of physical and mathematical
problems. This distribution describes the probability that n events will happen within
some fixed interval (of time or of distances) provided that the probability of each
event is independent of the occurrence of the others and all events are happening at a
constant rate (probability per unit time or unit length or unit volume does not depend
upon time or position). This distribution describes, for instance, the probability that
n atoms will undergo radioactive decay within some time interval or the number
of uniformly distributed non-interacting gas molecules that will be found occupying
some volume in space. For more examples of the Poisson distribution, just google it.
The entire Poisson distribution depends on a single parameter j˛j2, whose physical
meaning can be elucidated by computing the mean (or expectation value) of the
number of photons Nn˛ in the state j˛i:

Nn˛ D
1X

nD0
npn D e�j˛j2

1X
nD0

n
j˛j2n

nŠ
D
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e�j˛j2
1X

nD1

j˛j2n

.n � 1/Š D e�j˛j2
1X

kD0

j˛j2.kC1/

kŠ
D

e�j˛j2 j˛j2
1X

kD0

j˛j2k

kŠ
D e�j˛j2 j˛j2 e�j˛j D j˛j2 ;

where in the second line, I first took into account that the n D 0 term in the sum
is multiplied by n D 0 and, therefore, does not contribute. Accordingly I started
the sum with n D 1, after which I introduced a new index k D n � 1, which
reset the counter back to zero. As a result, I gained an extra term j˛j2, while the
remaining sum became just an exponential function canceling out the normalization
term e�j˛j2 . This calculation shows that j˛j2 has the meaning of the average
number of photons in the state with eigenvalue ˛. It is also interesting to compute

the uncertainty of the number of photons in this state 4n D
rD
.n � Nn˛/2

E
D

phn2i˛ � Nn2˛ . First, I compute
˝
n2
˛
˛
:

˝
n2
˛
˛

D e�j˛j2
1X

nD0
n2

j˛j2n

nŠ
D e�j˛j2

1X
nD1

n
j˛j2n

.n � 1/Š D

e�j˛j2
1X

kD0

.k C 1/ j˛j2.kC1/

kŠ
D e�j˛j2 j˛j2

1X
kD0

j˛j2k

kŠ
C

e�j˛j2 j˛j2
1X

kD0

k j˛j2k

kŠ
D j˛j2 C j˛j4 ;

where I used the same trick with the sum as above, twice. Now I can find that
4n D pNn˛ . The relative uncertainty of the photon numbers 4n=Nn˛ D 1=

pNn˛ and
becomes progressively smaller as the average number of photons increases. The
decrease of the quantum fluctuations signifies transition to classical behavior, and
one can suppose, therefore, that in the limit Nn˛ 
 1, the electric and magnetic fields
in this state will reproduce behavior typical for a classical electromagnetic wave.
To verify this assumption, I will compute the expectation values and uncertainties
of the electric and magnetic fields for this state as well as will consider their time
dependence.

Reversing Eqs. 7.96 and 7.97, I find for the fields

OB0 D
r

„
2

�Ob C Ob�
�

(7.105)

OE0 D i

r
„
2

�Ob� � Ob
�
: (7.106)
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Taking squares of these expressions yields

OB20 D „
2

�Ob2 C Ob�2 C ObOb� C Ob� Ob
�

D „
2

�Ob2 C Ob�2 C 2Ob� Ob C 1
�

(7.107)

OE20 D �„
2

�Ob2 C Ob�2 � ObOb� � Ob� Ob
�

D �„
2

�Ob2 C Ob�2 � 2Ob� Ob � 1
�

(7.108)

where I changed the order of operators in ObOb� using the commutation relationhOb; Ob�
i

D 1. Now I am ready to tackle both the expectation values and the

uncertainties. The computation of the expectation values
D OB0

E
and

D OE0
E

is almost

trivial: taking into account that h˛j Ob j˛i D ˛ and h˛j Ob� j˛i D h˛j Ob j˛i� D ˛�, I
have

D OB0
E

D
r

„
2

�
˛ C ˛�� (7.109)

D OE0
E

D i

r
„
2

�
˛� � ˛� : (7.110)

The expectation values of the squares of the fields take just a bit more work:
before computing h˛j Ob� Ob j˛i, I first need to realize that the Hermitian conjugate
of expression Ob j˛i D ˛ is h˛j Ob� D ˛�. With this little insight, the rest of the
computation is as trivial as that for the expectation values. The result is

D OB20
E

D „
2

�
˛ C ˛��2 C „

2
(7.111)

D OE20
E

D „
2

�
˛� � ˛�2 C „

2
: (7.112)

Finally, the uncertainties of both fields are found to be independent of ˛ and equal to

4 OB0 D 4 OE0 D
r

„
2

so that their product indeed is the smallest allowed by the uncertainty principle

4 OB04 OE0 D „=2. Relative uncertainties 4 OB0=
D OB0

E
diminish with the increase in

j˛j D pNn˛ and vanish in the limit Nn˛ ! 1, which obviously corresponds to
the classical (no quantum fluctuations) limit. This result provides an additional
reinforcement to the idea that the electromagnetic field in the coherent states is as
close to a classical wave as possible.

Finally, I will consider how these quantities (the expectation values and uncer-
tainties) change with time. The easiest way to do this is to use the Heisenberg
picture, in which all dynamics is given by the time dependence of the annihilation
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operator, which as we know from the consideration of harmonic oscillator is very
simple ObH.t/ D Ob exp .�i!t/, so that h˛j ObH j˛i D ˛ exp .�i!t/. With this I
immediately find for the field expectation values

D OB0.t/
E

D
r

„
2

�
˛e�i!t C ˛�ei!t

�
(7.113)

D OE0.t/
E

D i

r
„
2

�
˛�ei!t � ˛e�i!t

�
(7.114)

and for their squares

D OB20.t/
E

D „
2

�
˛e�i!t C ˛�ei!t

�2 C „
2

(7.115)

D OE20 .t/
E

D „
2

�
˛�ei!t � ˛ei!t

�2 C „
2
: (7.116)

It is remarkable that the uncertainties of the fields
D OB20.t/

E
�
D OB0.t/

E2
,
D OE20 .t/

E
�

D OE0.t/
E2

remain time independent and satisfy the minimal form of the uncertainty

principle at all times. While the harmonic time dependence of the expectation value
is typical for almost any initial state, the uncovered behavior of the uncertainties is
the special property of the coherent states and is what makes them so special. This
also guarantees that the shape of the coherent superposition of the stationary states
does not get distorted with time similar to what one would expect from a classical
electromagnetic wave.

7.4 Problems

Problems for Sect. 7.1

Problem 83 Using Eq. 7.16 together with Eqs. 7.12 and 7.13, find the time depen-
dence of the coordinate x and momentum p. Comparing the found result with
Eq. 7.9, find the relation between parameters b0; b

�
0 and x0; p0.

Problem 84 Verify that Eqs. 7.14 and 7.15 are equivalent to the Hamiltonian equa-
tions for the regular coordinate and momentum by computing the time derivatives
of the variables b and b

�
using Eqs. 7.12 and 7.13 together with Eqs. 7.7 and 7.8.

Problem 85 Prove that Oa jni D p
n jn � 1i.
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Problem 86 Suppose that a harmonic oscillator is at t D 0 in the state described by
the following superposition:

j˛0i D a
�p

2 j0i C p
3 j1i

�
:

1. Normalize the state.
2. Find a vector j˛.t/i representing the state of the oscillator at an arbitrary time t.
3. Calculate the uncertainties of the coordinate and momentum operators in this

state, and check that the uncertainty relation is fulfilled at all times.

Problem 87 Using the method of mathematical induction, prove that

	
y � d

dy


n

exp

	
�y2

2



D .�1/n exp

	
�y2

2



dn exp

��y2
�

dyn

and derive Eq. 7.44 for the coordinate representation of an eigenvector of the
Hamiltonian of the harmonic oscillator.

Problem 88 Using matrices amn D hmj Oa jni I a�mn D hmj Oa� jni, demonstrate by
direct matrix multiplication that

�Oa� Oa�mn D
X

k

a�mkakn D mımn:

Problem 89 Using the coordinate representation of the lowering operator Oa, apply
it to the coordinate representation of the n D 3 stationary state of the harmonic
oscillator. Is the result normalized? If not, normalize it and compare the found
normalization factor with Eq. 7.40.

Problem 90 Using lowering and raising operators, compute the expectation value
of the kinetic, OK, and potential, OV; energies of a harmonic oscillator in an arbitrary
stationary state jni. Check that

D OK
E

D
D OV
E
:

This result is a particular case of the so-called virial theorem relating the expectation
values of kinetic and potential energies of a particle in the potential described by

V D kxp. The general form of the theorem is 2
D OK
E

D p
D OV
E
, which for p D 2

(harmonic oscillator) is reduced to the result of this problem.

Problem 91 Derive explicit expressions for Hermite polynomials with n D 3; 4; 5

(of course, you can always google it, but do it by yourselves—you can learn
something), and demonstrate explicitly that they obey the orthogonality relation:

1̂

�1
exp

��x2
�

Hm.x/Hn.x/dx D 0; m ¤ n:
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Problem 92

1. Find eigenvectors j˛i of the lowering operator Oa: Oa j˛i D ˛ j˛i in the coordinate
representation. Normalize them.

2. Show that the raising operator Oa� does not have normalizable eigenvectors.

Problem 93 Compute a probability that a measurement of the coordinate will yield
the value in the classically forbidden region for the oscillator prepared in each of the
following stationary states: j0i, j1i, and j3i. (Note that the boundary of classically
allowed regions is different for each of these states.)

Problem 94 Consider an electron with mass me and charge �e in a harmonic
potential OV D me!

2x2=2 also subjected to a uniform electric field E in the positive
x direction.

1. Write down the Hamiltonian for this system.
2. Using operator identities from Sect. 3.2.2, prove that

exp

	
iOpxd

„



Ox exp

	
� iOpxd

„



D Ox C d; (7.117)

where Ox and Opx are regular operators of the coordinate and the respective
components of the momentum and d is a real number.

3. In Sect. 5.1.2 I already demonstrated using the example of a parity operator that

if two vectors are related to each other as jˇi D OT j˛i, while vectors
ˇ̌
ˇ Q̌E and

j Q̨ i are defined as
ˇ̌
ˇ Q̌E D OU jˇi, j Q̨ i D OU j˛i, one can show that

ˇ̌
ˇ Q̌E D OT 0 j Q̨ i,

where OT 0 D OU OT OU�1. Use this relation together with Eq. 7.117 to reduce the
Hamiltonian found in Part I of this problem to that of a harmonic oscillator
without the electric field, and express the eigenvectors of the Hamiltonian with
the field (perturbed Hamiltonian) in terms of the eigenvectors of the Hamiltonian
without the field (unperturbed).

4. Write down the coordinate wave function representing the states of the perturbed
Hamiltonian in terms of the wave functions representing the states of the
unperturbed Hamiltonian. Comment on the results. Explain how it can be derived
by manipulating the classical Hamiltonian before its quantization.

5. If the electron is in its ground state before the electric field is turned on,
find the probability that the electron will be found in the ground state of the
Hamiltonian with the electric field on. (Hint: You will need to use operator
identities concerning with the exponential function of the sum of the operators
discussed in Sect. 3.2.2 and the representation of the momentum operator in
terms of raising and lowering operators. Remember: The exponential function
of an operator is defined as a corresponding power series.)
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Problems for Sect. 7.1.2

Problem 95 Using the Heisenberg representation, find the uncertainty of coordi-
nate and momentum operators at an arbitrary time t for the state

j˛i D 1p
3
.j1i C j2i C j3i/ ;

where jni is nth stationary state of the harmonic oscillator. Verify that the uncertainty
relation is fulfilled at all times.

Problem 96 Solve the previous problem using the Schrödinger representation.

Problem 97 Consider the system described in Problem 94, but work now in the
Heisenberg picture.

1. Write down the Hamiltonian of the electron in the Heisenberg picture.
2. Write down the Heisenberg equations for lowering and raising operators and

solve them.
3. Now, assume that the electric field was turned on at t D 0, when the electron

was in the ground state j0i of the unperturbed Hamiltonian, and turned back off
at t D tf . In the Heisenberg picture, the state of the system does not change, so
that all time evolution is described by the operators. Let us call the lowering and
raising operators at t D 0 Oain, Oa�in (these are, obviously, the same operators that
appear as initial conditions in the solutions of the Heisenberg equations found in
Part I of the problem). These operators are just lowering and raising operators in
the Schrödinger picture, so that the initial state obeys equation Oain j0i D 0. In the
Heisenberg picture, raising and lowering operators change with time according
to the expressions found in Part I. Considering these expressions at t D tf , you
will find Oaf � Oa �tf

�
, and Oa�f D Oa� �tf

�
. Verify that these operators have the same

commutation relation as their Schrödinger counterparts.
4. The time evolution of the Hamiltonian, which at all times has the form found in

Part I, is completely described by the time dependence of lowering and raising
operators. Using the expressions for Oaf and Oa�f found in the previous part of the
problem, write down the Hamiltonian of the electron at times t > tf in terms of
operators Oain, Oa�in.

5. Using the found expression for the Hamiltonian, find the expectation value of
energy in the given initial state.

6. The Hamiltonian of the electron at t > tf has the same form in terms of operators
Oaf , Oa�f , as the Hamiltonian for t < t0 has in terms of operators Oain, Oa�in. Also, it

has been shown in Part III that Oaf , Oa�f have the same commutation relations as

Oain, Oa�in. This means that Hamiltonian t > tf has the same eigenvalues, and its
eigenvectors satisfy the same relations:
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Oaf j0if D 0

jnif D 1p
nŠ

Oa�f j0if

where the first equation defines the new vacuum state j0if and the second

equation defines new eigenvectors. Since operators Oaf , Oa�f differ from Oain, Oa�in,
the new ground state and the new eigenvectors will be different from those
of the initial Hamiltonian. Using the representation of Oaf in terms of Oain, find
the probability that if the system started out in the ground state of the initial
Hamiltonian, it will be found in the new ground state j0if .

Problems for Sect. 7.2

Problem 98 Verify Eqs. 7.71 and 7.72.

Problem 99 Rewrite the Schrödinger equation for the stationary states of a 3-D
isotropic harmonic oscillator in cylindrical coordinates, �; '; z. Show that the wave
function can be written down �n1;n2;m D Zn1 .z/Rn2 .�/ exp.im'/, and derive
equations for functions Zn1 .z/ and Rn2 .�/. The first of these equations will coincide
with the Schrödinger equation for a one-dimensional harmonic oscillator, so you
can use the results of Sect. 7.1.1 to determine this function and the corresponding
contribution to energy, but the equation for Rn2 .�/ will have to be solved from
scratch. Do it using the power series method developed in the text for the spherical
coordinates.

Problem 100 You just saw that the wave functions of an isotropic oscillator
can be presented using Cartesian, spherical, and cylindrical coordinates. While
each of these functions, corresponding to the same degenerate energy value, has
very different forms, since all of them represent the same eigenvectors belonging
to the corresponding eigenvalue, you shall be able to present each of them as
linear combinations of the others belonging to the same eigenvalue. Verify that
this is indeed the case for states belonging to energy value E D 5„!=2 by
explicitly expressing wave functions written in Cartesian coordinates in terms of
their spherical and cylindrical coordinate counterparts.

Problems for Sect. 7.3.2

Problem 101 Verify Eqs. 7.115 and 7.116 for time-dependent expectation values
of the squares of electric and magnetic fields.
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Problem 102 The flow of the energy of the electromagnetic field is described by
the Poynting vector, which in SI units is given by

S D 1

�0
E � B:

In our toy model of the electromagnetic field, the Poynting vector becomes simply

S D 1

�0
ExBy:

In quantum theory, the Poynting vector becomes an operator. Find the time-
dependent expectation value and uncertainty of this operator in the coherent state.



Chapter 8
Hydrogen Atom

8.1 Transition to a One-Body Problem

Quantum mechanics of the atom of hydrogen, understood as a system consisting of
a positively charged nucleus and a single negatively charged electron, is remarkable
in many respects. This is one of the very few exactly solvable three-dimensional
models with realistic interaction potential. As such it provides the foundation for
much of our qualitative as well as quantitative understanding of optical properties
of atoms at least as a first approximation for more complicated situations. A similar
model also arises in the physics of semiconductors, where bound states of negative
and positive charges form entities known as excitons, as well as in the situations
involving a single conductance electron interacting with a charged impurity. Another
curious property of this model is that the energy eigenvalues emerging from the
exact solution of the Schrödinger equation coincide with energy levels predicted by
the heuristic Bohr model based on a rather arbitrary combination of Newton’s laws
with a simple quantization rule for the angular momentum. While it might seem as a
pure coincidence of a limited significance given that by now we have harnessed the
full power of quantum theory and do not really need Bohr’s quantization rules, one
still might wonder by how much the development of quantum physics would have
been delayed if it were not for this “coincidence.”

I will begin exploration of this model with a brief reminder of how classical
mechanics deals with the problem. There are two different aspects to it which need
to be addressed. First, unlike all previous models considered so far, which involved
a single particle, this is a two-body problem. Luckily for us, this problem only
pretends to be two-body and can be easily reduced to two single-particle problems.
This is how it is done in classical physics. The classical Hamiltonian of the problem
has the following form:

H D p21
2mp

C p22
2me

C V .jr1 � r2j/ ; (8.1)
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where p1;r1 and p2; r2 are momentums and positions of the particles with corre-
sponding masses me and mp and V .jr1 � r2j/ is the Coulomb potential energy, which
in the SI units can be written as

V .jr1 � r2j/ D � 1

4�"r"0

Ze2

jr1 � r2j : (8.2)

Here e is the elementary charge, Z is the atomic number of the nucleus introduced
to allow dealing with heavier hydrogen-like atoms such as atoms of alkali metals
(or a charged impurity), and "r is the relative dielectric permittivity accounting for a
possibility that the interacting particles are inside a dielectric medium. To separate
this problem into two single-particle problems, I introduce new coordinates:

R D mpr1 C mer2
mp C me

; (8.3)

r D r1 � r2: (8.4)

I hope you have recognized in R a coordinate of the center of mass of two particles
and in r their relative position vector. Now, I need to find the new momentums
associated with these coordinates. For your sake I will avoid using formalism of
canonical transformations in Hamiltonian mechanics and will begin with defining
the kinetic energy in terms of respective velocities. Reversing Eqs. 8.3 and 8.4, I get

r1 D R C me

mp C me
r;

r2 D R � mp

mp C me
r;

so that the kinetic energy can be found as

K D 1

2
mp

	
dR
dt

C me

mp C me

dr
dt


2
C 1

2
me

	
dR
dt

� mp

mp C me

dr
dt


2
D

1

2

�
mp C me

� 	dR
dt


2
C mpm2

e�
mp C me

�2
	

dr
dt


2
C mem2

p�
mp C me

�2
	

dr
dt


2
D

1

2

�
mp C me

� 	dR
dt


2
C mpme

mp C me

	
dr
dt


2
:

Introducing two new masses—total mass of the system M D mp C me and reduced
mass � D mpme=

�
mp C me

�
—I can define the momentum of the center of mass:

pR D M
dR
dt
;
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and relative momentum

pr D �
dr
dt
;

so that the Hamiltonian, Eq. 8.1, can be rewritten as

H D p2R
2M

C p2r
2�

C V.r/:

The corresponding Hamiltonian equations are separated into a pair of equations for
the position and momentum of the center of mass:

dR
dt

D pR

M

dpR

dt
D 0;

and for the relative motion

dr
dt

D pr

M

dpr

dt
D �dV

dr
:

The first pair of these equations describes a uniform motion of a free particle—the
center of mass of the system—while the second pair describes the motion of a single
particle in potential V.r/.

I have little doubts that variables r and pr form a canonically conjugated pair, and
so I can transition to the quantum description by promoting them to operators with
standard commutation relation

�
ri; prj

� D i„ıi;j. However, in order to be 100% sure
and convince all the possible skeptics, I do need to verify this fact by computing
Poisson brackets with these variables. To this end I need to express r and pr in terms
of initial coordinates and momentums. Expression for r is given by Eq. 8.4, so I only
need to figure out pr:

pr D memp

me C mp

	
dr1
dt

� dr2
dt



D me

me C mp
p1 � mp

me C mp
p2: (8.5)

Let me focus for concreteness on x-components of the momentum and coordinate.
Equation 3.4 for the Poisson bracket, where summation must include the sum over
coordinates of both particles, yields

fx; prxg D @x

@x1

@prx

@p1x
C @x

@x2

@prx

@p2x
D me

me C mp
C mp

me C mp
D 1

as expected. All other Poisson brackets also predictably produce necessary results,
so you can start breathing again.
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8.2 Eigenvalues and Eigenvectors

It is important that the portion of the Hamiltonian describing the motion of the center
of mass, OHR D Op2R=2M, is completely independent from the part responsible for the
relative motion

OHr D Op2r
2�

C V.Or/ (8.6)

so that the eigenvectors of the total Hamiltonian OH D OHR C OHr can be written
down as j�Ri j�ri, where the first vector is an eigenvector of OHR with eigenvalue ER,
while the second vector is the eigenvector of OHr with its own eigenvalue Er. The
eigenvalue of the total Hamiltonian is easily verified to be ER C Er (when verifying
this statement, remember that OHR acts only on j�Ri, while OHr only affects j�ri). I
am going to ignore the center of mass motion and will focus on the Hamiltonian
OHr, Eq. 8.6, with the Coulomb potential energy, Eq. 8.2. In what follows I will omit
subindex r in the Hamiltonian.

What I am dealing with here is yet another example of a particle moving in a
central potential, similar to the isotropic harmonic oscillator problem considered in
Sect. 7.2. Just like in the case of a harmonic oscillator, Hamiltonian 8.6 commutes
with angular momentum operators OL2 and OLz; thus its eigenvectors are also
eigenvectors of the angular momentum. Working in the position representation and
using spherical coordinates to represent the position, I can again write down for the
wave function

 n;l;m .r; �; '/ D Ym
l .�; '/Rnl.r/

where Ym
l .�; '/ are spherical harmonics—coordinate representation of the eigen-

vectors of angular momentum operators. The equation for the remaining radial
function Rnl .r/ is derived in exactly the same way as in Sect. 7.2 and takes the
form similar to Eq. 7.71:

� „2
2�r2

d

dr

	
r2
@Rnr ;l

@r



C „2l.l C 1/

2�r2
Rnr ;l � 1

4�"r"0

Ze2

r
Rnr ;l D El;nr Rnr ;l (8.7)

with obvious replacements of me ! � and quadratic harmonic oscillator potential
for the Coulomb potential. Eigenvalues of energy El;n are found by looking for
normalizable solutions to this equation. My choice of the indexes to label the
eigenvalues reflects the fact that the eigenvalues of the Hamiltonian with any central
potential do not depend on m. Indeed, quantum number m is defined with respect
to a particular choice of the polar axis Z, but since the energy of a system with a
central potential cannot depend upon an arbitrary axis choice, it should not depend
on this quantum number. Here is another example of how symmetry consideration
helps to analyze the problem.
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I will begin by reducing Eq. 8.7 to a dimensionless form as it is customary in
this type of situations. What I need for this is a characteristic length scale, which in
this problem, unlike the harmonic oscillator case, is not that obvious. But there is a
trick which I can use to find it, and I am going to share it with you. Just by looking
at the radial equation, I know that there are three main parameters: mass �, charge
e, and Planck’s constant „ in this problem, and I need to find their combination
with the dimension of length. This is done by first writing down this combination
in the most generic form as �˛ Qeˇ„� , where Qe D e=

p
4�"0"r is the combination of

charge, vacuum, and relative permittivity, "0 and "r correspondingly appearing in the
Coulomb law in SI units, while ˛; ˇ, and � are unknown powers to be determined.
In the next step, I will present the dimension of each factor in this expression in
terms of the basic quantities: length, time, and mass. For instance, the dimension
of Qe can be found from the Coulomb law as ŒQe� D ŒF�1=2 ŒL� , where ŒF� stands for
the dimension of force and ŒL� stands for the dimension of length. The dimension of
force in basic quantities is ŒF� D ŒM� ŒL� ŒT��2, where ŒM� represents the dimension
of mass and ŒT� represents the dimension of time (think of Newton’s second law).
So, for the effective charge, I have ŒQe� D ŒM�1=2 ŒL�3=2 ŒT��1. The dimension of
Planck’s constant can be determined from the Einstein–de Broglie relation between
energy and frequency as Œ„� D ŒE� ŒT� D ŒM� ŒL�2 ŒT��1, where in the second step I
expressed the dimension of energy ŒE� as ŒE� D ŒF� ŒL�. Combining the results for
the charge and Planck’s constant, I find

�˛ Qeˇ„� D ŒM�˛ ŒM�ˇ=2 ŒL�3ˇ=2 ŒT��ˇ ŒM�� ŒL�2� ŒT��� D
ŒM�˛Cˇ=2C� ŒL�3ˇ=2C2� ŒT��ˇ�� :

If I want this expression to have the dimension of length ŒL�, I need to eliminate the
excessive dimensions such as ŒM� and ŒT�. Remembering that any quantity raised to
the power of zero turns to unity and becomes dimensionless, I can eliminate ŒM� and
ŒT� requiring that their corresponding powers vanish:

˛ C ˇ=2C � D 0

ˇ C � D 0:

Then all what is left to do is to make the power of L equal to unity:

3ˇ=2C 2� D 1:

The result is the system of equations for unknown powers, solving which I find
� D 2, ˇ D �2, and ˛ D �1, i.e., the characteristic length scale can be constructed
using the parameters at our disposal as

aB D 4�"0"r„2
e2�

: (8.8)
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The found characteristic length is actually well known from Bohr’s theory of atomic
spectra and is called Bohr radius. It can be used to introduce a dimensionless
coordinate & D r=aB and rewrite Eq. 8.7 as

� 1

&2
d

d&

	
&2

dRnr ;l

d&



C l.l C 1/

&2
Rnr ;l � 2Z

&
Rnr ;l D 2 .4�"0"r/

2 „2
e4�

El;nr Rnr ;l:

(8.9)

You can verify (do it yourselves) that quantity

QE D e4�

32�2"20"
2
r „2 (8.10)

has the dimension of energy, so that I can present the right-hand side of this equation
in terms of dimensionless energy parameter

�l;n D El;n= QE:

Finally, introducing auxiliary radial function un;l D &Rn;l (the same as in the
harmonic oscillator problem), I obtain the effective one-dimensional Schrödinger
equation similar to Eq. 7.73:

� d2unr ;l

d&2
C l.l C 1/

&2
unr ;l � 2Z

&
unr ;l D �l;nr unr ;l: (8.11)

The effective potential in Eq. 8.11 is positively infinite at small & , but as & increases,
it, unlike the harmonic oscillator problem, becomes negative, reaches a minimum
value of �Z2= Œl.l C 1/� at & D l.l C 1/=Z, and remains negative while approaching
zero for & ! 1; see Fig. 8.1. Classical behavior in such a potential is bound for
negative values of energy and unbound for positive energies. In the former case,
we are dealing with a particle moving along a closed elliptical orbit, while in the

Fig. 8.1 Dimensionless
effective potential as a
function of dimensionless
radial coordinate
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latter case, the situation is better described in terms of scattering of a particle by
the potential. In quantum description, as usual, we shall expect states characterized
by the discrete spectrum of eigenvalues for classically bound motion (negative
energies) and states with continuous spectrum for positive energies. The wave
functions representing states of continuum spectrum are well known but rather
complex mathematically and are not used too frequently, so I shall avoid dealing
with them for the sake of keeping everyone sane. The range of negative energies is
much more important for understanding the physical processes in atoms and is more
tractable. In terms of atomic physics, the states with negative energies correspond
to intact atoms, where the electron is bound to its nucleus, and the probability that it
will turn up infinitely far from the nucleus is zero. The states of continuous spectrum
correspond to ionized atoms, where energy of the electron is too large for the nucleus
to be able to “catch” it so that the electron can be found at an arbitrary large distances
from the nucleus.

The process of finding the solution of Eq. 8.11 follows the same steps as solving
a similar equation for the harmonic oscillator: find an asymptotic behavior at small
and large & , factor it out, and present the residual function as a power series. I,
however, can simplify the form of the equation a bit more by replacing variable &
with a new variable � D &

p��l;n (remember �l;nr < 0 !). Equation 8.11 now takes
the following form:

d2unr ;l

d�2
� l.l C 1/

�2
unr ;l C 
l;nr

�
unr ;l � unr ;l D 0 (8.12)

where I introduced a new parameter


l;nr D 2Zp��l;nr

:

The asymptotic behavior at low � is determined by the contribution from the angular
momentum and is the same as for the harmonic oscillator, unr ;l / �lC1, but the large
� limit is now determined by unr ;l term. The resulting equation

d2unr ;l

d�2
D unr ;l

has two obvious solutions

unr ;l / exp .˙�/

of which I will only keep an exponentially decreasing one in hopes to end up with a
normalizable solution. Thus, I am looking for the solution in the form

unr ;l D �lC1 exp .��/ vn;l .�/; (8.13)
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where a differential equation for the reduced function vn;l is derived by substituting
Eq. 8.13 into Eq. 8.11. The rest of the procedure is quite similar to the one I outlined
in the harmonic oscillator problem: present vn;l as a power series with respect
to �, derive recursion relation for the coefficients of the expansion, verify that
the asymptotic behavior of resulting power series yields a non-normalizable wave
function, restore normalizability by requiring that the power series terminates after
a final number of terms, and obtain an equation for the energy values consistent
with the normalizability requirement. Leaving details of this analysis to the readers
as an exercise (of course, you can always cheat by looking it up in a number of
other textbooks, but you will gain so much more in terms of your technical prowess
and self-respect by doing it yourselves!), I will present the result. The only way to
ensure normalizability of the resulting wave functions is to require that parameter

l;nr satisfies the following condition:


l;nr D 2. jmax C l C 1/ (8.14)

where jmax is the number of the largest non-zero coefficient in the power series
expansion of function

vn;l .�/ D
X

j

cj�
j

and takes arbitrary integer values starting from 0. However, since jmax appears in
Eq. 8.14 only in combination with l, the actual allowed values of 
l;nr depend on
a single parameter, called a principal quantum number n, which takes any integer
values starting from n D 1. Independence of the energy eigenvalues of a hydrogen
Hamiltonian of the angular momentum number l is a peculiarity of the Coulomb
potential and reflects an additional symmetry present in this problem. In classical
mechanics this symmetry manifests itself via the existence of a supplemental
(to energy and angular momentum) conserving quantity called Laplace–Runge–
Lenz vector

A D p � L C �
Ze2

4�"r"0
er

where er is a unit vector in the radial direction. In quantum theory this vector can be
promoted to a Hermitian operator, but this procedure is not trivial because operators
p and L do not commute. However, I am afraid that if I continue talking about the
quantum version of Laplace–Runge–Lenz vector, I might open myself to a lawsuit
for inflicting cruel and unusual punishment on the readers, so I will restrain myself.
Those who are not afraid may look it up, but quantum treatment of Laplace–Runge–
Lenz vector is not very common even in the wild prairies of the Internet.

Anyway, I can drop now the double-index notation in 
 and dimensionless energy
� and classify the latter with a single index—principal quantum number n. Taking
into account Eq. 8.14 and introducing

n D jmax C l C 1; (8.15)
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I find for the allowed energy values

En D QE�n D �Z2

n2
QE D � Z2e4�

32�2"2r"
2
0„2

1

n2
D �Eg

n2
(8.16)

where I introduced a separate notation Eg for the ground state energy. It is also
useful sometimes to have this expression written in terms of the Bohr radius aB

defined by Eq. 8.8:

En D � Z2e2

8�"r"0aB

1

n2
: (8.17)

For pure hydrogen atom in vacuum Z D 1, "r D 1, and taking into account that
the ratio of the mass of a proton (the nucleus of a hydrogen atom is a single proton)
to the mass of the electron is approximately mp=me � 1:8 � 104, I can replace
the reduced mass � with the electron mass. In this case, the numerical coefficient
in front of 1=n2 contains only universal constants and can be computed once and
for all. It defines the so-called Rydberg unit of energy 1Ry, which in electron volts
is approximately equal to 13:6 eV. This is one of those numbers which is actually
worth remembering, just like a few first digits of number � . The physical meaning of
this number has several interpretations. First of all, it is the ground state energy of the
hydrogen atom, but taking into account that transition from the discrete energy levels
to the continuous spectrum (ionization of atom) amounts to raising of the energy
above zero, you can also interpret this value as the binding energy or ionization
energy of a hydrogen atom—a work required to change the electron’s energy from
the ground state to zero. Also, this number fixes the scale of atomic energies in
general. Transition to atoms heavier than hydrogen, which are characterized by
larger atomic numbers, makes the ground state energy more negative increasing
the binding energy of the atom, which of course totally makes sense (atoms with
larger charge attract electrons stronger).

If you apply Eq. 8.16 to excitons in semiconductors, it will yield a very different
energy scale. It happens for several reasons. First, masses of the interacting positive
and negative charges forming an exciton are comparable in magnitude, so one does
need to compute the reduced mass. Second, these masses are often by an order of
magnitude smaller than the mass of the free electron, which results in significant
decrease of the binding energy. This decrease is further enhanced by a relatively
large dielectric constant of semiconductors "r. All these factors taken together
result in a much larger ground state energy of excitons (remember the energy is
negative!) with much smaller ionization or binding energy, which varies across
different semiconductors and can take values from of the order of 10�3 to 10�2 eV.

Finally, I would like to point out the fact that the discrete energy levels of
hydrogen-like atoms occupy the final spectral region between the ground state and
zero. Despite this fact, the number of these levels is infinite, unlike, for instance, in
the case of one-dimensional square potential well. This means that with increasing
principal quantum number n, the separation between the adjacent levels becomes
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smaller and smaller, and at some point the discreteness of the energy becomes
unrecognizable, even though the probability to observe the electron infinitely far
from the nucleus is still zero. One can think about this phenomenon as approaching a
classical limit, in which an electron’s motion is finite, it is still bound to the nucleus,
but quantum effects become negligibly small.

For each value of n, there are several combinations of jmax and l satisfying
Eq. 8.15, which means that all energy levels, except of the ground state, are
degenerate with several wave functions belonging to the same energy eigenvalue
that differ from each other by values of l and m. The total degree of degeneracy is
easy to compute taking into account that for each n, there are n � 1 values of l (l
obeys obvious inequality l < n), and for each l, there are 2l C 1 possible values of
m. The total number of wave functions corresponding to the same value of energy
is, therefore, given by

n�1X
lD0
.2l C 1/ D 2

.n � 1/ n

2
C n D n2: (8.18)

As expected, this formula yields a single state for n D 1 for which jmax D 0 and
l D m D 0. For the energy level with n D 2, Eq. 8.18 predicts the existence of four
states, which we easily recognize as one state l D m D 0 (in which case jmax D 1)
and three more characterized by l D 1; m D �1; l D 1; m D 0; and l D 1; m D 1.
For all of them, the maximum power of the polynomial function in the solution is
jmax D 0. For some murky and not very important historical reasons, l D 0 states
are called s-states, l D 1 are called p-states, l D 2 are d-states, and, finally, letter f
is reserved for l D 3 states. The origin of these nomenclature comes from German
words for various types of optical spectra associated with each of these states, but
I am not going into this issue any further. Those who are interested are welcome to
google it.

Replacing all dimensionless variables with physical radial coordinate r D
�naB=Z, I find that the radial wave function Rn;l D un;l=r with fixed values of n and
l is a product of .Zr=naB/

l, exponential function exp .�Zr=naB/, and a polynomial
vn;l .Zr=naB/ of the order n � l �1. The polynomials, which emerge in this problem,
are well known in mathematical physics as associated Laguerre polynomials defined
by two indexes as Lp

q�p.x/: The definition of these polynomials can be found in many
textbooks as well as online, but for your convenience, I will provide it here as well.
The definition is somewhat cumbersome and involves an additional polynomial
called simply a Laguerre polynomial (no associate here):

Lq.x/ D ex

	
d

dx


q

.e�xxq/ : (8.19)

To define the associated Laguerre polynomial, one needs to carry out some
additional differentiation of the simply Laguerre polynomial:
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Lp
q�p.x/ D .�1/p

	
d

dx


p

Lq.x/: (8.20)

It is quite obvious that index q in Eq. 8.19 specifies the degree of the respective
polynomial (exponential functions obviously cancel each other after differentiation
is performed). At the same time, index q � p in Eq. 8.20 specifies the ultimate
degree of the associated polynomial (differentiating p times a polynomial of degree
q will reduce it exactly by this amount). So, in terms of these functions, the
polynomial appearing in the hydrogen model can be written as vn;l .Zr=naB/ D
L2lC1

n�l�1 .2Zr=naB/. The total normalized radial wave function Rn;l.r/ can be shown
to be

Rn;l; .r/ D
s	

2Z

naB


3
.n � l � 1/Š
2n .n C l/Š

exp

	
� Zr

naB


	
2Zr

naB


l

L2lC1
n�l�1

	
2Zr

naB



:

(8.21)

I surely hope you are impressed by the complexity of this expression and can
appreciate the amount of labor that went into finding the normalization coefficient
here, which you are given as a gift. I also have to warn you that different authors may
use different definitions of the Laguerre polynomials, which affect the appearance
of Eq. 8.21. More specifically, one might include an extra factor 1=.n C l/Š either
in the definition of the polynomial or in the normalization factor. Equation 8.21
is written according to the former convention, while if the latter is accepted, the
term .n C l/Š must be replaced with Œ.n C l/Š�3 : You might find both versions of
the hydrogen wave function on the Internet or in the literature, and my choice was
completely determined by the convention adapted by the popular computational
platform MATHEMATICA ©, which I am using a lot to perform computations
needed for this book. The total hydrogen wave function, which in the abstract
notation can be presented as jn; l;mi, is obtained by multiplying the radial function
and the spherical harmonics Yl;m .�; '/:

 n;l;m .r; �; '/ D Rn;l; .r/ Yl;m .�; '/ : (8.22)

Different factors in Eqs. 8.22 and 8.21 are responsible for different physical
effects; however, before giving them any useful interpretation, I have to remind you
that the respective probability distribution density is given by

P .r; �/ D j n;l;m .r; �; '/j2 r2 sin � D
	
2Z

naB


3
.n � l � 1/Š
2n Œ.n C 1/Š�

exp

	
�2Zr

naB


	
2Zr

naB


2l

r2�


L2lC1
n�l�1

	
2Zr

naB


�2 �
Pm

l .cos �/
�2

sin � (8.23)
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where I replaced spherical harmonics by the product of associated Legendre
functions Pm

l .cos �/ and exp .im'/ and took into account that the latter disappears
after multiplication by the respective complex-conjugated expression. Additional
factors r2 and sin � are due to spherical volume element, which has the form of
dV D r2 sin �d�d'dr.

The exponential factor describes how fast the wave function decreases at infinity.
The respective characteristic scale

rat D naB

Z
(8.24)

can be interpreted (quite loosely though) as a size of the atom, because the
probability to find the electron at distance r 
 rat becomes exponentially small.
In the case of the atom in the ground state (n D 1 ), it is easy to show (i.e.,
if you remember that a maximum of a function is given by a zero of its first
derivative) that the distance r D rat corresponds to the maximum of the probability
P .r/ D ´ �

0
P.r; �/d� . In the case of a hydrogen atom (Z D 1/, rat D aB, and if this

atom is in vacuum ("r D 1), the Bohr radius is determined by fundamental constants
only. Replacing the reduced mass with the mass of the electron, you can find that
the size of the hydrogen atom in the ground state is aB � 0:5 � 10�10 m. This
number sets up the atomic spatial scale just as 13:6 eV sets up the typical energy
scale. In the case of excitons in semiconductors, the characteristic scale becomes
much larger for the same reasons why the energy scale becomes smaller: large
dielectric constant and smaller masses yield larger aB; see Eq. 8.8. As a result the
typical size of the exciton can be as large as 10�8 m, which is extremely important
for semiconductor physics, as it allows significant simplification of the quantum
description of excitons.

Radial distribution for higher lying states can have several maximums, so such
a direct interpretation of rat becomes impossible, but it still can be thought of as
a cutoff distance, starting from which the probability for the electron to wander
off dramatically decreases. It is interesting that this parameter increases with n, so
excited atoms not only have more energy, but they are also larger in size. Figure 8.2
presents a number of radial functions for your perusal, which illustrates most of the
properties discussed here.

The factors containing the power of the radial coordinate are responsible for
electrons not falling on the nucleus—the probability that r D 0 is strictly zero.
This probability for r < rat decreases with increasing angular momentum number
l, which can be interpreted as a manifestation of the “centrifugal” force keeping
rotating particles away from the center of rotation. The Laguerre polynomial
factor is essentially responsible for the behavior of the radial wave function at the
intermediate distances between zero and rat: the degree of the respective polynomial
determines how many zeroes the radial wave function has. Finally, the Legendre
function Pm

l .cos �/ is responsible for directionality of the probability distribution
with respect to Z-axis. States with zero angular momentum are described by a
completely isotropic wave function, which does not depend on direction at all. For
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Fig. 8.2 A few radial functions with different values of principal and orbital numbers n and l.
All graphs on the left figure correspond to l D 0 and increasing n between 1 and 3. The number
of zeroes of the functions is equal to n � l � 1. The graphs in the right figure correspond to
n D 3; l D 1; n D 3; l D 2; and n D 4; l D 1 (which one is which you can figure out yourselves
by counting zeroes). The functions are not normalized for convenience of display

states with non-zero l, an important parameter is l � m; which yields the number of
zeroes of the Legendre function and can also be used to determine the number of the
respective maximums. The properties of the Legendre functions have been already
discussed in Sect. 5.1.4, and the plots illustrating them were presented in Fig. 5.3,
which you might want to consult to refresh your memory.

8.3 Virial and Feynman–Hellmann Theorems and
Expectation Values of the Radial Coordinate
in a Hydrogen Atom

I will finish the chapter by discussing one apparently very special and technical but
at the same time practically very important problem of calculating the expectation
values hrpi of various powers of the radial coordinate rp, where p can be any negative
or positive integer, in the stationary states of a hydrogen atom. Formally, calculation
of these expectation values involves evaluation of the integrals

hrpi D
1̂

0

drrpC2 ŒRnl.r/�
2 dr (8.25)

where Rnl.r/ has been defined in Eq. 8.21 and the extra 2 in rpC2 comes from the
term r2 in the probability distribution generated by the hydrogen-like wave function,
Eq. 8.23. Direct calculation of the integral in Eq. 8.25 is a hopeless task given the
complexity of the radial function, but it is possible to circumvent the problem by
relying on the radial equation, Eq. 8.7, itself, rather than on the explicit form of its
solution, Eq. 8.21.
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But first, let me derive a remarkable relation between the expectation values
of kinetic and potential energies of a quantum particle known as a virial theorem.
Consider the expectation value of the operator Or � Op in an arbitrary quantum state and
compute its time derivative using the Heisenberg picture of the quantum mechanics
(the expectation values do not really depend on which picture is used, but working
with time-dependent Heisenberg operators and time-independent states is more
convenient than using the Ehrenfest theorem, Eq. 4.17, for Schrödinger operators):

d

dt
hOr � Opi D

�
dOr
dt

� Op
�

C
�
Or � d Op

dt

�
:

Applying Heisenberg equations for the position and momentum operators, Eqs. 4.28
and 4.29, to this expression, I obtain

d

dt
hOr � Opi D

� Op
m

� Op
�

�
D
Or � r OV

E
D 2

D OK
E

�
D
Or � r OV

E
: (8.26)

The left-hand side of Eq. 8.26 must vanish if the state used to compute the
expectation value is an eigenvector of the Hamiltonian (a stationary state in the
Schrödinger picture) because the expectation value of any operator in a stationary
state is time-independent. This allows me to conclude that in the stationary states,
the expectation values of kinetic and potential energies satisfy the relation

2
D OK
E

D
D
Or � r OV

E
(8.27)

known as virial theorem. In the case of the Coulomb potential of the hydrogen atom
Hamiltonian, this theorem yields

2
D OK
E

D Ze2

4�"r"0

�
1

r

�
: (8.28)

Since the expectation value of the Hamiltonian in its own stationary state is simply
equal to the respective eigenvalue, I can write for the hydrogen-like Hamiltonian:

D OH
E

D
D OK
E

� Ze2

4�"r"0

�
1

r

�
)

En D � Ze2

8�"r"0

�
1

r

�

where I replaced the expectation value of the Hamiltonian with its eigenvalue for
the n-th stationary state and used Eq. 8.28 to eliminate the expectation value of the
kinetic energy. Finally, using Eq. 8.16 for En; I have
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Z2e4�

32�2"2r"
2
0„2

1

n2
D Ze2

8�"r"0

�
1

r

�
)

�
1

r

�
D Ze2�

4�"r"0„2
1

n2
D Z

aBn2
(8.29)

where in the last step I used Eq. 8.8 for Bohr radius aB. The expectation values hrpi
for almost all other values of p can be derived using so-called Kramers’ recursion
relations, which I provide here without proof:

p C 1

n2
hrpi � .2p C 1/

aB

Z

˝
rp�1˛C pa2B

4Z2

h
.2l C 1/2 � p2

i ˝
rp�2˛ D 0: (8.30)

It is easy to see that I can indeed use Eqs. 8.29 and 8.30 to find hrpi for any positive
p; but Kramers’ relations fail to yield

˝
r�2˛, because this term could arise if you set

p D 0, but, unfortunately, the corresponding term vanishes because of the factor
p in it. Therefore, I have to find an independent way of computing

˝
r�2˛. Luckily,

there exists a cool theorem, which Richard Feynman derived while working on his
undergraduate thesis, called Feynman–Hellmann theorem.1 The derivation of this
theorem is based on the obvious identity, which is valid for an arbitrary Hamiltonian
and which I have already mentioned when deriving Eq. 8.29. To reiterate, the
identity states that

En D h nj OH j ni

if j ni are the eigenvectors of OH. Now assume that the Hamiltonian OH depends on
some parameter �. It can be, for instance, a mass of a particle, or its charge, or
something else. It is obvious then that the eigenvalues and the eigenvectors also
depend on the same parameter. Differentiating this identity with respect to this
parameter, you get

@En

@�
D
�
@ n

@�

ˇ̌
ˇ̌ OH j ni C h nj OH

ˇ̌
ˇ̌@ n

@�

�
C h nj @

OH
@�

j ni :

The first two terms in this expression can be transformed as

�
@ n

@�

ˇ̌
ˇ̌ OH j ni C h nj OH

ˇ̌
ˇ̌@ n

@�

�
D En

	�
@ n

@�
j ni C h n

ˇ̌
ˇ̌@ n

@�

�

D

En
@ h nj  ni

@�
D 0

1Hellmann derived this theorem 4 years before Feynman but published it in an obscure Russian
journal, so it remained unknown until Feynman rediscovered it.
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where I used the fact that all eigenvectors are normalized to unity, so that their norm,
appearing in the last line of the above derivation, is just a constant. Thus, here is the
statement of the Feynman–Hellmann theorem:

@En

@�
D h nj @

OH
@�

j ni : (8.31)

This is a very simple, almost trivial result, and it is quite amazing that it can be used
to solve rather complicated problems, such as finding the expectation value

˝
r�2˛

in the hydrogen atom problem. So, let’s see how this is achieved. Going back to
Eq. 8.7, you can recognize that this equation can be seen as an eigenvalue equation
for Hamiltonian

OHr D � „2
2�r2

d

dr

	
r2
@

@r



C „2l.l C 1/

2�r2
� 1

4�"r"0

Ze2

r
(8.32)

and that hydrogen energies are eigenvalues of this Hamiltonian. Therefore, I can
apply the Feynman–Hellmann theorem to this Hamiltonian, choosing, for instance,
the orbital quantum number l as a parameter �. Differentiation of Eq. 8.32 with
respect to l yields

@ OHr

@l
D „2.2l C 1/

2�r2
:

In order to find derivative @En=@l, one needs to recall that the principal quantum
number is related to the orbital number as n D l C nr C 1 so that

@En

@l
D @En

@n
D Z2e2

4�"r"0aB

1

n3
:

Now, applying the Feynman–Hellmann theorem, I can write

„2.2l C 1/

2�

�
1

r2

�
D Z2e2

4�"r"0aB

1

n3

where I used Eq. 8.17 for the energy. Rearranging this result and applying Eq. 8.8
for the Bohr radius, I obtain the final expression for

˝
r�2˛:

�
1

r2

�
D Z2e2�

2�„2"r"0aB

1

.2l C 1/ n3
D 2Z2

a2B

1

.2l C 1/ n3
: (8.33)

Now, boys and girls, if what you have just witnessed is not a piece of pure magic
with the Feynman–Hellmann theorem working as a magic wand, I do not know what
else you would call it. And if you are not able to appreciate the awesomeness of this
derivation, you probably shouldn’t be studying quantum mechanics or physics at
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all for that matter. This result is also a key to finding, with the help of Kramers’
relations, Eq. 8.30, of the expectation values hrpi for any p: For instance, to find˝
r�3˛, you just need to use Eq. 8.30 with p D �1:

aB

Z

˝
r�2˛ � a2B

4Z2

h
.2l C 1/2 � 1

i ˝
r�3˛ D 0 )

�
1

r3

�
D 4Z

aB

1

.2l C 1/2 � 1
�
1

r2

�
D
	

Z

aB


3
2

l .l C 1/ .2l C 1/ n3
: (8.34)

If the sheer wonder at our ability to compute hrpi without using the unseemly
Laguerre polynomials is not a sufficient justification for you to vindicate spending
some time doing these calculations, you will have to wait till Chap. 14, where I
will put this result to actual use in understanding the fine structure of the spectra of
hydrogen-like atoms.

8.4 Problems

Problem 103 Using Eqs. 8.4 and 8.5 together with canonical commutation
relations for single-particle coordinates and momentums, derive the commutator
between relative position vector r and corresponding momentum pr to convince
yourself that these variables, indeed, obey the canonical commutation relations.

Problem 104 Verify that Eq. 8.10 defines a quantity of the dimension of energy.

Problem 105

1. Derive Eq. 8.14 by applying the power series method to Eq. 8.12 and carrying out
the procedure outlined in the text.

2. Find all radial functions with n D 1 and n D 2. Normalize them.

Problem 106 Using the definition of the associate Laguerre functions provided in
the text, find explicit expressions for the radial functions corresponding to the states
considered in the previous problem. Normalize them and make sure that the results
are identical to those obtained previously.

Problem 107 An operator of the dipole moment is defined as Od D eOr where e is
the elementary charge and Or is the position operator of the electron in the hydrogen
atom. A dipole moment of a transition is defined as a matrix element of this operator
between initial and final states of a system: dnlm;n0l0m0 � hnlmj Od jn0l0m0i. Evaluate
this dipole moment for the transitions between ground state of the atom and all
degenerate states characterized by n D 2.

Problem 108 Find the expectation values hri ; h1=ri, and
˝
r2
˛

for a hydrogen atom
in j2; 1;mi state.



272 8 Hydrogen Atom

Problem 109 Using the results of the previous problem and full 3-D Schrödinger

equation with non-separated variables, find
D
Op2
E
. Find a relation between the

expectation values of the potential and kinetic energies.

Problem 110 A hydrogen atom is prepared in an initial state:

	 .r; 0/ D 1p
2
. 2;1;1 .r; �; '/C  1;0;0 .r; �; '// :

Find the expectation value of the potential energy as a function of time.

Problem 111 Consider a hydrogen atom in a state described by the following wave
function:

	.r/ D R1;0.r/C a
z � p

2x

r
R2;1.r/

where

Rn;l.r/ D .r=naB/
lC1 exp

	
� r

naB



L2lC1

n�l�1 .2r=naB/ :

1. Rewrite this function in terms of normalized hydrogen wave functions.
2. Find the values of coefficient a that would make the entire function normalized.
3. If you measure OL2 and OLz, what values can you get and with what probabilities?
4. If you measure energy, which values are possible and what are their probabilities?
5. Find the probability that the measurement of the particle’s position will find it in

the direction specified by the polar angle � �44ı < � < 46ı:
6. Find the probability that the measurement of the particle’s position will find the

particle at a distance 0:5aB < r < aB from the nucleus.



Chapter 9
Spin 1/2

9.1 Introduction: Why Spin?

The model of a pure spin 1=2, detached from all other degrees of freedom of a
particle, is one of the simplest in quantum mechanics. Yet, it defies our intuition and
resists developing that pleasant sensation of being able to relate a new concept to
something that we think we already know (or at least are used to thinking about).
We call this feeling “intuitive understanding,” and it does play an important albeit
mysterious role in our ability to use new concepts. The reason for this difficulty, of
course, lies in the fact that spin is a purely quantum phenomenon with no reasonable
way to model it on something that we know from classical physics. While the
only known to me bulletproof remedy for this predicament is practice, I will try
to somehow ease your pain by taking the time to develop the concept of spin and by
providing empirical and theoretical arguments for its inevitability.

Experimentally spin manifests itself most directly via interaction between elec-
trons and magnetic field and can be defined as an inherent property of electrons
responsible for this interaction. This definition is akin to the definition of electric
charge as a property responsible for electron’s interaction with the electric field or
of mass as a characteristic determining electron’s acceleration under an action of a
force. The substantial difference, of course, is that charge and mass are immutable
scalar quantities, our views of which do not change when we transition from classi-
cal to quantum theories of nature. The concept of spin, on the other hand, is purely
quantum and embodies two distinct types of entities. First is a Hermitian vector
operator, characterized by two distinct eigenvalues and corresponding eigenvectors,
which specify the possible experimental outcomes when one attempts to measure
spin. Second are the spinors—particular type of vectors subjected to the action of
the spin operator and representing various spin states; they control the probability
of one or another outcome of the measurement.
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To untangle the connections between spin, angular momentum, and magnetic
interactions, let me begin with a simple example of a classical electron moving
along a circular orbit of radius R with period T . Taken literally, this example does
not make much sense, but it does produce surprisingly reasonable results, so it can
be considered as a convenient and meaningful metaphor. So, imagine an observer
placed at some point on the orbit and counting the number of times the electron
passes by during some time t 
 T . The number of “sightings” of the electron, n,
is related to the duration of the experiment t and the period T as t D nT . The total
amount of charge that passes by the observer is obviously q D ne D et=T , where e
is the elementary charge. The amount of charge passed across per unit time is what
we call the electric current, which can be found as I D q=t D et= .Tt/ D e=T . This
crude trick replaced a circulating electron by a stationary electric current, which,
of course, only makes sense if I spread the entire charge of the electron along its
orbit by some kind of averaging procedure. But as I said, I am treating this model
only as a metaphor. Accepting this metaphor, I can follow up by remembering that
the interaction between a steady loop of current and a uniform magnetic field is
described by the loop’s magnetic dipole moment, � defined as � D IAn, where A
is the area of the loop and n is the unit vector normal to the plane of the loop with
direction determined by the right-hand rule (do you remember the right-hand rule?).
In the case of the orbiting electron, the loop area is A D �R2, so I have

�L D e

T
�R2n D ev

2�R
�R2n D emevR

2me
n D � e

2me
L (9.1)

where I (a) expressed period T in terms of the circumference 2�R and orbital
velocity v: T D 2�R=v, (b) multiplied the numerator and the denominator of
the resulting expression by electron’s mass me, and (c) recognized that mevRn
is a vector, which is equal in magnitude and opposite in direction to the orbital
momentum of the electron L. To figure out the “opposite” part of the last statement,
recall that the magnetic moment is defined by the direction of the current—motion
of the positive charges—while the charge of our orbiting electron is negative, and,
therefore, it rotates in the direction opposite to the current. Equation 9.1 establishes
the connection between the magnetic dipole moment of the electron and its orbital
angular momentum.

The interaction between a classical magnetic dipole and a uniform magnetic field
B can be described by a potential energy:

UB D ��L� B D e

2me
L � B: (9.2)

According to this expression, the potential energy has a minimum when the
magnetic dipole is oriented along the magnetic field and a maximum when they
are oriented antiparallel to each other. For both these orientations, the torque on the
dipole � D �L � B is zero, so these are two equilibrium positions, but while the
former is the stable equilibrium, the latter is unstable. Equation 9.2 also establishes
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the connection between the potential energy UB and electron’s angular momentum
L, which is quite useful for transitioning to quantum description. Quantization in
this case consists merely in promoting the components of the angular momentum to
the status of the operators. This newly born operator OUB can now be added to the
Hamiltonian OH0 describing the electron in the absence of the magnetic field to yield

OH D OH0 C e

2me
B � OL: (9.3)

OH0, for instance, can describe an electron moving in some central potential V.r/ (the
Coulomb potential would be a good example), and I will assume that its eigenvalues
En;l and eigenvectors jn; l;mi are known. The choice of notation here reflects the
fact that the eigenvectors of the Hamiltonian with central potential must also be the
eigenvectors of angular momentum operators OL2 and OLz and that its eigenvalues do
not depend on magnetic quantum number m.

It is quite easy to verify that if I choose the polar (Z)-axis of the coordinate system
in the direction of the uniform magnetic field B, eigenvectors jn; l;mi of OH0 remain
also eigenvectors of the total Hamiltonian given by Eq. 9.3. The corresponding
eigenvalues are found as

	
OH0 C eB

2me
Lz



jn; l;mi D En;l jn; l;mi C eB

2me
„m jn; l;mi D

	
En;l C „ eB

2me
m



jn; l;mi : (9.4)

The combination of fundamental constant e„=2me has a dimension of magnetic
dipole moment and is prominent enough to warrant giving it its own name. Bohr
magneton �B is defined as

�B D e„
2me

(9.5)

so that the expression for the energy eigenvalues can be written down as

EZ
n;l;m D En;l C m�BB: (9.6)

Term m�BB can be interpreted as the energy of interaction between the uniform
magnetic field and a quantized magnetic moment with values which are multiples
of �B. In this sense, the Bohr magneton can be thought of as a quantum of
magnetic dipole moment. The most remarkable prediction of this simple compu-
tation is the m-dependence of the resulting energy levels, which is responsible for
lifting the original 2l C 1 degeneracy of the energy eigenvectors. Since magnetic
field is the primary reason for this, it seems quite natural to give quantum number m
the name of “magnetic” number.
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Experimentally, this degeneracy lifting is observed via the Zeeman effect—
splitting of the absorption or emission spectral lines in the presence of the magnetic
field. I will discuss the relation between the absorption/emission of light and atomic
energy levels in more detail in Part III of the book, but at this point, it is sufficient
to recall old Bohr’s postulates, one of which relates frequencies of the absorbed or
emitted light to atomic energy levels:

!˛;ˇ D E˛ � Eˇ
„ ;

where ˛; ˇ are composite indexes replacing groups of n; l;m for the sake of
simplicity of notation. So, if you, say, observe a light emission due to the transition
from the first excited state of hydrogen atom with n D 2 to the ground state, in
the absence of magnetic field, you would see just one emission line formed by
transitions between states j2; 0; 0i, j2; 1;�1i ; j2; 1; 0i, and j2; 1; 1i, all of which
have the same energy, E2 D � QE=4, where QE was defined in Eq. 8.10. When the
magnetic field is turned on, two of these states, j2; 1;�1i and j2; 1; 1i, acquire
magnetic field-related corrections:

E2;�1 D � QE=4 � �BB

E2;1 D � QE=4C �BB;

making their energy different from each other and E2;0: As a result, instead of a
single emission line with frequency ! D .E2 � E1/ =„ D 3 QE=4„, an experimentalist
would observe three lines at frequencies:

!�1 D 3 QE=4„ � �B

„ B

!0 D 3 QE=4„
!1 D 3 QE=4„ C �B

„ B:

You should not think though that by deriving Eq. 9.4, I completely solved the
Zeeman effect. The actual problem is much more complicated and involves addition
of orbital and spin magnetic moments, as well as multi-electron effects, relativistic
corrections, magnetic moment of nuclei, etc. What I did was just an illustration
designed to make a particular point—the magnetic field lifting of the 2l C 1

degeneracy of atomic levels gives rise to the odd number of closely positioned
spectral lines. While for some atoms the odd number of lines is indeed observed, a
large number of other observations manifest splitting into even number of lines. This
phenomenon, called anomalous Zeeman effect, cannot be explained by interaction
with orbital magnetic moment, because an even number of lines implies half-integer
values of l. To explain this effect, we have to admit that in addition to “normal”
orbital angular momentum, electrons also have another magnetic moment, which
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cannot be constructed from the coordinate and momentum operators and has to be,
therefore, an intrinsic property of the electron not related to other regular (spatial–
temporal) observables. The lowest number of observed split lines was equal to two.
Equating 2l C 1 to 2, you find that this splitting corresponds to l D 1=2. If you also
recall that l is the maximum value of the magnetic number m, you might realize that
m in this case can have only two values m D ˙1=2.

A meticulous and mischievous reader might ask, of course, if it is absolutely
necessary to derive a magnetic dipole momentum from an angular momentum. Can
a magnetic momentum exist just by itself with no angular momentum attached to
it? The answer to the first question is yes and to the second one is, obviously, no.
To justify these answers, however, is not so easy, and the path toward realizing
that electrons do possess an intrinsic angular momentum, which can be in one of
two possible states, was a long one. Such physicists as Wolfgang Pauli (Austria–
Switzerland–USA) and Arnold Sommerfeld (Germany) recognized very early that
purely orbital state of electrons proposed in Bohr’s model of atoms could not
explain all experimental data, which consistently indicated that the actual number
of states is double of what Bohr’s model predicted. Pauli was writing about the
“two-valuedness” of electrons in early 1925 as he needed it to explain the structure
of atoms and formulate its famous Pauli exclusion principle. Later in 1925 two
graduate students of Paul Ehrenfest from Leiden, the Netherlands, Goudsmit and
Uhlenbeck, published a paper, in which they proposed that the required additional
states come from intrinsic angular momentum of electrons due to their “spinning”
on their own axis. They postulated that this new angular momentum of electrons, S,
is related to its magnetic moment �s in a way similar to the relation between orbital
momentum and orbital magnetic moment, but in order to fit experimental data, they
had to multiply the Bohr magneton by 2:

�s D �2 � e

2me
S D �2�B

„ S: (9.7)

The idea appeared so ridiculous to many serious physicists (such as Lorentz) that
the students almost withdrew their paper, but luckily for them (and for physics),
it was too late, and the paper was published. Eventually, it was recognized that
while it was indeed wrong to think that a point-like particle such as electron can
actually spin about its axis (estimates of the required spinning speed would put it
well above the speed of light), so this classical mechanistic interpretation had to go,
the idea of the intrinsic angular momentum, which “just is” as one of the attributes
of electrons, survived, committing the names of Goudsmit and Uhlenbeck to the
history of physics. Ironically, this was the highest achievement of their lives: they
both made decent careers in physics, moving to the USA and securing respectable
professorial positions, but they have never did anything as significant as their almost
withdrawn student paper on spin.

There are other purely theoretical arguments for understanding spin as a different
kind of the angular momentum, but this discussion is for a different time and a
different book. At this point let me just mention that if we want to be able to
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add orbital angular momentum and spin angular momentum, which is absolutely
necessary to explain a host of effects in atomic spectra, we must require that they
both are described by objects of the same mathematical nature. This means that
if the orbital momentum is described in quantum mechanics by three operator
components OLx, OLy, and OLz of the angular momentum vector with commutation
relations given by Eqs. 3.53–3.55, spin angular momentum must also be described
by three operator components OSx, OSy, and OSz with the same commutation relations.
Our calculations in Sect. 3.3.4 demonstrated that these commutation relations ensure
that one of the operator components (usually it is chosen to be the z-component)
and the operator of the square of the angular momentum OL2(or OS2) can have a
common system of eigenvectors characterized by a set of two eigenvalues, „ml for
the z-component and „2l.l C 1/ for the square operator, where ml can take values
ml D �l;�l C 1; � � � ; l � 1; l and can be either integer or half-integer. The results
of Sect. 5.1.4 indicated that orbital angular momentum can only be characterized by
integer eigenvalues, but, as you can see, half-integer values are needed to deal with
the spin angular momentum. It is amusing to think that nature tends to find use for
everything, which appears in abstract mathematical theories! To distinguish between
spin and orbital moments, I will replace notation l for the maximum eigenvalue of
operator OLz with notation s for the maximum eigenvalue of OSz. The lowest value that
s can take is 1=2; which means that there are only two possible eigenvalues of this
operator, �„=2 and „=2. The eigenvalue of the operator OS2 is „2s .s C 1/ D 3„2=4,
but it is the value of s that we have in mind when we are talking about electron
having spin 1/2. Thus, Pauli’s two-valuedness of the electron comes here in the form
of two eigenvectors and two eigenvalues of the z-component of the spin operator.
The idea that the spin is an intrinsic and immutable property of electrons means
that the 1=2 value of quantum number s (or 3„2=4 eigenvalue of operator OS2) is as
unchangeable as an electron’s mass or charge, but at the same time, the electron can
be in various distinct spin states described by eigenvectors of OSz or their arbitrary
superposition.

9.2 Spin 1/2 Operators and Spinors

While spin 1=2 operators are characterized by the same commutation relations as
the operator of the orbital angular momentum, they act on vectors that live in a
two-dimensional space of spin states or spinors. There are no reasons to panic at
the sound of the unfamiliar word. The term spinor is used to describe a specific
class of abstract vectors, which have all the same properties as any other vectors
belonging to a Hilbert space, only much simpler because the dimensionality of the
spinor space is just 2. One can introduce a ket spinor j�i, its adjoint bra spinor
h�j, and inner product of spinors h�j �0i, which has the same property as any other
inner products h�j �0i D .h�0j �i/�. A basis in this space can be formed by two
eigenvectors of operator OSz, for which physicists use several, different in appearance,
but otherwise equivalent notations. Two of the popular ways to designate these
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eigenvectors are j1=2i for the state belonging to the eigenvalue „=2 and j�1=2i
for its counterpart accompanying eigenvalue �„=2. Alternatively, states with the
positive eigenvalue are often called spin-up states with corresponding notation j"i,
while states with the negative eigenvalue are called spin-down states and are notated
as j#i. The main difference between spinors and vectors representing other states of
quantum systems is that the spinors do not have the coordinate representation. They
exist separately from the vector spaces formed by the eigenvectors of position or
momentum operators or any other observables related to them. Spinors describe
intrinsic properties of electrons, while vectors from other spaces represent their
extrinsic spatial–temporal states.

This basis of the eigenvectors of operator OSz can be used to construct a particular
representation of spinors and spin operators—as I demonstrated about 100 pages
ago in Sect. 5.2.3. Generic spinors in this basis are represented by 2 � 1 column
vectors:

j�i D


a
b

�
D a


1

0

�
C b


0

1

�
; (9.8)

where j"i D

1

0

�
represents the spin-up or m D 1=2 eigenvector, while j#i D


0

1

�
represents the spin-down or m D �1=2 eigenvector. The representation of the

respective bra vector is given by

h�j D �
a� b�� D a� �1 0�C b� �0 1� ; (9.9)

and the norm is

h�j �i D a�a C b�b: (9.10)

Normalized spinors obviously obey the condition

jaj2 C jbj2 D 1: (9.11)

Spin operators OSx, OSy, and OSz defined with respect to a particular Cartesian coordinate
system are represented in the basis of the eigenvectors of OSz by two-by-two matrices
derived in Sect. 5.2.3:

OSx D „
2


0 1

1 0

�
(9.12)

OSy D „
2


0 �i
i 0

�
(9.13)

OSz D „
2


1 0

0 �1
�
: (9.14)
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Equations 9.12–9.14 are just a recapitulation of Eqs. 5.110 and 5.111 from
Sect. 5.2.3, which I placed here for your convenience. Spin operators are often
expressed in terms of so-called Pauli matrices O�x; O�y, and O�z defined as

O�x D

0 1

1 0

�
(9.15)

O�y D

0 �i
i 0

�
(9.16)

O�z D

1 0

0 �1
�
: (9.17)

These matrices have a number of important properties such as

O�2x D O�2y D O�2z D OI; (9.18)

which means that they are simultaneously Hermitian and unitary, and

O�x O�y C O�y O�x D 0

O�x O�z C O�z O�x D 0 (9.19)

O�z O�y C O�y O�z D 0;

which is often expressed as an anticommutativity property. Pauli matrices are used
quite often in quantum mechanics, so it makes sense to acquaint yourselves with
their properties. For instance, one can prove that the property expressed by Eq. 9.18
is valid for any matrix of the form �n D O� � n, where n is an arbitrary unit vector
and O� is a vector with components given by Pauli matrices. Using the presentation
of the unit vector in spherical coordinates

nx D sin � cos'

ny D sin � sin' (9.20)

nz D cos �;

where � and ' are polar and azimuthal angles defining the direction of n with respect
to a particular system of Cartesian coordinate axis (see Fig. 9.1), you can derive for
the matrix �n D sin � cos'�x C sin � sin'�y C cos ��z:

�n D


cos � sin �e�i'

sin �ei' � cos �

�
:
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Fig. 9.1 Unit vector in the
Cartesian coordinate system

Z

X

Y

n
q

j

Squaring it will get you

�2n D


cos � sin �e�i'

sin �ei' � cos �

� 
cos � sin �e�i'

sin �ei' � cos �

�
D


cos2 � C sin2 � cos � sin �e�i' � cos � sin �e�i'

cos � sin �ei' � cos � sin �ei' cos2 � C sin2 �

�
D


1 0

0 1

�
:

This property makes the evaluation of various functions with Pauli matrices as
arguments relatively easy. One of the popular examples is the exponential function
exp .i O� � n/, which you will enjoy computing when you get to the problem section
of this chapter.

To help you become more comfortable with spin operators, I will now consider
a few examples.

Example 21 (Measurement of the y-Component of the Spin) Assume that a single
unmovable electron is placed in the state described by the spin-up eigenvector of
operator OSz. Using magnetic field directed along the Y-axis of the coordinate system,
you are probing possible values of the y-component of the spin. What are these
possible values and what are their probabilities?

Solution

As with any observable, possible results of its measurement are given by the
eigenvalues of the respective operator. In this case this operator is OSy and you need to
determine its eigenvalues. The answer is, of course, obvious (C„=2 and �„=2), but
let’s play the game and compute it. Besides, along the way you will determine the
eigenvectors, which you need to answer the probability question. So, the eigenvector
equation is
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„
2


0 �i
i 0

� 
a
b

�
D „
2
�


a
b

�
;

which produces a set of two linear equations

�ib D �a

ia D �b: (9.21)

The condition for the existence of nontrivial solutions given by zero of the
determinant

����
� i
�i �

����

becomes �2�1 D 0, yielding �1;2 D ˙1. Thus, recalling factor „=2 that I prudently
pulled out, you can conclude that the eigenvalues are, indeed, as predicted ˙„=2.
The first eigenvector is found by substituting � D 1 to Eq. 9.21. This gives a D �ib,
so that the respective eigenvector can be written as

ˇ̌„=2y
˛ D b

�i
1

�
D 1p

2

�i
1

�
(9.22)

where at the last step I normalized it requiring that 2 jbj2 D 1. Repeating this
procedure with � D �1, I find

ˇ̌�„=2y
˛ D 1p

2


i
1

�
: (9.23)

Taking into account that the initial state was j„=2zi D

1

0

�
, I find that the

probabilities of the corresponding eigenvalues are

p˙„=2 D ˇ̌˝˙„=2y

ˇ̌ „=2zi
ˇ̌2 D 1

2

ˇ̌
ˇ̌�˙i 1

� 1
0

�ˇ̌
ˇ̌
2

D 1

2
:

Not a huge surprise, really.

Example 22 (Measurement of the Arbitrary Directed Planar Spin) What if we want
to measure a component of the spin along a direction not necessarily aligned with
one of the coordinate axes? Let me consider an example in which the measured
component of the spin is in the Y–Z plane at an angle � with the Z-axis and find
possible outcomes and their probabilities assuming the same initial state as before.
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Solution

I can define the specified direction by a unit vector with y-component sin � and z-
component cos � . Introducing unit vectors ey and ez along the respective axis, this
vector can be conveniently presented as n D ey sin � C ez cos � . The component of
the spin in the direction of n is given by a dot product OSn D OS�n D OSy sin �C OSz cos � .
Using the matrix representation of the spin operators in the basis of the eigenvectors
of OSz, Eqs. 9.12–9.14, I find for OSn

OSn D „
2

sin �


0 �i
i 0

�
C „
2

cos �


1 0

0 �1
�

D „
2


cos � �i sin �
i sin � � cos �

�
:

The respective eigenvector equation becomes


cos � �i sin �
i sin � � cos �

� 
a
b

�
D �


a
b

�
;

and the equation for the eigenvalues takes the form

����
cos � � � �i sin �

i sin � � cos � � �
���� D � .cos � � �/ .cos � C �/ � sin2 � D �2 � 1 D 0:

I am not going to pretend that I am surprised that the eigenvalues are again ˙„=2 as
what else can they be?

Equations for the eigenvectors can be written as

1. � D 1

a cos � � ib sin � D a

�ib sin � D a .1 � cos �/

�2ib sin
�

2
cos

�

2
D 2a sin2

�

2

�ib cos
�

2
D a sin

�

2
:

There are, of course, multiple choices of the coefficients in this equation, but I
want to make the final form of the eigenvector as symmetric as possible, so I will
choose a D A cos �

2
and b D iA sin �

2
, which obviously satisfy the equation with

an arbitrary A. The latter can be found from the normalization condition jaj2 C
jbj2 D 1, which obviously gives A D 1. Now, I can write the first eigenvector as

j„=2ni D


cos �
2

i sin �
2

�
(9.24)
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2. � D �1
a cos � � ib sin � D �a

ib sin � D a .1C cos �/

2ib sin
�

2
cos

�

2
D 2a cos2

�

2

ib sin
�

2
D a cos

�

2
:

Using the same trick as previously, I find this eigenvector to be

j�„=2ni D


sin �
2

�i cos �
2

�
: (9.25)

The direction described by � D �=2 corresponds to unit vector n pointing in the
direction of the Y-axis, reducing this example to the previous one. Naturally, you
would expect the eigenvector found here to reduce to the respective eigenvectors
from the previous example. However, by substituting � D �=2 into Eqs. 9.24
and 9.25, you find that the resulting vectors do not coincide with Eqs. 9.22
and 9.23. Did I do something wrong here? Not really, because it is easy to
notice that the difference between the two results is a mere factor of i, and we
know that multiplication of an eigenvector by i or by any other complex number
of the form exp .i'/, where ' is an arbitrary real number, does not change a
quantum state and has no observable consequences. Finally, the probabilities that
the measurements of the spin will produce one of the found eigenvalues are

p„=2 D
ˇ̌
ˇ̌�cos �

2
�i sin �

2

� 1
0

�ˇ̌
ˇ̌
2

D cos2
�

2

p�„=2 D
ˇ̌
ˇ̌�sin �

2
i cos �

2

� 1
0

�ˇ̌
ˇ̌
2

D sin2
�

2
:

I can also use this result to find the expectation value of the operator OSn in the state
1

0

�
. The probabilistic definition of the mean

P
xipi, where xi is the value of the

variable and pi is its probability, yields

D OSn

E
D .„=2/ cos2

�

2
� .„=2/ sin2

�

2
D .„=2/ cos �;

which is exactly the value you should have expected from a classical vector oriented
along the Z-axis when computing its component in the direction of n: The same
result is obtained by computing the expectation value using the operator definition:
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D OSn

E
D h"zj OSn j"zi D „

2

�
1 0
�  cos � �i sin �

i sin � � cos �

� 
1

0

�
D

„
2

�
1 0
�  cos �

i sin �

�
D „
2

cos �:

Example 23 (Measuring of the Z-Component in an Arbitrary Spinor State) You can
also ask a question, what if the spin was prepared in a state presented by one of the
eigenvectors of OSn, say, j„=2ni and we were measuring the z-component of the spin?
What would be the probabilities of obtaining „=2 or �„=2 and the expectation value
of OSz in this situation?

Solution

The corresponding probabilities are given by the following expressions:

ˇ̌
ˇ̌�1 0�


cos �

2

i sin �
2

�ˇ̌
ˇ̌
2

D cos2
�

2

ˇ̌
ˇ̌�0 1�


cos �

2

i sin �
2
0

�ˇ̌
ˇ̌
2

D sin2
�

2

yielding exactly the same results. Obviously the expectation value will also be the
same.

These examples were designed to prepare you to answer an important but rather
confusing question. The concept of spin is supposed to represent a vector quantity
existing in our regular physical three-dimensional space. At the same time, the
quantum objects used to describe spin, operators, and spinors have little relation
to this space. While spin operators do have three components, they are not regular
vectors, and the question about the “direction” of a vector operator does not make
much sense. Spinors, representing spin states, are objects existing in an abstract two-
dimensional space. Thus, the question is how these objects are connected with the
physical space in which all our measurement apparatuses live. One might attempt
to deflect this question by saying that after taking the expectation values of the
spin operators for a given spin state, we will end up with a regular vector, which
will provide us with the information about the spin and its direction. I can counter
this by saying that this information is very limited. Indeed, I can also compute
the uncertainty of each spin component, which will also give me a regular vector.
The problem is that in the most generic situation, the vector obtained from the
expectation values and the vector obtained from the uncertainties do not have to have
the same direction, making it difficult to come up with a reasonable interpretation of
these results. One way to avoid this ambiguity is to focus on eigenvectors, in which
case expectation values provide the complete description of the situation. You only
need to figure out the connection between the spatial direction, spin operators and
corresponding eigenvectors.
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One way to answer this question is to do what we just did in the previous
example: introduce a component of the spin operator in the direction of interest, find
its eigenvectors, and analyze their connection to this direction. But I want to add a
bit more intrigue to the issue and will use a different approach. Let me ask you this:
what is the best way to write down a generic spinor? Equation 9.8, which does it by
introducing two complex parameters, a and b, is too general and does not contain
all the information available about even the most generic spin states. Indeed, two
complex numbers contain four independent real parameters, which can be brought
out explicitly by writing a and b in the exponential form: a D jaj exp .i	a/ and
b D jbj exp .i	b/. I can do better than that and reduce the number of parameters to
just two without making the spinor any less generic.

First, I am going to use the freedom of choice of the overall phase of the spinor.
To this end I will multiply both a and b by exp Œ�i .	b C 'a/ =2�, bringing the spinor
in the following form:

j�i D
jaj exp .�i'=2/

jbj exp .i'=2/

�
;

where ' D 	a � 	b, and there are only three parameters left to worry about.
Obviously, this is not the only way to eliminate one of the phases, but this one
presents the spinor in a rather symmetric form, and just like all physicists, I have
a sweet spot for symmetry. Besides, frankly speaking, I know where I want to
go and just taking you along for the ride. The normalization imposes additional
condition on these parameters, telling me that I can use it to eliminate another one
of them reducing the total number to just two. After a few seconds of staring at
Eq. 9.11, it can descend upon you that this equation looks similar to the fundamental
trigonometric identity cos2 x C sin2 x D 1 and that you can automatically satisfy
the normalization condition by choosing jaj D cos .�=2/ and jbj D sin .�=2/,
expressing both jaj and jbj in terms of a single parameter �=2. If you are asking why
�=2 and not just � , you will have the answer in a few minutes, just keep reading.
Now, as promised, I have the expression for the generic normalized spinor:

j�1i D


cos .�=2/ exp .�i'=2/
sin .�=2/ exp .i'=2/

�
(9.26)

with only two parameters, � and '. The choice I made for jaj and jbj is not
unique, and I can generate another spinor by assigning jaj D sin .�=2/ and
jbj D � cos .�=2/:

j�2i D


sin .�=2/ exp .�i'=2/
� cos .�=2/ exp .i'=2/

�
: (9.27)

It is easy to verify by computing h�1j �2i that these spinors are orthogonal (of
course, I designed them with this particular goal in mind), and by generating
matrices
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j�1i h�1j D


cos2 .�=2/ cos .�=2/ sin .�=2/ exp .�i'/
cos .�=2/ sin .�=2/ exp .i'/ sin2 .�=2/

�

and

j�2i h�2j D


sin2 .�=2/ � cos .�=2/ sin .�=2/ exp .�i'/
� cos .�=2/ sin .�=2/ exp .i'/ cos2 .�=2/

�
;

you can also check that

j�1i h�1j C j�2i h�2j D OI;

indicating that these two spinors form a complete set. (When trying to reproduce
these calculations, do not forget complex conjugation when converting kets into
respective bra vectors.)

Thus, with little efforts, I have constructed a complete set of two generic mutually
orthogonal spinors characterized by parameters, which can be interpreted as angles,
and this must mean something. The found representation of spinors establishes a
one-to-one relationship between two-dimensional space of spin states and points
on the surface of a regular three-dimensional sphere of unit radius (see Fig. 9.2).
The points at the north and south poles of the sphere, characterized by � D 0

and � D � , describe the eigenvectors of OSz operators j"i and j#i, respectively
(angle ' is not defined for these points, but it is not a problem because respective
factors exp .�i'=2/ become in these cases simply insignificant phase factors). It
is also easy to notice that the antipodal points lying on the opposite ends of an
arbitrarily oriented diameter of the sphere correspond to two mutually perpendicular
spin states. Indeed, spherical coordinates of the antipodal points are related to each
other as �2 D � � �1; '2 D '1 C � . Substituting these expressions into Eq. 9.26,
you will immediately obtain the spinor presented in Eq. 9.27. While performing this
operation, you can appreciate the wisdom of using half-angles �=2 and '=2 in these
expressions.

In order to further figure out the physical meaning of the mapping between
spinors and directions in regular 3-D space, consider the same operator, OSn D OS � n;
which I discussed in the preceding example, but with a unit vector n defining a
generic direction characterized by the same angles �; ' as in Fig. 9.2. This is the
same vector which I introduced in connection with Pauli matrices, Eq. 9.20, so that
the operator OSn becomes

OSn D „
2

O�n D „
2


cos � sin �e�i'

sin �ei' � cos �

�
:
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Fig. 9.2 The Bloch sphere:
each point on the surface
characterized by spherical
coordinates �; ' corresponds
to a particular spin state
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Now, let me apply this operator to the spinors presented in Eq. 9.26:

„
2


cos � sin �e�i'

sin �ei' � cos �

� 
cos .�=2/ exp .�i'=2/
sin .�=2/ exp .i'=2/

�
D

„
2


cos � cos .�=2/ exp .�i'=2/C sin � sin .�=2/ exp .�i'=2/

sin � cos .�=2/ exp .i'=2/ � cos � sin .�=2/ exp .i'=2/

�
D

„
2


cos .�=2/ exp .�i'=2/

�
cos � C 2 sin2 .�=2/

�
sin .�=2/ exp .i'=2/

�
2 cos2 .�=2/ � cos �

�
�

D

„
2


cos .�=2/ exp .�i'=2/

�
2 cos2 .�=2/ � 1C 2 sin2 .�=2/

�
sin .�=2/ exp .i'=2/

�
2 cos2 .�=2/ � 2 cos2 .�=2/C 1

�
�

D

„
2


cos .�=2/ exp .�i'=2/
sin .�=2/ exp .i'=2/

�
:

Isn’t that nice? A generic spinor with arbitrarily introduced parameters � and '
turned out to be an eigenvector of an operator representing the component of the
spin in the direction defined by these parameters. It probably would not come as
a particularly great surprise now that the second eigenvector I conjured up is also
an eigenvector of the same operator but corresponding to the second eigenvalue,
namely, �„=2. (Check it out as an exercise. And by the way, did you notice that
in the course of this computation, I used a couple of trigonometric identities such
as cos x D 2 cos2 x=2 � 1 and sin x D 2 sin x=2 cos x=2?) This exercise allows us
to give more substance to an already established connection between spinors and
directions in physical space: each spinor parametrized as in Eq. 9.26 or 9.27 is an
eigenvector of a component of the spin in the direction specified by parameters �
and ' interpreted as spherical coordinates of the corresponding unit vector lying
on the surface of the Bloch sphere. The measurement of the spin in this direction
will yield definite results corresponding to the respective eigenvalue, so it can be
interpreted as the direction of the spin for this particular spin state. It also makes
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sense that antipodal points on the Bloch sphere represent eigenvectors belonging
to opposite eigenvalues of OSn. Finally, by now, I hope you have the answer to the
question why I used half-angles in the definition of the spinors.

9.3 Dynamic of Spin in a Uniform Magnetic Field

A bound (for instance, by attraction to a nucleus) electron in a uniform magnetic
field, the system used earlier to introduce the Zeeman effect, is also the simplest
somewhat realistic physical model allowing one to study quantum dynamics of a
pure spin. Assuming that the interaction between the spin and the magnetic field
does not affect the orbital state of the electron, one can ignore energy associated
with the latter and omit the atomic part of the Hamiltonian (remember, energy only
matters when it changes, and if it does not, we can always make it equal to zero).
The Hamiltonian of this system is obtained by dropping OH0 term from Eq. 9.3 and
replacing orbital angular momentum OL with 2 OS, where factor 2 takes into account
the empirically established modification of the connection between spin angular and
magnetic momenta, Eq. 9.7. The resulting Hamiltonian takes the form

OH D 2
�B

„
OS � B: (9.28)

Note that magnetic field B is not an operator because it describes a classical
magnetic field created by a source whose physics is outside of our consideration.
Since the field is uniform, it makes sense to use its direction as one of the axes of the
coordinate system, which I have to specify in order to be able to carry out subsequent
calculations. It is customary to choose axis Z as the one which is codirected with
the magnetic field, in which case Hamiltonian 9.28 significantly simplifies

OH D 2
�BB

„
OSz: (9.29)

In this section I will discuss the dynamics of spin described by this Hamiltonian
using both Schrödinger and Heisenberg pictures of quantum mechanics.

9.3.1 Schrödinger Picture

In the Schrödinger picture, we always begin by establishing the eigenvalues
and eigenvectors of the Hamiltonian. It is obvious that the eigenvectors of the
Hamiltonian given by Eq. 9.29 coincide with those of operator OSz, which I will
denote here as j"i with eigenvalue „=2 (spin-up) and j#i with eigenvalue �„=2
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(spin-down). The respective eigenvalues of the Hamiltonian are quite obvious and
are

E" D �BB

E# D ��BB: (9.30)

A solution of the time-dependent Schrödinger equation for an arbitrary time-
dependent spinor j�.t/i

�i„@ j�.t/i
@t

D 2
�BB

„
OSz j�.t/i

can be presented as a linear combination of the stationary states of the Hamiltonian

j�.t/i D a exp

	
i
�BB

„ t



j"i C b exp

	
�i
�BB

„ t



j#i (9.31)

where coefficients a and b are determined by the initial state of the spin

j�.0/i D a j"i C b j#i : (9.32)

Equation 9.31 essentially solves the problem of the dynamics of a single spin in a
uniform magnetic field. It, however, does little to develop our intuition about the
physical phenomena, which this solution describes. In a typical experimental situ-
ation, one is rarely dealing with a single spin. Most frequently, an experimentalist
would measure a signal from an ensemble of many spins, and if we can neglect any
kind of interaction between them, as well as assume that all spins are in the same
initial state,1 the experimental results can be described by finding the expectation
values of the spin operators. So, let me compute these expectation values for the
state described by Eq. 9.31.

To this end I will use the representation of a generic spinor in the form of Eq. 9.26
and rewrite coefficients a and b as

a D cos .�=2/ exp .�i'=2/

b D sin .�=2/ exp .i'=2/ : (9.33)

Substituting these expressions for a and b into Eq. 9.31 and using regular represen-
tation of basis spinors j"i and j#i, you can find

1The assumption about the same initial state is the most difficult to realize experimentally and can
be justified only at zero temperature.
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j�.t/i D
2
4cos .�=2/ exp .�i'=2/ exp

�
i�BB

„ t
�

sin .�=2/ exp .i'=2/ exp
�
�i�BB

„ t
�
3
5 : (9.34)

It is easiest to compute the expectation value of OSz:

D OSz

E
D „
2

�
jaj2 � jbj2

�
D „
2

cos �: (9.35)

I derived this expression taking advantage of the fact that j"i and j#i in Eq. 9.31
are eigenvectors of OSz, and, therefore, coefficients in front of them (their absolute
values squared, of course) determine the probabilities of the respective eigenvalues.
To find the expectation values of two other components, I will have to do a little bit
more work computing

D OSx;y

E
D h�.t/j OSx;y j�.t/i :

I begin with the x-component and first compute the right half of this expression
OSx j�.t/i:

OSx j�.t/i D „
2


0 1

1 0

�2
4cos .�=2/ exp .�i'=2/ exp

�
i�BB

„ t
�

sin .�=2/ exp .i'=2/ exp
�
�i�BB

„ t
�
3
5 D

„
2

2
4sin .�=2/ exp .i'=2/ exp

�
�i�BB

„ t
�

cos .�=2/ exp .�i'=2/ exp
�

i�BB
„ t
�
3
5 :

By the way, have you noticed how operator OSx flips the components of the spinor?
Anyway, to complete this computation, I find the inner product of this ket with the
bra version of spinor in Eq. 9.31:

D OSx

E
D „
2


cos .�=2/ sin .�=2/ exp .i'/ exp

	
�i
2�BB

„ t




C cos .�=2/ sin .�=2/ exp .�i'/ exp

	
i
2�BB

„ t


�
D

„
2

sin � cos

	
2�BB

„ t � '


:

Similar calculations with the y-component operator yield

D OSy

E
D „
2

sin � sin

	
2�BB

„ t � '


:
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Let’s collect all these results together to get the better picture:

D OSz

E
D „
2

cos �

D OSx

E
D „
2

sin � cos

	
2�BB

„ t � '



D OSy

E
D „
2

sin � sin

	
2�BB

„ t � '


: (9.36)

Here is what we have: a vector of length „=2 remains at all times at angle � with
respect to the magnetic field, but its projection on the X–Y plane of the coordinate
system (which is perpendicular to the magnetic field) rotates with frequency
!L D 2�BB=„ D eB=me, where I substituted Eq. 9.5 for the Bohr magneton.
A remarkable fact about this result is the disappearance of Planck’s constant
from the final expression for frequency, which signals that this phenomenon must
exist in classical physics as well, and it, indeed, does. Equation 9.36 describes
a very well-known effect—Larmor precession—which is observed every time
when a magnetic moment (of any nature) interacts with a uniform magnetic field.
However, the frequency of the precession might be different for different magnetic
moments because of its dependence on the so-called gyromagnetic ratio defined as a
coefficient of proportionality between the magnetic dipole moment and the angular
momentum. For the orbital angular momentum, this ratio is �e= .2me/ as given by
Eq. 9.1, while for the spin, it is two times larger, resulting in twice as big precession
frequency.

9.3.2 Heisenberg Picture

To describe spin precession in the Heisenberg picture, I have to solve Heisenberg
equations 4.24 for spin operators. To simplify notations I will omit subindex H,
which I used to distinguish Schrödinger from Heisenberg operators. However, it
is important to note that the angular momentum commutation relations, Eqs. 3.53–
3.55, remain the same for both pictures, provided that we take Heisenberg operators
at the same time. If you do not see how to verify this statement, imagine

sandwiching both sides of the commutation relation between operators exp
�

i OHt=„
�

and exp
�
�i OHt=„

�
and also inserting the products of these operators (which is equal

to unity, by the way) between the products of any two operators in the commutator.
Thus, using the necessary commutation relation, I obtain the following equations:

d OSz

dt
D � i

„!L

h OSz; OSz

i
D 0 (9.37)
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d OSx

dt
D � i

„!L

h OSx; OSz

i
D �!L OSy (9.38)

d OSy

dt
D � i

„!L

h OSy; OSz

i
D !L OSx; (9.39)

where I introduced the Larmor frequency defined in the previous section to the
Hamiltonian. Differentiating Eqs. 9.38 and 9.39 with respect to time, I can separate
them into two independent differential equations of the second order:

d2 OSx

dt2
D �!2L OSx

d2 OSy

dt2
D �!2L OSy

with obvious solutions

OSx.t/ D OAx sin!Lt C OBx cos!Lt

OSy.t/ D OAy sin!Lt C OBy cos!Lt:

Unknown constant operators OAx;y and OBx;y are determined by the initial conditions
for the spin operators and their derivatives:

OBx D OSx.0/I OAx D 1

!L

d OSx

dt
D � OSy.0/

OBy D OSy.0/I OAy D 1

!L

d OSy

dt
D OSx.0/

where OSx;y .0/ coincide with the Schrödinger spin operators. Thus, I have

OSx.t/ D � OSy.0/ sin!Lt C OSx.0/ cos!Lt (9.40)

OSy.t/ D OSx.0/ sin!Lt C OSy.0/ cos!Lt: (9.41)

All that is left to do is to compute the expectation values of the Schrödinger spin
operators in the initial state given by Eqs. 9.32 and 9.33. However, I do not have to
repeat these calculations as we can just read them off Eq. 9.36 at t D 0: This yields

D OSx.t/
E

D „
2

sin � cos' cos!Lt C „
2

sin � sin' sin!Lt D „
2

sin � cos .!Lt � '/
D OSy.t/

E
D „
2

sin � cos' sin!Lt � „
2

sin � sin' cos!Lt D „
2

sin � sin .!Lt � '/

in complete agreement with the results obtained from the Schrödinger picture.
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9.4 Spin of a Two-Electron System

9.4.1 Space of Two-Particle States

I will complete the discussion of the spin by considering a system of two electrons.
The goal of this exercise is to figure out if it makes sense to talk about a total spin of
this system understood as a some kind of the sum of two individual spins OS1C OS2. In
classical physics that would have been a trivial question—of course, we can define
the total angular momentum of several particles—just add them up remembering
that they are vectors. You can even derive a total angular momentum conservation
law valid in the absence of external torques, just like you can derive a total linear
momentum conservation law if the system of particles is not exposed to external
forces. In quantum mechanics, when individual spins are presented by operators
acting in different spaces containing spin states of each particle, the answer to this
question is more complex. It is still affirmative: yes, it is possible to define the total
spin of a system of two (or more particles) by introducing a new operator, which
can be formally defined as

OS.tp/ D OS.1/ C OS.2/; (9.42)

where the upper index is an abbreviation of “two-particle.” However, so far Eq. 9.42
is a purely formal expression, in which even the meaning of the sign “C” is not

clear. What I need to do now is to figure out the properties of OS.tp/ and their relation

to the properties of OS.1/ and OS.2/, which is not a trivial task.
Operators are defined by their action on vectors, and, since vectors live in a

certain vector space, the first step in defining an operator is to understand the space
where vectors, on which the operator acts, live. Operators OS1 and OS2 operate on
vectors that live in different and unrelated spaces: one acts on spin states of one
particle and the other on the states of a completely different particle. I can, however,
combine these spaces to form a new extended space, which would include spin states
of both particles. To define such a space, all what I need is to define a basis in it,
and then any other vector can be presented as a linear combination of the vectors of
basis. The space containing spin states of each individual particle is defined by two
basis vectors for each particle. These states are eigenvectors of operators OS.1/z and OS.2/z

(obviously defined in the same coordinate system) and can be depicted symbolically
in a few equivalent ways discussed in previous sections. Here I will use spin-up
and spin-down notations indicated by the vertical arrows j"1;2i or j#1;2i, where
subindexes 1 and 2 simply indicate a particle whose states these kets represent.
In a system of two particles, there exist four different combinations of their spin
states: both spins up, both spins down, the first spins up, the second spins down,
and vice versa. You can create a notation for these states either by putting two state
signifiers inside a single ket, like that j"1; #2i, or by sticking together two kets like
this: j"1i j#2i. The difference between the two notations is superfluous, and either
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one can be used freely, while the second notation with two separate kets is slightly
more convenient when one needs to write down matrix elements corresponding to
operators acting on different particles. Thus, I will present the four basis vectors in
a new four-dimensional space containing states of a two-spin system as

j1i � j"1i j"2i ; j2i � j"1i j#2i ; j3i � j#1i j"2i j4i � j#1i j#2i : (9.43)

Conversion from kets to bras occurs following all the standard rules of Hermitian
conjugation applied to the states of both particles.

A larger space formed from two smaller spaces in the described manner is
called in mathematics a tensor product of spaces. It has all the standard algebraic
properties of a linear vector space discussed in Sect. 2.2, and I only need to add the
distributive properties involving vectors belonging to different components of the
tensor product:

.je1i C je2i/ jv1i � je1i jv1i C je2i jv1i
je1i .jv1i C jv2i/ � je1i jv1i C je1i jv2i : (9.44)

The inner product in the tensor space is defined as

.he1j hv1j/ .je2i jv2i/ D he1j e2i hv1j v2i ; (9.45)

and it is quite obvious that this definition preserves the main property of the inner
product, namely, that hˇ j˛i D h˛ jˇi�. In the case of the two-spin system, you can,
for instance, find using the notation from Eq. 9.43:

h1j 1i D h"1j "1i h"2j "2i D 1

where it is presumed that vectors j"1;2i are normalized. You can also find that the
inner products involving different vectors from the basis vanish such as

h1j 2i D h"1j "1i h"2j #2i D 0

h1j 3i D h"1j #1i h"2j "2i D 0:

In reality you have already encountered the tensor product of spaces earlier in
this book, even though I never used the name. One example was the construction
of states of a three-dimensional harmonic oscillator from the states of the one-
dimensional oscillators.

To illustrate calculations of the inner product between vectors belonging to such
a tensor product space, consider the following example.

Example 24 (Working with Vectors from a Tensor Product Space) Compute the
norms of the following vectors as well as the inner product hˇ j˛i:
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j˛i D .3i j"1i C 4 j#1i/ .2 j"2i � i j#2i/
jˇi D .2 j"1i � i j#1i/ .2 j"2i � 3 j#2i/ :

Solution

Since all the vectors in adjacent parenthetic expressions are kets and belong to
different spaces, it is clear that I am dealing here with the tensor product of two
spaces. Distribution properties, expressed by Eq. 9.44, allow me to convert these
expressions into

j˛i D 6i j"1i j"2i � 4i j#1i j#2i C 3 j"1i j#2i C 8 j#1i j"2i
jˇi D 4 j"1i j"2i C 3i j#1i j#2i � 6 j"1i j#2i � 2i j#1i j"2i :

Note that the order in which vectors belonging to different spaces are stacked
together is completely irrelevant. Using the normalized and orthogonal basis
introduced in Eq. 9.43, I can rewrite this expression as

j˛i D 6i j1i � 4i j4i C 3 j2i C 8 j3i
jˇi D 4 j1i C 3i j4i � 6 j2i � 2i j3i :

Now I can compute the norms and the inner product following the standard
procedure, which yields

k˛k D p
36C 16C 9C 64 D p

125

kˇk D p
16C 9C 36C 4 D p

65

hˇ j˛i D 4 � 6i � 4i .�3i/ � 3 � 6C 8 � .2i/ D �30C 40i:

Finally, I need to introduce the rule describing how spin operators act on the
vectors in the tensor product space. The rule is actually very simple: the operators
affect only the states of their own particles. To illustrate this rule, consider the
following example.

Example 25 (Operator Action in Tensor Spaces) For the state j˛i from the previous
example, compute

(a)

� OS.1/z C OS.2/z

�
j˛i

(b)

� OS.1/C C OS.2/C
�

j˛i
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Solution

(a)

� OS.1/z C OS.2/z

�
.6i j"1i j"2i � 4i j#1i j#2i C 3 j"1i j#2i C 8 j#1i j"2i/ D

6i OS.1/z j"1i j"2i C 6i j"1i OS.2/z j"2i � 4i OS.1/z j#1i j#2i � 4i j#1i OS.2/z j#2i C
3 OS.1/z j"1i j#2i C 3 j"1i OS.2/z j#2i C 8 OS.1/z j#1i j"2i C 8 j#1i OS.2/z j"2i D

3i„ j"1i j"2i C 3i„ j"1i j"2i C 2i„ j#1i j#2i C 2i„ j#1i j#2i C
3„
2

j"1i j#2i � 3„
2

j"1i j#2i � 4„ j#1i j"2i C 4„ j#1i j"2i D
6i„ j"1i j"2i C 4i„ j#1i j#2i

(b)

� OS.1/C C OS.2/C
�
.6i j"1i j"2i � 4i j#1i j#2i C 3 j"1i j#2i C 8 j#1i j"2i/ D

6i OS.1/C j"1i j"2i C 6i j"1i OS.2/C j"2i � 4i OS.1/C j#1i j#2i � 4i j#1i OS.2/C j#2i C
3 OS.1/C j"1i j#2i C 3 j"1i OS.2/C j#2i C 8 OS.1/C j#1i j"2i C 8 j#1i OS.2/C j"2i D

�4i„ j"1i j#2i � 4i„ j#1i j"2i C 3„ j"1i j"2i C 8„ j"1i j"2i D
11„ j"1i j"2i � 4i„ .j"1i j#2i C j#1i j"2i/

9.4.2 Operator of the Total Spin

The concept of the tensor product gives an exact mathematical meaning to Eq.
9.42 and the “plus” sign in it as illustrated by the previous example. Indeed, if
each operator appearing on the right-hand side of this equation is defined to act
in a common space of two-particle states, then the plus sign generates the regular
operator sum as defined in earlier chapters of this book.

Now I can tackle the main question: what are the eigenvalues and eigenvectors
of the components of the total spin operator defined by Eq. 9.42, and of its square� OStp

�2 D
� OS.1/ C OS.2/

�2
? When discussing any systems of operators, the first

question you must be concerned with is the commutation relations between these
operators. The first commutator that needs to be dealt with is between operators
OS.1/ and OS.2/, and it is quite obvious that any two components of these operators
commute, i.e.,

h OS.1/i ;
OS.2/j

i
D 0
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for all i; j taking values x; y, and z. Indeed, since OS.1/i only affects the states of

the particle 1, and OS.2/i acts only on the states of particle 2, an order in which
these operators are applied is irrelevant. Now it is quite easy to establish that all
commutation relations for the components of operator OStp

and its square are exactly
the same as for any operator of angular momentum. This justifies the claim that there
exists a system of vectors, jS;Mi, which are common eigenvectors of one of the

components of OStp
, usually chosen to be OStp

z , and of the operator
� OStp

�2
characterized

by two numbers M and S such that

OStp
z jS;Mi D „M jS;Mi

� OStp
�2 jS;Mi D „2S .S C 1/ jS;Mi :

It also can be claimed that jMj � S and that these numbers take integer of half-
integer values. What is missing at this point is the information about the actual
values that S can take and its relation to eigenvalues of the spin operators of the
individual particles. Also, one would like to know about the connection between

eigenvectors of OStp
z and

� OStp
�2

and their single-particle counterparts. To answer

these questions, I am going to generate matrix representations of operators OStp
z and� OStp

�2
, using the basis vectors defined in Eq. 9.43. I will start with operator OStp

z . The

application of this operator to the basis vectors yields (see examples above)

OStp
z j"1i j"2i D „ j"1i j"2i (9.46)

OStp
z j"1i j#2i D 0 (9.47)

OStp
z j#1i j"2i D 0 (9.48)

OStp
z j#1i j#2i D �„ j#1i j#2i : (9.49)

These results indicate that the basis vectors defined in Eq. 9.43 are also eigenvectors
of the operator OStp

z with eigenvalues ˙„ and a double-degenerate eigenvalue 0. Thus,
the matrix of this operator in this basis is a diagonal 4 � 4 matrix:

OStp
z D „

2
664

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �1

3
775

where I have positioned the matrix elements in accord with the numeration of
eigenvectors introduced in Eq. 9.43. For instance, the right-hand side of Eq. 9.46,
where operator OStp

z acts on the first of the basis vectors, represents the first column of
the matrix, which contains a single non-zero element, the right-hand side of Eq. 9.47
yields the second column, where all elements are zeroes, and so on and so forth.
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Operator
� OStp

�2
requires more work. First, let me rewrite it in terms of the

particle’s operators OS.1/ and OS.2/:
� OStp

�2 D
� OS.1/ C OS.2/

�2
D
� OS.1/

�2
C
� OS.2/

�2
C 2 OS.1/ � OS.2/ D

� OS.1/
�2

C
� OS.2/

�2
C 2

� OS.1/x
OS.2/x C OS.1/y

OS.2/y C OS.1/z
OS.2/z

�
D

� OS.1/
�2

C
� OS.2/

�2
C 2 OS.1/z

OS.2/z C

2

" OS.1/C C OS.1/�
2

OS.2/C C OS.2/�
2

C
OS.1/C � OS.1/�

2i

OS.2/C � OS.2/�
2i

#
D

� OS.1/
�2

C
� OS.2/

�2
C 2 OS.1/z

OS.2/z C OS.1/C OS.2/� C OS.1/� OS.2/C

where I replaced the x- and y-components of the spin operator by ladder operators
defined in Eqs. 3.59 and 3.60 adapted for spin operators. The last expression is

perfectly suited for generating the matrix of
� OStp

�2
. Applying this operator to each

of the basis vectors, I can again simply read out the columns of this matrix:

� OStp
�2 j1i D

� OS.1/
�2

C
� OS.2/

�2
C 2 OS.1/z

OS.2/z C OS.1/C OS.2/� C OS.1/� OS.2/C
�

j"1i j"2i D (9.50)

3

4
„2 j"1i j"2i C 3

4
„2 j"1i j"2i C 1

2
„2 j"1i j"2i D 2„2 j"1i j"2i � 2„2 j1i :

The ladder operators do not contribute to the final result because the raising operator
applied to the spin-up vector yields zero. All other terms in this expression follow
from the standard properties of the spin operators. Continue

� OStp
�2 j2i D

� OS.1/
�2

C
� OS.2/

�2
C 2 OS.1/z

OS.2/z C OS.1/C OS.2/� C OS.1/� OS.2/C
�

j"1i j#2i D

3

4
„2 j"1i j#2i C 3

4
„2 j"1i j#2i � 1

2
„2 j"1i j#2i C „2 j#1i j"2i D (9.51)

„2 j"1i j#2i C „2 j#1i j"2i � „2 j2i C „2 j3i

where the ladder operators in term OS.1/� OS.2/C are responsible for the non-zero
contribution and where the spin of each particle becomes upside down. And again
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� OStp
�2 j3i D

� OS.1/
�2

C
� OS.2/

�2
C 2 OS.1/z

OS.2/z C OS.1/C OS.2/� C OS.1/� OS.2/C
�

j#1i j"2i D

3

4
„2 j#1i j"2i C 3

4
„2 j#1i j"2i � 1

2
„2 j#1i j"2i C „2 j"1i j#2i D (9.52)

„2 j"1i j#2i C „2 j#1i j"2i � „2 j3i C „2 j2i

where the inversion of the spins in the last term is due to operators OS.1/C OS.2/� . Finally

� OStp
�2 j4i D

� OS.1/
�2

C
� OS.2/

�2
C 2 OS.1/z

OS.2/z C OS.1/C OS.2/� C OS.1/� OS.2/C
�

j#1i j#2i D (9.53)

3

4
„2 j#1i j#2i C 3

4
„2 j#1i j#2i C 1

2
„2 j#1i j#2i D 2„2 j#1i j#2i � 2„2 j4i :

Reading out columns 1 through 4 from Eqs. 9.50 to 9.53 correspondingly, I generate
the desired matrix:

� OStp
�2

ij
D „2

2
664

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

3
775 :

What is left now is to find its eigenvalues and eigenvectors, i.e., to solve the
eigenvalue problem:

„2
2
664

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

3
775

2
664

a1
a2
a3
a4

3
775 D �„2

2
664

a1
a2
a3
a4

3
775 :

Two eigenvalues can be found just by looking at Eqs. 9.50 and 9.53, which indicate
that vectors j1i and j4i are eigenvectors of this matrix with eigenvalues 2„2. This
circumstance is reflected in the structure of the matrix, where the first and fourth
rows as well as the first and fourth columns contain single non-zero elements. Such
matrices are known as block-diagonal, and what makes them special is that each
block can be considered independently of the others and treated accordingly. For
instance, the equations for a1 and a4 will not contain any other coefficients, while
equations for elements a2 and a3 will only contain these two elements. Since I
already know that solutions with a1 D 1, a2;3;4 D 0 and a4 D 1, a1;2;3 D 0 are
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eigenvectors corresponding to � D 2„2, I only need to deal with the remaining two
coefficients a2 and a3 satisfying equations

a2 C a3 D �a2

a2 C a3 D �a3:

It immediately follows from this system that either a2 D a3 or � D 0. In the former
case, I have

� D 2;

while the latter one gives me

a2 D �a3:

Thus, I end up once again with eigenvalue 2„2, but now it belongs to the eigenvector

1p
2
.j2i C j3i/ D 1p

2
.j"1i j#2i C j#1i j"2i/

where I set a2 D a3 D 1=
p
2 to make this vector normalized. I also got a new

eigenvalue equal to zero with eigenvector

1p
2
.j2i � j3i/ D 1p

2
.j"1i j#2i � j#1i j"2i/ :

Recalling that eigenvalues of the
� OStp

�2
must have the form „2S.S C 1/, I can

immediately deduce that eigenvalue 2„2 corresponds to S D 1, while eigenvalue
zero, obviously, corresponds to S D 0.

It is time to put all these results together. Here is what I have: a triple degenerate
eigenvalue characterized by spin S D 1 and three eigenvectors

j1; 1i D j"1i j"2i

j1; 0i D 1p
2
.j"1i j#2i C j#1i j"2i/ (9.54)

j1;�1i D j#1i j#2i

and a single non-degenerate eigenvalue corresponding to S D 0 with eigenvector

j0; 0i D 1p
2
.j"1i j#2i � j#1i j"2i/ (9.55)
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attached to it. Notations used for these eigenvectors follow the traditional scheme
jS;Mi and reflect the facts that all three eigenvectors in Eq. 9.54 are simultaneously
eigenvectors of operator OStp

z with corresponding quantum numbers M D 1, M D 0,
and M D �1, while a single eigenvector in Eq. 9.55 is also an eigenvector of OStp

z
corresponding to M D 0. You might want to pay attention to the fact that both
superposition eigenvectors j2; 0i and j0; 0i are linear combinations of the eigen-
vectors of OStp

z established in Eqs. 9.47 and 9.48 belonging to a double-degenerate
eigenvalue 0 of OStp

z , which reflects the general notion that linear combinations of
degenerate eigenvectors are also eigenvectors belonging to the same eigenvalue. The
particular combinations appearing in Eqs. 9.54 and 9.55 ensure that these vectors are

simultaneously eigenvectors of the operator
� OStp

�2
. The results presented in these

equations also reflect the general property of the angular momentum operators: the
value of quantum number S determines the maximum and minimum allowed values
of the second quantum number M and, respectively, the total number 2S C 1 of

eigenvectors belonging to the given eigenvalue of
� OStp

�2
. Indeed, for S D 1, we

have three vectors with M ranging from �1 to 1, while for S D 0, there exists a
single vector with M D 0. This situation is often described by saying that the system
of two-spin 1=2 particles can be in two states characterized by the total spin equal
to one or zero. The former is called a triplet state reflecting the existence of three
distinct states with the same S and different magnetic numbers M, and the latter is
called a singlet for obvious enough reasons. People also often say that in the triplet
state, the spins of the particles are parallel to each other, while in the singlet state,
they are antiparallel, but this is highly misleading. Even leaving aside the obvious
quantum mechanical fact that the direction of spin in quantum mechanics is not
defined because only one component of the vector can have a definite value in a
given state, parallel or antiparallel can refer only to the sign of the z-component of
the spin determined by the value of M. As we have just seen, this number can be
equal to zero, reflecting the “antiparallel” orientation of the particle’s spins, when
the particles are either in the S D 1 or S D 0 state. Therefore, more accurate
verbal description of the situation (if you really need one) may sound like this: in
the triplet spin states, the particle’s spins can be either parallel or antiparallel, while
in the singlet state, they can only be antiparallel.

To complete this discussion, let me direct your attention to another interesting
difference between triplet and singlet states. The former are symmetric with respect
to the exchange of the particles, while the latter are antisymmetric. What it means
is that if you replace particle indexes 1 and 2 in Eqs. 9.54 and 9.55 (exchange
the particles one and two), the states described by the former equation do not
change, while the singlet state described by the latter equation changes its sign.
The operation of the particle’s exchange reflects the classical idea that you can
somehow distinguish between the particles marking them as one and two and then
swap them by placing particle one in the state of particle two and vice versa. In
quantum mechanics two electrons are not really distinguishable, and, therefore, the
swapping operation shouldn’t change the properties of the system. This topic will be
discussed in much more detail in Chap. 11 devoted to quantum mechanics of many
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identical particles. Here I just want to mention, giving you a brief preview of what
is coming, that the symmetry and antisymmetry of the spin states of the two-particle
system are a reflection of quantum indistinguishability of electrons.

9.5 Operator of Total Angular Momentum

9.5.1 Combining Orbital and Spin Degrees of Freedom

When discussing the model of spin 1=2 or addition of two such spins, I intentionally
ignored the fact that the spin is “attached” to a particle, which can be involved
in all kinds of crazy things such as being a part of an atom or rushing through a
piece of metal delivering an electron current. At the same time, such phenomena as
resonant tunneling or hydrogen atom in the previous chapters were treated with utter
ignorance of the fact that in addition to “regular” observables, such as position or
momentum, electrons also carry around their spin, which is as unalienable as their
mass or charge. Now the time has come to design a formalism allowing to treat spin
and orbital properties2 of the electrons (and other particles with spin) together.

First of all, one needs to recognize that the spinors and orbital vectors are
completely different animals and inhabit different habitats. For instance, while you
can represent eigenvectors of momentum and angular momentum in the same, say,
position representation or express them in terms of each other, it is impossible to
construct a position representation for the eigenvectors of the spin operators or
present momentum eigenvectors as a linear combination of spinors. Accordingly,
operators acting on orbital vectors do not affect spinors, and spin operators are
indifferent to vectors representing orbital states. One of the trivial consequences
of this is, of course, that orbital and spin operators always commute. Giving these
statements a bit of a thought, you can notice a certain similarity with the just
discussed two-spin problem, where we also had to deal with vectors belonging to
two unrelated spaces and being acted upon only by their “native” operators. That
situation was handled by combining spinors representing spin states of different
particles into a common space formed as a tensor product of the spaces of each
individual spin. Similarly, spin and orbital spaces of a single particle can also be
combined into a tensor product space by stacking together all combinations of
the basis vectors from both spaces. Assuming that the orbital space is described

by some discrete basis
ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
based on a set of mutually consistent

observables, a typical basis vector in a compound tensor product space can be made
to look something like this:

ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
jmsii ; (9.56)

2By orbital properties I understand all those properties of the particle that can be described using
quantum states related to position or momentum operators or a combination thereof. In what
follows I will call these states and vectors representing them orbital states or orbital vectors.
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where jmsii is a basis spinor. Since there are only two of those, the dimension of
the combined space is two times the dimensionality of the orbital space. Indeed,

attaching the spin state to each orbital basis vector
ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
, I am

generating two new basis vectors:

ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
j1=2i

and
ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
j�1=2i ;

or, if you prefer,

ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
j"i

and
ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
j#i :

Sometimes the indicator of a spin state is put inside a single ket or bra vector together
with the signifiers of all other observables:

ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
jmsii �

ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p ;msi

E
; (9.57)

but this notation hides the critical difference between the spin and orbital observ-
ables and makes some calculations less intuitive, so I would prefer using the notation
of Eq. 9.56 most of the time. Nevertheless, sometimes it might be appropriate to
use the simplified notation of Eq. 9.57, and if you notice me doing it, do not
start throwing stones—this is just a notation, chosen based on convenience and a
moment’s expedience.

An arbitrary vector j�i residing in the tensor product space can be presented as

j�i D
X

km;���p
akm���pI"

ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
j"i C

X
km;���p

akm���pI#
ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
j#i : (9.58)

Expansion coefficients akm���pI" now define the probability
ˇ̌
akm���pI"

ˇ̌2
that the

measurement of the mutually consistent observables including a component of
the spin will yield values k:m � � � p for regular observables and „=2 for the spin’s
component. The set of coefficients akm���pI# defines the probability

ˇ̌
akm���pI#

ˇ̌2
that
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the observation will produce the same values of all the orbital observables and value
�„=2 for the spin. The sum of probabilities

pkm���p D ˇ̌
akm���pI"

ˇ̌2 C ˇ̌
akm���pI#

ˇ̌2

yields the probability to observe the given values of the observables provided that
the spin is not measured, while the sums

p" D
X

km;���p

ˇ̌
akm���pI"

ˇ̌2

or

p# D
X

km;���p

ˇ̌
akm���pI#

ˇ̌2

generate probabilities of getting values of the spin component „=2 or �„=2,
respectively, regardless of the values of other observables. Finally, the normalization
condition for the expansion coefficients must now include the summation over all
available variables:

X
km;���p

hˇ̌
akm���pI"

ˇ̌2 C ˇ̌
akm���pI#

ˇ̌2i D 1: (9.59)

Equations 9.56–9.58 are written under the assumption that the basis in the
orbital space is discrete. However, they can be easily adapted to representations
in a continuous basis by replacing all the sums with integrals and probabilities
with corresponding probability densities. For instance, in the basis of the position
eigenvectors jri, Eqs. 9.56 and 9.58 become jri jmsi and

j�i D
ˆ

d3r ".r/ jri j"i C
ˆ

d3r #.r/ jri j#i : (9.60)

j ms.r/j2 now gives the position probability density for the corresponding spin state

jmsi,
ˇ̌
 ".r/

ˇ̌2 C ˇ̌
 #.r/

ˇ̌2
yields the same, but when the spin state is not important,

and
´

d3r j ms.r/j2 generates the probability of finding the particle in the spin state
jmsi. The normalization Eq. 9.59 now becomes

ˆ
d3r

hˇ̌
 ".r/

ˇ̌2 C ˇ̌
 #.r/

ˇ̌2i D 1: (9.61)

One can generate particular representations for the generic vectors j�i by
choosing specific bases for the orbital and spinor components of the states. One
of the most popular choices is to use the position representation for the orbital
vectors and eigenvectors of operator OSz for the spinor component. The respective
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representation is generated by premultiplying
ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
by hrj, which

yields

 
q
.1/
k ;q

.2/
m ;���q.Nmax/

p
.r/ D hr

ˇ̌
ˇq.1/k ; q

.2/
m ; � � � q.Nmax/

p

E
;

and by replacing jmsii with a corresponding two-component column


1

0

�
for the

spin-up (or C1=2) state and


0

1

�
for the spin-down (or �1=2) state. Since the

coordinate representation for the orbital states is almost always used in conjunction
with the representation of spinors in the basis of the eigenvectors of OSz operator, I
will call this form the coordinate–spinor representation. Then the combined spin–
orbital state takes the form

 
q
.1/
k ;q

.2/
m ;���q.Nmax/

p
.r/

1

0

�

or

 
q
.1/
k ;q

.2/
m ;���q.Nmax/

p
.r/

0

1

�
;

depending on the chosen spin state. The generic state vector represented by Eq. 9.58
in this representation becomes (I will keep the same notation for the abstract vector
and its coordinate–spinor representation to avoid introducing new symbols, when it
is not really necessary and should not cause any confusion)

j�i D
X

km;���p
akm���pI" q

.1/
k ;q

.2/
m ;���q.Nmax/

p
.r/

1

0

�
C

X
km;���p

akm���pI# q
.1/
k ;q

.2/
m ;���q.Nmax/

p
.r/

0

1

�
D

‰".r; t/

1

0

�
C‰#.r; t/


0

1

�
D

‰".r; t/
‰#.r; t/

�
; (9.62)

where

‰".r; t/ D
X

km;���p
akm���pI".t/ q

.1/
k ;q

.2/
m ;���q.Nmax/

p
.r/

‰#.r; t/ D
X

km;���p
akm���pI#.t/ q

.1/
k ;q

.2/
m ;���q.Nmax/

p
.r/ (9.63)
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are the orbital wave functions corresponding to spin-up and spin-down states
correspondingly. These functions appear in Eq. 9.63 as linear combinations of
the initial basis vectors transformed in their position representations. Obviously,
‰".r; t/ and ‰#.r; t/ in these expressions are the same functions, which appear
in Eq. 9.60 presenting expansion of an abstract vector j�i in the basis of position
eigenvectors.

Any combination of orbital and spin operators act on vectors defined by Eq. 9.58
or 9.62 following a simple rule: orbital operators act on orbital component of the
vector, and spin operators affect only its spin component. To illustrate this point,
consider the following example.

Example 26 (Using Operators of Orbital and Spin Angular Momentum.) Consider
the following vector representing a state of an electron in a hydrogen atom:

j˛i D 2

3
j2; 1;�1i j"i C 1

3
j1; 0; 0i j#i � 1

3
j2; 0; 0i j"i C 1p

3
j2; 1; 1i j#i ;

where the orbital portion of the state follows the standard notation jn; l;mi. Compute
the following expressions:

1. h˛j OH j˛i, where OH is the Hamiltonian of a hydrogen atom, Eq. 8.6.

2.
� OLC OS� C OL� OSC

�
j˛i.

3.
� OLz C OSz

�
j˛i.

4. Write down vector j˛i in the coordinate–spinor representation.

Solution

1. I begin by computing

OH j˛i D �2
3

E1
4

j2; 1;�1i j"i � 1

3
E1 j1; 0; 0i j#i C 1

3

E1
4

j2; 0; 0i j"i

� 1p
3

E1
4

j2; 1; 1i j#i ;

where �E1 is the hydrogen ground state energy. Now I find

h˛j OH j˛i D �E1
9

� E1
9

� E1
36

� E1
12

D �E1
3
;

where I took into account that all terms in the expression above remain mutually
orthogonal, so that all cross-product terms in the inner product vanish. The spin
components of the state are not affected by the Hamiltonian because it does not
contain any spin operators.
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2.

� OLC OS� C OL� OSC
�

j˛i D 2

3

p
2„2 j2; 1; 0i j#i C 1p

3

p
2„2 j2; 1; 0i j"i D

r
2

3
„2 j2; 1; 0i

	
2p
3

j#i C j"i


;

where I applied orbital and spin ladder operators separately to corre-
sponding orbital and spin portions of the vectors using correspondingly
Eqs. 3.75, 3.76, 5.104, and 5.106. In particular I found that

OLC OS� j2; 1; 0i j#i D OLC j2; 1; 0i OS� j#i D 0

as well as that

OL� OSC j2; 1; 0i j"i D OL� j2; 1; 0i OSC j"i D 0:

3.

� OLz C OSz

�
j˛i D �„2

3
j2; 1;�1i j"i C 2

3

„
2

j2; 1;�1i j"i �
1

3

„
2

j1; 0; 0i j#i � 1

3

„
2

j2; 0; 0i j"i C 1p
3

„ j2; 1; 1i j#i � 1p
3

„
2

j2; 1; 1i j#i D

„
2


�2
3

j2; 1;�1i j"i � 1

3
j1; 0; 0i j#i � 1

3
j2; 0; 0i j"i C 1p

3
j2; 1; 1i j#i

�

4. A coordinate–spinor representation of vector j˛i looks like this:

"
2
3
R21.r/Y�1

1 .�; '/ � 1

3
p
4�

R20.r/
1

3
p
4�

R10.r/C 1p
3
R21.r/Y11 .�; '/

#
:

If ‰".r; t/ and ‰#.r; t/ can be written down as

‰".r; t/ D a1.t/ .r; t/I ‰#.r; t/ D a2.t/ .r; t/; (9.64)

Eq. 9.62 becomes

j�i D  .r; t/


a1.t/
a2.t/

�
: (9.65)

resulting in the separation of spin and orbital components of the state. The spin and
orbital properties of the particle in such a state are completely independent of each



9.5 Operator of Total Angular Momentum 309

other, and changing one of them wouldn’t affect the other. In a more generic case,
when ‰".r/ and ‰#.r/ are two different functions, the orbital state of the particle
depends on its spin state and vice versa. This interdependence is called “spin–orbit
coupling” and is responsible for many important phenomena. Some of them are old,
known for a century, while others have been discovered only recently. For instance,
spin–orbit interaction is responsible for the fine structure of atomic spectra (an old
phenomenon known from the earlier days of quantum mechanics), but it also gave
birth to the entire new “hot” research area in contemporary semiconductor physics
known as spintronics. Researchers working in this field seek to control the flow of
electrons using their spin as a steering wheel and also to control the orientation of
an electron’s spin by affecting its electric current. I will talk more about spin–orbit
coupling and its effect on atomic spectra in Chap. 14, but for the spintronics effects,
you will have to consult a more specialized book.

While the abstract form of the Schrödinger equation

i„@ j�i
@t

D OH j�i

stays the same even when the spin and orbital degrees of freedom are combined,
its position representation, which is frequently used for practical calculations,
needs to be modified. Indeed, in the representation described by Eq. 9.62, a state
of a particle is described by two wave functions corresponding to two different
spin states. Respectively, a single Schrödinger equation becomes a system of two
equations, whose form depends on the interactions included in the Hamiltonian.
To find the explicit form of these equations, you will need to convert operator OH
into the combined position–spinor representation. This can be done independently
for the orbital and spin portions of the Hamiltonian with the result, which can be
presented in the form

OH ! OHms;m0

s
.r/ � hmsj OH .r/ ˇ̌m0

s

˛

where ms;m0
s take values 1 or 2 corresponding, respectively, to ms D 1=2 and ms D

�1=2. Thus, the Hamiltonian in the presence of the spin becomes a 2 � 2 matrix,
and its action on the state presented in the form of Eq. 9.62 involves (in addition to
what it normally does to orbital vectors) the multiplication of a matrix and a spinor.
In the most trivial case, when the Hamiltonian does not contain any spin operators
and does not act, therefore, on spin states, this matrix becomes

OHms;m0

s
.r/ � hmsj OH .r/ ˇ̌m0

s

˛ D OH .r/ hms

ˇ̌
m0

s

˛ D OH .r/ ıms;m0

s

so that the Schrödinger equations for both wave function components ‰".r/ and
‰#.r/ are identical. In this case the total state of the system is described by the
vector of the form given by Eq. 9.65, in which the coefficients a1 and a2 of the spinor
component can be chosen arbitrarily. Physically this means that in the absence of the
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spin-related terms in the Hamiltonian, the spin state of the particle does not change
with time and is determined by the initial conditions.

Now let me consider a less trivial case, when the Hamiltonian includes a stand-
alone spin operator, something like what we dealt with in Sect. 9.3:

OH D OHorb C 2
�BB

„
OSz: (9.66)

Here OHorb is a spin-independent portion of the Hamiltonian, and the second term,
as you know, describes the interaction of the spin with uniform magnetic field B
directed along the Z-axis. In the matrix form, this Hamiltonian becomes

OHms;m0

s
D OHorbıms;m0

s
C �BB . O�z/ms;m0

s
(9.67)

where I used the representation of the spin operators in terms of the corresponding
Pauli matrices introduced in Eqs. 9.15–9.17. The explicit matrix form of the
stationary Schrödinger equation becomes

 OHorb 0

0 OHorb

� 
‰".r/
‰#.r/

�
C �BB


1 0

0 �1
� 
‰".r/
‰#.r/

�
D E


‰".r/
‰#.r/

�

and translates into two independent equations:

OHorb‰".r/C �BB‰".r/ D E‰".r/ (9.68)

OHorb‰#.r/ � �BB‰#.r/ D E‰#.r/: (9.69)

This independence signifies the absence of any spin–orbit coupling in this system:
the functions‰".r/ and‰#.r/ can be chosen in the form of Eq. 9.64 where  .r/ is a
solution of the orbital equation OHorb .r/ D Eorb .r/. With this, Eqs. 9.68 and 9.69
can be converted into equations

a1 .E � Eorb � �BB/ D 0

a2 .E � Eorb C �BB/ D 0;

yielding two eigenvalues E.1/ D Eorb C �BB and E.2/ D Eorb � �BB, with two
respective eigenvectors a.1/1 D 1; a.1/2 D 0 and a.2/1 D 0; a.2/2 D 1. Choosing the
zero level of energy at Eorb and disregarding the orbital part of the resulting spinors

ˇ̌
.1/

˛ D  .r/

1

0

�

ˇ̌
.2/

˛ D  .r/

0

1

�
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which does not affect any of the phenomena associated with the action of the
magnetic field on electron’s spin, you end up with eigenvalues

E.1;2/ D ˙�BB

and eigenvectors

ˇ̌
.1/

˛ D

1

0

�
I ˇ̌.2/˛ D


0

1

�

identical to those found for a single spin in the magnetic field in Sect. 9.3.
This example demonstrates that the “pure” spin approach, which ignores orbital
components of the total state of a particle, is justified as long as the presence of the
spin does not change its orbital state, i.e., in the absence of the spin–orbit interaction.

9.5.2 Total Angular Momentum: Eigenvalues and Eigenvectors

In Example 26 in the preceding section, you learned that working in the tensor
product of spin and orbital spaces, you can operate with expressions combining
orbital and spin operators such as OLz C OSz. This is a z-component of a vector operator

OJ D OL C OS (9.70)

called the operator of a total angular momentum, which plays an important role in
the general structure of quantum mechanics as well as in a variety of its applications.
For instance, this operator is crucial for understanding the energy levels of hydrogen
atom in the presence of spin–orbit coupling and magnetic field; I will introduce you
to these topics in Chap. 14. Here my objective is to elucidate the general properties
of this operator, which appears to be a logical conclusion to the discussion started
in the previous section.

I begin by stating that components of vector OJ obey the same commutation
relations as those of its constituent vectors OL and OS. This statement is easy to verify,
taking into account that orbital and spin operators commute. For instance, you can
check that

OJx OJy � OJy OJx D OLx OLy � OLy OLx C OSx OSy � OSy OSx D i„OLz C i„ OSz D i„ OJz (9.71)

where I canceled terms like OLx OSy � OSy OLx D 0. Once the commutation relations for
the components of OJ are established, one can immediately claim that all components
of OJ commute with operator OJ2, which can be written down as

OJ2 D OL2 C OS2 C 2 OL � OS: (9.72)
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Indeed, the proof of the similar statement for orbital angular momentum carried
out in Sect. 3.3.2 was based exclusively on the inter-component commutation
relations and is, therefore, automatically expanded to all operators with the same
commutation relations. If you go back to Sect. 3.3.4, you will recall that the
derivation of the eigenvalues of the orbital angular momentum operators carried
out there also relied exclusively on the commutation relations. Therefore, you can
immediately claim, without fear of retribution or embarrassment, that operators OJ2
and OJz possess a common system of eigenvectors, characterized by two numbers j
and mJ , satisfying inequality �j � mJ � j, taking either integers or half-integer
values, and which generate eigenvalues of these operators according to

OJ2 j j;mJi D „2j. j C 1/ j j;mJi (9.73)

OJz j j;mJi D „mJ j j;mJi : (9.74)

However, it would be wrong for you to think that Eqs. 9.72 and 9.74 are the
end of the story. While these equations do give you some information about the
eigenvalues and eigenvectors of OJ2 and OJz, this information is quite limited and does
not allow you, for instance, to generate representations of these vectors in any basis
except of their own or to help you evaluate the results of the application of various
combinations of orbital and spin angular momentum operators to these states. To
be able to do all this, you need to answer more rather tough questions such as (a)
what is a relation between numbers j, mJ on the one hand and numbers l, s, m, and
ms on the other, and (b) how are vectors j j;mJi connected with vectors jl;mli and
jmsi? Finding answers to these questions requires substantial additional efforts, so
that Eqs. 9.73 and 9.74 are not the end but just the beginning of the journey.

And as a first step, I would note an additional property of the operators OJ2 and OJz,
which they possess by the virtue of being the sum of orbital and spin operators:

they both commute with operators OL2 and OS2. Proof of this statement is quite

straightforward and is based on Eq. 9.72 as well as on the fact that both OL2 and
OS2 commute with all their components (well, OS2 for spin 1=2 is proportional to a
unity matrix and, therefore, commutes with everything). This means that operators
OJ2, OJz, OL2, and OS2 have a common set of eigenvectors so that numbers j and mJ do not
provide a full description of these vectors. To have these vectors fully characterized,
one needs to throw number l into the mix replacing j j;mJi with j j; l;mJi and adding
equation

OL2 j j; l;mJi D „2l.l C 1/ j j; l;mJi (9.75)

to Eqs. 9.73 and 9.74. Strictly speaking, I would need to include here a spin number
s as well, but since I am going to limit this discussion to only spin 1=2 particles,
this number never changes so that its inclusion would just superfluously increase
the clumsiness of the notations.
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A relation between vectors j j; l;mJi and individual eigenvectors of the orbital
and spin operators can be established by using the latter as a basis in the combined
spin–orbital space defined in Sect. 9.5.1 as a tensor product of the orbital and spinor
spaces. Specializing a generic Eq. 9.58 to the particular case, when the basis in the
orbital space is presented by vectors jl;mi, I can write for an arbitrary member j�i
of the tensor product space:

j�i D
X

l0;m;ms

Cl0
m;ms

ˇ̌
l0;m

˛ jmsi : (9.76)

However, when applying this expansion to the particular case of vectors j j; l;mJi,
I need to take into account that these vectors are eigenvectors of OL2, i.e., that they
must obey Eq. 9.75:

OL2
X

l0;m;ms

Cl0
m;ms

ˇ̌
l0;m

˛ jmsi D
X

l0;m;ms

Cl0
m;ms

OL2 ˇ̌l0;m˛ jmsi D

„2
X

l0;m;ms

Cl0
m;ms

l0
�
l0 C 1

� ˇ̌
l0;m

˛ jmsi D „2l.l C 1/ jl;mi jmsi :

Because of the orthogonality of the basis vectors jl;mi jmsi, the only way to satisfy
the equality in the last line is to make sure that l0 D l is the only term in the sum. This
is achieved by setting Cl0

m;ms
D Cl

m;ms
ıl;l0 and thereby vanquishing the summation

over l0. In a less formal way, you can argue that for the vector defined by Eq. 9.76 to

be an eigenvector of OL2, it cannot be a combination of vectors with different values
of l. Thus, I can conclude that a representation of j j; l;mJi in the basis of jl;mi jmsi
must have the following form:

j j; l;mJi D
X
m;ms

Cl;j
m;ms;mJ

jl;mi jmsi (9.77)

where I also added upper index j and lower index mJ to the expansion coefficients
to make it explicit that the expansion is for eigenvectors of operators OJ2 and OJz

characterized by quantum numbers j and mJ .
The task now is to find coefficients Cl;j

m;msmJ
, which are a particular case of so-

called Clebsch–Gordan coefficients.3 To this end I will first apply operator OJz to the
left-hand side of Eq. 9.77 and operator OLz C OSz to its right-hand side. Using Eq. 9.74
on the left-hand side and similar properties of orbital and spin angular momentum
operators on the right-hand side, I obtain

3Clebsch–Gordan coefficients allow to present eigenvectors of an operator OJ1 C OJ2 in terms of
eigenvectors of generic angular momentum operators OJ1 and OJ2.
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mJ j j; l;mJi D
X
m;ms

Cl;j
m;ms;mJ

.m C ms/ jl;mi jmsi )

mJ

X
m;ms

Cl;j
m;ms;mJ

jl;mi jmsi D
X
m;ms

Cl;j
m;ms;mJ

.m C ms/ jl;mi jmsi )
X
m;ms

Cl;j
m;ms;mJ

.mJ � m � ms/ jl;mi jmsi D 0:

For the equation in the last line to be true, one of two things should happen: either
mJ D m C ms or Cl;j

m;ms;mJ
D 0. This means that the Clebsch–Gordan coefficients

vanish unless m D mJ � ms so that they can be presented as

Cl;j
m;ms;mJ

D Cl;j
ms;mJ

ım;mJ�ms:

Substituting this result into Eq. 9.77, I can eliminate the summation over m and
obtain a simplified form of this expansion:

j j; l;mJi D
X
ms

Cl;j
ms;mJ

jl;mi jmsi D

Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i (9.78)

where the last line explicitly accounts for the fact that the spin number ms only
takes two values 1=2 and �1=2. Equation 9.77 contains all the information about
Clebsch–Gordan coefficients that I could extract from operator OJz (which is not that
much), but hopefully I can learn more from operator OJ2.

The idea is the same: apply OJ2 to the left-hand side of Eq. 9.78, its reincarnation

in the form OL2C OS2C2 OL� OS to this equation’s right-hand side, and find conditions that
the two sides of the equation agree. The first step is just a recapitulation of Eq. 9.73:

OJ2 j j; l;mJi D „2j. j C 1/ j j; l;mJi D

„2j. j C 1/


Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i
�

(9.79)

but the second one results in rather long expressions, which couldn’t even fit to a

single page. Therefore, I will deal with different terms in OL2C OS2C2 OL � OS separately.

First I will do OL2 C OS2, which is the easiest to handle:
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� OL2 C OS2
� 

Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i
�

D

„2l.l C 1/


Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i
�

C

3

4
„2


Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i
�

C

„2
	

l.l C 1/C 3

4



Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i
�
:

(9.80)

To evaluate the remaining OL � OS term, I first give it a makeover using ladder operators
OL˙ and OS˙:

OL � OS D OLx OSx C OLy OSy C OLz OSz D
OLz OSz C 1

2

� OLC C OL�
� 1
2

� OSC C OS�
�

C
1

2i

� OLC � OL�
� 1
2i

� OSC � OS�
�

D

OLz OSz C 1

2

� OL� OSC C OLC OS�
�

(9.81)

where I used Eqs. 3.59 and 3.60 for orbital and Eqs. 5.109 and 5.108 for spin opera-
tors. Using the fact that

ˇ̌
l;mJ � 1

2

˛ j"i and
ˇ̌
l;mJ C 1

2

˛ j#i are eigenvectors of OLz and
OSz with eigenvalues „ .mJ � 1=2/, „=2 and „ .mJ C 1=2/, -„=2 correspondingly, I
get for the first term in the last line of Eq. 9.81:

OLz OSz


Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i
�

D

„2
2

	
mJ � 1

2



Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i �

„2
2

	
mJ C 1

2



Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i : (9.82)

To compute the contribution from OL� OSC and OLC OS�, you need to recall that OSC j"i D
0, OS� j#i D 0, OSC j#i D „ j"i, OS� j"i D „ j#i (These formulas originally
appeared in Sect. 5.2.3, Eqs. 5.104 and 5.106, but I am reposting them here for your
convenience.) You will also need to go back to Eqs. 3.75 and 3.76 to figure out
the part related to operators OL˙. Refreshing this way your memory of the ladder
operators, you can get
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OL� OSC


Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i
�

D

„2
s

l.l C 1/ �
	

mJ C 1

2


	
mJ � 1

2



Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i (9.83)

and

OLC OS�


Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i
�

D

„2
s

l.l C 1/ �
	

mJ C 1

2


	
mJ � 1

2



Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i : (9.84)

Finally, you just need to bring together all Eqs. 9.80–9.84 and apply some simple
algebra (just group together the like terms) to cross the goal line:

� OL2 C OS2 C 2 OL � OS
� 

Cl;j
1=2s;mJ

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C Cl;j

�1=2s;mJ

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i
�

D

„2


Cl;j
1=2s;mJ

	
l.l C 1/C mJ C 1

4



C

s
l.l C 1/ �

	
mJ C 1

2


	
mJ � 1

2



Cl;j

�1=2s;mJ

# ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C

„2


Cl;j
�1=2s;mJ

	
l.l C 1/ � mJ C 1

4



C

s
l.l C 1/ �

	
mJ C 1

2


	
mJ � 1

2



Cl;j
1=2s;mJ

# ˇ̌
ˇ̌l;mJ C 1

2

�
j#i :

Comparing this against Eq. 9.79 and equating coefficients in front of each of the
vectors, you will end up with the following system of equations for coefficients
Cl;j
1=2s;mJ

and Cl;j
�1=2s;mJ

:

	
l.l C 1/ � j . j C 1/C mJ C 1

4



Cl;j
1=2s;mJ

C
s

l.l C 1/ �
	

mJ C 1

2


	
mJ � 1

2



Cl;j

�1=2s;mJ
D 0 (9.85)
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s
l.l C 1/ �

	
mJ C 1

2


	
mJ � 1

2



Cl;j
1=2s;mJ

C
	

l.l C 1/ � j . j C 1/C 1

4
� mJ



Cl;j

�1=2s;mJ
D 0: (9.86)

And once again you are looking for non-zero solutions of a homogeneous system of
linear equations, and once again you need to find zeroes of the determinant formed
by its coefficients:

������
l.l C 1/ � j . j C 1/C mJ C 1

4
I
q

l.l C 1/ � �
mJ C 1

2

� �
mJ � 1

2

�
q

l.l C 1/ � �
mJ C 1

2

� �
mJ � 1

2

�I l.l C 1/ � j . j C 1/C 1
4

� mJ

������
D 0:

Evaluation of the determinate yields

	
l.l C 1/ � j . j C 1/C 1

4
C mJ


	
l.l C 1/ � j . j C 1/C 1

4
� mJ



�

l.l C 1/C
	

mJ C 1

2


	
mJ � 1

2



D

	
l.l C 1/ � j . j C 1/C 1

4


2
� l.l C 1/ � 1

4
D

"	
l C 1

2


2
� j . j C 1/

#2
�
	

l C 1

2


2

where I used easily verified identity

l.l C 1/C 1

4
�
	

l C 1

2


2
: (9.87)

Now it is quite easy to find that equation

"	
l C 1

2


2
� j . j C 1/

#2
�
	

l C 1

2


2
D 0

is satisfied for

j. j C 1/ D
	

l C 1

2


	
l C 3

2




or

j. j C 1/ D �
l C 1

2

� �
l � 1

2

�
:
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The only physically meaningful solutions of these equations are

j1 D l C 1

2
(9.88)

and

j2 D l � 1

2
: (9.89)

(Two other solutions �l � 3=2 and �l � 1=2 are negative and must be ignored.) The
obtained result means that for any value of the orbital quantum number l; operator OJ2
has two possible eigenvalues „2j1 . j1 C 1/ and „2j2 . j2 C 1/ with j1 and j2 defined
above. For each value of j, there are 2j C 1 values of mJ , mJ D �j;�j C 1 � � � j �
1; j so that the total number of states j j; l;mJi (for a given l) is 2 .l C 1=2/ C 1 C
2 ..l � 1=2/C 1/ D 2 .2l C 1/, which is exactly the same as the number of states
jl;mi jmsi. One important conclusion from this arithmetic is that orthogonal and
linearly independent states j j; l;mJi and other orthogonal and independent states
jl;mi jmsi represent two alternative bases in the same vector space: vectors of the
former basis are defined by the states in which the measurement of the total angular
momentum and its component would yield determinate results, and vectors of the
latter basis correspond to the states in which orbital and spin momenta separately
would have definite values.

Now I can go back to Eqs. 9.85 and 9.86 and find the Clebsch–Gordan coeffi-
cients that establish a connection between vectors j j; l;mJi and vectors jl;mi jmsi,
signaling the close end of this journey. Substituting the found values for j1 and j2 to
Eqs.9.85 and 9.86, I find the two sets of the coefficients:

Cl;j1
�1=2s;mJ

D l C 1
2

� mJq
l.l C 1/ � m2

J C 1
4

Cl;j1
1=2s;mJ

D
s

l C 1
2

� mJ

l C 1
2

C mJ
Cl;j1
1=2s;mJ

(9.90)

Cl;j2
1=2s;mJ

D � l C 1
2

� mJq
l.l C 1/ � m2

J C 1
4

Cl;j2
�1=2s;mJ

D �
s

l C 1
2

� mJ

l C 1
2

C mJ
Cl;j2

�1=2s;mJ
(9.91)

where I again used Eq. 9.87. As usual, Eqs. 9.85 and 9.86 yield only the ratio of
the coefficients, and in order to find the coefficients themselves, the normalization
requirement, complemented by the convention that the Clebsch–Gordan coefficients
remain real, needs to be invoked. Substituting Eqs. 9.90 and 9.91 into the normal-
ization condition

ˇ̌
ˇCl;j

�1=2s;mJ

ˇ̌
ˇ
2 C

ˇ̌
ˇCl;j

1=2s;mJ

ˇ̌
ˇ
2 D 1;
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I find after some trivial algebra

Cl;j1
1=2s;mJ

D
s

l C 1
2

C mJ

2l C 1
I Cl;j1

�1=2s;mJ
D
s

l C 1
2

� mJ

2l C 1

Cl;j2
1=2s;mJ

D
s

l C 1
2

� mJ

2l C 1
I Cl;j2

�1=2s;mJ
D �

s
l C 1

2
C mJ

2l C 1
: (9.92)

Now you just plug Eq. 9.92 into Eq. 9.78 to derive the final expressions for the two
eigenvectors of operator OJ2 characterized by quantum numbers j1 and j2 in terms of
linear combination of the orbital and spin angular momentum eigenvectors:

jl C 1=2; l;mJi D 1p
2l C 1

p
l C mJ C 1=2

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i C

p
l � mJ C 1=2

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i
�

(9.93)

jl � 1=2; l;mJi D 1p
2l C 1

p
l � mJ C 1=2

ˇ̌
ˇ̌l;mJ � 1

2

�
j"i �

p
l C mJ C 1=2

ˇ̌
ˇ̌l;mJ C 1

2

�
j#i
�
: (9.94)

It is quite easy to verify that vectors jl C 1=2; l;mJi and jl � 1=2; l;mJi are
normalized and orthogonal, as they shall be. One can interpret this result by saying
that if an electron is prepared in a state with determinate values of total angular
momentum „2j. j C 1/, one of its components, „mJ , and total orbital momentum
„2l.l C 1/, the values of the corresponding components of its orbital momentum
„m and spin „ms remain uncertain. An attempt to measure them will produce the
combination m D mJ � 1=2, ms D 1=2 with probabilities

pmJ�1=2;1=2 D
(

lCmJC1=2
2lC1 ; j D l C 1=2

l�mJC1=2
2lC1 j D l � 1=2 (9.95)

or combination m D mJ C 1=2, ms D �1=2 with probabilities

pmJC1=2;�1=2 D
(

l�mJC1=2
2lC1 ; j D l C 1=2

lCmJC1=2
2lC1 j D l � 1=2 : (9.96)

To help you feel better about these results, let me illustrate the application of
Eqs. 9.95 and 9.96 by a few examples.
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Example 27 (Measuring Spin and Orbital Angular Momentums in the State with the
Definite Value of the Total Angular Momentum) Assume that an electron is in a
state with a given orbital momentum l, total angular momentum j D l � 1=2, and
its z-component mJ D l � 3=2 and that you have a magic instrument allowing you
to measure the z-components of electron’s orbital momentum and its spin. What are
the possible outcomes of such a measurement and their probabilities?

Solution

Value mJ D l � 3=2 can be obtained in two different ways—when ms D 1=2 and
m D l � 2 or ms D �1=2 and m D l � 1. The probability of the first outcome is
(second line in Eq. 9.95)

pl�2;1=2 D l � .l � 3=2/C 1=2

2l C 1
D 2

2l C 1
;

and the probability of the second outcome (second line in Eq. 9.96) is

pl�1;�1=2 D l C .l � 3=2/C 1=2

2l C 1
D 2l � 1
2l C 1

:

Obviously the sum of the two probabilities is equal to one, and for large values of l,
the second outcome is significantly more probable.

Example 28 (More on Measurement of Spin and Orbital Momentums) Let me
modify the previous example by assuming that the value of the total angular
momentum is not known, but it is known that the electron can be in either state
of the total angular momentum with equal probability. How will the answer to the
previous example change in this case?

Solution

Now you have to take into account that both possible outcomes discussed in the
previous example can come either from the state with j D l C 1=2 or the state with
j D l � 1=2: Respectively, the total probability of the outcomes becomes

pl�2;1=2 D 1

2

l � .l � 3=2/C 1=2

2l C 1
C 1

2

l C .l � 3=2/C 1=2

2l C 1
D l C 1=2

2l C 1
D 1

2

pl�1;�1=2 D 1

2

l C .l � 3=2/C 1=2

2l C 1
C 1

2

l � .l � 3=2/C 1=2

2l C 1
D 1

2
:

Even though, generally speaking, either mJ or m and ms cannot be known with
certainty in the same state, there exist two states in which all three of these quantum
numbers have definite values. These are the states with the largest mJ D l C 1=2

and smallest mJ D �l � 1=2 values of mJ , for which one of the Clebsch–Gordan
coefficients vanishes, while the other one turns to unity, reducing Eq. 9.93 to

jl C 1=2; l; l C 1=2i D jl; li j"i I jl C 1=2; l;�l � 1=2i D jl;�li j#i :
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You can easily understand this fact by noting that mJ D l C 1=2 or mJ D �l � 1=2

can be obtained only by a single combination of m and ms: mJ D lC1=2 corresponds
to the choice m D l and ms D 1=2, while mJ D �l � 1=2 can only be generated by
m D �l, ms D �1=2.

Equations 9.88 and 9.89 together with Eqs. 9.93 and 9.94 provide answers to
all the questions posed in the beginning of this subsection: you now know the
relation between total, orbital, and spin angular momentum quantum numbers as
well as between corresponding eigenvectors. In particular, Eqs. 9.93 and 9.94 allow
generating any representation for j j; l;mJi, using corresponding representations
for vectors jl;mi and jmsi, as well as define the action of any combination of
orbital and spin operators on these vectors. To illustrate this point, I will write
down the coordinate–spinor representation of jl C 1=2; l;mJi using Eq. 9.93 and the
corresponding representations for jl;mi and jmsi:

jl C 1=2; l;mJi D 1p
2l C 1

"p
l C mJ C 1=2YmJ�1=2

l .�; '/p
l � mJ C 1=2YmJC1=2

l .�; '/

#
:

I can now use this to compute, e.g., OLC OS� jl C 1=2; l;mJi. Taking the matrix
representation for OS� from Eq. 5.107 and recalling that any orbital operator in the
spinor representation is multiplied by a unity matrix, I can rewrite this expression as

OLC OS� jl C 1=2; l;mJi D „p
2l C 1

" OLC 0

0 OLC

#"
0 0

1 0

#"p
l C mJ C 1=2YmJ�1=2

l .�; '/p
l � mJ C 1=2YmJC1=2

l .�; '/

#
D

„pl C mJ C 1=2p
2l C 1

" OLC 0

0 OLC

#"
0

YmJ�1=2
l .�; '/

#
D „pl C mJ C 1=2p

2l C 1

"
0

OLCYmJ�1=2
l .�; '/

#
D

„pl C mJ C 1=2p
2l C 1

p
l.l C 1/ � .mJ � 1=2/ .mJ C 1=2/

"
0

YmJC1=2
l .�; '/

#
D

„ .l C mJ C 1=2/

s
l � mJ C 1=2

2l C 1

"
0

YmJC1=2
l .�; '/

#
:

9.6 Problems

Section 9.2

Problem 112 Write down a spinor corresponding to the point on the Bloch sphere
with coordinates � D �=4, ' D 3�=2.
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Problem 113 The impossibility of half-integer values of the angular momentum
for orbital angular momentum operators expressed in terms of coordinate and
momentum operators can be demonstrated by considering the following example.
Imagine that there exists a state of the orbital angular momentum with l D 1=2.
Then in the coordinate representation, these states would be represented by two
functions f1=2.�; '/ and f�1=2.�; '/ corresponding to the values of the magnetic
quantum number m D 1=2 and m D �1=2, respectively. These functions must
obey the following set of equations:

OLCf1=2.�; '/ D 0I OL�f�1=2.�; '/ D 0

OLCf�1=2.�; '/ D f1=2.�; '/I OL�fC1=2.�; '/ D f�1=2.�; '/:

Using the coordinate representation of the ladder operators, show that these
equations are mutually inconsistent.

Problem 114 An electron is in spin state described by (non-normalized) spinor:

j�i D

2i � 3
4

�
:

1. Normalize this spinor.
2. If you measure the z-component of the spin, what are the probabilities of various

outcomes?
3. What is the expectation value of the z-component of the spin in this state?
4. Answer the same questions for x- and y-components.

Problem 115

1. Consider a spin in state


1

0

�
:

You measure the component of the spin in the direction of the unit vector
n characterized by angles �; ' of the spherical coordinate system. What is a
probability of obtaining value �„=2 as an outcome of this measurement?

2. Imagine that you conduct two measurements in a quick succession: first you
carry out the measurement described in the previous part of the problem, and
right after that, you measure the y-component of the spin. Find the probability
of getting „=2 as an outcome of the last measurement. (Hint: Do not forget to
consider all possible paths that could lead to this outcome.)

Problem 116 Consider a particle with spin 1=2 in a state in which a component of
the spin in a specified direction is equal to „=2. Choose a coordinate system with
the Z-axis along this direction and some arbitrary positions for X- and Y-axes in
the perpendicular plane. Now imagine that you measure a component of the spin in
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a direction making angle 30ı with the Z-axis and lying in the XZ plane. Find the
probabilities of the various outcomes of this measurement.

Section 9.3

Problem 117 Derive the expression for the expectation value of the y-component
of the spin in the state specified by Eq. 9.34.

Problem 118 Consider a spin in the initial state characterized by angles � D �=6

and ' D �=3 of the Bloch sphere. At time t D 0, the magnetic field B directed
along the polar axes of the spherical coordinate system is turned on and remains on
for t D �= .2!L/ seconds. After the field is off, an experimentalist measures the
z-component of the spin. What is the probability that the measurement yields „=2?
�„=2? Answer the same questions if it is the x-component of the spin that is being
measured.

Problem 119 In the last problem to Chap. 5, you found matrices OSx, OSy, and OSz

for a particle with spin 3=2. Assume that an interaction of this particle with its
surrounding is described by Hamiltonian:

OH D "0

„2
� OS2x � OS2y

�
� "1

„2
OS2z :

1. Find the stationary states of this Hamiltonian.
2. Assuming that the initial state of the particle is given by a generic spinor of the

form

j�0i D

2
664

1

0

0

0

3
775 ;

find the spin state of the particle at time t.
3. Calculate the time-dependent expectation values of all three components of the

spin operator.

Problem 120 Consider a spin 1=2 particle in a time-dependent magnetic field,
which rotates with angular velocity � in the X–Y plane:

B D iB0 cos˝t C jB0 sin�t;

where i and j are unit vectors in the directions of X and Y coordinate axes,
respectively. Derive the Heisenberg equations for the spin operators and solve them.
Note, since the Hamiltonian of this system is time-dependent, you cannot claim the
same form for the Hamiltonian in Schrödinger and Heisenberg pictures based upon
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the notion that the time-evolution operator OU commutes with the Hamiltonian (it

does not because it does not have the form of exp
�
�i OHt=„

�
, which is only valid for

time-independent Hamiltonians). Nevertheless, since the time-dependent factor in
the Hamiltonian does not contain operators, you can still show that the Heisenberg
form of the Hamiltonian, which in the Schrödinger picture has the form

OH D 2
�B

„
OS � B;

has exactly the same form in the Heisenberg picture if the Schrödinger spin operator
is replaced with its time-dependent Heisenberg operator.

1. Convince yourself that this is, indeed, the case.
2. Derive the Heisenberg equations for all three components of the spin operators.
3. Solve these equations and find the time dependence of the spin operators. (Hint:

You might want to introduce new time-dependent operators defined as

OP D OSx cos�t C OSy sin�t

OQ D OSy cos�t � OSx sin�t

and derive equations for them.)

Section 9.4

Problem 121 Normalize the following vector belonging to the tensor product of
two spaces:

j i D 2i
ˇ̌
ˇe.1/1

E �ˇ̌
ˇe.2/1

E
� 3i

ˇ̌
ˇe.2/2

E�
C
�
2
ˇ̌
ˇe.1/1

E
� 3

ˇ̌
ˇe.1/2

E� ˇ̌
ˇe.2/2

E
;

assuming that vectors
ˇ̌
ˇe.1/1;2

E
and

ˇ̌
ˇe.2/1;2

E
are normalized and mutually orthogonal.

Problem 122 Compute commutators
h OS.tp/i ; OS.tp/j

i
for all i ¤ j and


OS.tp/i ;

� OS.tp/
�2�

,

where i; j take values x; y; and z.

Problem 123 Assuming that vectors
ˇ̌
ˇe.1/1;2

E
and

ˇ̌
ˇe.2/1;2

E
in Problem 121 correspond

to spin-up and spin-down states of two particles as defined by operators OS.1;2/z

correspondingly, compute

h j OS.1/ � OS.2/ j i ;

where vector j i is also defined in Problem 121.
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Problem 124 Derive Eqs. 9.46 through 9.49.

Problem 125 Consider a system of two interacting spins described by Hamilto-
nian:

OH D 2�B

„
OS.1/B C 2�B

„
OS.2/B C J OS.1/ � OS.2/:

Find the eigenvalues and eigenvectors of this Hamiltonian. Do it in two different
ways: first, use eigenvectors of individual OS.1;2/z operators as a basis, and second, use
eigenvectors of the operators of the total spin. Find the ground state of the system
for different relations between the magnetic field and parameter J. Consider cases
J > 0 and J < 0.

For Sect. 9.5.1

Problem 126 Using the approach presented in Sect. 9.4, consider addition of the
operators of the orbital angular momentum and spin, limiting your consideration to
the orbital states with l D 1.

1. Construct the matrix of the operator OJ2, where OJ D OL C OS, in the basis

of eigenvectors of operators OL2, OLz, and OSz, taking into account only those
eigenvectors which belong to the orbital quantum number l D 1. (Hint: Your
basis will consist of 6 vectors, so that you are looking for a 6 � 6 matrix.)

2. Diagonalize the matrix and confirm that eigenvectors of OJ2 are characterized by
quantum numbers j D 1=2 and j D 3=2.

3. Find the eigenvectors of OJ2 in this basis.

Problem 127

1. Write down an expression for a spinor describing the equal superposition of
states, in which an electron in the ground state of an infinite one-dimensional
potential is also in a spin-up state, while an electron in the first excited state of
this potential is also in the spin-down state. The potential confines the electron’s
motion in x direction, while spin-up and spin-down states correspond to the
z-component of the spin.

2. Imagine that you have measured a component of the spin in the x direction and
obtained value „=2. Find the probability distribution of the electron’s coordinate
right after this measurement.

Problem 128 A one-dimensional harmonic oscillator is placed in a state

j˛i D 1p
2
Œj0i j"i C j1i j#i� ;
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where spin-up and spin-down states are defined with respect to the z-component of
the spin operator and kets j0i and j1i correspond to the ground state and the first
excited state of a harmonic oscillator. At time t D 0 an experimentalist turns on a
uniform magnetic field in the z direction. Find the state of the system at a later time
t, and compute the expectation values of oscillator’s coordinate and momentum.
(Hint: You can use Eqs. 9.68 and 9.69 with the orbital part of the Hamiltonian taken
to be that of a harmonic oscillator.)

For Sect. 9.5.2

Problem 129 Compute the expectation value of all components of the operator

OJ D OL C OS

as well as of operator OJ2 in state

j�i D 1p
14


Yl�2

l .�; '/

ˇ̌
ˇ̌1
2

�
� 2Yl

l .�; '/

ˇ̌
ˇ̌�1
2

�
C 3iY2l .�; '/

ˇ̌
ˇ̌1
2

��
:

Problem 130 Derive Eq. 9.92.

Problem 131 Consider an electron in a state with l D 2, j D 3=2, and mJ D 0.
If one measures the z-components of the electron orbital momentum and spin, what
are the possible values and their probabilities?

Problem 132 Let me reverse the previous problem: assume that the electron is in
the state with l D 2, m D 1, and ms D �1=2. What are the possible values of j and
their probabilities?

Problem 133 Consider an electron in the following state (in the coordinate repre-
sentation):

j˛i D 2p
10

Y11 .�; '/

ˇ̌
ˇ̌1
2

�
C 1p

10
Y02 .�; '/

ˇ̌
ˇ̌�1
2

�
C 1p

10
Y�1
1 .�; '/

ˇ̌
ˇ̌1
2

�

C 2p
10

Y12 .�; '/

ˇ̌
ˇ̌�1
2

�
:

1. If one measures OJ2 and OJz, what values can one expect to observe and what are
their probabilities?

2. Present this vector as a linear combination of appropriate vectors j j; l;mJi.
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Section 9.5.2

Problem 134 Compute commutators
h OJy; OJz

i
and

h OJx; OJz

i
, and demonstrate that

they have a standard for the angular momentum operators form.

Problem 135 Write down the position–spinor representation of vector jl � 1=2;

l;mJi, and compute OL� OSC jl � 1=2; l;mJi using this representation.



Chapter 10
Two-Level System in a Periodic External
Field

I have already mentioned somewhere in the beginning of this book that while vectors
representing states of realistic physical systems generally belong to an infinite-
dimensional vector space, we can always (well, almost, always) justify limiting
our consideration to a subspace of states with a reasonably small dimension. The
smallest nontrivial subspace containing states that can be assumed to be isolated
from the rest of the space is two-dimensional. One relatively clean example of such
a subspace is formed by two-dimensional spinors in the situations when one can
neglect interactions between spins of different particles as well as by the spin–orbital
interaction. An approximately isolated two-dimensional subspace can also be found
in systems described by Hamiltonians with discrete spectrum, if this spectrum is
strongly non-equidistant, i.e., the energy intervals between adjacent energy levels
4i D EiC1 � Ei are different for different pairs of levels. Two-level models are
very popular in various areas of physics because, on one hand, they are remarkably
simple, while on the other hand, they capture essential properties of many real
physical systems ranging from atoms to semiconductors.

The most popular (and useful) version of this model involves an interaction of a
two-level system with a periodic time-dependent external “potential.” This can be
an electric dipole potential describing interaction of an atomic electron with electric
field or magnetic “potential” describing interaction of an electron spin with time-
dependent magnetic field. Since I am not going to go into concrete details of a
physical system, which this model is supposed to represent, I will introduce it by
assuming that its Hamiltonian is a sum of a time-independent “unperturbed” part
OH0 and the time-dependent “perturbation” OV.t/. I will also assume that OH0 has only
two linearly independent and orthogonal eigenvectors, which I will designate as j1i
and j2i, and two corresponding eigenvalues E.0/1 and E.0/2 , which may be degenerate.

It is easy to see now that OH0 can be written as

OH0 D E.0/1 j1i h1j C E.0/2 j2i h2j : (10.1)
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Indeed, taking into account the orthogonality and normalization of j1i and j2i, you
can find

OH0 j1i D E.0/1 j1i h1j 1i C E.0/2 j2i h2j 1i D E.0/1 j1i ;

and

OH0 j2i D E.0/1 j1i h1j 2i C E.0/2 j2i h2j 2i D E.0/2 j2i ;

confirming that the Hamiltonian given by Eq. 10.1 does, indeed, have the properties
prescribed to it. It is obvious that in the basis of these eigenvectors, OH0 is presented
by a diagonal matrix with eigenvalues along the main diagonal. In the most general
form, the interaction term can be written down as

OV D V11 j1i h1j C V22 j2i h2j C V12 j1i h2j C V21 j2i h1j :

The diagonal elements in this expression, Vii.t/ D hij OV jii, often vanish, thanks to
the symmetry of the system. Indeed, if the initial Hamiltonian is symmetric with
respect to inversion, its eigenvectors have definite parity—they are either odd or
even. If, in addition, the interaction Hamiltonian is odd (which is quite common—
for instance, the electric–dipole interaction is proportional to Or � E , where E is
the electric field, and position operator changes sign upon inversion), the diagonal
elements of the interaction term must vanish (details of the arguments can be found
in Sect. 7.1). Also, the requirement that the operator must be Hermitian demands
that V21 D V�

12.

10.1 Two-Level System with a Time-Independent
Interaction: Avoided Level Crossing

I begin by considering the properties of the two-level model with a time-independent
interaction term, so that the complete Hamiltonian of the system becomes

OH D E.0/1 j1i h1j C E.0/2 j2i h2j C V12 j1i h2j C V�
12 j2i h1j (10.2)

where Vij are in general complex constant parameters. Since this is a time-
independent Hamiltonian, it makes sense to explore its eigenvectors and eigenvalues
using vectors j1i and j2i as a basis. The Hamiltonian in this representation becomes
a 2 � 2 matrix so that the eigenvector equation can be written in the matrix form

"
E.0/1 V12
V�
12 E.0/2

#
a1
a2

�
D E


a1
a2

�
; (10.3)
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and the corresponding equation for the eigenvalues becomes

�����
E.0/1 � E V12

V�
12 E.0/2 � E

����� D 0:

Evaluation of the determinant turns it into a simple quadratic equation:

E2 � E
�

E.0/1 C E.0/2

�
C E.0/1 E.0/2 � jV12j2 D 0

with two solutions (I provided a lot of detailed derivations in this book, but I am not
going to show how to solve quadratic equations!)

E1 D 1

2

�
E.0/1 C E.0/2

�
C 1

2

r�
E.0/1 � E.0/2

�2 C 4 jV12j2 (10.4)

E2 D 1

2

�
E.0/1 C E.0/2

�
� 1

2

r�
E.0/1 � E.0/2

�2 C 4 jV12j2: (10.5)

Substituting the first of these solutions into

�
E.0/1 � E

�
a1 C V12a2 D 0

(the first of the equations encoded in the matrix form in Eq. 10.3), I find the ratio of
the coefficients representing the first eigenvector of the Hamiltonian:

a.1/1
a.1/2

D �2 V12

E.0/1 � E.0/2 �
r�

E.0/1 � E.0/2

�2 C 4 jV12j2
: (10.6)

Repeating this calculation with the second eigenvalue, I find the ratio of the
coefficients for the second eigenvector:

a.2/1
a.2/2

D �2 V12

E.0/1 � E.0/2 C
r�

E.0/1 � E.0/2

�2 C 4 jV12j2
: (10.7)

The normalization coefficients for these eigenvectors are too cumbersome and are
not too informative, so I will leave the eigenvectors non-normalized. Both of them
can be written as a superposition of vectors j1i and j2i with coefficients a.1;2/1;2 defined
by Eqs. 10.6 and 10.7:

jE1;2i D a.1;2/1 j1i C a.1;2/2 j2i (10.8)
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where I used eigenvalues to label the corresponding eigenvectors.
The ratios of the coefficients in this superposition determine relative contribu-

tions of each of the original states into jE1;2i. These ratios depend on the relation

between the inter-level spectral distance
ˇ̌
ˇE.0/1 � E.0/2

ˇ̌
ˇ and the interaction matrix

element jV12j. If the former is much larger than the latter, I can expand the
denominators of Eqs. 10.6 and 10.7 as

r�
E.0/1 � E.0/2

�2 C 4 jV12j2 � E.0/1 � E.0/2 C 2 jV12j2
E.0/1 � E.0/2

where it is assumed for concreteness that E.0/1 > E.0/2 . Then Eqs. 10.6 and 10.7 yield

a.1/1
a.1/2

�
V12

�
E.0/1 � E.0/2

�

jV12j2

 1

a.2/1
a.2/2

� � V12

E.0/1 � E.0/2
� 1:

Thus, the contributions of the state presented by vector j2i into the eigenvector
jE1i and of state j1i into the eigenvector jE2i are very small. Not surprisingly, the
energy E1 in this limit is close to E.0/1 , and E2 is close to E.0/2 (check it out, please).
These results justify the assumption lying in the foundation of the two-level model:
contributions from energetically remote states can, indeed, be neglected. It also
provides a quantitative condition for validity of this approximation:

ˇ̌
E.0/n � E.0/m

ˇ̌ 

jVnmj, where n;m are the labels for energy levels and the corresponding states.

It is easy to verify that if I reversed inequality E.0/1 > E.0/2 and assumed instead

that E.0/1 < E.0/2 , the role of vectors j1i and j2i would have interchanged: the main
contribution to state jE1i would have come from initial vector j2i, and state jE2i
would have been mostly determined by j1i. This flipping between the initial vectors
is due to trivial but often overlooked property of the square root,

p
x2=jxj, which

is x when x is positive and �x when it is negative. In one of the exercises, you are
asked to verify this flipping phenomenon.

In the opposite limit
ˇ̌
ˇE.0/1 � E.0/2

ˇ̌
ˇ � jV12j, the radical in Eqs. 10.6 and 10.7 can

be approximated as

r�
E.0/1 � E.0/2

�2 C 4 jV12j2 � 2 jV12j (10.9)

which is valid with accuracy up to terms of the order of
�

E.0/1 � E.0/2

�2
= jV12j2 � 1.

The ratios of the coefficients in this case become
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a.1/1
a.1/2

D �2 V12

E.0/1 � E.0/2 � 2 jV12j
� eiıV

 
1C E.0/1 � E.0/2

2 jV12j

!

a.2/1
a.2/2

D �2 V12

E.0/1 � E.0/2 C 2 jV12j
� �eiıV

 
1 � E.0/1 � E.0/2

2 jV12j

!

where I introduced the phase of the matrix element V12 D jV12j exp .iıV/ and used
approximation for .1C x/�1 � 1 � x. Note that the correction to the main terms

(˙ exp ŒiıV �) in both expressions is linear in
�

E.0/1 � E.0/2

�
= jV12j, which justifies

approximation for the radical used in Eq. 10.9 (neglected quadratic terms are smaller
than the linear ones kept in the expressions for the coefficients). The contributions
of the initial eigenvectors in this limit are almost equal to each other in magnitude
while differing in their phase by � (do I need to remind you that �1 D exp .i�/?).
Approximate expressions for the energy eigenvalues, Eqs. 10.6 and 10.7 in this limit,

become (again neglecting quadratic terms in
�

E.0/1 � E.0/2

�
= jV12j)

E1 D 1

2

�
E.0/1 C E.0/2

�
C jV12j (10.10)

E2 D 1

2

�
E.0/1 C E.0/2

�
� jV12j : (10.11)

What is significant about this result is that even when the difference between initial
energy levels is very small compared to the matrix element of the interaction, the
difference between the actual eigenvalues is jV12j and is not small at all.

Experimentalists love the two-level models because they are simple (all what you
need to know is how to solve quadratic equations), and they are tempted to use it
as often as they can in disparate fields of physics. Theoreticians, of course, hate this
model with as much fervor because if all of the physics could have been explained
by a two-level model, all theoreticians would have lost their jobs. Luckily, this is
not the case.

The physics described by this model becomes particularly interesting (and
important) if the initial Hamiltonian OH0 depends on some parameters, which can
be controlled experimentally in such a way that the sign of the difference E.0/1 � E.0/2
can be continuously altered. In this case, at certain value of this parameter, the two
initial energy levels become degenerate, and if one plots dependence of E.0/1 and

E.0/2 as functions of this parameter, the corresponding curves would cross at some
point. This is an example of an accidental degeneracy, which is not related to any
symmetry and occurs only at particular values of a system’s parameters. Still, it
happens in a number of physical systems and is of great interest because it affects
how the system reacts to various stimuli. If, however, one plots the dependence of
the actual eigenvalues as functions of the same parameter, the curves would not
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Fig. 10.1 An example of
avoided crossing

External parameter
E

ne
rg

y

cross each other as is obvious from Eqs. 10.10 and 10.11. The curves representing
this dependence will now look like the ones shown in Fig. 10.1. You can see that
the curves do not cross each other anymore giving this phenomenon the name of
avoided level crossing.

This is a remarkable phenomenon, which is not easily appreciated. Let me try to
help you to understand what is so special about these two curves not crossing each
other. Let’s begin far on the left from the point of the degeneracy, where E.0/1 > E.0/2 .
We ascertained that in this case the lower curve describes the energy of a state,
which is mostly j2i, while the state whose energy belongs to the upper curve is
mostly j1i. At the point of avoided crossing, the eigenvectors describing the state of
the system consist of both j1i and j2i in equal proportions. Now let’s keep moving
along the lower curve, which means that we are turning the dial and experimentally
gradually changing our control parameter. After we will have passed the point of
avoided crossing, the relation between initial energy levels has changed: now we
have E.0/1 < E.0/2 . Now, the main contribution to the superposition represented by
the points on the lower curve comes from the state j1i,1 and if I move the system
far enough from the avoided crossing point, I will have a state mostly consisting
of the state j1i. Now think about it: we started with the state of the system being
predominantly j2i, and by continuously changing our parameter, we transformed
this state in the one which is now predominantly state j1i. This is better than any
Hogwarts style transformation wizardry simply because it is not a magic and not an
illusion—just honest to earth quantum mechanics!

1Recall a comment I made at the end of the discussion of the limit
ˇ̌
ˇE.0/1 � E.0/2

ˇ̌
ˇ � jV12j.
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10.2 Two-Level System in a Harmonic Electric Field:
Rabi Oscillations

Now let me switch gears and allow the perturbation operator OV to become a function
of time. More specifically, I will assume that perturbation matrix elements V12 and
V21 have the following form:

V21.t/ D V12.t/ D E cos�t;

where E is real. This form of the perturbation describes, for instance, a dipole
interaction between a two-level system and a harmonic electric field and appears
in many realistic situations. The Hamiltonian of the system in this case reads

OH D E.0/1 j1i h1j C E.0/2 j2i h2j C E cos�t .j1i h2j C j2i h1j/ : (10.12)

This is the first time you are dealing with an explicitly time-dependent Hamiltonian
in the Schrödinger picture, and this requires certain adjustments in the way of
thinking about the problem. First of all, you have to accept the fact that you cannot
present solutions in the form of exp .�iEt=„/ j i, with j i being an eigenvector of
the Hamiltonian. Equation OH j i D E j i with time-dependent Hamiltonian and
time-independent j i does not make sense anymore. In other words, the stationary
states do not exist in the case of time-dependent Hamiltonians, and we need,
therefore, a new way of solving the time-dependent Schrödinger equation. No one
can forbid you, however, to use eigenvectors of any time-independent Hamiltonian
as a basis, because basis is a basis regardless of the properties of the Hamiltonian.
The choice of the basis is determined solely by the reason of convenience, and it is
especially convenient in this case to use eigenvectors of OH0 presented by vectors j1i
and j2i. Thus, let me present the unknown time-dependent state vector j .t/i as a
linear combination of these vectors:

j .t/i D a1.t/ exp

 
� iE.0/1 t

„

!
j1i C a2.t/ exp

 
� iE.0/2 t

„

!
j2i (10.13)

with some unknown coefficients a1;2. This expression reminds very much Eq. 4.15
for a general solution with a time-independent Hamiltonian but with two significant
differences—first, the basis used in Eq. 10.13 is not formed by eigenvectors of the
total Hamiltonian OH;which does not have eigenvectors (at least not in a regular sense
of the word), and second, the expansion coefficients now are unknown functions of
time, while their counterparts in Eq. 4.15 were constants. You might wonder at this
point if I am allowed to separate the exponential factors characteristic of the time
dependence of the stationary states. A simple answer is: “Why not?” As long as I
allow for the yet undetermined time dependence of the residual coefficients, I can
factor out any time-dependent function I want. It will affect the equations, which
these coefficients obey, but not the final result. The most meticulous of you might
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also ask that even if it is allowed to pull out these factors, why bother doing it? This
is a more valid question, which deserves a more detailed answer. Let me begin by
saying that I did not have to do it: the earth would not stop in its tracks if I did not,
and we would still solve the problem. However, by doing so, I reflect a somewhat
deeper understanding of two distinct sources of the time dependence of the vector
states. One is a trivial dependence given by these exponential factors, which would
have existed even if the Hamiltonian did not depend on time. These exponential
factors have nothing to do with the time dependence of the Hamiltonian. Factoring
them out right away, I ensure that the remaining time dependence of the coefficients
reflects only genuine nontrivial dynamics. As an extra bonus, I hope that by doing
so, I will arrive at equations that are easier to analyze.

Substitution of Eq. 10.13 to the left-hand side of the Schrödinger equation
i„d j i =dt yields

i„d j i
dt

D E.0/1 a1.t/ exp

 
� iE.0/1 t

„

!
j1i C i„da1.t/

dt
exp

 
� iE.0/1 t

„

!
j1i C

E.0/2 a2.t/ exp

 
iE.0/2 t

„

!
j2i C i„da2.t/

dt
exp

 
� iE.0/2 t

„

!
j2i : (10.14)

The right-hand side of this equation, OH j i , with OH defined by Eq 10.12 and j i by
Eq. 10.13 becomes

OH j i D E.0/1 a1.t/ exp

 
� iE.0/1 t

„

!
j1i C E.0/2 a2.t/ exp

 
� iE.0/2 t

„

!
j2i C

Ea2.t/ cos�t exp

 
� iE.0/2 t

„

!
j1i C Ea1.t/ cos�t exp

 
� iE.0/1 t

„

!
j2i (10.15)

where I took into account the orthogonality of the basis states. Equating coefficients
in front of vectors j1i and j2i on the left- and right-hand sides of the Schrödinger
equation (Eqs. 10.14 and 10.15 correspondingly) results in differential equations for
the time-dependent coefficients a1;2.t/:

i„da1.t/

dt
D Ea2.t/ cos�t exp

0
@ i
h
E.0/1 � E.0/2

i
t

„

1
A (10.16)

i„da2.t/

dt
D Ea1.t/ cos�t exp

0
@�

i
h
E.0/1 � E.0/2

i
t

„

1
A : (10.17)
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Factors exp
�
˙i
h
E.0/1 � E.0/2

i
t=„
�

on the right-hand side in these equations

appeared as a result of eliminating the corresponding exponential factors

exp
�
�iE.0/1;2t=„

�
from their left-hand sides. Note that energy eigenvalues appear

in these equations only in the form of their difference, which is just another
manifestation of the already mentioned fact that the absolute values of the energy
levels are irrelevant. To simplify the notations, let me introduce a so-called transition
frequency:

!12 D E.0/1 � E.0/2
„ (10.18)

where I again for concreteness assumed that E.0/1 � E.0/2 > 0. Introducing this
notation and replacing cos�t by the sum of the respective exponential functions,
I can rewrite Eqs. 10.16 and 10.17 in the following form:

i„da1.t/

dt
D 1

2
Ea2.t/ .exp Œi .!12 ��/ t�C exp Œi .!12 C�/ t�/ (10.19)

i„da2.t/

dt
D 1

2
Ea1.t/ .exp Œ�i .!12 ��/ t�C exp Œ�i .!12 C�/ t�/ (10.20)

Equations 10.19 and 10.20 cannot be solved analytically. However, the most
interesting phenomena described by these equations occur when !12 � � �
!12 C �, in which case I can introduce an effective approximation capturing the
most important properties of the model (obviously, something will be left out, and
there might be situations when this something becomes important, but I am going to
pretend that such situations do not concern me at all). In order to formulate this
approximation, it is convenient to introduce a parameter 4 D !12 � � called
frequency detuning. In the case of the small detuning, the two exponential terms in
Eqs. 10.19 and 10.20 change with time on significantly different time scales. Terms
containing !12 �� oscillate with a much larger period (much slower) as compared
to the terms containing !12 C�, which exhibit comparatively fast oscillations.

In order to understand why fast oscillations are not effective in influencing the
behavior of the system, imagine a regular pendulum acted upon by a force, which
changes its direction faster than the pendulum manages to react to it (it is called
inertia, in case you forgot, and it takes some time for any quantity to change by
any appreciable amount). What will happen to the pendulum in this case? Right
before it has any chance to move in the initial direction of the force, the force will
have already changed and push the pendulum in the opposite direction. This is a
very frustrating situation, so the pendulum will just stay where it is. This effect
in a scientific jargon is called self-averaging—the force changes so much faster
than the reaction time of the pendulum that it effectively averages itself out to zero.
Taking advantage of this self-averaging effect, I will drop the fast-changing terms
in Eqs. 10.19 and 10.20, turning them into
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i„da1.t/

dt
D 1

2
Ea2.t/ exp .i4t/ (10.21)

i„da2.t/

dt
D 1

2
Ea1.t/ exp .�i4t/ : (10.22)

Differentiating the first of these equations with respect to time, I get

i„da21.t/

dt2
D 1

2
E da2.t/

dt
exp .i4t/C 1

2
i4Ea2.t/ exp .i4t/ :

Now, taking da2=dt from Eq. 10.22 while expressing a2.t/ in terms of da1=dt using
Eq. 10.21, I am getting rid of coefficient a2 and derive an equation containing
only a1:

da21.t/

dt2
� i4da1.t/

dt
C 1

4„2 E
2a1.t/ D 0: (10.23)

Did you notice how the time-dependent exponents in Eq. 10.23 magically disap-
peared turning it into a regular linear differential equation of the second order
with constant coefficients? You might notice that this is the same equation which
describes (among other things) a motion of a damped harmonic oscillator with
damping represented by a term with the first time derivative. This might appear a bit
troublesome, because the motion of a damped harmonic oscillator is characterized
by exponential decay of the respective quantities with time, and this is not the
behavior which we would like our quantum state to have. However, before going
into a panic mode, look at the equation a bit more carefully, and then you might
notice that “the damping” coefficient (whatever appears in front of da1=dt) is purely
imaginary, so no real damping takes place, and you can breathe easier.

Damping or no damping, I know that equations of the type of Eq. 10.23 are solved
by an exponential function, which I choose in the form of exp .i!t/. Substitution of
this function into Eq. 10.23 yields an equation for the yet unknown parameter !:

!2 � 4! � 1

4
�2

R D 0;

where I introduced a new quantity of the dimension of frequency

�R D E
„ ; (10.24)

which plays an important role in the phenomena we are about to uncover. The
quadratic equation for ! has two solutions:

!˙ D 1

2
4 ˙ 1

2

q
42 C�2

R (10.25)
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(both of which are, by the way, real) so that the general solution to Eq. 10.23 takes
the form

a1 D A exp .i!Ct/C B exp .i!�t/ : (10.26)

Expression for the second coefficient, a2, is found using Eq. 10.21:

a2 D 2i„
E exp .�i4t/

da1.t/

dt
D

� 2

�R
exp .�i4t/ ŒA!C exp .i!Ct/C B!� exp .i!�t/� :

Combining exponential functions in this equation, you might notice the emergence
of two frequencies, !C � 4 and !� � 4, which can be evaluated into

!C � 4 D �1
2

4 C 1

2

q
42 C�2

R D �!�

!� � 4 D �1
2

4 � 1

2

q
42 C�2

R D �!C

allowing you to write an expression for a2 as

a2 D � 2

�R
ŒA!C exp .�i!�t/C B!� exp .�i!Ct/� : (10.27)

Amplitudes A and B in Eqs. 10.26 and 10.27 are yet undetermined; to find them
I have to specify initial conditions for Eqs.10.21 and 10.22, the issue which I
have not even mentioned yet. At the same time, you are perfectly aware that any
problem involving a time evolution is not complete without initial conditions, which
in quantum mechanics mean a state of the system at some instant of time defined
as t D 0.

It is usually assumed in this type of problems that one can “turn on” the time-
dependent interaction at some instant determined by the will of the experimentalist,
and in many cases it does make sense. For instance, the time-dependent term in
Hamiltonian 10.12 can represent a laser beam, which you can, indeed, turn on and
off at will. In this case one can prepare the system to be in a specific state before the
laser is turned on and study how this state will evolve due to the interaction with the
laser radiation. It is simplest to prepare the system in the lowest energy stationary
state, and so this is what I will choose as the initial condition:

j .0/i D j2i :

Taking into account Eq. 10.13, I can translate it into the following initial conditions
for the dynamic variables a1 and a2:
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a1.0/ D 0 (10.28)

a2.0/ D 1: (10.29)

Substituting t D 0 into Eqs. 10.26 and 10.27 and using Eqs. 10.28 and 10.29, I derive
the following equations for amplitudes A and B:

A C B D 0I

� 2

�R
ŒA!C C B!�� D 1;

which are easily solved to yield

A D �B D � �R

2 .!C � !�/
:

It is easy to see using Eq. 10.25 that

!C � !� D
q

42 C�2
R;

so that the amplitudes take on the value

A D �B D � �R

2

q
42 C�2

R

:

Having found A and B, I can write down the final solutions for the time-dependent
coefficients a1;2.t/:

a1 D �R

2

q
42 C�2

R

Œexp .i!�t/ � exp .i!Ct/� (10.30)

a2 D 1q
42 C�2

R

Œ!� exp .�i!Ct/ � !C exp .�i!�t/� : (10.31)

These equations formally solve the problem I set out for you to solve: you
now know the time-dependent state of the two-level system described by Hamil-
tonian 10.12 at any instant of time. But I wouldn’t blame you if you still have this
annoying gnawing feeling of not being quite satisfied, probably because you are not
quite sure what to do with this solution and what kind of useful physical information
you can dig out from it. Indeed, the standard interpretation of coefficients in expres-
sions similar to Eq. 10.13 as probability amplitudes, whose squared absolute values
yield the probability of obtaining a corresponding value of an observable whose
eigenvectors are used as a basis, wouldn’t work here. The problem is that we are
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using the basis provided by eigenvectors of the Hamiltonian of a system, which
does not exist anymore, so that this traditional interpretation does not make much
sense.

One way to make sense out of Eqs. 10.26 and 10.27 is to recognize that in a
typical experiment, the time-dependent interaction does not last forever—it starts at
some instant, which you can designate as t D 0, and it usually ends at some time
t D tf (for instance, when a graduate student running the experiment gets tired,
turns the laser off, and goes on a date). So, after the time-dependent part of the
Hamiltonian vanishes, you are back to the standard situation, but the system is now
in a superposition state defined by the values of the coefficients a1;2 at the time,
when the laser got switched off. Now, you can quickly take the measurement of the
energy and interpret the results in terms of probabilities of getting one of two values:

E.0/1 or E.0/2 . The probability p
�

E.0/1

�
that the measurement would yield E.0/1 is given

as usual by ja1j2, which according to Eq. 10.30 is

p
�

E.0/1

�
D �2

R

4
�42 C�2

R

� �2 � exp
�
i .!C � !�/ tf

� � exp
��i .!C � !�/ tf

�� D

�2
R

2
�42 C�2

R

� �1 � cos .!C � !�/ tf
� D �2

R�42 C�2
R

� sin2
!C � !�

2
tf D

�2
R�42 C�2

R

� sin2

q
42 C�2

R

2
tf : (10.32)

The probability that this measurement would yield value E.0/2 could have been
computed in exactly the same manner, and I will give you a chance to do it,
as an exercise, but here I will be smart and take advantage of the fact that

p
�

E.0/1

�
C p

�
E.0/2

�
D 1, so that without much ado, I can present you with

p
�

E.0/2

�
D 1 � �2

R�42 C�2
R

� sin2

q
42 C�2

R

2
tf D

42

�42 C�2
R

� sin2

q
42 C�2

R

2
tf C cos2

q
42 C�2

R

2
tf : (10.33)

Equations 10.32 and 10.33 create a clear physical picture of what is happening with
our system. The first thing to note is the periodic oscillations of the probabilities with

time with frequency �GR D
q

42 C�2
R called generalized Rabi frequency (note

that the factor 1=2 in the arguments of the cos and sin functions in these equations
is the result of transition from cos x to the functions of x=2 and is, therefore,
not included into the definition of the frequency). There exist special times tfn D
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Fig. 10.2 Oscillations of

p
�

E.0/1

�
for three values of

the detuning: 4 D
0; 4=�R D 0:5, and
4=�R D 1:5

�n=�GR, where n is an integer, when the probability that the system will be found
in the higher energy state is zero, and there are times tfn D �n=�GRC�=2when this

probability acquires its maximum value �2
R=
�42 C�2

R

�
. For probability p

�
E.0/2

�
,

the situation is reversed—the probability reaches its value of unity at certain times
tfn D �n=�GR, but its minimum value occurring at tfn D �n=�GRC�=2 is not zero,
but is equal to 42=

�42 C�2
R

�
. Figure 10.2 depicts these oscillations of probability

known as Rabi oscillations. The period of these oscillations as well as maximum
and minimum values of the corresponding probabilities depend on the detuning
parameter 4 controlled by the experimentalists. For large detuning 4 
 �R, the
frequency of oscillations is determined mostly by 4, but their swing (a difference
between largest and smallest values) diminishes. For instance, the largest value of

p
�

E.0/1

�
becomes of the order of �2

R=42 � 1, while the smallest value of p
�

E.0/2

�

is in this case very close to unity: 1 � �2
R=42. For both probabilities there are not

much oscillations to speak of. A more interesting situation arises in the case of
small detuning, with the special case of zero detuning being of most interest. The
frequency of Rabi oscillations in this case becomes smallest and is equal to �R,
which is called Rabi frequency, and the probabilities swing between exact zero and
exact unity becoming the most pronounced.

If you are interested how one can observe Rabi oscillations, here is an example
of how it can be done. Imagine that you subject an ensemble of two-level systems
to a strong time-periodic electric field with small detuning and turn it off at different
times. The timing of the switching-off will determine the probability of a two-level
system to be in the higher energy state. The fraction of the systems in the ensemble
in this state is proportional to the corresponding probability. The systems will
eventually undergo transition to the lower energy level and emit light. The intensity
of the emitted light will be proportional to the number of systems in the upper state
and will change periodically with the switching-off time. In real experiments there is
no actual need to turn the electric field on and off all the time because spontaneous
transitions of the system from upper to lower energy states happen even with the
electric field on, and when this transition happens, the system is kicked off its normal
dynamic so hard that it forgets everything about what was happening to it before
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that, so that the whole process starts anew. These kicks serve effectively as switches
for the electric field. Oscillations in this case can be observed as functions of Rabi
frequency controlled by the strength of the applied electric field. It is important that
Rabi oscillations can be observed only if their period is shorter than the time interval
between the “kicks.” To fulfill this condition, the applied electric field must be strong
enough to yield oscillations with a sufficiently high frequency.

10.3 Problems

Problems for Sect. 10.1

Problem 136 Find the approximate expression for energy levels of a two-level
system with a time-independent perturbation in the limit jV12j � jE1 � E2j for
two cases: E1 > E2 and E1 < E2.

Problem 137 Assume that the perturbation part of the Hamiltonian is given by
OV D OzE , where E is the electric field and Oz is the respective coordinate operator.
Assume also that the wave functions of the states included in the Hamiltonian are
described (in the coordinate representation) by wave functions defined on the one-
dimensional interval �1 < z < 1:

hzj E1i D 1p
aB

exp .� jzj =aB/

hzj E2i D
q

2

a3B
z exp .� jzj =aB/ ;

where aB is the Bohr radius for an electron in the hydrogen atom, and that the electric
field is given in terms of the binding energy of the hydrogen atom Wb and electron’s
charge e as E D Wb=eaB. The unperturbed energy levels are given as

E1 D Wb.1C u/

E2 D Wb.1 � u/;

where u is a dimensionless parameter that can be changed between values �2 and
2.

1. Find the perturbation matrix Vij.
2. Find the eigenvalues of the full Hamiltonian, and plot them as a function of the u.
3. Also find the eigenvectors of the full Hamiltonian, and plot the ratio of the relative

weights of the initial vectors jE1;2i to the both found eigenvectors as functions
of u.

4. Also, consider phases of the ratio of the coefficients c1=c2 for both eigenvectors,
and plot their dependence on parameter u.
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5. In all plots pay special attention to the region around u D 0, and describe how
the behavior of the eigenvalues of the perturbed Hamiltonian differs from the
corresponding behavior of the unperturbed energies.

6. Describe the behavior of the absolute values and the phases of c1=c2 in the
vicinity of u D 0.

Problems for Sect. 10.2

Problem 138 Find the probability that the measurement of the energy will yield
value E2 directly from the coefficient a2 in Eq. 10.33, and verify that the expression
for this probability given in the text is correct.

Problem 139 Find the time dependence of the probabilities p.E1;2/ assuming that
at time t D 0 the system was in the state j1i.



Chapter 11
Non-interacting Many-Particle Systems

11.1 Identical Particles in the Quantum World: Bosons
and Fermions

Quantum mechanical properties of a single particle are an important starting point
for studying quantum mechanics, but in real experimental and practical situations,
you will rarely deal with just a single particle. Most frequently you encounter
systems consisting of many (from two to infinity) interacting particles. The main dif-
ficulty in dealing with many-particle systems comes from a significantly increased
dimensionality of space, where all possible states of such systems reside. In Sect. 9.4
you saw that the states of the system of two spins belong to a four-dimensional
spinor space. It is not too difficult to see that the states of a system consisting of N
spins would need a 2N-dimensional space to fit them all. Indeed, adding each new
spin 1=2 particle with two new spin states, you double the number of basis vectors
in the respective tensor product, and even the system of as few as ten particles
inhabits a space requiring 1024 basis vectors. More generally, imagine that you
have a particle which can be in one of M mutually exclusive states, represented
obviously by M mutually orthogonal vectors (I will call them single-particle states),
which can be used as a basis in this single-particle M-dimensional space. You can
generate a tensor product of single-particle spaces by stacking together M basis
vectors from each single-particle space. Naively you might think that the dimension
of the resulting space will be MN , but it is not always so. The reality is more
interesting, and to get the dimensionality of many-particle states correctly, you need
to dig deeper into the concept of identity of quantum particles.

In the classical world, we know that all electrons are the same—the same charge
and the same mass—but if necessary we can still distinguish between them saying
that this is an electron with such and such initial coordinates and initial velocity, and
therefore, it follows this particular trajectory. A second electron, which is exactly the
same as the first one, but starting out with different initial conditions, follows its own
trajectory. And even if these two electrons interact, scatter off each other, we can still
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Fig. 11.1 Two
distinguishable classical
electrons interact with each
other and follow their own
distinguishable trajectory. We
can easily say which electron
follows which trajectory

Fig. 11.2 Propagating clouds
of probabilities representing
the particles. In the
interaction region, the clouds
overlap, and the individuality
of the particles is lost
(Warning: it is dangerous to
take this cartoon too
seriously!)

say which electron is which by following their trajectories (see Fig. 11.1). Thus, we
say that classical electrons, even though they are identical, are still distinguishable.

The situation changes when you are talking about quantum particles. In essen-
tially the same setup—two particles approach each other from opposite directions,
interact, and move each in its new direction—the situation becomes completely
different. Now instead of two well-localized particles with perfectly defined tra-
jectories, you are dealing with moving amorphous clouds of probabilities, and when
they approach each other and overlap, all you can measure is the probability to find
one or two particles within a certain region of space, but you have no means to
tell which of the observed particles is which (Fig. 11.2). In quantum mechanics the
individuality of particles is completely lost—they are not just identical, but they are
indistinguishable.

Now the questions arise: how to formally describe this indistinguishability, and
what are the observable consequences of this property? To begin, let me formally
assign numbers 1 and 2 to the two particles and assume that particle 1 is in the
state described by vector

ˇ̌
˛.1/

˛
, where ˛ indicates a particular quantum state and 1

assigns this state to the first particle, and the second particle is in the state
ˇ̌
ˇ.2/

˛
.

The space of the two-particle states can be generated by the tensor product of the
single-particle states with a two-vector basis:
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ˇ̌
ˇ .tp/

1

E
D ˇ̌

˛.1/
˛ ˇ̌
ˇ.2/

˛
(11.1)

ˇ̌
ˇ .tp/

2

E
D ˇ̌

˛.2/
˛ ˇ̌
ˇ.1/

˛
; (11.2)

where the second vector is obtained from the first by replacing particle 1 with
particle 2: This operation can be formally described by a special “exchange”
operator OP.1; 2/ whose job is to interchange indexes of the particles assigned to
each state:

ˇ̌
˛.2/

˛ ˇ̌
ˇ.1/

˛ D OP.1; 2/ ˇ̌˛.1/˛ ˇ̌ˇ.2/˛ :

When applied twice, this operator obviously leaves the initial vector intact (two
exchanges 1 ! 2, 2 ! 1 are equivalent to no exchange at all), meaning that
OP2.1; 2/ D OI . An immediate consequence of this identity is that eigenvalues of

this operator are either equal to 1 or �1.
Using the exchange operator, the concept of indistinguishability can be for-

mulated in a precise and formal way. Consider an arbitrary state of two particles
represented by vector j .1; 2/i. If particles 1 and 2 are truly indistinguishable, then
vector j .2; 1/i D OP.1; 2/ j .1; 2/i and initial vector j .1; 2/i must represent the
same state, which means that they can differ from each other only by a constant
factor. The formal representation of the last statement looks like this:

OP.1; 2/ j .1; 2/i D j .2; 1/i D � j .1; 2/i ; (11.3)

which makes it clear that if j .1; 2/i represents a state of indistinguishable particles,
it must be an eigenvector of OP.1; 2/. The remarkable thing about this conclusion
is that there are only two types of such eigenvectors—those corresponding to
eigenvalue 1 and those that belong to eigenvalue �1, i.e., any vector describing a
state of indistinguishable particles must belong to one of two classes: symmetric
(even) with respect to the exchange of the particles when

OP.1; 2/ j .1; 2/i D j .1; 2/i (11.4)

or antisymmetric (odd) if

OP.1; 2/ j .1; 2/i D � j .1; 2/i : (11.5)

Moreover, Hamiltonians of indistinguishable particles obviously do not change
when the particles are exchanged (otherwise they wouldn’t be indistinguishable),
which means that the exchange operator and the Hamiltonian commute:

h OH; OP.1; 2/
i

D 0 (11.6)
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(if it is not clear where it comes from, check the discussion around the parity
operator in Sect. 5.1, where similar issues were raised). In the context of the
exchange operator, Eq. 11.6 signifies two things. First is that the Hamiltonian and the
exchange operator are compatible and share a common system of eigenvectors. In
other words, eigenvectors of a Hamiltonian of two indistinguishable particles must
be either symmetric or antisymmetric. Second, if you treat the exchange operator
as a representative of a specific observable that takes only two values depending
on the symmetry of the state, Eq. 11.6 indicates that the expectation value of this
observable does not change with time (see Sect. 4.1.3 and the discussion around
Eq. 4.17 there). Accordingly, Eq. 11.6 ensures that if a two-particle system starts out
in a symmetric or antisymmetric state, it will remain in this state forever.

While it is useful to know that all states of indistinguishable particles must belong
to one of the two symmetry classes and that a system put in a symmetry class at some
instant of time will stay in this class forever, we still do not know how to relate the
symmetry of the states of the particular system of particles to their other properties:
does it depend on the particle’s charges, masses, and potential they are moving on,
or can it be somehow created deliberately through a clever measurement process?
I personally find the answer to all these questions, which I am about to reveal to
you, quite amazing: the symmetry of any state of indistinguishable particles cannot
be “chosen” or changed; the particles are born with predestined fate to be only
in states with one or another symmetry predetermined by their spin. It turns out
that particles with half-integer spin can exist only in antisymmetric states, while
particles with integer spins can be only in symmetric states. This statement is called
a spin-statistics theorem and is, in my view, one of the most amazing fundamental
results, which follows purely mathematically from the requirement that quantum
mechanics agrees with the relativity theory. Just stop to think about it: quantum
mechanics deals with phenomena occurring at very small spatial, temporal, mass,
and energy scales, while relativity theory explains the behavior of nature at very
large velocities. Apparently, quantum mechanics and relativity overlap when the
interaction between light and matter is involved and, at high energies, when particle-
antiparticle phenomena become important. However, the theoretical requirements of
the self-consistency of the theory, one of which is the spin-statistics theorem, are felt
well outside of these overlap areas and penetrate all of quantum mechanics from
atomic energy structure to electric, magnetic, and optical properties of solids and
fluids. Two better known phenomena made possible by the spin-statistics connection
are superfluidity and superconductivity. The proof of this theorem relies heavily on
quantum field theory, and you will sleep better at night by just accepting it as one of
the axioms of quantum mechanics.

The spin-statistics theorem was proved by Wolfgang Pauli in 1939 but published
only in 1940. The footnote to Pauli’s paper in Physical Review states that the paper
is a part of the report prepared for the Solvay Congress 1939, which did not take
place because of the war in Europe. By the time of that publication, Pauli had
moved from Zurich to Princeton, because Switzerland rejected his request for Swiss
citizenship on the ground of him becoming a German citizen after Hitler annexed
his native Austria. Anyway, to finish with this theorem, I only need to mention
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that the particles with half-integer spins are called fermions (in honor of Enrico
Fermi, an Italian physicist, who had to leave Italy after Mussolini came to power;
he moved to the USA, where he created the world’s first nuclear reactor and played
a crucial role in the Manhattan Project), while particles with whole spins are called
bosons after Indian physicist Satyendra Nath Bose, who worked on the system of
indistinguishable photons as early as in 1924. It is interesting that after an initial
attempt to publish his paper on this topic failed, Bose sent it to Einstein asking
Einstein’s opinion and assistance with publication. Einstein translated the paper into
German and published in the leading German physics journal of the time Zeitschrift
für Physik (under Bose’s name, of course).

Before getting back to the business of doing practical quantum mechanics with
many-particle systems, a few additional words about fermions and bosons might be
useful. Among elementary particles constituting regular matter, fermions are most
abundant: electrons, protons, and neutrons—the main building blocks of atoms,
molecules, and the rest of the material world are all spin 1=2 fermions. The only
elementary boson you would encounter in regular setting would be a photon—
a quantum of the electromagnetic field—and not a regular material particle. This
can be taken as a general rule—as long as we are talking about elementary
particles, the matter is represented by fermions, while the interaction fields, and
other objects, which would classically be presented as waves in quantum mechanics,
become bosons. Other examples of bosons you can find are quantized elastic waves
(phonons) or quantized magnetic waves (magnons).

However, the concept of fermions and bosons can be extended to composite
particles as long as the processes they are taking part in do not change their
internal structure. The most famous examples of such composite particles are
electron Cooper pairs (Cooperons, named after American physicist Leon Cooper
who discovered them in 1956), responsible for superconductivity phenomenon, and
He4 nuclei, which in addition to two mandatory protons contain two neutrons,
making the total number of particles in the nucleus equal to 4. In both these
examples, we are dealing with composite bosons. Indeed, a pair of electrons, as
you already know, can be in the state with total spin either 0 or 1, i.e., the spin
of the pair is in either case integer. In the case of He4 nucleus, there are four spin
1=2 particles, and by diving them into two pairs, you can also see that the total
spin of this system can again only be an integer. Another interesting example of
composite bosons is an exciton in semiconductors, which consists of an electron
and a hole,1 both with spin 1=2: The extent to which the inner structure in all
these examples can be neglected and the particles can be treated as bosons depends
on the amount of energy required to disintegrate them into their constituent parts.
For Cooperons this energy is quite small—of the order of 10�3 eV—which explains

1Energy levels in a semiconductor are organized in bands separated by large gaps. The band,
all energy levels of which are filled with electrons, is called a valence band, and the closest to
its empty band is a conduction band. When an electron gets excited from the valence band, the
conduction band acquires an electron, and a valence band losses an electron, which leaves in its
stead a positively charged hole. Here you have an electron-hole pair behaving as real positively and
negatively charged spin 1=2 particles.
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why they can only survive at very low (below 10 K) temperatures; exciton binding
energies vary over a rather large range between several millielectronvolts and several
hundred millielectronvolts, depending upon the material, and they, therefore, survive
at temperatures between 10 K and the room temperature (300 K). He4 nucleus, of
course, is the most stable of all the composite particles discussed: it takes the whole
28:3 mega-electronvolts to take it apart.

After this short and hopefully entertaining detour, it is time to get back to business
of figuring out how to implement the requirements of the spin-statistics theorem
in practical calculations. A generic vector representing a two-particle state and
expressed as a linear combination of basis vectors 11.1 and 11.2

j .1; 2/i D a1
ˇ̌
˛.1/

˛ ˇ̌
ˇ.2/

˛C a2
ˇ̌
˛.2/

˛ ˇ̌
ˇ.1/

˛

with arbitrary coefficients a1;2 does not obey the required symmetry condition.
However, after a few minutes of contemplation and silent staring at this expression,
you will probably see that you can satisfy the symmetry requirements of Eq. 11.4
by choosing a1 D a2, while Eq. 11.5 can be made happy with the choice a1 D �a2.
(If you are not that big on contemplation, just switch the particles in the expression
for j .1; 2/i, and write down the conditions of Eq. 11.4 or 11.5 explicitly.) If in
addition to symmetry you want your two-particle states to be also normalized, you
can choose for fermions

ˇ̌
 f .1; 2/

˛ D 1p
2

�ˇ̌
˛.1/

˛ ˇ̌
ˇ.2/

˛ � ˇ̌
˛.2/

˛ ˇ̌
ˇ.1/

˛�
(11.7)

and for bosons

ˇ̌
ˇ .1/

b .1; 2/
E

D 1p
2

�ˇ̌
˛.1/

˛ ˇ̌
ˇ.2/

˛C ˇ̌
˛.2/

˛ ˇ̌
ˇ.1/

˛�
: (11.8)

While Eq. 11.7 exhausts all possible two-particle states for fermions, in the case of
bosons, two more states, in which different particles occupy the same single-particle
state, can be constructed:

ˇ̌
ˇ .2/

b .1; 2/
E

D ˇ̌
˛.1/

˛ ˇ̌
˛.2/

˛
(11.9)

ˇ̌
ˇ .3/

b .1; 2/
E

D ˇ̌
ˇ.1/

˛ ˇ̌
ˇ.2/

˛
: (11.10)

An attempt to arrange a similar state for fermions fails because you cannot have
an antisymmetric expression with two identical states—they simply cancel each
other giving you a zero. In other words, it is impossible to have a two-particle
state of fermions, in which each fermion is in the same single-particle state. This
is essentially an expression of famous Pauli’s exclusion principle, which Pauli
formulated in 1925 trying to explain why atoms with even number of electrons are
more chemically stable than atoms with odd electron numbers. He realized that this
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can be explained requiring that there can only be one electron per single-electron
state. If one takes into account only orbital quantum numbers such as principal
number n, orbital number l < n, and magnetic number jmj � l (see Chap. 8), the
total number of available states is equal to n2, which does not have to be even. So,
Pauli postulated the existence of yet another quantum quantity, which can only take
two different values, making the total amount of quantum numbers characterizing a
state of an electron in atom equal to 4 and the total number of available states 2n2.
The initial formulation of this principle was concerned only with electrons and was
stated approximately like this: no two electrons in a many-electron atom can have
the same values of four quantum numbers. Despite the success of this principle in
explaining the periodic table, Pauli remained unsatisfied for two principal reasons:
(a) he had no idea which physical quantity the fourth quantum number represents,
and (b) he was not able to derive his principle from more fundamental postulates
of quantum mechanics. The first of his concerns was resolved with the emergence
of the idea of spin (see Sect. 9.1), but it took him 14 long years to finally prove the
spin-statistics theorem, of which his exclusion principle is a simple corollary.

Before continuing I would like to clear up one terminological problem. When
dealing with many-particle systems, the word “state” might have different meanings
when used in different contexts. On one hand, I will talk about states characterizing
the actual many-particle system; Eqs. 11.7 through 11.10 give examples of such
states for the two-particle system. On the other hand, I use single-particle states,

such as
ˇ̌
˛.1/

˛
or
ˇ̌
ˇ.2/

˛
, to construct the many-particle states

ˇ̌
 f .1; 2/

˛
or
ˇ̌
ˇ .i/

b .1; 2/
E
.

So, in order to avoid misunderstandings and misconceptions, let’s agree that the term
“state” from now on will always refer to an actual state of a many-particle system,
while single-particle states from this point forward will be called single-particle
orbitals. Understood literally orbitals are usually used to describe single-electron
states of atomic electrons, but I will take the liberty to expand this term to any
single-electron state. Getting this out of the way, I now want to direct your attention
to the following fact. In the system of two fermions with only two available orbitals,
we ended up with just a single two-particle state. At the same time, in the case of
the same number of bosons and the same number of orbitals, there are three linearly
independent orthogonal two-particle states, and if we were to forget about symmetry
requirements (as we would if dealing with distinguishable particles), we would have
ended up with a four-dimensional space of two-particle states just like in the two-
spin problem from Sect. 9.4. You can see now that the dimensionality of the space
containing many-particle states severely depends on the symmetry requirements,
and the naive prediction for this dimension to be MN turned to be only correct for
distinguishable particles.
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11.2 Constructing a Basis in a Many-Fermion Space

While identical bosons are responsible for some fascinating phenomena such as
superfluidity and superconductivity, the systems of many fermions are much more
ubiquitous in the practical applications of quantum theory, and, therefore, I will
mostly focus on them from now on. As always, the first thing to understand is the
structure of the space in which vectors representing the states of interest live. This
includes finding its dimension and constructing a basis. The problem of finding
the dimension of a many-particle space is an exercise in combinatorics—the science
of counting the number of different combinations of various objects. In the case
of fermions, the problem is formulated quite simply: given N objects (particles)
and M boxes (orbitals), you need to compute in how many different ways you can
fill the boxes assuming that each box can hold only one particle, and an order in
which the particles are distributed among the boxes is not important. Once you
find one distribution of the particles among the boxes, it becomes a seed for one
many-particle state. The state itself is found by permuting the particles among the
boxes, adding a negative sign for each permutation and summing up the results.
To understand the situation, better begin with a simplest case: M D N. When the
number of particles is equal to the number of orbitals, you do not have much of a
choice: you just have to put one particle in each box, and then do the permutations—
you end up with a single antisymmetric state. As an example, consider three

particles that can be in one of three available orbitals
ˇ̌
ˇ˛.s/i

E
, where the lower index

enumerates the orbitals and the upper index refers to the particles. Assume that
you put the first particle in the first box, the second particle in the second, and
the third one in the third, generating the following combination of the orbitals:ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.2/2

E ˇ̌
ˇ˛.3/3

E
. Now, let me switch particles 1 and 2, generating combination

�
ˇ̌
ˇ˛.2/1

E ˇ̌
ˇ˛.1/2

E ˇ̌
ˇ˛.3/3

E
. If I switch the particles again, say, particles 1 and 3, I will get

the new combination
ˇ̌
ˇ˛.2/1

E ˇ̌
ˇ˛.3/2

E ˇ̌
ˇ˛.1/3

E
. Note that the negative sign has disappeared

because each new permutation brings about a change of sign. Making all 6 (3Š)
permutations, you will end up with a single three-particle state:

ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.2/2

E ˇ̌
ˇ˛.3/3

E
�
ˇ̌
ˇ˛.2/1

E ˇ̌
ˇ˛.1/2

E ˇ̌
ˇ˛.3/3

E
C
ˇ̌
ˇ˛.3/1

E ˇ̌
ˇ˛.1/2

E ˇ̌
ˇ˛.2/3

E
�

ˇ̌
ˇ˛.3/1

E ˇ̌
ˇ˛.2/2

E ˇ̌
ˇ˛.1/3

E
C
ˇ̌
ˇ˛.2/1

E ˇ̌
ˇ˛.3/2

E ˇ̌
ˇ˛.1/3

E
�
ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.3/2

E ˇ̌
ˇ˛.2/3

E
: (11.11)

In agreement with the permutation rules described above, all terms in Eq. 11.11 with
negative signs in front of them can be obtained from the first term by exchanging
just one pair of particles, while the terms with the positive sign are obtained by
permutation of two particles. It makes sense, of course, because, as I said before,
an exchange of any two fermions is complemented by a change of sign, in which
case an exchange of two pairs of fermions is equivalent to changing the sign twice:
C ! � ! C, which is, of course, the same argument as I made when deriving this



11.2 Constructing a Basis in a Many-Fermion Space 353

expression. Finally, if you are wondering how to choose the first, seeding, term, the
answer is simple: it does not matter and you can start with any of them. The only
difference, which you might notice, is that all negative terms could become positive
and vice versa, which amounts to a simple overall negative sign in front of the whole
expression, and this makes no physical difference whatsoever.

Now, since, for every selection of the number of boxes equal to the number of the
particles, you end up with just a single many-particle state, the total number of states
is simply equal to the number of ways you can select N boxes out of M. This is a
classical combinatorial problem with a well-known solution given by the number of
combinations for N objects chosen out of M. Thus, the number of distinct linearly
independent and orthogonal N-fermion states based on M available single-fermion
orbitals (the dimensionality D .N;M/ of the corresponding space) is

D.N;M/ D
	

M
N



D MŠ

NŠ .M � N/Š
: (11.12)

You can verify this general results with a few simple examples. Let’s say that now
you want to build a space of three-fermion states using five available single-fermion
orbitals. According to Eq. 11.12 this space possesses 5Š=.3Š2Š/ D 10 basis vectors.

Using the same notation
ˇ̌
ˇ˛.s/i

E
as before, but now allowing index i to run from 1 to 5,

you can generate the following ten seed vectors, in which each particle is assigned
to a different orbital:

ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.2/2

E ˇ̌
ˇ˛.3/3

E
;
ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.2/2

E ˇ̌
ˇ˛.3/4

E
;
ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.2/2

E ˇ̌
ˇ˛.3/5

E

ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.2/3

E ˇ̌
ˇ˛.3/4

E
;
ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.2/3

E ˇ̌
ˇ˛.3/5

E
;
ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.2/4

E ˇ̌
ˇ˛.3/5

E

ˇ̌
ˇ˛.1/2

E ˇ̌
ˇ˛.2/3

E ˇ̌
ˇ˛.3/4

E ˇ̌
ˇ˛.1/2

E ˇ̌
ˇ˛.2/3

E ˇ̌
ˇ˛.3/5

E
;
ˇ̌
ˇ˛.1/2

E ˇ̌
ˇ˛.2/4

E ˇ̌
ˇ˛.3/5

E
;

ˇ̌
ˇ˛.1/3

E ˇ̌
ˇ˛.2/4

E ˇ̌
ˇ˛.3/5

E
:

Each of these seeds yields a single antisymmetric state in an exactly the same way
as in the previous example.

A bit of gazing at Eq. 11.11 might reveal you an ultimate truth about the structure
of this expression: a sum of products of various distinct combinations of nine

elements
ˇ̌
ˇ˛. j/

i

E
where each index takes three different values is grouped in three with

alternating positive and negative signs. Some digging in your associative memory
will bring to the surface that this is nothing but a determinant of a matrix whose rows
are the three participating orbitals with different particles assigned to each row:

j˛1; ˛2; ˛3i D

���������

ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.2/1

E ˇ̌
ˇ˛.3/1

E
ˇ̌
ˇ˛.1/2

E ˇ̌
ˇ˛.2/2

E ˇ̌
ˇ˛.3/2

E
ˇ̌
ˇ˛.1/3

E ˇ̌
ˇ˛.2/3

E ˇ̌
ˇ˛.3/3

E

���������
(11.13)
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where on the left of this equation I introduced a notation j˛1; ˛2; ˛3i which
contains all the information you need to know about the state presented on the
right, namely, that this three-fermion state is formed by distributing three particles
among orbitals j˛1i, j˛2i, and j˛3i. The right-hand side of this expression gives
you a good mnemonic rule about how to combine these three orbitals into an
antisymmetric three-fermion state. Arranging the orbitals into determinants makes
the antisymmetry of the corresponding state obvious: the exchange of particles
becomes mathematically equivalent to the interchange of the columns of the
determinant, and this operation is well known to reverse its sign.

The idea to arrange orbitals into determinants in order to construct automatically
antisymmetric many-fermion states was first used independently by Heisenberg and
Dirac in their 1926 papers and expressed in a more formal way by John C. Slater, an
American physicist, in 1929, and for this reason these determinants bear his name.
That was a time when American physicists had to travel for postdoctoral positions
to Europe, and not the other way around, so after getting his Ph.D. from Harvard,
Slater moved to Cambridge and then to Copenhagen before coming back to the USA
and joining the Physics Department at Harvard as a faculty member.

A word of caution: the fermion states in the form of the Slater determinant are
not necessarily the eigenvectors of a many-particle Hamiltonian, which, in general,
can be presented in the form

OH.N/ D
NX

iD1
OHi C 1

2

NX
iD1

NX
j

OVi;j (11.14)

where the first term is the sum of the single-particle Hamiltonians for each particle,
which includes operators of the particle’s kinetic energy and might include a term
describing the interaction of each particle with some external object, e.g., electric
field, while the second term describes the interaction between the particles, most
frequently the Coulomb repulsion between negatively charged electrons. The factor
1=2 in front of the second term takes into account that the double summation over i
and j counts the interaction between each pair of particles twice: once as OVi;j and the
second time as OVj;i. The principal difference between these two terms is that while
each OHi acts only on the orbitals of “its own” particle, the interaction term acts on
the orbitals of two particles. As a result, any simple tensor product of single-particle
orbitals is an eigenvector of the first term of the many-particle Hamiltonian, but not
of the entire Hamiltonian. Consider, for instance, the three-particle state from the
previous example. Picking up just one term from Eq. 11.11, I can write
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.E1 C E2 C E3/
ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.2/2

E ˇ̌
ˇ˛.3/3

E
:
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Since all other terms in Eq. 11.11 feature the same three orbitals, it is obvious
that all of them are eigenvectors of this Hamiltonian with the same eigenvalue, so
that the entire antisymmetric three-particle state given by the Slater determinant,
Eq. 11.13, is also its eigenvector. It is also clear that for any Slater determinant state,
the eigenvalue of the non-interacting Hamiltonian is always a sum of the single-
particle energies of the orbitals used to construct the determinant. If, however, one
adds the interaction term to the picture, the situation changes as none of the single-
particle orbitals can be eigenvectors of OVi;j, which acts on states of two particles, so
that the Slater determinants are no longer stationary states of many-fermion system.
This does not mean, of course, that they are useless—they form a convenient basis
in the space of many-particle states, which ensures that all states represented in this
basis are antisymmetric. This brings me back to Eq. 11.12, defining the dimension
of this space and highlighting the main difficulty of dealing with interacting many-
particle systems—the space containing the corresponding states is just too large.

Consider, for instance, an atom of carbon, with its six electrons. You can start
building the basis for the six-electron space starting with lowest energy orbitals
and continuing until you have enough basis vectors. The two lowest energy orbitals
correspond to principal quantum number n D 1, orbital and magnetic numbers
equal to zero, and two spin numbers ˙1=2: j1; 0; 0; 1=2i and j1; 0; 0;�1=2i. This is
definitely not enough for six electrons, so you need to go to orbitals with n D 2, of
which there are 8: j2; 0; 0; 1=2i, j2; 0; 0;�1=2i ; j2; 1;�1; 1=2i, j2; 1;�1;�1=2i,
j2; 1; 0; 1=2i, j2; 1; 0;�1=2i, j2; 1; 1; 1=2i, and j2; 1; 1;�1=2i, where the notation
follows the regular scheme jn; l;m;msi (I combined the spin number ms with orbital
quantum numbers for the sake of simplifying the notation). If I limit the space to
just these ten orbitals (and it is not the fact that orbitals with n D 3 should not be
included), the total number of basis vectors in this space will be 10Š=.6Š4Š/ D 210.
It means that using the Slater determinants as a basis in this space, I will end up
with the Hamiltonian of the system represented by a 210 � 210 matrix. Allowing
the electrons to occupy additional n D 3 orbitals, all 18 of them, will bring the
dimensionality of the six-electron space to 376,740. I hope these examples give you
a clear picture of how difficult problems with many interacting particles can be and
explain why people were busy inventing a great variety of different approximate
ways of dealing with them. Very often, the idea behind these methods is to replace
the Hamiltonian in Eq. 11.14 by an effective Hamiltonian without an interaction
term. The effects of the interaction in such approaches are always hidden in “new”
single-particle Hamiltonians retaining some information about the interaction with
other particles. A more detailed exposition of this issue is way beyond the scope of
this book and can be found in many texts on atomic physics and quantum chemistry.

Before continuing to the next section, let me consider a few examples involving
non-interacting indistinguishable particles so that you could get a better feel for the
quantum mechanical indistinguishability.

Example 29 (Non-interacting Particles in a Potential Well.) Consider a system
of three non-interacting particles in an infinite one-dimensional potential well.
Assuming that the particles are (a) distinguishable spinless atoms of equal mass
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ma, (b) electrons, and (c) indistinguishable spinless bosons, find three lowest energy
eigenvalues of this system, and write down the corresponding wave functions
(spinors when necessary).

Solution

(a) In the case of three distinguishable atoms, no symmetry requirements can
be imposed on the three-particle wave function, so the ground state energy
corresponds to a state in which all three atoms are in the same single-particle
ground state orbital:
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(11.16)

with corresponding energy

E1;1;1 D 3„2�2
2L2z ma

: (11.17)

The second energy level would correspond to moving one of the atoms to the
second single-particle orbital, so that I have for the three degenerate three-
particle states
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with the corresponding energy
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: (11.19)

Finally, the next lowest energy will correspond to two particles moved to
the second single-particle level with the wave functions and triple-degenerate
energy level given by

 
.3/
3;1 .z1; z2; z3/ D

s	
2

L


3
sin

2�z1
L

sin
2�z2

L
sin

�z3
L



11.2 Constructing a Basis in a Many-Fermion Space 357

 
.3/
3;2 .z1; z2; z3/ D

s	
2

L


3
sin

�z1
L

sin
2�z2

L
sin

2�z3
L

(11.20)

 
.3/
3;3 .z1; z2; z3/ D

s	
2

L


3
sin

2�z1
L

sin
�z2
L

sin
2�z3

L

E2;2;1 D 9„2�2
2L2z ma

: (11.21)

(b) Electrons are indistinguishable fermions, so their many-particle states must
be antisymmetric. The single-particle orbitals are spinors, formed as a tensor
product of the eigenvectors of the infinite potential well and of the spin operator
OSz. For convenience, I will begin by writing down the single-particle orbitals
in the symbolic form jn;msi, where n corresponds to an energy level in
the infinite well and ms is a spin magnetic number. To construct the vector
representing the ground state of the three-electron system, I need to include
three different orbitals with the lowest single-particle energies. Obviously these
are j1;"i ; j1;#i ; j2;msi. The choice of the spin state in the third orbital is
arbitrary, so that there are two different ground states with the same energy. The
respective Slater determinant becomes

j1; 1; 2i D
������
j1;"i1 j1;"i2 j1;"i3
j1;#i1 j1;#i2 j1;#i3
j2;"i1 j2;"i2 j2;"i3

������

where the lower subindex enumerates electrons, and I chose for concreteness
the spin-up state for the spin portion of the third orbital. Notation j1; 1; 2i for
the three-electron state was chosen in the form, which reflects the eigenvectors
of the infinite potential, “occupied”2 by electrons in this state. Expanding the
determinant and pulling out the spin number into a separate ket, I have

j1; 1; 2i D j1i1 j"i1 j1i2 j#i2 j2i3 j"i3 C j1i1 j#i1 j1i2 j"i2 j2i3 j"i3 C
j1i1 j"i1 j2i2 j"i2 j1i3 j#i3 � j2i1 j"i1 j1i2 j#i2 j1i3 j"i3 � j1i1 j#i1 j1i2 j"i2

j2i3 j"i3 � j1i1 j"i1 j2i2 j"i2 j1i3 j#i3 :

2“Occupied” in this context means that a given orbital participates in the formation of a given
many-particle state.
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Bringing back the position representation of the eigenvectors of the well, the
last result can be written down as
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: (11.22)

To get a bit more comfortable with this expression, let’s apply operator

OH D OH.1/ C OH.2/ C OH.3/;

where OH.i/ is a single-electron infinite potential well Hamiltonian, which in the
spinor representation is proportional to a unit matrix:
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I understand that this expression looks awfully intimidating (or just awful), but I
still want you to gather your wits and go through it line by line, and let the force
be with you. The first thing that you shall notice is that every single-particle
Hamiltonian affects only those orbitals that contain its own particle. Now
remembering that each of the orbitals is an eigenvector of the corresponding
Hamiltonian, you can rewrite the above expression as
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;

where E1;2 are eigenvalues of energy corresponding to eigenvectors j1i ; j2i
of the infinite potential well. Combining the like terms (terms with the same
combination of single-particle orbitals), you will find
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OH j1; 1; 2i D .2E1 C E2/ j1; 1; 2i :

The second eigenvector belonging to this eigenvalue can be generated by
changing the spin state paired with the orbital state j2i from spin-up to spin-
down, which yields
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:

To get the next energy level and the corresponding eigenvector, I just need
to move one of the particles to the orbital j2i jmsi, which means that the Slater
determinant is now formed by orbitals j1;msi ; j2;#i ; j2;"i with the arbitrary
value of the spin state in the single-particle ground state. Using for concreteness
the spin-up value in j1;msi, I can write
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:

The energy corresponding to this state is E2;2;1 D E1 C 2E2 and coincides with
Eq. 11.20 for energy of the second excited in the system of the distinguishable
particles. Finally, to generate the next lowest energy level, one has to keep two
orbitals corresponding to the second excited level of the well with different
values of the spin number, and then the only choice for the third orbital would be
to use one of two j3i jmsi orbitals, which result in two degenerate eigenvectors,
one of which is shown below:
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(I derived this expression by simply replacing sin �zi
L everywhere with sin 3�zi

L .)
The respective energy value is given by

E2;2;3 D E3 C 2E2 D 17„2�2
2L2z me

:

(c) Now, let me deal with the system of three identical spinless bosons. The
symmetry requirement for the three-boson system allows using all identical
orbitals (the resulting state is automatically symmetric); thus, the ground state
can be built of a single orbital j1i and turns out to be the same as in the case of
distinguishable particles and with the same energy value (Eq. 11.17). A differ-
ence from distinguishable particles arises when transitioning to excited states.
Now, to satisfy the symmetry requirements, I have to turn three degenerate states
of Eqs. 11.18 and 11.20 with energies given by Eqs. 11.19 and 11.21 into single
non-degenerate states:
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11.3 Pauli Principle and Periodic Table of Elements:
Electronic Structure of Atoms

While we are not equipped to deal with systems of large numbers of interacting
particles, you can still appreciate how Pauli’s idea of exclusion principle helped
understand the periodicity in the properties of the atoms. In order to follow the
arguments, you need to keep in mind two important points. First, when discussing
the chemical properties of atoms, people are interested foremost in the many-particle
ground state, i.e., a state of many electrons, which would have the lowest possible
energy. Second, since the Pauli principle forbids states in which two electrons
occupy the same orbital, you have to build many-particle states using at least as
many orbitals as many particles are in your system, starting with ground state
orbitals and adding new orbitals in a way, which would minimize an unavoidable
increase of the sum of single-particle energies of all involved electrons. This
last point implicitly assumes that the lowest energy of non-interacting particles
would remain the lowest energy even if the interaction is taken into account. This
assumption is not always true, but the discussion of this issue is beyond the scope
of this book. Anyway, having these two points in mind, let’s consider what happens
with states of electrons as we are moving along the periodic table. Helium occupies
the second place in the first row and is known as an inert gas, meaning that it is very
stable and is not eager to participate in chemical reactions or form chemical bonds.
It has two electrons, and therefore you need only two orbitals, which can have the
same value of the principal number n D 1 to construct a two-electron state:

j1; 0; 0; 1=2i1 j1; 0; 0;�1=2i2 � j1; 0; 0; 1=2i2 j1; 0; 0;�1=2i1 :

These two orbitals exhaust all available states with the same principal number. In
chemical language, we can say the electrons in helium atom belong to a complete
or closed shell. Going to the next atom, lithium Li, you will notice that it has
very different chemical properties—lithium is an active alkali metal, which readily
participates in a variety of chemical reactions and forms a number of different
compounds gladly offering one of its electrons for chemical bonding. Three lithium
electrons need more than two orbitals to form a three-electron state, so you must
start dealing with orbitals characterized by principal number n D 2. There are
eight of them, but only one is really required to form the lowest energy three-
electron state, and as a result seven of those orbitals remain, using physicist’s
jargon, “unoccupied.” Once you go along the second row of the periodic table,
the number of electrons increases to four in the case of beryllium, five for boron,
six for carbon, seven for nitrogen, eight for oxygen, nine for fluorine, and finally
ten for neon. With an increasing number of electrons, you must add additional
orbitals to be able to create corresponding many-electron states, so that the number
of “unoccupied” orbitals decreases. As the number of available, unused orbitals is
getting smaller, the chemical activity of the corresponding substances diminishes,
until you reach another inert gas neon. To construct a many-electron state for neon



11.3 Pauli Principle and Periodic Table of Elements: Electronic Structure. . . 363

Table 11.1 Elements of the
second row of the periodic
table and electronic
configurations of their ground
states in terms of
single-electron orbitals and
the term symbols

Element Configuration Term symbol

Li3 1s22s1 2S1=2
Be4 1s22s2 1S0
B5 1s22s22p1 2P1=2
C6 1s22s22p2 3P0
N7 1s22s22p3 4S3=2
O8 1s22s22p4 3P2
F9 1s22s22p5 2P3=2
Ne10 1s22s22p6 1S0

with ten electrons, you have to use all ten available orbitals with n D 1 and n D 2:

Consequently, the electron structure of neon is again characterized as a closed shell
configuration. A popular way to visualize this process of filling up the available
orbitals consists in assigning numbers 1; 2; � � � to the principal quantum number n,
and letters s; p; f ; and d to orbitals with orbital angular momentum number l equal
to 0; 1; 2, and 3, respectively. The configuration of helium in this notation, primarily
used in atomic physics and quantum chemistry, would be 1s2, where the first number
stays for the principal number, and the upper index indicates the number of electrons
available for assignment to orbitals with l D 0. The electronic structure of elements
in the second row of the periodic table discussed above is shown in Table 11.1.

You can see from this table that l D 0 orbitals are added first to the list
of available single-electron states, and only after that additional six orbitals with
l D 1 and different values of m and ms are thrown in. The supposition here is
that single-electron states with l D 0 would contribute less energy than the l D 1

states3. Therefore, these two orbitals must be incorporated into the basis first. The
assumption that the orbitals with larger n and larger l would contribute more energy,
and, therefore, the corresponding orbitals must be added only after the orbitals
with lower values of these numbers are filled, is not always correct, and for some
elements orbitals with lower l and higher n contribute less energy than orbitals with
higher l and lower n. This happens, for instance, with orbital 4s, which contributes
less energy than the orbital 3d, but there are no simple hand-waving arguments that
could explain or predict this behavior. Anyway, going now to the third row of the
periodic table, you again start with the new set of orbitals characterized by n D 3,
plenty of which are available for 11 electrons in the first element, another alkali
metal, sodium. I think you get the gist of how it is working, but on the other hand,
you shall be aware that this line of arguments is still a gross oversimplification, and
periodic table of elements is not that periodic in some instances, and there are lots
of elements that do not fit this simple model of closed shells.

Single-electron orbitals jn; l;m;msi based on eigenvectors of operators of orbital
and spin angular momenta are not the only way to characterize the ground states

3I have to remind you that while the hydrogen energy levels are degenerate with respect to l, for
other atoms this is not true because of the interaction with other electrons.
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of atoms. An alternative approach is based on using eigenvectors of total orbital

angular momentum OL.tot/ D P
i
OL.i/ (sum of the orbital momenta of all electrons),

total spin of all electrons OS.tot/ D P
i
OS.i/, and grand total momentum OJ D OL.tot/ C

OS.tot/
.

Properties of the sum of two arbitrary angular momentum operators, OJ.1/ and OJ.2/,
can be figured out by generalizing the results for the sum of two spins or the spin 1=2
and the angular momentum presented in Chap. 9. The eigenvectors of the operator� OJ.1/ C OJ.2/

�2
are characterized by quantum number j, which can take values

j j1 � j2j � j � j1 C j2; (11.23)

where j1 and j2 refer to eigenvalues of
� OJ.1/

�2
and

� OJ.2/
�2

, respectively. For each j,

eigenvalues of OJ.1/z C OJ.2/z are characterized by magnetic numbers Mj obeying usual

inequality
ˇ̌
Mj

ˇ̌ � j and related to individual magnetic numbers mj1 and mj2 of OJ.1/z

and OJ.2/z correspondingly as

Mj D mj1 C mj2 : (11.24)

While Eq. 11.24 can be easily derived, proving Eq. 11.23 is a bit more than you can
chew at this stage, but you may at least verify that it agrees with the cases considered
in Chap. 9: for two 1=2 spins, Eq. 11.23 gives two values for j: j D 1; 0 in agreement
with Eqs. 9.54 and 9.55, and for the sum of the orbital momentum and the 1=2 spin,
Eq. 11.23 yields j D l ˙ 1=2 again in agreement with Sect. 9.5.2.

The transition from the description of many-fermion states in terms of single-
particle orbitals to the basis formed by eigenvectors of total orbital momentum,
total spin, and grand total angular momentum raises an important issue of separate
symmetry properties of many-particle orbital and spin states. Consider again for
simplicity two fermions that can individually be in orbital states j 1i and j 2i and
spin states j"i and j#i. In the description, where spin and orbital states are lumped
together in a one single-particle orbital (this is what I did writing equations such as
Eq. 11.11 or 11.13), I would have introduced four single-electron orbitals j˛ii:

j˛1i � j 1;"i I j˛2i � j 2;"i I j˛3i � j 1;#i I j˛4i � j 2;#i

and used them as a basis in a 4Š=.2Š2Š/ D six-dimensional two-fermion space. If,
however, I preferred to use eigenvectors of the total spin of the two particles as
a basis in the spin sector of the total spin–orbital two-particle space, separating
thereby the orbital and spin states, I would have to make sure that both the former
and the latter components separately possess a definite parity. Four eigenvectors of
the total spin of two spin 1=2 particles, indeed, contain a symmetric triplet j1;MSi
of states with total S.tot/ D 1 (see Eq. 9.54) and one antisymmetric singlet state
(Eq. 9.55) with total S.tot/ D 0. Thus, if I take these states as the spin components
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of the total basis of two-particle fermion states, then the symmetry of the spin
component will dictate the symmetry of the orbital portion. Indeed, to make the
entire two-fermion state antisymmetric, the orbital components paired with any of
the symmetric two-spin state j1;MSi must itself be antisymmetric. Two available
orbital states can only yield a single antisymmetric combination resulting in three
basis vectors characterized by the value of total spin S.tot/ D 1:

1p
2

hˇ̌
ˇ .1/

1

E ˇ̌
ˇ .2/

2

E
�
ˇ̌
ˇ .1/

2

E ˇ̌
ˇ .2/

1

Ei
j1;�1i

1p
2

hˇ̌
ˇ .1/

1

E ˇ̌
ˇ .2/
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E
�
ˇ̌
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2

E ˇ̌
ˇ .2/

1

Ei
j1; 0i (11.25)
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ˇ .2/
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j1; 1i ;

where 1=
p
2 factor ensures the normalization of the vector representing the orbital

portion of the state. The remaining total spin eigenvector corresponding to S D 0 is
an antisymmetric singlet j0; 0i. Consequently, the corresponding orbital part of the
two-particle state must be symmetric resulting in three additional possible states:

ˇ̌
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ˇ .2/
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E
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E
j0; 0i (11.26)
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j0; 0i :

You may notice that the first two of these states are formed by identical orbitals.
This is not forbidden by the Pauli principle because the spin state of two electrons
in this case is antisymmetric. This situation is often described by saying that the
two electrons in the same orbital state have “opposite” spins, which is not exactly
accurate. Indeed, “opposite” can refer only to the possible values of the z-component
of spin, but those can have opposite values in the singlet state as well as in the triplet
state with Ms D 0. Thus, it is more accurate to describe this situation as a total spin
zero or a singlet state. Combining three spin-antisymmetric states, Eq. 11.26, with
three antisymmetric-orbital states, Eq. 11.25, you find that the total number of basis
vectors in this representation is the same (six) as in the single-particle orbital basis,
confirming that this is just an alternative basis in the same vector space.

A more realistic example of a basis based on the separation of many-fermion spin
and orbital states would include two particles and at least three single-particle orbital
states corresponding to l D 1, m D �1; 0; 1. The total orbital angular momentum of
two electrons in this case can take three values: L D 0; 1; 2 with the total number of
corresponding states being 1C 3C 5 D 9 with various values of magnetic number
M. To figure out the symmetry of these states, you would need to present them as a
linear combination of single-particle states using the Clebsch–Gordan coefficients,
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similar to what I did in Sect. 9.5.2:

jL; l1; l2;Mi D
X

m1;m2

CL;l1;l2
M;m1;m2 jl1m1i jl2;m2i ım2;M�m1 ; (11.27)

where Kronecker’s delta makes sure that Eq. 11.24 is respected. The particle’s
exchange symmetry of the states presented by jL; l1; l2;Mi is determined by
the transformation rule of the Clebsch–Gordan coefficients with respect to the
transposition of indexes l1;m1 and l2;m2, which you will have to accept without
proof:

CL;l1;l2
M;m1;m2

D .�1/L�l1�l2 CL;l2;l1
M;m2;m1

: (11.28)

Indeed, applying the exchange operator OP.1; 2/ to Eq. 11.27, you will see that its
action on the right-hand side of the equation consists in the interchange of indexes
l1 and l2 in the Clebsch–Gordan coefficients:

OP.1; 2/ jL; l1; l2;Mi D
X

m1;m2

CL;l2;l1
M;m2;m1 jl1m1i jl2;m2i ım1;M�m2 D

.�1/L�l1�l2
X

m1;m2

CL;l1;l2
M;m1;m2 jl1m1i jl2;m2i ım2;M�m1

D .�1/L�l1�l2 jL; l1; l2;Mi :

In the second line of this expression, I used the transposition property of CL;l1;l2
M;m1;m2

,
Eq. 11.28. With this it becomes quite evident that state jL; l1; l2;Mi is symmetric
with respect to the exchange of particles if L � l1 � l2 is even and is antisymmetric
if L � l1 � l2 is odd. In the example when l1 D l2 D 1, which I am trying to figure
out now, this rule yields that the states with L D 2 and L D 0 are symmetric and
the state with L D 1 is antisymmetric. Correspondingly, the latter must be paired
with a triplet spin state, while the former two must go together with the zero spin
state. Since the total number of single-electron orbitals in this case is 6, the expected
number of two-particle antisymmetric basis vectors is 6Š=.4Š2Š/ D 15, and if you
insist I can list all of them below (I will use a simplified notation jL;Mi omitting l1
and l2):

j2;Mi j0; 0i
j1;Mi j1;Msi (11.29)

j0; 0i j0; 0i :

The first line in this expression contains five vectors with �2 � M � 2, the second
line represents 3 � 3 D 9 vectors with both M and Ms taking three values each, and
finally, the last line supplies the last 15th vector to the basis.
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Finally, to complete the picture, I can rewrite these vectors in terms of the grand
total momentum OJ. The first five vectors from the expression above obviously
correspond to j D 2, so one can easily replace this line with vectors j2;MJi,
where the first number now corresponds to the value of j. The nine vectors from the
second line correspond to three values of j: j D 2; 1; 0. While this situation appears
terribly similar to the case of l1 D 1 and l2 D 1 states considered previously, the
significant difference is that vectors j1;Mi j1;Msi are no longer associated with just
one or another particle, so that Eq. 11.28 has no relation to the symmetry properties
of the resulting states j j; 1; 1;MJi with respect to the exchange of the particles.
All these states are as asymmetric under operator OP.1; 2/ as states j1;Mi j1;Msi.
The last line in Eq. 11.29 obviously corresponds to a single state with zero grand
total angular momentum, which simply coincides with j0; 0i j0; 0i. In summary, the

antisymmetric basis in terms of eigenvectors of operators OJ2,
� OL.tot/

�2
,
� OS.tot/

�2
, and

OJz is formed by vectors j j; L; S;MJi:

j2; 2; 0;MJi ; j2; 1; 1;MJi ; j1; 1; 1;MJi ; j0; 1; 1; 0i ; j0; 0; 0; 0i : (11.30)

It is easy to check that this basis also consists of 5C5C3C1C1 D 15 vectors. They
can be expressed as linear combinations of eigenvectors of the total orbital and total
spin momenta (Eq. 11.29) with the help of Eq. 11.27 and the same Clebsch–Gordan
coefficients, which can always be found on the Internet. Just to illustrate this point,
let me do it for the grand total eigenvector j1; 1; 1; 0i using one of the tables of the
Clebsch–Gordan coefficients that Google dug out for me in the depth of the World
Wide Web:

j2; 1; 1; 0i D
r
1

6
j1; 1i j1;�1i C

r
1

6
j1;�1i j1; 1i C

r
2

3
j1; 0i j1; 0i :

Values of the total orbital, spin, and grand total momentum are often used to
designate the electronic structure of atoms, instead of single-electron orbitals, in
the form of the so-called term symbol:

2SC1LJ : (11.31)

Here the center symbol designates the value of the total orbital momentum using the
same correspondence between numerical values and letters: S;P;D;F for 0; 1; 2; 3
correspondingly similar to the single-electron orbital case but with capital rather
than lowercase letters. The right subscript shows the value of the grand total
momentum, and the left superscript shows the multiplicity of the respective energy
configuration with respect to the total spin magnetic number Ms. For instance,
using this notation, the states j1; 1; 1;MJi can be described as 3P1, while states
j2; 2; 0;MJi become 1D2.

The example of two electrons and three available single-particle orbital states
is more realistic than the one with only two such states, but it is still a far cry
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from what people have to deal when analyzing real atoms. The system of only
two electrons corresponds to helium atom, and one only needs one orbital state
with l1;2 D 0 to construct an antisymmetric two-electron ground state. In terms
of eigenvectors of total angular momentum and total spin, this state corresponds to
L D 0, S D 0: j0; 0i j0; 0i, where the orbital component is symmetric (both electrons
are in the same orbital state), and the spin component is antisymmetric (spins are
in an antisymmetric singlet state). The term symbol for this state is obviously 1S0.
Going from helium to lithium, you already have to deal with three electrons, with the
corresponding structure in terms of single-electron orbitals shown in the first line of
Table 11.1. To figure out the values of the total orbital, spin, and grand total momenta
for this element, you can start with the one established for helium atom and add an
additional electron to it assuming that it does not disturb the existing configuration
of the two electrons in the closed shell. Since we know that this electron goes to
the orbital with l D 0, the total orbital momentum remains zero, and the total spin
becomes 1=2 (you add a single spin to a state with S D 0, so what else can you
get?), so the grand total moment becomes J D 0 C 1=2 D 1=2, so that the term
symbol for Li becomes the same as for hydrogen 2S1=2 emphasizing the periodic
property of the electronic properties of the elements. For the same reason, the term
symbol for the next element, beryllium, is exactly the same as the one we derived
for helium (see Table 11.1). To figure out the term symbol for boron, ignore the two
electrons in the first closed shell, which do not contribute anything to the total orbital
or spin momenta, and focus on the three electrons in the second shell. For these three
electrons, you have available two orbitals with the same orbital state, l1 D l2 D 0,
and opposite spin states and an extra orbital with l3 D 1 and s3 D 1=2. The total
orbital and spin momenta in this case can only be equal to L D 1 and S D 1=2,
while the grand total momentum can be either J1 D 1=2 or J2 D 3=2. Thus, boron
can be in one of two configurations 2P1=2 or 2P3=2, but so far we have no means
of figuring out which of these two configurations have a lower energy. To answer
this question, we can ask help from German physicist Friedrich Hermann Hund,
who formulated a set of empiric rules determining which term symbol describes the
electron configurations in atoms with lowest energy. These rules can be formulated
as follows:

1. For a given configuration, a term with the largest total spin has the lowest energy.
2. Among the terms with the same multiplicity, a term with the largest total orbital

momentum has the lowest energy.
3. For the terms with the same total spin and total orbital momentum, the value of

the grand total momentum corresponding to the lowest energy is determined by
the filling of the outermost shell. If the outermost shell is half-filled or less than
half-filled, then the term with the lowest value of the grand total momentum has
the lowest energy, but if the outermost shell is more than half-filled, the term with
the largest value of the grand total momentum has the lowest energy.

In the case of boron, you have to go straight to the third of Hund’s rules because
the first two do not disambiguate between the corresponding terms. Checking
Table 11.1, you can see that the outermost shell for boron is the one characterized by
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principal number n D 2, and the total number of single-particle orbitals on this shell
is 8. Since boron has three electrons on this shell, the shell is less than half-filled,
so that the third Hund’s rule tells you that the ground state configuration of boron
is 2P1=2.

The case of carbon is even more interesting. Ignoring again two electrons with
L D 0 and S D 0, I focus on two p-electrons with l1 D l2 D 1: Speaking of total
orbital momentum and total spin, you can identify the following possible values for
L and S: L D 0; 1; 2 and S D 0; 1. However, one needs to remember that the overall
state, including its spin and orbital components, must be antisymmetric, so that not
all combinations of L and S are possible. For instance, you already know that L D 2

orbitals are all symmetric; therefore, they can only coexist with spin singlet S D 0.
The corresponding grand total momentum is J D 2, so that the respective term is
1D2. The state with total orbital momentum L D 1 is antisymmetric and, therefore,
demands a symmetric triplet spin state S D 1. This combination of orbital and
spin momenta can generate grand total momentum J D 2; 1; 0, so that we have the
following terms: 3P2, 3P1,3P0. Finally, symmetric L D 0 state must be coupled with
the spin singlet giving rise to term 1S0. In summary, I identified five possible terms
consistent with the antisymmetry requirement: 1D2, 3P2, 3P1,3P0, and 1S0. Using the
first two Hund’s rules, you can limit the choice of the ground state configuration to
the P states, and since the number of electrons in C atom on the outer shell is only 4,
it is half-filled, and the third Hund’s rule yields that the ground state configuration
for carbon is 3P0. Figuring out term symbols for elements where there are more than
two electrons in the incomplete subshell (orbitals with the same value of the single-
particle orbital momentum), such as nitrogen (three electrons on the p-subshell), is
more complex, so I give you the term symbols for the rest of the elements in the
second row of the periodic table in Table 11.1 without proof for you to contemplate.

11.4 Exchange Energy and Other Exchange Effects

11.4.1 Exchange Interaction

Some of the examples discussed in the previous section have already demonstrated
a weird interconnectedness between spin and orbital components of many-particle
states, which has nothing to do with any kind of real spin–orbital interaction.
Recall, for instance, Eqs. 11.25 and 11.26 for two-fermion states: the triplet spin
state in Eq. 11.25 requires asymmetric orbital state, while the singlet spin state in
Eq. 11.26 asks for the orbital states to be symmetric. In the absence of interaction
between electrons, all three S D 1 states are degenerate and belong to the energy
eigenvalue E1 C E2, where E1;2 are eigenvalues of the single-particle Hamiltonian
corresponding to the “occupied” orbital states. At the same time, S D 0 states
correspond to three different energies 2E1, 2E2, and E1 C E2, depending upon the
orbital components used in their construction. The E1CE2 energy level is, therefore,
fourfold degenerate, with the corresponding eigenvectors formed by symmetric and
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antisymmetric combinations of the same two orbital functions j 1i and j 2i. It
is important to emphasize that three of these degenerate states correspond to the
total spin of the system S D 1, and the fourth one possesses total spin S D 0.
An interaction between electrons, however, might lift the degeneracy, making the
energy of a two-electron system dependent on its spin state even in the absence of
any actual spin-dependent interactions. This is yet another fascinating evidence of
the weirdness of the quantum world.

I will demonstrate this phenomenon using a simple spin-independent Coulomb
interaction potential:

OV.1; 2/ D e2

4�"0 jOr1 � Or2j
which describes the repulsion between two electrons in the atom of helium and is
added to an attractive potential responsible for the interaction between the electrons
and the nucleus. While a mathematically rigorous solution of a quantum three-
body problem is too complicated for us to handle, what I can do is to compute the
expectation value of the potential OV.1; 2/ using eigenvectors of the non-interacting
electrons. As you will find out later in Chap. 13, such an expectation value gives
you an approximation for the interaction-induced correction to the eigenvalues of
the Hamiltonian.

Let me begin with the two-fermion state described by the vector presented
in Eq. 11.25, which is characterized by an antisymmetric orbital component. The
interaction potential does not contain any spin-related operators, allowing me to
ignore the spin component of this state (it will simply yield h1;Msj 1;Msi D 1) and
write the expectation value as follows:
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(11.33)

If you carefully compare the terms in the third and fourth lines of the expression
above, you will notice a striking difference between them. In both terms in the
third line (Eq. 11.32), the ket and bra vectors, describing any of the two particles,

represent the same state (
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ˇ). In other words, the terms in the line
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labeled as Eq. 11.32 look like regular single-particle expectation values, while the
terms in the next line look like non-diagonal matrix elements computed between
different states for each particle. You can also notice that the two terms in Eq. 11.32
can be transformed into the other by exchange operator OP .1; 2/. Since the particles
are identical, no matrix elements must change as a result of the transposition, which
means that these terms are equal to each other. If you, however, apply the exchange
operator to the terms in Eq. 11.33, you will generate expressions, where ket and
bra vectors are reversed, meaning that these terms are complex conjugates of each
other. Finally, you can easily see that the expression in Eq. 11.32 would have exactly
the same form even if the particles in question were distinguishable, while Eq. 11.33
results from the antisymmetrization requirements imposed on the two-electron state.

Taking all this into account, the interaction expectation value can be presented as

D OV.1; 2/
E

D VC C Vexc; (11.34)

where VC is defined as
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Using the position representation for the orbital states, the expression for VC can be
written down in the explicit form

VC D e2

4�"0

ˆ
d3r1

ˆ
d3r2

j 1.r1/j2 j 2.r2/j2
jr1 � r2j ; (11.35)

which makes all statements made about VC rather obvious. If you agree to identify
e j .r/j2 with the charge density, you can interpret Eq. 11.35 as a classical energy
of the Coulomb interaction between two continuously distributed charges with
densities e j 1.r/j2 and e j 2.r/j2.

The expression for Vexc in the position representation takes the form

Vexc D � e2

4�"0
Re

ˆ
d3r1

ˆ
d3r2
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1 .r2/ 

�
2 .r1/ 1.r1/ 2.r2/
jr1 � r2j

�
; (11.36)

which does not have any classical interpretation. This contribution to the energy is
called exchange energy, and its origin can be directly traced to the antisymmetriza-
tion requirement. The expectation value computed with the symmetric orbital state
would have the same form as in Eq. 11.34, with one but important difference—a dif-
ferent sign in front of the exchange energy term. Thus, previously degenerate states
are now split by the interaction of the amount equal to 2Vexc on the basis of their
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spin states. Just think about it—in the absence of any special spin–orbit interaction
term in the Hamiltonian, the energies of the two-electron states composed of the
same single-particle orbitals depend on their spin state! This is a purely quantum
effect, one of the manifestations of the oddity of quantum mechanics, which has
profound experimental and technological implications. However, first of all, I want
you to get some feeling about the actual magnitude of this effect; for this reason, I
am going to compute the Coulomb and exchange energies for a simple example of
a two-electron state of the helium atom.

For concreteness (and to simplify calculations), I will presume that the orbitals
participating in the construction of the two-electron state are j1; 0; 0i and j2; 0; 0i,
where I used the notation for the states from Chap. 8. In the position representation,
the corresponding wave functions are  1.r1/ D R10.r1/=

p
4� and  2.r2/ D

R20.r2/=
p
4� , where R10 and R20 are hydrogen radial wave functions, and the factor

1=
p
4� is what is left of the spherical harmonics with zero orbital momentum.

When integrating Eq. 11.35 with respect to r1, I can choose the Z-axis of the
spherical coordinate system in the direction of r2, in which case the denominator
in this equation can be written down as

jr1 � r2j D
q

r21 C r22 � 2r1r2 cos �1:

The integral over r1 now becomes

I.r2/ D 32

4�a3B

1̂

0

dr1

�̂

0

d�1

2�ˆ

0

d'1r
2
1 sin �1

e�4r1=aB

q
r21 C r22 � 2r1r2 cos �1

D

64

a3B

1̂

0

dr1r
2
1e

�4r1=aB

1ˆ

�1
dx

1q
r21 C r22 � 2r1r2x

;

where I substituted

R10 D 2 .2=aB/
3=2 exp .�2r=aB/

(remember that Z D 2 for He). Integral over x yields

1ˆ

�1
dx

1q
r21 C r22 � 2r1r2x

D 1

2r1r2

2r1r2ˆ

�2r1r2

dzq
r21 C r22 C z

D

1

r1r2

q
r21 C r22 C 2r1r2 �

q
r21 C r22 � 2r1r2

�
D r1 C r2 � jr1 � r2j

r1r2
: (11.37)
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Evaluating this expression separately for r1 > r2 and r1 < r2, I find for I.r2/

I.r2/ D 128

a3Br2

r2ˆ

0

dr1r
2
1e

�4r1=aB C 128

a3B

1̂

r2

dr1r1e
�4r1=aB D

4

r2


1 �

	
1C 2r2

aB



e�4r2=aB

�
: (11.38)

Now, using

R20 D 2

	
1

aB


3=2 	
1 � r

aB



exp

	
� r

aB



:

I get for VC

VC D e2

4�"0

8

4�a3B

1̂

0

dr2

�̂

0

d�2

2�ˆ

0

d'2 sin �2r
2
2I.r2/

	
1 � r2

aB


2
exp

	
�2r2

aB



D

e2

4�"0

32

a3B

1̂

0

dr2r2


1 �

	
1C 2r2

aB



e�4r2=aB

�	
1 � r2

aB


2
exp

	
�2r2

aB



D

272

81

e2

4�"0aB
D 3:35Ry Š 46:34 eV

where I used Eq. 8.17 with Z set to unity and notation Ry D 13:8 eV for hydrogen’s
ground state (in vacuum).

Now, I will compute the exchange energy correction. Keeping the same notation
I.r2/ for the first integral with respect to r1, I can present it, using expressions for
the radial functions provided above, as

I2.r2/ D 8
p
2

4�a3B

1̂

0

dr1

�̂

0

d�1

2�ˆ

0

d'1r
2
1 sin �1

�
1 � r1

aB

�
exp

�
� 3r1

aB

�
q

r21 C r22 � 2r1r2 cos �1
D

4
p
2

a3B

1̂

0

dr1r
2
1 exp

	
�3r1

aB


	
1 � r1

aB


 1ˆ

�1
dx

1q
r21 C r22 � 2r1r2x

:

Equation 11.37 for the angular integral and Mathematica © for the remaining radial
integrals yield
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I.r2/ D 8
p
2

a3Br2

r2ˆ

0

dr1r
2
1 exp

	
�3r1

aB


	
1 � r1

aB



C

8
p
2

a3B

1̂

r2

dr1r1 exp

	
�3r1

aB


	
1 � r1

aB



D 8

p
2

27aB

	
1C 3r2

aB



e�3r2=aB :

Plugging it into Eq. 11.36 and dropping the real value sign because all the functions
in the integral are real, I have

Vexc D � e2

4�"0

8
p
2

27aB
4

	
2

aB


3=2 	
1

aB


3=2
�

1̂

0

dr2r
2
2 exp

	
�2r2

aB


	
1 � r2

aB



exp

	
� r2

aB


	
1C 3r2

aB



exp

	
�3r2

aB



D

128

27

e2

4�"0a4B

1̂

0

dr2r
2
2 exp

	
�6r2

aB


	
1 � r2

aB


	
1C 3r2

aB



� �1:21 eV:

Thus, this calculation showed that a state with S D 1 has a smaller energy than
a state with S D 0 by 2 � 1:21 D 2:42 eV. However, the sign of the integral
in the exchange term depends on the fine details of wave functions representing
single-electron orbitals and is not predestined. If single-particle orbitals of electrons
were different, describing, for instance, electrons with non-zero orbital momentum
in outer shells of heavier elements, or electrons in metals, the situation might have
been reversed, and the singlet spin state could have a lower energy than a triplet.

This difference between energies of symmetric and antisymmetric spin states
gives rise to something known as an exchange interaction between spins and plays
an extremely important role in magnetic properties of materials. In particular,
this “interaction,” which is simply a result of the fermion nature of electrons, is
responsible for the formation of ordered spin arrangements responsible for such
phenomena as ferromagnetism or antiferromagnetism.

Ferromagnets—materials with permanent magnetization—have been known
since the earliest days of human civilization, but the origin of their magnetic
properties remained a mystery for a very long time. André-Marie Ampère (a French
physicist who lived between 1775 and 1836 and made seminal contributions to
electromagnetism) proposed that magnetization is the result of the alignment of
all dipole magnetic moments formed by circular electron currents of each atom
in the same direction. This alignment, he believed, was due to the magnetostatic
interaction between the dipoles, which made the energy of the system lowest when
all dipoles point in the same direction. Unfortunately, calculations showed that the
magnetostatic interaction is so weak that thermal fluctuations would destroy the
ferromagnetic order even at temperatures as small as a few Kelvins. The energy of
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the spin exchange interaction is much bigger (if you think that 2 eV is a small energy,
you will be delighted to know that it corresponds to a temperature of more than
20,000 K). The temperature at which iron loses its ferromagnetic properties due to
thermal agitation is about 1043 K, which corresponds to the exchange energy of only
80 meV, which is the real culprit behind the ordering of spin magnetic moments. In
the classical picture, ordering would mean that all magnetic moments are aligned
in the same direction, but describing this phenomenon quantum mechanically, we
would say that N spins S are aligned if they are in the symmetric state with total
spin equal to NS. For such a state to correspond to the ground state of the system
of N spins, the exchange energy must favor (be lower for) symmetric states over the
antisymmetric states. An antisymmetric state classically could be described as an
array of magnetic moments, each pair of which is aligned in the opposite directions,
while quantum mechanically we would say that each pair of spins in the array is in
the spin zero state. Materials with such an arrangement of magnetic moments are
known as antiferromagnetics, and for the antiferromagnetic state to be a ground
state, the exchange energy must change its sign compared to the ferromagnetic
case. The complete theory of magnetic order in solids is rather complicated, so
you should not think that this brief glimpse into this area gives you any kind of
even remotely complete picture, but beyond all these complexities, there is a main
underlying physical mechanism—the exchange energy.

11.4.2 Exchange Correlations

The symmetry requirement on the many-particle states of indistinguishable particles
affects not only their interaction energy but also their spatial positions. To illustrate
this point, I will compute the expectation value of the distance between two electrons
defined as

D
.r1 � r2/

2
E

D ˝
r21
˛C ˝

r22
˛ � 2 hr1r2i : (11.39)

This time around, I will assume that the two electrons belong to two different
hydrogen-like atoms separated by a distance R small enough for the wave functions
describing states of each electron to have significant spatial overlap. I will also
assume that the electrons are in the same atomic orbital jn; l;mi, but since each
of these orbitals belongs to two different atoms, they represent different states,
even if they are described by the same set of quantum numbers. To distinguish
between these orbitals, I will add another parameter to the set of quantum numbers
characterizing the position of the nucleus: jn; l;m;Ri. If the atoms are separated
by a significant distance, you can quite clearly ascribe an electron to an atom it
belongs. However, when the distance between the nuclei becomes comparable with
the characteristic size of the electron’s wave function, this identification is no longer
possible, and you have to introduce two orbitals for each electron, jn; l;m;R1ii
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and jn; l;m;R2ii, where lower index i outside of the ket symbol takes values 1
or 2 signifying one or another electron. This two-electron system can be again in
a singlet or triplet spin state demanding symmetric or antisymmetric two-electron
orbital state:

j˙i D 1p
2
Œjn; l;m;R1i1 jn; l;m;R2i2 ˙ jn; l;m;R1i2 jn; l;m;R2i1� : (11.40)

The first two terms in Eq. 11.39 are determined by single-particle orbitals:

h˙j r21 j˙i D 1

2

�
1 hn; l;m;R1j r21 jn; l;m;R1i1 C 1 hn; l;m;R2j r21 jn; l;m;R2i1 ˙

1 hn; l;m;R1j r21 jn; l;m;R2i1 � 2 hn; l;m;R1j n; l;m;R2i2 ˙
1 hn; l;m;R2j r21 jn; l;m;R1i1 � 2 hn; l;m;R2j n; l;m;R1i2

�
:

When writing this expression, I took into account that the orbitals belonging to the
same atom are normalized, 2 hn; l;m;R2j n; l;m;R2i2 D 1, but orbitals belonging
to different atoms are not necessarily orthogonal: 2 hn; l;m;R1j n; l;m;R2i2 ¤ 0 .
Similar expression for h˙j r22 j˙i is

h˙j r22 j˙i D 1

2

�
2 hn; l;m;R1j r22 jn; l;m;R1i2 C 2 hn; l;m;R2j r22 jn; l;m;R2i2 ˙

2 hn; l;m;R1j r22 jn; l;m;R2i2 � 1 hn; l;m;R1j n; l;m;R2i1 ˙
2 hn; l;m;R2j r22 jn; l;m;R1i2 � 1 hn; l;m;R2j n; l;m;R1i1

�
:

Since both atoms are assumed to be identical, the following must be true:

1 hn; l;m;R1j r21 jn; l;m;R1i1 D 2 hn; l;m;R2j r22 jn; l;m;R2i2 � a2

1 hn; l;m;R2j r21 jn; l;m;R2i1 D 2 hn; l;m;R1j r22 jn; l;m;R1i2 � b2

1 hn; l;m;R1j r21 jn; l;m;R2i1 D 2 hn; l;m;R2j r22 jn; l;m;R1i2 � u

2 hn; l;m;R1j n; l;m;R2i2 D 1 hn; l;m;R2j n; l;m;R1i1 � v:

All these relations can be obtained by noticing that the system remains unchanged
if you replace R1 ! R2 and simultaneously change electron indexes 1 and 2. Taking
into account these relations and corresponding simplified notations, I can write for
h˙j r21;2 j˙i:

h˙j r21 j˙i D h˙j r22 j˙i D 1

2

�
a2 C b2 ˙ �

uv C u � v��� :
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The next step is to evaluate hr1r2i:

h˙j r1r2 j˙i D
1

2
Œ1 hn; l;m;R1j r1 jn; l;m;R1i1 � 2 hn; l;m;R2j r2 jn; l;m;R2i2 C (11.41)

1 hn; l;m;R2j r1 jn; l;m;R2i1 � 2 hn; l;m;R1j r2 jn; l;m;R1i2 ˙
1 hn; l;m;R1j r1 jn; l;m;R2i1 � 2 hn; l;m;R1j r2 jn; l;m;R2i 2˙

1 hn; l;m;R2j r1 jn; l;m;R1i1 � 2 hn; l;m;R2j r2 jn; l;m;R1i2� : (11.42)

The evaluation of these expressions requires a more explicit determination of the
point with respect to which electron position vectors are defined. Assuming for
concreteness that the origin of the coordinate system is at the nucleus of atom 1, I can
immediately note that the symmetry with respect to inversion kills first two terms
in Eq. 11.42 since 1 hn; l;m;R1j r1 jn; l;m;R1i1 D 2 hn; l;m;R1j r2 jn; l;m;R1i2 D 0.
The remaining two terms survive and can be written as

h˙j r1r2 j˙i D ˙ jdj2

where I introduced vector d defined as follows:

1 hn; l;m;R1j r1 jn; l;m;R2i1 D 2 hn; l;m;R2j r2 jn; l;m;R1i2 � d:

Finally, combining all the obtained results together, I can write

D
.r1 � r2/

2
E

D a2 C b2 ˙
�

uv C u � v� � 2 jdj2
�
: (11.43)

While the actual computation of matrix elements appearing in Eq. 11.43 is rather
difficult and will not be attempted here, you can still learn something from this
exercise. Its main lesson is that the spin state of the electrons affects how close the
electrons of the two atoms can be. Assuming for concreteness that the expression
in the parentheses in Eq. 11.43 is negative, which is favored by the term jdj2 (the
actual sign depends on the single-electron orbitals), one can conclude that the
antisymmetric spin state promoting symmetric orbital state (C sign in ˙) results
in electrons being closer together, than in the case of the symmetric spin state. This
is an interesting quantum mechanical effect: electrons appear to be “pushed” closer
toward each other or further away from each other depending on their spin state even
though there is no actual physical force doing the “pushing.” This phenomenon plays
an important role in chemical bonding between atoms, because electrons, when
“pushed” toward each other, pull their nuclei along making the formation of a stable
bi-atomic molecule more likely.



378 11 Non-interacting Many-Particle Systems

11.5 Fermi Energy

The behavior of systems consisting of many identical particles (and by many here I
mean really huge, something like Avogadro’s number) is studied by a special field of
physics called quantum statistics. Even a sketchy review of this field would take us
well outside the scope of this book, but there is one problem involving a very large
number of fermions, which we can handle. The issue in question is the structure
of the ground state and its energy for the system on N 
 1 non-interacting free
electrons (an ideal electron gas) confined within a box of volume V . Each electron is
a free particle characterized by a momentum p, corresponding single-particle energy
Ep D p2=2me, and a single particle wave function (in the position representation)
 p .r/ D Ap exp .ip � r=„/, where Ap is a normalization parameter, which was chosen
in Sect. 5.1.1 to be 1=

p
2�„ to generate a delta-function normalized wave function.

Here it is more convenient to choose an alternative normalization, which would
explicitly include volume V occupied by the electrons. To achieve this, I will impose
so-called periodic boundary conditions:

 p .r C L/ D  p .r/ ; (11.44)

where L is a vector with components Lx; Ly; Lz such that LxLyLz D V . This
boundary condition is the most popular choice in solid-state physics, and if you
are wondering about its physical meaning and any kind of relation to reality, it does
not really have any. The logic of using it is based upon two ideas. First, it is more
convenient than, say, particle-in-the-box boundary conditions  p .L/ D 0, implying
that the electrons are confined in an infinite potential well, because it keeps the wave
functions in the complex exponential form rather than forcing them to become much
less convenient real-valued sin functions. Second, it is believed that as long as we
are not interested in specific surface-related phenomena, the behavior of the wave
functions at the boundary of a solid shall not have any impact on its bulk properties.
I have used a similar idea when computing the total energy of electromagnetic field
in Sect. 7.3.1.

This boundary condition imposes restrictions on the allowed values of the
electron’s momentum:

exp .ip � .r C L/ =„/ D exp .ip � r=„/ )

exp .ip � L=„/ D 1 ) pi � Li

„ D 2�ni; (11.45)

where i D x; y; z and ni D ˙1;˙2;˙3 � � � . In addition to making the spectrum
of the momentum operator discrete, the periodic boundary condition also allows an
alternative normalization of the wave function:
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ˇ̌
Ap

ˇ̌2
Lx=2ˆ

�Lx=2

Ly=2ˆ

�Ly=2

Lz=2ˆ

�Lz=2

e�i p�r
„ ei p�r

„ dxdydz D 1

which yields Ap D 1=
p

V . The system of normalized and orthogonal single-electron
wave function takes the form

 n1;n2;n3 .r/ D 1p
V

exp


i

	
2�

Lx
n1x C 2�

Ly
n2y C 2�

Lz
n3z


�
;

while the single-electron energies form a discrete spectrum defined by

�n1n2n3 D .2�„/2
2me

 
n21
L2x

C n22
L2y

C n23
L2z

!
: (11.46)

This wave function generates two single-electron orbitals characterized by two
different values of the spin magnetic number ms, which is perfectly suitable for
generating many-particle states of the N-electron system. The ground state of this
system is given by the Slater determinant formed by N single-electron orbitals with
the lowest possible single-particle energies ranging from �1;1;1 to some maximum
value �F corresponding to the last orbital making it into the determinant. Thus,
all single-particle orbitals of electrons are divided into two groups: those that are
included (occupied) into the Slater determinant for the ground state and those that
are not (empty or vacant). The occupied and empty orbitals are separated by energy
�F known as the Fermi energy. The Fermi energy is an important characteristic of an
electron gas, which obviously depends on the number of electrons N and determines
much of its ground state properties. Thus, let’s spend some time trying to figure it
out.

In principle, finding �F is quite straightforward: one needs to find the total
number of orbitals M.�/ with energies less than �. Then the Fermi energy is found
from equation

M .�F/ D N: (11.47)

However, counting the orbitals and finding M.�/ are not quite trivial because energy
values defined by Eq. 11.46 are highly degenerate, and what is even worse is that
there is no known analytical formula for the degree of the degeneracy as a function
of energy. The problem, however, can be solved in the limit when N ! 1 and V !
1 so that the concentration of electrons N=V remains constant. In this limit the
discrete granular structure of the energy spectrum becomes negligible (the spectrum
in this case is called quasi-continuous), and the function M.�/ can be determined.

You might think that I am nuts because I first introduce finite V to make the
spectrum discrete and then go to the limit V ! 1 to make it continuous again. The
thing is that if I had begun with the infinite volume and continuous spectrum, the
only information I would have had about the number of states is that it is infinite



380 11 Non-interacting Many-Particle Systems

(the number of states of continuous spectrum is infinite for any finite interval of
energies), which does not help me at all. What I am getting out of this roundabout
approach is the knowledge about how the number of states turns infinite when the
volume goes to infinity, and as you will see, this is exactly what we need to find the
Fermi energy.

In order to find M.�/, it is convenient to visualize the states that need to be
counted. This can be done by presenting each single-electron orbital graphically as
points with coordinates n1; n2; n3 in a three-dimensional space defined by a regular
Cartesian coordinate system with axes X, Y , and Z. Each point here represents two
orbitals with different values of the spin magnetic number. Surrounding each point
by little cubes with sides equal to unity, I can cover the entire three-dimensional
space containing the electron’s orbitals. Since each cube has a unit volume, the total
volume covered by the cubes is equal to the number of points within the covered
region. Since each point represents two orbitals with opposite spins, the number of
all orbitals in this region is twice the number of points.

For simplicity let me assume that all Lz D Ly D Lz � L, which allows me to
rewrite Eq. 11.46 in the form

n2.�/ D n21 C n22 C n23 (11.48)

where I introduced

n2.�/ D 2me�n1n2n3L
2

.2�„/2 : (11.49)

Equation 11.48 defines a sphere in the space of electron orbitals with radius n /
L
p
�. If you allow non-integer values for numbers n1;2;3, you could say that each

point on the surface of the sphere corresponds to states with the same energy � (such
surface is called isoenergetic). All points in the interior of the surface correspond to
states with energies less than �, while all points in the exterior represent states with
energies larger than �. Now, the number of orbitals encompassed by the surface is, as
I just explained, simply equal to the volume of the corresponding region multiplied
by two to account for two values of spin. Thus, I can write for the number of states
with energies less than �4:

M.�/ D 2
4

3
�

	
L

2�„

3
.2me�/

3=2 D V
.2me�/

3=2

3�2„3 : (11.50)

4If instead of periodic boundary conditions you would use the particle-in-the-box boundary
conditions requiring that the wave function vanishes at the boundary of the region Lx � Ly � Lz,
you would have ended up with pi D �ni=Li, where ni now can only take positive values because
wave functions sin .�n1x=Lx/ sin

�
�n2y=Ly

�
sin .�n3z=Lz/ with positive and negative values of ni

represent the same function, while function exp i
�
2�
Lx

n1x C 2�
Ly

n2y C 2�
Lz

n3z
�

with positive and

negative indexes represents two linearly independent states. As a result, Eq. 11.50 when used in
this case would have an extra factor 1=8 reflecting the fact that only 1/8 of a sphere correspond to
points with all positive coordinates.
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Fig. 11.3 Two-dimensional
version of a state counting
procedure described in the
texts: squares replace cubes, a
circle represents a sphere, but
the points are still the states
specified by two instead of
three integer numbers. The
2-D version is easier to
process visually, but
illustrates all the important
points

The problem with this calculation is, of course, that the points on the surface do
not necessarily correspond to integer values of n1; n2, and n3 so that this surface
cuts through the little cubes in its immediate vicinity (see Fig. 11.3 representing
a two-dimensional version of the described construction). As a result, some states
with energies in the thin layer surrounding the spherical surface cannot be counted
accurately. The number of such states is obviously proportional to the area of the
enclosing sphere, which is / L2, while the number of states counted correctly is /
L3; so that the relative error of the outlined procedure behaves as 1=L and approaches
zero as L goes to infinity. Thus, Eq. 11.50 can be considered to be asymptotically
correct in the limit L ! 1. Now you can see the value of this procedure with the
initial discretization followed by passing to the quasi-continuous limit. It allowed
me to establish the exact dependence of M as a function of volume V expressed
by Eq. 11.50. Now I can easily find the Fermi energy by substituting Eq. 11.50 into
Eq. 11.47:

V
.2me�F/

3=2

3�2„3 D N )

�F D „2
2me

	
3�2N

V


2=3
: (11.51)

The most important feature of Eq. 11.51 is that the number of electrons N and the
volume they occupy V , the two quantities which are supposed to go to infinity,
appear in this equation only in the form of the ratio N=V which we shall obviously
keep constant when passing to the limit V ! 1, N ! 1. The ratio N=V
specifies the number of electrons per unit volume and is also known as the electron
concentration. This is one of the most important characteristics of the electron gas.

It is important to understand that the Fermi energy is the single-electron energy of
the last “occupied” single-particle orbital and is not the energy of the many-electron
ground state. To find the latter I need to add energies of all occupied single-electron
orbitals:
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E D 2

NmaxX
n1;n2;n3

�n1;n2;n3 ; (11.52)

where Nmax is the collection of indexes n1; n2; n3 corresponding to the last occupied
state and the factor of 2 accounts for the spin variable. I will compute this sum again
in the limit V ! 1, N ! 1 (which, by the way, is called thermodynamic limit),
and while doing so I will show you a trick of converting discrete sums in integrals.
This operation is, again, possible because in the thermodynamic limit the discrete
spectrum becomes quasi-continuous, and the arguments I am going to employ here
are essentially the same as the one used to compute the Fermi energy but with a
slightly different flavor.

So I begin. When an orbital index ni changes by one, the change of the respective
component of the momentum pi can be presented as

4pi D 2�„
Li

4ni;

where 4ni D 1. With this relation in mind, I can rewrite Eq. 11.52 as

E D 2

NmaxX
n1;n2;n3

�n1;n2;n34n14n24n3 D 2
L3

.2�„/3
NmaxX

px;py;pz

�px;py;pz4px4py4pz

where I again set Lz D Ly D Lz � L (remember that 4ni D 1, so by including
factors 4n14n24n3 into the original sum, I did not really change anything). Now,
when L ! 1, 4ni remains equal to unity, but 4pi ! 0, so that the corresponding
sum in the preceding expression turns into an integral:

E D 2
V

.2�„/3
pF

xˆ

�pF
x

pF
yˆ

�pF
y

pF
zˆ

�pF
z

dpxdpydpz�
�

px; py; pz
�

(11.53)

where I changed the notation for the energy to emphasize that momentum is now
not a discrete index, but a continuous variable. Since the single-particle energy
�
�
px; py; pz

�
depends only upon p2, it makes sense to compute the integral in

Eq. 11.53 using the representation of the momentum vector in spherical coordinates.
Replacing the Cartesian volume element dpxdpydpz with its spherical counterpart
p2 sin �d�d'dp, where � and ' are polar and azimuthal angles characterizing the
direction of vector p, I can rewrite Eq. 11.53 as

E D 2
V

.2�„/3
pFˆ

0

�̂

0

2�ˆ

0

� . p/ p2 sin �d�d'dp;
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where pF is the magnitude of the momentum corresponding to the Fermi energy �F.
I proceed replacing the integration variable p with another variable � according to
relation p D p

2me�:

E D 2
V .2me/

3=2

2 .2�„/3 4�
�Fˆ

0

�
p
�d�: (11.54)

Before computing this integral, let me point out that it can be rewritten in the
following form:

E D
�Fˆ

0

�g .�/ d� (11.55)

where I introduced quantity

g .�/ D V .2me/
3=2 p

�

2�2„3 (11.56)

called density of states. This quantity, which means the number of states per unit
energy interval, is an important characteristic of any many-particle system. Actually
it is so important to give me an incentive to deviate from the original goal of
computing the integral in Eq. 11.54 and spend more time talking about it.

To convince you that g .�/ d� can, indeed, be interpreted as a number of states
with energies within the interval Œ�; � C d��, I will simply compute this quantity
directly using the same state counting technique, which I used to find the Fermi
energy. However, this time around I am interested in a number of states within a
spherical shell with inner radius n.�/ and outer radius n.� C d�/:

n.� C d�/ D n.�/C d� .dn=d�/ D L

2�„
p
2me� C L

4�„

r
2me

�
d�

where I used Eq. 11.49 for n.�/. The volume occupied by this shell is

4V D 4�n2dn D 4�n2
dn

d�
d� D

4�
L22me�

4�2„2
L

4�„

r
2me

�
d� D V .2me/

3=2 p
�

4�2„3 d�:

Using again the fact that the volume allocated to a single point in Fig. 11.3 is equal
to one and that there are two single-electron orbitals per point, the total number of
states within this spherical layer is
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V .2me/
3=2 p

�

2�2„3 d�

which according to Eq. 11.56 is exactly g .�/ d�.
Now I can go back to Eq. 11.55 and complete the computation of the integral,

which is quite straightforward and yields

E D V .2me/
3=2

2�2„3
�Fˆ

0

�
p
�d� D V .2me/

3=2

5�2„3 �
5=2
F D

3

5
N

 
V .2me/

3=2

3�2N .„2/3=2
!
�
5=2
F :

In the last line, I rearranged the expression for the energy to make it clear (with the
help of Eq. 11.51) that the expression in the parentheses is ��3=2

F and that the ground
state energy of the non-interacting free electron gas can be written down as

E D 3

5
N�F: (11.57)

This expression can also be rewritten in another no less illuminating form. Substi-
tuting Eq. 11.51 into Eq. 11.57, I can present energy E of the gas as a function of
volume:

E D 3„2 �3�2�2=3
10me

N5=3

V2=3
:

The fact that this energy depends on the volume draws out an important point: if
you try to expand (or contract) the volume occupied by the gas, its energy changes,
which means that someone has to do some work to affect this change. Recalling a
simple formula from introductory thermodynamics class dW D PdV , where W is
work and P is pressure exerted by the gas on the walls of containing vessel, and
taking into account that for the fixed number of particles, energy E depends only on
volume V (no temperature), you can relate dW to �dE and determine the pressure
exerted by the non-interacting electrons on the walls of the container as

P D � dE

dV
D „2 �3�2�2=3

5me

N5=3

V5=3
:

Thus, even in the ground state (which, by the way, from the thermodynamic point
of view corresponds to zero temperature), an electron gas exerts a pressure on the
surrounding medium which depends on the concentration of the electrons. The
coolest thing about this result is that unlike the case of a classical ideal gas, this
pressure has nothing to do with the thermal motion of the electrons because they
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are in the ground state, which is equivalent to their temperature being equal to zero.
This pressure is a purely quantum effect solely due to the indistinguishability of the
electrons and their fermion nature.

11.6 Problems

Problems for Sect. 11.1

Problem 140 Consider the following configuration of single-particle orbitals for a
system of four identical fermions:

ˇ̌
ˇ˛.1/1

E ˇ̌
ˇ˛.2/2

E ˇ̌
ˇ˛.3/3

E ˇ̌
ˇ˛.4/4

E
:

Applying exchange operator OP .i; j/ to all pairs of particles in this configuration,
generate all possible transpositions of the particles and determine the correct signs
in front of them. Write down the correct antisymmetric four-fermion state involving
these single-particle orbitals.

Problem 141 Consider the system of two bosons that can be in one of four single-
particle orbitals. List all possible two-boson states adhering to the symmetrization
requirements.

Problem 142 Consider two non-interacting electrons in a one-dimensional har-
monic oscillator potential characterized by classical frequency !.

1. Consider single-electron orbitals j˛n;msi D jni jmsi where jni is an eigenvector
of the harmonic oscillator and jmsi is a spinor describing one of two possible
eigenvectors of operator OSz. Using orbitals j˛n;msi, write down the Slater deter-
minant for the two-electron ground state, and find the corresponding ground state
energy.

2. Do the same for the first excited state(s) of this system.
3. Write the two-electron states found in Parts I and II in the position-spinor

representation.
4. Now use the eigenvectors of the total spin of the two particles to construct the

two-particle ground and first excited states. Find the relations between the two-
particle states found here with those found in Parts I and II.

5. Compute the expectation value
D
.z1 � z2/

2
E

where z1;2 are coordinates of the two

electrons in the states determined above.

Problem 143 Repeat Problem 142 for two non-interacting bosons.
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Problems for Sect. 11.3

Problem 144 Consider an atom of nitrogen, which has three electrons in l D 1

states.

1. Using single-particle orbitals with l D 1 and different values of orbital and
spin magnetic numbers, construct all possible Slater determinants representing
possible three-electron states.

2. Applying operators OS.1/z C OS.2/z C OS.3/z to all found three-particle states, figure out
the possible values of the total spin in these states.

Problems for Sect. 11.4

Problem 145 Consider two identical non-interacting particles both in the ground
states of their respective harmonic oscillator potentials. Particle 1 is in the potential
V1 D 1

2
m!2x21, while particle 2 is in the potential V2 D 1

2
m!2 .x2 � d/2.

1. Assuming that particles are spin 1=2 fermions in a singlet spin state, write down
the orbital portion of the two-particle state and compute the expectation value of
the two-particle Hamiltonian

OH D Op21
2me

C Op22
2me

C 1

2
m!2x21 C 1

2
m!2 .x2 � d/2

in this state.
2. Repeat the calculations assuming that the particles are in the state with total spin

S D 1.
3. The energy you found in Parts I and II depends upon the distance d between

the equilibrium points of the potential. Classically such a dependence would
mean that there is a force associated with this energy and describing repulsive or
attractive interaction between the two particles. In the case under consideration,
there is no real interaction, and what you have found is a purely quantum effect
due to symmetry requirements on the two-particle states. Still, you can describe
the result in terms of the effective “force” of interaction between the particles.
Find this force for both singlet and triplet spin states, and specify its character
(attractive or repulsive).

Problem 146 Consider two electrons confined in a one-dimensional infinite
potential well of width d and interacting with each other via potential Vint D
�E0 .z1 � z2/

2 where E0 is a real positive constant and z1;2 are coordinates of the
electrons.

1. Construct the ground state two-electron wave function assuming that electrons
are (a) in a singlet spin state and (b) in a triplet spin state.
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2. Compute the expectation value of the interaction potential in each of these states.
3. With interaction term included, which spin configuration would have smaller

energy?

Problem for Sect. 11.5

Problem 147 Consider an ideal gas of N electrons confined in a three-dimensional
harmonic oscillator potential:

OV D 1

2
me!

2
�
x2 C y2 C z2

� � 1

2
me!

2r2:

Find the Fermi energy of this system and the total energy of the many-electron
ground state. Hint: The degeneracy degrees of the single-particle energy levels
in this case can be easily found analytically, so no transition to quasi-continuous
spectrum and from summation to integration is necessary.



Part III
Quantum Phenomena and Methods

In this part of the book, I will introduce you into the wonderful world of actual
experimentally observable quantum mechanical phenomena. Theoretical descrip-
tion of each of these phenomena will require developing special technical methods,
which I will present as we go along. So, let the journey begin.



Chapter 12
Resonant Tunneling

12.1 Transfer-Matrix Approach in One-Dimensional
Quantum Mechanics

12.1.1 Transfer Matrix: General Formulation

In Sects. 6.2 and 6.3 of Chap. 6, I introduced one-dimensional quantum mechanical
models, in which potential energy of a particle was described by a simplest
piecewise constant function (or its extreme case—a delta-function), defining a
single potential well or barrier. A natural extension of this model is a potential
energy profile corresponding to several wells and/or barriers (or several delta-
functions). In principle, one can approach the multi-barrier problem in the same
way as a single well/barrier situation: divide the entire range of the coordinate into
regions of constant potential energy, and use the continuity conditions for the wave
function and its derivative to “stitch” the solutions from different regions. However,
it is easier said than done. Each new discontinuity point adds two new unknown
coefficients and correspondingly two equations. If in the case of a single barrier you
had to deal with the system of four equations, a dual-barrier problem would require
solving the system of eight equations, and soon even writing those equations down
becomes a serious burden, and I do not even want to think about having to solve
them.

Luckily, there is a better way of dealing with the ever-increasing number of
the boundary conditions in problems with multiple jumps of the potential energy.
In this section I will show you a convenient method of arranging the unknown
amplitudes of the wave functions and relating them to each other across the point of
the discontinuity.
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Let’s move forward by going back to the simplest problem of a step potential
with a single discontinuity:

V.z/ D
(

V0 z < 0

V1 z > 0;
(12.1)

where I assigned the coordinate z D 0 (the origin of the coordinate axes) to the
point where the potential makes its jump. If I were to ask a good diligent student
of quantum mechanics to write down a wave function of a particle with energy
E exceeding both V0 and V1, I would have most likely been presented with the
following expression:

 .z/ D
(

A0 exp .ik0z/C B0 exp .�ik0z/ z < 0

A1 exp .ik1z/ z > 0;
(12.2)

where

k0 D
p
2me .E � V0/

„

k1 D
p
2me .E � V1/

„ :

This wave function would have been perfectly fine if all what I were after was
just the single step-potential problem. In this section, however, I have further-
reaching goals, so I need to generalize this expression allowing for a possibility
to have a wave function component corresponding to the particles propagating in
the negative z direction for z > 0 as well as for z < 0. If you wonder where these
backward propagating particles could come from, just imagine that there might be
another discontinuity in the potential somewhere down the line, at a positive value
of z, which would create a flux of reflected particles propagating in the negative z
direction at z > 0. To take this possibility into account, I will replace Eq. 12.2 with
a wave function of a more general form

 .z/ D
(

A0 exp .ik0z/C B0 exp .�ik0z/ z < 0

A1 exp .ik1z/C B1 exp .�ik1z/ z > 0:
(12.3)

The continuity of the wave function and its derivative at z D 0 then yields

A0 C B0 D A1 C B1 (12.4)

k0 .A0 � B0/ D k1 .A1 � B1/ : (12.5)
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Quite similarly to what I already did in Sect. 6.2.1, I can rewrite these equations as

A1 D 1

2

	
1C k0

k1



A0 C 1

2

	
1 � k0

k1



B0 (12.6)

B1 D 1

2

	
1 � k0

k1



A0 C 1

2

	
1C k0

k1



B0: (12.7)

However, for the next step, I prepared for you something new. After spending some
time staring at these two equations, you might divine that they can be presented in a
matrix form if amplitudes A1;0 and B1;0 are arranged into a two-dimensional column
vector, while the coefficients in front of A0 and B0 are arranged into a 2 � 2 matrix:


A1
B1

�
D
2
4
1
2

�
1C k0

k1

�
1
2

�
1 � k0

k1

�

1
2

�
1 � k0

k1

�
1
2

�
1C k0

k1

�
3
5


A0
B0

�
: (12.8)

Go ahead, perform matrix multiplication in Eq. 12.8, and convince yourself that the
result is, indeed, the system of Eqs. 12.6 and 12.7. If we agree to always use an
amplitude of the forward propagating component of the wave function (whatever
appears in front of exp .ikiz/) as the first element in the two-dimensional column
and the amplitude of the backward propagating component (the one appearing in
front of exp .�ikiz/) as the second element, I can introduce notation v0;1 for the
respective columns, D.1;0/ for the matrix

D.1;0/ D
"

k1Ck0
2k1

k1�k0
2k1

k1�k0
2k1

k1Ck0
2k1

#
; (12.9)

and rewrite Eq. 12.8 as a compact matrix equation:

v1 D D.1;0/v0: (12.10)

Upper indexes in the notation for this matrix are supposed to be read from right to
left and symbolize a transition across a boundary between potentials V0 and V1.

I will not be surprised if at this point you feel a bit disappointed and thinking:
“so what, dude? This is just a fancy way of presenting what we already know.”
But be patient: patience is a virtue and is usually rewarded. The real utility of
the matrix notation becomes apparent only when you have to deal with potentials
featuring multiple discontinuities. So, let’s get to it and assume that at some point
with coordinate z D z1, the potential experiences another jump changing abruptly
from V1 to V2. If asked to write the expression for the wave function in the regions
between z D 0 and z D z1 and for z > z1, you would have probably written

 .z/ D
(

A1 exp .ik1z/C B1 exp .�ik1z/ 0 < z < z1

A2 exp .ik2z/C B2 exp .�ik2z/ z > z1
(12.11)
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which is, of course, a perfectly reasonable and correct expression. However, if you
tried to write down the continuity equations at z D z1 using this wave function and
present them in a matrix form, you would have ended up with a matrix containing
exponential factors like exp .˙ik1;2z1/ and which would not look at all like simple
matrix D.1;0/ from Eq. 12.9. I can try to make the situation more attractive by
rewriting the expression for the wave function in a form, in which arguments of
the exponential functions vanish at z D z1:

 .z/ D
(

A.L/1 exp Œik1 .z � z1/�C B.L/1 exp Œ�ik1 .z � z1/� 0 < z < z1

A.R/1 exp Œik2 .z � z1/�C B.R/1 exp Œik2 .z � z1/� z > z1:
(12.12)

This amounts to redefining amplitudes appearing in front of the respective exponents
as you will see for yourselves when doing Problem 2 in the exercise section for
this chapter. Please note the change in the notations: instead of distinguishing the
amplitudes by their lower indexes (1 or 2), I introduced upper indexes L and R,
indicating that these coefficients describe the wave function immediately to the left
or to the right of the discontinuity point, correspondingly. At the same time, the
lower indexes in all coefficients are now set to be 1, implying that we are dealing
with the discontinuity at point z D z1. In terms of these new coefficients, the
stitching conditions take a form

A.R/1 D 1

2

	
1C k1

k2



A.L/1 C 1

2

	
1 � k1

k2



B.L/1 (12.13)

B.R/1 D 1

2

	
1 � k1

k2



A.L/1 C 1

2

	
1C k1

k2



B.L/1 ; (12.14)

which, with obvious substitutions k0 ! k1 and k1 ! k2, become identical to
Eqs. 12.6 and 12.7. These equations can again be written in the matrix form

v
.R/
1 D D.2;1/v

.L/
1 ; (12.15)

where v
.R/
1 is formed by coefficients A.R/1 and B.R/1 , v

.L/
1 —by coefficients A.L/1 and

B.L/1 , while matrix D.2;1/ is defined as

D.2;1/ D
"

k2Ck1
2k2

k2�k1
2k2

k2�k1
2k2

k2Ck1
2k2

#
: (12.16)

You might have noticed by now the common features of the matrices D.1;0/ and
D.2;1/: (a) they both describe the transition across a boundary between two values
of the potential (V0 to V1 for the former and V1 to V2 for the latter), (b) they both
connect the pairs of coefficients characterizing the wave functions immediately on
the left of the potential jump with those specifying the wave function immediately
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on the right of the jump, and, finally, (c) they have a similar structure, recognizing
which enables you to write down a matrix connecting the wave function amplitudes
across a generic discontinuity as

D.iC1;i/ D
" kiC1Cki

2kiC1

kiC1�ki

2kiC1
kiC1�ki

2kiC1

kiC1Cki

2kiC1

#
; (12.17)

where

ki D
p
2me .E � Vi/

„
is determined by the potential to the left of the discontinuity and

kiC1 D
p
2me .E � ViC1/

„
corresponds to the value of the potential to the right of it. It is also not too difficult
to rewrite Eqs. 12.3 and 12.12 in a situation, when a jump of potential occurs at an
arbitrary point z D zi:

 .z/ D
(

A.L/i exp Œiki .z � zi/�C B.L/i exp Œ�iki .z � zi/� zi�1 < z < zi

A.R/i exp ŒikiC1 .z � zi/�C B.R/i exp ŒikiC1 .z � zi/� z > zi:

(12.18)

Correspondingly, Eq. 12.15 becomes

v
.R/
i D D.iC1;i/v.L/i ; (12.19)

where v
.R/
i contains A.R/i and B.R/i , while v

.L/
i contains A.L/i and B.L/i .

I hope that by now I have managed to convince you that using the suggested
matrix notations does have its benefits, but I also suspect that some of you might
become somewhat skeptical about the generality of this approach. You might
be thinking that all these formulas that I so confidently presented here can only
be valid for energies exceeding all potentials Vi and that this fact strongly limits the
utility of the method. If this did occur to you, accept my commendation for paying
attention, but reality is not as bad as it appears. Let’s see what happens if one of
Vi turns out to be larger than E. Obviously, in this case the respective ki becomes
imaginary and can be written as

ki D
p
2me .E � Vi/

„ D i

p
2me .Vi � E/

„ � i
i; (12.20)
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where I introduced a new real-valued parameter


i D
p
2me .Vi � E/

„ : (12.21)

The corresponding wave function at z < zi becomes

 .z/ D A.L/i exp Œ�
i .z � zi/�C B.L/i exp Œ
i .z � zi/� :

The continuity condition of the wave function at z D zi remains the same as Eq. 12.4:

A.L/i C B.L/i D A.R/i C B.R/i ;

while the continuity of the derivative of the wave function yields this instead of
Eq. 12.5

�
i

�
A.L/i � B.L/i

�
D ikiC1

�
A.R/i � B.R/i

�
;

where I assumed for the sake of argument that E > ViC1. Combining these two
equations, I get, instead of Eqs. 12.6 and 12.7,

A.R/i D 1

2
A.L/i

	
1 � 
i

ikiC1



C 1

2
B.L/i

	
1C 
i

ikiC1




B.R/i D 1

2
A.L/i

	
1C 
i

ikiC1



C 1

2
B.L/i

	
1 � 
i

ikiC1



;

which can be written again in the form of Eq. 12.19 with a new matrix

QD.iC1;i/ D
" ikiC1�
i

2ikiC1

ikiC1C
i

2ikiC1
ikiC1C
i

2ikiC1

ikiC1�
i

2ikiC1

#
D
" kiC1Ci
i

2kiC1

kiC1�i
i

2kiC1
kiC1�
i

2kiC1

kiC1Ci
i

2kiC1

#
:

Comparing QD.iC1;i/
with D.iC1;i/ in Eq. 12.17, you can immediately see that the latter

can be obtained from the former with the simple substitution defined in Eq. 12.20.
Therefore, you do not really have to worry about the relation between energy and
the respective value of the potential: Eq. 12.17 works in all cases, and if ki turns out
to be imaginary, you just need to replace it with i
i as prescribed by Eq. 12.20 (or

just let the computer to do it for you). Consequently, matrix QD.iC1;i/
turns out to be

perfectly unnecessary and will not be used any more, but there is one circumstance
which you must pay close attention to. Special significance of Eq. 12.20 is that
when ki turns imaginary, it forces it to have a positive imaginary part (square root
obviously allows for either positive or negative signs). As a result, the exponential
factor at the amplitude designated as Ai acquires a negative positive argument, while
the exponential factor multiplied by amplitude Bi gets a real positive argument. You
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need to take this into account when designating corresponding amplitudes as A or B
and placing them in the first or the second row of your column vector. (Obviously,
it is not the actual symbols used to designate the amplitudes that are important, but
their places in the column vector.)

I hope that your head is not spinning yet, but as a prophylactic measure, let me
summarize what we have achieved so far. We are considering a particle moving in
a piecewise constant potential, which has interruptions of continuity at a number
of points with coordinates z D zi (the first discontinuity occurs at z0 D 0).
When crossing zi, the potential jumps from Vi to ViC1. In the vicinity of each
discontinuity point, the wave function is presented by Eq. 12.18, organized in such
a way that coefficients with upper index L determine amplitudes of the right- and
left-propagating components of the wave function on the left of the discontinuity
and coefficients with upper index R determine the same amplitudes on the right of
zi. The connection between these pairs of coefficients is described by the matrix
equation as presented by Eq. 12.19.

To help you get a better feeling of why this matrix representation is useful, let
me put together the matrix equations for a few successive discontinuity points:

v
.R/
2 D D.3;2/v

.L/
2 I v

.R/
1 D D.2;1/v

.L/
1 ; v

.R/
0 D D.2;1/v

.L/
0 (12.22)

The structure of these equations indicates that it might be possible to relate column
vector v

.R/
2 to v

.L/
0 by consecutive matrix multiplication if we had matrices relating

v
.L/
2 to v

.R/
1 , v

.L/
1 to v

.R/
0 , and, in general, v

.L/
i to v

.R/
i�1. To find these matrices, I have

to take you back to Eq. 12.18, where you shall notice that the pairs of coefficients
A.R/i�1;B

.R/
i�1 and A.L/i ;B.L/i describe the wave function defined on the same interval

zi < z < ziC1. Accordingly, the following must be true:

A.L/i exp Œiki .z � zi/�C B.L/i exp Œ�iki .z � zi/� D
A.R/i�1 exp Œiki .z � zi�1/�C B.R/i�1 exp Œ�iki .z � zi�1/�

which is satisfied if

A.L/i exp Œiki .z � zi/� D A.R/i�1 exp Œiki .z � zi�1/�

and

B.L/i exp Œ�iki .z � zi/� D B.R/i�1 exp Œ�iki .z � zi�1/�

Canceling the common factor exp .ikiz/, you find

A.L/i D exp Œiki .zi � zi�1/�A.R/i�1 (12.23)

B.L/i D exp Œ�iki .zi � zi�1/�B.R/i�1 (12.24)
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which can be presented in the matrix form as

"
A.L/i

B.L/i

#
D


exp Œiki .zi � zi�1/� 0

0 exp Œ�iki .zi � zi�1/�

�"
A.R/i�1
B.R/i�1

#
: (12.25)

Introducing the diagonal matrix

M.i/ D


exp Œiki .zi � zi�1/� 0

0 exp Œ�iki .zi � zi�1/�

�
(12.26)

I can give Eq. 12.25 the form

v
.L/
i D M.i/v

.R/
i�1; (12.27)

which you can recognize as the missing relation between v
.L/
i and v

.R/
i�1. Note that

the upper index in M.i/ signifies that it corresponds to the region of coordinates
zi�1 < z < zi, where the potential is equal to Vi. It is important to note that Eq. 12.26
can be used even if ki turns out to be imaginary. All you will need to do in this case
is to replace ki with i
i according to Eqs. 12.20 and 12.21. Now, complimenting
Eq. 12.22 with the missing links, you get

v
.R/
2 D D.3;2/v

.L/
2 I v

.L/
2 D M.2/v

.R/
1 I v

.R/
1 D D.2;1/v

.L/
1 ; (12.28)

v
.L/
1 D M.1/v

.R/
0 I v

.R/
0 D D.2;1/v

.L/
0 ;

which, after combining all successive matrix relations, yields

v
.R/
2 D D.3;2/M.2/D.2;1/M.1/D.1;0/v

.L/
0 : (12.29)

This result illuminates the power of the method, which is presented here: the ampli-
tudes of the wave function after the particles have encountered three discontinuity
points of the potential are expressed in terms of the amplitudes specifying the wave
function in the region before the first discontinuity via a simple matrix relation,
v
.R/
2 D T.3/v.L/0 , where matrix T.3/, called the transfer matrix, is the product of five

matrices of two different kinds:

T.3/ D D.3;2/M.2/D.2;1/M.1/D.1;0/:

Matrices D.iC1;i/ can be called interface matrices as they describe transformation of
the wave function amplitudes due to crossing of an interface between two distinct
values of the potential, and you can use the name “free propagation matrices”
for M.i/ because they describe the evolution of the wave function due to free
propagation of the particle between two discontinuities. Equation 12.29 has a
simple physical interpretation if you read it from right to left: a particle begins
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Fig. 12.1 A potential profile
corresponding to Eq. 12.29

with a wave function characterized by column vector v0. It encounters the first
discontinuity at z D z1, and upon crossing it the wave function coefficients undergo
transformation prescribed by matrix D.1;0/. After that the wave function evolves
as it were for a free particle in potential V1—this evolution is described by the
propagation matrix M.1/. The crossing of the boundary between V1 and V2 regions is
represented by the interface matrix D.2;1/ and so on and so forth. One of the possible
potential profiles that could have been described by Eq. 12.29 is shown in Fig. 12.1.

Equation 12.29 is trivially generalized to the case of an arbitrary number, N, of
the discontinuities, located at points zi; i D 0; 1; 2 � � � N � 1 with z0 D 0:

v
.R/
N�1 D T.N/v.L/0 (12.30)

with a corresponding transfer matrix defined as

T.N/ D D.N;N�1/M.N�1/ � � � D.2;1/M.1/D.1;0/: (12.31)

Once the transfer matrix is known, you can use it to obtain all the information about
wave functions (and corresponding energy eigenvalues when appropriate) of the
particle in the corresponding potential both in the continuous and discrete segments
of the energy spectrum. The next section in this chapter discusses how this can be
done.

12.1.2 Application of Transfer-Matrix Formalism to Generic
Scattering and Bound State Problems

12.1.2.1 Generic Scattering Problem via the Transfer Matrix

Having defined a generic transfer matrix T.N/, I can now solve a typical scattering
problem similar to the one discussed in Sect. 6.2.1. Setting it up amounts to
specifying the wave function of the particle at z < 0 (before the particle encounters
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the first break of the continuity) and at z > zN�1 (after the particle passes through
the last discontinuity point). The scattering wave function introduced in Sect. 6.2.1

 .z/ D
(

exp .ik0z/C r exp .�ik0z/ ; z < 0

t exp .ikNz/ z > zN�1
(12.32)

is in the transfer-matrix formalism described by column vectors v0 and vN :

v
.L/
0 D


1

r

�
I v

.R/
N�1 D


t
0

�
(12.33)

Presenting the generic T-matrix by its (presumably known) elements

T.N/ D


t11 t12
t21 t22

�

I can rewrite Eq. 12.30 in the expanded form as


t
0

�
D


t11 t12
t21 t22

� 
1

r

�
:

This translates into the system of linear equations:

t D t11 C rt12

0 D t21 C rt22:

From the second of these equations, I immediately have

r D � t21
t22
; (12.34)

and substituting this result into the first one, I find

t D t11 � t12t21
t22

D
det

�
T.N/

�

t22
: (12.35)

Here det
�

T.N/
�

� t11t22 � t12t21 is the determinant of the T-matrix T.N/, which,

believe it or not, can actually be quite easily computed for the most general transfer
matrix defined in Eq. 12.31.

To do so you must, first, recall that the determinant of the product of the matrices
is equal to the product of the determinants of the individual factors:
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det
�

T.N/
�

D det
�

D.N;N�1/� det
�

M.N�1/� � � � �

det
�

D.2;1/
�

det
�

M.1/
�

det
�

D.1;0/
�
: (12.36)

It is easy to see that det
�

M.i/
�

D 1 for any i, so all these factors can be omitted

from Eq. 12.36 yielding

det
�

T.N/
�

D det
�

D.N;N�1/� det
�

D.N�1;N�2/� � � � �

det
�

D.2;1/
�

det
�

D.1;0/
�
: (12.37)

Now all I need is to compute the determinant of the generic matrix D.iC1;i/. Using
Eq. 12.17, I find

det
�

D.iC1;i/� D
	

kiC1 C ki

2kiC1


2
�
	

kiC1 � ki

2kiC1


2
D ki

kiC1
;

which leads to the following expression for det
�

T.N/
�

:

det
�

T.N/
�

D kN�1
kN

kN�2
kN�1

� � � k1
k2

k0
k1

D k0
kN

(12.38)

Isn’t it amazing how all ki in the intermediate regions got canceled, so that the
determinant depends only upon the wave numbers (real or imaginary) in the first
and the last region of the constant potential. Using this result in Eq. 12.35, I can find
a simplified expression for the transmission amplitude

t D k0
kN

1

t22
(12.39)

which becomes even simpler if the potential for z < 0 and for z > zN�1 is the
same. In this case the determinant of the transfer matrix becomes equal to unity
and t D 1=t22. Having found r and t, I can restore the wave function in the entire
range of the coordinate by consequently applying interface and propagation matrices
constituting the total transfer matrix T.N/.

With help of Eq. 6.53 from Sect. 6.2.1, I can also find the corresponding reflection
and transmission probabilities:

R D jrj2 D
ˇ̌
ˇ̌ t21
t22

ˇ̌
ˇ̌
2

T D k2N
k20

jtj2 D
ˇ̌
ˇ̌ 1
t22

ˇ̌
ˇ̌
2
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Fig. 12.2 An example of a
potential with discrete
spectrum

where I used Eq. 12.39 for t. Since reflection and transmission probabilities must
obey the condition R C T D 1, it imposes the following general condition on the
elements of the transfer matrix:

jt22j2 � jt12j2 D 1:

12.1.2.2 Finding Bound States with the Transfer Matrix

Now let me show how transfer-matrix method can be used to find energies of the
bound states, if they are allowed by the potential. Consider, for instance, a potential
shown in Fig. 12.2. After eyeballing this figure for a few moments and recalling
that discrete energy levels correspond to classically bound motion, you shall be
able to conclude that states with energies in the interval V3 < E < V4 must
belong to the discrete spectrum. An important general point to make here is that
the discrete spectrum in such a Hamiltonian exists at energies, which are smaller
than the limiting values of the potential at z ! ˙1 and larger than the potential’s
smallest value, provided that these conditions are not self-contradictory. For such
values of energy, the solutions of the Schrödinger equation for z < 0 and z > zN�1
(classically forbidden regions) take the form of real exponential functions, so that
instead of Eq. 12.32, I have

 .z/ D
(

B0 exp .
0z/ z < 0

AN exp .�
Nz/ z > zN�1;
(12.40)

where


0 D
p
2m.V0 � E/

„


N D
p
2m.VN � E/

„
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Before continuing I have to reiterate a point that I already made earlier in this
section. Equation 12.40 was obtained by making transition from parameters k0 and
kN , which become imaginary for the chosen values of energy, to real parameters

0 and 
N with the help of Eq. 12.20. This procedure turns exponential functions
exp .˙ikz/ into exp .
z/. Accordingly, in order to preserve the structure of my
transfer matrices, I have to designate amplitude coefficients in front of exp .
iz/ as
Bi and coefficients in front of exp .�
iz/ as Ai. Finally, I feel obliged to remind
you that I discarded exponentially growing terms in Eq. 12.40 in order to preserve
normalizability of the wave function. Thus, now, initial vectors v0 and vN , instead
of Eq. 12.33, take the form

v
.L/
0 D


0

B0

�
I v.R/N�1 D


AN

0

�

The resulting transfer-matrix equation in this case becomes


AN

0

�
D


t11 t12
t21 t22

� 
0

B0

�

which yields

AN D t12B0

0 D t22B0

The last of these equations produces an equation for the allowed energy values, since
it can only be fulfilled for nonvanishing B0 and A0 if

t22.E/ D 0 (12.41)

The first of these equations express AN in terms of the remaining undetermined
coefficient B0, which can be fixed by the normalization requirement.

12.1.3 Application of the Transfer Matrix to a Symmetrical
Potential Well

To illustrate the transfer-matrix method, I will now apply it to a problem, which
we have already solved in Sect. 6.2.1—the states of a particle in a symmetric
rectangular potential well. To facilitate application of the transfer-matrix approach,
I will describe this potential by function
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V.z/ D

8
ˆ̂<
ˆ̂:

Vb z < 0

Vw 0 < z < d

Vb z > d;

(12.42)

which differs from the one used in Sect. 6.2.1 by the choice of the origin of the
coordinate axis for z. This potential has two discontinuity points: it changes from
Vb to Vw at z0 D 0 and then, again, from Vw to Vb at z1 D d, where it is assumed
that Vb > Vw. Correspondingly, I need to introduce two interface matrices: D.1;0/ as
defined in Eq. 12.9 with k0 D p

2me .E � Vb/ and k1 D p
2me .E � Vw/ and D.2;1/

defined in Eq. 12.16 with k2 D k0.

12.1.3.1 Scattering States

Scattering states (continuous spectrum) of this potential correspond to energies
E > Vb, in which case parameters k0 and k1 are regular real-valued wave numbers.
Inserting the free propagation matrix M.1/ from Eq. 12.26 between D.2;1/ and D.1;0/

according to Eq. 12.31 and taking into account that z0 D 0 and z1 D d; I obtain the
total T-matrix

T.2/ D D.2;1/M.1/D.1;0/ D
"

k0Ck1
2k0

k0�k1
2k0

k0�k1
2k0

k0Ck1
2k0

#
exp .ik1d/ 0

0 exp .�ik1d/

�" k1Ck0
2k1

k1�k0
2k1

k1�k0
2k1

k1Ck0
2k1

#
D

"
k0Ck1
2k0

exp .ik1d/
k0�k1
2k0

exp .�ik1d/
k0�k1
2k0

exp .ik1d/
k0Ck1
2k0

exp .�ik1d/

#"
k1Ck0
2k1

k1�k0
2k1

k1�k0
2k1

k1Ck0
2k1

#
D

2
4

.k0Ck1/
2 exp.ik1d/�.k0�k1/

2 exp.�ik1d/
4k0k1

.k21�k20/Œexp.ik1d/�exp.�ik1d/�

4k0k1

� .k21�k20/Œexp.ik1d/�exp.�ik1d/�

4k0k1
.k0Ck1/

2 exp.�ik1d/�.k0�k1/
2 exp.ik1d/

4k0k1

3
5 D

1

2k0k1
�


i
�
k20 C k21

�
sin k1d C 2k0k1 cos k1d i

�
k21 � k20

�
sin k1d

�i
�
k21 � k20

�
sin k1d �i

�
k20 C k21

�
sin k1d C 2k0k1 cos k1d

�
:

(12.43)

Substitution of the corresponding elements of the T-matrix from the last expression
into Eqs. 12.34 and 12.39 yields the amplitude reflection and transmission coeffi-
cients:
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r D i
�
k21 � k20

�
sin k1d

�i
�
k20 C k21

�
sin k1d C 2k0k1 cos k1d

D (12.44)

�
k20 � k21

�
sin k1d�

k20 C k21
�

sin k1d C 2ik0k1 cos k1d
:

t D 2k0k1
�i
�
k20 C k21

�
sin k1d C 2k0k1 cos k1d

D (12.45)

2ik0k1�
k20 C k21

�
sin k1d C 2ik0k1 cos k1d

:

where at the last steps, the numerators and denominators of the expressions for r and
t were multiplied by i. The resulting expressions coincide with Eqs. 6.58 and 12.35
of Sect. 6.2, which, of course, is not surprising. Having found the reflection and
transmission amplitudes, I can easily restore the entire wave function. Indeed,
substitution of Eqs. 12.45 and 12.44 into Eq. 12.32 yields the wave function for
z < 0 and z > d. Next, using Eq. 12.10 with v0 in the form

v0 D

1

r

�

I find coefficients A.R/0 and B.R/0 :

"
A.R/0
B.R/0

#
D
"

k1Ck0
2k1

k1�k0
2k1

k1�k0
2k1

k1Ck0
2k1

#
1

r

�
)

A.R/0 D k1 C k0 C r .k1 � k0/

2k1
(12.46)

B.R/0 D k1 � k0 C r .k1 C k0/

2k1
; (12.47)

which generate the wave function in the region 0 < z < d:

 .z/ D k1 .1C r/C k0 .1 � r/

2k1
eik1z C k1 .1C r/ � k0 .1 � r/

2k1
e�ik1z:

I will leave it as an exercise to demonstrate that coefficients A.R/0 and B.R/0 in
Eqs. 12.46 and 12.47 coincide with coefficients A2 and B2 in Eqs. 6.60 and 6.61
in Sect. 6.2. Rewriting the expression for the wave function as

 .z/ D k1 .1C r/C k0 .1 � r/

2k1
eik1deik1.z�d/C

k1 .1C r/ � k0 .1 � r/

2k1
e�ik1de�ik1.z�d/;
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where I simply multiplied each term by exp .ik1d/ exp .�ik1d/ � 1, you can identify
coefficients A.L/1 and B.L/1 as

A.L/1 D k1 C k0 C r .k1 � k0/

2k1
eik1d

B.L/1 D k1 � k0 C r .k1 C k0/

2k1
e�ik1d:

The same expressions for A.L/1 and B.L/1 can obviously be found by multiplying

diagonal matrix M.1/ by v
.R/
0 formed by coefficients A.R/0 and B.R/0 . Finally, in order

to convince the skeptics that the outlined procedure is self-consistent, you can try to
apply the interface matrix D.1;2/ to A.L/1 and B.L/1 :

"
A.R/2
B.R/2

#
D
"

k0Ck1
2k0

k0�k1
2k0

k0�k1
2k0

k0Ck1
2k0

#"
k1Ck0Cr.k1�k0/

2k1
eik1d

k1�k0Cr.k1Ck0/
2k1

e�ik1d

#
(12.48)

yielding for A.R/2

A.R/2 D .k0 C k1/
2

4k0k1
eik1d C r

k21 � k20
4k0k1

eik1d�

.k0 � k1/
2

4k0k1
e�ik1d � r

k21 � k20
4k0k1

e�ik1d D

eik1d

	
k0.1 � r/

4k1
C k1.1C r/

4k0
C 1

2



�

e�ik1d

	
k0.1 � r/

4k1
C k1.1C r/

4k0
� 1

2



:

To continue I have to use the reflection coefficient r given by Eq. 12.44. Evaluating
parts of the expression for A.R/2 separately, I find

k0.1 � r/

4k1
D k0
4k1

"
1 �

�
k20 � k21

�
sin k1d�

k20 C k21
�

sin k1d C 2ik0k1 cos k1d

#
D

k0
2

k1 sin k1d C ik0 cos k1d�
k20 C k21

�
sin k1d C 2ik0k1 cos k1d

k1.1C r/

4k0
D k1
4k0

"
1C

�
k20 � k21

�
sin k1d�

k20 C k21
�

sin k1d C 2ik0k1 cos k1d

#
D

k1
2

k0 sin k1d C ik1 cos k1d�
k20 C k21

�
sin k1d C 2ik0k1 cos k1d

:



12.1 Transfer-Matrix Approach in One-Dimensional Quantum Mechanics 407

Lastly,

k0.1 � r/

4k1
C k1.1C r/

4k0
C 1

2
D

1

2

"
2k0k1 sin k1d C i

�
k20 C k21

�
cos k1d�

k20 C k21
�

sin k1d C 2ik0k1 cos k1d
C 1

#
D

i

2

.k0 C k1/
2 e�ik1d

�
k20 C k21

�
sin k1d C 2ik0k1 cos k1d

;

where at the last step, I replaced sin k1d C i cos k1d with i exp .�ik1d/. Similarly,

k0.1 � r/

4k1
C k1.1C r/

4k0
� 1

2
D

1

2

"
2k0k1 sin k1d C i

�
k20 C k21

�
cos k1d�

k20 C k21
�

sin k1d C 2ik0k1 cos k1d
� 1

#
D

i

2

.k0 � k1/
2 eik1d

�
k20 C k21

�
sin k1d C 2ik0k1 cos k1d

:

Combining all these results, I finally get A.R/2 :

A.R/2 D i

2

.k0 C k1/
2 � .k0 � k1/

2

�
k20 C k21

�
sin k1d C 2ik0k1 cos k1d

D

2ik0k1�
k20 C k21

�
sin k1d C 2ik0k1 cos k1d

: (12.49)

Catching my breath after this marathon calculations (OK—half marathon), I am
eager to compare Eq. 12.49 with Eq. 12.45 for the transmission amplitude. With a
sigh of relief, I find that they, indeed, coincide. I will leave it as an exercise to
demonstrate that B.R/2 vanishes as it should.

12.1.3.2 Bound States

Now I will illustrate application of the transfer-matrix approach to bound states of
the square potential well described by the same by Eq. 12.42. Discrete spectrum of
this potential is expected to exist in the interval of energies defined as Vw < E < Vb.
The transfer matrix given in Eq. 12.43 can be adapted to this case by replacing wave
number k0 with i
0, where 
0 in this context is defined as


0 D
p
2m.Vb � E/

„
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This procedure yields

T D 1

2
0k1
�

 ��
20 C k21
�

sin k1d C 2
0k1 cos k1d
�
k21 C 
20

�
sin k1d

� �k21 C 
20
�

sin k1d � ��
20 C k21
�

sin k1d C 2
0k1 cos k1d

�

and Eq. 12.41 for the bound state energies takes the following form:

2
0k1 cos k1d D ��
20 C k21
�

sin k1d

or

tan .k1d/ D 2
0k1
�
20 C k21

(12.50)

At the first glance, this result does not agree with the one I derived in Sect. 6.2.1,
where states were segregated according to their parity with different equations for
the energy levels of the even and odd states. Equation 12.50, on the other hand,
is a single equation, and the parity of the states has never been even mentioned.
If, however, you pause to think about it, you will see that the differences between
results obtained here and in Sect. 6.2.1 are purely superficial.

First of all, you need to notice that the coordinates used here and in Sect. 6.2.1
have different origins. Placing the origin of the coordinate at the center of the well
made the inversion symmetry of the potential with respect to its center reflected in its
coordinate dependence. Consequently, we were able to classify states by their parity.
This immediate benefit of the symmetry is lost once the origin of the coordinate is
displaced from the center of the well. This, of course, did not change the underlying
symmetry of the potential (it has nothing to do with such artificial things as our
choice of the coordinate system), but it masked it. The wave functions written in
the coordinate system centered at the edge of the potential well do not have a definite
parity with respect to point z D 0, and it is not surprising that my derivation of the
eigenvalue equation naturally yielded a single equation for all energy eigenvalues.
However, it is not too difficult to demonstrate that our single Equation 12.50 is in
reality equivalent to two equations of Sect. 6.2.1, but it does take some extra efforts.

First, you shall notice that trigonometric functions in Eqs. 6.39 and 6.42 are
expressed in terms of kd=2, while Eq. 12.50 contains tan .k1d/. Thus, it makes sense
to try to express tan .k1d/ in terms of k1d=2 using a well-known identity

tan .k1d/ D 2 tan .k1d=2/

1 � tan2 .k1d=2/
;
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which yields

tan .k1d=2/

1 � tan2 .k1d=2/
D 
0k1

�
20 C k21
:

To simplify algebra, it is useful to temporarily introduce notations x D tan .k1d=2/,
� D ��
20 C k21

�
=
0k1, and rewrite the preceding equation as a quadratic equation

for x:

x2 C x� � 1 D 0

This equation has two solutions:

x1;2 D �1
2
� ˙ 1

2

p
�2 C 4

Computing �2 C 4 you will easily find that

�2 C 4 D k41 C 
40 � 2k21

2
0

k21

2
0

C 4 D
�

20 C k21

�2
k21


2
0

which yield the following for x1 and x2:

x1 D ��
20 C k21
2
0k1

� 
20 C k21
2k1
0

D � k1

0

x2 D ��
20 C k21
2
0k1

C 
20 C k21
2k1
0

D 
0

k1

Recalling what x stands for, you can see that one equation 12.50 is now replaced by
two equations:

tan .k1d=2/ D � k1

0

(12.51)

tan .k1d=2/ D 
0

k1
: (12.52)

which are exactly the eigenvalue equations for odd and even wave functions derived
in Sect. 6.2.1. Isn’t it beautiful, really?

Having figured out the situation with the eigenvalues, I can take care of the
eigenvectors. The ratio of the wave function amplitudes A2=B0 is given by

A2
B0

D t12 D
�
k21 C 
20

�
sin k1d

2
0k1
; (12.53)



410 12 Resonant Tunneling

while amplitudes of the wave functions in the region 0 < z < d are found from


A1
B1

�
D D.1;0/


0

B0

�
:

Matrix D.1;0/ is adapted to the case under consideration by the same substitution
k0 ! i
0 as before:

D.1;0/ D
"

k1Ci
0
2k1

k1�i
0
2k1

k1�i
0
2k1

k1Ci
0
2k1

#
:

Using this matrix, you easily find

A1 D k1 � i
0
2k1

B0

B1 D k1 C i
0
2k1

B0;

which yields the following expression for the wave function inside the well:

 .z/ D B0

	
k1 � i
0
2k1

exp .ik1z/C k1 C i
0
2k1

exp .�ik1z/



D

B0

	
cos k1z C 
0

k1
sin k1z



:

You can replace the ratio 
0=k1 in this expression with tan .k1d=2/ or with
� cot .k1d=2/ according to Eqs. 12.51 and 12.52 and obtain the following expres-
sions for the wave function representing two different types of states:

 .z/ D
(

B0
cos.k1d=2/ cos Œk1 .z � d=2/� ; 
0=k1 D tan .k1d=2/

� B0
sin.k1d=2/ sin Œk1 .z � d=2/� ; 
0=k1 D � cot .k1d=2/

It is quite obvious now that the found wave functions are even and odd with respect
to variable Qz D z � d=2, which is merely a coordinate defined in the coordinate
system with the origin at the center of the well, just like in Sect. 6.2.1. One can also
show that Eq. 12.53 is reduced to A2 D ˙B0 for two different types of the wave
function, again in agreement with the results of Sect. 6.2.1. This proof I will leave
to you as an exercise.
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12.2 Resonant Tunneling

In this section I will apply the transfer-matrix method to describe an interesting and
practically important phenomenon of resonant tunneling. This phenomenon arises
when one considers quantum states of a particle in a potential, which consists of
two (or more) potential barriers separated by a potential well. An example of such
a potential is shown in Fig. 12.3. I am interested here in the states corresponding to
under-barrier values of energies E: 0 < E < V . It was established in Sect. 6.2.1
that in the case of a single barrier whose width d satisfies inequality d
 
 1,
where 
 D p

2me .V � E//=„ , such states are characterized by an exponentially
small transmission probability T / exp .�
d/, which is responsible for the effect
of quantum tunneling—a particle incident on the barrier has a non-zero probability
to “tunnel” through it and continue its free propagation on the other side of the
barrier. You might wonder if adding a second barrier will result in any new and
interesting effects. A common sense based on “classical” probability theory suggests
that in the presence of the second barrier, the total transmission probability will
simply be a product of transmission coefficients for each of the barriers T /
T1T2 / exp .�
1d1 � 
2d2/, further reducing the probability that the particle tunnels
through the barriers. However, as it often happens, the reality is more complex
(and sometimes more intriguing) than our initial intuited insight. So, let’s see if
our intuition leads us astray in this case.

To simplify algebra, I will assume that both barriers have the same width d and
height V and that they are separated by a region of zero potential of length w. This
potential profile is characterized by four discontinuity points with coordinates

x0 D 0I x1 D dI x2 D d C wI x3 D 2d C w: (12.54)

Accordingly, the propagation of a particle through this potential is described by
four interface matrices, D.1;0/, D.2;1/, D.3;2/, and D.4;3/, and three free propagating
matrices M.1/, M.2/, and M.3/. Matrices D.1;0/ and D.2;1/ are obviously identical
to matrices D.3;2/ and D.4;3/, correspondingly, and can be obtained from those
appearing in the first line of Eq. 12.43 by replacing k0 ! k D p

2meE=„ and
k1 ! i
 D i

p
2me .V � E//=„:

D.1;0/ D D.3;2/ D
 i
Ck
2i


i
�k
2i


i
�k
2i


i
Ck
2i


�
I (12.55)

Fig. 12.3 Double-barrier
potential
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D.2;1/ D D.4;3/ D
 kCi


2k
k�i

2k

k�i

2k

kCi

2k

�
: (12.56)

For matrices M.1/; M.2/, and M.3/, I can write, using general definition, Eq. 12.26
and expressions for the corresponding coordinates given in Eq. 12.54:

M.1/ D M.3/ D


exp .�
d/ 0

0 exp .
d/

�
(12.57)

M.2/ D


exp .ikw/ 0

0 exp .�ikw/

�
: (12.58)

The total transfer matrix T then becomes

T.4/ D D.4;3/M.3/D.3;2/M.2/D.2;1/M.1/D.1;0/ D
D.2;1/M.1/D.1;0/M.2/D.2;1/M.1/D.1;0/ � T.2/M.2/T.2/; (12.59)

where T.2/ is the transfer matrix describing the single barrier. I do not have to
calculate this matrix from scratch. Instead, I can again replace k0 with k and k1
with i
 in Eq. 12.43:

T.2/ D 1

2kk1
�

"
i
�
k2 C k21

�
sin k1d C 2kk1 cos k1d i

�
k21 � k2

�
sin k1d

�i
�
k21 � k

�
sin k1d �i

�
k2 C k21

�
sin k1d C 2kk1 cos k1d

#
!

1

2ik


"
i
�
k2 � 
2� sin .i
d/C 2ik
 cos .i
d/ �i

�

2 C k2

�
sin .i
d/

i
�

2 C k2

�
sin .i
d/ �i

�
k2 � 
2� sin .i
d/C 2ik
 cos .i
d/

#
D

1

2ik


"
� �k2 � 
2� sinh .
d/C 2ik
 cosh .
d/

�

2 C k2

�
sinh .
d/

� �
2 C k2
�

sinh .
d/
�
k2 � 
2� sinh .
d/C 2ik
 cosh .
d/

#

(12.60)

At the last step of this derivation, I used identities connecting trigonometric and
hyperbolic functions: sin .iz/ D i sinh z and cos .iz/ D cosh z. The elements of this
matrix determine amplitude reflection and transmission coefficients for a single-
barrier potential, r1 and t1 correspondingly, as established by Eqs. 12.34 and 12.39:

t1 D 2ik


.k2 � 
2/ sinh .
d/C 2ik
 cosh .
d/
(12.61)

r1 D �
�

2 C k2

�
sinh .
d/

.k2 � 
2/ sinh .
d/C 2ik
 cosh .
d/
(12.62)
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Equations 12.61 and 12.62, obviously, can be derived from Eqs. 12.44 and 12.45 for
the single-well problem with the same replacements of k0 and k1 used to obtain the
T-matrix itself.

In order to simplify further computations and also to provide an easier way to
relate the properties of the double-barrier structure to those of its single-barrier
components, I am going use Eqs. 12.34 and 12.39 to rewrite the transfer matrix
in terms of the amplitude reflection and transmission coefficients, r1 and t1:

T.2/22 D 1

t1
I T.2/21 D � r1

t1
:

Using the explicit form of the matrix T.2/, Eq. 12.60, you can determine that T.2/11 D�
T.2/22

��
and T.2/12 D

�
T.2/21

��
, so that the entire T.2/ can be written down as

T.2/ D

1=t�1 �r�

1 =t�1
�r1=t1 1=t1

�
:

Multiplying this by M.2/ from Eq. 12.58, I get

T.2/M.2/ D


exp .ikw/ =t�1 � exp .�ikw/ r�
1 =t�1

� exp .ikw/ r1=t1 exp .�ikw/ =t1

� 
1=t�1 r�

1 =t�1
�r1=t1 1=t1

�
;

and, finally, multiplying this matrix by T.2/ (from the left), I find the total double-
barrier T-matrix T.4/:

T.4/ D
2
4

exp.ikw/

.t�1 /
2 C exp.�ikw/jr1j2

jt1j2
exp.ikw/r�

1

.t�1 /
2 � exp.�ikw/r�

1

jt1j2

� exp.ikw/r1
jt1j2 � exp.�ikw/r1

t21
� exp.ikw/jr1j2

jt1j2 C exp.�ikw/
t21

3
5

D 1

jt1j2

2
4

t1 exp.ikw/
t�1

C jr1j2 exp .�ikw/ t1 exp.ikw/r�

1

t�1
� exp .�ikw/ r�

1

�r1 exp .ikw/ � t�1 exp.�ikw/r1
t1

� jr1j2 exp .ikw/C t�1 exp.�ikw/
t1

3
5 :

This expression can be simplified by introducing

t1 D jtj exp .i't/

r1 D jrj exp .i'r/ ;

which yields

T.4/ D 1

jt1j2
�


ei.kwC2't/ C jr1j2 e�ikw r�
1

�
ei.kwC2't/ � e�ikw

�
�r1

�
e�i.kwC2't/ C eikw

� � jr1j2 eikw C e�i.kwC2't/

�
D
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1

jt1j2
�

2
4 ei't

h
ei.kwC't/ C jr1j2 e�i.kwC't/

i
2ir�

1 ei't sin .kw C 't/

�2r1e�i't cos .kw C 't/ e�i't

h
� jr1j2 ei.kwC't/ C e�i.kwC't/

i
3
5 :

(12.63)

At the last step I factored out exp .i't/ to make residual expressions more
symmetrical with respect to the phases of the remaining exponential functions
and used Euler’s identities cos x D .exp .ix/C exp .�ix//=2/ and sin x D
.exp .ix/ � exp .�ix//=2i/. Now you can simply read out the expressions for the
total amplitude reflection and transmission coefficients:

tdb D jt1j2 exp .i't/

� jr1j2 exp .ikw C i't/C exp .�ikw � i't/
(12.64)

rdb D r�
1 exp .2i't/ Œexp .ikw C i't/ � exp .�ikw � i't/�

� jr1j2 exp .ikw C i't/C exp .�ikw � i't/
; (12.65)

where subindex db stands for the double barrier.
I will begin the analysis of the obtained expression with the transmission

probability Tdb D jtdbj2:

Tdb D jt1j4ˇ̌
ˇ
�
1 � jr1j2

�
cos .kw C 't/ � i

�
1C jr1j2

�
sin .kw C 't/

ˇ̌
ˇ
2

At this point it is useful to recall that transmission and reflection probabilities obey
the probability conservation condition jt1j2 C jr1j2 D 1, which allows to rewrite the
expression for Tdb in the simplified form

Tdb D jt1j4

jt1j4 cos2 .kw C 't/C
�
1C jr1j2

�2
sin2 .kw C 't/

: (12.66)

The corresponding expression for the reflection probability becomes

Rdb D 4 jr1j2 sin2 .kw C 't/

jt1j4 cos2 .kw C 't/C
�
1C jr1j2

�2
sin2 .kw C 't/

(12.67)
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Before going any further, it is always useful to check that the results obtained obey
the probability conservation condition Rdb C Tdb D 1. To prove that this is indeed
true, you just need to demonstrate that

jt1j4 C 4 jr1j2 sin2 .kw C 't/ D jt1j4 cos2 .kw C 't/C
�
1C jr1j2

�2
sin2 .kw C 't/ :

You might probably find an easier way to prove this identity, but this is how I did it:

jt1j4 C 4 jr1j2 sin2 .kw C 't/ D
jt1j4

�
cos2 .kw C 't/C sin2 .kw C 't/

�C 4 jr1j2 sin2 .kw C 't/ D
jt1j4 cos2 .kw C 't/C

�
4 jr1j2 C jt1j4

�
sin2 .kw C 't/ D

jt1j4 cos2 .kw C 't/C
	
4 jr1j2 C

�
1 � jr1j2

�2

sin2 .kw C 't/ D

jt1j4 cos2 .kw C 't/C
�
1C jr1j2

�2
sin2 .kw C 't/ : (12.68)

Having verified that my calculations are not obviously wrong, I can proceed with
their analysis. If you remember that the naive expectation, which I described in the
beginning of this section, was that adding a second barrier would result in a total
transmission being just a product of the transmission probabilities through each
barrier, which in our case of identical barriers would mean Tdb D jt1j4. Looking
at Eq. 12.66, you can indeed notice the factor jt1j4 in its numerator, but you will
also see that this factor is accompanied by a denominator, which is responsible
for breaking our naive expectations. What this denominator does, it selects special
energies, namely, the ones obeying the condition

& .E/ D k.E/w C 't.E/ D �n; n D 1; 2; 3 � � � ; (12.69)

which turns sin .kw C 't/ in Eqs. 12.66 and 12.67 to zero. For energies satisfying
Eq. 12.69, the reflection coefficient vanishes and the transmission coefficient turns
to unity. So much for the second barrier suppressing the transmission probability!
In reality, the presence of the second barrier somehow magically helps the quantum
particle to penetrate both barriers without any reflection, albeit only at special
energies. This phenomenon is called resonant tunneling, and it is a wonderful
manifestation of importance of quantum superposition of states or, as one could
say, of the wave nature of quantum particles. Energy values at which the resonant
tunneling takes place are called tunneling resonances.

To analyze this effect in more details, it is useful to rearrange terms in the
denominator of Eq. 12.66. Using identity in Eq. 12.68, I can rewrite the expression
for the transmission probability T2 as
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Tdb D jt1j4
jt1j4 C 4 jr1j2 sin2 .kw C 't/

D

1

1C 4jr1j2
jt1j4 sin2 .kw C 't/

: (12.70)

This expression makes it even more obvious that every time when the energy of the
particle obeys the resonance condition, Eq. 12.69, the transmission turns to unity,
but it also reveals the role of the parameter:

� D jt1j2
jr1j : (12.71)

Indeed, let me find the values of the energy for which the transmission drops to the
half of its maximum value, i.e., becomes equal to 1=2. Quite obviously, this happens
whenever

4

�2
sin2 & D 1 ” jsin & j D �=2: (12.72)

In the case of the thick individual barriers, when the effect of the resonant
transmission is most drastic, the single-barrier transmission jt1j is small, while the
reflection jr1j is almost unity. In this case Eq. 12.71 can be approximated as follows:

� D jt1j2q
1 � jt1j2

� jt1j2
1 � jt1j2 =2

� jt1j2
�
1C jt1j2 =2

�
� jt1j2 ; (12.73)

where I neglected terms smaller than jt1j2. This approximation shows that � is as
small as jt1j2 meaning that according to Eq. 12.72, the value of the phase & .E/ at the
energy values corresponding to Tdb D 1=2 only weakly deviates from the resonant
value En with & .En/ D �n. Accordingly, & .E/ can be presented as & .E/ D �n C
ı&n where ı&n � 1, allowing to simplify Eq. 12.72 as

jsin .ı&n/j � jı&nj D �=2: (12.74)

Thus, parameter �=2 determines the magnitude of the deviation of the phase & .E/
from its resonant value required to bring down the transmission coefficient by half.
The smaller the � , the smaller is such deviation, which means, in other words, that
smaller � results in steeper decrease of transmission when particle’s energy shifts
away from the resonance. Deviation of the phase can be translated into the respective
deviation of energy by presenting

& .E/ � & .En/C d& .E/

dE
ıE
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Fig. 12.4 Double-barrier
transmission of an electron as
a function of energy for the
structure with barrier height
1 eV, the distance between the
barriers w D 1:2 nm, and
three barrier widths: blue line
corresponds to d D 0:8 nm,
red to d D 0:4 nm, and black
to d D 0:2 nm. Energy is
given in dimensionless units
of 2meEw2=„2

The deviation of the phase equal to �=2 corresponds to the deviation of energy
equal to

�E

2
D


d& .E/

dE

��1
�

2
(12.75)

If one plots transmission as a function of particle energy, the resonant values will
appear as peaks of the transmission, while parameter �E will determine the width
of these peaks. More accurately �E=2 is called the half-width at half-maximum
(HWHM). The origin of “half-maximum” in this term is obvious, and half-width
refers to the fact that Eq. 12.74 has two solutions ˙�=2, and the total width of
the resonance at half-maximum is .En C �E=2/ � .En � �E=2/ D �E. Widening
of the barriers results in decreasing � , which can be qualitatively described as
narrowing of the resonances. You can observe this phenomenon in Fig. 12.4,
presenting transmission as a function of energy for several barrier widths. You can
also see that the resonances broaden with increasing energy. This is the result of
the energy dependence of the elements of the single-barrier transfer matrix and,
correspondingly, of the parameters � and the derivative of the phase d&=dE. The
explicit expression for this derivative can be found from Eq. 12.61 for the amplitude
transmission coefficient, but the result is rather cumbersome and can be left out.

This figure reveals that parameter � also determines how small the transmission
becomes between the maximums and, therefore, how prominent the resonances are.
In order to see where this effect comes from, it is useful to rewrite Eq. 12.70 for
transmission as

Tdb D .�=2/2

.�=2/2 C sin2 .kw C 't/
(12.76)

One can see now that the minimum of transmission, which occurs whenever
sin .kw C 't/ reaches its largest value of unity, is
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T.min/
db D �2

�2 C 1
� �2

where I assumed at the last step that � � 1, i.e., it increases with increasing � . You
may also notice that the position of the resonances is different for different barrier
thicknesses. This result seems to be contrary to Eq. 12.69, which shows explicitly
only the dependence of the resonant energies on the distance between the barriers,
w. The observed effect of the dependence of the resonances on d emphasizes the
role of the phase factor 't, which does depend on the thickness of the barriers, but
is often overlooked.

In the vicinity of the resonance &n D �n, one can expand the sin .&/ as

sin .& � &n C �n/ D .�1/n sin .& � &n/ � .�1/n .& � &n/ � .�1/n .d&=dE/ .E � En/ :

With this approximation Eq. 12.76 for transmission can be presented in the vicinity
of the resonance as

Tdb D .�E=2/
2

.�E=2/
2 C .E � En/

2
(12.77)

Resonance behavior of this type occurs frequently in various areas of physics and is
called a Breit–Wigner resonance, while Eq. 12.77 bears the name of a Breit–Wigner
formula.1

The treatment of the resonant tunneling, which I have developed, is remarkably
independent on the details of the shapes of the barriers constituting the double-
barrier structure. As long as the boundaries of the barriers are clearly defined so
that I can write down a single-barrier transfer matrix T.2/ and the distance between
the barriers, w, I can use the results of this section. Do not get me wrong—the
parameters of T.2/, of course, depend on the details of the barrier’s shape, but what
I want to say is that T.2/ can be computed independently of the double-barrier
problem once and for all, numerically if needed, and then used in the analysis of
the resonant tunneling.

So, I hope you are convinced by now that the resonant tunneling is a remarkable
phenomenon, which can be relatively simply described in terms of the reflection and

1Gregory Breit was an American physicist, known for his work in high energy physics and
involvement at the earlier stages of the Manhattan project. Eugene Wigner was a Hungarian-
American theoretical physicist, winner of the half of 1963 Nobel Prize “for his contributions to the
theory of the atomic nucleus and the elementary particles, particularly through the discovery and
application of fundamental symmetry principles.” In 1939 he participated in a faithful Einstein-
Szilard meeting resulting in a letter to President Roosevelt prompting him to initiate work
on development of atomic bombs. You might find this comment of his particularly intriguing,
“It was not possible to formulate the laws of quantum mechanics in a fully consistent way
without reference to consciousness,” which he made in one of his essays published in collection
“Symmetries and Reflections – Scientific Essays (1995).”
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transmission coefficients of a single barrier. Still, you might feel certain dissatisfac-
tion because all these calculations do not really explain how passing through two
thick barriers instead of one can improve the probability of transmission, leave alone
make it equal to one. They also do not clarify the role of the quantum superposition,
which, I claimed, played a crucial role in this phenomenon. There are several distinct
ways to develop a more qualitative, intuitive understanding of this situation. First is
naturally based on thinking about quantum mechanical properties of the particle in
terms of waves, their superposition and interference. To see how these ideas play out,
consider an expression for the amplitude reflection coefficient rdb, which determines
the relative contribution of the backward propagating wave in the wave function
representing the state of the particle in the region z < 0:

 .z/ D exp .ikz/C rdb exp .�ikz/ :

A careful look at Eq. 12.65 reveals that this expression describes a superposition
of two waves, both propagating backward, but with different phases. The origin of
these contributions is the multiple reflections of the waves representing the particle’s
state between the boundaries of both barriers (this is why the second barrier is
crucial for this effect to occur). The only terms contributing to the phase difference
between them are exp .ikw C i't/ and exp .�ikw � i't C i�/, where the extra i�
in the argument of the exponent takes care of the negative sign appearing in front
of this expression in Eq. 12.65. The phase difference between these contributions
to the reflected (backward propagating) component of the wave function is 4	 D
2kw C 2't C � , and if we want to suppress reflection by destructive interference,
we must require that 4	 D � C 2�n, which results in exactly the condition for the
transmission resonance kw C 't D �n.

It is also instructive to take a look at the spatial dependence of the probability
density j .z/j2 for resonant and off-resonant values of energy. The analytical
expression for this quantity is quite cumbersome, especially off the resonance, so
I will spare you from having to suffer through its derivation, presenting instead
only the corresponding graphs obtained for the same values of the parameters as
in Fig. 12.4 for off- and on-resonance values of the particle’s energy. The first two
graphs in Fig. 12.5 correspond to the value of energy smaller and larger than the
energy of the first tunneling resonance. In both cases you can observe oscillations of
the probability in the region z < 0 due to interference between incident and reflected
waves. You should also notice that the relative probability to find the particle
in front of the barrier at the maximums of the interference pattern significantly
exceeds the probability to find the particle between the barriers or behind them (the
right boundary of the second barrier can be clearly identified from the graphs by
the absence of any interference pattern in the transmitted wave) for energies both
below and above the resonance. The situation, however, changes completely at the
resonance (the last graph in the figure). The most remarkable feature of this graph
is a pronounced increase of the likelihood that the particle is located between the
barriers. If we are dealing with a beam of many electrons incident on the structure,
this effect will result in an accumulation of electrons between the barriers making
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Fig. 12.5 Spatial dependence of the probability density j .z/j2 for energies below, above, and
equal to the energy of the first tunneling resonance. Parameters of the double-barrier structure are
the same as in Fig. 12.4 with the barrier width d D 0:4 nm

this region strongly negatively charged. Electric field associated with this strong
charge will repel incoming electrons making it more difficult for additional electrons
to penetrate the barriers. This effect, called Coulomb blockade, can be noticed as
increase in the number of reflected electrons as we increase the density of electrons
in the beam. For very small distance between the barriers, the effect of Coulomb
blockade can be so strong that even a single electron is capable of preventing
other electrons from entering the structure. Thanks to this phenomenon, physicists
and engineers gain ability to count individual electrons and develop single-electron
devices.

It is important to notice that the resonance probability distribution featured in
Fig. 12.5 corresponds to the smallest of the resonance energies, which satisfies
Eq. 12.69 with n D 1. Now I want you to take a look at the probability distributions
corresponding to resonance energies satisfying Eq. 12.69 with n D 2 and n D 3

presented in Fig. 12.6.
Ignore for the second that the functions depicted in Figs. 12.5 and 12.6 do not

vanish at infinity, and compare them to those shown in Fig. 6.6 , which present the
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Fig. 12.6 Spatial dependence of the probability density j .z/j2 at the resonance energies of the
second and third order (n D 2; 3)

wave functions corresponding to the first three bound energy levels in a rectangular
potential. Taking into consideration the obvious difference stemming from the
fact that the graphs in Fig. 6.6 are those of the real-valued wave functions, while
Figs. 12.5 and 12.6 depict j .z/j2, you cannot help noticing the eerie resemblance
between the two sets of graphs. You might also notice that the resonance condition,
Eq. 12.69, resembles an equation for the energy eigenvalues of the bound states.
Actually, in the limit d ! 1, this equation must exactly reproduce Eq. 12.50
with obvious replacements d ! w and Vw ! 0, and it would be interesting to
demonstrate that. Will you dare to try? Do not get deceived by the term kw in
Eq. 12.69, which might make you think about the bound states of an infinite potential
well. The finite nature of the potential barriers arising in the limit d ! 1 is hidden
in the phase term 't; which shall play the main role when recasting Eqs. 12.69 into
the form of Eq. 12.50.

Anyway, this similarity between resonance wave functions and those of the
bound states offers an alternative interpretation of the phenomenon of the resonant
tunneling. Imagine that you start with a potential, in which the barriers are infinitely
thick, so that you can place a particle in one of the stationary states of the respective
potential well. Then, using a magic wand, you reduce the thickness of the barriers
to a finite value. What will happen to the particle in this situation? Using what we
learned about the tunneling effect, you can intuit that the particle will “tunnel out”
of the potential well and escape to the infinity. In formal mathematical language,
this can be rephrased by saying that the boundary condition for the corresponding
Schrödinger equation at z ! ˙1 must take a form of a wave propagating to the
right (exp .ikz/) for z ! 1 and a wave propagating to the left (exp .�ikz/) for
z ! �1. These boundary conditions differ from the ones we used when deriving
the transmission and reflection coefficients by the absence of the wave exp .ikz/
incident on the potential from negative infinity. Correspondingly, the wave function
at z < 0 and z > 2d C w is now presented by the column vectors
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v0 D

0

r

�
I v4 D


t
0

�

similar to the bound state problem. Also, similar to the bound state problem, you
will have to conclude that the transfer-matrix equation T.4/v0 D v4 in this case has
non-zero solutions only if the element in the second row and second column of T.4/

vanishes. Equation 12.63 then yields

� jr1j2 exp .ikw C i't/C exp .�ikw � i't/ D 0

This equation can be transformed into a more convenient for further discussion
form:

exp .2ikw C 2i't/ � exp .2i&/ D 1

jr1j2
(12.78)

where I brought back the same notation for the phase & D kw C ' used when
discussing tunneling resonances. Trying to solve this equation, for instance, by
graphing its left-hand and right-hand sides, you will immediately realize that this
equation does not have real-valued solutions (it’s left-hand side is complex-valued,
while the right-hand side is always real). More accurately, I shall say that this
equation might have real solutions only if jr1j is equal to unity for all frequencies,
which is equivalent to the requirement that the thickness of the barriers d becomes
infinite. If this is the case, Eq. 12.78 can be satisfied if 2& D 2�n, which is, of
course, just Eq. 12.69, and I hope that by now you have already demonstrated that
this equation is equivalent to Eq. 12.50 in the limit of the infinitely thick barriers.
We, however, are interested in the situation when the barriers are thick but finite,
so that jr1j2 is less than one, but not by much. Using the probability conservation
equation, jt1j2 C jr1j2 D 1, I can rewrite Eq. 12.78 as

exp .2i&/ D 1

1 � jt1j2
(12.79)

and using condition jt1j2 � 1, approximate it as

exp .2i&/ � 1C jt1j2 (12.80)

where I used well-known approximation

.1C x/˛ � 1C ˛x

which is just the first two terms in the power series expansion of function .1C x/˛

with ˛ D �1. Expecting that the solution to this equation deviates only slightly
from &n D �n, I will present & as & D �n C �, where � � 1. The exponential
left-hand side of Eq. 12.80 in this case becomes
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exp .2i�n C 2i�/ D e2i� � 1C 2i�

and substituting it into Eq. 12.80, I find that � is a purely imaginary quantity equal to

� D �1
2

i jt1j2

Thus, the wave number satisfying Eq. 12.80 acquires an imaginary part defined by
equation

kw C 't D �n � 1

2
i jt1j2 � �n � 1

2
i� (12.81)

where I used Eq. 12.73 to replace jt1j2 with � .
Gazing for some time at Eq. 12.81, you will realize that something not quite

kosher is happening here. When starting the calculations, we postulated that the
wave function at infinity is described by propagating waves with real wave numbers.
Well, it turns out that it is not possible to keep this assumption and satisfy all other
boundary conditions. If you now substitute Eq. 12.81 into the exp .˙ikz/, it will turn
into exp Œ˙i .�n � 't/ z=w� exp .˙�z=2/, which explodes exponentially for both
z < 0 and z > 2d C w. Quite obviously this is not an acceptable wave function
as it cannot be normalized neither in the regular nor in ı-function sense. So, does it
mean that all our efforts for the last hour, hour and a half (I guess this is how long it
would take you to get through this segment of the book, but, believe me, it took me
much, much longer to write it), were in vain? Well, not quite, of course, why would
I bother you with this if it were. What I want to do now to save my face is to take
the phase & .E/ in Eq. 12.81 and expand it as a function of energy around the point
En, where En is a resonant frequency obeying equation & .En/ D �n. It will give me

& .E/ � �n C .d&=dE/ .E � En/ ;

which I will substitute to Eq. 12.81

�n C .d&=dE/ .E � En/ D �n � 1

2
i� )

E D En � 1

2
i�


d&

dE

��1
D En � 1

2
i�E (12.82)

where I used Eq. 12.75 to introduce energy HWHM parameter �E. Quite clearly,
Eq. 12.81 cannot be satisfied with real values of energy, so that the found solutions
cannot be eigenvalues of a Hermitian operator, (which must be real), and of course,
they are not. The problem, which we have been trying to solve, lost its Hermitian
nature once it was allowed for the wave function not to vanish at infinity. So, if the
found solutions are not “true” energy eigenvalues, what are they? Can we prescribe
them at least some physical meaning? Well, just by looking at Eq. 12.82, you can
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notice that its real part coincides with the energy of the tunneling resonances, while
its imaginary part is equal to the HWHM parameter of those resonances. Plugging
this equation into the time-dependent portion of the wave function (which has been
ignored so far), exp .�iEt=„/, will get you

 .t/ / e�iEnt=„e� 1
2 �Et=„ (12.83)

The respective probability distribution, which normally wouldn’t depend on time, is
now exponentially decreasing:

P D j j2 / exp .��Et=„/ (12.84)

with a characteristic time scale �E D „=�E. And Eq. 12.84, actually, admits quite
a natural physical interpretation. To see this, you need to recall the very initial
assumption that I made starting discussing this approach to the resonant tunneling.
The question I posed at that time was: What would happen to a particle placed in a
stationary state of a potential wall with infinitely thick potential barriers if the width
of the barriers would become large but finite? Physical intuition told us that a particle
in this case would be able to tunnel out of the well through the barriers, which means
that the probability to locate the particle inside the well would diminish with time.
We can understand Eq. 12.84 as a formal description of this decay of probability
due to tunneling. Thus, even though the wave functions, which I calculated, do not
appear to have much physical or mathematical meaning, the complex eigenvalues
given by Eq. 12.82 contain an important physically relevant information: its real part
yields the energy of the tunneling resonances, while its imaginary part describes
both the resonance width, �E, and the time of the decay of the probability due to
tunneling � .

These complex eigenvalues are called quasi-energies, while respective states are
known as “quasi-stationary states,” “quasi-modes,” or “resonance states.” The term
quasi-stationary implies that a particle placed in such a state would not stay there
forever and would tunnel out during some time; the time �E can be understood as an
average lifetime of such states. It is remarkable that the product �E�E is simply equal
to Planck’s constant „, making relationship between the width of the resonance and
the lifetime of the respective quasi-stationary state similar to the uncertainty relation
between, say, coordinate and momentum operators.

More accurate treatment of such time-dependent tunneling requires solving the
time-dependent Schrödinger equation with an appropriate initial condition, but even
such, less than rigorous, but intuitively appealing approach, can be used to infer
important information about behavior of the particle in potentials similar to the
double-barrier potential considered here. This approach, together with the concept
of quasi-stationary states, was first introduced by George Gamow, an influential
Russian-American physicist, born in Odessa (Russian Empire, presently Ukraine),
educated in Soviet Union, and defected to the West in 1933 as Stalin’s purges began
to intensify. (One of his closest university friends, Matvei Bronstein, was executed
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Fig. 12.7 A schematic of a potential barrier experienced by an alpha-particle inside of a nucleus

by Soviet authorities in 1938 on trumped-up treason charges.) Gamow introduced
these states (sometimes called Gamow states) while developing the theory of alpha-
particle radioactivity. His idea was that the alpha-particles contained inside of the
nucleus of a radioactive atom experience a potential in the form of a well followed
by a thick, but finite, barrier (see Fig. 12.7).

Radioactive decay in Gamow’s theory was understood as a slow tunneling of ˛-
particles out of the nucleus. Gamow’s approach can actually be modified to give
it more mathematical rigor and to turn the wave functions representing the quasi-
states into physically and mathematically meaningful objects. However, the modern
variations of the concept of quasi-states is a topic lying far outside of the scope of
this book, so let me just finish this chapter now.

12.3 Problems

Problem 148 Verify that the matrix equation, Eq. 12.8, is, indeed, equivalent to the
system of equations, Eqs. 12.6 and 12.7.

Problem 149

1. Write down boundary conditions for the wave function and its derivative
presented in Eq. 12.11.



426 12 Resonant Tunneling

Fig. 12.8 Potential described
in Problem 7

2. Find relations between amplitudes A.L;R/1 , B.L;R/1 and A1;2, B1;2, which would
convert the boundary conditions found in Part I of the problem into Eqs. 12.13
and 12.14.

Problem 150 Demonstrate that coefficients A.R/0 and B.R/0 in Eqs. 12.46 and 12.47
coincide with coefficients A2 and B2 in Eqs. 6.60 and 6.61 in Sect. 6.2.

Problem 151 Show that coefficient B.R/2 in Eq. 12.48 vanishes.

Problem 152 Prove that Eq. 12.53 is, indeed, reduced to A2 D ˙B0 for energies
satisfying dispersion equations 12.51 and 12.52.

Problem 153 Use the transfer-matrix method to find the equation for the bound
state in the asymmetric potential well:

V.z/ D

8̂
<̂
ˆ̂:

V1 z < 0

Vw 0 < z < d

V2 z > d

where V2 > V1.

Problem 154 Consider an electron moving in a potential described as (see
Fig. 12.8)

V.x/ D

8̂
ˆ̂̂<
ˆ̂̂
:̂

1 x < 0

0 0 < x < w

Vb w < x < w C d

0 x > w C d

You are interested in the properties of the electron in this potential for energies
0 < E < Vb. It is clear that for the particle incident on this potential from the left,
which is the only direction it can be incident from, the probability of reflection is
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always equal to one, simply because the wave function at z < 0 vanishes and there
can be no transmitted particles. So, it appears that the effects of tunneling resonance
discussed in Sect. 12.2 have no place in this potential. At the same time, in the
limit d ! 1, this potential allows for at least one bound state localized mostly
within the region of the potential well. When the barrier width d becomes finite, this
bound stationary state begins leaking outside due to the tunneling effect, just like we
discussed in the section on the resonant tunneling. Accordingly, we must expect this
potential to possess quasi-stationary states, but it is not clear how they are related to
the reflective properties of the potential. I suggest that you try to figure it out.

1. First, find the amplitude reflection coefficient assuming that to the right of the
potential, there are both incident and reflected waves, so that the column vector
representing the wave function for z > w C d would look like

vR D


r
1

�

(As always, the first element is occupied by the amplitude in front of the wave
propagating to the right, but in the case under consideration, this wave represents
reflected particles.) The wave function for 0 < z < w must turn zero at z D 0,
which is achieved by the function of the form

 .z/ D Aeikz � Ae�ikz D Aeikweik.z�w/ � Ae�ikwe�ik.z�w/

so that the wave function to the very left of the potential discontinuity at z D w
is presented by the column

v1 D


Aeikw

�Ae�ikw

�

The wave function for z > w can be found using standard combination of the
interface and free propagation matrices (you will need two of the former and
one of the latter). Complete the transfer-matrix calculations and find parameter r.
Look for any traces of possible resonant behavior paying special attention to the
phase of r.

2. Now repeat these calculations assuming that there are no incident particles so
that the wave function for z > d C w is represented by a column

vR D


r
0

�

Derive equation for the complex quasi-energies of the respective quasi-stationary
states. Assuming that the imaginary part of the quasi-energies is small, separate
this equation into an equation for the real and imaginary parts, just like we did in
Sect. 12.2. Compare the results with those of the preceding calculations.



Chapter 13
Perturbation Theory for Stationary
States: Stark Effect and Polarizability of
Atoms

Only few models in quantum mechanics allow for an exact analytical solution.
Most of the problems, which are relevant to the real-world situations and are
important for understanding the fundamental nature of things or for applications,
can only be solved using one or another type of approximation. In this chapter I
will introduce a method designed for finding approximate solutions for eigenvalues
and corresponding eigenvectors of a time-independent Hamiltonian with a discrete
spectrum. This method works for Hamiltonians that can be written as a sum of
two parts: the main or unperturbed Hamiltonian OH0, whose eigenvalues, E.0/s , and
eigenvectors, jsi, are presumed to be known, and a perturbation � OV . Parameter �
that I pulled out of OV has a formal meaning of the strength of the perturbation, but
this can be understood literally only in the sense that the perturbation vanishes when
� D 0. The actual parameter determining the strength of the perturbation emerges
only post factum, after the problem is solved. I will mainly use � as a technical
bookkeeping device (you will know what it means when you see it) and set it equal
to unity at the end. The index s appearing in the notation for the eigenvalues and
the eigenvectors can be a composite index, consisting of several subindexes. For
instance, if OH0 is the Hamiltonian of a hydrogen-like atom, then s contains principal,
orbital, and magnetic numbers n; l;m. It is also presumed that the perturbation OV
can be considered small in some yet undefined sense so that the eigenvalues and
eigenvectors of the total Hamiltonian

OH D OH0 C � OV (13.1)

do not deviate too much from the E.0/s and jsi correspondingly. Consequently,
one might hope that they can be found approximately using the eigenvalues and
eigenvectors of OH0 as a starting point.

The development of the method is quite different for non-degenerate unperturbed
eigenvalues and the degenerate ones. You can see where the difference is coming
from by pondering over the following. Whatever the approximate expression I will

© Springer International Publishing AG, part of Springer Nature 2018
L.I. Deych, Advanced Undergraduate Quantum Mechanics,
https://doi.org/10.1007/978-3-319-71550-6_13

429

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-71550-6_13&domain=pdf
https://doi.org/10.1007/978-3-319-71550-6_13


430 13 Perturbation Theory for Stationary States: Stark Effect and Polarizability of Atoms

derive for the eigenvalues and eigenvectors, they must reduce to E.0/s and
ˇ̌
s.0/
˛

as I

set � D 0. If E.0/s is a non-degenerate eigenvalue so that jsi is the only eigenvector
belonging to it, this process does not raise any issues. If, however, E.0/s is degenerate,

meaning that there are several unperturbed orthonormal eigenvectors
ˇ̌
ˇs.0i
E

belonging

to it, together with infinitely many linear combinations thereof, an outcome of the
transition � ! 0 in this case becomes a mystery. You will learn eventually that as
improbable as it might sound, it is the perturbation operator OV that “decides” the
outcome of this transition even as its own “strength” goes to zero. You can consider
these somewhat vague remarks as a teaser designed to spur your curiosity. All this
will become (hopefully) much clearer once we get down to it. At this point, my
goal is simply to justify the importance of separate consideration of degenerate and
non-degenerate unperturbed eigenvalues.

13.1 Non-degenerate Perturbation Theory

The non-degenerate case is more straightforward, so this is what I am going to
begin with. The idea is to present the unknown eigenvalues Es and eigenvectors jsi
as power series of the form

Es D E.0/s C �E.1/s C �2E.2/s C �3E.3/s C � � � (13.2)

jsi D ˇ̌
s.0/
˛C �

ˇ̌
s.1/
˛C �2

ˇ̌
s.2/
˛C �3

ˇ̌
s.3/
˛C � � � (13.3)

and plug them into the stationary Schrödinger equation:

� OH0 C � OV
�

jsi D Es jsi : (13.4)

This procedure yields

OH0

ˇ̌
s.0/
˛C � OH0

ˇ̌
s.1/
˛C �2 OH0

ˇ̌
s.2/
˛C � � � C

� OV ˇ̌s.0/˛C �2 OV ˇ̌s.1/˛C �3 OV ˇ̌s.2/˛C � � � D
E.0/s

ˇ̌
s.0/
˛C �E.0/s

ˇ̌
s.1/
˛C �E.1/s

ˇ̌
s.0/
˛C �2E.0/s

ˇ̌
s.2/
˛C (13.5)

�2E.2/s

ˇ̌
s.0/
˛C �2E.1/s

ˇ̌
s.1/
˛C � � � :

For this expression to be true for an arbitrary value of the perturbation parameter �,
it is necessary that the terms with the same power of � on the left-hand side and on
the right-hand side of this equation were individually equal to each other:
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�0 W OH0

ˇ̌
s.0/
˛ D E.0/s

ˇ̌
s.0/
˛
; (13.6)

�1 W OH0

ˇ̌
s.1/
˛C OV ˇ̌s.0/˛ D E.0/s

ˇ̌
s.1/
˛C E.1/s

ˇ̌
s.0/
˛
; (13.7)

�2 W OH0

ˇ̌
s.2/
˛C OV ˇ̌s.1/˛ D E.0/s

ˇ̌
s.2/
˛C E.2/s

ˇ̌
s.0/
˛C E.1/s

ˇ̌
s.1/
˛
: (13.8)

Now you can see what I meant in saying that � will only be used for bookkeeping
purposes: I use it to identify different approximation orders, and once it is done, it
can be set to unity.

Equation 13.6 is just the eigenvalue equation for the unperturbed Hamiltonian,
which, as I presumed, is fulfilled by E0s and

ˇ̌
s.0/
˛
. Corrections to the eigenvalue and

the eigenvector proportional to � (I will call them the first-order corrections) should
supposedly be found from Eq. 13.7. You might wonder if it is possible to find both
these unknown quantities from a single equation. Well, let’s see.

First, I multiply Eq. 13.7 by
˝
s.0/
ˇ̌

from the left:

˝
s.0/
ˇ̌ OH0

ˇ̌
s.1/
˛C ˝

s.0/
ˇ̌ OV ˇ̌s.0/˛ D E.0/s

˝
s.0/

ˇ̌
s.1/
˛C E.1/s

˝
s.0/

ˇ̌
s.0/
˛
:

Taking into account that
˝
s.0/

ˇ̌
s.0/
˛ D 1 (normalization) and that

˝
s.0/
ˇ̌ OH0 D

E.0/s
˝
s.0/
ˇ̌

(Hermitian property of the Hamiltonian), I transform this expression into

������
E.0/s

˝
s.0/

ˇ̌
s.1/
˛C ˝

s.0/
ˇ̌ OV ˇ̌s.0/˛ D������

E.0/s

˝
s.0/

ˇ̌
s.1/
˛C E.1/s ;

which gives me the first-order correction to the energy eigenvalue

E.1/s D ˝
s.0/
ˇ̌ OV ˇ̌s.0/˛ : (13.9)

So far so good—I got the correction to the energy, but how about the correction to
the eigenvector,

ˇ̌
s.1/
˛
, which got canceled out? But fret you not—the cancelation of

the
ˇ̌
s.1/
˛

is not a bug, but a feature, which allowed me to isolate and determine the
energy correction. In order to obtain

ˇ̌
s.1/
˛
, I need to do something else, something

which would eliminate the E.1/s term from Eq. 13.7. One way to achieve this is
to premultiply the equation by an eigenvector of the unperturbed Hamiltonian,
different from

˝
s.0/
ˇ̌
, say,

˝
q.0/

ˇ̌
, where q D 1; 2; 3; s�1; sC1; � � � . Indeed, in this case

the term with E.1/s vanishes because of the orthogonality condition:
˝
q.0/

ˇ̌
s.0/
˛ D 0,

for q ¤ s. The remaining expression in this case becomes

˝
q.0/

ˇ̌ OH0

ˇ̌
s.1/
˛C ˝

q.0/ OV ˇ̌s.0/˛ D E.0/s

˝
q.0/

ˇ̌
s.1/
˛ )

E.0/q

˝
q.0/

ˇ̌
s.1/
˛C Vqs D E.0/s

˝
q.0/

ˇ̌
s.1/
˛
;

where I again used
˝
q.0/

ˇ̌ OH0 D E.0/q
˝
q.0/

ˇ̌
and introduced the matrix element Vqs D˝

q.0/
ˇ̌ OV ˇ̌s.0/˛ (note that the order of indexes in Vqs follows their order in

˝
q.0/ OV ˇ̌s.0/˛

from left to right). The result is an equation for
˝
q.0/

ˇ̌
s.1/
˛
, which yields
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˝
q.0/

ˇ̌
s.1/
˛ D Vqs

E.0/s � E.0/q

: (13.10)

This quantity is a component of the unknown vector
ˇ̌
s.1/
˛

in the direction of the
vector

ˇ̌
q.0/

˛
and can be used to find the entire vector

ˇ̌
s.1/
˛

as follows. Since
ˇ̌
q.0/

˛
are eigenvectors of a Hermitian operator and, therefore, form a basis, I can expandˇ̌
s.1/
˛

in this basis as

ˇ̌
s.1/
˛ D

X
q

ˇ̌
q.0/

˛ ˝
q.0/

ˇ̌
s.1/
˛ D

X
q¤s

ˇ̌
q.0/

˛ ˝
q.0/

ˇ̌
s.1/
˛C ˝

s.0/
ˇ̌

s.1/
˛ ˇ̌

s.0/
˛
;

where in the sum in the second line I separated out the term with q D s. With˝
q.0/

ˇ̌
s.1/
˛

found, I am just one step away from finding the entire vector
ˇ̌
s.1/
˛
: all I

need is the value of
˝
s.0/
ˇ̌

s.1/
˛
, which so far remains unknown. The help comes from

a familiar place—the normalization condition. Consider the found eigenvector with
accuracy up to the first order in �:

jsi D ˇ̌
s.0/
˛C �

˝
s.0/
ˇ̌

s.1/
˛ ˇ̌

s.0/
˛C �

X
q¤s

Vqs

E.0/s � E.0/q

ˇ̌
q.0/

˛
;

and compute its norm hsj si:

hsj si D ˝
s.0/
ˇ̌

s.0/
˛C �

˝
s.0/
ˇ̌

s.1/
˛ ˝

s.0/
ˇ̌

s.0/
˛C

�
X
q¤s

Vqs

E.0/s � E.0/q

˝
s.0/

ˇ̌
q.0/

˛C �
X
q¤s

V�
qs

E.0/s � E.0/q

hq0/j s0i C O.�2/:

I cannot include in this expression the terms of the second order in �2 or higher
because other terms of the same order were omitted from the initial expression
for jsi. The second line in this expression is actually equal to zero because of the
orthogonality condition

˝
s.0/

ˇ̌
q.0/

˛ D hq0/j s0i D 0, so all that is left is

hsj si D 1C �
˝
s.0/
ˇ̌

s.1/
˛
;

where I took into account that
˝
s.0/
ˇ̌

s.0/
˛ D 1. Thus, if I want the norm of jsi to be

equal to unity, I have to set
˝
s.0/
ˇ̌

s.1/
˛ D 0. This is the last piece I needed to find the

first-order correction to the eigenvector, which I can now write down as

jsi D ˇ̌
s.0/
˛C �

X
q¤s

Vqs

E.0/s � E.0/q

ˇ̌
q.0/

˛
: (13.11)
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So, I am done with the first-order corrections to the eigenvalues and eigenvectors,
and now I can turn to finding the corrections proportional to �2, which are often
called second-order corrections. Going back to Eq. 13.8 and performing the same
magic trick of premultiplying it by

˝
s.0/
ˇ̌
, I find

˝
s.0/
ˇ̌ OH0

ˇ̌
s.2/
˛C ˝

s.0/
ˇ̌ OV ˇ̌s.1/˛ D

E.0/s

˝
s.0/

ˇ̌
s.2/
˛C E.2/s

˝
s.0/

ˇ̌
s.0/
˛C E.1/s

˝
s.0/

ˇ̌
s.1/
˛
:

The first term on the left evaluates to E.0/s
˝
s.0/

ˇ̌
s.2/
˛

and cancels the first term on
the right, while the remaining expression, remembering that

˝
s.0/

ˇ̌
s.0/
˛ D 1 and˝

s.0/
ˇ̌
s.1/
˛ D 0, becomes

E.2/s D ˝
s.0/
ˇ̌ OV ˇ̌s.1/˛ D

X
q¤s

VsqVqs

E.0/s � E.0/q

D
X
q¤s

ˇ̌
Vsq

ˇ̌2

E.0/s � E.0/q

; (13.12)

where I again introduced a matrix element Vsq D ˝
s.0/
ˇ̌ OV ˇ̌q.0/˛ and took into account

that Vqs D V�
sq.

Premultiplying Eq. 13.8 by
˝
q.0/

ˇ̌
, I obtain

˝
q.0/

ˇ̌ OH0

ˇ̌
s.2/
˛C ˝

q.0/
ˇ̌ OV ˇ̌s.1/˛ D

E.0/s

˝
q.0/

ˇ̌
s.2/
˛C E.2/s

˝
q.0/

ˇ̌
s.0/
˛C E.1/s

˝
q.0/

ˇ̌
s.1/
˛
:

Using again the Hermitian property of the Hamiltonian to compute the first term in
the first line and orthogonality of the zero-order eigenvectors to eliminate the middle
term in the second line, I turn this expression into

E.0/q

˝
q.0/

ˇ̌
s.2/
˛C ˝

q.0/
ˇ̌ OV ˇ̌s.1/˛ D E.0/s

˝
q.0/

ˇ̌
s.2/
˛C E.1/s

˝
q.0/

ˇ̌
s.1/
˛
:

Now, using Eq. 13.9 as well as Eqs. 13.10 and 13.11, I can convert it into the
following:

�
E.0/q � E.0/s

� ˝
q.0/

ˇ̌
s.2/
˛ D ˝

s.0/
ˇ̌ OV ˇ̌s.0/˛ Vqs

E.0/s � E.0/q

�
X
p¤s

VqpVps

E.0/s � E.0/p

)

˝
q.0/

ˇ̌
s.2/
˛ D � VssVqs�

E.0/s � E.0/q

�2 C
X
p¤s

VqpVps�
E.0/s � E.0/p

� �
E.0/s � E.0/q

� :
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Respectively, the second-order correction to the eigenvector becomes

ˇ̌
s.2/
˛ D �

X
q¤s

VssVqs�
E.0/s � E.0/q

�2 jq.0/i C
X
q¤s

X
p¤s

VqpVps�
E.0/s � E.0/p

� �
E.0/s � E.0/q

� jq.0/i;

(13.13)

where I again set
˝
s.0/

ˇ̌
s.2/
˛

to zero as a normalization condition. Equations 13.12
and 13.13 complete my program of derivation of the lowest-order corrections to
the non-degenerate eigenvalues and the eigenvectors of Hamiltonian OH. Finding the
third- and higher-order corrections becomes progressively more cumbersome and is
rarely necessary.

Ideally, from the point of view of minimizing one’s efforts, it would be preferable
to get all the answers just from the first-order terms. Often, however, as we already
discussed in Chap. 10 on the two-level model, and Sect. 7.1.2 on quantum harmonic
oscillator, the diagonal elements of the perturbation part of the Hamiltonian, those
that determine the first-order corrections to the eigenvalues, vanish. This happens,
for instance, when the unperturbed Hamiltonian OH0 is invariant with respect to the
parity operator, so that its eigenvectors can be classified as being even or odd. If,
in addition, the perturbation operator OV is odd (changes sign upon application of
the inversion operator), then

˝
s.0/
ˇ̌ OV ˇ̌s.0/˛ vanishes and takes along the first-order

correction to the energy. If the first-order correction to the energy turns zero, you
do not have a choice as to rely on the second-order correction. If the second-order
terms are not sufficient as well, it usually means (there are exceptions, of course)
that the perturbation approach is not suitable for the problem at hand.

13.1.1 Quadratic Stark Effect

The perturbation theory plays a crucial role in understanding the responses of a
quantum system to external influences such as electric or magnetic fields. Leaving
the effects due to a magnetic field for a separate chapter, in this section I will focus
on the interaction between an atom and an electric field, E , which, in many instances,
can be assumed to be spatially uniform. I will also assume that this electric field is
static, i.e., does not depend on time. Then, what I need to do as the first matter
of business is to find the electric field-induced corrections to the energy spectrum
and corresponding eigenvectors of the unperturbed Hamiltonian. When this is done,
I can move on to analyze how these changes manifest themselves in observable
phenomena.

As a practical example, I will consider the effects of the static electric field on
the ground state of a hydrogen atom (Chap. 8), which is the only non-degenerate
energy level of hydrogen and can be, therefore, studied using the developed method.
So, assuming that OH.0/ in Eq. 13.1 describes a hydrogen-like system considered
in Chap. 8, I can replace the abstract zero-order eigenvectors

ˇ̌
s.0/
˛

of the previous
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section with their more concrete version jnlmi and energy eigenvalues with E.0/n D
�Eg=n2. The ground state is described by eigenvector j100i and energy �Eg, the
expression for which can be found in Chap. 8. Indexes s and q are now replaced by
three indexes, n;m, and l, and summation over q involves the summation over all
three indexes subject to regular restrictions on their values determined in Chap. 8.
The operator of perturbation OV for a uniform electric field has a simple form, which
you already encountered in this book several times, for instance, in Chap. 10:

OV D �eE Oz: (13.14)

Here I chose the Z-axis of the coordinate system used to define the components of
the operators of the angular momentum along the direction of the electric field. The
first-order correction to the ground state vanishes as was explained above because
the perturbation potential is odd with respect to inversion. Those who are skeptical
about symmetry-based arguments can verify this statement directly working, for
instance, in the position representation

h100j OV j100i D �eE 1

4�

�̂

0

2�ˆ

0

1̂

0

d�d'dr sin �r2 ŒR10.r/�
2 r cos �;

R10.r/ is the radial component of the wave function representing the ground state
of the hydrogen-like system, and I converted z into spherical coordinates. Now
you only need to compute the integral

´ �
0

d� sin � cos � over the polar angle � to
convince yourself (which shouldn’t be too difficult) that it vanishes.

With this issue clarified, let’s take on a more difficult problem of finding the
second-order correction to the ground state energy using Eq. 13.12. The most
important thing to realize when using this equation is that the sum over q is now
three sums: over n, l, and m. The sum over n starts with n D 2, because the term
n D 1 is excluded from the summation by the condition q ¤ s, which in our case
translates to n ¤ 1, the sum over l runs from 0 to n � 1, and the sum over m covers
values from �l to l:

E.2/1 D
1X

nD2

n�1X
lD0

lX
mD�l

jV100;nlmj2
E.0/1 � E.0/n

D

e2E2
1X

nD2

n�1X
lD0

lX
mD�l

jz100;nlmj2
E.0/1 � E.0/n

: (13.15)

It should be noted that Eq. 13.15 does not tell the entire story since the spectrum
of a hydrogen atom contains also a continuous segment, which, strictly speaking,
needs to be included. Moreover, since the potential due to a constant external
field grows progressively more negative with the growing value of coordinate z,
at some point the total potential felt by the electron will become less negative
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than a given negative energy of a bound state, providing for a possibility for the
electron to tunnel out of the nucleus’s potential (at which point the atom becomes
ionized). This turns the stationary state of the electron into quasi-stationary, similar
to the situation considered in Sect. 12.2. All these complications, however, can be
ignored for a weak enough field because (a) for states from continuous spectrum,
the energy denominators in Eq. 13.12 become so large that the contribution from the
corresponding terms can be safely neglected, and (b) even though the bound states
become formally quasi-stationary, if the field is not too strong, their lifetime is long
enough to treat them as normal stationary states.

Now my task is to compute the matrix elements z100;nlm, which, using the
hydrogen wave functions from Chap. 8, can be written down as

z100;nlm D 1p
4�

�̂

0

2�ˆ

0

1̂

0

d�d'dr sin �r3 cos �Ym
l .�; '/Rn;l.r/R1;0.r/: (13.16)

To evaluate the angular portion of the integral

�̂

0

2�ˆ

0

d�d' sin � cos �Ym
l .�; '/

let me first notice that this integral vanishes for all values of the magnetic number
m, with exception of m D 0. To see this just recall that the spherical harmonics
Ym

l .�; '/ contain the factor exp .im'/, which in this integral is the only factor
containing the azimuthal angle '. Integration of exp .im'/ over the entire range
of ' between 0 and 2� yields zero unless m D 0, when the value of the integral
becomes 2� . Having disposed of the integration with respect to ', I am left with the
integral over the polar angle

�̂

0

2�ˆ

0

d�d' sin � cos �Ym
l .�; '/ D 2�

r
2l C 1

4�
ım;0

�̂

0

d� sin � cos �Pl .�/ D

p
� .2l C 1/ım;0

1ˆ

�1
xPl.x/dx;

where I replaced the spherical harmonic Y0l with the regular Legendre polynomials
and made a substitution of variables x D cos � . To evaluate the remaining integral,
I recall that x D P1.x/ so that the last expression can be rewritten as

p
� .2l C 1/ım;0

1ˆ

�1
P1.x/Pl.x/dx:
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All what is left now is to invoke orthogonality of the Legendre polynomials and use
Eq. 5.71 from Sect. 5.1.4 adapted to the case m D 0:

1ˆ

�1
Pl1 .x/Pl.x/dx D 2

2l C 1
ıll1 :

Applying this formula to the case under consideration (l1 D 1/; I obtain the final
result for the angular part of the matrix element:

�̂

0

2�ˆ

0

d�d' sin � cos �Ym
l .�; '/ D

p
� .2l C 1/

2

2l C 1
ım;0ıl1 D 2

p
�p
3
ım;0ıl1:

Substituting this result into Eq. 13.16, I get

z100;nlm D 1p
3
ım;0ıl1

1̂

0

drr3Rn;1.r/R1;0.r/:

Replacing the integration variable r with its dimensionless counterpart x D Zr=.aB/,
where all notations are taken from Chap. 8, the expression for the matrix element can
be recast as

z100;nlm D 1p
3
ım;0ıl1

�aB

Z

�4 1̂

0

dxx3Rn;1.x/R1;0.x/:

The radial wave functions can be read of Eq. 8.21 for the hydrogen wave functions.
In terms of dimensionless variable x, the ground state (n D 1; l D 0) function takes
the form

R1;0 .x/ D 2

s	
Z

aB


3
exp .�x/

(recall that the Laguerre polynomial L10 .2x/ � 1), while Rn;1.x/ becomes

Rn;1 .x/ D
s	

2Z

naB


3
.n � 2/Š
2n .n C 1/Š

	
2x

n



exp

�
� x

n

�
L3n�2

	
2x

n



:
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Substituting these expressions into the formula for the matrix element, I end up with

z100;nlm D 1p
3
ım;0ıl1

�aB

Z

�4
2

s	
Z

aB


3s	
2Z

naB


3
.n � 2/Š
2n .n C 1/Š

2

n
�

1̂

0

dxx3xe�xe�x=nL3n�2
	
2x

n



dx D

ım;0ıl1
8p
3

aB

Zn3

s
.n � 2/Š

n .n C 1/Š

1̂

0

dxx4e�x.1C1=n/L3n�2
	
2x

n



dx D

ım;0ıl1
aB

Z
f .n/; (13.17)

where I introduced function f .n/, which depends only on the principal quantum
number n:

f .n/ D 8p
3

1

n3

s
.n � 2/Š
.n C 1/Š

1̂

0

dxx4e�x.1C1=n/L3n�2
	
2x

n



dx: (13.18)

Now the second-order correction to the ground state energy can be written down as

E.2/1 D �8�"r"0

Z4
E2a3B

1X
nD2

n2

n2 � 1 f 2.n/; (13.19)

where I replaced E.0/n with their actual values �Eg=n2 and used explicit expression
for Eg in terms of Bohr radius using Eq. 8.17. In principle, function f .n/ can be
found analytically for an arbitrary n, but the result is not worth the effort since we
will end up with a nasty looking sum over n, which at any rate we wouldn’t be
able to find exactly. Thus, instead, I will evaluate f .n/ only for n D 2; 3; 4; 5 and
use the results to compute E.2/s approximately, including only these terms into the
sum. To help you digest and reproduce these computations, I am providing some
intermediate results in Table 13.1.

Table 13.1 Data for
calculating the quadratic
Stark effect

n L3n�2.2x/ f .n/

2 1 0.7449

3 4� 2x 0.2983

4 2.5� 5x C 5x2/ 0.1759

5 20� 30x C 12x2 � 4
3
x3 0.1205
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Using these data, you can now easily evaluate Eq. 13.19 to yield

E.2/1 D �8�"r"0

Z4
E2a3B .0:7399C 0:1001C 0:0330C 0:01512C � � � / �

(13.20)

�1:784�"r"0

Z4
E2a3B:

Adding more terms to the sum does not affect the numerical coefficient too much:
going from four terms to 200 changes this factor by 2%. It is interesting to note
that the ground state energy of hydrogen in the electric field can be found exactly,
without resorting to the perturbation theory. This theory is too complicated to
discuss in this book, but no one can forbid me to use its result for comparison.
The exact solution produces factor 2:5 instead of 1:78, which is a 20% difference.
I would say that this is a pretty decent approximation given the difference in the
amount of efforts required to derive the approximate and exact results.

Equation 13.20 can also be recast in another illuminating form. By multiplying
the numerator and denominator of this equation by e2, you can notice that the
resulting expression contains the ground state energy Eg in its denominator. Making
this fact explicit, you can rewrite Eq. 13.20 in the form

E.2/1 D �0:89
Z2

e2a2BE2
Eg

(13.21)

where the numerator has a clear physical meaning: eaBE is the change of the
potential energy of the electron in the field E over the distance equal to the “size”
of the atom expressed by the Bohr radius aB. This expression also makes it much
easier to get a feeling for the numerical magnitude of the Stark effect, since I know
that the Bohr radius (assuming that we are dealing with an actual hydrogen atom
in vacuum) aB D 5:29 � 10−11 m, and using it as a typical value for the electric
field E D 106 V/m, I find for eaBE in electron volts eaBE � 5 � 10�5 eV. Recalling
that the ground state energy of hydrogen in vacuum is 13:6 eV, I can estimate the
quadratic Stark effect correction to the energy as (ignoring numerical coefficients of
the order of unity) being of the order of 10�10 eV. This change in energy levels is
observed by measuring the electric field-induced shift of the absorption or emission
lines in the hydrogen spectrum. The energy shift of the order of 10�10 eV translates
into a frequency shift of about 105 Hz. This shift of spectral lines is what is known
as the Stark effect, and because in the case considered in this section the shift
is quadratic in the field, it is qualified as quadratic Stark effect. The effect was
discovered in 1913 by German physicist Johannes Stark who was awarded for this
discovery the 1919 Nobel Prize in Physics. Stark was an active supporter of the
Nazi regime and was closely involved in Deutsche Physik movement, whose goal
was to cleanse German science from foreign mostly Jewish influence. It was he who
described Heisenberg as a White Jew after Heisenberg publicly defended Einstein’s
relativity theory. He was probably the only one famous physicist who after the war
was sentenced to a prison term for collaboration with Hitler’s regime.
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13.1.2 Atom’s Polarizability

As you just saw, the modification of the energy eigenvalues in the presence of the
electric field manifests itself as a Stark effect—shift of the spectral lines in the
absorption or emission spectra of an atom. In this section I will focus on an effect
resulting from the modification of the wave functions.

The wave functions,  .r/; as you all know, characterize the probability density
for the electron’s coordinate P.r/ D j .r/j2, so that the related quantity �.r/ D
e j .r/j2 can be interpreted as a charge density. The easiest way to understand why
this is so is to imagine that you are dealing with an ensemble of N non-interacting
electrons (please indulge me here, pretending that such electrons do exist). Then
NP.r/d3r determines the number of the electrons within the volume element d3r,
and since each of them carries a charge e, the charge within this volume would
be eNP.r/d3r. Accordingly, the charge density (charge per unit volume) would be
NP.r/. Now go back to the case of a single electron (N D 1/, and you have your
charge density �.r/ as defined just a few lines above. If you want, you can imagine
an atomic electron as being a continuously distributed charged cloud rather than as
a point-like object.

In the absence of the electric field, the wave functions of the electron have a
definite parity as was discussed in the previous section. The charge density �.r/, in
this case, is always an even function. One of the important consequences of this is
that the average position vector of the electron

´
r j .r/j2 d3r is zero. Quantity

hdi D �e
ˆ

r j .r/j2 d3r

can be interpreted as an expectation value of a dipole operator Od D �eOr, which is
also, obviously, zero (negative sign in the definition of the dipole moment reflects
the negativity of the electron’s charge, e). I can say that the hydrogen atom does not
have a permanent (independent of the field) dipole moment. Now, try to imagine
what would happen if the atom is placed in the electric field. Classically speaking,
the field will exert a force on the electron shifting it to a new equilibrium position.
When describing this effect in terms of the electron cloud, you can imagine that
the cloud is displaced so that its center does not coincide with the position of the
nucleus (see Fig. 13.1). As a result the expectation value of the electron’s dipole
moment takes on a non-zero value, dependent on the field. This process is called
polarization, and a dipole whose dipole moment appears only in the presence of an
external field is called polarizable dipole. My task in this section is to describe this
effect quantitatively using the first-order corrections to the electron’s wave function
given by Eq. 13.10.

Formally speaking, what I need to do is to compute the expectation value of
the dipole moment operator using the eigenvector perturbed by the field. The
computation is pretty straightforward, so let me just get on with it:
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Fig. 13.1 Spatial distribution
of the electron charge density
in the presence of the electric
field. The large ellipse
represents the electron cloud,
while the small black circle is
the nucleus. The center of the
cloud is shifted with respect
to the nucleus because of the
electric field represented by
green field lines

+

hsj Od jsi D
2
4˝s.0/ ˇ̌C �

X
q¤s

V�
qs

E.0/s � E.0/q

˝
q.0/

ˇ̌
3
5 Od

2
4ˇ̌s.0/˛C �

X
q¤s

Vqs

E.0/s � E.0/q

ˇ̌
q.0/

˛
3
5 :

(I hope you have not yet forgotten that in transitioning from ket vectors to bra
vectors, you are supposed to complex conjugate all complex quantities.) But, let
me continue:

hsj Od jsi D �

1X
nD2

n�1X
lD0

lX
mD�l

Vnlm;100

E.0/1 � E.0/n

h100j Od jnlmi C

�

1X
nD2

n�1X
lD0

lX
mD�l

V�
nlm;100

E.0/1 � E.0/n

hnlmj Od j100i D

2�

1X
nD2

n�1X
lD0

lX
mD�l

Re ŒVnlm;100d100;nlm�

E.0/1 � E.0/n

:

Here is what I have done here. First, I remembered that
˝
s.0/
ˇ̌ Od ˇ̌s.0/˛ D 0 as we just

discussed, then I dropped the terms proportional to �2 because I have no right to keep
them. Finally, I used the defining property of the Hermitian operators

˝
q.0/

ˇ̌ Od ˇ̌s.0/˛ D˝
s.0/
ˇ̌ Od ˇ̌q.0/˛�, which allowed me to replace

Vqs
˝
s.0/
ˇ̌ Od ˇ̌q.0/˛C V�

qs

˝
q.0/

ˇ̌ Od ˇ̌s.0/˛
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with

Vqs
˝
s.0/
ˇ̌ Od ˇ̌q.0/˛C V�

qs

˝
s.0/
ˇ̌ Od ˇ̌q.0/˛� D 2Re

h
Vqs

˝
s.0/
ˇ̌ Od ˇ̌q.0/˛

i
:

oh, yes, I also introduced a dipole matrix element dsq � ˝
s.0/
ˇ̌ Od ˇ̌q.0/˛ and replaced

the abridged indexes s and q with full notation 1; 0; 0 and n; l;m reflecting the nature
of the states in question. Now, let me recall that Od D �eOr, and, therefore, d100;nlm D
�er100;nlm, while Vnlm;100s D �eEznlm;100s, so that, for the dipole expectation value, I
have

hsj Od jsi D 2�e2E
1X

nD2

n�1X
lD0

lX
mD�l

Re Œznlm;100r100;nlm�

E.0/1 � E.0/n

: (13.22)

The matrix element znlm;100 has been calculated in the previous section, so let’s focus
on r100;nlm. First of all, you need to recognize that this is a vector, and, therefore, you
are dealing here with three matrix elements: x100;nlm, y100;nlm, and z100;nlm, where
x, y, and z are coordinates defined in the same coordinate system that I used to
describe the Stark effect (Z-axis is along the electric field). The z-component of
this matrix element, z100;nlm, is obviously z100;nlm D z�

nlm;100, and since the latter is
real, they both are given by Eq. 13.17. The arguments that led me to conclude that
znlm;100 is zero unless m D 0 do not apply to x100;nlm and y100;nlm because both x and y
coordinates, when expressed in a spherical coordinate system, contain the azimuthal
angle ': x D r sin � cos', y D r sin � sin'. Instead of dealing with x100;nlm and
y100;nlm separately, I find it more convenient to deal with x C iy, which in spherical
coordinates becomes simply r sin � exp.i'/, and the respective matrix element can
now be presented as

x100;nlm C iy100;nlm D

1p
4�

�̂

0

2�ˆ

0

1̂

0

d�d'dr sin �r3 sin �ei'Ym
l .�; '/Rn;l.r/R1;0.r/: (13.23)

As it has become clear from the discussion of z100;nlm, for the integral over '
not to vanish, factor exp.i'/ in Eq. 13.23 must be canceled by an appropriate factor
from spherical harmonics Ym

l .�; '/. Such a cancelation is only possible if index
m in the spherical harmonic is m D �1, indicating that the entire matrix element
is different from zero only for m D �1. This means that our job here is done:
we can forget about both x100;nlm and y100;nlm components of the matrix element
hsj Od jsi. Indeed, Eq. 13.22 contains the product of z100;nlm with x100;nlm or y100;nlm,
or z100;nlm, which does not vanish only if both factors in the product are not zero.
We know that z100;nlm is zero for all m ¤ 0, while x100;nlm and y100;nlm are not zero
only if m D �1. No amount of Hogwarts magic can make these two conditions
be fulfilled simultaneously, assuring that dz is the only non-zero component of the
dipole expectation value
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hsj Odz jsi D 2�e2E
1X

nD2

n�1X
lD0

lX
mD�l

Re Œznlm;100z100;nlm�

E.0/1 � E.0/nlm

D

2�e2E
1X

nD2

n�1X
lD0

lX
mD�l

jznlm;100j2
E.0/1 � E.0/n

(13.24)

where, in the last line, I dropped the sign of taking the real part because
znlm;100z100;nlm � jznlm;100j2 is a real quantity. The fact that only z-component of
the dipole moment survives the process of taking the expectation value shouldn’t
surprise anyone, of course. In the absence of “special” directions, the direction of
the external field is the only one which the induced dipole moment of the atom can
reasonably be expected to have.

Equation 13.24 demonstrates that the induced dipole moment is codirected with
the external field and is proportional to it. This linear dependence between the dipole
moment and the field allows to introduce an important quantity, called polarizability,
which is defined as a coefficient of proportionality between the dipole moment and
the field:

˛p D 2e2
1X

nD2

n�1X
lD0

lX
mD�l

jznlm;100j2
E.0/1 � E.0/n

: (13.25)

The expectation value of the dipole operator, hdi, can now be written simply as

hdi D ˛pE : (13.26)

The significance of Eq. 13.26 goes beyond this particular example: the linear relation
between the induced dipole moment and the external field remains valid in a wide
variety of cases, well outside of the particular model considered here.

Now, prepare to get surprised. Go a few pages back, find the expression for the
second-order correction to the electron’s energy, and compare it with Eq. 13.24. To
make your life even easier, I will copy this expression here for your convenience:

E.2/1 D e2E2
1X

nD2

n�1X
lD0

lX
mD�l

jz100;nlmj2
E.0/1 � E.0/n

:

Do you see that the expression for the correction to the energy level in the presence
of the field, which can be interpreted as a change of electron’s energy due to the
field, can be written down as

E.2/1 D 1

2
˛pE2‹: (13.27)
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What is remarkable about this expression is that it represents the energy of a
classical polarizable dipole. Here is how it can be derived using nothing but classical
electrostatics. You probably remember that the energy of a dipole d in a uniform
electric field E is Ud D d�E . This formula, however, was derived for a permanent
dipole, namely, the dipole whose dipole moment does not depend on the external
field. In the case under consideration, d is dependent of the field, and this expression
has to be modified. To take into account that the dipole moment changes with
the field, I will build the dipole moment by small increments ıd D ˛pıE. If the
respective change of the field ıE from a given value E is infinitesimally small,
one can neglect the corresponding change of the dipole moment and use for the
corresponding increment in the energy the formula

ıUd D ıd � E D ˛pEıE D ˛pEıE ;

where in the last step I assumed that E and ıE have the same direction, so that I can
replace both vectors with their magnitudes. To find the total energy of the dipole
induced by field E , I now need to add together all these small increments starting
from the ones corresponding to zero field and finishing when the desirable value of
the field is reached. I probably did not have to use that many words to describe a
standard operation of integration and could write right away

U D ˛p

Ê

0

EıE D 1

2
˛pE2;

which is exactly Eq. 13.27. Probably, this is just my personal quirk, but at some point
in my life, I wondered how come that the quantum expression for the energy of the
dipole Od�E which goes into the Hamiltonian and is valid even for induced dipoles
does not have the factor 1=2, while the classical version of the same expression for
polarizable dipoles is d�E=2. How can this be reconciled with the correspondence
principle, for instance? After learning how to compute the polarizability of atoms,
I understood that the classical expression must be compared with the expectation
value of the dipole moment, while the quantum formula is an operator expression.
Once you go from the operator to the expectation value, the classical and quantum
expression for the energy of the polarizable dipole start agreeing.

13.2 Degenerate Perturbation Theory and Applications

13.2.1 General Formulation

If we are interested in finding the corrections to a degenerate energy eigenvalue,
the approach presented in Sect. 13.1 must be modified. In the introduction to this
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chapter, I have already outlined a conceptual need for a modification. Namely,
I pointed out that in the degenerate case, the starting point of the perturbation
expansion (the zero-order approximation) is not clearly defined. There is also
another, more technical argument justifying the demand for a modified approach. If
you look at Eq. 13.10 for the first-order corrections to the eigenvector or Eq. 13.12
for the second-order corrections to the eigenvalue, you will notice the energy
denominator E.0/s � E.0/q and the restriction q ¤ s on the summation. This restriction
assures that the energy denominator does not vanish resulting in a blowout of the
respective term. While this restriction works very well in the non-degenerate case,
if E.0/s is degenerate, the condition that q ¤ s does not guarantee that E.0/s ¤ E.0/q

because there can be eigenvectors differing in some of their quantum numbers but
having the same energy. The new perturbation theory, in addition to resolving the
ambiguity about the zero-order term, must also ensure the absence of the exploding
terms in the perturbation expansion.

I will begin by refining the notation for the eigenvectors of the unperturbed
Hamiltonian belonging to degenerate eigenvalues. To this end I shall add an extra
index reflecting degeneracy turning

ˇ̌
s.0/
˛

into
ˇ̌
s.0/; �

˛
. Index s, as before, will

enumerate different eigenvalues, while the second index �, which can combine
several indexes, will distinguish between eigenvectors belonging to the same
eigenvalue. In the case of the hydrogen atom, for instance, q would be the principal
quantum number n, while � would correspond to two indexes l and m.

Since I am not sure which of the eigenvectors belonging to a degenerate
eigenvalues shall be used as a zero-order term in the perturbation expansion, I will
begin with an arbitrary linear combination of those hoping that somehow I will be
able to figure out what the “correct” combination is. Accordingly, in the derivation
outlined in Eqs. 13.2–13.8, I will replace

ˇ̌
s.0/
˛

by

j�si D
X
�

a�
ˇ̌
s.0/; �

˛
; (13.28)

so that Eqs. 13.6 and 13.7 become

OH0

X
�

a�
ˇ̌
s.0/; �

˛ D E.0/s

X
�

a�
ˇ̌
s.0/; �

˛
(13.29)

OH0

ˇ̌
s.1/
˛C OV

X
�

a�
ˇ̌
s.0/; �

˛ D E.0/s

ˇ̌
s.1/
˛C E.1/s

X
�

a�
ˇ̌
s.0/; �

˛
: (13.30)

Equation 13.29 is fulfilled automatically by virtue of
ˇ̌
s.0/; �

˛
being eigenvectors

of the Hamiltonian OH.0/, so I only need to deal with Eq. 13.30. I shall follow the
same procedure as in the non-degenerate case and first premultiply this equation byP

� a�
�

˝
s.0/; �

ˇ̌
:
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X
�

a�
�

˝
s.0/; �

ˇ̌ OH0

ˇ̌
s.1/
˛C

X
�

X
�

a�a�
�

˝
s.0/; �

ˇ̌ OV ˇ̌s.0/; �˛ D (13.31)

E.0/s

X
�

a�
�

˝
s.0/; �

ˇ̌ ˇ̌
s.1/
˛C E.1/s

X
�

X
�

a�a�
�

˝
s.0/; �

ˇ̌ ˇ̌
s.0/; �

˛
:

Recalling that
˝
s.0/; �

ˇ̌ OH.0/ D E.0/s
˝
s.0/; �

ˇ̌
, you can again, just like in the non-

degenerate case, cancel the first term on the left-hand side of Eq. 13.31 with the
first term on the right-hand side. Taking into account also that the eigenvectors,
even those belonging to a degenerate eigenvalue, are orthogonal, you can rewrite
Eq. 13.31 as

X
�

X
�

a�a�
�

˝
s.0/; �

ˇ̌ OV ˇ̌s.0/; �˛ D E.1/s

X
�

a�a�
� )

X
�

a�
�

 X
�

V.s/
�;�a� � E.1/s a�

!
D 0 H)

X
�

V.s/
�;�a� D E.1/s a� (13.32)

where I introduced a perturbation matrix V.s/
�;� D ˝

s.0/; �
ˇ̌ OV ˇ̌s.0/; �˛ constructed

using vectors
ˇ̌
s.0/; �

˛
belonging to the same degenerate subspace defined by the

eigenvalue E.0/s . Equation 13.32 replaces Eq. 13.9 for degenerate eigenvalues. After
prolonged staring and maybe some meditation, you will recognize that this is your
old acquaintance: an eigenvalue equation, written this time for matrix V.s/

�;�. The
eigenvalues are found, as usual, as zeroes of the determinant

���V.s/
�;� � E.1/s ı�;�

��� D 0; (13.33)

and substituting each of the solution to this equation (sometimes called secular
equation) back to Eq. 13.32, you will find sets of corresponding coefficients a�
engendering the “correct” zero-order eigenvectors.

To help you see a more clear picture of what you are dealing with here, I will now
consider, as an example, a simplest possible case of a double-degenerate eigenvalue.
In this case the indexes �;� take only two values so that V.s/

�;� becomes a 2�2matrix.
The secular Eq. 13.33, accordingly, takes the following form:

�����
V.s/
1;1 � E.1/s V.s/

1;2

V.s/�
1;2 V.s/

2;2 � E.1/s

����� D
�

V.s/
1;1 � E.1/s

� �
V.s/
2;2 � E.1/s

�
�
ˇ̌
ˇV.s/
1;2

ˇ̌
ˇ
2 D 0:
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This quadratic equation has, obviously, two easily found distinct solutions:

E.1/s1;2 D 1

2

�
V.s/
1;1 C V.s/

2;2

�
˙ 1

2

r�
V.s/
1;1 C V.s/

2;2

�2 C 4
ˇ̌
ˇV.s/
1;2

ˇ̌
ˇ
2

: (13.34)

If the diagonal elements of the perturbation matrix vanish, as you already know
might happen quite often, Eq. 13.34 simplifies:

E.1/s1;2 D ˙
ˇ̌
ˇV.s/
1;2

ˇ̌
ˇ : (13.35)

The main result revealed by Eqs. 13.34 and 13.35 is that a generic perturbation
lifts the degeneracy of the initial eigenvalue E.0/s and splits it into two new distinct
eigenvalues

Es1;2 D E.0/s C
"
1

2

�
V.s/
1;1 C V.s/

2;2

�
˙ 1

2

r�
V.s/
1;1 C V.s/

2;2

�2 C 4
ˇ̌
ˇV.s/
1;2

ˇ̌
ˇ
2

#
;

where I set � D 1. Even though Eq. 13.33 has been formally derived in the first order
of the perturbation theory, do not let this circumstance deceive you: its dependence
on the perturbation matrix elements is not linear. Actually, it is not even analytic
as the square root in it cannot be expanded into any kind of a power series around
the point where the perturbation turns zero. The dependence of eigenvalues on the
perturbation is not linear even in the case of simplified Eq. 13.35, regardless of how
“linear” this expression might look like: an absolute value of a complex number
involves the square root as well.

Having found the corrections to energy, I can go back to Eq. 13.32 and find the
corresponding coefficients a�. In the case of double-degenerate eigenvalues, I shall
be looking for two sets of the coefficients—one for each of the corrections to the
energy. To distinguish between them, I will add the upper indexes 1 and 2 to a�, so
that the notation becomes a.1;2/� . To make algebra less cumbersome so that you could

focus on what is really important, I will compute a.1;2/� only for the case V.s/
1;1 D

V.s/
2;2 D 0 . Equation 13.32 for a double-degenerate eigenvalue with zero diagonal

elements of the perturbation matrix takes the form

V.s/
1;2a2 D E.1/s a1

V.s/
2;1a1 D E.1/s a2:

Substituting E.1/s1 D
ˇ̌
ˇV.s/
1;2

ˇ̌
ˇ into the above equations, I obtain

V.s/
1;2a

.1/
2 D

ˇ̌
ˇV.s/
1;2

ˇ̌
ˇ a.1/1

V.s/
2;1a

.1/
1 D

ˇ̌
ˇV.s/
1;2

ˇ̌
ˇ a.1/2 :
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Presenting the perturbation matrix element as V.s/
1;2 D

ˇ̌
ˇV.s/
1;2

ˇ̌
ˇ exp .i	V/ and recalling

that V.s/
2;1 D V.s/�

1;2 , you can see that both equations above can be reduced to the same
form

a.1/1
a.1/2

D ei	V : (13.36)

The second solution of the secular equation E.1/s2 D �
ˇ̌
ˇV.s/
1;2

ˇ̌
ˇ yields, instead of

Eq. 13.36,

a.2/1
a.2/2

D �ei	V : (13.37)

To simplify the situation even further, let me assume that the matrix elements V.s/
1;2

are real and positive (	V D 0), in which case the two sets of coefficients become
simply a.1/1 D a.1/2 and a.2/1 D �a.2/2 . As it is typical for the eigenvalue problems, one
of the coefficients remains undefined and is found, again, using the normalization

condition
ˇ̌
ˇa.1;2/1

ˇ̌
ˇ
2 C

ˇ̌
ˇa.1;2/2

ˇ̌
ˇ
2 D 1. This yields

a.1/1 D a.1/2 D 1=
p
2

and

a.2/1 D �a.2/2 D 1=
p
2:

Now Eq. 13.28 yields for me two linearly independent orthogonal and normalized
“correct” zero-order eigenvectors:

ˇ̌
�.1/s

˛ D 1p
2

�
js; 1i.0/ C js; 2i.0/

�
(13.38)

ˇ̌
�.2/s

˛ D 1p
2

�
js; 1i.0/ � js; 2i.0/

�
: (13.39)

It might appear that no traces of the perturbation matrix are left in Eqs. 13.38
and 13.39, but this appearance is deceptive. While it is true that the magnitude of
the perturbation matrix elements has vanished, you must remember that I made a
very specific assumption about their phases. A different choice of the phase would
have resulted in different eigenvector combinations as you will see yourself when
working through the problems section of this chapter. Now the meaning of the
statement that the perturbation affects the zero-order eigenvectors even though its
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magnitude goes to zero becomes clear: the transition to the zero perturbation limit
occurs in such a way that keeps the phase of the perturbation matrix elements intact.

Finally, I would like to make an almost trivial but nevertheless tremendously
important point: the off-diagonal matrix elements of the perturbation operator OV
built with “correct” zero-order eigenvectors, Eqs. 13.38 and 13.39, vanish. Indeed,
by direct computation you may see that

˝
�.1/s

ˇ̌ OV ˇ̌�.2/s

˛ D 1

2

�
.0/ hs; 1j C .0/ hs; 2j� OV

�
js; 1i.0/ � js; 2i.0/

�
D

1

2

�
V.s/
2;1 � V.s/

1;2

�
D 0

where I took into account assumptions that went into Eqs. 13.38 and 13.39 (V.s/
�;� D

0; V.s/
1;2 D V.s/

2;1). Of course, there is no surprise here—after all I defined
ˇ̌
ˇ�.1;2/s

E
as

eigenvectors of OV , and the matrix of any operator in the basis of its eigenvector is
diagonal. Still, it is helpful (for intuition development) to see the concrete realization
of this abstract statement in this particular context. In a more general situation, I can
state that vectors

ˇ̌
�.�/s

˛ D
X
�0

a.�/
�0

ˇ̌
s.0/; �0˛ ; (13.40)

where coefficients a.�/
�0 , satisfying Eq. 13.32 for a given eigenvalue �, diagonalize

the perturbation operator. This means that

˝
�.�/s

ˇ̌ OV ˇ̌�.�/s

˛ D E.1/s ı�;�: (13.41)

There is also another, rather abstract, but nonetheless important side to this
story. Eigenvectors belonging to a degenerate eigenvalue form what mathematicians
would call a subspace in a larger space spanned by all eigenvectors of the
Hamiltonian. It means that any linear combination of the degenerate eigenvectors
is again an eigenvector belonging to the same eigenvalue (see also Sect. 3.2.3).
The degree of degeneracy determines the dimension of this subspace. For instance,
in the example of a double-degenerate eigenvalue, we ended up with a two-
dimensional subspace of the eigenvectors defined by the basis of two linearly

independent orthogonal vectors
ˇ̌
ˇ�.1/s

E
and

ˇ̌
ˇ�.2/s

E
. In the matrix representation of the

total Hamiltonian OH, one can separate out a submatrix of smaller dimension, defined
on a subspace of eigenvectors belonging to the same eigenvalue. If one chooses as
a basis in this subspace vectors defined by Eq. 13.40, then the resulting submatrix

H.s/
�;� D

D
�
.�/
s

ˇ̌
ˇ OH

ˇ̌
ˇ�.�/s

E
will have only diagonal elements:

H.s/
�;� D E.0/s ı�;� C E.1/s ı�;�: (13.42)
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This conclusion is directly based on Eq. 13.41 and on the understanding that
any mutually orthogonal combinations of the degenerate eigenvectors js; �i.0/ are
eigenvectors of OH.0/ and, therefore, turn it into a diagonal matrix. This result can be
interpreted by saying that vectors defined by Eq. 13.40 are eigenvectors not only of
the perturbation operator but of the entire Hamiltonian, if it is considered only in the
subspace formed by degenerate eigenvectors. Another way to express the same idea
is to say that finding the first-order corrections to degenerate energy eigenvalues
is equivalent to exact diagonalization of the entire Hamiltonian performed on the
subspace of the degenerate eigenvectors. I will illustrate these points with a simple
example.

Example 30 (Diagonalization of a Hamiltonian on a Degenerate Subspace) Con-
sider a Hamiltonian defined by matrix

OH D
2
4

0 � 2i�
� 1 �

�2i� � 1

3
5 :

Presenting it in the form OH0 C OV , where OH0 is the diagonal matrix, find the
“correct” zero-order eigenvectors belonging to a double-degenerate eigenvalue 1
and corresponding first-order eigenvalues.

Solution

The unperturbed Hamiltonian OH0 in this example is

OH0 D
2
4
0 0 0

0 1 0

0 0 1

3
5 ;

while the perturbation matrix can be written down as

OV D �

2
4
0 1 2i
1 0 1

�2i 1 0

3
5 :

It is obvious that the unperturbed Hamiltonian has two eigenvalues: 0 and 1, with
the latter being double degenerate. Corresponding eigenvectors are

j1; 1i D
2
4
0

1

0

3
5 ; j1; 2i D

2
4
0

0

1

3
5 :

Now, using these two vectors, I need to build matrix V .1/

�;�, where the upper index
points to the eigenvalue that I am dealing with.
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V.1/
1;1 D h1; 1j OV j1; 1i D

�
�
0 1 0

�
2
4
0 1 2i
1 0 1

�2i 1 0

3
5
2
4
0

1

0

3
5 D �

0 1 0
�
2
4
1

0

1

3
5 D 0;

V .1/
1;2 D h1; 1j OV j1; 2i D

�
�
0 1 0

�
2
4
0 1 2i
1 0 1

�2i 1 0

3
5
2
4
0

0

1

3
5 D �

�
0 1 0

�
2
4
2i
1

0

3
5 D �;

V .1/
2;2 D h1; 2j OV j1; 2i D

�
�
0 0 1

�
2
4
0 1 2i
1 0 1

�2i 1 0

3
5
2
4
0

0

1

3
5 D �

�
0 0 1

�
2
4
2i
1

0

3
5 D 0:

Thus, the perturbation matrix in the subspace belonging to the degenerate eigenvalue
takes the following form:

V .0/

�;� D �


0 1

1 0

�
:

Eigenvalues �1;2 of this matrix are found from equation

�2 � �2 D 0;

which yields �1;2 D ˙�. The respective eigenvectors are found from equations

�


0 1

1 0

� 
a1
a2

�
D ˙�


a1
a2

�
)

a2 D ˙a1

so that in the normalized form they can be written down as

ˇ̌
ˇ.1/0

E
D 1p

2


1

1

�
I
ˇ̌
ˇ.2/0

E
D 1p

2


1

�1
�
:
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I will complete this exercise by generating a 2 � 2 matrix using eigenvectors
belonging to the degenerate eigenvalue out of the entire Hamiltonian, just to make
the connection with abstract arguments in the preceding paragraph. Here is how it
goes:

H.1/
1;1 D h1; 1j OH j1; 1i D

�
0 1 0

�
2
4

0 � 2i�
� 1 �

�2i� � 1

3
5
2
4
0

1

0

3
5 D �

0 1 0
�
2
4
�

1

�

3
5 D 1;

H.1/
1;2 D h1; 1j OH j1; 2i D

�
0 1 0

�
2
4

0 � 2i�
� 1 �

�2i� � 1

3
5
2
4
0

0

1

3
5 D �

0 1 0
�
2
4
2i�
�

1

3
5 D �;

H.1/
2;2 D h1; 2j OH j1; 2i D

�
0 0 1

�
2
4

0 � 2i�
� 1 �

�2i� � 1

3
5
2
4
0

0

1

3
5 D �

0 0 1
�
2
4
2i�
�

1

3
5 D 1:

Putting all these elements together, I end up with a matrix

H.1/ D

1 �

� 1

�
;

which as you can see is, indeed, a submatrix of the total Hamiltonian formed by
cutting out the block formed by elements in the second and third rows and columns.
If I rewrite this matrix in a new basis formed by the “correct” eigenvectors (see
Eq. 5.97) , I will have

H.1/ D 1

2


1 1

1 �1
� 
1 �

� 1

� 
1 1

1 �1
�

D

1

2


1 1

1 �1
� 
1C � 1 � �
1C � �1C �

�
D


1C � 0

0 1 � �
�

D

1 0

0 1

�
C

� 0

0 ��
�
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in agreement with Eq. 13.42. Here I used the rule for transformation of an operator
from one basis to another as discussed in Sect. 5.2.2.

I will complete the discussion of the secular equation by noting that solving
Eq. 13.33 amounts to finding the roots of a polynomial of N-th order, where N is the
degree of degeneracy of the corresponding eigenvalue. The fundamental theorem
of algebra states that the polynomial of N-th order has N solutions, but does not
exclude a possibility that some solutions can occur several times. The fact that
Eq. 13.33 is an eigenvalue equation of a Hermitian operator ensures that all roots
of the corresponding polynomial are real. If all these solutions differ from each
other, we say that the perturbation completely lifts the degeneracy, but there might
be situations in which the removal of the degeneracy is only partial, and some of the
new eigenvalues still remain degenerate.

Now I am ready to proceed and start looking for corrections to the degenerate
eigenvectors, for which I have to go back to Eq. 13.30 and rewrite it in terms of

one of the newly found zero-order eigenvectors
ˇ̌
ˇ�.�/s

E
corresponding to a particular

eigenvalue � of the perturbation matrix:

OH0

ˇ̌
s.1/; �

˛C OV ˇ̌�.�/s

˛ D E.0/s

ˇ̌
s.1/; �

˛C E.1/s

ˇ̌
�.�/s

˛
:

If I now premultiply this equation by
D
�
.�/
s

ˇ̌
ˇ, I will get, taking into account Eq. 13.41,

E.1/s D V.s/
�� as expected, and if I premultiply it by

D
�
.�/
s

ˇ̌
ˇ, where � ¤ �, I will get

the identity

˝
�.�/s

ˇ̌
s.1/; �

˛
E.0/s D ˝

�.�/s

ˇ̌
s.1/; �

˛
E.0/s

(remember that eigenvalues of OH0 do not depend on �, and V�;� D 0). Now, finally,

let me premultiply it by
D
�
.�/
q

ˇ̌
ˇ, which are eigenvectors of the perturbation operator

OV in the subspace defined by a different (possibly degenerate) eigenvalue q ¤ s:

˝
�.�/q

ˇ̌
s.1/; �

˛
E.0/q C Vq�;s0� D ˝

q.0/
ˇ̌

s.1/; �
˛
E.0/s )

˝
�.�/q

ˇ̌
s.1/; �

˛ D Vq�;s�

E.0/s � E.0/q

;

where Vq�;s� D
D
�
.�/
q

ˇ̌
ˇ OV
ˇ̌
ˇ�.�/s

E
is the perturbation matrix element computed with

the zero-order eigenvectors obeying Eq. 13.40. Expanding
ˇ̌
s.1/; �

˛
in the basis of

the “correct” zero-order eigenvectors, I will find
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ˇ̌
s.1/; �

˛ D
X
�

X
q

ˇ̌
��q
˛ ˝
�.�/q

ˇ̌
s.1/; �

˛ D
X
�

X
q¤s

ˇ̌
��q
˛ ˝
�.�/q

ˇ̌
s.1/; �

˛C
X
�

ˇ̌
��s
˛ ˝
�.�/s

ˇ̌
s.1/; �

˛ D

X
�

X
q¤s

Vq�;s�

E.0/s � E.0/q

ˇ̌
��q
˛C

X
�

a.s/�;�
ˇ̌
��s
˛
:

Parameters a.s/�;� D
D
�
.�/
s

ˇ̌
ˇ s.1/; �

˛
in this expression are not yet defined (the fact

routinely swept under the rug in way too many textbooks and online notes on this
topic). A similar situation also occurred in the non-degenerate case, but then we had
to deal with only one undefined parameter, and now their number is equal to the
degree of degeneracy. The total eigenvector with accuracy up to the linear order in
� is

js; �i D ˇ̌
��s
˛
.1C a.s/�;�/C

X
�¤�

a.s/�;�
ˇ̌
��s
˛C

X
�

X
q¤s

Vq�;s�

E.0/s � E.0/q

ˇ̌
��q
˛
: (13.43)

Normalization condition for this vector yields, just like in the non-degenerate
case:

hs; �j s; �i D
ˇ̌
ˇ1C a.s/�;�

ˇ̌
ˇ D 1

(all coefficients a.s/�;� vanish because vectors
ˇ̌
�
�
s
˛

and
ˇ̌
��s
˛

with � ¤ � are

orthogonal), from which you can safely conclude that a.s/�;� D 0. But what about

all other still undefined coefficients a.s/�;�? The normalization condition turned
out to be useless in this regard, but I have one more trick up my sleeve. To
avoid unnecessary complications, I will assume that the perturbation completely
lifts the initial degeneracy of the eigenvalue so that all E.1/s are different. All
eigenvectors of Hermitian operators belonging to different eigenvalues must be

mutually orthogonal. So, let me consider the inner product
D
�
.�/
s

ˇ̌
��s
˛
. Taking into

account all available orthogonality conditions, I find

hs; �j s; �i D
X
�¤�

a.s/�;�
˝
�.�/s

ˇ̌
��s
˛ D

X
�¤�

a.s/�;�ı�;� D a.s/�;� D 0:

Now, when I have found all coefficients in Eq. 13.43, I can write down the final
expression for js; �i:

js; �i D ˇ̌
��s
˛C

X
�

X
q¤s

Vq�;s�

E.0/s � E.0/q

ˇ̌
��q
˛

(13.44)
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which is cited in most textbooks but often under a false pretense. It is important to
understand that condition q ¤ s excludes all the terms with the same eigenvalue of
the energy, so no issues with a denominator of this expression going to zero never
arise. Often cited fact that the perturbation matrix elements Vq�;s0� turn zero for
q D s and � ¤ �, thanks to the special choice of the zero-order eigenvectors, while
factually true, has very little to do with the justification of Eq. 13.44, contrary to
what you might have read.

13.2.2 Linear Stark Effect

While the Stark effect observed for the non-degenerate ground state of the hydrogen
atom is quadratic in field, the response of degenerate energy levels of a hydrogen
atom to a uniform electric field can actually be linear. To illustrate the origin
of this effect, I will consider the first-order corrections to the degenerate energy
level of a hydrogen atom characterized by the principal quantum number n > 1

and eigenvectors jn; l;mi. The subspace of the degenerate eigenvectors consists of
all eigenvectors with fixed principal number n but varying orbital and magnetic
numbers l < n and �l < m < l. The total number of such degenerate states and,
therefore, the dimensionality of the subspace are, as you know, n2. The perturbation
operator is given again by Eq. 13.14, so that the perturbation matrix, limited to the
degenerate subspace, is

Vnl1m1;nl2m2 D �eE hnl1m1j Oz jnl2m2i :
Using the arguments similar to the ones I used when analyzing matrix elements for
the non-degenerate case, I can show that this matrix is diagonal with respect to the
magnetic number m:

Vnl1m1;nl2m2 D �eE hnl1m1j Oz jnl2m1i ım1m2 :

(In case you forgot, the argument goes like this: in the position representation,
ket jnl2m2i contains a factor exp .im2'/, and bra hnl1m1j contributes exp .�im1'/.
Since there are no other factors dependent on the azimuthal angle, integration of
exp Œi .m2 � m1/ '� over the entire range of ' from 0 to 2� yields zero unless
m2 D m1.) Another general property of the matrix element hnl1m1j Oz jnl2m1i can
be established by looking at its behavior with respect to the inversion operator. As
I have already mentioned more than once, if a Hamiltonian is invariant with respect
to inversion, the matrix elements computed with its eigenvectors must be even to
have a non-zero value. Now, the matrix element hnl1m1j Oz jnl2m1i consists of three
components: an operator Oz, which is odd (changes sign) upon inversion, ket vector
jnl2m1i, and bra vector hnl1m1j that transforms upon inversion according to

OP jnl2m1i D .�1/l2 jnl2m1i I hnl1m1j OP D .�1/l1 hnl1m1j :
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The transformation rule for the entire matrix element therefore becomes

OP hnl1m1j Oz jnl2m1i D �.�1/l1Cl2 hnl1m1j Oz jnl2m1i :

You can clearly see now that for the matrix element to remain invariant under
inversion and, therefore, to have a non-zero value, orbital numbers l1 and l2 must
have opposite parities: if one is even, the other one must be odd. Obviously, all
matrix elements with l1 D l2 vanish. Actually, it can be shown that the restriction
on the values of orbital numbers l1 and l2 is even more stringent: the matrix element
hnl1m1j Oz jnl2m1i is different from zero only if jl1 � l2j D 1:

Having figured out the general properties of the perturbation matrix elements,
I can now turn to finding the first-order corrections to the energy eigenvalues.
Unfortunately, I cannot get too far in the general case of arbitrary n because what
I would have to do is to search for roots on the polynomial of the order n2, and
there are no methods of doing this analytically for an arbitrary n. Besides, I do
not really need it. To illustrate the effects of the electric field on a degenerate energy
eigenvalue, it is sufficient to consider an eigenvalue with the lowest nontrivial degree
of degeneracy, which is the eigenvalue with n D 2. There are four states belonging
to the same energy value E.0/2 D �Eg=4: j2; 0; 0i ; j2; 1;�1i ; j2; 1; 0i ; and j2; 1; 1i
to which I will assign numbers 1; 2; 3; and 4 correspondingly, so that I can label the
perturbation matrix with only two indexes, V .2/

ij , where i and j take values from one
to four, and as a reminder, the upper index refers to the principal quantum number
n D 2. For instance, the matrix element V.2/

1;2 corresponds to h2; 0; 0j OV j2; 1;�1i,

V.2/
1;3 corresponds to h2; 0; 0j OV j2; 1; 0i, and so on and so forth. The task of solving

Eq. 13.33 for a 4 � 4 matrix might also appear to be too formidable; after all it
involves finding roots of the polynomial of the fourth order, for which, in general,
there are no analytic formulas. But if you do not succumb to an immediate panic
attack, you may find out that in this particular case, nature prepares for us a nice
surprise. Using the general properties of the matrix element established in the
previous paragraph (m1 D m2; jl1 � l2j D 1), you can easily find that the only
non-zero matrix elements of the perturbation matrix are

V.2/
1;3 D V.2/�

3;1 D �eE h200j Oz j210i : (13.45)

All other matrix elements involving l D 0 state j2; 0; 0i vanish because of m1 D m2

selection rule, while all matrix elements between states with l D 1 vanish because
of the rule jl1 � l2j D 1. This is a huge simplification of our task because the secular
equation for the eigenvalue corrections now takes the form
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���������

�E.1/2 0 V.2/
1;3 0

0 �E.1/2 0 0

V.2/�
1;3 0 �E.1/2 0

0 0 0 �E.1/2

���������
D

�E.1/2

�������

�E.1/2 0 V.2/
1;3

0 �E.1/2 0

V.2/�
1;3 0 �E.1/2

�������
D

h
E.1/2

i2 �����
�E.1/2 V.2/

1;3

V.2/�
1;3 �E.1/2

����� D

h
E.1/2

i2 	h
E.1/2

i2 �
ˇ̌
ˇV.2/
1;3

ˇ̌
ˇ
2



D 0:

Here I computed the 4 � 4 determinant using cofactor expansion first along the last
row of the initial determinant, which contains a single non-zero term, and then along
the second row of the remaining 3 � 3 determinant. The resulting equation has four
solutions, as expected, two of which coincide and are equal to zero. The remaining

two solutions are E.1/2I3;4 D ˙
ˇ̌
ˇV.2/
1;3

ˇ̌
ˇ. What it means is that now, instead of a single

initial fourfold degenerate eigenvalue, we have three distinct eigenvalues, one of
which is double degenerate and is equal to the zero-order value:

E2I1;2 D E.0/2 ;

E2I3;4 D E.0/2 ˙
ˇ̌
ˇV.2/
1;3

ˇ̌
ˇ :

To complete this calculation, I would need to evaluate the matrix element V.2/
1;3 : The

most straightforward path toward this goal is to use the position representation for
the hydrogen eigenvectors, which I, for your convenience, present below (saving
you a few minutes you would have to spend googling these formulas on your own):

j200i D 1p
�

	
Z

2aB


3=2 	
1 � Zr

2aB



exp

	
� Zr

2aB




j210i D 1

2

r
1

�

	
Z

2aB


3=2 	Zr

aB



exp

	
� Zr

2aB



cos �:

Substituting these expressions in Eq. 13.45, I get

V.2/
1;3 D �eE

	
Z

2aB


3 1̂

0

dr

	
1 � Zr

2aB


	
Zr4

aB



exp

	
�Zr

aB


 �̂

0

d� sin � cos2 �;
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where I expressed z in spherical coordinates as r cos � ; introduced spherical volume
elements r2 sin �drd�d'; carried out trivial integration over '; which yielded 2� ;
and separated integrals with respect to angular and radial variables. The angular
integral is computed easily by a standard substitution of variables x D cos � and
dx D � sin �d� and yields

1ˆ

�1
dxx2 D 2

3
:

All what is left now is to do the radial integral:

V.2/
1;3 D �eE 2

3

	
Z

2aB


3 1̂

0

dr

	
1 � Zr

2aB


	
Zr4

aB



exp

	
�Zr

aB



:

To turn the quite straightforward while tedious and boring job of computing the
remaining integral into something a bit more interesting and fun, I challenge you to
extract as much physical information from this expression without actually doing the
integration. The trick is (and this is the kind of trick, which professional physicists
learn to do as a pure reflexive action) to replace the integration variable r with
something dimensionless. In the integral in question, such a substitution is almost
obvious: y D Zr=aB, after which the integral becomes

V.2/
1;3 D 1

12
eE aB

Z

1̂

0

dx
� x

2
� 1

�
x4 exp .�x/

revealing that the matrix element is proportional to the drop of the potential energy
of the electron in the external field over the size of the atom exemplified by Bohr
radius aB=Z. The remaining integral contributes only a numerical factor, which I
will compute using computational platform Mathematica © with the result

V.2/
1;3 D 3eE aB

Z
:

Now I can give the explicit expressions for the energy eigenvalues modified by the
electric field:

E2I1;2 D �Eg=4

E2I3;4 D �Eg=4˙ 3eE aB

Z
: (13.46)

The Stark effect in the case of degenerate energy eigenvalues differs from its
non-degenerate counterpart in two important aspects. First, the corrections to the
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Fig. 13.2 Splitting of the n D 2 degenerate energy level of a hydrogen atom

eigenvalues are now linear in the field (hence the name—linear Stark effect).
Second, instead of a simple shift of the energy, two new energy eigenvalues emerge
above and below of the initial level. Experimentally this effect is seen as splitting of
a single emission or absorption spectral line corresponding to a transition between
n D 1 ground state and all n D 2 states into three distinct lines, the distance
between which grows linearly with the increasing electric field. This phenomenon is
illustrated in Fig. 13.2, where the left panel shows the electric field-induced changes
in the energy spectrum of the atom together with possible quantum transitions
responsible for the absorption of light, while the right panel illustrates the field-
induced linear divergence of the emergent energy eigenvalues.

The next stop of our linear Stark effect train is the “correct” zero-order
eigenvectors found by solving Eq. 13.32, which, taking into account the structure
of the perturbation matrix, can be written as

2
6664

0 0 V.2/
1;3 0

0 0 0 0

V.2/
1;3 0 0 0

0 0 0 0

3
7775

2
664

a1
a2
a3
a4

3
775 D E.1/2

2
664

a1
a2
a3
a4

3
775 :

As far as the value of the matrix element V.2/
1;3 is concerned, all what I need to

know about it at this point is that it is real. The resulting matrix equation yields
the following system of equations:

V.2/
1;3a3 D E.1/2 a1

0 D E.1/2 a2

V.2/�
1;3 a1 D E.1/2 a3 (13.47)

0 D E.1/2 a4;
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which need to be solved for each of the found eigenvalues. Let’s first dispose of the
trivial case E.1/2 D 0, which reduces this system to

V.2/
1;3a3 D 0

0 D 0

V.2/�
1;3 a1 D 0

0 D 0:

The first and the third equations obviously yield a3 D a1 D 0, while the second
and the fourth equations at first glance do not tell much—they are just trivial
identities. What they are actually saying, however, is that coefficients a2 and a4
remain undefined and can be chosen at will. It is also important to remember that 0
is a degenerate eigenvalue, so that we have to choose two pairs of these coefficients,
and we want to do in such a way that the resulting eigenvectors would be orthogonal
to each other. Actually, this requirement is quite easy to fulfill by choosing for one
pair a.1/2 D 1; a.1/4 D 0 and for the other a.2/2 D 0; a.2/4 D 1. With this choice we end
up with two trivial and easily anticipated answers (check out the enumeration of the
eigenvectors I introduced before these calculations were started!):

j2i.1/ D j2; 1;�1i I j2i.2/ D j2; 1; 1i : (13.48)

It is not surprising that eigenvalues unaffected by the perturbation are accompanied
by eigenvectors from the initial zero-order set.

Substituting the third eigenvalue E.1/2I3 D
ˇ̌
ˇV.2/
1;3

ˇ̌
ˇ D V.2/

1;3 into Eq. 13.47, I have

V.2/
1;3a3 D V.2/

1;3a1

0 D V.2/
1;3a2

V.2/
1;3a1 D V.2/

1;3a3 (13.49)

0 D V.2/
1;3a4:

These equations yield a.3/2 D a.3/4 D 0 and a3 D a1. The respective eigenvector
becomes

j2i.3/ D 1p
2
.j2; 0; 0i C j2; 1; 0i/ : (13.50)

where I set a3 D a1 D 1=
p
2 for normalization purposes. I will let you have a bit of

fun with the last eigenvalue E.1/2I4 D �V.2/
1;3 and provide only the final answer for the

last eigenvector

j2i.4/ D 1p
2
.j2; 0; 0i � j2; 1; 0i/ : (13.51)
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13.3 Problems

Problems to Sect. 13.1

Problem 155 An electron in a one-dimensional infinite potential well

V.z/ D
(
0 0 � z � d

1 z < 0; z > d

is also subjected to an electric field also in the positive z direction.

1. Write down analytically and sketch the total potential energy of the electron in
the presence of the field.

2. Find first the non-zero corrections to the electron’s energy eigenvalues due to the
field. For the ground state of the electron, evaluate the three first terms in the
appropriate sum and give a numerical estimate for the corrections assuming that
d D 100 nm and the electric field is E D106 V/m.

3. Obtain the first-order correction to the ground state wave function of the electron.
4. Determine the expectation value of the electron’s coordinate in the presence

of the field, and compare it to the expectation value without the field. Give a
qualitative explanation of the result.

5. Where in the well the probability to find the electron is the largest?

Problem 156 Using the stationary perturbation theory, find first the nonvanishing
corrections to the energy eigenvalues and eigenvectors of an electron moving in a
one-dimensional harmonic oscillator potential V0 D me!

2z2=2 due to perturbation
potentials of two different kinds:

1. V.z/ D z3

2. V.z/ D &z4

Do not use the position representation to compute the matrix elements, instead use
the ladder operator formalism.

Problem 157 Consider an electron interacting with a positively charged ion via a
harmonic oscillator potential V0 D me!

2z2=2, where the origin of the coordinate
system is chosen at the position of a positively charged particle assumed unmov-
able.

1. Find the corrections to the electron’s energy eigenvalues due to a uniform electric
field in the positive z direction.

2. Find the polarizability of the electron, assuming it is in the ground state.

Do not use the position representation to compute the matrix elements, instead use
the ladder operator formalism.
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Problem 158 An electron in an infinite potential well of width d (see Problem 1)
is also subjected to a perturbation potential Vp D ˛ı.x � d=2/. Find the corrections
to the energy eigenvalue up to the second order of the perturbation theory and the
corrections to the eigenvectors up to the first order.

Problem 159 The potential energy of an electron is given by the following
expression:

V.r/ D � e

4�"0r
C A

z2

r3
C B

x2 C y2

r3
;

where the last two terms can be considered as a perturbation. Using non-degenerate
perturbation theory, find the first-order corrections to the energy and the wave
function of the ground state of the electron in a unperturbed Coulomb potential.

Problem 160 Consider a particle in the infinite potential well

V0.z/ D
(
0 �d=2 � z � d=2

1 z < �d=2; z > d=2

also subjected to a perturbation of the following form:

V1.z/ D
(
& 2jzjd �d=2 � z � d=2

0 z < �d=2; z > d=2:

Derive the expressions for the first non-zero corrections to the ground state energy
in the infinite potential well and its corresponding wave function.

Problem 161 Consider a three-dimensional isotropic harmonic oscillator subjected
to the following perturbation potential:

OV D k.xy C xz C zy/:

Find first the nonvanishing correction to the ground state energy of the oscillator and
the first-order correction to its wave function. Hint: It is easier to do this problem in
the Cartesian coordinates.

Problems to Sect. 13.2

Problem 162 Find the “correct” zero-order wave functions for a double-degenerate
energy level if the matrix elements of perturbation potential are

V12 D jVj .1C i/ :
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Problem 163 Consider a system described by the following Hamiltonian matrix:

OH D

2
664

�1 i� 2� � .1 � i/
�i� �1 �� �

2� �� 2 2i�
� .1C i/ � �2i� 2

3
775 ;

where � is a small real parameter, � � 1.

1. Present this Hamiltonian in the form OH0 C OV where OH0 is a diagonal matrix.
2. You shall see that OH0 has two pairs of double-degenerate eigenvalues. Using

degenerate perturbation theory, find the first-order corrections to both eigenvalues
and the “correct” zero-order eigenvectors.

3. Find the first-order corrections to the eigenvectors and the second-order correc-
tions to the eigenvalues.

Problem 164 Using degenerate perturbation theory, find the corrections to the
energy of n D 2 hydrogen energy level due to perturbation of the form

V D �zx:

Problem 165 Using the degenerate perturbation theory, find the first-order correc-
tions to the energy and “correct” zero-order eigenvectors for a first excited state of
the system described in Problem 161.



Chapter 14
Fine Structure of the Hydrogen Spectra
and Zeeman Effect

14.1 Spin–Orbit Interaction and Fine Structure
of the Energy Spectrum of Hydrogen

14.1.1 Spin–Orbit Contribution to the Hamiltonian

You might still have a vague recollection of me mentioning the spin–orbit coupling
in Sect. 9.5.1, where I introduced the tensor product of spin and orbital spaces as
a means to construct vectors representing both orbital and spin components of a
quantum state (if you do not remember that, you would do yourself a favor by going
back and rereading that part of the book). More specifically, the issue of spin–orbit
coupling came up in the discussion of generic vectors in the tensor product space,
which could be presented as a superposition of basis vectors, in which different
spin states are paired with different orbital components. Such states can be called
spin–orbit coupled because the orbital properties of a system in such a state can be
changed by affecting its spin and vice versa. However, practically, such states can
only be realized in systems with actual spin–orbit interaction contributing a special
term containing a combination of spin and orbital operators to their energy and,
correspondingly, quantum Hamiltonian. This interaction is quite common. It appears
in many ordinary systems, such as atoms or semiconductors, and is responsible for
a number of important phenomena. In atoms it gives rise to the spectral features
known in the early days of quantum mechanics, while in semiconductors it brings
about the relatively recently discovered effects allowing, for instance, to use the
spin to control electron spatial flow. Combining spin and orbital phenomena in
such nontrivial situations is never a simple task, even if merely because it doubles
the number of equations that must be solved. At the same time, the phenomena
resulting from the spin–orbit interaction are way too important to be simply ignored
and shall be discussed even if you only start getting comfortable with intricacies of
the quantum description of the world. Therefore, in this section, I am giving you
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a chance to learn about some aspects of the spin–orbit interaction in a relatively
non-threatening environment by considering, again, a simple model of a single
electron in a hydrogen-like atom.

Before going into the details of the physical mechanism responsible for the spin–
orbit interaction in this system, let me try to guess its general operator structure
using simple symmetry arguments. I will begin by making quite a trivial remark
that the energy term, whatever it might be, must be a scalar. This scalar, however,
must include the spin which is described by vector, OS, and another vector operator
(or a combination thereof) related to the orbital spatial–temporal behavior of the
electron. There are only three vectors that could foot the bill: the position vector
Or, the momentum vector Op, and the orbital momentum vector OL. All these three
operators are indeed vectors, but not all vectors are created equal. Momentum and
position are, as you already know, odd operators, while the orbital momentum is
even. This distinction is true for quantum operators as well as for classical vectors:
for this reason, the angular momentum and other vectors having the same property
with respect to inversion are sometimes called “pseudo-vectors.” Other examples of
classical “pseudo-vectors” are magnetic moments and magnetic field; in general
anything that can be produced from normal vectors or related to them via the
operation of vector (cross) product is a pseudo-vector.

Since spin operators do not have a classical analog, it is impossible to use this
criterion to determine how they would behave with respect to inversion. Luckily,
there are other ways to make this determination. One can, for instance, look at
the potential energy associated with the spin magnetic moment, Eq. 9.28. Since we
know that the potential energy is invariant with respect to inversion (or any other
transformation of coordinates for that matter), it immediately follows that the spin
operator must have the same parity as the magnetic field, which is even. Reversing
this argument, I can say that in order to produce an expression invariant with respect
to inversion, one must combine the spin operator with another even operator, which
excludes position and momentum operators, leaving the angular momentum as the
only viable alternative.

Thus, I hope these arguments have convinced you that the spin–orbit term in the
Hamiltonian must involve the dot product of spin and orbital momentum operators:

OHso D � OL � OS; (14.1)

where a proportionality constant � cannot be determined without going into details
of the actual physical mechanism underlying the spin–orbit interaction, and this is
what I am going to do now. The origin of the spin–orbit coupling in atoms is best
understood by looking at the electron–nucleus interaction from the point of view of
a moving electron. In the electron’s reference frame, the nucleus is seen as a positive
electric charge Ze (Z is the atomic number of the respective element) orbiting the
electron (which is at the center of the orbit) moving with the orbital speed of the
electron, but in the opposite direction. From electrodynamics you must know that
a moving electric charge creates a magnetic field B. Ignoring for now the fact that
the charge is moving along a circular trajectory (I will get back to this point later), I
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can use the solution of the Maxwell equations for a charge moving at constant speed
valid in the weakly relativistic limit v � c1:

B D � 1

c2
v � E; (14.2)

where v is the velocity of the electron and E is the electric field of the charge. The
negative sign in Eq. 14.2 reflects the fact that the velocity of the proton, which is
supposed to appear in this expression, is opposite to that of the electron. In the limit
v � c, the electric field is given by a standard Coulomb expression:

E D 1

4�"0"r

Ze

r2
er; (14.3)

where er is the unit vector in the radial direction toward the electron and all other
notations correspond to Chap. 8. Substitution of Eq. 14.3 into Eq. 14.2 yields for the
magnetic field

B D � 1

4�"0"rc2
Ze

r2
Œv � er� D � 1

4�"0"rc2
Zeme

mer3
Œv � r�

D 1

4�"0"r

Ze

mec2r3
L;

where I replaced unit vector er with the position vector of the electron relative
to proton er D r=r, multiplied the numerator and the denominator by electron
mass me, changed the order of multiplication in the cross product Œv � r�, and
finally replaced me Œr � v� with the orbital momentum L. The direction of L in this
derivation determines the direction of the magnetic field, B. This fact can be also
confirmed using the right-hand rule as it is clear from Fig. 14.1.

Finally, recalling Eq. 9.7 for the magnetic moment of the electron as well as the
expression for the potential energy of the magnetic dipole in the magnetic field
.U D ��s � B/, you can find for the spin–orbit interaction energy:

OHso D 1

4�"0"r

Ze2

m2
ec2R3

OL � OS: (14.4)

The presented derivation of Eq. 14.4 suffers from one significant shortcoming: it
is based on Eq. 14.2 derived for a particle moving at constant velocity, while the
motion of the electron in an atom is nothing but uniform. For the same reason, an
electron is hardly an inertial reference frame, which makes the transition to it, used
in the derivation, also quite suspicious. The problems with this formula, however,

1You might need to refresh your memory of classical electrodynamics at this point using the
Internet or one of the available undergraduate textbooks on electrodynamics.
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a b

Fig. 14.1 (a) A hydrogen atom in the reference frame of the nucleus. An electron is orbiting the
nucleus in the counterclockwise direction; vectors v and r represent velocity and position vector
of the electron relative to the proton, so that its angular momentum L points out of the page. (b)
A hydrogen atom in the reference frame of electron. The nucleus is traversing an orbit with an
electron in its center in the clockwise direction creating a magnetic field at the electron’s location
also directed toward the viewer. Vectors v and r show directions of the differential current element
Idl in the Biot–Savart law and position of the point of the observation of the magnetic field relative
to the local current element. Magnetic field B is also directed out of the page as prescribed by the
cross product Idl � er

were first noticed by experimentalists who found that theoretical predictions of the
hydrogen spectra based on Eq. 14.4 deviate from the experimental results and that
the theory can be brought into better agreement with measurements if one divides
the expression in Eq. 14.4 by two. This discrepancy remained a mystery until a
British physicist Llewellyn Hilleth Thomas2 in 1926 re-derived the expression for
the spin–orbit energy by carefully applying Lorentz transformations of the special
theory of relativity when transitioning to the electron’s reference frame. The key
to the correct solution was to take into account the rotation of the reference frame
attached to the electron as it traverses its trajectory around the nucleus. It is really
quite amazing that these calculations yielded a spin–orbit energy differing from
Eq. 14.4 exactly by factor 1=2 as required to bring the theory in an agreement with
the experiments. The kinematic effect due to the rotating reference frame, which
actually has nothing to do with quantum mechanics and arises every time when
one has to deal with rotating reference frames, is called Thomas precession, and the
corresponding factor 1/2 is called Thomas’s half. Taking Thomas’s half into account
yields the final expression for the spin–orbit contribution to the Hamiltonian

OHso D 1

8�"0"r

Ze2

m2
ec2r3

OL � OS: (14.5)

2Llewellyn Hilleth Thomas was a British physicist who eventually moved to the USA, where
he held a professorial position in Ohio State University, was a member of the Watson Scientific
Computing Laboratory at Columbia University, and was the IBM First Fellow in the Watson
Research Center. His last position was at North Carolina State University.



14.1 Spin–Orbit Interaction and Fine Structure of the Energy Spectrum of. . . 469

This expression agrees with our symmetry based on Eq. 14.1, where the undefined
parameter � can now be identified as

�.r/ D 1

8�"0"r

Ze2

m2
ec2r3

(14.6)

and turns out to be a function of the radial coordinate of the electron.

14.1.2 Schrödinger Equation with Spin–Orbit Term

Having found the contribution of the spin–orbit interaction to the electron’s
Hamiltonian, I can attempt to write down the Schrödinger equation in the
coordinate–spinor representation. Using representation of the spin matrices derived
in Sect. 5.2.3, I can present operator product OL � OS as

OL � OS D OLx OSx C OLy OSy C OLz OSz D
„
2

 OLz OLx � i OLy
OLx C i OLy �OLz

�
D „
2

 OLz OL�
OLC �OLz

�
; (14.7)

where in the last step I replaced x and y components of the angular momentum
operator with the ladder operators OL˙ introduced in Eqs. 3.59 and 3.60. Now,
the Schrödinger equation for the components ‰".r/ and ‰#.r/ of the spinor j�i,
Eq. 9.62, can be written down as

OHorb‰".r/C �
„
2

h OLz‰".r/C OL�‰#.r/
i

D E‰".r/; (14.8)

OHorb‰#.r/C �
„
2

h OLC‰".r/ � OLz‰#.r/
i

D E‰#.r/: (14.9)

Thanks to the spin–orbit term, Eqs. 14.8 and 14.9 become interdependent, which
means that the spin and orbital states no longer can be chosen independently of
each other.

Since the spin–orbit coupling parameter � depends on the radial coordinate, it is
probably hopeless to try solving these equations exactly, but I still want to see how
far I can go trying, even if just to satisfy my curiosity. On a more serious note, I do
believe that playing a bit with these equations might provide a better understanding
of the correlation between the orbital and spin states generated by the spin–orbit
coupling.

My first step would be naturally to try to separate the radial and angular variables.
Since both the OHorb and spin–orbit terms in Eqs. 14.8 and 14.9 contain operators
of the angular momentum, I can try to look for the solution in the form ‰".r/ D
R".r/Ym

l .�; '/, where the first factor is yet an unknown radial function and Ym
l .�; '/
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is the familiar spherical harmonic. However, inspecting the term containing ‰#.r/
in Eq. 14.8, I notice that it appears in the combination with the lowering ladder
operator OL�. This means that if I choose‰#.r/with the angular dependence given by
the same spherical harmonics Ym

l .�; '/, I will be in trouble because OL�Ym
l .�; '/ /

Ym�1
l .�; '/, and I would not be able to satisfy the equation (the angular parts of the

wave functions would not cancel). However, if I do not panic, it might occur to me
that by choosing ‰#.r/ as ‰#.r/ D R#.r/YmC1

l .�; '/, I can actually save the day
because OL�YmC1

l .�; '/ / Ym
l .�; '/ so that the angular dependence in all terms of

the equation will be given by Ym
l .�; '/, which I will be able to cancel leaving only

the unknown radial components of the wave functions. For this to work, however,
the same choices for ‰#.r/ and ‰".r/ must do the same trick for Eq. 14.9. A bit
of inspection will convince you that it actually does: OLCYm

l .�; '/ / YmC1
l .�; '/ ,

which coincides with the angular dependence of all other terms containing ‰#.r/.
To give these arguments a more polished and technical form, let me first recall

from Chap. 8, Eq. 8.7 that

OHorb
�
R.r/Ym

l

� D

� „2
2�r2

d

dr

	
r2
@R

@r



C „2l.l C 1/

2�r2
R � 1

4�"r"0

Ze2

r
R

�
Ym

l

(see Chap. 8 for all notations). I will rewrite this expression introducing the radial
orbital operator OHr as

OHorb
�
R.r/Ym

l

� D Ym
l

OHrR.r/;

where

OHr D � „2
2�r2

d

dr

	
r2
@

@r



C „2l.l C 1/

2�r2
� 1

4�"r"0

Ze2

r
:

I also need to recall that

OLzY
m
l .�; '/ D „mYm

l .�; '/I
OL�YmC1

l .�; '/ D „
p

l.l C 1/ � m.m C 1/Ym
l .�; '/I

OLCYm
l .�; '/ D „

p
l.l C 1/ � m.m C 1/YmC1

l .�; '/:

Then Eq. 14.8 takes the form

Ym
l

OHrR".r/C „2
2
�mR".r/Ym

l .�; '/C
„2
2
�
p

l.l C 1/ � m.m C 1/R#.r/Ym
l .�; '/ D ER".r/Ym

l .�; '/:
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The similar procedure for Eq. 14.9 yields

YmC1
l

OHrR#.r/ � „2
2
� .m C 1/R#.r/YmC1

l .�; '/C
„2
2
�
p

l.l C 1/ � m.m C 1/R".r/YmC1
l .�; '/ D ER#.r/YmC1

l .�; '/:

Now you can see that the spherical harmonics can, indeed, be canceled in both
equations so that I am left with a system of purely radial equations

	
OHr C „2

2
�m



Rn;l;m;".r/C

„2
2
�
p

l.l C 1/ � m.m C 1/Rn;l;mC1;#.r/ D ERn;l;m;".r/; (14.10)

	
OHr � „2

2
�.m C 1/



Rn;l;mC1;#.r/C

„2
2
�
p

l.l C 1/ � m.m C 1/Rn;l;m;".r/ D ERn;l;mC1;#.r/; (14.11)

where I added additional indexes to the radial function to emphasize that it depends
upon the four quantum numbers: the radial number n, which will emerge once the
eigenvalues of energy are found from these equations, the orbital and magnetic
numbers l and m, and finally the spin number, which in this case is designated by an
arrow pointing up or down.

I am afraid that is it—I reached the end of this path as I am not going to attempt
solving Eqs. 14.10 and 14.11. Now let’s take a breath and try to understand if I
can learn anything from this exercise. Leaving aside the issue of finding the radial
functions, I do know now that the state of the atom in the presence of the spin–orbit
interaction is given by a spinor of the following form:

j�i D


Rn;l;m;"Ym
l .�; '/

Rn;l;mC1;#.r/YmC1
l .�; '/

�
; (14.12)

which can also be presented as a linear combination of basis spinors representing
eigenvectors of the spin operator OSz

j�i D Rn;l;m;".r/Ym
l .�; '/ j"i C Rn;l;mC1;#.r/YmC1

l .�; '/ j#i : (14.13)
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Even though I do not know the radial functions in this expression, it still provides
me with some interesting information. For instance, it is clear from Eq. 14.13 that

j�i is an eigenvector of the operator OL2:

OL2 j�i D Rn;l;m;" OL2Ym
l .�; '/ j"i C Rn;l;mC1;#.r/ OL2YmC1

l .�; '/ j#i D
„2l.l C 1/

�
Rn;l;m;"Ym

l .�; '/ j"i C Rn;l;mC1;#.r/YmC1
l .�; '/

� j#i ;

where I took into account that the OL2 operator does not affect the radial functions or
spin eigenvectors. At the same time, it is also clear that j�i is not an eigenvector of
operators OLz or OSz (I will leave it to you to verify this fact on your own). But there
is more. Since j�i combines spin and orbital states, it makes complete sense to see
how this state will be affected by the operators of the total angular momentum OJ
introduced in Sect. 9.5.2, beginning with the operator OJz D OLz C OSz. Remembering
that OLz acts only on the orbital components of the state while OSz affects only its
spinor components, I obtain

� OLz C OSz

� �
Rn;l;m;"Ym

l .�; '/ j"i C Rn;l;mC1;#.r/YmC1
l .�; '/ j#i� D

„
	

m C 1

2



Rn;l;m;"Ym

l .�; '/ j"i C

„
	

m C 1 � 1

2



Rn;l;mC1;#.r/YmC1

l .�; '/ j#i D

„
	

m C 1

2


 �
Rn;l;m;"Ym

l .�; '/ j"i C Rn;l;mC1;#.r/YmC1
l .�; '/ j#i� :

Rewriting this result in a more concise form

OJz j�i D „
	

m C 1

2



j�i

makes it plainly obvious that j�i is an eigenvector of OJz with mJ D m C 1=2 (see
Eq. 9.74). At this point it is only natural to check out the relationship between j�i
and the operator OJ2. On a hunch, I will compare Eq. 14.13 with Eqs. 9.93 and 9.94

representing eigenvectors of OJ2, but to make the comparison easier, I will first
rewrite Eq. 14.13 in an abstract form replacing index m with mJ � 1=2:

j�i D Rn;l;mJ�1=2;".r/ jl;mJ � 1=2i j"i C
Rn;l;mJC1=2;#.r/ jl;mJ C 1=2i j#i : (14.14)
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Now it is plainly obvious that Eq. 14.14 has the same structure as eigenvectors of OJ2
j j1; l;mJi and j j2; l;mJi, where j1 and j2 are defined in Eqs. 9.88 and 9.89, and if I
define the radial functions as

Rnlm;" D Rj1
nlmJ

1p
2l C 1

p
l C mJ C 1=2 (14.15)

RnlmC1;# D Rj1
nlmJ

1p
2l C 1

p
l � mJ C 1=2 (14.16)

or as

Rnlm;" D Rj2
nlmJ

1p
2l C 1

p
l � mJ C 1=2 (14.17)

Rnlm;# D �Rj2
nlmJ

1p
2l C 1

p
l C mJ C 1=2; (14.18)

I can rewrite Eq. 14.14 either as

j�1i D Rj1
nlmJ

j j1; l;mJi

for j1 D l C 1=2 or as

j�2i D Rj2
nlmJ

j j2; l;mJi

for j2 D l � 1=2. Thereby I am explicitly demonstrating that with these choices of

radial functions, vectors j�1i and j�2i become eigenvectors of the operator OJ2.
If you are wondering why this fact is such a big deal, just take a new look at

Eq. 9.72 depicting the structure of the operator OJ2, and you will see that it contains
the same term OL� OS as the spin–orbit coupling contribution to the Hamiltonian. It does

not take much now to demonstrate that OJ2 commutes with the entire Hamiltonian,
including the spin–orbit coupling term, and, therefore, common eigenvectors of

both OJ2 and OJz are also eigenvectors of the Hamiltonian. All what is left now is to
substitute Eqs. 14.15 and 14.16 or Eqs. 14.17 and 14.18 into Eqs. 14.10 and 14.11,
replacing along the way m with mJ �1=2 and m C1 with mJ C1=2. First I deal with
Eq. 14.10:

	
OHr C „2

2
�

	
mJ � 1

2




1p
2l C 1

p
l C mJ C 1=2Rj1

nlmJ
C

„2
2
�

s
l.l C 1/ �

	
m2

J � 1

4



1p
2l C 1

p
l � mJ C 1=2Rj1

nlmJ
D

En;j1;lR
j1
nlmJ

1p
2l C 1

p
l C mJ C 1=2;
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where I added indexes to the energy eigenvalue E anticipating quantum num-
bers which this eigenvalue might depend upon. Recalling identity 9.87 to sim-

plify
q

l.l C 1/ � �
m2

J � 1
4

� D p
.l C 1=2C mJ/ .l C 1=2 � mJ/, I determine thatp

l C mJ C 1=2=
p
2l C 1 is a common factor which can be canceled and that the

remaining expression takes the following form:

	
OHr C „2

2
�

	
mJ � 1

2



C „2
2
� .l � mJ C 1=2/



Rj1

nlmJ
D En;j;lR

j1
nlmJ

)
	

OHr C „2
2
�l



Rj1

nlmJ
D En;j1;lR

j1
nlmJ

: (14.19)

This last equation surely looks nice and pretty, but before celebrating, we all would
be well advised to make sure that Eq. 14.11 will be reduced to the same form after
all these substitutions, because if it did not, I would have had two different equations
for the same function, and this wouldn’t be too good, right? So, here I go:

	
OHr � „2

2
�

	
mJ C 1

2




1p
2l C 1

p
l � mJ C 1=2Rj1

nlmJ
C

„2
2
�
p

l.l C 1/ � m.m C 1/
1p
2l C 1

p
l C mJ C 1=2Rj1

nlmJ
D

En;j;l
1p
2l C 1

p
l � mJ C 1=2Rj1

nlmJ
:

Using the same trick as above, I will now find that
p

l C mJ C 1=2=
p
2l C 1 is the

common factor, and after canceling it, I will end up with equation

	
OHr � „2

2
�

	
mJ C 1

2



C „2
2
�

	
l C mJ C 1

2




Rj1

nlmJ
D En;j1;lR

j1
nlmJ

)
	

OHr C „2
2
�l



Rj1

nlmJ
D En;j1;lR

j1
nlmJ

which is exactly the same as Eq. 14.19. Now we can celebrate—Eq. 14.19 is, indeed,
a correct equation for the radial wave function corresponding to j1 D l C 1=2.
Repeating all these steps with Eqs. 14.17 and 14.18, you can obtain the radial
equation for Rj2

nlmJ
in the form

	
OHr � „2

2
� .l C 1/



Rj2

nlmJ
D En;j2;lR

j2
nlmJ

: (14.20)

The spin–orbit contribution to Eqs. 14.19 and 14.20 is different for different values
of j, which justifies adding this number as an index in the notation for energy En;j;l.
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Of course, nothing of this shall come as a big surprise; it is just an additional

verification of the fact that eigenvectors of OJ2 and OJz are, indeed, the eigenvectors of
the Hamiltonian.

Trigger warning: what I am going to show you now might get some of you
really upset. All this work, which we did deriving Eqs. 14.19 and 14.20, was not
really necessary as all these results can be derived faster and with less effort. So, if
you feel the righteous indignation about me torturing you unnecessarily, I do have
something to say in my defense. Now you have a much clearer understanding of
the nuts and bolts of the spin–orbit interaction and its effect on the eigenvectors of
the Hamiltonian than you would have had otherwise, and a few extra hours of me
writing and you reading is a fair price to pay for it.

So, now let me show the easier way, and I will begin by writing down a complete
Hamiltonian with the spin–orbit interaction in the form

OH D � „2
2�r2

@

@r

	
r2
@

@r



C

OL2
2�r2

� Ze2

4�"0"rr
C � OL � OS

where the kinetic energy is presented as a sum of radial and orbital momentum
terms, and I use the same notations as in Chap. 8. Next I replace OL � OS in the spin–
orbit interaction with

OL � OS D
�OJ2 � OL2 � OS2

�
=2

using Eq. 9.72, so that the Hamiltonian becomes

OH D � „2
2�r2

@

@r

	
r2
@

@r



C

OL2
2�r2

� Ze2

4�"0"rr
C 1

2
�
�OJ2 � OL2 � OS2

�
: (14.21)

Now acting by Hamiltonian 14.21 on

j�i D Rj;l j j; l;mJi ; (14.22)

I get

"
� „2
2�r2

@

@r

	
r2
@

@r



C

OL2
2�r2

� Ze2

4�"0"rr
C 1

2
�
�OJ2 � OL2 � OS2

�#
Rj;l.r/ j j; l;mJi D


� „2
2�r2

@

@r

	
r2
@

@r



C „2l.l C 1/

2�r2
� Ze2

4�"0"rr
C „2
2
�

	
j. j C 1/ � l.l C 1/ � 3

4


�
Rj;l.r/ j j; l;mJi :
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Respectively, the radial part of the Schrödinger equation becomes


� „2
2�r2

@

@r

	
r2
@

@r



C „2l.l C 1/

2�r2
� Ze2

4�"0"rr
C „2
2

�

	
j. j C 1/ � l.l C 1/ � 3

4


�
Rj;l.r/ D En;j;lRj;l.r/: (14.23)

The first three terms in this equation corresponds to OHr in Eqs. 14.19 and 14.20, and
the last term is the spin–orbit contribution. Now, it is just a matter of simple algebra
to convince oneself that j. j C 1/ � l.l C 1/ � 3

4
is equal to l for j D l C 1=2 and to

�l � 1 for j D l � 1=2, making Eq. 14.23 equivalent to Eqs. 14.19 and 14.20.

14.1.3 Fine Structure of the Hydrogen Spectrum

To determine how spin–orbit interaction affects energy eigenvalues of the electron
in the hydrogen atom, one would need to solve Eq. 14.23. Unfortunately, since spin–
orbit coupling parameter � depends on the radial coordinate 1=r3, which is different
from both 1=r term in the Coulomb potential and 1=r2 term in the orbital angular
momentum term, the exact analytical solution of this equation is out of reach, so the
perturbation treatment discussed in Chap. 13 needs to be invoked with the spin–orbit
term being treated as the perturbation. The first-order correction to the hydrogen
energy levels is given by the expectation value of the perturbation term calculated
with unperturbed radial hydrogen wave functions R.0/l;n .r/ described in Chap. 8:

En;j;l D E.0/n C 1

16�"0"r

Z„2e2
�2c2

	
j. j C 1/ � l.l C 1/ � 3

4


 �
1

r3

�
;

where � was replaced with its explicit expression from Eq. 14.6. Using Eq. 8.34 for
the expectation value

�
1

r3

�
D

1̂

0

dr
1

r

h
R.0/l;n .r/

i2
;

which was derived in Sect. 8.3, I find the first-order spin–orbit corrections to the
energy levels to be

En;j;l D E.0/n C 1

8�"0"r

Z4„2e2
�2c2a3B

j. j C 1/ � l.l C 1/ � 3
4

l .l C 1/ .2l C 1/ n3
D

E.0/n

 
1 � Z2„2

�2c2a2B

j. j C 1/ � l.l C 1/ � 3
4

l .l C 1/ .2l C 1/ n

!
: (14.24)
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Equation 8.34 for
˝
r�3˛ fails for l D 0, but it is not a big concern because the

spin–orbit interaction vanishes at l D 0 anyway (spin has no one to interact with
when the orbital momentum disappears; formally it becomes clear by substituting
j D 1=2 into Eq. 14.23). Accordingly, Eq. 14.24 should be applied only to the states
with l > 0.

The dimensionless constant Z„=.�caB/ in Eq. 14.24 can be presented in several
equivalent forms. First, replacing the Bohr radius with its expression from Eq. 8.8,
this constant can be rewritten as

Z„
�caB

D Ze2

4�"0"rc„ D Z

"r
˛;

where I combined all fundamental parameters into the so-called fine-structure
constant ("r and Z are material parameters and are not fundamental)

˛ D e2

4�"0c„ � 1

137:036
: (14.25)

This is one of the most famous constants in physics which plays a particularly
important role in quantum electrodynamics appearing as a dimensionless strength of
interaction between electrons and photons. One of the possible interpretations of this
constant involves the ratio of the potential energy of the system of two electrons at
a distance x from each other and the energy of a photon with wavelength � D 2�x:

˛ D
	

e2

4�"0x



=

	„c

x



:

Introducing this fine-structure constant, Eq. 14.24 can be written down as

En;j;l D E.0/n

 
1 � Z2

"2r
˛2

j. j C 1/ � l.l C 1/ � 3
4

l .l C 1/ .2l C 1/ n

!
: (14.26)

Alternatively, one can rewrite the same constant in terms of the zero-order hydrogen
energies E.0/n

	
Z„
�caB


2
D Z2e4

16�2"20"
2
r c2„2 D �2E.0/n

�c2
n2

where I used the expression for E.0/n from Eq. 8.16. Now the spin–orbit correction to
the energy 4E.so/

njl can be written down as

4E.so/
njl D

2
h
E.0/n

i2

�c2
n

j. j C 1/ � l.l C 1/ � 3
4

l .l C 1/ .2l C 1/
: (14.27)
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Unlike Eq. 14.26, the just-derived expression defines the spin–orbit correction to
the energy in terms of the ratio of the unperturbed energy E.0/n and the electron’s rest
energy �c2. Both expressions for the energy predict that the spin–orbit interaction
lifts the degeneracy of the hydrogen energy levels with respect to the orbital
quantum number l, and, in addition, each energy level of hydrogen with l ¤ 0 splits
in two levels with different values of the total angular momentum j1;2 D l ˙ 1=2.

At this point a question should pop up in the head of an attentive reader: why
is it OK to derive Eq. 14.24 using the non-degenerate perturbation theory when
everyone knows that all hydrogen energy levels (except of the ground state, of
course) degenerate? This is a valid question, but the reason why the non-degenerate
perturbation works here is quite simple: the perturbation matrix hn; j; l;mJj� OL �
OS jn; j1; l1;mJ1i is diagonal in the basis of degenerate eigenvectors of the unperturbed
Hamiltonian formed by all vectors jn; j; l;mJi with a fixed value of the principal
quantum number n. In other words, by choosing the eigenvectors of the operators
OL2, OJ2, and OJz as the zero-order eigenvectors, I automatically chose the “correct”
basis diagonalizing the perturbation operator.

While we can be rightfully proud of being able to derive Eq. 14.26, it is a bit
too early to pop champagne corks. Unfortunately, this result does not describe the
experimental data correctly signaling that something in our analysis is missing. To
figure out what it might be, note the presence of the speed of light in the fine-
structure constant which hints that the spin–orbit interaction might have something
to do with relativistic effects. After all, in the extreme nonrelativistic limit c ! 1,
the spin–orbit correction does vanish. Then the question you should be asking is
if there are other relativistic effects which we might have missed and which can
affect the hydrogen spectrum. The answer to this question is, indeed, affirmative:
there are two more relativistic effects which generate contributions to the energy of
the same order of magnitude as the spin–orbit interaction and, therefore, need to be
included into consideration. One of these effects is due to the relativistic correction
to the electron’s kinetic energy, and the other is the so-called Darwin3 term, whose
origin is not that easy to explain without invoking a complete relativistic theory
of electrons based on Dirac’s equation. However, this term contributes only to the
energy of l D 0 states, and as luck would have it, it is reproduced correctly by
a simple sum of the spin–orbit and relativistic kinetic energy contributions to the
energy.

The kinetic energy of a relativistic particle, according to Einstein’s theory of
special relativity, is related to the particle momentum p as

Krel D
q

p2c2 C m2
ec4 D mec2

s
1C p2

m2
ec2
:

3Charles Galton Darwin was an English physicist, another grandson of Charles Darwin, the author
of the evolution theory. He became a director of the National Physics Laboratory in 1938 and
remained in this position through the World War II participating in the Manhattan Project, where
he was responsible for coordinating American, British, and Canadian efforts.
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Since we are interested in small relativistic corrections only, I can expand this
expression in a power series with respect to .p=mec/2 and keep just the three first
terms in the series

Krel � mec2 C p2

2me
� p4

8m3
ec2
: (14.28)

The first and the second terms in this equation are the rest energy of the electron
(which is just a constant and can be ignored) and the nonrelativistic kinetic energy.
The object of our interest is the third term in this expression whose effect on the
hydrogen energy levels I intend to explore.

I cannot use the radial equation 14.23 for this purpose because it does not include
the Op4 term, and if I try to separate it into the radial and angular parts, the result
would be disastrously cumbersome (just imagine having to square the first two terms
in Eq. 14.21). Fortunately, I do not have to do it and can work instead with the
Hamiltonian

OH D Op2
2�

� Op4
8�3c2

� Ze2

4�"0"rr
C 1

2
�
�OJ2 � OL2 � OS2

�
; (14.29)

where the kinetic energy operator remains intact, and in the relativistic correction
term, I replaced electron mass me with the reduced mass � to preserve the
consistency of the notation. The first thing which is important to realize is that
vectors j jlmJi are eigenvectors of the operator Op4, which is obvious because an
eigenvector of any operator OA is automatically an eigenvector of an operator OA2,
and4 we have already seen that j jlmJi is an eigenvector of Op2. This means that the
perturbation matrix built on the basis of these vectors is diagonal, and I can again
use the non-degenerate perturbation theory to find the first-order corrections to the
energy. The second important point that needs to be made is that the first order of
the perturbation theory is linear with respect to the perturbation operator. As a result
the correction to the energy due to the sum of two perturbation operators is equal
to the sum of the corresponding energy corrections due to each of the perturbation
separately. Accordingly, the modification of the hydrogen energy levels due to the
relativistic term in Hamiltonian 14.29 can be written down as

4E.rel/
njl D � 1

8�3c2
hn; j; l;mJj Op4 jn; j; l;mi ; (14.30)

4If it is not obvious for you, here is the proof: assume that OA jqi D aq jqi. Then OA OA jqi D
aq OA jqi D a2q jqi.
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where jn; j; l;mi D R.0/n;l j j; l;mi are complete zero-order hydrogen wave functions
written in the basis of the vectors j j; l;mi. In order to compute the matrix element
in Eq. 14.30, I will present the operator Op4 in it as

4E.rel/
njl D � 1

2�c2
hn; j; l;mJj Op2

2�

Op2
2�

jn; j; l;mi (14.31)

and will consider the action of the emerging kinetic energy operators to their
respective ket (on the right) and bra (on the left) vectors. The expression

Op2
2�

jn; j; l;mi

is evaluated by converting the time-independent Schrödinger equation

 
Op2
2�

� Ze2

4�"0"rr

!
jn; j; l;mi D E.0/n jn; j; l;mi

into

Op2
2�

jn; j; l;mi D
	

E.0/n C Ze2

4�"0"rr



jn; j; l;mi :

Hermitian conjugation of this result yields

hn; j; l;mj Op2
2�

D
	

E.0/n C Ze2

4�"0"rr



hn; j; l;mj :

Substituting these expressions into Eq. 14.31, I get

4E.rel/
njl D � 1

2�c2
hn; j; l;mJj

	
E.0/n C Ze2

4�"0"rr


2
jn; j; l;mi D

�
h
E.0/n

i2

2�c2
� E.0/n

�c2
Ze2

4�"0"r
hn; j; l;mJj 1

r
jn; j; l;mi

� 1

2�c2
Z2e4

16�2"20"
2
r

hn; j; l;mJj 1
r2

jn; j; l;mi :
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Both expectation values
˝
r�1˛ and

˝
r�2˛ appearing in this expression were computed

in Sect. 8.3, and substitution of the corresponding expressions from Eqs. 8.29 and
8.33 yields

4E.rel/
njl D �

h
E.0/n

i2

2�c2
� E.0/n

�c2
Ze2

4�"0"r

Z

aBn2
�

1

2�c2
Z2e4

16�2"20"
2
r

2Z2

a2B

1

.2l C 1/ n3
D �

h
E.0/n

i2

2�c2
�

0
B@1C Z2e2

2�"0"raBn2E.0/n

C Z4e4

8�2"20"
2
r a2B

h
E.0/n

i2
1

.2l C 1/ n3

1
CA D

�
h
E.0/n

i2

2�c2

	
8n

2l C 1
� 3



� ˛2

Z2

"2r
E.0/n

1

4n2

	
8n

2l C 1
� 3



; (14.32)

where I simplified the resulting expressions using Eqs. 8.8 and 8.17 for the Bohr
radius and unperturbed energy of the hydrogen atom, respectively. Combining
Eqs. 14.27 and 14.32, I obtain the total first-order correction to the energy levels
of an electron in the hydrogen atom:

4Enjl D �
h
E.0/n

i2

�c2

"
2n

2l C 1

 
2 � j. j C 1/ � l.l C 1/ � 3

4

l .l C 1/

!
� 3

2

#
:

Substituting j D lC1=2 or j D l�1=2, you can convince yourself that this expression
can be simplified into

4E. fs/
njl D �

h
E.0/n

i2

�c2

"
2n

j C 1
2

� 3

2

#
(14.33)

for any value of j. Surprisingly, but even for l D 0 (j D 1=2/), this expression
gives the correct answer including the abovementioned Darwin term, which I did
not even bother to consider. According to this result, energy levels of the electron
in a hydrogen-like atom acquire dependence on the total angular momentum via
the quantum number j but remain independent of the orbital quantum number l. For
instance, this result predicts that states of the electron with j D 1=2 originating
from orbitals with l D 0 and l D 1 would have the same energy, while states with
j D 1=2, l D 1 and j D 3=2, l D 1 would have distinct energies. This difference
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between energy levels characterized by the same principal number n and different
values of j is called the fine structure of the hydrogen atom.

While agreement between theoretical results predicted by Eq. 14.33 and the
experiment is relatively good, more careful measurements reveal additional energy
levels of hydrogen not predicted by this equation. The origin of these even more
closely located energies, called hyperfine structure, can be traced to interaction
between spins of electron and the nucleus. A consideration of this effect is outside of
the scope of this book. Another interesting point related to the spectrum of hydrogen
is concerned with the abovementioned predictions that both j D 1=2; l D 0 and
j D 1=2, l D 1 have the same energy. In reality the latter state was found to have
a slightly lower energy than the former. This difference between these energies is
called the Lamb shift, and its discovery by Willis Lamb5 and his graduate student
Robert Retherford in 1947 was a triumph of experimental physics, for which Lamb
was awarded the Nobel Prize in Physics in 1955. Lamb’s shift is a stunning example
of a phenomenon which combines a small magnitude with oversized significance for
physics—explanation of its origin gave birth to modern quantum electrodynamics
with its overreaching concepts of renormalization influencing desparate fields from
phase transitions to the black holes. The calculations of the Lamb shift were first
carried out by Hans Bethe in 1947,6 whose paper on the Lamb shift was only
two pages long and became one of the influential theoretical papers of the after-
World War II period. Alas, you will have to wait till a more serious graduate level
course in quantum electrodynamics to be able to appreciate the beauty of the theory
explaining the Lamb shift.

14.2 Zeeman Effect

Changes in atomic spectra in the presence of a strong magnetic field were first
observed in 1896 by Dutch physicist Pieter Zeeman, whose experiments were based
on earlier theoretical work of Zeeman’s compatriot Hendrik Antoon Lorentz (who
also derived the famous Lorentz transformations used by Einstein in his relativity
theory). Both Zeeman and Lorentz were awarded in 1902 the Nobel Prize in Physics

5Willis Lamb was an American experimental physicist who made significant contribution to
quantum electrodynamics and the field of quantum measurements. He holds professorial positions
at the University of Oxford and Yale, Columbia and Stanford Universities, and the University of
Arizona.
6Hans Bethe was a German-born physicist who immigrated to the USA in 1935 (only 2 years
later than Einstein) and became a professor at Cornell University where he worked till his death in
2005. He won the 1967 Nobel Prize in Physics for his work on the theory explaining the formation
of chemical elements due to nuclear reaction within stars. During the war, he headed theoretical
efforts within the Manhattan Project and played a critical role in calculating the critical mass of the
weapons. After the war he was active in efforts to outlaw testing of nuclear weapons convincing
Kennedy and Nixon administrations to sign the Partial Nuclear Test Ban Treaty (1963) and the
Anti-Ballistic Missile Treaty (1972). He also made important contribution in solid-state physics.
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for this discovery signifying its importance. While initially seen as a broadening of
a spectral line, it was later found to be a splitting of an initial line into as many as 15
additional lines. This phenomenon is rightfully known as the Zeeman effect, and I
have already mentioned it in Chap. 9 trying to provide experimental justifications for
an electron’s spin. The Zeeman effect proved to play an important role in many areas
of physics and astrophysics, in addition to quantum mechanics. It is not surprising,
therefore, that I am, as many other authors of quantum mechanics textbooks, eager
to devote a significant amount of time to developing a proper quantum description
of this phenomenon. Since the spin–orbit interaction plays an important role in this
treatment, now seems like a suitable time to do so.

When describing the contribution of interaction with a magnetic field to the
atom’s Hamiltonian, one needs to take into account that an electron in a generic
quantum state possesses two types of magnetic dipole moments: one, �L, is related
to its orbital angular momentum L, and the other, �s, is due to the electron’s
spin. While the corresponding contributions to the Hamiltonian are similar for both
magnetic moments

OHZ D � .�L C �s/ � B;

the theoretical description of the effect is complicated by the fact that gyromagnetic
ratios, connecting the magnetic moment with the corresponding angular momentum,
are different for the orbital angular moment and spin. As it was explained in
Sect. 9.1, the former is two times larger than the latter (see Eqs. 9.1 and 9.7) so
that the expression for the magnetic energy contribution to the Hamiltonian can be
written down as

OHZ D e

2me

� OL C 2 OS
�

� B D
eB

2me

� OLz C 2OSz

�
(14.34)

where I choose the axis Z of my coordinate system along the magnetic field B. If the
gyromagnetic ratios for orbital and spin momentums were the same, the magnetic
energy would depend only on a z-component of the total angular momentum
OJz so that the Zeeman energy and the entire Hamiltonian would commute with

the operators OJ2 and OJz making the analysis as simple as that for the spin–orbit
interaction. Unfortunately (or fortunately—makes life more interesting), this is
not the case, and either orbital or spin momentums appear in the Zeeman energy
separately. For instance, you can replace OLz with OJz � OSz and end up with the
following expression:

OHZ D eB

2me

�OJz C OSz

�
: (14.35)

Neither vectors jl;mi jmsi nor j j; l;mJi are eigenvectors of the Hamiltonian OHZ , and,
therefore, I cannot simply invoke the first-order non-degenerate perturbation theory
to find the corresponding corrections to the energy levels.
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The situation can be simplified in two extreme limits: of very weak or very strong
magnetic field. “Weakness” or “strength” of the field is meant here in comparison
with the spin–orbit interaction. In the weak magnetic field, the fine structure of the
spectrum due to the spin–orbit and relativistic corrections remains a predominant
feature, while effects due to the magnetic field can be considered as a small
perturbation. The strong magnetic field means that the Zeeman splitting, which
we discussed in Sect. 9.1, is the main effect, while the spin–orbit and relativistic
contributions play role of the small perturbation. I will first consider the small field
limit.

14.2.1 Zeeman Effect in the Weak Magnetic Field

The weakness of the magnetic field means that the Hamiltonian of Eq. 14.35 can
be treated as a perturbation term, while the atomic Hamiltonian with relativistic
and spin–orbit contributions define the system of zero-order energy eigenvalues
and eigenvectors. This point needs to be emphasized here because the zero-order
eigenvalues determine the degeneracy of the unperturbed spectrum and, therefore,
determine the type of the perturbation theory one has to use. As you learned in
Sect. 13.2, the most important quantity in this regard is the perturbation matrix
built on the basis of the degenerate eigenvectors. If the fine structure defines the
zero-order eigenvalues given by Eq. 14.33, then I have to deal with the subspace of
vectors jn; j; l;mJi with fixed numbers n and j. The first term in Hamiltonian 14.35
is obviously diagonal in the basis of these states:

hn; j; l;mJj OJz

ˇ̌
n; j; l0;m0

J

˛ D „mJıl;l0ımJ ;m0

J
: (14.36)

Thus, the main attention must be paid to the second term. In order to compute the
matrix element hn; j; l;mJj OSz

ˇ̌
n; j; l0;m0

J

˛
, I will invoke Eqs. 9.93 and 9.94 expressing

vectors jn; j; l;mJi as linear combinations of vectors jn; l;mi jmsi (I added the radial
index n to jn; l;mi in order to include the radial function, but it does not make any
difference since all perturbation operators do not depend on the radial coordinate).
Then for j D l C 1=2, I have

OSz

ˇ̌
n; j; l0;m0

J

˛ D 1p
2l0 C 1

q
l0 C m0

J C 1=2

ˇ̌
ˇ̌n; l0;m0

J � 1

2

�
OSz j"i C

q
l0 � m0

J C 1=2

ˇ̌
ˇ̌n; l0;m0

J C 1

2

�
OSz j#i

�
D

„
2

1p
2l0 C 1

q
l0 C m0

J C 1=2

ˇ̌
ˇ̌n; l0;m0

J � 1

2

�
j"i �

q
l0 � m0

J C 1=2

ˇ̌
ˇ̌n; l0;m0

J C 1

2

�
j#i
�
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and

hn; j; l;mJj OSz

ˇ̌
n; j; l;m0

J

˛ D „
2

1

2l C 1
Œl C mJ C 1=2 � l C mJ � 1=2� ımJm0

J

D „ mJ

2l C 1
ıl;l0ımJm0

J
;

where I took into account that spinors describing spin-up and spin-down states
are orthogonal and so are orbital states jn; l;mi with different values of m and l.
Similarly for j D l � 1=2,

OSz

ˇ̌
n; j; l0;m0

J

˛ D
1p

2l0 C 1

q
l0 � m0

J C 1=2

ˇ̌
ˇ̌n; l0;m0

J � 1

2

�
OSz j"i �

p
l0 C m C 1=2

ˇ̌
ˇ̌n; l0;m0

J C 1

2

�
OSz j#i

�
D

„
2

1p
2l0 C 1

q
l0 � m0

J C 1=2

ˇ̌
ˇ̌n; l0;m0

J � 1

2

�
j"i C

q
l0 C m0

J C 1=2

ˇ̌
ˇ̌n; l0;m0

J C 1

2

�
j#i
�

hn; j; l;mJj OSz

ˇ̌
n; j; l0;m0

J

˛ D „
2

1

2l C 1
Œl � mJ C 1=2 � l � mJ � 1=2� ımJm0

J
D

�„ mJ

2l C 1
ıl;l0ımJm0

J
:

So, what I see here is that even though vectors jn; j; l;mJi are not eigenvectors of
OSz, the matrix hn; j; l0;mJj OSz

ˇ̌
n; j; l;m0

J

˛
is still diagonal with respect to indexes l

and mJ . The significance of this fact is that now I do not need to diagonalize the
perturbation matrix and can simply use the non-degenerate perturbation theory to
find the magnetic field corrections to the fine-structure spectrum. The respective
energy correction 4Enjl;mJ is given by

4Enjl;mJ D eB

2me
hn; j; l;mJj

�OJz C OSz

�
jn; j; l;mJi D

eB

2me
„mJ

	
1˙ 1

2l C 1



; (14.37)
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where the plus sign corresponds to j D l C 1=2 and the minus sign refers to j D
l�1=2. Both expressions appearing in Eq. 14.37 can be rewritten as a single formula
with the arbitrary quantum number j as

4Enjl;mJ D eB

2me
„mJ


1C j. j C 1/ � l.l C 1/C 3=4

2j. j C 1/

�
: (14.38)

If you are wondering how I managed to derive Eq. 14.38 from Eq. 14.37, I have
to admit that in reality, I did nothing of the sort. To derive Eq. 14.38, one would
have to use more general and sophisticated methods, which would be out of place
in this book, but you can easily convince yourself that Eqs. 14.38 and 14.37 are
indeed equivalent to each other. It should be noted that the magnetic field removes
degeneracy of the energy levels forming the fine structure of the hydrogen spectrum
not only with respect to the magnetic quantum number mJ but also with respect to
the orbital index l. The expression in the square brackets in Eq. 14.38 is often called
a Lande g-factor, gJ;l:

gJ;l D 1C j. j C 1/ � l.l C 1/C 3=4

2j. j C 1/
: (14.39)

Equation 14.38 must be combined with Eq. 14.33 to get the full expression for the
hydrogen spectra in the presence of a weak magnetic field:

En;j;l;mJ D E.0/n

"
1 � E.0/n

�c2

 
2n

j C 1
2

� 3

2

!#
C gJ;l�BBmJ;

where I reintroduced the Bohr magneton �B defined in Eq. 9.5. The magnetic field
contribution presented in such a form remains very much like the naive formula,
Eq. 9.6 for the orbital Zeeman effect derived in Sect. 9.1. You can see that the entire
effect of the spin, and spin–orbit coupling in this limit is reduced to the Lande g-
factor, gJ;l.

14.2.2 Strong Magnetic Field

In the limit of the strong magnetic field, the Zeeman contribution to the atomic
Hamiltonian is more important than the spin–orbit and relativistic corrections
and must be included, therefore, into the zero-order unperturbed Hamiltonian.
The resulting Hamiltonian is similar to the one considered in Sect. 9.1—the only
difference is the presence of the spin contribution ignored in Eq. 9.3. However, the
presence of the spin term does not change the main property of this Hamiltonian—

it still commutes with operators OL2, OLz, and OSz. Accordingly, vectors jn; l;mi jmsi
are still eigenvectors of the Hamiltonian with the Zeeman term, as respective
eigenvalues are, similarly, to Eq. 9.4:
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OHat C eB

2me

� OLz C 2OSz

��
jn; l;mi jmsi D E.0/n C �BB .m C 2ms/ :

The Zeeman contribution lifts the degeneracy of the hydrogen energy eigenvalues
with respect to the magnetic and spin quantum numbers m and ms, but the energy
still does not depend on the orbital number l. The subspace of the degenerate
eigenvectors is now formed by vectors jn; l;mi jmsi, where all quantum numbers,
except of l, are fixed. The spin–orbit coupling and relativistic correction are now
being treated as a perturbation. The latter, which is proportional to Op4, is obviously
diagonal in this basis because vectors jl;mi (note the absence of n in the latter
signifying that the radial function is not included at this point) are the eigenvectors
of this operator. Accordingly, the contribution of this term to the energy remains to
be given by Eq. 14.32 as in the absence of the magnetic field.

To deal with the spin–orbit term, I shall consider matrix

hmsj hn; l;mj
� OLx OSx C OLy OSy C OLz OSz

� ˇ̌
n; l0;m

˛ jmsi D

hn; l;mj OLx

ˇ̌
n; l0;m

˛ hmsj OSx jmsi C hn; l;mj OLy

ˇ̌
n; l0;m

˛ hmsj OSy jmsi C
hn; l;mj OLz

ˇ̌
n; l0;m

˛ hmsj OSz jmsi :

Since expectation values of operators OSx;y in states presented by eigenvectors of OSz,
which appears in the expression above, are zeroes, this expression is reduced to

�
hmsj hn; l;mj OLx OSx C OLy OSy C OLz OSz

� ˇ̌
n; l0;m

˛ jmsi D

hn; l;mj OLz

ˇ̌
n; l0;m

˛ hmsj OSz jmsi

regardless of the value of the orbital number l. The remaining expression is easy to
evaluate if you remember that again, regardless of l, jn; l;mi is an eigenvector of OLz:

hmsj hn; l;mj OL � OS ˇ̌n; l0;m˛ jmsi D „2mmsıl;l0 : (14.40)

Equation 14.40 demonstrates that the perturbation matrix defined on the degen-
erate subspace of vectors jn; l;mi jmsi is diagonal permitting me to use the
non-degenerate perturbation theory to find the spin–orbit corrections to the energy
in the first order of the perturbation theory. It yields

Enlmms D E.0/n C �BB .m C 2ms/C mms
1

8�"0"r

Ze2„2
�2c2

�
1

r3

�
D

E.0/n C �BB .m C 2ms/C mms
1

8�"0"ra3B

Z4e2„2
�2c2

2

l .l C 1/ .2l C 1/ n3
D

E.0/n

	
1 � 2mms

Z2˛2

"2r

1

l .l C 1/ .2l C 1/ n



C �BB .m C 2ms/ ;
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where I again introduced the fine-structure constant ˛. Including the relativistic
correction from Eq. 14.32, I get

Enlmms D E.0/n


1 � 2Z2˛2

"2r n

	
mms � l .l C 1/

l .l C 1/ .2l C 1/
C 3

8n


�
C

�BB .m C 2ms/ : (14.41)

The main difference with the limit of the weak field considered in Sect. 14.2.1
is that now the energy eigenvalues are determined by orbital and spin quantum
numbers l;m;ms rather than by the total angular momentum numbers j and mJ .
In a hand-waving way, one can say that the strong magnetic field “breaks” the
coupling between the orbital and spin angular momenta forcing them to precess
independently around the direction of the field; while in the case of the weak field,
the spin and orbital momenta remain coupled and precess together with the total
angular momentum J.

14.2.3 Intermediate Magnetic Field

Between the two extremes of very weak and very strong magnetic field, there lies a
terrain of moderate fields, which is the most difficult for exploration. In this regime
the spin–orbit, relativistic, and Zeeman contributions to the Hamiltonian are of the
same order and must be all treated as a perturbation. The zero-order Hamiltonian
in this case is just an atomic Hamiltonian with zero-order eigenvalues E.0/n given by
a standard Bohr formula, Eq. 8.16. The degenerate subspace in this case is defined
solely by a principal quantum number n. The dimension of this subspace is 2n2 (n2

without the spin component), and the basis in this subspace can be formed either
by vectors jn; l;mi jmsi with all allowed for a given n values of l, m, and ms or by
vectors jn; j; l;mJi with again all allowed values of j; l, and mJ . Neither of these bases
diagonalizes all three perturbation operators in the degenerate subspace: the Zeeman
term is diagonal only in the basis jn; l;mi jmsi, the spin–orbit Hamiltonian—only in
the basis jn; j; l;mJi, and only the relativistic correction is diagonal in both bases.

A thoughtful reader at this point might say: “Wait a minute! In the weak
field regime we used vectors jn; j; l;mJi which were not the eigenvectors of the
Zeeman term, but the Zeeman Hamiltonian turned out to be diagonal in this basis
nonetheless. What has changed upon transition from the weak field to the moderate
field regimes?” The answer to this question lies in understanding the structure of
the degenerate subspace, which is different in the weak and moderate cases. If
you remember, in the weak field case, the zero-order energy depended on the total
angular momentum number j, which restricted the degenerate subspace to vectors
with the same j and different l and mJ . And if you keep j the same, the Zeeman
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energy indeed becomes diagonal with respect to the remaining indexes l; mJ . The
situation changes when the zero-order energy remains degenerate with respect to
j, throwing eigenvectors with different j into the game. It is with respect to these
vectors that the Zeeman Hamiltonian becomes nondiagonal complicating my and
your life substantially.

Such a significant increase in the dimensionality of the degenerate subspace
makes finding the first-order corrections to the energy analytically for an arbitrary n
impossible, so I will have to limit my consideration to the simplest nontrivial case of
the energy eigenvalue characterized by the principal quantum number n D 2 (case
n D 1 is trivial since it only allows l D 0 and has only trivial degeneracy with
respect to the spin index ms). It is, of course, not as satisfactory as being able to
derive general expressions for arbitrary values of all quantum numbers, but as they
say, a bird in the hand is worth two in the bush, so let’s get what we can.

There are eight degenerate states belonging to the energy eigenvalue E.0/2 D
�E.0/1 =4, where E.0/1 is the absolute value of energy of the ground state. I choose
to use eigenvectors of the total angular momentum as a basis, so these states are

j1i �
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2
; 0;�1

2
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; j2i �
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j7i D
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; 1;
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�
; j8i D
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ˇ̌2; 1

2
; 1;

1

2

�
: (14.42)

To enumerate these states, I introduced for them a simplified notation jii, where
i D 1; 2; � � � 8, but it shall be understood that this numeration is quite arbitrary and
is needed only to index the elements of the 8 � 8 perturbation matrix. The total
perturbation operator in this case consists of three terms: the relativistic correction,
Eq. 14.28, the spin–orbit correction, Eq. 14.5, and the Zeeman term, Eq. 14.35. The
first two of these and the Jz portion of the Zeeman energy are diagonal in the basis
of vectors given in Eq. 14.42. The respective diagonal elements (expectation values,
really) have been calculated using the same basis for the relativistic correction in
Eq. 14.32 and for spin–orbit Hamiltonian in Eqs. 14.26 and 14.27, and their sum,
which is perfectly suitable for our goals here, was found in Eq. 14.33. Combining
Eq. 14.33 with the results for OJz presented in Eq. 14.36, I can write for the complete
diagonal portion of the perturbation matrix, H.diag/

pert :

�
H.diag/

pert

�
i;j

D

2
64�

h
E.0/n

i2

�c2

 
2n

j C 1
2

� 3

2

!
C �BBmJ

3
75 ıi;j; (14.43)
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where i and j correspond to the numeration scheme introduced in Eq. 14.42. For
instance, the element i D j D 1 corresponds to quantum numbers n D 2, j D 1=2,
l D 0, and mJ D �1=2, so that the respective matrix element is

�
H.diag/

pert

�
11

D �
h
E.0/2

i2

�c2

	
4 � 3

2



� 1

2
�BB D

�5
2

h
E.0/2

i2

�c2
� 1

2
�BB: (14.44)

Similarly you can find all other diagonal matrix elements of H.diag/
pert (I will leave the

derivation to you as an exercise):
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H.diag/
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2
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�
H.diag/

pert

�
77

D �1
2

h
E.0/2

i2

�c2
C 1

2
�BB;

�
H.diag/

pert

�
88

D �5
2

h
E.0/2

i2

�c2
C 1

2
�BB: (14.45)

Now, let me turn to a more interesting task of finding the matrix of the operator OSz

in the same basis. To this end I will again invoke the representation of jn; j; l;mJi
vectors in terms of jn; l;mi jmsi vectors using Clebsch–Gordan expansion, Eqs. 9.93
and 9.94. Specializing these equations first to the specific case of vectors j1i, j2i,
j3i, and j4i defined in Eq. 14.42, I find that one of the two terms in Eq. 9.93 or 9.94
vanishes for all these vectors leaving me with

j1i D j2; 0; 0i j#i ; j2i D j2; 0; 0i j"i ; (14.46)

j3i D j1;�1i j#i ; j4i D j1; 1i j"i : (14.47)

The situation becomes more interesting for vectors j5i � j8i. Vectors j5i and j8i are
characterized by j D 1=2, l D 1, and mJ D 1=2 and are obtained, therefore, from
Eq. 9.94
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j5i D 1p
3

�p
2 j1;�1i j"i � j1; 0i j#i

�
; (14.48)

j8i D 1p
3

�
j1; 0i j"i � p

2 j1; 1i j#i
�
; (14.49)

while vectors j6i and j7i correspond to j D 3=2; l D 1, and mJ D 1=2, and for
them Eq. 9.93 yields

j6i D 1p
3

�
j1;�1i j"i C p

2 j1; 0i j#i
�
; (14.50)

j7i D 1p
3

�p
2 j1; 0i j"i C j1; 1i j#i

�
: (14.51)

The first thing to notice is that vectors j1i � j4i are eigenvectors of the operator OSz,
and, therefore, all nondiagonal matrix elements involving these vectors vanish. In
other words it means that the first four columns of matrix .Sz/i;j consist of all zeroes

with an exception of the elements .Sz/ii. Since OSz is a Hermitian operator, the same
is true for the first four rows as well. To give you an idea about how to compute the
diagonal elements in these rows/columns, I compute .Sz/11:

.Sz/11 D h#j h2; 0; 0j OSz j2; 0; 0i j#i D h#j OSz j#i D �„
2

and leave it up to you to show that other diagonal elements are .Sz/22 D .Sz/44 D
„=2, while .Sz/33 D �„=2. The only nondiagonal elements of .Sz/i;j can be found

in columns 5 through 8 formed by matrix elements hij OSz j5i, hij OSz j6i, hij OSz j7i, and
hij OSz j8i and the respective rows. I will begin with OSz j5i, which is easily computed
to be

OSz j5i D „
2
p
3

�p
2 j1;�1i j"i C j1; 0i j#i

�
:

This vector is clearly orthogonal to vectors j1i throughj4i as well as to j7i and j8i
because they all contain basis vectors characterized by quantum numbers, among
which at least one (l, m, or ms) is different from the respective numbers appearing in
vector j5i. The only non-zero matrix elements in the fifth column are h6j OSz j5i and
h5j OSz j5i:

h6j OSz j5i D „
6

�
h"j h1;�1j C p

2 h#j h1; 0j
� �p

2 j1;�1i j"i C j1; 0i j#i
�

D
p
2

3
„

h5j OSz j5i D „
6

�p
2 h"j h1;�1j � h#j h1; 0j

� �p
2 j1;�1i j"i C j1; 0i j#i

�
D 1

6
„:
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Obviously h5j OSz j6i D h6j OSz j5i, and by the same token, the only other non-zero
elements are

h6j OSz j6i D h8j OSz j8i D �1
6

„I h7j OSz j7i D 1

6
„

h7j OSz j8i D h8j OSz j7i D
p
2

3
„:

Now let me put all these matrix elements together into the respective matrix
representing the contribution of spin eB

2me
OSz to the perturbation:

eB

2me
.Sz/ij D �BB

2
6666666666664

� 1
2
0 0 0 0 0 0 0

0 1
2
0 0 0 0 0 0

0 0 � 1
2
0 0 0 0 0

0 0 0 1
2
0 0 0 0

0 0 0 0 1
6

p
2
3

0 0

0 0 0 0
p
2
3

� 1
6
0 0

0 0 0 0 0 0 1
6

p
2
3

0 0 0 0 0 0
p
2
3

� 1
6

3
7777777777775

: (14.52)

While the idea of dealing with a 8 � 8 matrix might be terrifying, the matrix
appearing in Eq. 14.52 has a very special structure, in which small groups of
elements along its main diagonal are surrounded by zeroes from all sides and are,
thereby, separated from other elements. Such groups in the first four rows and
columns consist just of single elements on the main diagonal, then you see the
group of four elements in the sixth and seventh rows and the columns with the
same numbers, which appear as 2� 2matrix surrounded by zeroes on all sides, and,
finally, the similar structure appears in the lower right corner of the matrix. Matrix
having such structure are called block-diagonal, and what makes them special is that
each block can be considered independently of the others and treated accordingly.
To see what it means, imagine that this matrix is multiplied by a column with
eight elements labeled as ai with i changing from one to eight. In the resulting
column, the first four elements will appear just by themselves, not mixed with any
other elements, elements a5 and a6 will only mix with each other , and the same
is true for elements a7 and a8. Now if this resulting column is equated to another
column to form a system of equations, the entire system will disintegrate into four
single independent equations, and a pair of the systems of equations contains only
two coupled coefficients. Apparently, instead of having to solve a system of eight
equations in eight variables, one is left with four independent equations of a single
variable and two pairs of the equations involving only two variables each.7 As a

7Gosh, I am repeating myself, aren’t I? I said exactly the same words in Chap. 9, but well, it is all
for your benefit.
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result, if initially an eight-variable problem might appear quite insurmountable for
an analytical solution, the block-diagonal structure of the matrix makes it easily
solvable even by a high school student. The matrix H.pert/

ij representing the entire
perturbation with relativistic, spin–orbit, and Zeeman terms included is obtained by
adding a diagonal matrix described in Eq. 14.43 through Eq. 14.45 with Eq. 14.52:

H. pert/
ij D

2
666666666666664

�5�so � �Z 0 0 0 0 0 0 0

0 ��so C �Z 0 0 0 0 0 0

0 0 �5�so � 2�Z 0 0 0 0 0

0 0 0 ��so C 2�Z 0 0 0 0

0 0 0 0 �5�so � 1
3
�Z

p

2

3
�Z 0 0

0 0 0 0
p

2

3
�Z ��so � 2

3
�Z 0 0

0 0 0 0 0 0 ��so C 2
3
�Z

p

2

3
�Z

0 0 0 0 0 0
p

2

3
�Z �5�so C 1

3
�Z

3
777777777777775

(14.53)

where I introduced notations

�so D
h
E.0/2

i2

2�c2
I �Z D �BB

to fit this matrix on the page.
The block-diagonal form of the matrix allows me to immediately claim that

vectors
ˇ̌
ˇ̌2; 1

2
; 0;�1

2

�
D j2; 0; 0i j#i ;

ˇ̌
ˇ̌2; 1

2
; 0;

1

2

�
D j2; 0; 0i j"i ;

ˇ̌
ˇ̌2; 3

2
; 1;�3

2

�
D j1;�1i j#i ;

ˇ̌
ˇ̌2; 3

2
; 1;

3

2

�
D j1; 1i j"i

are eigenvectors of the entire perturbation matrix, while the corresponding eigenval-
ues yield four energy levels of the hydrogen with corrections due to relativistic and
magnetic field effects valid to the first order in the perturbation. These levels split
off the initial degenerate level characterized by n D 2 hydrogen energy level and are
distinct for different values of quantum numbers j; l; and mJ . Using the same order
of these numbers as in the designation of the states, I can write

E2;1=2;0;�1=2 D E.0/2 � 5�so � �Z ; (14.54)

E2;1=2;0;1=2 D E.0/2 � �so C �Z ; (14.55)

E2;3=2;1;�3=2 D E.0/2 � 5�so � 2�Z ; (14.56)

E2;3=2;1;3=2 D E.0/2 � �so C 2�Z : (14.57)
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The next four energy levels splitting off our n D 2 unperturbed value cannot be
assigned a number j because they originate from the superposition of states with
different values of this number. They, however, still can be assigned numbers l D 1

and mJ D �1=2 for levels arising from the states in the fifth and sixth rows/columns
and l D 1 and mJ D 1=2 for energies originating from rows/columns 7 and 8. To
find these energies, I have to solve two pairs of eigenvalue equations:

�
	
5�so C 1

3
�Z



a5 C

p
2

3
�Za6 D E2;sup;1;�1=2a5

p
2

3
�Za5 �

	
�so C 2

3
�Z



a6 D E2;sup;1;�1=2a6 (14.58)

and

	
��so C 2

3
�Z



a7 C

p
2

3
�Za8 D E2;sup;1;1=2a7

p
2

3
�Za7 C

	
�5�so C 1

3
�Z



a8 D E2;sup;1;�1=2a8; (14.59)

where coefficients a5 and a6 determine the structure of eigenvectors j2; sup; 1;�1=2i:

j2; sup; 1;�1=2i D a5 j5i C a6 j6i � a5

ˇ̌
ˇ̌2; 1

2
; 1;�1

2

�
C a6

ˇ̌
ˇ̌2; 3

2
; 1;�1

2

�
;

corresponding to eigenvalues, E2;sup;1;�1=2, while coefficients a7; a8 define eigenvec-
tors j2; sup; 1; 1=2i:

j2; sup; 1; 1=2i D a7 j5i C a8 j6i � a7

ˇ̌
ˇ̌2; 1

2
; 1;

1

2

�
C a8

ˇ̌
ˇ̌2; 3

2
; 1;

1

2

�
;

where in place of index j in the eigenvectors and the eigenvalues, I placed the
abbreviation sup reminding that the corresponding vectors represent superposition
states which are uncertain values of j. The eigenvalues are found as zeroes of the
determinants

�����
5�so C 1

3
�Z C E2;sup;1;�1=2 �

p
2
3
�Z

�
p
2
3
�Z �so C 2

3
�Z C E2;sup;1;�1=2

�����

for Eq. 14.58 and the determinate

�����
�so � 2

3
�Z C E2;sup;1;�1=2 �

p
2
3
�Z

�
p
2
3
�Z 5�so � 1

3
�Z C E2;sup;1;�1=2

�����
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for Eq. 14.59. Solving the corresponding quadratic equations, I find

E2;sup1;2;1;�1=2 D E.0/2 �3�so � �Z

2
˙
s
4�2so � 2

3
�so�Z C �2Z

4
(14.60)

E2;sup1;2;1;1=2 D E.0/2 �3�so C �Z

2
˙
s
4�2so C 2

3
�so�Z C �2Z

4
: (14.61)

In the limit of zero magnetic field, both these expressions together with all other
energies in Eqs. 14.54 through 14.57 are reduced to only two values �5�so and ��so

as predicted in Eq. 14.33 for j D 1=2 and j D 3=2 restoring the degeneracy with
respect to l and mJ , characteristic for the fine structure of the hydrogen. The structure
of Eqs. 14.60 and 14.61 provides the quantitative criterion for the weak field and
strong field limits discussed in Sects. 14.2.1 and 14.2.2: the former is defined by
condition �Z � �so and the latter by the opposite inequality. Expanding Eqs. 14.60
and 14.61 in a power series with respect to �Z=�so or �so=�Z= correspondingly, and
keeping only linear terms, one can reproduce results of the corresponding sections. I
will let you confirm this fact as an exercise. Coefficients a5 through a7 are found by
substituting the energy eigenvalues into the respective equations, but the resulting
expressions are rather cumbersome and not too informative, so I will refrain from
showing them here. In the weak and strong field limits, you will be asked to derive
them as an exercise.

14.3 Problems

Problem 166 Derive Eq. 14.20.

Problem 167 Consider a hydrogen atom in vacuum and evaluate all energy levels
constituting its fine structure corresponding to the principal quantum number n D 3.
Which of these energy eigenvalues remain degenerate, and what is the degree of
degeneracy? Determine the frequencies of light required to observe transitions from
the ground state of hydrogen to each of these states.

For Sect. 14.2

Problem 168 Verify Eq. 14.33.

Problem 169 Consider the optical spectra associated with transition between
ground state of the hydrogen atom and the energy levels characterized by n D 3.
Assume that the observations are conducted in the magnetic field B D 10�2T , and
evaluate the wavelengths of light corresponding to each transition assuming that you
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are in the regime of the weak magnetic field. Repeat these calculations for magnetic
field B D 102T using the results derived for the strong field limit. Can you relate
each of the lines found in the weak field limit to the corresponding lines in the strong
field limit?

Problem 170 Verify Eqs. 14.46 and 14.47.

Problem 171 Verify that vectors j5i, j6i, j7i, and j8i defined in Eqs. 14.46–14.49
are orthogonal to the vector obtained by applying operator OSz to vector j3i.
Problem 172 Demonstrate that Eqs. 14.60 and 14.61 for the energy eigenvalues
reproduce results obtained in the limits of weak and strong magnetic fields in the
linear in parameters �Z=�so or �so=�Z= approximation, correspondingly.

Problem 173 Find coefficients a5 through a8 in Eqs. 14.58 and 14.59 in the weak
and strong field limits using the expressions for the eigenvalues derived in the
previous problem.

Problem 174 Find the energy levels arising due to Zeeman splitting of n D
3 eigenvalue of the hydrogen in the presence of the spin–orbit and relativistic
corrections in the intermediate field regime. (Hint: This is a long problem which
involves having to deal with an 18 � 18 perturbation matrix, which, however,
hopefully will have a block-diagonal structure allowing this problem to be solved.)



Chapter 15
Emission and Absorption of Light

15.1 Time-Dependent Perturbation Theory

It is no secret that quantum mechanics grew up to a large extent out of efforts to
understand emission and absorption spectra of atoms. Indeed, the famous Planck
distribution was introduced to explain the spectrum of the black-body radiation
(not to be confused with black hole, of course), and one of Bohr’s postulates dealt
explicitly with conditions for the emission or absorption of light by atoms. It is
not surprising, therefore, that one of the first problems studied by Paul Dirac in his
seminal 1926 paper on “new” quantum mechanics1 (as opposed to the pre-1925
“old” quantum theory based on Bohr–Sommerfeld quantization principle) was the
problem of interaction between light and atoms. This problem belongs to a broad
class of problems, in which the Hamiltonian of a system can be presented as a
sum of the “unperturbed” Hamiltonian OH0 and a perturbation OV . However, unlike
perturbations considered in Chap. 13, operator OV is now allowed to depend on time
so that we end up with the problem involving a time-dependent Hamiltonian:

OH D OH0 C OV.t/: (15.1)

A time dependence of the Hamiltonian is a big deal because it does not just
completely change the way we must approach a problem, it changes the questions
that must be asked. To some extent this issue has already been discussed in
Sect. 10.2, where I dealt with a two-level system interacting with a periodic electric
field and introduced the ideas of quantum transitions and their probabilities that
replaced eigenvalues and eigenvectors as main objects of study. If you do not
remember what I am talking about, please, go back to Sect. 10.2 for a brief refresher.

1P.A.M. Dirac, On the theory of quantum mechanics. Proc. R. Soc. A 112, 661 (1926).
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The simple model considered in Sect. 10.2 as well as its more generic extension
presented by Eq. 15.2 makes an important assumption about the perturbation
operator OV.t/. It is supposed that the perturbation potential is due to interaction
with some external objects or fields, which are not a part of the system described
by Hamiltonian 15.2. Whatever parameters characterizing the perturbation appear
in OV.t/, they are assumed to be fixed by some external conditions and do not
change due to interaction with the atom. For instance, if the perturbation is an
electric field of an electromagnetic wave, this field is taken as being emitted by
an external source (laser, lamp, sun, etc.), and any possible changes in it caused by
the interaction with the atom are neglected.2 This assumption is not always valid.
For instance, if you would want to describe the lasing phenomenon, you would have
to complement Schrödinger or Heisenberg equations for the atom with Maxwell
equations for the field that would include the dipole moment of the atoms as a
source term. In this approach the atom and the electromagnetic field are treated self-
consistently, as an interacting system with interdependent dynamics, with the only
difference that light is considered as a classical (not quantum) object. While it is an
improvement compared to the initial assumption of the independent electromagnetic
field, it is still not sufficient to describe such effects as the finite laser linewidth
or spontaneous emission. Dirac understood the shortcomings of this approach very
well, and, therefore, just a year after publishing the 1926 paper, he produced another
publication, where he described the electromagnetic field as a set of quantized
dynamical variables and solved the light–atom interaction problem treating both
atom and the field quantum mechanically.3 Unfortunately, even the semiclassical
theory of atom–light interaction, leave alone its full quantum treatment, is beyond
the scope of this book, so you will have to wait till you are ready for a more
advanced quantum mechanics course to learn about Dirac’s derivation of the rate
of spontaneous emission as well as about the further development of Dirac’s work
in Wigner–Weisskopf theory of spontaneous emission. You will also have to refer to
more serious books on laser theory to learn about the Schawlow–Townes formula for
the fundamental laser linewidth. Here and for now, you are stuck with the simplest
version of the theory of interaction between quantum systems and light.

In general, the spectrum of the Hamiltonian OH0 in Eq. 15.1 might contain both
discrete and continuous segments with an infinite number of eigenvalues and
eigenvectors. When the number of the unperturbed states is increased beyond the
two, even the rotating wave approximation, which I had to use in Sect. 10.2 to solve
the two-level model, is not going to help me much. Therefore, several approximation
schemes have been invented to deal with this problem. One of the most popular of
them is the time-dependent perturbation theory allowing to determine the evolution
of a state of a system due to a time-dependent perturbation. Having found the time

2If you are wondering what kind of changes the atom can impose on the field, here are two
examples: (a) absorption by atoms can change its amplitude (or the number of photons if you
prefer quantum language), and (b) atoms can emit light at the same frequency as the incident field
resulting in the increase of its amplitude.
3P.A.M. Dirac, The quantum theory of the emission and absorption of radiation. Proc. R. Soc. A
114, 243 (1927).



15.1 Time-Dependent Perturbation Theory 499

dependence of the state, you would be able to determine the probability distributions
and expectation values of any quantity of interest.

I will begin assuming that I know all eigenvalues En and eigenvectors j˛ni of the
unperturbed Hamiltonian OH0:

OH0 j˛ni D En j˛ni : (15.2)

The lower index n here might actually be a composite index consisting of multiple
elements, such as principal, azimuthal, and magnetic quantum numbers for a
hydrogen atom, or a set of numbers nx; ny; nz characterizing the states of a particle in
a three-dimensional potential well, and may include a spin magnetic number as well.
Correspondingly all summations over n appearing below imply summations over all
respective indexes, and all vectors j˛ni are assumed to be normalized and orthogonal
to each other, even if they belong to the same degenerate energy eigenvalue. Using
these states as a basis, I can present an arbitrary time-dependent vector j .t/i as

j .t/i D
X

n

cn.t/e
�iEnt=„ j˛ni : (15.3)

Equation 15.3 is a simple generalization of Eq. 10.13 from Sect. 10.2, where I
have already explained the meaning of coefficients cn and exponential factors
exp .�iEnt=„/. It should be noted that Eq. 15.3 implies that all eigenvectors of OH0

belong to the discrete spectrum. If this is not the case, the sum over n has to be
complemented by an integral over the continuous eigenvalues. Alternatively, I can
always turn a continuous spectrum into a quasi-continuous by imposing periodic
boundary conditions as explained in Sect. 11.5. Substituting this expression to the
Schrödinger equation

i„d j i =dt D OH j i
and taking into account Eqs. 15.1 and 15.2 yield the system of equations for the
unknown coefficients cn:

i„
 

�
X

n

iEn

„ cn.t/e
�iEnt=„ j˛ni C

X
n

dcn.t/

dt
e�iEnt=„ j˛ni

!
D

X
n

cn.t/e
�iEnt=„ OH0 j˛ni C

X
n

cn.t/e
�iEnt=„ OV j˛ni )

X
n

Encn.t/e
�iEnt=„ j˛ni C i„

X
n

dcn.t/

dt
e�iEnt=„ j˛ni D

X
n

Encn.t/e
�iEnt=„ j˛ni C

X
n

cn.t/e
�iEnt=„ OV j˛ni )

i„
X

n

dcn.t/

dt
e�iEnt=„ j˛ni D

X
n

cn.t/e
�iEnt=„ OV j˛ni :
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Premultiplying the last expression by the bra vector h˛mj and using the orthogonality
of the basis vectors, I generate the following system of equations for coefficients cn:

i„dcm.t/

dt
D
X

n

Vmnei!mntcn; (15.4)

where !mn, called transition frequency, is defined as

!mn D Em � En

„ : (15.5)

Vmn is again the same perturbation matrix element Vmn D h˛mj OV j˛ni, which was
introduced earlier in Chap. 13. Equation 15.4 is a generalization of the system of
equations, Eqs. 10.16 and 10.17, to the case of multiple states and an arbitrary
perturbation potential.

In the most generic case, this is a system of infinitely many linear differential
equations of the first order, which is equivalent to the initial Schrödinger equation
and still cannot be solved exactly. The advantage of this representation over the
initial abstract form of the Schrödinger equation is that all the complexity of the
perturbation potential, which is not directly concerned with its time dependence
(e.g., its dependence on coordinate, momentum, or spin operators), is coded into the
corresponding matrix elements, which can be computed using any of the available
presentations for the corresponding operators. To make this argument clearer,
imagine the original Schrödinger equation in the position representation, when it
takes the form of a differential equation in partial derivatives describing dependence
of the wave function upon at least four variables (time plus three coordinates). The
transition to the equations for the coefficient cn given by Eq. 15.4 eliminates the
spatial coordinates, which are integrated out and are hidden in the definition of the
matrix elements Vmn.

The price for this is, of course, that now, instead of one equation, you have to deal
with a system of infinitely many, albeit much simpler, equations. However, there are
several tools, which you can use to make the problem manageable. One of them—
restricting the number of states included in the expansion, Eq. 15.3 (and, hence, the
number of equations in the system)—has been already demonstrated in Sect. 10.2.
In principle, if needed, this approach can be extended to include as many states
as necessary so that the resulting finite system of equations can be solved at least
numerically with the help of a computer. In this section, however, I will introduce a
different method of solving Eq. 15.4 based upon the assumption that the perturbation
operator is, in some sense, small. This method, which was first used in the already
mentioned famous 1926 paper by P. Dirac, and many times since, is responsible for
the most important results in quantum theory of light–atom interaction.

Now, back to Eq. 15.4. To develop the perturbation approach to this equation,
I will again pull out of a perturbation operator a formal “strength” parameter �:
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OV ! � OV , which I will use for the same bookkeeping purposes as in Chap. 13. Now,
I will present an arbitrary coefficient cm as a power series of the form:

cm D c.0/m C �c.1/m C �2c.2/m � � � ; (15.6)

where the first, zero-order, term reproduces the coefficients corresponding to
whatever state the system would be in the absence of the perturbation, the second,
first-order, term introduces corrections linear in the perturbation operator, the
next one adds corrections quadratic in the perturbation, and so on and so forth.
Substituting this expression into Eq. 15.4, I generate an equation containing terms
with various powers of �:

i„
 

dc.0/m

dt
C �

dc.1/m

dt
C �2

dc.2/m

dt
C � � �

!
D

�
X

n

Vmnei!mnt
�
c.0/n C �c.1/n C �2c.2/n � � � � :

This equation can only be satisfied for any arbitrary value of � if and only if terms
with equal powers of � on the left-hand and the right-hand sides of this equation
are individually equal to each other. Equating these terms yields the following set of
equations:

i„dc.0/m

dt
D 0;

i„dc.1/m

dt
D
X

n

Vmnei!mntc.0/n ; (15.7)

:::

i„dc.r/m

dt
D
X

n

Vmnei!mntc.r�1/n ;

:::

The first equation simply states that the zero-order coefficients c.0/m do not depend
on time, the second equation defines the first-order coefficients c.1/m in terms of
c.0/m , the next equation defines c.2/m in terms of c.1/m , and each next coefficient c.r/m is
defined in terms of coefficients of the preceding order c.r�1/m . Thus, starting with c.0/m ,
which are supposed to be known, one can, in principle, solve each of the equations
in this sequence and find the coefficients c.r/n in any order of the perturbation.
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However, in order to actually proceed with this plan, I need additional information,
namely, I’ve got to know the state of the system at some predetermined time instant
t0. Mathematically speaking, what I need are initial conditions for the expansion
coefficients cm, determined by the concrete physical context of the problem. As it
has already been explained in Sect. 10.2, in order to provide meaningful physical
interpretation to calculations with time-dependent Hamiltonians, one has to assume
that the perturbation has a beginning and that it also has to end (doesn’t this
statement apply to everything in life?). Then the state of the system in the absence
of the perturbation, characterized by zero-order coefficients c.0/m , defines natural
initial conditions for cm.t/: cm.t0/ D c.0/m : This, in turn, means that all higher-
order coefficients c.r/m to cm.t/ must vanish at t D t0. Strictly speaking both on
and off times might not always be rigorously defined because switching-on and
switching-off of the perturbation is never instantaneous. Still, in some situations,
assigning an exact value to t0, which is usually chosen to be t0 D 0, is justifiable
and is frequently used in practical calculations. In other instances it might make
more sense to assume that the perturbation grows gradually from zero and assign
t0 D �1. The particular choice usually depends on the problem at hand, but in what
follows, unless I explicitly state otherwise, it will be assumed that the perturbation
is being turned on instantaneously and choose t0 D 0.

Now, once the initial conditions for all differential equations in Eq. 15.7 are
specified, they can be solved quite easily by simple integration of both sides with
respect to time. The simplest way to incorporate the initial conditions into the
solution is to write them down as definite integrals with lower limit set to 0 and
upper limit to t:

c.0/m D const (15.8)

c.1/m .t/ D 1
i„
X

n

c.0/n

tˆ

0

d�Vmn .�/ ei!mn� (15.9)

:::

c.r/m .t/ D 1

i„
X

n

tˆ

0

d�Vmn .�/ ei!mn�c.r�1/n .�/ (15.10)

:::

It is quite obvious that this form of the solution ensures that all c.r/m with r > 0 vanish
at t D 0 as required by the initial conditions. Equation 15.9 presents a ready-to-use
solution for the first-order correction to the time-dependent state vector j˛.t/i. As
an illustration I will also derive the final expression for the second-order correction,
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but I am not going to make much use of it in what follows. Equation 15.10 adapted
to r D 1 yields

c.2/m .t/ D 1

i„
X

n

tˆ

0

d�Vmn .�/ ei!mn�c.1/n .�/ :

Substitution of Eq. 15.9 yields

c.2/m .t/ D
	
1

i„

2X

n

X
p

c.0/p

tˆ

0

d�

�ˆ

0

d�1Vmn .�/Vnp .�1/ ei!mn�ei!np�1 (15.11)

where I made necessary changes in the summation indexes and integration variables
to be able to write down the expression as a double sum and a double integral. It
is not too difficult to write down an expression for an arbitrary coefficient c.r/m .t/,
which will obviously include r summations and integrations; I will let you enjoy
figuring it out on your own as an exercise.

If we are only interested in the effects of the first order (linear) in the perturbation
potential, Eq. 15.9 contains all the general information we need. Equation 15.11
obviously describes second order or quadratic in perturbation effects, the next
term will yield third-order effects, and so on. In the context of the light–matter
interaction, you can say that Eq. 15.9 describes linear optical effects, while other
equations correspond to nonlinear phenomena of the second, third, or even higher
orders. Nonlinear optics is a fascinating field, but it is impossible to embrace the
unembraceable, so I will have to reluctantly limit the scope of this chapter by the
first-order corrections only.

In order to proceed any further, I need to specify the set of initial coefficients c.0/m

and the actual time dependence of the perturbation potential. Obviously, there exist
infinite possibilities with respect to both of these, so I will focus on the situations
which are most relevant for typical experiments. While lately experimentalists
learned how to create complex superposition states of atoms, in most practical
situations, you will deal with an initial state represented by a simple eigenvector of
the unperturbed Hamiltonian. In this case all coefficients c.0/m � cm.0/with m ¤ m0,
where j˛m0i is a vector representing the initial state of the system, are equal to zero,
while c.0/m0 � cm0 .0/ D 1. Consequently, the summation over n in Eq. 15.9 now
vanishes, and one ends up with the following:

c.1/m .t/ D 1

i„

tˆ

0

d�Vmm0 .�/ ei!mm0 � : (15.12)
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Going back to Eq. 15.3, I find the first-order approximation for the time-dependent
state of the system:

j .t/i D e�iEm0 t=„ j˛m0i C

1

i„e�iEmt=„X
m

tˆ

0

d�Vmm0 .�/ ei!mm0 � j˛mi : (15.13)

If the perturbation is switched off at t D tf , and a measurement of energy is carried
out immediately afterward, the probability that the system is found in the stationary
state j˛mi is given by

pmm0 D 1

„2

ˇ̌
ˇ̌
ˇ̌

tfˆ

0

d�Vmm0 .�/ ei!mm0 �

ˇ̌
ˇ̌
ˇ̌

2

: (15.14)

The double-index notation of the probability is a reminder of the fact that this
probability is conditional (predicated on a system being initially at the state j˛m0i)
and can be interpreted as a probability of transition between the initial and final
states. It shall be noted that the requirement that the perturbation ends at t D tf
shall not be understood too literally. It is sufficient if the act of measurement,
taking place at this instant, disrupts the “natural” dynamics of the state prescribed
by the perturbation drastically enough so that the entire evolution begins from the
very beginning. An example of such a disruption can be the act of spontaneous
emission accompanied by the transition of the atom to one of the lower energy
states, which will restart the perturbation-induced dynamics. If the final state j˛mi
belongs to a non-degenerate eigenvalue of OH0, it is sufficient to measure the spectral
intensity of the spontaneous emission to identify it. If, however, j˛mi belongs to
a degenerate eigenvalue, additional characteristics such as polarization, angular
distribution, dependence on magnetic field, etc. might be required to achieve the
unique identification of the final state. If, however, you are only interested in the
probability of a specific energy eigenvalue, you can find it by summing up pmm0
over all states belonging to a given degenerate energy level.

There are several important models of the time dependence of the perturbation
matrix elements Vmm0 .t/ which needs to be considered. However, I will begin with
a simple toy example of a “pulse” perturbation described by the following time
dependence:

Vmm0 .t/ D vmm0�.t/e
�t=t0 ; (15.15)
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where �.t/ is a step function, which is equal to unity for positive values of the
argument and vanishes for the negative ones. Substituting Eq. 15.15 into Eq. 15.12,
I get

c.1/m .t/ D vmm0

i„

tˆ

0

d�e.i!mm0�1=t0/� D vmm0

i„
1

i!mm0 � 1=t0
e.i!mm0�1=t0/�

ˇ̌
ˇ
t

0
D

vmm0

i„
e.i!mm0�1=t0/t � 1

i!mm0 � 1=t0

and

pmm0 D ˇ̌
c.1/m .tf /

ˇ̌2 D jvmm0 j2
„2

�
e.i!mm0�1=t0/tf � 1

� �
e.�i!mm0�1=t0/tf � 1

�

!2mm0 C 1=t20
D

jvmm0 j2
„2

1C e�2tf =t0 � 2e�tf =t0 cos
�
!mm0 tf

�

!2mm0 C 1=t20
:

There are several lessons to be learned from this example. First, the transition
probability decreases as the spectral distance between the initial and final states
exemplified by !m;m0 increases. This fact can be used as a justification for limiting
the number of states included into consideration, in particular, for the two-level
model studied in Chap. 10. Second, the number of states ıN with appreciable
transition probabilities is determined by the product of the spectral distance between
two adjacent states ı!m D jEm � Em�1j D j!m;m0 � !m�1;m0 j and the time scale
of the exponential decay of the perturbation t0: ıN � .ı!mt0/

�1. Indeed, as long
as j!m;m0 j � 1=t0, the transmission probabilities remain virtually independent of
!m;m0 , and the probability starts decreasing only as j!m;m0 j exceeds 1=t0.

This result also has another important interpretation. The temporal Fourier
transform QVmm0 .!/ of the perturbation matrix element gives

QVmm0 .!/ D vmm0p
2�

1̂

0

ei!te�t=t0dt D � vmm0p
2�

1

i! � 1=t0
;

and the corresponding power spectrum
ˇ̌ QVmm0 .!/

ˇ̌2
, which determines relative

contribution of different frequency component into the perturbation potential, is

ˇ̌ QVmm0 .!/
ˇ̌2 D jvmm0 j2

2�

1

!2 C 1=t20
:
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This is a so-called Lorentzian function, which has its maximum at ! D 0 and
is reduced by a factor of 2 when ! D 1=t0. For this reason, 1=t0, called half-
width at half-maximum (HWHM), can be considered as a measure of the breadth
of the spectrum of the perturbation. Then condition j!m;m0 j � 1=t0 means that
the largest effect the perturbation has on those energy levels, which fall within the
spectral range of the perturbation potential. Finally, one can see that in the limit
tf ! 1, the transition probability becomes proportional to the power spectrum of
the perturbation matrix elements at frequency !mm0 :

pmm0 D 2�

„2
ˇ̌ QVmm0 .!mm0 /

ˇ̌2
:

15.2 Fermi’s Golden Rule

Fermi’s golden rule is one of the most frequently used (and often overused) results
of the first-order perturbation theory. It appears in several different reincarnations in
a variety of situations and deserves an entire section devoted to it. It all begins with
a problem of finding transition probabilities due to a monochromatic perturbation.

15.2.1 First-Order Transmission Probability in the Case
of a Monochromatic Perturbation

While a time dependence in the form of a simple trigonometric function

Vmm0 .t/ D 2vmm0�.t/ cos�t (15.16)

is the simplest one, it generates transition probabilities that are not quite trivial to
interpret, and dealing with them requires certain caution. Matrix elements vmm0 in
Eq. 15.16 are assumed to obey condition vmm0 D v�

mm0 to ensure that the entire
matrix Vmm0 .t/ is Hermitian. The choice of the cosine function to represent the time
dependence is absolutely arbitrary; the same results would follow if I chose to deal
with a sine function instead. The factor 2 is introduced also for convenience and
amounts to a redefinition of the remaining matrix elements.

To compute the coefficients c.1/m .t/, it is convenient to rewrite the perturbation in
terms of exponential functions, which results in the following integral:

c.1/m .t/ D vmm0

i„

tˆ

0

d�
�
ei�� C e�i��

�
ei!mm0 � D

vmm0

i„


exp Œi .�C !mm0 / t� � 1
i .�C !mm0 /

C exp Œi .��C !mm0 / t� � 1
i .��C !mm0 /

�
D
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2vmm0

i„

2
664exp


i .�C !mm0 / t

2

� exp


i.�C!mm0 /t

2

�
� exp


� i.�C!mm0 /t

2

�

2i .�C !mm0 /
C

exp


i .��C !mm0 / t

2

� exp


i.��C!mm0 /t

2

�
� exp


� i.��C!mm0 /t

2

�

2i .��C !mm0 /

3
775 D

2vmm0

i„

2
4exp


i .�C !mm0 / t

2

�
sin .

�C!mm0 /t
2

�C !mm0

C

exp


i .��C !mm0 / t

2

�
sin .

��C!mm0 /t
2

��C !mm0

3
5 :

This expression can be rewritten in terms of the so-called sinc function defined as

sinc.x/ D sin x

x
: (15.17)

This name is an abbreviation of the full Latin name sinus cardinalis; it appears
quite often in the theory of signal processing, information theory, and, as you can
see, in calculations of transition probabilities with the harmonic perturbation. Its
main features are the main maximum at x D 0, where it takes value of unity, and
equidistant zeroes at xn D �n; n D ˙1;˙2; � � � . The zeroes separate secondary
maximums (or minimums) with ever-decreasing absolute values. Among other
important properties of this function is the following integral:

1̂

�1
sinc2.x/dx D �: (15.18)

It is also useful to take a closer look at a so-called rescaled sinc function defined as
sinc.ax/ and considered as a function of x. What is interesting about this function is
that the distance between its zeroes given by

xnC1 � xn D �

a

goes to zero as parameter a tends to infinity. It means that while the value of the
function at x D 0 remains unity, the function becomes more and more “compressed”
around this point as a is increasing (see Fig. 15.1, where I plotted function sinc.ax/
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Fig. 15.1 Function sinc.ax/
for three values of parameter a

for several values of a). In terms of this function, the expression for the coefficients
c.1/m can be written down as

c.1/m .t/ D vmm0

i„ t


exp


i .�C !mm0 / t

2

�
sinc

	
.�C !mm0 / t

2



C

exp


i .��C !mm0 / t

2

�
sinc

	
.��C !mm0 / t

2


�
: (15.19)

Properties of the sinc function offer us a valuable lesson in connection with
Eq. 15.19. Since ˝ C !mm0 and �˝ C !mm0 never turn zero for the same
combinations of ˝ and !mm0 , the corresponding terms in this equation are always
disparate in their magnitudes, and the disparity grows stronger with the passage
of time. It is clear from the latest remark that I am treating the combination of
frequencies as the argument of the sinc function, while time t plays the role of the
scaling parameter a.

The argument of the sinc function in the first term of Eq. 15.19 turns zero when
the external frequency � is

� D �!mm0 ; (15.20)

which is only possible if !mm0 is negative because the frequency � is defined as a
positive quantity. Negative !mm0 corresponds to Em < Em0 , i.e., to transitions from
the higher energy state to lower energy states, and authors of many textbooks at
this point add that it, obviously, corresponds to a transition in which light is being
emitted. This conclusion is usually justified by appealing to the energy conservation
principle—if the energy of the atom decreases, it must go somewhere, and if
the perturbation involved in the transition is an electromagnetic wave, it is quite
natural to assume that this is where the energy goes. I would like to emphasize,
however, that the approach used to derive Eq. 15.19 is based on the assumption
that the perturbation potential is not affected by the state of the atom, so that any
processes involving emission or absorption of light, rigorously speaking, cannot be
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described within this approach. Having cautioned you, now I have to admit being
a bit facetious because as long as an interaction with the electromagnetic field is
the only interaction the atom can be engaged in, this conclusion is, indeed, true. It
can be confirmed directly by a complete theory explicitly taking into account the
absorption and emission of light by the atom.

The argument of the sinc function in the second term of Eq. 15.19 turns zero
when

� D !mm0 ; (15.21)

i.e., for transitions from a lower energy state to the higher energy states. Using again
energy conservation arguments, you can argue that since the energy required for an
atom to make this transition can only come from the perturbation, this process must
correspond to absorption of light if the perturbation is again provided by an incident
electromagnetic wave. Regardless of which of the conditions, Eq. 15.20 or 15.21, is
true, you need to keep only one term in Eq. 15.19. Thus, limiting consideration only
to coefficients for which !mm0 > 0 (and if m0 is the ground state, it would include
all the coefficients, since in this case only transitions to higher states are possible),
we can simplify the expression for c.1/m .t/ to

c.1/m .t/ D vmm0

i„ t exp


i .��C !mm0 / t

2

�
sinc

	
.��C !mm0 / t

2



; (15.22)

which yields the transition probability

pmm0 D ˇ̌
c.1/m .t/

ˇ̌2 D jvmm0 j2
„2 t2sinc2

	
!mm0 ��

2
t



: (15.23)

However, the derivation of this formula is not the entire story. The real story here
is the dependence of the transition probability on time and the external frequency
detuning � � !mm0 . When this detuning is equal to zero (people say in this case
that the perturbation is in resonance with the transition), the probability grows
quadratically with time. This growth imposes the upper limit on how long the
perturbation can be allowed to act before the approximation used in this approach
loses its validity. Using the applicability condition pmm0 � 1, I obtain for the time
limit

tf � t� D „
jvmm0 j

: (15.24)

It is interesting to compare the expression for t� with Eq. 10.24 for the Rabi
frequency �R of a two-level system. With obvious changes in the notations
(jvmm0 j ! E), Eq. 15.24 can be recast as tf � 1=�R allowing to claim that the
first-order perturbation theory remains valid as long as time tf remains much smaller
than the period of the Rabi oscillations defined by the perturbation matrix element
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Fig. 15.2 Frequency
dependence of the probability
transition for various times tf

jvmm0 j. The quadratic raise of the resonance transition probability with time is not
the whole story, again. The second effect occurring simultaneously is the shrinkage
with time of the interval of frequencies corresponding to the nonvanishing transition
probabilities. This interval, for instance, can be estimated as the spectral distance
between the resonance �r D !mm0 and the frequency �z � !mm0 D 2�=t, where
the sinc function becomes equal to zero for the first time. Beyond this point even
formally non-zero values of the probability are too small to be taken seriously (see
Fig. 15.2). With increasing t this spectral interval decreases as 1=t, so that even
though the maximum value of the probability grows as t2, the area covered by the
function pmm0 .��!mm0 / increases only as t (hight � width/. This area is expressed
mathematically as an integral of the pmm0 .��!mm0 / with respect to ��!mm0 , and
while you are scratching your head trying to understand why it even matters to me,
let me try to explain. Consider the following integral:

1̂

�1
sinc2

�ax

2

�
dx D 2�

a
; (15.25)

where I used Eq. 15.18 and the obvious substitution of variables. This result means
that

lim
a!1

0
@ a

2�

1̂

�1
sinc2

�ax

2

�
dx

1
A D 1;

which indicates that function a sinc2.ax=2/=.2�/ in the limit a ! 1 behaves
essentially as Dirac’s delta-function—it approaches infinity as its argument goes
to zero and vanishes for all other argument values (see Fig. 15.2), and its integral is
equal to unity:

lim
a!1

a

2�
sinc2

�ax

2

�
D ı.x/: (15.26)
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Identifying now x with � � !mm0 and a with t, I can rewrite Eq. 15.23 in the form

pmm0 D 2� jvmm0 j2
„2 tı .� � !mm0 / ;

which approximates the transition probability for times tf large enough to neglect
the values of sinc function for all frequencies except of the resonance one, and at the
same time small enough to still satisfy inequality in Eq. 15.24. Sometimes people
write these results in terms of energy levels rather than transition frequency, making
argument of the ı-function into „� � Em C Em0 . Taking advantage of the identity
ı.x=a/ D aı.x/, you can rewrite the probability transition as

pmm0 D 2� jvmm0 j2
„ tı .„� � Em C Em0 / : (15.27)

The linear dependence of this probability upon time allows introducing a transition
rate Rmm0 D pmm0=t, which expresses the constant (independent of time) probability
of transition per unit time:

Rmm0 D 2� jvmm0 j2
„ ı .„� � Em C Em0 / : (15.28)

Equation 15.28 is one of the several expressions for what is known in quantum
mechanics as Fermi’s golden rule. The problem with this result is that despite of
its fame and years of successful use, it is not that easy to make sense of it. Indeed,
according to Eq. 15.28, the transitions are possible only if the argument of the delta-
function is exactly equal to zero—a condition which is experimentally impossible
to achieve. Even from the theoretical viewpoint, this expression is dubious because
delta-function as a mathematical construct only makes sense inside of an integral
with another normal function. You might try to save the situation by assuming
that the whole business of replacing the sinc function with the delta-function was
wrongheaded, and if we just stayed with the sinc function, all problems could have
been avoided. Unfortunately, this idea does not save the situation for several reasons.
First, with increasing time, the width of the main maximum of the sinc function
objectively grows too small to have experimental relevance, and the use of the
delta-function simply emphasizes this real fact (experimentally, starting with some
time t, the difference between the zero width of the delta-function and finite but
tiny width of the sinc function becomes unnoticeable). Second, avoiding transition
to the delta-function, you would not be able to reveal the important feature of
the time dependence of the transition probability, namely, its linear rather than
quadratic dependence on time, understood in some integrated sense. The transition
from quadratic time dependence at small t to linear dependence as t grows is not a
regular crossover from one asymptotic form of a function to another—it is actually
a transition in interpreting the transition probability from a regular function of
frequency to what mathematicians call a distribution—a mathematical entity which
can only have sense when used inside of an integral. The transition from the sinc
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to the delta-function simply illuminates this quite real and experimentally relevant
change in the nature of the frequency dependence of the transition probability.

Thus, the only way to make sense of Eq. 15.28 is to find what this transition
rate can be integrated with. It is quite clear that within the current picture of a
monochromatic perturbation acting on an atom with a discrete spectrum, this goal
cannot be achieved, which means that the perturbation theory is not really suitable
for dealing with such systems. Indeed, you can remember that in the extreme model
of the atom with only two energy levels solved in Sect. 10.2 without reliance on the
perturbation theory, we have not encountered any of the problems plaguing us here.
But do not worry, you have not just wasted an hour of your life reading the lead-up
to Eq. 15.28. This result is still useful, but you need to learn when and how to use it,
and this is what I am going to show to you in the next subsections.

15.2.2 A Non-monochromatic Noncoherent Perturbation

To justify the starting discussion of the transition probabilities with the simple
monochromatic (described by sin or cos functions) perturbation, I could remind
you that any arbitrary time-dependent perturbation can be expended into a linear
combination of monochromatic functions. This expansion is well known as a Fourier
series, if the initial function is periodic, or a Fourier integral, if it is not. I will not
assume periodicity of the perturbation potential and will present it as

Vmm0 .t/ D vmm0

1̂

�1
F.�/e�i˝td�; (15.29)

where F.�/ is the Fourier transform of the function f .t/ prescribing the time
dependence of the perturbation potential.4 Since the integration with respect to time
required by Eq. 15.12 can be carried out independently of the integration over �;
I can simply substitute Eq. 15.22 into Eq. 15.29 to get the result for the first-order
transition amplitude:

c.1/m .t/ D vmm0

i„ t

1̂

�1
d˝F.�/ exp


i .��C !mm0 / t

2

�
�

sinc

	
.��C !mm0 / t

2



: (15.30)

4Equation 15.29 obviously implies that time dependence of the perturbation potential appears as a
product of a time-dependent function and a time-independent operator, which is the case in many
practically important situations.
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Note that since Eq. 15.29 does not formally contain exp .i�t/ terms which appeared
in Eq. 15.16 in order to maintain the Hermitian nature of the perturbation, I can
use Eq. 15.22 omitting the second nominally emission-related term, appearing in
the treatment of the monochromatic perturbation. Because the integration over �
includes both positive and negative values, this term is automatically included in
Eq. 15.30. The hermiticity of the perturbation is now ensured by the condition
F.�/ D F�.��/, which guarantees that f .t/ is a real-valued function. This
condition is a known result from the theory of Fourier transforms, but you can easily
verify it yourself.

The corresponding expression for the transition probability

pmm0 D jvmm0 j2
„2 t2

1̂

�1
F.�1/F

�.�2/ exp


i .�2 ��1/ t

2

�
�

sinc

	
.��1 C !mm0 / t

2



sinc

	
.��2 C !mm0 / t

2



d˝1d˝2 (15.31)

features the integration of the sinc function over the external frequency, which I
sought to find, but I got more than I have bargained for—two integrals instead of
one and two external frequencies �1;2 (I had to introduce two separate integration
variables to turn a product of two integrals into a double integral). To move forward
with this expression, I have to make additional assumptions about the perturbation,
and I will begin by presenting F.�/ in the amplitude–phase form

F.�/ D j F.�/j ei'.�/

where I introduced its absolute value j F.�/j and phase ' .�/. You can think of
Eq. 15.29 as a superposition of monochromatic waves each with its own phase, and
as your experience with wave superposition might tell you, the result depends a lot
on the relation between the phases of the waves being added. In a simplest case,
we distinguish between two extremes—the coherent and incoherent superposition.
In the former case, the relation between the phases is fixed and the intensity
of the resultant wave produces a characteristic interference pattern. Incoherent
superposition occurs when the phases of the individual waves are not fixed and
change randomly so that all interference terms dependent on the phase difference
average out to zero. The resulting intensity becomes merely the sum of intensities
of the individual waves with all traces of interference pattern washed out.

With this in mind, I am going to suppose that Eq. 15.29 represents an incoherent
superposition in which the phase difference ' .�1/ � '.˝2/ is a random quantity
fluctuating between values of 0 and 2� . This quantity appears in Eq. 15.31 in
the form exp Œ' .�1/ � '.˝2/�, which vanishes upon “averaging” over the phases
unless �1 D �2. If we dealt with a sum over discrete frequencies, I would
have assigned the value of unity to this expression at �1 D �2, but since I am
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dealing with an integral over continuously varying quantity, it is more appropriate
to prescribe that

exp Œ' .�1/ � '.˝2/� D ı .�1 ��2/ ; (15.32)

where the line above the exponential signifies “averaging” over the phases. Substi-
tuting this expression into Eq. 15.31, you end up with the following:

pmm0 D jvmm0 j2
„2 t2

1̂

�1
d˝ j F.�/j2 sinc2

	
.��C !mm0 / t

2



: (15.33)

I will not be surprised if you are not completely satisfied with my “derivation” of
the last expression and will think of it as a bit of a hand-waving type. I would agree
as this can hardly be called a derivation at all: the nature of the averaging procedure
was not explained, and Eq. 15.32 was essentially postulated not derived. However,
the result, Eq. 15.33, looks quite reasonable and in sync with our intuition about
incoherent superpositions. Indeed, the story, which this expression tells, makes total
sense: each frequency component of the perturbation potential generates a transition
probability as given by Eq. 15.23 corrected for the spectral intensity j F.�/j2. The
total probability due to all frequency components is just a sum (well, in this case, it is
an integral) of the probabilities caused by each spectral component independently.
The incoherency supposition is in this context equivalent to the assumption that
each spectral component of the perturbation induces transitions independently of
the others. Of course, this result can be derived and formulated in a more rigorous
manner, but I hope you will forgive me for the decision to spare you the technical
details. Those who are not still completely satisfied can google the Wiener–Khinchin
theorem and enjoy the ride. In the meantime, I will replace the sinc function by a
delta-function following the rule established above and transforming Eq. 15.33 into

pmm0 D 2� jvmm0 j2
„2 t

1̂

�1
d˝ j F.�/j2 ı .��C !mm0 / D

2� jvmm0 j2
„2 j F .j!mm0 j/j2 t: (15.34)

Equation 15.34 and the corresponding formula for the transmission rate

Rmm0 D 2� jvmm0 j2
„2 j F .j!mm0 j/j2 ; (15.35)

unlike Eq. 15.28, do make total sense and can be put to immediate use. Equa-
tion 15.35 can be considered as Fermi’s golden rule formulated for an incoherent
perturbation, where the transition rate is determined by the spectral intensity of the
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perturbation at the transition frequency. You shall also notice that these equations
describe both absorption and emission transitions as exemplified by my use of
j!mm0 j. Indeed, if !mm0 > 0 (absorption), the zero of the argument of the delta-
function in Eq. 15.34 occurs at positive values of �, while if !mm0 < 0, it
happens at negative �, which are also present in the respective integral. However,
property F.�/ D F�.��/ required to keep perturbation Hermitian also yields
F.��/F�.��/ D F�.�/F.�/ ensuring that the spectral density is an even
function of the frequency j F.��/j2 D j F.�/j2. Therefore, the use of the absolute
value symbol in its argument is not really necessary as transition rates for emission
and absorption between the same pairs of states are obviously equal to each other.

15.2.3 Transitions to a Continuum Spectrum

Fermi’s golden rule in its delta-functional form can also be used in a meaningful
way when either the final or initial (or both) state participating in the transition
belongs to a continuous spectrum. Such situation arises, for instance, in the case of
ionizing transitions, when an electron is kicked out from its initial discrete energy
level to the spectral continuum, where its wave function is no longer localized.
We call this process ionization because the electron in such a final state has a
non-zero probability to get infinitely far away from the remaining ion, so it does
not “belong” to it anymore. Optical (caused by interaction with light) transitions
in semiconductors present an example when both initial and final states of the
transition belong to a continuous spectrum. In this section I will consider the
transitions between discrete and continuous states, leaving the semiconductor case
for a special treatment in the section on light absorption.

When dealing with transitions to the states of the continuous spectrum, the first
thing you need to realize is that a probability of transition to a state with an exact
energy eigenvalue does not make sense anymore, and you need to discuss this
situation in terms of probability density. The actual transition probability can only
be then defined as an integral of the probability density over some finite energy
interval. This is nothing new, of course, as we have already discussed the conversion
of probabilities to probability densities in Sects. 2.3 and 3.3.5 when exploring
differences between observables with discrete and continuous eigenvalues.

So, my mission now is to turn transition probability pm0m into an appropriate
probability density, and to accomplish this, I will rely upon the old trick of forced
discretization, which I have used in Sect. 11.5 on a system of non-interacting elec-
trons. However, the concrete realization of the discretization procedure depends on
how the states of the continuous spectrum are described. I will consider two different
ways to deal with them. If, as often is the case, the unperturbed Hamiltonian OH0

commutes with the operators of the angular momentum OL2 and OLz, its eigenvectors
can be characterized by azimuthal and magnetic quantum numbers L and M even
if the eigenvector belongs to a continuous spectrum. These states, then, are still
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characterized by three discrete indexes (including spin) and a single continuously
changing parameter k D p

2meE=„. This parameter appears in the radial equation
for the electron in a central potential in the form of dimensionless coordinate � D kr
in Eq. 8.12, Chap. 8. You can easily demonstrate it by replacing the dimensionless
parameters & and �n;l appearing in that equation by their expressions in terms of
real physical coordinate r and energy En;l. In order to discretize this parameter, I
have to impose boundary conditions on the radial function Rl.kr/: Rl.kD/ D 0,
where D ! 1. Sparing you the details of the derivation, it can be shown that this
boundary condition results in the following allowed values of kj: kj D � j=DC ıl=D,
where ıl is an extra phase dependent on the azimuthal quantum number l, which you
do not have to worry about, and j D 1; 2; 3 � � � . Now the expression for the transition
probability pm0m can be rewritten as

pm0Im0;kj D 2�
ˇ̌
vm0Im0;kj

ˇ̌2
„ tı

�„� � Em0;kj C Em0

�
;

where index m0 includes principal, azimuthal, magnetic, and spin quantum numbers
of the initial states, while the principal number in m0 is replaced by a wave number
kj. To turn this probability into the probability density, I will perform the following
standard series of steps:

4pm0Im0;kj D 2�
ˇ̌
vm0Im0;kj

ˇ̌2
„ tı

�„� � Em0;kj C Em0

�4j D

2D jvm0Im0 .k/j2
„ tı .„� � Em0.k/C Em0 /4k D

2D jvm0Im0 .k/j2
„ tı .„� � Em0.k/C Em0 /

dk

dE
4E D

2D jvm0Im0 .k/j2
„2

r
me

2E
tı .„� � Em0.k/C Em0 / dE:

The first line in this expression is obtained by multiplying the initial transition
probability by 4j, which is equal to unity, so this step does not really change
anything. In the second line, I used the quantization rule obtained from the boundary
conditions (note: the phase ıj, which I asked you not to worry about, disappeared)
to replace 4j with 4k and upgraded k from a discrete lower index to the continuous
argument of the matrix element. Finally I converted 4k into 4E using the relation
k D p

2meE=„ to compute the derivative dk=dE D p
me= .2E„2/. The entire

expression in front of dE is the probability density, and the actual probability to
undergo a transition to a state with any energy within a certain interval would be
normally given by an integral over this interval. However, the presence of the delta-
function in the probability density makes transition possible only to the states with

Etr D „�C Em0 ;



15.2 Fermi’s Golden Rule 517

with the corresponding probability given by the integral over arbitrary energy
interval as long as it includes Etr. Thus, the rate of transitions from the initial state
jm0i to the final state jm0;Etri is equal to

Rm0Im0 .�/ D 2D jvm0Im0 .„�C Em0 /j2
„2

s
2me

„�C Em0

: (15.36)

If the perturbation potential does not depend on the spin of the electron, the
perturbation matrix element is diagonal with respect to the spin quantum numbers
of the initial and final states. If, also, you do not really care about the spin state of
your electron, the transition rate needs to be summed over the spin states, which,
in this case, produces simply an extra factor of two in the transition rate. Then the
spin-indifferent transition rate becomes

Rm0Im0 .�/ D 4D jvm0Im0 .„�C En0 /j2
„2

s
2me

„�C Em0;L
;

where the indexes m0 and m0 are now missing the spin quantum numbers.
In the approach leading to Eq. 15.36, the wave functions of the position rep-

resentation were defined using the spherical coordinates. While this approach is
useful in some circumstances, the wave functions even of a free particle in the
spherical coordinates have a pretty complicated form. Thus, in many practically
relevant situations, it is more convenient to use Cartesian coordinates instead. In
this case the states of the continuous spectrum can be characterized by a regular
wave vector k with the energy E .k/ defined in a standard free particle-like way. If
we are dealing with an electron moving in a Coulomb potential, like in a hydrogen
atom problem, the respective wave functions (remember, I am talking about the
continuous spectrum here, and we did not deal with it in Chap. 8) are called
Coulomb wave functions, and they are too mathematically complex to be bothered
with here. These functions look like modified plane waves and asymptotically
approach the latter as the energy and/or the distance from the nucleus grows. And
luckily enough, large distance asymptotic behavior is all I need in order to introduce
a quasi-continuous discrete description of these functions. To this end I can go back
to the same periodic boundary conditions used in Sect. 11.5 and introduce quantized
components of the wave vector as km1;2;3 D 2�m1;2;3=L with the set of numbers m1;2;3

comprising the composite index m in the expressions for the probability distribution.
Then I can convert the transition probability into a transition probability distribution
using the same trick as before by introducing

1 D 4m14m24m3 D L3

.2�/3
4kx4ky4kz
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into

4pm0m D pm0m4m14m24m3 D L3

.2�/3
pm0;s .k/4kx4ky4kz; (15.37)

where in the last expression I replaced the discrete index m with the set of
quasi-continuous variables ki while keeping the quantum spin number s (the only
remaining discrete characteristics of the final state) as an index. Incorporating
Eq. 15.27 I can transform it into the following expression for the transition
probability density:

dpm0;s .k1; k2; k3/ D 2�

„ t
L3

.2�/3
jvm0;s .k/j2 ı .„� � Ek;s C Em0 / d3k: (15.38)

The delta-function in this expression limits the non-zero values of the probability
density to what is called the “equienergetic” surface Ek;s D „� C Em0 . A further
development of this expression depends on the shape of this surface. I will only
consider here the simplest and, therefore, the most popular case of spherical
equienergetic surfaces, which correspond to the free-particle relation between
energy and the wave vector:

E D „2
2me

�
k2x C k2y C k2z

�
:

In this case, it is convenient to replace the Cartesian components of the wave
vector kx; ky; and kz with their spherical counterparts k; �; and ', where k Dq

k2x C k2y C k2z and angles � and ' define the direction of the wave vector with

respect to some chosen coordinate axes. Transforming the Cartesian volume element
dkxdkydkz (i.e., the volume in the space of wave vectors) into the spherical one

dkxdkydkz D k2 sin �d�d'dk;

I can rewrite Eq. 15.38 as

dpm0;s D 2�

„ t
L3

.2�/3
jvm0;s .k; �; '/j2 ı .„� � Ek;s C Em0 / k2 sin �d'd�dk:

Using the relation between k and energy E, it is more convenient to rewrite the
latest expression in terms of probability density for the latter. Assuming that energy
of the particle in the continuous spectrum does not depend on spin and using k2 D
2meE=„2 and dk D p

me= .2„2E/dE, you can obtain
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dpm0;s D 2�

„ t
L3

.2�/3

p
2m3=2

e

„3
p

E jvm0;s .k; �; '/j2 �

ı .„� � E C Em0 / sin �d'd�dE:

Further proceeding follows almost the same line of arguments, as those presented
when deriving Eq. 15.36 with one exception. In Eq. 15.36 there was a single
continuously distributed variable (E to be sure), so once I integrated it out, the
remaining expression became the actual probability for the remaining discrete
characteristics of the final state m0. Here E is just one of the three continuous
parameters defining the final state, and while the delta-function again takes care
of E making its value definite and equal to Etr, after integrating it out, you still
remain with a differential probability dpm0;s .Etr/ defining the probability of the
electron’s after-transition wave number to lie within an infinitesimally small solid
angle d˝ D sin �d'd� around the direction specified by angles � and '. Now
defining the corresponding transition rate density Rm0;s .�; '/ as a probability of
transition per unit time per unit solid angle

Rm0;s .�; '/ � dpm0;s .Etr/

td˝
;

I find for it

Rm0;s .�; '/ D 2�

„
L3

.2�/3

p
2m3=2

e

„3
p

Etr jvm0;s .Etr; �; '/j2 : (15.39)

This result describes spin and angular distribution of electrons kicked out from
an atom as the result of ionization for various orientations of the electron spin.
Experimentally, this quantity can be measured by placing spin-sensitive electron
detectors at different angles and counting the number of electrons ejected under the
action of a perturbation per unit time by an ensemble of non-interacting atoms in
different directions. If the presence of the quantization volume L3 (which is a pretty
arbitrary quantity) in this expression gives you jitters, fear not. It will be canceled
by the L�3=2 normalization factor in the wave function of the continuous spectrum
when you compute the perturbation matrix element vm0;s .Etr; �; '/.

Now, if you are not interested in the direction of the propagation of the electron
after ionization or its spin state, and only want to know the total transition rate Rm0
from the initial state j˛m0i (you can call it the rate of ionization), you will integrate
Rm0;s .�; '/ over the entire solid angle and sum it up over the spin states:

Rm0 D 2�

„
L3

.2�/3

p
2m3=2

e

„3
p

Etr

�̂

0

d� sin ��

2�ˆ

0

d'
�ˇ̌
vm0;" .Etr; �; '/

ˇ̌2 C ˇ̌
vm0;# .Etr; �; '/

ˇ̌2�
:
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If the perturbation matrix element does not depend on the angles and the spin, then
the integration over angles combined with the summation over spin yields the trivial
factor 8� so that the expression for the ionization rate can be written down as

Rm0 D 2�

„ jvm0 .Etr/j2 g .Em0 C „�/ ; (15.40)

where g .E/ is the same density of states for a free electron, which was defined in
Eq. 11.56. Equation 15.40 is often passed for one of the reincarnation of Fermi’s
golden rule, but one would be wise to remember about the limitations involved in its
derivation: angle and spin independence of the perturbation matrix element. I will
return to this issue in the section on light absorption and emission.

I will complete this section by an example of calculations based on Eq. 15.39.

Example 31 (Ionization of a Hydrogen Atom) Find the angular distribution of the
electrons ejected from the ground state of hydrogen atom by a uniform oscillating
electric field E D E0 cos�t, assuming that the frequency � satisfies the condition
„� 
 13:6 eV. This condition ensures that the final state of the electron, indeed,
belongs to the continuum spectrum and that its energy is high enough to approximate
the respective wave functions by a plane wave.

Solution

The perturbation operator corresponding to the uniform electric field can be written
down as

OV D er � E.t/ D eOrE0 cos�t; (15.41)

where e is the absolute value of the electron’s charge. A comparison with Eq. 15.16
allows me to identify the matrix elements vm0m as

vm0;s.k/ D e

2

s
1

�a3BL3

•
d3re�r=aB rE0eikr; (15.42)

where I substituted the wave function of the ground state of the hydrogen atom from
Chap. 8, which represents the initial state, and the box normalized plane wave for
the final state from Sect. 11.5.

The structure of the hydrogen ground state wave function, which depends only on
the absolute value of the position vector r D jrj, indicates that you can save time and
effort by using a spherical coordinate system to calculate this integral. However, in
order to take advantage of this realization, you, first, have to choose the directions of
the axes that you will use to define the spherical coordinates. Actually, there is only
one axis which you need to worry about—the polar (Z)-axis. When making such a
decision, it is wise to consider first if there are any constant vectors in the integrand
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(position vector r does not count—it is an integration variable). In Eq. 15.42 there
are two such vectors: the wave vector of the final state k and the external electric
field E0. These two vectors define a plane, and it is quite obvious that choosing it as
one of the coordinate planes will simplify the task (both vectors will immediately
lose one of their coordinates, and two coordinates to worry about are always better
than three, right?). Now, the last question is: which of these two vectors choose to
define the direction of the polar axis? My bet would be on k since this choice, while
making r � E0 more complex, would simplify expression k � r , and it is better to
have a more complex expression as a factor than as an argument of the exponential
function. Thus, settling on the direction of the Z-axis along k, and choosing E to
belong to X � Z plane, I can immediately express k � r and rE0 in the corresponding
spherical coordinates r; �; and '. With this choice of coordinate axes, I have

k � r D kz D kr cos �

and

rE0 D xE0 sin �E C zE0 cos �E D rE0 .sin � cos' sin �E C cos � cos �E/ ;

where �E is the angle between the vector of the electric field and the wave vector k
(see Fig. 15.3). Finally, introducing the volume element in the spherical coordinates,
I have the following for the matrix element:

vm0;s.k/ D eE0
2

s
1

�a3BL3

1̂

0

drr2
�̂

0

d� sin ��

2�ˆ

0

d'e�r=aB r .sin � cos' sin �E C cos � cos �E/ eikr cos � : (15.43)

Fig. 15.3 The choice of the
coordinate system for
calculations of the integral in
Eq. 15.42
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First, note that the first term in the integral contains the factor cos ', which after
integration with respect to the azimuthal angle ' yields zero:

´ 2�
0

d' cos' D 0.
The remaining integral

vm0;s.�E/ D eE0 cos �E

2

s
1

�a3BL3

1̂

0

drr3e�r=aB

�̂

0

d� sin � cos �eikr cos �

2�ˆ

0

d';

where I replaced argument k with �E reflecting that this is the only characteristic of
k, which this matrix element depends upon, takes a bit more work. The integration
with respect to ' is, of course, trivial and produces 2� , while the integral with
respect to the polar angle requires the standard substitution of the variable s D cos � ,
which yields

�̂

0

d� sin � cos �eikr cos � D
1ˆ

�1
dsseikrs D eikr C e�ikr

ikr
C eikr � e�ikr

k2r2
D

1

ikr

	
1 � 1

ikr



eikr C 1

ikr

	
1C 1

ikr



e�ikr:

The remaining integral over r is the sum of two integrals:

vm0;s.�E/ D eE0� cos �E

ik

s
1

�a3BL3
�
2
4

1̂

0

drr2
	
1 � 1

ikr



e�r.1=aB�ik/ C

1̂

0

drr2
	
1C 1

ikr



e�r.1=aBCik/

3
5 D

16ieE0� cos �E

s
1

�a3BL3
a5Bk�

1C a2Bk2
�3 D

16i

r
�aB

L3
eE0a3B cos �E

k�
1C a2Bk2

�3 ;

which I, to be honest, computed using Mathematica©. Now, this matrix element
must go to Eq. 15.39, where it yields (taking into account the summation over spin)

Rm0 .�E/ D 2
L3

4�2

p
2m3=2

e

„4
p

Etr
256k2�

1C a2Bk2
�6
�a7B
L3

e2E20 cos2 �E D

64

�

.eE0aB/
2

„
2mea2B

„2 cos2 �E
.ktraB/

3

�
1C k2tra

2
B

�6 ; (15.44)
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where ktr D p
2meEtr=„. Substituting the expression for the Bohr radius from

Eq. 8.8 into 2mea2B=„2, you will immediately see that this factor is just 1=
ˇ̌
Eg

ˇ̌
,

where Eg is the ground state energy of hydrogen, which in this example plays the
role of Em0—the energy of the initial state. Thus, the expression for Rm0 .�E/ can
now be rewritten as

Rm0 .�E/ D 64

�

.eE0aB/
2

„ ˇ̌Eg

ˇ̌ cos2 �E
.ktraB/

3

�
1C k2tra

2
B

�6 :

The angular dependence of this transition rate is given by the factor cos �2E, which
indicates that the majority of the electrons propagate after the ionization in the
direction of the field (not a big surprise here, of course), while the ionization
probability in the direction perpendicular to the field is zero. To get the complete
ionization rate regardless of the direction, one needs to integrate this result with
respect to the angles �E and 'E, remembering, of course, that the integration occurs
over a solid angle sin �d�d': This involves computing the following expression:

2�ˆ

0

d'E

�̂

0

d�E sin �E cos2 �E D 2�

1ˆ

�1
dss2 D 4�

3
;

so that the total ionization rate becomes

Rm0 D 256

3

.eE0aB/
2

„ ˇ̌Eg

ˇ̌ .ktraB/
3

�
1C k2tra

2
B

�6 : (15.45)

The dimensionless parameter ktraB can be written down in the form

ktraB D
q
2me

�„�C Eg
�

a2B

„ D
s

„�C Egˇ̌
Eg

ˇ̌ D
s

„�ˇ̌
Eg

ˇ̌ � 1; (15.46)

which reveals that the ionization is only possible if „� >
ˇ̌
Eg

ˇ̌
, where this parameter

remains real. The dependence of the ionization rate upon frequency is determined
by the factor

ˇ D .ktraB/
3

�
1C k2tra

2
B

�6 :

Plotting ˇ as a function of the dimensionless parameter kaB, you will notice that this
factor exhibits two different modes of behavior: growth as .ktraB/

3for ktraB � 1

and a much faster decrease as .ktraB/
�9 for ktraB 
 1 (see Fig. 15.4). (Actually, you

could have noticed this without any plots, by simply analyzing this function in two
different limits, but it is always nice to have something to look at.) The transition
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Fig. 15.4 Dependence of the
ionization rate on the
dimensionless parameter kaB

between these two regimes occurs at ktraB D 1=
p
3, where the function ˇ.k/ has a

maximum. This corresponds to the external frequency �max:

„�max D 4
ˇ̌
Eg

ˇ̌

3
:

This condition means that the maximum efficiency of ionization occurs at such
frequency of oscillations, which excite electrons to the energy equal in magnitude
to the third of the energy Etr D ˇ̌

Eg

ˇ̌
=3.

15.3 Semiclassical Theory of Absorption and Emission
of Light

15.3.1 Interaction of Charged Particles with Electromagnetic
Radiation

In the introductory physics courses, you learned that a particle with charge q moving
with instantaneous velocity v in electric and magnetic fields E and B experiences a
force described by the well-familiar Lorentz expression (in SI units):

F D qE C q v� B:

Unfortunately, this simple equation is ill-suited for application in quantum mechan-
ics, which is based on the Hamiltonian representation of all interactions. Fortunately,
it is possible to describe the interaction between a charged particle and electromag-
netic field remaining firmly grounded in the Hamiltonian approach. However, to get
there I have to remind you a few facts from electromagnetism first.
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You know that in the electrostatics and magnetostatics, when an electric field can
only be created by charges, and a magnetic field arises only in the presence of an
electric current, both fields can be expressed in terms of their respective potential
functions. The electric field is related to a scalar potential V.r/ as E D �rV.r/,
while the magnetic field can be found from a vector potential A .r/ as B D r � A,
where r is a well-known vector Del or nabla operator. Both these potentials are not
defined uniquely: you can add any constant term to a scalar potential and any vector
function expressible as a gradient to the vector potential without changing the fields
(the last statement follows from the operator identity r � rf D 0).

When electric and magnetic fields are allowed to change with time, you are
moving into the realm of electrodynamics, where everything gets intertwined and
the electric field can be generated by a time-dependent magnetic field and vice
versa. One of the immediate consequences of this is a possibility for electric and
magnetic fields to sustain each other without the need for any charges or currents.
Do not get me wrong here, though: some charges or currents are needed someplace
to generate the fields, but the point is that these fields can break out free of their
initial sources and travel through space without any charges or currents in the form
of electromagnetic waves. Of course, I am sure you know all this, but it is still
useful to recall these simple facts to create a proper context for what follows.
While the transition to electrodynamics does not change the relation between the
magnetic field and the vector potential, the electric field now acquires an additional
contribution in the form

E D �rV.r/ � @A=@t:

The appearance of the vector potential in the expression for the electric field reflects
the possibility for the generation of this field by the time-dependent magnetic field
(this explains the time derivative). In the region free of charges, the scalar potential
term can be eliminated using the non-uniqueness of the potentials, so that both
electric and magnetic fields are expressed in terms of a single vector potential:

E D �@A=@tI B D r � A; (15.47)

which can also be made to satisfy the condition r � A D 0. This condition is
called gauge-fixing condition, and the potential defined this way is said to be in
the Coulomb or transverse gauge.

Now I can approach the main issue of concern—the Hamiltonian formulation
of the particle–field interaction in classical physics. It turns out that the classical
Lorentz force on a particle interacting with the electromagnetic field in the absence
of charges and currents can be reproduced from the Hamiltonian equations if the
Hamiltonian of the charged particle is written down as

H D Œp � qA.r; t/�2

2me
�
P

j

�
pj � qAj

� �
pj � qAj

�

2me
(15.48)
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where in the last expression I used the definition of the magnitude of a vector in
terms of its Cartesian components. To verify this fact I just need to write down the
classical Hamiltonian equations as given by Eqs. 7.8 and 7.7:

dri

dt
D @H

@pi
D pi � qAi

me
; (15.49)

dpi

dt
D �@H

@ri
D q

me

X
j

�
pj � qAj

� @Aj

@ri
: (15.50)

Differentiating the first of these equations with respect to time and using the time
derivative of the momentum from the second equation, I obtain

d2ri

dt2
D � q

me

dAi

dt
C 1

me

q

me

X
j

�
pj � qAj

� @Aj

@ri
:

Multiplying both sides of this equation by me and noting that the velocity of the
particle vi D dri=dt D .pi � qAi/ =me, I can rewrite this as

me
d2ri

dt2
D �q

dAi

dt
C q

X
j

vj
@Aj

@ri
: (15.51)

Now you need to pay attention. The time derivative of the vector potential appearing
in Eq. 15.51 is a full derivative (straight d) as opposed to the partial derivative (round
@) appearing in Eq. 15.47. The difference is significant because the vector potential
is a function of the coordinate of the particle, and it changes with time for two
reasons: one is its explicit time dependence, and the other is due to the motion of
the particle. In other words, when computing this time derivative, you must treat the
position vector r as a function of time. Accordingly, you have to write

dAi

dt
D @Ai

@t
C
X

j

@Ai

@rj

drj

dt
D @Ai

@t
C
X

j

vj
@Ai

@rj
;

where I introduced the particle’s velocity vj D drj=dt. Taking this into account,
Eq. 15.51 takes the following form:

me
d2ri

dt2
D �q

@Ai

@t
� q

X
j

vj
@Ai

@rj
C q

X
j

vj
@Aj

@ri
D

�q
@Ai

@t
C q

X
j

vj

	
@Aj

@ri
� @Ai

@rj



: (15.52)
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Comparing this with Eq. 15.47, you can immediately identify the first term on the
right as qE , which is the electric field component of the Lorentz force. In order to
prove that the second term reproduces the contribution of the magnetic field to the
force, note that using identity A � .D � C/ D D .A � C/� .A � D/C, I can transform
v�B as

v�B D v � .r�A/ D r .v � A/ � .vr/ � A:

Rewriting this expression in the component form

.v�B/i D @

@ri

X
j

vjAj �
X

j

vj
@Ai

@rj
D

X
j

vj

	
@Aj

@ri
� @Ai

@rj



;

you see that it exactly coincides with the second term in Eq. 15.52. Now you can
take a breath: we have shown that the Hamiltonian given by Eq. 15.48 indeed
correctly reproduces the equation of motion for a charged particle in a field of
an electromagnetic wave. If, in addition to the electromagnetic field, the particle
also has a regular potential energy of interaction, for instance, with another
charged particle, the total quantum Hamiltonian capable of handling this situation
becomes

OH D ŒOp � qA.Or; t/�2
2me

C OV.r/; (15.53)

where the classical coordinate and momentum are replaced by the corresponding
operators, while the vector potential remains a regular classical quantity. In many
problems involving the interaction between quantum systems and radiation, the term
proportional to the square of the vector potential can be neglected, in which case the
Hamiltonian can be presented as

OH D Op2
2me

C e

2me
.OpA.Or; t/C A.Or; t/Op/C OV.r/; (15.54)

where I replaced the generic charge q with the negative electron charge �e, but,
most importantly, restrained from equating expressions OpA.Or; t/ and A.Or; t/Op, which,
while natural in classical description, would be in general wrong in the quantum case
due to non-commutativity of momentum and position operators. However, using the
gauge-fixing condition for the vector potential, the Hamiltonian 15.54 can still be
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simplified. Indeed, consider the expression OpA.Or; t/f .r/, where f .r/ is an arbitrary
function, using the position representation for the momentum and coordinate
operators:

OpA.Or; t/f .r/ D �i„r ŒA.Or; t/f .r/� D
�i„A.Or; t/r Œ f .r/� � i„f .r/r ŒA.Or; t/� :

In the Coulomb gauge, the last term in the above expression disappears, allowing
me to replace OpA.Or; t/ with A.Or; t/Op and present the Hamiltonian as

OH D Op2
2me

C e

me
A.Or; t/Op C OV.r/: (15.55)

Assuming that the vector potential A .r; t/ describes a plane linearly polarized
electromagnetic wave, I can choose it to have the following form:

A .r; t/ D �w
E0
˝

cos .kr ��t/ ; (15.56)

where w is a unit vector defining the polarization of the wave. To satisfy the
condition r � A D 0, w must be perpendicular to the propagation direction of the
wave k. According to Eq. 15.47, the chosen form of the vector potential describes a
wave with the electric field:

E D E0w sin .kr ��t/ : (15.57)

With the vector potential in the form of Eq. 15.56, the perturbation operator becomes

OV D � e

2me

E0
˝

h
ei.kr��t/ C e�i.kr��t/

i
.w � Op/ : (15.58)

My goal in this section is to apply the perturbation theory for the time-dependent
Hamiltonians to optical transitions between discrete states of a hydrogen-like atom
due to an incoherent radiation. This job can be made significantly easier if I take
into account that the characteristic scale of the wave functions, which I will be
using to compute the perturbation matrix elements, is determined by the Bohr radius
aB, which for a hydrogen atom in vacuum is about 5:3 � 10�2 nm. According to
Eq. 8.8, it might become two or three orders of magnitudes larger for excitons in
semiconductors, but even in this case, it is a far cry from the wavelength � of visible
radiation, which is of the order of 400–700 nm. This means that over the distances,
when the wave functions in the perturbation matrix elements have any substantial
magnitude, the field of the electromagnetic wave barely changes. Consequently I can



15.3 Semiclassical Theory of Absorption and Emission of Light 529

safely replace exp .˙ikr/ with unity, which is just the first term in the expansion of
this exponent with respect to a small parameter k � r 	 2�aB=� � 1 making the
perturbation operator much simpler:

OV D � e

2me

E0
˝

�
ei�t C e�i�t

�
.w � Op/ : (15.59)

This approximation is called a dipole approximation for reasons which will become
clear later. Comparing Eq. 15.59 with Eq. 15.16, I can identify the matrix element
vm0m appearing in all formulas for the transition probability as

vm0m D � e

2me

E0
˝
.w � Op/m0m ; (15.60)

where

.w � Op/m0m D h˛m0 j w � Op j˛mi (15.61)

is the matrix element of the component of the momentum operator in the direction
of polarization of the incident light.

The computation of this matrix element in the position representation would
involve differentiating the wave functions of the final state, which is not a terribly
difficult thing to do but is better avoided if possible. And it can be, indeed,
avoided with the help of one of the magic tricks from the arsenal of quantum
mechanics. Recall a commutator of the unperturbed Hamiltonian with the position
operator, which I computed in the section on Ehrenfest theorem, Eq. 4.18. Trivial
generalization of that result to all three components of the position vector allows to
present it as

h
Or; OH0

i
� i„Op=me:

Using this result to replace the momentum operator in Eq. 15.61, I can turn it into

.w � Op/m0m D me

i„ h˛m0 j w �
�

Or OH0 � OH0Or
�

j˛mi D
me

i„ h˛m0 j w � Or OH0 j˛mi � me

i„ h˛m0 j OH0w � Or j˛mi :

Acting with the Hamiltonian to the right in the first term, and to the left in the second
one, I can present this expression as

.w � Op/m0m D me

i„ .Em � Em0 / h˛m0 j w � Or j˛mi ;
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reducing the matrix element of the momentum operator to that of the position
operator. Substituting this result into Eq. 15.60, I find

vm0m D e

2

iE0
„˝ .Em � Em0 / h˛m0 j w � Or j˛mi : (15.62)

It will be useful to recall now that the transition probability, which I intend to
calculate, contains the delta-function ı .„� � Em C Em0 /, which ensures that for
any�, only those transitions have a non-zero chance to occur for which Em �Em0 D
„�. This observation allows further simplification of Eq. 15.62 by canceling the
energy difference Em � Em0 in its numerator and the frequency of the perturbation
� in the denominator. This yields for the matrix element:

vm0m D ieE0
2

h˛m0 j w � Or j˛mi : (15.63)

The reduction of the momentum matrix element to this form is, of course, very
useful technically, but it is also quite remarkable from a more philosophical, if you
want, point of view. To completely appreciate a significance of this result, take a
look at the expression for the electric field corresponding to the chosen form of the
vector potential, Eq. 15.57. If you were to neglect the k � r in it, you would end
up with a spatially uniform electric field, which can be associated with a potential
energy:

V D �eE � r D ieE0 � r
2

�
e�i�t � ei�t

�
(15.64)

and which would generate the time-independent perturbation matrix element vm0m

of exactly the form given in Eq. 15.63. (Note that vm0m is defined as a coefficient in
front of exp .�i�t/ term.) Now, think about it: I started out with the perturbation
expressed in terms of a vector potential introduced to describe a solenoidal (with
zero divergence) electric field, which can only be created by a changing magnetic
field, and ended up with the perturbation expressed in terms of a scalar potential
reserved for the potential electrostatic field. It might appear that physics works
in mysterious ways, but the only mystery here is the beautiful interconnectedness
and self-consistency of the various parts of the machinery of electrodynamics and
quantum mechanics derived from the unified structure of the world.

A more practically minded person could say, of course, that since this result
is only valid in the approximation k � k � 1, it merely means that locally (over
distances much smaller than the wavelength of the electromagnetic wave) there is
not much difference between potential electric fields created by electrical charges
and solenoidal fields arising due to the Faraday effect.

Now, if you recall that I am talking here about an electron interacting with an
equal positive electric charge chosen to serve as an origin of the coordinate system,
you can easily see that expression er represents a dipole moment of this system of
charges and that the perturbation potential is just the energy of a dipole in a uniform
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electric field. This is the reason why we use the term “dipole approximation”
to characterize the reduction of the perturbation matrix elements to the form of
Eq. 15.63.

Having derived the expression for the matrix element vm0m, I can consider a few
particular examples of interaction between light and matter.

15.3.2 Absorption and Emission of Incoherent Radiation
by Atoms

15.3.2.1 Absorption and Stimulated Emission

When discussing the interaction between light and electrons in atoms or semi-
conductors, one has to consider three different processes: absorption, stimulated
emission, and spontaneous emission. Spontaneous emission refers to the process of
emission of light in the absence of any external electromagnetic field, which could
“stimulate” the electron to drop from a higher energy level to a lower one. Because
of the spontaneous emission, the eigenvectors of the electron’s Hamiltonian (with
exception of those that correspond to the ground state) do not actually represent
true stationary states—an electron does not stay in these states forever, eventually
undergoing a transition to the ground state and emitting light.

This circumstance makes it obvious that the theory of atomic energy levels and
the stationary states developed so far is not quite complete. What is missing in this
story is an interaction of electrons with a quantized electromagnetic field responsible
for the phenomenon of spontaneous emission. The true stationary state must be
formed by a combination of vectors belonging to a tensor product of electron and
electromagnetic field vector spaces, such that the total energy corresponding to such
a state would remain constant: a decrease of electron energy due to transition to
the lower energy state shall be compensated by an increase of the energy of the
electromagnetic field due to emission of light. Unfortunately, the complete theory of
interaction between atoms and quantized electromagnetic field is outside the scope
of this book as I already have mentioned before.

Thus, while I wouldn’t be able to resist the temptation of demonstrating beautiful
thermodynamic arguments of Albert Einstein that allowed him to deduce the rate
of spontaneous emission without any knowledge of quantum electrodynamics, my
main focus in this chapter would be on absorption and stimulated emission in the
presence of classical incoherent radiation.

Within the quantum framework, the process of stimulated emission arises
naturally as a consequence of the hermiticity requirement of operators representing
observables (this is the reason why I had to introduce both exp .i�t/ and exp .�i�t/
terms in Eq. 15.16). However, before the advent of the full quantum theory, the idea
of stimulated emission appeared quite bizarre. Indeed, think about it: an electron in
an excited state is illuminated by light, and instead of jumping even to the higher
energy level absorbing this light, it jumps to the lower level emitting even more
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light! The concept of stimulated emission was introduced by Einstein when he
analyzed thermodynamic equilibrium between light and atoms—it turned out that
without this process, the equilibrium cannot exist.

On second thought, however, it might appear surprising that the existence of
this process has not been foreseen earlier. After all, remaining completely within
the classical picture, one can think of a classical dipole interacting with radiation,
in which two oppositely charged particles are connected by an elastic string. This
system can both absorb and emit radiation. Indeed, on one hand, the harmonic
oscillations excited by the incident radiation take energy away from light resulting in
its absorption, while on the other hand, an oscillating dipole emits electromagnetic
waves which carry away its energy damping the oscillations. This radiation is
stimulated by the incident wave, and while quantitatively it might differ significantly
from quantum stimulated emission, conceptually it is a similar process, and it might
seem a bit surprising that it took that long to recognize its existence.

Well, it does not do us any good second-guessing our forebears, so let’s go back
to our immediate task. The transition rates for absorption and stimulated emission,
which are equal to each other, are described by Eq. 15.35. If you think of the incident
electric field E.t/ as of incoherent “superposition” of monochromatic components
with continuously distributed frequencies, you can identify E0 with F .�/ appearing
in Eq. 15.29 and E20 with j F .�/j2 in Eq. 15.35. When dealing with the finite or
discrete number of incoherent waves, you could find the total energy density of
the field by simply adding energy densities of the individual waves. In the case of
continuous spectral distribution, the total finite energy density of the field is divided
between the infinite numbers of infinitesimally small spectral intervals d�. The
contribution of each such interval can be described as u .�/ d�, where u .�/ is
the time-averaged spectral energy density of the corresponding spectral component,
which for a wave propagating in vacuum is given by the following expression well
known in introductory electrodynamics (I am using SI units here):

u .�/ D 1

2
"0E20 .�/ :

Taking into account Eq. 15.63, I can now present the expression for the transition
rate as

Rm0m D 2�

„2
e2

4
jw � h˛m0 j Or j˛mij2 E20 .!m;m0 / D

�u .!m;m0 /

"0„2 jw � h˛m0 j eOr j˛mij2 : (15.65)

If the incident light has a definite polarization (noncoherent polarized light can
be created using a polarizing element), Eq. 15.65 provides a full description for the
corresponding transition rate. If, however, the light is not only incoherent but also
unpolarized, some additional efforts are still required. In an unpolarized light, the
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polarization vectors w must be considered as a random quantity, and the completion
of the calculation of the transition rate in this situation demands the averaging of
Eq. 15.65 over the polarization directions.

To perform the averaging, I, first of all, must recall that an unpolarized light is a
mixture of two independent polarizations, each appearing in the mix with equal
probability 1=2. To simplify the arguments, I will think of them as two linear
polarizations characterized by mutually perpendicular unit vectors w1 and w2 with
random but mutually correlated orientations (they must always remain orthogonal
to each other). Therefore, I need to take the average over these two vectors and
integrate it over their directions.

The direction of both polarization vectors must be perpendicular to the wave
vector k. This requirement creates a one-to-one correspondence between w1, w2 and
the propagation direction of the wave. Consequently, the integration of the transition
rate over k automatically averages it over all allowed directions of w1 and w2. The
resulting polarization-averaged transition rate can be presented as

Rm0m D �u .!m;m0 /

"0„2
1

8�

"
d˝k

�
jw1 � h˛m0 j eOr j˛mij2 C

jw2 � h˛m0 j eOr j˛mij2
�
; (15.66)

where the integration is over the surface of the constant k, and it is assumed that
all directions of k are equally likely. The factor 1=4� normalizes the uniform
distribution of k, so that .1=4�/

!
d˝k D 1. To carry out the integration, let me

first note that jw1;2 � &.m;m0/j2, where &.m;m0/ stays for the vector dipole matrix
element5

&.m;m0/ � jh˛m0 j eOr j˛mij ; (15.67)

does not depend on the choice of coordinate axes used to define the components
of the vectors in this expression. Using this freedom to simplify it, I choose the
direction of k as the Z-axis of a coordinate system. This choice makes defining
polarization vectors m1;2 almost trivial: recalling that they must be perpendicular to
each other and to k, you can choose them to be directed along the arbitrarily chosen
X- and Y-coordinate axes of this system. Now you can immediately have

jw1 � &.m;m0/j2 C jw2 � &.m;m0/j2 D j&x .mm0/j2 C ˇ̌
&y .mm0/

ˇ̌2 D
&2 .mm0/ sin2 � cos2 ' C &2 .mm0/ sin2 � sin2 ' D &2 .mm0/ sin2 �; (15.68)

5Since I assumed linear polarization, vectors w1;2 are real, allowing me to take them outside of the
absolute value sign.
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where � is the angle between k and a vector &.m;m0/, while angle ' defined the
direction of this vector in the X–Y plane.6

Since the result expressed by Eq. 15.68 is presented in the form independent of
the choice of the coordinate system (angle � is an objectively existing geometrical
characteristic independent of the choice of coordinates), I could now move to
different coordinate axes, if it suited me better. Indeed, the next step of the averaging
procedure involves integration over directions of the wave vectors, so it does not
make sense to use k as a choice for the polar axis. And allowing vector &.m;m0/

to have this honor will make the integration just a bliss. Angle � in Eq. 15.68
now becomes one of the spherical coordinates of the wave vector and thereby an
integration variable. Substituting Eq. 15.68 to the integral in Eq. 15.66, I get

Rm0m D �u .!m;m0 / &
2 .mm0/

"0„2
1

8�

"
d˝k sin2 � D

�u .!m;m0 / &
2 .mm0/

"0„2
1

8�

�̂

0

d� sin �

2�ˆ

0

d' sin2 � D

� Œ& .mm0/�
2

3"0„2 u .!m;m0 / ; (15.69)

where I used the spherical surface element d˝k D d'd� sin � .
This result describes the transition rate between a pair of states of a single

atom, which can be either related to emission (if !m:m0 < 0) or absorption (if
!m:m0 > 0) of radiation. It is obvious that since u .!m;m0 / is an even function of
frequency (it has to be if we believe in time-reversal symmetry7), the transition rates
for both emission and absorption are equal to each other. A word of warning: the
statement of equal transition probabilities refers to transitions involving the same
pair of states with initial and final states reversed. If, however, you are looking at
an “atom” in some initial state j˛m0i and are interested to know if the perturbation
is more likely to cause upward or downward transitions, you can easily see that
these probabilities do not have to be equal. Indeed, in this case, you are dealing
with transitions characterized by the same initial and two different final states, so
that they might have different transition frequencies !m1;m0 and !m2;m0 and different
matrix elements.

6One needs to be a bit careful here because the original dipole matrix element vector &.m;m0/ can
be complex.
7Time-reversal symmetry means that if you change t to �t, nothing must change. Wave equations
of electromagnetic waves are of the second order with respect to time derivative, and, therefore,
they are obviously time-reversal symmetric. The situation is more complex with the Schrödinger
equation, which are of the first order in time derivative, but you will have to wait for a more
advanced course on quantum mechanics to dig into this issue.
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In general when discussing quantum transitions and their probabilities, there is “a
must”: you must clearly understand which phenomenon you are dealing with. This
exhortation is especially important if one or both states connected by the transition
are degenerate, in which case Eq. 15.69 has to be used cautiously and the validity
of the statement about equal transition rates for reversed transitions depends upon a
situation you are dealing with.

The first question that must be asked is how much control do you have about the
initial state, meaning do you know in which of the degenerate states with a given
energy your system is? If the answer is “yes,” then you can proceed to the next ques-
tion, but if the answer is “no,” you have to assume that all of the degenerate states are
possible and, in the absence of any reasons to give preference to one state or another,
that they can occur with equal probabilities. In this case the transition rate given by
Eq. 15.69 must be averaged over the initial states. The next question you must ask
is: what do you know (or want to know) about the final state? For instance, if you are
only concerned with the total absorption or stimulated emission rate in the presence
of unpolarized and incoherent radiation (strictly speaking, this is the only situation
for which Eq. 15.69 is good for), then you have to sum up the rate given by this
equation over all degenerate final states. In this case the total transition rate between
two energy levels (note the careful choice of the language: now I am talking about
the transition between the energy levels rather than between states) can be written
down as

REm0 ;Em D 1

gm0

X
m0

X
m

Rm0m (15.70)

where gm0 is the degree of degeneracy of the initial energy level reflecting the
procedure of averaging over the initial states. In the case of the reversed transition,
the similar expression takes the form of

REm;Em0
D 1

gm

X
m

X
m0

Rm;m0 ; (15.71)

where gm is the degeneracy of j˛mi, which is now the initial state. Since generally
gm ¤ gm0 ; the two total energy-level-to-energy-level rates REm0 ;Em and REm;Em0

are
not equal to each other even if particular state-to-state rates Rm0m are.

The situation might change if you are interested in the absorption or emission of
light of a particular polarization (experimentally you can express your interest by
inserting a polarizer between the light source and the atom). In this case you, first,
must forgo the averaging over polarizations, go back to Eq. 15.65, and determine
which of the perturbation matrix elements are different from zeroes for each of
the degenerate state. If the polarization allows you to initiate a transition to just
one particular state, you can congratulate yourself: you found a way to optically
control a quantum state of your system. If you end up with more than one “allowed”
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transition (the one for which the perturbation matrix element does not vanish), you
still might have to average over the initial states and sum up over the final states,
however, including only the states connected by allowed transitions.

To prevent your head from spinning too much, I will illustrate these points with
an example. Let j˛m0i be the ground state of the electron in a hydrogen atom, which
is twice degenerate with respect to the spin magnetic number ms, and assume that
j˛mi is its first excited state, which is eightfold degenerate. The composite indexes
m0 and m in this case consist of the principal number n; orbital angular momentum
number l; and orbital and spin magnetic numbers ml and ms. The initial state j˛m0i
represents one of two states j1; 0; 0; 1=2i or j1; 0; 0;�1=2i, while j˛mi can be one
of eight states j2; l;ml;˙1=2i with l D 0; m D 0 or l D 1; m D �1; 0; 1:
As usual, I am using here the standard nomenclature for the states of a hydrogen
atom jn; l;ml;msi, where the first is the principal quantum number, followed by the
orbital angular momentum number, and then followed by orbital and spin magnetic
numbers. Now, assuming that you want to compute the absorption rate for the
unpolarized light with any of j˛m0i as the initial state and any of j˛mi as the final,
you have to consider the following:

RE1;E2 D 1

2

�
R"I0;0" C R"I0;0# C R#I0;0" C R#I0;0# C

1X
mlD�1

�
R"I1;ml" C R"I1;ml# C R#I1;ml" C R#I1;ml#

�
3
5 :

To make notations less cumbersome, I am showing here only the spin index for the
initial state and have dropped the principal quantum number for both initial and
final states. Factor 1=2 here is the degeneracy degree of the initial state, and the
expression includes the summation over different values of the spin variable of the
initial state. You also see the sum over all possible values of the quantum numbers
characterizing the final states—this takes into account the probabilities of transitions
to all states with the same final energy. If the perturbation potential does not depend
on spin, this expression can be simplified since the matrix elements with different
spin magnetic numbers are all equal to each other. In this case, you have for the total
absorption transition rate

RE1;E2 D 2

0
@R1;0;0I2;0;0 C

1X
mlD�1

R1;0;0I2;1;ml

1
A ; (15.72)

where now I suppressed the index for the spin magnetic number (because nothing
depends on it) and restored all other indexes for both initial and final states. For the
opposite emission transition from n D 2 energy level to the ground state, the similar
expression for RE2;E1 is
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RE2;E1 D 1

8

�
R"I0;0" C R"I0;0# C R#I0;0" C R#I0;0#

1X
mlD�1

R"I1;ml" C
1X

mlD�1
R"I1;ml# C

1X
mlD�1

R#I1;ml" C
1X

mlD�1
R#I1;ml#

1
A D

1

4

0
@R1;0;0I2;0;0 C

1X
mlD�1

R1;0;0I2;1;ml

1
A : (15.73)

Further computation of these transition rates requires dealing with the matrix
elements between different hydrogen-like states, and I will put it off for now to keep
the suspense on. As a compensation, I will, instead, find for you the absorption and
stimulated emission rates for one-dimensional harmonic oscillator with mass � and
charge e oscillating at frequency !0 along the Z-axis (no degeneracy there!). In this
case the dipole matrix element vector & .mm0/ defined in Eq. 15.67 has just a single
component &z .mm0/ D h˛m0 j eOz j˛mi, where j˛mi � jmi now is an eigenvector of
a harmonic oscillator corresponding to the eigenvalue Em D „!0 .m C 1=2/. Using
Eq. 7.48 for the coordinate matrix elements, I can write

hm0j eOz jmi D
8<
:

e
q

„m0
2�!0

ım;m0�1 m D m0 � 1 (emission)

e
q

„.m0C1/
2�!0

ım0;m�1 m D m0 C 1 .absorption/:
(15.74)

Apparently transitions can occur from any state jmi only to adjacent states jm ˙ 1i
with the transition frequency in both cases being j!m;m0 j D ˇ̌

!0 .m0 C 1=2/ �
!0 .m0 ˙ 1C 1=2/

ˇ̌ D !0. Then the stimulated emission and absorption rates for
downward and upward transitions between, say, states jm0i and jm0 � 1i become

Rm0m0�1 D Rm0�1m0 D �e2u .!0/

3"0"m„2
„m0

2�!0
D

�e2 .Em0 � „!0=2/
6"0"m„2!20�

u .!0/ ; (15.75)

where I replaced the initial state number m0 with the value of the corresponding
energy level Em0 . As a side note: to find transition rates between states jm0i and
jm0 C 1i, one would need to replace in Eq. 15.75 m0 to m0C1, so for the given initial
state jm0i, the probability of absorption (transition to jm0 C 1i) is larger than the
probability of emission (transition to jm0 � 1i) by

�
�e2u .!0/

�
= .2"0„!0�/. This is

a useful illustration to a general statement that equality of emission and absorption
probabilities refers to transitions with reversed direction between the same pair of
states. Probabilities of upward or downward transitions from a given initial state can
be and often are different.
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The results obtained so far describe a single quantum system (atom, oscillator,
etc.) in a given initial state. However, in most situations, in which these results might
be of interest, you have to deal with an ensemble of systems, not necessarily all in
the same initial state. In the presence of a radiation field, some of these atoms would
undergo upward transitions absorbing light; others will emit light while lowering
their energy. What we are interested in most of the time is the net result: will there be
more upward or downward transitions resulting in an overall absorption or emission
of light? The answer to this question depends not only on the transition rates but
also upon the number of atoms in different initial states. Below I am going to discuss
this situation using a simplified model as per Einstein with radiation described as a
collection of Einstein’s light quanta—photons.

If the spectral energy density of the incident radiation u.!/ is peaked at some
frequency !max and falls off within some frequency range comparable to the distance
between energy levels of an atom, I can approximate atoms by two-level systems
with only two energy levels. Let’s assume that per unit volume there is a stationary
(independent on time) number Na of atoms in the lower energy state jai with
respective energy eigenvalue Ea and Nb atoms in the higher energy state jbi with
corresponding eigenvalue Eb > Ea such that Eb � Ea � „!max. Since each atom
in state jai absorbs photons at rate Rab (I assume here that each upward transition
corresponds to absorption of one photon), the total number of photons absorbed per
unit time would be NaRab, and taking into account that each absorbed photon carries
energy „!ba D Eb � Ea, I conclude that the total absorbed power is „!baNaRab.
Similar arguments yield for the emitted power „!baNbRba, so that the total change
in the energy density of the incident radiation u becomes

du

dt
D „!ba .Nb � Na/Rab (15.76)

(emission increases the radiation energy and absorption decreases it). So, the overall
result depends on the relative number of atoms in the lower and higher energy states:
if Nb < Na, the system absorbs light; in the opposite case, the system generates light.
Normally, for the system in the thermodynamic equilibrium, more atoms stay in the
lower energy state so that absorption of light is the expected normal behavior of any
collection of atoms, electrons, etc. However, by using some clever tricks (which I
cannot discuss here), it is possible to create a situation in which Nb > Na and the
system becomes a net emitter of light. This situation is quite unusual and cannot
exist for systems in thermodynamic equilibrium; systems with this property are said
to demonstrate “population inversion.” Population inversion is the main condition
for operation of lasers and was realized first in ammonia molecules independently by
American physicist Charles H. Townes and two Russian physicists, Nikolay Basov
and Aleksandr Prokhorov, for which they all shared the 1964 Nobel Prize in Physics.

However, one question here just begs to be answered. A thoughtful reader could
say: “OK, let’s assume that in the absence of light there is, indeed, some distribution
of atoms in the lower and higher energy states. But, once light starts generating those
upward transitions, this distribution will start changing, and since the transition rates
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for upward and downward transitions are the same, eventually we must come to a
situation in which Nb D Na and no net absorption or emission will take place.” I
will present this argument in a more formal way in the next section, and here I will
only mention that it misses an important point. Stimulated emission is not the only
process by which an atom can drop from the higher energy level to a lower one.
Other possibilities are spontaneous emission, which will be discussed in the next
section, and so-called non-radiative processes, when an atom gives away its energy
to something else than radiation—elastic wave or kinetic energy of atoms in a gas, or
what else. The presented calculation of the absorption coefficient makes sense only
if these processes of energy “dissipation” occur faster than the optical transitions
from the lower to higher energy level. Only in this case one can really talk about
stationary distribution of atoms in various energy levels appearing in Eq. 15.76. An
important lesson of this discussion is that even though we compute the absorption
rate considering atomic transitions, the actual absorption (the dissipation of energy)
occurs only when the atom gives off this energy in a form which can no longer be
converted back into radiation. If you are wondering how can I claim that Eq. 15.76
describes the absorption of light without considering all these processes in a more
or less explicit form, the answer is that the assumption that the atoms are in thermal
equilibrium ensures that all these dissipation processes are accounted for. This is
also a beautiful illustration of the universality of thermodynamic equilibrium: it
does not matter how the system comes to equilibrium: once it is there, its properties
are described by the corresponding distribution functions.

I will conclude this discussion with a derivation of expression for an absorption
coefficient of light, which is defined based on the consideration of a beam of light
of intensity I propagating in some well-defined direction. If z is the coordinate in
the direction of the propagation of the beam, the absorption coefficient 
 is defined
via the relation

I.z/ D I0e
�
z: (15.77)

Differentiation of this expression with respect to the coordinate yields


 D �1
I

dI

dz
:

Taking into account that the distance dz light travels in time dt D nmdz=c, where nm

is the refractive index of the medium where light propagates, it can be rewritten as


 D �nm

cI

dI

dt
:

Remembering that the energy density of light is related to its intensity as I D nmcu,
I can turn this into


 D �nm

cu

du

dt
D „!ba .Nb � Na/Bab (15.78)
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where I presented the transition rate as

Rab D Babu.!ba/ (15.79)

with Bab being

Bab D � Œ& .mm0/�
2

3"0„2 : (15.80)

Using Eq. 15.78 I can formulate for you a verbal definition of the absorption
coefficient not related to the specific representations of intensity as in Eq. 15.77:

absorption coefficient D energy absorbed/unit time/unit volume

total incident intensity
: (15.81)

You probably wonder if it was really necessary to introduce new quantities such
as Bab or I am doing this just to annoy you. Well, I could have done without
this coefficient, but it is really, really important, partially for historical reasons—
it was introduced by Einstein and is still called the Einstein B coefficient. You
see, we feel so much reverence for the guy that we do not even dare to change
the notation he used in his original 1916 paper (more than a hundred years ago!).
Actually, there are two such coefficients Bab and Bba, defined as factors in front of
the energy density term u in the corresponding expressions for the transition rates.
In the absence of degeneracy in the initial states Bab D Bba, otherwise comparing
Eqs. 15.70 and 15.71, you can show that gaBab D gbBba. Besides being of historical
and sentimental value, these coefficients also play a more serious role allowing to
separate in the transition rate the effects dependent on the properties of the “atoms”
from those dependent on the characteristics of the radiation. The usefulness of this
feature will become especially clear in the next section.

15.3.2.2 Spontaneous Emission Without Quantum Electrodynamics:
Einstein Meets Planck

Having gotten through the previous section, you might experience a vague and
uneasy feeling that you are being duped. You might be thinking: how can one
assume that the number of atoms in different states Na;b have stationary (time-
independent) values and at the same time argue about emission and absorption
processes, which obviously change them? Well, this is a legitimate question that
deserves to be answered. The answer as you will see in a minute will not only justify
arguments leading to Eqs. 15.76 and 15.78, but it will also demonstrate to you one
of the most beautiful results of early quantum mechanics produced by Einstein as
early as in 1916.

First, I will drop the offending assumption that Na;b are constant and will try to
actually describe their time dependence. Here is what I know: transitions jai ! jbi



15.3 Semiclassical Theory of Absorption and Emission of Light 541

result in a decrease of Na and simultaneous increase of Nb. The reverse transitions
jbi ! jai obviously depopulate state jbi and populate state jai. The rate of all these
changes is proportional to the rate of the respective transition Rab and the number of
atoms in the corresponding states at any given time:

dNa

dt
D �NaBabu C NbBbau (15.82)

dNb

dt
D �NbBbau C NaBabu: (15.83)

Na and Nb now are instantaneous numbers of atoms in the respective states per unit
volume, and I replaced the transition rates with their expressions in terms of the
Einstein coefficients Bab and Bba to emphasize the presence of the radiation spectral
energy density u. If you add these two equations, you get

d .Na C Nb/

dt
D 0;

which simply tells you that the total number of particles in both states remains
constant. This is a somewhat trivial result reflecting the fact that an atom does not get
vanquished while undergoing a transition from one state to another. The assumption
of time-independent numbers Na;b amounts to a statement that these equations
have stationary solutions in which the processes of population and depopulation
of various states perfectly balance each other. In principle, Eqs. 15.82 and 15.83 do
have a stationary solution in which time derivatives on the left-hand side vanish and
NaBab D NbBba. In the absence of degeneracy, the Einstein coefficients cancel out,
and we find that the stationary solution with constant Na and Nb is possible only if
these numbers are equal to each other. This cannot be right, of course, and for many
reasons. For instance, if this were true, then Eq. 15.78 would predict zero absorption
in all cases, which is nonsense. Obviously, something is missing in these equations,
and a bit of rumination over them can bring you a happy guess: all processes
included in the equations are stimulated (proportional to the energy density of the
field). But what about the spontaneous emission—the one which is responsible for
bringing atoms to their ground state spontaneously without any prompting by the
already present field? This process would increase the number of atoms Na in the
lower energy state at the expense of Nb, which would obviously decrease. Since it is
the atoms in the higher energy state, which undergo this spontaneous transition, its
rate must be proportional to Nb:

	
dNa

dt




sp

D AabNb

where following Einstein, I introduced a new coefficient Aab called the Einstein A
coefficient. Note the absence of proportionality to the energy density u: the rate of
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this process does not depend on the existence of any radiation. Adding this term to
Eq. 15.82, I obtain a corrected version of this equation:

dNa

dt
D �NaBabu C NbBbau C AabNb: (15.84)

Now the stationary state with time-independent values of the population numbers
emerges if

Nb .Aab C Bbau/ D NaBabu: (15.85)

This result does not look that egregious as the previous attempt—the ratio Nb=Na

now depends on the radiation energy density and three coefficients, two of which
we know, but the third one is yet an enigma. This is as far as I can go on without
any additional assumptions about the atoms and the radiation.

So, now imagine that the atoms are enclosed in a box maintained at fixed
temperature T from which no atoms or radiation can escape. If you wait long
enough, all the atoms and the radiation will come to a thermal equilibrium with each
other and the walls of the box so that they all can be characterized by a common
temperature T . Elementary statistical mechanics tells me that a probability for an
atom (or any other system) to have energy E is proportional to exp .�E=kBT/, where
kB is the Boltzmann constant. Applying this to our system of two-level atoms, I
can write Na / ga exp .�Ea=kBT/ and Nb / gb exp .�Eb=kBT/, where ga;b are
degrees of degeneracy of the corresponding level (if there are several states with the
same energy, then the total probability for the system to have this energy must be
multiplied by the number of such states). Then I can write that

Na

Nb
D ga

gb
exp

	
Eb � Ea

kBT



D ga

gb
exp

	„!ba

kBT



: (15.86)

Using Eq. 15.85 to express the electromagnetic spectral energy density in terms of
the population numbers Na;b, I have

u D NbAab

NaBab � NbBba
D Aab

Na
Nb

Bab � Bba
:

Substitution of Eq. 15.86 yields

u D gbAab

gaBab exp
�„!ba

kBT

�
� gbBba

: (15.87)
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You know that the energy density for radiation in the thermal equilibrium has been
found by Max Planck in 1900. This was the first formula in this book, Eq. 1.1, but
for your convenience, I will reproduce it here:

u D „!3
�2c3

1

exp
�

„!
kBT

�
� 1

:

Equation 15.87 must agree with Eq. 1.1 because they describe the same quantity. It
is encouraging that the exponential terms in the denominator of both expressions
are identical, and I can make their entire denominators coincide by requiring that
gaBab D gbBba. Isn’t it remarkable that this reproduces the relation between the
Einstein coefficients that I derived just a few lines above using nothing but honest
to G-d quantum mechanical calculations of the transition rates? It turns out that the
thermodynamics demands the same. Now, all that is left to make Eq. 15.87 look
exactly like Eq. 1.1 is to require that

Aab

Bba
D „!3
�2c3

; (15.88)

which expresses the unknown coefficient Aab representing the rate of spontaneous
emission in terms of the known quantity Bba. Using Eq. 15.80 I finally find for Aab

Aab D Œ& .mm0/�
2 !3

3�"0„c3
; (15.89)

which agrees exactly with the result obtained by Dirac in his 1927 paper from his
quantum theory of electromagnetic field.

This is the point where you are supposed to feel genuinely amazed. Indeed, the
spontaneous emission is a result of quantum fluctuations of the electromagnetic
field, and I always maintained that it cannot be described without quantization of the
field. And here we are: we found this coefficient using nothing but thermodynamics
and regular quantum mechanics with classical electromagnetic field. This looks
almost like a miracle and is an evidence of deep connections not just between
different laws of physics but between different layers of reality described by them.

I shall complete this section by computing the power emitted by a quantum
harmonic oscillator via the process of spontaneous emission and comparing this
result with the emission of a classical oscillator. Using Eq. 15.89 for the rate of the
corresponding transmissions and Eq. 15.67 to compute the required dipole matrix
elements, I find for the emitted power

Psp D „!0Aab D e2„m0!
3
0

6�"0�c3
: (15.90)
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To compare this with a power emitted by a classical harmonic oscillator, consider a
free (not driven) oscillator with initial energy Ecl. One can use a well-known form of
electrodynamics Larmor’s formula for a power emitted by a charged particle moving
with acceleration a:

Pcl D e2a2

6�"0c3
: (15.91)

Acceleration of a harmonic oscillator is related to its displacement z as a D �!20z,
so that the expression for the power becomes

Pcl D e2z2!40
6�"0c3

:

This expression has to be averaged over the period of oscillations, which, as you
hopefully know,8 yields z2 D z20=2, where z0 is the oscillator’s amplitude related
to its energy as z20 D 2Ecl=�!

2
0 . Thus, the final expression for the power of the

oscillator’s radiation becomes

Pcl D e2!20Ecl

3�"0c3�
: (15.92)

Replacing the term „m0!0 with Em0 � „!0=2 in Eq. 15.90, you can see that the
classical and quantum results for the power agree with an accuracy to the term
�„!0=2, which can be neglected in the classical limit Em0 
 „!0=2. At the same
time, this term makes sure that there is no spontaneous emission from the ground
state.

15.3.3 Optical Transitions in Semiconductors

Optical transitions in semiconductors are another important area of application of
Fermi’s golden rule. An important peculiarity of the energy spectrum of electrons
in semiconductors is that the continuous spectrum of the allowed energy values is
broken into a sequence of regions separated by intervals of energy values containing
no states whatsoever—so-called forbidden bands. The actual number of allowed
bands depends on the properties of atoms (mostly their atomic number) constituting
a semiconductor, but as far as interaction with light is concerned, only two are of
real importance: the last completely “filled” band and the first “empty” band (the
existence of such “full” and “empty” bands is what distinguishes semiconductors
and dielectrics from metals). The concept of the full or empty bands is closely

8For those who forgot: z.t/ D z0 cos!0t, and cos2 .!0t/ D .1=T/
´ T
0 cos2 .!0t/ dt D 1=2, where

T D 2�=!0.
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related to the discussion of many-particle fermion states we had in Sect. 11.5 (it
might make sense for you to return to this section). Recall that the Pauli principle
requires the ground state of a many-fermion system to involve as many single-
particle orbitals as there are particles. These orbitals, however, belong to energy
eigenvalues, which are distributed between the bands, and when orbitals from the
lowest bands are all used up, and there are still unassigned electrons, you have to go
to the next band, and this process repeats itself until all electrons are accounted for.
If the highest energy level assigned to the last electron lies somewhere in the middle
of a band so that a spectral distance to the next available level is infinitesimally
small (remember energy levels inside each band form a continuous spectrum), the
material behaves as a metal (it takes a very small amount of energy, which can be
provided by a static electric field to move an electron to a higher energy state where
it can conduct current). If, however, the last filled level is also the last level in a band
so that the next available state belongs only to the next band, the material behaves
as a semiconductor or a dielectric. There is no sharp boundary between the two—
the difference is in the magnitude of the band gap—for semiconductors it is usually
much smaller and can range between 0:23 eV in InSb and 3:44 eV in ZnO, while
band gaps of materials usually perceived as dielectric are much higher (e.g., the
band gap of silica is 8:9 eV). The last filled band in a semiconductor is called valence
band, and the first empty band is called conduction band. These names reflect the
fact that valence electrons are usually firmly attached to an atom and cannot conduct
electricity, while electrons excited to a conduction band become freer of their ions
and can respond to an applied electric field. In a way, you can still think of this
process as “ionization,” which I discussed in Sect. 15.2.3. The difference is that the
valence band electrons also have a continuous spectrum and the conduction band
electrons are not that free and cannot be simply described by free-particle wave
functions.

The curious band structure of electron energy levels in semiconductors is the
direct consequence of the periodicity in the arrangement of atoms in these materials.
Periodicity means that one can find a small group of atoms contained in such a
box that the entire structure can be reproduced by translating this box by one of
three non-collinear vectors ai (I am going to assume for simplicity that they all are
mutually perpendicular and can be used, therefore, to define directions of Cartesian
coordinate axes). These vectors define the periodicity of the structure in the sense
that if you take a coordinate of an arbitrary atom and add one of the vectors ai,
you will get a coordinate of another atom of exactly the same element in the same
position with respect to other atoms, see Fig. 15.5.

I am not going to torture you with any derivations related to the theory of wave
functions describing the stationary states of electrons in such a periodic environment
and their corresponding energy eigenvalues. What you need to know is that the
wave functions representing states in both valence and conduction bands have the
following form:

 v;c .kv;c; r/ D 1p
V

uv;c .r/ eikv;cr: (15.93)
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Fig. 15.5 Example of a
periodic arrangement of
atoms in what is called a
crystal lattice

These states are characterized by a discrete index, signifying a particular band
to which they belong, and by quasi-continuous wave vectors kv;c, discretized by
the same periodic boundary conditions as in Eq. 11.45. For the purpose of this
discussion, I need only two bands represented in Eq. 15.93 by indexes v and
c corresponding to the valence and conduction bands. Functions uv;c .r/ in this
equation are periodic: uv;c .r C ai/ D uv;c .r/, and V is the normalization volume
defined by the same boundary conditions. For small enough kc;v (kc;v � ai � 1),
the energy of a single electron in the conduction and valence bands can often be
approximated by

Ec D Eg C „2k2c
2mc

(15.94)

Ev D �„2k2v
2mv

: (15.95)

These formulas look somewhat like expressions for kinetic energy of a free
particle but with two significant differences: the energy of the electron in the
conduction band does not go to zero as kc ! 0 because of the extra term Eg,
and the energy of the states in the valence band is negative and decreases with
increasing kv: Both these peculiarities reflect the presence of the gap Eg in the
spectrum of energies, and the supposition (valid for many semiconductors) that
states with kv;c D 0 correspond to the maximum and the minimum energies in the
valence and conduction bands correspondingly. If I choose the zero level of energy
to coincide with the maximum energy in the valence band, then the lowest energy
in the conductance band must be Eg, which appears in Eq. 15.94. This choice also
automatically makes all energies in the valence band negative, and they become
more negative the farther away from kv D 0 you go. Parameters mc and mv have the
dimensions of mass and appear in the place of a particle’s mass in many quantum
mechanical formulas, but they are not equal to the regular electron mass me. These
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parameters are called effective masses and are usually much smaller than me with
mc often less than mv .

With some preliminary groundwork laid down, I can start talking about optical
transitions between states in the valence and conductance bands (these are the only
relevant transitions for light with frequencies between infrared and visible). From a
general point of view, this situation is an extension of the discussion of Sect. 15.2.3
in two directions: first, now both initial and final states belong to continuous spectra,
and second, we are dealing with an ensemble of fermions rather than with a single
particle. First of these circumstances means that the conversion of the transition
probability into the probability density started out in Eq. 15.37 and continued in
Eq. 15.38 must now include two sets of quasi-continuous wave numbers for the
valence and conduction bands:

dpmm0 D pmm04m014m024m034m14m24m3 D (15.96)


L3

.2�/3

�2
ps0;s

�
k.c/; k.v/

�
4k.c/1 4k.c/2 4k.c/3 4k.v/1 4k.v/2 4k.v/3 :

The many-body nature of the semiconductor transitions manifest itself first of
all via the Pauli principle affecting the occupation of single-particle orbitals by
identical fermions even if you can neglect the Coulomb interaction between them
(see Chap. 11 if you need to refresh your memory of these ideas). Because of the
Pauli principle, any single-particle orbitals can be either occupied (included into a
determinant presenting a wave function of a many-particle electron state) or empty
(not part of the determinant). Neglecting the interaction between the electrons,
you can still describe the transitions in terms of the single-particle orbitals, but

you have to take into account that a transition from
ˇ̌
ˇ˛.v/m0

E
in the valence band toˇ̌

ˇ˛.c/m

E
in the conduction band is now contingent upon two conditions: first, that the

initial state is occupied and, second, that the final state is empty (you cannot put a
second fermion in a state which is already occupied since trying to add to a Slater
determinant on another row consisting of orbitals already present there will render
the whole thing equal to zero). This circumstance turns probability dpmm0 into a
conditional probability, and according to the general theorem of the probability
theory, in order to find the actual probability of the transition, you must multiply
dpmm0 by probabilities that both conditions are realized simultaneously. To make
this correction, I need two probability distributions: one, fv .kv/, is the probability
of a given orbital in the valence band to be occupied, and the other, fc .kc/, contains
the same information about the conduction band. In the continuous limit, both these
distribution functions become probability densities. Since a given orbital can be
either occupied or empty, the probability of it being empty is obviously 1� fv;c .kv;c/
for both valence and conduction bands. Since any orbital can contain either one or
zero electrons, integration over the orbitals weighted with the respective probability
densities is equivalent to the summation over all electrons, so that the total transition
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probability pvc from any valence band orbital to any conduction band orbital can be
found as

pvc D


L3

.2�/3

�2X
s0;s

ˆ
ps0;s .kc; kv/ fv .kv/ .1 � fc .kc// d3kvd

3kc; (15.97)

where indexes s0;s indicate the initial and final spin states of the electron. This
expression contains two factors with very distinct physical meaning. Factor
ps0;s .kc; kv/ is your regular quantum transition probability, which we have been
discussing in this chapter all along. Factors fv .kv/ .1 � fc .kc// express a different
kind of uncertainty, which is also inherent to the system under consideration but has
nothing to do with quantum mechanics. It simply reflects the fact that in a system
comprising many particles, detailed information about any particular particle is
inaccessible. This situation is typical for all many-particle systems regardless of
their quantum or classical nature. In classical statistical mechanics, the lack of
knowledge of coordinates and momentums of individual particles is manifested
in the form of Maxwell–Boltzmann distribution, while in the quantum case, the
similar role is played by functions fv;c .kv;c/, which have the form of the famous
Fermi–Dirac distribution:

fv;c.k/ D 1

exp
�

Ev;c.k/��
kBT

�
C 1

:

Parameter � in this expression is called a chemical potential and is essentially a
normalization parameter found by requiring that the integral of f .k/ over all k yields
the total number of particles in the system. I am going to spare you from the task of
deriving this function (you can easily find several different derivations if you want),
and I will not be using it in what follows. But I do want to note that as temperature
T approaches absolute zero, the Fermi–Dirac function turns into a step function,
which takes values equal to one for E < �, and zero for E > �. Indeed, in the
former case, the argument of the exponential function is negative so that it vanishes
in the limit T ! 0, while in the latter case, this argument is positive, making the
exponential function infinite when the temperature goes to zero and vanquishing,
thereby, the entire function f . Such a distribution describes the ground state of the
many-fermion system with all states in the valence band filled with probability equal
to unity and all states in the conduction band remaining empty. It does not mean,
however, that parameter � is necessarily equal to the energy of the last filled orbital.
It would have been true for metals, but in semiconductors, the presence of the gap
pushes the value of � toward the middle of the band gap where no single-particle
states can exist.
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With the help of Eq. 15.38, I can present the total rate of transitions from the
valence to conduction band as

Rvc D 2�

„


L3

.2�/3

�2X
s0;s

ˆ
j�s0;s .kv; kc/j2 fv .kv/ .1 � fc .kc//�

ı Œ„� � Ec .kc/C Ev .kv/� d
3kvd

3kc; (15.98)

where the only remaining discrete indexes refer to the two-spin states of the
electrons. If the interaction between light and electrons is spin independent as is
often the case, the perturbation matrix element is diagonal with respect to spin
indexes and can be presented as �s0;s .kv; kc/ D ıs0;s� .kv; kc/. In this case, the
summation over the spin variables is reduced to an extra factor of two in the
expression for the transition rate:

Rvc D 4�

„


L3

.2�/3

�2 ˆ
j� .kv; kc/j2 fv .kv/ .1 � fc .kc//�

ı Œ„� � Ec .kc/C Ev .kv/� d
3kvd

3kc: (15.99)

Since the matrix elements � .kv; kc/ are the same for the transitions in both
directions, I can easily turn this expression into the rate for the reverse transitions
(from the conduction to the valence band) by simply interchanging the distribution
functions fv .kv/ and fc .kc/:

Rcv D 4�

„


L3

.2�/3

�2 ˆ
j� .kv; kc/j2 fc .kc/ .1 � fv .kv//�

ı Œ„� � Ec .kc/C Ev .kv/� d
3kvd

3kc: (15.100)

It follows immediately from these equations that at zero temperature, when all
orbitals in the valence band are filled with probability one, and all orbitals in the
conduction band are empty, the probability distribution functions become fv D
1; fc D 0, and one can generate only absorbing transitions from the valence to
the conduction band. Indeed, if the system is already in the ground state, it cannot
further lower its energy by emitting light, be it a single electron or a whole bunch
of them filling the entire valence band. The net transition rate for the non-zero
temperature Rnet D Rvc � Rcv is given by

Rnet D 4�

„


L3

.2�/3

�2 ˆ
j� .kv; kc/j2 . fv .kv/ � fc .kc//�

ı Œ„� � Ec .kc/C Ev .kv/� d
3kvd

3kc: (15.101)
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Normally, the occupation probability in the valence band is larger than in the
conduction band fv .kv/ > fc .kc/ so that the net flow of electrons is from the
valence to conductance band, which results in net absorption of light. If, however,
you manage somehow to achieve the reverse relation (a population inversion), the
system will become a net emitter of radiation. I think I have already mentioned that
a population inversion is one of the preconditions for achieving lasing.

What is left for me now is to compute the transition matrix elements � .kv; kc/

and evaluate the integrals over the wave numbers. To achieve this goal, I first need,
according to Eqs. 15.63 and 15.93, to calculate the vector dipole matrix element:

d .kv; kc/ D e

L3

ˆ
e�i.kv�kc/ru�

v .r/ .r/ uc .r/ d3r; (15.102)

which determines � .kv; kc/ via

� .kv; kc/ D iE0
2

w � d .kv; kc/ : (15.103)

Figuring out the integral in Eq. 15.102 takes effort and imagination, so fasten your
seat belt—you are in for a ride.

Remember that semiconductors are built by periodic repetition of a single box—
elementary cell? Well, each cell can be characterized by a position vector Rn of its
center (or one of the corners—does not matter) defined by three integer numbers
(relative to the same common origin as the integration variable r, see Fig. 15.5):

Rn1;n2;n3 D n1a1 C n2a2 C n3a3; (15.104)

where ni changes between 0 and Ni D L=ai, a presumed integer, and is used
to enumerate all these cells. You can think of the entire integration volume in
Eq. 15.102 as being filled by Nc D L3=.a1a2a3/ D N1N2N3 non-overlapping (and
leaving no gaps) identical cells of volume � D a1a2a3. The integral, then, can be
presented a sum of integrals over each of these cells as

d .kv; kc/ D e

L3

N1X
n1

N2X
n2

N3X
n3

ˆ

�n

e�i.kv�kc/ru�
v .r/ ruc .r/ d3r; (15.105)

where �n is the region inside nth cell. (Here and elsewhere I will sometimes use
n � fn1; n2; n3g as a compound index for the sake of brevity.) If you feel uneasy
about this trick, consider its one-dimensional version: an integral from 0 to L can be
presented as

´ L
0

f .x/dx D ´ a
0

f .x/dxC´ 2a
a f .x/dxC� � � ´ L

.n�1/a f .x/dx, where L D na.
Next, take an arbitrary point inside a cell and define its position relative to its center
by vector %, such that you can present the point’s position vector r as r D � C Rn

(see Fig. 15.6).
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rRn

r

X

Y

Z

Fig. 15.6 Vectors involved in the transition from integration over an entire volume to the
integration over the elementary cell represented by a single square

Substituting this into Eq. 15.105 and taking advantage of the periodicity of
functions uv;c .r/: uv;c .� C Rn/ D uv;c .�/, I obtain

d .kv; kc/ D e

L3

N1X
n1D0

N2X
n2D0

N3X
n3D0

e�i.kv�kc/Rn

�
ˆ

�n

e�i.kv�kc/�u�
v .�/ .� C Rn/ uc .�/ d3� D

e

L3

N1X
n1

N2X
n2

N3X
n3

ˆ

�n

e�i.kv�kc/�u�
v .�/�uc .�/ d3�C

e

L3

N1X
n1

N2X
n2

N3X
n3

e�i.kv�kc/Rn Rn

ˆ

�n

e�i.kv�kc/�u�
v .�/ uc .�/ d3�:

The last line in this expression vanishes because the wave functions  c;v.r/,
representing eigenvectors of a Hermitian operator, are orthogonal.9 The integral in
the second line

9For especially pedantic and inquisitive readers, I will note: yes you are right, the orthogonality
condition must include integration over the entire volume, while the integral I claim is vanishing
includes integration only over a single cell. However, you might also notice that such integrals
over each elementary cells are all equal to each other, and the integral over the entire volume is
their sum. Thus, the orthogonality condition in this case can be naturally formulated for the inner
product defined over an integral over a single cell.
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Qd .kv; kc/ D
ˆ

�n

e�i.kv�kc/�u�
v .�/�uc .�/ d3�;

which I will call a reduced dipole matrix element, is taken over a volume of the
elementary cell and is the same for all of them. Thus, it can be factored out of the
sum over the cells, so that d .kv; kc/ takes the following form:

d .kv; kc/ D e

L3
Qd .kv; kc/

N1X
n1

N2X
n2

N3X
n3

e�i.kv�kc/Rn :

All what is left now is to figure out the sum over the elementary cells. Using the
representation of Rn in terms of periodicity parameters of the crystal structure,
Eq. 15.104, I can write

N1X
n1

N2X
n2

N3X
n3

e�i.kv�kc/Rn D

N1X
n1D0

e�i.kvx �kcx/a1n1

N2X
n2D0

e�i.kvy �kcy/a2n2

N3X
n3D0

e�i.kvz �kcz/a3n3 ;

where I assumed that vectors a1, a2, and a3 point along X-, Y-, and Z-coordinate
axes correspondingly. Each of these sums is a geometric progression with the first
term equal to unity and coefficient qi D e�i4kiai , (4ki D kvi � kci ), with i taking
values x; y, and z. A well-known formula for the sum of the geometric progression
yields

NiX
niD0

e�i4kiaini D 1 � e�i4kiaiNi

1 � e�i4kiai
D e�i4kiaiNi=2

e�i4kiai=2

sin 4kiaiNi
2

sin 4kiai
2

;

and after combining all these sums, the matrix element becomes

d .kv; kc/ D e

L3
Qd .kv; kc/

3Y
iD1

e�i4kiaiNi=2

e�i4kiai=2

sin 4kiaiNi
2

sin 4kiai
2

: (15.106)

For the transition probabilities and rates, I need jd .kv; kc/ � wj2 (in case you forgot
w is the polarization vector of the electromagnetic wave):

jd .kv; kc/ � wj2 D e2

L6

ˇ̌
ˇQd .kv; kc/ � w

ˇ̌
ˇ
2

3Y
iD1

sin2 4kiaiNi
2

sin2 4kiai
2

:
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Function

FN .4kiai/ D sin2 4kiaiNi
2

sin2 4kiai
2

appears quite often in physics, for instance, in the theory of a diffraction lattice.
For large values of Ni, it is characterized by a maximum at 4ki D 0 where the
function takes the value of N2

i . The larger the parameter Ni, the narrower the peak
becomes and the more of the area bounded by the function lies in the small vicinity
of 4ki D 0. For small 4ki, I can replace the sin function in the denominator with
its arguments reducing FN .4kiai/ to your old acquaintance, the sinc function that
you first encountered during the derivation of Fermi’s golden rule in Sect. 15.2.1:

FN .4kiai/ D sin2 4kiaiNi
2�4kiai

2

�2 D N2
i sinc2

	4kiaiNi

2



:

Using Eq. 15.26 with x identified with 4kiai and a with Ni, I can write

lim
Ni!1 FN .4kiai/ D 2�Niı .4kiai/ D 2�Ni

ai
ı .4ki/ ; (15.107)

where at the last step I used a known scaling property of the delta-functions:
ı.ax/ D ı.x/=a (I apologize for having too many as with different meanings in
the last three lines and hope you won’t let yourself get confused by them). Taking
into account Eq. 15.107, and identifying ı .4kx/ ı

�4ky
�
ı .4kz/ with ı .kv � kc/

(recall Eq. 2.39), I find for jd .kv; kc/ � wj2:

jd .kv; kc/ � wj2 D .2�/3 Nc

�L6
e2
ˇ̌
ˇQd .kv; kc/ � w

ˇ̌
ˇ
2

ı .kv � kc/ : (15.108)

Take a breath and pat yourself on the shoulder—you wandered into a rugged terrain
and came back mentally in one piece. From this point on, it will be all down the
slope. First, use Eq. 15.103 to find the perturbation matrix element jv .kv; kc/j2,
substitute it into Eq. 15.101 for the net transition rate, and get rid of the integration
over one of the wave numbers using the delta-function:

Rnet D 4�

„


L3

.2�/3

�2
.2�/3 Nc

�L6
E20
4

e2�
ˆ ˇ̌
ˇQd .kv; kc/ � w

ˇ̌
ˇ
2

. fv .k/ � fc .k// ı Œ„� � Ec .k/C Ev .k/� d
3k:
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Now you can go back to Eqs. 15.94 and 15.95 and write Rnet as

Rnet D Nce2E20
8�3„�

ˆ ˇ̌
ˇQd .k; k/ � w

ˇ̌
ˇ
2

. fv .k/ � fc .k//�

ı


„� � Eg � „2k2

2mc
� „2k2
2mv

�
d3k D

Nce2E20
8�3„�

ˆ ˇ̌
ˇQd .k; k/ � w

ˇ̌
ˇ
2

. fv .k/ � fc .k//�

ı


„� � Eg � „2k2

2�

�
d3k; (15.109)

where I introduced the reduced effective mass �, 1=� D 1=mc C 1=mv , and
remembered that the distribution functions depend only on the magnitude of the
wave number k by the way of the corresponding energies Ev and Ec. The last
comment is important as it allows me to carry out the integration over directions
of k in Eq. 15.109 using the spherical coordinate representation for k. Neglecting
a weak k—dependence of the matrix element Qd .k; k/—and replacing it with the
constant vector Qd, I can evaluate Eq. 15.109 to be

Rnet D Nce2E20
2�2„�

ˇ̌
ˇQd � w

ˇ̌
ˇ
2
ˆ
. fv .k/ � fc .k// ı


„� � Eg � „2k2

2�

�
k2dk;

where I took into account that the integral over angular variables yields 4� . To
evaluate the remaining integral over k, I make a substitution of variable � D
„2k2=2� that yields

Rnet D Nce2E20
2�2„�

ˇ̌
ˇQd � w

ˇ̌
ˇ
2 1

2

	
2�

„2

3=2 ˆ

. fv .k/ � fc .k// ı
�„� � Eg � ��p

�d� D

Nce2E20�3=2p
2�2„4�

ˇ̌
ˇQd � w

ˇ̌
ˇ
2 �

fv
�„� � Eg

� � fc
�„� � Eg

��q„� � Eg�
�„� � Eg

�
;

where the step function �.x/ indicates impossibility to fulfill the condition „� �
Eg D � > 0 unless „� > Eg. This condition reflects a physically quite
obvious circumstance: it is impossible to cause a transition from the valence to
the conductance band if the energy of a respective photon is less than the energy
required to bridge the band gap. Light with frequencies not satisfying this condition
does not interact with electrons of the semiconductor merely passing through.
Therefore, semiconductors remain almost transparent to frequencies smaller than
Eg=„. (Almost because there are always other mechanisms for light absorption not
accounted for by this model.)
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The transition rate in this expression is proportional to the number of elementary
cells in the structure, i.e., to its volume. A more physically relevant quantity would
be a number of transitions per unit time per unit volume, which is

Rnet

L3
D e2E20�3=2p

2�2„4�2
ˇ̌
ˇQd � w

ˇ̌
ˇ
2 �

�
fv
�„� � Eg

� � fc
�„� � Eg

��q„� � Eg�
�„� � Eg

�
; (15.110)

where I replaced Nc=L3 D 1=� . This result now can be used to find an expression
for the absorption coefficient in the semiconductor, but I leave it for you as an
exercise. Final remark: if you are dealing with an unpolarized light, the averaging
over polarization might be needed, which as we know will result in the replacementˇ̌
ˇQd � w

ˇ̌
ˇ
2 !

ˇ̌
ˇQd
ˇ̌
ˇ
2

=3.

15.3.4 Selection Rules: Dipole Matrix Elements Made Easier

Dipole matrix elements dm0;m D h˛m0 j er j˛mi play the key role in determining
probabilities of various optical transitions, and their computation constitutes the
largest chunk of what researchers studying emission and absorption spectra of
various quantum systems do. Quite often knowing the symmetry of the unperturbed
Hamiltonian, you can determine if a matrix element in question vanishes or has
a non-zero value without any actual calculations. Obviously, this knowledge saves
lots of time and effort, and this is why physicists pay a great deal of attention to so-
called selection rules. These are the rules which allow you to determine the matrix
element of which transitions have a finite (non-zero) value and for which it vanishes.
In the former case, the transitions are called dipole-allowed, and in the latter, they
are called dipole-forbidden. Usually, if you go beyond the dipole approximation, the
new perturbation matrix element might have a non-zero albeit a rather small value,
making the probability of such transitions small but still different from zero.

Derivation of the general selection rules is quite involved and requires knowledge
of mathematics (theory of groups) which is not expected from the readers of this
book. However, selection rules for dipole transitions between states represented by
hydrogen-like wave functions can be derived using more elementary methods. In
this section I’ll show how this can be done, and in the end, I will fulfill my promise
and finish the computation started in Eqs. 15.72 and 15.73.

The selection rules for dm0;m are determined by the symmetry of this expression
with respect to inversion and rotations. As I have already explained at least twice
in other parts of the book, in order to utilize the symmetry, you have to consider
how constituent parts of the matrix element—the state vectors and the respective
operator (in this case Or)—change when a symmetry transformation is performed.
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If these changes keep the resulting matrix element unchanged, then there is nothing
you can say about it—it might or might not be equal to zero, but you will have to
actually compute the integrals to find out its actual value. If, however, the changes
of the vectors and the operator are such that the resulting matrix element, which
must remain invariant, appears to change, you would encounter a paradox, which
can only be resolved if the matrix element in question is zero.

The first of the selection rules can be derived by considering the effect of
inversion—the symmetry operation described by parity operator O…. I have already
analyzed the behavior of matrix elements with respect to inversion in Sect. 7.1.2
and the beginning of Chap. 10, so here I will only remind you of the results. Since
the position operator Or (and the momentum operator Op) are odd operators (they
change sign under the action of O…; see Eqs. 5.25 and 5.26), the corresponding matrix
element will vanish unless it is calculated between states with different parity. In
application to the hydrogen-like atoms, this selection rule means that the dipole-
allowed transitions are only possible between states with odd and even values of
the orbital quantum numbers l. This follows from the properties of the spherical
harmonics, which are even for even l and odd when l is odd; see Sect. 5.1.4.

The rest of the selection rules are determined by the rotational symmetry of the
system, but a direct application of the transformation properties of the eigenvectors
with respect to rotation is again outside of the mathematics background expected
from the readers. Therefore, I will address this problem relying directly on the
properties of the spherical harmonics and operators of the angular momentum. So,
to make sure that we all are on the same page, let me reiterate: I am interested in the
properties of the matrix elements of the form

hn0; l0;m0j r jn; l;mi ;

where n; l;m are standard notations for principal, orbital, and magnetic quantum
numbers correspondingly (obviously, the absence of the electric charge in this
expression is inconsequential). I am looking for relationships between orbital and
magnetic quantum numbers of the initial and final states, which would ensure
that the matrix element does not vanish because of the symmetry requirements. I
hope you will not get confused by my use of m to represent two different things:
sometimes it is a generic index enumerating various states of the system, and
sometimes m is a magnetic quantum number defining an eigenvalue of the operator
OLz. I hope that you will be able to differentiate between the two usages of this symbol
from the context in which it is used.

The required relations between magnetic quantum numbers m0 and m are easiest
to establish. Indeed, these numbers appear in the matrix elements only in the form
exp Œi .m � m0/ '�, which is a part of the spherical harmonics Yl;m .�; '/, multiplied
by x-, y-, or z-component of the position vector r. Therefore I can write for the
Cartesian components of the dipole matrix element:
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dx /
2�ˆ

0

cos'ei.m�m0/'d' / ım�m0C1 C ım�m0�1;

dy /
2�ˆ

0

sin'ei.m�m0/'d' / ım�m0C1 � ım�m0�1;

dz /
2�ˆ

0

ei.m�m0/'d' / ım�m0;

where I omitted the parts of the integrals that do not contain the azimuthal angle '
(those bothersome factors with radial functions and associated Legendre functions
and even cos � or sin � parts of the position vector components) and took into
account that an integral of exp .im'/ over the interval Œ0; 2�� with integer m is
zero unless m D 0. These results tell me that the selection rules for different
components of the dipole matrix element are different: for x- and y-components,
the matrix elements are not zero only if the magnetic numbers of the initial and final
states differ by one, jm � m0j D 1, while for the z-component, it is not zero only if
m D m0. This difference manifests itself experimentally by the different reactions
of the atom to light of different polarizations and propagation directions.

At this point a thoughtful reader should say: “Wait a second, professor! If the
system is completely isotropic as a hydrogen atom is, then it should make no
difference how we choose all axes of the coordinate system, including its Z-axis.
In this sense, a light of any linear polarization can be made polarized along any
axis—we could choose a Z-axis to go along the propagation direction of the wave,
and X-axis (or Y-axis) along the electric field of the wave. This choice would make
the wave induce transitions between states with magnetic numbers different by one.
If, however, you, on a whim, decide to direct a Z-axis along the electric field, then
the induced transitions would be between the states with the same magnetic number.
And how does all this make any sense? The nature wouldn’t care about the choices
of the coordinate system we make, would it?” This, of course, would be a very fair
question, but I do have a very good answer to it. First, you need to remember that all
states with the same magnetic number have the same energy, they are degenerate.
Therefore, the transitions with or without change in m would occur at the same
frequency, and you cannot distinguish between them in the absorption or emission
spectra. Second, the definition of m and of the state with given m is directly attached
to the direction of the polar axis. Changing the direction of the latter, obviously,
would not change the actual quantum state (the nature indeed cares very little about
our choices of the coordinate systems), but it will change your description of it: the
same state, which in one system is an eigenvector of the operator OLz characterized
by a certain value of m, will now be described as a superposition of eigenvectors
of the operator OLQz, defined with respect to a new polar axis, with different magnetic
numbers.
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In order to really observe the difference between transitions with or without
change of magnetic number, you would need to spoil the symmetry enough to lift the
degeneracy of the states, but not too much so as not to destroy the dependence of the
wave functions upon '. This can be achieved, for instance, by placing an atom in a
uniform magnetic field. The resulting Hamiltonian as you know still commutes with
Lz, if the Z-axis is chosen along the magnetic field, so the eigenvectors of the latter
remain eigenvectors of the Hamiltonian and retain their exp .im'/ behavior. The m-
selection rules, which were based completely on this dependence on ', remain valid
even in this case, but the direction of the Z-axis is now not arbitrary but set by the
magnetic field. By directing the incident light along the field (its polarization will
obviously be in X- or Y-directions), you can observe its absorption due to m ! m˙1
transitions. The transition between the states with the same magnetic numbers can
be observed using light polarized along the magnetic field.

The m-selection rules can also be derived in a more elegant way without reliance
on a direct computation of integrals in the position representation. It is easy to see
that operators OLz and Oz commute ( OLz contains only operators Ox, Oy and correspondingly
Opx and Opy, all of which commute with Oz). So take the identity OLzOz D Oz OLz and multiply
from the left by the bra version of the eigenvector of OLz hl1;m1j and from the right
by its ket version jl2;m2i:

hl1;m1j OLzOz jl2;m2i D hl1;m1j Oz OLz jl2;m2i :

Using hermiticity of OLz, you can apply it to the bra vector on the left-hand side of
this expression and to the ket vector on its right-hand side:

„m1 hl1;m1j Oz jl2;m2i D „m2 hl1;m1j Oz jl2;m2i :

This expression can only be true if either m1 D m2 or hl1;m1j Oz jl2;m2i D 0, which
is exactly our selection rule for the z-component of the dipole matrix element. This
analysis shows a way to derive the selection rule for two other components of the
dipole matrix elements, but I will leave it for you as an exercise.

I will complete this section by deriving the last set of the selection rules
establishing limitations on the orbital quantum numbers l of the initial and final
states of the dipole-allowed transitions. This would require analyzing integrals with
respect to the polar angle �; which can be written in the following form:

dx;y /
�̂

0

Pm0
l0
.cos �/ sin �Pm0˙1

l .cos �/ sin �d� (15.111)

dz /
�̂

0

Pm0
l0
.cos �/ cos �Pm0

l .cos �/ sin �d�: (15.112)
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The structure of these expressions is as follows: the associated Legendre functions
are, of course, the � -dependent part of the spherical harmonics for the initial and
final states with m-selection rules incorporated, the sin � or cos � factor between
them represent the � -dependent part of the components of the position vector
expressed in the spherical coordinates, and, finally, the last sin � factor is a part
of the spherical differential volume element dV . A convenient way to compute
these integrals is to note that trigonometrical functions can be expressed in terms
of the associated Legendre polynomials as cos � D P01 .cos �/, sin � D �P11 .cos �/,
turning integrals in Eqs. 15.111 and 15.112 into integrals of the product of three
associated Legendre polynomials. These integrals can be evaluated using a widely
known (among a narrow circle of people) so-called Gaunt’s formula. I am not
going to reproduce it here because of its rather cumbersome form and easy online
availability (if you are interested, you can find it on a Wikipedia page for associated
Legendre polynomials). Moreover, for the examples you will actually be dealing
with in this book, it is easier to compute these integrals from scratch. However, I
will use the conditions on numbers l and m, specified by this formula, which ensure
that the respective integral does not vanish. First, it is required that the largest of
m be equal to the sum of two other magnetic numbers. In our case this condition
is consistent with m-selection rules, which is easily verifiable by looking at the
corresponding equations. In Eq. 15.111 the sin � corresponds to m D 1, which
is a perfect match for the m-values of two other Legendre polynomials, while in
Eq. 15.112 the cos � corresponds to m D 0, again in agreement with the already
established selection rules. Second, it is required that the l numbers of the Legendre
functions obey the “triangle rule,” in which one of the numbers is less than the sum
of two others and larger than their difference (like for the sides of a triangle). In our
case it means

l C 1 � l0 � l � 1;

leaving me with only three possibilities l0 D l or l0 D l ˙ 1. The first of them is
excluded by the parity argument, so that you are left with the last of the selection
rules: dipole transitions are only allowed between the states with azimuthal quantum
numbers differing by unity, jl � l0j D 1, which is, of course, consistent with the
inversion symmetry-based requirement that initial and final states have different
parities. If you are wondering if this result can be obtained in a different way without
a referral to an obscure formula too big even to be displayed here, the answer is yes.
One can derive it using arguments similar to the one I showed for m-selection rules,

but it involves computing commutator
h OL2;

h OL2; r
ii

of a rather obscure and non-

intuitive origin, so the whole approach does not look that elegant anymore. You
can find it in a popular quantum mechanics textbook by D.J. Griffiths.10 Another
way to derive this result is based on the Wigner–Eckart theorem, which deals with

10D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (Cambridge University Press,
Cambridge, 2016).
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the generic properties of matrix elements involving eigenvectors of the angular
momentum, but exposing you to it could be construed as a cruel and unusual
punishment.

Now I can finish computing the dipole matrix elements appearing in Eqs. 15.72
and 15.73, which are

&1 D h1; 0; 0j eOr j2; 0; 0i ;
&2 D h1; 0; 0j eOr j2; 1;�1i ; &3 D h1; 0; 0j eOr j2; 1; 0i ; &4 D h1; 0; 0j eOr j2; 1; 1i :

By the parity argument (or l-selection rule), you can immediately conclude that
&1 D 0, while all other matrix elements might have nonvanishing values. For &2 and
&4, the m-selection rule yields the non-zero values for their x- and y-components,
while for &3 only the z-component does not vanish. Now, let’s go ahead and compute
them using the known expressions for the hydrogen wave functions from Chap. 8. I
will need the following (assuming Z D 1 and vacuum):

j1; 0; 0i D 1p
�

	
1

aB


3=2
e�r=aB ;

j2; 1;˙1i D 1

8
p
�

	
1

aB


3=2 r

aB
e�r=2aB sin �e˙i';

j2; 1; 0i D 1

4
p
2�

	
1

aB


3=2 r

aB
e�r=2aB cos �;

which gives me

&2x D e

8�a4B

1̂

0

drr4e�3r=2aB

�̂

0

d� sin3 �

2�ˆ

0

d' cos'e�i' D

1

8�a4B

256a5B
81

4

3
� D 128

243
eaB;

&2y D e

8�a4B

1̂

0

drr4e�3r=2aB

�̂

0

d� sin3 �

2�ˆ

0

d' sin'e�i' D

�i
1

8�a4B

256a5B
81

4

3
� D �i

128

243
eaB;

and

j&2j2 D j&2x j2 C ˇ̌
&2y

ˇ̌2 � 0:55e2a2B:
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Now, you can easily notice (using the expressions for the corresponding wave
functions) that &4 D &�

2 , which means that x-components for both matrix elements
are identical, while their y-components are complex conjugates of each other and
j&4j2 D j&2j2. And, finally, the last of the non-zero elements

&3z D e

4
p
2�a4B

1̂

0

drr4e�3r=2aB

�̂

0

d� sin � cos2 � D

256a5B
81

2

3
� D 64

243
eaB

j&3j2 � 0:14e2a2B;

and I can finish the computation of the transition rates in this example. For upward
(absorbing) transitions

RE1;E2 D 2
�u .!E1;E2 / e2a2B

3"0„2 .0:55 � 2C 0:14/ D 2:48
�u .!E1;E2 / e2a2B

3"0„2 ;

while the rate for downward transitions due to stimulated emission is eight times
smaller due to the difference between degrees of degeneracy of the initial and final
states for each direction of the transitions.

15.4 Problems

For Sect. 15.1

Problem 175 Consider a one-dimensional harmonic oscillator (mass me, frequency
!0) acted upon by a uniform force with time dependence of the form

F.t/ D F0�ı .t � t0/ :

1. Assuming that the oscillator is initially in a ground state, find the probability that
it will be found in an arbitrary state jni at time t > t0 using first and second orders
of the time-dependent perturbation.

2. Solve Eq. 15.4 exactly (not using the perturbation theory) with the same initial
condition.

Problem 176 Consider an electron in a one-dimensional infinite potential well V.z/
subjected to additional potential of the form

V.x; t/ D
(

Fz t
�

0 < t < �

Fz t > �
:
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1. Find a probability of transition between a state belonging to the second energy
level and states belonging to the first and the third energy levels.

2. Write down an expression for the time-dependent state of the electron in the first
order of the perturbation theory assuming that initially it is in the ground state,
and use it to compute expectation values of coordinate and momentum of the
particle (keep only linear in the perturbation terms).

Problem 177 Derive an expression for c.r/m —an arbitrary-order approximation for
the time-dependent expansion coefficients cn.t/.

Problem 178 Consider an electron in the ground state of a three-dimensional
symmetrical infinite potential well of width a in all dimensions subjected to a
perturbation:

V.t/ D F0 .x C y C z/ � .t/ � .� � t/ :

Find a probability that after the perturbation is over, you will observe an emission
from this electron at a frequency !21 D .E2 � E1/ =„, where E2 and E1 are the
second and the first lowest energy eigenvalues of the electron. Do not forget that the
eigenvalue E2 is degenerate. For which � will this probability be largest?

Problem 179 Repeat Problem 178, assuming that the electron is in an infinite
spherical potential well, while the perturbation has the same form.

Problem 180 Vectors j˛mi in the derivation of the transition probabilities might
represent states of many-particle systems as well. Thus, consider a system of two
non-interacting electrons allowed to move only in z-direction in a one-dimensional
potential well of width a. They are subjected to a pulse of the uniform electric field:

E D E0 cos�t� .t/ � .� � t/ :

1. Assuming that the electrons are initially in the ground state, find a probability of
transition to the lowest in energy excited state. Do not forget that electrons are
fermions and that they have spin.

2. How will the answer change if somehow spins of both electrons are always kept
in the spin-up state?

Problem 181 Consider a pure spin 1=2 (no orbital degrees of freedom to worry
about) placed in a uniform constant magnetic field B in the direction of the Z-
axis. The spin is also subjected to a weak “rotating” magnetic field B?.t/ D
b0
�
ex cos�t C ey sin�t

�
, where ex;y are unit vectors in the directions of X- and

Y-axes. Considering the “rotating” field as a perturbation,

1. Find the time-dependent spinor describing the quantum state of this spin in
the first order of the time-dependent perturbation theory, and compute the
expectation values of all three spin components.
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2. Assuming that the perturbing field was turned off at time t D T and z-component
of the field is measured, find the probabilities of various outcomes. Repeat the
same if the x-component is measured.

Analyze the obtained results as a function of parameter�T . In all cases assume that
initially the spin was in its ground state.

Problem 182 Consider a hydrogen atom initially in the ground state subjected to a
perturbation:

V D E0ze�jtj=� :

Assuming that “initially” corresponds to t0 D �1, modify Eq. 15.12 to account for
this new value of t0 and compute probabilities to find the atom in the ground state at
t ! 1 in the first order of the perturbation theory.

For Sect. 15.2.1

Problem 183 Compare the result of the first-order perturbation theory for the
transition probability in the case of monochromatic perturbation (Eq. 15.23) with
the exact solution for the two-level system from Chap. 10. Derive an approximation
for Eq. 10.32 valid for short time intervals, and compare it with the results of the
perturbation theory. State the condition to which the duration of the perturbation
must obey for the probability expression to yield a reliable result.

Problem 184 Assuming monochromatic perturbation, derive an expression for the
transition probability in the second order of the perturbation theory. Analyze its
behavior at t ! 1.

Problem 185 Re-derive Eq. 15.23 assuming that the perturbation operator has a
time dependence in the form of the sine instead of cosine function.

Problem 186 Consider a spin 3=2 particle in a uniform magnetic field in z-
direction: B D B0ez. At time t D 0 the particle is subjected to a time-dependent
magnetic field in the y-direction: B1 D b0 sin�t. Assuming that the particle is
initially in the ground state, find the transition probabilities for all three excited
states expressed in the delta-functional form of Fermi’s golden rule.

Problem 187 Consider a one-dimensional harmonic oscillator with time-
dependent frequency:

! D !0 .1C 4 cos�t/ :
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1. Present the Hamiltonian of the system in the form OH0 C OV.t/, and identify the
form of the time-dependent perturbation Hamiltonian. Rewrite it using lowering
and raising operators.

2. Assuming that the oscillator is initially (at t D 0) in the nth state, determine
transitions into which states are possible and find the corresponding probabilities
in the limit of small t and t ! 1.

3. Write down the time-dependent state of the oscillator, and compute the expecta-
tion value of the Hamiltonian in it.

Problem 188 Consider a system with a quasi-monochromatic perturbation opera-
tor:

OV.t/ D O�e��t cos�t�.t/:

1. For the perturbation of this form, derive the expressions for the transition
probabilities in the first order of the perturbation theory for an arbitrary time
t.

2. Find the limiting value of these probabilities in the limit t ! 1.
3. Consider the behavior of these limiting values when � ! 0. Compare the results

with the delta-functional form of Fermi’s golden rule.

For Sect. 15.2.3

Problem 189 Consider a particle in a one-dimensional ı-functional potential well:

V D �˛0 Œ1C 4 cos .�t/ �.t/� ı.x/:

Find the probability that the perturbation will kick out the particle from its ground
state. Do not assume that the state in the continuum are just plane waves—find the
true scattering states in the delta-functional potential.

Problem 190 Consider a gas consisting of non-interacting potassium atoms with
concentration nNa D 1012 m�3. First, find the electron configuration of a potassium
atom (distribute all electrons among available orbitals) and, assuming that a lone s-
electron in the last shell behaves as an electron in a quasi-hydrogen atom, determine
its energy. The gas is being exposed to a uniform time-periodic electric field of
frequency � which ionizes the atoms by kicking out this electron to the continuous
segment of the spectrum. Find for which frequency � the number of free electrons
generated per second per unit volume is largest, and find this number.



15.4 Problems 565

For Sect. 15.3.1

Problem 191 Sometimes the dipole matrix elements in the expression for the
transition rate vanish, in which case other weaker interactions between light and
atom start playing a role. One of them is the magnetic dipole interaction described
by a perturbation term:

OV D e

2me
B.0; t/nB �

� OL C 2 OS
�
;

where nB and B.0; t/ are the direction and magnitude of the magnetic field
component of the electromagnetic wave, which I described in Eq. 15.56 by its vector
potential. The magnetic dipole approximation consists in taking the value of the field
at r D 0. It can be shown that the part of this operator containing the orbital angular
momentum OL originates from the first correction to the dipole approximation (linear
in the kr term in the expansion of the exponent exp .ikr/), but I will spare you the
derivation. This expression is similar to the Zeeman term in atomic Hamiltonian,
Eq. 14.34, but, unlike the latter, is time-dependent.

1. Using Eq. 15.56 find the expression for the magnetic field in this wave and relate
vector nB to the polarization vector w.

2. Derive a general expression for the perturbation matrix element vm0;m for the
magnetic dipole perturbation term (do not specify the nature of the initial and
final states). Index m here (and in the next problem) is just a generic index
enumerating states, and not a magnetic quantum number.

Problem 192 Derive a dipole transition matrix element vm0;m if the incident
electromagnetic radiation is described by the vector potential of the form

A .r; t/ D �E0
˝

�
Axex cos .kz ��t/C Ayey cos .kz ��t C '/

�
;

where ex;y are unit vectors and
q

A2x C A2y D 1. Find a dependence of the matrix

elements of the parameters ' and Ax;y. (Hint: Present the trigonometric functions in
the complex exponential form.)

For Sect. 15.3.2.1

Problem 193 Using Eqs. 15.70 and 15.71, demonstrate that Einstein coefficients
Bab and Bba are related to each other via gaBab D gbBba, where ga;b are degrees of
degeneracy of the initial and final states jai and jbi.
Problem 194 Find Einstein’s Bab and Bba coefficients for transitions between the
second and third excited levels of a particle in a symmetric three-dimensional
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infinite cubic potential well. Find the transition rates, taking into account the
degeneracy of both the final and the initial states.

Problem 195 Consider an electromagnetic wave propagating through a gas of
“pure” spins 1=2 placed in the constant uniform magnetic field B with concentration
N spins per unit volume. This situation can be realized, for instance, in the case of
an electron in an atom in a ground state if the frequency of the wave is too low
to cause any transitions except of those between the spin states. If this is the case,
you can ignore all quantum numbers of the electron and treat it as a “pure” spin.
So the magnetic field of the electromagnetic wave induces transitions between two
energy levels corresponding to eigenvectors of the component of the spin operator
in the direction of the permanent magnetic field B. Assume that the spins are in
the thermal equilibrium, meaning that the ratio of the number of spins in the higher
energy state Nb to those in the lower energy state is

Nb

Na
D

exp

	
� Eb

kBT




exp

	
� Ea

kBT


 :

Determine the absorption coefficient in this system. Assuming that the magnitude
of the permanent magnetic field is 1T , and the concentration of spins N D 1015 per
unit volume, find the numerical value of the absorption coefficient as a function of
temperature. How does this absorption behave as the temperature goes up?

Problem 196 Find the stimulated emission and absorption transition rates between
the second and third excited states of a three-dimensional isotropic harmonic
oscillator (mass �, frequency !). Do not forget to take into account the degeneracy
of both states. For numerical estimates, take � to be equal to the reduced mass of a
molecule of CO2, and for frequency ! D 7:7� 107 rad/s. Assume that the molecule
is exposed to the black-body radiation at temperature T D 300K.

Problem 197 Find Einstein B coefficients for a magnetic dipole transition (see
Problem 191) between states of hydrogen atom

ˇ̌
2; 3

2
; 1
˛

and
ˇ̌
2; 1

2
; 1
˛

split by the
spin–orbit interaction (see Sect. 14.1), where the nomenclature for the states is in
jn; j; li, where n is the principal quantum number and j and l are the total and orbital
angular momentum numbers.

For Sects. 15.3.2.2–15.3.4

Problem 198 An electron in an infinite one-dimensional potential well is excited
to the third energy level and is left alone to return to the ground state by the way
of spontaneous emission. This can be done via two different routes: j3i ! j1i and
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j3i ! j2i ! j1i, where I used notation jni to designate the state belonging to the
corresponding energy level.

1. At which frequencies can the spontaneously emitted light be observed?
2. What is the spontaneous emission rate for each frequency?
3. Find the rate at which the number of atoms in the ground state increases.

Hint: Remember that if a random event is a sequence of two independent events
occurring consequently (one after the other), the total probability is the product
of the probabilities of the individual events. If, however, an event can occur via
several alternative paths, the total probability is the sum of probabilities of each
alternative.

Problem 199 Consider a hydrogen atom excited to j3; 2;�1i and j3; 1;�1i states,
where a standard notation for hydrogen stationary states is used (spin–orbit interac-
tion is neglected).

1. Describe all possible channels by which the atom can decay to the ground state,
and find probabilities for each channel.

2. Find the lifetime of these states. (Do not forget to consider all possible ways for
these states to decay, but take into account that once the atom transitioned from
its initial state, it is no longer in that state, so for the lifetime calculations, only
the first steps in each chain are relevant.)

Problem 200 Using Eq. 15.110 and the definition of absorption coefficient,
Eq. 15.81, derive an expression for the latter for a semiconductor. Assume that
you are dealing with GaAs (band gap Eg D 1:43 eV, effective mass in conductance
band mc D 0:067me, effective mass in the valence band mv D 0:45me, where me

is a regular mass of a free electron) at temperature T D 300K. Find the numerical
value of the absorption coefficient for light at frequency „˝ D 1:5Eg.

Problem 201 Derive the magnetic quantum number selection rules for light polar-
ized in the x- and y-directions using commutation relations between operators Ox, Oy
and OLz.

Problem 202 Determine the selection rules for magnetic dipole transitions
between hydrogen-like states with its given azimuthal, magnetic, and spin quantum
numbers. Show that the magnetic dipole transitions between the states with different
principal numbers are forbidden. (Hint: For this you would have to consider the
radial part of the matrix element integrals.)

Problem 203 When a dipole matrix element vanishes because of the dipole
selection rules and the rate of the corresponding transition goes to zero, it does
not mean that such transitions could never occur, but one has to go beyond the
dipole approximation in order to find the mechanism responsible for such so-called
forbidden transitions. By keeping the linear in kr term in the expansion of the vector
potential in Eq. 15.56, one would find two new transition mechanisms: the magnetic
dipole transition (Problems 191 and 202) and a so-called quadrupole transition
whose contribution to the perturbation potential can be written down as
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OV D eE0
2me�

0
@X

i;j

Qijwikj

1
A�ei�t C e�i�t

�
;

where

Qij D rirj � 1

3
ıijr

2

is a so-called quadrupole moment—a 3 � 3 matrix with zero trace:
P

i Qii D 0.
In the definition of the quadrupole moment, r1;2;3 corresponds to the Cartesian
components of the position vector x; y; z, while r D p

x2 C y2 C z2 is its magnitude.
Correspondingly, the matrix element, which determines the fate of all transitions,
becomes in this case

vm0m D eE0
2me�

0
@X

i;j

h˛m0 j Qij j˛mi wikj

1
A :

Determine the selection rules for the quadrupole-allowed transitions assuming
hydrogen-like initial and final states.

Problem 204 Consider a transition between the hydrogen states j3; 2; 0i and
j1; 0; 0i, which is dipole-forbidden, and find the quadrupole moment-mediated
transition rate due to spontaneous emission for this transition. Compare it with a
dipole-allowed transition between states j3; 1; 0i and j1; 0; 0i.



Chapter 16
Free Electrons in Uniform Magnetic
Field: Landau Levels and Quantum Hall
Effect

The Zeeman effect, which we discussed in some detail in Sect. 14.2, originates
from the interaction between the magnetic moment of an electron bound to an
atom and a uniform magnetic field. Experimentally this effect is often observed
in atomic gases but can also manifest itself with bound electrons in semiconductors
and dielectrics. What is important is that the quantum states of the electrons in all
these cases belong to discrete energy eigenvalues. In metals and in the conduction
band of semiconductors, on the other hand, the energy levels of electrons belong
to the continuum spectrum, and in some instances, electrons can even be treated as
free particles. The interaction between such unbound, almost free electrons and the
uniform magnetic field results in some fascinating effects which had played and are
still playing an important role in physics.

Among older phenomena owing their existence to this interaction are the Hall
effect (the emergence of an electric current in the direction perpendicular to
the electric field), the de Haas–van Alphen effect (oscillations of magnetization
of the metal with increasing magnetic field), and the Shubnikov–de Haas effect
(oscillations of conductivity with the magnetic field). The Hall effect, which is a
purely classical phenomenon, was discovered by American physicist Edwin Hall in
1879. It is interesting to note that Hall first worked as a high school principal before
embarking on Ph.D. studies in physics, which he did at Johns Hopkins University.
The discovery of the effect, which now bears his name, was part of his doctoral
work. He became a professor of physics at Harvard University in 1895, but did
not produce anything even remotely as significant as his student discovery. Both
de Haas effects owe their existence to the quantum nature of electrons and were
discovered in 1930 in the laboratory of Dutch physicist Wander Johannes de Haas.
Pieter M. van Alphen was at that time de Haas’ student, while Lev Shubnikov was
a Soviet physicist working with de Haas as a visiting scholar. After his return to the
Soviet Union, Shubnikov was falsely accused of espionage and in 1937 executed
by the People’s Commissariat for Internal Affairs (NKVD)—Soviet analog of Nazi
Gestapo (Secret State Police).
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One of the most fascinating and fairly recent magnetic field effects discovered
in the system of unbound electrons is the quantum Hall effect and even more
exotic fractional quantum Hall effects. The former was discovered by German
physicist K. von Klitzing in 1980, who showed experimentally that the so-called
Hall conductance (I will explain what it means later, have patience) in a two-
dimensional electron gas is independent of the geometry and details of the structure
and is an integer multiple of a universal parameter e2=h (e is the fundamental
charge, and h is the Planck’s constant without the bar). Plotted as a function of
the magnetic field, the Hall conductance (or its inverse, called Hall resistance) is
seen as a series of plateaus separated by finite jumps with a magnitude of e2=h
(see Fig. 16.1, where the lower curve gives an example of the Shubnikov–de Haas
oscillations in a two-dimensional system).

The significance of this discovery was almost immediately recognized by the
physics community, and von Klitzing was awarded the 1985 Nobel Prize in Physics.

In 1982 Horst Störmer, Daniel Tsui, and Arthur Gossard, American physicists1

working at that time at Bell Labs, made an even more unexpected discovery—the
Hall conductivity, which is a rational fractional multiple (as opposed to the integer
multiple) of e2=h. This phenomenon was called a fractional Hall effect, and it still

Fig. 16.1 Experimental
curves for the Hall resistance
and Ohmic resistivity of a
heterostructure as a function
of the magnetic field at a
fixed carrier’s density at
temperature T D 0:8 mK
(from K. von Klitzing, The
quantum Hall effect. Rev.
Modern. Phys. 58(3) (1986),
reprinted with permission)

1Störmer was born in Germany and got his Ph.D. in France, while Tsui was born in China to a
family of farmers, did undergraduate work at Lutheran Augustana College in Illinois, and got his
Ph.D. at the University of Chicago.
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defies full theoretical explanation. The only thing clear from the very beginning was
that the model of non-interacting electrons, successful in the explanation of “normal
quantum Hall effect,” is not applicable here. Just a few months after the experimental
discovery, another American theoretical physicist Robert Laughlin pulled out of thin
air an exotic many-electron wave function describing a new kind of ground state of
interacting fermions which can only exist in two-dimensional systems. This ground
state has a bunch of mysterious properties which can be interpreted by introducing
particles with fractional charge and fractional (neither boson nor fermion) statistics.2

While Laughlin did not really derive his new wave function, but rather guessed it,
the guess was so successful and generated so many new ideas and concepts that
Laughlin together with Tsui and Störmer was awarded the 1998 Nobel Prize in
Physics.

In the foundation of all these phenomena, from the old de Haas–Shubnikov
oscillations to the newest concepts of the fractional quantum Hall physics, lies
Landau quantization—the emergence of quantized energy levels in the spectrum of
an otherwise free particle interacting with a uniform magnetic field. In this chapter
I will introduce you to the basic physics of Landau levels and will also scratch a
little bit at the surface of the regular quantum Hall effect. However, even a cursory
discussion of de Haas effects, especially of the fractional Hall conductivity, lies way
outside of the scope of this book.

Quantization of energy eigenvalues of a free electron under an influence of
a uniform magnetic field was first predicted by Soviet physicist Lev Landau.
He is probably one of the best-known Soviet physicists, famous for his seminal
contributions to many areas of physics, and winner of the 1962 Nobel Prize in
Physics for his theory of superconductivity. It is much less known that he was
destined to repeat the fate of Lev Shubnikov and was saved only by a direct personal
intervention of Pyotr Kapitsa—the most powerful Soviet physicist of that time,
the discoverer of superfluidity, a Nobel Prize winner, and the director of the main
physics research institute in the Soviet Union. Landau was arrested in 1938 for
comparing Stalin’s and Hitler’s regimes and spent a year in the infamous NKVD
Lubyanka prison. It took Kapitsa two personal requests and the threat of resignation
to secure Landau’s eventual release in 1939.

2These are not real “particles” of course and are usually called quasiparticle. They present a
convenient theoretical model useful for the description of ground state properties of strongly
interacting electrons.
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16.1 Classical Mechanics of a Charged Particle in Crossed
Uniform Electric and Magnetic Fields

To create an appropriate context for the story of the life of a quantum electron in the
uniform magnetic field, I will begin by reminding you of the properties of classical
electrons.

16.1.1 Cyclotron Motion in the Uniform Magnetic Field

A particle with electric charge q moving in the static magnetic field B with velocity
v experiences the Lorentz force

F D qv � B;

which is perpendicular to both the field and the velocity. The resulting motion is a
combination of a uniform drift with constant speed vk D v cos � in the direction
of the field (� is the angle between B and the velocity) and the circular motion
with constant angular velocity �L D v?=R in the plane perpendicular to the field,
where v? D v sin � and R is the radius of the circular trajectory. The part of this
statement referring to the motion in the direction parallel to B is rather obvious—
there is no force component in B direction, but to feel at ease with the other part
describing rotation in the plane perpendicular to B, you would have to dig out of
your memory the long-forgotten concept of the centripetal acceleration. (I am trying
to avoid having to formally solve equations of motion here because there is no fun
in it.) So, centripetal acceleration is always perpendicular to the velocity changing
its direction without affecting its magnitude and therefore “forcing” the particle to
follow a circular path. Preservation of the magnitude of the velocity v can also be
understood as a consequence of the fact that Lorentz force, which is perpendicular
to the velocity, does not generate any work, making kinetic energy and, respectively,
magnitude of the velocity, conserving quantities. This whole arrangement is shown
in Fig. 16.2 for your enjoyment.

The radius of the circle R is determined by Newton’s second law

mev
2?

R
D qvB )

R D mev?
qB

D mev sin �

qB
:
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Fig. 16.2 A charged particle
in the uniform magnetic field:
velocity, trajectory, and the
system of coordinates

It is remarkable that the angular velocity �L (frequency) of this motion, called
Larmor3 frequency

�L D v?
R

D qB

me
;

is independent of the magnitude or direction of the particle’s velocity (this result
must appear rather strange in the limit v? ! 0, when radius R goes to zero, and
there is no circular motion, but it is what it is). This type of motion is often called
cyclotron motion because it is exploited in a particle-accelerating device, called a
cyclotron.

Introducing a coordinate system with Z-axis along the field, I can describe the
particle’s motion by projecting its position vector onto the coordinate axes:

x D x0 C mev sin �

qB
cos�Lt (16.1)

y D y0 � mev sin �

qB
sin�Lt (16.2)

z D z0 C v cos � t; (16.3)

3Sir Joseph Larmor (1857–1942) was a Northern Irish physicist famous for the discovery of
Lorentz transformations 2 years before Lorentz and 8 years before Einstein. He also discovered
the effects of time dilation and length contraction but believed that they are real material changes
in length rather than pure kinematic effects. He believed in ether and did not believe in relativity,
both special and general. Still, he held a post of Lucasian Professor of Mathematics at Cambridge
University, which was established in 1663(!), and was held before him by Newton and after him
by Dirac. At the time of writing, this post is held by Stephen Hawking.
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where x0 and y0 are the coordinates of the center of the circular trajectory determined
by initial conditions and z0 is the initial position of the particle on the Z-axis. (Note
that time-dependent terms in equations for x-coordinate and y-coordinate must have
opposite signs since if one of the coordinates of the rotating vector increases, the
other one must decrease.) Substituting t D 0 in these equations, you will find that
y0 is, indeed, equal to the value of y at t D 0. At the same time, the relation between
x0 and x.0/ is more complex:

x0 D x.0/ � p?=qB; (16.4)

so that the position of the center of the trajectory in the x direction depends on the
component of the particle’s momentum in the plane perpendicular to the magnetic
field.

One important thing you should notice about these expressions is that coordinates
in the plane normal to the field demonstrate the time dependence typical for a
harmonic oscillator, while the motion along the field is the one of a free particle.
You will see that this connection with the harmonic oscillator on the one hand and
the free particle on the other hand persists even in the quantum description of this
phenomenon.

16.1.2 Classical Motion in Crossed Electric and Magnetic
Fields

To make life a bit more interesting, I will now, in addition to the magnetic field B,
throw in a uniform electric field E perpendicular to B. Assuming that the electric
field is in the positive direction of the Y-axis, I can write Newton’s second law
equations, describing the particle’s motion in this case as

me
d2x

dt2
D qvyB; (16.5)

me
d2y

dt2
D �qvxB C qE ; (16.6)

me
d2z

dt2
D 0: (16.7)

It would be natural for you to assume that the electric field, which exerts a force
and generates an extra acceleration parallel to the Y-axis, would completely destroy
the picture of the motion described in the previous section. Well, watch my hands. I
begin by introducing a new coordinate

x0 D x � vEt; (16.8)
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where the constant parameter vE is yet to be determined. This change of the variable
does not affect the equation for the x-component of the acceleration at all (after two
differentiations the extra term with vE vanishes). However, substituting this relation
to the equation for the y-component of the acceleration and taking into account that
vx D dx=dt D dx0=dt C vE, I get

me
d2y

dt2
D �qv0

xB � qvEB C qE ;

where v0
x � dx0=dt. Now prepare to be amazed: by choosing vE D E=B, I eliminate

the electric field from the equations completely. The system of equations, Eqs. 16.5–
16.7, expressed in terms of coordinates x0; y, and z, looks exactly the same as if the
electric field were not present at all. So much for the “extra” acceleration in the
y direction! Consequently, I can use the expressions for the coordinates given in
Eqs. 16.1–16.3, replacing x with x0 and then using Eq. 16.8 to bring back the original
x-coordinate. As a result, equations for y- and z-components do not change at all,
while the equation for the x-coordinate becomes

x D x0 C E
B

t C mev sin �

qB
cos�Lt:

Ponder about this result a bit and enjoy its counterintuitive appeal: an electric field
in the y direction generates a uniform displacement of charged particles in the
perpendicular direction! You can understand this result qualitatively by noting that
transition to the new coordinate x0 is essentially the Galileo transformation to a
new reference frame moving with speed vE in the x direction. Since the Lorentz
force depends on the velocity of the particle, transition to the new reference frame
generates an additional contribution to the force, which, given the right choice of
the vE, cancels the electric force.

Now, let me assume that a particle enters the region of electric and magnetic field
in the direction perpendicular to B, allowing me not to worry about the particle’s
displacement in the z direction. Also assume that instead of just one particle, there
is a whole bunch of them but that I can neglect their mutual repulsion. Imagine now
that I install a small particle detector of length d in the y direction and width w in
the z direction (a bar in Fig. 16.3) perpendicular to the X-axis.

Fig. 16.3 Schematic of
electron motion in crossed
electric and magnetic fields.
Magnetic field (together with
Z-axis) points out of the page
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This detector counts the number of particles crossing it during some time � .
Apparently this number is equal to the number of particles inside the volume limited
by the detector in the Y–Z plane and by the distance the particles can travel during
this time, which can be defined as

4x D x.t C �/ � x.t/ D E
B
� C mev sin �

qB
.cos�Lt � cos�L�/ :

Now you need to note that as time � grows, the first term in this expression grows
along with it, while the second term oscillates, remaining limited in value by the
radius R of the cyclotron orbit. Thus, for time � larger than R=vE, you can drop the
oscillating term and count the number of particles crossing the detector as

N.�/ D nq
E
B
� � d � w;

where nq is the number of particles per unit volume. Consequently, the total charge
per unit time per unit area, which not quite accidentally is what people call the
current density j, can be found as

j D eN

� � d � w
D enq

B
E : (16.9)

Current density j described by Eq. 16.9 is unusual in many respects. First, it
describes a current flowing perpendicular to the electric field—the phenomenon
described in the beginning of this chapter as the Hall effect. To emphasize this
unusual feature, we call the coefficient of proportionality between the current
density and the electric field in Eq. 16.9 as the Hall (as opposed to the regular
Ohmic) conductivity and use special two-index notation �xy for it:

�xy D qne

B
: (16.10)

One index in �xy relates to the direction of the field and the other to the direction of
the current.

Another important feature of the Hall conductivity is that it has a finite value
in the absence of any dissipation mechanisms which are absolutely necessary for
establishing a regular stationary flow of charges. The dissipation processes, which
are always present in real materials, of course modify the Hall conductivity as

�xy D qne

B

1

1C
�

me
qB�r

�2 ;

where �r is the characteristic time during which a particle loses a significant portion
of its energy. Equation 16.10 emerges from the last expression in the limit �r ! 1.
You will have a chance to derive this result as an exercise.
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Finally, you might notice that the Hall conductivity presented by Eq. 16.10 is
linear in the particle’s charge, while the standard Ohmic conductivity is proportional
to q2. This is an immensely important difference because particles with charges
of opposite signs would generate the Hall current flowing in opposite directions.
By observing the direction of the Hall current, one can find out the charge
of the current-carrying particles. Thanks to this quirk of the Hall conductivity,
experimentalists were able to confirm a theoretical prediction that the electric
current in semiconductors can be carried not only by negatively charged electrons
but also by positively charged “holes” giving experimental legitimacy to this purely
theoretical construct.

16.2 Quantum Theory of Electron’s Motion in a Uniform
Magnetic Field

16.2.1 Landau Quantization

A quantum theory of electron’s motion in a magnetic field begins as any quantum
theory—with a classical Hamiltonian for the same problem. The Hamiltonian that
have been introduced in Sect. 15.3.1, Eq. 15.53, is of a general enough form so that
I can use it here with minimal alterations. Since now I am dealing with static fields,
the vector potential appearing in Eq. 15.53 is time-independent and can, therefore,
define only the magnetic field. A static electric field has to be described by a
traditional scalar potential E D �rV , which can be added to the Hamiltonian as a
potential energy. I will need to introduce the electric field only later in the section on
quantum Hall effect, but what I need right now is the term describing the interaction
between the magnetic field and the spin of the electron.4 Consequently, I can present
the Hamiltonian of a free electron in a static magnetic field as

H D ŒOp C eA.r/�2

2me
C g

�B

„ B � OS; (16.11)

where I took into account that electrons have the negative charge �e. The last term
in this expression is the spin Hamiltonian, defined in Chap. 9, Eq. 9.28, with a slight
modification: I replaced factor 2 in this Hamiltonian with a more generic quantity,
the so-called spin g-factor. This factor determines the relation between the spin
operator and the electron’s magnetic moment and is equal to 2 only approximately.

4When considering the interaction of an atom with electromagnetic wave as in Sect. 15.3.1, I did
not have to worry about the interaction between the magnetic field of the wave and the spin because
normally such an interaction would be extremely weak. In the case considered in this chapter, the
magnetic field can be strong enough to make this interaction relevant.
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More accurate relativistic calculations first performed by American physicist
Julian Schwinger in 1948 gave for this factor the approximate value 2:002319. New
York City residents might be thrilled to find out that Schwinger, who is considered to
be one of the most important theoretical physicists of the twentieth century, was born
in the City and attended Townsend Harris High School located about 50 meters from
my office in the Science Building at Queens College. He started his undergraduate
education at City College of New York (Queens College has not yet existed at that
time) but transferred later to Columbia University. Experimental verification of the
value of the g-factor, which was found to agree with the theoretical prediction with
an astonishing accuracy, was one of the triumphs of quantum electrodynamics.

Now I can explore how quantum effects change the story of the electron’s life
in the magnetic field. To do that, I need, first of all, to choose a form for the vector
potential which would reproduce the uniform magnetic field in the direction of the
Z-axis of my preferred coordinate system. It is important to realize that the choice
is not unique: there exist infinitely many different vector potentials generating the
same magnetic field (in science speak it is called gauge invariance). However, not
all vector potentials are created equal, even if they do reproduce the same field and
describe the same physical reality. Some are more convenient to work with, others
are not so much, and different potentials, while providing equivalent descriptions
of the world, might emphasize its different aspects. Here I will choose the vector
potential in the form

A D �yxB (16.12)

called Landau gauge, where �y is the unit vector in the directions of the Y-axis. This
expression describes a vector potential with a non-zero y-component (which is its
sole non-zero component) linearly dependent on the x-coordinate and independent
of the y-coordinate. Of course, there is no inherent preference of one coordinate in
the plane perpendicular to the magnetic field over the other, and I could have chosen
a potential with a sole non-zero component in the x direction, which would depend
on the y coordinates, but it will not really change the description to any significant
degree.

Substituting Eq. 16.12 into the Hamiltonian, I get

OH D
�Op C e�yxB

�2
2me

D Op2x
2me

C Op2z
2me

C
�Opy C exB

�2
2me

C g
�B

„ BOSz: (16.13)

You can easily check that this Hamiltonian commutes with operators OSz, Opy, and Opz

(but not with Opx because of the x-dependent term in the Hamiltonian). This means
that the eigenvectors of the Hamiltonian, which needs to be considered as spinors
defined in the tensor product of orbital and spin spaces, must have the following
form:

j i D ˇ̌
py
˛ j pzi jmsi j'i ; (16.14)
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where
ˇ̌
py;z
˛

are eigenvectors of the corresponding momentum operators, jmsi is
an eigenvector of OSz with ms being the magnetic spin number, and j'i is the
only unknown vector state, which needs to be determined from the corresponding
Schrödinger equation. Substituting Eq. 16.14 into

"
Op2x
2me

C Op2z
2me

C
�Opy C exB

�2
2me

C g
�B

„ BOSz

#
j i ;D E j i

I obtain the equation for the remaining unknown vector j'i
"

Op2x
2me

C
�

py C exB
�2

2me

#
j'i D

 
E � 1

2
g�BmsB � p2z

2me

!
j'i ; (16.15)

where eigenvalues py, pz, and „ms=2 replace the corresponding operators. Factoring
eB out of the respective term in the Hamiltonian, recognizing that e2B2=me can be
rewritten as me�

2
L, and introducing the notation

xc D �py=eB; (16.16)

I can rewrite Eq. 16.15 as

 Op2x
2me

C 1

2
me�

2
L .x � xc/

2

�
j'i D

 
E � 1

2
g�BmsB � p2z

2me

!
j'i : (16.17)

Do you remember I promised you that connection to the harmonic oscillator
problem found in the classical case will persist in quantum treatment as well? So,
here it is, consider the promise fulfilled: Eq. 16.17 describes the harmonic oscillator
problem with frequency˝L, mass me, but with the zero point of the potential shifted
by xc (see Chap. 7). In the position representation, this shift can be easily corrected
by introducing the new coordinate x0 D x � xc which obviously does not change
the eigenvalues and allows to use the well-known wave functions representing
the eigenvectors expressed in terms of the new coordinate. Using the results from
Chap. 7, I can write now that

En;ms . pz/ � 1

2
g�BmsB � p2z

2me
D „�L

	
n C 1

2



)

En;ms . pz/ D „�L

	
n C 1

2
C g�Bme

2„e
ms



C p2z
2me

; (16.18)

where I replaced eB=me with �L. Energy eigenvalues are now determined by
one continuous number pz and two discrete indexes n and ms D ˙1. They (the
eigenvalues) can be thought of as a collection of parabolic bands formed by a
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Fig. 16.4 Energy
eigenvalues of the electron in
a uniform magnetic field.
Each parabola represents a
Landau “band” corresponding
to a particular value of n. The
units for both energy and pz

are chosen arbitrarily, so do
not pay any attention to the
actual numbers on the axes.
The point of this figure is to
show the general qualitative
trend in the behavior of the
Landau bands

continuously changing pz, each corresponding to a particular value of n and one
of two values of the spin magnetic number ms (Fig. 16.4). Due to dependence of the
energy on pz, direct manifestations of the Landau quantization in the spectrum of the
system are washed out. Indeed, for any arbitrary chosen energy value, you can find
multiple states belonging to it (see Fig. 16.4) so that the allowed energy values are
continuously distributed despite Landau quantization. The spectrum of the system
can become truly discrete only if the electrons are confined to a two-dimensional
plane (which experimentalists can routinely do these days), so that the z-component
of the momentum pz vanishes from Eq. 16.18. The complete discretization of the
electron’s energies in this case is the main reason why all these exciting quantum
phenomena that I mentioned earlier occur only in a two-dimensional electron gas.
Washing out of the discrete structure of the energies does not mean, however,
that Landau quantization does not have any interesting consequences even in the
system of regular three-dimensional electrons. One can observe its traces in such
phenomena as de Haas–van Alphen and Shubnikov–de Haas effects. I will return to
this issue later, after I will have finished with the energy levels En;ms .pz/.

If we are dealing with truly free (not interacting with anything but the magnetic
field) electrons so that the mass term me in the kinetic energy part of the Hamiltonian
is just the genuine electron mass, then the factor „e=me is exactly twice of the Bohr
magneton �B, so that Eq. 16.18 simplifies to

En;ms . pz/ D „�L

	
n C 1

2
C g

4
ms



C p2z
2me

: (16.19)

If in addition you neglect the deviations of the g-factor from 2, you end up with
energy levels presented by the even simpler expression

En;ms . pz/ D „�L

	
n C ms C 1

2



C p2z
2me

: (16.20)
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Since ms only takes two values 1 and �1, .ms C 1/ =2 can only be equal to 0 (if
ms D �1/ or 1 if ms D 1. The immediate consequence of this is that the energy band
corresponding to a given n and ms D 1 is exactly the same as the band corresponding
to nC1 and ms D �1: En;" D EnC1;#, making each Landau band double degenerate.
Here I decorated the lower index in the notation for energy with up and down arrows
instead of numerical values of ms, 1 and �1, correspondingly, to make the notation
visually more striking. The only band, which remained non-degenerate, is the lowest
one corresponding to n D 1, ms D �1 and described by the energy E1;# D p2z=2me.
This expression looks very much like the energy of a one-dimensional free particle,
and if you wish to think of this as of exact cancelation of the magnetic forces on the
electron due to its orbital motion and its spin, you can do that, but do not take this
analogy too seriously and too far.

The situation changes, however, if you are dealing with electrons in real metals or
semiconductors, where they are not quite free as they interact with periodic potential
of positively charged ions. Most of the current understanding of semiconductor
physics is based on the idea that the interaction with this potential can be accounted
for (approximately, of course) by simple replacement of the actual electron’s mass
me by an effective mass meff (I have already mentioned that in Sect. 15.3.3 on optical
transitions in semiconductors). Usually, effective mass is much smaller than the
mass of a free electron, for instance, in GaAs—one of the most studied and used
semiconductors meff D 0:067me. This effective mass replaces me in the kinetic
energy term of Eq. 16.11, but it does not affect the expression for Bohr magneton
in the spin-related contribution for the Hamiltonian. You might wonder why we are
treating different parts of the Hamiltonian differently and if it can be justified in any
way. Actually, there is a good reason for doing this, and while a rigorous explanation
of this fact would be a bit over your heads, I can offer a hand-waving argument
in favor of this approach. The electron’s mass in the kinetic energy describes the
reaction of the electron’s orbital motion, characterized by the de Broglie wavelength,
with ions. This wavelength typically covers several hundred ions, so that electrons
feel their potential averaged over large distances, and the effective mass emerges as
a result of this averaging process. Spin, and the associated magnetic moment of the
electron, on the other hand, is a local characteristic of the electron not subjected to
any averaging procedure and remains, therefore, the same as for a free electron. So,
if I present the effective mass as meff D 
me, I can rewrite Eq. 16.18 as

En;ms . pz/ D „�L

	
n C 1

2
C 


g

4
ms



C p2z
2me

: (16.21)

The degeneracy between different Landau bands has all but vanished, and the spin-
related separation between bands with the same n is equal to

En;" � En;# � 
„�L;

where I approximated g with 2. For GaAs this separation is more than ten times
smaller than the separation between the bands originating from Landau levels with
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adjacent values of n, so that Landau bands in this case appear in closely positioned
pairs corresponding to the bands with the same n but different orientation of the
spin.

Before continuing, let me take a step back and make a detour into an idealized
world of a genuinely free two-dimensional electrons with g-factor exactly equal to
2, described by Eq. 16.20 without the term p2z=2me. This model, while not quite
realistic, is still a useful toy model which allows you a half glimpse into some of
the coolest ideas of modern physics in a relatively safe and unintimidating setting.
The main remarkable feature of this model is that its Hamiltonian can be presented
in the following form:

OH D OQ2; (16.22)

where

OQ D 1p
2me

� O�x Opx C O�y
�Opy C eBOx�� :

Operators O�x;y here are Pauli matrices introduced in Eqs. 9.15–9.17. To make it
easier, I will remind you those of their properties, which I need in order to continue:
(1) the square of any Pauli matrix is a unity matrix, O�2x;y;z D OI, and (2) different Pauli
matrices anticommute, O�x O�y C O�y O�x D 0. To prove Eq. 16.22, you just need to square
OQ and use these properties of the Pauli matrices along the way:

OQ2 D 1

2me

h
O�2x Op2x C O�2y

�Opy C eBOx�2 C

O�x O�y Opx
�Opy C eBOx�C O�y O�x

�Opy C eBOx� Opx
� D

1

2me

h
Op2x C �Opy C eBOx�2 C

eB
� O�x O�y Opx Ox C O�y O�x OxOpx

�� D
1

2me

h
Op2x C �Opy C eBOx�2 � i„eB O�x O�y

i
:

Here terms containing commuting operators Opx Opy vanish thanks to anticommuta-
tivity of the Pauli matrices, which is also responsible for generating the canonical
commutator ŒOx; Opx� D i„ in the term mixing momentum and coordinate operators.
Finally, you can verify by direct calculations that O�x O�y D i O�z, and replacing .„=2/ O�z

with the spin operator OSz, you will complete the proof.
Operator OQ deserves a more close inspection because its eigenvectors are also the

eigenvectors of the Hamiltonian, while the square of its eigenvalues are supposed to
yield the energy levels. Recalling the actual form of the Pauli matrices, I can rewrite
OQ as a two-by-two matrix:
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OQ D 1p
2me

	
0 Opx

Opx 0

�
C


0 �i
�Opy C eBOx�

i
�Opy C eBOx� 0

�

D

1p
2me


0 Opx � i

�Opy C eBOx�
Opx C i

�Opy C eBOx� 0

�
:

The combination of operators arising in the off-diagonal elements of this matrix
looks somewhat familiar, so it makes sense to take a look at their commutator:

�Opx C i
�Opy C eBOx� ; Opx � i

�Opy C eBOx�� D
2i
�Opy C eBOx� Opx � 2iOpx

�Opy C eBOx� D
2ieB .OxOpx � Opx Ox/ D �2„eB:

The important result here is that the commutator is just a regular constant and not
an operator. Taking advantage of this fact, I can now define new operators

Oa D Opx � i
�Opy C eBOx�p
2„qB

(16.23)

and

Oa� D Opx C i
�Opy C eBOx�p
2„qB

(16.24)

which have exactly the same commutation relation as raising and lowering operators
in the harmonic oscillator problem:

�Oa; Oa�� D 1. Isn’t it curious how the ears of
the harmonic oscillator problem are sticking out everywhere we look? In fact, it is
getting even curiouser and curiouser if you rewrite operator OQ in terms of Oa and Oa�:

OQ D
s

„qB

me


0 Oa�
Oa 0

�
D
p

„�L


0 Oa
Oa� 0

�
; (16.25)

which yields the Hamiltonian in the form

OH D OQ2 D „�L


0 Oa
Oa� 0

� 
0 Oa
Oa� 0

�
D

„�L

OaOa� 0

0 Oa� Oa
�

D „�L

Oa� Oa C 1 0

0 Oa� Oa
�

D

„�L

	
Oa� Oa


1 0

0 1

�
C

1 0

0 0

�

D

„�L

	
Oa� Oa C 1

2



1 0

0 1

�
C 1

2
„�L


1 0

0 �1
�
: (16.26)
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The first term in this expression is a spin-independent Hamiltonian of the harmonic
oscillator, while the second term is our familiar spin Hamiltonian in the magnetic
field. This result ascertains the role of operators Oa and Oa� as lowering and raising
operators which generate the excited states of the electron in the magnetic field
from the ground state in exactly the same manner as they did for a regular harmonic
oscillator. More specifically if j'ni and j'nC1i are normalized eigenvectors repre-
senting orbital components of states corresponding to nth and nC1st Landau levels,
one can write Oa� j'ni D p

n C 1 j'nC1i and Oa j'nC1i D p
n C 1 j'ni.

To get a bit more insight into properties of operator OQ, consider a spinor


0

j'0i
�

describing the zeroth Landau level with the “spin-down” spin state. Applying OQ to
it, you get

OQ

0

j'0i
�

D
p

„�L


0 Oa
Oa� 0

� 
0

j'0i
�

D
p

„�L

Oa j'0i
0

�
D 0

(the lowering operator acting on the ground state yields zero), which agrees with the
previously obtained result that the state of the electron with n D 0 and ms D �1
in the magnetic field has zero energy. If, however, you consider the action of this
operator on, let’s say state j'0i j"i, you will get

OQ
j'0i
0

�
D
p

„�L


0 Oa
Oa� 0

� j'0i
0

�
D
p

„�L


0

Oa� j'0i
�

D
p

„�L


0

j'1i
�
:

In English it means that operator OQ flips the spin of the electron whereby lowering its
energy by „�L while simultaneously lifting it to the next Landau level increasing its
energy by the same amount, thereby generating a pair of degenerate states discussed
in Eq. 16.19.

Now, if you recall the general discussion of the degenerate eigenvalues, you
will remember that a degeneracy can often be associated with the set of mutually
commuting operators. In the case under consideration here, it is the operator OQ
together with the Hamiltonian that forms such a set. An interesting peculiarity of
this example, distinguishing it from all other examples of commuting operators,
is that here operator OQ mixes spatial–temporal and spinor segments of the total
tensor product space. By itself it is not big news—you observed this phenomenon
when we discussed spin–orbital coupling in Sect. 14.1. What is new here is that
the mixing of orbital and spin degrees of freedom occurs in the absence of any
spin–orbital interaction. This mixing is a primitive pedestrian version of something
called supersymmetry: a symmetry transformation connecting particles with half-
integer spins, the fermions, with integer spin particles—bosons. In our example, the
harmonic oscillator represents the bosonic degree of freedom (remember, harmonic
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oscillator lowering–raising operators appear also as creation–annihilation operators
of photons which are bosons, Sect. 7.3), while the spin degrees of freedom play
the role of the fermionic degrees of freedom. The eigenvalues and eigenvectors of
operator OQ can shed more light on the connection between orbital and spin states in
this problem, and I hope you will have fun figuring them out by yourself.

OK, the detour is over, I hope you enjoyed it, but let’s get back to the
main business of this chapter. Based on Eq. 16.17, I can write down the position
representation for the j'i component of the eigenvector of my Hamiltonian, which
is just a wave function of a harmonic oscillator centered at x D xc instead of zero:

'n.x/ � hxj 'ni D 1p
2nnŠ�

p
�

exp

 
� .x � xc/

2

2�2

!
Hn

	
x � xc

�



; (16.27)

where the characteristic length � known as magnetic length is

� D
s

„
me�L

D
r „

eB
: (16.28)

The total wave function  .r/ includes two free particle-like exponents
exp

�
ipzz C ipyy

�
reflecting the free particle-like motion in the z and y directions. The

corresponding position probability density j .r/j2 looks like a slab with uniform
probability distribution along the Y and Z axes while exponentially decaying for
x > xc and x < xc, Fig. 16.5.

In addition to the trivial free particle-like dependence of the wave function on
py, it also shows another, much less trivial role played by this parameter, which, via
Eq. 16.16, determines the position of the maximum of the distribution along the X-
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Fig. 16.5 Probability density j .r/j2 of the electron’s position corresponding to the oscillator
ground state as a function of two coordinates, x and y. If you can imagine a plot in a four-
dimensional space, it would show that the probability distribution behaves in the z direction in
the same way as in the y direction. Two different surfaces in the figure correspond to two different
values of py, illustrating its effect on the center of the probability density
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axis. This fact is reflected in Fig. 16.5 where two different plots correspond to two
different values of py, generating two different values of xc.

In classical picture, this maximum would correspond exactly to the center
of the particle’s trajectory, which you can see comparing Eqs. 16.4 and 16.16.
It is important to note at this point that the energy eigenvalues do not depend
on py, indicating their significant degree of degeneracy. This degeneracy is what
distinguishes an electron in the magnetic field from the simple harmonic oscillator
problem.

16.2.2 Degeneracy of the Landau Levels and the Density
of States

The degeneracy of the energy levels determines the number of single-particle
orbitals available for constructing many particle states in a many-fermion system
and is expressed in terms of the density of state—a notion which has been already
discussed in the previous chapters in connection with the concept of Fermi energy
(Sect. 11.5) and optical transitions to (or between) states of the continuous spectrum.
Our normal practice employed to compute the density of states consists in confining
the particles inside a large but final volume and impose boundary conditions on
the wave function. However, when dealing with Landau levels, this procedure
acquires several unusual twists. First, while I can and should impose the periodic
boundary conditions on the wave function in y and z directions, the wave function
vanishes in the x directions, so no boundary conditions for the x-coordinate are
actually required. As a result, the boundary conditions allow me to discretize the
two continuously changing quantities:

pz D 2�„bz

Lz
;

py D 2�„by

Ly
;

where bx;y D ˙1;˙2 � � � , while the third quantum number defining a state of the
electron, integer n from the harmonic oscillator problem, is already discrete. In order
to find how many states with distinct values of py correspond to any given energy
value of n, I need to find the restriction on the number of allowed py. The periodic
boundary conditions are not too helpful in this regard as they just make py discrete
but put no bounds on their values. Also, since the energy does not depend on py, I
cannot use our regular trick of looking for the number of states corresponding to a
specified energy interval.

To figure all this out, let’s take a look at what is happening to the system as
the absolute value of py increases. Equation 16.16 indicates that as py increases or
decreases, the center of the probability distribution in the x directions moves further



16.2 Quantum Theory of Electron’s Motion in a Uniform Magnetic Field 587

away from zero toward correspondingly negative or positive coordinates. However,
in the system of a finite size, it cannot move too far because at some point you
will be pushing the system outside of the quantization box, which is not allowed.
This restriction sets a limit for the possible value of xc: xc < Lx.5 This is where
the periodic boundary condition discretizing py comes in handy, because it also
automatically discretizes parameter xc, which now only takes values

xc D 2�„by

LyeB
:

The condition xc < Lx limits the number Nn;pz of the allowed states with given n and
pz as

2�„by

LyeB
< Lx ) bmax

y D eBLxLy

2�„ ;

so that the py-related degeneracy of the Landau levels is

G D eBLxLy

2�„ : (16.29)

This expression is sometimes rewritten as

G D ˚

˚0
; (16.30)

where ˆ0 D h=e (note the rare appearance of the Planck’s constant without the
bar) is called fundamental quantum of flux, while ˆ D BLxLy is the magnetic flux
through the region of area A? D LxLy:

These expressions tell you how many states with given n and all possible py exist
in the system occupying the surface area A? normal to the magnetic field. If the
particle’s motion is limited to a two-dimensional plane, then this is all what you need
to know. In the two-dimensional case, which is of main interest in quantum Hall
effect studies, the momentum’s component pz does not exist, the respective wave
function loses the factor exp .ipzz=„/, and the spectrum of eigenvalues becomes
purely discrete with energies given by the one-dimensional oscillator formula

5This condition is obviously just an approximation because the wave function in the x direction
has finite size, and requiring that its center remains inside the box does not make the probability of
the particle described by the harmonic oscillator wave functions to be outside of the box to vanish
automatically. The choice of xc to define the number of states is, in this sense, rather arbitrary (you
could choose xc C 4x, where 4x is the uncertainty of the coordinate or something else for that
matter). However, the error which I make here is of the order of 4x=Lx and becomes negligibly
small as Lx grows. The count of the number of states derived by this heuristic method is actually
confirmed by a more rigorous (and immensely more complicated) mathematical approach to the
problem.
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En;ms D „�L

	
n C 1

2
C 


g

4
ms



: (16.31)

In the case of discrete levels, the concept of the density of states, which was designed
to count states in the continuous spectrum, is not really needed because we can
simply count all the discrete states belonging to a given degenerate level, and this is
what Eq. 16.30 yields.6 If you wonder where this degeneracy comes from, please
recall that you are dealing with a two-dimensional problem which requires two
quantum numbers to fully characterize a state. This second dimension manifests
itself as a degeneracy of the harmonic oscillator energy levels with respect to the
position of the minimum of the harmonic oscillator potential making each Landau
level to comprise G number of states, the same for all levels.

In the three-dimensional case, which might currently be out of vogue, but is
of interest for more old-fashioned manifestations of Landau quantization, such as
de Haas–van Alphen and Shubnikov–de Haas effects, there is an extra step I have
to make. Taking into account the quasi-continuous distribution of pz; I am back
to the density of state computation mentality trying to find the number of states
within an energy interval 4E between the values E and E C 4E. To figure out
the answer, I need to go back to Fig. 16.4 and pay attention to the two horizontal
lines drawn in there. These lines delineate an energy interval 4E that appeared in
the question posed above. You can see that several Landau bands characterized by
their corresponding distinct n-numbers and spin indexes contribute their states to
this interval. In order to find a contribution from a single band, consider

4p.n;ms/
z D 2

d
q
2me

�
E � „�L

�
n C 1

2
C 
 g

4
ms
��

dE
4E D

p
2meq

E � „�L
�
n C 1

2
C 
 g

4
ms
�4E; (16.32)

where the factor of 2 accounts for positive and negative values of the momentum.
The periodic boundary conditions tell me that the number of states 4bz correspond-
ing to a given interval 4p.n;ms/

z is

4bz D Lz

2�„4p.n;ms/
z ;

6One can associate a delta-function ı.E � En/ with each level and the identity expressionP
n Nnı.E � En/ as a total density of states. This identification makes sense if you integrate it

over any final energy interval to get the total number of states in it.
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which together with Eq. 16.32 yields

4b.n;ms/
z D Lz

p
2me

2�„
q

E � „�L
�
n C 1

2
C 
 g

4
ms
�4E: (16.33)

Apparently, this expression makes sense only if E � „�L
�
n C 1

2
C 
 g

4
ms
�
> 0,

which cuts the number of bands that at a given E can donate their states at

nmax D


E

„�L
� 1

2
� 
 g

4

�

where I took into account that for a given n, the higher lying band corresponds
to ms D 1. The square brackets in this expression indicate that the number inside
needs to be rounded down to the nearest integer. To account for the degeneracy in
the plane normal to the field, the result in Eq. 16.33 must be multiplied by G. Adding
together the contributions from all bands with n � nmax, I can finally get the answer
to my burning question: the total number of states 4N with energies between E and
E C 4E is

4N D e
p
2meB

4�2„2 LxLyLz

nmaxX
nD0

X
ms

1q
E � „�L

�
n C 1

2
C 
 g

4
ms
�4:E

A more convenient version of this expression that does not require you to keep track
of nmax uses the step function �

�
E � „�L

�
n C 1

2
C 
 g

4
ms
��

, which automatically
limits the summation to only those n for which its argument is positive, making the
expression for the density of states more convenient for analysis:

g.E/ D 4N=4E D
e
p
2meB

4�2„2 LxLyLz

X
nD0

X
ms

�
�
E � „�L

�
n C 1

2
C 
 g

4
ms
��

q
E � „�L

�
n C 1

2
C 
 g

4
ms
� : (16.34)

If, as is often the case, the spin-related term in the expression for energy can be
neglected, the summation over the spin number ms simply yields an extra factor of
two in the density of states.

16.2.3 Fermi Energy of a Gas of Non-interacting Electrons
in Magnetic Field

Now I am going to use the results of the previous section to revisit the concept of
the Fermi energy first discussed in Sect. 11.5 for a gas of free electrons. The Fermi
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energy is the main characteristic of the many-electron ground state and as such
affects the most practically important properties of electronic systems such as
conductivity, heat capacity, magnetization, etc. It would be interesting, therefore,
to see how the magnetic field and Landau quantization affect it.

I will begin with a two-dimensional case, when all what you have to worry about
are different harmonic oscillator states and their degeneracy. I will also neglect the
spin contribution to the energy of Landau levels, in which case the total number of
states at a given Landau level is found by multiplying Eq. 16.29 by two. Then, the
total number of states in Landau levels with n � nmax for a given magnetic field B is
found as

.nmax C 1/
eBLxLy

�„
(remember, the first value of n is zero). If the number Ne of electrons in the system
obeys inequality

nmax
eBLxLy

�„ < Ne < .nmax C 1/
eBLxLy

�„ ;

then the nmax � 1 Landau level is the last one completely filled, and nmax-th level is
partially filled, so that the Fermi energy is

EF D „�L

	
nmax C 1

2



: (16.35)

Introducing the filling fraction � (the fraction of the total number of single-electron
orbitals actually used to form a many-electron state) of the nmax-th level, I can relate
the total number of electrons in the system to nmax and �:

Ne D .nmax C �/
eBLxLy

�„ : (16.36)

Now, let’s see what will happen as I gradually increase the magnetic field. Two
things are taking place simultaneously. First, �L and, therefore, the energy of each
Landau level grow linearly with B, resulting in the initial increase of the Fermi level.
At the same time, the degree of degeneracy of each Landau level grows, so does their
capacity, and so the number of filled single-electron orbitals at the last partially filled
level decreases until the nmax-th level becomes devoid of any electrons. When this
happens, the last filled orbital now corresponds to the nmax � 1-th level, resulting
in a drop in the Fermi energy by „�L. Further increase in the field again produces
growth of EF due to the growth of �L, until the filling fraction � of the nmax � 1-
st level drops to zero, resulting in a subsequent drop in the Fermi energy again by
„�L. This pattern of linear growth accompanied by sudden drops repeats itself until
the magnetic field becomes so large that you would only need states belonging to
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n D 0 Landau level to accommodate all electrons in the system. This happens when
B obeys inequality

eBLxLy

�„ > Ne

or

B >
Ne

LxLy

�„
e
;

which can also be recast in the form

ˆ > Neˆ0:

This pattern can be seen in a more quantitative manner by solving Eq. 16.36 for
nmax:

nmax D


Ne

LxLy

�„
eB

�

where Œ� � � � again means dropping the fractional part of the number inside the
brackets. Then the Fermi energy can be written down as

EF D „eB

me

	
Ne

LxLy

�„
eB

�
C 1

2



: (16.37)

These expressions clearly show the two tendencies in the magnetic field dependence
of the Fermi energy, which are also illustrated in Fig. 16.6.

The Fermi energy in the three-dimensional case is obtained by integrating the
density of states over all energies from 0 to EF, which results in equation

Fig. 16.6 Magnetic field
dependence of the Fermi
energy for a two-dimensional
electron gas. Magnetic field is
in the units of ˆ=ˆ0, and the
Fermi energy is in the units of
„�L
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e
p
2meB

2�2„2 LxLyLz

X
nD0

EFˆ
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dE
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E � „�L

�
n C 1
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��
q

E � „�L
�
n C 1

2

� D Ne:

The integral in this expression is easily computed yielding

e
p
2meB

�2„2 LxLyLz

X
nD0

s
EF � „�L

	
n C 1

2



D Ne;

where I took into account that the step function in this expression effectively limits
the lower limit of integration for each term in the sum over n to value „�L

�
n C 1

2

�
.

Also it is worth noting that after the integration over energy, you are essentially
ending up with the sum of p.n/z . This conforms with a well-known fact that in one-
dimensional systems the magnitude of the particle’s momentum at a given energy E
is equal to the total number of states with energies less than E. The computation of
the resulting sum over n is not a trivial matter, and I will not attempt it here (I think
I made you suffer quite enough even without it), but I would like to notice that the
qualitative pattern of dependence of EF versus magnetic field is similar: the energy
of the last filled level grows with B, while the filling factor of the respective bands
decreases, until they become empty, and the Fermi level drops to the lower band
corresponding to n � 1. Thus, again one shall expect the oscillatory dependence of
the Fermi energy upon the magnetic field.

I cannot feel completely satisfied unless the total energy of the ground state is
computed, and I am going to do it here for the two-dimensional electrons neglecting
the spin contribution to the energy of the Landau levels. In the system of non-
interacting particles, the total energy is simply equal to the sum of the single-particle
energies of all filled orbitals, so all what I need is a bit of bookkeeping. Taking into
account Eq. 16.31 together with Eq. 16.29, I can write for the total energy

ENe
g D 2G„�L

"
nmax�1X

nD0

	
n C 1

2



C �

	
nmax C 1

2


#
;

where the first term in the square brackets counts all the completely filled Landau
levels up to nmax � 1 and the second term accounts for the contribution of the
partially filled nmax level with the filling fraction � defined by Eq. 16.36. Recalling
the formula for the sum of the arithmetic progression, I have

ENe
g D 2G„�L

	
nmax .nmax � 1/

2
C nmax

2
C �

	
nmax C 1

2




D

G„�L

	
n2max C 2�

	
nmax C 1

2




D

G„�L

h
.nmax C �/2 C � � �2

i
:
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Using Eq. 16.36 to express

nmax C � D �„Ne

eBLxLy
� Ne

2G
; (16.38)

I can rewrite the total ground state energy as

ENe
g D „˝LN2

e

4G
C „� .1 � �/G�L D

„
4

eB

me

2�„2N2
e

eBLxLy
C „� .1 � �/ eB

me

eBLxLy

2�„ D

�„2N2
e

2meLxLy
C � .1 � �/ e2

2�me
B2LxLy: (16.39)

The first term in this expression does not depend on the magnetic field and
can be shown to be the ground state energy of the two-dimensional gas of free
electrons (see the problem section in this chapter). If you are confused about the
quadratic dependence of this contribution on Ne (you shall rightfully expect a
linear dependence in a system of independent particles), note the denominator of
the respective expression contains LxLy—the area of the sample. Thus, the field-
independent part of the total energy is actually proportional to Ne�e, where �e is the
surface concentration of the electrons, i.e., it is, indeed, linear in Ne as expected and
similar to the case of three-dimensional electrons without the field, Eq. 11.57. The
magnetic field dependence of ENe

g is again determined by two factors: oscillations of
the filling factor between values 0 and 1 with period 1=B (check out Eq. 16.38 and
note the 1=B factor) and a smooth increase in the energy as B2 (see Fig. 16.7). The
first tendency is a direct consequence of Landau quantization as it reflects changes
in the occupation of Landau levels with increasing B, while the second tendency can
be explained using the classical argument: the energy of a magnet in the magnetic
field is / �B, where the magnetic dipole, which is zero in the absence of B, is itself
proportional to the field.

Fig. 16.7 Magnetic field
dependence of the ground
state energy of the
two-dimensional electron gas
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The oscillations of the ground state energy manifest themselves in oscillations
of immediately observable quantities such as magnetization (magnetic moment per
unit area). Keeping only terms linear in the magnetic field, the magnetization can be
found as

M D � 1

LxLy
@Eg=@B D �� .1 � �/ e2

�me
B: (16.40)

This result means that the two-dimensional gas of free electrons can be characterized
by magnetic permeability �, defined as a proportionality coefficient between
magnetization and magnetic field

� D �� .1 � �/ e2

�me
(16.41)

which exhibits periodic oscillations as a function of 1=B. The negative sign of the
permeability indicates that the gas of free electrons is a diamagnetic material, in
which the magnetic field induces magnetization in the direction opposite to that of
the field. The diamagnetic properties of free electrons were also discovered by Lev
Landau in 1930.

16.3 Quantum Hall Effect

I will complete this chapter by a brief excursion into a huge area of the quantum
Hall effect, which is a quantum version of motion of a two-dimensional electron in
crossed electric and magnetic fields. From the onset I have to warn you that here I
am going just to scratch a bit the surface of this field, and by no means you shall
assume that this section contains anything even remotely resembling a complete
theory of this phenomenon. What I am going to present here is just some very basic,
albeit fundamental, underlying reasons for its existence.

The Hall effect (classical or quantum), as you already know, consists in the
appearing of an electric current in a crossed electric and magnetic fields in the
direction perpendicular to both of them. Computing the electric current in honesty
cannot be done within the formalism of the pure quantum mechanics considered
in this book. It would require taking into account the temperature-dependent
statistical distribution of the electrons among various single-particle orbitals and
its dependence on the electric and magnetic fields. You will also have to introduce
a variety of dissipative processes, without which a finite conductivity simply cannot
exist (go back to Sect. 16.1.2 and Problem 1 in the exercise section of this chapter),
and dealing with dissipative processes within the quantum formalism is very far
from being a trivial task. All of this will take us into the realm of quantum kinetics,
which is way outside of the scope of this text. Fortunately, for us, however, the Hall
conductivity does need dissipation to acquire a finite value as you have already seen
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in the classical treatment of the Hall effect in Sect. 16.1.2. As a result I can get
away with neglecting the possible dissipative effects, which is, of course, a gross
oversimplification but will give us at least some hints at the underlying physics of
the quantum Hall phenomenon. If in addition I assume that the electrons are in
their many-particle ground state (zero temperature), I can avoid dealing with any
temperature-dependent complications.

In this simplified treatment, the flow of the electrons can be interpreted in terms
of the flow of the probability density. Indeed, consider an electron in a single-
particle orbital described by a wave function  �.r/, where � is a composite index
numerating the orbitals. The measured charge density of these electrons �� .r/ is
directly related to the position probability distribution j �.r/j2: �� .r/ D e j �.r/j2,
and if there are many electrons occupying multiple states, the total charge density at
a given point is given by �tot D e

P
� j �.r/j2. Taking into account the continuity

equation for the probability density, Eq. 5.45, I can rewrite it in the form of the
equation for the charge density

@�tot

@t
D �e

X
�

r � j� ;

where j� is the probability current density for a given orbital. Consequently, the total
electric current density with contributions from all electrons in occupied single-
particle orbitals can be found as

jtot D e
X
�

r � j� : (16.42)

To lay down some groundwork and as a basis for comparison, I will begin by
evaluating the current density j� in the absence of the electric field. It is quite
tempting to just rush ahead and use Eq. 5.42 with the wave function given by
Eq. 16.14 to do the job, and I wouldn’t blame if you did that, but unfortunately it
would have been wrong. You shall realize it right away if you recall that Eq. 5.42 was
derived using the Schrödinger equation with kinetic energy operator OK D Op2=2me

and velocity Ov D Op=me. In the presence of the magnetic field, however, the kinetic
energy is given by

OK D Œp C eA.r/�2

2me
;

and the velocity operator is now

v D Œp C eA.r/�
me

;

so I will have to re-derive the formula for the probability current density to reflect
this new reality.
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If, on a hunch, you replace the velocity operator in Eq. 5.43 with the new
expression, the probability current density reemerges in the following form:

j D 1

2me

�
‰� .r; t/ .p C eA.r//‰ .r; t/C‰ .r; t/ Œ.p C eA.r//‰ .r; t/��

�
:

(16.43)

As it turns out, it is a good guess, and this is indeed the correct expression for j.
However, hunch or no hunch, to know that you have the right result for certain,
you still have to derive it. This is done by quite literally repeating the same steps
that resulted in Eq. 5.42, but with a new form of the kinetic energy. Ignoring any
potential energy, which as you know cancels anyway, I start with

i„@‰.r;t/
@t

D Œ�i„r C eA.r/�2

2me
‰ .r; t/

�i„@‰ � .r;t/
@t

D Œi„r C eA.r/�2

2me
‰ � .r; t/ :

Expanding the kinetic energy term and ignoring the real-valued e2A2=me, which will
cancel in the same way as the potential energy, I have

i„‰� @‰
@t

D � „2
2me

‰�r2‰ .r; t/ � ie„
2me

‰� Œr .A‰/C Ar‰�

�i„‰@‰
�

@t
D � „2

2me
‰r2‰� .r; t/C ie„

me
‰
�r �

A‰��C Ar‰�� :

You might want to note that unlike the similar calculation in Sect. 15.3.1 I did not
use the fact that for the vector potential in the Coulomb gauge (r�A D 0) r .A‰/ D
Ar‰, keeping these two terms as they were. Subtracting the second line from the
first, I get

@ j‰.r;t/j2
@t

D � i„
2me

��‰�r2‰ C‰r2‰���
e

2me

�
‰�r .A‰/C‰�Ar‰ C‰r �

A‰��C‰Ar‰�� :

The first line here is the same as in Eq. 5.42 and can be written down as

i„
2me

r � �‰�r‰ �‰r‰�� ;
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and in the second line, as you can easily see by reverse engineering, the result is
equal to

� e

2me
r � �‰�A‰ C‰A‰�� :

Combining these two expressions, I again end up with the continuity equation

@ j‰.r;t/j2
@t

D �r � j

with the probability current now defined as

j D � i„
2me

‰�r‰ C i„
2me

‰r‰� C e

2me
‰�A‰ C e

2me
‰A‰� D

1

2me

�
‰� .�i„r C eA/‰ C‰ .i„r C eA/‰�� :

Replacing �i„r with p and i„r‰� with .p‰/�, you can immediately see that this
result reproduces Eq. 16.43.

Now you can take a few minutes to feel proud about your amazing hunch and
your power of intuition, but do not get carried away with it. Besides, the main work
is still ahead of you: the goal was to compute the probability current in the absence
of the electric field and with the magnetic field presented by the vector potential in
the Landau gauge, Eq. 16.12. The expressions for the components of current density
vector in this case become

jx D �i„
2me


‰� @‰

@x
�‰@‰

�

@x

�
(16.44)

jy D 1

2me
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�
: (16.45)

For the wave function in the form

‰ .r; t/ D 1p
Ly

e�iEnt=„eipyy=„'n.x � xc/;

where En is the energy of the corresponding Landau level, while 'n.x � xc/ is the
wave function of the displaced oscillator as defined by Eq. 16.27, with xc given
by Eq. 16.16, the x-component of the current density obviously vanishes, thanks to
“real-valuedness” of 'n.x � xc/. As for the y-component, you can easily get

jy
�
n; py

� D 1

meLy

�
py C eBx

� j'n.x � xc/j2 D eB

meLy
.x � xc/ j'n.x � xc/j2

(16.46)



598 16 Free Electrons in Uniform Magnetic Field: Landau Levels and Quantum Hall Effect

where in the last step I used Eq. 16.16 for the center of the wave function. So, in
the absence of the electric field at each value of coordinate x, there exists a non-
zero density of the probability current. The direction of this current changes sign
however when the coordinate x changes from x < xc to x > xc. We are interested
in the total current, though, which is normally defined as an integral of a current
density over a surface perpendicular to it. In the two-dimensional case, however,
the surface should be replaced with a one-dimensional line, which in the case under
consideration is just the X-axis. The total electric current, I, is then defined as

I D e

1̂

�1
dxjy.x/dx D e2B

meLy

1̂

�1
dx .x � xc/ j'n.x � xc/j2

and is proportional to the expectation value of the coordinate Qx D x � xc in theˇ̌
py
˛ j'ni state of the electron. Obviously, this expectation value is equal to zero, so

that the total current in the absence of the electric field vanishes, as expected.
Now, let’s add the uniform electric field E D �xE0 into the picture by going back

to Hamiltonian 16.11 with scalar potential V.x/ D �xE0. Since this potential does
not depend on the y-coordinate, the separation of the wave function into the productˇ̌
py
˛ j'ni still works with the equation for 'n.x/, now taking the form of

 Op2x
2me

C 1

2
me�

2
L .x � xc/

2 C eE0x
�
'n.x/ D En'n.x/:

Obviously, this equation is a simple rehash of Eq. 16.17 with the addition of the
scalar potential term �eV.x/ and a slight obvious change of notation. To get a handle
on this equation, let me play with the potential energy term:
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2 C eE0x D 1

2
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2
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where I defined

exc D xc � eE0
me�

2
L

D xc � meE0
eB2

: (16.47)

Thus, it is still the same old harmonic oscillator problem
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C 1
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��
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where the electric field does two things: (1) it shifts (again) the zero of the quadratic
potential to new positionexc, and (2) it changes the energy of the Landau levels to a
new value defined by

En D 1

2
me�

2
L

�
x2c �ex2c

�C „�L

	
n C 1

2



:

Using Eqs. 16.16 and 16.47, you can find
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:

Then the expression for the energy levels becomes

En D „�
	

n C 1
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C E0py

B
C 1

2

meE20
B2

: (16.48)

While the constant meE20 =2B2 term in this expression can be eliminated by a
different choice of zero of the electric field potential, the term proportional to py

is physically significant. It indicates that the electric field lifts the degeneracy of
the Landau levels with respect to py and turns them into bands. The dependence on
py means that the electrons are now propagating in the y direction with the group
velocity

vD D @En

@py
D E0

B
(16.49)

which coincides with classical velocity vE characterizing the drift of the center of the
classical cyclotron orbit. Apparently, Eq. 16.49 represents a quantum reincarnation
of that classical result. It is also interesting that the dependence of the energy upon
momentum in this case is linear instead of the expected quadratic one. For one, it
means that the phase velocity of these electrons coincides with their group velocity,
and the packet formed by the corresponding wave functions would not broaden
(unlike the case of free electron packets). Essentially, these electrons behave as light
with the exception that their energy does not go to zero when py D 0.

This result, while curious in itself, is of little significance for the calculations of
the electric current. Equations 16.44 and 16.45 are not affected by the electric field
(remember, any real-valued potential vanishes from the definition of the probability
current), so the only change I need to incorporate comes from the wave function.
Since the x-dependent part of the wave function is still real-valued, the x-component
of the current still vanishes, while Eq. 16.46 for the y-component now acquires the
form



600 16 Free Electrons in Uniform Magnetic Field: Landau Levels and Quantum Hall Effect

jy
�
n; py

� D eB

meLy
.x � xc/ j'n.x �exc/j2 :

Now I want you to pay attention: the center of wave function in the presence of the
electric field is shifted from zero byexc, while the .x � xc/ factor in it still contains
the old shift xc. This simple circumstance makes all the difference, because now the
total current does not vanish:

In;py D e2B

meLy

1̂

�1
dx .x � xc/ j'n.x �exc/j2 D

e2B

meLy

1̂

�1
dx .x �exc/ j'n.x �exc/j2 C e2B

meLy
.exc � xc/

1̂

�1
dx j'n.x �exc/j2 :

The first term in the second line of this expression is still zero, of course, but the
integral in the second term is just the normalization integral and is equal to unity.
Thus, I have for the total electric current in the y direction, perpendicular to the
electric and magnetic fields:

In;py D � e2B

meLy

meE0
eB2

D � eE0
BLy

:

What is important here is that In;py does not depend on either py or n, and, therefore,
in order to find the total current as defined in Eq. 16.42, I simply need to multiply
this result by the total number of states occupied by electrons. The contribution from
a single Landau level to the current is

In D In;py G D � eE0
BLy

eBLxLy

2�„ D �e2

h
E0Lx;

and now if there are exactly n filled Landau levels, the total current becomes

Itot D �n
e2

h
E0Lx:

E0Lx is obviously a potential difference across the sample in the direction of the
field, and expression Itot=E0Lx is the quantized Hall conductance �xy of the system

�xy D �n
e2

h
: (16.50)

You might feel a bit puzzled as why I did not multiply the degeneracy factor G by
two as I did when deriving the density of states or the ground state energy. The
thing is that even if the spin contribution to the Landau level is relatively small,
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at low temperatures, when the quantum Hall effect is observed, the Landau levels
corresponding to different spin orientations remain well separated from each other,
so that each individual level does not have the spin-related degeneracy. But, when
counting the total number of filled levels, the spin contribution must be counted so
that n in Eq. 16.50 is not the same n as in Eq. 16.31 for Landau levels. (I am sorry
but I have a limited number of symbols to be used in the formulas.) This n counts
all filled Landau levels, including those with different values of the spin number ms.

As the magnetic field shifts the position of the Fermi energy such that instead
of n filled Landau levels, there are only n � 1, the conductivity changes abruptly
by a universal amount e2=h in complete agreement with the experiment. What this
simple calculation does not explain is why the conductivity does not change when a
Landau level is only partially filled and the number of the occupied states changes
with the magnetic field. In other words, this theory explains the quantum jumps of
the conductivity, but does not explain the plateaus observed in the experiment. But
this is a different story for a different time and a different book. And there are plenty
of those if you are interested.

16.4 Problems

Problem 205 Consider a charged particle moving in uniform and time-independent
electric and magnetic fields which are perpendicular to each other. The particle is
also subjected to a damping force which can be written down as

Fd D �me

�r
v;

where me is, as always, the particle’s mass, �r is the relaxation parameter, and v is
the particle’s velocity.

1. Write down the equations of motion for this particle including the damping force.
2. Do not attempt to solve these equations in general case, but see if there is a

solution with time-independent velocity v (set dv=dt D 0/:

3. Now imagine that you have Ne electrons per unit volume, and using the found
solutions, derive the expressions for normal Ohmic conductivity (current in the
direction of the electric field) and Hall conductivity (current perpendicular to
both electric and magnetic fields). (Hint: Compute the corresponding current
densities first.)

Problem 206 Using Eqs. 16.1 and 16.2, show that the center of the classical
cyclotron trajectory, x0 and y0, obeys the following relations:

x0 D x � 1

eB

�
py C eAy

�
:
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Problem 207 Assume that instead of the vector potential given in Eq. 16.12, you
use the vector potential of the form A D ��xyB:

1. Show that this vector potential describes the same magnetic field as the one used
in the text of the chapter.

2. Write down the Schrödinger equation for the electron in the magnetic field using
this vector potential and determine the eigenvalues and find the wave functions
representing the eigenvectors of the corresponding Hamiltonian.

3. Derive the expression for the degree of degeneracy of a single Landau level using
this new vector potential.

Problem 208 Consider operators

O…x D Opx C eAx

O…x D Opy C eAy;

where Ax;y are x- and y-components of an arbitrary vector potential defining a

magnetic field B. Show that the commutator
h O…x; O…y

i
is equal to

h O…x; O…y

i
D �i„eBz;

where Bz is the z-component of the magnetic field represented by the vector potential
A. (Hint: Use the position representation for the momentum operator.)

Problem 209

1. Using operators O…x;y introduced in the previous problem, construct the following
operators:

Oa D 1p
2e„B

� O…y C i O…x

�

Oa� D 1p
2e„B

� O…y � i O…x

�

and find their commutator
�Oa; Oa��.

2. Assuming that Az D 0, present the Hamiltonian given by Eq. 16.11 in terms of
operators Oa and Oa�. Comment on the result.

Problem 210 Find the total ground state energy of a two-dimensional gas of free
electrons (introduce the periodic boundary conditions and find the density of states;
using Pauli principle, find the Fermi energy and the total energy of the many-
electron ground state).

Problem 211 Generalize Eqs. 16.39, 16.36, and 16.39 taking into account the inter-
action of the spin of the electrons with the magnetic field. (Hint: The degeneracy
with respect to py does not change in the presence of the spin, but the expression for
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G in Eq. 16.29 must now be divided by two since spin variables are now counted
explicitly. While the energy levels are now labeled by two numbers, you can still
organize them in the ascending order and assign a single number to each energy.)

Problem 212 Find the eigenvalues and eigenvectors of operator OQ defined in
Eq. 16.25. Hint: Consider a superposition of a spinor corresponding to Landau
level n � 1 and spin up with a spinor corresponding to Landau level n and then
spin down (both these states correspond to the same eigenvalue of the Hamiltonian
equation 16.11).

Problem 213 Find an alternative expression for the potential describing the uni-
form electric field in the quantum Hall problem which would eliminate the term

1

2

meE20
B2

in Eq. 16.48 for the Landau energy levels in the presence of the electric field.
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