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Preface

This book presents a systematic, comprehensive treatment of analog and discrete

signal analysis and synthesis and an introduction to analog communication

theory. This evolved from my 40 years of teaching at Oklahoma State University

(OSU). It is based on three courses, Signal Analysis (a second semester junior

level course), Active Filters (a first semester senior level course), and Digital

signal processing (a second semester senior level course). I have taught these

courses a number of times using this material along with existing texts. The

references for the books and journals (over 160 references) are listed in the

bibliography section. At the undergraduate level, most signal analysis courses

do not require probability theory. Only, a very small portion of this topic is

included here.

I emphasized the basics in the book with simple mathematics and the sophis-

tication is minimal. Theorem-proof type of material is not emphasized. The book

uses the following model:

1. Learn basics

2. Check the work using bench marks

3. Use software to see if the results are accurate

The book provides detailed examples (over 400) with applications. A three-

number system is used consisting of chapter number – section number –

example or problem number, thus allowing the student to quickly identify

the related material in the appropriate section of the book. The book

includes well over 400 homework problems. Problem numbers are identified

using the above three-number system. Hints are provided wherever addi-

tional details may be needed and may not have been given in the main part

of the text. A detailed solution manual will be available from the publisher

for the instructors.

Summary of the Chapters

This book starts with an introductory chapter that includes most of the basic

material that a junior in electrical engineering had in the beginning classes. For

those who have forgotten, or have not seen the material recently, it gives enough
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background to follow the text. The topics in this chapter include singularity

functions, periodic functions, and others. Chapter 2 deals with convolution

and correlation of periodic and aperiodic functions. Chapter 3 deals with

approximating a function by using a set of basis functions, referred to as the

generalized Fourier series expansion. From these concepts, the three basic

Fourier series expansions are derived. The discussion includes detailed dis-

cussion on the operational properties of the Fourier series and their

convergence.

Chapter 4 deals with Fourier transform theory derived from the Fourier

series. Fourier series and transforms are the bases to this text. Considerable

material in the book is based on these topics. Chapter 5 deals with the relatives

of the Fourier transforms, including Laplace, cosine and sine, Hartley and

Hilbert transforms.

Chapter 6 deals with basic systems analysis that includes linear time-

invariant systems, stability concepts, impulse response, transfer functions,

linear and nonlinear systems, and very simple filter circuits and concepts.

Chapter 7 starts with the Bode plots and later deals with approximations

using classical analog Butterworth, Chebyshev, and Bessel filter functions.

Design techniques, based on both amplitude and phase based, are discussed.

Last part of this chapter deals with analysis and synthesis of active filter

circuits. Examples of basic low-pass, high-pass, band-pass, band elimina-

tion, and delay line filters are included.

Chapter 8 builds a bridge to go from the continuous-time to discrete-time

analysis by starting with sampling theory and the Fourier transform of the

ideally sampled signals. Bulk of this chapter deals with discrete basis func-

tions, discrete-time Fourier series, discrete-time Fourier transform (DTFT),

and the discrete Fourier transform (DFT). Chapter 9 deals with fast

implementations of the DFT, discrete convolution, and correlation. Second

part of the chapter deals the z-transforms and their use in the design of

discrete-data systems. Digital filter designs based on impulse invariance and

bilinear transformations are presented. The chapter ends with digital filter

realizations.

Chapter 10 presents an introduction to analog communication theory,

which includes basic material on analog modulation, such as AM and FM,

demodulation, and multiplexing. Pulse modulation methods are

introduced.

Appendix A reviews the basics on matrices; Appendix B gives a brief intro-

duction onMATLAB; and Appendix C gives a list of useful formulae. The book

concludes with a list of references and Author and Subject indexes.

Suggested Course Content

Instructor is the final judge of what topics will best suit his or her class and in

what depth. The suggestions given below are intended to serve as a guide only.

The book permits flexibility in teaching analysis, synthesis of continuous-time

and discrete-time systems, analog filters, digital signal processing, and an intro-

duction to analog communications. The following table gives suggestions for

courses.
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Topical Title Related topics in chapters

One semester (Fundamentals of analog
signals and systems ) Chapters 1–4, 6

One semester Systems and analog filters Chapters 4, 5*, 6, 7

One semester (Introduction to digital
signal processing ) Chapters 4*, 6*, 8, 9

Two semesters (Signals and an introduction to
analog communications ) Chapters 1–4, 5*, 6, 8*, 10

*Partial coverage
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Chapter 1

Basic Concepts in Signals

1.1 Introduction to the Book and Signals

The primary goal of this book is to introduce the

reader on the basic principles of signals and to

provide tools thereby to deal with the analysis of

analog and digital signals, either obtained natu-

rally or by sampling analog signals, study the

concepts of various transforming techniques, fil-

tering analog and digital signals, and finally

introduce the concepts of communicating analog

signals using simple modulation techniques. The

basic material in this book can be found in several

books. See references at the end of the book.

A signal is a pattern of some kind used to convey

a message. Examples include smoke signals, a set of

flags, traffic lights, speech, image, seismic signals,

and many others. Smoke signals were used for con-

veying information that goes back before recorded

history. Greeks and Romans used light beacons in

the pre-Christian era. England employed a long

chain of beacons to warn that Spanish Armada is

approaching in the late sixteenth century. Around

this time, the word signal came into use perceptible

by sight, hearing, etc., conveying information. The

present day signaling started with the invention of

the Morse code in 1838. Since then, a variety of

signals have been studied. These include the follow-

ing inventions: Facsimile by Alexander Bain in

1843; telephone by Alexander Bell in 1876; wireless

telegraph system by Gugliemo Marconi in 1897;

transmission of speech signals via radio by Reginald

Fessenden in 1905, invention and demonstration of

television, the birth of television by Vladimir Zwor-

ykin in the 1920 s, and many others. In addition, the

development of radar and television systems during

World War II, proposition of satellite communica-

tion systems, demonstration of a laser in 1955, and

the research and developments of many signal pro-

cessing techniques and their use in communication

systems. Since the early stages of communications,

research has exploded into several areas connected

directly, or indirectly, to signal analysis and com-

munications. Signal analysis has taken a signifi-

cant role in medicine, for example, monitoring

the heart beat, blood pressure and temperature of

a patient, and vital signs of patients. Others include

the study of weather phenomenon, the geological

formations below the surface and deep in the

ground and under the ocean floors for oil and gas

exploration, mapping the underground surface

using seismometers, and others. Researchers have

concluded that computers are powerful and neces-

sary that they need to be an integral part of any

communication system, thus generating significant

research in digital signal processing, development

of Internet, research on HDTV, mobile and cellu-

lar telephone systems, and others. Defense indus-

try has been one of the major organizations in

advancing research in signal processing, coding,

and transmission of data. Several research areas

have surfaced in signals that include processing of

speech, image, radar, seismic, medical, and other

signals.

1.1.1 Different Ways of Looking
at a Signal

Consider a signal xðtÞ, a function representing a

physical quantity, such as voltage, current, pres-

sure, or any other variable with respect to a second

variable t, such as time. The terms of interest are the

time t and the signal xðtÞ. One of the main topics of

R.K.R. Yarlagadda, Analog and Digital Signals and Systems, DOI 10.1007/978-1-4419-0034-0_1,
� Springer ScienceþBusiness Media, LLC 2010
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this book is the analysis of signals. Webster’s dic-

tionary defines the analysis as

1. Separation of a thing into the parts or elements

of which it is composed.

2. An examination of a thing to determine its parts

or elements.

3. A statement showing the results of such an

examination.

There are other definitions. In the following the

three parts are considered using simple examples.

Consider the sinusoidal function and its expansion

using Euler’s formula:

xðtÞ ¼ A0 cosðo0tþ y0Þ

¼ A0

2
ejy0

� �
ejo0t þ A0

2
e�jy0

� �
e�jo0t

¼ ReðA0e
jo0tejy0Þ:

(1:1:1)

In (1.1.1) A0 is assumed to be positive and real and

A0e
jy0 is a complex number carrying the amplitude

and phase angle of the sinusoidal function and is by

definition the phasor representation of the given

sinusoidal function. Some authors refer to this as

phasor transform of the sinusoidal signal, as it trans-

forms the time domain sinusoidal function to the

complex frequency domain. A brief discussion on

complex numbers is included later in Section 1.6.

This signal can be described in another domain, i.e.,

such as the frequency domain. The amplitude is

ðA0=2Þ and the phase angles of �y0 corresponding
to the frequencies �f0 ¼ �o0=2p Hz. In reality,

only positive frequencies are available, but Euler’s

formula in (1.1.1) dictates that both the positive and

negative frequencies need to be identified as illu-

strated in Fig. 1.1.1a. This description is the two-

sided amplitude and phase line spectra of xðtÞ.
Amplitudes are always positive and are located at

f ¼ �o0=2p ¼ �f0 Hz, symmetrically located

around the zero frequency, i.e., with even symme-

try. The phase spectrum consists of two angles

y ¼ �y0 corresponding to the positive and negative

frequencies, respectively, with odd symmetry. Since

ðtÞ is real, we can pictorially describe it by one- or

two-sided amplitude and phase line spectra as shown

in Fig. 1.1.1a,b,c,d. The following example illus-

trates the three steps.

Example 1.1.1 Express the following function in

terms of a sum of cosine functions:

xðtÞ ¼ � A0 þ A1 cosðo1tþ y1Þ

� A2 cosðo2tÞ � A3 sinðo3tþ y3Þ;Ai > 0:
(1:1:2)

Solution: Using trigonometric relations to express

each term in (1.1.2) in the form of Ai cosðoitþ yiÞ
results in

xðtÞ ¼A0 cosðð0Þt� 180�Þ

þ A1 cosðo1tþ y1Þ þ A2 cosðo2t� 180�Þ

þ A3 cosðo3tþ y3 þ 90�Þ:

(1:1:3)

In the first and the third terms either 1808 or �1808
could be used, as the end result is the same. The

two-sided line spectra of the function in (1.1.2) are

shown in Fig. 1.1.2. How would one get the func-

tions of the type shown in (1.1.3) for an arbitrary

Fig. 1.1.1 xðtÞ ¼ A0 cosðo0tþ y0Þ. (a) Two-sided amplitude
spectrum, (b) two-sided phase spectrum, (c) one-sided ampli-
tude spectrum, and (d) one-sided phase spectrum
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function? The sign and cosine functions are the

building blocks of the Fourier series in Chapter 3

and later the Fourier transforms in Chapter 4. The

function xðtÞ has four frequencies:

f1ð¼0Þ; f2; f3; f4 with amplitudes A0;A1;A2;A3

and phases � 180o; y1;�180o; y3 þ 90o:

Figure 1.1.2 illustrates pictorially the discrete loca-

tions of the frequencies, their amplitudes, and

phases. The signal in (1.1.2) can be described by

using the time domain function or in terms of fre-

quencies. In the figures, o0ð¼ 2pf Þ0s in radians per

second could have been used rather than f 0s in Hz.&

1.1.2 Continuous-Time and Discrete-Time
Signals

A signal xðtÞ is a continuous-time signal if t is a

continuous variable. It can take on any value in

the continuous interval ða; bÞ. Continuous-time sig-

nal is an analog signal. If a function y½n� is defined at
discrete times, then it is a discrete-time signal, where

n takes integer values. In Chapter 8 discrete-time

signals will be studied by sampling the continuous

signals at equal sampling intervals of ts seconds and

write xðntsÞ;where n an integer. This is expressed by

x½n� � xðntsÞ: (1:1:4)

Example(s) 1.1.2 In this example several specific

examples of interest are considered. In the first one,

part of the time signal illustrating a male voice of

speech in the sentence ‘‘. . .Show the rich lady out’’ is

shown in Fig. 1.1.3. The speech signal is sampled at

8000 samples per second. There are three portions

of the speech ‘‘/. . ./, /sh/, /o/’’ shown in the figure.

The first part of the signal does not have any speech

in it and the small amplitudes of the signal represent

the noise in the tape recorder and/or in the room

where the speech was recorded. It represents a ran-

dom signal and can be described only by statistical

means. Random signal analysis is not discussed in

any detail in this book, as it requires knowledge of

probability theory. The second part represents the

phoneme ‘‘sh’’ that does not show any observable

pattern. It is a time signal for a very short time and

has finite energy. Power and energy signals are stu-

died in Section 1.5. Third part of the figure repre-

sents the vowel ‘‘o,’’ showing a structure of (almost)

periodic pulses for a short time. In this book, aper-

iodic or non-periodic signals with finite energy and

periodic signals with finite average power will be

studied. One goal is to come up with a model for

each portion of a signal that can be transmitted and

reconstructed at the receiver.

Next three examples are from food industry.

Small businesses are sprouting that use signal pro-

cessing. For example, when we go to a grocery store

we may like to buy a watermelon. It may not always

be possible to judge the ripeness of the watermelon

Fig. 1.1.3 Speech . . .sho in . . .show ._male 2000 Samples @
8000 samples per second. Printed with the permission from
Hassan et al. (1994)

Fig. 1.1.2 (a) Two-sided amplitude spectra and (b) two-
sided phase spectra

1.1 Introduction to the Book and Signals 3



by outward characteristics such as external color,

stem conditions, or just the way it looks. A sure way

of looking at the quality is to cut the watermelon

open and taste it before we buy it. This implies we

break it first, which is destructive testing. Instead,

we can use our grandmother’s procedure in select-

ing a watermelon. She uses her knuckles to send a

signal into the watermelon. From the audio

response of the watermelon she decides whether it

is good or not based on her prior experience.We can

simulate this by putting the watermelon on a stand,

use a small hammer like device, give a slight tap on

the watermelon, and record the response. A simplis-

tic model of this is shown in Fig. 1.1.4. The

responses can be categorized by studying the out-

puts of tasty watermelons. For an interesting

research work on this topic, see Stone et al (1996).

Image processing can be used to check for

burned crusts, topping amount distribution, such

as the location of pepperoni pizza slices, and others.

For an interesting article on this subject, seeWagner

(1983), which has several applications in the food

industry.

The next two examples are from the surface seis-

mic signal analysis. In the first one, we use a source

in the form of dynamite sticks representing a source,

dig a small hole, and blow them in the hole. The

ground responds to this input and the response is

recorded using a seismometer and a tape recorder.

The analysis of the recorded waveform can provide

information about the underground cavities and

pockets of oil and other important measures.

Geologists drill holes into the ground and a small

slice of the core sample is used to measure the oil

content by looking at the percentage of the area

with dark spots on the slice, which is image

processing.

Another example of interest is measuring the

distance from a ground station to an airplane.

Send a signal with square wave pulses toward the

airplane and when the signal hits it, a return signal is

received at the ground station. A simple model is

shown in Fig. 1.1.5. If we can measure the time

between the time the signal left from the ground

station and the time it returned, identified as T in

the figure, we can determine the distance between

the ground station and the target by the formula

x ¼ 3ð108Þ ðm=sÞ

Tðsignal round trip time in secondsÞ=2:
(1:1:5)

The constant c ¼ 3ð108Þ m/s is the speed of light.

Radar and sonar signal processing are two impor-

tant areas of signal processing applications.

An exciting field of study is the biomedical

area. We are well aware of a healthy heart that

beats periodically, which can be seen from a record

of an electrocardiogram (ECG). The ECG

represents changes in the voltage potential due

(a)

(b)

Fig. 1.1.5 (a) Radar range measurement and (b) transmitted
and received filtered signals

Fig. 1.1.4 Watermelon responses to a tap
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to electrochemical processes in the heart cells.

Inferences can be made about the health of the

heart under observation from the ECG. Another

important example is the electroencephalogram

(EEG), which measures the electrical activity in

brain. &

Signal processing is an important area that inter-

ests every engineer. Pattern recognition and classifi-

cation is almost on top of the list. See, for example,

O’Shaughnessy (1987) and Tou and Gonzalez

(1974). For example, how do we distinguish two

phonemes, one is a vowel and the other one is a

consonant. A rough measure of frequency of a

waveform with zero average value is the number of

zero crossings per unit time. We will study in much

more detail the frequency content in a signal later in

terms of Fourier transforms in Chapter 4. Vowel

sounds have lower frequency content than the con-

sonants. A simple procedure to measure frequency

in a speech segment is by computing the number of

zero crossings in that segment. To differentiate a

vowel from a consonant, set a threshold level for

the frequency content for vowels and consonants

that differentiate between vowels and consonants.

If the frequency content is higher than this thresh-

old, then the phoneme is a consonant. Otherwise, it

is a vowel. If we like to distinguish one vowel from

another wemay needmore than onemeasure. Vocal

tract can be modeled as an acoustic tube with reso-

nances, called formants. Two formant frequencies

can be used to distinguish two vowels, say /u/ and /

a/. SeeProblem 1.1.1. Two formant frequencies may

not be enough to distinguish all the phonemes, espe-

cially if the signal is corrupted by noise.

Consider a simple pattern classification problem

with M prototype patterns z1; z2; . . . ; zM, where zi
is a vector representing an ith pattern. For simpli-

city we assume that each pattern can be represented

by a pair of numbers, say zi ¼ zi1; zi2ð Þ; i=1,2 . . .M

and classify an arbitrary pattern x ¼ x1; x2ð Þ to

represent one of the prototype patterns. The Eucli-

dean distance between a pattern x and the ith pro-

totype pattern is defined by

Di ¼ x� zik k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � zi1ð Þ2þ x2 � zi2ð Þ2

q
: (1:1:6)

A simple classifier is a minimum distance classifier

that computes the distance from a pattern x of the

signal to be classified to the prototype of each class

and assigns the unknown pattern to the class which it

is closest to. That is, ifDi5Dj; for all i 6¼ j, then we

make the decision that x belongs to the ith prototype

pattern. Ties are rare and if there are, they are

resolved arbitrarily. In the above discussion two

measures are assumed for each pattern. More mea-

sures give a better separation between classes.

There are several issues that would interest a

biomedical signal processor. These include removal

of any noise present in the signals, such as 60-Hz

interference picked up by the instruments, interference

of the tools or meters that measure a parameter, and

other signals that interfere with the desired signal.

Finding the important facets in a signal, such as the

frequency content, and many others is of interest. &

1.1.3 Analog Versus Digital Signal
Processing

Most signals are analog signals. Analog signal pro-

cessing uses analog circuit elements, such as resistors,

capacitors, inductors, and active components, such

as operational amplifiers and non-linear devices.

Since the inductors are made from magnetic mate-

rial, they have inherent resistance and capacitance.

This brings the quality of the components low. They

tend to be bulky and their effectiveness is reduced. To

alleviate this problem, activeRC networks have been

popular. Analog processing is a natural way to solve

differential equations that describe physical systems,

without having to resort to approximate solutions.

Solutions are obtained in real time. In Chapter 10 we

will see an example of analog encryption of a signal,

wherein the analog speech is scrambled by the use of

modulation techniques.

Digital signal processing makes use of a special

purpose computer, which has three basic elements,

namely adders, multipliers, and memory for sto-

rage. Digital signal processing consists of numerical

computations and there is no guarantee that the

processing can be done in real time. To encrypt a

set of numbers, these need to be converted into

another set of numbers in the digital encryption

scheme, for example. The complete encrypted signal

is needed before it can be decrypted. In addition, if

the input and the output signals are analog, then an
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analog-to-digital converter (A/D), a digital proces-

sor, and a digital-to-analog converter (D/A) are

needed to implement analog processing by digital

means. Special purpose processor with A/D and

D/A converters can be expensive.

Digital approach has distinct advantages over

analog approaches. Digital processor can be used

to implement different versions of a system by chan-

ging the software on the processor. It has flexibility

and repeatability. In the analog case, the system has

to be redesigned every time the specifications are

changed. Design components may not be available

and may have to live with the component values

within some tolerance. Components suffer from

parameter variations due to room temperature,

humidity, supply voltages, and many other aspects,

such as aging, component failure. In a particular

situation, many of the above problems need to be

investigated before a complete decision can be

made. Future appears to be more and more digital.

Many of the digital signal processing filter designs

are based on using analog filter designs. Learning

both analog and digital signal processing is desired.

Deterministic and random signals: Deterministic

signals are specified for any given time. They can be

modeled by a known function of time. There is no

uncertainty with respect to any value at any time.

For example, xðtÞ ¼ sinðtÞ is a deterministic signal.

A random signal yðtÞ ¼ xðtÞ þ nðtÞ can take ran-

dom values at any given time, as there is uncertainty

about the noise signal nðtÞ. We can only describe

such signals through statistical means, and the dis-

cussion on this topic will be minimal.

1.1.4 Examples of Simple Functions

To begin the study we need to look into the concept

of expressing a signal in terms of functions that can

be generated in a laboratory. One such function is

the sinusoidal function xðtÞ ¼ A0 cosðo0tþ y0Þ seen
earlier in (1.1.1), where A0;o0; and y0 are some

constants. A digital signal can be defined as a

sequence in the forms

x½n� ¼
an; n � 0

0; n50

�
; (1:1:7)

fx½n�g ¼ f. . . ; 0; 0; 0; 1; a; a2; . . . ; an; . . .g; (1:1:8)

fx½n�g ¼ f. . . ; 1#; a; a
2; . . . ; an; . . .g or fx½n�g

¼ f1#; a; a
2; . . . ; an; . . .g

(1:1:9)

In (1.1.8) reference points are not identified. In

(1.1.9), the arrow below 1 is the 0 index term. The

first term is assumed to be zero index term if there is

no arrow and all the values of the sequence are zero

for n50. We will come back to this in Chapter 8.

A signal xðtÞ is a real signal if its value at some t

is a real number. A complex signal xðtÞ consists of
two real signals, x1ðtÞ and x2ðtÞ such that x(t)= x_1

(t) + jx2ðtÞ; where j ¼
ffiffiffiffiffiffiffiffi
�1:
p

The symbol j (or i) is

used to represent the imaginary part.

Interesting functions: a. P Function: The P func-

tion is centered at t0 with a width of t s shown in

Fig. 1.1.6. It is not defined at t ¼ t0 � t=2 and is

symbolically expressed by

Y t� t0
t

h i 1; t� t0j j5t=2

0; otherwise

�
(1:1:10)

xðtÞP t� t0
t

h i
¼

xðtÞ; t� t0j j5t=2

0; otherwise

�

This P function is a deterministic signal. It is even, as

P½�t� ¼ P½t� andP½t0 � t� ¼ P½t� t0�. Some use the

symbol ‘‘rect’’andð1=tÞrectððt� t0Þ=tÞ isarectangular
pulse ofwidth t s centered at t ¼ t0 with aheight ð1=tÞ:

b. L Function: The triangular function shown in

Fig. 1.1.7 is defined by

L
t� t0
t

h i
¼ 1� jt�t0jt ; jt� t0j5t

0; otherwise
:

(
(1:1:11)

0t t

τ
−Π

Fig. 1.1.6 A P function
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Rectangular function defined in (1.1.10) has a width

of t seconds, whereas the triangular function

defined in (1.1.11) has a width of 2t s. The symbol

‘‘tri’’ is also used for a triangular function and

triððt� t0Þ=tÞ describes the function in (1.1.11).

c. Unit step function: It is shown in Fig. 1.1.8 and is

u tð Þ ¼
1; t40

0; t50

�
not defined at t ¼ 0ð Þ: (1:1:12)

The unit step function at t ¼ 0 can be defined expli-

citly as 0 or 1 or ½uð0þÞ þ uð0�Þ�=2=.5

d. Exponential decaying function: A simple such

function is

x tð Þ ¼ X0e
�t=Tc ; t � 0;Tc40

0; otherwise
:

(
(1:1:13)

See Fig. 1.1.9. It has a special significance, as xðtÞ is
the solution of a first-order differential equation.

The constantsX0 and Tc can take different values and

xðTcÞ
X0

¼ e�1 � :37 or xðTcÞ ¼ :37X0: (1:1:14)

xðtÞ decreases to about 37% of its initial value in Tc

s and is the time constant. It decreases to 2% in four

time constants and Xð4TcÞ � :018X0: A measure

associated with exponential functions is the half

life Th defined by

xðThÞ ¼
1

2
X0; e

�Th=Tc

¼ 1

2
; Th ¼ Tc logeð2Þ ffi :693Tc:

(1:1:15)

e. One-sided and two-sided exponentials: These are

described by

x1ðtÞ ¼
e�at; t � 0

0; t50

�
; a40

x2ðtÞ ¼
0; t � 0

eat; t50

�
a40; x3ðtÞ ¼ e�ajtj; a40:

(1:1:16)

x1ðtÞ is the right-sided exponential, x2ðtÞ is the left-
sided exponential, and x3ðtÞ is the two-sided expo-

nential. These are sketched in Fig. 1.1.10. Using the

unit step function, we have x2ðtÞ ¼ x3ðtÞuð�tÞ and
x1ðtÞ ¼ x3ðtÞuðtÞ.

Fig. 1.1.8 Unit step function

– /
0( ) ( ), 0ct Tx t X e u t τ= >

Fig. 1.1.9 Exponential decaying function

0t t

τ
−Λ

Fig. 1.1.7 A L function

2 ( )x t 1( )x t 3 ( )x t

(a) (b) (c)

Fig. 1.1.10 Exponential
functions (a) x2 (t) = eat

u(�t),a > 0,
(b) x1ðtÞ ¼ e�atuðtÞ; a > 0;
and (c) x3ðtÞ ¼ e�a tj j; a > 0
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1.2 Useful Signal Operations

1.2.1 Time Shifting

Consider an arbitrary signal starting at t ¼ 0

shown in Fig. 1.2.1a. It can be shifted to the

right as shown in Fig. 1.2.1b. It starts at time

t ¼ a > 0, a delayed version of the one in

Fig. 1.2.1a. Similarly it can be shifted to the left

starting at time �a shown in Fig. 1.2.1c. It is an

advanced version of the one in Fig. 1.2.1a. We

now have three functions: xðtÞ, xðt� aÞ; and

xðtþ aÞ with a > 0. The delayed and advanced

unit step functions are

u t� að Þ ¼
1; t4a

0; t5a

�
;

uðtþ aÞ ¼
1; t4� a

0; t5� a

�
; ða40Þ: (1:2:1)

From (1.1.16), the right-sided delayed exponential

decaying function is

x1ðt� tÞ ¼ e�aðt�tÞuðt� tÞ; a > 0; t > 0: (1:2:2)

1.2.2 Time Scaling

The compression or expansion of a signal in time

is known as time scaling. It is expanded in time if

a5 1 and compressed in time if a > 1 in

f tð Þ ¼ x atð Þ; a > 0: (1:2:3)

Example 1.2.1 Illustrate the rectangular pulse func-

tions P½t�;P 2t½ �; and P t=2½ �.

Solution: These are shown in Fig. 1.2.2 and are of

widths 1, (1/2), and 2, respectively. The pulseP 2t½ �
is a compressed version and the pulse P½t=2� is an
expanded version of the pulse function P t½ �. &

1.2.3 Time Reversal

If a ¼ �1 in (1.2.3), that is, fðtÞ ¼ xð�tÞ, then the

signal is time reversed (or folded).

Example 1.2.2 Let x1ðtÞ ¼ e�atuðtÞ: Give its time-

reversed signal.

Solution: The time-reversed signal of x1ðtÞ is

x2ðtÞ ¼ eatuð�tÞ. &

1.2.4 Amplitude Shift

The amplitude shift of xðtÞ by a constant K is

fðtÞ ¼ Kþ xðtÞ.
Combined operations: Some of the above signal

operations can be combined into a general form.

The signal yðtÞ ¼ xðat� t0Þ may be described by

one of the two ways, namely:

Π[t] Π[2t] Π[t /2]

(a) (b) (c)Fig. 1.2.2 Pulse functions

x(t) x(t – a) x(t + a)

(a) (b) (c)

Fig. 1.2.1 (a) x(t), (b) x(t � a), (c) x(t + a), a > 0
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1. Time shift of t0 followed by time scaling by a.

2. Time scaling by (a) followed by time shift of ðt0=aÞ.

These can be visualized by the following:

1: x tð Þ shift

t! t� t0
! v tð Þ ¼ x t� t0ð Þ scale

t! at
! y tð Þ

¼ v atð Þ ¼ x at� t0ð Þ:
(1:2:4)

2: x tð Þ scale

t! at
! g tð Þ ¼ x atð Þ shift

t! t� t0=að Þ ! y tð Þ

¼ g t� t0=að Þð Þ ¼ x at� t0ð Þ:
(1:2:5)

Notation can be simplified by writing

yðtÞ ¼ xðaðt� ðt0=aÞÞÞ. Noting that b ¼ at� t0 is a

linear equation in terms of two constants a and t0, it

follows:

yð0Þ ¼ xð�t0Þ and yðt0=aÞ ¼ xð0Þ: (1:2:6)

These two equations provide checks to verify the

end result of the transformation. Following exam-

ple illustrates some pitfalls in the order of time

shifting and time scaling.

Example 1.2.3 Derive the expression for

yðtÞ ¼ xð3tþ 2Þ assuming xðtÞ ¼ P½t=2�.

Solution: Using (1.2.4) with a ¼ 3 and t0 ¼ �2, we
have

vðtÞ ¼xðt� t0Þ ¼ P
tþ 2

2

� �
;

yðtÞ ¼vð3tÞ ¼ P
3tþ 2

2

� �
¼ P

tþ ð2=3Þ
2=3

� �
:

Using (1.2.5), we have

gðtÞ ¼xðatÞ ¼ P
3t

2

� �
;

yðtÞ ¼gðt� t0
a
Þ ¼ gðtþ 2

3
Þ

¼P 3ðtþ ð2=3ÞÞ
2

� �
¼ P

tþ ð2=3Þ
2=3

� �
:

It is a rectangular pulse of unit amplitude centered

at t ¼ �ð2=3Þ with width (2/3). We can check the

equations in (1.2.6) and yð0Þ ¼ xð3Þ ¼ 0 and

yðt0=aÞ ¼ yð3=2Þ ¼ 0. &

1.2.5 Simple Symmetries: Even and Odd
Functions

Continuous-time even and odd functions satisfy

xðtÞ ¼ xð�tÞ � xeðtÞ, an even function, x ( �t) =
�xðtÞ � x0ðtÞ, an odd function. (1.2.7)

Examples of even and odd functions are shown in

Fig. 1.2.3. The function cosðo0tÞ is an even function

and x0ðtÞ ¼ sinðo0tÞ is an odd function. An arbi-

trary real signal, xðtÞ; can be expressed in terms of

its even and odd parts by

xðtÞ ¼ xeðtÞ þ x0ðtÞ; xeðtÞ

¼ ðxðtÞ þ xð�tÞÞ=2½ �; x0ðtÞ

¼ ðxðtÞ � xð�tÞÞ=2½ �:

(1:2:8)

1.2.6 Products of Even and Odd Functions

Let xeðtÞ and yeðtÞ be two even functions and x0ðtÞ
and y0ðtÞ be two odd functions and arbitrary. Some

general comments can bemade about their products.

xeð�tÞyeð�tÞ ¼ xeðtÞyeðtÞ; even function: (1:2:9)

xeð�tÞy0ð�tÞ ¼ �xeðtÞy0ðtÞ; odd function: (1:2:10)

x0ð�tÞy0ð�tÞ ¼ ð�1Þ2x0ðtÞy0ðtÞ

¼ x0ðtÞy0ðtÞ; even function:
(1:2:11)

xe(t) x0(t)

(a) (b)

Fig. 1.2.3 (a) Even function and (b) odd function
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Note that the functionsP[t],L[t] andP[t]cosðo0tÞ are
even functions and P½t� sinðo0tÞ is an odd function.

The even and odd parts of the exponential pulse

x1ðtÞ ¼ e�tuðtÞ are shown in Fig. 1.2.4 and are

x1eðtÞ ¼
1

2
ðx1ðtÞ þ x1ð�tÞÞ;

x10ðtÞ ¼
1

2
ðx1ðtÞ � x1ð�tÞÞ:

(1:2:12)

1.2.7 Signum (or sgn) Function

The signum (or sgn) function is an odd function

shown in Fig. 1.2.5:

sgnðtÞ ¼ uðtÞ � uð�tÞ ¼ 2uðtÞ � 1: (1:2:13)

sgnðtÞ ¼ lim
a!0
½e�atuðtÞ � eatuð�tÞ�; a > 0: (1:2:14)

It is not defined at t ¼ 0 and is chosen as 0.

1.2.8 Sinc and Sinc2 Functions

The sinc and sinc2 functions are defined in terms of

an independent variable l by

sincðplÞ ¼ sinðplÞ
pl

; sinc2ðplÞ ¼ sin2ðplÞ
ðplÞ2

(1:2:15)

Some authors use sincðlÞ for sincðplÞ in (1.2.15).

Notation in (1.2.15) is common. Sinc ðplÞ is inde-
terminate at t ¼ 0: Using the L’Hospital’s rule,

lim
l!0

sinðplÞ
pl

¼ lim
l!0

d sinðplÞ
dl

dðplÞ
dl

¼ lim
l!0

p cosðplÞ
p

¼ 1:

(1:2:16)

In addition, since sinðplÞ is equal to zero for

l ¼ �n; n an integer, it follows that

sincðplÞ ¼ 0; l ¼ �n; n 6¼ 0 and an integer:

(1:2:17a)

Interestingly, the function sincðplÞj j is bounded by

ð1=plÞj j as sinðplÞj j 
 1. The side lobes of

sincðplÞj j are larger than the side lobes of

sinc2ðplÞ, which follows from the fact that the

square of a fraction is less than the fraction we

started with. Both the sinc and the sinc2 functions

are even. That is,

sincð � plÞ ¼ sincðplÞ and sinc2ð�plÞ ¼ sinc2ðplÞ:
(1:2:17b)

These functions can be evaluated easily by a calcu-

lator. For the sketch of a sinc function using

MATLAB, see Fig. B.5.2 in Appendix B.

1.2.9 Sine Integral Function

The sine integral function is an odd function defined

by (Spiegel, 1968)

sgn(t)

t

Fig. 1.2.5 Signum function sgnðtÞ

x1(t)

x2(t)

x3(t)

(a) (b) (c)

Fig. 1.2.4 (a) x1ðtÞ, (b) xie(t)
= x2 (t) even part of x1(t),
and (c) x10ðtÞ= x3 (t) odd
part of x1ðtÞ
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SiðyÞ ¼
Zy

0

sinðaÞ
a

da: (1:2:18a)

The values of this function can be computed

numerically using the series expression

SiðyÞ ¼ y

ð1Þ1!
� y3

ð3Þ3!
þ y5

ð5Þ5!
� y7

ð7Þ7!
þ� . . .

(1:2:18b)

Some of its important properties are

Sið�yÞ ¼ �SiðyÞ;Sið0Þ ¼ 0;

SiðpÞ ffi 2:0123;Sið1Þ ¼ ðp=2Þ : (1:2:18c)

Si function converges fast and only a few terms in

(1.2.18b) are needed for a good approximation.

1.3 Derivatives and Integrals
of Functions

It will be assumed that the reader is familiar with some

of the basic properties associated with the derivative

and integral operations. We should caution that

derivatives of discontinuous functions do not exist

in the conventional sense. To handle such cases,

generalized functions are defined in the next section.

The three well-known formulas to approximate a

derivative of a function, referred to as forward differ-

ence, central difference, and backward difference, are

x0ðtÞ ¼ dxðtÞ
dt

:
xðtþ hÞ � xðhÞ

h
;

x0ðtÞ :
xðtþ hÞ � xðt� hÞ

2 h
;

x0ðtÞ :
xðtÞ � xðt� hÞ

h
: (1:3:1)

MATLAB evaluations of the derivatives are given

in Appendix B. If we have a function of two vari-

ables, then we have the possibility of taking the

derivatives one or the other, leading to partial deri-

vatives. Let xðt; aÞ be a function of two variables.

The two partial derivatives of xðt; aÞ with respect to

t, keeping a constant, and with respect to a, keeping
t constant are, respectively, given by

@xðt; aÞ
@t

¼ lim
Dt!0

xðtþ Dt; aÞ � xðt; aÞ
Dt

;

@xðt; aÞ
@a

¼ lim
Da!0

xðt; aþ DaÞ � xðt; aÞ
Da

: (1:3:2)

Assuming the second (first) variable is not a func-

tion of the first (second) variable, the differential of

xðt; aÞ is

dx ¼ @x
@t

dtþ @x
@a

da:

The integral of a function over an interval is the area

of the function over that interval.

Example 1.3.1 Compute the value of the integral of

xðtÞ shown in Fig. 1.3.1.

Solution: Divide the area into three parts as identi-

fied in the figure. The three parts are in the intervals

ð0; aÞ, ða; bÞ, and ðb; cÞ, respectively. The areas of the
two triangles are identified by A1 and A2 and the

area of the rectangle byA3. They can be individually

computed and then add the three areas to get the

total area. That is,

A1 ¼
1

2
aB;A2 ¼ ðb� aÞC;A3 ¼

1

2
ðc� bÞB;

A ¼ A1 þ A2 þ A3 ¼
Zc

0

xðtÞdt: &

If the function is arbitrary and cannot be divided

into simple functions like in the above example, we

can approximate the integral by dividing the area

into small rectangular strips and compute the area

by adding the areas in each strip.

Fig. 1.3.1 Computation of Integral of x(t) using areas
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Example 1.3.2 Consider the function xðtÞ shown in

Fig. 1.3.2. Find the integral of this function using

the above approximation for a5t5b. Assume the

values of the function are known as xðaÞ;xðaþ DtÞ;
xðaþ 2DtÞ; :::; and x((a þ N - 1)D t)

Solution: Assuming Dt is small enough that we can

approximate the area in terms of rectangular strips

using the rectangular integration formula and

Zb

a

xðtÞdt �
XN�1
n¼0

xðaþ nDtÞ
" #

Dt; Dt ¼ ðb� aÞ=N:

(1:3:3a)

Note that xðaÞDt gives the approximate area in the

first strip. If the width of the strips gets smaller and

the number of strips increases correspondingly, then

the approximation gets better. In the limit, i.e., when

Dt! 0, approximation approaches the value of the

integral. In computing the area of the kth rectangular

strip, xðaþ ðk� 1ÞDtÞ was used to approximate the

height of the pulse. Some other value of the function

in the interval, such as the value of the function in the

middle of the strip, could be used.

MATLAB evaluation of integrals is discussed in

Appendix B. In Chapter 8 appropriate values for

Dt will be considered in terms of the frequency con-

tent in the signal. Instead of rectangular integration

formula, there are other formulas that are useful.

One could assume that each strip is a trapezoid and

using the trapezoidal integration formula the integral

is approximated by

Zb

a

xðtÞdt � ½xðaÞ þ 2xðaþDtÞ þ 2xðaþ 2DtÞ þ � � �

þ 2xðaþ ðN� 1ÞDtÞ þ xðaþNDtÞ�ðDt=2Þ: (1:3:3b)

If the time interval Dt ¼ ðb� aÞ=N is sufficiently

small, then the difference between the two formulas

in (1.3.3a) and (1.3.3b) would be small and (1.3.3a)

is adequate. &

1.3.1 Integrals of Functions with
Symmetries

The integrals of functions with even and odd sym-

metries around a symmetric interval are

Za

�a

xeðtÞdt ¼ 2

Za

0

xeðtÞdt and

Za

�a

x0ðtÞdt ¼ 0;

(1:3:4)

where a is an arbitrary positive number.

Example 1.3.3 Evaluate the integrals of the func-

tions given below:

x1ðtÞ ¼ P t=2a½ �; x2ðtÞ ¼ tx1ðtÞ: (1:3:5)

Solution: x1ðtÞ is a rectangular pulse with an even

symmetry and x2ðtÞ is an odd function with an odd

symmetry. The integrals are

A1 ¼
Za

�a

x1ðtÞdt ¼ 2

Za

0

dt ¼ 2a;

A2 ¼
Za

�a

x2ðtÞdt ¼ 0: &

1.3.2 Useful Functions from Unit Step
Function

The ramp and the parabolic functions can be

obtained by

xrðtÞ ¼
Z t

0

uðtÞdt ¼ tuðtÞ and

xpðtÞ ¼
Z t

0

xrðtÞdt ¼ðt2=2ÞuðtÞ: (1:3:6)

Section 1.4 considers the derivatives of the unit step

functions.

x(t)

Fig. 1.3.2 xðtÞ and its approximation using its samples
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Now consider Leibniz’s rule, interchange of deri-

vative and integral, and interchange of integrals

without proofs. For a summary, see Peebles (2001).

1.3.3 Leibniz’s Rule

LetgðtÞ ¼
ZbðtÞ

aðtÞ

zðx; tÞdx: (1:3:7)

aðtÞ and bðtÞ are assumed to be real differentiable

functions of a real parameter t, and zðx; tÞ and its

derivative dzðx; tÞ=dt are both continuous functions

of x and t. The derivative of the integral with respect

to t is Leibniz’s rule Spiegel (1968) and is

dgðtÞ
dt
¼ z½bðtÞ; tÞ� daðtÞ

dt
� z½aðtÞ; t� dbðtÞ

dt

þ
ZbðtÞ

aðtÞ

@zðx; tÞ
@t

dx: (1:3:8)

1.3.4 Interchange of a Derivative
and an Integral

When the limits in (1.3.7) are constants, say aðtÞ ¼ a

and bðtÞ ¼ b, then the derivatives of these limits will

be zero and (1.3.7) and (1.3.8) reduce to

gðtÞ ¼
Zb

a

zðx; tÞdx;

dgðtÞ
dt
¼ d

dt

Zb

a

zðx; tÞdt ¼
Zb

a

@zðx; tÞ
@ t

dx: (1:3:9)

The derivative and the integral operations may be

interchanged.

1.3.5 Interchange of Integrals

If any one of the following conditions,

Z1

�1

Z1

�1

xðt;aÞj jdtda51;
Z1

�1

½
Z1

�1

xðt;aÞj jda�dt51;

Z1

�1

½
Z1

�1

xðt;aÞdtj j�da51; (1:3:10)

is true, then Fubini’s theorem (see Korn and Korn

(1961) for a proof) states that

Z1

�1

Z1

�1

xðt; aÞdt

2
4

3
5da ¼

Z1

�1

Z1

�1

xðt; aÞdt

2
4

3
5da

¼
Z1

�1

Z1

�1

xðt; aÞdtda: (1:3:11)

Signals generated in a lab are well behaved and they

are valid.

In Chapter 3 on Fourier series, integrating a

product of a simple function, say hðtÞ, with its nth

derivative goes to zero; such a polynomial, and the

other one is a sinusoidal function gðtÞ, such as

sinðo0tÞ or cosðo0tÞ or ejo0t is applicable. The gen-

eralized integration by parts formula comes in

handy.

R
hðnÞðtÞgðtÞdt ¼ hðn�1ÞðtÞgðtÞ � hðn�2ÞðtÞg0ðtÞ
þhðn�3ÞðtÞg00ðtÞ � � � � ð�1Þn

R
hðtÞgðnÞðtÞdt;

gðkÞðtÞ ¼ dkgðtÞ
dtk

; and hðkÞðtÞ ¼ dkhðtÞ
dtk

:

(1:3:12)

Using (1.3.12), the following equalities can be seen:

Z
t cosðtÞdt ¼ cosðtÞ þ t sinðtÞ;

Z
t sinðtÞdt ¼ sinðtÞ � t cosðtÞ (1:3:13a)

Z
t2 cosðtÞdt ¼ 2t cosðtÞ þ ðt2 � 2Þ sinðtÞ;

Z
t2 sinðtÞdt ¼ 2t sinðtÞ � ðt2 � 2Þ cosðtÞ: (1:3:13b)
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1.4 Singularity Functions

The impulse function, or the Dirac delta function, a

singularity function, is defined by

dðtÞ ¼
0; t 6¼ 0

1; t ¼ 0

�
with

Z1

�1

dðtÞdt ¼ 1: (1:4:1)

dðtÞ takes the value of infinity at t ¼ 0 and is zero

everywhere else. See Fig. 1.4.1b. Impulse function is

a continuous function and the area under this func-

tion is equal to one. Note that a line has a zero area.

Here, a generalized or a distribution function is

defined that is nonzero only at one point and has a

unit area. A delayed or an advanced impulse func-

tion can be defined by dðt� t0Þ, where t0 is assumed

to be positive in the expressions. The ideal impulse

function cannot be synthesized. It is useful in the

limit. For example,

dðtÞ ¼ lim
e!0

1

e
P

t

e

h i� 	
; dðtÞ ¼ lim

e!0

1

e

� �
L

t

e

h i� 	
:

(1:4:2)

Figure 1.4.1a illustrates the progression of rectan-

gular pulses of unit area toward the delta function.

As e is reduced, the height increases and, in the limit,

the function approaches infinity at t ¼ 0 and the

area of the rectangle is 1. There are other functions

that approximate the impulse function in the limit.

A nice definition is given in terms of an integral of a

product of an impulse and a test function fðtÞ by
Korn and Korn (1961):

Zt2
t1

fðtÞdðt� t0Þdt

¼

0; t05t1 or t25t0

ð1=2Þ fðtþ0 Þ þ fðt�0 Þ

 �

; t15t05t2

ð1=2Þfðtþ0 Þ; t0 ¼ t1

ð1=2Þfðt�0 Þ; t0 ¼ t2

8>>><
>>>:

: (1:4:3)

fðtÞ is a testing (or a test) function of t and is

assumed to be continuous and bounded in the

neighborhood of t ¼ t0 and is zero outside a finite

interval. That is fð�1Þ ¼ 0. The integral in (1.4.3)

is not an ordinary (Riemann) integral. In this sense,

dðtÞ is a generalized function. A simpler form of

(1.4.3) is adequate. dðtÞ has the property that

Z1

�1

fðtÞdðt� t0Þdt ¼ fðt0Þ; (1:4:4a)

where fðtÞ is a test function that is continuous at

t ¼ t0: As a special case, consider t0 ¼ 0 in (1.4.4a)

and fðtÞ ¼ 1. Equation (1.4.4a) can be written as

Z1

�1

dðtÞdt ¼
Z0þ

0�

dðtÞdt ¼ 1: (1:4:4b)

That is, the area under the impulse function is 1. The

integral in (1.4.4a) sifts the value of fðtÞ at t ¼ t0
and dðtÞ is called a sifting function. In summary, the

impulse dðt� t0Þ has unit area (or weight) centered

at the point t ¼ t0 and zero everywhere else. Since

the dðt� t0Þ exists only at t ¼ t0, andfðtÞ at t ¼ t0 is

fðt0Þ, we have an important result

fðtÞdðt� t0Þ ¼ fðt0Þdðt� t0Þ: (1:4:5)

There are many limiting forms of impulse functions.

Some of these are given below.

Notes: In the limit, the following functions can be

used to approximate dðtÞ:

dðtÞ ¼ lim
t!0

xiðtÞ; x1ðtÞ ¼
2

t
e� t=tj j;

x2ðtÞ ¼
1

t
sincðt=tÞ; x3ðtÞ ¼

1

t
sinc2ðt=tÞ

(a) (b) 

Fig. 1.4.1 (a) Progression toward an impulse as e! 0 and
(b) symbol for dðtÞ
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x4ðtÞ ¼
1

t
e�pðt=tÞ

2

; x5ðtÞ ¼
t

pðt2 þ t2Þ : (1:4:6a)

x1ðtÞ is a two-sided exponential function; x2ðtÞ and
x3ðtÞ are sinc functions. Sinc function does not go to

zero in the limit for all t. See the discussion by

Papoulis (1962). x4ðtÞ is a Gaussian function and

x5ðtÞ is a Lorentzian function. To prove these,

approximate the impulse function in the limit,

using (1.4.4a) and (1.4.4b).

Example 1.4.1 Show that the Lorentzian function

x5ðtÞ approaches an impulse function as t! 0.

Show the result by using the equations: a. (1.4.1)

and b. (1.4.4a and b).

Solution: a. Clearly as t! 0, x5ðtÞ ! 0 for t not

equal to zero. As t! 0; x5ðtÞ ! 1. From tables,

1

p

Z1

�1

t
t2 þ t2

dt ¼ 1; lim
t!0

x5ðtÞ ¼ dðtÞ: (1:4:6b)

b. First by (1.4.4a), with t0 ¼ 0 and fðtÞ ¼ 1 in the

neighborhood of t ¼ 0 results in

lim
t!0

Z1

�1

fðtÞx5ðt� t0Þdt ¼ lim
t!0

Z1

�1

x5ðtÞdt ¼ 1:

(1:4:6c)

Using (1.4.4b) and the integral tables, it follows that

Z0þ

0�

1

p
t

ðt2 þ t2Þ dt ¼
t
p

1

t
tan�1

t

t

� 	� �0þ
0�

¼ 1

p
p
2
� � p

2

� 	h i
¼ 1: &

1.4.1 Unit Impulse as the Limit
of a Sequence

Another approach to the above is through a

sequence. See the work of Lighthill (1958). Also

see Baher, (1990). A good function fðtÞ is

differentiable everywhere any number of times,

and, in addition, the function and its derivative

decrease at least as rapidly as (1=tn) as t!1 for

all n. The derivative of a good function is another

good function and the sums and the products of two

good functions are good functions. A sequence of

good functions

xnðtÞf g � x1ðtÞ; x2ðtÞ; . . . ; xnðtÞf g (1:4:7)

is called regular, if for any good function fðtÞ, the
following limit exists:

VxðfÞ ¼ lim
n!1

Z1

�1

xnðtÞf gfðtÞdt: (1:4:8)

Example 1.4.2 Find the limit in (1.4.8) of the follow-

ing sequence:

xnðtÞf g ¼ e�ðt
2=n2Þ

n o
: (1:4:9)

Solution: The limit in (1.4.8) is

VxðfÞ ¼
Z1

�1

fðtÞdt: (1:4:10) &

Two regular sequences of good functions are con-

sidered equivalent if the limit in (1.4.8) is the same

for the two sequences. For example, e�ðt
4=n4Þ and

e�ðt
2=n2Þ are equivalent only in that sense. The func-

tion VxðfÞ defines a distribution xðtÞ and the limit

of the sequence

xðtÞ � lim
n!1

xnðtÞf g: (1:4:11)

An impulse function can be defined in terms of a

sequence of functions and write

dðtÞ � lim
n!1

xnðtÞf g if lim
n!1

Z1

�1

fðtÞ xnðtÞf gdt ¼ fð0Þ

(1:4:12)

¼)
Z1

�1

fðtÞdðtÞdt ¼ fð0Þ: (1:4:13)

Many sequences can be used to approximate an

impulse.
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Notes: A constant can be interpreted as a general-

ized function defined by the regular sequence

xnðtÞf g so that, for any good function fðtÞ

lim
n!1

Z1

�1

xnðtÞf gfðtÞdt ¼ K

Z1

�1

fðtÞdt: (1:4:14)

Using the function in (1.4.9), it follows that

xnðtÞf g�Ke�t
2=n2 ;K¼ lim

n!1
fKe�ðt2=n2Þg: (1:4:15)

1.4.2 Step Function and the Impulse
Function

Noting the area under the impulse function is one, it

follows that Z t

�1

dðaÞda ¼ uðtÞ: (1:4:16)

Asymmetrical functions ðdþðtÞ and d�ðtÞÞ and

(uþðtÞ and u�ðtÞÞ can be defined and are

uþðtÞ ¼
Z1

�1

dþðtÞdt ¼
1; t > 0

0; t 
 0

�
;

u�ðtÞ ¼
Z1

�1

d�ðtÞdt ¼
1; t � 0

0; t50

�
(1:4:17)

uðtÞ ¼
1; t > 0

ð1=2Þ; t ¼ 0

0; t50

8><
>: (1:4:18)

These step functions differ in how the value of the

function at t ¼ 0 is assigned and are only of theore-

tical interest. Here the step function is assumed to be

u�ðtÞ and ignore the subscript:Derivative of the unit

step function is an impulse function, which can be

shown by using the generalized function concept.

Example 1.4.3 Using the property of the test func-

tion, lim
t!�1

fðtÞ ¼ 0, show that

Z1

�1

x0ðtÞfðtÞdt ¼ �
Z1

1

xðtÞf0ðtÞdt;f0ðtÞ ¼ df
dt

(1:4:19)

Solution: Using the integration by parts, we have

the result below and (1.4.19) follows:

Z1

�1

x0ðtÞfðtÞdt ¼ xðtÞfðtÞj1�1�
Z1

�1

xðtÞf0ðtÞdt:

(1:4:20) &

Notes: Let g1ðtÞ and g2ðtÞ be two generalized func-

tions and

Z1

�1

fðtÞg1ðtÞdt ¼
Z1

�1

fðtÞg2ðtÞdt: (1:4:21)

The two generalized functions are equal, i.e.,

g1ðtÞ ¼ g2ðtÞ only in the sense of (1.4.21). It is called

the equivalency property.

Example 1.4.4 Show that the derivative of the unit

step function is an impulse function using the

equivalence property.

Solution: First

Z1

�1

uðtÞfðtÞdt ¼
Z1

0

fðtÞdt: (1:4:22)

Noting that fð�1Þ ¼ 0, it follows that

Z1

�1

u0ðtÞfðtÞdt ¼ �
Z1

�1

uðtÞf0ðtÞdt

¼ �
Z1

0

f0ðtÞdt ¼ �½fð1Þ � fð0Þ� ¼ fð0Þ; (1:4:23)

Z1

�1

u0ðtÞfðtÞdt¼
Z1

�1

dðtÞfðtÞdtand u0ðtÞ

¼ duðtÞ
dt
¼ dðtÞ: (1:4:24)

The derivative of a parabolic function results in a

ramp function, the derivative of a ramp function

results in a unit step function, and the derivative of a

unit step function results in an impulse function. All

of these are true only in the generalized sense. What

is the derivative of an impulse function? That is,

d0ðtÞ ¼ ddðtÞ
dt

: (1:4:25)
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It is defined by the relation

Z1

�1

d0ðtÞfðtÞdt ¼ �
Z1

�1

dðtÞf0ðtÞdt ¼ �f0ð0Þ:

(1:4:26)

Generalizing to higher-order derivatives of the

impulse function results in

Z1

�1

dðnÞðtÞfðtÞdt ¼ ð�1ÞnfðnÞð0Þ: (1:4:27)

Example 1.4.5 Evaluate the following integrals:

a: A¼
Z1

�1

ðt2þ 2tþ 1Þdð2Þðt� 1Þdt;dð2ÞðtÞ ¼ d2dðtÞ
dt2

(1:4:28)

b: B ¼
Z2

:5

½ðt� 1Þ2dðt� 1Þ þ 5dðtþ 1Þ þ 6tdðtÞ�dt:

(1:4:29)

Solution: These follow

a: A ¼
Z1

�1

½ðaþ 1Þ2 þ 2ðaþ 1Þ þ 1�dð2ÞðaÞda

¼ ð�1Þ2 d2

da2
½ðaþ 1Þ2 þ 2ðaþ 1Þ þ 1�ja¼0¼ 4

b: B ¼
Z2

:5

½ðt� 1Þ2dðt� 1Þ þ 5dðtþ 1Þ

þ6tdðtÞ�dt ¼ 0: (1:4:30)

When an impulse is outside the integration limits,

then the integral is 0. In addition, it is assumed that

the limits do not fall at the exact location of the

impulses. &

dðtÞ can be approximated using various functions in

the limit. In Fig. 1.4.1 it is expressed in terms of a

rectangular pulse function. That is,

dðtÞ ¼ lim
e!0

x1ðtÞ; x1ðtÞ ¼
1

e
P

t

e

h i
: (1:4:31)

The generalized derivative of a pulse function is as

follows:

P½t=e� ¼ uðtþ e=2Þ � uðt� e=2Þ (1:4:32)

dP t
e


 �
dt
¼ dðtþ e

2
Þ � dðt� e

2
Þ; d0ðtÞ

¼ lim
e!0

dðtþ e
2
Þ � dðt� e

2
Þ

h i
: (1:4:33)

The derivative of the impulse function results in two

impulses illustrated in Fig. 1.4.2. It is an odd func-

tion called a doublet. The square of an impulse

function is not defined as

lim
e!0

1

e2
P

t

e

h i� 	2
¼ lim

e!0

1

e

� �
¼ 1: (1:4:34)

The impulse function is not square integrable. The

square of a distribution is not defined Papoulis,

(1962). Note that dðtÞ is an even function and

d0ðtÞ is an odd function:

1.4.3 Functions of Generalized Functions

Using the equivalence property of the generalized

function, the following is true:

gðtÞ ¼ dðat� bÞ ¼ dðt� b=aÞ
aj j ; a 6¼ 0: (1:4:35)

This can be seen from

Z1

�1

fðtÞdðat� bÞdt¼ 1

aj j

Z1

�1

fðy=aÞdðy� bÞdy

¼ 1

aj jfðb=aÞ: (1:4:36)

From the equivalence property, the equality in

(1.4.35) now follows. From (1.4.35), it follows that

dðoÞ ¼ 1

2p
dðfÞ or dðfÞ ¼ 2pdðoÞ: (1:4:37)

∞

–∞

0
t

Fig. 1.4.2 Symbolic
representation of d0ðtÞ, a
doublet
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1.4.4 Functions of Impulse Functions

In (1.4.35), dðxðtÞÞ is considered with xðtÞ being a

linear function of time. Now consider other cases,

where xðtÞ is assumed to have simple zeros, i.e., no

multiple zeros.

Example 1.4.6 Evaluate the following integral using

(1.4.35) and the following cases for the limits. a.

x ¼ 0; y ¼ 4 and b. x ¼ �10; y ¼ 5.

A ¼
Zy

x

ðt� 1Þðtþ 5Þdð2tþ 5Þdt:

Solution: First, changing the variables, a ¼ 2tþ 5,

i.e., t ¼ 1
2ða� 5Þ, dt ¼ 1

2 da, results in

a: t ¼ 0¼)a ¼ 5; t ¼ 4¼)a ¼ 13;

¼)A ¼
Z13

5

1

2
a� 7

2

� �
1

2
aþ 5

2

� �
dðaÞ1

2
da ¼ 0

ða ¼ 0 is outside the range 55a513Þ:

b. Similarly, changing the variables, a ¼ 2tþ 5,

i.e., t ¼ 1
2ða� 5Þ, dt ¼ 1

2 da, results in

t ¼ �5¼)a ¼ �5; t ¼ 0¼)a ¼ 5;

¼)A ¼
Z5

�5

1

2
a� 7

2

� �
1

2
aþ 5

2

� �
dðaÞ 1

2

� �
da

¼ 1

2
a� 7

2

� �
1

2
aþ 5

2

� �
1

2

� �
a¼0j ¼ �35

8
: &

Example 1.4.7Using the equivalence property of the

impulse functions, show that

Table 1.4.1 Properties of the impulse function

Z1

�1

dðt� t0ÞfðtÞdt ¼ fðt0Þ:

Z1

� 1

dðtÞfðt� t0Þdt ¼ fð�t0Þ:

Z1

�1

fðtÞdðtÞdt ¼ fð0Þ:

Z1

�1

ddðtÞ
dt

fðtÞdt ¼ �dfðtÞ
dt

����
t¼0
:

Z1

�1

dðnÞðtÞfðtÞdt ¼ ð�1ÞnfðnÞð0Þ:

xðtÞdðtÞ ¼ xð0ÞdðtÞ:

Z1

�1

dðtÞdðt0 � tÞdt ¼ dðt0Þ:

dðat� bÞ ¼ 1

aj jdðt�
b

a
Þ ; a 6¼ 0:

dðjoÞ ¼ dðoÞ:

dðtÞ ¼ dð�tÞ:
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dðt2 � a2Þ ¼ 1

2aj j

� �
dðtþ aÞ þ dðt� aÞð Þ; a 6¼ 0:

(1:4:38)

Solution: Since t2 � a2 ¼ ðt� aÞðtþ aÞ ¼ 0! t ¼
�a 6¼ 0 at t ¼ �a, it follows that
Z1

�1

dðt2 � a2ÞfðtÞdt ¼
Z0

�1

dðt2 � a2ÞfðtÞdt

þ
Z1

0

dðt2 � a2ÞfðtÞdt: (1:4:39)

With t ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyþ a2Þ

p
,

Z0

�1

dðt2 � a2ÞfðtÞdt

¼ �
Z�a2

1

dðyÞf �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ a2

p� 	 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ a2

p
 !

dy

¼ fð�aÞ 1

2aj j

� �
:

Note that when t ¼ 0; y ¼ �a2 and when

t ¼ �1; y ¼ 1. In a similar manner, we can eval-

uate the second integral in (1.4.39). Combining

them, it follows that

Z1

�1

1

2aj j½dðt� aÞ þ dðtþ aÞ�fðtÞdt ¼ fðaÞ
2aj j þ

fð�aÞ
2aj j :

This can be generalized. If xðtÞ has simple roots at

t ¼ tn, then

d½xðtÞ� ¼
X
tn

1

x0ðtnÞj j dðt� tnÞ; x0ðtnÞ ¼
dxðtÞ
dt

t¼tnj

(1:4:40) &

Example 1.4.8 Give the expression for dðsinðtÞÞ:

Solution: Since sinðtÞjt¼np ¼ 0; d sinðtÞ=dt ¼ cosðtÞ;
andj cosðnpÞj ¼ 1, it follows that

dðsinðtÞÞ ¼
X1
n¼�1

dðt� npÞ: (1:4:41) &

1.4.5 Functions of Step Functions

Example 1.4.9Given xðtÞ ¼ t2 � 1, sketch the func-

tion yðtÞ ¼ uðxðtÞÞ ¼ uðt2 � 1Þ, where uðtÞ is the

unit step function.

Solution: Since xðtÞ 
 0 for �1 
 t 
 1, it follows

that

xðtÞ 
 0 for � 1 
 t 
 1! yðtÞ ¼ 0; �15t51;

xðtÞ > 0 for �15t5� 1 and

15t51! yðtÞ ¼ 1; t5� 1; t > 1:

Fig. 1.4.3 shows the sketches for xðtÞ and yðtÞ. &

1.5 Signal Classification Based
on Integrals

The area of a signal xðtÞ is

Area xðtÞ½ � ¼
Z1

�1

xðtÞdt: (1:5:1)

If a signal xðtÞ is said to be absolutely integrable,

then

Area½ xðtÞj j� ¼
Z1

�1

xðtÞj jdt51: (1:5:2)

x(t)

(a) 

y(t)

(b) 

t t

Fig. 1.4.3 (a) xðtÞ ¼ t2 � 1
and (b) yðtÞ ¼ uðt2 � 1Þ
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If a signal is square integrable, i.e., a finite energy

signal satisfies

Area½ xðtÞj j2� ¼
Z1

�1

xðtÞj j2dt51: (1:5:3)

Consider a resistor of value R O. Ohm’s law states

that the voltage, vðtÞ; across this resistor is equal to
R times the current iðtÞ passing through the resistor

and vðtÞ ¼ RiðtÞ. The instantaneous power deliv-

ered to the resistor is pRðtÞ ¼ i2ðtÞR. The total

energy delivered to the resistor is

ER ¼
Z1

�1

pRðtÞdt ¼ R

Z1

�1

i2ðtÞdt ¼ 1

R

Z1

�1

v2ðtÞdt:

If we normalize the resistor value to 1O, that is,

R ¼ 1, then we can consider the function, xðtÞ as a
generic (i.e., either voltage or current) function. The

energy in xðtÞ is defined by

Ex ¼
Z1

�1

xðtÞj j2dt: (1:5:4)

The normalized average power of a signal xðtÞ is
defined by

Px ¼ lim
T!1

1

T

ZT=2

�T=2

xðtÞj j2dt: (1:5:5)

The signal xðtÞ is an energy signal if 05Ex51, that

is, Ex is finite and Px ¼ 0. The function xðtÞ is a

power signal if 05Px51, i.e., Px is finite and there-

fore Ex is infinite. If a signal does not satisfy one of

these conditions, then it is neither an energy signal

nor a power signal. The power and energy signals are

mutually exclusive.

Example 1.5.1 Show that the function given below is

an energy signal.

xðtÞ ¼ Ae�atuðtÞ; a > 0: (1:5:6)

Find its area, the absolute area, and its energy

assuming A 6¼ 0 is finite.

Solution: The area, the absolute area, and the

energy are, respectively, given by

Area½xðtÞ� ¼
Z1

0

Ae�atdt ¼ �A

a
e�atj10 ¼

A

a
;

Area½ xðtÞj j� ¼ Aj j=a; Ex ¼
Z1

�1

xðtÞj j2dt ¼ Aj j2

Z1

�1

e�atj j2
h i

uðtÞdt ¼ Aj j2
Z1

0

e�2atdt

¼ A

�2a
2� �

e�2at t¼1
t¼0
�� ¼ Aj j2

2a

 !
:

From this it follows that Ex is finite. Clearly, Px ¼ 0

implying it is an energy signal. &

Example 1.5.2 Using a! 0 in the above example

show that xðtÞ is a power signal.

xðtÞ ¼ AuðtÞ;A 6¼ 0 and finite: (1:5:7)

Solution: The energy contained in a step function

Ex is infinite, whereas

Px ¼ lim
T!1

1

T

� � ZT=2

�T=2

xðtÞj j2dt

2
64

3
75

¼ lim
T!1

1

T

� � ZT=2

0

Aj j2dt

2
64

3
75

¼ lim
T!1

Aj j2 T=2

T

� �� �
¼ Aj j2

2

is finite. It follows that xðtÞ in (1.5.7) is a power

signal. In determining whether a signal is a power or

an energy signal, we can check either its energy or

power. If Ex is finite, then Px ¼ 0. If Px is finite,

then Ex is infinite. We do not have to check both of

them. If Ex is infinite, then we need to check the

average power before making the decision on

whether the signal is a power signal or neither a

power nor an energy signal. &

Example 1.5.3 Show that xðtÞ defined below is

neither an energy nor a power signal.

xðtÞ ¼ tuðtÞ (1:5:8)

Solution: The energy and the average power in this

signal are, respectively, given by
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Ex ¼
Z1

0

t2dt ¼ 1;Px ¼ lim
T!1

1

T

ZT=2

0

t2dt

¼ lim
T1!1

1

T

� �
T3

3

� �� �
¼ 1:

Since both the energy and the average power go to

infinity, the result follows. &

Example 1.5.4 Show that xðtÞ ¼ A; a finite constant

is a power signal.

Solution: The average power contained in xðtÞ is
given by

Px ¼ lim
T!1

1

T

ZT=2

�T=2

A2dt

2
64

3
75 ¼ A2¼)E ¼ 1:

It is a power signal. &

Notes: The signals dðtÞ and d0ðtÞ are neither nor

power signals since the squares of these functions

are not defined. There are two classes of power

signals. These are periodic and random signals. Ran-

dom signals require some knowledge of probability

theory, which is beyond the scope here. &

1.5.1 Effects of Operations on Signals

Example 1.5.5 In signal analysis, scaling and shift-

ing of a function are quite common.

a. Show that the functions xðtÞ and xðt� aÞ have
the same areas and energies.

b. Show

AreaðxðatÞÞ ¼ ð1= aj jÞAreaðxðtÞÞ; a 6¼ 0: (1:5:9a)

Z1

�1

xðt� aÞj j2dt ¼
Z1

�1

xðbÞj j2db: (1:5:9b)

Solution: a. Using a change of variable in the inte-

gral b ¼ t� a results in

Z1

�1

xðt� aÞdt ¼
Z1

�1

xðbÞdb:

b. Similarly, for at ¼ b results in

Z1

�1

xðatÞdt ¼ 1

aj j

Z1

�1

xðbÞdb:

Equation (1.5.9b) can be shown in both cases and is

left as an exercise. &

1.5.2 Periodic Functions

A function xðtÞ is periodic or T-periodic if there is a
number T for all time such that

xðtþ TÞ ¼ xðtÞ: (1:5:10)

It is common to use the actual period, such as T as a

subscript on x and write

xTðtÞ ¼ xTðtþ TÞ: (1:5:11)

The smallest positive number T that satisfies

(1.5.11) is called the fundamental period and it

defines the duration of one complete cycle. The reci-

procal of the fundamental period is the fundamental

frequency. That is,

f0 ¼ 1=T Hz and the period T ¼ 1=f0s: (1:5:12)

Clearly, if (1.5.11) is satisfied, then for all integers of

n, xTðtþ nTÞ ¼ xTðtÞ. If there is no T that satisfies

(1.5.10), then xðtÞ is called an aperiodic or a non-

periodic signal. Note that the integral over any one

period of a periodic function is the same. Earlier we

were interested in finding the average power and the

average energy in a signal. With periodic signals, we

can make some simplifications of the integrals.

Consider the normalized integral of a periodic

signal with period T1.

lim
T1!1

1

T1

ZT12

�T1
2

yTðtÞdt¼ lim
N!1

1

2Nþ1

XN
k¼�N

1

T

Zð2kþ1ÞT2

ð2k�1ÞT2

yTðtÞdt¼ lim
N!1

2Nþ1

2Nþ1

1

T

ZT
2

�T
2

yTðtÞdt¼
1

T

ZT
2

�T
2

yTðtÞdt: (1:5:13)
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Therefore, any one period can be used and written in

symbolic short hand notation by

lim
T1!1

1

T1

ZT1=2

�T1=2

yTðtÞdt ¼
1

T

Z
T

yTðtÞdt: (1:5:14)

The terms that are of interest in dealing with peri-

odic functions are the duty cycle of an on–off signal

(i.e., the ratio of on-time to the period), average

value of the signal xave, the average signal power

Px, and the root mean square (rms) value xrms. It is

also called the effective value of the periodic func-

tion yTðtÞ. These values are defined by

xave ¼
1

T

Z
T

xTðtÞdt;

Px ¼
1

T

Z
T

xTj j2dt; xrms ¼
ffiffiffiffiffiffi
Px

p
: (1:5:15)

Since the average power in a periodic signal is finite,

the energy is infinite, it follows that all periodic

signals are power signals. In Chapter 3 periodic

functions will be discussed in detail, where the aver-

age value of a periodic function can never exceed the

rms value will be shown.

Example 1.5.6 Consider the function xTðtÞ with

A;o0; and y0 being real constants given below. a.

Show that it is a periodic function with period

T ¼ 2p=o0ð Þ ¼ ð1=f0Þ.

xTðtÞ ¼ A cosðo0tþ y0Þ: (1:5:16)

b. Find xave;Px; and xrms for the above periodic

signal.

Solution: a.Using tables it can be seen that xTðtÞ is
a periodic function, i.e.,

xTðtþ TÞ ¼ A cosðo0ðtþ ð2p=o0ÞÞ þ y0Þ
¼ A cosðo0tþ y0Þ cosð2pÞ
� A sinðo0tþ y0Þ sinð2pÞ
¼ A cosðo0tþ y0Þ:

b. The average value of a sine or a cosine function is

zero as their positive areas cancel out with their nega-

tive areas. The average power is independent of y0 and

Px ¼
1

T

Z
T

x2TðtÞdt ¼
A2

T

Z
T

cos2ðo0tþ y0Þdt

¼ A2

T

Z
T

1þ cosð2ðo0tþ y0ÞÞ
2

dt ¼ A2

2
: (1:5:17)

The rms value is

xrms ¼ ð Aj j=
ffiffiffi
2
p
Þ: (1:5:18)

It is best to express sinusoidal functions in terms of

Hertz to compute the period. The period is the

inverse of the fundamental frequency. Interestingly,

if the frequency f0 ¼ o0=2p is 1 MHz, then the

signal completes 1 million cycles every second. &

Example 1.5.7 Consider the half-wave sinusoidal

periodic function

x2pðtÞ ¼
sinðtÞ; 0 
 t5p

0; p 
 t 5 2p

�
; x2pðtÞ ¼ x2pðtþ 2pÞ

(1:5:19)

shown in Fig. 1.5.1. Find its duty cycle, average,

average signal power, and its rms value. Show that

average value of the function is less than its rms value.

Solution: Clearly the duty cycle is (1/2), as the sig-

nal is on for half the time. The average, the power,

and the corresponding root mean square values of

x2pðtÞ are

xave ¼
1

2p

Zp

0

x2pðtÞdt ¼
1

2p

Zp

0

sinðtÞdt ¼ 1

p
(1:5:20a)

Px ¼
1

2p

Zp

0

sin2ðtÞdt ¼ 1

2p

Zp

0

1

2
ð1� sinð2tÞÞdt

¼ 1

4p

Zp

0

ð1� sinð2tÞÞdt ¼ 1

4
(1:5:20b)

Fig 1.5.1 Half-rectified sine wave
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xrms ¼
ffiffiffiffiffiffi
Px

p
¼ 1=2: (1:5:20c)

Note that the average value is less than the rms

value, as ð1=pÞ ffi 0:31835ð1=2Þ ¼ 0:5: &

Notes: The average value of a periodic function

does not exceed the rms value, i.e.,xave 
 xrms. The

rms value of the sinusoidal voltage supplied to the

outlet of a US home is 120 V with a frequency of

60 Hz. The maximum value of the voltage at the

outlet is
ffiffiffi
2
p
ð120Þ ¼ 169:71V � 170V. &

1.5.3 Sum of Two Periodic Functions

If xT1
ðtÞ and xT2

ðtÞ are two periodic functions with

periods T1 and T2, respectively, then

xðtÞ ¼ xT1
ðtÞ þ xT2

ðtÞ is periodic with period T if

T ¼ nT1 ¼ mT2 or T1=T2½ � ¼ ½m=n�: (1:5:21)

m and n are some integers and ðT1=T2Þ is a rational

number. The period of xðtÞ is equal to the least

common multiple (LCM) of T1 and T2. The LCM

of two integers, m and n, is the smallest integer

divisible by both m and n. If T1=T2 is an irrational

number, it cannot be written in terms of a ratio of

two integers and xðtÞ is not periodic.

Example 1.5.8 Let xTðtÞ ¼ a1 cosðo0tÞ and

yTðtÞ ¼ b1 sinðo0tÞ, with T ¼ ð2p=o0Þ. Show that

zTðtþ TÞ ¼ zTðtÞ ¼ xTðtÞ þ yTðtÞ.

Solution: Since yTðtþ TÞ ¼ yTðtÞ and xTðtþ TÞ ¼
xTðtÞ implies zTðtÞ is periodic. &

Example 1.5.9 Let xT1
ðtÞ ¼ A1 sinð2pð1=4ÞtÞ and

xT2
ðtÞ ¼ A2 sinð2pð1=6ÞtÞ. Show that the period of

xTðtÞ ¼ xT1
þ xT2

is 12. Sketch the function xTðtÞ.

Solution: The period of xT1
ðtÞ is T1=4 s and the

period of xT2
ðtÞ is T2 ¼ 6 s. The ratio,

ðT1=T2Þ ¼ ð4=6Þ is a rational number, and the

least common multiple of 4 and 6 is 12 and, there-

fore, xTðtÞ=xT1
ðtÞ þ xT2

ðtÞ is periodic with period

T ¼ 12 s. This can be seen from the fact that in 12 s,

xT1
ðtÞwill have three full cycles, xT2

ðtÞwill have two
full cycles, and xTðtÞ will have one full cycle. Figure
1.5.2 gives sketches of xT1

ðtÞ and xT2
ðtÞ. If each of

the signals is shifted by different amounts, say if

yTðtÞ¼A1 sinð2pð1=4Þtþy1ÞþA2 sinð2pð1=6Þtþy2Þ,
then yTðtÞ is still periodic with period T=12 s for

any set of constants A1; A2 and angles y1 and y2.
This can be generalized and state that for any

constants X½0�; h½k�, and y½k�, the function

xTðtÞ ¼ X½0� þ
X1
k¼1

h½k� cosðko0tþ y½k�Þ (1:5:22)

is periodic with period T ¼ o0=2p. Noting that

(o0T ¼ 2p), we have

cosðko0ðtþTÞþ y½k�Þ ¼ cosðko0tþ y½k�Þcosðko0TÞ
� sinðko0tþ y½k�Þ sinðko0TÞ ¼ cosðko0tþ y½k�Þ:

The term for k ¼ 1 is called the fundamental and the

kth term is called the kth harmonic. The dc term is

X½0�. The above can be generalized and state that

the following function is periodic with period

T ¼ 2p=o0 for any constants X½0�;A½k�, and B½k�:

xTðtÞ ¼ X½0� þ
X1
k¼1

A½k� cosðko0tÞ

þ
X1
k¼1

B½k� sinðko0tÞ: (1:5:23) &

Example 1.5.10 Let xT1
ðtÞ ¼ cosð4tÞ, xT2

ðtÞ ¼
cosð2ptÞ, and xðtÞ ¼ xT1

ðtÞ þ xT2
ðtÞ. Show that

xðtÞ is not a periodic function.

Solution: The period of xT 1
ðtÞ ¼ cosð2pð2=pÞtÞ is

T1 ¼ ðp=2Þ and the period of xT 2
ðtÞ is T2 ¼ 1: The

ratio ðT1=T2Þ ¼ðp=2Þ is an irrational number and

xðtÞ is not periodic. &

Fig. 1.5.2
xT1
ðtÞ ¼ sin ð2p=4Þtð Þ;

xT2
ðtÞ ¼ sin ð2p=6Þtð Þ
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For functions such as the one given in the above

example, there is no repetition. These types of com-

bination of periodic functions are referred as quasi

periodic or almost periodic. For a study of almost

periodic functions, see Chuanyi, (2003).

Example 1.5.11 Compute the average power in xðtÞ
given below for the two cases:

xðtÞ ¼ C1 cosðo1tþ y1Þ þ C2 cosðo2tþ y2Þ

a. o1 ¼ no0 6¼ o2 ¼ ko0, where n and k are

integers

b. o1 ¼ o2 ¼ o0. Assume C1;C2; y1; and y2 are
arbitrary constants.

Solution: Without loosing any generality, assume

T ¼ ð2p=o0Þ.

xðtþ 2p
o0
Þ ¼ C1 cosðno0ðtþ

2p
o0
Þ þ y1Þ

þ C2 cosðko0ðtþ
2p
o0
Þ þ y2Þ

¼ C1 cosðno0tþ y1Þ þ C2 cosðko0tþ y2Þ:

This indicates that xðtÞ ¼ xTðtÞ is periodic for both
cases with period T ¼ ðo0=2pÞ.

a: P ¼ 1

T0

Z
T0

xTðtÞj j2dt ¼ 1

T0

Z
T0

½C1 cosðo1tþ y1Þ

þC2 cosðo2tþ y2Þ�2dt

¼ 1

2T0

Z
T0

½C2
1 þ C2

2 þ C2
1 cosð2ðo1tþ y1ÞÞ

þC2
2 cosð2ðo2tþ y2Þ�dt

þ 1

T0
C1C2

Z
T0

½cosððo1 þ o2Þtþ ðy1 þ y2ÞÞ

þ cosððo2 � o1Þtþ ðy2 � y1ÞÞ�dt ¼
1

2
½C2

1 þ C2
2�

(1:5:24)

b. In the case of o2 ¼ o1, the average power is

P ¼ 1

2
½C2

1 þ C2
2� þ C1C2 cosðy2 � y1Þ: (1:5:25)

In the above equation C1C2 cosðy2 � y1Þ is equal to
zero only when ðy2 � y1Þ ¼ �p=2 and

xTðtÞ ¼ C1 cosðo0tþ y1Þ þC2 cosðo0tþ y1 � ðp=2ÞÞ
¼ C1 cosðo0tþ y1Þ �C2 sinðo0tþ y1Þ: &

Notes: Consider

xðtÞ ¼ C cosðo0tþ yÞ ¼ C cosðyÞ cosðo0tÞ
� C sinðyÞ sinðo0tÞ ¼ a cosðo0tÞ þ b sinðo0tÞ;

a ¼ C cosðyÞ; b ¼ �C sinðyÞ; C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
;

y ¼ tan�1ð�b=aÞ: (1:5:26)

One should be careful in computing y as

tan�1ð�b=aÞ 6¼ tan�1ðb=� aÞ;
tan�1ð�b=� aÞ 6¼ tan�1ðb=aÞ: &

Exponentially varying sinusoids:An example of such

a function is

xðtÞ ¼ Ae�at cosðo0tþ yÞ: (1:5:27)

It becomes unbounded for at50. Our interest is for

only positive t and such functions are referred as

causal signals. If xðtÞ is defined for all t, then its causal
part is yðtÞ ¼ xðtÞuðtÞ. In the case of xðtÞ in (1.5.27),

yðtÞ ¼ xðtÞuðtÞ ¼ Ae�at cosðo0tþ yÞuðtÞ: (1:5:28)

If a > 0 ða50Þ, xðtÞ in (1.5.28) is an exponentially

decaying (increasing) sinusoidal function. These

functions can be sketched using the envelopes

Ae�at and � Ae�at as constraints and the function

cosðo0tþ yÞ between the envelopes.

Notes: Even for temporal signals, the analysis and

design of noncausal systems is important. For exam-

ple, the analysis of prerecorded data is applicable.&

1.6 Complex Numbers, Periodic, and
Symmetric Periodic Functions

A complex number ci ¼ ai þ jbi, where ai ¼ ReðciÞ
is the real part and bi ¼ ImðciÞ is the imaginary

part. Similarly if xðtÞ is a complex function, we can

write it as

xðtÞ ¼ ReðxðtÞÞ þ jImðxðtÞÞ: (1:6:1)
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1.6.1 Complex Numbers

A complex number can be written in terms of its real

and imaginary parts or in terms of its magnitude

and phase. Consider the complex number

ci ¼ ai þ jbi ¼ riðcos yi þ j sin yiÞ ¼ rie
jyi ; ri

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ b2i

q
; yi ¼ arctanðciÞ ¼ tan�1ðbi=aiÞ:

(1:6:2)

The representation ci ¼ rie
jyi is referred to as the

polar form of the complex number, where ri and yi
are, respectively, called the amplitude (or the mod-

ulus) and the phase angle associated with the com-

plex number. One needs to be careful in using the

formula yi ¼ arctanðbi=aiÞ, especially when the real

part of ai is negative.

Example 1.6.1 Sketch the following complex num-

bers as vectors on a complex plane.

c1 ¼ 1þ j1; c2 ¼ �1þ j1; c3 ¼ �1� j1; c4 ¼ 1� j1:

Solution: The complex numbers c1; c2; c3; and c4
can be represented on the complex plane as vectors,

where the length of the vector is equal to ri, and are

illustrated in Fig. 1.6.1. They are located in the first,

second, third, and fourth quadrants, respectively.Also,

cij j ¼ ri ¼ 1=
ffiffiffi
2
p

; i ¼ 1; 2; 3; 4; y1 ¼
p
4
¼ 45�;

y2 ¼
3p
4
¼ 135�; y3 ¼

5p
4
¼ 225�; y4 ¼

7p
4
¼ 315�

Noting that if we use the arctangent function, i.e.,

yi ¼ arctanðbi=aiÞ, we have y1 ¼ y3 and y2 ¼ y4.
Note the ambiguity in taking the ratio of positive

(negative)/negative (positive) quantities. This ambi-

guity can be reconciled, for example, by noting that

when the vector lies in the second quadrant, the

angle must satisfy 90� 
 y 
 180�. The correct

angle is

180� � y2 ¼ 180� � arctanðb2=a2Þ
¼ 180� 45� ¼ 135�: &

A general method for obtaining the phase angle of a

complex number c ¼ aþ jb is

(a) (b)

(c) (d)

Fig. 1.6.1 (a) c1 ¼ 1þ j1; ðbÞ c2 ¼ �1þ j1; ðcÞ c3 ¼ �1� j1; ðdÞ c4 ¼ 1� j1

1.6 Complex Numbers, Periodic, and Symmetric Periodic Functions 25



y ¼
arctanðb=aÞ if a � 0

�180þ arctanðb=aÞ if a50

�
(1:6:3)

When a50, select the appropriate one so that

yj j 
 1800 or p radians. In terms of power series,

in radians (1 rad ¼ p=180�),

arctanðyÞ ¼ y� y3

3 þ
y5

5 �
y7

7 þ � � � ; yj j51

arctanðyÞ ¼�p
2� 1

yþ 1
3y2
� 1

5y5
þ �� � ;

þ; y� 1 :

�; y 
 � 1

�

(1:6:4)

Convergence of the series is fast for most values of y

and very few terms are needed to compute the arc-

tangent function. The worst case is when y ¼ �1.

The conjugate, polar representation, sums, differ-

ences, multiplications, and divisions of complex

numbers are given below, where we assume

ci ¼ ai þ jbi.

c1 ¼ ða1 � jb1Þ; ci ¼ rie
jyi ; c1 � c2

¼ ða1 þ a2Þ � jðb1 þ b2Þ (1:6:5a)

c1c2 ¼ ða1 þ jb1Þða2 þ jb2Þ ¼ ða1a2 � b1b2Þ
þ jða1b2 þ b1a2Þ ¼ r1r2e

jðy1þy2Þ (1:6:5b)

c1
c2
¼ a1 þ jb1

a2 þ jb2
¼ a1 þ jb1

a2 þ jb2

a2 � jb2
a2 � jb2

¼ ða1a2 þ b1b2Þ
a22 þ b22

� j
ða1b2 � b1a2Þ

a22 þ b22
; c2 6¼ 0

ðc1=c2Þ ¼ ðr1=r2Þejðy1�y2Þ: (1:6:5c)

¼) c1
c1
¼ ða

2
1 � b21Þ
ða21 þ b21Þ

þ j
2a1b1

a21 þ b21
;

c1j j
c1
�� �� ¼ r1j j

r1j j
¼ 1; y ¼ 2y1 ¼ 2 arctanðb1=a1Þ: (1:6:6)

Consider the polar form of the complex number c

and its natural log:

c ¼ rejy; lnðcÞ ¼ lnðrejyÞ ¼ lnðrÞ þ jy

r ¼ cj j; y ¼ ImðlnðcÞÞ
(1:6:7)

MATLAB can operate in terms of real or complex

numbers. MATLAB commands for computing the

amplitude and phase are

r ¼ absðcÞ ;y ¼ angleðcÞ ¼ atan2ðimagðcÞ; realðcÞÞ:
(1:6:8)

Notes: MATLAB atanðxÞ function computes the

arctangent or inverse tangent of x. The function

returns an angle in radians between �ðp=2Þ and
ðp=2Þ. MATLAB atan(x, y) computes the arctan-

gent of ðy=xÞ. It returns an angle in radians between

�p and p and the signs on both x and y plays a role.

See Appendix B for MATLAB. &

In the last section we considered a sum of two

sinusoids. Euler’s formula can be used to express

sinusoids in terms of complex exponentials and

vice versa. These are

cosðyÞ ¼ ½ejy þ e�jy�=2; sinðyÞ ¼ ½ejy � e�jy�=2j:
(1:6:9a)

ejy ¼ cosðyÞ þ j sinðyÞ; e�jy ¼ cosðyÞ � j sinðyÞ:
(1:6:9b)

Notes: MATLAB atanðxÞ function computes the

arctangent or inverse tangent of x. The function

returns an angle in radians between

�ðp=2Þ and ðp=2Þ. MATLAB atan(x, y) computes

the arctangent of ðy=xÞ. It returns an angle in

radians between �p and p and the signs on both x

and y plays a role. See Appendix B forMATLAB.&

Example 1.6.2 Express the following functions in

terms of single sinusoids. See (1.5.26).

a: xðtÞ ¼ cosðo0tÞ �
ffiffiffi
2
p

sinðo0tÞ; b: xðtÞ
¼ � cosðo0tÞ þ sinðo0tÞ: (1:6:10)

Solution: a: In this case;we have a ¼ 1; b ¼ �
ffiffiffi
2
p

.

From (1.6.10), we have

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð

ffiffiffi
2
p
Þ2

q
¼

ffiffiffi
3
p

; y ¼ tan�1ð
ffiffiffi
2
p

=1Þ ffi 54:73�;

xðtÞ ¼
ffiffiffi
3
p

cosðo0tþ 54:73�Þ
¼

ffiffiffi
3
p

cosð54:73�Þ cosðo0tÞ
�

ffiffiffi
3
p

sinð54:73�Þ sinðo0tÞ:

b. In this case a ¼ �1; b ¼ 1. From (1.6.10), it fol-

lows that
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C ¼
ffiffiffi
2
p

; y ¼ tan�1 �1=� 1½ � ¼ �135� ! xðtÞ
¼

ffiffiffi
2
p

cosðo0t� 135�Þ:

DeMoivre’s theorem defines the power of a complex

number c. For p a real number,

ðcÞp ¼ ðrejyÞp ¼ ½rðcos yþ j sin yÞ�p

¼ rp½cosðpyÞ þ j sinðpyÞ�:ðcÞ1=n

¼ r1=n cos
yþ 2 kp

n
þ j sin

yþ 2 kp
n

� �
;

k ¼ 0; 1; 2; . . . ; n� 1; n ¼ an integer:

Approximation of the amplitude and the phase angle

of a complex number: The magnitude of a complex

number c ¼ aþ jb is cj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2Þ

p
¼ r. Repre-

senting c in terms of ða; bÞ is the rectangular coordi-
nate representation and ðr; yÞ is the polar coordinate
representation with y ¼ arctanðb=aÞ. Finding the

square root of a number is not as simple as a multi-

plication. To save the computational time, the mag-

nitude cj j is usually approximated. For a simple

algorithm see Problem 1.6.1.

Example 1.6.3Consider the complex function below

with the real variable o. a . Derive the rectangular

and polar form expressions for XðjoÞ:

XðjoÞ ¼ a1 � jb1o
a2 þ jb2o

; ai > 0; bi > 0; i ¼ 1; 2: (1:6:12)

b. Simplify the expressions when a1 ¼ a2 ¼ a and

b1 ¼ b2 ¼ b:

Solution: a.

XðjoÞ ¼ ða1 � jb1oÞ
ða2 þ jb2oÞ

ða2 � jb2oÞ
ða2 þ jb2Þ

¼ ða1a2 � b1b2o2Þ
ða22 þ b22o

2Þ
� j
ða1b2 þ a2b1Þo
ða22 þ b22o

2Þ
:

b. In this part

XðjoÞj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ ðb1oÞ

2

a22 þ ðb2oÞ
2

s
; yðoÞ

¼ � arctan
ða1b2 þ a2b1Þo
a1a2 � b1b2o2

� �
¼) XðjoÞj ja1¼a2;b1¼b2

¼ XðjoÞj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2o2

a2 þ b2o2

s

¼ 1; yðoÞ ¼ �2 arctanðbo=aÞ: &

In Chapter 7, systematic methods for sketching the

magnitude and phase representations of complex

rational functions of o will be considered.

MATLAB plots will be considered in Appendix B.

1.6.2 Complex Periodic Functions

For A;o0; and y0 constants, Euler’s identity is

xðtÞ¼Aejðo0tþy0Þ ¼Acosðo0tþy0Þþ jAsinðo0tþy0Þ:
(1:6:13)

Note that xðtÞ ¼ xðtþ TÞ ¼ xTðtÞ with the period

T ¼ 2p=o0 and e�j2p ¼ 1.

xTðtþ ð2p=o0ÞÞ ¼ Ae�ðjo0ðtþð2p=TÞþy0Þ

¼ Ae�jðo0tþy0Þe�jo0ð2p=TÞ ¼ Ae�jðo0tþy0Þ (1:6:14)

In Chapter 3, periodic functions xTðtÞ will be

approximatedby the complexFourier series expansion:

xTðtÞ ¼
X1

k¼�1
Xs½k�e�jno0t: (1:6:15)

1.6.3 Functions of Periodic Functions

If a function xTðtÞ is periodic, then

gðxTðtþ TÞÞ ¼ gT1
ðxTðtÞÞ;T1 
 T: (1:6:16)

Case a: a=1; b=�1;
[theta, C] = cart2pol(a, �b);
theta_deg = (180/pi)*theta;

C, theta_deg! C ¼ 1:7321; y ¼ 54:73560

Case b: a=�1; b=�1;
[theta, C] = cart2pol(a,-b);

theta_deg = (180/pi)*theta;

C, theta_deg!C ¼ 1:4142; y ¼ �135�.

1.6 Complex Numbers, Periodic, and Symmetric Periodic Functions 27



That is, gðtÞ is also periodic with the same period T

or smaller. One problem of interest is given the

period of xTðtÞ the period of the function gðtÞ is to
be computed.

Example 1.6.4 Find the fundamental periods of the

following periodic functions:

a: g1ðtÞ ¼ x1ðtÞj j; x1ðtÞ ¼ cosðo0tÞ;
b: g2ðtÞ ¼ ejx2ðtÞ; x2ðtÞ ¼ sinðo0tÞ: (1:6:17)

Solution: a. Noting the absolute value cosðo0tÞj j,
the fundamental period of g1ðtÞ is T=2 ¼ ðp=o0Þ.

b. In this case, g2ðtÞ is periodic with the period

T ¼ ð2p=o0Þ since

g2ðtþ TÞ ¼ ej sinðo0ðtþTÞÞ ¼ ej sinðo0tÞ: (1:6:18) &

1.6.4 Periodic Functions with Additional
Symmetries

Even and odd functions apply for both energy and

periodic signals. cosðo0tÞ and sinðo0tÞ are periodic
functions with period ð2p=o0Þ and have even and

odd symmetries, respectively. Interestingly sine and

cosine functions have four distinct parts in one per-

iod. These are for 0 
 t5T=4;T=4 
 t5T=2;

T=2 
 t53T=4; and 3T=4 
 t5T. Having infor-

mation for one-fourth of the period of a sine wave

provides the information about the other three

parts. This gives a clue on the sizes of the transmit-

ting and receiving antennas to transmit and receive

the sine wave, which is discussed in Chapter 10.

Half-wave symmetric functions: A periodic func-

tion xTðtÞ is half-wave symmetric if

xTðtÞ ¼ �xTðt� ðT=2ÞÞ: (1:6:19)

Example 1.6.5 Show that if a function is half-wave

symmetric, then

xTðtÞ ¼ �xTðtþ ðT=2ÞÞ: (1:6:20)

Solution: Since xTðtÞ is periodic with period T, we

can write

xTðt�
T

2
Þ ¼ xTðtþ T� T

2
Þ ¼ xTðtþ

T

2
Þ: &

Example 1.6.6 Show that the function xTðtÞ is a

half-wave symmetric periodic function.

xTðtÞ ¼
X1
k¼1
fa½2 k� 1� cosð2 k� 1Þo0t

þ b½2 k� 1� sinð2 k� 1Þo0tg: (1:6:21)

Solution: Noting thatxTðtÞ is an algebraic sumof sine

and cosine termswith the sameperiodT ¼ 2p=o0, it is

a periodic function. Furthermore, sinceo0ðT=2Þ ¼ p
and ð2 k� 1Þ is an odd integer, we can use

cos½2 k� 1�p ¼ �1 and sin½2 k� 1�p ¼ 0. Using

these and the following, we have

xðtþ ðT=2ÞÞ ¼ �xðtÞ.

cosð½2 k� 1�o0ðtþ ðT=2ÞÞÞ
¼ cos½2 k� 1�o0t cosð½2 k� 1�o0ðT=2ÞÞ
� sin½2 k� 1�o0t sinð½2 k� 1�o0ðT=2ÞÞ

sinð½2 k� 1�o0ðtþ ðT=2ÞÞ
¼ sin½2 k� 1�o0t cosð½2 k� 1�o0ðT=2ÞÞ
þ cos½2 k� 1�o0t sinð½2 k� 1�o0ðT=2ÞÞ &

Quarter-wave symmetric functions: If a periodic

function xTðtÞ has half-wave symmetry and, in addi-

tion, is either even or odd function, then it is said to

have even or odd quarter-wave symmetry. That is,

xTðtÞ ¼
xTð�tÞ ¼ xTðtÞ
xTðtÞ ¼ �xTðtþ T

2Þ

�
;

xTðtþTÞ ¼ xTðtÞ : evenquarter � wave symmetry:

(1:6:22)

xTðtÞ ¼
xTð�tÞ ¼ �xTðtÞ
xTðtÞ ¼ �xTðtþ T

2Þ

�
;

xTðtþ TÞ ¼ xTðtÞ : oddquarter � wave symmetry

(1:6:23)

Example 1.6.7 Show that the function below xTðtÞ
has the even quarter-wave symmetry.

xTðtÞ ¼
X1
k¼1

a½2 k� 1� cosðð2 k� 1Þo0tÞ: (1:6:24a)

Solution: Since xTðtÞ is a sum of cosine terms with a

zero phase, it is an even symmetric function. It has

even quarter-wave symmetry since
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cosð½2 k� 1�o0ðtþ
T

2
ÞÞ

¼ cosð½2 k� 1�o0tÞ cosð½2 k� 1�o0
T

2
Þ

� sinð½2 k� 1�o0tÞ sinð½2 k� 1�o0
T

2
Þ

¼ �cosð½2 k� 1�o0tÞ (1:6:24b) &

In a similar manner, it can be shown that the func-

tion below has odd quarter-wave symmetry. This is

left as an exercise.

yTðtÞ ¼
X1
k¼1

b½2 k� 1� sinðð2 k� 1Þo0tÞ: (1:6:25)

As examples, Fig. 1.6.2a and b has even and odd

quarter-wave symmetries, respectively.

Hidden symmetries: The symmetries can be hidden

within a constant as given by

xTðtÞ ¼ Aþ A sinðo0tÞ: (1:6:26)

It is neither even nor an odd function. On the other

hand ðxTðtÞ � AÞ is an odd function.

1.7 Examples of Probability Density
Functions and their Moments

In this section, a brief introduction to the probabil-

ity density function (PDF) pðxÞ of a random vari-

able xðtÞ, such as the amplitude of a noise signal, is

presented. Noise, by its nature, is unpredictable. It

is assumed that the amplitude can take any value in

a continuous range �15a5x5b51. The level

of the noise amplitude can only be described in

terms of averages. Since noise is ever present,

probability of existence of the noise is always

positive. That is pðxÞ � 0. Furthermore, the exis-

tence of noise is certain and therefore the integral

of the probability density function must be 1. In

summary,

pðxÞ � 0 and

Z1

�1

pðxÞdt ¼ 1: (1:7:1)

For a good discussion on probability theory, see

Peebles (2001). Any nonnegative function with

area 1 can serve as a probability density function.

The nth moment of pðxÞ is defined as

mn ¼
Z1

�1

xnpðxÞdx: (1:7:2)

The zero and the first moments are, respectively,

defined by

m0¼
Z1

�1

pðxÞdx ¼ 1 and m1¼
Z1

�1

xpðxÞdx: (1:7:3)

The moments about the mean are called the central

moments and are defined by

mn ¼
Z1

�1

ðx�m1ÞnpðxÞdx: (1:7:4a)

¼)m2ðxÞ ¼ Variance of xðtÞ ¼ s2x

¼
Z1

�1

ðx�m1Þ2pðxÞdx: (1:7:4b)

The positive square root of the variance sx ¼ þ
ffiffiffiffiffi
s2x

p
is called the standard deviation. It gives a measure of

the spread of the probability density function. Now

xT (t)

(a) 

xT (t)

(b) 

Fig. 1.6.2 (a) Even quarter-
wave symmetric function
and (b) odd quarter-wave
symmetric function
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m2 ¼
Z1

�1

ðx�m0Þ2pðxÞdx ¼
Z1

�1

x2pðxÞdx� 2m0

Z1

�1

xpðxÞdxþm2
1

Z1

�1

pðxÞdx ¼ m2 � 2m2
1 þm2

1

¼ m2 �m2
1: (1:7:5)

s2x ¼ m2 �m2
1: (1:7:6)

Mean and the variance are basic statistical values in

the study of the probability density functions. In

addition, sx ¼ þ
ffiffiffiffiffi
s2x

p
measures its effective width

or duration.

Example 1.7.1 Determine m0;m1; and s2x for the

function in Fig. 1.7.1.

pðxÞ ¼ 1

b� a
P

x� ððbþ aÞ=2Þ
b� a

� �
ðuniform PDFÞ:

(1:7:7)

Solution: By inspection, we have the area under the

function is 1. That is, m0 ¼ 1: Also

m1 ¼
Z1

�1

xpðxÞdx ¼
Zb

a

x

b� a
dx

¼ bþ a

2
ðaverage value of xÞ: (1:7:8)

m2 ¼ Area t2xðtÞ

 �

¼
Zb

a

t2

b� a
dt

¼ 1

3

b3 � a3

b� a
¼ 1

3
ðb2 þ abþ a2Þ: (1:7:9)

Variance :s2x ¼ m2 �m2
1 ¼ ð1=3Þ½b2 þ abþ a2�

� ððaþ bÞ=2Þ2 ¼ ðb� aÞ2

12
: (1:7:10)

Standard deviation¼sx¼ðb�aÞ=2
ffiffiffi
3
p

: (1:7:11) &

The function in Fig. 1.7.1 is the uniform density

function, as the variable x is equally likely to take

any value in the range ½a; b�. It will be used in Chap-

ter 10 to describe the error caused by quantization

of samples.

Example 1.7.2 Consider the Gaussian probability

density function shown in Fig. 1.7.2 and it is given

in (1.7.12). Determine m0;m1; and s2x of this PDF.

pðxÞ ¼ 1ffiffiffiffiffiffi
2p
p
ðsxÞ

e�ðx�axÞ
2=s2x ðGaussian PDFÞ:

(1:7:12)

Solution: From tables,

m0 ¼
1ffiffiffiffiffiffi
2p
p

sx

Z1

�1

e�ðt�axÞ
2=s2xdt¼ 1ffiffiffiffiffiffi

2p
p

Z1

�1

e�y
2=2dy¼ 1:

(1:7:13)

That is, the area under the Gaussian function is

equal to 1. The mean value is

m1 ¼
Z1

�1

xpðxÞdt ¼ 1ffiffiffiffiffiffi
2p
p

sx

Z1

�1

xe�ðx�axÞ
2=2s2xdx:

(1:7:14)

Using the changeof variabley ¼ ðx� axÞ=sx,wehave

p(x)

x

Fig. 1.7.1 Uniform density function

p(x)

x

Fig. 1.7.2 Gaussian density function
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m1¼
1ffiffiffiffiffiffi
2p
p

Z1

�1

ðsxyþaxÞe�y
2=2dy¼ axffiffiffiffiffiffi

2p
p

Z1

�1

e�y
2=2dy

þ sxffiffiffiffiffiffi
2p
p

Z1

�1

ye�y
2=2dy¼ax: (1:7:15)

These follow since the second one above on the right

is an integral of an odd function of y over a symme-

trical interval and it is zero. The first integral in

(1.7.15) reduces to (1.7.13). To derive the variance

s2x, start with

m0 ¼
1ffiffiffiffiffiffi
2p
p

sx

Z1

�1

e�ðx�axÞ
2=2s2xdt ¼ 1 or

Z1

�1

e�ðx�axÞ
2=s2xdt ¼

ffiffiffiffiffiffi
2p
p

sx:

Taking the derivative with respect to sx results in

ffiffiffiffiffiffi
2p
p

¼
Z1

�1

de�ðx�axÞ
2=2s2x

dsx
dx

¼
Z1

�1

ðx� axÞ2

s3x
e�ðt�axÞ

2=2s2xdx:

¼)s2x ¼
1ffiffiffiffiffiffi
2p
p

sx

Z1

�1

ðx� axÞ2eðx�axÞ
2=2s2xdx: (1:7:16)

Gaussian PDF (see Peebles (2001)) is one of the

most important PDF, as most of the noise processes

observed in practice are Gaussian. &

Example 1.7.3 Find m0 and s2x for the Laplace PDF

defined by

pðxÞ ¼ ðb=2Þe�b xj j; b > 0;�15x51: (1:7:17)

Solution: From integral tables, the mean and the

variance are

m0 ¼
Z1

�1

b

2
e�b xj jdx ¼ b

Z1

0

e�bxdx ¼ e�bx 1x¼0
�� ¼ 1;

s2x ¼
Z1

�1

b

2
x2e� xj j=bdx ¼ 2

b2
: (1:7:18) &

Notes: Noise is random and unpredictable.When it

is added to the information bearing signal, the mes-

sage signal is masked or even obliterated. Noise

cannot be eliminated. A measure of corruption of

the signal by noise is an important measure. It is the

ratio of the average signal power to variance of the

noise. It is

Signal�to�noise ratio ¼ SNR

¼ Averagemessage signal power

Variance of the noise;s2x
: &

1.8 Generation of Periodic Functions
from Aperiodic Functions

Now we like to construct a periodic function from

an aperiodic function, say jðtÞ.

yTðtÞ ¼
X1

k¼�1
jðtþ kTÞ: (1:8:1)

jðtÞ is the principal segment of the periodic

extension. Clearly, yTðtÞ is a periodic function with

period T s and is the periodic extension of jðtÞ. If
jðtÞ is not time limited to a T s interval (for exam-

ple, jðtÞ is nonzero for t > T and t 5 0), then

jðtÞ andjðtþ TÞ terms will overlap and jðtÞ can-
not be extracted from yTðtÞ.

Example 1.8.1 Using the principal segment

jðtÞ ¼ L½t=t�, sketch the periodic extensions for

the following cases. a: T � 2t; b: T52t.

Solution: The periodic extension of the triangular

function is

yTðtÞ ¼
X1

k¼�1
L½tþ kT

t
�: (1:8:2)

The function jðtÞ and its periodic extensions are

sketched in Fig. 1.8.1a, b, and c. For simplicity, in

the sketch for part a, T ¼ 2t is assumed.

a.The functionsL½ðtþ kTÞ=t� andL½ðtþ ðkþ 1Þ
TÞ=t� do not overlap and the function jðtÞ can be

extracted

yTðtÞ k¼0 ¼j L t=t½ � ¼ jðtÞ; tj j 
 t: (1:8:3)
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b. For T52t, L ðtþ kTÞ=t½ � and

L ðtþ ðkþ 1ÞTÞ=t½ � overlap (See Fig. 1.8.1b).

Recovery of fðtÞ from yTðtÞ: is not possible.
It is interesting to note the area of one period of

the periodic extension of jðtÞ equals to the area of

the function jðtÞ. This is a consistency check. See

Ambardar (1995).

Example 1.8.2 Show that the area under one period

of the periodic extension of jðtÞ ¼ e�t=tuðtÞ is equal
to the area under jðtÞ.

Solution: The periodic extension of jðtÞ with a per-

iod of T can be written as

yTðtÞ¼½e�ðt=tÞuðtÞþe�ðtþTÞ=tuðtþTÞ
þe�ðtþ2TÞ=tuðtþ2TÞþ�� ��þ ½e�ðt�TÞ=tuðt�TÞ
þe�ðt�2TÞuðt�2TÞþ . . .� (1:8:4)

x1ðtÞ ¼ e�t=t½uðtÞ þ e�T=tuðtþ tÞ
þ e�2T=tuðtþ 2tÞ þ . . .�; t > 0: (1:8:5)

ZT

0

x1ðtÞdt¼ ½1þ e�T=tþ e�2T=tþ . . .�

ZT

0

e�t=tdt¼ 1

1� e�T=t

ZT

0

e�t=tdt¼�1

t
e�T=t� 1

1� e�T=t

� �
¼ 1

t
:

Z1

0

jðtÞdt ¼
Z1

0

e�t=tuðtÞdt ¼ 1

t
: (1:8:6) &

1.9 Decibel

Decibel or dB is a logarithmic unit named after

Alexander Graham Bell that is used to express

power ratios. Given two powers P 1 andP 2 and

their ratio ðP 2=P 1Þ, then

(a)

yT (t),T = 2τ

yT (t),T < 2τ

(b)

(c)

Fig. 1.8.1 (a) L t
t


 �
, (b) yTðtÞ; T ¼ 2t, (c) yTðtÞ;T52t
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Power ratio in dB ¼ 10 log10 P2=P1½ �: (1:9:1)

For computing the dB values from the amplitudes

using MATLAB, see Section B.12 in Appendix B.

The unit of bel is too large. For example, a human

ear can detect audio power level differences of one-

tenth of a bel or 1 dB. The loudness of a few typical

activities are shown in table 1.9.1. Also, 1 dB is

approximately equal to the attenuation of one mile

of a standard telephone cable. Power ratio is

expressed by

Power ratio ¼ ðP2=P1Þ ¼ 10dB=10: (1:9:2)

Even though decibels were originally meant to be

used with respect to power ratios, they can be used

to express absolute values of power interpreted as a

ratio of power P2 to P 1 ¼ 1 Watt, referred to as 1

dBW. That is, 1 Watt is a reference and

10 log10ðP2=P1Þ ¼ 10 log10ðP2 inW=1WattÞ dBW:

(1:9:3)

Positive decibels imply A ¼ P 2=P 1 > 1, zero deci-

bels implyA ¼ 1, and negative decibels implyA51.

Decibels are used to express gains or losses in a

system; gain is the output divided by input and

loss is the input divided output. Instead of using 1

Watt as a reference, 1 mW can be used as a reference

to compare small signal power levels, such as

powers of radar echoes and the unit is dBm. Now

P2=P1 P1¼1mWj ¼ 10 log10ðP2 inWatts=1mWÞ dBm:

(1:9:4)

As examples, a power of 1 Watt is 0 dBW, a power

of 3 Watt is 4.77 dBW, and a power of 1 kW is 30

dBW. A power of 1 kilowatt is 0 dBm and a power

of 10�10 mW is

10 log10ð10�10 mW=1mWÞ ¼ �100 dBm:

The logarithmic decibel function provides a greater

resolution when the power ratio is small, indicating

a goodway to recognize very small differences in the

power levels (Table 1.9.2).

The smaller the power ratio, that is less than 1, the

larger the number of negative dBs required. As the

ratio approaches zero, the negative dB increases with-

out limit. Interestingly when you round of to the

nearest whole decibel, the error in the power ratio is

at most only 1 part in 7. The dB provides greater

resolution when the power ratio is small. Small differ-

ences in the power levels are important in spectral

analysis, analog and digital filter designs, control

system designs, communication system designs, etc.

A power ratio of 2 to 1 (1 to 2) is 3 dB (�3 dB).

Bandwidths of 3 dB play amajor role in filter designs.

A ratio of 108 to is only 80 dB and 10�8 is �80 dB.
Power levels in radars have a large range. Dealing

with large number of digits can be troublesome, as

dropping a zero at the end of a large number makes

the radar calculations wrong. The dB scale makes the

numbers compressed.Thepower levels associatedwith

seismic signals are low.Onenice thingaboutdB scale is

that wewill be dealingwith additions and subtractions

rather than multiplications and divisions. Gain (or

loss) is the term used for an increase (or decrease) in

power level. For example, for an amplifier,

Gain

¼Output signal power coming out of the amplifier

Input signal power going into the amplifier
:

(1:9:5)

If the output power is 100 times the input power,

then

Gain dB ¼ 10 logð100Þ ¼ 20 dB: (1:9:6)

If we use a wave guide or a cable, we have a loss in

the power. That is,

Loss ¼ Input power to the device

Output power of the device
: (1:9:7)

Table 1.9.1 Sound Power (loudness) Comparison

Threshold of audibility 0 dB

Whisper 15 dB

Average home 45 dB

Riveting machine (30’ away) 100 dB

Threshold of hearing 120 dB

Jet plane 140 dB

Table 1.9.2 Power ratios and their corresponding values
in dB

dB 0 1 2 3 4 5 6 7 8 9

Power ratios 1 1.26 1.6 2 2.5 3.2 4 5 6.3 8
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As an example, let an amplifier be connected to an

antenna by a waveguide and the guide absorbs 20%

of the power. If the ratio of the input power to the

output power is 10 to 8, i.e., 1.25 indicating a loss of:

Loss in dB ¼ 10 logð1:25Þ ffi :9 dB
ðor; gainisð � :9Þ dBÞ:: (1:9:8)

Since logðABÞ ¼ logðAÞ þ logðBÞ, we can simply

find the power gain (or loss) in dB by adding or

subtracting the numbers in dB. This is illustrated in

the example below.

Example 1.9.1 Consider that the amplifier consid-

ered above is connected to an antenna by a wave-

guide. See Fig. 1.9.1. Assume the amplifier gain is

Gamplifier=100 and the waveguide absorbs about

20% of the power. Determine the total gain.

Solution: The total gain from the input to the

amplifier to the antenna is

GTotal ¼ Gamplifier=Gwave guide ¼ 100=1:25 ¼ 80:

(1:9:9)

We can determine the gain or loss by simply sub-

tracting gain from the loss. That is,

ðGTotalÞdB ¼ ðGamplifierÞdB � ðGwave guideÞdB
ffi 20� :97 ¼ 19:03 dB: (1:9:10)

¼) Power ratio ¼ Pr ¼ 10ð19:03=10Þ ’ 80: &

Systems are designed part by part, arranged in a

cascade, generally drawn symbolically by a block

diagram shown in Fig. 1.9.2. We assume that the

system identified by block k is not loading the system

identified by block (k�1). That is, there is no loading
effect. Corresponding to this we can compute the

power gain or loss by adding or subtracting the

appropriate quantities. It can be obtained by finding

the transfer functions of each block and determine

the total transfer function. Since the transfer func-

tions are functions of frequency, the power gains or

losses are functions of frequencies.

Notes: Filterskeepapproximately thesameamplitude

in the filter pass band and provide attenuation in the

filter stop band. IfHðjoÞ is the transfer function of the
filter, then we have attenuation (gain) at a frequency

o1 ¼ 2pf1, if Hðjo1Þj j 
 1 ( Hðjo1Þj j > 1). The corre-

sponding attenuation and gain are as follows:

a ¼ �20 log Hðjo1Þj j dB > 0 ðLossÞ;
A ¼ 20 log Hðjo1Þj j ðGainÞ: (1:9:11)

Solving for HðjoÞj j from (1.9.11) results in

Loss : Hðjo1Þj j ¼ 1=ð10:05Þa;
Gain : Hðjo1Þj j ¼ ð10:05ÞA: (1:9:12)

Loss in terms of dB and the corresponding decrease

in amplitudes are given below:

�1dB¼)approximately 10%decreasein Hj j
from 1 to :891:

�2dB¼)approximately 20% decrease in Hj j
from 1 to :794:

�3dB¼)approximately 30% decrease in Hj j
from 1 to :708:

�6dB¼)approximately 50% decrease in Hj j
from1 to :501: &

1.10 Summary

In this chapter some of the basics on signals are

presented that a second semester junior in an elec-

trical engineering program may have gone through.

Some of the material, such as complex numbers,

periodic functions, integrals, decibels, and others,

are included to refresh the reader’s memory. Speci-

fic principal topics that were included are

� Various types of continuous signals
� Useful signal operations involving time shifting,

scaling, reversal, and amplitude shift
Fig. 1.9.2 A cascaded system

Fig. 1.9.1 Amplifier and a waveguide
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� Approximations and simplifications for integrals

with symmetries
� Singularity functions that include impulse func-

tions, step functions, etc., and functions that can

be used to approximate impulses
� Signal classifications based on power and energy
� Periodic signals and special classes of periodic

functions with symmetries
� Complex numbers and complex functions
� Energy signals and their moments
� Periodic extension of aperiodic functions
� Decibels

Problems

1.1.1 Peterson and Barney (1952) collected average

formant frequencies for vowels spoken by adult

male and female speakers. For example, first two

average formant frequencies in Hertz for the two

vowels =i= and =a= are given in the table below. For

a particular subject the first two formant frequen-

cies of one of the vowels given were determined and

they are F1 ¼ 500Hz and F2 ¼ 1600Hz. Using the

minimum distance classifier, and the below table,

determine if this subject is a male or a female and

what is the vowel =i= or =a=?

jij jaj
F1 Male 270 730

Female 310 850

F2 Male 2290 1090

Female 2790 1220

1.1.2 Sketch the following:

a:x1ðtÞ¼P
t�1
2

� �
P

2�t
2

� �
; b:x2ðtÞ¼P

t�1
2

� �
:L

t

2

h i
;

c:x3ðtÞ¼uðt�1Þ:uðb�tÞ forb¼�5;0;1;2

1.1.3 Response of a first-order system is given by

yðtÞ ¼ Að1� e�t=2ÞuðtÞ. What is the time constant

of the system and compute the value of the time at

the time yðtÞ reaches 63.21% of the response? What

do we call this time?

1.2.1 Given the functions in Fig. P1.2.1, sketch

a: xiðtþ 1Þ;
b: xiðt� 1Þ;
c: xið2t� 3Þ;
d: xið�2tþ 1Þ; i ¼ 1; 2:

1.2.2 Find the even and odd parts of the following

functions:

a: x1ðtÞ ¼ e�tuðt� 1Þ;
b: x2ðtÞ ¼ et;

c: x3ðtÞ ¼ ½ðtþ 1Þ=ðt� 1Þ�:
d: x4ðtÞ ¼ cosðtÞ þ sinðtÞ;
e: x5ðtÞ ¼ P ðt� 1Þ=2½ �:

1.2.3 Sketch the functions sincðplÞ and sinc2ðplÞ
and give an approximate value of the magnitude

of the first side lobe and their values in dB. Use

MATLAB if you have the access. See Appendix B

for information on MATLAB.

1.3.1 Approximate the following integral for the

intervals shown by using a. the rectangular integra-

tion formula and b. the trapezoidal integration

formula.

A ¼
Zp

0

xðtÞdt; xðtÞ ¼ sinðtÞ; intervals : 0;
p
4

� 	
;

p
4
;
p
2

� 	
;

p
2
;
3p
4

� �
;

3p
4
; p

� �
:

Use xðtÞ at t ¼ kðp=4Þ; k ¼ 0; 1; 2; 3 to approximate

the area by assuming each strip is a rectangle or a

trapezoid. Compare these values to the actual value

of the integral.

1.3.2 Evaluate the following integral:

ZT=2

0

1

2
� t

T

� �
sinðo0tÞdt:

x1(t) x2(t)

Fig. P1.2.1
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1.3.3 Derive the expressions for the following

partials:

GðjoÞ ¼ 1=ðsþ joÞ ¼ uðoÞ þ jvðoÞ;
@uðs;oÞ
@s

;
@vðs;oÞ
@s

;
@uðs;oÞ

o
; and

@vðs;oÞ
@o

:

1.4.1 Sketch xiðtÞ and yiðtÞ ¼ uðxiðtÞÞ;
i ¼ 1; 2; 3; 4; 5; 6 for �p=25t53p=2 given

a: x1ðtÞ ¼ sinðtÞ; b: x2ðtÞ ¼ cosðtÞ; c: x3ðtÞ
¼ tanðtÞ; d: x4ðtÞ ¼ secðtÞ; e: x5ðtÞ
¼ cotðtÞ; f: x6ðtÞ ¼ cscðtÞ:

1.4.2 Let xðtÞ ¼ dððt� 1Þðt� 2ÞÞ. Express the func-
tion in terms of a sum of impulses.

1.4.3 Show the following functions are limiting

forms of impulse functions:

a: x1ðtÞ ¼ ðT=2Þe� tj jT; b: x2ðtÞ ¼ Tð1� ð tj j=TÞÞ;

c: x3ðtÞ ¼
T

p
sinTt

tT
; d: x4ðtÞ ¼

T

p
sinTt

Tt

� �2

e: x5ðtÞ ¼ Te�pt
2T2

; f: x6ðtÞ ¼
1

p
T

t2 þ T2

1.4.4 Show that xnðtÞ can be used as an impulse

representation

dðtÞ ¼ lim
n!1

xnðtÞ; xnðtÞ ¼ :5 ne�n tj j
 �

use

Z 1
�1

xnðtÞdt ¼ 1; lim
n!1

xnðtÞ ¼ 0

� �
:

1.4.5 Show the following:

a: d0ð�tÞ ¼ �d0ðtÞ; b: td0ðtÞ ¼ �dðtÞ;

c:
R1
�1

xðtÞ ddðt�t0Þdt dt ¼ �dxðtÞ
dt

���
t¼t0

;

d: lim
e!0

dxeðtÞ
dt ¼

ddðtÞ
dt ; xeðtÞ ¼ 1

p
e

t2þe2 ; e > 0:

1.4.6 Evaluate the following integrals using the

properties of the impulse functions:

a:

Z5

0

ðt2 þ 2t� 1Þdðt� 1Þdt;

b:

Z5

0

ðt2 þ 2t� 1Þ ddðt� 1Þ
dt

dt;

c:

Z1

�1

e�tuðtÞ dðt� 1Þ
dt

dt:

1.5.1a. Express an arbitrary real-valued signal in

terms of its even and odd parts.

b. Express the unit step function uðtÞ in terms of

its even and odd parts and sketch the even and odd

parts. Assume uð0Þ ¼ 1 in sketching the function.

1.5.2 Classify each of the following functions as

either an energy signal or a power signal or neither.

If the functions are either energy or power signals,

give the corresponding energy or power. Otherwise,

explain why they are not.

a: x1ðtÞ ¼ L
t� 1

2

� �
; b: x2ðtÞ ¼ e�a tj j; a > 0;

c: x3ðtÞ ¼ t e�tuðtÞ; d: x4ðtÞ ¼ sincðptÞ;
e: x5ðtÞ ¼ 1=½pð1þ t2Þ�; f: x6ðtÞ ¼ e�pt

2

;

g: x7ðtÞ ¼ d0ðtÞ; h: x8ðtÞ ¼ sin2ðtÞ:

1.5.3 Show that

Z1

�1

x2ðtÞdt ¼
Z1

�1

x2eðtÞdtþ
Z1

�1

x20ðtÞdt:

1.5.4 Given xðtÞ ¼ cosð2pð1000ÞtÞ, find the period

of xðatÞ; a > 0.What can you say in the general case

of a periodic function xTðtÞ and xTðatÞ; a 6¼ 0?

1.5.5 Find the mean, rms, and the peak values of the

function

xðtÞ ¼ A cosðo0tþ f1Þ þ B cosð2o0tþ f2Þ:

What is the effect of the phase angles on the peak

value of this function?

1.6.1 The power series expansion of the square root

function is Spiegel (1968)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2Þ

q
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ x2Þ

q

¼ a 1þ 1

2
x� 1

2ð4Þ x
2 þ 1:3

ð2Þð4Þ6Þ x
3 � � � �

� �
;

x ¼ b

a
;�15 x 
 1:
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Simplest approximation:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

� aþ ðb=2Þ.
For c ¼ 1þ j1, find cj j by the approximation and

the error between the direct computation and the

simplified method.

1.6.2 Solve for the roots of the polynomial

1þ ð�1Þns2n ¼ 0 in general terms. The roots may

be complex. Give the roots on the left half-plane

for n ¼ 1; 2; 3; 4; 5. Plot these roots on a complex

plane and comment on the magnitudes of these

roots.

1.6.3 Give the even and odd parts of the function

xðtÞ ¼ t; 05t5T=2 and zero elsewhere.

1.6.4 Give examples of half-wave, even, and odd

quarter-wave symmetric functions.

1.6.5 Show that the function given in (1.6.25) has

odd quarter-wave symmetry.

1.6.6 Consider the periodic function xTðtÞ given

below. What can you say about the hidden symme-

try in this periodic function?

xTðtÞ ¼ ð1� ðt=TÞÞ; 05t5T and xTðtþ TÞ ¼ xðtÞ:

1.7.1 Determine the mean and the variances of the

following two functions:

a: xLðtÞ ¼ ðb=2Þe�b t�aj j;�15t51; b > 0 :

Laplace function:

b: xRðtÞ ¼ ð2=bÞðt� aÞe�ðt�aÞ
2=buðt� aÞ;

�15t51; b > 0 : Rayleigh function:

1.8.1 Assuming T ¼ t; b: T ¼ t=2, give the expres-

sions for the periodic extension of the function

x1ðtÞ ¼ P½t=t�.

1.9.1 Show that if you round off to the nearest whole

decibel, the error in the power atmost 1 in 7 by noting

that the plot of decibel versus power ratio in the

interval between 0 and 1 is approximately a straight

line (Simpson, Hughes Air Craft Company, 1983).

1.9.2 Convert the following to power ratios and

approximate them in dB:

Magnitude ratios : 1=
ffiffiffiffiffi
10
p

; 1=2; 1=
ffiffiffi
2
p

; 1;
ffiffiffi
2
p

; 2;ffiffiffiffiffi
10
p

; 5; 10; 100; 1000:

1.9.3 Two radar signals x1ðtÞ and x2ðtÞ are assumed

to have an average power of 3 dBm and�10 dBm,

respectively. What are the corresponding absolute

power levels?
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Chapter 2

Convolution and Correlation

2.1 Introduction

In this chapter we will consider two signal analysis

concepts, namely convolution and correlation. Sig-

nals under consideration are assumed to be real

unless otherwise mentioned. Convolution operation

is basic to linear systems analysis and in determining

the probability density function of a sum of two

independent random variables. Impulse functions

were defined in terms of an integral (see (1.4.4a))

using a test function fðtÞ.

Z1

�1

fðtÞdðt� t0Þdt ¼ fðt0Þ: (2:1:1)

This integral is the convolution of two functions,

fðtÞ and the impulse function dðtÞ to be dis-

cussed shortly. In a later chapter we will see that

the response of a linear time-invariant (LTI) sys-

tem to an impulse input dðtÞ is described by the

convolution of the input signal and the impulse

response of the system. Convolution operation

lends itself to spectral analysis. There are two

ways to present the discussion on convolution,

first as a basic mathematical operation and second

as a mathematical description of a response of a

linear time-invariant system depending on the

input and the description of the linear system.

The later approach requires knowledge of systems

along with Fourier series and transforms. This

approach will be considered in Chapter 6.

Although we will not be discussing random signals

in any detail, convolution is applicable in dealing

with random variables.

The process of correlation is useful in comparing

two deterministic signals and it provides a measure

of similarity between the first signal and a time-

delayed version of the second signal (or the first

signal). A simple way to look at correlation is

to consider two signals: x1ðtÞ and x2ðtÞ. One of

these signals could be a delayed, or an advanced,

version of the other. In this case we can write

x2ðtÞ ¼ x1ðtþ tÞ; �1 < t <1. Multiplying point

by point and adding all the products, x1ðtÞx1ðtþ tÞ
will give us a large number for t ¼ 0, as the product

is the square of the function. On the other hand if

t 6¼ 0, then adding all these numbers will result in an

equal or a lower value since a positive number times

a negative number results in a negative number and

the sum will be less than or equal to the peak value.

In terms of continuous functions, this information

can be obtained by the following integral, called the

autocorrelation function of xðtÞ, as a function of t
not t.

RxxðtÞ ¼
Z1

�1

xðtÞxðtþ tÞdt ¼ AC ½xðtÞ� � RxðtÞ:

(2:1:2)

This gives a comparison of the function xðtÞ with its

shifted version xðtþ tÞ. Autocorrelation (AC) pro-

vides a nice way to determine the spectral content of

a random signal. To compare two different func-

tions, we use the cross-correlation function defined

by

RxhðtÞ ¼ xðtÞ � �hðtÞ ¼
Z1

�1

xðtÞhðtþ tÞdt: (2:1:3)

R.K.R. Yarlagadda, Analog and Digital Signals and Systems, DOI 10.1007/978-1-4419-0034-0_2,
� Springer ScienceþBusiness Media, LLC 2010
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Note the symbol (**) for correlation. Correlation is

related to the convolution. As in autocorrelation,

the cross-correlation in (2.1.3) is a function of t, the
time shift between the function xðtÞ, and the shifted

version of the function hðtÞ.

2.1.1 Scalar Product and Norm

The scalar valued function xðtÞ; yðtÞh i of two signals

xðtÞ and yðtÞ of the same class of signals, i.e., either

energy or power signals, is defined by

xðtÞ;yðtÞh i¼

R1
�1

xðtÞy�ðtÞdt;

energysignals: ð2:1:4aÞ

lim
T!1

1
T

RT=2
�T=2

xðtÞy�ðtÞdt;

powersignals: ð2:1:4bÞ

8>>>>>>>><
>>>>>>>>:

Superscript (*) indicates complex conjugation. Our

discussion will be limited to a subclass of power

signals, namely periodic signals. In that case,

assuming that both the time functions have the

same period (2.1.4b) can be written in the symbolic

form as follows:

xTðtÞyTðtÞh i ¼ 1

T

Z
T

xðtÞy�ðtÞdt: (2:1:4c)

Even though our interest is in real functions, for gen-

erality, we have used complex conjugates in the above

equations. The norm of the function is defined by

xðtÞk k ¼ xðtÞ;xðtÞh i1=2¼
Ex; energy signals

Px; power signals
:

�

(2:1:5)

It gives the energy or power in the given energy or

the power signal. The two functions, xðtÞ and yðtÞ,
are orthogonal if

xðtÞ; yðtÞh i ¼ 0: (2:1:6)

In that case,

xðtÞ þ yðtÞk k2¼ xðtÞk k2þ yðtÞk k2: (2:1:7)

If xðtÞ and yðtÞ are orthogonal, the energy and power

contained in the energy or power signal

zðtÞ ¼ xðtÞ þ yðtÞ are respectively given by

Ez ¼ Ex þ Ey or Pz ¼ Px þ Py: (2:1:8)

Some of the important properties of the norm are

stated as follows:

1: xðtÞk k ¼ 0 if and only if xðtÞ ¼ 0; (2:1:9a)

2: xðtÞ þ yðtÞk k � xðtÞk k þ yðtÞk k;
triangular inequality (2:1:9b)

3: axðtÞk k ¼ aj j xðtÞk k: (2:1:9c)

In (2.1.9c), a is some constant. One measure of

distance, or dissimilarity, between xðtÞ and yðtÞ is
xðtÞ � yðtÞk k. A useful inequality is the Schwarz’s

inequality given by

x tð Þ; y tð Þh ij j � x tð Þk k y tð Þk k: (2:1:9d)

The two sides are equal when xðtÞ or yðtÞ is zero or if

yðtÞ ¼ axðtÞwhere a is a scalar to be determined. This

can be seen by noting that

xðtÞþ ayðtÞk k2 ¼ xðtÞþ ayðtÞ;xðtÞþ ayðtÞh i
¼ xðtÞxðtÞh iþ a� xðtÞ;yðtÞh i
þ a xðtÞ;yðtÞh i�þ aj j2 yðtÞ;yðtÞh i
¼ xðtÞk k2þa� xðtÞ;yðtÞh i
þ a xðtÞ;yðtÞh i�þ aj j2 yðtÞk k2:

(2:1:10)

Since a is arbitrary, select

a ¼ � xðtÞ; yðtÞh i= yðtÞk k2: (2:1:11)

Substituting this in (2.1.10), the last two terms can-

cel out, resulting in
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xðtÞ þ ayðtÞk k2 ¼ xðtÞk k2�
xðtÞ;yðtÞh i2
��� ���

yðtÞk k2

) xðtÞk k2 yðtÞk k2� xðtÞ;yðtÞh i2
��� ���� 0:

(2:1:12)

Equality exists in (2.1.9d) only if xðtÞ þ ayðtÞ ¼ 0.

Another possibility is the trivial case being either one

of the functions or both are equal to zero. Ziemer

and Tranter (2002) provide important applications

on this important topic.

Correlations in terms of time averages: Cross-

correlation and autocorrelation functions can be

expressed in terms of the time average symbols and

RxhðtÞ¼
Z1

�1

xðtÞhðtþtÞdt¼ xðtÞhðtþtÞh i; (2:1:13a)

RT;xhðtÞ ¼
1

T

ZT=2

�T=2

xTðtÞhTðtþ tÞdt

¼ 1

T

Z
T

xTðtÞhTðtþ tÞdt ¼ xTðtÞhTðtþ tÞh i:

(2:1:13b)

In the early part of this chapter we will deal with

convolution and correlation associated with aper-

iodic signals. In the later part we will concentrate on

convolution and correlation with respect to both

periodic and aperiodic signals. Most of the material

in this chapter is fairly standard and can be seen in

circuits and systems books. For example, see

Ambardar (1995), Carlson (1975), Ziemer and

Tranter (2002), Simpson and Houts (1971), Peebles

(1980), and others.

2.2 Convolution

The convolution of two functions, x1 tð Þ and x2 tð Þ,
is defined by

yðtÞ ¼ x1ðtÞ � x2ðtÞ ¼
Z1

�1

x1ðaÞx2ðt� aÞda

¼
Z1

�1

x2ðbÞx1ðt� bÞdb ¼ x2ðtÞ � x1ðtÞ:
(2:2:1)

This definition describes a higher algebra and

allows us to study the response of a linear time-

invariant system in terms of a signal and a system

response to be discussed in Chapter 6. It should be

emphasized that the end result of the convolution

operation is a function of time. Coming back to the

sifting property of the impulse functions, consider

the equation given in (2.1.1). Two special cases are

of interest.

fðtÞ � dðtÞ ¼
Z1

�1

fðaÞdðt� aÞda

¼
Z1

�1

fðt� bÞdðbÞdb ¼ dðtÞ � fðtÞ;

(2:2:2a)

dðtÞ � dðtÞ ¼
Z1

�1

dðaÞdðt� aÞda ¼ dðtÞ: (2:2:2b)

2.2.1 Properties of the Convolution
Integral

1. Convolution of two functions, x1 tð Þ and x2 tð Þ,
satisfies the commutative property,

yðtÞ ¼ x1ðtÞ � x2ðtÞ ¼ x2ðtÞ � x1ðtÞ: (2:2:3)

This equality can be shown by defining a new

variable, b ¼ t� a, in the first integral in (2.2.1)

and simplifying the equation.

2. Convolution operation satisfies the distributive

property, i.e.,

x1 tð Þ � x2 tð Þ þ x3 tð Þ½ � ¼ x1 tð Þ � x2 tð Þ

þ x1 tð Þ � x3 tð Þ:
(2:2:4)

3. Convolution operation satisfies the associative

property, i.e.,

x1 tð Þ � x2 tð Þ �x3 tð Þð Þ ¼ x1 tð Þ �x2 tð Þð Þ �x3 tð Þ: (2:2:5)

The proofs of the last two properties follow from

the definition.

4. The derivative of the convolution operation can be

written in a simple form and
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y 0ðtÞ ¼ dyðtÞ
dt
¼ d

dt

Z1

�1

x1ðaÞx2ðt� aÞda

2
4

3
5

¼
Z1

�1

x1ðaÞ
dx2ðt� aÞ

dt
db ¼ x1ðtÞ� x02ðtÞ;

) dyðtÞ
dt
¼ d

dt
½x1ðtÞ � x2ðtÞ�

¼ dx1ðtÞ
dt
� x2ðtÞ ¼ x1ðtÞ �

dx2ðtÞ
dt

:

(2:2:6a)

Equation (2.2.6a) can be generalized for higher

order derivatives. We can then write

x
ðmÞ
1 ðtÞ � x2ðtÞ ¼

dmx1ðtÞ
dtm

� x2ðtÞ ¼
dmyðtÞ
dtm

¼ yðmÞðtÞ Note x
ðmÞ
i ðtÞ ¼

d ixiðtÞ
dti

� �
;

(2:2:6b)

x
ðmÞ
1 ðtÞ � x

ðnÞ
2 ðtÞ ¼

dmx1ðtÞ
dtm

� d
nx2ðtÞ
dtn

¼ dmþnyðtÞ
dtmþn

¼ yðmþnÞðtÞ:

(2:2:6c)

Since the impulse function is the generalized deriva-

tive of the unit step function uðtÞ (see Section 1.4.2.),

we have

yðtÞ ¼ uðtÞ � hðtÞ ) y0ðtÞ

¼ u0ðtÞ � hðtÞ ¼ dðtÞ � hðtÞ ¼ hðtÞ:
(2:2:7)

5. Convolution is an integral operation and if we

know the convolution of two functions and desire

to compute its running integral, we can use

Z t

�1

yðaÞda¼
Z t

�1

½x1ðaÞ � x2ðaÞ�da

¼
Z t

�1

Z1

�1

x1ðbÞx2ða� bÞdb

2
4

3
5da;

¼
Z1

�1

Z t

�1

x2ða� bÞda

2
4

3
5x1ðbÞdb

¼
Z1

�1

Zt�b

�1

x2ðlÞdl

2
4

3
5x1ðbÞdb;

¼
Z t

�1

x2ðlÞdl

2
4

3
5�x1ðtÞ¼

Z t

�1

x1ðbÞdb

2
4

3
5�x2ðtÞ:

(2:2:8)

Example 2.2.1 Find the convolution of a function

xðtÞ and the unit step function uðtÞ and show it is a

running integral of xðtÞ:

Solution: This can be seen from

xðtÞ � uðtÞ ¼
Z1

�1

xðbÞuðt� bÞdb

¼
Z t

�1

xðbÞdb; uðt� bÞ ¼
1; b5t

0; b4t

�� �
:

(2:2:9) &

6. Convolution of two delayed functions x1ðt� t1Þ
and x2ðt� t2Þ are related to the convolution of

x1ðtÞ and x2ðtÞ.

yðtÞ ¼ x1ðtÞ � x2ðtÞ ) x1ðt� t1Þ � x2ðt� t2Þ
¼ yðt� ðt1 þ t2ÞÞ: (2:2:10)

This can be seen from

x1ðt� t1Þ � x2ðt� t2Þ

¼
Z1

�1

x1ða� t1Þx2ðt� a� t2Þda

¼
Z1

�1

x1ðbÞx2ð½t� ðt1 þ t2Þ� � bÞdb

¼ yðt� ðt1 þ t2ÞÞ: (2:2:11)

Example 2.2.2 Derive the expression for

yðtÞ ¼ x1ðtÞ � x2ðtÞ ¼ dðt� t1Þ�dðt� t2Þ.
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Solution: Using the integral expression, we have

Z1

�1

x1ðaÞx2ðt�aÞda¼
Z1

�1

dða� t1Þdðt� t2�aÞda

¼dðt� t2�aÞ a¼t1 ¼dðt� t1� t2Þ:j

Noting dðtÞ � dðtÞ ¼ dðtÞ and using (2.2.11), we have
dðt� t1Þ � dðt� t2Þ ¼ dðt� t1 � t2Þ. &

7. The time scaling property of the convolution

operation is if yðtÞ ¼ x1ðtÞ � x2ðtÞ, then

x1ðctÞ � x2ðctÞ ¼
Z1

�1

x1ðcbÞx2ðcðt� bÞÞdb

¼ 1

cj j yðctÞ; c 6¼ 0: (2:2:12)

Assuming c < 0 and using the change of variables

a ¼ cb, and simplifying, we have

x1ðctÞ �x2ðctÞ ¼
1

c

Z�1

1

x1ðaÞx2ðct� aÞdy

¼ 1

cj j

Z1

�1

x1ðaÞx2ðct� aÞda¼ 1

cj jyðctÞ:

A similar argument can be given in the case of c > 0:

Scaling property applies only when both functions

are scaled by the same constant c 6¼ 0. When

c ¼ �1, then

x1ð�tÞ � x2ð�tÞ ¼ yð�tÞ: (2:2:13)

This property simplifies the convolution if there are

symmetries in the functions. In Chapter 1, even and

odd functions were identified by subscripts

e for even and 0 for odd (see (1.2.7)). From these

xieð�tÞ ¼ xieðtÞ; an even function;

xi0ð�tÞ ¼ �xi0ðtÞ; an odd function (2:2:14a)

x1eð�tÞ � x2eð�tÞ ¼ ye1ðtÞ;

x10ð�tÞ � x20ð�tÞ ¼ ye2ðtÞ; even functions

(2:2:14b)

x1eð�tÞ � x20ð�tÞ ¼ y01ðtÞ;

x10ð�tÞ � x2eð�tÞ ¼ y02ðtÞ; odd functions:

(2:2:14c)

8. The area of a signal was defined in Chapter 1

(see (1.5.1)) by

A½xiðtÞ� ¼
Z1

�1

xiðaÞda: (2:2:15)

Area property of the convolution applies if the areas

of the individual functions do not changewith a shift

in time. It is given by

A½yðtÞ� ¼ A½x1ðtÞ � x2ðtÞ� ¼ A½x1ðtÞ�A½x2ðtÞ�:
(2:2:16)

This can be proved by

A y tð Þ½ � ¼
Z1

�1

y bð Þdb ¼
Z 1
�1

x1 bð Þ � x2 bð Þ½ �db

¼
Z1

�1

Z1

�1

x1 að Þx2 b� að Þda

2
4

3
5db

¼
Z1

�1

x1ðaÞ
Z1

�1

x2ðb� aÞdb�

8<
:

9=
;da

¼ A½x2ðtÞ�
Z1

�1

x1ðaÞda ¼ A½x2ðtÞ�A½x1ðtÞ�:

9. Consider the signals x1ðtÞ and x2ðtÞ that are non-
zero for the time intervals of tx1 and tx2, respec-

tively. That is, we have two time-limited signals,

x1ðtÞ andx2ðtÞ, with timewidths tx1 and tx2 . Then,

the time width ty of the signal yðtÞ ¼ x1ðtÞ � x2ðtÞ
is the sum of the time widths of the two convolved

signals and ty ¼ tx1 þ tx2 . This is referred to as the

time duration property of the convolution. We will

come back to some intricacies in this property, as

there are some exceptions to this property.

Example 2.2.3 Derive the expression for the convo-

lution yðtÞ ¼ x1ðtÞ � x2ðtÞ, where xiðtÞ; i ¼ 1; 2 are

as follows:

x1ðtÞ ¼ 0:5dðt� 1Þ þ 0:5dðt� 2Þ;

x2ðtÞ ¼ 0:3dðtþ 1Þ þ 0:7dðt� 3Þ:
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Solution: Convolution of these two functions is

y tð Þ ¼
Z1

�1

x1 að Þx2 t� að Þda

¼
Z1

�1

½0:5d a� 1ð Þ þ 0:5d a� 2ð Þ��

½0:3d t� aþ 1ð Þ þ 0:7d t� a� 3ð Þ�da

¼
Z1

�1

0:5ð Þ 0:3ð Þd a� 1ð Þd t� aþ 1ð Þda

þ
Z1

�1

ð0:5Þð0:7Þd a� 1ð Þd t� a� 3ð Þda

þ
Z1

�1

ð0:5Þð0:3Þdða� 2Þdðt� aþ 1Þda

þ
Z1

�1

ð0:5Þð0:7Þdða� 2Þdðt� a� 3Þda

¼ ð0:15ÞdðtÞ þ 0:35dðt� 4Þ
þ 0:15dðt� 1Þ þ 0:35dðt� 5Þ:

Notes: If an impulse function is in the integrand of

the form dðat� bÞ, then use (see (1.4.35), which is

d at� bð Þ ¼ 1= aj jð Þd t� b=að Þð Þ:

2.2.2 Existence of the Convolution
Integral

Convolution of two functions exists if the convolu-

tion integral exists. Existence can be given only in

terms of sufficient conditions. These are related to

signal energy, area, and one sidedness. It is simple to

give examples, where the convolution does not exist.

Some of these are a*a, a*u(t), cos(t)*u(t), eat *eat,

a > 0. Convolution of energy signals and the same-

sided signals always exist. In Chapter 4 we will be

discussing Fourier transforms and the transforms

make it convenient to find the convolution.

2.3 Interesting Examples

In the following, the basics of the convolution

operation, along with using some of the above

properties to simplify the evaluations are illu-

strated. A few comments are in order before the

examples. First, the convolution yðtÞ ¼ x1ðtÞ�
x2ðtÞ is an integral operation and can use either

one of the integrals in (2.2.1). Note that yðtÞ;�1 <

t <1 is a time function. The expression for

the convolution, say at t ¼ t0, will yield a zero

value for those values of t0 over which

x1ðbÞ and x2ðt0 � bÞ do not overlap. The area

under the product ½x1ðbÞx2ðt0 � bÞ�, i.e., the integral
of this product gives the value of the convolution at

t ¼ t0. Sketches of the function x1ðbÞ and the time

reversed and delayed function x2ðt0 � bÞ on the

same figure would be helpful in identifying the lim-

its of integration of the product ½x1ðbÞx2ðt0 � bÞ�.
As a check, the value of the convolution at end

points of each range must match, except in the

case of impulses and/or their derivatives in the inte-

grand of the convolution integral. This is referred to

as the consistency check. The following steps can be

used to compute the convolution of two functions

x1ðtÞ and x2ðtÞ:

x2ðtÞ�!
New variable

x2ðbÞ�!
Reverse

x2ð�bÞ�!
Shift

x2ðt� bÞ

x1ðtÞ�!
New variable

x1ðbÞ�!
Multiply the two functions

x1ðbÞx2ðt� bÞ:

�!Integrate
R1
�1

x1ðbÞx2ðt� bÞdb¼ yðtÞ:

Example 2.3.1 Derive the expression for the convo-

lution of the two pulse functions shown in Fig. 2.3.1

a,b. These are

x1ðtÞ ¼
1

a
P

t� ða=2Þ
a

� �
and

x2ðtÞ ¼
1

b
P

t� ðb=2Þ
b

� �
; b � a > 0: (2:3:1)

Solution: First

yðtÞ ¼ x1ðtÞ � x2ðtÞ ¼
Z1

�1

x1ðbÞx2ðt� bÞdb: (2:3:2)

Figure 2.3.1c,d,e,f give the functions x1ðbÞ;
x2ðbÞ; x2ð � bÞ; and x2ðt� bÞ, respectively. Note

that the variable t is some value between �1 and

1 on the b axis. Different cases are considered, and
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in each case, we keep the first function x1ðbÞ sta-
tionary and move (or shift) the second function

x2ð�bÞ, resulting in x2ðt� bÞ.

Case 1: t � 0: For this case the two functions are

sketched in Fig. 2.3.1 g on the same figure. Noting

that there is no overlap of these two functions, it

follows that

yðtÞ ¼ 0; t � 0: (2:3:3)

Case 2: 05t � a:The two functions are sketched for

this case in Fig. 2.3.1 h. The two functions overlap

and the convolution is

yðtÞ ¼
Z t

0

x1ðbÞx2ðt� bÞdb ¼ 1

ab
t; 05t � a: (2:3:4)

x1(t)

x1(β) x2(β) x2(–β)

x2(t – β)

x2(t)

(a) (b)

(c) (d) (e) 
t ≤ 0 : x2 (t – β) and x1 (β)

t > 0 : x2 (t – β) and x1 (β) t > a : x2 (t – β) and x1 (β)

t – b < a : x2 (t – β) and x1 (β) t – b > a : x2 (t – β) and x1 (β)

b > a : y (t) = x1 (t)
∗x2 (t) b = a : y (t) = x1 (t)

∗x2 (t)

(f) (g)

(h) (i)

(j) (k)

(l) (m)

Fig. 2.3.1 Convolution of two rectangular pulses (b � a)
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Case 3: a5t � b: This corresponds to the complete

overlap of the two functions and the functions are

shown in Fig. 2.3.1i. The convolution integral and

the area is

yðtÞ ¼
Za

0

1

ab
db ¼ 1

b
; a5t � b: (2:3:5)

Case 4: 0 < t� b � a < b or b < t � ðbþ aÞ. This
corresponds to a partial overlap of the two func-

tions and is shown in Fig. 2.3.1j. The convolution

integral and the area is

yðtÞ¼
Za

t�b

1

ab
db¼ðaþb� tÞ

ab
; b5t�ðbþaÞ: (2:3:6)

Case 5: t� b > a or t � aþ b: The two functions

corresponding to this range are sketched in Fig.

2.3.1k and from the sketches we see that the two

functions do not overlap and

yðtÞ ¼ 0; t � ðaþ bÞ: (2:3:7)

Summary:

y tð Þ ¼

0; t � 0

t

ab
; 05t5a

1

b
; a � t5b

aþ b� t

ab
; b � t5aþ b

0; t � aþ b

8>>>>>>>>>>>><
>>>>>>>>>>>>:

: (2:3:8)

This function is sketched in Fig. 2.3.1 l andm for the

cases of b > a and b ¼ a. There are several interest-

ing aspects in this example that should be noted.

First, the two functions we started with have first-

order discontinuous and the convolution is an

integral operation, which is a smoothing operation.

Convolution values at end points of each range

must match (consistency check) as we do not have

any impulse functions or their derivatives in the func-

tions that are convolved. Some of these are dis-

cussed below.

The areas of the two pulses are each equal to 1

and the area of the trapezoid is given by

Area½yðtÞ� ¼ ð1=2Það1=bÞ þ ðb� aÞð1=bÞ
þ ð1=2Það1=bÞ ¼ 1

¼ Area½x1ðtÞ�Area½x2ðtÞ�: (2:3:9)

This shows that the area property is satisfied. Pee-

bles (2001) shows the probability density function

of the sum of the two independent random variables

is also a probability density function. We should

note that the probability density function is nonne-

gative and the area under this function is 1 (see

Section 1.7). From the above discussion, it follows

that the convolution of two rectangular pulses

(these can be considered as uniform probability

density functions) results in a nonnegative function

and the area under this function is 1. The function

yðtÞ satisfies the conditions of a probability density

function.

The time duration of yðtÞ, ty is ty ¼ tx1 þ tx2
and

tx1 ¼ a; tx2 ¼ b) ty ¼ tx1 þ tx2 ¼ aþ b: (2:3:10)

A special case is when a ¼ b and the function yðtÞ
given in Fig. 2.3.1m, a triangle, is

P
t� a=2

a

� �
�P t� a=2

a

� �
¼ L

t� a

a

h i
: (2:3:11) &

Example 2.3.2 Give the expressions for the

convolution of the following functions:

x1ðtÞ ¼ uðtÞ and x2ðtÞ ¼ sinðptÞP t� 1

2

� �
: (2:3:12)
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Solution: The convolution integral

yðtÞ¼
Z1

�1

x2ðbÞx1ðt�bÞda¼
Z2

0

sinðpbÞuðt�bÞdb

¼
Z t

0

sinðpbÞdb¼
0; t�0

ð1=pÞð1�cosðptÞÞ; 05t52

0; t�2

8><
>: ;

yðtÞ ¼
Z t

0

sinðpbÞdb

¼
0; t � 0

ð1=pÞð1� cosðptÞÞ; 05t52

0; t � 2

8><
>: : (2:3:13)

The time duration of the unit step function is1 and

the time duration of x2ðtÞ is 2. The duration of the

function yðtÞ is 2, which illustrates a pathological

case where the time duration property of the con-

volution is not satisfied.

The integral or the area of a sine or a cosine

function over one period is equal to zero. The period

of the function sinðptÞ is equal to 2 and therefore

A½x2ðtÞ� ¼ A sinðptÞ:P t� 1

2

� �� �

¼ 0) A½yðtÞ� ¼ ð1=pÞ
Z2

0

½1� cosðptÞ�dt

¼ 1=p
Z2

0

dt ¼ 2=p:

Noting that A½x1ðtÞ� ¼ A½uðtÞ� ¼ 1 and

A½yðtÞ� ¼ 2=p, we can see that the area property of

the convolution is not satisfied. See Ambardar

(1995) for an additional discussion. &

Example 2.3.3 Derive the expression for the convo-

lution of the following functions shown in

Fig. 2.3.2a,b:

xðtÞ ¼ P
t

2T

h i
and hðtÞ ¼ e�atuðtÞ; a > 0: (2:3:14a)

Solution:

yðtÞ ¼ xðtÞ � hðtÞ ¼
Z1

�1

xðbÞhðt� bÞdb

¼
Z1

�1

hðaÞxðt� aÞda: (2:3:14b)

In computing the convolution, we keep one of the

functions at one location and the other function is

time reversed and then shifted. In this example,

since the function hðtÞ ¼ 0 for t < 0, we have a

benchmark to keep track of the movement of the

function hðt� bÞ as t varies. Therefore, the first

integral in (2.3.14b) is simpler to use. The functions

xðbÞ; hðbÞ; hð�bÞ; and hðt� bÞ are shown in

Fig. 2.3.2 c, d, e, and f respectively. As before, we

will compute the convolution for different intervals

of time.

Case 1: t � �T : the two functions, hðt� bÞ and
xðbÞ, are sketched in Fig. 2.3.2 g. Clearly there is

no overlap of the two functions and therefore the

integral is zero. That is

yðtÞ ¼ 0; t � �T: (2:3:15)

Case 2: �T < t < T: The two functions hðt� bÞ
and xðbÞ are sketched in Fig. 2.3.2 h in the same

figure for this interval. There is a partial overlap of

the two functions in the interval �T4t4T. The

convolution can be expressed by

yðtÞ ¼
Z1

�1

xðbÞhðt� bÞdb ¼
Z t

�T

ð1Þe�aðt�bÞdb

¼ e�at
Z t

�T

eabdb¼ 1

a
1� e�aðtþTÞ
h i

;�T5t5T:

(2:3:16)

Case 3: t > T : From the sketch of the two functions

in Fig. 2.3.2 h, the two functions overlap in this

range �T � t � T and the convolution integral is

yðtÞ ¼
ZT

�T

e�aðt�bÞdb ¼ 1

a
eaT � e�aT
� 	

e�at; t4T:

(2:3:17)
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Summary:

yðtÞ ¼

0; t � �T
1

a
1� e�aðtþTÞ
h i

; � T5t � T

1

a
eaT � e�aT
� 	

e�at; t4T

8>>>><
>>>>:

: (2:3:18)

This function is sketched in Fig. 2.3.2i. Note yðtÞ is
smoother than either of the given functions used in

the convolution. Computing the area of yðtÞ is not
as simple as finding the areas of the two functions,

xðtÞ and hðtÞ: Using the area property,

A y tð Þ½ � ¼ A x tð Þ½ �A h tð Þ½ � ¼ 2Tð Þ 1=að Þ: (2:3:19) &

Notes: In computing the convolution, one of the

sticky points is finding the integral of the product

½xðbÞhðt� bÞ� in (2.3.14b), which requires finding

the region of overlap of the two functions. Sketch-

ing both functions on the same figure allows for an

easy determination of this overlap. The delay prop-

erty is quite useful. For example, if yðtÞ ¼ xðtÞ � hðtÞ
then it implies y1ðtÞ ¼ xðt� TÞ � hðtÞ ¼ yðt� TÞ.
In Example 2.3.3, x(t) ¼ P[t/2T]¼ u[tþT]
�u½t� T�. Therefore

( )t h(t)

(a) (b) 
x(β) h(β)

(c) (d) 
h(−β) β( ), 0h t t− ≥

(e) (f) 

β β( )h t − , and ( )t T x<β β( )h t − , and ( )t –T x<

(g) (h) 
y(t)

(i) 

xFig. 2.3.2 Convolution of a
rectangular pulse with an
exponentially decaying pulse
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y tð Þ ¼ h tð Þ � x tð Þ
¼ h tð Þ � u tþ Tð Þ � x t� Tð Þ½ �
¼ h tð Þ � u tþ Tð Þ � h tð Þ � u t� Tð Þ: &

Example 2.3.4 Determine the convolution

yðtÞ ¼ xðtÞ � xðtÞ with xðtÞ ¼ e�atuðtÞ, a > 0:

Solution: The convolution is

yðtÞ ¼ e�atuðtÞ � e�atuðtÞ

¼
Z1

�1

e�abe�aðt�bÞ½uðbÞuðt� bÞ�db

¼ e�at
Z t

0

db ¼ te�atuðtÞ: (2:3:20)

In evaluating the integral, the following expression

is used (see Fig. 2.3.3a):

½uðbÞuðt� bÞ� ¼
0; b50 and b4t

1; 05b4t

�
: (2:3:21)

The functions xðtÞ and yðtÞ are shown in

Fig. 2.3.3b,c. Note that the function xðtÞ has a

discontinuity at t ¼ 0: The function yðtÞ,
obtained by convolving two identically decaying

signals, xðtÞ and xðtÞ is smoother than either one

of the convolved signals. This is to be expected

as the convolution operation is a smoothing

operation. &

Example 2.3.5 Derive the expression yiðtÞ ¼ hðtÞ �
xiðtÞ for the following two cases:

a:x1ðtÞ ¼ uðtÞ; b:x2ðtÞ ¼ dðtÞ:

Solution: a. Since uðt� aÞ ¼ 0; a > t, we have the

running integral

y1ðtÞ ¼ hðtÞ � uðtÞ ¼
Z1

�1

hðaÞuðt� aÞda

¼
Z t

�1

hðaÞda: (2:3:22)

b. Noting that the impulse function is the general-

ized derivative of the unit step function, we can

compute the convolution

y2 tð Þ¼h tð Þ�d tð Þ¼h tð Þ�du tð Þ
dt
¼y 01 tð Þ¼h tð Þ:

(2:3:23) &

Example 2.3.6 Let hðtÞ ¼ e�atuðtÞ; a > 0 a. Deter-

mine the running integral of hðtÞ.
b. Using (2.3.23), determine y2ðtÞ:

Solution:

a: y1ðtÞ ¼
Z t

�1

hðbÞdb ¼
Z t

�1

e�abuðbÞdb

¼ 1

a
ð1� e�atÞuðtÞ; (2:3:24)

b: y2ðtÞ ¼
dy1ðtÞ
dt
¼ 1

a

d

dt
ð1� e�atÞuðtÞ

¼ 1

a
ð1� e�atÞ d

dt
uðtÞþ 1

a
uðtÞdð1� e�atÞ

dt

¼ ð1=aÞð1� e�atÞdðtÞþ e�atuðtÞ
¼ ð1=aÞ½dðtÞ� dðtÞ�þ e�atuðtÞ
¼ ð1=aÞe�atuðtÞ: (2:3:25) &

In a later chapter this result will be used in dealing

with step and impulse inputs to an RC circuit with

an impulse response hðtÞ ¼ e�atuðtÞ.

(a) 

( ) ( )atx t e u t−=  ( ) ( )atx t e u t−= ( ) ( )* ( )y t x t x t=

(c)(b)

Fig. 2.3.3 Example 2.3.4
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Example 2.3.7 Express the following integral in the

form of xðtÞ � pðtÞ; ðpðtÞ is a pulse function:

yðtÞ ¼
ZtþT=2

t�T=2

xðaÞda: (2:3:26)

Solution:

yðtÞ ¼
ZtþðT=2Þ

�1

xðaÞda�
Zt�ðT=2Þ

�1

xðaÞda

¼ xðtÞ � uðtþ ðT=2ÞÞ � xðtÞ � uðt� ðT=2ÞÞ
¼ xðtÞ � uðtþ ðT=2ÞÞ � uðt� T=2ÞÞ½ �

¼ xðtÞ �P t

T

h i
: (2:3:27)

The output is the convolution of xðtÞ with a pulse

width of T with unit amplitude and the process is a

running average. &

Example 2.3.8 Find the derivative of the running

average of the function in (2.3.27) and express the

function xðtÞ in terms of the derivative of yðtÞ.

Solution: McGillem and Cooper (1991) give an

interesting solution for this problem.

y0ðtÞ ¼ xðtÞ � duðtþ ðT=2ÞÞ
dt

� duðt� ðT=2ÞÞ
dt

� �

¼ xðtÞ � d tþ T

2

� �
� xðtÞ � d t� T

2

� �

¼ xðtþ ðT=2ÞÞ � xðt� ðT=2ÞÞ
) xðtÞ ¼ y0ðt� ðT=2ÞÞ þ xðt� TÞ: (2:3:28) &

Example 2.3.9 Derive the expressions a: y1ðtÞ ¼
uðtÞ � uðtÞ; b: y2ðtÞ ¼ uðtÞ � uð�tÞ:

Solution:

a: y1ðtÞ ¼ uðtÞ � uðtÞ ¼
Z1

�1

uðaÞuðt� aÞda

¼
Z t

0

ð1Þdt ¼
0; t40

t; t50

( )
¼ tuðtÞ;

(2:3:29)

b: y2ðtÞ ¼
Z1

�1

uðaÞuðaþ tÞda

¼

R1
t

uðaÞda!1; t � 0

R1
0

uðaþ tÞda!1; t40

8>>><
>>>:

:

(2:3:30)

It follows that y2ðtÞ ¼ 1;�15t51. In this case,

convolution does not exist. &

2.4 Convolution and Moments

In the examples considered so far, except in the

cases of impulses, convolution is found to be a

smoothing operation. We like to quantify and com-

pare the results of the convolution of nonimpulse

functions to the Gaussian function. In Section 1.7.1,

the moments associated with probability density

functions were considered.

A useful result can be determined by consid-

ering the center of gravity convolution in terms

of the centers of gravity of the factors in the

convolution. First, the moments mnðxÞ of a wave-

form xðtÞ and its center of gravity Z are, respec-

tively, defined as

mnðxÞ ¼
Z1

�1

tnxðtÞdt; (2:4:1)

Z ¼

R1
�1

txðtÞdt

R1
�1

xðtÞdt
¼ m1ðxÞ

m0ðxÞ
: (2:4:2)

We note that we can define a term like the variance

in Section 1.7.1 by

s2ðxÞ ¼ m2ðxÞ
m0ðxÞ

� Z2: (2:4:3)

Now consider the expressions for the convolution

yðtÞ ¼ gðtÞ � hðtÞ. First,
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m1ðyÞ ¼
Z1

�1

tyðtÞdt ¼
Z1

�1

t

Z1

�1

gðlÞhðt� lÞdl

2
4

3
5dt

¼
Z1

�1

gðlÞ
Z1

�1

thðt� lÞdt

2
4

3
5dl:

Defining a new variable x ¼ t� l on the right and

rewriting the above equation results in

m1ðyÞ ¼
Z1

�1

gðlÞ
Z1

�1

ðxþ lÞhðxÞdx

2
4

3
5dl

¼
Z1

�1

lgðlÞdl
Z1

�1

hðxÞdxþ
Z1

�1

xhðxÞdx

Z1

�1

gðlÞdl¼m1ðgÞm0ðhÞþm1ðhÞm0ðgÞ: (2:4:4)

From the area property, it follows that m0ðyÞ ¼
m0ðgÞm0ðhÞ. The center of gravity is

m1ðyÞ
m0ðyÞ

¼ m1ðgÞ
m0ðgÞ

þm1ðhÞ
m0ðhÞ

) Zy ¼ Zg þ Zh: (2:4:5)

Consider the expression for the squares of the

spread of yðtÞ in terms of the squares of the spreads

of gðtÞ and hðtÞ. The derivation is rather long and

only results are presented.

s2y ¼
m2ðyÞ
m0ðyÞ

� m1ðyÞ
m0ðyÞ

� �2

: (2:4:6)

Using the expressions for m0(y), m1ðyÞ and m2ðyÞ
and simplifying the integrals results in

s2y ¼ s2g þ s2h: (2:4:7)

That is, the variance of y is equal to the sum of the

variances of the two factors. It also verifies that

convolution is a broadening operation for pulses.

Noting that if gðtÞ and hðtÞ are probability density

functions then (2.4.7) is valid. In communications

theory we are faced with a signal, say gðtÞ is cor-

rupted by a noise nðtÞ with the variance, s2n. The
signal-to-noise ratio (SNR) is given by

Signal-to-noise ratio¼Average signal power

Noise power; s2n
:

(2:4:8)

Example 2.4.1 Verify the result is true in (2.4.7)

using the functions

gðtÞ ¼ hðtÞ ¼ e�t and yðtÞ ¼ gðtÞ � hðtÞ:

Solution: Using integral tables, it can be shown that

m0ðgÞ ¼
Z1

0

e�tdt ¼ 1; m1ðgÞ ¼
Z1

0

te�tdt ¼ 1;

m2ðgÞ ¼
Z1

0

t2e�tdt ¼ 2;

Zg ¼
m1ðgÞ
m0ðgÞ

¼ 1; s2g ¼
m2ðgÞ
m0ðgÞ

� Z2g ¼ 1;

s2h ¼ 1 ðnote gðtÞ ¼ hðtÞÞ;

yðtÞ ¼ gðtÞ � hðtÞ ¼ te�tuðtÞðsee Example 2:3:4Þ:

m0ðyÞ ¼
Z1

0

te�tdt ¼1;m1ðyÞ ¼
Z1

0

t2e�tdt ¼ 2;

m2ðyÞ ¼
Z1

0

t3e�tdt ¼ 6;

Zy ¼
m1ðyÞ
m0ðyÞ

¼ 2; s2y ¼
m2ðyÞ
m0ðyÞ

� Z2y ¼ 2)

s2y ¼ s2g þ s2h ¼ 1þ 1 ¼ 2:

As an example, consider that we have signal

gðtÞ ¼ A cosðo0tÞ and is corrupted by a noise with a

variance equal tos2n. Then, the signal-to-noise ratio is

SNR ¼ A2=2

s2n
:

In Chapter 10, we will make use of this in quantiza-

tion methods, wherein A and SNR are given and

determine s2n. This, in turn, provides the informa-

tion on the size of the error that can be tolerated.

Notes: For readers interested in independent random

variables, the probability density function of a sum of

two independent random variables is the convolution

of the density functions of the two factors of the
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convolution, and the variance of the sum of the two

random variables equals the sum of their variances.

For a detailed discussion on this, see Peebles (2001).&

2.4.1 Repeated Convolution and the
Central Limit Theorem

Convolution operation is an integral operation, which

is a smoothing operation. In Example 2.3.1, we have

considered the special case of the convolution of two

identical rectangular pulses and the convolution of

these two pulses resulted in a triangular pulse (see

Fig. 2.3.1m). The discontinuities in the functions

being convolved are not there in the convolved signal.

Asmore andmore pulse functions convolve, the resul-

tant functions become smoother and smoother.

Repeated convolution begins to take on the bell-

shaped Gaussian function. The generalized version

of this phenomenon is called the central limit theorem.

It is commonly presented in terms of probability den-

sity functions. In simple terms, it states that if we

convolveN functions and one function does not dom-

inate the others, then the convolution of the N func-

tions approaches a Gaussian function as N!1. In

the general form of the central limit theorem, the

means and variances of the individual functions that

are convolved are related to themean and the variance

of the Gaussian function (see Peebles (2001)).

Given xiðtÞ; i ¼ 1; 2; :::;N; the convolution of

these functions is

yðtÞ ¼ x1ðtÞ � x2ðtÞ � ::: � xNðtÞ: (2:4:9)

The function yðtÞ can be approximated using ðm0ÞN,
the sum of the individual means of the functions,

and s2N the sum of the individual variances by

yðtÞ 	 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2N

q e�ðt�ðm0ÞNÞ
2=2s2N : (2:4:10)

Example 2.4.2 Illustrate the effects of convolution

and compare yðtÞ to a Gaussian function by con-

sidering the convolution

yðtÞ ¼ x1ðtÞ � x2ðtÞ;

xiðtÞ ¼
1

a
P

t� a=2

a

� �
; i ¼ 1; 2:

(2:4:11)

Solution: yðtÞ is a triangular function (see Example

2.3.1) given by

yðtÞ ¼ 1

a
L

t� a

a

h i
: (2:4:12)

The mean values of the two rectangular pulses are

a/2 (see Section 1.7). The mean value of yðtÞ is

2ða=2Þ ¼ a. The variance of each of the rectangular

pulses is

s2i ¼ m2 �m2
1 ¼ a2=12; i ¼ 1; 2: (2:4:13a)

The variance is given by s2y ¼ s21 þ s22 ¼ a2=6. The

Gaussian approximation is

ðyðtÞÞ N¼2j 	 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2=3Þ

p e�ðt�aÞ
2=ða2=3Þ: (2:4:13b)

This Gaussian and the triangle functions are sym-

metric around a. They are sketched in Fig. 2.4.1.

Even withN ¼ 2, we have a good approximation.&

Example 2.4.3 In Example 2.4.1 we considered two

identically exponentially decaying functions:

x1ðtÞ ¼ e�tuðtÞ ¼ x2ðtÞ. The convolution of these

two functions is given by y2ðtÞ ¼ te�tuðtÞ. Approx-

imate this function using the Gaussian function.

Solution: The Gaussian function approximations

of ynðtÞ, considering n ¼ 2 and for n large, are,

respectively, given below. Note that m0ðyÞ ¼ 2.

y2ðtÞ 	
1ffiffiffiffiffiffiffiffiffiffiffiffi
2pð2Þ

p e� ðt�2Þ
2=2ð2Þð Þ;

ynðtÞ 	
1ffiffiffiffiffiffiffiffiffiffiffiffi
2pðnÞ

p e� ðt�nÞ
2=2ðnÞð Þ:

(2:4:14)

For sketches of these functions for various values of

n, see Ambardar (1995). &

Fig. 2.4.1 Triangle function yðtÞ in (2.4.12) and the Gaus-
sian function in (2.4.13b)
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2.4.2 Deconvolution

In this chapter, we have defined the convolution

yðtÞ ¼ hðtÞ � xðtÞ as a mathematical operation. If

xðtÞ needs to be recovered from yðtÞ, we use a pro-

cess called the deconvolution defined by

xðtÞ ¼ yðtÞ � hinvðtÞ ¼ xðtÞ � hðtÞ � hinvðtÞ
¼ xðtÞ � ½hðtÞ � hinvðtÞ�;) hðtÞ � hinvðtÞ
¼ dðtÞ and xðtÞ � dðtÞ ¼ xðtÞ: (2:4:15)

It is a difficult problem to find hinvðtÞ, which may

not even exist.

Table 2.4.1 Properties of aperiodic convolution

Definition:

yðtÞ ¼ x1ðtÞ�x2ðtÞ ¼
R1
�1 x1ðaÞx2ðt� aÞda ¼

R1
�1 x2ðaÞx1ðt� aÞda:

Amplitude scaling:

ax1ðtÞ�bx2ðtÞ ¼ abðxðtÞ�hðtÞÞ; a and b are constants:

Commutative:

x1ðtÞ�x2ðtÞ ¼ x2ðtÞ�x1ðtÞ:

Distributive:

x1ðtÞ�½x2ðtÞ þ x3ðtÞ� ¼ x1ðtÞ�x2ðtÞ þ x1ðtÞ�x3ðtÞ:

Associative:

x1ðtÞ�½x2ðtÞ�x3ðtÞ� ¼ ½x1ðtÞ�x2ðtÞ��x3ðtÞ:

Delay:

x1ðt� t1Þ�x2ðt� t2Þ ¼ x1ðt� t2Þ�x2ðt� t1Þ ¼ yðt� ðt1 þ t2ÞÞ:

Impulse response:

xðtÞ�dðtÞ ¼ xðtÞ:

Derivatives:

x1ðtÞ�x02ðtÞ ¼ x01ðtÞ
�x2ðtÞ ¼ y0ðtÞ; x

ðmÞ
1 ðtÞ

�x
ðnÞ
2 ðtÞ ¼ yðmþnÞðtÞ:

Step response:

yðtÞ ¼ xðtÞ�uðtÞ ¼
R t

�1 xðaÞda; y0ðtÞ ¼ xðtÞ�dðtÞ ¼ xðtÞ:

Area:

A½x1ðtÞ�x2ðtÞ� ¼ A½yðtÞ�; where A½xðtÞ� ¼
R1
�1 xðtÞdt:

Duration:

tx1 þ tx2 ¼ ty:

Symmetry:

x1eðtÞ�x2eðtÞ ¼ yeðtÞ; x1eðtÞ�x20ðtÞ ¼ y0ðtÞ; x10ðtÞ�x20ðtÞ ¼ yeðtÞ:

Time scaling:

x1ðctÞ�x2ðctÞ ¼ 1
cj j yðctÞ; c 6¼ 0:
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2.5 Convolution Involving Periodic
and Aperiodic Functions

2.5.1 Convolution of a Periodic Function
with an Aperiodic Function

Let hðtÞ be an aperiodic function and xTðtÞ be a

periodic function with a period T. We desire to

find the convolution of these two functions. That

is, find yðtÞ ¼ xTðtÞ � hðtÞ.

Example 2.5.1 Derive the expressions for the con-

volution of the following two functions:

dTðtÞ and hðtÞ assuming T ¼ 1:5 and T ¼ 2 and

sketch the results for the two cases.

dTðtÞ ¼
X1

k¼�1
dðt� nTÞ; hðtÞ ¼ L t½ �: (2:5:1)

Derive the expressions for the convolution of these

two functions assuming T ¼ 1:5 and T ¼ 2 and

sketch the results of the convolution for the two

cases.

yðtÞ ¼ hðtÞ � dTðtÞ ¼ hðtÞ �
X1

k¼�1
dðt� kTÞ

¼
X1

k¼�1
hðtÞ � dðt� kTÞ: (2:5:2)

Noting that hðtÞ � dðt� kTÞ ¼ hðt� kTÞ, it follows
that

yðtÞ ¼
X1

k¼�1
hðt� kTÞ ¼ yTðtÞ: (2:5:3)

Figure 2.5.1a,b gives the sketches of the functions

dTðtÞ and hðtÞ. The sketches for the convolution are

shown in Fig. 2.5.1c,d. In the first case, there were

no overlaps, whereas in the second case there are

overlaps. &

Example 2.5.2 Derive an expression for the convo-

lution yðtÞ ¼ hðtÞ � xTðtÞ,

xTðtÞ ¼ cosðo0tþ yÞ and hðtÞ ¼ e�atuðtÞ: (2:5:4)

Solution: yðtÞ¼ hðtÞ �xTðtÞ¼
R1
0

e�ab cosðo0ðt�bÞþ
yÞdb

¼
Z1

0

e�ab½cosðo0tþ yÞ cosðo0bÞ

þ sinðo0tþ yÞ sinðo0bÞ�db

¼
Z1

0

e�ab cosðo0bÞdb

2
4

3
5 cosðo0tþ yÞ

þ
Z1

0

e�ab sinðo0bÞdb

2
4

3
5 sinðo0tþ yÞ: (2:5:5)

Using the identities given below (see (2.5.7 a, b, and

c.)), (2.5.5) can be simplified.

yðtÞ ¼ a=ða2 þ o2
0Þ

� 	
cosðo0tþ yÞ

þ o0=ða2 þ o2
0Þ

� 	
sinðo0tþ yÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ o2

0

q cosðo0tþ y� tan�1ðo0=aÞÞ

� yTðtÞ;

(2:5:6)

( )T tδ

( )h t

(a)

(c)

(d)

(b)
( )Ty t

( )Ty t

Fig. 2.5.1 (a) Periodic impulse sequence, (b) L½t�; (c) yTðtÞ;
T ¼ 2, and (d) yTðtÞ;T ¼ 2
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Z1

0

e�ab sinðo0bÞdb ¼
e�ab

a2 þ o2
0

½�a sinðo0bÞ

� o0 cosðo0bÞ� 10
�� ¼ o0

a2 þ o2
0

;

(2:5:7a)

Z1

0

e�ab cosðo0bÞdb ¼
e�ab

a2 þ o2
0

½�a cosðo0bÞ

þ o0 sinðo0bÞ� 10
�� ¼ a

a2 þ o2
0

;

(2:5:7b)

a cosðo0tþ yÞ þ b sinðo0tþ yÞ ¼ c cosðo0tþ fÞ;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
;f ¼ ½� tan�1ðb=aÞ þ y�: (2:5:7c)

The functions yðtÞ ¼ yTðtÞ and xTðtÞ are sinusoids at
the same frequencyo0. The amplitude and the phase

of yðtÞ are different compared to that of xTðtÞ. &

The derivation given above can be generalized for a

periodic function

xTðtÞ ¼Xs½0� þ
X1
k¼0

c½k�cosðko0tþ y½k�Þ;o0 ¼ 2p=T;

(2:5:8a)

yðtÞ ¼ xTðtÞ � hðtÞ ¼ Xs½0� � hðtÞ þ
X1
k¼0

c½k�½cosðko0t

þ y½k�Þ � hðtÞ�;o0 ¼ 2p=T: (2:5:8b)

2.5.2 Convolution of Two Periodic
Functions

In Section 1.5 energy and power signals were con-

sidered. The energy in a periodic function is infinity

and its average power is finite. One period of a

periodic function has all its information. In the

same vein, the average convolution is a useful mea-

sure of periodic convolution. Such averaging pro-

cess is called periodic or cyclic convolution. The con-

volution of two periodic functions with different

periods is very difficult and is limited here to the

convolution of two periodic functions, each with the

same period.

The periodic convolution of two periodic func-

tions, xTðtÞ and hTðtÞ, is defined by

yTðtÞ¼xTðtÞ
hTðtÞ¼
1

T

Zt0þT

t0

xTðaÞhTðt�aÞda

¼ 1

T

Z
T

xTðaÞhTðt�aÞda¼
1

T

Z
T

xTðt�aÞhTðaÞda

¼hTðtÞ
xTðtÞ: (2:5:9a)

Note that the symbol 
 used for the periodic con-

volution and the constant ðTÞ in the denominator in

(2.5.9a) indicates that it is an average periodic con-

volution. yTðtÞ is periodic since

hTðtþ T� aÞ ¼ hTðt� aÞ and
xTðtþ T� aÞ ¼ xTðt� aÞ: (2:5:9b)

Also, periodic convolution is commutative.Many of

the aperiodic convolution properties discussed ear-

lier are applicable for periodic convolution with

some modifications. The expression for the periodic

convolution can be obtained by considering aperio-

dic convolution for one period of each of the two

functions.

Consider the periodic functions in the form

xTðtÞ ¼
X1
n¼�1

xðt� nTÞ and hTðtÞ ¼
X1
n¼�1

hðt� nTÞ;

(2:5:10a)

xðtÞ ¼
xTðtÞ; t0 � t < t0 þ T

0; otherwise

�
;

hðtÞ ¼
hTðtÞ; t0 � t < t0 þ T

0; otherwise:
(2:5:10b)

�

Note that the time-limited functions, xðtÞ and hðtÞ,
are defined from the periodic functions xTðtÞ and
hTðtÞ. Using (2.5.10b) the periodic convolution is

yTðtÞ ¼
1

T

Z
T

xTðaÞhTðt� aÞda

¼ 1

T

Z
T

xTðaÞ
X1

n¼�1
hðt� a� nTÞda
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¼ 1

T

X1
n¼�1

Z
T

xðaÞhðt� a� nTÞda

¼ 1

T

X1
n¼�1

xðtÞ � hðt� nTÞ;

(2:5:11a)

yTðtÞ¼ xTðtÞ
hTðtÞ

¼ 1

T

X1
n¼�1

yðt�nTÞ;yðtÞ¼ xðtÞ �hðtÞ: (2:5:11b)

That is, yTðtÞ can be determined by considering one

period of each of the two functions and finding the

aperiodic convolution.

Example 2.5.3 a. Determine and sketch the aperio-

dic convolution yðtÞ ¼ hðtÞ � xðtÞ.

xðtÞ ¼ 1

2
P

t� 1

2

� �
; hðtÞ ¼ 1

3
P

t� 1:5

3

� �
: (2:5:12)

b. Determine and sketch the periodic convolution

yTðtÞ ¼ xTðtÞ 
 hTðtÞ for periods T ¼ 6 and 4:

xTðtÞ ¼
X1

k¼�1
xðt� kTÞ and hTðtÞ ¼

X1
k¼�1

hðt� kTÞ:

(2:5:13)

Solution: a. From (2.5.13), the results for the aper-

iodic convolution can be derived. The sketches of

the two functions and the result of the convolution

are shown in Fig. 2.5.2a. The periodic convolutions

for the two different periods are shown in Fig.

2.5.2b,c. There are no overlaps of the functions

from one period to the next in Fig. 2.5.2b, whereas

in Fig. 2.5.2c, the pulses overlap. &

Convolution of almost periodic or random signals,

xðtÞ and hðtÞ, is defined by

yðtÞ ¼ lim
T!1

1

T

ZT=2

�T=2

xðaÞhðt� aÞda: (2:5:14)

This reduces to the periodic convolution if

xðtÞ and hðtÞ are periodic with the same period.

2.6 Correlation

Equation (2.1.3) gives the cross-correlation of

xðtÞ and hðtÞ as the integral of the product of two

functions, one displaced by the other by t between
the interval a < t < b and is given by

RxhðtÞ¼xðtÞ��hðtÞ¼
Zb

a

xðtÞhðtþtÞdt¼ xðtÞhðtþth i:

Cross-correlation function gives the similarity

between the two functions: xðtÞ and hðtþ tÞ. Many

a times the second function hðtÞ may be a corrupted

version of xðtÞ, such as hðtÞ ¼ xðtÞ þ nðtÞ, where

nðtÞ is a noise signal. In the case of xðtÞ ¼ hðtÞ,
cross-correlation reduces to autocorrelation. In

this case, at t ¼ 0, the autocorrelation integral

gives the highest value at t ¼ 0. Comparison of

two functions appears in many identification situa-

tions. For example, to identify an individual based

upon his speech pattern, we can store his speech

(a)( )T
y t ( )

T
y t

(b) (c)

Fig. 2.5.2 Example 2.5.1
(a) Aperiodic convolution;
(b) periodic convolution
T ¼ 6; (c) periodic
convolution, T ¼ 4
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segment in a computer.When he enters, say a secure

area, we can request him to speak and compute the

cross-correlation between the stored and the

recorded. Then decide on the individual’s identifica-

tion based on the cross-correlation function. Gen-

erally, an individual is identified if the peak of the

cross-correlation is close to the possible peak auto-

correlation value. Allowance is necessary since the

speech is a function of the individual’s physical and

mental status of the day the test is made. Quantita-

tive measures on the cross-correlation will be con-

sidered a bit later.

The order of the subscripts on the cross-correla-

tion function RxhðtÞ is important and will get to it

shortly. In the case of xðtÞ ¼ hðtÞ, we have the auto-
correlation and the function is referred to as RxðtÞ
with a single subscript. The cross- and autocorrela-

tion functions are functions of t and not t. Correla-

tion is applicable to periodic, aperiodic, and ran-

dom signals. In the case of periodic functions, we

assume that both are periodic with the same period.

Cross-correlation: Aperiodic:

RxhðtÞ ¼
Z1

�1

xðtÞhðtþ tÞdt (2:6:1a)

Cross-correlation: Periodic:

RT;xhðtÞ ¼
1

T

Z
T

xTðtÞhTðtþ tÞdt (2:6:1b)

Autocorrelation: Aperiodic:

RxðtÞ ¼
Z1

�1

xðtÞxðtþ tÞdt (2:6:1c)

Autocorrelation: Periodic:

RT;xðtÞ ¼
1

T

Z
T

xTðtÞxTðtþ tÞdt: (2:6:1d)

Notes: Cross- and autocorrelations of periodic

functions and random signals are referred to as

average periodic cross- and autocorrelation functions.

In the case of random or noise signals, the average

cross-correlation function is defined by

Ra;xhðtÞ ¼ lim
T!1

1

T

ZT=2

�T=2

xðtÞhðtþ tÞdt: (2:6:1e)

For periodic functions, (2.6.1e) reduces to (2.6.1b).

2.6.1 Basic Properties
of Cross-Correlation Functions

Folding relationship between the two cross-correla-

tion functions is

RxhðtÞ ¼ Rhxð�tÞ; (2:6:2)

) RxhðtÞ ¼
Z1

�1

xðtÞhðtþ tÞdt

¼
Z1

�1

xða� tÞhðaÞda¼ Rhxð�tÞ: (2:6:3)

2.6.2 Cross-Correlation and Convolution

The cross-correlation function is related to the con-

volution. From (2.6.3) we have

RxhðtÞ ¼ xðtÞ ��hðtÞ ¼ xð�tÞ � hðtÞ; (2:6:4a)

RhxðtÞ ¼ hðtÞ ��xðtÞ ¼ hð�tÞ � xðtÞ: (2:6:4b)

Equation (2.6.4a) can be seen by first rewriting the

first integral in (2.6.3) using a new variable t ¼ �a,
and then simplifying it. That is,

RxhðtÞ ¼
Z1

�1

xðtÞhðtþ tÞdt ¼
Z1

�1

xð�aÞhðt� aÞda

¼ xð�tÞ � hðtÞ: (2:6:4c)

Equation (2.6.4b) can be similarly shown. Noting

the explicit relation between correlation and convo-

lution, many of the convolution properties are

applicable to the correlation. To compute the cross–
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correlation, RxhðtÞ, one can use either of the integral

in (2.6.3) or the integral in (2.6.4c). RxhðtÞ is not
always equal toRhxðtÞ. In case, if one of the functions

is symmetric, say xðtÞ ¼ xð�tÞ; then

RxhðtÞ ¼ xð�tÞ � hðtÞ ¼ xðtÞ � hðtÞ: (2:6:5)

Example 2.6.1 illustrates the use of this property. In

particular, the area and duration properties for con-

volution also apply to the correlation. We should

note that the correlations are functions of t and not t,
where t is the time shift between xðtÞ and hðtþ tÞ.
In the case of energy signals, the energies in the real

signals, gðtÞ and hðtÞ, are

Rgð0Þ ¼
Z1

�1

g2ðtÞdt¼ Eg; Rhð0Þ ¼
Z1

�1

h2ðtÞdt¼ Eh:

(2:6:6) &

2.6.3 Bounds on the Cross-Correlation
Functions

Consider the integral

Z1

�1

xðtÞ � hðtþ tÞ½ �2dt ¼
Z1

�1

x2ðtÞdt

þ
Z1

�1

h2ðtþ tÞdt� 2

Z1

�1

xðtÞhðtþ tÞdt

¼ Rxð0Þ þ Rhð0Þ � 2RxhðtÞ � 0: (2:6:7a)

This follows since the integrand in (2.6.7a) is non-

negative and

RxhðtÞj j � ðRxð0Þ þ Rhð0ÞÞ=2: (2:6:7b)

An interesting bound can be derived using the

Schwarz’s inequality. See (2.1.9d).

xðtÞhðtþ th i2¼
Z1

�1

xðtÞhðtþ tÞdt

2
4

3
5
2

�
Z1

�1

xðtÞj j2dt

0
@

1
A Z1

�1

hðtþ tÞj j2dt

0
@

1
A; (2:6:8)

) RxhðtÞj j2�
Z1

�1

x2ðtÞdt

0
@

1
A Z1

�1

h2ðtÞdt

0
@

1
A

¼ Rxð0ÞRhð0Þ; (2:6:9a)

RxhðtÞj j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rxð0ÞRhð0Þ

p
: (2:6:9b)

Equation (2.6.9b) represents a tighter bound com-

pared to the one in (2.6.7b), as the geometric mean

cannot exceed the arithmetic mean. That is,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rxð0ÞRhð0Þ

p
� ðRxð0Þ þ Rhð0ÞÞ=2: (2:6:9c)

Another way to prove (2.6.9b) is as follows. Start

with the inequality below. Expand the function and

identify the auto- and cross-correlation terms.Z 1
�1
½xðtÞ þ ahðtþ tÞ�2dt � 0: (2:6:10)

Write the resulting equation in a quadratic form in

terms of a. In order for the equation in (2.6.10) to be

true, the roots of the quadratic equation have to be

real and equal or the roots have to be complex con-

jugates. The proof is left as a homework problem.

Example 2.6.1 Determine the cross-correlation of

the functions given in Fig. 2.3.2.

xðtÞ ¼ P
t

2T

h i
; hðtÞ ¼ e�atuðtÞ; a > 0: (2:6:11a)

Solution: Example 2.3.3 dealt with computing the

convolution of these two functions. The cross-cor-

relation functions are as follows:

RhxðtÞ ¼
Z1

�1

hðtÞxðtþ tÞdt¼ hð�tÞ � xðtÞ;

RxhðtÞ ¼
Z1

�1

xðtÞhðtþ tÞdt¼ xð�tÞ � hðtÞ:

(2:6:11b)

Note that we have xð�tÞ ¼ xðtÞ, and therefore the

cross-correlation RxhðtÞ ¼ xðtÞ � hðtÞ is the convo-

lution determined before (see (2.3.18).), except the

cross-correlation is a function of t rather than t. It is

given below. The two cross-correlation functions are

sketched in Fig. 2.6.1a,b. Note RhxðtÞ ¼ Rxhð�tÞ

58 2 Convolution and Correlation



RxhðtÞ ¼

0; t��T
1

a
1� e�aðtþTÞ
h i

; �T< t� T

1

a
eaT� e�aT
� 	

e�at; t> T

8>>>><
>>>>:

(2:6:11c) &

2.6.4 Quantitative Measures
of Cross-Correlation

The amplitudes of RxhðtÞ ðand RhxðtÞÞ vary. It is

appropriate to consider the normalized correlation

coefficient (or correlation coefficient) of two energy

signals defined by

rxhðtÞ ¼
RxhðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1

�1
x2ðtÞdt

� � R1
�1

h2ðtÞdt
� �s ¼ RxhðtÞffiffiffiffiffiffiffiffiffiffiffi

ExEh

p ;

(2:6:12a)

) rxhðtÞj j � 1: (2:6:12b)

Equation (2.6.12b) can be shown as follows. From

(2.1.13a) and using the Schwarz’s inequality (see

(2.1.9d)), we have

RxhðtÞ ¼ xðtÞhðtþ tÞh i � xðtÞk k hðtþ tÞk k ¼
ffiffiffiffiffiffiffiffiffiffiffi
ExEh

p

It should be noted that the case of xðtÞ ¼ hðtÞ, the
correlation coefficient reduces to

rxxðtÞ ¼
RxðtÞ
Rxð0Þ

: (2:6:13)

Correlation measures are very useful in statistical

analysis. See Yates and Goodman (1999), Cooper

and McGillem (1999) and others.

The significance of rxhðtÞ can be seen by consider-
ing some extreme cases. When xðtÞ ¼ ahðtÞ; a > 0,

we have the correlation coefficient rxhðtÞ ¼ 1. In the

case of xðtÞ ¼ ahðtÞ; a < 0 and rxhðtÞ ¼ �1. In

communication theory, we will be interested in

signals that are corrupted by noise, usually identi-

fied by nðtÞ, which can be defined only in statis-

tical terms. In the following, we will consider the

analysis without going through statistical analysis.

Noise signal nðtÞ is assumed to have a zero average

value. That is,

lim
T!1

1

T

ZT=2

�T=2

nðtÞdt ¼ 0: (2:6:14)

Cross-correlation function can be used to compare

two signals. The signals xðtÞ and hðtÞ are uncorre-

lated if the average cross-correlation satisfies the

relation

Ra;xhðtÞ ¼ lim
T!1

1

T

ZT=2

T=2

xðtÞhðtþ tÞdt

¼ lim
T!1

1

T

ZT=2

T=2

xðtÞdt

2
64

3
75 lim

T!1

1

T

ZT=2

T=2

hðtÞdt

2
64

3
75:

(2:6:15)

Example 2.6.2 If the signals x(t) and a zero average

noise signal n(t) are uncorrelated, then show

lim
T!1

1

T

ZT=2

�T=2

xðtÞnðt� tÞdt ¼ 0 for all t: (2:6:16)

Fig. 2.6.1 Cross-
correlations (a)RxhðtÞ,
(b) RhxðtÞðRxhðTÞ ¼
1
a 1� e�2aT
� 	

¼ Rhxð�TÞ)
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Solution: Using (2.6.14) and (2.6.15), we have

lim
T!1

1

T

ZT=2

�T=2

xðtÞnðtþ tÞdt

¼ lim
T!1

1

T

ZT=2

T=2

xðtÞdt

2
64

3
75 lim

T!1

1

T

ZT=2

T=2

nðtþ tÞdt

2
64

3
75 ¼ 0:

(2:6:17)

Cross-correlation function can be used to estimate

the delay caused by a system. Suppose we know that

a finite duration signal xðtÞ is passed through an

ideal transmission line resulting in the output func-

tion yðtÞ ¼ xðt� t0Þ. The delay t0 caused by the

transmission line is unknown and can be estimated

using the cross-correlation function RxyðtÞ: At

t ¼ t0, Rxyðt0Þ gives a maximum value. Then deter-

mine t corresponding to the maximum value of

RxyðtÞ. &

Example 2.6.3 Consider the transmitted signals

x1ðtÞ and x2ðtÞ in the interval 0 < t < Ts and zero

otherwise. Use the cross-correlation function to

determine which signal was transmitted out of the

two. They are assumed to be mutually orthogonal

(see Section 2.1.1) over the interval and satisfy

ZTs

0

xiðtÞxjðtÞdt ¼
Exi ¼ Ex; i ¼ j

0; i 6¼ j; i ¼ 1; 2

�
: (2:6:18)

Ex is the energy contained in each signal. The two

signals to be transmitted are assumed to be available

at the receiver. A simple receiver is the binary

correlation detector (or receiver) shown in

Fig. 2.6.2. The received signals yiðtÞ are assumed

to be of the form in (2.6.19). Decide which signal

has been transmitted using the cross-correlation

function.

yiðtÞ ¼ xiðtÞ þ noise; i ¼ 1 or 2: (2:6:19)

Solution: Let the transmitted signal be x1ðtÞ. Using

the top path in Fig. 2.6.2, we have

ZTs

0

½x1ðtÞ þ nðtÞ�x1ðtÞdt ¼ A

ZTs

0

x21ðtÞdt: (2:6:20)

Using the bottom path, with the transmitted signal

equal to x1ðtÞ, we have

ZTs

0

½x1ðtÞþnðtÞ�x2ðtÞdt¼
ZTs

0

½x1ðtÞx2ðtÞþx1ðtÞnðtÞ�dt

¼
ZTs

0

x1ðtÞnðtÞdt¼B: (2:6:21)

Since the noise signal has no relation to x1ðtÞ, B will

be near zero and A 44B, implying x1ðtÞ was trans-
mitted. If x2ðtÞ was transmitted, the roles are

reversed and B� A. The correlation method of

detection is based on the following:

1. If A > B) transmitted signal is x1ðtÞ.
2. If B > A) transmitted signal is x2ðtÞ.
3. If B ¼ A) no decision can be made as noise

swamped the transmitted signal. &

Fig. 2.6.2 Correlation
detector
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Example 2.6.4 Derive the expressions for the cross-

correlation RxhðtÞ and RhxðtÞ assuming

xðtÞ ¼ e�tuðtÞ; hðtÞ ¼ e�2tuðtÞ:

Solution: Using the expression in (2.6.3), we have

RxhðtÞ ¼
Z1

�1

xða� tÞhðaÞda

¼
Z1

�1

e�ða�tÞe�2a½uða� tÞuðaÞ�da: (2:6:22a)

Consider the following and then the corresponding

correlations:

t � 0 : ½uðaÞuða� tÞ� ¼
1; a � t

0; Otherwise

�
;

t < 0 : ½uðaÞuða� tÞ� ¼
1; a � 0

0; Otherwise

�
;

t� 0 : RxhðtÞ ¼ et
Z1

t

e�3ada

¼ et
1

�3e
�3a 1

t

�� ¼ 1

3
e�2tuðtÞ; (2:6:22b)

t < 0 : RxhðtÞ ¼ et
Z1

0

e�3ada ¼ 1

ð�3Þ e
te�3a 10

�� ¼ et

3
:

(2:6:22c)

RxhðtÞ is shown in Fig. 2.6.3. Note that

RhxðtÞ ¼ Rxhð�tÞ. &

Example 2.6.5 Derive the cross–correlation RxhðtÞ
for the following functions:

xðtÞ ¼ P t� :5½ �; hðtÞ ¼ tP
t� 1

2

� �
;RxhðtÞ

¼
Z1

�1

xðtÞhðtþ tÞdt: (2:6:23)

Solution: SeeFig. 2.6.4c for hðtþ tÞ for an arbitrary
t. The function hðtþ tÞ starts at t ¼ �t and ends at

t ¼ 2� t. As t varies from � 1 to 1, there are five

possible regions we need to consider. These are

sketched in Fig. 2.6.4 d,e,f,g,h. In each of these cases

both the functions are sketched in the same figure,

which allows us to find the regions of overlap. The

regions of overlap are listed in Table 2.6.1.

Case 1: t � �1 : See Fig. 2.6.4d. There is no overlap

between xðtÞ and hðtþ tÞ and

RxhðtÞ ¼ 0;�t > 1 or t � �1: (2:6:24)

Case 2: 0 < �t � 1 or � 1 < t � 0 : See Fig.

2.6.4e. Using Table 2.6.1

RxhðtÞ ¼
Z1

�t

ðtþ tÞdt ¼ t2

2
þ tt t¼1

t¼�t
��

¼ ðtþ 1Þ2

2
;�1 � t < 0: (2:6:25)

Case 3: 0 < t � 1: See Fig. 2.6.4 f. Using Table

2.6.1, we have

RxhðtÞ ¼
Z1

0

ðtþ tÞdt ¼ t2

2
þ tt t¼1

t¼0 ¼
1þ 2t

2

���� ;0< t� 1:

(2:6:26)

Case 4: 1 < t � 2: See Fig. 2.6.3 g. Using Table

2.6.1 we have

RxhðtÞ ¼
Z2�t

0

ðtþ tÞdt ¼ t2

2
þ tt t¼2�t

t¼0
��

¼ 4� t2

2
; 1 < t � 2: (2:6:27)

Case 5: 2 < t: See Fig. 2.6.4 h. There is no overlap

and

( )xhR τ

Fig. 2.6.3 RxhðtÞ
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RxhðtÞ ¼ 0; t > 2: (2:6:28)

See Fig. 2.6.4i for the cross-correlation RxhðtÞ
sketch. There are no impulses in either of the two

functions and therefore the cross-correlation func-

tion is continuous. &

(a) (b)

(c) (d)

(e)

(g)

(f)

(h)

(  )xhR τ

τ

(i)

Fig. 2.6.4 (a) xðtÞ, (b) hðtÞ;
(c) hðtþ tÞ,
(d) xðtÞ and hðtþ tÞ;
�t > 1ðor t � �1Þ;
(e) xðtÞandhðtþtÞ;�1<t�0;
(f) xðtÞandhðtþtÞ; 0<t�1,
(g) xðtÞandhðtþtÞ; 1<t<2,
(h) xðtÞandhðtþtÞ; t>2,
(i) RxhðtÞ

Table 2.6.1 Example 2.6.4

Case t Range of overlap/ integration range

1 t � �1 No over lap

2 �1 < t � 0 �t < t < 1

3 0 < t � 1 0 < t < 1

4 1 < t � 2 1 < t < 2� t
5 t > 2 No over lap
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2.7 Autocorrelation Functions of Energy
Signals

Autocorrelation function describes the similarity or

coherence between the given function xðtÞ and its

delayed or its advanced version xðt� tÞ. It is an

even function. The autocorrelation (AC) function

of an aperiodic signal xðtÞ was defined by

ACfxðtÞg¼RxðtÞ¼
Z1

�1

xðtÞxðtþtÞdt

¼
Z1

�1

xðtÞxðt�tÞdt¼ xðtÞxðt�tÞh i: (2:7:1)

Rxð�tÞ ¼ RxðtÞ:ðeven functionÞ (2:7:2)

Second, the maximum value of the autocorrelation

function occurs at t ¼ 0. That is

RxðtÞj j � Rxð0Þ: (2:7:3)

The proof of the symmetry property in (2.7.2) can

be shown by changing the variable b ¼ tþ t and

simplifying the integral. The proof on the upper

bound on the autocorrelation function is shown

below by noting the integral with a nonnegative

integrand is nonnegative.

Z1

�1

½xðtÞ � xðt� tÞ�½xðtÞ � xðt� tÞ�dt � 0: (2:7:4)

Z1

�1

x2ðtÞdtþ
Z1

�1

x2ðt� tÞdt� 2

Z1

�1

xðtÞxðt� tÞdt

¼ 2½
Z1

�1

x2ðtÞdt�
Z1

�1

xðtÞxðt� tÞdt� � 0:

) Rxð0Þ ¼
Z1

�1

x2ðtÞdt � RxðtÞj j

¼
Z1

�1

xðtÞxðt� tÞdt�

������
������: (2:7:5)

Third,

Ex ¼ Rxð0Þ ¼
Z1

�1

x2ðtÞdt:ðenergy in xðtÞÞ: (2:7:6)

In addition, if yðtÞ ¼ xðt� aÞ, then

RxðtÞ ¼ RyðtÞ: (2:7:7)

This can be seen first for t > 0 from

RyðtÞ¼
Z1

�1

yðtÞyðt�tÞdt¼
Z1

�1

xðt�aÞxðt�a�tÞdt

¼
Z1

�1

xðbÞxðb�tÞdb¼RxðtÞ: (2:7:8)

Change of a variable b ¼ ðt� aÞ was made in the

above integral and then simplified. Since the auto-

correlation function is even, the result follows for

t < 0:

Example 2.7.1 Find the AC of xðtÞ ¼ e�atuðtÞ; a > 0

by first computing the AC for t > 0 and then use the

symmetry property to find the other half of the

autocorrelation function.

Solution: First,

uðtÞuðt� tÞ ¼ uðt� tÞ ¼
1; t > t

0; otherwise

�
; (2:7:9)

t > 0 : RxðtÞ ¼
Z1

�1

xðtÞxðt� tÞdt

¼
Z1

�1

e�atuðtÞe�aðt�tÞuðt� tÞdt

¼ eat
Z1

t

e�2 atdt ¼ e�at

2a
:

Using the symmetry property of the AC, we have

RxðtÞ ¼ ð1=2aÞe�a tj j: (2:7:10)

The energy contained in the exponentially decaying

pulse is E ¼ Rxð0Þ ¼ ð1=2aÞ. The autocorrelation

function is sketched in Fig. 2.7.1. &

Example 2.7.2 Consider the function xðtÞ ¼
P½t� 1=2�. Determine its autocorrelation function

and its energy using this function.

Solution: The AC function for t � 0 is

RxðtÞ¼
Z1

�1

xðtÞxðt�tÞdt¼
Z1

�1

P½t�:5�P½t�t�:5�dt:
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The function P½t� 1=2� is a rectangular pulse

centered at t ¼ 1=2 with a width of 1, and

P½t� ðtþ ð1=2ÞÞ� is a rectangular pulse centered

at ðtþ 0:5Þ with a width of 1. See Fig. (2.7.2a) for

the case 0 < t < 1. In the case of t � 1, there is no

overlap indicating that RxðtÞ ¼ 0; t � 1.

RxðtÞ ¼
Z1

t

dt ¼ ð1� tÞ; 0 � t < 1:

Using the symmetry property, we have

RxðtÞ ¼ Rxð�tÞ ¼
ð1� tj jÞ; 0 � tj j � 1

0; Otherwise

� �
¼ L½t�:

(2:7:11a)

This is sketched in Fig. 2.7.2b indicating that there is

correlation for tj j < 1 and no correlation for

tj j � 1. The peak value of the autocorrelation is

when t ¼ 0 and is R xð0Þ ¼ 1. The energy contained

in the unit rectangular pulse is equal to 1 and by

using the autocorrelation function, i.e., Rxð0Þ ¼ 1,

the same by both the methods. Noting that the

autocorrelation function of a given function and

its delayed or advanced version are the same, the

AC function is much easier to compute using this

property. The AC of the pulse function P½t� :5�
can be computed by ignoring the delay. That is,

ACfP½t� :5�g ¼ ACfP½t�g. Interestingly,

AC P
t

T

h in o
¼ TL

t
T

h i
: (2:7:11b)

The AC function of a rectangular pulse of

width T is a triangular pulse of width 2T and its

amplitude at t ¼ 0 is T: We can verify the last part

by noting

AC P
t

T

h in o
jt¼0 ¼ TL

t
T

h i
jt¼0 ¼ T:

Note xðtÞP t
T

� 	
extracts xðtÞ for the time �T=2 <

t < T=2. That is,

xðtÞP t

T

h i
¼

xðtÞ;�T=2 < t < T=2

0; otherwise

�
: (2:7:12)

Example 2.7.3 Find the autocorrelation of the func-

tion yðtÞ ¼ cosðo0tÞP t=T½ �.

Solution:

RyðtÞ¼
Z1

�1

P
t

T

h i
P

t�t
T

h i
cosðo0tÞcosðo0ðt�tÞÞdt

¼cosðo0tÞ
2

Z1

�1

P
t

T

h i
P

t�t
T

h i
dt

þ1
2

Z1

�1

P
t

T

h i
P

t�t
T

h i
cosð2o0t�tÞdt:

(a) (b)

Rx(τ)

Fig. 2.7.2 Example 2.7.2 Autocorrelation of a rectangular pulse

Fig. 2.7.1 Example 2.7.1
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¼ ð1=2ÞTL t
T

� 	
cosðo0tÞ þ B; tj j � T

0; tj j > T

�
: (2:7:13)

Now consider the evaluation of B. For t � 0,

B ¼ 1

2

Z1

�1

P
t

T

h i
P

t� t
T

h i
cosð2o0t� tÞdt

¼ 1

2

ZT=2

t

cosð2o0t� o0tÞdt

¼ 1

4o0
sinðo0T� o0tÞ � sinðo0tÞ½ �: (2:7:14)

If o0 is large, RyðtÞ in (2.7.13) can be approximated

by the first term and

RYðtÞ ’
1

2
TL

t

T

h i
cosðo0tÞ: (2:7:15)

The envelope of the autocorrelation function in

(2.7.16) is a triangular function, which follows

since the correlation of the two identical rectangular

functions is a triangular function. Noting that the

cosine function oscillates between � 1, the envelope

of the autocorrelation function in (2.7.15) is shown

in Fig. 2.7.3. &

Notes: Conditions for the existence of an aperiodic

autocorrelation are similar to those of convolution

(see Section 2.2.3). But there are a few exceptions.

For example, the autocorrelation of the unit step

function does not exist.

2.8 Cross- and Autocorrelation
of Periodic Functions

The cross- and the autocorrelation functions of

periodic functions of xTðtÞ and hTðtÞ are

RT;xhðtÞ ¼
1

T

Z
T

xTðtÞhTðtþ tÞdt ¼ xTðtÞhTðtþ tÞh i ;

(2:8:1a)

RT;xðtÞ ¼
1

T

Z
T

xTðtÞxTðtþ tÞdt ¼ xTðtÞxTðtþ tÞh i :

(2:8:1b)

Note that the periods of the functions,

xTðtÞ and hTðtÞ, are assumed to be the same and

the constant (1/T) before the integrals in (2.8.1a

and b). If they have different periods, computation

of (2.8.1a) is difficult and these cases will not be

discussed here. Many of the cross-correlation and

AC function properties derived earlier for the aper-

iodic case apply for the periodic functions with

some modifications. Note that

RT;xhðtÞ ¼ RT;hxð�tÞ;
RT;xð0Þ þ RT;hð0Þ � 2 RT;xhðtÞ

�� ��: (2:8:2)

In Section 2.5.1, aperiodic convolution was used to

find periodic convolution. The same type of analysis

can be used to determine periodic cross-correlations

using aperiodic cross-correlations. Furthermore, as

discussed before, correlation is related to convolu-

tion. First define two finite duration functions,

xðtÞ and hðtÞ, over the interval t0 � t < t0 þ T.

Assume that they are zero outside this interval.

Now create two periodic functions:

xTðtÞ ¼
X1
n¼�1

xðt� nTÞ; hTðtÞ ¼
X1
n¼�1

hðt� nTÞ:

(2:8:3a)

The periodic cross-correlation function is defined

by

Ry(τ)

Fig. 2.7.3 Sketch of Ry(t)

2.8 Cross- and Autocorrelation of Periodic Functions 65



RT;xhðtÞ ¼
1

T

Zt0þT

t0

xTðtÞhTðtþ tÞdt; hTðtþ tÞ

¼
X1
n¼�1

hðtþ t� nTÞ: (2:8:3b)

The expression for periodic convolution is given in

terms of aperiodic convolution and

RT;xhðtÞ ¼
1

T

X1
n¼�1

Rxhðt� nTÞ;

Rxhðt� nTÞ ¼
Zt0þT

t0

xðtÞhðtþ t� nTÞ: (2:8:3c)

The details of the derivation are left as an exercise.

Copies ofRxhðtÞwill overlap if the width ofRxhðtÞ is
wider than T.

Example 2.8.1Give the lower bound on the periodT

so that there are no overlaps in the cross-correlation

of the functions xTðtÞ and hTðtÞ given below. See

Example 2.6.5.

xðtÞ ¼ P t� :5½ �; hðtÞ ¼ tP
t� 1

2

� �
;

xTðtÞ ¼
X1

n¼�1
xðtþ nTÞ; hTðtÞ ¼

X1
n¼�1

hðtþ nTÞ:

Solution: If the period T is larger than 3, then there

are no overlaps in the periodic cross-correlation

function. In that case, one period of the cross-cor-

relation function can be obtained from the aperio-

dic cross-correlation in that example and dividing it

by the period T. If the period is less than 3, then

there will be overlaps. &

Example 2.8.2 Consider the periodic functions

xT;1ðtÞ ¼ Xs½0�; xT;2ðtÞ ¼ c½k� cosðko0tþ y½k�Þ:
(2:8:4)

a. Find the AC functions for the functions in

(2.8.4). b. Find the cross-correlation of the two

functions.

Solution:

a: RT;xT;1ðtÞ ¼
1

T

Z
T

X2
s ½0�dt ¼ X2

s ½0�; (2:8:5a)

RT;xT;2ðtÞ ¼
1

T

Z
T

xT;2ðtÞxT;2ðtþ tÞdt

¼ c2½k�
2T

Z
T

cosðko0tÞdt

þ c2½k�
2T

Z
T

cosðko0ð2tþ tÞ þ 2y½k�Þdt

¼ c2½k� cosðko0tÞ
2T

ZT

0

dt ¼ c2½k� cosðko0tÞ
2

:

(2:8:5b)

Note that the integral of a cosine function over any

integer number of periods is zero.

b. The cross-correlation of a constant and a cosine

function over one period is zero. Also note that

the two functions are orthogonal. That is

xT1
ðtÞ; xT2

ðtÞh i ¼ 0. &

Example 2.8.3 Find the AC of xTðtÞ given below

with k 6¼ m; kandmare integers.

xTðtÞ ¼ xT;1ðtÞ þ xT;2ðtÞ; xT;1ðtÞ

¼ c½k� cosðko0tþ y½k�Þ; xT;2ðtÞ

¼ c½m� cosðmo0tþ y½m�Þ:

Solution: The periodic autocorrelations are deter-

mined as follows:

RT;xðtÞ ¼
1

T

Z
T

½xT;1ðtÞ þ xT;2ðtÞ�½xT;1ðtþ tÞ

þ xT;2ðtþ tÞ�dt ¼ 1

T

Z
T

xT;1ðtÞxT;1ðtþ tÞdt

þ 1

T

Z
T

xT;2ðtÞxT;2ðtþ tÞdt

þ 1

T

Z
T

xT;1ðtÞxT;2ðtþ tÞdt

þ 1

T

Z
T

xT;2ðtÞxT;1ðtþ tÞdt: (2:8:6)
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Note

1

T

Z
T

xT;1ðtÞxT;2ðtþ tÞdt

¼ 1

2T

Z
T

c½k�c½m�cos½ðkþmÞo0tþmo0tþ y½k�

þy½m�Þdtþ 1

2T

Z
T

h½k�h½m�cos½ðk�mÞo0t�mo0tÞ

þðy½k� � y½m�Þ�dt¼ 0:

Similarly the fourth term in (2.8.6) goes to zero.

From the last example,

RT;x tð Þ ¼ c2½k�
2

cos ko0tð Þ þ c2½m�
2

cos mo0tð Þ; k 6¼ m:

(2:8:7) &

These results can be generalized using the last two

examples and the autocorrelation of a periodic

function xTðtÞ is given as follows:

xTðtÞ ¼ Xs½0� þ
X1
k¼1

c½k� cosðko0tþ y½k�Þ; (2:8:8)

)RT;xðtÞ¼X2
s ½0�þ

1

2

X1
k¼1

c2½k�cosðko0tÞ;o0¼2p=T:

(2:8:9)

AC function of a periodic function is also a

periodic function with the same period. It is inde-

pendent of y½k�. It does not have the phase

information contained in (2.8.8). In the next

chapter, (2.8.8) will be derived for an arbitrary

periodic function and will be referred to as the

harmonic form of Fourier series of a periodic

function xTðtÞ. &

Notes: The AC function of a constantXs½0� isX2
s ½0�.

The AC of the sinusoid c½k� cosðko0tþ y½k�Þ is

ðc2½k�=2Þ cosðko0tÞ. That is, it loses the phase infor-
mation in the function in the sinusoid. The power

contained in the periodic function xTðtÞ in (2.8.8)

can be computed from the autocorrelation function

evaluated at t ¼ 0. That is,

P ¼ X2
s ½0� þ

1

2

X1
k¼1

c2½k�: (2:8:10)

The difference between the total power and the dc

power is the variance and is given by

Variance ¼ 1

2

X1
k¼1

c2½k�: (2:8:11) &

Example 2.8.4 Consider the corrupted signal

yðtÞ ¼ xðtÞ þ nðtÞ, where nðtÞ is assumed to be

noise. Assuming the signal xðtÞ and noise nðtÞ are
uncorrelated, derive an expression for the autocor-

relation function of yðtÞ.

Solution:

RyyðtÞ ¼ lim
T!1

1

T

ZT=2

�T=2

yðtÞyðtþ tÞdt

¼ lim
T!1

1

T

ZT=2

�T=2

½xðtÞþ nðtÞ�½xðtþ tÞnðtþ tÞ�dt;

¼ lim
T!1

ZT=2

�T=2

xðtÞxðtþ tÞdtþ lim
T!1

ZT=2

�T=2

xðtÞnðtþ tÞdt

þ lim
T!1

RT=2
�T=2

nðtÞxðtþ tÞdtþ lim
T!1

RT=2
�T=2

xðtÞxðtþ tÞdt:

(2:8:12)

Noting that the signal and the noise are uncorre-

lated, i.e., RxnðtÞ ¼ RnxðtÞ ¼ 0, we have

Ryy tð Þ ¼ Rxx tð Þ þ Rnn tð Þ: (2:8:13) &

The average power contained in the signal and the

noise is given by

Py ¼ Px þ Pn ¼ Rxð0Þ þ Rnð0Þ ¼ Rxð0Þ þ s2n:

(2:8:14)

The signal-to-noise ratio (SNR), Px=Pn, can be

computed. It is normally identified in terms of dec-

ibels. See Section 1.9.
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2.9 Summary

We have introduced the basics associated with the

two important signal analysis concepts: convolu-

tion and correlation. Specific principal topics that

were included are

 Convolution integral: its computations and its

properties
 Moments associated with functions
 Central limit theorem
 Periodic convolutions
 Auto- and cross-correlations
 Examples of correlations involving noise without

going into probability theory
 Quantitative measures of cross-correlation func-

tions and the correlation coefficient
 Auto- and cross-correlation functions of energy

and periodic signals
 Signal-to-noise ratios

Problems

2.1.1 Consider the following functions defined over

0 < t < 1. Using (2.1.3), identify the two functions

that give the maximum cross-correlation at t ¼ 0.

x1ðtÞ ¼ e�t; x2ðtÞ ¼ sinðtÞ; x3ðtÞ ¼ ð1=tÞ:

2.2.1 Prove the commutative, distributive, and the

associate properties of the convolution.

2.2.2 Find the convolution yðtÞ ¼ hðtÞ � xðtÞ for the
following functions:

a: xðtÞ ¼ :5dðt� 1Þ þ :5dðt� 2Þ;
hðtÞ ¼ :5dðt� 2Þ þ :5dðt� 3Þ

b: xðtÞ ¼ ðt� 1ÞP½t� 1�; hðtÞ ¼ xðtÞ;
c: xðtÞ ¼ ð1� t2Þ; �1 � t � 1;

hðtÞ ¼ P½t�;

d: xðtÞ ¼ e�atuðtÞ; hðtÞ ¼ e�btuðtÞ
for cases : 1:a > 0; b > 0; 2:a ¼ 0; b > 0

e: xðtÞ ¼ P t=2½ �; hðtÞ ¼ P½t� :5� �P½t� 1:5�

f: xðtÞ ¼ dðt� 1Þ; hðtÞ ¼ e�tuðtÞ

g: xðtÞ ¼ cosðptÞP½t�; hðtÞ ¼ e�tuðtÞ:

2.2.3 Use the area property of convolution to find

the integrals of yðtÞ in Problem 2.2.2.

2.3.1 a. Derive the expression for the convolution of

two pulse functions given by xðtÞ ¼ P½t� 1� and
h½t� ¼ P½t� 2�. Compute this directly first and

then verify your result by using the delay property

of convolution.

b. Verify the time duration property of the convolu-

tion using the above problems.

2.3.2Determine the area of yðtÞ in (2.3.18) using the

area property of the convolution.

2.4.1 Approximate the function yðtÞ in Example

2.3.1 using the Gaussian function.

2.4.2Use the derivative property of the convolution

to derive the convolution of the two functions given

below using the results in Example 2.5.2.

xTðtÞ ¼ sinðo0tÞ; hðtÞ ¼ e�atuðtÞ; a > 0:

2.4.3 Use the delay property of the convolution to

determine

xðtÞ ¼ e�atuðtÞ � uðt� 1Þ:

2.5.1 Derive the expressions for the periodic convo-

lution of the two periodic functions

xðtÞ ¼
X1
n¼�1

dðt� nTÞ; hðtÞ ¼
X1
n¼�1

P
t� nT

T=2

� �
:

2.6.1 Find the cross-correlation of the functions

xðtÞ and hðtÞ given in (2.6.11a) by directly deriving

the result and verify the result using the results in

Example 2.6.1.

2.6.2 Show the bounds given in (2.6.7a and b) and

(2.6.9b) are valid. Use (2.6.11a).

2.6.3 Show (2.6.9b) using (2.6.10).

2.7.1 Find the autocorrelations of the following

functions:

a:x1ðtÞ ¼ P½t� :5� �P t� 1:5½ �;
b:x2ðtÞ ¼ uðt� :5Þ � uðtþ :5Þ; c:x3ðtÞ ¼ tP½t�:

Compute the energies contained in the functions

directly and then verify the results using the auto-

correlation functions derived in the first part.

2.7.2 Verify the result in (2.7.3) using the results in

Example 2.7.1.
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2.7.3 Show the identity

AC½xðt� t0Þ� ¼ AC½xðtÞ�:

2.7.4 Derive the AC function step by step for the

function xðtÞ ¼ cosðo0tÞP½t=T�.
Use the integral formula by assuming

o0 ¼ p and T ¼ 4. Verify the results in Example

2.7.3 using the information provided in this pro-

blem. Give the appropriate bounds.

2.7.5 Show that the autocorrelations of the function

x2ðtÞ ¼ eatuðtÞ for a � 0 do not exist.

2.8.1 a.Derive the time-average periodic autocorre-

lation function Rx;TðtÞ for the following periodic

function using the integral formula.

xTðtÞ ¼ A1 cosðo0tþ y1Þ þ A2 cosð2o0tþ y2Þ:

b. Verify the result using (2.8.8) and (2.8.9).

c. Compute the average power contained in the

function directly and by evaluating the autocorrela-

tion function at t ¼ 0. Sketch the function xðtÞ by
assuming the values A1 ¼ 5;A2 ¼ 2; y1 ¼ 200; y2 ¼
1200. Sketch the autocorrelation function using

these constants. Suppose we are interested in deter-

mining the period T from these two sketches, which

function is better, the given function or its autocor-

relation? Why?

2.8.2 Let yTðtÞ ¼ Aþ xTðtÞ; A� constant. Repeat

the last problem, except for the plots.

2.8.3 a. Show that the following functions are

orthogonal over a period:

xTðtÞ ¼ cosðo0tþ yÞ; yðtÞ ¼ A b. Show the func-

tions xðtÞ ¼ P½t�; y½t� ¼ t are orthogonal.

2.8.4 Consider the signal zðtÞ ¼ xðtÞ þ yðtÞ. Show
that the AC of this function is given by

RzðtÞ ¼ RxðtÞ þ RyðtÞ þ RxyðtÞ þ RyxðtÞ:

Simplify the expression for RzðtÞ by assuming that

xðtÞ is orthogonal to yðtÞ for all t.

2.8.5 Complete the details in deriving the periodic

cross-correlation function in terms of the aperiodic

convolution leading up to Equation (2.8.3c).

2.8.6 Show (2.8.3c) using (2.6.5).
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Chapter 3

Fourier Series

3.1 Introduction

In this chapter we will consider approximating a

function by a linear combination of basis functions,

which are simple functions that can be generated in

a laboratory. Joseph Fourier (1768–1830) developed

the mathematical theory of heat conduction using a

set of trigonometric (sine and cosine) series of the

form we now call Fourier series (Fourier, J.B.J.,

1955 (A. Freeman, translation)). He established

that an arbitrary mathematical function can be

represented by its Fourier series. This idea was

new and startling and met with vigorous opposition

from some of the leading mathematicians at the

time, see Hawking (2005). Fourier series and the

Fourier transform are basics to mathematics and

science, especially to the theory of communications.

For example, a phoneme in a speech signal is

smooth and wavy. A linear combination of a few

sinusoidal functions would approximate a segment

of speech within some error tolerance. Suppose we

like to build a structure that allows us to climb from

the first floor to the second floor of a building. We

can have a staircase approximating a ramp function

using a linear combination of pulse functions. The

amplitudes and the width of the pulses can be deter-

mined based on the error between the ramp and the

staircase. Apart from the staircase problem, this

type of analysis is important in electrical engineer-

ing, for example, when converting an analog signal

to a discrete signal.

The term ‘‘well-behaved’’ function, xðtÞ defined
in the interval, ðt0; t0 þ TÞ is given in terms of the

following Dirichlet conditions:

1. The function xðtÞmust be single valuedwithin the

given interval of T seconds.

2. The function xðtÞ can have at most a finite num-

ber of discontinuities and a finite number of max-

ima and minima in the time interval.

3. The function xðtÞ must be absolutely integrable

on the interval, i.e.,

Zt0þT

t0

xðtÞj jdt ¼ finite51:

Fortunately, all signals that we will be interested in

satisfy these properties. The functions that do not

satisfy the Dirichlet conditions are only of theore-

tical interest. Dirichlet gave an example that does

not satisfy the conditions mentioned above and is

x2pðtÞ ¼
1; t-rational

0; t-irrational

�
:

Our goal is to express a well-behaved function xðtÞ
by an approximate function xaðtÞ in terms of an

independent set of functions ffkðtÞg and a set of

constants c½k� in the form

xaðtÞ ¼
XN
k¼�N

c½k�fkðtÞ: (3:1:1)

The subscript a on x in (3.1.1) denotes that it is an

approximation of the function xðtÞ: Without loos-

ing any generality we can assume that the limits on

the sum�N! �1. We will be interested in a finite

N that satisfies some constraints on the error signal,

i.e., the difference between the given signal and its

approximation. The entries in the expansion are

assumed to have the following properties:

R.K.R. Yarlagadda, Analog and Digital Signals and Systems, DOI 10.1007/978-1-4419-0034-0_3,
� Springer ScienceþBusiness Media, LLC 2010

71



1. The constants c½k� are assumed to be some con-

stants and k is an integer.

2. The set ffkðtÞ; k ¼ �N;�ðN� 1Þ; . . .� 1; 0; 1;

. . . ; ðN� 1Þ;Ng is a linearly independent set.

That is, fkðtÞ cannot be obtained as a linear

combination of the other fnðtÞ; n 6¼ k. Such a

set is called a basis function set and the members

of this set are called basis functions. The basis

functions can be real or complex.

3. Finally, we like to consider a basis set that is

independent of xðtÞ:

These properties are based on common sense. The

first one allows for a level adjustment. The second

property allows for the use of a set of independent

basis functions. The third property allows for a gen-

eral analysis. Later on we will see that some basis

functions may be more attractive than others for a

particular application. Fourier used the sine and

cosine functions as basis functions. The most impor-

tant aspect of generalized Fourier series expansion is

that it allows an arbitrary function, defined over a

finite interval, and may have discontinuities to be

represented as a sum of basis functions, such as sine

and cosine functions instead of using Taylor’s series:

xðtÞ¼xðaÞþx0ðaÞðx�aÞþx
00ðaÞðx�aÞ2

2!
þ���

þx
ðnÞðaÞðt�aÞn

n!
þ���; xðnÞðaÞ¼d

nxðtÞ
dtn

t¼aj

(3:1:2)

This is an approximation of the function xðtÞ
based upon the value of the given function at a

point t ¼ a and the values of the derivatives of

the function at that point. The Taylor series

gives a strict prediction of xðtÞ at a finite distance

from xðtÞ t¼aj , whereas the Fourier series gives

information of the function over the entire range

t0 � t 5t0 þ T. Another striking difference is

the coefficients in the Taylor series are based

upon the derivatives of the function at t ¼ a and

the Fourier series coefficients are obtained by

integration. Furthermore we can use (3.1.2) only

if we know all the derivatives of the function at

t ¼ t0: If not, we have to resort to other methods,

such as approximating them. The material in this

chapter is fairly standard and can be found in

most of the standard circuits and systems text

books. For example, see Ambardar (1995), Hay-

kin and Van Veen (1999), Carlson (1998), Hsu

(1967), and many others. Also, see Carslaw

(1950), Jeffrey, (1956), Tolstov (1962), and Zyg-

mund (1955). In Chapter 8 we will approximate a

function by making use of samples of a signal in

combination with some interesting interpolation

functions.

The presentation starts with the generalized

Fourier series and later the Fourier series as

a member of the generalized class of series.

The basis functions are independent. The

expansion gets easier if the basis functions are

orthogonal.

3.2 Orthogonal Basis Functions

The set of basis functions fkðtÞf g is an orthogonal

basis set if the functions satisfy

Zt0þT

t0

fkðaÞf�mðaÞda ¼
Ek k ¼ m

0 k 6¼ m

�
: (3:2:1)

The superscript (*) on fmðtÞ indicates complex con-

jugation. If fmðtÞ is real, then f�mðtÞ ¼ fmðtÞ. The
symbol Ek is used to denote the energy in the basis

function, fkðtÞ in the given time interval and Ek is

real. That is,

Ek > 0ð assuming fkðtÞ 6¼ 0Þ: (3:2:2)

When k 6¼ m in (3.2.1), the integral is zero, which is

the orthogonality property of the basis functions. If

Ek ¼ 1 in (3.2.1), then the basis set is an orthonor-

mal set. Orthonormality is not critical in our expan-

sion, as we can create an orthonormal set by nor-

malizing an orthogonal set, i.e., by replacing

fkðtÞ by fkðtÞ=
ffiffiffiffiffiffi
Ek

p� �
. Therefore, we will concen-

trate on using orthogonal basis sets instead of

orthonormal basis sets.

Example 3.2.1 Show that the set ff1ðtÞ;f2ðtÞg given
below is an independent set:

f1ðtÞ ¼ P t� 0:5½ � and f2ðtÞ ¼ P
t� 1

2

� �
: (3:2:3)
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Solution: The members of the set are sketched in

Fig. 3.2.1 and the set is an independent set since any

one of the members cannot be expressed in terms of

the others. Since they overlap, and the time width of

the second member is longer than the first member,

they are not orthogonal. This can be seen from the

integral

Z2

0

f1 að Þf2 að Þda ¼
Z1

0

P a� :5½ �P a� 1ð Þ=2½ �da

¼ 1 6¼ 0: (3:2:4) &

Example 3.2.2 Consider the pulse functions given

below and show that they form an orthogonal basis

set. Find the value of A that makes the set an ortho-

normal set.

f1ðtÞ ¼ AP
t� ðT=6Þ

T=3

� �
;

f2ðtÞ ¼ AP
t� ðT=2Þ

T=3

� �
;

f3ðtÞ ¼ AP
t� ð5T=6Þ

T=3

� �
: (3:2:5)

Solution: The pulse functions are shown in Fig. 3.2.2.

Clearly, each pulse function exists in a different interval

and therefore they are orthogonal. Since all the pulses

are of the same width and the same height, we can write

E1 ¼ E2 ¼ E3 ¼
ZT=3

0

A2da ¼ ðA2TÞ=3: (3:2:6)

The functions are orthonormal if A ¼
ffiffiffi
3
T

q
and

Ei ¼ 1; i ¼ 1; 2; 3: &

Example 3.2.3 Show that the following set is an

orthogonal basis set over the time interval

t0 � t5t0 þ T and give the values of Ek:

fkðtÞ ¼ ejko0t; k ¼ 0;�1;�2; . . .
� 	

: (3:2:7a)

Solution: Note that fkðtÞ ¼ fkðtþ TÞwith the per-

iod T ¼ 2p=o0 since

ejko0ðtþTÞ ¼ ejko0tejko0T ¼ ejko0t;

o0T ¼ 2p; f0 ¼ 2p=o0 ¼ 1=T: (3:2:7b)

If a function xTðtÞ ¼ xTðtþ TÞ; then a short hand

notation (see (1.5.14)) is

Zt0þT

t0

xTðaÞda ¼
Z
T

xTðaÞda: (3:2:8)

The integral on the right is over any period. Using

the orthogonality property, we have

k 6¼ m :

Z
T

fkðaÞf�mðaÞda ¼
Z
T

ejko0ae�jmo0edt

¼
ZT

0

ejðk�mÞo0ada ¼ ejðk�mÞo0a 1

jðk�mÞo0


 �
T
0

��

¼ 1� 1

ðk�mÞo0
¼ 0: (3:2:9a) &

k ¼ m :

Z
T

ejko0ae�jmo0ada

¼
ZT

0

da ¼ T; Ek ¼ T ¼ E:

(3:2:9b)

Example 3.2.4 Test the orthogonality over the inter-

val ðt0; t1Þ of the set of functions

ffkðtÞ; k ¼ 0; 1; 2; . . .g ¼ 1; t; t2; . . .
� 	

: (3:2:10)

Solution: First

Zt1
t0

f1ðaÞf2ðaÞda ¼
Zt1
t0

ada ¼ 1

2
½t21 � t20�:

The functions f1ðtÞ and f2ðtÞ are orthogonal if

t1 ¼ �t0 or if t1 ¼ t0. Now consider the two func-

tions f0ðtÞ ¼ 1 and f2ðtÞ ¼ t2.With these, we have

φ1(t) φ2(t)

Fig. 3.2.1 Pulse functions fiðtÞ, i = 1, 2

φ1(t) φ2 (t) φ3 (t)

Fig. 3.2.2 Pulse functions fiðtÞ; i ¼ 1; 2; 3
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Zt1
t0

f0ðaÞf2ðaÞda ¼
Zt1
t0

a2da ¼ 1

3
ðt31 � t30Þ:

The functions f0ðtÞ and f2ðtÞ are not orthogonal

over any interval, except in the trivial case of t0 ¼ t1.

The set in (3.2.10) is not a good set to represent all

signals. &

3.2.1 Gram–Schmidt Orthogonalization

Consider a linear set of independent real functions,

f1ðtÞ;f2ðtÞ; . . . ;fkðtÞ; . . ., defined on the interval

½a; b�. Now define a new set of functions

fj1ðtÞ;j2ðtÞ; . . . ;jkðtÞ; . . .g by
j1ðtÞ ¼ f1ðtÞ;

j2ðtÞ ¼ f2ðtÞ �

Zb

a

j1ðaÞf2ðaÞda

Zb

a

j2
1ðaÞda

j1ðtÞ

j3ðtÞ ¼ f3ðtÞ �

Zb

a

j1ðaÞf3ðaÞda

Zb

a

j2
1ðaÞda

j1ðtÞ �

Zb

a

j2ðaÞf3ðaÞda

Zb

a

j2
2ðaÞda

j2ðtÞ; . . .: (3:2:11)

This process of generating an orthogonal set of

functions starting with an independent set is called

the Gram–Schmidt orthogonalization process.

Example 3.2.5 Use the Gram–Schmidt process

to generate an orthogonal basis set, fPnðtÞ;
n ¼ 0; 1; 2; 3; . . .g; in the interval � 1 � t � 1

using (3.2.11) in Example 3.2.4.

Solution: First two are

P0ðtÞ ¼ f0ðtÞ ¼ 1:

P1ðtÞ ¼ f1ðtÞ �

Z1

�1

P0ðaÞf1ðaÞda

Z1

�1

P2
0ðaÞda

P0ðtÞ ¼ t�

Z1

�1

ð1Þada

Z1

�1

da

P0ðtÞ ¼ t:

Similarly we can determine P2ðtÞ ¼ t2 � ð1=3Þ. We

can multiply these polynomials by a constant since

multiplying a polynomial in the set by a constant

does not change the orthogonality of the polyno-

mials. The above process generates the Legendre

polynomials within a constant. The first five

Legendre polynomials are listed below:

L0ðtÞ ¼ 1;

L1ðtÞ ¼ t;

L2ðtÞ ¼ ð1=2Þð3t2 � 1Þ;
L3ðtÞ ¼ ð1=2Þð5t3 � 3tÞ;
L4ðtÞ ¼ ð1=8Þð35t4 � 30t2 þ 3Þ:

Note the constant factors between PiðtÞ and LiðtÞ.
These polynomials can be generated by Rodrigue’s

formula Spiegel (1968):

LkðtÞ ¼
1

2kk!

dðt2 � 1Þk

dtk
; k ¼ 0; 1; 2; 3; . . . : (3:2:12a)

The polynomials generated by this process are

referred to as special Legendre polynomials. Note

the subscript k is used as an index, which is different

from p used in the Lp measures. They satisfy the

orthogonality property

Z1

�1

LmðaÞLkðaÞda¼
0; m 6¼ k

Ek ¼ 2
ð2kþ1Þ ; m¼ k

(
:

(3:2:12b) &

Example 3.2.6 Show the set of periodic functions

given below is an orthogonal basis set over one

period and compute the energy in each of the basis

functions in one period:
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f1; cosðo0tÞ; cosð2o0tÞ; . . . ; cosðko0tÞ; . . . ;

sinðo0tÞ; sinð2o0tÞ; . . . ; sinðko0tÞ; . . .g: (3:2:13)

Solution: The members of the set are periodic with

periodT ¼ 2p=o0 and we need to show (3.2.1) using

the members of the given set:

Z
T

ð1Þda ¼T;
Z
T

ð1Þ cosðko0aÞda ¼ 0;

Z
T

ð1Þ sinðko0aÞda ¼ 0; k ¼ 1; 2; . . . : (3:2:14a)

Using trigonometric identities, we have

Z
T

cosðko0aÞ cosðmo0aÞda ¼

R
T

cos2ðko0aÞda ¼ 1
2

R
T

daþ 1
2

R
T

cosð2 ko0aÞda ¼ T
2; k ¼ m

1
2

R
T

cosððkþmÞo0aÞdaþ 1
2

R
T

cosððk�mÞo0aÞda ¼ 0; k 6¼ m

8><
>: :

Z
T

sin ko0að Þ sin mo0að Þda ¼ 1

2

Z
T

cos k�mð Þo0ada�
1

2

Z
T

cos kþmð Þo0ada ¼
T
2 ; k ¼ m

0; k 6¼ m

�
:

Z
T

sinðko0aÞ cosðmo0aÞda ¼
1

2

Z
T

sinððkþmÞo0aÞdaþ
1

2

Z
T

sinððk�mÞo0aÞda ¼ 0;

for all k and m:

(3:2:14b)

These prove that the set in (3.2.13) is an orthogonal

set. The energies contained in the members of the

basis set in one period are as follows:

Eð Þ1 ¼ T; Eð Þsine or a cosine function

¼ T=2: (3:2:15) &

The set is an orthogonal set and not orthonormal

set. There are many other basis sets.

3.3 Approximation Measures

We are interested in approximating a given function

xðtÞ over an interval (t0; t0 þ TÞ by xaðtÞ using a set

of orthogonal basis functions. How do we measure

the approximation and then how good is the

approximation? It can be measured by the error

½xðtÞ � xaðtÞ�. Figure 3.3.1 illustrates an example

where xðtÞ is the given function and its approxima-

tion is xaðtÞ. The hatched area represents the error.

Since the functions can be complex and a positive

error is just as bad as a negative error, and to make it

general, we would like to consider the magnitude of

the error. In addition, if the errormeasure is a number,

we can compare and evaluate a particular approxima-

tionwith respect to a number of basis sets. These goals

can be achieved by considering the integral of the pth

power of the magnitude of the error function, i.e.,

Zt0þT

t0

xðtÞ � xaðtÞj jpdt; 1 � p: (3:3:1)

Notes: There is a good deal of interest in the

area of inverse problems, such as deconvolution

of signals based on Lp; 1 � p measures. For a

Fig. 3.3.1 xðtÞ� Given function, xaðtÞ� Function approx-
imating xðtÞ
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review see Tarantola (1987) and Hassan et al.

(1994). Statisticians have investigated the Lp

measures based on probabilistic behavior of signals.

Our discussion here does not involve any details of

statistical analysis. For readers interested in statisti-

cal details of these measures, p is selected based

upon the kurtosis defined as the fourth moment

normalized by the square of the variance of a prob-

ability density functionMoney (1982). In Section 1.7

we have considered three important density

functions, uniform, Gaussian, and Laplacian.

These can be used in selecting the value of p.Kurto-

sis values are k = 1.8 (Uniform, 3 ðGaussianÞ;
and 6 ðLaplacianÞ: The constant p is selected by

p ¼ 9

k2 þ 1


 �
; 1 � k � 1;

k > 3:8 use L1

2:25k53:8 use L2

k52:2 use L1

8><
>:

9>=
>;: (3:3:2)

Lp measures are used for speech, seismic, radar, and

other signal coding. For example, for vowel sounds,

L1 is preferable and for nonvowel sounds, L2 is

preferable, see Lansford and Yarlagadda (1988).

Since seismic signals have spiky noise, L1 seems to

work well, see Yarlagadda et al. (1985). See Schroe-

der and Yarlagadda (1989) on spectral estimation

using L1 norm. An old adage is if you have a fork in

the road and have a choice to select either L1 or L2

measure, L2 tells you to go in the middle of the two

roads, not one of the two possible paths, whereas L1

suggests taking one or the other paths. L2 measure

thinks like a machine, whereas L 1 measure thinks

like a human, see Problem 3.2.2 at the end of the

chapter. For most applications, L2 the least-squares

error measure is adequate and simple to use.

In Section 1.7.1, theGaussian probability density

function was introduced, see (1.7.12). Writing it

terms of the error e with mean 0 and variance s2e ,
the density function is

feðeÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2ps2e

p e�e
2=2s2e : (3:3:3)

Minimizing the error (see e2 in (3.3.a)) corre-

sponds to maximizing the probability, thus

providing a mathematical basis for the least-

squares approach. &

The mean-squared error (MSE) is defined by

considering ð2Nþ 1Þ terms, we have

MSE ¼ 1

T

Zt0þT

t0

xðtÞ � xaðtÞj j2dt; xaðtÞ

¼
XN
k¼�N

c½k�fkðtÞ 	 S2Nþ1: (3:3:4a)

The interval T will be the same for different approx-

imations in a particular situation and the nor-

malization constant can be omitted and compare

the approximations by using an orthogonal basis

set ffkðtÞg and the integral-squared error (ISE),

i.e.,

ISE¼
Zt0þT

t0

xðtÞ�xaðtÞj j2dt

¼
Zt0þT

t0

xðtÞ�
XN
k¼�N

c½k�fkðtÞ
�����

�����
2

dt	e2Nþ1: (3:3:4b)

The subscript on e; 2Nþ 1 corresponds to

the number of terms in the approximation and

some of the coefficients c½k� may be zero and N

could go to infinity. It is convenient to consider

odd number of terms. Since c½k�0s are unknowns,

there is no loss in generality. The constants c½k�
can be determined from the basis set ffkðtÞ; k ¼
�N; . . . ;�2;�1; 0; 1; 2; . . . ;Ng by minimizing

the ISE.

We will consider two ways of computing the

constants that minimize the integral-squared

error. The first one is based upon taking the par-

tials of the ISE with respect to c½k�, equating the

partials to zero, and then solving for them. The

second one is based on using perfect squares by

rewriting the ISE in terms of two parts. First term

is independent of c½k� and the second is a sum of

perfect square terms involving c½k�. Equating the

perfect square terms to zero and solving for c½k�
give the desired result.
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3.3.1 Computation of c[k] Based
on Partials

First,

e2Nþ1 ¼
Zt0þT

t0

xðtÞ �
XN
k¼�N

c½k�fkðtÞ
�����

�����
2

dt

¼
Zt0þT

t0

xðtÞ � S2Nþ1j j2dt

¼
Zt0þT

t0

xðtÞ �
XN

m¼�N
c½m�fmðtÞ

" #


 x�ðtÞ �
XN
k¼�N

c�½k�f�kðtÞ
" #

dt: (3:3:5)

Note the two different variables k and m in the

above summations. This allows us to keep track of

the terms in the summation products. Multiplying

the product terms and since the integral of a sum is

equal to the sum of the integrals, we have

e2Nþ1¼
Zt0þT

t0

xðtÞx�ðtÞdt�
XN

m¼�N
c½m�

Zt0þT

t0

x�ðtÞfmðtÞdt

�
XN
k¼N

c�½k�
Zt0þT

t0

xðtÞf�kðtÞdt

þ
XN
k¼�N

XN
m¼�N

c½m�c�½k�
Zt0þT

t0

fmðtÞf�kðtÞdt:

(3:3:6)
Take the partial derivatives of e2Nþ1 with respect to

c½m� and equate them to zero:

@e2Nþ1
@c½m� ¼

Zt0þT

t0

½�x�ðtÞfmðtÞ�dt

þ
XN
k¼�N

c�½k�
Zt0þT

t0

fmðtÞf�kðtÞdt¼0: (3:3:7)

Orthogonality of the basis functions implies

Zt0þT

t0

fkðtÞf�mðtÞdt¼
Ek>0 and real; k¼m

0; otherwise

�
: (3:3:8)

Using this in (3.3.6) results in

Zt0þT

t0

x�ðtÞfkðtÞdtþ c � ½k�ðEkÞ ¼ 0:

The coefficients c½k� are the generalized Fourier ser-

ies coefficients giving an explicit formula given

below to compute c½k� given xðtÞ and the orthogonal
basis set jkðtÞf g:

c½k� ¼ 1

Ek

Zt0þT

t0

xðtÞf�kðtÞdt: (3:3:9)

3.3.2 Computation of c[k] Using
the Method of Perfect Squares

Example 3.3.1 Consider the second-order polynomial

yðtÞ ¼ t2 þ bt. Determine the minimum value of yðtÞ
by having a part of the expression that is a perfect square.

Solution: By adding and subtracting the term

ðb=2Þ2 to yðtÞ, we have

yðtÞ ¼ t2 þ bt ¼ t2 þ btþ b

2


 �2

� b

2


 �2

¼ tþ b

2


 �2

� b

2


 �2

:

This function takes a minimum value for t ¼ �b=2
and yðtÞ ¼ �ðb=2Þ2: &

This idea can be used in minimizing the integral-

squared error, See Ziemer and Tranter (2002). Add

and subtract the following term to e2Nþ1 in (3.3.6):

XN
k¼�N

1

Ek

Zt0þT

t0

xðtÞf�kðtÞdt

������
������
2

:

eð2Nþ1Þ¼
Zt0þT

t0

xðtÞj j2dtþ �
XN
k¼�N

c½k�
( Zt0þT

t0

x�ðtÞfkðtÞdt

�
XN
k¼�N

c�½k�
Zt0þT

t0

xðtÞf�kðtÞdt
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þ
X1

k¼�1

1

Ek

Zt0þT

t0

xðtÞf�kðtÞdt

������
������
2

þ
X1

k¼�1
Ekðc½k�c � ½k�Þg

�
X1

k¼�1

1

Ek

Zt0þT

t0

xðtÞf�kðtÞdt

������
������
2

: (3:3:10)

The terms inside the brackets {.} can be expressed as

a sum of squares and

e2Nþ1 ¼
Zt0þT

t0

xðtÞj j2dtþ
XN
k¼�N

ffiffiffiffiffiffi
Ek

p
c½k� � 1ffiffiffiffiffiffi

Ek

p
Zt0þT

t0

xðtÞf�kðtÞdt

������
������
2

�
XN
k¼�N

1

Ek

Zt0þT

t0

xðtÞf�kðtÞdt

������
������
2

: (3:3:11)

To show that (3.3.11) reduces to (3.3.10), expand

the middle term on the right and then cancel the

equal terms that have opposite signs. The para-

meters c½k� are not in the first and the third terms

in (3.3.11). It is only included in the middle term,

which is a sum of absolute values. Therefore, mini-

mization of e2Nþ1 is achieved when the middle term

is zero and c½k� is given by (3.3.9).

3.3.3 Parseval’s Theorem

The minimum ISE with ð2Nþ 1Þ terms is (see

(3.3.5))

e2Nþ1 ¼
Zt0þT

t0

xðtÞj j2dt�
XN
k¼�N

Ek c½k�j j2

¼ 1

T

Zt0þT

t0

xðtÞ � S2Nþ1j j2dt � 0: (3:3:12)

As N increases, the partial the quantity e2Nþ1ð Þ can
only decrease. Therefore, as N increases, the partial

sums of the F-series give a closer and closer

approximation to the function xðtÞ, only in the

sense that the approximation gives a smaller mean

square error. In the limit, for any complete set of

basis functions defined below:

lim
N!1

e2Nþ1 ¼ 0: (3:3:13)

From (3.3.12), we have Parseval’s equation, or for-

mula, or identity given by

Zt0þT

t0

xðtÞj j2dt ¼
X1

k¼�1
Ek c½k�j j2: (3:3:14)

Summary: Given a time-limited function xðtÞ;
t0 � t5t0 þ T and a set of orthogonal basis func-

tions fkðtÞ; k ¼ 0;�1;�2; . . .f g, the function xðtÞ is
approximated by

xaðtÞ ’
X1

k¼�1
c½k�fkðtÞ;

c½k� ¼ 1

Ek

Zt0þT

t0

xðtÞf�kðtÞdt (3:3:15)

and the integral-squared error is equal to zero. The

function xaðtÞ is an approximation of xðtÞ in the

identified interval. Only in the sense that the inte-

gral-squared error goes to zero, we write the equality

of the given function to the approximate function by

xðtÞ ¼ xaðtÞ ¼
X1

k¼�1
c½k�fkðtÞ: (3:3:16)

It should be emphasized that xðtÞ and xaðtÞ are not
equal in the true sense. Differences between these

two functions will be considered a bit later. In sim-

ple terms, the coefficients c½k� of the generalized

Fourier series are

c½k� ¼ 1

Ek, Energy in fkðtÞ
in the interval ðt0;t0 þ TÞ

2
6664

3
7775
Zt0þT

t0

xðtÞ
ðconjugate of the

basis function, f�kðtÞÞ

� �
dt: (3:3:17a)

The error in (3.3.12) with ð2Nþ 1Þ coefficients in
the F-series expansion is equal to
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E2Nþ1¼ ðEnergy in the given T second interval of the function)

�
XN
k¼�N

ðSquared magnitude of the kth coefficient) (Energy in the kthbasis function)

" #

¼
Zt0þT

t0

xTðtÞj j2dt�
XN
k¼�N

c½k�j j2Ek ¼ ISE: (3:3:17b)

Later, the convergence of the approximated signal

xaðtÞ to xðtÞ in terms of the number of coefficients in

the approximationwill be considered. The signal xðtÞ
is assumed to satisfy the Dirichlet conditions. The

value of the integral in (3.3.17b) is unique and the

generalized Fourier series is unique for a given set of

basis functions. Let us illustrate the above by a

detailed example, see Simpson and Houts (1971). &

Example 3.3.2 Find the generalized Fourier series

expansion of the function xðtÞ given below in

Fig. 3.3.2 using the three orthogonal basis functions

in (3.2.5). Then compute the mean-squared error

using the direct method and Parseval’s theorem.

Solution: The expression for the time function xðtÞ
and the three basis functions are

xðtÞ¼ 3

G
tP

t� T
2

T

� �
;

f1ðtÞ ¼ AP
t� T

6

T=3

� �
;

f2ðtÞ ¼ AP
t� T

2

T=3

� �
; and

f3ðtÞ ¼ AP
t� 5T

6

T=3

� �
: (3:3:18)

Earlier we have shown that fiðtÞ; i ¼ 1; 2; 3 form an

orthogonal basis set with Ek ¼ A2T=3; k ¼ 1; 2; 3,

see Example 3.2.2. Noting that the time interval of

the given function is 0 � t5T and from (3.3.9), the

coefficients are as follows:

c½1� ¼ 1

E1

Zt0þT¼T

t0¼0

xðtÞf�1ðtÞdt

¼ 1

A2ðT=3Þ

ZT

0

3

T
tf1ðtÞdt

¼ 1

A2 T=3ð Þ
3

T

ZT=3

0

t:Adt

¼ 1

A2

3

T


 �
3

T


 �
A

t2

2


 �
t ¼ T

3

t ¼ 0

���� ¼ 1

2A

c 2½ � ¼ 1

A2 T
3

 �
Z2T=3

T=3

3

T
t


 �
Adt ¼ 3

2A
; c 3½ � ¼ 5

2A
:

xaðtÞ ¼ c½1�f1ðtÞ þ c½2�f2ðtÞ þ c½3�f3ðtÞ

¼ 1

2
P

t� T=6

T=3

� �
þ 3

2
P

t� T=2

T=3

� �

þ 5

2
P

t� 5t=6

T=3

� �
: (3:3:19)

The functions xðtÞ and xaðtÞ are sketched in Fig.

3.3.2. The error is shown by the hatched marks and

it has six equal parts. Clearly,

ISE ¼ 6

ZT=6

0

½xðtÞ � xaðtÞ�2dt ¼ 6

ZT=6

0

3

T
t� 1

2


 �2

dt

¼ 6

ZT=6

0

9t2

T2
þ 1

4
� 3t

T


 �
dt

¼ 6
1

4
t� 3

T

t2

2
þ 9

T2

t3

3

� �
T=6
0 ¼ T

12

���� (3:3:20a)

This procedure is complicated and unnecessary

since some of this work has already been done
Fig. 3.3.2 xðtÞ, xaðtÞ and the error between these two
functions
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in deriving the generalized Fourier series coeffi-

cients. Using Parseval’s theorem and (3.3.17b)

results in the same value as in (3.3.20a) and is

shown below.

ISE¼
ZT

0

3

T
t


 �2

dt�A2 T

3


 �
1

2A


 �2

þ 3

2A


 �2

þ 5

2A


 �2
" #

¼3T�35
12

T¼T

12
: (3:3:20b) &

3.4 Fourier Series

The generalized Fourier series developed earlier can

be used to study both the complex and the trigono-

metric Fourier series of a periodic function xTðtÞ
with period of T seconds. The functions

ejno0t; sinðno0tÞ; and cosðno0tÞ are nice functions

in the sense that all the derivatives of these functions

exist. Approximation of a given function by the

Fourier series (F-series) gives a smooth function

even when the function being approximated has

discontinuities.

3.4.1 Complex Fourier Series

The complex Fourier series makes use of the basis

functions fejko0t; k ¼ 0;�1;�2; . . .g given in

(3.2.7a) with o0 ¼ 2p=T. The basis functions are

periodic and the energy in one period is Ek ¼ T

(see (3.2.9b)). The complex Fourier series expansion

of a periodic function xTðtÞ that is either real or

complex with the period T is identified by

xaðtÞ ¼
X1

k¼�1
Xs½k�ejko0t;

Xs½k� ¼
1

T

Z
T

xTðtÞe�jko0tdt: (3:4:1a)

See (3.3.15) with Xs½k� ¼ c½k� and fkðtÞ ¼ ejko0t.

xaðtÞ is a periodic function andwe are approximating

the given function xTðtÞ in an interval ðt0; t0 þ TÞ.
Some authors do not show the subscript T on x

and should be evident from the context. The equal-

ity is only true in the sense that the integral-

squared error between the periodic function and

the F-series in the given interval is zero. The

given function and the corresponding Fourier series

coefficients are identified by the symbolic notation:

xTðtÞ !
FS;T

Xs½k� (3:4:1b)

The subscript s on X is used to denote that the

coefficients are the complex F-series coefficients.

Note the difference in the sign of the exponents in

the sum and the integral expressions in (3.4.1a).

Fourier coefficients are computed by an integral

and the integral has a unique value. That is, F-series

expansion is unique. The complex F-series can be used

to approximate an aperiodic function in a time inter-

val (t0; t0 þ TÞ, where t0 is arbitrary and T is the

interval of the function that is under consideration.

The approximation, in terms of periodic basis func-

tions, will be valid only in the given time interval and,

outside this interval, it is not valid. Complex Fourier

series is applicable to both real and complex func-

tions. When the function xTðtÞ is real, the F-series

coefficients Xs½k� and Xs½�k� are related.

Xs½�k�¼
1

T

Z
T

xTðtÞejko0tdt

¼ 1

T

Z
T

xTðtÞe�jko0t
� �

dt

8<
:

9=
;
�

¼X�s ½k�: (3:4:1c)

In Section 1.3.1, we have seen that the computation

of the integrals can be simplified for even and odd

functions. An arbitrary real periodic function xTðtÞ
can be written in terms of its even and odd parts,

xTeðtÞ and xT0ðtÞ, respectively, see (1.2.8).

xTðtÞ ¼ xTeðtÞ þ xT0ðtÞ;
xTeðtÞ ¼ :5½xTðtÞ þ xTð�tÞ�;
xT0ðtÞ ¼ :5½xTðtÞ � xTð�tÞ�: (3:4:2)

Example 3.4.1 If xTðtÞ is real and even, show the

complex F-series coefficients are real and even. If

xTðtÞ is real and odd, show the complex F-series

coefficients are imaginary.
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Solution: These can be seen from the following:

Xs½k� ¼
1

T

Z
T

xTðtÞe�jko0t

dt ¼ 1

T

Z
T

xTðtÞ cosðko0tÞdt

� j

T

Z
T

xTðtÞ sinðko0tÞdt:

If xTðtÞ is real and even and since sinðno0tÞ is odd,
the integrand in the second integral in the above

equation is odd and therefore it is zero and Xs½k� is
real and even. That is,

Xs½k� ¼
1

T

Z
T

xTðtÞ cosðko0tÞdt) Xs½�k�

¼ Xs½k�: (3:4:3)

In the case of xTðtÞ being odd, the product

xTðtÞ cosðno0tÞ is odd and Xs½�k� ¼ �Xs½k�.

Xs½k� ¼
�j
T

Z
T

xTðtÞ sinðko0tÞdt: (3:4:4) &

Summary:

xTeðtÞ !
FS;T

Xs½k� ¼ Xs½�k�; xT0ðtÞ !
FS;T

Xs½k�
¼ �Xs½�k�: (3:4:5)

Example 3.4.2 Find the complex F-series of the

pulse sequence shown in Fig. 3.4.1.

Solution: Using the expression in (3.4.1a) and using

sinc functions defined in (1.2.15), we have the fol-

lowing. Note o0 ¼ 2pf0; f0 ¼ ð1=TÞ.

Xs½k� ¼
1

T

Z
T

xTðtÞe�jko0tdt ¼ 1

T

Zt=2

�t=2

Ae�jko0t

dt ¼ A

T

1

�jko0


 �
e�jko0t t¼t=2

t¼�t=2

��� :

¼ At
T

ejko0t=2 � e�jko0T=2
 �

2jko0
t
2

¼ At
T

sinðko0
t
2Þ

ko0
t
2

¼ At
T

sinðpkf0tÞ
pkf0t

¼ At
T

sin c
kpt
T


 �
(3:4:6)

The complex F-series coefficients are real as xTðtÞ is
an even function and

xTðtÞ ¼
X1

k¼�1
Xs½k�e jko0t ¼

X1
k¼�1

At
T
sinc

kpt
T


 �
e jko0t

(3:4:7)

The complex Fourier coefficients are inversely pro-

portional to k in this example, i.e.,

Xs½k� ¼
At
T
sinc

kpt
T


 �
¼ At

T

sinðkpt=TÞ
ðkpt=TÞ / 1=k:

(3:4:8)

Note that sinðkpt=TÞj j � 1. Equation (3.4.8) pro-

vides a measure of the rate of decay of the F-series

coefficients. &

We are interested in reconstructing a pulse

waveform using the complex Fourier series, i.e.,

using exponential (later sine and cosine) functions.

How many terms are needed to keep in the series to

get a good approximation? This will be answered

shortly.

Example 3.4.3 Consider the saw-tooth waveform

shown in Fig. 3.4.2 expressed by

x2pðtÞ ¼ t;�p5t5p; x2pðtÞ ¼ x2pðtþ 2pÞ;T ¼ 2p:

(3:4:9)

xT (t)

Fig. 3.4.1 Periodic pulse sequence xTðtÞ Fig. 3.4.2 Saw-tooth waveform
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Solution: Since o0 ¼ 2p=T, we have o0 ¼ 1 and

x2pðtÞ is an odd function, we have

Xs½0� ¼ 0: (3:4:10)

Now use the integration by parts given below to

compute Xs½k�; k 6¼ 0:

Z
yeaydy ¼ eay

a
y� 1

a


 �
: (3:4:11)

The coefficients are given by

Xs½k� ¼
1

2p

Z p

�p
te�jktdt ¼ e�jkt

�2pðjkÞðtþ
1

jk
Þ t¼p

t¼�p
�� :

¼ � e�jkp

2pðjkÞ pþ 1

jk

� �
þ ejkp

2pðjkÞ �pþ
1

jk

� �

¼ �ð�1Þ
k

jk
; k 6¼ 0: (3:4:12)

Since x2pðtÞ is an odd function, the coefficients are

pure imaginary and

x2pðtÞ ¼ � � � �
ej2t

2j
þ ejt

j
þ 0þ e�jt

j
� e�j2t

2j
� � � �: (3:4:13a)

Euler’s equation can be used and write (3.4.13a) in

the form

x2pðtÞ ¼ 2
sinðtÞ
1
� sinð2tÞ

2
þ sinð3tÞ

3
þ � � �

� �
: (3:4:13b)

The F-series in (3.4.13b) contains only sine terms

since x2pðtÞ is an odd function. It is more appealing

since the given function is real. &

Example 3.4.4Derive the complex F-series given the

periodic impulse sequence

xTðtÞ ¼
X1

k¼�1
Adðt� kTÞ: (3:4:14)

Solution: The complex F-series coefficients are

Xs½k� ¼
1

T

Z
T

xðtÞe�jko0tdt

¼ 1

T

ZT=2

�T=2

AdðtÞdt ¼ A

T
: (3:4:15a)

xTðtÞ ¼
A

T

X1
k¼�1

ejko0t ¼ 2A

T

X1
k¼0

cosðko0tÞ: (3:4:15b)

That is, the F-series coefficients Xs½k� of a periodic

impulse sequence are independent of k. Since the

impulse sequence is an even function, it follows

that the coefficients have a dc term and cosine

terms and no sine terms. Independence of k in this

example will be used in determining the convergence

of F-series coefficients a bit later. &

Example 3.4.5 Find the complex F-series of

the trigonometric function xTðtÞ ¼ sin2 o0t þ
2 coso0t.

Solution: Using Euler’s equation, we have

xTðtÞ ¼
ejo0t � e�jo0t

2j

� �2
þ2 ejo0t þ e�jo0t

2

� �

¼ �1
4
e�j2o0t þ e�jo0t þ 1

2
þ ejo0t � 1

4
ej2o0t

¼
X1

k¼�1
Xs½k�ejko0t

¼)Xs �2½ � ¼ �:25;Xs½�1� ¼ 1;Xs½0� ¼ 1=2;

Xs½1� ¼ 1;Xs½2� ¼ �:25;XsðkÞ ¼ 0; kj j > 2:

Since the function is real and even, the above vali-

dates Xs½�k� ¼ Xs½k�. The F-series coefficients

are unique. Using trigonometric identity, it follows

that

xT tð Þ ¼ 1=2ð Þ þ 2 cos o0tð Þ
� 1=2ð Þ sin 2o0tð Þ:

&

The complex F-series expansion is applicable for

both real and complex periodic functions and the

complex F-series leads to Fourier transforms. Most

functions, in reality, are real functions and the tri-

gonometric F-series are more desirable.
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3.4.2 Trigonometric Fourier Series

The set of basis functions for the trigonometric

Fourier series with period T ¼ 2p=o0 is

1; cosðko0tÞ; sinðko0tÞ; k ¼ 1; 2; 3; . . .f g: (3:4:16a)

Equation (3.2.15) gives the energy contents in one

period of these functions and are

ðEÞ1 ¼ T; ðEÞ sine or a cosine function

¼ T=2: (3:4:16b)

In the trigonometric F-series,Xs½0� for the dc term,

a½k� for the coefficients for the cosine terms, and b½k�
for the coefficients of the sine terms will be used.

With (3.4.16b) and (3.3.17a), the following trigono-

metric F-series result:

xTðtÞ ¼ Xs½0� þ
X1
k¼1
fa½k� cosðko0tÞ þ b½k� sinðko0tÞg;

(3:4:17a)

Xs½0� ¼
1

T

Z
T

xTðtÞdt

a½k� ¼ 2

T

Z
T

xTðtÞ cosðko0tÞdt:

b½k� ¼ 2

T

Z
T

xTðtÞ sinðko0tÞdt

8>>>>>>>>>><
>>>>>>>>>>:

(3:4:17b)

Note the factor 2 before the integrals in computing

a½k� and b½k�. Also, note xTðtÞ instead of xðtÞ in
(3.3.17a). If xTðtÞ is an arbitrary real periodic func-

tion, then it can be written in terms of its even and

odd parts and they can be expressed in terms of

xTðtÞ:

xTðtÞ ¼ xTeðtÞ þ xT0ðtÞ;
¼)xTeðtÞ ¼ ðxTðtÞ þ xTð�tÞÞ=2;

xT0ðtÞ ¼ ðxTðtÞ � xTð�tÞÞ=2:

Since constant and the cosine terms are even and the

sine terms are odd, the trigonometric F-series can be

written for the even and odd periodic functions by

xTeðtÞ ¼ Xs½0� þ
X1
k¼1

a½k� cosðko0tÞ;

xT0ðtÞ ¼
X1
k¼1

b½k� sinðko0tÞ: (3:4:18)

3.4.3 Complex F-series and the
Trigonometric F-series
Coefficients-Relations

By using Euler’s formula and comparing the results

in (3.4.1a) and (3.4.17), we have

Xs½k�¼
1

T

Z
T

xðtÞe�jko0tdt

¼ 1

T

Z
T

xðtÞcosðko0tÞdt�
j

T

Z
T

xðtÞsinðko0tÞdt

¼ a½k�
2
� j

b½k�
2
: (3:4:19a)

Since the cosine and sine functions are even and odd

functions, we can see that

Xs½�k� ¼
a½k�
2
þ j

b½k�
2
: (3:4:19b)

) a½k� ¼ Xs½k� þ Xs½�k� and
b½k� ¼ jðXs½k� � Xs½�k�Þ: (3:4:20)

3.4.4 Harmonic Form of Trigonometric
Fourier Series

The trigonometric Fourier series given in (3.4.17a)

can be written in the harmonic (or compact form) by

xTðtÞ ¼ Xs½0� þ
X1
k¼1

d½k� cosðko0tþ y½k�Þ: (3:4:21)

¼ Xs½0� þ
X1
k¼1

d½k� cosðy½k�Þ cosðko0tÞ

þ
X1
k¼1

d½k�ð� sinðy½k�ÞÞ sinðko0tÞ: (3:4:22a)

Equating the terms in the trigonometric F-series in

(3.4.17) to the above, we have

a½k� ¼ d½k� cosðy½k�Þ;
b½k� ¼ �d½k� sinðy½k�Þ;

d½k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2½k� þ b2½k�

q
;

y½k� ¼ � tan�1
b½k�
a½k�


 �
: (3:4:22b)
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The harmonic form given in (3.4.21) contains

the dc component Xs½0�, the fundamental

d½1� cosðo0tþ y½1�Þ, and d½k� cosðko0tþ y½k�Þ, the

kth harmonic component. The trigonometric

and harmonic F-series expansions are for real

functions.

3.4.5 Parseval’s Theorem Revisited

From (3.3.14), by noting Ek ¼ T and Xs½k� ¼ c½k�,
Parseval’s theorem is expressed by

P ¼ 1

T

Zt0þT

t0

xTðtÞj j2dt ¼
X1

k¼�1
Xs½k�j j2: (3:4:23)

Since Xs½k�j j ¼ Xs½�k�j j, the average power in xTðtÞ,
in terms of the trigonometric F-series coefficients

Xs½0�; a½k�; and b½k� and the harmonic coefficients

d½k�, is

P ¼
X1

k¼�1
jXs½k�j2 ¼ jXs½0�j2 þ

1

4

X1
k¼1
ja½k� þ jb½k�j2

þ 1

4

X1
k¼1
ja½k� � jb½k�j2

¼ jXs½0�j2 þ
1

2

X1
k¼1
ða2½k� þ b2½k�Þ

¼ jXs½0�j2 þ
1

2

X1
k¼1

d2½k�: (3:4:24a)

Table 3.4.1 Summary of the three Fourier series representations

Complex Fourier series: xTðtÞ � a complex or real periodic function

xTðtÞ ¼
P1

k¼�1
Xs½k�ejko0t; o0 ¼ 2p=T:

Xs½k� ¼ 1
T

R
T

xTðtÞe�jko0tdt:

Trigonometric Fourier series: xTðtÞ – a real periodic function

xTðtÞ ¼ Xs½0� þ
P1
k¼1

a½k� cosðko0tÞ þ b½k� sinðko0tÞð Þ:

Xs½0� ¼ 1
T

R
T

xTðtÞdt; a½k� ¼ 2
T

R
T

xTðtÞ cosðkootÞdt; b½k� ¼ 2
T

R
T

xTðtÞ sinðko0tÞdt:

Harmonic (compact form) of Fourier series: xTðtÞ – a real periodic function

xTðtÞ ¼ Xs½0� þ
P1
k¼1

d½k� cosðko0tþ y½k�Þ:

f0 ¼ o0

2p ¼ 1
T ¼ Fundamental frequency; kf0 ¼ kth harmonic frequency,

d½k� ¼ Amplitude of the kth harmonic, y½k� ¼ Phase angle of the kth harmonic:

Conversion formulae:

Xs½k� ¼ Xs½k�j jejy½k�:

Xs½k� ¼ 1
2 ða½k� � jb½k�Þ; Xs½�k� ¼ 1

2 ða½k� þ jb½k�Þ ¼ X�½k�:

a½k� ¼ ðXs½k� þ Xs½�k�Þ ¼ 2RefXs½k�g; b½k� ¼ jðXs½k� � Xs½�k�Þ ¼ �2ImfX½k�g:

dðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2½k� þ b2½k�

p
; y½k� ¼ � tan�1 b½k�

a½k�

� �
:

a½k� ¼ d½k� cosðy½k�Þ; b½k� ¼ �d½k� sinðy½k�Þ:

Parseval’s theorem:

P ¼
P1

k¼�1
Xs½k�j j2¼ Xs½0�j j2þ 1

2

P1
k¼1
ða2½k� þ b2½k�Þ ¼ Xs½0�j j2þ 1

2

P1
k¼1

d2½k�:
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¼)
Xn
k¼�n

Xs½k�j j2 � P ¼
Zt0þT

t0

xTðtÞj j2dt

ðassumed to be finite): (3:4:24b)

This bound is called Bessel’s inequality and each

coefficient magnitude must have a limit as n!1,

which is true for all n. Thus

lim
k!1

Xs½k�j j ¼ 0; lim
k!1

a½k�j j ¼ 0; and

lim
k!1

b½k�j j ¼ 0: (3:4:24c)

3.4.6 Advantages and Disadvantages
of the Three Forms of Fourier Series

Complex F-series: Advantages: The complex F-series

is applicable for real and complex functions,

although most of the functions we deal with are real

functions. The series can be extended conceptually to

the aperiodic case leading to the Fourier transform

discussed in Chapter 4. Making use of Euler’s iden-

tities, the complex F-series of a real function can be

written in terms of trigonometric F-series.

Disadvantages: The complex F-series is non-

intuitive, as complex functions are used to approx-

imate real functions. Since the complex F-series

coefficients of a function are generally complex

functions, it is hard to visualize a real function as a

sum of complex exponential functions. Besides, to

sketch the F-series approximation of the periodic

function, sinusoidal functions need to be used. The

complex F-series introduces negative frequencies

since k in Xs½k� can be positive or negative.

Trigonometric F-series: Advantages: The trigono-

metric series contains a constant and a set of sinusoids,

cosine, and sine functions. It is the most used series in

the literature. The constant and the cosine terms repre-

sent the even part of the periodic function and the sine

terms represent the odd part of the periodic function.

Disadvantages: Since there are two Fourier series

coefficients a½k� and b½k� for each frequency, the

magnitude and phase spectra, at each frequency,

need to be computed using both the coefficients.

The trigonometric F-series are for real functions.

Harmonic form: Advantages: The harmonic form

is compact and it has only positive frequencies and

is simple to generate the magnitude and phase spec-

tra, which are used to visualize the spectral behavior

of the signal. We can see that if we like to transmit a

segment of a signal using the F-series, we only need

to send the amplitudes and phases of the harmonic

form at the appropriate frequencies.

Disadvantages: It is used for real functions. The

amplitudes and the phases of the harmonic coeffi-

cients are determined fromone of the other two forms.

Notes: The F-series can be used to approximate a

function over an arbitrary interval t0 � t5t0 þ T,

where t0 and T are arbitrary. The approximation is

valid only in that interval. Outside this interval, the

series results in a periodic function. &

3.5 Fourier Series of Functions with
Simple Symmetries

Equation (3.4.18) gives explicit formulas for the

F-series of even and odd functions.

Example 3.5.1 Find the trigonometric Fourier series

of the function

xTðtÞ ¼
�1; �ðT=2Þ5t50

1; 05t5ðT=2Þ

�
;

xTðtÞ ¼ xTðtþ TÞ: (3:5:1)

Solution: This function is an odd function and the

F-series contains only sine functions.

b½k� ¼ 2

T

ZT=2

�T=2

xTðtÞsinðko0tÞdt

¼ 4

T

ZT=2

0

xTðtÞsinðko0tÞdt¼
4

T

ZT=2

0

sinðko0tÞdt

¼ 4

T

1� cosðko0ðT=2ÞÞ
ko0

� �
¼ 4

kð2pÞ 1� cosðkpÞ½ �

¼
4

kp
; k�odd

0; k� even

8<
: ; o0¼

2p
T
:
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xTðtÞ ¼
X1
k¼1

b½k� sinðko0tÞ ¼
4

p
½sinðo0tÞ

þ 1

3
sinð3o0tÞ þ

1

5
sinð5o0tÞ þ . . . : (3:5:2) &

The decay rate of the nonzero F-series coefficients is

inversely proportional to k and

b k½ �1 1=kð Þ: (3:5:3)

3.5.1 Simplification of the Fourier Series
Coefficient Integral

A change of variable l ¼ o0t in the computation of

the Fourier series coefficients can be used to stan-

dardize the integral. As t! �T=2, we have

l! �p and dt ¼ dl=o0 and

Xs½k� ¼
1

T

Z
T

xTðtÞe�jko0tdt

¼ 1

2p

Z
2p

xTðl=o0Þe�jkldl: (3:5:4a)

The complex Fourier coefficients are expressed in

terms of an integral over a period 2p since xTðl=o0Þ
is periodic with period 2p. Equation (3.5.4a) stan-

dardizes the F-series coefficients. Similarly, we can

express the trigonometric Fourier series:

Xs½0�¼
1

2p

Z
2p

x2pðl=o0Þdl;

a½k�¼1
p

Z
2p

x2pðl=o0ÞcosðklÞdl;

b½k�¼1
p

Z
2p

x2pðl=o0ÞsinðklÞdl: (3:5:4b)

Example 3.5.2 Find the complex and the trigono-

metric Fourier series of the full-wave rectified func-

tion given by x2pðtÞ ¼ sinðtÞj j: That is

xTðtÞ ¼ sinðo0tÞj j; o0 ¼ 2p=T; and T=2 ¼ p (the

fundamental period), see Fig. 3.5.1.

Solution: The complex F-series coefficients are

Xs½k�¼
1

T

ZT=2

�T=2

sinðo0tÞj je�jko0tdt: ð3:5:5aÞ

¼ 1

T

ZT=2

�T=2

sin o0tð Þj j cos ko0tð Þ

� j
1

T

ZT=2

�T=2

sin o0tð Þj j sin ko0tð Þdt: ð3:5:5bÞ

¼ 2

T

ZT=2

0

sinðo0tÞ cosðko0tÞdt: (3:5:5c)

The integrand in the first integral in (3.5.5b) is an

even function and therefore the integral can be

computed by integrating for half the period and

multiplying it by 2. The integrand in the second

integral is an odd function and therefore the integral

is zero. Using the change of variable a ¼ o0t in

(3.5.5c), we have da ¼ o0dt and a ¼ �p. Now

Xs½k� ¼
1

p

Zp

0

sinðaÞ cosðkaÞda

¼ 1

2p

Zp

0

½sinðð1� kÞaÞ þ sinðð1þ kÞaÞ�da

¼ 1

2p
1� cosðð1�kÞpÞ

ð1�kÞ þ1� cosðð1þkÞpÞ
ð1þkÞ

� �
; k 6¼ 1:

(3:5:6)

For k ¼ �1; one of the terms in the above equation

becomes indeterminate and the other term goes to

zero. As k! 1, using L’Hospital’s rule results in

Xs½k� k¼1j ¼ lim
k!1

1�cosðð1�kÞpÞ
1�k

þ1�cosðð1þkÞpÞ
ð1þkÞ

� �

¼ lim
k!1

�ðpÞsinðð1�kÞpÞ
�1 þ0

� �
¼0:

Fig. 3.5.1 Example 3.5.2
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From (3.4.1c), we have Xs½�1� ¼ 0. Since

cos½ð1� kÞp� ¼ 1, the odd coefficients are zero.

The complex F-series coefficients and the complex

F-series expansion of the full-wave rectified signal

are as follows:

Xs½k� ¼
0 ; k-odd

2

ð1� k2Þp ; k-even

8<
: : (3:5:7)

xTðtÞ¼
2

p
�1
pX1

k 6¼0;keven

2

ðk�1Þðkþ1Þ e
jko0tþe�jko0t

� �
: (3:5:8)

By using Euler’s formula, the trigonometric F-series

are given by

xTðtÞ ¼
2

p
� 4

pX1
k even; k6¼0

1

ðk� 1Þðkþ 1Þ cosðko0tÞ ¼
2

p
þ 4

p

X1
n¼1

1

1� 4n2
cosð2no0tÞ: (3:5:9)

There are some interesting aspects to note. First,

xTðtÞ is periodic with the fundamental period T=2.

This follows from Fig. 3.5.1 and from (3.5.9), as the

fundamental frequency is f0 ¼ 2o0=2p ¼ 2=T. So,

the period of T=2 ¼ p could have been used and go

through the expansion. Note the decay rate is

Xs k½ �j j1 1=k2
 �

: (3:5:10) &

3.6 Operational Properties of Fourier
Series

3.6.1 Principle of Superposition

Computing the F-series coefficients is an integral

operation. The integral of a sum is equal to the

sum of the integrals. Therefore, if a and b are

some constants, we have

xTðtÞ !
FS;T

Xs½k� and yTðtÞ !
FS;T

Ys½k�

¼)axTðtÞ þ byTðtÞ !
FS;T

aXs½k� þ bYs½k�: (3:6:1)

Fourier series coefficients are added with appropri-

ate multipliers to get the Fourier series coefficients

of the sum of two periodic functions.

3.6.2 Time Shift

The time shift of a signal xTðtÞ by t seconds corre-
sponds to yTðtÞ ¼ xTðt� tÞ; t > 0, where the posi-

tive sign is for an advance and a negative sign for a

delay. The F-series yTðtÞ is

yTðtÞ ¼
X1

k¼�1
Ys½k�ejko0t;

Ys½k� ¼
1

T

Z
T

yTðtÞe�jko0tdt¼ 1

T

Z
T

xTðt� tÞe�jko0tdt:

Using the change of variable b ¼ t� t, we have

t ¼ b� t and

Ys½k� ¼
1

T

Z
T

xTðbÞe�jko0ðb�tÞdb

¼ 1

T

Z
T

xTðbÞe�jko0bdb

2
4

3
5e�jko0t

¼ Xs½k�e�jko0t: (3:6:2)

Since the period remains the same, there is no need

to consider in (3.6.2). In summary,

xTðtþtÞ !
FS;T

Xs½k�ejko0t;xTðt�tÞ !
FS;T

Xs½k�e�jko0t;t>0: (3:6:3)

The magnitudes of the F-series coefficients of a

periodic signal and its delayed (or advanced) ver-

sion are the same. The delay (or advance) t appears
explicitly in the phase angle ðko0tÞ for the advance
and ð�ko0tÞ for the delay. In case of trigonometric

F-series, for t > 0 (for t50, replace t by � t in the

following.), we have
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x
T
ðt�tÞ¼Xs½0�þ

X1
k¼1

a½k�cosðko0ðt�tÞÞ½

þb½k�sinðko0ðt�tÞÞ�¼Xs½0�

þ
X1
k¼1
½a½k�cosðko0tÞ�b½k�sinðko0tÞ�

cosðko0tÞþ
X1
k¼1
½a½k�sinðko0tÞ

þb½k�cosðko0tÞ�sinðko0tÞ: (3:6:4)

3.6.3 Time and Frequency Scaling

Given a function xðtÞ, its time-scaled version is

given by xðatÞ; a > 0. If a51, the signal is

expanded and if a > 1, the signal is compressed

(see (1.2.3)). The F-series of the scaled signal is

obtained by replacing t! at in the complex F-series

and

xTðatÞ ¼
X1

k¼�1
Xs½k�ejko0ðatÞ: (3:6:5)

The frequency locations moved from ko0 to kðao0Þ
and the F-series coefficients are Xs½k�. The

time-scaled signal changes the period from

T to ðT=aÞ: Harmonics are now located at

ko0a ¼ kð2pÞf0a ¼ kð2pÞða=TÞ. The more com-

pressed the time function is, farther apart its har-

monics are. Harmonics of the compressed signal

are located at frequencies kf0a and a > 1: If

a ¼ �1, then a time-reversed or a folded function

results and

xTð�tÞ ¼
X1

k¼�1
Xs½k�e�jko0t ¼

X1
k¼�1

X�s ½k�ejko0t
� ��

:

xTð�tÞ !
FS;T

X�½k�; jXs½k�j ¼ jX�s ½k�j: (3:6:6)

Example 3.6.1 Using Example 3.5.2, find the trigo-

nometric F-series of the full-wave rectified signal

x2pðtÞ ¼ sinðtÞj j assuming the period is 2p.

Solution: Substituting T ¼ 2p, i.e., o0 ¼ 1 in

(3.5.9), we have

x2p tð Þ ¼ 2

p
� 4

p
cos 2tð Þ
1 3ð Þ þ

cos 4tð Þ
3 5ð Þ þ

cos 6tð Þ
5 7ð Þ þ � � �

� �
:

(3:6:7) &

Example 3.6.2 Find the trigonometric F-series of

the signal below using the full-wave rectified signal

series:

y2pðtÞ ¼
sinðtÞ; 05t5p

0; p5t52p

� �
: (3:6:8)

Solution: The full-wave rectified function x2pðtÞ
was shown in Fig. 3.5.1 with period T ¼ 2p. The
half-wave rectified signal is shown in Fig. 3.6.1 and

y2pðtÞ ¼ x2pðtÞ þ sinðtÞ½ �=2: (3:6:9)

Using the linearity property of the Fourier series, we

have

y2pðtÞ¼
1

p
þ1
2
sinðtÞ�2

p

cosð2tÞ
1ð3Þ þ

cosð4tÞ
3ð5Þ þ

cosð6tÞ
5ð7Þ þ���

� �
:

(3:6:10)

In Chapter 1, we studied the one-sided and the

two-sided line spectra by expressing each term

in terms of cosines and sines. Noting that

cosða� 900Þ ¼ � sinðaÞ and cosða� 1800Þ ¼
� cosðaÞ, we can write

y2pðtÞ ¼
1

p
� 1

2
cosðtþ 900Þ þ 2

p
cosð2t� 1800Þ

1ð3Þ þ cosð4t� 1800Þ
3ð5Þ þ cosð6t� 1800Þ

5ð7Þ þ � � �
� �

: (3:6:11)

Fig. 3.6.1 y2pðtÞ Half-wave rectified signal

88 3 Fourier Series



x2pðtÞ ¼
2

p
þ 4

p
cosð2t� 1800Þ

1ð3Þ þ cosð4t� 1800Þ
3ð5Þ þ cosð6t� 1800Þ

5ð7Þ þ � � �
� �

: (3:6:12)

These are the harmonic forms of the trigonometric

Fourier series for the two given functions. The

two-sided amplitude line spectra associated with these

two functions are sketched in Fig. 3.6.2. The only dif-

ference between the two functions x2pðtÞ and y2pðtÞ is
the component at the frequencyo0 ¼ 1 or f0 ¼ 1=2p.
If we can remove or filter out this frequency component

from y2pðtÞ, we can obtain the function x2pðtÞ illustrat-
ing one of the remarkable insights into the description

of signals provided by the Fourier series. Filter design

will be discussed in later chapters. &

3.6.4 Fourier Series Using Derivatives

All the derivatives of the F-series exist since all the

derivatives of the functions ejno0t; sinðno0tÞ;
and cosðno0tÞ exist. In that sense, F-series is a nice

function. The complex F-series of a periodic func-

tion and its derivative are

xTðtÞ ¼
X1

k¼�1
Xs½k�ejko0t;

x0TðtÞ ¼
dxTðtÞ
dt

¼
X1
k¼�1
k 6¼0

Xs½k�jðko0Þ½ �ejko0t

The dc term in the F-series of the derivative goes to

zero and the other coefficients are multiplied by

ðjko0Þ, k 6¼ 0: The spectral components of x0TðtÞ
have significantly higher frequency content com-

pared to the spectral components of xTðtÞ. Note

the F-series coefficients of xTðtÞ are multiplied by

jko0 to obtain the F-series coefficients of x0TðtÞ.
Derivative operation enhances the details in the

signal. We can state that

dnxTðtÞ
dtn

 !FS;T ðjko0ÞnXs½k�; k 6¼ 0: (3:6:13)

In a similar manner, the derivatives of the trigono-

metric F-series are given by

xTðtÞ ¼ Xs½0� þ
X1
k¼0

a½k� cosðko0tÞ

þ
X1
k¼0

b½k� sinðko0tÞ:

dxTðtÞ
dt

¼
X1
k¼1
ð�ko0Þa½k� sinðko0tÞ

þ
X1
k¼1
ðko0Þb½k� cosðko0tÞ:

¼
X1
k¼1

a1½k� cosðko0tÞ

þ
X1
k¼1

b1½k� sinðko0tÞ; a1½k� ¼ b½k�ðko0Þ;

b1½k� ¼ a½k�ð�ko0Þ

a½k� ¼ � b1½k�
ko0

; b½k� ¼ a1½k�
ko0

; k 6¼ 0;

Xs½0� ¼
1

T

Z
T

xTðtÞdt: (3:6:14)

In (3.6.14), the subscript ‘‘1’’ on a and b indicates

the trigonometric F-series are for the first derivative

of the periodic function. The dc component needs to

be computed directly from the given periodic

(a)

(b)

Fig. 3.6.2 Two-sided amplitude line spectra (a)x2pðtÞ and (b)
y2pðtÞ
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function. This approach of finding the F-series is the

derivative method of finding F-series.

The derivative property allows simplifies the

computing the F-series coefficients. Most of the

signals we deal with are pulses that do not have

derivatives in the conventional sense. The deriva-

tives of such functions can only be considered in the

sense of generalized functions discussed in Section

1.4, resulting in impulse functions in the derivatives.

See, for example, the derivative of the rectangular

pulse in (1.4.33). Fourier series coefficients are

determined by use of integrals. Integrals involving

impulses are trivial to compute and, therefore, com-

puting the Fourier series coefficients by the deriva-

tive method makes it simple.

Example 3.6.3Find the trigonometric F-series of the

trapezoidal waveform shown in Fig. 3.6.3a using the

derivative method.

Solution: The first two derivatives of the wave form

are shown in Figs. 3.6.3b and c. The second deriva-

tive of the function xTðtÞ is

(a)

(b)

(c)

Fig. 3.6.3 (a) Trapezoidal
wave-form xTðtÞ, (b) x 0TðtÞ,
and (c) x 00TðtÞ
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x00TðtÞ ¼
d2xTðtÞ
dt2

¼ 1

ðd2 � d1Þ
dðtþ d2Þ � dðtþ d1Þ � dðt� d1Þ þ dðt� d2Þ½ �;
d2 � d1;�T=25t5T=2; xTðtþ TÞ ¼ xTðtÞ:

(3:6:15)

Since the second derivative has an even symmetry,

we can use some simplifications:

b2 k½ � ¼ 0; a2 k½ � ¼
2

T

ZT=2

�T=2

x00T tð Þ cos ko0tð Þdt

¼ 4

d2 � d1ð ÞT

ZT=2

0

�d t� d1ð Þ þ d 1� d2ð Þ½ �

cos ko0tð Þdt;

a2½k� ¼
4

Tðd2 � d1Þ
� cosðko0d1Þ þ cosðko0d2Þ½ �:

Noting that a2½k� ¼ �ðko0Þ2a½k�, we have the dc

term (to be computed directly) and

Xs½0� ¼
1

T

Zd2
�d2

xTðtÞdt ¼
1

T
ðd1 þ d2Þ:

a½k� ¼ 4

Tðd2 � d1Þðko0Þ2
½cosðko0d1Þ � cosðko0d2Þ�:

The trigonometric F-series are

xTðtÞ ¼
d1 þ d2

T
þ 4

o2
0Tðd2 � d1Þ

X1
k¼1

1

k2
½cosðko0d1Þ � cosðko0d2Þ� cosðko0tÞ:

(3:6:16a)

xTðtÞ d1¼0 ¼j d2
T
þ 4

d2Tðo2
0Þ

X1
k¼1

1

k2
½1� cosðko0d2Þ� cosðko0tÞ: (3:6:16b)

Note that when d1 ¼ 0, we have a triangular pulse

wave form. The F-series coefficients for the two cases

considered above decay proportional to (1/k2Þ.
In the case of d2 ¼ d1; we have a rectangular

pulse waveform. Using L’Hospital’s rule, the coeffi-

cients in (3.6.16a) can be simplified. Assuming

d2 ¼ d1 þ e,

a½k�¼lim
e!0

� 4

Teðko0Þ2
½cosðko0ðd1þeÞÞ�cosðko0d1Þ�

( )

¼lim
e!0

4

Tðko0Þ2
ðko0Þsinðko0ðd1þeÞÞ

1
¼4sinðko0d1Þ

kTo0

xTðtÞ d1¼d2 ¼
2d1
T
þ
X1
k¼1

4 sinðko0d1Þ
ko0T

cosðko0tÞ:
�����

(3:6:16c)

From (3.6.16b and c), the F-series coefficients of the

trapezoidal and the rectangular pulse sequences

decay at a rate proportional to ð1=k2Þ and (1/k),

respectively.

The derivative of an even (odd) function is an

odd (even) function. See Fig. 3.6.3 a,b,c and the

F-series to verify the above assertion and the chain

rule below:

dy

dt
¼ dy

da
da
dt
! yðtÞ ¼ dxeðtÞ

dt
;

yð�tÞ ¼ dxeð�tÞ
dt

¼ dxeðtÞ
dt
ð�1Þ ¼ �yðtÞ:

(3:6:17) &

3.6.5 Bounds and Rates of Fourier Series
Convergence by the Derivative
Method

The Fourier series coefficients Xs½k� of a periodic

signal xTðtÞ usually decay at a rate inversely propor-
tional to kn, where k is the harmonic index. An

exception is the periodic impulse sequence. In

Example 3.4.4, we have seen that the periodic

impulse sequence has the complex F-series given

by Xs½k� ¼ ðA=TÞ, i.e., the coefficients are indepen-

dent of k. Higher the value of n in kn is, the faster the

high-frequency component decays. An estimated

value of n can be determined without actually
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computing the Fourier series coefficient Xs½k� using
the derivative properties of xTðtÞ: In (3.6.13) we

have seen that the Fourier series coefficients of the

nth derivative of a periodic function are related to

the Fourier coefficients of the function multiplied

by ðjko0Þn. If we differentiate an arbitrary periodic

function xTðtÞ n times before the first set of impulses

appear, then the F-series coefficients have the prop-

erty that Xs½k� / ð1= ko0j jÞn. That is, the decay rate

of the coefficients is proportional to 1/ð kj jÞn. The
decay rate is a good indicator for large k, as some of

the early coefficients may be even zero.

Since the complex F-series and trigonometric

F-series are related, the decay rate of the trigonometric

F-series coefficients is tied to the decay rate of the

complex F-series coefficients. The derivative property

of the F-series provides bounds on the F-series coeffi-

cients, referred to as the spectral bounds. For k 6¼ 0,

XsðkÞj j ¼ 1

jko0

����
����
n
1

T

Z
T

x
ðnÞ
T ðtÞe�jko0tdt

������
������

� 1

T kj jn o0j jn
Z
T

x
ðnÞ
T ðtÞ

��� ���dt: (3:6:18a)

In deriving the right side of the above equation, the

fundamental theorem of calculus is used and

Z
yðtÞdt

����
���� �

Z
yðtÞj jdt note e�jko0t

�� �� ¼ 1
 �

:

For example, the F-series coefficients in Example

3.4.2 show their decay rate is proportional to ð1=kÞ,
see (3.4.8). The function xTðtÞ has discontinuities

at t ¼ �t=2 in one period of the time function.

Correspondingly, the bound on the F-series coeffi-

cient is

Xs½k�j j5B=k;B a constant: (3:6:18b)

The number of nonzero bounds that can be deter-

mined equals the number of times the function can

be differentiated before derivatives of impulses occur

in the derivatives, see Ambardar (1995), Morrison,

(1994), and others.

Example 3.6.4 Find all the nonzero spectral

bounds for the rectangular pulse xðtÞ ¼ P½t�;
xTðtÞ ¼ xTðtþ TÞ;T ¼ 2:

Solution: The function, its first, and second deriva-

tives are shown in Fig. 3.6.4. Noting that

o0 ¼ ð2p=2Þ ¼ p, we have

n ¼ 0 bound :

Xs½k�j j � 1

2ðo0Þ0
Z1=2

�1=2

xTðtÞj jdt ¼ 1

2
: (3:6:19a)

n ¼ 1 bound :

Xs½k�j j � 1

2 o0j j1
Z1

�1

dx2ðtÞ
dt

����
����dt ¼ 1

2p

Z1

�1

dðtþ 1

2
Þ þ dðt� 1

2
Þ

� �
dt ¼ 1

p
: (3:6:19b)

The bounds above n ¼ 1 are not defined. &

Bounds on the trigonometric Fourier series

coefficients: If xTðtÞ has discontinuities, then its

trigonometric F-series coefficients satisfy for large k

a½k�j j5Ka1

k
and b½k�j j5Kb1

k

ðKa1 and Kb1 are some constants): (3:6:20)

If xTðtÞ is continuous but x0TðtÞ is discontinuous,

then for large k

a½k�j j5Ka2

k2
and b½k�j j5Kb2

k2
ðKa2 and Kb2

are some constants): (3:6:21)

Convergence is a function of the continuity of the

highest derivative of xTðtÞ. The convergence rates of
the coefficients a½k� and b½k� may be different.

Example 3.6.5Consider the function and its F-series

coefficients given below. Comment on the conver-

gence rates.

x2pðtÞ¼ et;�p5t5p;x2pðtþ2pÞ¼ x2pðtÞ: (3:6:22a)

x2pðtÞ ¼
2 sinhðpÞ

p
1

2
þ
X1
k¼1

ð�1Þk

ð1þ k2Þ

" #

ðcosðktÞ � k sinðktÞÞ: (3:6:22b)

Solution: The sine series coefficients b½k� converge
like ðKb=kÞ, whereas the cosine series coefficients

a½k� converge like ðKa=k
2Þ, implying that the Four-

ier series, as a whole, converges like ðK=kÞ; K 0s
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are constants. The dc term and the first few harmo-

nics contain bulk of the power for low-frequency

signals. &

3.6.6 Integral of a Function
and Its Fourier Series

Consider the integral of a periodic function and its

F-series. The integral of a periodic function with a dc

component cannot be periodic as the integral of a

constant is a ramp. In the case of Xs½0� ¼ 0, we can

derivethecomplexF-seriesofan integralofa function:

yTðtÞ¼
Z t

0

xTðaÞda¼
Z t

0

X1
k¼�1;k 6¼0

Xs½k�ejko0a

" #
da

¼
X1

k¼�1
Ys½k�ejko0t

¼
X1

k¼�1;k6¼0
fð1=jko0ÞXs½k�gejko0t�þconstant:

(3:6:23a)

Ys½k� ¼
½Xs½k�=jko0� ; k 6¼ 0

constant; k ¼ 0

�
: (3:6:23b)

Note the division by ko0 above indicating the F-series

of the integral of a functionxTðtÞ converges faster than
the F-series convergence of xTðtÞ. Integration is a

smoothing operation. Therefore, the integrated signal

has much smaller high-frequency content than xTðtÞ.
Without the dc termXs½0�, integration and differentia-
tion can be thought of as inverse operations.

3.6.7 Modulation in Time

Consider the F-series

xTðtÞe�jat ¼
X1

k¼�1
Xs½k�ejko0te�jat

¼
X1

k¼�1
Xs½k�ejðko0�aÞt: (3:6:24)

(a)

(b)

(c)

Fig. 3.6.4 (a) Periodic pulse
waveform, (b) periodic
impulse sequence, and (c)
periodic doublet sequence
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Multiplying a function by e�jat shifts the frequencies
from ko0 to ko0 � a. This ismodulation.Multiplying

xTðtÞ by cosðatÞ and using Euler’s formula results in

y1ðtÞ ¼ xTðtÞ cosðatÞ ¼
1

2

X1
k¼�1

Xs½k�ejðko0þaÞt

þ 1

2

X1
k¼�1

Xs½k�ejðko0�aÞt: (3:6:25)

Example 3.6.6 Consider the periodic signal

xTðtÞ ¼ cosðo0tÞ modulated by the same function.

The resulting function is yTðtÞ ¼ cos2ðo0tÞ. Deter-

mine the frequency shifts.

Solution:

yTðtÞ ¼ :5ð1þ cosð2o0tÞÞ
¼ :25ej2o0t þ 0ejo0t þ :5þ 0e�jo0t þ :25e�j2o0t:

Modulation shifted the frequencies from

�o0 to � 2o0;�o0; 0, with one of the frequencies

having zero amplitude. &

3.6.8 Multiplication in Time

Let xTðtÞ and wTðtÞ be two periodic functions with

the same period T. The product yTðtÞ ¼ xTðtÞwTðtÞ
is also periodic with period T. The relation between

the F-series coefficients is derived below. First, let

the F-series expansions of these are as follows:

xTðtÞ¼
X1
n¼�1

Xs½n�ejno0t; wTðtÞ¼
X1

m¼�1
Ws½m�ejmo0t;

yTðtÞ¼
X1

k¼�1
Ys½k�ejko0t: (3:6:26a)

Following shows that the complex F-series coeffi-

cients of the product yTðtÞ ¼ xTðtÞwTðtÞ are

Ys½k� ¼
X1
n¼�1

Xs½n�Ws½k� n�¼
X1
n¼�1

Ws½n�Xs½k� n� :

(3:6:26b)

First, use the change of variablem ¼ k� n in F-ser-

ies expansion of wTðtÞ, substitute this expression in

the F-series expansion of yTðtÞ, and then simplify

the expression yTðtÞ:

wT tð Þ ¼
X1

k¼�1
Ws k� n½ �ej k�nð Þo0t:

yTðtÞ ¼
X1

k¼�1
Xs½n�ejno0t

X1
n¼�1

Ws½k� n�ejðk�nÞo0t

" #

¼
X1

k¼�1

X1
n¼�1

Xs½n�Ws½k� n�ejno0tejðk�nÞo0t

¼
X1

k¼�1

X1
n¼�1

Xs½n�Ws½k� n�
" #

ejko0t

¼
X1

k¼�1
Ys½k�ejko0t: (3:6:27)

Equation (3.6.26b) now follows from (3.6.27). The

expression Ys½k� in terms of Xs½k� and Ws½k� in

(3.6.26b) is a discrete convolution.

Periodic time convolution: If xTðtÞ and wTðtÞ are
two periodic functions and their F-series are

(3.6.26a), then (see Section 2.5)

yTðtÞ ¼
1

T

Z
T

xTðt� tÞwTðtÞdt

¼ 1

T

Z
T

xTðtÞwTðt� tÞdt

¼
X1

k¼�1
Xs½k�Ws½k�ejko0t: (3:6:28a)

yTðtÞ ¼ xTðtÞ � wTðtÞ ¼ wTðtÞ � xTðtÞ: (3:6:28b)

The Fourier series expansion of the periodic convo-

lution in (3.6.28a) can be determined by using the

F-series for the two functions as shown below:

yTðtÞ ¼
1

T

Z
T

xTðt� tÞwTðtÞdt

¼ 1

T

Z
T

X1
k¼�1

Xs½k�ejko0ðt�tÞwTðtÞdt

¼
X1

k¼�1
Xs½k�

1

T

Z
T

wTðtÞe�jko0tdt

2
4

3
5ejko0t

¼
X1

k¼�1
Xs½k�Ws½k�ejko0t : (3:6:29a)

yTðtÞ ¼ xTðtÞ  wTðtÞ !
FS;T

Xs½k�Ws½k�
¼ Ys½k�: (3:6:29b)
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3.6.9 Frequency Modulation

The dual of time-domain modulation is frequency

modulation. Using the superposition and the delay

properties of the F-series, we can determine the

F-series coefficients of the function yTðtÞ ¼
xTðtþ aÞ þ xTðt� aÞ. It follows that

yTðtÞ ¼
X1

k¼�1
Xs½k� ½ejko0a þ e�jko0a�ejko0t

¼
X1

k¼�1
Ys½k�ejko0t: (3:6:30a)

¼)Ys½k� ¼ 2Xs½k� cosðko0aÞ: (3:6:30b)

3.6.10 Central Ordinate Theorems

The following results from the F-series at t ¼ 0 and

the F-series coefficient at k ¼ 0:

xT½0� ¼
X1

k¼�1
Xs½k�; Xs½0� ¼

1

T

Z
T

xTðtÞdt: (3:6:31)

3.6.11 Plancherel’s Relation (or Theorem)

Let xTðtÞ and yTðtÞ be two periodic functions.

Then, Plancherel’s relation is

1

T

Z
T

xTðtÞy�TðtÞdt ¼
X1

k¼�1
Xs½k�Y�s ½k�: (3:6:32)

Note, for generality, the expression in (3.6.32) is

given for complex functions and the superscript (*)

corresponds to the conjugation. The above relation

can be derived by substituting the F-series coeffi-

cients for the two time functions:

1

T

Z
T

xTðtÞy�TðtÞdt ¼
1

T

Z
T

xTðtÞ
X1

k¼�1
Y�s ½k�e�jko0t

" #
dt

¼
X1

k¼�1
Y�s ½k�

1

T

Z
T

xTðtÞe�jko0tdt

2
4

3
5

¼
X1

k¼�1
Xs½k�Y�s ½k�: (3:6:33)

If yðtÞ ¼ xðtÞ (i.e., Y�s ½k� ¼ X�s ½k�), then the average

power in a complex or a real periodic function with

period T is

Px ¼
1

T

Z
T

xTðtÞj j2dt

¼
X1

k¼�1
Xs½k�j j2 ðParseval 0s formulaÞ: (3:6:34)

3.6.12 Power Spectral Analysis

The power density spectrum of the periodic signal

xTðtÞ is defined by

Sx½k� ¼ Xs½k�j j2 xTðtÞ ¼
X1

k¼�1
Xs½k�e�jko0t

 !
:(3:6:35)

The average power contained in xTðtÞ is then

given by

Px ¼
X1

k¼�1
Xs½k�j j2 ¼

X1
k¼�1

Sx½k�: (3:6:36)

Notes: In Chapter 1, it was pointed that periodic

and random signals are power signals. Although we

will not be going through any discussion on random

signals or processes, as it is beyond our scope, the

average power contained in a random process is

expressed in terms of power spectral density,

which is real, even, and nonnegative function of

frequency ð f Þ, identified by Sxð f Þ. The average

power in the process is expressed by

Px ¼
Z1

�1

SxðfÞdf ¼
1

2p

Z1

�1

SxðoÞdo: (3:6:37)
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It is interesting to tie the average power Px in

(3.6.36) and (3.6.37). This is achieved by using

impulse functions (note dðfÞ ¼ 2pdðoÞ, see (1.4.37)

SxðoÞ ¼ 2p
X1

k¼�1
Xs½k�j j2dðo� ko0Þ: (3:6:38)

Using this expression results in (3.6.37)

1

2p

Z1

�1

Sx oð Þdo

¼ 1

2p

Z1

�1

2p
X1

k¼�1
Xs k½ �j j2d o�ko0ð Þ

" #
do

¼
X1

k¼�1
Xs kð Þj j2¼Px: (3:6:39)

3.7 Convergence of the Fourier Series
and the Gibbs Phenomenon

In Chapter 1, the average value, the average power,

and the rootmean-squared (rms) values were defined

(see (1.5.15)). It was pointed out that the average

value of a periodic function Xs½0�can never exceed

the rms value
ffiffiffiffiffiffi
Px

p
. Using (3.4.23), we have

Px ¼ Xsð0Þj j2þ
X1

k¼�1;k6¼0
Xs½k�j j2

¼)Px � Xs½0�j j2 or
ffiffiffiffiffiffi
Px

p
� Xs½0�j j: (3:7:1)

Furthermore, from (3.4.24a), the mean-squared

value of a periodic function is equal to the sum of

the mean-squared values of its dc component and its

harmonics.

Example 3.7.1Consider the periodic function given in

(3.5.1) with T ¼ 2p. It is discontinuous at t ¼ kp and

its F-series is given below (it follows from (3.5.2)).

Identify how fast the F-series coefficients decrease.

x2pðtÞ ¼
4

p
½sinðtÞ þ 1

3
sinð3tÞ þ 1

5
sinð5tÞ þ . . .�

¼
X1
k¼1

4

ð2 k� 1Þp sinðð2 k� 1ÞtÞ: (3:7:2)

Solution: The nonzero F-series coefficients are pro-

portional to (1/k). &

Notes: Before considering the convergence of

F-series let us briefly summarize the theoretical con-

straints on the periodic function xTðtÞ of interest

and its F-series existence. It is assumed that xTðtÞ
is square integrable. That is,

Z
T

xTðtÞj j2dt51: (3:7:3)

Second, the periodic function is assumed to satisfy

the Dirichlet conditions, see Section 3.1. All physi-

cally realizable functions satisfy these conditions and

therefore, we will not be dealing with these. &

3.7.1 Fourier’s Theorem

Dirichlet proved first that Fourier series approxi-

mation converges to xTðtÞ at every point xTðtÞ is
continuous and to ½xTðtþÞ þ xTðt�Þ�=2, the half-

value, wherever the function xTðtÞ is discontinuous,
i.e., the F-series converges to the average value of

the function. This result is called Fourier’s theorem.

Example 3.7.2 Let xTðtÞ has a discontinuity at t ¼ t0
as shown in Fig. 3.7.1. The Fourier series approx-

imation of xTðtÞ with ð2nþ 1Þ terms is assumed

to be

xT;2nþ1ðtÞ ¼
Xn
k¼�n

Xs½k�ejko0t: (3:7:4)

The mean-squared error at the discontinuity

between xTðtÞ and its ð2nþ 1Þ term F-series is

Fig. 3.7.1 xTðtÞ with a discontinuity
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e2¼ fxT;2nþ1ðtÞ�xTðt�0 Þg
2þfxT;2nþ1ðtÞ�xTðtþ0 Þg

2
h i

:

(3:7:5)

The time entries in the above equation t�0 and tþ0 are

the values of t before and after the discontinuity at

t ¼ t0. Find the minimum value of the mean-

squared error, with respect to xTð2nþ1ÞðtÞ by taking

the partial derivative of e2 with respect to xT;2nþ1ðtÞ,
equating the result to zero, and then solving for

xT;2nþ1ðtÞ at t ¼ t0.

Solution: Taking the partial derivative and equat-

ing it to zero at t ¼ t0, we have

@e2

@xT;2nþ1
¼ 2½xT;2nþ1ðtÞ � xTðt�0 Þ�

þ 2½xT;2nþ1ðtÞ � xTðtþ0 Þ� t¼t0j ¼ 0: (3:7:6)

) xT;2nþ1ðtÞ t¼t0j ¼ ½xTðtþ0 Þ þ xTðt�0 Þ�=2: (3:7:7)

That is, the F-series approximation gives the aver-

age value of the function before and after the dis-

continuity. This value is referred to as the half-value

of xTðtÞ at the discontinuity t ¼ t0. &

3.7.2 Gibbs Phenomenon

From Fourier’s theorem and the following discussion

we will see that at both sides of a discontinuity the

finite F-series approximation exhibits ripples before

and after the discontinuity. This behavior is called the

Gibbs phenomenon (or effect). Historically, Albert

Michalson observed the phenomenon and reported

to Josiah Gibbs, a theoretical physicist. Gibbs inves-

tigated this behavior of oscillations with overshoots

and undershoots before and after the discontinuity

associated with Fourier series. Equality of the func-

tion to its F-series is only in the sense the integral-

squared error between the two goes to zero when

infinite number of terms is included in the F-series

approximation. Fourier’s theorem points out that at a

point of discontinuity the series converges to the aver-

age value or the half-value given in (3.7.7).

Example 3.7.3 Illustrate the convergence of the

F-series expansion to the function given in Example

3.7.1 by using the first few terms in the series.

Solution: Consider the approximations by consid-

ering the first few terms. Let

s1ðtÞ¼
4

p
sinðtÞ; s3ðtÞ¼

4

p
½sinðtÞþ1

3
sinð3tÞ�;

s5ðtÞ¼
4

p
½sinðtÞþ1

3
sinð3tÞþ1

5
sinð5tÞ�; . . . : (3:7:8)

The functions s1ðtÞ; s3ðtÞ; and sð2 k�1ÞðtÞ; k large

are sketched in Fig. 3.7.2 for one period. They are

odd periodic functions. Fourier series approximation

gives the value of 0 at t ¼ 0, the average value (or

half-value) of the function equals to ð1� 1Þ=2 ¼ 0.

First, consider only the positive values of t; 05t5p.
The maximum value of s1ðtÞ is equal to

ð4=pÞ ¼ 1:2732. This function crosses the value of 1

when ðs1ðtÞ � 1Þ ¼ 0 for positive t. The roots of this

equation are t ¼ :9033 and t ¼ 2:2383 located sym-

metrically around the middle t ¼ 1:5708.More num-

ber of terms we consider, the better the approxima-

tion of the given function is, and in the limit, the

integral-squared error goes to zero.

Summary on s2 k�1ðtÞðt > 0Þ :

� The function rises rapidly as t goes from 0.
� It overshoots the value of 1 and oscillates

about the line xðtÞ ¼ 1 with increasing fre-

quency and decreasing amplitudes.
� Although the magnitude of the peak over-

shoots and undershoots before and after the

discontinuity at t ¼ 0 diminish as k increases,

there is a lower bound of 9% on the overshoots

or undershoots even as k!1: Furthermore,

the F-series converges to every point of xTðtÞ
that is continuous with rare exceptions. It is

possible that the Fourier series of a continu-

ous function to be divergent at some point.

Kolmogoroff Zygmund (1955) has given a

function whose Fourier series is everywhere

divergent.
� At the point of discontinuity in xTðtÞ, the series

converges to the half-value of the function,

i.e., the average value of the function before

and after the discontinuity.
� Since skðtÞ is a periodic odd function, the

sketches follow for �p5t50: &
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Notes: Gibbs published his results on the phenom-

enon (or effect) inNatureMagazine in 1899. Fourier

did not discuss the convergence of F-series in his

paper. If N is small, the value of the overshoot may

be different. The Gibbs effect occurs only for wave-

forms with jump discontinuities, see Carslaw

(1950). &

Example 3.7.4 Find a series expansion for p using

the results in Example 3.7.1.

Solution: At t ¼ ð1=2Þp the function is continuous

and therefore the series converges to the actual

value of the function. Substituting t ¼ p=2 in

(3.7.2), and simplifying, the expression for p is

4

p
1� 1

3
þ 1

5
� 1

7
þ� � � �

� �
¼ 1

¼)p ¼ 4 1� 1

3
þ 1

5
� 1

7
þ� � � �


 �
: (3:7:9)

The series converge at a rate of 4ð1=ð2 k� 1ÞÞ cor-
responding to the (2k�1)th term. &

Notes: Beckmann (1971), in his book on A History

of p, gives many interesting aspects associated with

respect to the constant p. &

Example 3.7.5 Find a series expansion for p2 using
the function in Example 3.7.3.

Solution: The average power is

P¼ 1

2p

Zp

�p

ð1Þ2dt¼1¼1
2

X1
k¼1

b2½2k�1�Þ

¼1
2

16

p2


 �
1þ1

9
þ 1

25
þ���

� �
:

¼)p2¼8 1þ1
9
þ 1

25
þ���


 �
: (3:7:10) &

How many terms in the F-series are needed to have

a‘‘good’’approximation of the given function? The

answer can only be given for a particular applica-

tion. The integral-squared error (ISE) between the

periodic function xTðtÞ and its Fourier series

approximation is

1
4
π

π

( ) sin( )s t t=

3
4 1

( )  sin( ) sin(3 )
3

s t t t= +

2 1
4 1( )  sin( ) sin(3 ) ...

3π
1

sin((2 1) )
2k– 1

ks t t t

k t

− = + +

+ −

Fig. 3.7.2 (a)s1ðtÞ, (b)s3ðtÞ,
and (c)s2 k�1ðtÞ, k large
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ISE¼
Z
T

xTðtÞ�xaðtÞj j2dt¼
Z
T

x2TðtÞdt�T
X1

k¼�1
X½k�j j2

" #

¼
Z
T

x2TðtÞdt� TX2
s ½0�þ

T

2

X1
k¼1
ða2½k�þb2½k�Þ

" #
¼0:

(3:7:11)

The ISE goes to zero only if an infinite number of

terms are used in the expansion, which is impracti-

cal. A goal is to approximate the function xTðtÞ
using N trigonometric F-series with a bound on

the ISE. First,

xT;NðtÞ ¼ Xs½0� þ
XN
k¼1

a½k� cosðko0tÞ

þ
XN
k¼1

b½k� sinðko0tÞ: (3:7:12)

Find the smallest integer value of N that results

within certain percentage of ISE. The ISE, keeping

only the dc term and N harmonics, is

ðISEÞN¼
Z
T

x2TðtÞdt�T X2
s ½0�þ

1

2

XN
k¼1
ða2½k�þb2½k�Þ

( )
:

(3:7:13)

Example 3.7.6 Consider the half-wave rectified per-

iodic function in Example 3.6.2 with

y2pðtÞ ¼
sinðtÞ; 0 � t5p

0; p � t52p

�
;

yðtþ 2pÞ ¼ yðtÞ: (3:7:14)

The trigonometric F-series of this periodic function

was given by (see (3.6.10))

y2pðtÞ ¼
1

p
þ 1

2
sinðtÞ

� 2

p
cosð2tÞ
1ð3Þ þ

cosð4tÞ
3ð5Þ þ

cosð6tÞ
5ð7Þ þ � � �

� �
:

(3:7:15)

Find the smallest N in (3.7.13) for the two cases:

a:10% or less b: 2% or less, see Gibson (1993).

Solution: FirstZ
2p

y22pðtÞdt ¼
1

2

Zp

0

ð1� cosð2tÞÞdt ¼ p
2
¼ 1:571:

N¼1 :

ISEð Þ1¼
Z
2p

y22p tð Þdt�2p X2
s 0½ �þ

1

2
a2 1½ �þb2 1½ �
 �
 �

¼ 1:571� 2p½ð1=pÞ2 þ ð1=2Þð1=2Þ2�
¼ :149: (3:7:16)

The percentage error is (.149/1.571) = 9.5%. This

implies that N ¼ 1 satisfies the requirements for

Part a. Continuing this procedure, we have

N¼2:ðISEÞ2¼1:571�2p½ð1=pÞ
2

þð1=2Þð1=2Þ2þð1=2Þð4=9p2Þ�¼:0075: (3:7:17)

In this case the percentage integral-squared error is

(.0075/1.571)=.5% and N ¼ 2 satisfies the require-

ment for part b. The coefficients die out like

ðK=k2Þ; where K is a constant. Very few terms are

needed to approximate the half-wave rectified sig-

nal. Unfortunately, there is no general formula to

determine the number of harmonics needed for a

given set of specifications. &

The ISE can be reduced by increasing N. It goes

to 0 when N!1. On the other hand, the peak 9%

overshoots and undershoots before and after the

discontinuities discussed earlier cannot be reduced

even if infinite number of terms is included in the

F-series expansion. There is another measure, aver-

age error, which can be used in judging an approx-

imation, which is not very attractive as the positive

errors may cancel out with the negative errors.

Squaring the error function accentuates the larger

errors. Least-squares error measure gives a conve-

nient and a simple way to calculate the parameters

in the approximation. Overshoots and undershoots

can be reduced by smoothing.

3.7.3 Spectral Window Smoothing

The ripples generated by the Fourier series approx-

imation of a discontinuous function are due to

the abrupt change of the function before and after

the discontinuity. The use of a taper, instead of a

discontinuity at a transition, yields a smoother
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reconstruction from the basis functions. The wind-

owed signal is defined by the periodic convolution

(see Section 2.5) by

yTðtÞ ¼ xTðtÞ � wTðtÞ

¼ 1

T

Z
T

xTðaÞwTðt� aÞda: (3:7:18a)

Considering (2N+1) complex F-series coefficients

of yTðtÞ (see (3.6.29a)), we have

yT;NðtÞ ¼
XN
k¼�N

Ws½k�Xs½k�ejko0t: (3:7:18b)

The sequence Ws½k� is a window and its weights

(or coefficients) typically decrease with increasing

kj j. The rectangular and hamming window

sequences are

Ws;R½k� ¼ 1; �N � k � N: (3:7:19)

Ws;H½k� ¼ :54þ :46 cosðkp=NÞ;
�N � k � N: (3:7:20)

The use of special windows reduces or even elimi-

nates the overshoots and undershoots in the

approximated signal before and after a disconti-

nuity, see Ambardar (1995).

Example 3.7.7 Consider the trigonometric

F-series in (3.7.2). Give the expression using

the rectangular window with N ¼ 7. Illustrate

the window smoothing by first sketching the

F-series and then the Hamming windowed

series.

Solution: The trigonometric F-series approxima-

tion is

ðx2pðtÞÞ N¼7¼j 4

p
sinðtÞþ1

3
sinð3tÞþ1

5
sinð5tÞþ1

7
sinð7tÞ

� �
:

(3:7:21)

Note the odd harmonic terms are all zero. The 15

tapered Hamming window coefficients and the

Hamming windowed function y2pðtÞ are, respec-

tively, given by

Ws;H½k�¼
:0800;:1256;:2532;:4376;:6424;:8268;:9544;1;

:9544;:8268;:6424;:4376;:2532;:1256;:0800

� �
:

ðy2pðtÞÞ N¼7j ¼ 4

p

�
ð:9544Þ sinðtÞ þ 1

3
ð:6424Þ sinð3tÞ

þ1
5
ð:2532Þsinð5tÞþ1

7
ð:0800Þsinð7tÞ

�

(3:7:22)

The two functions x2pðtÞ (identified as xðtÞ on the top

figure) and y2pðtÞ (identified as yðtÞ on the bottom

figure) are plotted in Fig. 3.7.3 usingMATLAB.Note

the overshoots and undershoots before and after the

discontinuities in each case. The later case has hardly

any ripples. The slope in the transition region is much

higher in the case of the rectangular window com-

pared to the Hamming window case. &

3.8 Fourier Series Expansion
of Periodic Functions with
Special Symmetries

In Section 1.6, periodic functions with half-wave

and quarter-wave symmetries were considered.

Computation of the F-series for these cases is con-

sidered next.

3.8.1 Half-Wave Symmetry

Figure 3.8.1 illustrates a periodic function with per-

iod T and with half-wave symmetry (or rotation

symmetry). Such functions satisfy (see (1.6.19) and

(1.6.20))

xTðtÞ ¼ �xT t� T

2


 �
: (3:8:1)

Periodic functions with half-wave symmetry have

odd harmonics, i.e., Xs½k� ¼ 0;k even, which can be

seen from the following. First

Xs½k� ¼
1

T

Z
T

xTðtÞe�jko0tdt
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¼ 1

T

Z0

�T=2

xTðtÞe�jko0tdtþ 1

T

ZT=2

0

xTðtÞe�jko0tdt: (3:8:2)

Consider the change of variable from t to a� ðT=2Þ
in the first integral on the right in (3.8.2), which

results in

Xs½k� ¼
1

T

ZT=2

0

xTða�
T

2
Þe�jko0ða�T

2Þda

þ 1

T

ZT=2

0

xTðtÞe�jko0tdt: (3:8:3)

The limits follow from t ¼ 0¼)a ¼ T=2

and t ¼ T=2¼)a ¼ 0 and

1

T

ZT=2

0

xTða�
T

2
Þe�jko0aejko0T=2da

¼ 1

T

ZT=2

0

xTða�
T

2
Þe�jko0ada

2
64

3
75ejkp

¼ð�1Þk 1
T

ZT

0

xTðt�
T

2
Þe�jko0tdt: (3:8:4)

Using (3.8.4) in (3.8.3), we have

Xs½k� ¼
1

T

ZT=2

0

xðtÞþð�1Þkx t�T

2


 �� �
e�jko0tdt:

(3:8:5)

From the half-wave symmetry property in (3.8.1) we

see that Xs½k� ¼ 0, k even, thus establishing the half-

wave symmetric functions that contain only odd

harmonics. The complex F-series of these functions

and the corresponding trigonometric F-series are

xTðtÞ¼
X1

k¼�1
k 6¼0;k�odd

Xs½k�ejko0t;Xs½k�¼
2

T

ZT=2

0

xTðtÞe�jko0tdt:

(3:8:6)

0 1 2 3 4 5 6 7 8
–2

–1

0

1

2

t

x(
t)

–2

–1

0

1

2

y(
t)

Use of rectangular window

0 1 2 3 4 5 6 7 8
t

Use of Hamming window

Fig. 3.7.3 Window
smoothing

Fig. 3.8.1 A half-wave symmetric function
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xTðtÞ ¼
X1
k¼1
fa½2 k� 1� cosðð2 k� 1Þo0tÞ þ b½2 k� 1�

sinðð2 k� 1Þo0tÞg;

a½2 k� 1� ¼ 4

T

ZT=2

0

xTðtÞ cosðð2 k� 1Þo0tÞdt

b½2 k� 1� ¼ 4

T

ZT=2

0

xTðtÞ sinðð2 k� 1Þo0tÞdt

:

(3:8:7)

3.8.2 Quarter-Wave Symmetry

If xTðtÞ is a periodic function with half-wave sym-

metry and, in addition, is either even or an odd

function, then xðtÞ is said to have even or odd quar-

ter-wavesymmetry, respectively, see Section 1.6.4.

They satisfy the following properties:

Even quarter-wave symmetry : xTðtÞ ¼
xTð�tÞ and xTðtÞ ¼ �xTðt� T=2Þ: (3:8:8a)

Odd quarter-wave symmetry : xTðtÞ ¼
�xTð�tÞ and xTðtÞ ¼ �xTðt� T=2Þ: (3:8:8b)

3.8.3 Even Quarter-Wave Symmetry

Since the function must be a half-wave symmetric to

be a quarter-wave symmetric, it follows that

Xs½0� ¼ 0 and a½2 k� ¼ 0: In addition, xðtÞ is even

and b½k� ¼ 0. Therefore,

Xs½0� ¼ 0; b½k� ¼ 0; a½2 k� 1�

¼ 4

T

ZT=2

0

xTðtÞ cosðð2 k� 1Þo0tÞdt; a½2 k� ¼ 0:

(3:8:9a)

a½2k�1�¼4

T

ZT=4

0

xTðtÞcosðð2k�1Þo0tÞdt

þ4

T

Z�T=2

T=4

xTðtÞcosðð2k�1Þo0tÞdt: (3:8:9b)

¼ 4

T

ZT=4

0

xTðtÞ cosðð2 k� 1Þo0tÞdt

þ 4

T

Z0

�T=4

xTðtÞ cos½ð2 k� 1Þo0t�dt:

Trigonometric and complex F-series for the even

quarter-wave symmetric function:

xTðtÞ ¼
X1
n¼1

a½2 k� 1� cos½ð2 k� 1Þo0t�;

a½2 k� 1� ¼ 8

T

ZT=4

0

xTðtÞcosðð2 k� 1Þo0tÞdt:

(3:8:10)

¼
X1
k¼1
ð1=2Þa½2 k� 1�ejð2 k�1Þo0t

þ
X1
k¼1
ð1=2Þa½2 k� 1�e�jð2 k�1Þo0t

¼
X1

k¼�1
Xs½k�jko0t

e

¼)Xs½2 k� 1� ¼ Xs½�ð2 k� 1Þ�
¼ a½2 k� 1�=2: (3:8:11)

3.8.4 Odd Quarter-Wave Symmetry

The F-series for this case are as follows. Derivation

is left as an exercise.

xTðtÞ ¼
X1
k¼1

b½2k�1�sin½ð2k�1Þo0t�;

b½2k�1� ¼ 8

T

Z T=4

0

xTðtÞsin½ð2k�1Þo0t�dt: (3:8:12)

xTðtÞ¼
X1
k¼1

X½2k�1�ejð2k�1Þo0t

þ
X1
k¼1

X½�ð2k�1Þ�e�jð2k�1Þo0t: (3:8:13)

Compare this with the F-series expansion and

equate the corresponding coefficients.
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xTðtÞ ¼
X1

n¼�1; n6¼0
Xs½n�ejno0t

¼)X½2 k� 1� ¼ b½2 k� 1�
2j

;X½�ð2 k� 1Þ�

¼ �b½2 k� 1�
2j

: (3:8:14)

3.8.5 Hidden Symmetry

Example 3.8.1 Symmetry of a periodic function

can be obscured by a constant. Consider the peri-

odic saw-tooth waveform, x2pðtÞ ¼ 1� ðt=2pÞð Þ;
05t52p in Fig. 3.8.2. It does not have any obvious

symmetry. Find the F-series of the function x2pðtÞ
by noting x

2pðtÞ � ð1=2Þð Þ is an odd function.

Solution: From the odd symmetry,

x2pðtÞ �
1

2


 �
¼
X1
k¼1

b½k� sinðko0tÞ

¼)x2pðtÞ ¼
1

2
þ
X1
k¼1

b½k� sinðko0tÞ : (3:8:15) &

3.9 Half-Range Series Expansions

Consider an aperiodic function x(t) over the inter-

val ð0;T=2Þ and zero everywhere else. Even and odd

functions can be generated in the interval

�T=25t5T=2 by

xeðtÞ ¼ xðtÞ þ xð�tÞ; x0ðtÞ ¼ xðtÞ � xð�tÞ: (3:9:1)

Even and odd periodic extensions (see Section 1.8.1.)

of these are

xeTðtÞ ¼
X1

k¼�1
xeðtþ kTÞ and

x0TðtÞ ¼
X1

k¼�1
x0ðtþ kTÞ: (3:9:2)

The trigonometric F-series of the even periodic

function has dc and cosine terms and the odd peri-

odic function has only sine terms. The two periodic

functions xeTðtÞ and x0TðtÞ can be expressed by the

following with o0 ¼ 2p=T (see (3.4.18)):

xeTðtÞ ¼ Xs½0� þ
X1
k¼1

a½k� cosðko0tÞ: (3:9:3a)

Xs½0� ¼
2

T

ZT=2

0

xðtÞdt;

a½k� ¼ 2

ðT=2Þ

ZT=2

0

xðtÞ cosðko0tÞdt: (3:9:3b)

x0TðtÞ ¼
X1
k¼1

b½k� sinðko0tÞ;

b½k� ¼ 4

T

ZT=2

0

xðtÞ sinðko0tÞdt: (3:9:4)

The functions xeTðtÞ and x0TðtÞ in (3.9.3a and b)

and (3.9.4) represent the same function in the inter-

val (0, T/2). Outside this interval (3.9.3a) represents

an even periodic function and (3.9.4) represents an

odd periodic function. These expansions are called

the half-range Fourier series expansions of the aper-

iodic function xðtÞ.

Example 3.9.1 Given the aperiodic function

xðtÞ ¼ sinðtÞ; 05t5p and 0 otherwise, expand this

function in terms of a cosine series expansion and the

sine series expansion in the interval 05t5p. Give the

even and odd periodic extensions of xðtÞ.

Solution: It is simple to see that xeTðtÞ ¼ sinðtÞj j
and the odd periodic extension x0TðtÞ ¼ sinðtÞ.
In the interval 05t5p, the two functions

xeTðtÞ and x0TðtÞ are equal. Since sinðtÞj j and

sinðtÞ are continuous functions, the F-series con-

verges and (see (3.6.7))

Fig. 3.8.2 xTðtÞ with hidden symmetry, T = 2p
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xeTðtÞ ¼ sinðtÞj j

¼ 2

p
� 4

p
cosð2tÞ
ð1Þð3Þ þ

cosð4tÞ
ð3Þð5Þ þ � � �

� �
; 05t5p :

(3:9:5)

x0T tð Þ ¼ sin tð Þ; 05t5p: (3:9:6) &

Example 3.9.2 Expand the function given below in

terms of a cosine series expansion in the interval

05t5p. Give the even periodic extensions of xðtÞ.

xðtÞ ¼
0; 05t5p=2

1; p=25t5p

�
: (3:9:7)

Solution: Cosine series need a symmetric function

defined by xeðtÞ ¼ xðtÞ þ xð�tÞ. The F-series can

now be obtained by considering the interval

�p5t5p, i.e., the period T ¼ 2p. Noting that

o0 ¼ 2p=T ¼ 1, the trigonometric F-series can be

computed. Since it is even, it follows that b½k� ¼ 0.

The coefficients Xs½0� and a½k� are, respectively,

given by

X½0� ¼ 1

2p

Zp

�p

xeTðtÞdt ¼
2

p

Zp=2

p=4

dt

¼ 2

p
½ðp=2Þ � ðp=4Þ�dt ¼ 1

2
:

a½k� ¼ 2

p

Zp

0

xeTðtÞ cosðktÞdt

¼ 2

p

Zp

p=2

cosðktÞdt ¼ � 2

kp
sinðkp=2Þ:

xeTðtÞ ¼
1

2
� 2

p
cosðtÞ � 1

3
cosð3tÞ þ 1

5
cosð5tÞ � � � �

� �
;

05t5p:

This gives an approximation of xðtÞ in terms of

cosine series in the time interval 05t5p. In a simi-

lar manner, the odd periodic extension of the func-

tion can be determined. Since the function is odd, it

follows that Xs½0� ¼ 0 and a½k� ¼ 0; k ¼ 0; 1; 2; . . ..
The coefficients b½k� and the corresponding odd

period extension are given by

b½k� ¼ 2

p

Zp

p=2

sinðktÞdt

¼ � 2

kp
½cosðkpÞ � cosðð1=2ÞkpÞ�:

x0ðtÞ ¼
2

p
sinðtÞ þ 1

3
sinð3tÞ þ 1

5
sinð5tÞ þ � � �

� �

� 2

p
sinð2tÞ þ 1

3
sinð6tÞ þ 1

5
sinð10tÞ þ � � �

� �
:

05t5p:
&

3.10 Fourier Series Tables

Refer tables 3.10.1 and 3.10.2 for Fourier Series.

3.11 Summary

In this chapter we have introduced some of the basis

functions and their use in approximating a given

function in an interval. The important set of basis

functions are the sine and the cosine functions and

the periodic exponential function leading to the

discussion on Fourier series. This chapter dealt

with Fourier series, their properties and the compu-

tations of the Fourier series coefficients, in general,

and in cases of special symmetries in the given func-

tion. Convergence of the coefficients and the num-

ber of coefficients required for a given set of speci-

fications are discussed. Approximation measures

are discussed in terms of basis functions. Specific

principal topics that were included are

� Various basis functions and error measures of a

function and their approximations
� Basics of complex and trigonometric Fourier

series and the relationships between the trigono-

metric and the complex F-series
� Computation and simplification of the F-series

coefficients of periodic functions that have sim-

ple and special symmetries
� Operational properties of the Fourier series

that include simple methods that allow for

simplification in the computation of the

F-series
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Table 3.10.1 Symmetries of real periodic functions and their Fourier-series coefficients

Type of
symmetry

Constraints
Periodic,
xT tð Þ ¼ xT tþ Tð Þ;
o0 ¼ 2p=T: Trignometric Fourier-series

Fourier series
coefficients

Even xT tð Þ ¼ xT �tð Þ xT tð Þ ¼ XS 0½ � þ
P1
k¼1

a k½ � cos ko0tð Þ XS 0½ � ¼ 2
T

RT=2
0

xT tð Þdt

a k½ � ¼ 4
T

RT=2
0

xT tð Þ cos ko0tð Þdt

Odd xT tð Þ ¼ �xT �tð Þ xT tð Þ ¼
P1
k¼1

b k½ � sin ko0tð Þ b k½ � ¼ 4
T

RT=2
0

xT tð Þ sin ko0tð Þdt

Half-wave xT tð Þ ¼ �xT tþ T=2ð Þ x tð Þ ¼
P1
k¼1

a 2 k� 1½ � cos 2 k� 1½ �o0t

þ
P1
k¼1

b 2 k� 1½ � sinð2 k� 1Þo0t

a 2 k� 1½ � ¼ 4
T

RT=2
0

xT tð Þcos 2 k� 1ð Þo0tð Þdt

b 2 k� 1½ � ¼ 4
T

RT=2
0

xT tð Þ sin 2 k� 1ð Þo0tð Þdt

Even

quarter-

wave

xT tð Þ ¼ �xT �tð Þ;
xT tð Þ ¼ �xT tþ T=2ð Þ

xT tð Þ ¼
P1
k¼1

a 2 k� 1½ � cos 2 k� 1ð Þo0t a 2 k� 1½ � ¼ 8
T

RT=4
0

xT tð Þcos 2 k� 1ð Þo0tð Þdt

Odd

quarter-

wave

xT tð Þ ¼ �xT �tð Þ;
xT tð Þ ¼ �xT tþ T=2ð Þ

xT tð Þ ¼
P1
k¼1

b 2 k� 1½ � sin 2 k� 1ð Þo0t b 2 k� 1½ � ¼ 8
T

RT=4
0

xT tð Þsin 2 k� 1ð Þo0tð Þdt

There are extensive tables in literature that list Fourier series of functions. See Abramowitz and Stegun (1964), Gradshteyn and
Ryzhik (1980), and others. To standardize the tables, we will assume the period is T ¼ 2p. Spiegel (1968) has several other
interesting periodic functions and the corresponding Fourier series.

Table 3.10.2 Periodic functions and their Trigonometric Fourier Series

Periodic Function x2p tð Þ ¼ x2p tþ 2pð Þ Trigonometric Fourier-series

x2p tð Þ ¼ 1; 05t5p
�1; �p5t50

�
4
p

sin tð Þ
1 þ

sin 3tð Þ
3 þ sin 5tð Þ

5 þ � � �
h i

x2p tð Þ ¼ tj j ¼ t; 05t5p
�t; �p5t50

�
p
2 � 4

p
cos tð Þ
12
þ cos 3tð Þ

32
þ cos 5tð Þ

52

h i

x2p tð Þ ¼ t;�p5t5p
2 sin tð Þ

1 �
sin 2tð Þ

2 þ sin 3tð Þ
3 þ � � �

h i
x2p tð Þ ¼ t2;�p5t5p p2

3 � 4 cos tð Þ
1 �

cos 2tð Þ
22
þ cos 3tð Þ

32
� � � �

h i

x2p tð Þ ¼ sin tð Þj j;�p5t5p 2
p� 4

p
cos 2tð Þ
1ð Þ 3ð Þ þ

cos 4tð Þ
3ð Þ 5ð Þ þ

cos 6tð Þ
5ð Þ 7ð Þ þ � � �

h i

x2p tð Þ ¼ sin tð Þ; 05t5p
0; p5t52p

�
1
pþ 1

2 sin tð Þ � 2
p

cos 2tð Þ
1ð Þ 3ð Þ þ

cos 4tð Þ
3ð Þ 5ð Þ þ

cos 6tð Þ
5ð Þ 7ð Þ þ � � �

h i

x2p tð Þ ¼ cos tð Þ; 05t5p
�cosðtÞ; �p5t50

�
8
p

sin 2tð Þ
1ð Þ 3ð Þ þ

2 sin 4tð Þ
3ð Þ 5ð Þ þ

3 sin 6tð Þ
5ð Þ 7ð Þ þ � � �

h i

x2p tð Þ ¼ et;�p5t5p
2 sinhp

p
1
2
þ
P1
k¼1

�1ð Þk
1þk2ð Þ cosðktÞ � k sinðktÞð Þ

� �
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� Bounds and convergence of the F-series to the

given function
� Half-range expansions

Problems

3.1.1 The set of functions fiðtÞ; i ¼ 1; 2; 3; 4 shown

in Fig. P3.1.1 are a set ofWalsh functions. Show that

they are orthogonal in the interval [0, 1].

3.1.2 Consider the set ff1ðtÞ;f2ðtÞg with

f1ðtÞ ¼ 1 and f2ðtÞ ¼ cð1� 2tÞ. Is this an orthogo-

nal set in the interval [0, 1]? If so, compute the value of

c thatmakes the functionsf1ðtÞ and f2ðtÞ become an

orthonormal basis set.

3.1.3 The function xðtÞ ¼ sinðtÞ is approximated by

xðtÞ ¼ c1f1ðtÞ þ c2f2ðtÞ. Use the results in Problem

3.1.2 and find the constants c1 and c2 so that the

mean-squared error is minimized between the given

function and the approximated function.

3.1.4 Show the set fkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ð2=TÞ

p
sinðkp=TÞt;

k ¼ 1; 2; 3; . . . is an orthogonal set in the interval

(0, T).

3.1.5 Use the first five Legendre polynomials to

approximate the following function:

xðtÞ ¼
0;�15t50

1; 05t51

�
:

3.2.1 Use the Walsh functions given in Problem

3.1.1 to approximate the following function and

find themean-squared error between the given func-

tion and approximation:

xðtÞ ¼
t; 05t51

0; otherwise

�
:

3.2.2 Consider the equations given in matrix form

given below. There is no value of a that satisfies the
set of equations given below. The system is called an

overdetermined system of equations:

1

2

� �
¼

1

1

� �
a:

The Lp error between the two sides of the above

equation is Ep ¼ ð1� aÞj jpþ ð2� aÞj jp. If p ¼ 2; we

call that as a least-squares error or L2 error and for

p ¼ 1, we call that as theL1 error. Find the value of a
that minimizes the L1 and L2 errors. The least-

squares error can be computed by taking the partial

of E2 with respect to a, equating it to zero and sol-

ving for a, see Section A.8.1. A simple way to solve

the L 1 error problem is solve each equation and find

the value of a out of the two solutions that gives the

minimum L 1 error. For iterative Lp solutions, see

Yarlagadda, Bednar and Watt (1986).

3.3.1 Determine the complex Fourier series of the

function

xTðtÞ ¼ cosð2pf0t� 1Þ þ sinð2pð2f0Þt� 2Þ:

3.3.2 a. Determine the period of the function

xTðtÞ ¼
X1

k¼�1

1

ðaþ jpkbÞ e
jð3pkt=2Þ:

t

1

0 1
4

1
2

3
4

1

(a)

(b)

(c)

(d)

t

1

0 1
4

1
2

3
4

1

-1

t

1

0 1
4

1
2

3
4

1

-1

t

1

0 1
4

1
2

3
4

1

-1

1( )tφ

2 ( )tφ

3 ( )tφ

4 ( )tφ

Fig. P3.1.1 Walsh functions
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b.What is the average value of the periodic function

xTðtÞ?
c. Determine the amplitude and phase values of the

third harmonic.

3.3.3 Expand the following periodic functions with

xiðtÞ ¼ xiðtþ 2pÞ in trigonometric F-series:

a: x1ðtÞ ¼ eat;�p5t5p; a is some constant

b: x2ðtÞ ¼ cosh at;�p � t � p:

c: x3ðtÞ ¼ tðp� tÞ; 05t5p;

d: x4ðtÞ ¼
cosðtÞ; 05t5p

� cosðtÞ; �p5t50

�
:

3.3.4 Find the F-series of the function

x1ðtÞ ¼ At2 þ Btþ C;�p5t5p.

3.3.5 Show that the equation in (3.3.11) reduces to

the equation in (3.3.10).

3.4.1 Use the derivative method to determine the

trigonometric Fourier series of the periodic function

x2pðtÞ ¼ t; 0 � t52p.

3.4.2 Find the trigonometric F-series of the function

shown below using a. derivative method. b. What

can you say about the convergence of its F-series

coefficients?

xTðtÞ ¼
2 cos pt=2½ �; �15t51

0; 15 tj j5T=2

�
:

c. What can you say about the convergence of the

trigonometric F-series coefficients?

3.4.3 Use the generalized derivatives of the function

given in Problem3.4.2 and see how fast the series

converge without actually computing the Fourier

series and verify the results obtained in that problem.

3.4.4 Show that Xs½k�j j ¼ Xs½�k�j j for a real periodic
function xTðtÞ. Give a complex periodic function

where this is not true.

3.5.1 The function and its trigonometric F-series

expansion are given by

x2pðtÞ ¼ sinðtÞj j; 0 � t52p;

sinðtÞj j ¼ 2

p
� 4

p
cosð2tÞ

3
þ cosð4tÞ

15
þ cosð6tÞ

35
þ � � �

� �
:

Derive an expression for p using the F-series. See

Example 3.7.4. What is the value of the F-series at

t ¼ 0? Compare this to the actual value of the func-

tion at that location.

3.5.2 Using the Fourier series expansion, determine

the sum A identified below

xðtÞ ¼ cosh at ¼ 2
p sinhðapÞ

1
2aþ

P1
k¼1
ð�1Þk a

k2þa2 cosðktÞ
� �

;�p � t � p

A ¼ 1
2aþ

P1
k¼1
ð�1Þk 1

k2þa2

:

3.5.3 Find the F-series expansion of the function

yðtÞ ¼ sinhðatÞ using the above results.

3.6.1 Consider the full-wave rectified function

xðtÞ ¼ sinðtÞj j;�p5t5p. Estimate the rms value

of the full-wave rectified signal by using the first

four nonzero terms in the Fourier series representa-

tion of the function. Calculate the percentage of

error in the estimation.

3.6.2 Consider the triangular wave function given

below and derive the trigonometric F-series of this

function.

xTðtÞ ¼
1þ 4t

T ;� T
2
5t � 0

1� 4t
T ; 0 � t5 T

2

(
; xTðtþ TÞ ¼ xTðtÞ:

3.6.3 Show that

1

T

Z
T

xTðtÞxTðt� tÞdt ¼

1

T

Z
T

xTeðtÞxTeðt� tÞdtþ 1

T

Z
T

xT0ðtÞxT0ðt� tÞdt:

3.6.4 Show the integral of xTðtÞ with a nonzero

average value is non-periodic.

3.6.5 Show the derivative of an even function is an

odd function and the derivative of an odd function

is an even function. Verify this property using the

trigonometric F-series.

3.7.1 Using the F-series in Table 3.10.2, determine

A ¼
X1
k¼1
½1=ð2 k� 1Þ2�:
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3.7.2 Verify the Fourier series of the periodic func-

tion x2pðtÞ ¼ t; �p5t5p are

x2pðtÞ ¼ 2
X1
k¼1
½ð�1Þk�1=k� sinðktÞ:

What value does this function converges to at

t ¼ 0; ðp=2Þ; p?

3.7.3Give the convergence rate of the F-series coef-

ficients of the periodic functions without actually

using the F-series.

a:x1ðtÞ ¼ t� 1; 05t51; x1ðtþ TÞ ¼ x1ðtÞ;

T ¼ 1; b:x2pðtÞ ¼
sinðtÞ; 05t5p

0; p5t52p

�
:

3.8.1 Derive the expressions for the coefficients b½k�
in (3.8.13).

3.8.2 Consider the periodic function x2pðtÞ below
and identify any symmetry this has.

x2pðtÞ ¼
1; 05t5p

�1; �p5t50

�
; x2pðtÞ ¼ x2pðtþ 2pÞ:

a. Use that to derive the trigonometric F-series of

this function. Give the corresponding complex

F-series. b. Use the derivative method to derive the

trigonometric F-series.

3.8.3 Consider the periodic triangular wave func-

tion below. Does this function have any symme-

try? Derive the trigonometric F-series of this

function.

g2pðtÞ ¼
t� ðp=2Þ; 05t5p

�t� ðp=2Þ; �p5t50

�
;

g2pðtÞ ¼ g2pðtþ 2pÞ:

3.8.4 Give the complex F-series of the full-wave

rectified signal x2pðtÞ ¼ cosðtÞj j. Use the Fourier

series of the results on the full-wave rectified sine

wave in Table 3.10.2.

3.9.1 Verify the trigonometric Fourier series given

in Table 3.10.2 for the following periodic functions

in the range �p5t5p.

a: x2pðtÞ ¼ t2; b: x2pðtÞ ¼ et; c: x2pðtÞ ¼ cosðatÞ:

3.9.2 Use the results in Table 3.10.2 and the deriva-

tive method to derive the F-series of the periodic

function x2pðtÞ ¼ sinðatÞ;�p5t5p.

3.9.3 Derive an expression for the F-series of the

function x2pðt� pÞ; �p5t5p given

x2pðtÞ ¼ Xs½0� þ
X1
k¼1

a½k� cosðko0tÞ

þ
X1
k¼1

b½k� sinðko0tÞ;�p5t5p:

3.9.4 Consider the functions xðtÞ ¼ cosðtÞ
and yðtÞ ¼ sinðtÞ over the interval 05t5p and 0

otherwise. Expand these functions using the Fourier

sine series and cosine series by directly going

through the procedure discussed in Section 3.9.

Can you think of a simpler method knowing the

results given in Example 3.9.1?
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Chapter 4

Fourier Transform Analysis

4.1 Introduction

In Chapter 3 we have discussed the frequency repre-

sentation of a periodic signal. Fourier series expan-

sions of periodic signals give us a basic understand-

ing how to deal with signals in general. Since most

signals we deal with are aperiodic energy signals, we

will study these in terms of their Fourier transforms

in this chapter. Fourier transforms can be derived

from the Fourier series by considering the period of

the periodic function going to infinity. Fourier trans-

form theory is basic in the study of signal analysis,

communication theory, and, in general, the design of

systems. Fourier transforms are more general than

Fourier series in some sense. Even periodic signals

can be described using Fourier transforms. Most of

the material in this chapter is standard (see Carlson,

(1975), Lathi, (1983), Papoulis, (1962), Morrison,

(1994), Ziemer and Tranter, (2002), Haykin and

Van Veen, (1999), Simpson and Houts, (1971),

Baher, (1990), Poulariskas and Seely, (1991), Hsu,

(1967, 1993), Roberts, (2007), and others).

4.2 Fourier Series to Fourier Integral

Consider a periodic signal xTðtÞ with period T and

its complex Fourier series

xTðtÞ ¼
X1

k¼�1
Xs½k�e jko0t;

Xs½k� ¼
1

T

ZT=2

�T=2

xTðtÞe�jko0tdt; o0 ¼ 2p=T:

(4:2:1)

The frequency f0 ¼ o0=2p is the fundamental fre-

quency of the signal, which is the inverse of the

period of the signal f0 ¼ ð1=TÞ. The Fourier series

coefficients are complex in general. To make the

analysis simple we assume the signal under consid-

eration is real and the amplitude of the Fourier

coefficients is given by Xs½k�j j. Figure 4.2.1b gives

the sketch of the amplitude line spectra of the

complex Fourier series of a periodic function

shown in Fig. 4.2.1a. The frequencies are located

at ko0 ¼ 2pðkf0Þ; k ¼ 0; �1; �2; : : : and the fre-

quency interval between the adjacent line spectra is

o0 ¼ 2pf0 ¼ 2p=T: In this example, we assumed

t=T ¼ 1=5. As T ¼ 2p=o0 !1, o0 goes to zero

and the spectral lines merge. To quantify this, let

xT (t)

[ ]sX k

Fig. 4.2.1 (a) xTðtÞ and (b) XsðkÞj j

R.K.R. Yarlagadda, Analog and Digital Signals and Systems, DOI 10.1007/978-1-4419-0034-0_4,
� Springer ScienceþBusiness Media, LLC 2010
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us extract one period of the periodic signal by

defining

xðtÞ ¼ xTðtÞ; � T
2
5t5 T

2

0; Otherwise

�
: (4:2:2)

We can consider the function in (4.2.2) as a periodic

signal with period equal to1. In the expression for

the Fourier series coefficients in (4.2.1), k and o0

appear as product ðko0Þ ¼ ðkð2pÞ=TÞ. As T!1,

the expression for the Fourier series coefficients in

(4.2.1) results in a value equal to zero, which does

not provide any spectral information of the signal.

To avoid this problem, define

Xðko0Þ ¼ TXs½k� ¼
ZT=2

�T=2

xðtÞe�jko0tdt: (4:2:3)

Note that k is an integer and it can take any integer

value from �1 to 1. Furthermore, as T!1,

o0 ¼ ð2p=TÞ becomes an incremental value, ko0

becomes a continuous variable o on the frequency

axis, andXðko0Þ becomesXðoÞ. From this, we have

the analysis equation for our single pulse:

XðjoÞ ¼ lim
T!1
ðTXs½k�Þ ¼ lim

T!1

ZT=2

�T=2

xðtÞe�jko0tdt

¼
Z1

�1

xðtÞe�jotdt: (4:2:4)

Now consider the synthesis equation in terms of the

Fourier series in the forms

xTðtÞ ¼
X1

k¼�1
Xs½k�e jko0t; �T=25t5T=2; (4:2:5)

xTðtÞ ¼
1

T

X1
k¼�1

Xðko0Þe jko0t: (4:2:6)

One can see that as T!1, ko0 ! o; a continuous
variable, and o0 ¼ 2p=T! do, an incremental

value and the summation becomes an integral.

These result in

xðtÞ ¼ lim
T!1

1

2p

X1
k¼�1

Xðko0Þe jðko0Þto0

" #

¼ 1

2p

Z1

�1

XðjoÞejotdo: (4:2:7)

We now have the Fourier transform of the time

function xðtÞ, XðjoÞ; and its inverse Fourier trans-

form. Some authors use XðjoÞ instead of XðoÞ for
the Fourier transform, indicating the transform is a

function of complex variable ðjoÞ. The pair of func-
tions xðtÞ and XðjoÞ is referred to as a Fourier

transform pair:

XðjoÞ ¼ F½xðtÞ� ¼
Z1

�1

xðtÞe�jotdt; (4:2:8a)

xðtÞ ffi ~xðtÞ ¼ F �1½Xð joÞ� ¼ 1

2p

Z1

�1

XðjoÞe jotdo;

(4:2:8b)

xðtÞ !
FT

Xð joÞ: (4:2:8c)

The transform and its inverse transform can

be written in terms of frequency variable

f in Hertz instead of o ¼ 2pf:

Xð jf Þ ¼
Z1

�1

xðtÞe�j2pftdt; xðtÞ ¼
Z1

�1

Xð jf Þej2pftdf:

(4:2:8d)

Equation (4.2.8c) shows that the transform and its

inverse have the same general form, one has the time

function and an exponential term with negative

exponent and the other has the transform and an

exponential term with a positive exponent in the

corresponding integrands. F-transforms are applic-

able for both real and complex functions. Most

practical signals are real signals. The transforms

are generally complex. Integrals in the transform

and its inverse are with respect to a real variable.

The relations between the Laplace transforms, con-

sidered in Chapter 5, and the Fourier transforms

become evident with this form. The form in (4.2.8d)

is adopted by the engineers in the communications

area. The transforms are computed by integration

and the inverse transforms are determined by using
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transform tables. Since the Fourier transform is

derived from the Fourier series, we can now say that

x tð Þ!FT X joð Þ!Inverse FT
~x tð Þ ’ x tð Þ:

The inverse transform of XðjoÞ;F�1½XðjoÞ� identi-
fied by ~xðtÞ is an approximation of xðtÞ and it may

not be the same as the function xðtÞ. We will have

more on this shortly.

Fourier transform is applicable to signals that

obey the Dirichlet conditions (see Section 3.1),

with the exception now that x tð Þ must be abso-

lutely integrable over all time, which is a sufficient

but not a necessary condition. Periodic functions

violate the last condition of absolute integrability

over all time and will be considered in a later

section. There are many functions that do not

have Fourier transforms. For example, the Fourier

transform of the function eat; a40 is not defined.

The functions that can be generated in a laboratory

have Fourier transforms. Existence of the Fourier

transforms will not be discussed any further. In the

synthesis equation, the inverse transform given by

(4.2.8b) is an approximation of the function xðtÞ.
The function xðtÞ and its approximation ~xðtÞ are
equal in the sense that the error eðtÞ ¼ ½xðtÞ � ~xðtÞ�
is not equal to zero for all t and may differ signifi-

cantly from zero at a discrete set of points t, but

Z1

�1

eðtÞj j2dt ¼ 0: (4:2:9)

In the sense that the integral squared error is zero,

the equality xðtÞ ¼ ~xðtÞ between the function and

its approximation is valid. Physically realizable

signals have F-transforms and when they are

inverted, they provide the original function. Phy-

sically realizable signals do not have any jump

discontinuities. That is ~xðtÞ ¼ xðtÞ. If the function
xðtÞ has jump discontinuities, then the recon-

structed function ~xðtÞ exhibits Gibbs phenomenon.

The reconstructed function converges to the half-

point at the discontinuity and will have overshoots

and undershoots before and after the discontinuity

(see Section 3.7.1).

Example 4.2.1 Determine FfxðtÞg ¼ FfAP½t=t�g
and FfyðtÞg ¼ Ffxðt� ðt=2ÞÞg using the F-series of

xTðtÞ ¼ xðtÞ; tj j5t=2; xTðtÞ ¼
X1
n¼�1

xðtþ nTÞ:

xTðtÞ ¼ AP t=t½ �; tj j5T=2; xTðtÞ ¼ xTðtþ TÞ;
yTðtÞ ¼ xTðt� ðt=2ÞÞ: (4:2:10)

Solution: The complex Fourier series coefficients of

xTðtÞ were given in Example 3.4.2. The Fourier

series coefficients and their amplitudes of the two

functions are given by

Xs½k� ¼ Aðt=TÞ sinðko0t=2Þ
ðko0t=2Þ

;

Ys½k� ¼ Xs½k�e�jko0ðt=2Þ; o0 ¼ 2p=T: (4:2:11)

Ys k½ �j j ¼ Xs k½ �j j ¼ At
T

����
���� sin ko0 t=2ð Þð Þ

ko0t=2ð Þ

����
����:

By using the complex Fourier series in (4.2.4), the

transforms of the two pulses xðtÞ and yðtÞ are given
below:

yðtÞ ¼ AP ðt� t=2Þ=t½ �; (4:2:12)

YðjoÞ¼ lim
T!1

TYs½k� ¼At
sinðot=2Þ
ðot=2Þ e�joðt=2Þ; (4:2:13a)

XðjoÞ ¼ lim
T!1

TXs½k� ¼ At
sinðot=2Þ
ðot=2Þ : (4:2:13b)

Obviously it is simpler to compute the transform

directly. For example,

YðjoÞ ¼
Z1

�1

xðtÞe�jotdt ¼
Zt

0

Ae�jotdt ¼ A

�ðjoÞ e
�jot t

0

��

¼ A
1� e�jot

jo
¼ At

ejoðt=2Þ � e�joðt=2Þ

2jot=2
e�jot=2

¼ At
sinðot=2Þ
ðot=2Þ e�jot=2: (4:2:13c)

The transform of the pulse xðtÞ is

XðjoÞ ¼ At
sinðot=2Þ
ðot=2Þ : (4:2:14)

We should note that yðtÞ is a delayed version of

xðtÞ and the delay explicitly appears in the phase

spectra. See the difference between (4.2.13c) and

(4.2.14). &
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Since the F-transform is derived from the F-series,

many of the properties for the F-series can be mod-

ified to derive the transform properties with some

exceptions. Let a time limited function transform

x tð Þ$FT X joð Þ be defined over the interval

t05t5t0 þ T and zero everywhere else. This implies

xTðtÞ ¼
X1
n¼�1

xðtþ nTÞ ¼
X1

k¼�1
Xs½k�e jko0t

) Xs½k� ¼ ð1=TÞXðjoÞ o¼ko0
:j (4:2:15)

If xðtÞ is not time limited to aT second interval, then

the function xðtÞ cannot be extracted from xTðtÞ and
(4.2.15) is not valid.

4.2.1 Amplitude and Phase Spectra

Let theFourier transformof a real signalxðtÞ be given

by XðjoÞ. It is usually complex and can be written as

either in terms of the rectangular or the polar form:

XðjoÞ ¼ RðoÞ þ jIðoÞ ¼ AðoÞe jyðoÞ: (4:2:16a)

The functions RðoÞ and IðoÞ are the real and the

imaginary parts of the spectrum. In the polar form,

the magnitude or the amplitude and the phase spec-

tra are given by

AðoÞ ¼ XðjoÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðoÞ þ I 2ðoÞ

q
;

yðoÞ ¼ tan�1 IðoÞ=RðoÞ½ �:
(4:2:16b)

When x tð Þ is real, the transform satisfies the proper-

ties that RðoÞ and IðoÞ are even and odd functions

of o, respectively. That is,

Rð�oÞ ¼ RðoÞ and Ið�oÞ ¼ �IðoÞ: (4:2:17)

These can be easily verified using Euler’s identity

and

XðjoÞ ¼
Z1

�1

xðtÞe�jotdt ¼
Z1

�1

xðtÞ cosðotÞdt

� j

Z1

�1

xðtÞ sinðotÞdt ¼ RðoÞ þ jIðoÞ;

RðoÞ ¼
Z1

�1

xðtÞ cosðotÞdt;

IðoÞ ¼ �
Z1

�1

xðtÞ sinðotÞdt: (4:2:18a)

Since cosðotÞ is even and sinðotÞ is odd, the equal-
ities in (4.2.18a) follow. As a consequence, for any

real signal x tð Þ, we have

Xð�joÞ¼Rð�oÞþ jIð�oÞ¼RðoÞ¼ jIðoÞ¼X �ð joÞ:
(4:2:18b)

From (4.2.16b) and (4.2.17), the amplitude spec-

trum XðjoÞj j of a real signal is even and the phase

spectrum yðoÞ is odd. That is,

Xð�joÞj j ¼ XðjoÞj j; yð�oÞ ¼ �yðoÞ: (4:2:19)

Interesting transform relations in terms of the even

and odd parts of a real function: If xðtÞ ¼ xeðtÞþ
x0ðtÞ, a real function, then the following is true:

x tð Þ ¼ xe tð Þ þ x0 tð Þ !
FT

R oð Þ þ jI oð Þ; (4:2:20)

xe tð Þ ¼ x tð Þ þ x �tð Þ½ �=2 !
FT

R oð Þ and

x0 tð Þ ¼ x tð Þ � x �tð Þ½ �=2 !
FT

jI oð Þ: (4:2:21)

These can be seen from

XðjoÞ ¼
Z1

�1

xðtÞe�jotdt

¼
Z1

�1

½xeðtÞ þ x0ðtÞ�½cosðotÞ � j sinðotÞ�dt

¼
Z1

�1

xeðtÞ cosðotÞdt� j

Z1

�1

x0ðtÞ sinðotÞdt

� j

Z1

�1

xeðtÞ sinðotÞdtþ
Z1

�1

x0ðtÞ cosðotÞdt

¼
Z1

�1

xeðtÞ cosðotÞdt� j

Z1

�1

x0ðtÞ sinðotÞdt

¼ RðoÞ þ jIðoÞ (4:2:22a)
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RðoÞ ¼
Z1

�1

xeðtÞ cosðotÞdt;

IðoÞ ¼ �
Z1

�1

x0ðtÞ sinðotÞdt: (4:2:22b)

Note that integral of an odd function over a sym-

metric interval is zero. The F-transform of a real and

even function is real and even and the F-transform of

a real and odd function is pure imaginary. The trans-

form of a real function xðtÞ can be expressed in

terms of a real integral:

xðtÞ ¼ 1

2p

Z1

�1

XðjoÞe jotdo

¼ 1

2p

Z1

�1

XðjoÞj je jyðoÞe jotdo

¼ 1

2p

Z1

�1

XðjoÞj je jðotþyðoÞÞdo

¼ 1

p

Z1

0

XðjoÞj j cosðotþ yðoÞÞdo: (4:2:23)

Note XðjoÞj j and sinð�otþ yð�oÞÞ are even and

odd functions, respectively.

Example 4.2.2 Rectangular (or a gating pulse) is

given by xðtÞ ¼ P ðt� t0Þ=t½ �.
a. Give the expression for the transform using

(4.2.13a).

b. Compute the amplitude and the phase spectra

associated with the gating pulse function.

c. Sketch the magnitude and phase spectra of this

function assuming t0 ¼ t=2:

Solution: a. From (4.2.13a), we have

XðjoÞ ¼ t
sinðot=2Þ
ðot=2Þ e�jot0 ¼ tsincðot

2
Þe�jot0

¼ tsincð2pf t
2
Þe�jot0 ;

P
t� t0
t

h i
 !
FT

t sinc ot=2ð Þejot0 ¼ t sinc pftð Þe�j2pft0 :

(4:2:24a)

b. The magnitude and the phase spectra are,

respectively, given by

XðjoÞj j ¼ t
sinðoðt=2ÞÞ
oðt=2Þ

����
���� e�jot0�� �� ¼ t sincðot=2Þj j;

(4:2:24b)

yðoÞ ¼
�ðot0Þ; sincðot=2Þ40

�ðot0Þ � p; sincðot=2Þ50
:

�
(4:2:24c)

The time function xðtÞ; the magnitude spectrum

XðjoÞj j, and the phase spectrum are sketched in

Fig. 4.2.2 assuming t0 ¼ t=2. At o ¼ k2p=t,

Xð j k2p
t
Þ

����
���� ¼ t; k ¼ 0

0; k 6¼ 0 and k, an integer
:

�

(4:2:25a)

The discontinuity in the phase spectrum at

o ¼ 2p=t can be seen from

y
2p
t

�8>: 9>; ¼ �2p 1

t

8: 9; t
2

8: 9; ¼ �p; y 2p
t

þ8>>:
9>>;

¼ ð�pþ pÞ ¼ 0: (4:2:25b)

We have added p in determining the phase angle in

determining yð2pþ=tÞ taking into consideration

that the sinc function is negative in the range

05ð2p=tÞ5o52ð2p=tÞ, i.e., in the first side lobe.

In sketching the plots, appropriate multiples of (2p)

(a)

(b)

(c)

Fig. 4.2.2 (a) xðtÞ, (b) XðjoÞj j, and (c) ffXðjoÞ
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have been subtracted to make the phase spectrum

compact and the phase angle is bounded between

�p and p. Noting

XðjoÞj j ¼ t
sinðoðt=2ÞÞ
oðt=2Þ

����
���� / 1

oj j ; (4:2:25c)

it can be seen that the envelope of the magnitude

spectrum gets smaller for larger frequencies. The

exact frequency representation of the square pulse

should include all frequencies in the reconstruction

of this pulse, which is impractical. Therefore, keep

only the frequencies that are significant and the

range or the width of those significant frequencies

is referred to as the ‘‘bandwidth’’. Keeping the

desired frequencies is achieved by using a filter.

Filters will be discussed in later chapters. There are

several interpretations of bandwidth. For the pre-

sent, the following explanation of the bandwidth is

adequate and will quantify these measures at a later

time. &

4.2.2 Bandwidth-Simplistic Ideas

1. The width of the band of positive frequencies

passed by a filter of an electrical system.

2. The width of the positive band of frequencies by

the central lobe of the spectrum.

3. The band of frequencies that have most of the

signal power.

4. The bandwidth includes the positive frequency

range lying between two points at which the

power is reduced to half that of the maximum.

This width is referred to as the half-power band-

width or the 3 dB bandwidth.

Note that only positive frequencies are used in

defining the bandwidth. With bandwidth in mind,

let us look at XðjoÞj j in Example 4.2.2, where t is

assumed to be the width of the pulse. Any signal

that is nonzero for a finite period of time is referred

to as a time-limited signal and the signal given in

Example 4.2.2 is a time-limited signal. The main

lobe width of the magnitude spectrum for positive

frequencies is ð1=tÞ Hz. The spectrum is not fre-

quency limited, as the spectrum occupies the entire

frequency range, except that it is zero at

o ¼ kð2p=tÞ; k 6¼ 0; k� integer. The amplitude

spectrum XðjoÞj j gives the value Xðjo iÞj j at the

frequency oi ¼ 2pfi. Noting that most of the energy

is in the main lobe, a standard assumption of band-

width is generally assumed to be equal to k times

half of the main lobe width ð2p=tÞ, i.e., (kð2p=tÞ)
rad/s or ðk=tÞ Hz. An interesting formula that ties

the time and frequency widths is

(Time width) (Frequency width or bandwidth)

¼ Constant

(4:2:26)

Clearly as t decreases (increases), the main lobe

width increases (decreases) and we say that band-

width is inversely proportional to the time width.

For most applications, k ¼ 1 is assumed. Bandwidth

is generally given in terms of Hz rather than rad/s.

4.3 Fourier Transform Theorems, Part 1

Wewill consider first a set of theorems or properties

associated with the energy function x tð Þ and its F-

transform XðjoÞ: Transforms are applicable for

both the real and complex functions. In Chapter 3,

Parseval’s theorem was given and it can be general-

ized to include energy signals and is referred to as

generalized Parseval’s theorem, Plancheral’s theo-

rem or Rayleigh’s energy theorem.

4.3.1 Rayleigh’s Energy Theorem

The energy in a complex or a real signal is

Ex ¼
Z1

�1

xðtÞj j2dt ¼ 1

2p

Z1

�1

XðjoÞj j2do

¼
Z1

�1

XðjfÞj j2df: (4:3:1)

This is proved in general terms first.

Given x tð Þ !
FT

X joð Þ and y tð Þ !
FT

Y joð Þ, then

Exy ¼
Z1

�1

xðtÞy�ðtÞdt ¼ 1

2p

Z1

�1

XðjoÞY�ðjoÞdo:

(4:3:2)
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First,

Exy ¼
Z1

�1

y�ðtÞxðtÞdt

¼
Z1

�1

y�ðtÞ½ 1
2p

Z1

�1

XðjoÞe jotdo�dt

¼ 1

2p

Z1

�1

XðjoÞ½
Z1

�1

y�ðtÞe jotdt�do

¼ 1

2p

Z1

�1

XðjoÞ½
Z1

�1

yðtÞe�jotdt��do

¼ 1

2p

Z1

�1

XðjoÞY�ðjoÞdo:

When x tð Þ ¼ y tð Þ, the proof of Rayleigh’s energy

theorem in (4.3.1) follows. The transform of the

function or the function itself can be used to find

the energy.

Example 4.3.1 Compute the energy in the pulse E1

using Rayleigh’s energy theorem, the transform

pair, and the identity Spiegel (1968) given below:

E1 ¼
1

2p

ð1

�1

sinc2ðot=2Þdo
ð1

�1

sin2ðpaÞ
a2

da ¼ pp

8>>>>>>:
9>>>>>>;:

(4:3:3)

P
t

t

h i
 !
FT

t sinc ot=2ð Þ:

Solution: Using the energy theorem,

E1 ¼
1

2p

Z1

�1

sinc2ðot=2Þdo ¼ 1

t

� �2 Z1

�1

P2 t

t

� �
dt

¼ 1

t

� �2

ðtÞ ¼ 1

t
¼ 1

t2

Zt=2

�t=2

dt: (4:3:4)

Bandwidth of a rectangular pulse of width t is

usually taken (1/tÞ Hz corresponding to the first

zero crossing point of the spectrum. Energy

contained in the main lobe of the sinc function can

be computed by numerical methods, such as the

rectangular formula or the trapezoidal formula dis-

cussed in Chapter 1. &

Example 4.3.2 Compute the energy in the main lobe

of the sinc function and compare with the total

energy in the function using the following:

EMain lobe ¼
1

2p

Z2p=t

�2p=t

sinc2ðot=2Þdo; (4:3:5)

¼ 1

t

Z1

�1

sinc2ðpaÞda: (4:3:6)

Solution: To obtain (4.3.6) from (4.3.5), change of

variable, pa ¼ ot=2, is used and the limits are from

o ¼ �2p=t to a ¼ �1. Using the rectangular

method of integration, the energies in the main

lobe and in the pulse E1 (see (4.3.4)) are

EMain lobe � 0:924=t; E1 ¼ ð1=tÞ: (4:3:7)

The ratio of the energy in the main lobe, EMain lobe,

of the spectrum to the total energy in the pulse is

92.4%. That is, the main lobe has over 90% of the

total energy in the pulse function. Therefore, a

bandwidth of (1/tÞ Hz is a reasonable estimate of

the pulse function. &

4.3.2 Superposition Theorem

The Fourier transform of a linear combination of

functions F½xiðtÞ� ¼ XiðjoÞ, i ¼ 1; 2; :::; n with con-

stants ai; i ¼ 1; 2:::; n is

F
Xn
i¼1

aixi tð Þ
" #

¼
Xn
i¼1

aiXi joð Þ;

Xn
i¼1

aixi tð Þ !
FT Xn

i¼1
aiXi joð Þ: (4:3:8)

Since the integral of a sum is equal to the sum of the

integrals, the proof follows. This theorem is useful in

computing transforms of a function expressible as a

sum of simple functions with known transforms. The

F-transform of the function x�ðtÞ is related to the

transform of x tð Þ. This can be seen from
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Z1

�1

x�ðtÞe�jotdt ¼
Z1

�1

xðtÞe jotdt

2
4

3
5
�

¼ X�ð�joÞ;

) x� tð Þ !
FT

X � �joð Þ: (4:3:9)

4.3.3 Time Delay Theorem

The F-transform of a delayed function is given by

F½xðt� tdÞ� ¼ e�jotdXðjoÞ: (4:3:10)

This can be shown directly by using the change of

variable a ¼ t� td in the transform integral and

F½xðt� tdÞ� ¼
Z1

�1

xðt� tdÞe�jotdt

¼
Z1

�1

xðaÞe�joada

2
4

3
5e�jotd ¼ XðjoÞe�jotd

) F xðt	 tdÞ½ �
?? ??¼ XðjoÞe�jotd

?? ??¼ XðjoÞ
?? ??¼ F½xðtÞ�

?? ??:
(4:3:11)

Superposition and delay theorems are useful in find-

ing the Fourier transform pairs:

x t� tð Þ þ x tþ tð Þ !
FT

2X joð Þ cos otð Þ;
x t� tð Þ � x tþ tð Þ !

FT � 2jX joð Þ sin otð Þ:
(4:3:12)

Example 4.3.3 Using the superposition and the

delay theorem, compute the F-transform of the

function shown in Fig. 4.3.1.

Solution: xðtÞ can be expressed as a sum of two

rectangular pulses and is

xðtÞ ¼ P
tþ ðt=2Þ

t

	 

�P

t� ðt=2Þ
t

	 

: (4:3:13a)

Using the superposition and delay theorems, we

have

XðjoÞ ¼ F xðtÞ½ � ¼ F P
tþ ðt=2Þ

t

	 

�P

t� ðt=2Þ
t

	 
� �

¼ ejot=2 � e�jot=2
h i

F P
t

t

h in o

¼ 2jt sinðot=2Þ sinðot=2Þðot=2Þ : (4:3:13b)

Note that xðtÞ is an odd function and therefore the

transform is pure imaginary. &

Notes: In the above example a time-limited func-

tion, i.e., xðtÞ ¼ 0 for tj j4t, was used and its trans-

form is not frequency limited, as its spectrum occu-

pies the entire frequency range. A signal xðtÞ and its

transform XðjoÞ cannot be both time and frequency

limited. We will come back to this later. &

4.3.4 Scale Change Theorem

The scale change theorem states that

F½xðatÞ� ¼
Z1

�1

xðatÞe�jotdt ¼ 1

aj jX j
o
a

� �
; a 6¼ 0:

(4:3:14)

This can be shown by considering the two possibi-

lities, a50 and a40. For a50, by using the change

of variable b ¼ at in (4.3.14) in the integral expres-

sion, we have

F½xðtÞ� ¼
Z�1

1

xðbÞe�jðo=aÞb 1

a

� �
db

¼ �1
a

� � Z1

�1

xðbÞe�jðo=aÞbdb

¼ 1

aj j

Z1

�1

xðbÞe�jðoaÞbdb ¼ 1

aj jX j
o
a

� �
: (4:3:15)

Fig. 4.3.1 Example 4.3.3
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When a is a negative number, �a ¼ aj j. For a40,

the proof similarly follows. The scale change

theorem states that timescale contraction (expan-

sion) corresponds to the frequency-scale expansion

(contraction).

Example 4.3.4Use the scale change theorem to find

the F-transforms of the following:

x1ðtÞ ¼ P
t

ðt=2Þ

	 

and x2ðtÞ ¼ P

t

2t

h i
: (4:3:16a)

Solution: Consider the transform pair (see

(4.2.24a)) with t0 ¼ 0:

x tð Þ ¼ P t=t½ �$FT t sinc ot=2ð Þ ¼ X joð Þ: (4:3:16b)

Using the result in (4.3.14), we have

x1 tð Þ ¼ x 2tð Þ ¼ P
t

t=2

	 

 !
FT t

2

sin o t=4ð Þð Þ
o t=4ð Þ

¼ t
2
sinc o t=4ð Þð Þ ¼ X1 joð Þ; (4:3:16c)

x2 tð Þ ¼ x
t

2

� �
¼ P

t

2t

h i
 !
FT

2tð Þ sin otð Þ
ot

¼ 2tð Þ sinc otð Þ ¼ X2 joð Þ: (4:3:16d)

The two functions and their amplitude spectra

are sketched in Figs. 4.3.2a–d. Comparing the

magnitude spectra, the main lobe width of X1ðjoÞj j
is twice that of the main lobe width of XðjoÞj j,
whereas the main lobe width of X2ðjoÞj j is

half the main lobe width of XðjoÞj j. Consider

Figs. 4.2.2 and 4.3.2. The main lobe width times

its height in each of the cases are equal and

tð2p=tÞ ¼ ðt=2Þð2pð2=tÞÞ ¼ ð2tÞðp=tÞ ¼ 2p. The

(a)

(b)

(c)

(d)

Fig. 4.3.2 (a) x1ðtÞ, (b)
X1ðjoÞj j, (c) x2ðtÞ, and (d)
X2ðjoÞj j
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pulse amplitudes are all assumed to be equal to 1 for

simplicity. For any a

F½xðtÞ�
?? ??¼ F P

t� a

t

h in o��� ��� ¼ F P
t

t

h in o��� ���:
&

Time reversal theorem: A special case of the scale

change theorem is time reversal and

F½xð�tÞ� ¼ Xð�joÞ: (4:3:17a)

This follows from the scale change theorem by using

a ¼ �1 in (4.3.14). We note that

x tð Þ !
FT

X joð Þ; x1 tð Þ ¼ x �tð Þ !
FT

X �joð Þ ¼ X1 joð Þ;

X1ðjoÞj j ¼ Xð�joÞj j ¼ XðjoÞj j;
ffX1ðoÞ ¼ ffXð�joÞ ¼ �ffXðjoÞ: (4:3:17b)

Example 4.3.5 Find the F-transform of the follow-

ing functions:

a: x1ðtÞ ¼ e�atuðtÞ; b: x2ðtÞ ¼ eatuð�tÞ;
x3ðtÞ ¼ e�a tj j; a40: (4:3:18a)

Solution: a.Using the F-transform integral results in

X1ðjoÞ ¼
Z1

�1

e�atuðtÞe�jotdt ¼
Z1

0

e�ðaþjoÞtdt

¼ e�ðaþjoÞt

�ðaþ joÞ

	 

t¼1
t¼0
�� ¼ 1

ðaþ joÞ : (4:3:18b)

b. Using the time reversal theorem and the last

part results in

X2ðjoÞ ¼ X1ð�joÞ ¼ ½1=ða� joÞ�: (4:3:18c)

c. Noting that x3ðtÞ ¼ e�atuðtÞ þ eatuð�tÞ, the F-
transform can be computed using the superposition

theorem and the results in the last two parts. That is,

X3ðjoÞ ¼ F½e�atuðtÞ� þ F½eatuð�tÞ�

¼ 1

ðaþ joÞ þ
1

ða� joÞ ¼
2a

a2 þ ðoÞ2
:(4:3:18d)

&

Summary:

e�atu tð Þ !
FT 1

aþ joð Þ ; a
40; (4:3:19a)

eatu �tð Þ !
FT 1

a� jo
; a40; (4:3:19b)

e�a tj j !
FT 2a

a2 þ o2
; a40: (4:3:20)

The time and frequency functions are not limited in

time and frequency, respectively. &

4.3.5 Symmetry or Duality Theorem

x tð Þ !
FT

X joð Þ ) X tð Þ !
FT

2px �joð Þ: (4:3:21)

Starting with the expression for 2pxðtÞ and chan-

ging the variable from t to � t, we have

2pxðtÞ ¼
Z1

�1

XðjoÞejotdo! 2p xð�tÞ

¼
Z1

�1

XðjoÞe�jotdo: (4:3:22)

Interchanging t and jo in (4.3.22) results in

2p xð�joÞ ¼
Z1

�1

XðtÞe�jotdt: (4:3:23)

This proves the result in (4.3.21). In terms of f

(4.3.21) can be written as follows:

x tð Þ !
FT

X jfð Þ; X tð Þ !
FT

x �jfð Þ: (4:3:24)

A consequence of the symmetry property is if an F-

transform table is available with N entries, then this

property allows for doubling the size of the table.

Example 4.3.6Using the duality theorem, show that

y tð Þ ¼ 1

a2 þ t2
 !
FT p

a
e�a oj j ¼ Y joð Þ: (4:3:25)

Solution: Using (4.3.20) and the duality property of

the F-transforms, we have

1

2a
e�a tj j !

FT 1

a2 þ o2
;

a40! 1

a2 þ t2
 !
FT 1

2a
2pð Þe�a �joj j ¼ p

a
e�a oj j:
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One can appreciate the simplicity of using the dua-

lity theorem compared to finding the transform

directly in terms of difficult integrals given below:

YðjoÞ ¼
Z1

�1

1

a2 þ t2
e�jotdo ¼

Z1

�1

1

a2 þ t2
cosðotÞdo

� j

Z1

�1

1

a2 þ t2
sinðotÞdo :

&

Example 4.3.7 Determine the F-transform of xðtÞ
using the transform of the rectangular pulse given

below and the duality theorem:

x tð Þ ¼ sin atð Þ
pt

; P
t

t

h i
 !
FT

t
sin ot=2ð Þ
ot=2ð Þ :

Solution: Using the duality theorem and noting

that P-function is even, it follows

t
sin tt=2ð Þ
tt=2ð Þ  !

FT
2pP

�jo
t

	 

¼ 2pP

o
t

h i
; (4:3:26)

sin atð Þ
pt  !

FT
P

o
2a

h i
: (4:3:27)

Note ðt=2Þ ¼ a in (4.3.26). For later use, let

a ¼ 2pB. Using this in (4.3.27) results in

y tð Þ ¼ sin 2pBtð Þ
2pBtð Þ  !

FT 1

2B
P

o
2p 2Bð Þ

	 

¼ Y joð Þ: (4:3:28)

Time domain sinc pulses are not time limited but are

band limited. The sinc pulse and its transform in

(4.3.28) are sketched in Fig. 4.3.3a,b, respectively.&

4.3.6 Fourier Central Ordinate Theorems

The value of the given function at t ¼ 0 and its

transform value at o ¼ 0 are given by

Xð0Þ ¼
Z1

�1

xðtÞdt; xð0Þ ¼ 1

2p

Z1

�1

XðjoÞdo:

(4:3:29)

Equation (4.3.29) points out that if we know the

transform of a function, we can compute the integral

of this function for all time by evaluating the spec-

trum ato ¼ 0. In a similar manner the integral of the

spectrum for all frequencies is given by ð2pÞxð0Þ.

Example 4.3.8 Use the transform pair in (4.3.28) to

illustrate the ordinate theorems in (4.3.29) using the

identity Spiegel (1968)

Z1

�1

sinðpaÞ
a

da ¼
p; p40

0; p ¼ 0

�p; p50

8><
>: : (4:3:30)

Solution: The integrals of the sinc function and the

area of the pulse are

A1 ¼
Z1

�1

sinð2pWtÞ
ð2pWtÞ dt ¼ 1

2pW

Z1

�1

sinð2pWtÞ
t

dt

¼ p
2pW

¼ 1

2W
: (4:3:31a)

A2 ¼
1

2W
P

o
2pð2WÞ

	 

o¼0j ¼ 1

2W
) A2 ¼ A1:

(4:3:31b)

In a similar manner,

B1 ¼
sinð2pWtÞ
ð2pWtÞ t¼0 ¼ 1j ;

B2 ¼
1

2p

Z1

�1

YðjoÞdo ¼ 1

2pð2WÞ 2pð2WÞ

¼ 1) B1 ¼ B2: (4:3:32)

&

4.4 Fourier Transform Theorems, Part 2

Impulse functions are used in finding the transforms

of periodic functions below.

(a)

(b)

Fig. 4.3.3 (a) yðtÞ ¼ sinð2pWtÞ
ð2pWtÞ and (b) YðjoÞ= 1

2WP o
2pð2WÞ

h i
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Example 4.4.1 Find the Fourier transform of the

impulse function in time domain and the inverse

transform of the impulse function in the frequency

domain.

Solution: Clearly

F½dðt� t0Þ� ¼
Z1

�1

dðt� t0Þe�jotdt¼ e�jot t¼t0j ¼ e�jot0 :

(4:4:1)

That is, an impulse function contains all frequencies

with the same amplitude. That is F½dðt� t0Þ�j j ¼ 1.

The inverse transform

F�1½dðo�o0Þ� ¼
1

2p

Z1

�1

dðo�o0Þe jotdo¼
1

2p
e jo0t;

(4:4:2)

) F �1½dðoÞ� ¼ 1=2p; F½1� ¼ 2pdðoÞ: (4:4:3)

A constant contains only the single frequency at

o ¼ 0 (or f ¼ 0Þ. We refer to a constant as a dc

signal. Symbolically we can express

d t� t0ð Þ !
FT

e�jot0 ; e jo0t !
FT

2pd o� o0ð Þ: (4:4:4)

The result on the right in the above equation follows

by using the duality theorem. &

4.4.1 Frequency Translation Theorem

Multiplying a time domain function x tð Þ by e�joct

shifts all frequencies in the signal xðtÞ by oc. In

general, the following transform pair is true:

x tð Þe�joct !
FT

X j o	 ocð Þð Þ: (4:4:5)

Note

F �1½Xðjðo� ocÞÞ� ¼
1

2p

Z1

�1

Xðjðo� ocÞÞe jotdo

¼ 1

2p

Z1

�1

XðjaÞe jatda

2
4

3
5 e joct ¼ xðtÞe joct:

(4:4:6)

This provides a way to modify a time function to

shift its frequencies. The scale change and the

frequency translation theorems can be combined.

Example 4.4.2 Show the following:

x atð Þe joct !
FT 1

aj jX
j o� ocð Þ

a

8>: 9>;: (4:4:7a)

Solution: Using the scale change theorem results in

x atð Þ !
FT 1

aj jX
jo
a

� �
: (4:4:7b)

Using the frequency translation theorem, i.e., multi-

plying the function by e joct causes a shift in the

frequency. That is, replace o by o� oc and the

result in (4.4.7a) follows. &

4.4.2 Modulation Theorem

The frequency translation theorem directly leads to

the modulation theorem. Given F½xðtÞ� ¼ XðjðoÞÞ
and yðtÞ ¼ xðtÞ cosðoc tþ yÞ, the modulation theo-

rem results in

YðjoÞ ¼ F½xðtÞ cosðoctþ yÞ�

¼ F
1

2
ðxðtÞe jyÞe joct þ 1

2
ðxðtÞe�jyÞe�joct

	 


¼ 1

2
e�jyXðjðoþ ocÞÞ þ

1

2
e jyXðjðo� ocÞÞ:

(4:4:8)

In simple words, multiplying a signal by a sinusoid

translates the spectrum of a signal around o ¼ 0 to

the locations around oc and � oc. If the spectrum

of the signal x tð Þ is frequency (or band) limited to

o0, i.e., XðjoÞj j ¼ 0; oj j4o0, then

YðjoÞj j ¼ 0 for oj j4 oc þ o0j j and oj j5 oc � o0j j:
(4:4:9)

Figure 4.4.1 gives sketches of the signals and

their spectra. The signal xðtÞ is assumed to cross

the time axis. There is no real significance in the

shape of the spectrum. Since xðtÞ is real, it has even
magnitude and odd phase spectrum. The signal is

band limited to f0 ¼ o0=2p Hz. The modulated sig-

nal yðtÞ shown in Fig. 4.4.1b assumes y ¼ 0 in

(4.4.8). The positive and negative envelopes of the

modulated signal are shown by the dotted lines.

Note the envelopes cross the axis wherever the
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function xðtÞ ¼ 0. Themagnitude and phase spectra

of the modulated signal are shown in Fig. 4.4.1b.

The bandwidth of the modulated signal is twice the

bandwidth of the message signal. Note the factor

(1/2) in both terms in (4.4.8). &

Example 4.4.3 Find the F½xðtÞ cosðoctÞ� and

F½xðtÞ sinðoctÞ� in terms of F½xðtÞ�:

Solution: Clearly when y ¼ 0 and y ¼ �p=2 in

(4.4.8), the F-transform pairs are

x tð Þ cos octð Þ !
FT 1

2
X j o� ocð Þð Þ þ 1

2
X j oþ ocð Þð Þ;

(4:4:10a)

x tð Þ sin octð Þ !
FT 1

2j
X j o� ocð Þð Þ � 1

2j
X j oþ ocð Þð Þ:

(4:4:10b)

Modulation theorem provides a powerful tool for

finding the Fourier transforms of functions that are

seen (or windowed) through a function x tð Þ. For
example,

xðtÞ ¼ P
t

t

h i
! yðtÞ ¼ P

t

t

h i
cosðoctÞ

¼
cosðoctÞ; tj j5t

2

0; otherwise
:

�

The signal yðtÞ is being seen through a rectangular

(window) function xðtÞ. Outside this window, no

signal is available. The study of windowed signals

is an important topic for signal processors and it is

humorously called as window carpentry. We will

come back to this topic later. &

4.4.3 Fourier Transforms of Periodic
and Some Special Functions

Modulation theorem gives a back door way to find

the Fourier transforms of periodic functions, such

as sine and cosine functions. A sufficient condition

for the existence of F½xðtÞ� is

Z1

�1

xðtÞj jdt51 (absolute integrability condition):

Clearly the sine, cosine, unit step, and many other

functions violate this condition. Use of the general-

ized functions allows for the derivation of the F-

transforms of these functions.

Example 4.4.4Use the transform F½1� ¼ 2pdðoÞ and
the modulation theorem to find the Fourier trans-

forms of xðtÞ ¼ cosðo0tÞ and yðtÞ ¼ sinðo0tÞ.

(a)

(b)

Fig. 4.4.1 (a) xðtÞ and XðjoÞj j, (b) yðtÞ and YðjoÞj j
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Solution: Using (4.4.8), we have the transforms.

These are given below in terms of o and f: In the

latter case, we have used dðoÞ ¼ dðfÞ=2p:

x tð Þ¼cos o0tð Þ !
FT

X joð Þ¼pd oþo0ð Þþpd o�o0ð Þ;

y tð Þ¼sin o0tð Þ !FT Y joð Þ¼jpd oþo0ð Þ�jpd o�o0ð Þ;
(4:4:11a)

cos 2pf0tð Þ !
FT 1

2 d fþ f0ð Þ þ 1
2 d f� f0ð Þ;

sin 2pf0tð Þ !
FT j

2 d fþ f0ð Þ � j
2 d f� f0ð Þ:

(4:4:11b)

The spectra of the cosine and the sine functions are

shown in Figs. 4.4.2. The spectra of these are

located at o ¼ �o0 ¼ �2pf0 with the same magni-

tude, but the phases are different. In reality, we do

not have any negative frequencies. Euler’s formula

illustrates that sinðoctÞ and cosðoctÞ are not the

same functions, even though they have the same

frequencies. Noting that the real part of the trans-

form of a real signal is even and the phase spectra is

odd, the negative frequency component does not

give any additional information regarding what fre-

quency is present. The average power represented

by the negative frequency component simply adds

to the average power of the positive frequency com-

ponent resulting in the total average power at that

frequency. In the case of an arbitrary signal resolved

into in-phase and quadrature-phase components,

the negative frequency terms do contribute addi-

tional information. A cosine wave reaches its posi-

tive peak 908 before a sine wave does. By convention
the cosine wave is called the in-phase or i (or I)

component and the sine wave is called the quadra-

ture-phase or the q (or Q) component. &

Notes: A narrowband band-pass signal with a

slowly changing envelope RðtÞ and phase fðtÞ has
the forms

xðtÞ ¼ RðtÞ cosðoctþ fðtÞÞ;RðtÞ 
 0; (4:4:12a)

xðtÞ ¼ xiðtÞ cosðoctÞ � xqðtÞ sinðoctÞ;

xiðtÞ ¼D RðtÞ cosðfðtÞÞ; xqðtÞ ¼ RðtÞ sinðfðtÞÞ:
(4:4:12b)

Equation (4.4.12a) gives the envelope-and-phase

description and (4.4.12b) gives the in-phase and

quadrature-carrier description. The components

xiðtÞ and xqðtÞ are the in-phase and quadrature-

phase components.

Now consider a windowed cosine function and

see the effects of that window. &

Example 4.4.5 Find the Fourier transform of the

cosinusoidal pulse function. Plot the functions XðjoÞ
and YðjoÞ and identify the important parameters:

y tð Þ ¼ x tð Þ cos o0tð Þ; x tð Þ ¼ P
t

t

h i
 !
FT

t sin c ot=2ð Þ:

(4:4:13a)

Solution: The transform of y tð Þ is

YðjoÞ ¼ t
2

sin½ðo�o0Þðt=2Þ�
½ðo�o0Þðt=2Þ�

þ t
2

sin½ðoþo0Þðt=2Þ�
½ðoþo0Þðt=2Þ�

:

(4:4:13b)

The functions xðtÞ; XðjoÞ; yðtÞ; and YðjoÞ are

sketched in Fig. 4.4.3a–d, respectively. Noting that

XðjoÞ and YðjoÞ are real functions, the main lobe

F[cos(ω0t)]

– ω0 ω00 0

– jπ

jππ

F[sin(ω0t)]

ω ω

Fig. 4.4.2 Transform of the
cosine and sine functions
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width of XðjoÞ corresponding to the positive fre-

quencies is ð2p=tÞ. The functionYðjoÞ has twomain

lobes centered at o ¼ �o0 ¼ �2pf0. Again consid-

ering only positive frequencies, the main lobe width

of YðjoÞ is twice that of XðjoÞ equal to ð4p=tÞ. That
is, the process of modulation doubles the band-

width. As in XðjoÞ, we have side lobes in YðjoÞ
that decay as we go away from the center frequency.

The peak of the main lobe in XðjoÞ is t, whereas the
peaks of the main lobes of YðjoÞ are equal to (t=2).
Clearly, if we are interested in finding the frequency

o0 ¼ 2pf0, the steps could include the following:

1. Find the transform.

2. Find the peak value of the spectrum and its

location.

In a practical problem, we may have several fre-

quencies. Finding the locations of these frequencies

and their amplitudes is of interest. This problem is

usually referred to as spectral estimation. The spec-

trum of a cosine function consists of two impulses

located ato ¼ �o0. The spectrum of the windowed

cosine function contains two sinc functions. We

generally assume that o0 � ð2p=tÞ and therefore

the overlap of the two sinc functions at dc is

assumed to be negligible. Rectangular window

modified the impulse spectra of the signal to a spec-

tra consisting of sinc functions. Windowing a func-

tion results in spectral leakage. &

Fourier transforms of arbitrary periodic functions: In

Chapter 3, we derived that if xTðtÞ is a periodic

function with period T and xTðtÞ can be expressed

into its F-series,

xTðtÞ ¼
X1

k¼�1
Xs½k�e jko0t;

Xs½k� ¼
1

T

Z
T

xðtÞe�jko0tdt; o0 ¼
2p
T
: (4:4:14)

where Xs½k�0s in (4.4.14) are generally complex. The

transform can be derived by noting that

F½e�jko0t� ¼ 2pdðo	 no0Þ; (4:4:15)

F½xTðtÞ� ¼
X1

k¼�1
Xs½k�F½e jko0t�

¼
X1

k¼�1
Xs½k�ð2pÞdðo� ko0Þ: (4:4:16)

Y( jω)

(a)

(c) (d)

(b)

Fig. 4.4.3 (a) and (b) Pulse function and its transform; (c) and (d) windowed cosine function and its transform
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Example 4.4.6 Find the transform F½dTðtÞ½¼
F½
P1

k¼�1 dðt� kTÞ�.

Solution: The F-series of the function dTðtÞ is given
by (see (3.4.15b))

dTðtÞ ¼
1

T

X1
k¼�1

e jko0t; o0 ¼ 2p=T:

Using the linearity and frequency shift properties of

the Fourier transforms, we have

dT tð Þ ¼
X1
n¼�1

d t� nTð Þ !
FT 2p

T

X1
k¼�1

d o� ko0ð Þ ¼ 2p
T

do0
oð Þ: (4:4:17)

We have an interesting result: the Fourier transform

of a periodic impulse sequence dTðtÞ with period T is

also a periodic impulse sequence ð2p=TÞdo0
ðoÞ with

period o0. They are sketched in Fig. 4.4.4. &

One question should come to our mind, that is, are

there other functions and their transforms have the

same general form? The answer is yes.

Example 4.4.7 Show the Gaussian pulse transform

pair as follows:

e�at
2

 !
FT

ffiffiffi
p
a

r
e�

oð Þ2
4a ; a40: (4:4:18)

Solution:

XðjoÞ ¼
Z1

�1

xðtÞe�jotdt ¼
Z1

�1

e�at
2

e�jotdt

¼
Z1

�1

e�aðyÞdt; y ¼ t2 þ j
ot
a
:

Now add and subtract the term ðo2=aÞ to the term y

in the exponent inside the integral

y ¼ t2 þ j
ot
a
¼ t2 þ j

ot
a
þ o2

4a2
� o2

4a2

¼ ðtþ jo
2a
Þ2 þ ðoÞ

2

4a2
) XðjoÞ

¼ e
�o

2

4a
Z1

�1

e
�aðtþ j

o
2a
Þ2
dt:

By the change of variable, we have r ¼
ffiffiffi
a
p
ðtþ jo

2a
Þ;

dt ¼ dr=
ffiffiffi
a
p

; t) �1; r! �1, and

XðjoÞ ¼ e�
o2
4a

1ffiffiffi
a
p

Z1

�1

e�r
2

dr

2
4

3
5 ¼ e�

o2
4a

ffiffiffi
p
a

r
: (4:4:19)

Integral tables are used in (4.4.19). The transform

pair in (4.4.18) now follows, that is, the Fourier

transform of a Gaussian function is also a Gaussian

function. Both time and frequency functions are not

limited in time and in frequency, respectively. &

The following pairs are valid and can be verified

using Fourier transform theorems.

cos at2
� 

 !
FT

ffiffiffi
p
a

r
cos

o2 � ap
� 

4a

	 

;

sin at2
� 

 !
FT �

ffiffiffi
p
a

r
sin

o2 � ap
� 

4a

	 

; ð4:4:20aÞ

tj j�1=2 !
FT ffiffiffiffiffiffi

2p
p

oj j�1=2: (4:4:20b)

For a catalog of Fourier transform pairs, see

Abromowitz and Stegun (1964) and Poularikis (1996).

4.4.4 Time Differentiation Theorem

If F½xðtÞ� ¼ XðjoÞ and x tð Þ is differentiable for all

time and vanishes as t! �1, then

Fig. 4.4.4 Periodic Impulse
Sequence and its transform
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F
dxðtÞ
dt

	 

¼ F½x0ðtÞ� ¼ ðjoÞXðjoÞ: (4:4:21)

Using integration by parts, we have

F
d

dt
xðtÞ

	 

¼
Z1

�1

x0ðtÞe�jotdt ¼xðtÞe�jot t¼1
t¼�1
�� þ jo

Z1

�1

xðtÞe�jotdt ¼ jo XðjoÞ:

Differentiation of a function in time corresponds to

multiplication of its transform by ðjoÞ, provided
that the function x tð Þ ! 0 as t! �1. If x tð Þ has a
finite number of discontinuities, then x0ðtÞ contains
impulses. Then, (4.4.21) can be generalized and

F
dnxðtÞ
dtn

	 

¼ ðjoÞnXðjoÞ; n ¼ 1; 2; :::: (4:4:22)

The above does not provide a proof of the existence

of the Fourier transform of the nth derivative of the

function. It merely shows that if the transform

exists, then it can be computed by the above for-

mula. This theorem is useful if the transforms of

derivatives of functions can be found easier than

finding the transforms of functions. For example,

dx tð Þ
dt
 !
FT

joX joð Þ ) x tð Þ !
FT 1

jo
F x0 tð Þ½ �:

Use of this approach in finding transforms is

referred to as the derivative method.

Example 4.4.8 Find the Fourier transform of the

triangular function

xðtÞ ¼ L
t

t

h i
¼ 1� t

t

�� ��� 
; tj j � t

0; Otherwise

(
(4:4:23)

using the derivative method. Sketch the transform

of the triangular function and compare the trans-

form of the rectangular or P function with the

transform of the L function.

Solution: xðtÞ; x0ðtÞ; and x00ðtÞ are sketched in

Fig. 4.4.5 a–c. Clearly,

x00ðtÞ ¼ 1

t
dðtþ tÞ � 2

t
dðtÞ þ 1

t
dðt� tÞ: (4:4:24)

Using the derivative theorem and solving for XðjoÞ,
we have

x00 tð Þ !
FT

joð Þ2X joð Þ ¼ 1

t
e jot � 2

t
þ 1

t
e�jot;

ðjoÞ2XðjoÞ ¼ V

t
e jot=2 � e�jot=2

2j

	 
2
ð�4Þ

¼ �4
t
sin2ðot=2Þ;

x tð Þ ¼ V l
t

t

h i
 !
FT

Vt
sin2 ot=2ð Þ
ot=2ð Þ2

¼ Vt sinc2 ot=2ð Þ ¼ X joð Þ: (4:4:25) &

Equation (4.4.25) gives the spectrum of the triangular

function of width ð2tÞ s. The rectangular function of

width t s and its transform were given earlier by

VP
t

t

h i
 !
FT

Vt
sin ot=2ð Þ
ot=2ð Þ ¼ Vt sinc ot=2ð Þ: (4:4:26)

The time width of the rectangular window func-

tion in (4.4.26) is t s, whereas the time width of

the triangular window function in (4.4.25) is 2t s.

Note the square of the sinc2 function in the spec-

trum of the triangle function and the sinc function

in the spectrum of the rectangular window. Since

sincðot=2Þj j2� sincðot=2Þj j;

Fig. 4.4.5 (a) xðtÞ, (b) x0ðtÞ,
and (c) x0ðtÞx0ðtÞx00ðtÞ
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the spectral amplitudes of the triangular function

have lower side lobe levels compared to the spectral

amplitudes of the rectangular pulses. Since the

square of a fraction is smaller than the fraction

itself, the side lobes in the transform of the triangu-

lar function are much smaller than the side lobes in

the transform of the rectangular function. There is

less leakage in the side lobes for the triangular (win-

dow) pulse function compared to the rectangular

(window) function. See Fig. B.4.1 for a sketch of

the sinc function.

High-frequency decay rate: In the Fourier series

discussion, the decay rate of the F-series coefficients

Xs½k� was determined using the derivatives of the

periodic function (see Section 3.6.5). Similarly, the

F-transforms of pulse functions decay rate can be

determined without actually finding the transform

of the function. Given a pulse function xðtÞ, find the

successive derivatives, xðnÞðtÞ, of the function until

the first set of impulses appear in the nth derivative,

then the decay rate is proportional to ð1=onÞ. In
Example 4.4.7 the triangular pulse was considered

and, in this case, the second derivative exhibits

impulses indicating that the high-frequency decay

rate of the transform is ð1=o2Þ (see (4.4.25)). Simi-

larly the first derivative of the rectangular pulse

function and the exponential decaying function

e�atuðtÞ; a40 exhibit impulses indicating that the

high-frequency decay rate of these transforms is

ð1= oj jÞ:

4.4.5 Times-t Property: Frequency
Differentiation Theorem

If XðjoÞ ¼ F½xðtÞ� and if the derivative of the trans-

form exists, then

F½ð�jtÞxðtÞ� ¼ dXðjoÞ
do

: (4:4:27)

This can be shown by

dXðjoÞ
do

¼ d

do

Z1

�1

xðtÞe�jotdt ¼
Z1

�1

xðtÞ dðe
�jotÞ
do

dt

¼
Z1

�1

½ð�jtÞxðtÞ�e�jotdt ¼ F½�jtxðtÞ�:

The similarities between the time and frequency

differentiation theorems illustrate the duality prop-

erties with the F-transform pairs.

Example 4.4.9 Show the following relationship

using the times-t property:

te�atu tð Þ !
FT 1

aþ joð Þ2
; a40: (4:4:28)

Solution: Noting the times-t property given above

with xðtÞ ¼ e�atuðtÞ, we have

F te�atuðtÞ½ � ¼ j
dXðjoÞ
do

¼ j
dð1=ðaþ joÞÞ

do
¼ 1

ðaþ joÞ2
:

This can be generalized to obtain the following and

the proof is left as an exercise:

tn�1

n� 1ð Þ! e
�atu tð Þ !

FT 1

aþ joð Þn ; a
40: (4:4:29) &

Example 4.4.10 Noting that

e� a�jbð Þtu tð Þ !
FT 1

aþ j o� bð Þ ; a40; (4:4:30a)

show the following is true:

x tð Þ ¼ e�at sin btð Þu tð Þ !
FT b

aþ joð Þ2þb2
¼ X joð Þ;

(4:4:30b)

y tð Þ ¼ e�at cos btð Þu tð Þ !
FT aþ joð Þ

aþ joð Þ2þb2
¼ Y joð Þ:

(4:4:30c)

Solution: These can be shown by first expressing

the sine and cosine functions by Euler’s formulas,

taking the transforms and then combining the

complex–conjugate terms. &

Example 4.4.11 Using lim
a!0

e�atuðtÞ ¼ uðtÞ; a40,

find F½uðtÞ�:

F½uðtÞ� ¼ lim
a!0

1

aþ jo
:

Solution: Noting that the limiting process is on the

complex function, we need to take the limits on the
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real and the imaginary parts of the complex func-

tion separately. That is,

lim
a!0

1

aþ jo

	 

¼ lim

a!0

a

a2 þ o2

	 

þ j lim

a!0

�o
a2 þ o2

	 

:

(4:4:31)

The second term in the above, i.e., the Lorentzian

function, approaches an impulse function. That is,

lim
a!0

a

a2 þ o2

	 

¼ pdðoÞ: (4:4:32)

Using this result in (4.3.30),

lim
a!0

1

aþ jo

	 

¼ pdðoÞ þ 1

jo
; (4:4:33)

) UðjoÞ ¼ F½uðtÞ� ¼ pdðoÞ þ 1

jo
; (4:4:34a)

UðjoÞj j ¼ pdðoÞ þ 1=oj j; ffUðjoÞ ¼
�p=2; o40

p=2; o50

�
:

Note that the amplitude is an even function and

the phase angle function is an odd function, as the

unit step function is real. These are illustrated in

Fig. 4.4.6.

Interestingly the spectrum of the delayed unit

step uðt� 1Þ is

F½uðt� 1Þ� ¼ ½pdðoÞ þ 1

jo
�e�jo;

F½uðt� 1Þ�j j ¼ pdðoÞ þ 1

o

����
����

	 

; ffF½uðt� 1Þ�

¼
�o� p=2; o40

�oþ p=2; o50

�
: (4:4:34b)

Since delay of a function depends on the phase

angle, it follows that F½uðt� 1Þj j ¼ F½uðtÞ�j j. The

phase spectrum of the delayed unit step function is

sketched in Fig. 4.4.7. The Fourier transform of the

unit function has two parts. The first part corre-

sponds to the transform of the average value of the

unit step function and the other part is the trans-

form of the signum function. That is,

F½uðtÞ� ¼ F½ð1=2Þ þ ð1=2Þ sgnðtÞ�
¼ F½1=2� þ ð1=2ÞF½sgnðtÞ� ¼ pdðoÞ þ ð1=joÞ:

&

Fig. 4.4.6 (a) Magnitude and (b) phase spectra of the unit step function

Fig. 4.4.7 Phase spectrum of u(t�1)
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Notes: If we had ignored that we had to take the

limit on the real and the imaginary parts of the

complex function in (4.4.31) separately and take

the limit on the complex function as a whole, the

result would be wrong. That is,

lim
a!0

1

aþ jo
¼ 1

jo
6¼ F uðtÞ½ �:

This indicates the transform is imaginary and the

time functionmust be odd. This cannot be true since

the unit step function is not an odd function and

F½uðtÞ� 6¼ ð1=joÞ. &

The sgn (or signum) function is used in commu-

nications and control theory and can be expressed in

terms of the unit step function. The sgn function

and its transform are as follows:

sgnðtÞ ¼ 2uðtÞ � 1 ¼
1; t40

0; t ¼ 0:

�1; t50

8><
>: (4:4:35)

F½2uðtÞ� � F½1� ¼ 2pdðoÞ þ ð2=joÞ � 2pdðoÞ
¼ ð2=joÞ: (4:4:36)

The times-t property and the transform of the unit

step function can be used to determine the Fourier

transform of the ramp function and is given as

tu tð Þ !
FT

jpd0 oð Þ � 1=o2
� 

: (4:4:37)

Noting that tj j ¼ 2t uðtÞ � t, we have the following

transform pair:

tj j !
FT � 2=o2

� 
: (4:4:38)

Example 4.4.12 Find the Fourier transform of the

function xðtÞ ¼ ð1=tÞ using the duality theorem and

the Fourier transform of the signum function.

Solution: Using the duality theorem, we have

x tð Þ !
FT

X joð Þ�!Duality theorem
X tð Þ !

FT
2px �joð Þ;

sgn tð Þ !
FT 2

jo
;
1

jt !
FT

1ð Þp sgn �oð Þ ¼ �p sgn oð Þ:

We can write sgn ð�joÞ ¼ sgnð � oÞ ¼ �sgnðoÞ. It
follows that

1=tð Þ !
FT � jp sgn oð Þ ¼ jp� j2pu oð Þ: (4:4:39a)

This can be generalized and

1

tn !
FT � �joð Þn�1

n� 1ð Þ! jp sgn oð Þ: (4:4:39b)
&

4.4.6 Initial Value Theorem

The initial value theorem is applicable for the right-

sided signals, i.e., the functions of the form

yðtÞ ¼ xðtÞuðtÞ and is stated below without proof:

yð0þÞ ¼ lim
o!1

joYðjoÞ: (4:4:40)

Example 4.4.13 The unit step function is not

defined at t ¼ 0, whereas uð0þÞ ¼ 1; which is well

defined. Verify the initial value theorem for the unit

step function by noting dðoÞ ¼ 0;o 6¼ 0, and

odðoÞ ¼ 0:

Solution:

uð0þÞ ¼ lim
o!1

joF½uðtÞ�f g

¼ lim
o!1

jo pdðoÞ þ 1

jo

� �	 

¼ 1: &

4.4.7 Integration Theorem

It states that

y tð Þ ¼
Z t

�1

x að Þda !
FT X joð Þ

jo
þ pX 0ð Þd oð Þ ¼ Y joð Þ:

(4:4:41)

This is true only if Xð0Þ; i.e., the area under xðtÞ, is
finite. If the area under xðtÞ is zero, then the second

term on the right in (4.4.41) disappears. Note that if

Xð0Þ ¼ 0, integration and differentiation operations

are inverse operations. Integration operation is a

smoothing operation. Integral of a function has
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lower frequency content than the function that

is integrated. On the other hand, since

x 0ðtÞ ¼ joXðjoÞ, differentiation accentuates the

higher frequencies. Integration theorem is not

applicable if Xð0Þ is infinity. This theorem will be

proved in Section 4.5.

Example 4.4.14 Find the Fourier transform of uðtÞ
using the integration theorem and

d tð Þ !
FT

1; u tð Þ ¼
Z t

�1

d að Þda:

Solution: By the integration theorem

F u tð Þ½ � ¼ F

Z t

�1

d að Þda

2
4

3
5 ¼ 1

jo
þ pd oð Þ:

&

Example 4.4.15 Use the Fourier transform of the

function xðtÞ ¼ cosðo0tÞ; o0 6¼ 0, and the integra-

tion theorem to find the Fourier transform of the

function sinðo0tÞ.

Solution: First for o0 6¼ 0, from (4.4.11a), we have

x tð Þ ¼ cos o0tð Þ !
FT

pd oþ o0ð Þ þ pd o� o0ð Þ
¼ X joð Þ; X 0ð Þ ¼ 0

and

yðtÞ ¼
Z t

�1

xðaÞda ¼
Z t

�1

cosðo0aÞda

¼ ð1=o0Þ sinðo0tÞ: (4:4:42a)

See the comment below in regard to the evaluation

of the limit at �1 in the above integral. The inte-

gration property gives us

o0y tð Þ ¼ o0

Z t

�1

cos o0að Þda !
FT

o0 pd oþ o0ð Þ þ pd o� o0ð Þ½ �
jo

þ o0pX 0ð Þd oð Þ:

With Xð0Þ ¼ 0 and dðo�o0Þ=o¼	dðo�o0Þ=o0,

we have result as in (4.4.11a).

Z t

�1

cos o0að Þda ¼sin o0tð Þ !
FT

jpd oþ o0ð Þ

� jpd o� o0ð Þ: (4:4:42b) &

Notes: Papoulis (1962) discusses the concepts of

generalized limits. For example

lim
t!1

e�jo t ¼ 0: (4:4:43a)

The limit does not exist as an ordinary limit and is a

generalized limit in the sense of distributions. Using

Euler’s formula and the limit in (4.4.43a), computa-

tion of the integral in (4.4.42a) follows. Switched

functions are very useful in system theory. In com-

puting the derivatives of such functions, one needs

to be careful. For example,

d½cosðtÞuðtÞ�
dt

¼ d½cosðtÞ�
dt

uðtÞ þ cosðtÞ d½uðtÞ�
dt

¼ � sinðtÞuðtÞ þ dðtÞ; (4:4:43b)
d½sinðtÞuðtÞ�

dt
¼ cosðtÞuðtÞ þ sinðtÞdðtÞ ¼ cosðtÞuðtÞ:

(4:4:43c)

To find the transforms of such functions we can

make use of modulation theorem. Derivative theo-

rem can be used to find transforms of many func-

tions such as xðtÞ ¼ e�a tuðtÞ; a40. We should keep

in mind that if the pulse is not time limited, we need

to add a frequency domain delta function, whose

weight is equal to 2p times the average of the pulse

over the entire time axis to the transform result of

the successive differentiation. See the discussion on

finding the transform of a unit step function. &

4.5 Convolution and Correlation

Chapter 2 considered convolution and correlation.

Here we will consider the transforms of the signals

that are convolved and correlated.

4.5.1 Convolution in Time

Convolution of two time functions x1 tð Þ and x2 tð Þ
is defined by

yðtÞ ¼ x1ðtÞ � x2ðtÞ ¼
Z1

�1

x1ðaÞx2ðt� aÞda

¼
Z1

�1

x2ðbÞx1ðt� bÞdb ¼ x2ðtÞ � x1ðtÞ: (4:5:1)
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Assuming that xi tð Þ !
FT

Xi joð Þ; i ¼ 1; 2, the

convolution theorem is given by

x1 tð Þ � x2 tð Þ !
FT

X1 joð ÞX2 joð Þ: (4:5:2)

This can be proven by using the transform pair

F½x2ðt� aÞ� ¼ X2ðjoÞe�joa in (4.5.1) and the resulting
integral is the inverse transform of ½X1ðjoÞX2ðjoÞ�.
That is,

yðtÞ ¼ x1ðtÞ � x2ðtÞ

¼
Z1

�1

x1ðaÞ
1

2p

Z1

�1

X2ðjoÞe joðt�aÞdo

2
4

3
5da

¼ 1

2p

Z1

�1

X2ðjoÞ
Z1

�1

x1ðaÞe�joada

2
4

3
5e jotdo

¼ 1

2p

Z1

�1

½X2ðjoÞX1ðjoÞ�e jotdo:j (4:5:3)

Convolution theorem follows from the above equa-

tion. It gives a method for computing the convolu-

tion of two aperiodic functions via Fourier trans-

forms. This method is the transform method of

computing the convolution. The direct method is by

the use of the convolution integral and all the opera-

tions are in the time domain. The transform method

involves the following steps:

a. Find F½x1ðtÞ� ¼ X1ðjoÞ and F½x2ðtÞ� ¼ X2ðjoÞ.
b. Determine YðjoÞ ¼ X1ðjoÞX2ðjoÞ.
c. Find the inverse transform of the function YðjoÞ

to obtain yðtÞ.

There are several problems with the transformmethod

of computing the convolution. First, the given function

may not have analytical expressions for the trans-

forms. Even if does, we may not be able to find the

inverse transform of YðjoÞ. Second, in most applica-

tions, the functionmay not be given in an analytical or

equation form and may be given in the form of a plot

or a set of data and we have to resort to digital means

to find the values for yðtÞ.Wewill consider the discrete

Fourier transforms in Chapters 8 and 9.

Example 4.5.1 Determine the function

yðtÞ ¼ P t� :5½ � �P t� :5½ � by using the transforms.

Solution: Using the transforms of the pulse func-

tions, we have

F P t� 1

2

	 
	 

¼ sinðo=2Þ
ðo=2Þ e�jo=2;

YðjoÞ ¼ sin2ðo=2Þ
ðo=2Þ2

" #
e�jo: (4:5:4)

Using (4.4.25) and the time delay theorem, we have

a triangle or a tent function given by

yðtÞ ¼ L t� 1½ �: (4:5:5)

The given time functions and the result of the con-

volution are shown in Fig. 4.5.1. &

Example 4.5.2 Consider the two delayed functions

x1ðt� t1Þ and x2ðt� t2Þ. a. Assuming yðtÞ ¼ x1ðtÞ�
x2ðtÞ is known, show the following is true by using

the transform method:

zðtÞ ¼ x1ðt� t1Þ � x2ðt� t2Þ ¼ yðt� ðt1 þ t2ÞÞ:
(4:5:6)

b. Using the results in (4.5.6), determine the convo-

lution of the two impulse functions

yðtÞ ¼ dðt� t1Þ � dðt� t2Þ:

Solution: a. Using the convolution and time delay

theorems, we have

Fig. 4.5.1 Convolution of
two square pulses
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ZðjoÞ ¼ F½zðtÞ� ¼ F½x1ðt� t1Þ�F½x2ðt� t2Þ�
¼ F½x1ðtÞ�e�jot1F½x2ðtÞ�e�jot2

¼ X1ðjoÞX2ðjoÞe�joðt1þt2Þ ¼ YðjoÞe�joðt1þt2Þ:

The inverse transform of ZðjoÞ is given by

yðt� ðt1 þ t2ÞÞ.
b. Noting that F½dðt� tiÞ� ¼ e�joti ; i ¼ 1; 2, we have

YðjoÞ ¼ e�joðt1þt2Þ;F�1 e�joðt1þt2Þ
h i

¼ dðt� ðt1 þ t2ÞÞ:

That is, the inverse transform is a delayed impulse

function and

y tð Þ ¼ d t� t1ð Þ � d t� t2ð Þ ¼ d t� t1þ t2ð Þð Þ: (4:5:7)

&

Example 4.5.3 Show by using the transform method

yðtÞ ¼ xðtÞ � dðtÞ ¼ xðtÞ: (4:5:8)

Solution: We have

F x tð Þ � d tð Þ½ � ¼ F x tð Þ½ �F d tð Þ½ �
¼ F x tð Þ½ � and y tð Þ ¼ x tð Þ: &

Example 4.5.4 Determine the convolution

yðtÞ ¼ e�atuðtÞ � uðtÞ; a40 by a. the direct method

and b. by the transform method.

Solution: a. By the direct method,

yðtÞ ¼
Z1

�1

e�aðt�bÞ½uðt� bÞuðbÞ�db ¼ e�at
Z t

0

eabdb

¼ e�at
1

a
eab b¼t

b¼0

��� ¼ 1

a
ð1� e�atÞuðtÞ: (4:5:9a)

b. By the transform method,

YðjoÞ ¼ F½e�atuðtÞ�F½uðtÞ� ¼ 1

ðaþ joÞ pdðoÞ þ 1

jo

	 


¼ pdðoÞ
a
þ 1

joðaþ joÞ ;

YðjoÞ ¼ 1

a
pdðoÞ þ 1

jo

	 

� 1

a

1

aþ jo
!

yðtÞ ¼ 1

a
1� e�atð ÞuðtÞ; a40: (4:5:9b)

In (4.5.9b) we have made use of partial fraction

expansion and the transforms of the unit step func-

tion and the exponential decaying function. &

Example 4.5.5 Determine the convolution

yðtÞ ¼ x1ðtÞ � x2ðtÞ in each case below using the

transforms. a. The two Gaussian functions and

their transforms are given by

xi tð Þ ¼
1

si
ffiffiffiffiffiffi
2p
p e�t

2=2s2i !
FT

e� osið Þ2=2 ¼Xi joð Þ; i¼ 1;2::

(4:5:10a)

b. The two sinc functions and their transforms

are given by

xi tð Þ ¼ ti
sin tti=2ð Þ
tti=2ð Þ  !

FT
2pP

o
ti

	 

¼ Xi joð Þ;

i ¼ 1; 2; t15t2: (4:5:10b)

c. xi tð Þ ¼ 1=jpt !
FT

sgn oð Þ; i ¼ 1; 2::

Solution: a. Noting that the transform of a Gaus-

sian pulse is a Gaussian pulse, the product of the

two Gaussian pulses is a Gaussian pulse:

y tð Þ ¼ x1 tð Þ � x2 tð Þ !
FT

e� os1ð Þ2=2e� os2ð Þ2=2

¼ e�o
2 s2

1
þs2

2ð Þ=2 ¼ Y joð Þ: (4:5:10c)

The inverse transform of this function is again a

Gaussian pulse with

yðtÞ ¼ 1

s
ffiffiffiffiffiffi
2p
p e�t

2=2s2 ; s2 ¼ s21 þ s22 : (4:5:10d)

b. The rectangular pulses in the Fourier domain

overlap. The product of the two rectangular pulses

is a rectangular pulse and its inverse transform is a

sinc pulse. The details are left as an exercise.

c. The convolution of the two functions and its

transform are given by

y tð Þ ¼ 1

jpt
� 1

jpt !
FT

sgn2 oð Þ ¼ 1; F�1 1½ � ¼ d tð Þ:

(4:5:10e)

&

Notes: The transform method is simpler if the

transforms of the individual functions and the
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inverse transform of the convolution are known. In

Chapter 2 we discussed the duration property asso-

ciated with convolution and pointed out that there

are exceptions. Part c of the above example illus-

trates an exception. Convolutions of some func-

tions do not exist. For example, yðtÞ ¼ uðtÞ � uðtÞ
does not exist since its transform has a term that

is a square of an impulse function, which is not

defined. &

4.5.2 Proof of the Integration Theorem

In Section 4.4.6 the integration theorem is stated

(see (4.4.42)) and is

y tð Þ ¼
Z t

�1

x að Þda !
FT X joð Þ

jo
þ pX 0ð Þd oð Þ ¼ Y joð Þ:

(4:5:11)

Since uðt� aÞ ¼ 0 for a4t, we can write the above

running integral as a convolution:

Z t

�1

x að Þda¼
Z1

�1

x að Þu t� að Þda

¼ x tð Þ � u tð Þ !
FT

X joð ÞF u tð Þ½ �;

YðjoÞ ¼ XðjoÞ pdðoÞ þ 1

jo

	 


¼ pXð0ÞdðoÞ þ 1

jo
XðjoÞ:

This proves the integration theorem.

Example 4.5.6 Find the inverse transform of the

function XðjoÞ given below for two cases: a.

a 6¼ b; a40; b40 and b. a ¼ b40

XðjoÞ ¼ 1=½ðaþ joÞðbþ joÞ�: (4:5:12a)

Solution: a. This can be solved by first noting that

convolution in time domain corresponds to the mul-

tiplication in the frequency domain. Therefore,

xðtÞ¼F�1 1

aþjo

	 

�F�1 1

bþjo

	 


¼e�atuðtÞ�e�btuðtÞ¼
Z t

0

e�aauðaÞe�bðt�aÞuðt�aÞda

¼
Z t

0

e�ate�bðt�tÞdt¼e�bt
Z t

0

eðb�aÞtdt

¼e�bt 1

ðb�aÞ e
ðb�aÞt

h it¼t
t¼0
¼e
�at�e�bt
ðb�aÞ uðtÞ:

(4:5:12b)

Second, by using partial fraction expansion, we

have

XðjoÞ ¼ 1

ðb� aÞðaþ joÞ �
1

ðb� aÞðbþ joÞ ; a 6¼ b

(4:5:12c)

) xðtÞ ¼F �1½XðjoÞ� ¼ 1

ðb� aÞ e
�atuðtÞ

� 1

ðb� aÞ e
�btuðtÞ: (4:5:12d)

This coincides with the solution in (4.5.12b).

b. When a ¼ b; the transform function has a

double pole. By the convolution method,

xðtÞ ¼ e�atuðtÞ � e�atuðtÞ ¼
Z t

0

e�ate�aðt�tÞdt

¼ e�at
Z t

0

dt ¼ te�atuðtÞ: (4:5:12e)

Since the function has a double pole, we can find its

inverse transform by using times-t property of the

Fourier transforms or from tables. Now

1

ð�jÞ
d

do
1

ðaþ joÞ

	 

¼ 1

ðaþ joÞ2
¼ XðjoÞ;

xðtÞ ¼ F �1
1

ðaþ joÞ2

( )
¼ F �1

1

ð�jÞ
d

do
1

ðaþ joÞ

	 
� �

¼ ð�jtÞF �1 1

ð�jÞ
1

aþ jo

� �
¼ te�atuðtÞ :
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This coincides with the result obtained in (4.5.12e).&

Example 4.5.7 Find yðtÞ for the function below by

using a. the derivative theorem and b. the long

division:

YðjoÞ ¼ jo
ðaþ joÞ ; a40: (4:5:13)

Solution: a. Using the derivative theorem, we have

yðtÞ¼ d½F�1ð1=ðaþ joÞ�
dt

¼ dðe�atuðtÞÞ
dt

¼ e�at
duðtÞ
dt
þuðtÞdðe

�atÞ
dt

¼ e�atdðtÞ�ae�atuðtÞ¼ dðtÞ�ae�atuðtÞ: (4:5:14)

b. Also, dividing jo by ðaþ joÞ by long division
and using the superposition property of the

Fourier transforms gives the same result as in

(4.5.14). That is,

jo
aþ jo

¼ 1� a

aþ jo !
FT

d tð Þ � ae�atu tð Þ: &

4.5.3 Multiplication Theorem
(Convolution in Frequency)

The dual to the time convolution theorem is the

convolution in frequency theorem. It is given below

and can be shown directly by using a proof similar to

the time domain convolution theorem. An alternate

way of showing is by using the symmetry theorem

y tð Þ ¼ x1 tð Þx2 tð Þ !
FT 1

2p
X1 joð Þ � X2 joð Þ: (4:5:15)

Summary: Convolution in time and in frequency:

Convolution in time: x tð Þ � x2 tð Þ½ � !
FT

X1 joð ÞX2 joð Þ½ � : Multiplication in frequency

Multiplicaion in time: x1 tð Þx2 tð Þ½ � !
FT 1

2p X1 joð Þ � X2 joð Þ½ � : Convolution in frequency

Example 4.5.8 Consider the time function and its

transform

x tð Þ !
FT

X joð Þ ¼ P
o
W

h i
: (4:5:16)

Find the Fourier transform of the function

yðtÞ ¼ x2ðtÞ and its bandwidth by assuming the

bandwidth of xðtÞ is ðW=2Þ rad/s.

Solution: Example 2.3.1 considered the time

domain convolution of two rectangular pulse func-

tions. Using these results, we have

YðjoÞ¼XðjoÞ � XðjoÞ¼P
o
W

h i
�P o

W

h i
¼WL

o
W

h i
:

(4:5:17) &

Notes: It is instructive to review the properties of

the convolution of the transform functions in

(4.5.17). The bandwidth of the pulse function

P½o=W� is W=2, whereas the bandwidth of the

functionL½o=W� is (W). Note the duration property

of the convolution is satisfied since the width of the

triangular pulse is twice that of the rectangular

pulse. From the area property of the convolution,

we have using the time averages

A P
o
W

h in o
A P

o
W

h in o
¼W2:

Coming back to the bandwidths, if x1ðtÞ and x2ðtÞ
have bandwidths of B1 and B2 Hz, respectively,

then the bandwidth of yðtÞ ¼ x1ðtÞx2ðtÞ is equal to
ðB1 þ B2Þ Hz. Multiplication of two time functions

increases the bandwidth of the resulting time func-

tion. The above property is dual to the time width

property of the convolution. We have seen some

pathological cases where the time width property

of the convolution does not hold.What about in the

frequency domain? Obviously, the same is true in

the frequency domain for pathological cases. For

practical signals, the above discussion applies. We

will come back to this topic at a later time, as it
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pertains to the important topic of nonlinear systems

and the bandwidth requirements of such systems.

Fourier transform computation of windowed per-

iodic functions: Stanley et al. (1984) present a nice

approach in finding the transforms of windowed

time-limited trigonometric functions using the mul-

tiplication theorem, which is presented below.

Let gTðtÞ be a periodic function with period T

and F½gTðtÞ� ¼ GðjoÞ. Let pðtÞ be a pulse function

with PðjoÞ ¼ F½pðtÞ� and a function F½wðtÞ� ¼
WðjoÞ is defined by

w tð Þ ¼ p tð ÞgT tð Þ !
FT

P joð Þ � G joð Þ: (4:5:18)

We like to find F½wðtÞ� using F½e jko0t� ¼ 2pdðo�
ko0Þ and

gTðtÞ ¼
X1

k¼�1
Gs½k�e jko0t;

Gs½k�¼
1

T

Z
T

gTðtÞe�jko0tdt;

o0 ¼ 2p=T;

GðjoÞ¼F½gTðtÞ�

¼ 2p
X1

k¼�1
Gs½k�dðo� ko0Þ: (4:5:19)

The transform of the function wðtÞ can be obtained

by the convolution of the two transform functions

PðjoÞ ¼ F½pðtÞ� and GðjoÞ. That is,

WðjoÞ ¼ PðjoÞ � 2p
X1

k¼�1
Gs½k�dðo� ko0Þ

" #

¼ 2p
X1

k¼�1
Gs½k� PðjoÞ � dðo� ko0Þf g

¼ 2p
X1

k¼�1
Gs½k�Pðjðo� ko0ÞÞ: (4:5:20)

Example 4.5.9 Find the Fourier transform of the

Hamming window function given below using the

above method:

wHðtÞ ¼
:54þ :46 cosð2pt=TÞ; tj j � T=2

0; Otherwise

�
:

(4:5:21)

Solution: Define a periodic function using the win-

dow function in (4.5.21) by

gTðtÞ ¼ :54þ :46 cosð2pt=TÞ; gTðtþ TÞ ¼ gTðtÞ;
(4:5:22a)

) wHðtÞ ¼ gTðtÞP
t

T

h i
: (4:5:22b)

This function gTðtÞ contains a constant and a cosine

function. Its Fourier transform is

G joð Þ ¼:54 2pð Þd oð Þ þ :23 2pð Þd o� o0ð Þ
þ :23 2pð Þd oþ o0ð Þ;o0 ¼ 2p=T; (4:5:23)

WHðjoÞ ¼ F gTðtÞP
t

T

h ih i
¼GðjoÞ

�TsinðoT=2Þ
ðoT=2Þ :54ð2pÞ dðoÞ �TsinðoT=2Þ

ðoT=2Þ

	 


þ :23ð2pÞ dðo�o0Þ �
TsinðoT=2Þ
ðoT=2Þ

	 


þ :23ð2pÞ dðoþo0Þ �
TsinðoT=2Þ
ðoT=2Þ

	 

:

With

dðo	 o0Þ � YðjoÞ ¼
1

2p

Z1

�1

dða	 o0ÞYðjðo� aÞÞda

¼ 1

2p
Yðjðo	 o0ÞÞ;

we have

WHðjoÞ ¼ :54
T sinðoT=2Þ
ðoT=2Þ þ :23T sinððo�o0ÞT=2Þ

ððo�o0ÞT=2Þ

þ :23 T sinððoþo0ÞT=2Þ
ððoþo0ÞT=2Þ

:

(4:5:24)

Noting sinðoðT=2Þ 	 o0ðT=2ÞÞ ¼ sinðoðT=2Þ	
pÞ ¼ � sinðoT=2Þ and using this in (4.5.24) results

in

WHðjoÞ¼:54T
sinðoT=2Þ
ðoT=2Þ

�:23TsinðoT=2Þ 1

ðoT=2Þ�pþ
1

ðoT=2Þþp

	 

:

In terms of f, we have

WHðjoÞ ¼
T sinðpfTÞ
ðpfTÞ

:54� :08ðfTÞ2

1� ðfTÞ2

" #
; o ¼ 2pf:

(4:5:25) &
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4.5.4 Energy Spectral Density

From Rayleigh’s energy theorem, the energy con-

tained in an energy signal F½xðtÞ� ¼ XðjoÞ can be

computed either by the time domain function or by

the frequency domain function and the energy con-

tained in the signal is

E ¼
Z1

�1

xðtÞj j2dt ¼ 1

2p

Z1

�1

XðjoÞj j2do

¼
Z1

�1

XðjfÞj j2df; GðfÞ ¼ XðjfÞj j2¼ XðjoÞj j2=2p:

(4:5:26)

Note thatGðfÞ ¼ XðjfÞj j2¼ XðjoÞj j2=2p is the energy
spectral density.

Example 4.5.10 a.Derive the energy spectral density

of the function

x tð Þ ¼ e�atu tð Þ !
FT

1= aþ joð Þ½ � ¼ X joð Þ; a40

b. Illustrate the validity of Rayleigh’s energy

theorem.

c. Select the frequency band�W5o5W so that

95% of the total energy is in this band.

Solution: a. The energy spectral density is given by

XðjoÞj j2¼ 1= a2 þ o2
� �

: (4:5:27a)

b. By using the time domain function, the energy

contained in the function is

ETotal ¼
Z1

�1

xðtÞj j2dt ¼
Z1

0

e�2 atdt ¼ 1

2a
: (4:5:27b)

We can make use of the frequency function to

determine the energy as well and is

ETotal ¼
1

2p

Z1

�1

XðjoÞj j2do¼ 1

2pa
tan�1

o
a

� �
1
�1
�� ¼ 1

2a
:

(4:5:27c)

The above two equations validate Rayleigh’s energy

theorem.

c: E:95 ¼
:95

2a
¼ 1

2p

ZW

�W

do
a2 þ o2

do

¼ 1

ap
tan�1

W

a

� �
! a tanð:95ðp=2ÞÞ ¼W ;

W ¼ 2pF; F � ð2:022aÞ Hz: (4:5:27d) &

Example 4.5.11 Consider the pulse function

xðtÞ ¼ P t=t½ �. Find the percentage of energy con-

tained in the frequency range �W5o5W;

W ¼ 2pfc.

Solution: The spectrum and the energy spectral

densities are, respectively, given by

XðjoÞ ¼ t
sinððo=2ÞtÞ
ððo=2ÞtÞ ;

1

2p
XðjoÞj j2 ¼ 1

2p
t2 sin2ððo=2ÞtÞ
ððo=2ÞtÞ2

: (4:5:28)

The total energy and the energy contained in the

frequency range �fc5f5fc of the pulse are

ETotal ¼ ð1Þ2t¼ t; Efc ¼
Zfc

�fc

t2
sin2ðpftÞ
ðpftÞ2

df:

(4:5:29)

Using the change of variable b ¼ ft; df ¼ db=t;
and f ¼ � fc ! b ¼ � fct, the energy contained

in the frequency range �fc5f5fc can be computed

and the ratio of this to the total energy contained in

the pulse. These follow

Efc ¼ 2t
Zfct

0

sin2ðpbÞ
ðpbÞ2

db;

Efc

ETotal
¼ 2

Zfct

0

sin2ðpbÞ
ðpbÞ2

db: (4:5:30a)

We can only compute this integral numerically. In

the case of fct ¼ 1, we have

ðEfc=ETotalÞ � :9028: (4:5:30b)
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That is, approximately 90%of the energy is contained

in the spectralmain lobe of the signal. If we include the

side lobes, more energy will be included and

Efc!1 ¼ ETotal. Ninety percent of the energy is rea-

sonably sufficient to represent a rectangular pulse. &

An interesting formula can be derived to find the

energy of a causal signal xðtÞ, i.e., xðtÞ ¼ 0; t50 in

terms of its real and imaginary parts of its transform

XðjoÞ ¼ RðoÞ þ jIðoÞ. The energy is given by

Papoulis (1977) as follows:

Z1

0

x2ðtÞdt ¼ 2

p

Z1

0

R2ðoÞdo ¼ 2

p

Z1

0

I2ðoÞdo: (4:5:31)

This can be shown by noting xðtÞ ¼ 2xeðtÞuðtÞ
¼ 2x0ðtÞuðtÞ and then using the transforms of

real and imaginary parts. Details are left as an exercise.

4.6 Autocorrelation and Cross-
Correlation

In this section we will see that the inverse Fourier

transform of the energy spectral density discussed in

the last section is the autocorrelation (AC) function

defined in Chapter 2 (see (2.7.1)). The AC function

of a real function xðtÞ is

RxxðtÞ ¼
Z1

�1

xðtÞxðtþ tÞdt

¼
Z1

�1

xðtÞxðt� tÞdt¼ RxðtÞ: (4:6:1)

Note the single subscript in the case of autocorrelation

and a double subscript in the case of cross-correlation

below. The cross-correlations (see (2.6.3)) are

RxhðtÞ ¼
Z1

�1

xðtÞhðtþ tÞdt ¼
Z1

�1

xða� tÞhðaÞda;

(4:6:2a)

RhxðtÞ ¼
Z1

�1

hðtÞxðtþ tÞdt ¼
Z1

�1

hðb� tÞxðbÞdb;

(4:6:2b)

RhxðtÞ ¼ Rxhð�tÞ: (4:6:3)

Cross-correlation reduces to the autocorrelation

when hðtÞ ¼ xðtÞ. The Fourier transform of the

AC function is the energy spectral density and is

GxðoÞ ¼
Z1

�1

RxðtÞe�jotdt;

RxðtÞ ¼
1

2p

Z1

�1

GxðoÞe jotdo ¼F�1½GxðoÞ� ;

Rx tð Þ !
FT

Gx oð Þ: (4:6:4)

Note that the autocorrelation function is the inte-

gral of the product of two functions, the function

and its shifted version. It is a function of t, which is

the shift between the given function and its shifted

version. The Fourier transform pair relationship in

(4.6.4) is referred to as the Wiener–Khintchine theo-

rem. Also, we should note that a function xðtÞ and
its delayed or advanced version xðt� t0Þ have the

same autocorrelation function and therefore they

have the same energy spectral densities. That is,

RyðtÞ ¼
Z1

�1

xðt� t0Þxðt� t0 þ tÞdt

¼
Z1

�1

xðaÞxðaþ tÞdt ¼ RxðtÞ (4:6:5)

GyðoÞ ¼ GxðoÞ: (4:6:6)

Correlations were expressed in terms of convolution

(see (2.6.4a and b)). Now,

RxðtÞ ¼ xðtÞ � xð�tÞ: (4:6:7)

Using the convolution theorem and

F½xð�tÞ� ¼ Xð�joÞ ¼ X�ðjoÞ, it follows that

F½RxðtÞ� ¼ F½xðtÞ � xð�tÞ� ¼ F½xðtÞ�F½xð�tÞ�
¼ XðjoÞj j2¼ GxðoÞ: (4:6:8)

Example 4.6.1 Show that the energy spectral densi-

ties of xðtÞ and xðt	 t0Þ are the same and therefore
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the autocorrelation functions of the two functions

are identical (see (4.6.5) and (4.6.6)).

Solution: Noting x t	 t0ð Þ !
FT

e	jot0X joð Þ, we have

e	jot0XðjoÞe�jot0X�ðjoÞ ¼ XðjoÞj j2¼ GxðoÞ: (4:6:9)

The corresponding autocorrelation function is

given by

Rx tð Þ ¼ F�1 Gx oð Þ½ � ¼ F�1 X joð Þj j2
h i

: (4:6:10)

&

This example illustrates that the autocorrelation

function RxðtÞ does not have the phase information

contained in the function xðtÞ. This can be seen from
the fact that t0 is not in either of the expressions

RxðtÞ or GxðoÞ. The autocorrelation function is

even and its spectrum, the energy spectral density,

is real and even and

Ex¼RxðtÞ t¼0j ¼
Z1

�1

xðtÞxðtþtÞdt t¼0j ¼
Z1

�1

xðtÞj j2dt:

(4:6:11a)

This gives the energy in the signal. Using the

Wiener–Khintchine theorem, we have

Ex ¼ RxðtÞ t¼0j ¼ 1

2p

Z1

�1

XðjoÞj j2do: (4:6:11b)

Example 4.6.2 Consider the pulse function and its

transform given by

x tð Þ ¼ e�atu tð Þ !
FT

1= aþ joð Þ ¼ X joð Þ; a40:

(4:6:12a)

a. Give the expression for the energy spectral

density and its inverse transform, the corresponding

autocorrelation function.

b. Compute the energy in xðtÞ using its AC func-

tion and its energy spectral density.

Solution: a. From Example 2.7.1 and (2.7.10), we

have

fxðtÞ ¼
1

2a
e�a tj j:

The energy spectral density and its inverse trans-

form are (see (4.3.20))

XðjoÞj j2¼ 1

ðaþ joÞða� joÞ ¼
1

a2 þ o2
;

F�1
1

a2 þ o2

	 

¼ 1

2a
e�a tj j ¼ RxðtÞ:

(4:6:12b)

b. By using the AC function and the energy

spectral density, the energy in xðtÞ is

Ex ¼ RxðtÞ t¼0j ¼ 1=2a,

1

p

Z1

0

1

a2 þ o2
do ¼ 1

ap
tan�1

o
a

� � 1
0

���� ¼ 1

2a
¼ Ex:

(4:6:12c) &

The cross-correlation theorem for aperiodic

signals is

Rhx tð Þ !
FT

H� joð ÞX joð Þ: (4:6:13)

It can be shown by

RhxðtÞ ¼
Z1

�1

hðtÞxðtþ tÞdt

¼ 1

2p

Z1

�1

hðtÞ½
Z1

�1

XðjoÞe joðtþtÞdo�dt

¼ 1

2p

Z1

�1

XðjoÞ½
Z1

�1

hðtÞe jotdt�e jotdo

¼ 1

2p

Z1

�1

H�ðjoÞXðjoÞe jotdo:

Comparing these, (4.6.13) follows. For t ¼ 0,

Rhxð0Þ ¼
Z1

�1

hðtÞxðtÞdt ¼ 1

2p

Z1

�1

H�ðjoÞXðjoÞdo:

(4:6:14)

Equation (4.6.14) is a generalized version of Parse-

val’s theorem. The cross-correlation theorem
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reduces to the case of autocorrelation by replacing

HðjoÞ by XðjoÞ in (4.6.13).

4.6.1 Power Spectral Density

Earlier we have studied the power signals that

include periodic signals and random signals. We

will not be discussing random signals in this book

in any detail. The autocorrelation of a periodic

signal xTðtÞ is given by

RT;xðtÞ ¼
1

T

Z
T

xTðtÞxTðtþ tÞdt: (4:6:15a)

Note that the above integral is over any one period.

We have seen in Chapter 2 that the autocorrelation

function of a periodic function is also a periodic

function with the same period. The Fourier trans-

form of the autocorrelation function is called the

power spectral density (PSD) and its inverse is the

autocorrelation function. The autocorrelation func-

tion and the corresponding spectral density func-

tion form a Fourier transform pair

Sx oð Þ ¼ F Rx;T tð Þ
� �

; Rx;T tð Þ ¼ F�1 Sx oð Þ½ �;

Rx;T tð Þ !
FT

Sx oð Þ: (4:6:15b)

This relation is referred to as theWiener–Khintchine

theorem for periodic signals. The power spectral

density of a periodic signal can be determined from

P ¼ 1

2p

Z1

�1

SxðoÞdo ¼ Rx; Tð0Þ

¼ 1

T

Z
T

xðtÞxðtþ tÞdt t¼0j : (4:6:15c)

Formal proof of the general Wiener–Khintchine

theorem is beyond the scope here (see Ziemer and

Tranter, 2002 and Peebles, 2001). In the following

we will assume that SxðoÞ is given by the transform

of the periodic autocorrelation function.

Notes: Power signals include periodic and random

signals. The autocorrelation function of a periodic

function is periodic and the power spectral density

contains impulses. &

Example 4.6.3Consider the harmonic form of Four-

ier series of a periodic function

xTðtÞ¼Xs½0�þ
XN
k¼1

d½k� cosðko0tþy½k�Þ; o0¼ 2p=T:

(4:6:16)

Find its auto correlation.

Solution: The autocorrelation function is given by

(see (2.8.9))

RT;xðtÞ ¼ X2
s ½0� þ

1

2

XN
k¼1

d2½k� cosðko0tÞ: (4:6:17)

The phase terms y½k�s are not in the autocorrelation

function. The PSD is

SxðoÞ ¼ 2pX2
s ½0�dðoÞ

þ p
2

XN
k¼1

d2½k� dðo� ko0Þ þ dðoþ ko0Þf g:

(4:6:18)

The AC function and the PSD do not have any

phase information and the frequencies are located

at o ¼ ko0; k ¼ 1; 2; :::;N. The average power can

be computed from the AC function or from the

power spectral density. From (4.6.17), we have the

average power

Px ¼ RT;xð0Þ ¼ X2
s ½0� þ

1

2

XN
k¼1

d2½k�: (4:6:19)

Using the power spectral density, we have

Px ¼
1

2p

Z1

1

SxðoÞdo

¼ 2p
2p

Z1

�1

fX2
s ½0�dðoÞ þ

1

4

XN
k¼1

d2½k�:fdðo� ko0Þ

þ dðoþ ko0Þggdo:
Since the integrand contains only impulses, the

integral can be evaluated by inspection and is

RT;xð0Þ in (4.6.19). &

Notes: In the case of energy signals the square of the

magnitude spectrum gives the energy spectral
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density (ESD), and the energy content is obtained

by integrating the ESD. In the case of periodic

signals, the spectrum contains impulses and the

square of an impulse function is not defined. The

AC function and the Wiener–Khintchine theorem

are used to compute the power spectral density

(PSD) of the periodic signal and its integral is the

average power contained in the power signal.

Most signals are corrupted by noise. Autocorre-

lation function ‘‘cleans’’ the signal and it provides a

better insight into the essential qualities of the sig-

nal. Note that the AC function does not have the

phase information in the signal. Since the AC of a

periodic function is also a periodic with the same

period, it can be determined by identifying the peaks

in the autocorrelation function, thereby identifying

the fundamental frequency. Finding the pitch per-

iod of a vowel in a noisy speech signal by using the

autocorrelation function is very effective on a short-

time basis (see Rabiner and Schafer, 1978). &

4.7 Bandwidth of a Signal

In Section 4.2.2, bandwidth (BW) of a signal was

discussed in simple terms. One definition is the

range of positive frequencies in which most of the

signal energy or power is contained. This is vague

since the word ‘‘most’’ can be interpreted differently.

We will consider this here in more detail.

A signal is considered time limited if the signal is

zero outside an interval. For example, a pulse func-

tion P½ðt� t0Þ=t� is nonzero for t� t0j j5t=2 and

zero outside this range. It is nonzero for t s. The

signals considered in this book are real signals and

their spectral amplitudes are even and the spectral

phase angles are odd. A signal xðtÞ is said to be band
limited to B Hz if

XðjoÞj j ¼ 0; o ¼ 2pfj j4W ¼ 2pB: (4:7:1)

Since it is band limited to B Hz, B is defined as the

bandwidth of the signal. In this case the signal

occupies only low frequencies, i.e., it is a low-

frequency signal or sometimes referred to as a low-

pass signal. Note that the bandwidth is defined

using only positive frequencies. Band-pass signals

are common in communication theory. Band-pass

spectrum can be defined as follows:

XðjoÞj j ¼

0; oj j5o0 � ðW=2Þ
H0; o� o0j j5ðW=2Þ
H0; oþ o0j j5ðW=2Þ
0; oj j4o0 þ ðW=2Þ

8>>><
>>>:

: (4:7:2)

It is an ideal band-pass signal. Most practical signals

are not band limited. There are functions that are

neither time limited nor band limited. For example,

consider the double exponential function given

below and its transform derived earlier

x tð Þ ¼ e�a tj j !
FT

2a= a2 þ o2
� � �

¼ X joð Þ; a40:

(4:7:3)

The question we need to answer is, what is a mean-

ingful definition of the time width of an arbitrary non-

time-limited signal? How about a meaningful defini-

tion of the frequency width of an arbitrary non-band-

limited signal? In Section 4.2.2, we have seen that a

shorter time width signal corresponds to a broader

spectrum. For example, the Fourier transform pair

of a rectangular pulse function is given by

x tð Þ ¼ P
t

t

h i
 !
FT

t
sin ot=2ð Þ
ot=2ð Þ ¼ X joð Þ: (4:7:4)

Most of the energy is contained in the main lobe of

the spectrum, which occupies the frequency band

between the two zeros of XðjoÞ located at

o ¼ �2p=t. The energy content of this pulse is

quantified in terms of the frequency content in

Example 4.5.12. The side lobes contain a small por-

tion of the energy. The time width of the pulse is

obviously equal to t s and the frequency width is

approximately 1=tHz, considering only positive fre-

quencies. Increasing (decreasing) the time width

reduces (increases) the frequency width. At least,

from this example, we see that the two widths are

inversely proportional to each other. In the following

we will consider a few standard definitions of time

and frequency widths and they give some meaning.

4.7.1 Measures Based on Areas of the
Time and Frequency Functions

Using the ordinate theorems discussed earlier, we

have
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Xð0Þ¼
Z1

�1

xðtÞdt; xð0Þ¼ 1

2p

Z1

�1

XðjoÞdo: (4:7:5)

The dc value of a signal is zero if it is an odd func-

tion. Interestingly,

x tð Þ ¼ d ny tð Þ=dtn !
FT

joð ÞnY joð Þ ¼ X joð Þ: (4:7:6)

It is zero ato ¼ 0 providedYðjoÞ has no poles at the
origin that can be canceled by ðjoÞn. If the time

function has a discontinuity at the origin, then

xð0Þ is obtained from the integral in (4.7.5) and is

the average value or the half-value at the disconti-

nuity. Let the time width and the frequency widths,

respectively, be defined by

tw ¼

R1
�1

xðtÞdt

xð0Þ ; ow ¼

R1
�1

XðjoÞdo

Xð0Þ : (4:7:7)

Then the product

twow ¼ 2p: (4:7:8)

That is, the product of time and frequency widths is

a constant. Some authors use the frequency f in Hz

rather than o ¼ 2pf in rad/s in the time–bandwidth

product. These simple measures have drawbacks

illustrated below.

Example 4.7.1 Consider the function given by

xðtÞ ¼ P½t� :5� �P½tþ :5�. It is an odd function.

If the above definition is used, the time width is

zero, even though the actual width of this function

is 2 s. &

Example 4.7.2 Consider the pair

P t½ � !
FT sin o=2ð Þ

o=2ð Þ :

The area under the pulse function is 1. The area

under the sinc function is 2p and the time–band-

width product is 2p. &

Example 4.7.3 Consider the Fourier transform pair

corresponding to the exponential decaying function

to find the values of the functions a. Xð0Þ and b.

F�1½XðjoÞ� t¼0j :

x tð Þ ¼ e�atu tð Þ !
FT 1

aþ jo
¼ X joð Þ; a40:

Solution: a. Xð0Þ ¼
Ð1
0

e�atdt ¼ 1
a.

a: x 0ð Þ¼ 1

2p

Z1

�1

X joð Þejotdo t¼0j

¼ 1

2p

Z1

�1

a

a2þ oð Þ2
doþ j

2p

Z1

�1

�oð Þ
a2þ oð Þ2

do:

The integrand in the second integral is an odd func-

tion and therefore it is zero:

xð0Þ ¼ 1

2p

Z1

�1

a

a2 þ o2
do ¼ 1

2p
tan�1ðo=aÞ 1�1

�� ¼ 1

2
:

Note the exponential time-decaying function xðtÞ is
discontinuous at t ¼ 0 and the above result verifies

that the inverse transform converges to the half-

value, i.e., the average value of the function before

and after the discontinuity. &

4.7.2 Measures Based on Moments

The time width Tw of a real non-time-limited func-

tion is defined by

ðTwÞ2 ¼
1

xk k2
Z1

�1

ðt� �tÞ2x2ðtÞdt; xk k2¼
Z1

�1

x2ðtÞdt;

(4:7:9)

Ex ¼ xk k2¼
Z1

�1

x2ðtÞdt ¼ 1

2p

Z1

�1

XðjoÞj j2do51:

(4:7:10)

The center of gravity of the area of the function is

�t ¼ 1

Ex

Z1

�1

tx2ðtÞdt: (4:7:11)

Tw is a measure of the signal spread about �t and is

the signal dispersion in time.

Notes: These measures can be seen noting

pðtÞ ¼ ½x2ðtÞ=Ex�>0 is a valid probability density
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function, as is nonnegative for all t and the area

under it is 1. In statistical terminology �t is the mean

and ðTWÞ2 is the variance (see Peebles, 2001). &

Example 4.7.4 Consider the exponential decaying

function xðtÞ ¼ e�atuðtÞ; a40. Find the center of

gravity and the time dispersion Tw.

Solution: The energy contained in the pulse is

E ¼ ð1=2aÞ. The center of gravity is

�t ¼
Ð1
0 te�2 atdt

ð1=2aÞ ¼ 2a
�e�2 at½1þ 2 at�

ð2aÞ2
1
0 ¼
�� 1

2a
:

(4:7:12)

In addition, using the following integral formulas,

Tw is as follows:

Z
t2ebtdt ¼ ebt

t2

b
� 2t

b2
þ 2

b3

	 

;

Z
tebtdt ¼ ebt

t

b
� 1

b2

	 

; and

Z
ebtdt ¼ ebt

1

a
;

ðTwÞ2¼2a
Z1

0

ðt�ð1=2aÞÞ2e�2atdt

¼ð2aÞ
Z 1
0

½t2�ð1=aÞtþð1=2aÞ2�e�2atdt¼ð1=2aÞ2

)Tw¼ð1=2aÞ: (4:7:13)

The frequency width, a frequency measure,

Ww ¼ 2pFw, can be defined by

W2
w ¼

1

Xk k2
Z1

�1

ðo� �oÞ2 XðoÞj j2do

Note : �o ¼ 1
Exð2pÞ

R1
�1

o XðjoÞj j2do ¼ 0

	 

; (4:7:14a)

Xk k2¼
Z1

�1

XðjoÞj j2do ¼ 2p xk k2

ðRayleigh’s energy theoremÞ: (4:7:14b)

This follows since the integrand in the above equa-

tion is odd and the integral of an odd function over

a symmetric interval is zero. &

A bound on the time–bandwidth product

TwWw ¼ Twð2pFwÞ is derived using Rayleigh’s

energy theorem and Schwarz’s inequality (see Sec-

tion 2.1.). The inequality is briefly reviewed below.

Schwarz’s inequality:The inequality is (see (2.1.9d))

xðtÞþyðtÞh ik k� xðtÞk k yðtÞk k

)
Zb

a

xðtÞyðtÞj j2dt�
Zb

a

xðtÞj j2dt
Zb

a

yðtÞj j2dt:

(4:7:15)

4.7.3 Uncertainty Principle in Fourier
Analysis

The uncertainty principle in spectral analysis states

that if the integrals in (4.7.9) and (4.7.14a) are finite

and

lim
t!1

ffiffi
t
p

xðtÞ ¼ 0; (4:7:16)

then

TwWw 

1

2
or TwFw 


1

2ð2pÞ ; Ww ¼ 2pFw :

(4:7:17)

Using the expressions for Tw and Ww from (4.7.9)

and (4.7.14a) results in

ðTwWwÞ2 ¼
1

xk k2 Xk k2
Z1

�1

ðt� �tÞ2x2ðtÞdt

2
4

3
5


Z1

�1

o2 XðjoÞj j2do

2
4

3
5;

(4:7:18)

Xk k2 ¼
Z1

�1

XðjoÞj j2do; xk k2¼
Z1

�1

x2ðtÞ
�� ��dt;

Xk k2 ¼ 2p xk k2: (4:7:19)

Noting the Fourier transform derivative theorem,

i.e., F½x0ðtÞ� ¼ ðjoÞXðjoÞ and using Rayleigh’s

energy theorem results in
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Z1

�1

x0ðtÞj j2dt ¼ 1

2p

Z1

�1

o2 XðjoÞj j2do: (4:7:20)

Therefore

ðTwWwÞ2

¼ 1

xk k2 Xk k2
Z1

�1

ðt� �tÞ2x2ðtÞdt
Z1

�1

o2 XðjoÞj j2do

2
4

3
5

¼ 1

xk k2 Xk k2
ð1

�1

ðt� �tÞ2x2ðtÞdtð2pÞ
Z1

�1

½x0ðtÞ�2dt

¼ 1

xk k4
Z1

�1

ðt� �tÞ2x2ðtÞdt
Z1

�1

½x0ðtÞ�2dt: (4:7:21)

Using Schwarz’s inequality in (4.7.15) results in

Z1

�1

ðt� �tÞ2x2ðtÞdt

2
4

3
5 Z1

�1

½x0ðtÞ�2dt

2
4

3
5



Z1

�1

ðt� �tÞxðtÞx0ðtÞdt

������
������
2

: (4:7:22)

Considering the right-hand side of the above equa-

tion and integrating it by parts, we haveÐ
udv ¼ uv�

Ð
vdu, with u ¼ ðt� �tÞ; du=dt ¼ 1;

dv=dt ¼ xðtÞx0ðtÞ; and v ¼ ð1=2Þx2ðtÞ

Z1

�1

ðt��tÞxðtÞdx
dt
dt¼1

2
ðt��tÞx2ðtÞ 1�1

�� �1

2

Z1

�1

x2ðtÞdt:

Assuming that lim
t!�1

ðt� �t Þx2ðtÞ ¼ 0, it follows that

Z1

�1

ðt� �tÞxðtÞx0ðtÞdt ¼ �1
2

Z1

�1

x2ðtÞdt ¼ �1
2

xk k2:

(4:7:23)

Using this and (4.7.21) in (4.7.20), we have

ðTwWwÞ2 

xk k4

4 xk k4
¼ 1

4
or TwWw 


1

2
or

TwFw 

1

2ð2pÞ ; Ww ¼ 2pFw: (4:7:24)

Example 4.7.5 Illustrate the uncertainty principle

using the Gaussian transform pair

x tð Þ ¼ e�at
2

 !
FT

ffiffiffi
p
a

r
e� oð Þ2=4a ¼ X joð Þ; a40: (4:7:25a)

Solution: First, differentiate both sides of the fol-

lowing equation with respect to a:

Z1

�1

e�at
2

dt¼
ffiffiffi
p
a

r
)
Z1

�1

de�at
2

da
dt¼

Z1

�1

ð�t2Þe�at2dt

¼
ffiffiffi
p
p dða�1=2Þ

da
¼�

ffiffiffi
p
p a�1:5

2

¼� 1

2a

ffiffiffi
p
a

r
: (4:7:25b)

Canceling the negative signs in (4.7.25b) results in

Z1

�1

t2e�at
2dt ¼ 1

2a

ffiffiffi
p
a

r
: (4:7:25c)

From tables,

xk k2¼
Z1

�1

e�2 at
2

dt ¼
ffiffiffiffiffi
p
2a

r
: (4:7:26)

Now let a ¼ 2a in (4.7.25c), which results in

Z1

�1

t2e�at
2

dt ¼
Z1

�1

t2e�2 at
2dt ¼ 1

4a

ffiffiffiffiffi
p
2a

r
:

Noting that the Gaussian pulse in this example is

even and the integrand in (4.7.11) is odd, it follows

that �t ¼ 0. The time width can be computed from

(4.7.9) and

ðTwÞ2 ¼
1

xk k2
Z1

�1

t2e�2 atdt ¼ ð1=
ffiffiffiffiffi
p
2a

r
Þ 1
4a

ffiffiffiffiffi
p
2a

r
¼ 1

4a
:

(4:7:27)

Noting that Xk k2¼ 2p xk k2¼ 2p
ffiffiffiffiffiffiffiffiffiffi
p=2a

p
, it follows

that
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ðWwÞ2 ¼
1

Xk k2
Z1

�1

o2 XðjoÞj j2do

¼ 1

xk k2ð2pÞ

Z1

�1

o2p
a
e
�2ðoÞ2

4a do

¼
ffiffiffiffiffi
2a
p

ð2pÞ
ffiffiffi
p
p ðp

a
Þ
Z1

�1

o2e�
o2
2a do

¼
ffiffiffiffiffi
2a
p

ð2pÞ
ffiffiffi
p
p p

a
a
ffiffiffiffiffiffiffiffiffiffiffiffi
pð2aÞ

p
¼ a) ðTwWwÞ2

¼ 1

4a
a ¼ 1

4
: (4:7:28)

The time–bandwidth product of a Gaussian pulse is

obtained by using Ww ¼ 2pFw and

TwFw ¼ 1=ð2ð2pÞÞ: (4:7:29)

This shows the equality in (4.7.24) in the Gaussian

case. See Hsu (1967) for additional examples. &

4.8 Moments and the Fourier Transform

The nth moment mn of xðtÞ is defined by (see

Section 1.7.)

mn ¼
Z1

�1

tnxðtÞdt; n ¼ 0; 1; 2; ::: : (4:8:1)

The moment theorem relates the derivatives of the

transform of a function at o ¼ 0:

ð�jÞnmn ¼
dnXðjoÞ
do n o¼0j ; n ¼ 0; 1; 2; ::: ; (4:8:2)

m0 ¼
Z1

�1

xðtÞdt ¼ XðjoÞ o¼0j (Ordinate theorem);

dXðjoÞ
do o¼0j ¼

Z1

�1

xðtÞ de
�jot

do
dt o¼0j

¼ j

Z1

�1

txðtÞe�jotdt o¼0j ¼ �jm1:

Repeating this process and evaluating the deriva-

tives at o ¼ 0 proves the result in (4.8.2). Now we

will derive the transform in terms of mi by using the

power series expansion

e�jot ¼
X1
n¼0

1

n!
ð�jotÞn: (4:8:3)

Substituting this in the transform and using (4.8.1)

and (4.8.2) result in

XðjoÞ ¼ F½xðtÞ� ¼
Z1

�1

xðtÞe�jotdt

¼
Z1

�1

X1
n¼0

ð�joÞntn
n!

xðtÞdt

¼
X1
n¼0

ð�joÞn

n!

Z1

�1

tnxðtÞdt

¼
X1
n¼0

dnXðoÞ
don

	 

o¼0j

on

n!
: (4:8:4)

This holds only if the integral of the terms in the

above equation is valid. From (4.8.2)

XðjoÞ ¼
X1
n¼0
ð�jÞnmn on=n!½ �: (4:8:5)

Although the moment theorem is given in terms of a

series expansion, it can be used to compute the

transforms of functions (see Papoulis, 1962).

Example 4.8.1 Use the moment theorem and the fol-

lowing identity to show that Fourier transform of the

Gaussian pulse xðtÞ ¼ e�at
2

is also a Gaussian pulse.

Z1

�1

e�at
2

dt ¼
ffiffiffi
p
a

r
)

Z1

�1

t2e�at
2

dt ¼ 1

2

ffiffiffiffiffi
p
a3

r
; a40:

(4:8:6a)

Solution: Equation (4.8.6a) on the right can be gen-

eralized and

ð1

�1

t2ne�at
2

dt ¼ 1:3:::ð2n� 1Þ
2n

ffiffiffiffiffiffiffiffiffiffiffi
p

a2nþ1

r

¼ 1:3:::ð2n� 1Þ
ð2aÞn

ffiffiffi
p
a

r
¼ m2n: (4:8:6b)

This gives even moments and the odd moments are

zero since xðtÞ is even:
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XðjoÞ ¼
X1
n¼0
ð�joÞ2n m2n

ð2nÞ!

¼
X1
n¼0
ð�1ÞnðoÞ2n 1

ð2nÞ!
1:3:::ð2n� 1Þ
ð2aÞn

ffiffiffi
p
a

r
:

This can be expressed in a compact form by noting

ð1Þð3Þð5Þ:::ð2n� 1Þ
ð1=2nÞð2nÞ! ¼ ð1Þð3Þð5Þ:::ð2n� 1Þ

ð1=2nÞð1Þð2Þð3Þ:::ð2n� 1Þð2nÞ

¼ 1

ð1=2nÞð2Þð4Þ:::ð2nÞ

¼ 1

ð1Þð2Þ:::ðnÞ ¼
1

n!
;

X joð Þ ¼
ffiffiffi
p
a

r X1
n¼0

�1ð Þ2o2n

4að Þnn!

¼
ffiffiffiffiffiffiffiffi
p=a

p
e�o

2=4a ) e�at
2

 !
FT ffiffiffiffiffiffiffiffi

p=a
p

e�o
2=4a: &

Example 4.8.2 Find the first two moments of

xðtÞ ¼ ae�atuðtÞ; a40.

Solution: Noting

F½xðtÞ� ¼ F½ae�atuðtÞ� ¼ a

½aþ jo� ¼ XðjoÞ; a40;

it follows that

m0 ¼ X 0ð Þ ¼ 1;m1 ¼ j
dX joð Þ
do o¼0j

¼ j
�ja

aþ joð Þ2 o¼0j ¼ a

a2
¼ 1

a
: &

4.9 Bounds on the Fourier Transform

In Chapter 3, we have learned that the derivative of

a periodic function plays a role on the bounds on its

F-series coefficients. We can use the Fourier time

differentiation theorem to find the bounds on the

transform. First

d nx tð Þ
dtn

 !
FT

joð ÞnX joð Þ: (4:9:1)

Spectral bounds: The following bounds are valid if

the appropriate derivatives exist:

XðjoÞj j �

Ð1
�1

xðtÞj jdt

1
oj j
Ð1
�1

dxðtÞ
dt

��� ���dt
1
o2

Ð1
�1

d 2xðtÞ
dt2

��� ���dt

8>>>>>>><
>>>>>>>:

(4:9:2)

First bound:

XðjoÞj j ¼
Z1

�1

xðtÞe�jotdt

������
������ �

Z1

�1

xðtÞe�jot
�� ��dt

¼
Z1

�1

xðtÞj jdt:

Second bound: With x0 tð Þ !
FT

joX joð Þ, we have

ðjoÞXðjoÞ ¼
Z1

�1

dxðtÞ
dt

e�jotdt! XðjoÞj j

� 1

oj j

Z1

�1

dxðtÞ
dt

����
����dt:

In a similar manner, we can prove the third bound

in (4.9.2) if it exists.

Example 4.9.1 Find the first two bounds in (4.9.2)

using the Fourier transform pair

x tð Þ ¼ P t½ � !
FT

sin o=2ð Þ= o=2ð Þ½ � ¼ X joð Þ:

Solution: Since the sinc function is bounded by one,

we have

XðjoÞj j ¼ sinðo=2Þ
ðo=2Þ

����
���� �

Z1

�1

xðtÞj jdt ¼ 1:

The derivative of the unit pulse function has two

impulses. That is,

dx tð Þ
dt
¼ dP t½ �

dt
¼ d tþ 1=2ð Þð Þ�d t� 1=2ð Þð Þ

) sin o=2ð Þ
o=2ð Þ

����
����� 1

oj j

ð1

�1

dx tð Þ
dt

����
����dt¼ 1

oj j

ð1

�1

jdðtþð1=2ÞÞ

�dðt�ð1=2ÞÞjdt¼ 2

oj j : &

Higher bounds in this case are not defined since the

area of the function d0ðtÞj j is infinite.
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4.10 Poisson’s Summation Formula

Let xðtÞ be an arbitrary function with its transform

XðjoÞ and let yTðtÞ be

yTðtÞ ¼
X1
n¼�1

xðtþ nTÞ ¼ 1

T

X1
k¼�1

Xs½k�e jko0t;

o0 ¼ 2p=T: (4:10:1)

This can be seen by first noting that

xðtÞ ¼ xðtÞ � dðtÞ and dTðtÞ ¼
X1

m¼�1
dðtþ nTÞ

¼
X1

n¼�1
dðt� nTÞ:

X1
n¼�1

xðtþ nTÞ ¼ xðtÞ �
X1
n¼�1

dðt� nTÞ

¼
X1

n¼�1

Z1

�1

xðbÞdðt� nT� bÞdb

¼
X1

m¼�1
xðt�mTÞ ¼ yTðtÞ :

Noting F½dTðtÞ� ¼ ð2p=TÞ
P1

k¼�1 dðo� ko0Þ and

the convolution theorem, we have

F½xðtÞ�dTðtÞ�¼XðjoÞ
2p
T

X1
k¼�1

dðo�ko0Þ

¼2p
T

X1
k¼�1

Xðjko0Þdðo�ko0Þ: (4:10:2)

X1
n¼�1

xðtþ nTÞ ¼ 2p
T

X1
k¼�1

Xðjko0ÞF�1½dðo� ko0�

¼ 1

T

X1
k¼�1

Xðko0Þe jko0t: (4:10:3)

Comparing this equation with (4.10.1), we have

Xs½k� ¼ Xðko0Þ. Using t ¼ 0 in (4.10.3) results in

Poisson’s summation formula:

X1
n¼�1

xðnTÞ ¼ 1

T

X1
k¼�1

Xðko0Þ ¼
1

T

X1
k¼�1

Xs½k�:

(4:10:4)

Notes: Since xðtÞ is arbitrary, its shifted copies

may overlap and xðtÞ may not be recoverable from

yTðtÞ. The transform pair derived in (4.4.17) can be

proved using the above results. &

Example 4.10.1 Use Poisson’s sum formula to

derive an expression for

A¼
X1
n¼�1

e�a nj j: ðNote : e�ajtj !
FT ½2a=ða2þo2Þ�; a40Þ:

Solution: With T ¼ 1 ; i:e:; o0 ¼ 2p, results in

A ¼
X1
n¼�1

e�a nj j ¼
X1

k¼�1

2a

a2 þ 2pkð Þ2

¼ 2a= 2pð Þ2
� � X1

k¼�1

1

a=2pð Þ2þ kð Þ2
:

(4:10:5)
&

Example 4.10.2 With a ¼ 2p and the closed-form

expression for the geometric series (given below), derive

an expression for

B ¼
X1

k¼�1

1

1þ k2
Assume p

X1
n¼�1

e� n2pj j

 

¼ 2p
1

2
þ
X1
n¼1
ðe�2pÞn

" #!
:

Solution:X1
n¼1
ðe�2pÞn ¼ e�2p

1� e�2p
) B ¼

X1
k¼�1

1

1þ k2

¼ 2p
1

2
þ e�2p

1� e�2p

	 

¼ p

1þ e�2p

1� e�2p
: &

4.11 Interesting Examples and a Short
Fourier Transform Table

Example 4.11.1 Use the transform pair

F½uðtÞ� ¼ pdðoÞ þ ð1=joÞ and the Fourier modula-

tion theorem to find the transform of the switched

function xðtÞ ¼ uðtÞ cosðoctÞ.

Solution:

u tð ÞcosðoctÞ !
FT jo

o2
c �o2

þp
2
½d o�ocð Þ

þ d oþocð Þ�: (4:11:1) &
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Example 4.11.2 Determine the transform of the

LORAN pulse defined by

pðtÞ ¼ A t=T½ �2e�2ðt=TÞ sinð2pf0tÞuðtÞ: (4:11:2)

Solution: LORAN system is used for navigational

purposes (Shenoi, 1995). The carrier frequency of

the Loran transmission is f0 ¼ 100 kHz and the

envelope of the pulse is determined by the time

constant T ¼ 65 s. Find the transform of the

Loran pulse using the following transform pair

and the modulation theorem:

�jtð Þkx tð Þ !
FT

dkX joð Þ=dok: (4:11:3)

m tð Þ ¼ A
t

T

h i2
e�2 t=Tð Þu tð Þ !

FT 2A

T2

1

2
Tþ jo
� 3
" #

¼ AT

4

1

1þ joT=2

	 
3
¼M joð Þ; (4:11:4)

m tð Þ sin o0tð Þ !
FT 1

2j
M j o� o0ð Þð Þ

� 1

2j
M j oþ o0ð Þð Þ:

(4:11:5) &

Note from (4.11.4) that MðjoÞj j is proportional to
1= oj j3 for large o.

4.11.1 Raised-Cosine Pulse Function

Earlier the transforms of the rectangular and the

sinc pulses (see (4.2.14) and (4.3.27)) were given by

x tð Þ ¼ P
t

t

h i
 !
FT

t
sin ot=2ð Þ
ot=2ð Þ ¼ X joð Þ; (4:11:6)

y0 tð Þ ¼ sin 2pBtð Þ
2pBtð Þ �

sin wtð Þ
wt  !

FT 1

2B
P

o
2p 2Bð Þ

	 


¼ w

p
P

o
2w

h i
¼ Y0 joð Þ: (4:11:7)

For simplicity, w ¼ 2pB is used in (4.11.7). In

(4.11.6), xðtÞ is a time-limited rectangular pulse

function with its transform, a sinc pulse that is not

frequency limited. In (4.11.7), y0ðtÞ is a sinc pulse in
time that is not time limited and its transform is

frequency limited to B Hz. In addition to the

band-limited property of the sinc pulse, it has

some interesting properties. For example,

y0ð0Þ ¼ 1 and y0ðtÞ t¼n=2B
�� ¼ 0; n ¼ �1;�2; ::: :

(4:11:8)

In Section 8.2, it will be shown that a set of sinc

pulses is a generalized Fourier series basis set and

can be used to represent a signal that is band limited

to B Hz from its sample values separated by

ts ¼ 1=2B ¼ p=w s. Note y0ðntsÞ ¼ 0; n 6¼ 0. The

sinc pulses are attractive to use in transmitting

data. Unfortunately, systems cannot be built that

produce sinc pulses, as they are not time limited.

Are there other pulses that have zeros at uniformly

spaced time intervals and their transforms decrease

toward zero gradually, rather than abruptly? One

such family of pulses has this property and the

spectra of these pulses have the so-called raised

cosine spectra. The pulse and its transform

F½pðtÞ� ¼ PðjoÞ (a real function) are given by

pðtÞ ¼ 1

ts

sinðwtÞ
wt

� �
cosðbwtÞ

1� ð2bwt=pÞ2

" #
; (4:11:9a)

PðjoÞ ¼

1; 0 � oj j � ð1� bÞw
1

2
1� sin

p
2bw

oj j � w½ �
� �	 


; ð1� bÞw � oj j � ð1þ bÞw

0; oj j4ð1þ bÞw

8>>><
>>>:

(4:11:9b)
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The spectral bandwidth of the raised cosine func-

tion depends on the roll-off factor b; 0 � b � 1, as

the spectrum roll-off is a function of b. The pulse

function in (4.11.9a) has a sinc function as a multi-

plicative part, thus allowing for the function pðtÞ to
become zero at t ¼ nts ¼ np=w; n 6¼ 0: Plots of

PðjoÞ and pðtÞ are sketched in Fig. 4.11.1 for three

roll-off factors, namely b ¼ 0; :5; 1:When b ¼ 0,

the transform is a rectangular pulse function and the

bandwidth is ð1=2tsÞ Hz or w rad/s. For 05b51, the

bandwidth of the pulse is ðð1þ bÞ=2tsÞ Hz. The para-

meter b=2ts represents the additional or excess band-
width, which is a fraction of the minimum bandwidth

ð1=2tsÞ Hz. When b ¼ 1, it has a bandwidth of

ð1=tsÞ Hz. The corresponding transform is

Pð joÞ ¼
1

2
1þ cos

po
2w

� �
; oj j � 2w

0; Otherwise
:

8<
: (4:11:10)

It has the full cosine roll-off characteristic. Raising

the roll-off factor increases the bandwidth of the

pulse and the corresponding pulse is easier to gener-

ate. The raised cosine pulse decays at a rate inversely

proportional to the cube of tj j (see (4.11.9a)). For a

detailed discussion on using these pulses in data trans-

mission, see Lathi (1983).

4.12 Tables of Fourier Transforms
Properties and Pairs

4.13 Summary

In this chapter we have related the Fourier series to

the Fourier transforms by considering the period of

a function going to infinity. Basic properties

associated with Fourier transforms have been intro-

duced. Several interesting pulse functions and their

transforms are included. Specific topics that were

included in this chapter are given below:

� Fourier transforms from Fourier series
� Various measures of bandwidth of a signal
� Basic Fourier transforms theorems; examples
� Fourier transforms of periodic functions using

impulse functions
� Time domain and frequency domain convolu-

tions; convolution theorem is discussed
� Autocorrelation and cross-correlation; energy

and power spectral densities
� Moments of functions; various measures dealing

with bandwidths
� Bounds on the transform
� Special topics including Poisson summation for-

mula and some special pulse functions
� Tables of some of the Fourier transform theo-

rems and Fourier transform pairs

Problems

4.1.1 We derived the trigonometric Fourier series

of a trapezoidal waveform (see (3.6.16a)). Derive

the Fourier transform of this waveform using the

F-series coefficients.

4.2.1 Consider the Fourier transforms pair

AP
t

t

h i
 !
FT

At
sin ot=2ð Þ
ot=2ð Þ

a. Assuming the main lobe of the transform can be

approximated by a triangle, find the energy con-

tained in the main lobe. Estimate the percentage of

energies in the main lobe versus the pulse.

(  jω)P

0.5

1.0

0w2− w− w2w

0=

2
1=
1=

−

=β

β
β

ω

=

2
1=β ==

P(t)

0
st2− st− st2st

0=

t

β
β

1=

ts

1

Fig. 4.11.1 PðjoÞ and pðtÞ
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Table 4.12.1 Fourier transform properties

F½xiðtÞ� ¼ Xið joÞorF½xiðtÞ� ¼ Xið jfÞ

Linearity:

xðtÞ ¼
PN
i¼1

aixiðtÞ !
FT PN

i¼1
aiXiðjoÞ; ai

0 s are constants.

Time delay or shift:

xðt� t0Þ !
FT

XðjoÞe�jot0 ; t0 is a constant.

Frequency shift:

xðtÞe�jot0 !
FT

Xðjðo	 o0ÞÞ; o0 is a constant.

Time scaling:

xðatÞ !
FT

1
aj jX

jo
a

� 
; a 6¼ 0:

Time reversal:

xð�tÞ !
FT

Xð�joÞ:

Time scale and frequency shift:

xðatÞe�jo0t !
FT

1
aj jX

jðo	o0Þ
a

h i
:

Duality or symmetry:

XðtÞ !
FT

2pxð�joÞ; XðtÞ !
FT; f

xð�jfÞ:

Differentiation in time:

dnxðtÞ
dt
 !
FT
ðjoÞnXðjoÞ:

Times-t or differentiation in frequency:

ð�jtÞnxðtÞ !
FT dnXðjoÞ

don
; ð�j2ptÞnxðtÞ !

FT; f dnXðjfÞ
dfn

:

Integration in time:

Rt
�1

xðaÞda !
FT

pXð0ÞdðoÞ þ XðjoÞ
jo

;

Rt
�1

xðbÞdb !
FT; f 1

2 dðfÞXð0Þ þ
XðjfÞ
j2pf :

Integration in frequency:

pxð0ÞdðtÞ � xðtÞ
jt  !

FT Ro
�1

XðjbÞdb;

xð0Þ
2 dðtÞ � xðtÞ

j2pt !
FT; f Rf

�1
XðjaÞda:

Conjugation:

x�ðtÞ !
FT

X�ð�joÞ:

Table 4.12.1 (continued)

Even and odd parts of a real function:

xðtÞ ¼ xeðtÞ þ xoðtÞ !
FT

XðjoÞ ¼ Re½XðjoÞ� þ jIm½XðjoÞ�:

xeðtÞ !
FT

Re½XðjoÞ�; xoðtÞ !
FT

jIm½XðjoÞ�

Convolution in time:

xðtÞ ¼ x1ðtÞ � x2ðtÞ ¼  !
FT

X1ðjoÞX2ðjoÞ:

Convolution in frequency:

xðtÞ ¼ x1ðtÞx2ðtÞ !
FT

1
2pX1ðjoÞ � X2ðjoÞ:

x1ðtÞx2ðtÞ !
FT

X1ðjfÞ � X2ðjfÞ:

Cross correlation:

RhxðtÞ ¼
R1
�1

hðtÞxðtþ tÞdt !
FT

H � ðjoÞXðjoÞ:

Autocorrelation: aperiodic and periodic:

RxðtÞ ¼
R1
�1

xðtÞxðtþ tÞdt !
FT

XðjoÞj j2¼ GxðoÞ:

RT;xðtÞ ¼ 1
T

R
T

xTðtÞxTðtþ tÞdt !
FT

SxðoÞ:

Generalized Parseval’s theorem:

R1
�1

h�ðtÞxðtÞdt ¼ 1
2p

R1
�1

H � ðjoÞXðjoÞdo:

Rayleigh’s energy theorem:

R1
�1

xðtÞj j2dt ¼ 1
2p

R1
�1

XðjoÞj j2do;

R1
�1

xðtÞj j2dt ¼
R1
�1

XðjfÞj j2df:

Modulation:

xðtÞ cosðo0tÞ !
FT

1
2Xðjðoþ o0ÞÞ þ 1

2Xðjðo� o0ÞÞ:

xðtÞ sinðo0tÞ !
FT

1
2j Xðjðo� o0ÞÞ � 1

2j Xðjðoþ o0ÞÞ:

Initial value theorem:

xð0þÞ ¼ lim
o!1
½joXðjoÞ:

Central ordinate theorems:

xð0Þ ¼ 1
2p

R1
�1

XðjoÞdo ; Xð0Þ ¼
R1
�1

xðtÞdt:
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Table 4.12.2 Fourier Transform Pairs

xðtÞ !FT XðjoÞ

Rectangular and triangular pulses:

P t
a

� �
 !FT a sinðao=2Þ

ao=2 ; L t
t

� �
 !FT t sin2ðot=2Þ

ðot=2Þ2 :

Sinc pulse:

sinð2pWtÞ
ð2pWtÞ  !FT 1

2WP o
2pð2WÞ

h i
:

Impulse functions:

dðt� t0Þ !FT e�jot0 ;
dndðtÞ
dtn  !

FT ðjoÞn; dðnÞðtÞ !FT ðjoÞn

Constants in time and frequency:

1 !FT ð2pÞdðoÞ; 1 !FT; f dðfÞ; dðtÞ !FT 1:

Exponential functions in time and frequency:

e�atuðtÞ !FT 1
aþjo ; a > 0; eatuð�tÞ !FT 1

a�jo ; a > 0:

e�a tj j !FT 2a
a2þo2 ; a > 0; tn�1

ðn�1Þ! e
�atuðtÞ !FT 1

ðaþjoÞn :

1
a2þt2 !FT p

a e
�a oj j:

Signum function:

sgnðtÞ !FT 2
jo ; tnsgnðtÞ !FT ð�jÞnþ1 2ðn!Þ

onþ1 :

Unit step function:

uðtÞ !FT pdðoÞ þ 1
jo ; uðtÞ !FT; f 1

2 dðfÞ þ 1
j2pf :

Functions involving t:

t !FT j2pd0ðoÞ; tn !FT jn2pdðnÞðoÞ:
tuðtÞ !FT jpd0ðoÞ � 1

o2 ; tj j !FT �2
o2 :

1
t !FT pj� 2pjuðoÞ:

Gaussian function:

1ffiffiffiffi
2p
p

s
e�t

2=2s2 !FT e�ðosÞ
2=2:

Periodic function:

xTðtÞ ¼
P1

k¼�1
Xs½k�e�jko0t !FT 2p

P1
k¼�1

Xs½k�dðo� ko0Þ; o0 ¼ 2p=T:

ejo0t !FT 2pdðo� o0Þ:

Cosine and sine functions:

cosðo0tÞ !FT pdðoþ o0Þ þ pdðo� o0Þ:
sinðo0tÞ !FT jpdðoþ o0Þ � jpdðo� o0Þ:
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b. Approximate the energy contained in the main

lobe by dividing the main lobe into 10 rectangles and

compute the percentage of energy in the main lobe.

4.2.2 Consider the function xðtÞ ¼ e�atuðtÞ; a40.

Derive the transforms of the even and odd parts of

this function. Compare this result by deriving these

results from XðjoÞ.

4.2.3 Are the following functions Fourier trans-

formable? If not, give the reasons:

a: x1ðtÞ ¼ tuð�tÞ;
b: x2ðtÞ ¼ eatuðtÞ;
c: x3ðtÞ ¼ 1=ðt� 2Þ :

4.3.1 Use the Fourier central ordinate theorems to

evaluate the following integrals:

a: A ¼
Z1

�1

e�at
2

dt;

b: B ¼
Z1

0

te�atdt; a40;

c: C ¼
Z1

�1

tn

ðn� 1Þ! e
�atuðtÞdt; a40 :

4.3.2 Find the Fourier transforms of the following

functions:

a: x1ðtÞ ¼ uð1� tj jÞ;

b: x2ðtÞ ¼
t

2
P

t� 1

2

	 

;

c: x3ðtÞ ¼ �tP tþ 1

2

	 

:

d. Use the results in part b. to obtain the transform

in part c.

4.3.3 Find the Fourier transform of the function

given below either by using the transform integral

or by using the derivative method discussed in

Section 4.4, see Example 4.4.7.

xðtÞ ¼
4; �1 � t � 1

�2tþ 6; 15t53

2tþ 6; �3 � t5� 1

8><
>:

4.3.4 Find the transforms of the following func-

tions using the times-t property:

a: xðtÞ ¼ te�atuðtÞ;
b: rðtÞ ¼ tuðtÞ;
c: yðtÞ ¼ te�a tj j; a40 :

4.3.5 Use the derivative method to find the Fourier

transforms of the following functions:

Table 4.12.2 (continued)

Periodic impulse sequence:

dTðtÞ ¼
P1

n¼�1
dðt� nTÞ !FT o0

P1
k¼�1

dðo� ko0Þ ¼ o0do0
ðoÞ; o0 ¼ 2p=T:

Exponentially decaying functions involving t and sinusoidal functions:

tn�1

ðn�1Þ! e
�atuðtÞ !FT 1

ðjoþaÞn ; a > 0; n1:

e�at cosðbtÞuðtÞ !FT ðaþjoÞ
ðaþjoÞ2þb2 ; a > 0:

e�at sinðbtÞuðtÞ !FT b
ðaþjoÞ2þb2 ; a > 0:

Cosinusoidal pulse:

cosðo0tÞP t
T1

h i
 !FT T12

sinðo�o0ÞT1=2
ðo�o0ÞT1=2

h i
þ T12

sinðoþo0ÞT1=2
ðoþo0ÞT1=2

h i
:

Switched functions:

sinðo0tÞuðtÞ !FT o0

o2
0
�o2 þ p

2j dðo� o0Þ � dðoþ o0Þ½ �:
cosðo0tÞuðtÞ !FT jo

o2
0
�o2 þ p

2 dðo� o0Þ þ dðoþ o0Þ½ �:
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a: xðtÞ ¼ e�tP t� :5½ �;
b: xðtÞ ¼ cosðptÞ; �:55t5:5; 0; otherwise :

4.3.6 a. Find the Fourier transform of the function

yðtÞ ¼ 1=½a2 þ t2� by noting that

x tð Þ ¼ 1

a2 þ 2ptð Þ2 !
FT 1

2a
e�a o=2pj j ¼ X joð Þ:

b. Verify the Fourier transform derived in Part a by

considering the transform pair of the double expo-

nential and the duality theorem of the transforms.

4.3.7 Use the derivative theorem to find the trans-

form of the Gaussian pulse.

4.3.8 Let xðtÞ¼ ð1� t=TÞ; 05t5T and 0 otherwise:

Determine XðjoÞ ¼ F½xðtÞ� by using the following

methods:a. thederivativemethodandb.directmethod.

4.3.9 Use Rayleigh’s energy theorem, or some

other procedure, evaluate the following integrals.

Assume the constants identified by a in the inte-

grals equal to 1:

a:

Z1

�1

2a

a2 þ o2
do;

b:

Z1

�1

e�at
2

dt; a40;

c:

Z1

�1

sin4ðot=2Þ
ðot=2Þ4

do;

d:

Z1

�1

sin2ðtÞ
t2

	 

sinðtÞ
t

	 

dt:

4.3.10 Validate the Fourier ordinate theorems

using the transform pair in (4.4.25).

4.3.11 Derive the F-transform of the function

xðtÞ ¼ �uðt� 1Þ. Give the phase angle of the trans-

form at the frequencies o ¼ 0þand 0�:

4.3.12 Show the equation in (4.3.9) by first writing

the complex function in terms of its real and ima-

ginary parts xðtÞ ¼ xRðtÞ þ jxIðtÞ and then using the

superposition theorem.

4.4.1 Use derivative theorem to find the transforms

for the following functions:

a: x1ðtÞ¼ sgnðtÞ¼ 2uðtÞ�1;

b: x2ðtÞ¼ e�2tP t� :5½ � :

4.4.2 Find XiðjoÞ for the following functions by

the methods identified in each part: a: x1ðtÞ ¼
t2P½t� 1� by the direct method, b: x2ðtÞ ¼
P t=T½ � sinðpt=TÞ by the multiplication and the fre-

quency convolution theorems, and c: xðtÞ ¼ uð�tÞ
by the time reversal theorem.

4.4.3 Find the Fourier transform of the function

x3ðtÞ ¼ xðt� aÞ þ xð2tÞ in terms of the transform of

xðtÞ using some of the Fourier transforms theorems.

4.4.4 Find the inverse transform of the function

XðjoÞ ¼ uðoÞ; the unit step function in the fre-

quency domain (use the duality property and the

time reversal property).

4.4.5 Use the timescale property and the transform

pair below to find XðjoÞ:

e�pt
2

 !
FT

e�pf
2

; x tð Þ ¼ 1ffiffiffiffiffiffi
2p
p

s
e�pt

2=2s2 !
FT

X joð Þ:

4.4.6 Determine Fourier transforms of the follow-

ing functions:

a: x1ðtÞ ¼
cosðbtÞ
a2 þ t2

;

b: x2ðtÞ ¼
sinðbtÞ
a2 þ t2

;

c: x3ðtÞ ¼
t

1� jt
;

d: x4ðtÞ ¼ e�2tuðt� 1Þ:

4.4.7 Use the time or frequency differentiation the-

orem to find XiðjoÞ for the functions

a: x1ðtÞ ¼ te�atuðtÞ; b: x2ðtÞ ¼ 1� 2t

t

	 
2 !
P

t

t

h i
:

4.4.8 Find the initial values of the following func-

tions using the transforms of the function and the

initial value theorem:

a: uðtÞ; b: e�tuðtÞ:

4.4.9 Use the differentiation theorem to find the

transform of the function xðtÞ ¼ tPðt=TÞ.
4.4.10 Find the Fourier transform of the function

xðtÞ ¼ tn sgnðtÞ and then use the fact that

yðtÞ ¼ tj j ¼ t sgnðtÞ to find YðjoÞ ¼ F½yðtÞ�.
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4.5.1 Determine the transforms of the following

functions:

a: xðtÞ ¼ e�a tj j �P½t�; a40;

b: x2ðtÞ ¼ dð2t� aÞ � dð3t� bÞ; findXiðjoÞ:

4.5.2 Show that if xðtÞ is band limited to fc Hz then

the following equality is true:

xðtÞ � ½sinðatÞ=pt� ¼ xðtÞ for all a42pfc:

4.5.3 Find YðjoÞ assuming F½yðtÞ½¼ F½xðtþ TÞþ
xðt� TÞ� ¼ YðjoÞ; F½xðtÞ� ¼ XðjoÞ:

4.5.4 Solve the differential equation y0ðtÞ þ ayðtÞ ¼
xðtÞ þ x0ðtÞ using transforms.

4.5.5 Show the relation in (4.5.31).

4.5.6 Find F½xðtÞ� ¼ F cosðo0tÞj jP t=ðT=2Þ½ �½ �:

4.5.7 Sketch the function xðtÞ ¼ P½t=T� � ½dðtÞ�
dðt� TÞ� and derive its transform.

4.6.1 Find xðtÞ ¼ F�1½XðjoÞ�, given

XðjoÞ¼e�o;�15o50;�eo; 05o51; 0;otherwise:

Use the central ordinate theorems to find xð0Þ:

4.6.2 Find the inverse transforms of the following

using the Fourier transform properties:

a:X1ðjoÞ ¼ uð1� oj jÞ; b: X2ðjoÞ ¼
8

ðaþ joÞ3
;

c: X3ðjoÞ ¼
a

ðaþ joÞ pdðoÞ þ 1

jo

	 

;

d: X4ðjoÞ ¼ e�bouðoÞ; e: X5ðjoÞ ¼
cosðo=2Þe�jo=2

1þ jo
;

f: X6ðjoÞ ¼ P
o
2W

h i
e�jot0 ;

g: X7ðjoÞj j ¼ P
o
2W

h i
; ffX7ðjoÞ ¼

p=2;o50

�p=2;o40

�
:

4.6.3 Find the inverse transforms of the following

functions by using the partial fraction expansion.

Use the results in Part a to find the partial fraction

expansion in Part b:

a: X1ðjoÞ ¼
ð2þ joÞ

ð1þ joÞð3þ joÞ ;

b: X2ðjoÞ ¼
1

ð1þ joÞ
ð2þ joÞ

ð1þ joÞð3þ joÞ

	 

:

4.6.4 Find the inverse transform of the function

XðjoÞ ¼ e� oj j by using the direct method and by

using the duality theorem.

4.6.5 Find F�1½cosðoÞ�; oj j5p=2 and 0 otherwise.

4.6.6 Find the energy spectral density for the func-

tion in Problem 4.6.5 and compute the energy con-

tained in the pulse and verify the results by comput-

ing the energy directly.

4.6.7 a. Find the power spectral density of the per-

iodic function xðtÞ ¼ cosðtÞ þ sinðtÞ.
b. Compute the average power contained in this

function directly and then by making use of the

power spectral density to find the average power.

4.7.1 By making use of the convolution theorem in

the frequency domain show that

P
t

T

h i
cos

pt
T

� �
 !
FT 2T cos pfTð Þ

p 1� 2fTð Þ2
h i :

4.7.2 Find the transforms of the functions

a: x1ðtÞ ¼ d0ðtÞ; b: x2ðtÞ ¼ tuðtÞ; c: x3ðtÞ ¼ tj j;
d: x4ðtÞ ¼ sin2ðtÞ:

4.7.3 Use the appropriate properties to find the

transforms of the following:

a: x1ðtÞ ¼ sgnðtÞ ðDerivative theorem),

b: x2ðtÞ ¼ sinðo0tÞ ðTransform of the cosine):

4.7.4 Verify the pulse width–bandwidth product

bounds for the following functions:

a: x1ðtÞ ¼ e�t
2=2t2 ; b: x2ðtÞ ¼ e�a tj j

4.7.5 Find the inverse transformsof the following func-

tions with H040 and t040. The subscripts on the

transform functions indicate the type of filter under

consideration: Lp� Lowpass; Hp�High pass; Bp�
Band pass; Be� Band elimination.
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a: HLpðjoÞ ¼ H0P
o
2W

h i
e�jot0 ;

b: HHpðjoÞ ¼ H0 1�P
o
2W

h ih i
e�jot0 ;

c: HBpðjoÞ ¼ H0 P
o� o0

W

h i
þP

oþ o0

W

h ih i
e�jot0 ;

d:HBeðjoÞ¼H0 1� P
o�o0

W

h i
þP oþo0

W

h ih ih i
e�jot0 :

4.7.6 Use the functions g1ðtÞ ¼ L½t� and g2ðtÞ ¼
e�tuðtÞ to verify Schwarz’s inequality.

4.8.1 Using the Fourier transform of a Gaussian

pulse, show that

Z1

0

e�at
2dt ¼ 1

2

ffiffiffi
p
a

r
; a40:

4.8.2 Find the variance of the exponential decaying

pulse in Example 4.8.2.

4.9.1 Determine the transforms of the following

functions. Use the spectral bounds (see (4.9.2)) to

verify the central ordinate theorems using these:

a: x1ðtÞ ¼ L t=T½ �; b: x2ðtÞ ¼ e�a tj j; a40

4.9.2 Comment on the spectral bounds on the per-

iodic function xðtÞ ¼ cosðo0tÞ:
4.10.1 Use the Gaussian pulse function in (4.4.18)

and give an expression for

X1
n¼�1

xðtþ nÞðseeð4:10:3ÞÞ:

4.11.1 Show that the pulse function in (4.11.9a) has

the transform given in (4.11.9b). The proof is

lengthy. However there are few shortcuts we can

make use of. First, the transform is even and there-

fore we can use the real integrals. Since the inte-

grand has products of cosine functions, use the

trigonometric formulas to simplify the integrands.

4.12.1 Using the times-t property to derive XnðjoÞ
for n ¼ 1; 2; 3; 4:

x1 tð Þ$FT e�atu tð Þ;xn tð Þ ¼ tn�1

n� 1ð Þ!e
�atu tð Þ$FT 1

aþ joð Þn

¼Xn joð Þ; a40:

4.12.2 Use the central ordinate theorems to evalu-

ate the integral

Z1

0

tn�1

ðn� 1Þ! e
�atdt; a40:
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Chapter 5

Relatives of Fourier Transforms

5.1 Introduction

There are various ways of introducing a student to

different forms of transforms. We chose the approx-

imation of a function by using Fourier series first and

then came up with the Fourier transforms. Fourier

cosine and sine series were considered using the

Fourier series. The next step is to study some of the

other transforms that are related to the Fourier

transforms. These include cosine, sine, Laplace, dis-

crete, and fast Fourier transforms. Discrete and fast

Fourier transforms will be included in Chapters 8

and 9. In many of the undergraduate engineering

curricula, Laplace transforms are introduced first

and then the Fourier transforms. Fourier transforms

are considered more theoretical. The development of

the sine and cosine transforms parallel to the Fourier

cosine and sine series discussed in Chapter 3. For a

good review on many of these topics, see the hand-

book by Poularikas (1996). We can consider the

Laplace transform as an independent transform or

a modified version of the Fourier transform. One

problem with Fourier transforms is that the signal

under consideration must be absolutely integrable.

(the periodic functions are exceptions). Therefore,

the transformation to the Fourier domain is limited

to energy signals or to finite power signals that are

convergent in the limit. Fourier and Laplace trans-

forms have been widely used in engineering; Fourier

transforms in the signal and communications area

and the Laplace transform in the circuits, systems,

and control area. Neither one is a generalization of

the other. Both transforms have their own merits.

As we have learned earlier in studying Fourier

transforms, they describe a function (signal) in a

different domain and they are used in almost every

aspect of system analysis and design. We will study

two transforms that are useful in signals and

communications. These are Hilbert transforms (see

the Chapter by Hahn) and Hartley transforms

(see the Chapter by Olejniczak) in the handbook by

Poularikas (1996). There are many other transforms

that can be studied. Many of these are given in this

handbook.Data compression is one of the important

applications of transform coding. Retrieval of a sig-

nal froma large databasemakes use of data compres-

sion. A simple example that illustrates the idea of

data compression is the compression of a single sinu-

soid. Here we need only its amplitude, phase, and the

corresponding frequency. Extending this thought,

pack a time signal into a small set of coefficients in

another domain, such as the Fourier domain. That

is, keep the Fourier series coefficients with large

amplitudes and discard the coefficients with small

amplitudes. We considered this approach using

Fourier series. Obviously discarding some coeffi-

cients will amount to loosing some information, the

details in the signal, and the original signal cannot be

reconstructed exactly. The process is irreversible in

the ideal sense. In most applications the approxima-

tion is good within some tolerance.

Digital coding provides for simple manipulations

of data allowing for data compression. To learn

these concepts we need to have some statistical

knowledge of the data. The signals that can be

described in terms of Markov models are best suited

for discrete sine and cosine transforms. Interested

readers should consult books in this area. For a

good discussion on this topic, see the chapter by

Yip in the handbook by Poularikas (1996). We will

not be discussing statistical methods in any detail in

this book.

R.K.R. Yarlagadda, Analog and Digital Signals and Systems, DOI 10.1007/978-1-4419-0034-0_5,
� Springer ScienceþBusiness Media, LLC 2010

155



A good portion of this chapter is on Laplace trans-

forms, named afterMarquis Pierre SimonDe Laplace

for hiswork, seeHawking (2005).Most of thematerial

is standard and can be found in any of the under-

graduate texts on systems and control, see, for exam-

ple, Haykin and Van Veen (1999), Close (1966),

Poularikas and Seely (1991), and others.

5.2 Fourier Cosine and Sine Transforms

In the last chapter we considered the Fourier trans-

form and its inverse as

XðjoÞ¼
Z1

�1

xðtÞe�jotdt¼
Z1

�1

xðtÞcosðotÞdtþ jð�1Þ

Z1

�1

xðtÞsinðotÞdt; XðjoÞ¼RðoÞþ jIðoÞ

xðtÞ¼ 1

2p

Z1

�1

XðoÞejotdo; xðtÞ !FT XðjoÞ:

(5:2:1)

The real and the imaginary parts of the transform

are, respectively, given by

RðoÞ ¼
Z1

�1

xðtÞ cosðotÞdt; IðoÞ

¼ �
Z1

�1

xðtÞ sinðotÞdt: (5:2:2)

If XðjoÞ ¼ RðoÞ, i.e., IðoÞ ¼ 0, then the integrand

in the integral to compute IðoÞ must be odd, which

implies xðtÞ is even. These result in

RðoÞ¼2
Z1

0

xðtÞcosðotÞdt;

xðtÞ¼1
p

Z1

0

RðoÞcosðotÞdo: (5:2:3)

Note that we are using xðtÞ for t40. Suppose we

have been given the function xðtÞ for t40 only. Con-

sider an even function by defining xð�tÞ ¼ xðtÞ and

F ½ðxðtÞ þ xð�tÞ� ¼
Z 1
0

xðtÞe�jotdtþ
Z 1
0

xðtÞejotdt

¼ 2

Z 1
0

xðtÞ cosðotÞdt (5:2:4)

We define the Fourier cosine transform (FCT) and

its inverse by

XcðoÞ¼
Z1

0

xðtÞcosðotÞdt¼Xcð�oÞ;

xðtÞ¼2
p

Z1

0

XcðoÞcosðotÞdo: (5:2:5)

From (5.2.5 a and b), we have

xðtÞ þ xð�tÞ ¼ 1

2p

Z 1
�1

2XcðoÞejotdo

¼ 2

p

Z 1
0

XcðoÞ cosðotÞdo: (5:2:6)

Now considering only for positive time, we have the

Fourier cosine transform pair

XcðoÞ ¼
Z 1
0

xðtÞ cosðotÞdt;

xðtÞ ¼ 2

p

Z 1
0

XcðoÞ cosðotÞdo; (5:2:7a)

xðtÞ !FCT XcðoÞ: (5:2:7b)

The subscript c on X indicates it is a cosine trans-

form. The function xðtÞ is defined only for the time

interval 05t51. The inverse transform converges to

the function xðtÞ wherever the function is continuous

and it converges to half-value, i.e., the average of the

values of the function before and after the discontinuity

wherever the function is discontinuous.We can see that

the Fourier cosine transform is related to the F-trans-

form using a trigonometric identity and an even exten-

sionof the functiondefinedover the interval 0 � t51,

cosðotÞ ¼ 1

2
½ejot þ e�jot�;

xeðtÞ ¼ xð tj jÞ ¼
xðtÞ; t � 0

xð�tÞ; t50

(
:
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The Fourier transform of the function xð tj jÞ is

F½xeðtÞ� ¼
Z1

�1

xð tj jÞe�jotdt ¼
Z1

0

xðtÞe�jotdt

þ
Z1

0

xðtÞejotdt ¼ 2

Z1

0

xðtÞ cosðotÞdt

¼ 2Fc½xðtÞ� ) Fc½xðtÞ� ¼
1

2
F ½xð tj jÞ�: (5:2:8)

This gives the relation between the cosine transform

and the Fourier transform.

In a similar manner to the Fourier cosine trans-

form, we can define the Fourier sine transform

(FST) and its inverse as

XsðoÞ ¼
Z 1
0

xðtÞ sinðotÞdo;

xðtÞ ¼ 2

p

Z 1
0

XsðoÞ sinðotÞdo

xðtÞ !FST XsðoÞ: (5:2:9)

Just as in the case of cosine transforms, Fourier sine

transforms are related to the Fourier transforms.

This can be seen using the trigonometric identity

and the odd extension of the function defined over

the interval 0 � t51,

sinðotÞ ¼ 1

2j
½ejot � e�jot�;

x0ðtÞ ¼
xðtÞ; t � 0

�xð�tÞ; t50

(
:

Then the Fourier transform of the function x0ðtÞ is
given by

F½x0ðtÞ� ¼
Z1

�1

xoðtÞe�jotdt ¼ �
Z1

0

xðtÞejotdt

þ
Z1

0

xðtÞe�jotdt ¼ �2j
Z1

0

xðtÞ sinðotÞdt

¼� 2jFs½xðtÞ� ! Fs½xðtÞ� ¼ �
1

2j
F½x0ðtÞ�:

(5:2:10)

This gives the relation between the sine transforms

and the Fourier transforms.

Example 5.2.1 Find the Fourier cosine and sine

transforms of xðtÞ ¼ e�atuðtÞ; a40:

Solution: Let

A ¼
Z 1
0

e�at cosðotÞdt;B ¼
Z 1
0

e�at sinðotÞdt:

The first integral can be evaluated by using the

integration by parts

XcðoÞ ¼ A¼
Z 1
0

e�at cosðotÞdt¼� e�at cosðotÞ
a

1
0

��
�o

a

Z 1
0

e�at sinðotÞdt¼ 1

a
�o

a
B:

In a similar manner

B ¼
Z 1
0

e�at sinðotÞdt ¼ � e�at sinðotÞ
a

1
0

��

þ o
a

Z1

0

e�at cosðotÞdt ¼ o
a
A:

Solving for A and B, we have the cosine and sine

transforms of the function and

xðtÞ ¼ e�atuðtÞ !FT a

a2 þ o2
¼ XcðoÞ;

xðtÞ ¼ e�atuðtÞ !FT o
a2 þ o2

¼ XsðoÞ; a40:

(5:2:11) &

Example 5.2.2 Find the FCT of the Gaussian pulse

function xðtÞ ¼ e�at
2

.

Solution: Noting that xðtÞ is an even function, the

following follows from the F-transform of a Gaus-

sian function:

XcðoÞ¼
Z 1
0

e�at
2dt cosðotÞdt¼1

2

ffiffiffi
p
a

r
e�o

2=4a:

(5:2:12) &

Example 5.2.3 Find the Fourier cosine and sine

transforms of the pulse function

xðtÞ ¼ P
t� ða=2Þ

a

� �
:
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Solution:

XcðoÞ ¼
Za

0

cosðotÞdt ¼ 1

o
sinðoaÞ;

XsðoÞ ¼
Z a

0

sinðoÞdo ¼ 1� cosðoaÞ
o

: (5:2:13) &

Noting the correspondence between theFourier trans-

forms and the Fourier cosine and sine transforms, we

can see that the cosine and sine transforms can be

obtained from the Fourier transforms, but we need to

be careful about the ranges.We canmake use of tables

of trigonometric functions and integrals to compute

these transforms. See Yip’s chapter in Poularikis

(1996) for tables on the cosine and sine transforms.

Example 5.2.4 Find the Fourier cosine transforms

of the following functions:

a: x1ðtÞ ¼

t=a; 05t5a

ð2a� tÞ=a; a5t52a

0; t42a

8>><
>>:

;

b: x2ðtÞ ¼
sinðatÞ

t
; a40; c: x3ðtÞ ¼ e�bt sinðatÞ:

(5:2:14a)

Use integral tables wherever appropriate.

Solution:

a: XcðoÞ ¼
Za

0

t

a
cosðotÞdtþ

Z2a

a

2a� t

a
cosðotÞdt

¼ 1

ao2
½2cosðaoÞ� cosð2ao� 1Þ�: (5:2:14b)

b: X2cðoÞ ¼
Z1

0

sinðatÞ
t

cosðotÞdt ¼
p=2;o5a

p=4;o ¼ a

0;o4a

8><
>: ;

(5:2:14c)

c: X3cðoÞ ¼
Z1

0

e�bt sinðatÞ cosðotÞdt

¼ 1

2

aþ o

b2 þ ðaþ oÞ2
þ a� o

b2 þ ða� oÞ2

" #
:

(5:2:14d)

The last integral can be seen by using the

trigonometric formula sinðatÞ cosðotÞ ¼
ð1=2Þ½sinðaþ oÞtþ sinða� oÞt� and using the

results in the last chapter. &

Example 5.2.5 Find the FSTs of the functions given

in the last example.

Solution:

a: X1sðoÞ ¼
Za

0

ðt=aÞ sinðotÞdt

þ
Z2a

a

½ð2a� tÞ=a� sinðotÞdt

¼ 1

ao2
½2 sinðaoÞ � sinð2aoÞ�;

b: X2sðoÞ ¼
Z1

0

sinðatÞ
t

sinðotÞdt ¼ ð1=2Þ ln oþ a

o� a

��� ���:

C. Using the F-transform of the exponential decay-

ing function and the results in the last example,

c: X3sðoÞ ¼
Z1

0

e�bt sinðatÞe�jotdt

¼
Z1

0

e�bt sinðatÞuðtÞ½cosðotÞ� j sinðotÞ�dt

¼ a

ðbþ joÞ2þ a2
:

Making use of the last example results in the sine

transform. &

Cosine and sine transforms properties can be

derived using Fourier transform properties. Com-

putation of these transforms can be simplified

by using those properties. Without going through

the proofs of these properties, we will consider some

examples. Discrete version of the Fourier cosine

transform is popular in the digital image processing.

Example 5.2.6 Show the Fourier cosine and sine

transforms pairs given below:

a: x1ðtÞ ¼
1

t2 þ a2
 !FCT p

2a
e�ao ¼ X1cðoÞ; (5:2:15a)
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b: xðtÞ ¼ t

t2 þ a2
 !FST p

2
e�ao ¼ X2sðoÞ: (5:2:15b)

Solution: These can be shown using the integral

tables and are left as exercises. &

5.3 Hartley Transform

Just like the cosine and sine transforms, the Hartley

transform is an integral transformation that maps a

real-valued time function into a real-valued frequency

function. For a detailed discussion on this topic, see

Bracewell (1986). It makes use of the kernel

casðntÞ ¼ cosðntÞ þ sinðntÞ and allows for decompo-

sition of a function into two independent sets of

sinusoidal components represented in terms of posi-

tive and negative frequency components. The signal

we are dealing will be a real-valued signal.

The Hartley transform of xðtÞ is defined by

XHðoÞ ¼
Z1

�1

xðtÞcasðotÞdt: (5:3:1)

The integral kernel, cosine and sine referred to as the

cas function, is

casðotÞ ¼ cosðotÞ þ sinðotÞ
casðotÞ ¼

ffiffiffi
2
p

sinðotþ ðp=4ÞÞ;
casðotÞ ¼

ffiffiffi
2
p

cosðot� ðp=4ÞÞ: (5:3:2)

The existence of the Hartley transform of xðtÞ is
equivalent to the existence of the Fourier transform.

The inverse Hartley transform is

xðtÞ ¼ 1

2p

Z1

�1

XHðoÞcasðotÞdo or xðtÞ

¼
Z1

�1

XHð2pftÞcasð2pftÞdf:

(5:3:3)

Symbolically we will identify the Hartley transform

pair by

xðtÞ !Hart
XHðoÞ or xðtÞ !

Hart
XHð f Þ:

The second integral on the right in (5.3.3) provides

an interesting property since the Hartley transform

and its inverse have the same exact form, usually

referred to as the self-inverse property, except that

the forward transform has the time and the inverse

has the frequency functions in the integral. The self-

inverse property is given in Fig. 5.3.1.

The even and the odd parts of the Hartley trans-

form can be expressed by

XHðoÞ ¼
Z1

�1

xðtÞcasðotÞdt

¼
Z1

�1

xðtÞcosðotÞdtþ
Z1

�1

xðtÞsinðotÞdt

¼ XHeðoÞ þ XHoðoÞ; (5:3:4)

XHeð�oÞ ¼ XHeðoÞ and XHoð�oÞ ¼ �XHoðoÞ:

The Hartley transform has a very simple relation-

ship with the Fourier cosine and sine transforms.

They are defined for real functions. These follow

from the fact that

XHðoÞ ¼ XcðoÞ þ XsðoÞ;

XcðoÞ ¼ XHeðoÞ;

XsðoÞ ¼ XH0ðoÞ:

(5:3:5)

The real and the imaginary parts of the Fourier

transform are related to the even and odd parts of

the Hartley transform as

XðjoÞ ¼
Z1

�1

xðtÞ cosðotÞdt� j

Z1

�1

xðtÞ sinðotÞdt

¼ Re½XðjoÞ� þ j Im½XðjoÞ�; (5:3:6)

Re½XðjoÞ� ¼ XHeðoÞ and Im½XðjoÞ�
¼ �XH0ðoÞ: (5:3:7)

Noting the relationship between the Hartley and

the Fourier transforms many of the properties

Hartley tranform Hartley transform( ) ( )x t XH ( f ) tx

Fig. 5.3.1 Self-inverse property of the Hartley transforms
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discussed for Fourier transforms can be modified to

describe the properties of Hartley transforms. See

Olejniczak’s chapter in Poularikis, ed. (1996).

Example 5.3.1 Find the Hartley transforms of the

following functions, where a40:

a: x1ðtÞ ¼ P
t

t

h i
;

b: x2ðtÞ ¼ e�atuðtÞ;
c: x3ðtÞ ¼ e�a tj j;

d: x4ðtÞ ¼ e�at
2

;

e: x4ðtÞ ¼ e�at sinðo0tÞ;
f: x5ðtÞ ¼ e�at cosðo0tÞ: (5:3:8a)

Solution: a. Since the time function is a real sym-

metric function it follows that the Hartley trans-

form is equal to the Fourier transform and

P
t

t

h i
 !Hart

t
sinðot=2Þ
ðot=2Þ : (5:3:8b)

b. The Hartley transform of this function follows

from the Fourier transform.

e�atuðtÞ !FT 1

aþ jo
¼ a

a2 þ o2
� j

o
a2 þ o2

; a40

XHðoÞ ¼ RefF½e�atuðtÞ�g
� ImfF½e�atuðtÞ�g ¼ ðaþ oÞ=ða2 þ o2Þ: (5:3:8c)

c. and d. The transforms follow from the Fourier

transform as the time functions are even functions

and they coincide with their F-transforms:

e�a tj j  !Hart 2a
a2 þ o2

; eat
2 !Hart

ffiffiffi
p
a

r
e�o

2=4a: (5:3:8d)

e. and f.We can make use of the Fourier transforms

and use the real and the imaginary parts to compute

the even and odd parts of the Hartley transforms of

these functions. The results are given below and are

left as homework problems:

e�at sinðo0tÞuðtÞ !
FT o0

ðaþ joÞ2 þ o2
0

;

e�at cosðo0tÞuðtÞ !
FT aþ jo

ðaþ joÞ2 þ o2
0

;

e�at sinðo0tÞuðtÞ !
Hart o0ða2 þ o2

0 � o2Þ þ 2ðaoÞ
ða2 þ o2

0 � o2Þ þ 2ðaoÞ2

(5:3:8e)

e�atcosðo0tÞuðtÞ !
Hart ða�oÞða2þo2

0�o2Þþ2oðaþoÞ
ða2þo2

0�o2Þþ2ðaoÞ2
:

(5:3:8f)

&

Example 5.3.2 Show that the following transforms

of the power signals are valid:

a: x1ðtÞ ¼ dðtÞ !Hart
1 (5:3:9a)

b: 1 !Hart
2pdðoÞ (5:3:9b)

c: uðtÞ !Hart
pdðoÞ þ ð1=oÞ (5:3:9c)

d: sgnðtÞ !Hart 2

o
(5:3:9d)

e: cosðo0tÞ !
Hart

p dðo� o0Þ þ dðoþ o0Þ½ � (5:3:9e)

f: sinðo0tÞ !
Hart

p½dðo� o0Þ � dðoþ o0Þ� (5:3:9f)

g: e�jo0t !Hart
2pdðo� o0Þ: (5:3:9g)

Solution: Parts a, b, and d follow directly from the

Fourier transforms of these functions, as they are

real and even. Part c. follows from

uðtÞ !FT pdðoÞ þ 1

jo
;

XHðoÞ ¼ RefF½uðtÞ�g � ImfF½uðtÞ�g

¼ pdðoÞ þ 2

o
:

The other parts are left as exercises. &

There are several advantages and disadvantages

of the Hartley transform. Hartley transform avoids

the complex integration. It is its own inverse. When

dealing with real signals the Hartley transform pro-

vides a simple and efficient approach in dealing with

Fourier spectrum. Some of the disadvantages include

that the Fourier amplitude and phase information

are not readily available in the Hartley transform.

160 5 Relatives of Fourier Transforms



5.4 Laplace Transforms

As mentioned in the last chapter, the Fourier trans-

form is limited to finite energy signals and to finite

power signals. The condition for the existence of the

Fourier transform of a signal is that it must be

absolutely integrable. Although the power signals

are not absolutely integrable, they have Fourier

transforms, in the limit, by using impulse functions.

The signals that are not absolutely convergent can

be made convergent by introducing a convergence

factor e�st, where s is a real number, into the basis

function. The range of s that ensures the existence

of the Laplace transform for a particular function

defines the region of convergence (ROC). The

Laplace transform exists only if xðtÞe�st is abso-

lutely integrable. As an example, the Laplace trans-

form of xðtÞ ¼ e3tuðtÞ exists only if s43. That is,

replace e�jo t by e�ðsþjoÞt in the Fourier integral. In

other words we consider the Fourier transform of

the function ðxðtÞe�stÞ. Using the convergence fac-

tor, the forward transform and its inverse are

defined by

X 0ðjoÞ ¼
Z 1
�1
ðxðtÞe�stÞe�jotdt;

xðtÞe�st ¼ 1
2p

R1
�1 X 0ðjoÞejotdo: (5:4:1)

We can combine the exponential terms in both

expressions resulting in the pair

X 0ðjoÞ ¼
Z 1
�1

xðtÞe�ðsþjoÞtdt;

xðtÞ ¼ 1

2p

Z 1
�1

X 0ðjoÞeðsþjoÞtdo: (5:4:2)

The transform and its inverse have the term

ðsþ joÞ in their integrands. We can use a complex

variable s ¼ sþ jo in (5.4.2). It has the same units

as o measured in rad/s. The forward two-sided

(or bilateral Laplace) transform and its inverse are,

respectively, defined and their symbolic representa-

tion by

XIIðsÞ ¼
Z 1
�1

xðtÞe�stdt;

xðtÞ ¼ 1

2pj

Z sþjo

s�jo
XIIðsÞestds: (5:4:3a)

xðtÞ !LTII
XIIðsÞ: (5:4:3b)

Note the subscript on X indicating it is a bilateral (a

two-sided transform). The most useful one in our

study is the one-sided or the unilateral Laplace

transform and is

XIðsÞ ¼
Z1

0�

xðtÞe�stdt � XðsÞ: (5:4:4)

If there is no subscript on X as in (5.4.4), the trans-

form is the unilateral transform.

Example 5.4.1 Consider the signal xðtÞ ¼ e�atuðtÞ;
a� real and positive. Find the bilateral Laplace

transform of xðtÞ and compare it with the corre-

sponding Fourier transform.

Solution: The Laplace transform of xðtÞ is given by

XIIðsÞ ¼
Z 1
0

e�ate�stdt ¼
Z 1
0

e�ðsþaÞtdt

¼ �1
ðsþ aÞ e

�ðsþaÞt 1
0

�� : (5:4:5a)

Since lim
t!1

e�ðsþaÞt
h i

¼
0; s4� a

1; s5� a
;

�
(5:4:5b)

the Laplace transform of the function is therefore

XIIðsÞ ¼
1

ðsþ aÞ ; s ¼ ReðsÞ4� a: (5:4:5c)

Thus the ROC of this function is ReðsÞ ¼ Reðsþ
joÞ ¼ s5� a in the complex plane. The complex

plane is usually referred to as the s-plane. The

horizontal and the vertical axes are referred to as

the s � axis and the jo � axis, respectively. Next

question we want to ask ourselves is what happens

when s ¼ �a? Clearly XðsÞ is a well-behaved func-

tion except at s ¼ �a; that is when o ¼ 0. This

simply means that the contour of integration is as

shown in Fig. 5.4.1. See the half moon around the

point s ¼ �a in this figure. The region of conver-

gence can include the line s ¼ �a, except in the near

vicinity of the point s ¼ �a. The ROC includes the

jo-axis, and, therefore, the Laplace transform of the

function in this example is equivalent to the Fourier
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transform and can be obtained from the Laplace

transform by simply substituting s ¼ jo in the

Laplace transform. The example we have consid-

ered above exists for positive time. &

A two-sided signal can be written in two parts –

one for positive time (causal) including t ¼ 0 and the

other part for negative time (anti-causal). The two-

sided function xðtÞ can be separated into two parts

x1ðtÞ and x2ðtÞ, representing the causal and the

anti-causal part, respectively. See Fig. 5.4.2, where

we have the following:

xðtÞ : two�sided;

x1ðtÞ ¼ xðtÞuðtÞ : causal part

x2ðtÞ ¼ xðtÞuð�tÞ : anti�causalpart;

x2ð�tÞ ¼ xð�tÞuðtÞ : invertedanti�causalpart

x1ðtÞ and x2ð�tÞ are now causal signals. The bilat-

eral or two-sided transform is given by

XIIðsÞ ¼
Z1

�1

xðtÞe�stdt ¼
Z0

�1

x2ðtÞe�stdt

þ
Z1

0

x1ðtÞe�stdt ¼ X2;IIðsÞ þ X1;IIðsÞ:

(5:4:6a)

Note that X1;IIðsÞ is the one-sided Laplace trans-

form of the causal part and X2;IIðsÞ is the Laplace

transform of the anti-causal part. The anti-causal

part can be rewritten as

X2;IIðsÞ ¼
Z0

�1

x2ðtÞe�stdt ¼
Z1

0

x2ð�aÞestda

¼
Z1

0

x2ð�aÞestda

) X2;IIð�sÞ ¼
Z1

0

x2ð�tÞe�stdt: (5:4:6b)

That is, we have expressed the two-sided Laplace

transform in terms of two one-sided Laplace trans-

forms. Changing the sign of s in the function

X2;IIð�sÞ gives X2;IIðsÞ.

Notes:

1. Express

xðtÞ ¼ ½xðtÞuðtÞ� þ ½xðtÞuð�tÞ� ¼ x1ðtÞ þ x2ðtÞ.
2. Use the causal signals x1ðtÞ and x2ð�tÞ and find

their one-sided transforms.

3. The two-sided Laplace transform of the signal is

given by XðsÞ ¼ X1ðsÞ þ X2ð�sÞ. &

Fig. 5.4.1 > s = s + jo-plane, contour of integration,
Example 5.4.1

(a) (b)

(c) (d)

Fig. 5.4.2 (a) Two-sided
signal, (b) causal, (c) anti-
causal, and (d) inverted anti-
causal parts
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Example 5.4.2 Find the two-sided Laplace trans-

form of the function

xðtÞ ¼
ebt; b40; t50

e�at; a40; t � 0

( )

¼ ½ebtuð�tÞ� þ ½e�atuðtÞ� ¼ x2ðtÞ þ x1ðtÞ

(5:4:7)

Solution: From Example 5.4.1, we have

x1ðtÞ ¼ e�atuðtÞ !LTII 1

ðsþ aÞ
¼ X1ðsÞ;ReðsÞ ¼ s4� a: (5:4:8a)

x2ð�tÞ ¼ e�btuðtÞ !LTII 1

ðsþ bÞ
¼ X2ðsÞ; s ¼ ReðsÞ4� b;

x2ðtÞ ¼ ebtuð�tÞ !LTII
X2ð�sÞ

¼ � 1

s� b
; s ¼ ReðsÞ5b: (5:4:8b)

Combining the two equations in (5.4.8a) and

(5.4.8b), we have

xðtÞ !LTII � 1

ðs� bÞ þ
1

ðsþ aÞ ;�a
5s5b: (5:4:9)

Note the constraints on s. The transform does not

exist if ð�aÞ4b. This will be tied to the region of

convergence shortly. From this example the causal

signal results in the transform that has poles on the

left half of the s-plane and the anti-causal signal

results in the transform that has poles on the right

half of the s-plane. &

5.4.1 Region of Convergence (ROC)

We defined the two-sided Laplace transform of a

signal xðtÞ by assuming that the function (xðtÞe�st)
is absolutely convergent. This implies that there

exists a pair of constants a and b and M a real

positive number, such that

xðtÞ �
Me�at; t40

Mebt; t50

�
: (5:4:10a)

To see these constraints, we can separate the bilat-

eral Laplace transform into two integrals, one

for positive time and the other for negative time.

That is,

XIIðsÞ¼LII½xðtÞ�¼
Z 1
�1

xðtÞe�stdt

¼
Z 0

�1
xðtÞe�stdtþ

Z 1
0

xðtÞe�stdt: (5:4:10b)

The integrals in the above equation must be abso-

lutely integrable in order for the transform to exist.

Using (5.4.10a), we have

XIIðsÞ �
Z 0

�1
Mebte�stdtþ

Z 1
0

Me�ate�stdt

¼
Z 0

�1
Meðb�sÞtdtþ

Z 1
0

Me�ðaþsÞtdt:

(5:4:10c)

Noting that limits on the integration, we can state

that the transform exists if

ðb� sÞ40; ðaþ sÞ40! �a5s5b: (5:4:11)

This defines the ROC and is illustrated by the dark

area in Fig. 5.4.3.

Now we will relate this to a rational Laplace trans-

form function XIIðsÞ in terms of its poles and zeros.

We say that XIIðsÞ has a pole at s ¼ �pi if
XðsÞ s¼�pi ¼ 1

�� and has a zero at s ¼ �zi

jω

−

Poles 
for

Poles 
for

( ) ( )x t u t ( ) ( )x t u t−
0α β σ

Fig. 5.4.3 Region of convergence for bilateral Laplace
transform
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if XðsÞ s¼�zi ¼ 0j . The poles of the function XðsÞ
must lie to the right of the line s ¼ bþ jo for t50,

whereas the poles corresponding to the positive

time, i.e., xðtÞ; t40 must lie to the left of the line

s ¼ �aþ jo in the complex s-plane.

Example 5.4.3 Find the two-sided Laplace trans-

form of the following function directly:

xðtÞ ¼ e�a tj j ¼ e�atuðtÞ þ eatuð�tÞ; a40: (5:4:12)

Solution: The transform of this function is

XðsÞ ¼
Z 0

�1
eða�sÞte�s tdtþ

Z 1
0

e�ðaþsÞ tdt

¼ 1

ða� sÞ þ
1

ðsþ aÞ ¼
2a

a2 � s2
;�a5s5a:

(5:4:13) &

The region of convergence is indicated on the right

of (5.4.13). The Laplace transform does not con-

verge at the pole locations and in Fig. 5.4.1 we have

shown that the region of convergence goes around

the poles (see the half moons around the poles). The

region of convergence includes the jo-axis and the

function evaluated on the jo-axis gives the Fourier
transform of the function. That is,

XðjoÞ ¼ XIIðsÞ s¼jo
�� :

5.4.2 Inverse Transform of Two-Sided
Laplace Transform

One needs to be careful in finding the inverse trans-

forms of a two-sided Laplace transform, as the

positive and negative time portions must be handled

separately. If the region of convergence is not spe-

cified, then there is some ambiguity.

Example 5.4.4 Consider the time functions

xðtÞ ¼ e�atuðtÞ; yðtÞ ¼ �e�atuð�tÞ: (5:4:14)

Solution: The two-sided Laplace transforms of

these functions are given by

XIIðsÞ ¼
Z 1
0

e�ate�stdt ¼ 1

sþ a
;

YIIðsÞ ¼
Z 0

�1
�e�ate�stdt ¼ 1

sþ a
;ReðsÞ5� a:

(5:4:15)

We can see that the transforms are the same,

except that they have different regions of conver-

gence. These indicate the ambiguity in identify-

ing the time function that the transform came

from if the region of convergence of a two-sided

Laplace transform is not given. In this case it is

not possible to compute the corresponding time

function. However, in practice, the ambiguity

can be resolved on the basis of physical consid-

erations, as the time functions increase without

limit as t approaches either þ1 or �1. This

gives a way to select a time function among

many possibilities. &

Procedure to find the two-sided inverse LT of a

rational function:

1. Expand the given rational transform function by

using partial fraction expansion.

2. The terms in the partial fraction expansion that

come from the left half-plane poles will result in

time functions that exist only for t � 0.

3. The terms in the partial fraction expansion that

come from the right half-plane poles will result in

the time functions that exist only for t50.

Example 5.4.5 Find the inverse transform of the

XIIðsÞ ¼ 1=½ðs� 1Þðsþ 2Þ�.

Solution: The partial fraction expansion of this

function is

XIIðsÞ ¼
A

ðs� 1Þ þ
B

ðsþ 2Þ ;

A ¼ 1

ðsþ 2Þ s¼ 1j ¼ 1

3
;

B ¼ 1

ðs� 1Þ s¼�2j ¼ � 1

3
(5:4:16)

) XIIðsÞ ¼
1=3

ðs� 1Þ þ
�1=3
ðsþ 2Þ ; (5:4:17)

) xðtÞ ¼ ð1=3ÞetuðtÞ � ð1=3Þe�2tuðtÞ;

� 25ReðsÞ51:
(5:4:18)
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The region of convergence can be obtained by

noting that the first term has a pole at s ¼ 1 and the

region of convergence for this term is s ¼ ReðsÞ51.

The second term has a pole at s ¼ �2 and the region

of convergence for this term is s4� 2. The inter-

section of these two regions of convergence is given

by �25ReðsÞ51. &

The two-sided Laplace transform of a function

can be determined by decomposing the two-sided

function into two one-sided functions and then

transforming each one. In the case of finding the

inverse Laplace transform, we first separate

the transform into two parts, one with poles on the

right half-plane and other with poles in the left half-

plane and the imaginary axis. Then determine the

two time functions. Most of our discussion on

inverse transforms covers rational functions.

5.4.3 Region of Convergence (ROC)
of Rational Functions – Properties

1. The ROC does not contain any poles of the

function.

2. If xðtÞ ¼ 0, except in a finite interval, then the

ROC is the entire s-plane except possibly

s ¼ 0 and s ¼ 1.

3. If xðtÞ is right-sided, then the ROC is right-sided,

i.e., s ¼ ReðsÞ4�a, where (�a) is the real part
of the left-most pole.

4. If xðtÞ is left-sided, then the ROC is left-sided,

i.e., s ¼ ReðsÞ5b , where b is the real part of the

right-most pole.

5. If xðtÞ is two-sided function, i.e., the sum of left-

and right-sided functions, then the ROC is either

a strip defined by �a5ReðsÞ5b or the indivi-

dual regions of convergence will not overlap and,

in that case, the ROC is the null set.

5.5 Basic Two-Sided Laplace Transform
Theorems

Now consider some of the important two-sided

Laplace transform theorems that are given below

without proofs for most. Assume the region of con-

vergence of xiðtÞ is Rxi .

5.5.1 Linearity

The Laplace transform of a sum is the sum of the

Laplace transforms and can be stated as

xðtÞ ¼
X2
i¼1

aixiðtÞ !
LTII

X2
i¼1

aiXiðsÞ

¼ XIIðsÞ;ROC : at least Rx1 \ Rx2

(5:5:1)

Example 5.5.1 Let xðtÞ ¼ x1ðtÞ þ x2ðtÞ; x1ðtÞ ¼
e�tuðtÞ; x2ðtÞ ¼ etuðtÞ. Find the Laplace transform

of the function xðtÞ and identify the region of

convergence.

Solution:

XIIðsÞ ¼
1

sþ 1
þ 1

s� 1
:

The ROC of x1ðtÞ is ReðsÞ4� 1 and the

ROC of x2ðtÞ is ReðsÞ51: The ROC of xðtÞ is
the intersection of the two and is given by

�15ReðsÞ51. &

5.5.2 Time Shift

LII½xðt� t0Þ� ¼ e�st0XIIðsÞ: (5:5:2)

The region of convergence is the same for both the

original and its shifted version.

5.5.3 Shift in s

LII½e�atxðtÞ� ¼ XIIðsþ aÞ: (5:5:3)

Since the poles will be shifted to the left by a, the

ROC will be shifted to the left by a.

5.5.4 Time Scaling

LII½xðatÞ� ¼
1

aj jXIIðs=aÞ; ðROCÞnew ¼ ðROCÞold=a:

(5:5:4)

Time scaling makes the ROC scaled as well.
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5.5.5 Time Reversal

LII½xð�tÞ�¼XIIð�sÞ;

ðROCÞnew¼�ðROCÞold:
(5:5:5)

Note that the right half-plane poles become left

half-plane poles and vice versa.

5.5.6 Differentiation in Time

LII
dxðtÞ
dt

� �
¼ sXIIðsÞ;ROCnew 	 ROCold: (5:5:6)

The ROCwill not change unless there is a pole–zero

cancellation in the product ðsXIIðsÞÞ.

5.5.7 Integration

LII

Z t

�1
xðaÞda

� �
¼ 1

s
XIIðsÞ: (5:5:7)

Noting the term (1/s) in the transform and

ROCnew ¼ ROColdI ReðsÞ 4 0f g.

5.5.8 Convolution

In Chapter 2 we defined the convolution of two

functions by

yðtÞ ¼
Z 1
�1

x1ðaÞx2ðt� aÞda

¼
Z 1
�1

x2ðaÞx1ðt� aÞda:
(5:5:8a)

The transform is

YIIðsÞ ¼
Z 1
�1

Z 1
�1

x1ðaÞx2ðt� aÞda
� �

e�stdt

¼
Z 1
�1

x1ðaÞ
Z 1
�1

x2ðt� aÞe�stdt
� �

da

¼
Z 1
�1

x1ðaÞXII;2ðe�saÞda

¼ XII;2ðsÞ
Z 1
�1

x1ðaÞe�sada ¼ XII;2ðsÞXII;1ðsÞ:

(5:5:8b)

The ROC satisfies ROCnew 	 ðROCÞ1\ ðROCÞ2.
The ROC of the convolution may be larger. When

two transforms are multiplied, there is a possibility

of pole cancellations.

5.6 One-Sided Laplace Transform

So far we have been discussing the bilateral or two-

sided transform. A special formof the bilateral trans-

form is the one-sided or unilateral or simply Laplace

transform, which was defined in (5.4.4). It was

pointed out that the bilateral transform can be com-

puted by using the one-sided Laplace transform. In

real-life systems, there is no negative time. However,

bilateral transforms provide a structure that we can

work with, as the bilateral Laplace transforms relate

to the Fourier transforms. We can make the discus-

sion simpler by considering the unilateral Laplace

transform. The unilateral transform is fundamental

in circuits, systems, and control, where we are inter-

ested in the response of a system with initial condi-

tions. In a later chapter we will describe a linear time-

invariant system by constant coefficient differential

equations. The unilateral Laplace transform pro-

vides a powerful tool in the analysis and design of

systems. As mentioned earlier we will use the nota-

tion XðsÞ ¼ LfxðtÞg and xðtÞ is a causal signal.

Furthermore, the ROC is the right half s-plane for

the unilateral Laplace transforms. For simplicity, we

generally do not explicitly identify the region of con-

vergence. Unless otherwise mentioned, we will

assume that the transform functions are unilateral

and will not be mentioned explicitly.

The unilateral Laplace transform of a signal xðtÞ
is defined earlier and is repeated below:

XðsÞ ¼ L½xðtÞ� ¼
Z 1
0�

xðtÞe�stdt: (5:6:1)

Symbolic relation:

xðtÞ !LT XðsÞ: (5:6:2)

Notes: In defining the transform integral in (5.6.1),

we have used the lower limit of 0�. This allows us to
include signals such as the unit impulse function

dðtÞ. From now on we will use the lower limit on
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the integral as zero except in special cases and

assume that the limit is 0�. In cases where there is

some ambiguity we will explicitly identify the lower

limit on the integral as 0�. Some texts use the limits

of integration on the Laplace integral as 0þ to infi-

nity. This implies that origin is excluded. This

approach is impractical in the theoretical study of

linear systems. The Laplace transform of a function

exists if ðxðtÞe�s tÞ is absolutely integrable. We can

select the range of s that ensures the convergence

and this is referred to as the region of convergen-

ce.This is one of the nice aspects of the Laplace

transform. For example, the L-transform of

eatuðtÞ; a40 exists only if s4a and we can select

such a range. Noting that the Laplace transform is

an integral operation, the transform is unique.

Example 5.6.1 Find the Laplace transforms of the

functions by using the definition

a: x1ðtÞ ¼ dðt� t0Þ; t040;

b: x2ðtÞ ¼ uðtÞ;

c: x3ðtÞ ¼ e�a tuðtÞ; a40:

(5:6:3)

Solution: a. The Laplace transform of the impulse

function is given by

X1ðsÞ ¼
Z1

0�

dðt� t0Þe�stdt ¼ e�s t0 ;

dðt� t0Þ !
LT

e�s t0 :

(5:6:4)

b: X2ðsÞ ¼
Z 1
0

uðtÞe�stdt ¼ 1

s
e�st 1t¼0�
��

¼ 1

s
! uðtÞ !LT 1

s
;

(5:6:5)

c: X3ðsÞ ¼
Z 1
0

e�ate�stdt ¼
Z 1
0

e�ðsþaÞtdt

¼ 1

sþ a
; e�atuðtÞ !LT 1

sþ a
: (5:6:6) &

Example 5.6.2 Find the unilateral Laplace trans-

forms of the following functions:

a:x1ðtÞ ¼ 2

ffiffiffi
t

p

r
; b:x2ðtÞ ¼ sinhðtÞ:

Solution:

a:X1ðsÞ ¼
2ffiffiffi
p
p
Z1

0

t1=2e�stdt:

Using the change of variable a ¼ t1=2; da ¼
ð1=2Þt�1=2dt and the integral tables result in

X1ðsÞ ¼
4ffiffiffi
p
p
Z1

0

a2e�s a
2

da ¼ 1

s3=2
:

b: X2ðsÞ ¼ L½sinhðtÞ� ¼ 1

2

Z1

0

e�ðs�aÞt � e�ðsþaÞt
h i

dt

¼ a

s2 � a2
: (5:6:7)

The two transform pairs in this example are

given by

2

ffiffiffi
t

p

r
 !LT 1

s3=2
; sinhðatÞ !LT a2

s2 � a2
: (5:6:8) &

As in the case of F-transforms we can derive the

properties of the L-transforms. Most of the proofs

are similar in these cases.We will not go through the

details but will point out some of the important

facets of the properties. In cases where they are

different we will go through the proofs. Following

is a table of some of the one-sided Laplace trans-

forms theorems. Note that the regions of conver-

gence are not identified.

5.6.1 Properties of the One-Sided Laplace
Transform

Unilateral Laplace transforms properties are given

in Table 5.6.1.

5.6.2 Comments on the Properties (or
Theorems) of Laplace Transforms

The proof of the linearity property of the Laplace

transforms is straightforward as the integral of a
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Table 5.6.1 One-sided Laplace transform properties

Superposition (linearity):

xðtÞ ¼
PN
i¼1

aixiðtÞ !
LT PN

i¼1
aiXiðsÞ: 5:6:9ð Þ

Time delay:

xðt� tÞuðt� tÞ !LT e�stXðsÞ; t > 0: 5:6:10ð Þ

Complex frequency shift (times-exponential):

e�atxðtÞ !LT Xðsþ aÞ: 5:6:11ð Þ

Time scaling:

xðatÞ !LT 1

aj jXðs=aÞ; a 6¼ 0; a is a constant: 5:6:12ð Þ

xðatÞe�s0t !LT 1

aj jXðs� s0Þ: 5:6:13ð Þ

Convolution in time:

xiðtÞ 
 xjðtÞ !
LT

XiðsÞXjðsÞ: 5:6:14ð Þ

Multiplication in time

x1ðtÞx2ðtÞ !
LT 1

2pj
X1ðsÞ 
 X2ðsÞ½ �: 5:6:15ð Þ

Times-t:

ðtÞnxðtÞ !LT ð�1Þn d
nXðsÞ
dsn

: 5:6:16að Þ

Times-(1/t):

xðtÞ
t
 !LT

Z 1
s

XðaÞda 5:6:16bð Þ

Derivative:

d nxðtÞ
dtn

 !LT snXðsÞ � sn�1xð0�Þ � sn�2xð1Þð0�Þ � ::: xn�1ð0�Þ;

xðiÞð0�Þ ¼ dixðtÞ
dti

t¼0�j :

5:6:17ð Þ

Integration:Z t

�1
xðaÞda !LT 1

s

Z 0�

�1
xðaÞdaþ XðsÞ

s
: 5:6:18ð Þ

Initial Value:

xð0þÞ ¼ lim
s!1
½sXðsÞ�; ðXðsÞ is properÞ: 5:6:19ð Þ

Final value:

lim
t!1

xðtÞ ¼ lim
s!1
½sXðsÞ�; ðPoles of XðsÞ lie in left half s � planeÞ 5:6:20ð Þ

Switched periodic (xTðtÞis periodic with period T):

xðtÞ ¼ xTðtÞuðtÞ !
LT XðsÞ

1� e�sT
: 5:6:21ð Þ

Differentiation with respect to a second independent variable:

@xðt; rÞ
@r

 !LT @Xðs; rÞ
@r

; ðr is independent of s and tÞ: 5:6:22ð Þ

Integration with respect to a second independent variable:Z r

r0

Xðs; rÞdr !LT
Z r

r0

xðt;bÞdb; ðr is independent of s and tÞ: 5:6:23ð Þ
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sum is equal to the sum of the integrals. The time

delay property can be shown by using a change of

variable in the transform integral. The complex shift

property can be shown by the following:

Z1

0

½es0 txðtÞ�e�s tdt ¼
Z1

0

xðtÞe�ðsþaÞtdt ¼ Xðsþ aÞ:

The time-scaling and frequency-shifting properties

follow by combining the time-scaling and the com-

plex frequency-shifting properties.

Convolution property: The convolution of two

functions was defined in Chapter 2. Assuming the

functions start at t ¼ 0, we can write

x1ðtÞ 
 x2ðtÞ ¼
Z1

0

x1ðaÞx2ðt� aÞda

¼
Z1

0

x2ðbÞx1ðt� bÞdb: (5:6:24)

The transform of this function is given by

L½x1ðtÞ 
 x2ðtÞ� ¼
Z1

0

Z1

0

x1ðaÞx2ðt� aÞda

2
4

3
5e�stdt

¼
Z1

0

x1ðaÞ
Z1

0

x2ðt� aÞe�stdt

2
4

3
5da:

Using the change of variable x ¼ t� a and simplify-

ing the integral, we have

L½x1ðtÞ 
 x2ðtÞ� ¼
Z1

0

x1ðaÞ
Z1

�a

x2ðxÞe�sðxþaÞdx

2
4

3
5da:

We are considering only positive time functions, so

x2ðxÞ ¼ 0 for x50, which allows us to change the

lower limit on the second integral in the above

equation and

L½x1ðtÞ 
 x2ðtÞ� ¼
Z1

0

x1ðaÞe�sada

2
4

3
5

Z1

0

x2ðxÞe�sxdx

2
4

3
5 ¼ X1ðsÞX2ðsÞ: (5:6:25)

This proves the convolution theorem.

Complex frequency shift: This is also referred to

as times-exponential property and

Lfe�atxðtÞg ¼
Z1

0

e�atxðtÞe�stdt

¼
Z1

0

xðtÞe�ðsþaÞtdt ¼ Xðsþ aÞ: (6:5:26)

Times-t property: This follows from the follow-

ing equation:

dXðsÞ
ds
¼
Z1

0

xðtÞde
�st

ds
dt¼

Z1

0

½�txðtÞ�e�stdt: (5:6:27)

We can generalize this result by repeated derivatives

of the transform.

Example 5.6.3 In Example 5.6.2 we have derived the

Laplace transform of the hyperbolic sine function.

Use the times-t property to show that the following

is true:

yðtÞ ¼ t sinhðatÞ !LT 2as

ðs2 � a2Þ2
¼ YðsÞ: (5:6:28)

Solution: Taking the derivative of the transform

function in (5.6.8), we have

dXðsÞ
ds
¼
Z1

0

½ð�tÞ sinhðatÞ�e�stdt ¼ d

ds

2as

ðs2 � a2Þ

¼ � 2as

ðs2 � a2Þ2
:

The result in (5.6.28) follows by identifying the term

in the integrand and its transform on the right in the

above equation. &
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Times-1/t property or complex integration property:

This is

Z1

s

XðbÞdb ¼ L
xðtÞ
t

� �
provided

lim
t!0
½xðtÞ=t� exists:

(5:6:29)

This can be shown by

Za

s

XðbÞdb ¼
Za

s

Z1

0

e�btxðtÞdt

2
4

3
5db

¼
Z1

0

xðtÞ
Za

s

e�btdb

2
4

3
5dt

¼
Z1

0

xðtÞ
t
½e�st � e�at�dt

¼
Z1

0

xðtÞ
t

e�stdt�
Z1

0

xðtÞ
t
½e�at�dt:

Assuming xðtÞ=t has a limit as t! 0 and for

a!1, the second integral on the right in the

above equation goes to zero resulting in the times-

(1/t) property

Derivative property: Assuming the constraint

lim
t!1
½xðtÞe�st� ¼ 0, we can write

L
dxðtÞ
dt

� �
¼
Z1

0�

dxðtÞ
dt

e�stdt

¼ xðtÞe�st t¼1
t¼0� þ s

Z1

0�

xðtÞe�stdt

������

¼ �xð0�Þ þ s

Z1

0�

xðtÞe�stdt

¼ sXðsÞ � xð0�Þ: (5:6:30)

The transform would not exist if the constraint is

not satisfied. We can generalize this property to

the nth derivative by integrating n times by

parts. The convolution and the derivative prop-

erties are the most used properties in linear sys-

tems theory.

Integration property: This property can be seen

using the integration by parts.

L

Z t

�1

xðaÞda

8<
:

9=
; ¼

Z1

0�

Z t

�1

xðaÞda

2
4

3
5e�stdt:

Assuming u ¼
Z t

�1

xðaÞda; du ¼ xðtÞdt;

dv ¼ e�stdt; v ¼ � 1

s
e�st;we have

L

Z t

�1

xðaÞda

8<
:

9=
; ¼ � e�st

s

Z t

�1

xðaÞda

2
4

3
5

1
0 þ

1

s

Z1

0

xðtÞe�stdt

������ ; xð�1Þð0�Þ ¼
Z0

�1

xðaÞda;

)L

Z t

�1

xðaÞda

8<
:

9=
;¼

1

s

Z1

0�

xðtÞe�stdtþ1
s

Z0�

�1

xðaÞda

¼1
s
XðsÞþ1

s
xð�1Þð0�Þ
h i

: (5:6:31)

Initial value theorem: This theorem states that

xðtÞ and its derivative x0ðtÞ are both Laplace trans-

formable, then

xð0þÞ ¼ lim
s!1

sXðsÞ: (5:6:32)

The proof of the initial value theorem can be seen by

starting with Lfx0ðtÞg ¼ sXðsÞ � xð0�Þ and

lim
s!1

L
dxðtÞ
dt

� �� �
¼ lim

s!1

Z1

0�

x0ðtÞe�stdt

¼ lim
s!1

sXðsÞ � xð0�Þ½ �:
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Second,

Lfx0ðtÞg ¼
Z1

0�

x0ðtÞe�stdt ¼
Z0þ

0�

x0ðtÞe�stdt

þ
Z1

0þ

x0ðtÞe�stdt ¼ xð0þÞ � xð0�Þ

þ
Z1

0þ

x0ðtÞe�stdt: (5:6:33)

) sXðsÞ ¼ xð0þÞ þ
Z1

0þ

dx

dt
e�stdt:

Taking the limit results in

lim
s!1
½sXðsÞ� ¼ xð0þÞ þ

Z1

0þ

dx

dt
lim
s!1
½e�st�dt ¼ xð0þÞ:

Notes: The initial value theorem should be applied

only ifXðsÞ is strictly proper. That is, whenM5N in

the function, then

XðsÞ ¼ n0s
M þ n1s

M�1 þ :::þ nM
sN þ d1sN�1 þ :::þ dN

¼ NðsÞ
DðsÞ : (5:6:34)

If M � N, then lim
s!1

sXðsÞ does not exist. However,

XðsÞ can be written in the following form:

XðsÞ ¼
XM�N
i¼0

ais
i

" #
þ BðsÞ
DðsÞ : (5:6:35)

½BðsÞ=DðsÞ� is now a strictly proper rational function.

The inverse transform of the first part in (5.6.35)

produces only impulses and their derivatives, which

occur only at t ¼ 0. The final value of the function

depends only on the second part. That is,

xð0þÞ ¼ lim
s!1

sBðsÞ
DðsÞ

� �
: (5:6:36) &

Example 5.6.4 Use the transform of the unit step

function uðtÞ to find its initial value.

Solution: The unit step function has a jump discon-

tinuity at t ¼ 0 and

uð0þÞ ¼ lim
s!1
½sLfuðtÞg� ¼ lim

s!1
s
1

s

� �
¼ 1 &

Final value theorem: The proof of this is very simi-

lar to the initial value theorem and

L
dx

dt

� �
¼ sXðsÞ � xð0�Þ;

and lim
s!0

Z1

0

dxðtÞ
dt

e�stdt ¼ xð1Þ � xð0�Þ:

From this it follows:

xð1Þ � xð0�Þ ¼ lim
s!0

sXðsÞ � xð0�Þf g

! lim
t!1

xðtÞ ¼ lim
s!1

sXðsÞ: (5:6:37)

The final value theorem is used effectively to com-

pute the steady-state values of the output responses

and is valid only when the limit on the right in

(5.6.37) exists.

Notes: The final value theorem applies only if the

poles of sXðsÞ are in the left half-plane. The only

pole permitted on the imaginary axis is a simple pole

at s ¼ 0: xð1Þ is indeterminate if there are conju-

gate pole pairs on the imaginary axis. This implies

xðtÞ has sinusoids, and their final values are

indeterminate. &

Switched periodic functions and their Laplace

transforms: Consider the periodic function

xTðtÞ ¼ xTðtþ T Þ. Defining the function for one

period, xðtÞ ¼ xTðtþ nT Þ; 05t5T and zero every-

where else, we can write the one-sided Laplace trans-

form of the function:

LfxTðtÞuðtÞg¼L
X1
n¼0

xðt�nTÞ
( )

¼
X1
n¼0

Lfxðt�nTÞg¼XðsÞ
X1
n¼0

e�nsT

¼ XðsÞ
1�e�sT note:

X1
n¼0

e�nsT¼ 1

1�e�sT

 !
:

(5:6:38)

Example 5.6.5 Find the one-sided Laplace trans-

form of the square wave given by
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xðtÞ ¼
1; 05t5T=2

�1; T=25t5T

�
; xTðtÞ ¼ xðtþ nTÞ:

(5:6:39a)

Solution: Using the above results we have

XðsÞ¼ 1

ð1�e�sTÞ

ZT

0

xðtÞe�stdt

¼ 1

ð1�e�sTÞ

ZT=2

0

e�stdt�
ZT

T=2

e�stdt

2
64

3
75 1

ð1�e�sTÞ

¼ 1

ð1�e�sTÞ
1

s
ð�e�stÞ T=2

0 þ
1

s
ðe�stÞ T

T=2

���
����

� �

¼ 1

ð1�e�sTÞ½1�e�sT=2�e�sT=2þe�sT�;

¼1

s

½1�e�sT=2�2

½1�e�sT� ¼
1

s

½1�e�sT=2�
½1þe�sT=2� : (5:6:39b) &

Example 5.6.6 Find the Laplace transform of the

square wave defined by

xðtÞ ¼ uðtÞ � 2uðt� T

2
Þ þ 2uðt� TÞ � :::: (5:6:40a)

Solution: Using the transform of the step function

and the delay property, we have

L½xðtÞ� ¼ 1

s
ð1� 2e�sT=2 þ 2e�sT � :::Þ

This can be reduced by using the closed-form

expression for the sum and

XðsÞ ¼ 1

s

2

1þ e�sT=2
� 1

� �
¼ 1

s

1� e�sT=2

1þ e�sT=2
:

(5:6:40b) &

Example 5.6.7 Consider the two functions

xðtÞ and yðtÞ given below. Find their Laplace trans-

forms and sketch yðtÞ assuming T ¼ 5.

xðtÞ ¼ P t� :5½ �;

yðtÞ ¼
P1
n¼0

xðt� nTÞ; t � 0

0; otherwise

8><
>: :

(5:6:41a)

Solution: a. First,

xðtÞ¼uðtÞ�uðt�1Þ !LT 1

s
�e�s

s
¼1

s
½1�e�s�:

(5:6:41b)

The function yðtÞ is on for a second and off

for 4 s for t � 0. The Laplace transform of this

function is

YðsÞ ¼ L
X1
0

xðt� nTÞ
( )

¼ XðsÞ
X1
n¼0

e�nsT

¼ XðsÞ 1

ð1� e�sTÞ ¼
ð1� e�sÞ
sð1� e�sTÞ : (5:6:41c)

First part of the result in (5.6.41c) is the transform

of the single pulse given byXðsÞ and the second part

½1=ð1� e�sTÞ� takes care of the switching part. &

Example 5.6.8 Find the Laplace transform of the

convolution yðtÞ ¼ t 
 e�at; a40.

Solution: Using the convolution theorem and the

times-t property, we have

YðsÞ ¼ LftuðtÞgLfe�atg ¼ ð1=s2Þð1=ðsþ aÞÞ:
(5:6:42) &

Notes: In computing the one-sided Laplace trans-

forms of arbitrary time function xðtÞ, we are really
computing the transform of xðtÞuðtÞ.

Example 5.6.9 Find the one-sided Laplace trans-

forms of the following functions:

a: x1ðtÞ ¼ e�jo0t;

b: x2ðtÞ ¼ cosðo0tÞ;
c: x3ðtÞ ¼ sinðo0tÞ
d: x4ðtÞ ¼ e�at cosðo0tÞ;
e: x5ðtÞ ¼ e�at sinðo0tÞ;
f: x6ðtÞ ¼ te�atuðtÞ
g: x7ðtÞ ¼ te�at cosðbtÞ;
h: x8ðtÞ ¼ te�at sinðbtÞ; a40:

Solution:

a: X1ðsÞ ¼
Z1

0

e�jo0tÞe�stdt ¼
Z1

0

e�ðs�jo0Þtdt

¼ 1

ðs� jo0Þ
: (5:6:43a)
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b: x2ðtÞ ¼
1

2
½ejo0t þ e�jo0t�

¼ cosðo0tÞ !
LT 1

2

1

s� jo0
þ 1

sþ jo0

� �

¼ s

s2 þ o2
0

; (5:6:43b)

c: x3ðtÞ ¼
1

2j
½ejoct � e�joct�

¼ sinðo0tÞ !
LT 1

2j

1

s� jo0
� 1

sþ jo0

� �

¼ o0

s2 þ o2
0

; (5:6:43c)

d. and e. We will find the transforms in these cases

by using the results in parts b and c and use times-

exponential, i.e., the complex shift property:

e�at cosðo0tÞ !
LT ðsþ aÞ
ðsþ aÞ2 þ o2

0

; (5:6:44)

e�at sinðo0tÞ !
LT o

ðsþ aÞ2 þ o2
; (5:6:45)

f. Considering e�atuðtÞ !LT 1=ðsþ aÞ and the times-t

property, we have

Lfte�atg ¼ � dð1=ðsþ aÞÞ
ds

¼ 1

ðsþ aÞ2
; (5:6:46)

g and h. As in the last part, we can make use of the

times-t property for both these parts. The results are

given below and the details are left as homework

problems:

te�at cosðbtÞ !LT ðsþ aÞ2 � b2

fðsþ aÞ2 þ b2g2
; a40; (5:6:47)

te�at sinðbtÞ !LT 2bðsþ aÞ
fðsþ aÞ2 þ b2g2

; a40: (5:6:48)

The squared terms in the denominators follow from

the times-t property. &

Example 5.6.10 Show that the following Laplace

transform relationship is true:

xðtÞ ¼ 1=
ffiffiffiffiffi
pt
p

uðtÞ !LT 1ffiffi
s
p :

use the identity

� Z 1
0

e�at
2dt ¼ 1

2

ffiffiffi
p
a

r 	

(5:6:49)

Solution: Considering t ¼ a2=p in the transform

integral and simplifying, we have

XðsÞ ¼
Z 1
0

xðtÞe�stdt ¼
Z 1
0

1ffiffiffiffiffi
pt
p e�stdt

¼ 2

p

Z 1
0

e�sa
2=pda ¼ 1ffiffi

s
p : &

Example 5.6.11 What can you say about the trans-

form Lfet2uðtÞg?

Solution: It does not exist since lim
t!1

eðt�aÞt !1. &

Example 5.6.12 Using the result
R1
s

XðaÞda ¼
L xðtÞ=tf g, show that

xðtÞ¼sinðo0tÞ
o0t

uðtÞ !LT 1

o0
tan�1

o0

s

h i
¼XðsÞ: (5:6:50)

Solution: Using the times-(1/t) property, integral

tables and (5.6.44), we have

LfxðtÞg¼
Z 1
s

1

a2þo2
0

da¼ 1

o0
tan�1ða=o0Þ 1s

��

¼ 1

o0

p
2
� tan�1ðs=o0Þ

h i
¼ 1

o0
tan�1

o0

s


 �
:

This can also be seen by using the Laplace trans-

form property of integration with respect to a sec-

ond independent variable. See Problem 5.6.5 at the

end of the chapter. &

In Chapter 6 linear systems will be studied. They

can be described by linear constant coefficient differ-

ential equations. Finding solutions of these is one

of the important steps in the analysis of these

systems. One way to obtain the solutions of the

differential equations is by using Laplace trans-

forms. The differential equation consists of an

input xðtÞ and the output yðtÞ and their deriva-

tives. The input function is assumed to be known

and is Laplace transformable. The transform of the

output and its inverse, i.e., the output time function

is desired.

Example 5.6.13 Consider the linear constant coeffi-

cient differential equation

d2yðtÞ
dt2

þ 3
dyðtÞ
dt
þ yðtÞ ¼ xðtÞ þ dxðtÞ

dt
: (5:6:51)
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Using the linearity property, the derivative prop-

erty, and the time-integral property of the Laplace

transforms, derive the expression for the Laplace

transform of the above equation assuming arbitrary

initial conditions.

Solution: Using the linearity property and deriva-

tive properties of the Laplace transform of the equa-

tion in (5.6.51), we have by using the initial condi-

tions (see (5.6.17)).

½s2YðsÞ�syð0�Þ�y0ð0�Þ�þ3½sYðsÞ�yð0�Þ�
þ2YðsÞ¼XðsÞþsXðsÞ�xð0þÞ: (5:6:52)

We will come back to this example shortly. Instead

of differentials we can have integrals in computing

the Laplace transforms. These appear when dealing

with circuits. &

Example 5.6.14 Using the linearity property, the

derivative property, and the time-integral property

of the Laplace transforms, derive the expression for

the Laplace transform of the following equation

assuming that yð0�Þ ¼ 1 and yð�1Þð0�Þ ¼ 2:

dy

dt
þ 3yðtÞ þ 2

Z t

�1

yðaÞda ¼ xðtÞ ¼ uðtÞ: (5:6:53)

Solution: Now consider the time-integration prop-

erty, see (5.6.31).

L

Z t

�1

yðaÞda

8<
:

9=
; ¼

1

s

Z1

0�

yðtÞe�stdtþ 1

s

Z0�

�1

yðaÞda

2
4

3
5

¼ YðsÞ
s
þ 1

s
yð�1Þð0�Þ
h i

¼ YðsÞ
s
þ 2

s

(5:6:54)

Using the linearity, derivative, and the time-integral

properties of theLaplace transforms,we cannowwrite

the Laplace transform of the equation in (5.6.53).

sYðsÞ � 1þ 3YðsÞ þ YðsÞ
s
þ 2

s

¼ 1

s
! ðs2 þ 3sþ 1ÞYðsÞ ¼ ðs� 1Þ;

) YðsÞ ¼ ðs� 1Þ
s2 þ 3sþ 1

: (5:6:55)

The Laplace transform of an integral–differential

equation is an algebraic equation. The Laplace

transform of a function is unique. The output is

yðtÞ ¼ L�1fYðsÞg. Finding such a function requires

the inverse Laplace transform, which will be dis-

cussed shortly. &

5.7 Rational Transform Functions
and Inverse Laplace Transforms

The inverse Laplace transform of XðsÞ is

xðtÞ ¼ 1

2pj

Z sþj1

s�j1
XðsÞestdt: (5:7:1)

The integration needs to be performed in the s-plane

along a line Refsg ¼ s, where s is a constant factor

chosen to ensure the convergence of the integral

Z1

�1

xðtÞj je�stdt51: (5:7:2)

Equation (5.7.1) is valid for both one-sided and

two-sided transforms. In the case of the two-sided

Laplace transform, the ROC must be specified

before the inverse transform can be determined

uniquely. The integration process involves complex

integration and it requires knowledge of complex

variables. This is beyond the scope here.

Only one-sided Laplace transforms are consid-

ered below and the lower limit in (5.7.2) is 0 in this

case. The transform is assumed to be L½xðtÞ� ¼ XðsÞ
and xðtÞ ¼ L�1½XðsÞ� is unique, i.e., there is a one-

to-one correspondence between the direct (forward)

and the inverse transforms, see McGillem and

Cooper (1991). In some pathological cases, this is

not true, see McGillem and Cooper (1991). We can

determine the time function xðtÞ corresponding to

its transform XðsÞ by first writing it in terms of a

sum of simple functions of s using partial fraction

expansion. Then determine the inverse transform of

the given function using the simple functions and

tables of Laplace transform functions.
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5.7.1 Rational Functions, Poles, and Zeros

A rational function HðsÞ can be written in the form

HðsÞ ¼ n0s
M þ n1s

M�1 þ :::þ nM
sN þ d1sN�1 þ ::: þ dN

¼ Kðs� z1Þðs� z2Þ:::ðs� zMÞ
ðs� p1Þðs� p2Þ:::ðs� pNÞ

¼ YðsÞ
XðsÞ : (5:7:3)

Note that in expressing the function HðsÞ, we

assumed that the denominator polynomial DðsÞ

had its initial coefficient equal to 1. The degrees of

the numerator and the denominator polynomials in

(5.7.3) are, respectively, equal to M and N. The

roots of the polynomial YðsÞ are denoted by

zi; i ¼ 1; 2; :::;M and are called the zeros. The roots

of denominator polynomial are denoted by

pk; k ¼ 1; 2; :::;N and are referred to as poles of the

function. We will assume that the coefficients of the

polynomials are real, and therefore the roots of

polynomials are real or complex with their conju-

gate pairs. Some of the roots may be repeated. In

Table 5.6.2 One-sided Laplace tranform pairs

FunctionxðtÞ ¼ 1

2pj

Z sþj1

s�j1
XðsÞestds Laplace TransformXðsÞ ¼

Z 1
0�

xðtÞe�stdt

dðtÞ 1

u(t) 1/s

tnuðtÞ; n > 0 is an integer:
n!

snþ1

e�atuðtÞ; a > 0:
1

sþ a

tne�atuðtÞ; n > 0 is an integer and a > 0:
n!

ðsþ aÞnþ1

cosðatÞuðtÞ s

s2 þ a2

sinðatÞuðtÞ a
s2 þ a2

e�at cosðbtÞuðtÞ; a > 0:
sþ a

ðsþ aÞ2 þ b2

e�at sinðbtÞuðtÞ; a > 0:
b

ðsþ aÞ2 þ b2

te�at cosðbtÞuðtÞ; a > 0:
ðsþ aÞ2 � b2

ðsþ aÞ2 þ b2
h i2

te�at sinðbtÞuðtÞ; a > 0:
2bðsþ aÞ

½ðsþ aÞ2 þ b2�
1

a2
ð1� cosðatÞÞ 1

sðs2 þ a2Þ
1

a
sinhðatÞ 1

s2 � a2

1

ðb� aÞ e�bt � e�at
�  1

ðsþ aÞðsþ bÞ
1ffiffiffiffiffi
pt
p 1ffiffi

s
p

sinðo0tÞ
o0t

uðtÞ 1

o0
tan�1

o0

s

h i

uðtÞ � 2uðt� T
2Þ þ 2uðt� TÞ � :::

(Switched square wave)

1

s
:
1� esT=2

1þ e�sT=2
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writing the expression in (5.7.3), it is customary to

cancel out any poles and zeros that are common

between the numerator and the denominator.

The roots identified by zi and pk are finite zeros

and poles. If we include the values of infinity, we need

to consider poles and zeros in that region as well. In

the case of our functionXðsÞ , it has ðM�NÞ poles at
infinity if M4N and ðN�MÞ zeros at infinity if

N4M: This points out the fact that if we include

the poles and zeros at infinity, then the number of

poles is equal to the number of zeros. Pole–zero plots

give some insight to the transform functions. Finite

zeros are identified by circles 0s and finite poles byXs

or crosses. Poles and zeros at infinity are usually not

identified in the pole–zero plots.

Example 5.7.1 Consider the function XðsÞ given

below and sketch the pole–zero plots associated

with this function. Identify the poles (or zeros)

that are located at infinity.

XðsÞ ¼ Kðs� 1Þðs2 þ 1Þ
sðsþ 3Þðs2 þ sþ 1Þ :

Solution: The other zeros are located at s ¼ 1; �j1,
and at infinity. The poles are located at

s ¼ 0; �3; �ð1=2Þ � jð
ffiffiffi
3
p

=2Þ. The pole–zero plot

is given in Fig 5.7.1. Zero at infinity is not shown.&

Rational transform functions to differential

equations: If we ignore the initial conditions, then

d kxðtÞ
dtk

 !LT skXðsÞ:

This result can be used to determine the differential

equation corresponding to the equation in (5.7.3).

Cross multiplying terms in (5.7.3) results in

sN þ d1s
N�1 þ � � � þ dN

� 
YðsÞ

¼ n0s
M þ n1s

M�1 þ � � � þ nM
� 

XðsÞ: (5:7:4)

Now replace skYðsÞ by dykðtÞ
dtk

and skXðsÞ by dkxðtÞ
dtk

in

(5.8.4) resulting in

dNy

dtN
þ d1

dN�1y

dtN�1
þ :::þ dNy

¼ n0
dMx

dtM
þ n1

dM�1x

dtM�1
þ :::þ nMx:

(5:7:5)

Note the correspondence between (5.7.4) and (5.7.5)

and one can derive these one from the other by

inspection.

5.7.2 Return to the Initial and Final Value
Theorems and Their Use

The initial value theorem predicts the initial value

xð0þÞ from its strictly proper part of the trans-

form as

xð0þÞ ¼ lim
s!1

sXðsÞ: (5:7:6)

If XðsÞ is strictly not proper, i.e., if the degree of the
numerator is greater than or equal to the degree of

the denominator, then the initial value can be deter-

mined by first using long division and then using the

strictly proper part of the function. Transforms can

be used to find the initial value of the successive

derivatives of a function whose transform is

known. For example,

lim
t!0þ

x0ðtÞ ¼ lim
s!1

sLfx0ðtÞg ¼ lim
s!1

s½sXðsÞ � xð0þÞ�

¼ lim
s!1
½s2XðsÞ � sxð0þÞ� (5:7:7a)

lim
t!0þ

x00ðtÞ ¼ lim
s!1

sLfx00ðtÞg

¼ lim
s!1
½s3XðsÞ � s2xð0þÞ � sxð0þÞ�

(5:7:7b)

provided the limits exist. In systems and control

theory one of the interesting functions we deal

with is the error function. The initial values of this

jω

13−
j

j−
1 3

2 2
j− −

1 3

2 2
j− + s-plane

σ

Fig. 5.7.1 Pole–zero plot, Example 5.7.1
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function and its derivatives provide important mea-

sures in analysis and design.

Example 5.7.2 Find the values of yðtÞ and y 0ðtÞ
at t ¼ 0þ given the function and verify the results

by using the inverse transform.

YðsÞ ¼ 1

s2 þ sþ 1
¼ 1

ðsþ ð1=2ÞÞ2 þ ð
ffiffiffi
3
p

=2Þ

 !LT 1

ð
ffiffiffi
3
p

=2Þ
e�ð1=2Þt sinðð

ffiffiffi
3
p

=2ÞtÞuðtÞ: (5:7:8)

Solution: By (5.7.6) and (5.8.7a), we have

yð0þÞ ¼ lim
s!1

s

s2 þ sþ 1
¼ 0; y 0ð0þÞ

¼ lim
s!1

s2

s2 þ sþ 1
� 0

� �
¼ 1: (5:7:9)

Verification:

yðtÞ t¼0þ ¼j 1

ð
ffiffiffi
3
p

=2Þ
e�ð1=2Þt sinðð

ffiffiffi
3
p

=2ÞtÞuðtÞ t¼0þj ¼0

y0ðtÞ t¼0þj ¼ 2ffiffiffi
3
p ½e�ð1=2ÞtuðtÞ�

ffiffiffi
3
p

2
t

 !
cos

ffiffiffi
3
p

2
t

 !
t¼0þj

(

þ sin

ffiffiffi
3
p

2
t

 !
dðe�ð1=2ÞtuðtÞÞ

dt

" #
t¼0þj

)
¼ 1

&

Notes: In the above example the initial conditions

for the given function and its derivative were calcu-

lated. If the initial conditions are desired for several

derivatives, a better way of doing it is by long divi-

sion. First assume YðsÞ has a zero at infinity. If it

does not, (5.7.6) cannot be used as the limit does not

exist. Assuming it has zero at infinity, by long

division,

YðsÞ ¼ a1
s
þ a2

s2
þ a3

s3
þ :::: (5:7:10)

From (5.8.4) and (5.8.5a), we have

yð0þÞ ¼ lim
s!1

a1 þ
a2
s
þ a3

s2
þ :::

h i
¼ a1; (5:7:11a)

y0ð0þÞ¼ lim
s!1

a1sþa2þ
a3
s
þ :::�a1s

h i
¼a2; (5:7:11b)

y00ð0þÞ¼ lim
s!1

a1s
2þa2sþa3þ:::�a1s2�a2s

� 

¼a3:
(5:7:11c)

In the above example, the function YðsÞ can be

written by long division in the form

YðsÞ ¼ 1

s2 þ sþ 1
¼ 1

s2
� 1

s3
þ ::::

Comparing the terms in this equation with (5.7.9),

a1 ¼ 0; a2 ¼ 1; a3 ¼ �1: For additional discussion

on this topic, see Close (1966). &

Example 5.7.3 Use the final value theorem to find

xð1Þ.

XðsÞ ¼ ðsþ a1Þ
sðsþ b1Þðs2 þ a2sþ b2Þ

: (5:7:12a)

Solution:

xð1Þ ¼ lim
t!1

xðtÞ ¼ lim
s!0

sXðsÞ ¼ a1=b1b2:

(5:7:12b) &

Example 5.7.4 Find the initial values of the func-

tions from their transforms given below:

a:X1ðsÞ ¼
Kðs2 þ a1Þ

ðsþ b1Þðs2 þ b2sþ b3Þ
;

b:X2ðsÞ ¼
ð2sþ 1Þ
ðsþ 1Þ :

(5:7:13)

c. In Part b, verify the result using the inverse trans-

form and then evaluate it at t ¼ 1.

Solution: a. Noting that the X1ðsÞ is a strictly

proper function, we have

xð0þÞ ¼ lim
t!0

xðtÞ ¼ lim
s!1

sXðsÞ ¼ K: (5:7:14)

b.Noting thatX2ðsÞ is not a strictly proper function,
we first write

X2ðsÞ ¼ 2� 1=ðsþ 1Þ ¼ 2þ YðsÞ;

ðYðsÞ � a strictly proper functionÞ:
(5:7:15)
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The strictly proper part gives the initial value of

xðtÞ and is given by

xð0þÞ ¼ lim
s!1

sYðsÞ ¼ �1: (5:7:16)

c: xðtÞ t¼0þj ¼ xð0þÞ ¼ L�1fYðsÞg t¼0þj
¼ �e�tuðtÞ t¼0þj ¼ �1:

(5:7:17) &

Example 5.7.5 This example illustrates the final

value theorem of the one-sided transform using

generalized functions studied in Chapter 1. Con-

sider the Laplace transform pair and find the final

value of the function xðtÞ ¼ uðtÞ cosðo0tÞ using

(5.6.44).

Solution: In an ordinary sense, cosðo0tÞ has no

defined final value. However, as a generalized func-

tion or as a distribution function (see Papoulis

(1962)),

lim
t!1

cosðo0tÞ ¼ 0! lim
t!1
½cosðo0tÞuðtÞ�

¼ lim
s!0

s2

s2 þ o2
0

¼ 0:
(5:7:18) &

Finding the solution of a linear constant coefficient

differential equation is an important application

of Laplace transforms. The steps in this process

are: 1. find the transform of the differential equa-

tion, 2. solve for the unknown transform function,

and 3. find the inverse transform of this function.

5.8 Solutions of Constant Coefficient
Differential Equations Using Laplace
Transforms

Consider the constant coefficient differential equa-

tion given in (5.7.5) and is

dNy

dtN
þ d1

dN�1y

dtN�1
þ � � � þ dNy ¼ n0

dMx

dtM
þ n1

dM�1x

dtM�1

þ � � � þ nMx:

(5:8:1)

For future discussion, xðtÞ and yðtÞ are the input

and the output of a system, and d 0s and n0s are

some constants. Note also the coefficient of yðNÞðtÞ

on the left side of the equation is taken as 1. Since

xðtÞ is assumed to be a known input, the right side of

the equation in (5.8.1) is the forcing function FðtÞ.

d ny

dtn
þ d1

d n�1y

dtn�1
þ :::þ dNy ¼ FðtÞ: (5:8:2)

If FðtÞ is identically zero, this equation is reduced to

the homogeneous equation

dny

dt n
þ d1

dn�1y

dt n�1
þ :::þ dNy ¼ 0: (5:8:3)

The solution of this equation is the zero input

response and also called the natural response or the

complementary solution identified by ynðtÞ in the

following. The general solution of the non-homoge-

neous differential equation in (5.8.1) has two parts

yðtÞ ¼ ynðtÞ þ yfðtÞ: (5:8:4)

The term yfðtÞ satisfies (5.8.1) and is the forced

response. ynðtÞ is the solution of the homogeneous

equation in (5.8.3). This is the response when there

is no input, i.e., the zero input response. Taking the

Laplace transform of a constant coefficient differ-

ential equation introduces initial conditions into the

picture, see (5.6.17).

Example 5.8.1 Solve the following differential

equation:

d2yðtÞ
dt2

þ 3
dyðtÞ
dt
þ yðtÞ ¼ xðtÞ þ dxðtÞ

dt
: (5:8:5)

Solution: Taking the Laplace transform of the

above equation, we have

½s2YðsÞ � syð0�Þ � y0ð0�Þ� þ 3 ½sYðsÞ � yð0�Þ�
þ 2YðsÞ ¼ XðsÞ þ sXðsÞ � xð0þÞ: (5:8:6)

Equation (5.8.6) can be written in two parts on the

right, one is due to the initial conditions on yðtÞ and
the other one is based on the input function.

s2YðsÞ þ 3 sYðsÞ þ 2YðsÞ
¼ ½syð0�Þ þ y0ð0�Þ� þ ½XðsÞ þ sXðsÞ � xð0þÞ�:

(5:8:7)

The next step is to solve for YðsÞ ¼ YnðsÞ þ XðsÞ
using the equations
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s2YnðsÞ þ 3 sYnðsÞ þ 2YnðsÞ ¼ ½syð0�Þþ y0ð0�Þ�
(5:8:8)

s2YfðsÞ þ 3 sYfðsÞ þ 2YfðsÞ ¼ ½XðsÞ þ sXðsÞ � xð0þÞ�
(5:8:9)

) YnðsÞ ¼
1

s2 þ 3 sþ 2
½syð0�Þ þ y0ð0�Þ� (5:8:10a)

YfðsÞ ¼
1

s2 þ 3 sþ 2
½XðsÞ þ sXðsÞ � xð0þÞ�;

(5:8:10b)

YðsÞ ¼ YnðsÞ þ YfðsÞ: (5:8:10c)

If all the initial conditions are zero, then from

above, we have

YðsÞ ¼ sþ 1

s2 þ 3 sþ 2
XðsÞ ¼ HðsÞXðsÞ: (5:8:10d) &

Notes: In most applications the initial conditions

on the input signal are assumed to be zero. That is

xðkÞð0�Þ ¼ 0. The polynomial

sn þ d1s
n�1 þ :::þ dN ¼ 0 (5:8:11)

is called the characteristic polynomial of the sys-

tem. If all the initial conditions are zero and taking

the Laplace transform on both sides of the equa-

tion in (5.8.1) gives the equation in (5.7.3) and is

given below in a slightly different form:

YðsÞ ¼ HðsÞXðsÞ

¼ n0s
M þ n1s

M�1 þ � � � þ nM
sN þ d1sN�1 þ � � � þ dN

XðsÞ;
(5:8:12)

HðsÞ ¼ n0s
M þ n1s

M�1 þ � � � þ nM
sN þ d1sN�1 þ � � � þ dN

: (5:8:13)

The transform HðsÞ is called the transfer function

relating the input to the output in the transform

domain. Clearly if the input function is an impulse

function, then the output transform and its inverse

are, respectively, given by

YðsÞ ¼ HðsÞXðsÞ ¼ HðsÞLfdðtÞg

¼ HðsÞ !LT hðtÞ ¼ yðtÞ:
(5:8:14)

hðtÞ is called the impulse response, i.e., the

response to the impulse input. The last step in

the solution of the differential equation is finding

the inverse Laplace transform of the transform

function YðsÞ:

yðtÞ ¼ L�1½YnðsÞ� þ L�1½YfðsÞ� ¼ ynðtÞ þ yfðtÞ:
(5:8:15)

ynðtÞ depends on the characteristic polynomial and the

initial conditions on yðtÞ. If all the initial conditions are
zero, then the output is the zero-state response.

yðtÞ ¼ L �1½YfðsÞ�;YfðsÞ ¼ L½ynðtÞ�:

5.8.1 Inverse Laplace Transforms

The inverse transform is defined by

xðtÞ ¼ L�1½XðsÞ� ¼ 1

2pj

Z sþj1

s�j1
XðsÞestdt: (5:8:16)

Evaluation of (5.9.8) involves complex integration

and is accomplished by contour integration. It

requires understanding of complex variable theory,

especially Cauchy integral theorem, which involves

the residues of the complex function XðsÞest. For a
discussion on this topic, see Chirlian (1973). This

approach is beyond the scope of our study. In our

discussion we will determine the inverse transforms

of rational functions by simplifying the transform

into a sum of simpler terms by using partial fraction

expansion. We will then use transform tables to

compute the corresponding time functions.

5.8.2 Partial Fraction Expansions

For our discussion, we will assume that the trans-

form functions are real rational functions and have

the form given in (5.7.3) corresponding to N poles.

Furthermore, the poles are assumed to be known in

factored form. If there are common factors between

the numerator and the denominator polynomials,

they are deleted before we start the expansion. In

addition we will assume that ifN �M, then by long
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division we can express YðsÞ as a sum of a polyno-

mial and a proper rational function:

XðsÞ ¼ AðsÞ þ XpðsÞ;

AðsÞ ¼
XN�M
i¼0

aisi;XpðsÞ � a proper function:
(5:8:17)

The inverse transform of L�1fYðsÞg ¼
L�1fAðsÞg þ L�1fYpðsÞg. If the numerator of YðsÞ
has exponentials of the form e�st, they indicate time

delays. First find the inverse transform without this

factor and then use the property L½yðt� tÞ� ¼
YðsÞe�st. Partial fraction expansion is simpler if

the poles are simple. This is considered first.

Case of distinct poles: If XpðsÞ has only simple

poles (i.e., pi 6¼ pj; j 6¼ i) and is a proper function.

Then the function can be expressed in terms of a

partial fraction expansion

YpðsÞ ¼
NðsÞ

ðsþ p1Þðsþ p2Þ:::ðsþ pNÞ

¼ A1

ðsþ p1Þ
þ A2

ðsþ p2Þ
þ � � �

þ Ak

ðsþ pkÞ
þ � � � þ AN

ðsþ pNÞ
:

The constants A0ks are called the residues. These can

be evaluated by multiplying the last equation by

ðsþ pkÞ and evaluating both sides of the equation

at the poles s ¼ �pk.

ðsþpkÞYpðsÞ s¼�pk
�� ¼

XN
i¼1i 6¼k

AiðsþpkÞ
ðsþpiÞ s¼�pkþAk

�� ¼Ak:

(5:8:18)

Since we assumed the function is a real rational

function, the residue Ak is real if the corresponding

pole s ¼ �pk is real. In the case of a complex pole,

the corresponding residue Ak will be complex. In

addition, since the function is a function with real

coefficients, the complex roots of a real polynomial

appear as complex conjugates. The corresponding

residues will also be complex conjugates. That is, we

need to compute only one residue for each complex

pole. That is, if the residue corresponding to the

pole s ¼ �ak � jbk is given by rk ¼ Ak þ jBk, then

the residue corresponding to the pole s ¼ �ak þ jbk
is given by r
k ¼ Ak � jBk.

Case of multiple poles: Consider the function

with a simple pole and a pole at s ¼ �r of order k.

XpðsÞ ¼
NðsÞ

ðsþ p1Þðsþ rÞk
: (5:8:19)

Partial fraction expansion of such a function can be

written as

XpðsÞ;¼
K1

ðsþ p1Þ
þ A0

ðsþ rÞk
þ A1

ðsþ rÞk�1
þ � � �

þ Ak�1
ðsþ rÞ :

(5:8:20)

The subscripts l on the coefficients A l are in ascend-

ing order, the corresponding powers (k�l) on

ðsþ rÞ are in descending order and they add up to

k. The coefficient K1, corresponding to the simple

pole can be determined as before by

K1 ¼ ðsþ p1ÞXpðsÞ s¼�p1
�� : (5:8:21)

The coefficients Ai; i ¼ 0; 1; 2 can be computed by

the following procedure:

A0 ¼ ðsþ rÞkXpðsÞ s¼�r
�� ;

A1 ¼
d½ðsþ rÞkXðsÞ�

ds
s ¼ �rj ;

A2 ¼
1

2!

d2½ðSþ rÞkXpðsÞ�
ds2

s¼�r
�� :

In general,

Am ¼
1

m!

d m½ðsþ rÞXpðsÞ�
dsm

;m ¼ 0; 1; 2; . . . ; k� 1:

(5:8:22)

Example 5.8.2 Using the above formulas find the

partial fraction expansion of

YpðsÞ ¼
ðsþ 2Þ
sðsþ 1Þ2

:
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Solution: Partial fraction expansion of this func-

tion is

YpðsÞ ¼
K1

s
þ A0

ðsþ 1Þ2
þ A1

ðsþ 1Þ ; (5:8:23)

) K1 ¼ sXðsÞ s¼0j ¼ ðsþ 2Þ
ðsþ 1Þ s¼0j ¼ 2;

A0 ¼ ðsþ 1Þ2XðsÞ ¼ ðsþ 2Þ
s

s¼�1j ¼ �1;

A1¼
1

1!

dðsþ1Þ2XðsÞ
ds

s¼�1j ¼d½ðsþ2Þ=s�
ds

s¼�1j

¼ s�ðsþ2Þ
s2

� �
s¼�1j ¼�2)YpðsÞ

¼ 2

s
þ �1
ðsþ 1Þ2

þ �2
ðsþ 1Þ : (5:8:24) &

Notes: The above procedure is tedious. A simpler

way to achieve the partial fraction expansion is by

repeated application of the simple pole case. Con-

sider YpðsÞ and write

XpðsÞ ¼
1

ðsþ 1Þ
ðsþ 2Þ
sðsþ 1Þ

� �
: (5:8:25a)

The term inside the bracket can be expanded by the

partial fraction expansion and

ðsþ 2Þ
sðsþ 1Þ ¼

A1

s
þ A2

ðsþ 1Þ ;A1 ¼ 2;A2 ¼ �1:

Using this expansion in (5.8.22) and using the par-

tial fraction expansion again, we have

XpðsÞ ¼
2

sðsþ 1Þ þ
�1

ðsþ 1Þ2

¼ 2

s
þ ð�2Þðsþ 1Þ þ

ð�1Þ
ðsþ 1Þ2

:

(5:9:25b) &

MATLAB uses the ‘‘residue,’’ a routine that deter-

mines the partial fraction expansion of a function

Y1ðsÞ that can have multiple real or complex poles.

Y1ðsÞ ¼
n0s

M1 þ n1s
M1�1 þ :::þ nM1

sN þ d1sN�1 þ :::þ dN

¼ Y0ðsÞ þ YpðsÞ; Y0ðsÞ

¼
XN�M1

n¼0
kns

n;N �M1;

(5:8:26a)

YpðsÞ ¼
NðsÞ
DðsÞ ¼

n0s
M1 þ n1s

M1�1þ :::þ nM1

sNþ d1sN�1þ :::þ dN
;M15N;

(5:8:26b)

YpðsÞ ¼
c11

ðs� p1Þ
þ c12

ðs� p1Þ2
þ :::þ c1;m1

ðs� p1Þm1

" #

þ c2;1
ðs� p2Þ

þ c2;2

ðs� p2Þ2
þ :::þ c2;m2

ðs� p2Þm2

" #

þ cr;1
ðs� prÞ

þ cr2

ðs� prÞ2
þ :::þ c1;mr

ðs� prÞmr

" #

(5:8:26c)

Y1ðsÞ can have multiple real or complex poles.

The routine first determines Y0ðsÞ. It then computes

the partial fraction expansion coefficients and the

poles corresponding to the strictly proper function

XpðsÞ given in (5.4.11). TheMATLAB statement for

computing the partial fraction expansion of

(5.8.26a) is

B ¼½n0; n1; . . . ; nM1
�;A ¼ ½1; d1; d2; . . . ; dN�;

½r; p; k� ¼ residueðB;AÞ:
(5:8:27)

There are three output vectors: – r; p; and k. The

vector r contains the coefficients ci;1; ci;2; . . . ; ci;mi
;

i ¼ 1; 2; . . . ; r; the vector p contains the values of

poles pi; i ¼ 1; 2; :::; r; and the vector k contains the

entries ki; i ¼ 0; 1; 2; :::; ðM1 �NÞ.
The inverse transforms of each of the terms can

be found from tables. We generally do not come

across multiple complex poles. For a transform

table, see McCollum and Brown (1965). A short

list of transforms and their inverses are listed

below. (Table 5.8.1). &

Example 5.8.3 Consider the differential equation

with d1 ¼ 1; d0 ¼ 1; b1 ¼ 1; b0 ¼ 1.
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d2yðtÞ
dt2

þ d1
dyðtÞ
dt
þ d0yðtÞ ¼ b1

dxðtÞ
dt

þ b0xðtÞ; xðtÞ ¼ uðtÞ;
(5:8:32)

yð0�Þ ¼ 1 and dyðtÞ=dt t¼0� ¼ 1j : (5:8:33)

a. Using Laplace transforms determine YðsÞ and
identify the corresponding transforms of the natural

and forced responses.

b. Determine the natural and forced responses.

c. Use the initial and the final value theorems of the

Laplace transforms to verify the initial and final

values determined in part b:

Solution: a. Taking the transform on both sides of

the equation in (5.8.32) results in

s2YðsÞ � syð0�Þ � dyðtÞ
dt

����t¼0� þ sYðsÞ � dyðtÞ
dt

t¼0�j

þYðsÞ ¼ ðsþ 1ÞXðsÞ;

ðs2 þ sþ 1ÞYðsÞ � ½syð0�Þ þ y0ð0�Þ�

� yð0�Þ ¼ ðsþ 1ÞXðsÞ;

YðsÞ ¼ ðsþ 1Þ
ðs2 þ sþ 1Þ

� �
XðsÞ

þ syð0�Þ þ y0ð0�Þ þ d1yð0�Þ
ðs2 þ sþ 1Þ

� �

¼ YfðsÞ þ YnðsÞ;

(5:8:34)

) YfðsÞ ¼
ðsþ 1Þ

sðs2 þ sþ 1Þ ¼
1

s
� s

s2 þ sþ 1
;

YnðsÞ ¼
ðsþ 2Þ

ðs2 þ sþ 1Þ

� �
;

YðsÞ ¼ 1

s
þ 1

s2 þ sþ 1
: (5:8:35)

In dealing with real polynomials, the complex roots

appear as a pair of complex-conjugate roots. If

there is only a pair of complex poles and the other

poles are real, then it is simpler to compute the

partial fraction expansion for the real poles first

and then subtract that portion from the given func-

tion, which results in the partial fraction expansion

for the pair of complex poles. This is what was done

to compute the partial fraction expansion for YfðsÞ.
YnðsÞ has the appropriate form to find the inverse

transform from a table of Laplace transforms.

b. The respective time responses are given by

yfðtÞ ¼ uðtÞ � e�ð1=2Þt½cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=4Þt

p
Þ�uðtÞ; (5:8:36a)

ynðtÞ¼e�ð1=2Þt cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=4ÞÞ

p
þ 1:5ffiffiffiffiffiffiffiffi

3=4
p sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=4ÞÞ

p" #
uðtÞ;

(5:8:36b)

yðtÞ ¼ yfðtÞ þ ynðtÞ: (5:8:36c)

Table 5.8.1 Typical rational replace transforms and their inverses

XðsÞ !LT xðtÞ;

A

ðsþ aÞ !
LT

Ae�atuðtÞ; ð5:8:28Þ

A

ðsþ aÞn !
LT A

ðn� 1Þ! t
n�1e�atuðtÞ; ð5:8:29Þ

Asþ B

ðsþ aÞ2 þ b2
 !LT e�at A cosðbtÞ þ B� aA

b
sinðbtÞ

� �
uðtÞ; ð5:8:30Þ

Aþ jB

sþ aþ jb
þ A� jB

sþ a� jb

� �
 !LT 2eat A cosðbtÞ þ B sinðbtÞ½ �uðtÞ; ð5:8:31aÞ

Mejy

sþ aþ jb
þ Me�jy

sþ a� jb

� �
 !LT 2Me�at cosðbt� yÞuðtÞ;M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
; y ¼ tan�1ðB=AÞ: ð5:8:31bÞ
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c. From the initial and the value theorems, it

follows that

yfð0þÞ ¼ lim
s!1

sYfðsÞ
� 

¼ 0; ynð0þÞ

¼ lim
s!1

sYnðsÞ½ � ¼ 1; yð0þÞ

¼ lim
s!1
½sYðsÞ� ¼ 1;

(5:8:37a)

lim
t!1

yfðtÞ ¼ lim
s!0
½sYfðsÞ� ¼ 0; lim

t!1
ynðtÞ

¼ lim
s!0
½sYnðsÞ� ¼ 1; lim

t!1
yðtÞ

¼ lim
s!0
½sYðsÞ� ¼ 1:

(5:8:37b) &

The transform functions are assumed to be rational

and strictly proper. If they are not, then the inverse

transforms will have impulses or the derivatives of

the impulses.

Example 5.8.4 Find

L�1fYðsÞg ¼ L�1
s2 þ sþ 1

ðsþ 1Þ

� 	
: (5:8:38a)

Solution: The function is improper. First divide the

numerator by the denominator, i.e.,

YðsÞ ¼ sþ ½1=ðsþ 1Þ�; (5:8:38b)

) yðtÞ ¼ ddðtÞ
dt
þ e�tuðtÞ: (5:8:38c) &

It is not uncommon to have e�st terms in the trans-

form functions. See Examples 5.6.5 and 5.6.6. If e�sT

terms are in the denominator, they indicate the exis-

tence of a switching function. First, separate the

switching part of the transform from the pulse trans-

form. Find the inverse transforms of the pulse trans-

form and the switching function. Then combine

these results to find the inverse transform of the

function. As an example, let LfxðtÞg ¼ XðsÞ. Then

YðsÞ ¼ XðsÞ 1

ð1� e�sTÞ

¼ XðsÞ
X1
n¼0

e�nsT !LT
X1
n¼0

xðt� nTÞ ¼ yðtÞ:

Example 5.8.5 Find the inverse Laplace transform

of this function

YðsÞ ¼ ð3sþ 4Þe�s þ ð2sþ 3Þ
ðsþ 1Þðsþ 2Þ : (5:8:39)

Solution: First,

YðsÞ ¼ Y1ðsÞe�sþY2ðsÞ;

Y1ðsÞ ¼
3sþ 4

ðsþ 1Þðsþ 2Þ ;y1ðt� 1Þ !LT Y1ðsÞe�s;

Y2ðsÞ ¼
2sþ 3

ðsþ 1Þðsþ 2Þ : (5:8:40)

Expanding YiðsÞ; i ¼ 1; 2 by partial fraction expan-

sions and then finding inverses results in

Y1ðsÞ ¼
1

ðsþ 1Þ þ
2

ðsþ 2Þ ;Y2ðsÞ ¼
1

ðsþ 1Þ þ
1

ðsþ 2Þ ;

y1ðtÞ ¼ ðe�t þ 2e�2tÞuðtÞ; y2ðtÞ ¼ ðe�t þ e�2tÞuðtÞ:

Noting that y1ðt� 1Þ !LT Y1ðsÞe�s, the time func-

tion is

yðtÞ ¼y1ðt� 1Þþ y2ðtÞ ¼ ðe�ðt�1Þ þ 2e�2ðt�1ÞÞ
� uðt� 1Þþ ðe�tþ e�2tÞuðtÞ: (5:8:41) &

5.9 Relationship Between Laplace
Transforms and Other Transforms

We have developed Fourier transforms starting

with Fourier series. Fourier series is a sum of

weighted harmonics and the transform describes a

signal as the integral of weighted harmonics. The

Fourier transform has some drawbacks. The Four-

ier transform cannot handle exponentially growing

signals. Furthermore it cannot handle initial condi-

tions. The Laplace transform tries to overcome

these problems by introducing a convergence factor

e�st. That is xðtÞ is replaced by ½xðtÞe�st� in the

Fourier transform integral, thus allowing for exis-

tence of Laplace transforms of functions that do not

have Fourier transforms. Neither can handle func-

tions such as eat
2

. Fourier transforms and Laplace
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transforms are related if the regions of convergence

include the imaginary axis.

e�atuðtÞ  !FT 1

ð1 þ joÞ ; a
40;

xðtÞ ¼ e�atuðtÞ  !LT 1

ðs þ aÞ ; ROC � s4 � a;

(5:9:1)

e�a tj j  !FT 2a

a2 þ o2
; a40;

e�a tj j  !LTII 2a

ðs2 � a2Þ ; a
40; ROC : � a5s5a:

(5:9:2)

In the above cases, the one-sided Laplace transform

exists if the region of convergence includes the ima-

ginary axis, i.e., the jo-axis. The Fourier transform
can be obtained by simply replacing the Laplace

transform variable s by jo. Note that the Laplace

transform functions in these examples do not have

any poles on the imaginary axis. Consider the fol-

lowing two interesting cases: one is a unit step func-

tion and other one is a one-sided cosine function.

The Fourier and the Laplace transforms of these

two functions are given below:

uðtÞ  !FT pdðoÞ þ 1

jo
; uðtÞ  !LT 1

s
(5:9:3)

uðtÞ cosðoctÞ  !
FT jo
ðo2

c � o2Þ þ
p
2
½dðo � ocÞ

þ dðo þ ocÞ� (5:9:4a)

uðtÞ cosðoctÞ  !
LT s

s2 þ o2
c

: (5:9:4b)

If the Laplace transforms of the functions have

simple poles on the imaginary axis, then the Fourier

transforms of these exist in the limiting sense and

they have impulses.

5.9.1 Laplace Transforms and Fourier
Transforms

We now consider finding the Fourier transforms of

functions from their one-sided Laplace transforms.

The Laplace transforms of such functions can be

expressed by

XðsÞ ¼ X0ðsÞ þ
X
n

rn
s� jon

: (5:9:5)

In (5.9.5)X0ðsÞ represents the portion ofXðsÞwith no
poles on the imaginary axis and the second term

represents only the terms in XðsÞ with simple poles

on the imaginary axis, each of these poles occurs at a

frequency on. The corresponding F- transform is

XðjoÞ ¼ XðsÞ s¼jo þ p
X
n

rndðo� onÞ
����� : (5:9:6)

The above equivalence is valid if the poles on the

imaginary axis are of first order.

Relationship between the Fourier transforms and

Laplace transforms: Either one of these trans-

forms is not a generalization of the other. The

F-transform of a causal function xðtÞ can be

obtained from the one-sided Laplace transform

of this function with s replaced by jo with the

following constraints:

1. The signal is causal, i.e., xðtÞ ¼ 0; t50

2. The signal is absolutely integrable. This implies

that the region of convergence includes the ima-

ginary axis.

3. Fourier transforms can also be obtained from

Laplace transforms for causal signals that are

not absolutely integrable, such as the unit step

function by including impulse functions in the

Fourier transform. Laplace transforms of the

causal signals can be obtained from the non-

impulsive part of the F-transform.

4. The operational properties of the Fourier and

Laplace transforms are very similar in most

cases; in some cases, they are quite different.

For example, superposition, shifting, scaling,

convolution, and products of functions have

similar relationships. The derivative property

needs to be modified from the Fourier to Laplace

transform to include the initial conditions. The

integrands of the Fourier transform and its

inverse essentially have the same structure and

thus allow for the symmetry or duality proper-

ties. This makes it very nice in the digital
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computation of transforms and their inverses.

That is, one algorithm can be used to compute

both the forward and inverse Fourier transforms

with few modifications. There is no symmetry

property of Laplace transforms.

5. Noting that XðsÞ is a function of s ¼ sþ jo, a
complex quantity, it can only be plotted as a

surface plot. On the other hand, the Fourier

transform is a function of jo and therefore it is

the cross section of the surface plot along the

jo-axis.
6. Noting Item 5 above, the circuits and systems

literature use the Laplace transform to compute

the frequency characteristics of the function by

simply substituting s ¼ jo in the Laplace trans-

form. The complex function is generally written

in terms of the magnitude and phase frequency

characteristics of the signal.

5.9.2 Hartley Transforms and Laplace
Transforms

Hartley transform is the symmetrical formof theFour-

ier transform. It can be derived from the one-sided

Laplace transforms. A few examples are given below

for the Laplace transform functionsXðsÞ with poles in

the left half-plane only and later with poles in the left

half-plane and with poles on the imaginary axis.

Example 5.9.1 Find the Hartley transform of xðtÞ
using its Laplace transform.

xðtÞ ¼ e�atuðtÞ !LT 1

ðsþ aÞ !
1

joþ a

¼ Re
1

joþ a

� �
þ j Im

1

joþ a

� �
:

Solution: The Hartley transform of xðtÞ can be

obtained from

xðtÞ !Hart
Re

1

joþa

� �
�Im

1

joþa

� �
¼ aþo

o2þa2

� �
:

(5:9:7) &

Example 5.9.2 Find the Hartley transform of the

function uðtÞ from its Laplace transform.

xðtÞ ¼ uðtÞ !LT XðsÞ ) Xð joÞ ¼ pdðoÞ � ð j=oÞ:
(5:9:8)

Solution: The Hartley transform of the function is

XHðoÞ ¼ pd½o� þ ð1=oÞ: (5:9:9) &

See the chapter by Olejniczak in Poularikis, ed.

(1996) for an extensive discussion on the rela-

tionship between the Laplace and Hartley

transforms.

Table 5.9.1 One sided Laplace transforms and Fourier transforms

Sequence Laplace Transform Fourier Transform

dðtÞ 1 1

e�atuðtÞ; a > 0:
1

ðsþ aÞ
1

ðjoþ aÞ

te�atuðtÞ; a > 0:
1

ðsþ aÞ2
1

ðjoþ aÞ2

e�at cosðbtÞuðtÞ; a > 0:
sþ a

ðsþ aÞ2 þ b2

joþ a

ðjoþ aÞ2 þ b2

e�at sinðbtÞuðtÞ; a > 0:
b

ðsþ aÞ2 þ b2

b

ðjoþ aÞ2 þ b2

uðtÞ 1

s

1

jo
þ pdðoÞ

cosðbtÞuðtÞ s

s2 þ o2
jo

b2 � o2
þ p½dðoþ bÞ þ dðo� bÞ�

sinðbtÞuðtÞ b

s2 þ o2
b

b2 � o2
þ jp½dðoþ bÞ � dðo� bÞ�
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5.10 Hilbert Transform

Another transform that is closely related to the

Fourier transform is the Hilbert transform. It is

used in the theoretical descriptions and implemen-

tations of analog and digital Hilbert transformers.

A device called the Hilbert transformer is basic and

has important applications in single sideband mod-

ulation of signals and in digital signal processing.

Hilbert transforms can be introduced with Euler’s

formula e jot ¼ cosðotÞ þ j sinðotÞ. We will see

shortly that the Hilbert transform of cosðotÞ is
sinðotÞ. Hilbert transforms became an important

area with analytic signals that are complex valued

with one-sided spectrum. These have the form

xaðtÞ ¼ xðtÞ þ jx̂ðtÞ, where x̂ðtÞ is the Hilbert trans-

form of xðtÞ. Analytic signals are considered in

Section 5.10.3. Also, the real and imaginary parts

of transfer functions of systems are tied together by

Hilbert transforms.

5.10.1 Basic Definitions

There are twoways of introducing theHilbert trans-

forms. One is by using an integral and the other by

using the Fourier transform of the function. It is

simpler to view it starting with the transform and

derive the integral that defines the Hilbert trans-

form. To start with assume xðtÞ is the input

and yðtÞ is the output and F½xðtÞ� ¼ Xð joÞ and
F½yðtÞ� ¼ Yð joÞ. The output transform Yð joÞ is

assumed to be related to the input transform by

YðjoÞ ¼ HðjoÞXðjoÞ: (5:10:1)

The function Hð joÞ is called the Hilbert transfor-

mer and is defined by

Hð joÞ ¼ �j sgnðoÞ ¼
e�jp=2; o40

e jp=2; o50

(
;

hðtÞ !FT Hð joÞ:

(5:10:2)

Noting that multiplication in the frequency domain

corresponds to the time-domain convolution, we

have

yðtÞ ¼ hðtÞ 
 xðtÞ; hðtÞ ¼ F �1½Hð joÞ�: (5:10:3)

From Chapter 4, F ½sgnðtÞ� ¼ 2=ð joÞ. See (4.4.36).

Using the symmetry or the duality property of the

Fourier transforms, it follows that

hðtÞ ¼ 1

pt
: (5:10:4)

Using the convolution integral and (5.10.4)

results in

yðtÞ ¼ hðtÞ 
 xðtÞ ¼
Z 1
�1

xðaÞhðt� aÞda ¼D x̂ðtÞ:

(5:10:5)

x̂ðtÞ is the Hilbert transform of the function xðtÞ.
Note the hat in x̂ðtÞ. Hilbert transform is a convolu-

tion operation and is a function of time. This is

symbolically represented by

xðtÞ !HT
x̂ðtÞ ¼ H½xðtÞ� ¼ yðtÞ !HT

YðjoÞ
¼ HðjoÞXðjoÞ;HðjoÞ ¼ �j sgnðoÞ:

(5:10:6)

Hilbert transforms can be computed directly by the

convolution in (5.10.5) or by using the transforms in

(5.10.6). If x̂ðtÞ is known, how do we compute

xðtÞ from x̂ðtÞ, if x̂ðtÞ is not identically zero? It

turns out that the Hilbert transform of xðtÞ is

equal to ½�xðtÞ�. This can be seen from

^̂xðtÞ ¼ ½xðtÞ 
 hðtÞ 
 hðtÞ� !FT HðjoÞHðjoÞXðjoÞ
¼ ð�j sgnðoÞÞ2XðjoÞ ¼ �XðjoÞ: (5:10:7)

It implies that ifx̂ðtÞ 6¼ 0 then we have the inversion

formula

F½^̂xðtÞ� ¼ �XðjoÞ ! ^̂xðtÞ

¼ F�1½�XðjoÞ� ¼ �xðtÞ:
(5:10:8)

Example 5.10.1 Find their Hilbert transforms of the

following functions:

a: x1ðtÞ ¼ e�jo0t; a040; b: xðtÞ ¼ cosðo0tÞ;

c: yðtÞ ¼ sinðo0tÞ; d:x4ðtÞ ¼ A; a constant
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Solution: a. The Fourier transforms of these func-

tions are given by

F½e�jo0t� ¼ 2p dðo � o0Þ: (5:10:9)

Figure 5.10.1a,b gives the Fourier transforms of the

functions in (5.10.9). Figure 5.10.1c gives

HðjoÞ ¼ �j sgnðoÞ. It follows that

½HðjoÞð2pdðoþ o0ÞÞ�
¼ �j 2psgnðoÞdðoþ o0Þ ¼ j2pdðoþ o0Þ:

(5:10:10)

From (5.10.10),

x̂ðtÞ ¼ F�1½j2pdðoþ o0Þ�

¼ je�jo0t ¼ e�jðo0t�ðp=2ÞÞ:
(5:10:11)

Changing the sign in the exponent is a minor matter

and we have

½e�joot� !HT
e�jðo0t�ðp=2ÞÞ
h i

(5:10:12)

b. The Hilbert transform of the cosine function can

be obtained by using Euler’s formula

cosðo0tÞ ¼
1

2
ejo0t þ 1

2
e�jo0t

� �

 !HT 1

2
ejðo0t�ðp=2ÞÞ þ 1

2
e�jðo0t�ðp=2ÞÞ

� �

¼ cosðo0t� ðp=2ÞÞ:

This can be simplified and the corresponding Hil-

bert transform pair is

cosðo0tÞ !
HT

sinðo0tÞ: (5:10:13)

Hilbert transform operation is an integral operation

and the Hilbert transform of a sum is equal to the

sum of the Hilbert transforms.

c. We can repeat the above process and show that

sinðo0tÞ !
HT

sinðo0t�ðp=2ÞÞ¼�cosðo0tÞ:
(5:10:14)

Note also

xðtÞ !HT
x̂ðtÞ; x̂ðtÞ !HT �xðtÞ; x̂ðtÞ 6¼ 0: (5:10:15)

From the above we note that the Hilbert transform

of a sine or a cosine function can be obtained by

adding a phase shift of �ðp=2Þ.
d. In the case of a constant, the transform is an

impulse function. Note that sgnðoÞ o¼0 ¼ 0j . That

is, HðjoÞ o¼0j ¼ 0 and YðjoÞ o¼0j ¼ 0 in (5.10.1).

Since the Fourier transform of a constant is an

impulse function, it follows that the Hilbert trans-

form of a constant is zero. &

We can generalize the above results and state that

any periodic function with zero average value can be

written in terms of Fourier cosine and sine series

and therefore the Hilbert transform of such a peri-

odic function xTðtÞ is

xTðtÞ !
HT

xT t� p
2


 �
: (5:10:16)

(c)

(a) (b)

Fig. 5.10.1 (a)F ½e�jo0t�,
(b) F [e jo0t],
(c) HðjoÞ ¼ �jsgnðoÞ
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In the next example we will make use of the integral

to compute the Hilbert transform.

Example 5.10.2 Find the Hilbert transform of the

following functions:

a: xðtÞ ¼P t=t½ �; b: x1ðtÞ ¼ xðt� t=2Þ; c: yðtÞ ¼ A:

(5:10:17)

Solution: a. Using the integral expression, the Hil-

bert transform is given by

x̂ðtÞ ¼
Z 1
�1

xðaÞ
pðt� aÞda ¼

1

p

Z t=2

�t=2

da
ðt� aÞ

¼ � 1

p
½lnðt� t=2Þ � lnðtþ t=2Þ� ¼ 1

p
ln

tþ t=2
t� t=2

����
����

(5:10:18)

The pulse and its Hilbert transform are shown in

Fig. 5.10.2. The pulse we started with is time limited,

whereas the time-width of the Hilbert transform

pulse is infinite.

b. Hilbert transform of the delayed pulse can be

obtained by changing the variable of integration in

(5.10.18) by b ¼ t� t=2 and following the above

procedure results in

P
t� ðt=2Þ

t

� �
 !HT 1

p
ln

t

t� t

��� ���: (5:10:19)

c. Hilbert transform of a constant is zero. This can

be seen from (5.6.18) at the limit t!1, as

lnð1Þ ¼ 0, which verifies our earlier result. &

Example 5.10.3 Show that a. the energy (or the

power) in an energy signal (or a power signal)

xðtÞ and its Hilbert transform x̂ðtÞ are equal and

b. the signal and itsHilbert transformare orthogonal.

Solution: The results are shown for energy signals

and the results for power signals are left as exercises.

a. The energies in the two functions are given by

Ex̂ ¼
1

2p

Z1

�1

F½x̂ðtÞ�j j2do

¼ 1

2p

Z1

�1

�jsgnðoÞj j2 XðjoÞj j2do

¼ 1

2p

Z1

�1

XðjoÞj j2do ¼ Ex: (5:10:20)

b. The two functions are orthogonal by the general-

ized Parseval’s theorem.

Z1

�1

xðtÞx̂ðtÞdt¼ 1

2p

Z1

�1

XðjoÞ F½x̂ðtÞ�½ �
dt

¼ 1

2p

Z1

�1

jsgnðoÞ XðjoÞj j2do:

(5:10:21) &

5.10.2 Hilbert Transform of Signals
with Non-overlapping Spectra

In Chapter 10 single-sided modulation schemes will

be studied, where Hilbert transforms play an impor-

tant role. Consider the signals xðtÞ and gðtÞ with
their spectra defined by

xðtÞ !FT XðjoÞ; XðjoÞj j ¼ 0; oj j4W

gðtÞ !FT GðjoÞ; GðjoÞ ¼ 0; oj j5W:

(5:10:22)

(a)

(b)

Fig. 5.10.2 (a) Pulse function and (b) Hilbert transform of
the pulse
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That is, xðtÞ is a low-pass signal and gðtÞ is a high-

pass signal. Such is the case in the single sideband

modulation. We state that

H½xðtÞgðtÞ� ¼ xðtÞH½gðtÞ� ¼ xðtÞĝðtÞ: (5:10:23)

This can be proven by using the following steps:

1. Write the time function xðtÞgðtÞ using the trans-

form convolution integral in the form and then

using the Hilbert transform, we have

xðtÞgðtÞ ¼ 1

2p

Z 1
�1

Xðo� aÞGðaÞda; (5:10:24)

H½xðtÞgðtÞ� !FT �jsgnðoÞ

1

2p

Z 1
�1

Xðo� aÞGðaÞda
� �

:
(5:10:25)

2. Write the time-domain product xðtÞĝðtÞ in terms

of the Fourier convolution integral.

3. Noting the non-overlapping spectra of the

two functions, we can relate the two results and

then show (5.10.23). The details are left as an

exercise.

Example 5.10.4 Let mðtÞ be a low-pass signal with

MðoÞ ¼ 0; oj j4W and oc4W, then

H½mðtÞ cosðoctÞ� ¼ mðtÞ sinðoctÞ;

H½mðtÞ sinðoctÞ� ¼ �mðtÞ cosðoctÞ:
(5:10:26)

Solution: These follow from (5.10.23) and the

Hilbert transforms of the sine and cosine functions.

We will use results in studying single sideband mod-

ulations in Chapter 10. &

5.10.3 Analytic Signals

The Hilbert transform is used to define an analytic

signal of the real signal xðtÞ by

xaðtÞ ¼
1

2
½xðtÞ þ jx̂ðtÞ�: (5:10:27)

Some authors do not use the constant (1/2) in the

definition of the analytic signal. The real signifi-

cance of the analytic signal is its spectrum and is

F½xaðtÞ� ¼
1

2
F½xðtÞ þ jx̂ðtÞ� ¼ 1

2
½1þ sgnðoÞ�XðjoÞ

¼
XðjoÞ; o40

0; o50

(
:

(5:10:28)

The spectrum of the analytic signal xaðtÞ is the

positive portion of the spectrum of the real signal

xðtÞ. This property will be useful in the development

of single sideband modulation scheme in Chapter

10. Some authors use the symbol xþðtÞð¼ xaðtÞÞ for
analytic signals. A real signal xðtÞ can be written in

terms of analytic signals

xðtÞ ¼ ½xaðtÞþx
aðtÞ�=2 !
HT ½xaðtÞ�x
aðtÞ�=2:

(5:10:29)

Use of this gives

cosðo0tÞ ¼ ½ejo0t þ e�jo0t�=2;

sinðo0tÞ ¼ ½ejo0t � e�jo0t�=2j:
(5:10:30)

Narrowband noise signals: Although statistical

description of noise is beyond our scope here, we

will study signals with their spectra centered at a

frequency fc with a bandwidthB fc. For example,

the output of an amplitude modulated signal is

xcðtÞ ¼ mðtÞ cosðoctÞ with mðtÞ being a low-pass

signal with its bandwidth much and much smaller

than the carrier frequency fc. Such signals are nar-

rowband (NB) signals. These are expressed in terms

of the envelopeRðtÞ, a slowly varying function and

the phase fðtÞ written in the form

nðtÞ ¼ RðtÞ cosðoctþ fðtÞÞ;RðtÞ � 0: (5:10:31)

In most cases, RðtÞ and fðtÞ are not transformable.

Example 5.10.5 Find the envelope and the complex

envelope of the NB signal in terms of two NB sig-

nals ncðtÞ and nsðtÞ given by

nðtÞ ¼ ncðtÞ cosðo0tÞ � nsðtÞ sinðo0tÞ: (5:10:32)
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Solution: First,

nðtÞ ¼ RðtÞ cosðo0tþ fðtÞÞ;RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2cðtÞ þ n2s ðtÞ

q
;

fðtÞ ¼ tan�1 nsðtÞ=ncðtÞ½ �: (5:10:33)

From this representation, the analytic signal can be

obtained and is

naðtÞ ¼ nðtÞ þ jn̂ðtÞ ¼ ncðtÞ cosðo0tÞ � nsðtÞ sinðo0tÞ
þ jncðtÞ sinðo0tÞ þ jnsðtÞ cosðo0tÞ
¼ ncðtÞ½cosðo0tÞ þ j sinðo0tÞ� þ jnsðtÞ½cosðo0tÞ
þ j sinðo0tÞ� ¼ ½ncðtÞ þ jnsðtÞ�ejo0t:

The envelope and the complex envelopes are, respec-

tively, given by

naðtÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2cðtÞ þ n2s ðtÞ

q
;

~nðtÞ ¼ ncðtÞ þ jnsðtÞ:
(5:10:34) &

Ziemer and Tranter (2002) give interesting appli-

cations of the Hilbert transforms. Refer table

5.10.1 for a short table of Hilbert transforms, see

Hahn Poularikis, ed. (1996).

5.11 Summary

In this chapter Fourier transform integral is used to

discuss and derive some of the related transforms.

These include cosine, sine, Hartley, Laplace, and

Hilbert transforms. Bulk of this chapter deals with

the one-sided Laplace transforms. Specific topics are:

� Fourier cosine and sine and Hartley transforms
� Laplace transforms and their inverses; regions of

convergence
� Basic properties of Laplace transforms; initial

and final value theorems
� Partial fraction expansions
� Solutions of constant coefficient differential

equations using Laplace transforms
� Relationship between Laplace and Fourier

transforms
� Hilbert transforms and their inverses
� Various tables listing some simple time functions

and their transforms

Problems

5.2.1 Derive the following properties using

XcðoÞ ¼ FCT½xðtÞ�:

a: XcðtÞ !
FCT ðp=2ÞxðoÞ;

b: xðatÞ cosðbtÞ !FCT 1

2a
Xc

oþ b

a

� 	
þ Xc

oþ b

a

� 	� �
;

a40; b40;

c: t2xðtÞ !FCT � d2XcðoÞ
do2

;

d: x00ðtÞ !FCT �o2XcðoÞ � x0ð0þÞ:

(Assume xðtÞ and x0ðtÞ vanish as t!1.).

Table 5.10.1 Hilbert transform pairs

Sinusoids:

sinðo0tÞ !
HT � cosðo0tÞ; cosðo0tÞ !

HT
sinðo0tÞ

Exponential:

ejot !HT �jsgnðoÞejot

Rectangular pulse:

P
t

t

h i
 !HT 1

p
ln

tþ t t2= 2

t� t t2= 2

����
����

Impulse:

dðtÞ !HT
1=pt
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5.2.2 Show

a: xðtÞ ¼ 1

a2 þ t2
 !FCT p

2a
e�ao;

b:
1

a2 � t2
 !FCT p

2a
sinðaoÞ;

c:
b

ðt� aÞ2 þ b2
þ b

ðtþ aÞ2 þ b2
 !FCT p sinðaoÞe�bo;

d:
d 2 e�atuðtÞ½ �

dt2
 !FCT a3

a2 þ o2
:

5.2.3 Derive the following associated with sine

transforms using XsðoÞ ¼ FST½xðtÞ�:

a: xðatÞcosðbtÞ !FST 1

2a
Xs

oþb
a

� 	
þXs

o�b
a

� 	� �
;

b: xðatÞ !FST 1

a
Xsðo=aÞ;a40

5.2.4 Show the following are valid:

a:
1ffiffi
t
p  !FST

ffiffiffiffiffiffi
p
2o

r
;

b:
b

b2 þ ðt� aÞ2
� b

b2 þ ðt� aÞ2
 !FST p cosðaoÞe�bo;

b40:

5.3.1 The energy spectral density of a signal

xðtÞ !FT XðjoÞ can be expressed by

ð1=2pÞ XðjoÞj j2¼ ð1=2pÞ ½ReðXðjoÞÞ�2
n

þ½ImðXðjoÞÞ�2
o
:

Derive this in terms of the Hartley transform

XHðoÞ. Also derive the expression for the phase

angle of the spectrum in terms of the Hartley

transform.

5.3.2Derive the Hartley transforms of the following

functions using Fourier transforms:

a: x1ðtÞ ¼ xðatÞ; a 6¼ 0;

b: x2ðtÞ ¼ xðtÞ cosðo0tÞ;
c: x3ðtÞ ¼ xðtÞ cosðo0tÞ:

5.3.3 Derive an expression for the Hartley trans-

form of the convolution yðtÞ ¼ xðtÞ 
 hðtÞ.

5.3.4 Show the following transforms are true.

a: e�at sinðo0tÞuðtÞ !
Hart o0ða2 þ o2

0 � o2Þ þ 2ðaoÞ
ða2 þ o2

0 � o2Þ þ 2ðaoÞ2
;

b: e�at cosðo0tÞuðtÞ !
Hart

ða� oÞða2 þ o2
0 � o2Þ þ 2oðaþ oÞ

ða2 þ o2
0 � o2Þ þ 2ðaoÞ2

;

c:
X1
n¼�1

dðt� nTÞ !Hart p
T

X1
k¼�1

dðo� ðk=TÞÞ;

d: ejo0t !Hart
pdðo� o0Þ:

5.4.1 Find the two-sided Laplace transforms and

their ROCs of the following functions:

a: x1ðtÞ ¼ P½t�; b: x2ðtÞ ¼ te�a tj j; a40:

The following problems are concerned with one-

sided Laplace transforms.

5.4.2 Find the Laplace transforms of the following

functions:

a: x1ðtÞ¼ 2
ffiffiffiffiffiffiffi
t=p

p
: b: x2ðtÞ¼L½t�; c: x3ðtÞ¼ coshðbtÞ:

5.4.3 Find the Laplace transform of the function

xðtÞ ¼ tuðtÞ by the following methods: a: Use the

times-tproperty and the transform of uðtÞ to show

that L½t uðtÞ� ¼ 1=s2.

b. Use the result in part a to show by induction

that tnuðtÞ !LT n!=ðsnþ1Þ .
The proof by induction uses the following proce-

dure. The result is first shown to be true for the case

of n ¼ 1. Then verify that if the result is true for n

then it is also true for nþ 1.

5.6.1 Find the L-transform of xðtÞ ¼ sinðtÞj j; t � 0.

5.6.2 a. Find X1(s)¼ L{x(t)} by using the transform

of the unit step function.

x1ðtÞ ¼
1

T
P

t� T=2

T

� �
 !LT X1ðsÞ:

b. Take the limit of the transform as T! 0 and

identify the corresponding transform pair.
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5.6.3 Show the following transform pair is true by

a.using the integral of the transform and by b. using

the second derivative of the Laplace transform to

show the above result.

xðtÞ ¼ L½t� 1�

¼
t; 05t51

ð2� tÞ; 15t52

0;otherwise

8><
>:

9>=
>; !

LT 1

s2
ð1� 2e�s þ e�2sÞ:

5.6.4 a. Use the differentiation with respect to the

second variable property of the Laplace transforms

to show that L½te�at� ¼ ½1=ðsþ aÞ2�.

5.6.5Determine the transform of the Laplace trans-

form of the following function xðtÞ:

xðtÞ ¼ sinðo0tÞ
t

;

Zo 0

0

cosðotÞdo ¼ sinðo0tÞ
t

:

5.7.1 Verify the following the transform pairs by

a. evaluating the transform directly and by b. using

the partial fraction expansion and then identify

term by term from tables.

1

a2
ð1� cosðatÞÞ !LT 1

sðs2 þ a2Þ :

5.7.2 Verify the following by using the Laplace

transforms properties:

a: x1ðtÞ ¼ ð1=aÞebt sinhðatÞ !
LT

1=½ðs� bÞ2 � a2�

¼ X1ðsÞ;

b: x2ðtÞ¼ ð1=2aÞtsinðatÞ !
LT

s= ðs2þa2Þ2
h i

¼X2ðsÞ:

c: x3ðtÞ ¼ t=T; 05t5T; x3ðtþ nTÞ

¼ xðtÞ; n � 0 !LT 1

as2
� e�as

sð1� e�asÞ :

5.8.1 Find the solution of

dy

dt
þ 3y ¼ t cosðtÞ; yð0�Þ ¼ 1:

5.8.2 Using Laplace transforms to find the solution

of the differential equation

d 2xðtÞ
dt2

� xðtÞ ¼ sinhðtÞ; xð0Þ ¼ 0 and x0ð0Þ ¼ 0:

5.9.1 Find

xiðtÞ ¼ L�1½XiðsÞ� with

a: X1ðsÞ ¼
1� e�s

sðsþ 1Þ ; b: X2ðsÞ ¼
1

s2ðs2 þ 4Þ ;

c: X3ðsÞ ¼
1� e�s

sð1� e�2sÞ :

5.9.2 Show the residues A i can be determined by

XðsÞ ¼NðsÞ
DðsÞ ¼

NðsÞ
ðsþ s1Þðsþ s2Þ . . . ðsþ sNÞ

¼
XN
i¼1

Ai

ðsþ siÞ
; Ai ¼

NðsÞ
dDðsÞ=ds

� �
s¼�sij :

a. Use this result to find L�1fXðsÞg ¼
L�1f1=½sðsþ 3Þ�g.

b. Now consider YðsÞ ¼ ð1=sÞXðsÞ. Use Part a. to

generalize this.

5.9.3 Assuming the regions of convergence are

a: s41; b: s5� 2, find

L�1fXIIðsÞg ¼ L�1
2sþ 1

ðs2 þ s� 2Þ

� �
:

5.9.4 Assuming the following Laplace transforms,

find the corresponding Fourier transforms:

a: XIIðsÞ ¼
1

ðsþ aÞ2
� 1

ðs� aÞ2
; sj j5a; b: XðsÞ

¼ sþ o0

s2 þ o2
0

:

5.10.1 Show

a:
1

1þ t2
 !HT t

ð1þ t2Þ ;

b: dðtÞ !HT 1

pt
;

c: Xs½0� þ
XK
k¼1

Xs½k� cosðko0t

þ y½k�Þ !HT XK
k¼1

Xs½k� sinðko0tþ y½k�Þ:
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Chapter 6

Systems and Circuits

6.1 Introduction

In this chapter we will consider systems in general,

and in particular linear systems. Most systems are

inherently nonlinear and time varying. A human

being is a good example. He can run fast for a while

and then speed comes down. If you plot speed

versus time, the plot is not going to be a straight

line, i.e., the function speed versus time is not lin-

ear. Humans are nonlinear and also time-varying

systems. For example, if you want to ask your dad

for a new car, you do not ask him when he is not

happy. Moods change with time. These considera-

tions are important in, for example, speaker identi-

fication. Human beings are not only nonlinear but

also time-varying complicated systems. Nonlinear

time-varying systems are very hard to deal with.

Even though many of the systems may have non-

linear behavior characteristics, they can be

approximated to be linear systems and they allow

for transform analysis. In addition we are inter-

ested in systems that operate in the same manner

every time we use them. That is, the systems must

be independent of time. Linear time-invariant sys-

tem analysis and design is the basis of present day

system analysis and design. Transfer functions

associated with these systems are discussed. In

addition the frequency analysis makes it very

attractive for the design of systems. Majority of

the discussion in this chapter is on linear time-

invariant systems. These allow for transfer function

analysis. The study of the amplitude and phase

frequency responses of linear time-invariant sys-

tems is one of the important topics. When a signal

through some media, it is modified by the media. In

the frequency domain we can say that some

frequencies are amplified and some are attenuated.

In addition different frequencies are delayed differ-

ently. Our goal is to filter frequencies with appro-

priate attenuations of the input frequencies with a

constant delay at all frequencies in the frequency

band of interest. The delay response is related to

the phase response of a system. If the delay is not

constant, then delay compensation may be

required.

One of the topics we will be interested is filter

circuits. Toward this goal ideal low-pass, high-pass,

band-pass, and band-elimination filter functions

are introduced in this chapter. In addition to these

simple examples of a differentiator, integrator, and

a delay circuit are illustrated. A brief introduction

to nonlinear systems is included later. The topic of

linear systems is one of the topics every undergrad-

uate student in electrical engineering program goes

through. See the books Haykin and Van Veen

(1999), Lathi (1998), Oppenheim et al. (1997),

Nillsson and Riedel (1996), Poularikas and Seely

(1991), Carlson (2000) and others.

6.2 Linear Systems, an Introduction

Our study starts with a system that has an input and

an output. It is symbolically represented by a block

diagram shown in Fig. 6.2.1. The T inside the box is

some transformation that converts the input signal

xðtÞ into the output signal yðtÞ and

y tð Þ ¼ T x tð Þ½ � T maps x tð Þ into y tð Þð Þ: (6:2:1)

R.K.R. Yarlagadda, Analog and Digital Signals and Systems, DOI 10.1007/978-1-4419-0034-0_6,
� Springer ScienceþBusiness Media, LLC 2010
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Some use L½xðtÞ� to represent a linear system. The

system described by (6.2.1) is called a linear system if

the transformation given by T½xðtÞ� satisfies the fol-
lowing conditions:

Principle of additivity: If T½x1ðtÞ� ¼ y1ðtÞ and

T½x2ðtÞ� ¼ y2ðtÞ; then the superposition property

states that

T½x1ðtÞ þ x2ðtÞ� ¼ T½x1ðtÞ� þT½x2ðtÞ� ¼ y1ðtÞ þ y2ðtÞ
(6:2:2)

Principle of proportionality: If T½xðtÞ� ¼ yðtÞ; then
for any constant a

T ax tð Þ½ � ¼ aT x tð Þ½ � ¼ ay tð Þ: (6:2:3)

This property is also referred to as the homogeneity

property. We can combine the two properties into

one and state that a linear system satisfies the fol-

lowing property

T½a1xðtÞ þ a2x2ðtÞ� ¼ a1y1ðtÞ þ a2y2ðtÞ (6:2:4)

for any pair of constants a1 and a2. Otherwise, the

system is called a nonlinear system.

Example 6.2.1 Show that a system described by

yðtÞ ¼ x2ðtÞ is a nonlinear system.

Solution: For two inputs x1ðtÞ and x2ðtÞ, the corre-
sponding outputs are, respectively, given by

y1ðtÞ ¼ x21ðtÞ and y2ðtÞ ¼ x22ðtÞ. If the input is

x1ðtÞ þ x2ðtÞ, then the output is ðx1ðtÞ þ x2ðtÞÞ2 6¼
x21ðtÞ þ x22ðtÞ and therefore the system is nonlinear.

We can make a general statement that if the output

of a system is a power of the input, and the power is

not equal to one, then the system is nonlinear. Other

examples of nonlinear systems include

y1 tð Þ ¼ log x tð Þð Þ; y2 tð Þ ¼ x tð Þj j: &

Example 6.2.2 Two of the many modulation

schemes that we will be interested in are given

below. What can you say about the linearity of

theses schemes?

a: y1ðtÞ ¼ mðtÞ cosðoctÞ;

b: y2ðtÞ ¼ ðAþmðtÞÞ cosðoctÞ;A 6¼ 0:
(6:2:5)

Solution: a.For the inputsm1ðtÞ andm2ðtÞ, the out-
puts are, respectively, given by m1ðtÞ cosðoctÞ and
m2ðtÞ cosðoctÞ. For the input a1m1ðtÞ þ a2m2ðtÞ, the
output is the sum of the two individual outputs

½a1m1ðtÞ þ a2m2ðtÞ� cosðoctÞ. Therefore the system

is linear.

b.For the inputs x1ðtÞ and x2ðtÞ, the outputs are,
respectively, given by ðAþm1ðtÞÞ cosðoctÞ and

ðAþm2ðtÞÞ cosðoctÞ. For the input ða1m1ðtÞþ
a2m2ðtÞÞ, the output is given by ½Aþ a1m1ðtÞþ
a2m2ðtÞ� cosðoctÞ which is not equal to

ðAþm1ðtÞÞ cosðoctÞ þ ðAþm2ðtÞÞ cosðoctÞ:

Therefore the system is nonlinear. Note that the

Fourier transform is a linear operation as

F a1x1 tð Þ þ a2x2 tð Þ½ � ¼ a1F x1 tð Þ½ � þ a2F x2 tð Þ½ �:
(6:2:6) &

The systems described by the following equations

are linear systems and the reader is encouraged to

go through the proofs:

a: yðtÞ ¼ kxðtÞ ðAmplifierÞ (6:2:7a)

b: yðtÞ ¼ k
dxðtÞ
dt

ðDifferentiatorÞ (6:2:7b)

c: yðtÞ ¼
Z

xðbÞdb ðIntegratorÞ (6:2:7c)

d: yðtÞ ¼ xðt� tÞ; t � 0 ðDelay deviceÞ: (6:2:7d)

6.3 Ideal Two-Terminal Circuit
Components and Kirchhoff’s Laws

In this section we will consider two-terminal passive

and active components and laws that pertain to the

interconnection of elements. These are two powerful

Fig. 6.2.1 Block diagram of a system
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laws, referred to as Kirchhoff’s voltage and current

laws first formulated by Kirchhoff (pronounced as

kear-koff) in 1847. One gives equations in terms of

voltages across components and the other gives

equations in terms of currents flowing through the

components. Component equations and the Kirchh-

off’s laws provide us with circuit analysis tools.

6.3.1 Two-Terminal Component
Equations

Simple circuits include ideal sources, voltage, and

current sources and three types of components resis-

tors, inductors, and capacitors. The symbols for the

sources are shown in Fig. 6.3.1. An ideal voltage

source is a two-terminal component whose voltage

across the two terminals is a constant or a function

of time regardless of what the current through the

component is. Examples of voltage sources are wall

outlets, where we assume that the voltage is

vsðtÞ ¼ Vm cosðomtÞ, and batteries, where the vol-

tage across is a constant. The first source we refer

to as an alternating current (AC) source and the

second one is a constant voltage source (DC). The

positive sign on top of the ideal voltage source indi-

cates the higher potential whenever the source vol-

tage is positive. Most generators are voltage sources.

The ideal current source is a two-terminal compo-

nent whose current is a constant or a function of time,

regardless of what the voltage across it is. Transistors

and many other electronic devices act more like a

current source rather than a voltage source. It is

important to notice the voltage signs and the direction

of the currents through the sources. This convention

shows that the sources provide power.

The three basic passive components are the

resistor, inductor, and the capacitor. The Lumped

parameter models are shown in Fig. 6.3.2. These are

passive elements, i.e.,

The three basic passive components are the resis-

tor, inductor, and the capacitor. The lumped para-

meter models are shown in Fig. 6.3.2. These are pas-

sive elements, i.e., they do not produce any power.

Therefore the notation for the three components is

that the current flows from the positive terminal to

the negative terminal. The resistance is measured in

Ohms, the inductor in Henries, and the capacitor in

Farads. The voltage across a resistor is related to the

current by the Ohm’s law and is given by

vR tð Þ ¼ RiR tð Þ: (6:3:1)

The voltage across an inductor is given by

vL tð Þ ¼ L
diL tð Þ
dt

: (6:3:2)

Since the voltage across an inductor is the derivative

of current, it is zero for a constant current. The

inductor stores energy in a magnetic field produced

by current through a coil of wire. Inductor is an

energy storage device and the instantaneous stored

energy, measured in Joules, is

wL ¼
1

2
Li2L tð Þ: (6:3:3)

The current in the inductor can be computed from

(6.3.2) and is

iL tð Þ ¼ iL t0ð Þ þ
1

L

Z t

t0

vL bð Þdb: (6:3:4)

The term iLðt0Þ corresponds to the initial conditions

on the current through the inductor at time t ¼ t0.

The current through a capacitor is given by

iC tð Þ ¼ C
dvC tð Þ
dt

(6:3:5)

Fig. 6.3.1 Voltage, current,
and a constant voltage
source
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The gap in the capacitor symbol reflects that when

the voltage across the capacitor is constant, then the

capacitor acts like an open circuit. Capacitor is an

energy storage device and the instantaneous energy,

measured in Joules, is

wC ¼
1

2
Cv2C: (6:3:6)

The current in the capacitor is

vC tð Þ ¼ vC t0ð Þ þ
1

C

Z t

t0

iC tð Þdt: (6:3:7)

The voltage vcðt0Þ corresponds to the initial voltage

across the capacitor at time t ¼ t0. Initial conditions

are necessary when we consider transient analysis. In

the design of systems we generally do not consider

the initial conditions, as the systems are supposed to

work for any initial conditions. We assume that the

initial conditions on the capacitors and the inductors

are assumed to be zero with t0 is equal to�1. These

allow us to use both the Laplace and the Fourier

transforms. This is especially true in network synth-

esis, as the design specifications are given in terms the

sinusoidal steady state. Once we have the designs, we

can always test the systems with initial conditions

and any possible changes in the responses of systems

associated with the initial conditions. The compo-

nent equations for the three two-terminal compo-

nents discussed above can be expressed in terms of

Laplace transforms. To avoid any confusion from

the inductor values we will make use of the symbol

Lf:g for the Laplace transform. These are

VRðsÞ ¼ LfvRðtÞg ¼ RLfiRðtÞg ¼ RIRðsÞ (6:3:8)

VLðsÞ ¼ LfvLðtÞg ¼ L L
diLðtÞ
dt

� �

¼ sLILðsÞ � LiLð0�Þ or ILðsÞ

¼ iLð0�Þ
s
þ 1

sL
VLðsÞ

(6:3:9)

Vc sð Þ ¼ L vC tð Þf g ¼ L
dvc tð Þ
dt

� �

¼ vC 0�ð Þ
s
þ 1

sC
IC sð Þ or IC sð Þ

¼ sCVC sð Þ � CvC 0�ð Þ:

(6:3:10)

Assuming the initial conditions are zero, we have the

component equations in terms of the Laplace trans-

formed variable s for the three components

L vR tð Þf g ¼ VR Sð Þ;L iR tð Þf g ¼ IR sð Þ;
L vL tð Þf g ¼ VL sð Þ;F iL tð Þf g ¼ IL sð Þ
L vc tð Þf g ¼ Vc sð Þ;L ic tð Þf g ¼ Ic sð Þ

VR sð Þ ¼ RIR sð Þ;VL sð Þ ¼ LsiL sð Þ;
Vc sð Þ ¼ 1=Csð ÞIC sð Þ (6:3:11)

The component equations in terms of the Fourier

transform variable jo are

VRðjoÞ¼F½vRðtÞ�;VLðjoÞ¼F½vLðtÞ�;VcðjoÞ¼F½vcðtÞ�
(6:3:12a)

IRðjoÞ ¼ F½iRðtÞ�; iLðjoÞ ¼ F½iLðtÞ�; icðjoÞs ¼ F½icðtÞ�
(6:3:12b)

VR joð Þ ¼ RIR joð Þ;VLð joÞ ¼ joLILð joÞ

Vc joð Þ ¼ 1=joCð ÞIc joð Þ:
(6:3:12c)

In the case of zero initial conditions either Laplace or

Fourier transform variables can be used. One can be

obtained from the other. Also, the voltage to the

current transform ratio is called as an impedance of

the component under consideration and its inverse

as the admittance of that component. The impe-

dances of the three components are, respectively,

given by R;Ls ðor joLÞ and 1=Cs ðor 1=joCÞ.

R L

vL (t)vR (t)

iR (t) iL (t) iC (t)

vC (t)

C

Fig. 6.3.2 Resistor,
inductor, and the capacitor
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6.3.2 Kirchhoff’s Laws

Circuit analysis is based on the Kirchhoff’s current

and voltage laws and the component equations. The

Kirchhoff’s current law (KCL) states that the sum

of the currents going into a junction, a node, is equal

to the sum of the currents going out of that junction.

In other words, the algebraic sum of the currents

going into a node is equal to zero. The dual to the

current law is the voltage law and is stated for a loop

in a circuit. A loop is any path that goes from one

node to another node and returns to the starting

node. The Kirchhoff’s voltage law (KVL) states

that the sum of the voltage drops around any loop

is equal to the sum of the voltage rises. Or, the

algebraic sum of voltages around a loop is equal to

zero. Examples are given in Fig. 6.3.3.

Example 6.3.1 Consider the simple RC circuit

shown in Fig. 6.3.4a. Derive the differential

equation relating the input and the out put of the

circuit.

Solution: Using the KVL, we have the input vol-

tage xðtÞ is equal to the sum of the voltages across

the resistor and the capacitor.

x tð Þ ¼ vR tð Þ þ vC tð Þ: (6:3:13)

Assuming that the current flowing through the out-

put node is zero, i.e., the circuit is not loaded, we

have

iR ¼ iC; and iR ¼
xðtÞ � vCðtÞ

R
¼ xðtÞ � yðtÞ

R
:

(6:3:14)

Using the component equation for the capacitor

and the relation in (6.3.14) and relating input and

output results in

iC ¼ C
dvC
dt
¼ C

dy

dt
; C

dy

dt
¼ xðtÞ � yðtÞ

R
: (6:3:15a)

RC
dy

dt
þ yðtÞ ¼ xðtÞ: (6:3:15b)

It is a linear combination of the output and the

derivative of the output related to the input. The

system described by this differential equation is a

linear system. In terms of the Laplace and the Four-

ier transforms at each step and simplifying, the out-

put transforms can be expressed as follows:

xðtÞ !LT XðsÞ; yðtÞ !LT YðsÞ; xðtÞ !FT XðjoÞ and

yðtÞ !FT YðjoÞ (6:3:16)

RCðsÞYðsÞ þ YðsÞ ¼ XðsÞ or

ðRCjoþ 1ÞYðjoÞ ¼ XðjoÞ:
(6:3:17)

YðsÞ ¼ ð1=CsÞ
Rþ ð1=CsÞ

XðsÞ ¼ ð1=RCÞ
sþ ð1=RCÞXðsÞ;

YðjoÞ ¼ 1

1þ joRC
XðjoÞ: (6:3:18) &

A simple integrator and a differentiator: The circuit

in Fig. 6.3.4a can be used as an integrator in the low-

frequency range. The integral form of the equation

in (6.3.15b) is

(b)(a)

Fig. 6.3.3 Illustration
of Kirchhoff’s current
and voltage laws
(a) i1ðtÞ þ i2ðtÞ � i3ðtÞ ¼ 0,
(b) v1ðtÞ � v2ðtÞ � v3ðtÞ ¼ 0
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RCyðtÞ þ
Z t

�1

yðaÞda ¼
Z t

�1

xðaÞda: (6:3:19)

If the time constant RC is large enough that the

integral on the left side of the equation in (6.3.19)

is dominated by RCyðtÞ, then (6.3.19) can be

approximated by an integral, a smoothing opera-

tion, and is

RCyðtÞ �
Z t

�1

xðaÞda or yðtÞ ¼ 1

RC

Z t

�1

xðaÞda:

(6:3:20)

Example 6.3.2 Relate the input and the output

transforms of the circuit in Fig. 6.3.4b.

Solution: Using the Kirchhoff’s voltage law, we

have

xðtÞ ¼ vcðtÞ þ yðtÞ ! dxðtÞ
dt

¼ dvcðtÞ
dt
þ dyðtÞ

dt
¼ icðtÞ

c
þ dyðtÞ

dt
dxðtÞ
dt
¼ dyðtÞ

dt
þ 1

RC
yðtÞ: (6:3:21)

If the time constant ðRCÞ is small enough that

the second term dominates the first term on the

right in the last equation, we can approximate

(6.3.21) by

yðtÞ � RC
dx

dt
: (6:3:22)

The circuit approximates the derivative operation

or it acts like a differentiator. Taking the transform

of the equation in (6.3.21) and solving for YðsÞ; we
have

YðsÞ ¼ s=½ðsþ ð1=RCÞÞ�XðsÞ ¼ HðsÞXðsÞ;
HðsÞ ¼ s=½ðsþ ð1=RCÞÞ�: (6:3:23a)

The above two examples provide simple circuits for

low-pass and high-pass filters. The amplitude

response HðjoÞj j can be approximated for small

frequencies and

HðjoÞj j2¼ oj j2

ð1=RCÞþo2
�RC o2

�� ��; oj j�
ffiffiffiffiffiffiffi
1

RC

r

!HðjoÞ�joðRCÞ: (6:3:23b) &

The networks containing ideal resistors (R’s),

inductors (L’s), and capacitors (C’s) result in con-

stant coefficient differential equations.

6.4 Time-Invariant and Time-Varying
Systems

For any system of use, we like the system to respond

every time the same way when we switch the system

on. That is, if we switch today or tomorrow, the

system should respond exactly the same. Such a

system is called a time-invariant system.

Time-invariant system: If the response of a sys-

tem is yðtÞ to the input xðtÞ; i:e:; yðtÞ ¼ T½xðtÞ�,
then the system is called a time invariant or a fixed

system if T½xðt� t0Þ� ¼ yðt� t0Þ. Otherwise, it is a

time-varying system.

Linear time-invariant system: A system is linear

time invariant(LTI)if it is linear and time invariant.

Example 6.4.1 The systems described by constant

coefficient differential equations are linear

time-invariant systems. RLC networks are linear

time-invariant systems. Circuits containing diodes,

transistors, and other electronic components are

nonlinear. &

Example 6.4.2 Consider the model of a carbon

microphone shown in Fig. 6.4.1. The resistance R

Fig. 6.4.1 A time-varying
system

(b)(a)

Fig. 6.3.4 RC circuits
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is a function of the pressure generated by sound

waves on the carbon granules of the microphone,

which is a function of time. The circuit has only

one loop and using the Kirchhoff’s voltage law

(KVL) and the component equations, we can

write

xðtÞ ¼ vR þ vL ¼ RðtÞiðtÞ þ L
diðtÞ
dt

: (6:4:1)

The resistance is a function of time and the result-

ing differential equation has coefficients that

vary with time and the system is a time-varying

system. &

Earlier we have indicated that a human being

is a nonlinear time-varying system. The speech

signal is a time-varying signal, albeit, a slowly

time-varying signal. To analyze a slowly time-

varying signal, we segment the speech signal by

using windows and find the needed information

for each segment. Obviously the spectral charac-

teristics of different phonemes are different. In

the earlier chapters we defined causal signals

that are zero for t50. We can similarly define

causal systems.

Causal systems: Causal systems do not respond

until the input is applied. That is, they do not antici-

pate the input. For a causal system, if the input

xðtÞ ¼ 0 for all t � T; then the output

yðtÞ ¼ 0 for all t � T (6:4:2)

Memory and memoryless systems: A system is called

memoryless if the output of the system at a particular

time depends only on the input at that time. The

resistor is memoryless since vðtÞ ¼ RiðtÞ and the vol-

tage and the current pertaining to this component are

related at each value of t. The capacitor voltage is

related to the current by an integral and the inductor

voltage is related to the voltage by an integral. Capa-

citors and inductors have memory and initial condi-

tions can be assigned on these. The relations are

vCðtÞ ¼
1

C

Z t

�1

iCðaÞda; iLðtÞ ¼
1

L

Z t

�1

vLðaÞda:

(6:4:3)

Invertibility: A system is said to be invertible if the

input of the system can be recovered from the out-

put of the system. Consider that we have the

response of the system given by

yðtÞ ¼ T½xðtÞ�: (6:4:4)

The system is invertible if there is a transformation

T �1 such that

T �1½yðtÞ� ¼ T �1½T½xðtÞ�� ¼ xðtÞ: (6:4:5)

That is ðT �1TÞ ¼ I, the identity operator. Simple

examples of non-invertible systems include

yiðtÞ ¼ x2ðtÞ; y2ðtÞ ¼ uðxðtÞÞ and many others. In

each of these cases we cannot determine the func-

tion xðtÞ from yiðtÞ.
Example 6.4.3Give an expression for the derivative

of the current in an inductor.

Solution: The current in an inductor is

iLðtÞ ¼
1

L

Z t

�1

vLðtÞdt) vLðtÞ ¼ L
diL
dt
: (6:4:6)

Derivative and the integral are inverse

operations. &

Now consider one of the important concepts in

system analysis, i.e., the signal and the system

interaction.

6.5 Impulse Response

Consider the block diagram of a LTI system in

Fig. 6.5.1 with input xðtÞ and the corresponding

output is yðtÞ. We like to find a relationship between

the input and the output and the system character-

istics. If xðtÞ ¼ dðtÞ; an impulse, then the output, the

response of the impulse, is the impulse response of

the LTI system identified by

Fig. 6.5.1 A linear time-invariant system
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yðtÞ ¼ hðtÞ ¼ T½dðtÞ�: (6:5:1)

Therefore the response for the input aidðt� tiÞ is
aihðt� tiÞ, i.e., T½aidðt� tiÞ� ¼ aihðt� tiÞ where

a i’s are some constants. If the input is a linear

combination of impulses, then the response will be

a linear combination of the corresponding impulse

responses. That is,

T½
XN2

i¼N1

aidðt� tiÞ� ¼
XN2

i¼N1

aihðt� tiÞ: (6:5:2)

We can tie this relationship to an arbitrary input

using the approximation of an impulse and relate

the output to the input in terms of a sum of delayed

impulse responses. Impulse functions were repre-

sented in the limit by (see Section 1.4.)

dðt� tiÞ ¼ lim
D t!0

1

D t
P

t� ti
D t

h i
: (6:5:3)

Consider an arbitrary signal xðtÞ shown in

Fig. 6.5.2a. There is no specific significance for

the shape of this function. Now divide the time

into intervals of Dt seconds apart as shown

in Fig. 6.5.2b. The strip centered at t ¼ nDt
with a width of Dt can be approximated by

xðnDtÞP½ðt� nDtÞ=Dt�.
If Dt is negligibly small, the pulse can be assumed

to be a rectangular pulse and the above approxi-

mation is good. The function xðtÞ can now be

approximated by

xðtÞ ffi
XN2

n¼N1

½xðnDtÞDt� 1
Dt

P
t� nDt

Dt

� �
: (6:5:4)

Note themultiplication and division byDt in (6.5.4).
The term xðnDtÞDt approximates the area of the

pulse centered at t ¼ nDt. Now

lim
Dt!0

xðnDtÞ ð1=DtÞP t� nDt
Dt

� �� �
¼ xðtnÞdðt� tnÞ:

(6:5:5)

The time instant tn ¼ nDt is at some point on the

time axis. As Dt! 0; nDt approaches a continuous

variable b, the sum becomes an integral and Dt
becomes a differential and

xðtÞ ¼
Z1

�1

xðbÞdðt� bÞdb: (6:5:6)

This is valid provided xðtÞ is continuous for all t. It
is the convolution of the two functions dðtÞ and
xðtÞ. See the equation in (2.2.2a) in Chapter 2.

That is,

xðtÞ ¼ xðtÞ 	 dðtÞ: (6:5:7)

In a similar manner, the output expression can be

derived. Since the system is a time-invariant system,

the input xðnDtÞdðt� nDtÞ produces an output

xðnDtÞhðt� nDtÞ. Combining all the responses, we

can pictorially identify

XN2

n¼N1

x nDtð Þ d t� nDtð ÞDt½ ��!Produces
the output

y tð Þ

ffi
XN2

n¼N1

x nDtð Þh t� nDtð ÞDt: (6:5:8)

In the limit, i.e., when Dt! 0, nDt becomes a

continuous variable b. The time interval Dt
becomes a differential db and the summation

becomes an integral. Noting the limits on the

sum are arbitrary, the sum can be taken as over

all positive and negative integers and the integral

correspondingly goes from �1 to þ1.

(b)(a)
Fig. 6.5.2 (a) xðtÞ(b) Pulse
centered at t ¼ nDt

200 6 Systems and Circuits



yðtÞ ¼
Z1

�1

xðbÞhðt� bÞdb: (6:5:9)

This integral is a superposition or a convolution

integral of two functions, input and the impulse

response of the linear time-invariant (LTI) sys-

tem. The response of the LTI system to any

input xðtÞ is yðtÞ. Symbolically, it can be written

in the form

yðtÞ ¼ xðtÞ 	 hðtÞ ¼
Z1

�1

xðbÞhðt�bÞdb

¼
Z1

�1

hðaÞxðt� aÞda¼ hðtÞ 	xðtÞ:

(6:5:10)

) YðsÞ ¼ HðsÞXðsÞ: (6:5:11)

The function HðsÞ is the transform of the impulse

response, HðsÞ ¼ L½hðtÞ� and is called the transfer

function of the LTI system in Laplace transform

domain or s-domain. It is symbolically represented

by the block diagram in Fig. 6.5.3. In the Fourier

domain, (6.5.11) is expressed by

YðjoÞ ¼ HðjoÞXðjoÞ;HðjoÞ ¼ F½hðtÞ�: (6:5:12)

The input, the output, and their Fourier (and

Laplace) transforms are identified on the block dia-

gram along with impulse response hðtÞ and its trans-

form HðjoÞ or HðsÞ.

Notes: Input–output energy spectral density relations

of a linear system: The output energy spectral

density is

YðjoÞj j2¼ HðjoÞj j2 XðjoÞj j2: (6:5:13)

Correspondingly, the output autocorrelation (AC)

can be expressed in terms of the input AC as shown

below.

fxðtÞ ¼ xðtÞ 	 xð�tÞ !FT XðjoÞj j2;fhðtÞ

¼ hðtÞ 	 hð�tÞ !FT HðjoÞj j2
(6:5:14a)

fy tð Þ ¼ y tð Þ 	 y �tð Þ !FT ¼ Y joð Þj j2;fy tð Þ
¼ h tð Þ 	 h �tð Þ 	 fx tð Þ: (6:5:14b)

In a similar manner, the output power spectral den-

sity of a periodic (or a random signal) can be

expressed in terms of the input power spectral

density by

Rx tð Þ !FT Sx oð Þ;Ry tð Þ !FT Sy oð Þ;
Sy oð Þ ¼ H joð Þj j2Sx oð Þ: (6:5:15)

These operations are basic to the study of linear

systems, as they provide a simple way of expressing

how the energy (or power) of an input signal is

distributed at the output.

From Examples (6.3.1) and (6.3.2), the respective

transfer functions and the corresponding impulse

responses are given by

H sð Þ ¼ 1=RCð Þ
sþ 1=RCð Þ !

LT 1

RC
e�t=RCu tð Þ ¼ h tð Þ

(6:5:16a)

H joð Þ ¼ 1=RC

joþ 1=RCð Þð Þ !
FT 1

RC
e� 1=RCð Þtu tð Þ

(6:5:16b)

H sð Þ ¼ s

sþ 1=RCð Þ !
LT

d tð Þ � e�t=RCu tð Þ ¼ h tð Þ

(6:5:17a)

H joð Þ ¼ jo
joþ 1=RCð Þ !

FT

d tð Þ� e�t=RCu tð Þ ¼ h tð Þ:

(6:5:17b) &

Notes: A single input–single output of a linear

time-invariant system is described by its transfer

function HðsÞ ¼ YðsÞ=XðsÞ in the Laplace domain

Fig. 6.5.3 Inputs, outputs
and transfer functions
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or in the Fourier domain by HðjoÞ. Its impulse

response is hðtÞ ¼ L�1½HðsÞ� or hðtÞ ¼ F�1½HðjoÞ�:
HðjoÞj j and ffHðjoÞ are the amplitude and the phase

responses of the linear system. &

A causal continuous-time LTI system is mem-

oryless if and only if hðtÞ ¼ cdðtÞ, where c is a

constant. Noting that the output of a causal con-

tinuous-time LTI system is described in terms of

the input xðtÞ and its impulse response hðtÞ, it is

expressed by

yðtÞ ¼
Z1

�1

hðaÞxðt� aÞda

¼
Z1

�1

cdðaÞxðt� aÞda ¼ cxðtÞ:

6.5.1 Eigenfunctions

The transfer function of a linear time-invariant sys-

tem can be expressed in terms of its impulse

response hðtÞ with the input of the form xðtÞ ¼ est .

Then the system output is

yðtÞ ¼ T½xðtÞ� ¼ hðtÞ 	 xðtÞ ¼
Z 1
�1

hðaÞxðt� aÞda

¼
Z1

�1

hðaÞesðt�aÞda ¼ estHðsÞ:

(6:5:18)

An equation satisfying

T estf g ¼ HðsÞest: (6:5:19)

is called an eigenfunction (or a characteristic func-

tion) andHðsÞ is the eigenvalue (or the characteristic
value). That is, est is the eigenfunction and the

eigenvalue is defined as the system function. In

terms of Fourier transforms,

yðtÞ ¼ HðjoÞejot: (6:5:20)

It is the response of a linear time-invariant system

with a transfer function HðjoÞ to an input ejot and

the relationship holds for each o. The responses for

each frequency, corresponding to a linear time-

invariant (LTI) system, are tied by (6.5.20). The

response of a LTI system with a transfer function

HðjoÞ to a unit input Hð0Þ:

6.5.2 Bounded-Input/Bounded-Output
(BIBO) Stability

BIBO stability of a LTI system is tied to its

impulse response hðtÞ. Consider the output of the

LTI system described by the convolution integral

to a bounded input xðtÞ with xðtÞj j �M. It can be

shown that yðtÞ is bounded provided the impulse

response hðtÞ is absolutely integrable. That is,

yðtÞ ¼
Z1

�1

xðt� bÞhðbÞdb) yðtÞj j

�
Z1

�1

xðt� bÞj j hðbÞj jdb �M

Z1

�1

hðbÞj jdb:

(6:5:21)Z1

�1

hðbÞj jdb¼K51) yðtÞj j�MK¼N; (6:5:22:)

If (6.5.22) is satisfied, then the output is bounded

and the system is BIBO stable.

Example 6.5.1Determine if the system described by

its impulse response hðtÞ ¼ e�atuðtÞ; a40 is BIBO

stable.

Solution: The system is BIBO stable since

Z1

�1

hðbÞj jdb¼
Z1

0

e�2abdb¼� 1

2a
e�2ab 10 ¼

1

2a
51

���� :

&

BIBO stability requires that the transfer function

is strictly proper. That is, the degree of the

numerator polynomial of the transfer function is

less than the degree of the denominator polyno-

mial. Otherwise, the impulse response will contain

the derivatives of the impulse function, which

are not absolutely integrable. The ideal differen-

tiator is
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y tð Þ ¼ dx tð Þdt !LT sX sð Þ;H sð Þ ¼ s; h tð Þ ¼ d0 tð Þ:

The derivative of an impulse function is not abso-

lutely integrable. The transfer function is not strictly

proper. Similarly the ideal integrator has a transfer

functionHðsÞ ¼ 1=s has a simple pole on the jo axis

at the origin and is marginally stable.

Stability analysis is an important topic in all areas

of systems engineering, especially in control systems.

The literature is extensive in this area and the discus-

sion here is limited to simple ideas. A linear time-

invariant system is stable if every root of its charac-

teristic equation, i.e., the poles of the transfer func-

tion HðsÞ have negative real parts. The natural and
forced responses of these systems can be described by

seeing the properties of the inverse Laplace trans-

forms of response functions with poles at various

locations on the s plane. As mentioned earlier the

responses of systems have two parts, one is a natural

response that is due to the system itself and the other

one is the response of the system when there is input.

If a characteristic root is a simple real and negative,

then the response corresponding to this pole is expo-

nentially decaying. If a root is multiple and real, then

the response is a polynomial intmultiplied by an

exponentially decaying response. If we have a simple

complex conjugate poles on the imaginary axis, then

the corresponding response is oscillatory. A system

with simple finite poles on the imaginary axis is called

wide sense stable or marginally stable. The ideal inte-

grator has a transfer function HðsÞ ¼ 1=s has a sim-

ple pole on the jo axis at the origin. It is marginally

stable. If we have a pair of complex conjugate poles

on the left half plane, the corresponding response is

exponentially decaying oscillatory response. If the

poles are multiple complex conjugate, then the time

response has the form of a polynomial multiplied by

an oscillatory decaying response.

The systems are stable if its transfer function has

all poles on the left half of the splane. The behavior

of the impulse response depends on the poles closest

to the imaginary axis. For most systems these are

simple complex poles, referred to as dominant poles.

Complicated systems with transfer function given

byHðsÞ generally have many poles and are approxi-

mated by a reduced-order system HRðsÞ by keeping

only the poles near the imaginary axis, referred to as

a model reduction.

Example 6.5.2 Illustrate the model reduction of the

system with the transfer function

H sð Þ ¼100 1

sþ 1ð Þ �
1

sþ 5ð Þ

� �
 !LT 100e�tu tð Þ

� 100e�5tu tð Þ ¼ h tð Þ

Solution: Noting that the pole at s ¼ �5 is farther

away than the pole at s ¼ �1, the transfer function
HðsÞ can be approximated by a reduced-order

function

HR;1 sð Þ ¼ 100

sþ 1ð Þ !
LT

100e�tu tð Þ ¼ hR;1 tð Þ:

Another way is ignore the poles away from the

imaginary axis. Then

H sð Þ ¼ 400

5 sþ 1ð Þ :2sþ 1ð Þ ) HR;2 sð Þ

¼ 80

sþ 1ð Þ !
LT

80e�tu tð Þ ¼ hR;2 tð Þ: &

6.5.3 Routh–Hurwitz Criterion
(R–H criterion)

The R–H criterion Kuo (1987) provides a test

if the roots of a polynomial given below are on

the left half plane without actually factoring the

polynomial.

DðsÞ ¼ dns
n þ dn�1s

n�1 þ � � � þ d1sþ d0 (6:5:23)

Without loosing any generality the coefficient of

sn is assumed to be 1. Furthermore, if d0 ¼ 0,

i.e., the polynomial has a root at s ¼ 0, the

polynomial can be divided by s and test the

resulting polynomial for the stability. The

Routh array starts by arranging two rows con-

sisting of the coefficients of the polynomial in

the following form:

Note that ðn� kÞth row starts with the coefficient

ðsn�kÞ. If n is even (odd), then d0 is the last entry in

row n (n�1). The next step is construct row (n�2) by
using rows n and n�1.
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Row n : ðsnÞ : dn dn�2 dn�4 :::

Row n� 1 : ðsn�1Þ : dn�1 dn�3 dn�5 :::

(6:5:24)

Row n� 2 : ðs n�2Þ :
dn�1dn�2 � dndn�3

dn�1
dn�1dn�4 � dndn�5

dn�1
::: (6:5:25)

The entries in row n�2 can be written in terms of

determinants.

Row n� 2 :� 1

dn�1

dn dn�2

dn�1 dn�3

����
����

� 1

dn�1

dn dn�4

dn�1 dn�5

����
���� ::: (6:5:26)

Row n�3 is computed in a similar manner using

rows n�1 and n�2. The procedure is continued until
we reach row 0. The R–H criterion states that all the

roots of the polynomialD(s) lie on the left half of the

s-plane if all the entries in the left most column of

the Routh array are nonzero and have the same

sign. The number of sign changes in the leftmost

column is equal to the number of roots ofD(s) in the

right half s-plane.

Example 6.5.3 Determine the number of roots that

are on the right half s-plane of DðsÞ.

DðsÞ ¼ s4 þ 2s3 þ 3s2 þ 4sþ 5: (6:5:27)

Solution: Routh array is given below.

Row 4 :ðs4Þ : 1 3 5

Row 3 :ðs3Þ : 2 4 0

Row 2 :ðs2Þ : �

1 3

2 4

����
����

2
¼ �1 �

1 0

2 5

����
����

2
¼ � 5

2
0

Row 1 :ðs1Þ : �

2 4

�1 �ð5=2Þ

����
����

�1 ¼ �1 0 0

Row 0 :ðs0Þ : �

�1 �5=2
�1 0

����
����

�1 ¼ 5=2 0 0

Entries in the first column can be written by

½1; 2;�1;�1; 5=2�. There are two sign changes indi-

cating that there are two roots on the right half s-

plane. Using MATLAB, the roots of the polyno-

mial can be computed by using the following:

d¼ ½1 2 3 4 5� : coefficents of the polynomial

r¼ rootsðdÞ : Gives the roots :
:2878� j1:4161

�1:288� j:8579

� �

d¼ polyðrÞ : Gives the coefficeients of the

polynomial

Routh array gives the information about the

number of roots on the right half of the s-

plane and not the actual roots. In the Routh

array, there are divisions. If these division

terms are zero, then a different technique is

needed to overcome this. &

Special cases:

1. Routh array has a zero in the first column of a

row.

2. Routh array has an entire row of zeros.

1. If the first entry in the row ðn� iÞ; i 6¼ 0 or 1 is

zero, to compute the entries in the row ðn� iþ 1Þ,
a problem of division by zero arises. To alleviate

this problem, e is assigned to 0. e is allowed to

approach zero either e! 0þ or 0�.

Example 6.5.4 Consider the polynomialDðsÞ ¼ s4þ
s3 þ 2s2 þ 2sþ 1. Use the Routh array to determine

the number of roots on the right half of the s plane.
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Solution: Routh array is given by

Row 4 : ðs4Þ : 1 2 1

Row 3 : ðs3Þ : 1 2 0

Row 2 : ðs2Þ : 0ðeÞ 1 0

Row 1 : ðs1Þ : � 1�2e
e 0 0

Row 0 : ðs0Þ : 1

In the next step the entries in the first column are

written by

First column: 1;1;e;�ð1�2eÞ=e;1½ �
! e¼0þ) þ;þ;þ;�;þ½ �g; e¼0�) þ;þ;�;þ;þ½ �f g

Using either of the two cases, there are two sign

changes. There are two roots on the right half of

the s-plane. Using MATLAB, the roots of DðsÞ
are 0:1247� j1:3066; �0:6217� j0:4406. The poly-

nomial has two roots in the right half of the s plane.&

2. Next consider the case that an entire row in the

Routh array consists of zeros. To illustrate this

consider the following possibilities:

a. Roots are located on the imaginary axis

b. Roots with symmetry about origin

c. Roots with quadrant symmetry

Each of these implies the following type of factors in

the polynomial DðsÞ:

a: ðs� jbÞ ! ðs2 þ b2Þ
b: ðs� aÞ ! ðs2 � a2Þ

(6:5:28a)

c: ðs� a� jbÞ! s4þ½2ða2þb2Þ� 4a2�s2þða2þb2Þ2

(6:5:28b)

These roots produce even polynomials resulting

in a row of zeros in the Routh array. The row

before the row of zeros in the array gives

the even polynomial identified here as D2ðsÞ
and is called the auxiliary equation. That is

DðsÞ ¼ D1ðsÞD2ðsÞ. To complete the Routh

array, take the derivative of the auxiliary equa-

tion and replace the row of zeros by the row

obtained from the coefficients of the derivative

of the auxiliary equation.

Example 6.5.5 Consider the polynomial

DðsÞ ¼ s4þ s3 � s2 þ s� 2. Show that the system

described by this characteristic polynomial is

unstable using the Routh array.

Solution: Routh array is given by

Row 4 : ðs4Þ : 1 �1 �2
Row 3 : ðs3Þ : 1 1 0

Row 2 : ðs2Þ : �ð1� ð�1ÞÞ ¼ �2 �2 0

Row 1 : ðs1Þ : 0 0

Noting that the row 1 has all zeros, the auxiliary

equation can be written from row 2 and

D2ðsÞ ¼ �ðs2 þ 1Þ ¼ 0. Since the (–) sign is irrele-

vant for the roots, the sign can be ignored andwritten

as DðsÞ ¼ D1ðsÞð�D2ðsÞÞ and D1ðsÞ ¼ s2 þ s� 2.

The auxiliary polynomialD2ðsÞ has a pair of imagin-

ary roots at s ¼ �j1 : In this simple example, the

polynomial D1ðsÞ can be factored and its roots are

located at s ¼ 1;�2 indicating that DðsÞ has one

root on the right half of the s-plane. If the number

of rootsD1ðsÞ is higher than 2, then the Routh array

can be continued in the following manner.

Row 4 : ðs4Þ : 1 �1 �2
Row 3 : ðs3Þ : 1 1 0

Row 2 : ðs2Þ : �2 �2 0 ðAuxiliary polynomial; D2ðsÞ ¼ �ð2s2 þ 2ÞÞ
Row 1 : ðs1Þ : �4 0 0 ðD02ðsÞÞ
Row 0 : ðs0Þ : �2

Entries of the first column in the above Routh

array are ½1; 1;�2;�4;�2� indicating there is one

root inside the right half of the s-plane. As men-

tioned before, Routh array does not provide the
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roots of the polynomial. It merely identifies the num-

ber of roots in the right half s-plane. Routh array is

frequently used in feedback control systems to deter-

mine the condition of stability of a control system.

Note that if all the coefficients of the characteristic

polynomial DðsÞ do not have the same sign, the

polynomial has some roots on the right half s-plane

and the corresponding system is unstable.

Example 6.5.6 Using the Routh array determine the

range of values for K for which all the roots of the

polynomial DðsÞ ¼ s3 þ 3s2 þ 3sþ K are located

inside the left half plane.

Solution: The Routh array is

Row 3 :ðs3Þ : 1 3

Row 2 :ðs2Þ : 3 K

Row 1 :ðs1Þ : �ðK� 9Þ
3

0

Row 0 :ðs0Þ : K

To have all the roots of the polynomial on the left

half plane, the coefficients in the first column in the

Routh array must have the same signs. This implies

that ð9� KÞ40 and K40. All the roots are on the

right half plane if 05K59, which gives the range of

values of K to keep the system stable. When K ¼ 9,

row 1 has all zeros. Correspondingly, the auxiliary

polynomial is D2ðsÞ ¼ ð3s2 þ 9Þ, indicating polyno-

mial has a pair of roots on the imaginary axis. In the

case of K ¼ 0, there is a root at s ¼ 0:

In the case of a root at s ¼ 0; it is evident from

the polynomial that DðsÞ ¼ sD1ðsÞ and the Routh

array can be determined starting with D1ðsÞ. &

Notes: A polynomial DðsÞ with all its roots on the

left half s-plane is called a strictly Hurwitz polyno-

mial. If it has all its roots on the left half s-plane and

in addition, it has simple poles on the imaginary axis,

then it is called a pseudo-Hurwitz polynomial. &

6.5.4 Eigenfunctions in the Fourier
Domain

In terms of the Fourier domain, we have from

(6.5.20) that

yðtÞ ¼ T ejot
� 	

¼ HðjoÞejot ¼ f HðjoÞj jejfðoÞgejot

¼ HðjoÞj jej½otþfðoÞ�: (6:5:30)

For a particular value of o ¼ o0, (6.5.30)

reduces to

T ejko0t
� 	

¼ Hðjko0Þejko0t ¼ Hðjko0Þj jej½ko0tþfðko0Þ�

(6:5:31)

Since the system under consideration is a LTI sys-

tem, the response to several frequencies can be

determined by (6.4.31). The system with the fre-

quency response HðjoÞ acts like a gate to allow

certain frequencies fully or partially through or

attenuated or eliminated.

Example 6.5.7 Consider a LTI system with a trans-

fer function HðjoÞ. Use (6.5.30) to find the

responses to the real periodic inputs given by

a: xTðtÞ ¼
X1

k¼�1
Xs½k�ejko0t;

b: xTðtÞ ¼ Xs½0� þ
X1
k¼1

d½k� cosðko0tþ y½k�Þ: (6:5:32)

Solution: a. Using (6.5.30), the output of the linear

time-invariant (LTI) system is

yTðtÞ ¼ HðjoÞ
X1

k¼�1
Xs½k�ejko0t

¼
X1

k¼�1
Hðjko0ÞXs½k�ejko0t ¼

X1
k¼�1

Ys½k�ejko0t:

(6:5:33)

If the input to a LTI system is periodic, then the

output is also periodic with the same period and the

F-series coefficients of the output and the input are

related by

Ys½k�¼Hðjko0ÞXs½k�¼ Hðjko0Þj j Xsð½k�j jejðfðko0Þþy½k�Þ

(6:5:34a)

Ys½k�j j ¼ Xs½k�j j Hðjko0Þj j;ffYs½k� ¼ ffXs½k� þfðko0Þ:
(6:5:34b)
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b: yTðtÞ ¼Hð0ÞXs½0�

þ
X1
k¼1
ð Hðko0Þj jd½k�Þ cosðko0tþ fðko0Þ

þyðko0ÞÞ: (6:5:35) &

Notes: The response given in (6.5.33) is the steady-

state response of the linear system to a periodic

input. A linear time-invariant system does not pro-

duce any new frequencies. The output amplitudes

and the phases of the harmonics are different from

the amplitudes and the phases of the input signal

harmonics and are determined by (6.5.34b), for a

real periodic input. &

Example 6.5.8 Use the Fourier transforms to derive

the output given in (6.5.33).

Solution:

xT tð Þ ¼
X1

k¼�1
Xs k½ �ejko0t !FT X joð Þ

¼
X1

k¼�1
pXs k½ �d o� ko0ð Þ

YðjoÞ ¼ HðjoÞ
X1

k¼�1
pXs½k�dðo� ko0Þ

¼
X1

k¼�1
pfHðjko0ÞXs½k�gdðo� ko0Þ:

Taking the inverse transform of the transform of

YðjoÞ in (6.4.35), we have

yTðtÞ ¼
X1

k¼�1
fHðjko0ÞXs½k�gejko0t: (6:5:36) &

Example 6.5.9 Find the output yTðtÞ of the RC

circuit in Fig. 6.5.4b corresponding to the periodic

pulse signal shown in Fig. 6.5.4a with a period equal

to T ¼ 2p.

Solution: The Fourier series of the input waveform

is given by

xTðtÞ ¼
4

p
cosðtÞ
1
� cosð3tÞ

3
þ cosð5tÞ

5
� :::

� �
;

T ¼ 2p; o0 ¼ 1: (6:5:37)

The transfer function, the amplitude, and phase

responses are given by

HðjoÞ ¼ 1

ð1þ joRCÞ ; HðjoÞj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðoRCÞ2

q ;

ff � tanðoRCÞ: (6:5:38)

The kth harmonic term and the steady-state output

response are, respectively, given by

Hðjko0Þj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðko0RCÞ2

q ; ffHðjko0Þ

¼ � tan�1ðko0RCÞ: (6:5:39)

(a) (b)
Fig. 6.5.4 (a) Periodic pulse
waveform and (b) RC circuit
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yTðtÞ ¼
4

p
cosðt� tan�1ð1ÞÞ

1
ffiffiffi
2
p � cosð3t� tan�1ð3ÞÞ

3
ffiffiffiffiffi
10
p þ cosð5t� tan�1ð5ÞÞ

5
ffiffiffiffiffi
26
p � :::

� �
: (6:5:40)

Note the kth harmonic input produces the kth har-

monic output illustrated below.

4

p
cosðko0tÞ o0¼1j ! 4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2o2

0ðR2C2Þ
q cosðko0t� tan�1ðko0RCÞÞ o0¼1j : (6:5:41)

Attenuation is proportional to ð1=kÞ and the

phase shift is � tan�1ðko0RCÞ in the kth

harmonic term. The RC circuit is a low-pass

filter. The low frequencies have smaller attenua-

tions and higher frequencies are significantly

attenuated. &

6.6 Step Response

The step response of a continuous time LTI system

is the response to a step input xðtÞ ¼ uðtÞ. The step
response sðtÞ; is related to the impulse response hðtÞ
(see (6.5.10)) and

sðtÞ¼ hðtÞ 	uðtÞ¼
Z1

�1

hðbÞuðt�bÞdb¼
Z t

�1

hðbÞdb:

(6:6:1)

In the above equation the variable of integration is

b not t and uðt� bÞ ¼ 0 for t5b. The step

response can be obtained by integrating the impulse

response and the impulse response can be obtained

by differentiating the step response. That is,

hðtÞ ¼ dsðtÞ
dt

: (6:6:2)

Example 6.6.1 Determine the step response of the

RC circuit in Example 6.3.1 from the impulse

response and vice versa.

Solution: From (6.5.16a), the impulse response is

hðtÞ ¼ 1

RC
e�t=RCuðtÞ: (6:6:3a)

The step response is

sðtÞ ¼
Z t

�1

hðbÞdb

¼
Z t

�1

1

RC
e�ðb=ðRCÞÞuðbÞdb ¼ ð1� e�ðt=RCÞÞuðtÞ:

(6:6:3b)

The impulse response from the step response by

hðtÞ ¼ dsðtÞ
dt
¼ dð1� e�t=RCÞuðtÞ

dt

¼ dðtÞð1� e�t=RCÞ þ uðtÞ 1

RC
e�t=RC

� �

¼ ð1=RCÞe�t=RCuðtÞ:

Note ð1� e�t=RCÞ is continuous at t ¼ 0 and

dðtÞð1� e�t=RCÞ is zero, see (1.4.5). The impulse

and the step responses are sketched in Fig. 6.6.1.

The rise time of the RC circuit is the time required

for a unit step response to go from 10 to 90% of its

final value. It is given by

tr ¼t2 � t1; sðt1Þ ¼ ð1� e�t1=RCÞ ¼ :1;
sðt2Þ ¼ 1� e�t2=RC

0:9 ¼ e�t1=RC; and 0:1 ¼ e�t2=RC; tr ¼ ðt2 � t1Þ
¼ RC lnð9Þ ¼ 2:197RC: (6:6:4)
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Rise time is a measure of how fast the system

responds to an input. It is related to the bandwidth

of the circuit and we will discuss this shortly. &

Rise time and the 3 dB bandwidth: The output trans-

form and the transfer function of the RC circuit

given Fig. 6.3.4a are

YðjoÞ ¼ 1

1þ joRC

� �
XðjoÞ ¼ HðjoÞXðjoÞ;

HðjoÞ ¼ 1

1þ joRC

� �
: (6:6:5)

The amplitude and the phase responses of the trans-

fer function are

20og HðjoÞj j ¼ 20 log
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðoRCÞ2
q dB;

ffHðjoÞ ¼ � tan�1ðoRCÞ: (6:6:6)

The responses are shown in Fig. 6.6.2 for positive

frequencies. Note the amplitude response is even

and the phase response is odd. The amplitude at

o ¼ 0 is 1 and in dB, it is 0 dB. At o ¼ 1=RC, the

magnitude is equal to 1/
ffiffiffi
2
p

and in dB this is �3 dB.
The 3 dB frequency (or the half-power) is

o3dB ¼ 1=RC; or f3dB ¼ 1=2pRC Hertz (6:6:7)

The amplitude response HðjoÞj j decreases

smoothly for higher frequencies and goes to zero

at infinity. The rise time is related to the 3 dB

bandwidth and is

tr ¼ 2:197=ð2pf3dBÞ ¼ :35=f3dB: (6:6:8)

In summary, the RC circuit is a simple low-pass

filter passing frequencies between 0 and f3 dB with

small attenuations and all the higher frequencies are

attenuated significantly. The phase response is zero

at o ¼ 0: At the 3 dB frequency, it is equal to

ð�p=4Þ and at the infinite frequency the phase

response reaches ð�p=2Þ rad or � 90: &

Ideal integrator: The transfer function of the ideal

integrator is HðsÞ ¼ 1=s. The amplitude and the

phase responses are, respectively, given by

HðjoÞ ¼ð1=joÞ ¼ ð�j=oÞ; HðjoÞj j ¼ 1= oj j;
ffHðjoÞ ¼ �p=2;o40: (6:6:9)

This function represents an ideal integrator by not-

ing that if the input is a sinusoid, say cosðotÞ, the
output of the integrator and its transform are

(b)(a)

Fig. 6.6.2 (a) Amplitude
response and (b) phase
response

(a) (b)

Fig. 6.6.1 (a) Impulse
response and (b) step
response
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yðtÞ ¼
Z t

�1

xðtÞdt ¼ 1

o
sinðotÞ ¼ 1

o
cos ot� p

2


 �

(6:6:10)

YðjoÞ ¼ HðjoÞXðjoÞ;HðjoÞ ¼ HðjoÞj jejffHðjoÞ;
HðjoÞj j ¼ 1= oj j; ffHðjoÞ ¼ �j sgnðoÞ: (6:6:11)

The amplitude response is inversely proportional to

oj j; the phase response for o40 is ð�p=2Þ, a con-

stant. Since the amplitude gain of an ideal integrator

is ð1= oj jÞ, it suppresses the higher frequency com-

ponents and enhances the low-frequency compo-

nents. The noise signals contain mostly high-fre-

quency components, and the integrator reduces

the size of the high-frequency components.

Ideal differentiator: The transfer function of an

ideal differentiator is

HðsÞ ¼ s;HðjoÞ ¼ jo: (6:6:12)

The amplitude and phase responses are given by

HðjoÞj j ¼ oj jand ffHðjoÞ ¼ p
2
;o40: (6:6:13)

Consider that a sinusoidal function xðtÞ ¼ cosðotÞ
is passed through a differentiator, then

yðtÞ¼dxðtÞ
dt
¼d cosðotÞ

dt
¼�o sinðotÞ

¼o cos otþp
2


 �
: (6:6:14)

Note the amplitude response increases linearly with

frequency o and phase response is constant and is

equal to ðp=2Þ rad for positive frequencies. From

the amplitude response expression, we see that the

high frequencies are enhanced. Most corrupted sig-

nals contain noise components that are of high

frequencies. Using a derivative function enhances

the noise signal much more than a low-frequency

signal. Derivative function is used to sharpen a

signal. For example, to sharpen an image at the

edges, we use a derivative function. Note the dis-

continuity in the phase response at o ¼ 0.

Example 6.6.2 Show the circuit shown in Fig. 6.6.3

can be used as a differentiator.

Solution: The output transform is

YðjoÞ ¼ joL
Rþ joL

XðjoÞ; HðjoÞj j ¼ oj jLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðoLÞ2

q ;

ffHðoÞ ¼ p
2
� tan�1

oL
R

� 
: (6:6:15)

For small frequencies, i.e., oj j ¼ ðR=LÞ, the output
transform can be approximated. Noting the F-

transform derivative theorem, it follows that the

circuit acts like a differentiator. That is,

Y joð Þ � jo Lx joð Þ½ � !FT L
dx tð Þ
dt
� y tð Þ: (6:6:16) &

Example 6.6.3 Find the response of theRC circuit in

Fig. 6.3.4a to the input pulse

xðtÞ ¼ AP
t� T

2

T

� �
: (6:6:17)

Fig. 6.6.4 RC circuit
response to a pulse input

Fig. 6.6.3 RL circuit
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Solution: The transfer function HðjoÞ, its impulse

response hðtÞ, output frequency response and the

response yðtÞ using the convolution integral, we

have

Y joð Þ¼H joð ÞX joð Þ !FT h tð Þ	 x tð Þ¼y tð Þ; (6:6:18)

H joð Þ¼ 1

1þ joRCð Þ !
FT 1

RC
e�t=RCu tð Þ ¼ h tð Þ

(6:6:19)

yðtÞ ¼
Z1

�1

hðt� bÞxðbÞdb ; hðt� bÞ

¼
1

RC
e�ðt�bÞ=RC; b5t

0; b4t

8<
: : (6:6:20)

yðtÞ ¼

0; t50

Z t

0

A

RC
e�ðt�bÞ=RCdb; 05t5T

ZT

0

A

RC
e�ðt�bÞ=RCdb; t4T

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼
0; t50

Að1� e�t=RCÞ; 05t5T

Að1� e�T=RCÞe�ðt�TÞ=RC; t4T

8><
>: :

(6:6:21)

Note that the input pulse is the same as in Example

2.2.4, except the pulse is of width T instead of 2T

and the pulse started at t ¼ 0 rather than at t ¼ �T.
The function in (6.6.21) is sketched in Fig. 6.6.4.

The response can be visualized by the following

argument. For t50, the input is zero and the

output is zero as well. At t ¼ 0 we have a step

input and the capacitor voltage cannot charge

instantaneously and the voltage across the capacitor

starts at 0 and increases exponentially with a time

constant RC. At t ¼ T, the input becomes zero and

for t4T the charge across the capacitor discharges

through the resistor and the capacitor voltage

decreases exponentially from the peak value of

Að1� e�T=RCÞ to zero as t!1. Another way to

derive (6.6.2) is that the input pulse function is

AP½ðt� ðT=2ÞÞ=T� ¼ AuðtÞ � Auðt� TÞ.

Assuming the unit step input response is huðtÞ, the
delayed step input response is huðt� TÞ. The

response to the pulse input is

AðhuðtÞ � huðt� TÞÞ: &

Simple frequency analysis of the RC circuit in

the last example: The Fourier transforms of the

input, the transfer function and the output trans-

form are

XðjoÞ ¼F AP
t� T

2

T

� �� �
¼ At

sinðoT=2Þ
ðoT=2Þ e�jo

T
2 ;

HðjoÞ ¼ 1

1þ joRC
: (6:6:22)

YðjoÞ ¼ At sincðoT=2Þe�joT=2
ð1þ joRCÞ : (6:6:23)

We will sketch the amplitude of the output trans-

form by considering two special cases:

a. Pulse width T is very large compared to the time

constant t ¼ RC (i.e., T� RCÞ
b. Time constant is very small compared to the time

constant (i.e., T� RCÞ. Now

YðjoÞj j ¼ HðjoÞj j XðjoÞj j: (6:6:24)

For the two special cases, the functions

HðjoÞj j and XðjoÞj j are sketched in Fig. 6.6.5a,b.

In case a, the 3 dB bandwidth is assumed to be

much larger than the main lobe width of the

response. That is, ð1=ð2pÞf3dBÞ ¼ ð1=RCÞ � 1=T

or T� RC and the function HðjoÞj j is essentially
flat in the range oj j51=T. In this frequency band

the amplitude of the output transform is approxi-

mately equal to the magnitude of the input trans-

form and we can approximate and

YðoÞj j � k XðoÞj j; k� a constant. The output

pulse will be a good approximation of the input

pulse. In case b, ð1=ð2pf3dBÞÞ � 1=T or T � RC.

From Fig. 6.6.5 we see that XðjoÞj j is essentially

flat in the 3 dB frequency range. That is,

YðjoÞj j � HðjoÞj j in this range. This indicates that

the amplitude of the output transform looks more

like the magnitude of the system transform in this

case. We are interested in the input signal trans-

form, not the transform of the system. When a

signal is passed through a system, the bandwidth

of the system must be much larger than the
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bandwidth of the input signal in order the output

response to have some resemblance of the input.

Let us now consider some simple ideas about the

response of a sequence of pulses. The detection of

the existence of the pulse at the output can be

improved by increasing the amplitude of the input

pulse or increasing the width of the pulse or both.

Increasing the amplitude increases the power

requirements on the input. Increasing the pulse

width implies that the number of pulses that

can be transmitted per unit time has to be

reduced. In addition the pulses are not band

limited. Since the RC circuit is a LTI system, it

is conceivable that if the input consists of a set

of pulses, the output response will be a sum of

the individual responses of the pulses with

appropriate delays in the pulse responses. The

sum may become unbounded.

Next we will consider the process of removing the

effects of the RC circuit. This type of a situation

appears in measuring the voltage across a

component, seeing a picture through a lens and

many others. In these measurements, the signal is

affected by the measuring device or the system we

visualize with. If the bandwidth of these devices is

much, much larger than the signal bandwidths, then

the effect of the measuring devices is minimal.

Removing the effects of the transmission system

from the received signal is an important problem

and this process is called the deconvolution and is

discussed next.

Deconvolution: Let the output response of a LTI

system with the transfer function HðjoÞ, and

the corresponding impulse response hðtÞ, is

given by

y tð Þ ¼ h tð Þ 	 x tð Þ !FT H joð ÞX joð Þ ¼ Y joð Þ:
(6:6:25)

To recover the signal, xðtÞ from yðtÞ, consider

Fig. 6.6.6. The first block represents a system and

(a)

(b)

Fig. 6.6.5 Frequency
analysis of an RC
circuit with a pulse
input(a) T ¼ RC,
(b) T ¼ RC
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the second block identified by HRðoÞ represents a
system to recover the original signal. The output

transfrom; ZðjoÞ is related to the input transform,

assuming no loading effects, is

ZðjoÞ ¼ HRðjoÞHðjoÞXðjoÞ: (6:6:26)

To recover the signal, it is desired to have

HðjoÞj j HRðjoÞj j � k, a gain constant in the fre-

quency range of interest. Since there is an inherent

delay in every system, say t seconds, this delay can

be incorporated and zðtÞ ¼ kxðt� tÞ. This implies

that

HðjoÞHRðjoÞ ¼ ke�jo t or HRðjoÞ ¼ k e�jo t=HðjoÞ:
(6:6:27)

A circuit that gives the transfer function HRðjoÞ in
(6.6.27) may not always be possible. For example, if

HðjoÞ ¼ 0 at some frequency o ¼ o i, the function

HRðjoÞ goes to infinity at this frequency. Therefore,

HRðjoÞ can only be approximated. In terms of the

time domain, in the ideal case, the inverse transform

of ZðjoÞ is given by

zðtÞ ¼ F�1½ZðjoÞ� ¼ F�1½HðjoÞHRðjoÞXðjoÞ�
¼ hRðtÞ 	 hðtÞ 	 xðtÞ (6:6:28)

There is perfect deconvolution if hðtÞ 	 hRðtÞ ¼ dðtÞ
and zðtÞ ¼ dðtÞ 	 xðtÞ ¼ xðtÞ:

6.7 Distortionless Transmission

A system is called distortionless if the output is the

same as the input except the signal may be attenu-

ated by the same amount for all frequencies along

with a delay of t0 seconds. A distortionless system

has the output

yðtÞ ¼H0xðt� t0Þ
ðH0 and t040 are some constants:Þ:

(6:7:1)

For simplicity, assume H040. We essentially tried

to obtain a distortionless signal in using the decon-

volution process in Fig. 6.6.6. Taking the transform

of yðtÞ, the output transform and the transfer func-

tions are as follows:

Y joð Þ ¼ H0e
�jot0X joð Þ ! H joð Þ ¼ H0e

�jot0 :

(6:7:2)

The amplitude and the phase responses of the dis-

tortionless system are

HðjoÞj j ¼ H0j j; ffHðjoÞ ¼ �ot0: (6:7:3)

These functions are shown in Fig. 6.7.1, whereH0 is

assumed to be positive. This implies that all fre-

quencies are attenuated (or amplified) by the same

amount. It is referred to as an all-pass system. The

phase response is linear. The delay associated with

an ideal delay line, a LTI system, can be seen by

considering a sinusoidal input xðtÞ ¼ cosðotÞ. The
output isH0 cosðoðt� t0ÞÞ. The amplitude response

is the same for all frequencies. In addition, the out-

put is H0 cosðoðt� t0ÞÞ ¼ H0 cosðot� ot0Þ. That

is, the time shift is t0 and the phase shift is ot0 and
the phase is linearly proportional to the frequency o
with a slope of ð�t0Þ

6.7.1 Group Delay and Phase Delay

The phase response in (6.7.3) and the delay are

respectively given by

yðoÞ ¼ ffHðjoÞ ¼ �ot0 (6:7:4)

Fig. 6.6.6 Deconvolution
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t0 ¼ �
dffHðjoÞ

do
¼ � dyðoÞ

do
¼ dðot0Þ

do
: (6:7:5)

Group delay: The group delay deals with a group of

frequencies (usually referred as delay for simplicity).

The result in (6.7.5) can be used to find the delay

associated with a transfer function.

HðjoÞ ¼ HðjoÞj jejyðoÞ: (6:7:6)

The group delay deals with a group of frequencies

(usually referred as delay for simplicity). It is a non-

linear function of frequency and is defined by

TgðoÞ ¼ �
dyðoÞ
do

: (6:7:7)

Example 6.7.1 Find the group delay associated with

the transfer function

HðjoÞ ¼ 1

ðc� ao2Þ þ bðjoÞ ; a; b; c
40:

Use the identity
d tan�1ðxÞ

dy
¼ 1

1þ x2
dx

dy
:

� 
:

(6:7:8)

Solution: The amplitude, the phase response, and

the group delay are given by

HðjoÞj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� ao2Þ þ ðboÞ2

q ;

yðoÞ ¼ ffHðjoÞ ¼ � tan�1
bo

c� ao2

� �
:

(6:7:9)

TgðoÞ ¼ �
dyðoÞ
do

¼
d tan�1 bo=ðc� ao2Þ

� �
do

:

(6:7:10)

¼ 1

bo=ðc�ao2Þð Þ2þ1
ðc�ao2Þb�boð�2aoÞ

ðc�ao2Þ2

¼ bðcþao2Þ
ðbo2Þþðc�ao2Þ2

:

(6:7:11)

Figure 6.7.2 illustrates the delay function in (6.7.11)

and is not constant for all o: &

In a later section, filters will be designed that

have transfer functions with nonlinear phase.

When signals passed through such filters, differ-

ent frequencies are delayed differently. This is

not critical for speech signals, as the human ear

compensates for small delays. It is a problem in

transmitting data and compensation is necessary

so that the filter delay equalizer combination has

approximately a constant delay in the desired

frequency range. A second-order delay equalizer

has the form

HciðjoÞ ¼
ðbi � o2Þ � jaio
ðbi � aio2Þ þ jaio

; ai; bi40: (6:7:12)

The amplitude and phase responses are

HciðjoÞj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbi � o2Þ2 þ ðaioÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbi � o2Þ2 þ ðaioÞ2

q ¼ 1;

ffHciðjoÞ ¼ �2 tan�1
aio

bi � o2
: (6:7:13)

Fig. 6.7.1 Amplitude and
phase responses of a
distortionless system

214 6 Systems and Circuits



Noting that the phase angles of a product of trans-

fer functions add, the amplitude and phase

response of a cascade of n second-order sections

result in

HcðjoÞ ¼ P
n

i¼1
HciðjoÞ; HcðjoÞj j ¼ P

n

i¼1
HciðjoÞj j ¼ 1

ffHcðoÞ ¼
XN
i¼1
ffHciðoÞ: (6:7:14)

The parameters a0is and b0is can be adjusted so that

the amplitude response of the filter cascaded by

the delay equalizer has the same magnitude as the

filter functionHFðjoÞ and the corresponding phase

angle has approximately linear phase (i.e.,

approximately constant delay) in the desired fre-

quency range. That is,

HðjoÞ ¼ HFðjoÞHcðjoÞ; HðjoÞj j � HFðjoÞj j
(6:7:15a)

ffHðjoÞ ¼ffHFðjoÞ þ ffHcðjoÞ;

� d

do
ffHðjoÞ � constant: (6:7:15b)

Phase delay: Consider the input xTðtÞ ¼A cosðo0tÞ
to a LTI system with a transfer function

HðjoÞ ¼ HðjoÞj jejffHðjoÞ; ffHðjoÞ ¼ yðoÞ: (6:7:16)

If the input to a LTI system is a sinusoid then the

output is also a sinusoid at the same frequency,

although the output may have a different amplitude

and phase. See Example 6.5.6. Let the output of the

system to the input xTðtÞ is

yTðtÞ ¼A Hðjo0Þj j cosðo0tþ y0Þ
¼A Hðjo0Þj j cos½o0ðtþ ðy0=o0ÞÞ�: (6:7:17)

To have a distortionless transmission, the output

must have the form

yTðtÞ ¼ B cos½o0ðt� t0Þ�: (6:7:18)

Comparing this with (6.7.17), the time delay

between the input and the output at the frequency

f0 ¼ o0=2p is t0 ¼ �y0=o0. For a single frequency,

phase delay is appropriate. The phase delay TpðoÞ in
terms of the system phase response yðoÞ ¼
argðHðoÞÞ is defined by

TpðoÞ ¼ �yðoÞ=o: (6:7:19)

Notes: For rational transfer functions, yðoÞ is a

transcendental function, whereas the group delay

is a rational function of o2 making it easier for filter

design. &

Example 6.7.2 Find the phase delay and the group

delay of the transfer function

HðjoÞ ¼ �½ð1� joÞ=ð1þ joÞ�: (6:7:20a)

Solution: The phase, the group delay, and the phase

delay responses are

yðoÞ ¼ p�2tan�1ðoÞ!TgðoÞ ¼�
dyðoÞ
do

¼ 2

1þo2
;TpðoÞ ¼�

yðoÞ
o

: (6:7:20b) &

Earlier, we have seen that the delay associated with

a system is a function of its phase response. Transfer

0 ω

Tg(ω)

c
b

Fig. 6.7.2 Group delay
characteristics in Example
6.7.1
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functions of stable systems can have the same ampli-

tude response with different phase and delay

responses. There are three important systems to

consider. These are minimum phase, mixed phase,

and maximum phase systems.

Consider the transfer function of a system

HðsÞ ¼ K
P
k
ðsþ zkÞ

P
m
ðsþ pmÞ

: (6:7:21)

For stability reasons all the poles located at s ¼ �pk
are located on the left half of the s-plane. If the zeros

of the transfer function s ¼ �zk are on the nega-

tive half of the s-plane, then the system is a

minimum phase system. If some zeros are on

the right half s-plane and some are on the left

half s-plane, the system is a mixed phase and if

all the zeros are located on the right half of the s-

plane, then the system is a maximum phase

system.

6.8 System Bandwidth Measures

In Sections 4.2.2, bandwidth measures of a signal

were briefly studied. The concentration was on the

time–bandwidth product and illustrated examples,

wherein the bandwidth is inversely proportional to

time width of the signal. Similar ideas can be used

using the duration of the impulse response of a

system and the system bandwidth. In Section 6.3,

a simple, but a practical measure, the half-power or

the 3 dB bandwidth was considered. This width is

the range of frequencies over which the magnitude

of the function exceeds ð1=
ffiffiffi
2
p
Þ of its maximum.

Half-power bandwidth comes from the fact that

the square of the magnitude is power and

20logð1=
ffiffiffi
2
p
Þ ¼ �3dB. There are different mea-

sures that are used and some of these are

considered.

6.8.1 Bandwidth Measures Using the
Impulse Response hðtÞ and Its
Transform Hðj!Þ

The time and the frequency durations of the impulse

response hðtÞ are defined by

T0 ¼
1

hð0Þ

Z1

�1

hðtÞdt;

B0 ¼
1

Hð0Þ

Z1

�1

HðjoÞdf;o ¼ 2pf: (6:8:1)

From the central ordinates theorems of the

F-transforms, the time width times the band-

width is equal to 1. This definition for the band-

width makes use of the spectrum on both sides.

That is,

T0B0 ¼ 1: (6:8:2)

For the one side case, which is what we mostly use,

divide the frequency width by 2.

Example 6.8.1 Using the above measures show that

T0 ¼ 1 and B0 ¼ 1 for the following:

a: x1 tð Þ ¼ P tð Þ !FT sinc
o
2


 �
¼ X1 joð Þ;

b: x2 tð Þ ¼ e�atu tð Þ !FT 1

aþ jo
¼ X2 oð Þ;

c: x3 tð Þ ¼ e�at
2 !FT

ffiffiffi
p
a

r
e�o

2=4a (6:8:3)

Solution: a. In Chapter 4, the areas of the rectan-

gular and the sinc functions were considered and the

results are T0 ¼ 1;B0 ¼ 1.

b. Noting that hð0Þ ¼ 1=2 ðhðtÞ is discontinuous
at t ¼ 0Þ and Hð0Þ ¼ 1=a , it follows that

2

Z1

�1

e�atuðtÞdt¼ 2

a
and

a

2p

Z1

� 1

1

aþ jo
do

¼ a2

2p

Z 1
�1

1

a2 þ o2
do

¼ a2

p

Z 1
0

1

a2 þ o2
do ¼ a

2
;

T0 ¼ ð2=aÞ;B0 ¼ ða=2Þ;T0B0 ¼ 1: (6:8:4)

c. By making use of integral tables, the time width

and the bandwidth of the Gaussian pulses both

come out to be one and the product is one. &
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Time functions can take both positive and nega-

tive values, some authors use the magnitudes or the

squares of the time functions hðtÞ in defining the

time width in (6.8.2a). Others use moments to define

the time and bandwidths. In the following, the

bandwidth measures that are simple and practical

will be considered.

6.8.2 Half-Power or 3 dB Bandwidth

In Section 6.6, anRC circuit was considered. On the

amplitude spectrum, the 3 dB frequency was identi-

fied (see Fig. (6.6.2a)). The half-power or the 3 dB

bandwidth is a practical measure and is widely used

in systems and circuit theory, especially in filter

designs. In identifying the 3 dB bandwidths, only

positive frequencies are considered.

Example 6.8.2 Show the 3 dB bandwidth of the

Gaussian function is W (Carlson (1975)).

HðjoÞ ¼ e�ðlnð2=2Þðo=WÞ ðnote; Hðj0Þ ¼ 1Þ:

Solution: The half-power frequency is equal to W

since

Hðjo3dBÞj j2¼ 1

2
¼ ðe�2ðlnð2Þ=2Þ ðo3dB=WÞ2Þ o3dB¼Wj

) 1

2
¼ e� lnð2Þ: (6:8:5) &

Although the 3 dB bandwidth is the most common

one, we could obviously define 6 dB bandwidth or

any other value for the bandwidth measure. In sum-

mary the 3 dB bandwidth computes the width by

considering the peak value of the spectrum and a

value (or values) of the (1/
ffiffiffi
2
p

) below the maximum

value of the spectrum. This measure is simple and it

does nottake into consideration any ripples in

HðjoÞj j function between the two 3 dB frequencies.

A more generalized measure that takes into consid-

eration the ripples by making use of integrals in

computing the bandwidths. These methods are

used in random signal analysis, as the spectrum of

noisy signals have many peaks. For a good discus-

sion on this topic, see Peebles (2001). These mea-

sures have been developed using signals rather than

systems. To make it uniform in our discussion we

will useXðjoÞ rather thanHðjoÞ. When we consider

examples of transfer functions, HðjoÞ will be used.

6.8.3 Equivalent Bandwidth or Noise
Bandwidth

The equivalent noise bandwidth is obtained by equat-

ing the areas contained in the signal energy spectrum

with a pulse spectrum of bandwidthWeq ¼WN rad/s.

Figure 6.8.1 illustrates a signal spectrum and noise

equivalent is computed as follows:

Z1

�1

XðjoÞj j2do ¼ XðjoÞj j2max2Weq

)Weq ¼

R1
0

XðjoÞj j2do

XðjoÞj j2max

;Beq ¼
Weq

2p
: (6:8:6)

If the system bandwidth of the transfer function

HðjoÞ is of interest, replace XðjoÞ by HðjoÞ in

(6.8.6).

Example 6.8.3 Determine the noise equivalent

bandwidth of the filter transfer function

Fig. 6.8.1 Noise equivalent
bandwidth
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HðjoÞj j2¼ 1

1þ ðoRCÞ2
¼ ½1=ð1þ ðo=WÞ2Þ�;

o ¼ 2pf;W ¼ 1=RC:

Solution: Using (6.8.6) and HðjoÞj jmax¼ 1, we have

Weq ¼
1

2p

Z1

0

W2

ðW2 þ o2Þ do ¼W tan�1ðo=WÞ 10
��

¼Wp=2: (6:8:7)

) Beq ¼ ½1=4RC�Hz: (6:8:8)

The3dB frequencyof theRCcircuit, f3dB ¼ 1=2pRC
is related to the equivalent noise bandwidth and

Beq ¼ 1:57B3dB. The equivalent noise bandwidth

works as well for signals that have spectrum in the

middle, such as the band-pass spectrum. In such

cases, using the center frequency o0 for the peak in

the amplitude response of the band-pass filter, the

equivalent bandwidth is

Weq ¼

R1
0

HðjoÞj j2do

Hðjo0Þj j2
;Beq ¼

Weq

2p
Hz: (6:8:9) &

6.8.4 Root Mean-Squared (RMS)
Bandwidth

The RMS bandwidth comes from the statistical

measures, where the variance is a measure of the

spread of a density function. Consider the low-pass

energy spectral density shown in Fig. 6.8.1. The area

under this function is the energy

E ¼ 1

2p

Z1

�1

XðjoÞj j2do: (6:8:10)

Now define the normalized energy spectral density

function by

XnoðjoÞj j2¼ XðjoÞj j2=E: (6:8:11)

It is real, even, and positive and the area under the

function is 1. It has the same properties as a prob-

ability density function (PDF). In the PDF case, we

define the variance as a measure of the spread of the

density function. In this case the spread is measured

by the bandwidth. We can define the root mean

square (RMS) bandwidth as

W2
RMS ¼

Z1

�1

o2 XnoðjoÞj j2do ¼
R1
�1 o2 XðjoÞj j2do
R1
�1

XðjoÞj j2do
:

(6:8:12)

Example 6.8.4 Compute the RMS bandwidth (see

Peebles (2001).) and compare it with the 3 dB fre-

quency which is given by

XðjoÞj j2¼ 10

½1þ ðo=10Þ2�2
: (6:8:13)

Solution: Using integral tables, we have

Z1

�1

10

½ð1þðo=10Þ2�2
do¼ 105

Z1

�1

do

½100þo2�2
¼ 50p:

(6:8:14a)

Z1

�1

o2 XðjoÞj j2do¼ 105
Z1

�1

o2

½100þo2�2
do¼ 5000p:

(6:8:14b)

o2
RMS ¼

5000p
50p

¼ 100;oRMS ¼ 10 rad=s;

FRMS ¼ 1:5915Hz:

Xðjo3dBÞj j2¼ 1
2 Hð0Þj j2¼ 1

2
10¼ 5¼ 10

½1þðo3dB=10Þ2�2

)o3dB¼ 6:436 or f3dB¼ 1:243Hz:

:

In this special case, the 6 dB bandwidth comes out

to be the same as the RMS bandwidth. The con-

cepts of RMS bandwidth can be easily extended to

band-pass spectra. Assuming that most of the

spectra is around �o0, the RMS bandwidth is

given by

W2
RMS ¼

4
R1
0 ðo� o0Þ2 XðjoÞj j2doR1

0 XðjoÞj j2do
(6:8:15)

RMS bandwidth is more general than the 3 dB

bandwidth, as it can handle general spectra with

several peaks and valleys in the passband of the

energy spectral density. &
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6.9 Nonlinear Systems

In this section we will consider simple nonlinear

systems and illustrate the difficulties in the spectral

analysis of the responses. A nonlinear system is

described by a time domain relationship between

the input and the output. This can be expressed in

the form of a graphical representation or in terms of

a general output function yðtÞ ¼ gðxðtÞÞ, where the
output function gð:Þ is a complicated closed form

expression or in terms of a power series of xðtÞ. A
system is nonlinear if it has components that have

nonlinear characteristics, such as a diode. In many

cases, nonlinear systems are approximated by linear

systems, as they are easier to handle, see Ziemer and

Tranter (2002).

The system described by a polynomial function

of the input xðtÞ, such as

yðtÞ ¼
Xn
i¼0

aix
iðtÞ: (6:9:1)

is linear if all ai0s are zero except a1: If any of the

other ai0s are nonzero, then the system is nonlinear.

An example is a device that has saturation nonli-

nearity. It has a voltage to current characteristic

that is linear within a range and outside that range,

the voltage saturates, see Fig. 6.9.1a. A device that

may have this type of a characteristic is a resistor.

The Ohm’s law says that v ¼ Ri is valid in a certain

range of currents and voltages. Outside this range,

the resistor is a nonlinear component. A hard lim-

iter is an important example. The output voltage is

1 if the input voltage is positive and �1 if the input
voltage is negative (see Fig. 6.9.1b.).

Example 6.9.1 Find the output yðtÞ defined below

and sketch the one-sided line spectra of the input

xðtÞ ¼ B1 cosðo1tÞ þ B2 cosðo2tÞ; B1;B240 with

oi ¼ 2pfi; i ¼ 1; 2 and f24f1 and yðtÞ, see Ziemer

and Tranter (2002).

yðtÞ ¼a0 þ a1xðtÞ þ a2x
2ðtÞ; ai 6¼ 0; xðtÞ

¼B1 cosðo1tÞ þ B2 cosðo2tÞ; B1;B240: (6:9:2)

Solution: The output is

yðtÞ ¼ a0 þ a1B1 cosð2pf1tÞ þ a1B2 cosð2pf2tÞ
þ a2B

2
1 cos

2ðo1tÞ þ a2B
2
2 cos

2ðo2tÞ
þ a2ð2B1B2Þ cosðo1tÞ cosðo2tÞ (6:9:3)

¼½a0þ
1

2
a2B

2
1þ

1

2
a2B

2
2� DCoffsetterm

þ½a1B1cosðo1tÞþa1B2cosðo2tÞ� Linearterms

þ1
2
a2½B2

1cosð2o1tÞþB2
2cosð2o2Þt� Harmonicterms

þa2B1B2½cosðo1þo2Þtþcosðo2�o1Þt� Inter

modulationterms:

(6:9:4)

Figure 6.9.2 gives the input and the output one-

sided amplitude line spectra. System nonlinearity

created a DC term, linear terms (frequencies f1
and f2), harmonic distortion terms (frequencies,

2f1 and 2f2), and inter modulation terms (sums

and differences of the input frequencies, ( f2 � f1Þ
and ð f1 þ f2Þ). Note that the output of a linear

time-invariant system has the same frequencies as

the input with possible changes in the amplitudes

and phases. Nonlinear system generates new

frequencies. &

(b)(a)

Fig. 6.9.1 Examples of
nonllinear input–output
characteristics
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6.9.1 Distortion Measures

Most systems have inherent nonlinear components.

It may be desirable to operate them in the linear

region, if possible. Amplification is a good example,

where the nonlinearities may be small and the dis-

tortions will be small enough that they can be toler-

ated. The next question is how does onemeasure the

distortions due to a nonlinear system? A simple way

is compare a nonlinear system time response to a

linear system time response. To achieve these mea-

sures, start with a single input, a sinusoid, say

xðtÞ ¼ cosðo0tÞ and measure the distortion due to

the nonlinearities in the system described xðtÞ by

yðtÞ ¼
X
i

aix
iðtÞ; where ai

0 s some constants:

(6:9:5)

The powers of the cosine functions can be expressed

in terms of sine and cosine terms, where the frequen-

cies will be multiples of the input frequency, i.e., we

will have harmonics. The output can be written in

terms of trigonometric Fourier series

yðtÞ¼Y½0�þ
X1
k¼1

A½k�cosðko0tÞþ
X1
k¼1

B½k�sinðko0Þt:

(6:9:6)

The constants Y½0�;A½k�0s; and B½k�0s are functions
of the constants a0is and the powers of the input

sinusoid. The kth distortion term is measured by

the ratio

D½k� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2½k� þ B2½k�
A2½1� þ B2½1�

s
: (6:9:7)

Obviously the frequency of interest f0 ¼ o0=2p
should be in the passband of the signal. Manufac-

turers of stereo systems provide literature that gives

these numbers in terms of dBs for their systems.

Clearly, if the distortion termsD½k�0s; k 6¼ 1 are neg-

ligible, then the nonlinear system comes close to a

linear system.

6.9.2 Output Fourier Transform
of a Nonlinear System

In the following example, a system with a polyno-

mial nonlinearity is considered and illustrates the

effect of the nonlinearities in terms of the input and

the output frequencies.

Example 6.9.2 Let the input xðtÞ and the output yðtÞ
in terms of the input are as given below. Noting

F½x2ðtÞ� ¼ ð1=2pÞ½XðjoÞ 	 XðjoÞ�, sketch the output

spectrum assuming

x tð Þ !FT X joð Þ ¼
Y o

W

h i
;

y tð Þ ¼ a0 þ a1x tð Þ þ a2x
2 tð Þ !FT Y joð Þ: (6:9:8)

YðjoÞ ¼ a02pdðoÞ þ a1XðjoÞ
þ ða2=2pÞ½XðjoÞ 	 XðjoÞ�: (6:9:9)

Solution: Convolution of two identical rectangular

pulses is a triangular pulse (see Example 2.3.1.) and

YðjoÞ ¼ a02pdðoÞ þ a1P
o
W

h i
þ ða2=2pÞL o

W

h i
:

(6:9:10)

(b)(a)

Fig. 6.9.2 Example 6.9.2,
(a) Input line spectra and
(b) Output line spectra
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The three parts are explicitly shown in Fig. 6.9.3.

Note that the width of the triangular pulse is 2W.

Therefore, the bandwidth of the output signal is two

times that of the input signal. If a system has a

second-order nonlinearity, then the frequency width

of the output signal will be doubled that of the input

signal. A system with a nth order nonlinearity, then

the bandwidth of the output signal will increase from

BHz to ðnBÞHz: Most signals are not band limited

and the transmission systems have a limited band-

width and filtering is necessary. &

Frequency analysis of a nonlinear system is diffi-

cult and may not even be possible. If it can be

approximated by a linear system, then frequency

domain analysis provides useful information. Time

domain analysis is simpler for nonlinear systems.

6.9.3 Linearization of Nonlinear System
Functions

Nonlinear systems are hard to deal with in general

terms. A function gðxÞ can be approximated about a

point x ¼ x0 using Taylor series expansion

gðxÞ ¼ gðx0Þ þ
dg

dx

� �
x¼x0j ðx� x0Þ

þ d2 g

dx2

� �
ðx� x0Þ2

2!

" #
þ :::

dgðxÞ¼ gðxÞ�gðx0Þ�
dg

dx

� �
x¼x0
ðx�x0Þ¼m x¼x0dxj :

(6:9:12)

Note that the approximation is valid for small

excursions of x from x0 and we can neglect higher-

order terms. It is a linear relationship between small

changes in both the input and output related by the

slope of the function mat x ¼ x0, see Nise (1992).

6.10 Ideal Filters

In this section we will consider the basics of low-

pass, high-pass, band-pass, band-elimination fil-

ters, and the ideal delay line filters. The filters are

specified based on a transfer function HðjoÞ in

terms of its amplitude, phase, or delay responses,

HðjoÞj j, phase ffHðjoÞ or �½dHðjoÞ=do�. Finding
HðjoÞ from the specifications is the first step. The

next step involves the synthesis. We will consider

here the ideal filter functions that describe their

functions, and simple circuits that can be used as

filters.

Low-pass filters allow low frequencies to pass

through with small attenuation and attenuate or

eliminate high frequencies; high-pass filters elim-

inate or attenuate low frequencies and allow high

frequencies go through with possibly small

attenuations; band-pass filters allow a band of

frequencies to go though with small attenuation

and attenuate or eliminate frequencies that are

outside this band; band-elimination or band-

reject filters let the low and high frequencies

pass through and attenuate or eliminate a band

of frequencies somewhere in the middle. Delay

line filters are primarily used in cascade with

filters so that the cascaded filter delay line com-

bination has an approximate linear phase char-

acteristics. Filters are used in every communica-

tion system. If the frequencies of the two signals

are disjoint, then we can remove the undesired

signal by using a band-pass filter that allows the

desired signal to go through with a small attenua-

tion and attenuate or eliminate the undesired

signal. Tuning to a particular radio station

involves eliminating, i.e., filtering out all the

other signals from the other stations all available

at the front end of the radio or TV receivers. The

DC component can be removed by using a high-

pass filter or a simple bias removal component, a

capacitor.

Fig. 6.9.3 Output transform of a nonlinear system
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Example 6.10.1 Illustrate the Bell System TOUCH-

TONE telephone dialing scheme.

Solution: Bell systems TOUCH-TONE telephone

dialing scheme uses some of the filters. The discus-

sion follows that of Daryanani (1976). The filters are

used in the detection of signals generated by a push

button telephone. As we dial a telephone number,

i.e., by pushing a button on the telephone, a unique

set of two-tone signals are generated and transmitted

to the telephone central office, where the signals are

processed to identify the number that is transmitted.

The buttons and the tone assignments of a TOUCH-

TONE telephone are shown in Fig. 6.10.1. It has 12

buttons. These correspond to 10 decimal digits, a star

button, and a pound button. The letters are also

identified on the buttons. For example, on the but-

ton identified by 2 has the letters ABC indicating

that the number 2 represents A, B, and C as well as

2. Operator button (0) is used for zero. The star (*)

button and the pound (#) button are used for other

special purposes, such as responding to queries

from an answering machine. There are four other

buttons that are not shown and are used for special

purposes. The signaling code provides 16 distinct

signals that use 4 low and high frequencies given by

Low: ð697Hz; 770Hz; 852Hz; 941HzÞ;
High : ð1209Hz; 1336Hz; 1477Hz; 1633HzÞ

Pressing one of the buttons generates a pair of

unique frequencies, one lower and the other higher.

The fourth high-band frequency, 1633 Hz, is for

special services. The block diagram shown in

Fig. 6.10.2 illustrates the detection scheme in the

telephone office. The received two tones are

amplified first and the two tones are then separated

into two groups by the low-pass and the high-pass

filters. The low-pass filters pass the low frequencies

with very low attenuation and block the high fre-

quencies. Similarly the high-pass filters pass the

high frequencies with very little attenuation and

block the low frequencies. The separated tones are

then converted to square waves of fixed amplitudes

by using limiters. Signals are then passed through

eight band-pass filters. Each of these passes only

one tone and rejects the others. The band-pass filter

characteristics are such that there is very little

attenuation for the particular frequency and a sig-

nificant attenuation to block the other frequencies.

For a detailed discussion on the amplitude charac-

teristics of low-pass, band-pass, and high-pass fil-

ters, see Daryanani (1976). The outputs of the band-

pass filters are fed into detectors. The detectors are

energized when their input voltage exceeds a set

threshold value and the outputs of the detector

provides the required dc switching level to connect

the caller to the party being called. &

Filters can be implemented either in terms of

analog or digital domain. Next we will consider

each of the filter types in a more formal fashion

and discuss the generation of simple transfer func-

tions that allow for the analysis of these filters.

6.10.1 Low-Pass, High-Pass, Band-Pass,
and Band-Elimination Filters

The words low-pass means that when the signal xðtÞ
is passed through a low-pass filter, only low

Low-band frequencies

697 1
2 3

770
4 5 6

852
7 8 9

941 * #
0

1209 1336 1477 1633

ABC DEF
Hz

GHI JKL MNO
Hz

PRS TUV WXY
Hz

Oper
Hz

Hz Hz Hz Hz

→

→

→

→

↑ ↑ ↑ ↑

High-band frequencies 

Fig. 6.10.1 Tone
assignments for
TOUCH-TONE dialing
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frequencies, say 0 to fc ¼ oc=2p, are passed and

block all frequencies above the cutoff frequency fc:

The amplitude of the ideal low-pass filter transfer

function is (H0 is assumed to be positive)

HLPðjoÞj j¼H0P
o
2oc

� �
¼

H0; oj j�oc

0; oj j4oc

�
;oc¼2pfc:

(6:10:1)

Every transmission system takes time, i.e., the signal

will be delayed. It is ideal to have this delay to be a

constant, say t0 s for all frequencies,which may not

be possible. In terms of frequency domain, the out-

put transform of such a system is

YðjoÞ¼HLpðjoÞXðjoÞ; HLPðjoÞ¼H0P
o
2oc

� �
e�jot0 ;

HLpðjoÞ
�� ��¼H0Pðo=2ocÞ; andffHLpðjoÞ¼�ot0

(6:10:2)

The amplitude and the phase response plots are

shown with respect to the frequency variable o in

Fig. 6.10.3. On the magnitude plot the band of

frequencies from 0 to fc as the passband and the

band of frequencies from fc to 1 as the stopband

are shown. Since the amplitude spectrum of a real

signal is even and the phase spectrum is odd, the

discussion can be limited to only positive frequen-

cies. The phase response is assumed to be linear, i.e.,

slope is constant. The group delay is

t0 ¼ �dffHLpðjoÞ=do: (6:10:3)

Can we design a real circuit that has the transfer

function HLpðjoÞ? For a physically realizable sys-

tem, the impulse response hðtÞ ¼ 0 for t50, i.e., the

system is causal. For a realizable system, the output

cannot exist before the input is applied. The impulse

response of the ideal low-pass filter can be

Fig. 6.10.2 Block diagram
of detection scheme in the
telephone office

Fig. 6.10.3 Amplitude and
phase responses of an ideal
low-pass filter

6.10 Ideal Filters 223



determined from the results in Chapter 4 (see

(4.3.28).). It is repeated below.

sin a t0 � t0ð Þð Þ
p t� t0ð Þ  !

FT Y o
2a

h i
e�jot0 (6:10:4)

hLp tð Þ ¼F�1 HLP joð Þ½ � ¼ F�1 H0

Y o
2oc

� �
e�jot0

� �

¼H0 2fcð Þ sin oc t� t0ð Þð Þ
oc t� t0ð Þ : (6:10:5)

In Fig. 6.10.4, the input, an impulse function

dðtÞ, applied at t ¼ 0, the block diagram represent-

ing the ideal low-pass filter and the impulse

response are identified. The impulse response, a

sinc function, peaks at t ¼ t0, giving a value of

ð2fcH0Þ at this time. From the figure we can see

that the response is nonzero for t50: That is, there

is output before the input is applied. The ideal low-

pass filter is not causal and is physically unrealizable.

We can also see this from the Payley–Wiener criter-

ion stated below.

For a causal system, the impulse response

hðtÞ ¼ 0 for t50, as it does not respond before the

input is applied. The causality condition can be

stated in terms of the transfer function HðjoÞ. It is
called the Paley–Wiener criterion Papoulis (1962)

and is given in terms of the inequality

Z1

�1

ln HðjoÞj jj j
ð1þ o2Þ do51: (6:10:6)

If HðjoÞj j ¼ 0 over a finite frequency band, then

the above integral becomes infinite. HðjoÞj j can be

zero at isolated frequencies and still satisfy the

criterion. The criterion describes the physical relia-

bility conditions and is not of practical value.

That is, if HðjoÞj j ¼ 0 over any band of frequen-

cies, the Payley–Wiener criterion states that the sys-

tem is physically unrealizable. Ideal low-pass filter

violates the condition. We can make a general state-

ment that if the amplitude spectrum is a brick wall

type function, the corresponding transfer function

is physically unrealizable. Since the ideal low-pass

filter function is physically unrealizable, the next

best thing is find a function that approximates the

ideal filter characteristics. First, consider the simple

RC circuit in Fig. 6.3.4a. The transfer function of

this circuit is

HLpðjoÞ ¼ 1=ð1þ joRCÞ:

The frequency amplitude characteristic is shown

in Fig. 6.6.2a with the cutoff frequency

fc ¼ f3dB ¼ ð1=ð2pRCÞÞ. The input and the output

transforms are related by YðjoÞ ¼ HLpðjoÞXðjoÞ.
At a particular frequency fi,

(a) (b) 

(c) 

Fig. 6.10.4 (a) Impulse
input, (b) block diagram
of a low-pass filter, and
(c) impulse response
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YðjoiÞj j ¼ HLpðjoiÞ
�� �� XðjoiÞj j;oi ¼ 2pfi: (6:10:7)

The output spectral amplitudes at frequencies f ¼ fi
are attenuated from the input magnitude spectral

amplitudes by the factor of HLpðjoiÞ
�� ��. For frequen-

cies between 0 � f � fc ¼ ð1=2pRCÞ; the output

amplitude spectrum is within 3 dB of the input

amplitude spectrum, whereas for f4fc, the output

amplitude spectrum is significantly reduced or atte-

nuated. The simple RC low-pass filter allows the

low frequencies 0 to f3dB go through with a small

attenuation and the frequencies from f3dB to 1 are

attenuated significantly. The circuit has low-pass

filter characteristics. To raise the amplitude charac-

teristics in the passband and, at the same time, lower

the amplitude characteristics in the stopband, the

following amplitude response function would work:

HLpðjoÞ
�� �� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ o=ocð Þ2n
q : (6:10:8)

Since o=oc is less than 1 in the passband, by taking

the power of this by (2nÞ, we are decreasing the

value of the denominator in the passband, thus

increasing the amplitude in the passband. On the

other hand, in the stopband, i.e., the band above the

cutoff frequency o4oc, the denominator in

(6.10.8) increases as o increases above the cutoff

frequency, and the value of the function reduces in

this range. Figure 6.10.5 gives two sketches for

n; say n1 and n2; n24n1: In the limit, i.e., when

n!1, the filter characteristics approach the ideal

characteristics. Equation (6.10.8) can be generalized

to control the passband attenuation by choosing

HLpðjoÞ
�� �� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2 o=ocð Þ2n
q : (6:10:9)

There are two parameters in (6.10.9), e and n.

e controls how far the amplitude characteristics

will go down to from a value of 1 at o ¼ 0 to

when o ¼ oc. The value of n controls how fast the

attenuation of the amplitude characteristics in the

stop-band region.

The amplitude characteristic goes from 1 to

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ e2Þ

p
corresponding to the frequencies

0 and fc, respectively. By using the power series,

for small e, we can write

1� ½1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

p
� � e2=2: (6:10:10)

The function in (6.10.9) is the Butterworth

filter function. It has interesting properties. At

o ¼ 0, ð2n� 1Þ derivatives of the function

1=½1þ e2ðo=ocÞ2n� are zero, identified as a maxi-

mally flat amplitude response. For o=ocj j � 1, the

high-frequency roll-off of an nth order Butterworth

function is 20n dB/decade. The proofs of these are

left as exercises.As n!1, the filter response has the

ideal low-pass characteristics. In the low-pass filter

specifications, three bands, namely passband

(0! ocÞ, transition band ðoc ! orÞ, and stopband

ðor !1Þ are identified. The transition band is not

Fig. 6.10.5 Butterworth
amplitude filter response
n1 ¼ 2; n2 ¼ 3; e ¼ 1;oc ¼ 5
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shown in Fig. 6.10.6, as it depends on required

attenuations at the edges of the transition band.

Returning to the simple RC low-pass filter, the

element values of one of the two components

R or C can be determined from the given cutoff

frequency, see (6.6.7). Normally the capacitor

value is selected, as the number of available capaci-

tor values is much smaller than that of the available

resistor values. As a final step, the time response of

these filters, for the two simple first-order low-pass

RC and RL filters is shown in Figs. 6.3.4a and

6.6.3. The response is determined by the time

(a)

(b)

(c)

(d)

Fig. 6.10.6 Amplitude and
phase plots of ideal filters:
(a) low-pass, (b) high-pass,
(c) band-pass, and (d) band
elimination
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constants, t ¼ RC for the RC circuit and t ¼ L=R

for theRL circuit. The output of an LTI systemwith

input xðtÞ and the impulse response hðtÞ is given

assuming it zero for t50 by the convolution integral

yðtÞ ¼
Z t

0

hðaÞxðt� aÞda: (6:10:11)

The impulse response hðtÞ is the circuit weighting

function. It gives the amount of memory the circuit

has. For example, if hðtÞ ¼ dðtÞ, it gives zero weight

to the past values of the input function as

yðtÞ ¼
Z t

0

hðaÞxðt� aÞda¼
Z t

0

dðaÞxðt� aÞda¼ xðtÞ:

(6:10:12)

If hðtÞ ¼ uðtÞ, then the circuit has a perfect memory

giving equal weights and

yðtÞ ¼
Z t

0

hðaÞxðt� aÞda ¼
Z t

0

uðaÞxðt� aÞda

¼
Z t

0

xðt� aÞda: (6:10:13)

Ideal filter frequency responses of the low-pass (Lp),

high-pass (Hp), band-pass (Bp), and the band-elim-

ination (Be) filters are given below. The amplitude

and the phase response plots of these are given for

positive frequencies in Fig. 6.10.6a,b,cd, respec-

tively. Note the phase responses of these ideal filter

functions are shown as linear.

HLpðjoÞ ¼ H0P
o
2oc

� �
e�jo t0 (6:10:14a)

HHpðjoÞ ¼ H0 1�P
o
2oc

� �� �
e�jo t0 (6:10:14b)

HBpðjoÞ ¼ H0 P
o� o0

W

h i
þP

o� o0

W

h ih i
e�jo t0

(6:10:14c)

HBeðjoÞ¼H0 1� P
o�o0

W

h i
þP

o�o0

W

h ih ih i
e�jo t0 :

(6:10:14d)

The Lp and Hp filter responses have one passband

and one stopband. The Bp filter response has one

passband and two stopbands. The Be filter response

has two passbands and one stopband.

6.11 Real and Imaginary Parts
of the Fourier Transform of a Causal
Function

The real and the imaginary parts of the Fourier

transform of a causal function xðtÞ are shown to

be related below. Let

x tð Þ !FT X joð Þ ¼ Re X joð Þð Þ þ j Im X joð Þð Þ:

By noting Re½XðjoÞ� is even and Im½XðjoÞ� is odd
and integral of an odd function over a symmetric

interval is zero, we have

xðtÞ ¼ 1

2p

Z1

�1

XðjoÞejotdo

¼ 1

2p

Z1

�1

ðRe½XðjoÞ� þ j Im½XðjoÞ�Þ

½cosðotÞ þ j sinðotÞ�do

¼ 1

p

Z1

0

Re½XðjoÞ� cosðotÞdo

� 1

p

Z1

0

Im½XðjoÞ� sinðotÞdo:

(6:11:1)

Noting that xðtÞ is causal, i.e., xð�tÞ ¼ 0; t40,

results in

xð�tÞ ¼ 1

p

Z1

0

Re½XðjoÞ� cosðotÞdo

� 1

p

Z1

0

Im½XðjoÞ� sinð�otÞdo ¼ 0:

Since cosðotÞ and sinðotÞ are defined everywhere,

Re½XðjoÞ� and Im½XðjoÞ� are the real and imaginary

parts of the transform of the causal function. That is,

1

p

Z1

0

Re½XðjoÞ� cosðotÞdo

¼ � 1

p

Z1

0

Im½XðjoÞ� sinðotÞdo; t40:
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This implies that a causal signal xðtÞ can

be expressed in terms of either Re½XðjoÞ� or
Im½XðjoÞ� and

xðtÞ ¼ 2

p

Z1

0

Re½XðjoÞ� cosðotÞdo;

xðtÞ ¼ � 2

p

Z1

0

Im½XðjoÞ� sinðotÞdo (6:11:2)

These are true as long as there are no impulses at

t ¼ 0 and they imply that Re½XðjoÞ� and Im½XðjoÞ�
cannot be specified independently. Using the trans-

form and solving for real and the imaginary parts of

the transform, we have

Re½XðjoÞ� ¼ � 2

p

Z1

0

Z1

0

Im½XðjvÞ� sinðvtÞ cosðotÞdvdt

(6:11:3a)

Im½XðjoÞ� ¼ 2

p

Z1

0

Z1

0

Re½XðjvÞ� cosðvtÞ sinðotÞdvdt:

(6:11:3b)

That is, for a causal signal, the real and imaginary

parts of the transform can be expressed in terms of

the other. The results in (6.11.3a and b) are difficult

to use. A more elegant way of expressing these rela-

tions is by using Hilbert transforms discussed in

Chapter 5.

6.11.1 Relationship Between Real
and Imaginary Parts of the Fourier
Transform of a Causal Function
Using Hilbert Transform

Consider impulse response of a realizable function

and its transform

h tð Þ ¼ he tð Þ þ h0 tð Þ !FT H joð Þ
¼ Re H joð Þ½ � þ j Im H joð Þ½ � (6:11:4)

heðtÞ ¼ ½hðtÞ þ hð�tÞ�=2; hoðtÞ ¼ ½hðtÞ � hð�tÞ�=2:
(6:11:5)

Noting that hð�tÞ ¼ 0; t40, the following interest-

ing relations result:

heðtÞ ¼
h0ðtÞ; t40

�h0ðtÞ; t50

� �
¼ h0ðtÞsgnðtÞ or

h0ðtÞ ¼ heðtÞsgnðtÞ: (6:11:6)

Using F½sgnðtÞ� ¼ 2=jo and using the Fourier time

multiplication theorem,

h0 tð Þsgn tð Þ !FT Re H joð Þ½ �; he tð Þsgn tð ÞjIm H joð Þ½ �:
(6:11:7)

The real and the imaginary parts of the function

can be related by using the frequency convolution

theorem studied in Chapter 4. The frequency con-

volution theorem corresponding to the two func-

tions is given in (6.11.8) using F½xiðtÞ� ¼ XiðjoÞ;
i ¼ 1; 2.

x1 tð Þx2 tð Þ !FT 1

2p
X1 joð Þ 	 X2 joð Þ½ �

¼ 1

2p

Z1

�1

X1 jað ÞX2 j o� að Þð Þda: (6:11:8)

Using these in (6.11.7) the following results:

Re½HðjoÞ� ¼ 1

2p
j Im½HðjoÞ� 	 2

jo

� �
;

j Im½HðjoÞ� ¼ 1

2p
Re½HðjoÞ� 	 2

jo

� �
: (6:11:9)

Im½HðjoÞ� ¼ � 1

p

Z1

�1

Im½HðjoÞ�
ðo� aÞ da;

Re½HðjoÞ� ¼ 1

p

Z1

�1

ImðHðjoÞÞ
ðo� aÞ da: (6:11:10)

Note that the causal signal does not contain

an impulse at t ¼ 0 is assumed. If it does, then

it adds a constant to its transform. Let

hðtÞ ¼ KdðtÞ þ h1ðtÞ, where h1ðtÞ does not have an

impulse at t ¼ 0:The impulse at t ¼ 0 appears in the

transform and

K ¼ lim
o!1

HðjoÞ ¼ Re½Hðj1Þ�: (6:11:11)
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If there is an impulse at t ¼ 0, the real and the

imaginary parts of the transform of the causal signal

are related by the following relations in terms of

Hilbert transforms:

Im½HðjoÞ� ¼ � 1

p

Z1

�1

Im½HðjoÞ�
ðo� aÞ da;

Re½HðjoÞ� ¼Re½Hðj1Þ� þ 1

p

Z1

�1

ImðHðjoÞÞ
ðo� aÞ da:

(6:11:12)

Notes: From these two equations we note that the

real and the imaginary parts of a realizable transfer

function HðjoÞ are tied together by the Hilbert

transform. This implies that HðjoÞ can be found

from its real part alone, referred to as the real-part

sufficiency.A physically realizable transfer function

can also be found from its magnitude spectrum

alone, which is referred to as a minimum phase

transfer function and was briefly mentioned in Sec-

tion 6.7. A linear system with a transfer function

HðsÞ has no zeros or poles on the right halfs � plane

is called a minimum phase system. The relations

between amplitude and phase responses of causal

functions are referred to as Bode relations. Detailed

study of these is beyond the scope here. For a dis-

cussion on this topic and other relations, see Bode

(1945). Finding an impedance function ZðsÞ from
Re½ZðjoÞ� has been investigated by many authors,

see Weinberg (1962). Here, finding the minimum

phase transfer function HðsÞ from the given ampli-

tude spectrum HðjoÞj j is of interest. The following

gives a simpler procedure compared to the above

results. &

6.11.2 Amplitude Spectrum Hðj!Þj j to a
Minimum Phase Function HðsÞ

Given ð HðjoÞj jÞ2 find the minimum phase function

HðsÞ ¼ KNðsÞ=DðsÞ that is stable. Starting with

ð HðjoÞj jÞ2, we have

HðjoÞj j2¼HðjoÞH	ðjoÞ
¼HðjoÞHð�joÞ ¼ K2 Nðo2Þ=Dðo2Þ

HðjoÞj j2¼HðsÞHð�sÞ s¼jo
�� ¼ K2 Nðo2Þ

Dðo2Þ or

HðsÞHð�sÞ ¼ K2 Nðo2Þ
Dðo2Þ o2¼�s2j : (6:11:13)

Poles and zeros of the function HðsÞHð�sÞ have
quadrantal symmetry and mirror symmetry about

the jo axis giving a choice in selecting the poles

and zeros of HðsÞ.

1. Choose only the left half plane roots of

Dðo2Þ o2¼�s2j . This gives DðsÞ.
2. To have a minimum phase system, choose only

the left half plane roots ofNðsÞNð�sÞ. Obviously

there are other choices and those do not result in

minimum phase functions.

3. Select a value K40 to match the value of the

amplitude function HðjoÞj j at a desirable

frequency.

Example 6.11.1 Find the minimum phase stable

transfer function HðsÞ given the amplitude-squared

spectrum below.

HðjoÞj j2¼ 9ðo2 þ 4Þ
ðo4 þ 10o2 þ 9Þ : (6:11:14)

Solution: Substituting o2 ¼ �s2, and using the

above procedure, results in

HðjoÞj j2 �o2¼s2j ¼ 9ð4� s2Þ
ð9� 10s2 þ s4Þ ¼ HðsÞHð�sÞ

¼K2 ðsþ 2Þ
ðsþ 1Þðsþ 3Þ

ð�sþ 2Þ
ð�sþ 1Þð�sþ 3Þ

)HðsÞ ¼ K
ðsþ 2Þ

ðsþ 1Þðsþ 3Þ ;K¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðjoÞj j2

q
o¼0j ¼ 3:

&

6.12 More on Filters: Source and Load
Impedances

In this section simple passive analog filters are con-

sidered. In the next chapter, the design of various

types of filters starting from the specifications to the

synthesis using passive and active elements will be
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considered. In the simple examples considered so far

we assumed only one resistor and one inductor (or

capacitor) in the filter circuit. The filter problem is

illustrated in Fig. 6.12.1a, where we have three

boxes, one represents a source, second one repre-

sents a filter, and the third one represents the load.

Using the Thevenin’s equivalent circuit, we can

replace the boxes represented by the source by the

source plus the source impedance and the box

representing the load by the load impedance.

This is shown in Fig. 6.12.1b. The source and

load impedances are generally assumed to be

resistive in the frequency range of interest. This

is a standard assumption in most filter design

problems as we are operating in a small range

of filter frequencies. In stead of Thevenin’s

equivalent circuit we could use the Norton’s

equivalent circuit shown in Fig. 6.12.1c. That is,

replace the series circuit consisting of source and

source resistance in Fig. 6.12.1b by a current

source in parallel with the source impedance.

This procedure allows the designer to separate

the work associated with the filters from any

designs associated with the left of the filter, i.e.,

the source and to the right of the filter, i.e., the

load. We might also add that the source box and

the load box may include several parts and the

filter designer does not have to worry about

those parts. In a later chapter when we consider

two-port circuit analysis we will come back to this.

For now let us consider a simple example illustrat-

ing the effect of the load. In the following we will

derive the transfer functions in the Laplace trans-

form domain. The frequency responses can be

derived by replacing s ¼ jo in the transfer

functions.

(a)

(b)

(c)

Fig. 6.12.1 (a) Filter with
source and load resistors,
(b) filter using Thevenin’s
source equivalent circuit,
and (c) filter using source
Norton’s equivalent circuit
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6.12.1 Simple Low-Pass Filters

Example 6.12.1 Consider the RC circuit shown in

Fig. 6.12.2 with the source and the load resistors.

Derive the transfer function and sketch the ampli-

tude characteristic function for the two cases.

a:RL ¼ 1 and b:RL ¼ Rs.

Solution: The transfer functions are given by

YðsÞ
XðsÞ

� 
a

¼HLPðsÞ¼
Z2

Z1þZ2
;

Z2¼
RL=Cs

RLþð1=CsÞ
¼ RL

1þRLCs
; Z1¼Rs (6:12:1a)

YðsÞ
XðsÞ

� 
b

¼ HLPðsÞ ¼
RL=RsRLC

sþ ½ðRs þ RLÞ=RsRLC�

¼ K

sþ oc
;K ¼ 1=RsC;oc ¼

Rs þ RL

RsRLC
:

(6:12:1b)

In case a., the load resistance is infinite, i.e.,

the circuit is not loaded. In case b. Rs ¼ RL. For

the two cases the corresponding transfer functions

are

a:HLP;RL!1ðsÞ ¼
ð1=RsCÞ

ðsþ ð1=RsCÞÞ
;

b:HLP;Rs¼RL
ðsÞ ¼ ð1=RsCÞ

sþ ð2=RsCÞ
: (6:12:2)

In both cases, the gain constant is the same. How-

ever, the cutoff frequency is increased in the case of

a load resistance. Note that the peak value of the

amplitude response function in case b. is (1/2). So,

the 3 dB frequency corresponds to the value of the

magnitude of the function equal to ð1=2Þð1=
ffiffiffi
2
p
Þ. At

o ¼ 0 the filter circuit is transparent; at o ¼ 1

there is no signal transmission; in between these

frequencies, the output signal amplitude atten-

uation is determined by the equation

YðjoÞj j ¼ HðjoÞj j XðjoÞj j. At the 3 dB frequency,

o3dB

YðjoÞj jo¼o3dB
¼ ð1=

ffiffiffi
2
p
Þ XðjoÞj jo¼o3dB

: &

Notes: For simplicity, generic functions x(t) for the

input and the output voltage yðtÞ are used. Usually,

viðtÞ ðor vsðtÞÞ for the input and v0ðtÞ for the output
are common. &

6.12.2 Simple High-Pass Filters

In the ideal low- and high-pass filter cases shown in

Fig. 6.10.7a, and b, it can be see that

HLpðoÞ
�� ��

o¼0 ¼ HHPðjoÞj jo¼1¼ 1 and

HHpðjoÞ
�� ��

o¼0 ¼ HLpðjoÞ
�� ��

o¼1¼ 0: (6:12:3)

In addition, the amplitudes of these functions tran-

sition at the frequencyo ¼ oc and the change in the

amplitudes are as follows:

1ðlow-passÞ ! 0 ðhigh-passÞ or
0 ðhigh-passÞ ! 1 ðlow-passÞ:

A logical conclusion is that o! ð1=oÞ ði:e:; s!
ð1=sÞÞ provides a transformation that gives a way to

find a high-pass filter function from a low-pass filter

function. Noting that the impedance of an inductor

is ðjoLÞ and the impedance of a capacitor is

ð1=joCÞ, a high-pass filter can be obtained from a

Fig. 6.12.2 Example 6.12.1
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low-pass filter by replacing a capacitor by an induc-

tor and an inductor by a capacitor. Since the impe-

dance of the resistor R is independent of frequency,

no change is necessary in the case of resistors. Using

the RC and the RL low-pass circuits studied earlier

in the low-pass case, we have two simple high-pass

filters shown in Fig. 6.12.3a,b, one is a RL and the

other one is a RC circuit. The filter is a low-pass if

the inductor is in the series arm and the capacitor in

the shunt arm. Similarly the filter acts as a high-

pass filter if the capacitor is in the series arm and

the inductor is in the shunt arm. The transfer func-

tions corresponding to the two circuits in Fig.

6.12.3 are

HHpaðsÞ ¼
s

sþ ð1=RCÞ ;HHpbðsÞ ¼
s

sþ ðR=LÞ

HHPa
ðjoÞ¼ jo

joþð1=RCÞ;HHPb
ðjoÞ¼ jo

joþðR=LÞ:

(6:12:4)

The amplitude and the phase response characteris-

tics of these are as follows:

HHpaðjoÞ
�� �� ¼ oj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2 þ ð1=RCÞ2
q ;

ffHHpaðoÞ ¼ 900 � tan�1ðoRCÞ (6:12:5a)

HHpbðjoÞ
�� �� ¼ oj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2 þ ðR=LÞ2
q ;

ffHHpbðoÞ ¼ 900 � tan�1ðoL=RÞ: (6:12:5b)

The amplitude and phase responses are shown in

Fig. 6.12.4 for o40: The maximum value of the

amplitude response is 1 or 0 dB. The 3 dB frequen-

cies can be computed by equating the amplitude

response function to ð1=
ffiffiffi
2
p
Þ and solving for o.

That is,

1ffiffiffi
2
p ¼ ocaj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2
ca þ ð1=RCÞ

2
q ;

1ffiffiffi
2
p ¼ ocbj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2
cb þ ðR=LÞ

2
q :

(6:12:6)

) oca ¼ ð1=RCÞ;ocb ¼ ðR=LÞ: (6:12:7)

As in the low-pass case, given the cutoff frequency

oc, one of the reactive component (inductor or

capacitor) values can be solved by selecting the

resistor value. The high-pass filter is transparent

from the input to the output at infinite frequency

and no signal transmission at zero frequency. Note

the low and high-frequency behavior of the low-

pass and the high-pass filter functions HLpðsÞ (or
HHpðsÞ) at s ¼ 0 and s ¼ 1:

(b)(a)

Fig. 6.12.3 Simple high
passive filters (a) RC circuit,
(b) RL circuit

(a) (b) 

Fig. 6.12.4 Simple
high-pass filter responses:
(a) amplitude and (b) phase
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6.12.3 Simple Band-Pass Filters

These filters pass a band of frequencies called the

passband and attenuate or eliminate the frequencies

outside the passband, called the stopband. The sim-

plest band-pass filter has a second-order transfer

function. The ideal band-pass filters have two cutoff

(or 3 dB) frequencies olow and ohigh. These frequen-

cies are defined as the frequencies for which the

magnitude of the transfer function is equal to

maxð1=
ffiffiffi
2
p
Þ HBpðjoÞ
�� ��. In addition to these, a new

frequency referred as the center or the resonant fre-

quency o0; is of interest. It is defined as the fre-

quency at which the transfer function of the circuit

HBpðjoÞ is purely real. The center frequency is not in
the middle of the passband. It is the geometric center

of the pass-band edges. It is related to the 3 dB

frequencies by

o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
olowohigh
p

: (6:12:8)

The second parameter of interest is the 3 dB band-

width given by

b ¼ ohigh � olow: (6:12:9)

The third parameter, the quality factor is the ratio of

the center frequency to the 3 dB bandwidth. It is

given by

Q ¼ o0

ðohigh � olowÞ
: (6:12:10)

A second-order function that has the band-pass char-

acteristics is

HBpðsÞ ¼
H0as

s2 þ asþ b
¼ H0ðo0=QÞs

s2 þ ðo0=QÞsþ o2
0

:

(6:12:11)

For simplicity the gain constant is assumed to be

H0 ¼ 1 in the following. The transfer function has a

zero at the origin ðs ¼ 0Þ and at infinity ðs ¼ 1Þ
indicating that the function goes to zero at

o ¼ 0 and at o ¼ 1. For Q41=2, it has a pair of

complex poles given by

s1; s2 ¼ �
o0

2Q
� jo0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2

s
: (6:12:12)

The corresponding transfer function, the amplitude,

and phase responses are given by

HBpðjoÞ ¼
ðo0=QÞo

ðo2
0 � o2Þ þ jðo0=QÞo

¼ 1

1þ jQ o
o0
� o0

o


 �h i
1þ jQ o

o0
� o0

o


 �h i

(6:12:13)

HBpðjoÞ
�� �� ¼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

o
o0
� o0

o

� 2
s

;

ffHBpðjoÞ ¼ � tan�1 Q
o
o0
� o0

o

� � �
: (6:12:14)

The amplitude and the phase responses are sketched

in Fig. 6.12.5 for positive values of o. From the

amplitude response, the peak of the amplitude

appears at the center frequency o0. The peak mag-

nitude is 1 at o ¼ o0. The phase angle starts at

ðp=2Þ, crosses the frequency axis at o ¼ o0 and it

asymptotically reaches ð�p=2Þ as o!1: Higher

the value of Q is, the more peaked the amplitude

response is and steeper the phase response is around

o ¼ o0. The 3 dB or half-power bandwidth can be

determined by assumingolow 5 o0 and ohigh4o0.

These frequencies can be computed from

(b)(a)

Fig. 6.12.5 (a) Amplitude
and (b) phase responses of a
band-pass filter
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HBpðjoÞ
�� ��2

o¼ol;ou

�� ¼1
2
!Q2 o

o0
�o0

o

� 2

¼1)

ðo2�o2
0Þ¼�

o0o
Q

;o2� 1

Q2
oo0�o2

0¼0:

There are four roots of this equation, two for posi-

tive and two for negative frequencies.

ou;�ol ¼
o0

2Q
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o0

Q

� 2

þ 4o2
0

s
;

�ou;ol ¼�
o0

2Q
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o0

Q

� 2

þ 4o2
0

s
:

Assuming thatQ4ð1=2Þ, the positive roots are given
by

ol;ou ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4Q2

s
� o0

2Q
: (6:12:15)

The 3 dB bandwidth ðB or bÞ and o0 are respec-

tively given by

b ¼ ðohigh � olowÞ ¼ o0=Q;

o2
0 ¼ olou ! o0 ¼

ffiffiffiffiffiffiffiffiffiffi
olou
p

: (6:12:16)

Clearly from the first equation in (6.12.16) the

bandwidth is inversely proportional to the value of

Q. That is, the bandwidth decreases as Q increases

and vice versa. The filter is assumed to be narrow-

band if o0 is very large compared to the bandwidth

of the filter, i.e., o0 � B. As a rough measure, we

assume the filter is a narrowband filter if

Q ¼ o0=b � 10: (6:12:17a)

For the narrowband case the edges of the passband

and o0 are given below.

ol;ou ¼ o0 � ðo0=2QÞ: (6:12:17b)

In this case, o0 is in the middle of the 3 dB frequen-

cies and is the center frequency.

Example 6.12.2 Consider the circuit shown in

Fig. 6.12.6. Find the transfer function and derive

the expressions for the center frequency, band-

width, and the quality factor.

Solution: The transfer functions are

HBpðsÞ ¼
V0ðsÞ
ViðsÞ

¼ ðR=LÞs
s2 þ ðR=LÞsþ ð1=LCÞ ;

HBpðjoÞ ¼
ðR=LÞjo

½ð1=LCÞ � o2Þ þ joðR=LÞ� : (6:12:18)

The corresponding amplitude and phase responses

are given for positive o by

HBpðjoÞ
�� �� ¼ ðR=LÞoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðð1=LCÞ � o2Þ2 þ ððR=LÞoÞ2
q ;

ffHBpðjoÞ ¼90o � tan�1
ððR=LÞo

½ð1=LCÞ � o2Þ� : (6:12:19)

From (6.12.19), by using (6.12.16) results in

o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1=LC

p
; b ¼ Bandwidth ¼ R=L and

Q ¼ o0=B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=CR2

p
: (6:12:20)

There two equations had three unknowns. In the

design of a second-order band-pass filter, use the

following steps. From the given second-order func-

tion, find o0 and Q. Select one of the element

values, say C, and then use the other two equations

to solve for the element values R and L: These are

L ¼ 1=o2
0C;R ¼ bL. Note that the gain constant is

assumed to be H0 ¼ 1. If the gain is higher than 1,

then circuit needs amplification.

So far we have not considered of having both

source and load impedances in the band-pass case.

Also, inductors are never ideal and can be modeled

by a resistor in series with an ideal inductor shown

in Fig. 6.12.7 resulting in the impedance of the non-

ideal inductor as R i þ sL. The new transfer func-

tion and the amplitude response are

Fig. 6.12.6 A simple band-pass filter
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HBpðsÞ ¼
ðR=LÞs

s2 þ ðRþ RiÞ=L½ �sþ ð1=LCÞ (6:12:21)

HBpðjoÞ
�� �� ¼ ðR=LÞ oj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðð1=LCÞ � o2Þ2 þ oððRþ RiÞLÞ
q :

(6:12:22)

The center frequency is the same as before. The

maximum value of the amplitude response is now

R=ðRi þ RÞ. Also the new bandwidth is ðRþ RiÞ=L.
The nonideal inductor reduces the peak value and

increases the bandwidth of the filter response. Cor-

respondingly, the Q value is reduced. Nonideal

inductors make the amplitude response less peaked

with an increase in the bandwidth, i.e., the ampli-

tude response becomes lower and broader.

A band-pass filter can be viewed as a cascaded low-

pass and a high-filter combination with the cutoff

frequency of the low-pass filter greater than the cutoff

frequency of the high-pass filter, oc;LP4 oc;HP. An

obvious question is, can we obtain a band-pass filter

function from a low-pass filter function? In the two

simple low-pass circuits considered earlier, the RL

circuit, with the replacement of the inductor by a

series LC circuit results in the circuit studied above.

By replacing the capacitor in the RC low-pass circuit

by a parallel LC circuit results in a band-pass circuit

shown in Fig. 6.12.7. The element values in the band-

pass case need to be determined using the center

frequency and the required bandwidths. The figure

illustrates only the concepts here. In Chapter 7 wewill

come back to the frequency transformations that

involve changing cutoff frequencies of filters, convert-

ing various filter specifications into a proto-type low-

pass filter specification, finding the appropriate filter

function, the appropriate frequency transforma-

tions, synthesizing the filter function and finally scal-

ing the circuit to fit the given specifications. Figure

6.12.8a gives a low-pass circuit. A band-pass circuit

can be obtained by replacing the capacitor by an

LCcircuit as shown in Fig. 6.12.8b.

Inductors tend to be bulky and nonideal. That is,

they have a resistive part Rw, thus reducing the

quality factor of such coils. Impedance of the induc-

tor needs to be replaced from joL to Rw þ joL. The
quality factor of the coil is given byQ ¼ ðoL=RwÞ, a
function of frequency. Designing inductors with high

Q values is a difficult process. In addition, since the

field of operation associated with coils is the mag-

netic field, there is coupling between different induc-

tors in a circuit. This can be reduced by either

shielding one inductor from another and/or by pla-

cing in a manner shown in Fig. 6.12.9 requiring

more space on the circuit board.

6.12.4 Simple Band-Elimination or
Band-Reject or Notch Filters

The amplitude response of a band-reject filter has

the shape of a notch and is used to remove a band of

frequencies somewhere in the middle of the fre-

quency band and pass the low and high frequencies

outside this band. A second-order notch filter has a

transfer function of the form

HBeðsÞ ¼
ðs2 þ 2bsþ o2

0Þ
s2 þ ðo0=QÞsþ o2

0

; b55
o0

2Q

(6:12:23)

Fig. 6.12.7 A simple band-pass filter with a nonideal
inductor

(a) (b)

Fig. 6.12.8 (a) Low-pass
and (b) band-pass filter
circuits
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Lim
s!0

HBeðsÞ ¼ 1 and Lim
s!1

HBeðsÞ ¼ 1: (6:12:24)

The second-order band-pass and the notch filter

functions have the same denominator, see (6.12.11)

and (6.11.23). Notch filter passes low and high fre-

quencies of the input signal without much attenua-

tion and attenuates (or eliminates) a band of frequen-

cies in themiddle. This can be seen by first computing

the zeros of the transfer function.

z1; z2 ¼ �b� j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 � b2
q

)
z1; z2 � �b� jo0 ðIn the case of o044bÞ:

(6:12:25)

A special and an interesting case is when b ¼ 0 and

for this case

HBeðjoÞj j ffi
o2

0 � o2
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2
0 � o2Þ2 þ ½ðo0=QÞo�2

q ;

ffHBeðjoÞ ¼ � tan�1
ðo0=QÞo
ðo2

0 � o2Þ

� �
: (6:11:26)

Note there is no output at the notch frequency o0 as

HBeðjo0Þj j ¼ 0. The amplitude and phase responses

of the notch filter are shown in Fig. 6.12.10 for

o40. We can see that

HBeðjoÞj jo¼0 ¼ 1 and lim
o!1

HBeðjoÞj j ¼ 1:

The 3 dB frequencies are obtained by equating

Hðo3dBÞj j ¼ 1=
ffiffiffi
2
p

. The two frequencies are

ol;ou ¼ o0 � ðo0=2QÞ; b ¼ o0=Q: (6:12:27)

If b 6¼ 0, then

HBeðjoÞj jo¼o0
¼ Qb=o0: (6:12:28)

The attenuation will be significant at the notch

frequency as o0 is usually large. Also, note the

phase reversal at o ¼ o0 in the phase response.

Notch filters are used wherever a narrowband of

frequencies needs to be eliminated from a received

signal. In any electronic device, 60 Hz undesired

hum, is ever present and a notch filter can be used

to remove this. There are many applications in the

telephone industry. In a long-distance call, a single

frequency is transmitted from the caller to the tele-

phone office until the end of the dialing of the num-

ber. After the party answers, the tone signal ceases

and billing of the call begins and it continues as long

as the signal tone is absent until the call is complete.

A different application is toll-free long-distance calls

that are not billed. For these, the signal tone is trans-

mitted to the telephone office for the entire period of

the call. Since the signal is within the voice frequency

band, it must be removed from the voice signal

before being transmitted from the telephone office

to the listener. A simple second-order notch filter

could be used for such an application.

Notch filters are used wherever a narrowband of

frequencies need to be eliminated from a received

signal. In any electronic device, 60 Hz, an undesired

hum, is ever present and a notch filter can be used to

remove this. There are many applications in the

telephone industry.

(a) (b)

Fig. 6.12.10 (a) |HBeðjoÞ|
and (b) ffHBeðjoÞ

Fig. 6.12.9 Placement of
two inductors to reduce
magnetic coupling
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Example 6.12.3 Band-elimination filters can be

derived from low-pass filters by replacing an inductor

(capacitor) by a parallel LC ðseries LCÞ circuit. Con-
sider the circuit in Fig. 6.12.11 with a nonideal induc-

tor with the equivalent impedance of the coil equal to

ðRw þ joLsÞ. Assuming the circuit is not loaded, the

output current is zero. Derive the transfer function

and show it corresponds to a band-elimination filter.

Solution: The transfer function, its amplitude and

phase responses are

HBeðsÞ ¼
Rw þ Lsþ ð1=CsÞ

ðRþ RwÞ þ Lsþ ð1=CsÞ

¼ ð1þ Rwsþ LCs2Þ
ð1þ LCs2Þ þ ðRþ RwÞCs

(6:12:29)

HBeðjoÞ ¼
ðRw þ joLþ ð1=ðjoCÞÞ

½ðRþ RwÞ þ joLþ ð1=ðjoCÞÞ�

¼ ð1� o2LCÞ þ joRwC

ð1� o2LCÞ þ joðRþ RwÞC
(6:12:30)

HBeðjoÞj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� LCo2Þ2 þ ðRwCoÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� o2LCÞ2 þ ðoðRþ RwÞCÞ2

q

(6:12:31a)
ffHBeðjoÞ ¼ arctan½RwCo=ð1� o2LCÞÞ�

� arctan½oðRþ RwÞC=ð1� o2LCÞ�:
(6:12:31b)

The transfer function has the band-elimination

characteristics as

lim
o!0

HBeðjoÞj j ¼ 1; lim
o!1

HBeðjoÞj j ¼ 1; and

HBeðjoÞj jo¼1= ffiffiffiffiffiLC
p ¼ Rw=ðRþ RwÞ: (6:12:31c)

If the winding resistance Rw is small, then the

peak value of the amplitude response is close to 1.

Using (6.12.27) and (6.12.28), we have 2b ¼ Rw=LC,

o0 ¼ 1=
ffiffiffiffiffiffiffi
LC
p

and ðo0=QÞ ¼ ðRþ RwÞC. The notch
bandwidth isB ¼ ½o0=Q� ¼ ½ðRþ RwÞC�. In the ideal
case, a second-order notch filter can be obtained from

a second-order band-pass filter by replacing the paral-

lel (series) LC circuit by a series (parallel) LC circuit.&

Passive filter designs use resistors, inductors (and

transformers), and capacitors. Four ladder forms of

low-pass, high-pass, band-pass, and band-elimina-

tion filter circuits with source and load resistances

are shown in Fig. 6.12.12. Source with source resis-

tance is identified by a circle and the load resistance

by a square. Between the source and the load, a

lossless circuit is inserted, i.e., lossless coupling

between the source and load.

Figure 6.12.12a: Low-pass filter: When o ¼ 0,

inductors will be short and the capacitors will be

open and the source is directly connected to the

source and the output is v0 ¼ ½RL=ðRi þ RLÞ�vi.
When o ¼ 1, inductors will be open and the capa-

citors will be short and the load is disconnected

from the source and the output is zero.

Figure 6.12.12b: High-pass filter: When o ¼ 0,

inductors will be open and the capacitors will be

short and the load is disconnected from the source

and the output is zero. Foro ¼ 1, inductors will be

short and the capacitors will be open and the source

is directly connected to the load and

v0 ¼ ½RL=ðRi þ RLÞ�vi.
Figure 6.12.12c: Band-pass filter: At o ¼ 0,

inductors will be short and the capacitors will be

open and there is no output. At o ¼ 1, there is no

output either. At the center frequency o0, if

(LsiCsi ¼ 1=o2
0), the series arm is short since

Lseisþ ð1=CseisÞ s2¼�ð1=LseiCseiÞ
�� ¼

ðLseiCsis
2 þ 1Þ=Cseis s2¼�ð1=LseiCseiÞ

�� ¼ 0:

In a similar manner we can show that at the fre-

quency o0, the shunt arm is open since

Lshis= LshiCshis
2 þ 1

� �� �
s2¼�ð1=LshiCshiÞ
�� ¼ 1:

Figure 6.12.12d: In the band-elimination case,

we can show that v0 ¼ ½RL=ðRi þ RLÞ�vi at

o ¼ 0 and o ¼ 1. At o ¼ o0, the output is zero.

The four filters have the desired transfer character-

istics values ato ¼ 0;1 (and, in additiono ¼ o0; in

Fig. 6.12.11 A band-elimination filter with a nonideal
inductor
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the case of band-pass and band-elimination filters.

The exact characteristics at other frequencies cannot

be determined since the actual filter element values are

not known. In the passive filter design, and in general

in communication theory, power transfer between the

source and the load is important.

6.12.5 Maximum Power Transfer

If there is no filter in Fig. 6.12.12, i.e., the source

resistance is connected directly to the load, the max-

imum power is available at the output provided

Rs ¼ RL: (6:12:32a)

(a)

(b)

(c)

(d)

Fig. 6.12.12 Passive filters
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This is themaximum power transfer theorem and can

be proven by first expressing the power delivered to

the load without the filter. That is,

pL ¼ RLi
2; i ¼ vs

ðRs þ RLÞ
¼ RL

ðRs þ RLÞ2
v2s :

(6:12:32b)

Taking the derivative of pL with respect to RL, then

solving for RL results in (6.12.32a).

If the filter is inserted between the source and the

load, then there will be less power available at the

load, which will vary with frequency. This is defined

as insertion loss. The design using these concepts is

beyond the scope here, see Weinberg (1962).

6.12.6 A Simple Delay Line Circuit

In Section 6.4 we considered the properties of a

delay function. In this part of the section we will

consider a simple circuit that has a constant ampli-

tude response and a phase response that can be

adjusted. Consider the circuit shown in

Fig. 6.12.13. Assuming the output current is equal

to zero, the output voltage can be expressed by

V0ðsÞ¼VcðsÞ�VxðsÞ¼
ð1=CsÞ

ðRþð1=CsÞÞVinðsÞ�
1

2
VinðsÞ

¼ 1�RCS

2ðRCsþ1ÞVinðsÞ: (6:12:33)

The transfer function in the s domain and in the

frequency domain, the corresponding magnitude

and phase responses and the group delay function

are respectively given by

HðsÞ ¼ 1

2

ða� sÞ
ðaþ sÞ ;HðjoÞ ¼

1

2

ða� joÞ
ðaþ joÞ ; a ¼

1

RC

(6:12:34a)

HðjoÞj j ¼ 1=2; ffHðjoÞ ¼ �2 tan�1ðo=aÞ;

TgðoÞ ¼ �
dffHðjoÞ

do
¼ a

a2 þ o2
: (6:12:34b)

The transfer function, the amplitude, phase, and the

group delay responses are

HðsÞ ¼ 1

2

ða� sÞ
ðaþ sÞ ;HðjoÞ ¼

1

2

ða� joÞ
ðaþ joÞ ; a ¼

1

RC

(6:12:35a)HðjoÞj j ¼ 1=2; ffHðjoÞ ¼ �2 tan�1ðo=aÞ;

TgðoÞ ¼ �
dffHðjoÞ

do
¼ a

a2 þ o2
: (6:12:35b)

Since the amplitude response is (1/2), a constant for

all frequencies, this function is referred to as an all-

pass function. All-pass filters are used in cascade

with the filters to provide the overall phase of the

filter delay line combination and have an approx-

imate linear phase characteristics. Additional phase

due to the all-pass circuit adds to the filter delay.

6.13 Summary

In this chapter we have started with basics of sys-

tems analysis and circuits. The circuits considered

are simple. Specific topics that were covered in this

chapter are given below.

� Linear systems and their properties
� Two-terminal components: resistors, inductors,

capacitors, voltage, and current sources
� Classification of systems based on linearity,

time-invariance, and other concepts
� Impulse response of a linear system and the out-

put in terms of the convolution integral
� Transfer functions along with examples of sim-

ple circuits
� System stability concepts andRouth’s stability test
� Distortionless systems and distortion measures

for nonlinear systems
� Group delay and phase delay responses
� System bandwidth measures similar to signal

bandwidth
� Relations between real and imaginary parts of a

Fourier transform of a causal function
� Derivation of the minimum phase transfer func-

tion from a given magnitude function
� Ideal low-pass, high-pass, band-pass, band-

elimination filters along with delay lines

Fig. 6.12.13 A simple delay line circuit
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Problems

6.2.1 Consider the systems described by the following

input–output relations. In each case, determine

whether the system satisfies the following: 1. memory-

less, 2. causal, 3. stable, 4. linear, and 5. time invariant.

a: yðtÞ ¼ xð1� tÞ; b: yðtÞ ¼ xðt=2Þ;
c: yðtÞ ¼ sinðxðtÞÞ:

6.3.1 Show that the systems a: yðtÞ ¼ x2ðtÞ; b: yðtÞ ¼
sgnðtÞ are not invertible.
6.3.2 Determine whether the system yðtÞ ¼
T½xðtÞ� ¼ txðtÞ is 1. memoryless, 2. causal, 3. stable,

4. linear, and 5. time invariant.

6.3.3 Consider the amplitudemodulated function (dis-

cussed in Chapter 10) yðtÞ ¼ Ac½AþmðtÞ� cosðoctÞ
with cases a: A ¼ 0; b: A 6¼ 0. Determine whether the

system described by this equation is 1. memoryless,

2. causal,3. linear,4. timeinvariant,and5.BIBOstable.

6.3.4 Repeat Problem 6.3.3 assuming the output of

the system is yðtÞ ¼ xðt� tÞ.
6.3.5 Determine whether the system described by

the following is a. linear or nonlinear, b. time invar-

iant or time varying

yðtÞ ¼
X1

k¼�1
xðtÞdðt� ktsÞ ¼

X1
k¼�1

xðktsÞdðt� ktsÞ:

6.3.6Consider the system described by yðtÞ ¼ xðbtÞ.
Determine for what values of b the system is

a. causal, b. linear, and c. time invariant.

6.4.1 In Fig. 6.4.1 we have considered a simple RL

time-varying circuit. Consider the RC time-varying

circuit shown in Fig. P6.4.1. Assume that the time

constant is large enough to justify that the circuit

can be used as an integrator in an approximate

sense. Identify the approximation used in consider-

ing this circuit acts like an integrator.

6.4.2 Apply the periodic pulse waveform shown in

Fig. 6.5.4a to a simple RL circuit obtained by

replacing the capacitor by an inductor in Fig. 6.5.4b.

Give the corresponding steady-state response.

6.4.3Determine the impulse responses of the ideal

low-pass, high-pass, band-pass, and band-

elimination filters defined in (6.10.14a, b, c, and

d) and the ideal delay line function in (6.7.1).

6.4.4 Determine the system responses for the inputs

a: x1ðtÞ ¼ uðtÞ; b: x2ðtÞ ¼ P½t� :5� assuming the

system impulse response is

hðtÞ ¼ te�tuðtÞ:

6.4.5Determine the stability of the integrator and a

differentiator given below. Find their impulse

responses and then use BIBO stability condition to

see their stability.

yðtÞ ¼
Z t

�1

xðaÞda; yðtÞ ¼ dxðtÞ
dt

:

6.4.6Usingvery simple functionswith thepropertiesas

identified to show the responses become unbounded.

Consider the transfer functionsHðsÞ.a:HðsÞhasapole
ontherighthalfs-pane,b.HðsÞhasmultiplepolesonthe

imaginary axis, c.HðsÞ has poles on the imaginary axis

and the input function has a pole at this location.

Explain why the responses become unbounded with

the aid of the inverse Laplace transforms.

6.4.7 Consider the transfer function given by

TðsÞ ¼ 1

1þHðsÞ ;HðsÞ ¼
K

ð1þ :1sÞðaþ sÞ :

a. Assuming a ¼ 1, use the Routh array to deter-

mine the range ofK for which the system is stable. b.

Repeat the problem in Part a. assuming K ¼ 1 and

determine the range of K for which the system is

stable. c. Using the Routh array to determine the

range ofK for which the system has only poles to the

left of s ¼ �1 in the s-plane.

6.4.8 Use the Routh array and factor the polyno-

mial DðsÞ ¼ s4 þ s3 þ 2s2 þ sþ 1.

6.4.9 Use the Routh array to find the number of

right half s-plane roots of the polynomial

DðsÞ ¼ s4 þ s2 þ sþ 1.

6.5.1Give an RC circuit that approximates a differ-

entiator and sketch the circuit’s amplitude and

phase responses.
Fig. P6.4.1 An RC
time-varying circuit
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6.5.2The transfer function of a linear time-invariant

system is

HðsÞ ¼ YðsÞ
XðsÞ ¼

ðsþ 1Þ
ðs2 þ sþ 1Þ :

Assuming xðtÞ ¼ cosðo0tÞ, find the steady-state

response yðtÞ of the system.

6.5.3 Find the response of the RL circuit shown in

Fig. 6.6.3 for input pulses

a: xaðtÞ ¼ P
t� ðT=2Þ

T

� �
;T ¼ 2p;

b: xbðtÞ ¼ sinðtÞxaðtÞ:

6.5.4 Consider a circuit that has the response

yðtÞ ¼ xðtÞ � xðt� TÞ with the input xðtÞ: Give the

system impulse response and the expressions HðjoÞ
and HðjoÞj j.
6.5.5 Consider the following two differential equa-

tions with xðtÞ ¼ ejot:

a:LC
d2y

dt
þ L

R

dy

dt
þ yðtÞ ¼ xðtÞ

b:LC
d2y

dt2
þ yðtÞ ¼ xðtÞ:

Derive the transfer functionsHðjoÞ ¼ YðjoÞ=XðjoÞ
in each case assuming xðtÞ ¼ ejot.

6.5.6 Determine in each case below if the system

described by its impulse response is stable or realiz-

able, or both. Explain your results.

a:haðtÞ ¼ dðtÞ; b:hbðtÞ ¼ e�tuðtÞ;
c:hcðtÞ ¼ dðtÞ � e�tuðtÞ:

6.5.7 Consider the impulse response and the

corresponding transfer function hLpðtÞ ¼ e�tuðtÞ;
L½hLpðtÞ� ¼ HLpðsÞ ¼ 1=ðsþ 1Þ. What can you say

about the deconvolution filter HRðsÞ and

hRðtÞ ¼ L�1fHRðsÞg? Is this function realizable?

6.6.1 Consider the following functions with DðsÞ ¼
ðsþ 1Þðsþ 4Þðsþ 5Þ. Classify these as minimum or

mixed or maxi phase systems. Sketch their ampli-

tude and phase responses.

a:H1ðsÞ ¼ ðs� 3Þðsþ 2Þ=DðsÞ
b:H2ðsÞ ¼ ðsþ 3Þðsþ 2Þ=DðsÞ
c:H3ðsÞ ¼ ðs� 3Þðs� 2Þ=DðsÞ:

6.6.2 Sketch the amplitude and phase responses of

a:H1ðsÞ ¼ 1=ðs2 þ
ffiffiffiffiffi
2s
p
þ 1Þ;

b:H2ðsÞ ¼ 1=ðs2 þ 3sþ 3Þ:

6.6.3 What can you say about the group delays

associated with an all-pass functions at

o ¼ 0 and o ¼ 1 in Problem 6.6.2? Can you

draw any general conclusions?

6.6.4 The second-order Butterworth function is

given in Problem 6.6.2a.

a. Find its impulse response and the correspond-

ing step response. b. Find the 10–90% rise time.

c. Find the expression for the group delay of this

function.

6.6.5 Assume the following node equations of a 3

nodes plus a reference node is given by

½ðVA � V1ÞY1 þ VAY3 þ ðVA � V0ÞY2 ¼ 0;

ðV0 � VAÞY2 þ ðV0 � V1ÞY4 ¼ 0:

Give a circuit that has these node equations. Derive

the transfer function V0=V1 assuming Y1 ¼ 1=sL1;

Y2 ¼ 1=sL2;Y3 ¼ sC2;Y3 ¼ sC3:

6.6.6 Find the impulse and step responses of the

following transfer functions with a40.

a:HdðsÞ ¼
1� as

1þ as
; a40;

b:HLPðsÞ ¼
a

s2 þ asþ a
;

c:HBPðsÞ ¼
s

s2 þ sþ 1

d:HBeðsÞ ¼
s2 þ a2

s2 þ bsþ a2
;

e:HHPðsÞ ¼
s2

s2 þ sþ 1
:

Give the amplitude andphase responses of these filters.

6.7.1 Consider the impulse response of a system

hðtÞ ¼ e�tuðtÞ. Derive the expressions for its group

and the phase delays. Sketch these functions on the

same plot.

6.8.1 Show that the noise bandwidth of a band-pass

function with center frequency o0 is

WN ¼
Z1

0

HðjoÞj j2= Hðjo0Þj j2
h i

do:
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6.8.2 Determine the RMS and the equivalent band-

width of HðjoÞH	ðjoÞ ¼ L o=W½ �.
6.9.1 Sketch the input and the output line spectra of

a nonlinear circuit described by its input–output

relationship yðtÞ ¼ x2ðtÞ assuming xðtÞ ¼
2 cosð2pð60ÞtÞ þ sinð2pð60ÞtÞ.
6.9.2Assuming yðtÞ ¼ xðtÞ þ x2ðtÞ, sketch YðjoÞ by
assuming

XðjoÞ ¼ P½ðoþ o0Þ=W� þP½ðo� o0Þ=W�:

6.9.3 Assume the input is xðtÞ ¼ cosðo0tÞ to a non-

linear system described by yðtÞ ¼ xðtÞ þ :1x2ðtÞ
determine the second-order distortion term.

6.9.4 Consider the systems described by the follow-

ing input–output relations. In each case determine

whether the system is a. memoryless, b. causal, c.

stable, d. linear or non-linear, and e. time-invariant

system: a: yðtÞ ¼ xð1� tÞ; b: yðtÞ ¼ xðt=2Þ; c:yðtÞ ¼
sinðxðtÞÞ.
6.10.1a. Show the high-frequency slope of the n th

order low-pass Butterworth function

HðjoÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1þ e2o2nÞ

q
is 20 n dB=decade:

b. Show that the first ð2n� 1Þ derivatives of

HðjoÞj j2 are zero at o ¼ 0. Use long division and

then compare that to a power series and identify the

corresponding derivatives. c. Show (6.10.10). d.

Assuming n ¼ 2, determine the corresponding sec-

ond-order Butterworth transfer function HðsÞ and
find its impulse response.

6.10.2 Sketch normalized function

Hðjo=ocÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1þ e2ðo=ocÞ2nÞ

q

for n ¼ 3 and 4:

6.11.1Determine the minimum phase transfer func-

tion corresponding to the functions

a: HðjoÞj j2¼ ½1=ð1þ o2Þ�;
b: HðjoÞj j2¼ ½1=ð1þ o4Þ�:

6.12.1 Consider the circuits shown in Fig. P6.12.1.

For each of these cases determine the corresponding

transfer function. In the case of band-pass or band-

elimination filters, determine the center frequencies.

Give the 3 dB cutoff frequencies in each case. Give the

expression for the quality factor of the circuits wher-

ever appropriate. In addition, identify the type of the

filter in each case. Simplify the expressions by assum-

ing Rw ¼ 0. Sketch the amplitude responses for each

of the cases and identify the important values.

6.12.2 Prove the maximum power transfer theorem.

Sketch the power delivered to the resistor RL.

Assume the source resistance is Rs.

Fig. P6.12.1 Circuits to
determine the transfer
functions

242 6 Systems and Circuits



Chapter 7

Approximations and Filter Circuits

7.1 Introduction

In the first part of this chapter we will consider a

graphical representation of the transfer function

in terms of its frequency response HðjoÞ ¼
HðjoÞj jeffHðjoÞ. Bode diagrams or plots consist of

two separate plots, the amplitude HðjoÞj j and
the phase angle ffHðjoÞ, with respect to the fre-

quency o on a logarithmic scale. These plots are

named after Bode, in recognition of his pioneer-

ing work Bode (1945). Bode’s basic work was

based upon approximate representation of

amplitude and phase response plots of a com-

munication system. Wide range of frequencies of

interest in a communication system dictated the

use of the logarithmic frequency scale. Bode

plots use the asymptotic behavior of the ampli-

tude and the phase responses of simple functions

by straight-line segments and are then approxi-

mated by smooth plots with ease and accuracy.

Bode plots can be created by using computer

software, such as MATLAB. The topic is mature

and can be found in most circuits, systems, and

control books. For example, see Melsa and

Schultz (1969), Lathi (1998), Close (1966), Nils-

son and Riedel (1966), and many others.

Filter approximations will be considered in

the second part of this chapter. In Section 6.10,

Butterworth approximation of an ideal low-pass

filter amplitude response was introduced and the

amplitude squared Butterworth function is

HBuðjoÞj j2¼ 1

1þ e2ðo=ocÞ2n
: (7:1:1)

The value of this function at o ¼ 0 is 1, at o ¼ 1,

the function goes to zero, and, in between these

frequencies, the function decays. The low-pass

filter passes frequencies between 0 and oc with

small attenuation and blocks or attenuates the

frequencies above oc, the cut-off frequency. In

Section 6.11, we have considered deriving the

transfer function HðsÞ from HðjoÞj j2. In the

next stage we are interested in coming up with

a circuit that has the given transfer function. The

circuit may consist of passive elements, such as

resistors, inductors, capacitors, and transfor-

mers. Early filter designs were done exclusively

with passive networks. Mathematics associated

with passive network synthesis is elegant. There

is very little leeway in the designs. See, for exam-

ple, Weinberg (1962), and others for the passive

filter limtations. Another problem of passive net-

work synthesis is the use of inductors and trans-

formers, as these are not ideal components in

reality.

Last part of the chapter deals with active filter

synthesis using operational amplifiers, resistors,

and capacitors. Active filter synthesis avoids the

use of coils. Mathematical sophistication in active

filter synthesis is much lower than passive filter

synthesis. Active filter synthesis is based upon com-

ing up with circuits with different topologies con-

sisting of operational amplifiers, resistors, and

capacitors. The circuit is then analyzed in terms of

the R0s and C0s, assuming the operational amplifier

is ideal. Comparing the derived and the given trans-

fer function and equating the corresponding co-

efficients of s in the two transfer functions result in

a set of equations with more unknowns than equa-

tions. As a result, we have infinite number of solu-

tions for the component values. This gives a good

deal of leeway for a circuit designer to optimize the

circuits. One of the optimization criteria is

R.K.R. Yarlagadda, Analog and Digital Signals and Systems, DOI 10.1007/978-1-4419-0034-0_7,
� Springer ScienceþBusiness Media, LLC 2010

243



minimization of the sensitivity of a network with

respect to changes in the component values.

Introduction to sensitivity: In introducing sensi-

tivity, Bode was concerned about the changes in

the transfer function resulting from large changes

in the element values in the transmission systems

that included vacuum tubes. Even though we are in

the era of integrated circuits, we are still interested

in the effect of changes in the component values on

the transfer function. This effect may be in the form

of a shift in a pole frequency op or change in the

quality factor Qor any other system parameter with

respect to a component value. Pole sensitivity is

defined as the per-unit change in the pole frequency,

Dop=op, caused by a per-unit change in the desired

component value Dx=x. The sensitivity of the

parameter op with respect a component value xis

defined by

Sop
x ¼ lim

Dx!0
Dop=op

� �
= Dx=x½ �

� �
¼ x

op

@op

@x

¼ @ lnðopÞ
@ lnðxiÞ

: (7:1:2)

The parameter can be any that is important to the

circuit’s function. We will assume the function of

interest is Yi as a function of x. Formulas for sensi-

tivities of simple functions can be seen by inspec-

tion. These are given in Table 7.1.1, where

Yi ¼ YiðxÞ and xis a variable and c is a constant.

From the sensitivity equation (7.1.2), we have

�S1=Y
x ¼�@ðlnð1=YÞÞ

@ðlnxÞ ¼�
@ð� lnðYÞÞ
@ðlnðxÞÞ ¼SY

x : (7:1:3)

Example 7.1.1 The transfer function (TF), HðsÞ ¼
V2ðsÞ=V1ðsÞ of the circuit in Fig. 7.1.1 is as

follows:

HðsÞ ¼ V2ðsÞ
V1ðsÞ

¼ 1=L1C1

s2 þ ðR1=L1Þsþ ð1=L1C1Þ

¼ o2
0

s2 þ ðo0=QÞsþ o2
0

;

o0 ¼
1ffiffiffiffiffiffiffiffiffiffiffi
L1C1

p ; Q ¼ o0L1

R1
¼ 1

R1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L1=C1

p
:

(7:1:4)

Derive the sensitivities of the functions

o0 ¼ L
�1=2
1 C

�1=2
1 andQwith respect to the element

values R1;L1; and C1.

Solution: We note that

So0

L1
¼ S

L1
�1=2C

�1=2
1

L1
¼ ðL1C1Þ�1=2

1=
ffiffiffiffiffiffiffiffiffiffiffi
L1C1

p @ðL�1=21 Þ
@L1

¼ �ðL
3=2
1 L

�3=2
1 Þ

2
¼ � 1

2
: (7:1:5)

Similarly,

So0

C1
¼ ð�1=2Þ;So0

R1
¼ 0;

S
Q
L1
¼ �ð1=2Þ;SQ

R1
¼ �1: (7:1:6)

Note that So0

R1
¼ 0 since o0 is not a function of R.

From (7.1.6), we have a 1% change in any one of the

three component values in the RLC circuit in the

example resulting in either (1/2)% or 0% change in

o0 and (1/2)% or 1% change in Q.The sign of the

values indicates whether the change is increasing or

decreasing. &

Transfer function of a circuit is a function of a set

of parameters that are functions of the circuit com-

ponents. For example,o0 is a function ofL1 and C1

in Example 7.1.1. The change in o0, Do0 can be

approximated by using Taylor’s series written in

terms of the variables xi in the form

Table 7.1.1 Formulae for computing sensitivities

SY1Y2
x ¼ SY1

x þ SY2
x SY1=Y2

x ¼ SY1
x � SY2

x

SY
xn ¼ ð1=nÞSY

x SYn

x ¼ nSY
x

SY1þY2
x ¼ Y1S

Y1
X
þY2S

Y2
x

Y1þY2
S

cYðxÞ
x ¼ S

YðxÞ
x ; S c

x ¼ 0

Fig. 7.1.1 Example 7.1.1
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Do0 ¼
@o0

@x1
þ @o0

@x2
þ :::þ @o0

@xn

þ second and higher order terms: (7:1:7)

See Tomovic and Vukobratovic (1972). If the

change in the element values is assumed to be

small, then the second-order and higher-order

terms can be ignored.

Do0 ffi
Xn
i¼1

@o0

@xi
@xi ¼

Xn
i¼1

@o0

@xi

xi
o0

� �
@xi
xi

o0: (7:1:8)

Do0

o0
¼
Xn
i¼1

So0
xi

Dxi
xi

� �
; So0

xi
¼ @o0

@xi

xi
o0

� �
: (7:1:9)

In Example 7.1.1 there are two important para-

meters, one is o0 and the other one is quality factor

Q. Per-unit changes in Q in terms of its sensitivities

can be expressed with respect to the parameters as

well. In turn, the sensitivities of gain and phase of a

transfer function in terms of the frequency

o0 and Q can be determined.

Block diagrams: In system control, system stabi-

lity is one of the most important properties to be dealt

with andclosed-loop feedback control is basic tomany

systems.A simple feedback loop is shown inFig. 7.1.2,

where we have the Laplace transforms of the input

signal with L½rðtÞ� ¼ RðsÞ, error or actuating signal

L½eðtÞ� ¼ EðsÞ, control signal L½mðtÞ� ¼MðsÞ, con-
trolled output L½cðtÞ� ¼ CðsÞ, and primary feedback

signal L½bðtÞ� ¼ BðsÞ: The blocks identified by the

transforms G1ðsÞ;G2ðsÞ; and HðsÞ represent control
elements, plant or process, and feedback elements,

respectively. The transfer function of the feedback sys-

tem can be computed bywriting the appropriate equa-

tions and solving for the output in terms of the input.

These are as follows:

eðtÞ ¼ rðtÞ+bðtÞ !LT RðsÞ+BðsÞ ¼ EðsÞ

MðsÞ ¼ G1ðsÞEðsÞ ¼ G1ðsÞðRðsÞ+BðsÞÞ;
CðsÞ ¼ G2ðsÞMðsÞ; BðsÞ ¼ HðsÞCðsÞ

CðsÞ ¼ G2ðsÞG1ðsÞ½RðsÞ+BðsÞ�
¼ G2ðsÞG1ðsÞ½RðsÞ+HðsÞCðsÞ�

CðsÞ½1þ G2ðsÞG1ðsÞHðsÞ� ¼ G1ðsÞG2ðsÞRðsÞ

Transfer function:

TðsÞ ¼ CðsÞ
RðsÞ ¼

G1ðsÞG2ðsÞ
1þ G1ðsÞG2ðsÞHðsÞ

: (7:1:10)

The product GðsÞ ¼ G1ðsÞG2ðsÞ is the direct trans-

fer function, HðsÞ is the feedback transfer function,

the product GðsÞHðsÞ is the loop transfer function or

the open-loop transfer function, and TðsÞ is the

closed-loop transfer function. There are several

books (for example, DiStefano et al. (1990).) that

cover the block diagram algebra that gives simplifi-

cations in deriving the transfer functions. A useful

transfer function that can be written in a special

form is given by DiStfano et al. and the sensitivity

of this function with respect to K is as follows:

TðsÞ¼A1ðsÞþKA2ðsÞ
A3ðsÞþKA4ðsÞ
ðK is independent ofAi ðsÞ;i¼1;2;3;4Þ: (7:1:11)

)ST
K¼

K½A2ðsÞA3ðsÞ�A1ðsÞA4ðsÞ�
½A3ðsÞþKA4ðsÞ�½ðA1ðsÞþKA2ðsÞ�

: (7:1:12)

The transfer function can be expressed as a ratio of

two polynomials in the form

TðsÞ ¼ NðsÞ
DðsÞ : (7:1:13)

Example 7.1.2 Let a: T1ðsÞ ¼ GðsÞHðsÞ ¼ ½K=ðs2þ
sþ 1Þ�; b: T2ðsÞ ¼ ½K=ðs2 þ sþ 1þ KÞ�.

Determine the sensitivities of these functions to the

parameter K.

Solution: a. Using (7.1.11), we have A1ðsÞ ¼ 0;

A2ðsÞ ¼ 1; A3ðsÞ ¼ s2 þ s þ 1; A4ðsÞ ¼ 0. Using

these in (7.1.12), it follows that S
T1ðsÞ
K ¼ 1 for

all K.Fig. 7.1.2 A simple feedback system
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b. Again, using (7.1.11) and (7.1.12), we have

A1ðsÞ ¼ 0;A2ðsÞ ¼ 1;

A3ðsÞ ¼ s2 þ sþ 1;A4ðsÞ ¼ 1;

S
T2ðsÞ
K ¼ Kðs2 þ sþ 1Þ

ðs2 þ sþ 1þ KÞK

¼ 1

1þ K=ðs2 þ sþ 1Þ : (7:1:14)

Sensitivity of the open-loop function S
T1ðsÞ
K is 1 for

all values of K and the sensitivity of the closed-loop

function S
T2ðsÞ
K is a function ofK and s. Using s ¼ jo,

we can observe that for small values ofo andK ¼ 1,

S
T2ðsÞ
K ffi :5. The feedback system is less sensitive

than the open-loop system with respect to K. In

Section 7.12 amplitude and phase sensitivities will

be considered. &

One of the main topics in this chapter is active

filter synthesis. The first step in the active filter

design is the analysis of a circuit with the appropri-

ate topology. In Chapter 6 we considered comput-

ing the transfer function of a given circuit with two-

terminal components using the Kirchhoff’s current

and voltage laws and the component equations.

Active filter circuits include multiple terminal com-

ponents, including operational amplifiers (or op

amps). These active devices are represented by con-

trolled or dependent sources in the analysis. Kirchh-

off’s laws, two-terminal component equations, and

the controlled source representations of active

devices provide a way to analyze circuits. A brief

discussion on two-port representations of circuits is

included by making use of the indefinite admittance

matrix (Mitra, 1969). Other topics include scaling,

frequency normalization, and adjustment of gain

constants of the filter.

7.2 Bode Plots

In this section we will study the basic concepts

associated with a pictorial representation of a

rational function, say HðsÞ or HðjoÞ,

HðsÞ¼ ½NðsÞ=DðsÞ�;HðsÞjs¼jo¼ HðjoÞj jejyðoÞ: (7:2:1a)

Consider

HðsÞ ¼ Ksd
P
M

m¼1
ð1þ ð1=zmÞsÞ

P
N

n¼1
ð1þ ð1=pnÞsÞ

(7:2:1b)

HðjoÞ¼HðsÞ s¼jo
		

¼KðjoÞd ð1þ jo=z1Þð1þ jo=z2Þ:::ð1þ jo=zMÞ
ð1þ jo=p1Þð1þ jo=p2Þ:::ð1þ jo=pNÞ

¼ HðjoÞj jejyðoÞ: (7:2:1c)

Since the transfer is a ratio of real polynomials, the

complex poles (or zeros) exist as complex-conjugate

pairs and are usually simple. Multiple poles and

zeros are possible and d is usually negative. In

most cases, only a reasonable estimate of the sys-

tem behavior and that to only at a very few fre-

quencies is desired. The amplitude and phase

responses at oi are given by

AðoiÞ ¼ HðjoiÞj j ¼ Kj j oij jd
P
M

m¼1
Zm

P
N

n¼1
Pn

;

Zm ¼ 1þ joi=zmj j; Pn ¼ 1þ joi=pnj j (7:2:1d)

yðoiÞ ¼ffKþ dð90�Þ þ
XM
m¼1

tan�1ðoi=zmÞ

�
XN
n¼1

tan�1ðoi=pnÞ: (7:2:1e)

Although this approach is simple to see, finding

these values and sketching them is time consum-

ing. An alternate one is to obtain approximate

sketches for the amplitude HðjoÞj j and the phase

response yðoÞ using Bode plots using the follow-

ing factors:

1. Constant term, K.

2. Poles or zeros at the origin, s+k:

3. Real poles or zeros, ðtsþ 1Þ+k

4. Complex-conjugate poles or zeros, ðt2s2þ
2xtsþ 1Þ+k, where x is the damping ratio and

05x 5 1:

We need to study only simple poles and zeros, as

the extensions to the multiple pole cases are simple.

Note that log denotes base 10 and (ln) denotes base e.
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20 log BðjoÞj jN ¼ N log BðjoÞj j and ff½BðjoÞ�N

¼ Nff½BðjoÞ�: (7:2:2a)

logðaþ jbÞ ¼ log aþ jbj j þ j argðaþ jbÞ

¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
 �

þ j tan�1ðb=aÞ: (7:2:2b)

Note that the term t is used instead of the explicit

poles or zeros and have combined the complex poles

and their conjugates. Substituting s ¼ jo in the

transfer function HðsÞ, we have HðjoÞ ¼ HðjoÞj j
ffHðjoÞ or HðjoÞj jdB¼ 20 log HðjoÞj j and fðoÞ ¼
ffHðjoÞ. We are only interested in sketching for

positive frequencies. In addition, we will consider

only poles that are on the negative half splane,

including the imaginary axis and the zeros can be

anywhere. In most applications, the poles and zeros

are simple, with the exception that may include

multiples at the origin. Since the log of a product

is the sum of the corresponding logs of the terms,

we can sketch the magnitude function by using the

simple functions. The phase responses of the terms

in the transfer function can be added to obtain the

total phase response. The dB magnitude versus

logðoÞ plot, i.e., logarithmic magnitude frequency

response plot is called the Bode amplitude plot, and

the phase angle versus logðoÞ is called Bode phase

phase plot (or Bode diagrams). Logarithmic scale

for the o-axis makes the sketches simple and

allows sketches over a wider range of frequencies

than the linear scale. Let the logarithmic frequency

variable be defined by u ¼ logðoÞ or o ¼ 10u. The

frequencieso1 and o2 are separated by an octave if

o2 ¼ 2o1 and by a decade if o2 ¼ 10o1. Note

u2 � u1 ¼ logðo2Þ � logðo1Þ ¼ logðo2=o1Þ: (7:2:3)

Octaves ¼ log2ðo2=o1Þ ¼ ½log10ðo2=o1Þ= log10ð2Þ�;
Decades ¼ log10ðo2=o1Þ: (7:2:4)

The amplitude and phase plots of HðjoÞ are con-

sidered using the four possible factors of a transfer

function.

Constant K: The logarithm of a constant is a

constant with respect to o. The plot of

20 logð Kj jÞ versus log(oÞ is a horizontal line. The

phase angle is either 08 or –1808 depending upon

whether the K is positive or negative.

The factor (jo )N :

20 log joj jN ¼ 20N log oj j; ffðjoÞN

¼ Nðp=2Þ: (7:2:5)

Noting that log10ð2Þ ¼ :3013, if o1 ¼ a and

o2 ¼ 2a , the amplitude in (7.2.5) has increased

by 6NdB/octave or 20NdB/decade. The function

20N log joj j plots as a straight line on the Bode

plot and has a slope equal to 6N dB/octave or 20N

dB/decade. The slope of the line is positive (nega-

tive) depending on whether N is positive (negative).

The magnitude and phase plots are shown in

Fig. 7.2.1a,b for ð1=joÞ. It is simple to obtain the

plots for multiple poles.
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The factor ½1=ðjotþ 1Þ�: Noting that A1ðoÞ ¼
�20 log ð1þ jotÞj j ¼ �10 log½1þ ðotÞ2�, we have

for small and for large values of o, the amplitudes

can be approximated by

ðotÞ � 1; AðoÞ � �20 logð1Þ ¼ 0 dB;

ðotÞ 	 1; AðoÞ � �20 logð otj jÞdB : (7:2:6)

These are the asymptotes to the true curve cor-

responding to the very small and very large fre-

quencies. The first asymptote is a horizontal line

and the second asymptote is a straight line with

a slope of –6 dB/octave or –20 dB/decade. The

two asymptotes intersect at the corner frequency

or the break frequency o ¼ 1=t. The actual value

of the magnitude function at this frequency is

equal to �20 logð
ffiffiffi
2
p
ÞdB � �3dB. It is simple to

draw the asymptotic and the actual curves using

the following guidelines:

1. The constant t is the break point (or the corner

frequency) in the asymptotic plot.

2. From the break point, draw the two asymp-

totes, one with a zero slope toward the o
small and the other one with a –6 dB/octave

slope extending toward o!1.

3. At the break point, the true response is displaced

by –3 dB. In addition, an octave below and

above the break point, the true curve is separated

by –1 dB. A sketch of the amplitude response

using the table and the above guidelines is

shown in Fig. 7.2.2a. Note the frequency is

plotted using the log scale. The phase angle of the

term ½1=ð1þ jotÞ� is equal to f1ðoÞ ¼ � tan�1

ðotÞ radians or � ½57:3 tan�1ðotÞ� degrees: It can
be approximated using the power series

expansion (Spiegel, 1966):

tan�1ðotÞ ¼ ðotÞ � ð1=3ÞðotÞ3

þ ð1=5ÞðotÞ5 � :::; otj j41; (7:2:7a)

tan�1ðotÞ ¼+ðp=2Þ � ½1=ðotÞ � ð1=3Þð1=otÞ3

þ ð1=5Þð1=otÞ5 � :::�;þ if ot 
 1;

� if ot � �1: (7:2:7b)

tan�1ðotÞ ¼ p=4; ot ¼ 1: (7:2:7c)

Figure 7.2.2 gives the Bode amplitude and phase plots.

The phase angle plot approaches 08 as ðotÞ ! 0 and –

908as ðotÞ ! 1. Noting (7.2.7c), we can see that the

phase angle is –458 at the break frequency o ¼ 1=t.
These two asymptotes can be connected by drawing a

line from the 08 asymptote starting at one decade below

thebreak frequency ð:1=tÞwith 08 phase anddrawa line

with a slope of 458/decade passing through – 458at the
break frequency and continuing to –908 one decade

above the break frequency ð10=tÞ. For the zeros, the
amplitude and phase response sketches can be simi-

larly drawn since only the signs need to be altered.

Quadratic factors: The Bode plots correspond-

ing to a pair of complex poles are usually given in

terms of the damping factor x � 1 by
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Fig. 7.2.2 Bode amplitude 1= 1þ joj j and phase ff1=ð1þ joÞ plots, break frequency ¼ 1
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H2ðsÞ¼
1

½1þ2xtsþ t2s2�

¼ 1

½1þðQp=opÞsþð1=o2
pÞs2�

;0� x� 1: (7:2:8)

H2ðjoÞj j2 ¼ 1=½ð1� o2t2Þ2 þ 4ðxtoÞ2�;
A2ðoÞ ¼ 20 logð H2ðjoÞj jÞ (7:2:9a)

f2ðoÞ ¼ � tan�1 2xot=ð1� o2t2Þ
� �

(7:2:9b)

It is common in the filter designs to use the quality

factor Qp and op in (7.2.8). The peak of the magni-

tude squared function can be found by taking the

derivative of the denominator in (7.2.9a) with

respect to o and equating to zero. That is,

d½1= H2ðjoÞj j2�
do

¼ 2ð1� o2t2Þð�2ot2Þ þ 2ð4x2t2oÞ

¼ 0! o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x2

p
t

: (7:2:10)

1� 2x240 or x5ð1=
ffiffiffi
2
p
Þ ¼ :707 ðo is realÞ: (7:2:11)

Asymptotic approximations – second-order case:

H2ðjoÞ ¼ 1=½1þ j2xto� t2o2�

1. For low and high frequencies we can write:

ðotÞ � 1; 20log H2ðjoÞj j ¼ 0 dBðotÞ
	 1; 20log H2ðjoÞj j �
� 40 logðotÞ dB: (7:2:12)

The high frequency asymptote is a straight

line with a slope of –12 dB/octave (–40 dB/

decade).

2. The break frequency, i.e., the intersection of

the low-frequency and the high-frequency

asymptotes is located at the frequency

o ¼ ð1=tÞ, which can seen from the fact that

40 logðotÞ ¼ 0; o ¼ 1=t for all x. At the

break frequency, we have

20 log H2ðjoÞj j
o¼1=t
¼ �20 logð2xÞ dB: (7:2:13)

As an example at x ¼ :2, we have the value –7.958

dB and for x ¼ 1=2, the above equation reduces to 0

dB. A few values are given below for (7.2.13).

Now consider the phase asymptotic plots of the

second-order function from the f2ðoÞ given in

(7.2.9b). At the break frequency,

f2ðoÞ o¼ð1=tÞ
		 ¼ � tan�1ð1Þ

¼ �90� for all x: (7:2:14)

The phase starts at 0� at low frequencies. At

o ¼ ð:1=tÞ, it starts to decrease at a rate of –908/
decade. At o ¼ ð1=tÞ, it is –908. It continues to

decrease and reaches–1808 as o!1. The ampli-

tude and phase responses are plotted for a few

values of x in Fig. 7.2.3. The phase response will
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Fig. 7.2.3 Bode plots H2ðjoÞj j ¼ 1=½1þ j2xto� t2o2�
		 		; ffH2ðjoÞ; 0 � x � 1
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have a discontinuity going from 0 to –1808 at the

break point corresponding to x ¼ 0.

The above discussion is given in terms of poles.

For the zeros of a transfer function, multiply the dB

and the phase angle values by –1. Bode plots of the

transfer function can be constructed by summing

the log magnitudes and phase angle contributions

of each pole and zero (or pairs of complex and

their conjugates of poles and zeros). DiStefano III

et al. (1990), Nise (1992), and others give sys-

tematic procedures for sketching the Bode plots

with examples to illustrate the construction pro-

cess. Thaler and Brown (1960) give a tabulation

of typical control system transfer functions, with

associated polar plots, Bode plots, and root

locus plots.

There are a few ways of computing the amplitude

versus frequency on the Bode plot. Construct each

factor separately and at selected values of o add the

amplitudes. Then, sketch the amplitude function

through these points. It is simpler to use the asymp-

totes. For this purpose we need to have the transfer

function in factored form. Next arrange the transfer

function with increased values of poles and zeros.

Many of the control system transfer functions have

poles at the origin with a multiplicity of l; l 
 0.

Such a system is called a type l system. The system

amplitude plot has a slope at low frequencies

of �10 l dB/decade or (–6l dB/octave). This slope

is maintained until the first corner frequency is

reached. At the first corner frequency the slope is

changed by +10 dB=decade for a first-order pole

or zero. If it is a second-order function, then the

slope is changed by +20 dB=decade. This proce-

dure is used to sketch the asymptotic plot. We can

construct the composite asymptote provided the

exact location of the lowest frequency segment can

be located.

For l ¼ 0, the lowest-frequency asymptote with a

constant gain K is 20 logðKÞ dB. For l ¼ 1, locate

the point o ¼ K on the 0 dB axis. The lowest fre-

quency asymptote passes through this point with a

slope of –10 dB/decade. For l ¼ 2, locate the point

o ¼
ffiffiffiffi
K
p

on the 0 dB axis. This frequency asymptote

passes through this point with a slope of –20 dB/

decade. It is very rare to have more than a double

pole at the origin. Noting that for oT� 1, all the

factors of the form ðjoTþ 1Þ reduce to 1 in this

region. Then, we have

20 log HðjoÞj j ffi 20 logðKÞ � 20 log ðjolÞ
		 		: (7:2:15a)

For example, for l ¼ 2, the above equation represents

a straight line with a slope of –20 dB/decade and the

corresponding intercept is determined by

20 logðKÞ � 20 log ðjo2Þ
		 		 ¼ 0! o ¼

ffiffiffiffi
K
p

: (7:2:15b)

Example 7.2.1 Sketch the Bode plots for the follow-

ing transfer function:

HðsÞ¼ 10ð1þsÞ
s2ð1þðs=4Þþðs=4Þ2Þ

;

HðjoÞ¼ 10ð1þjoÞ
ðjoÞ2ð1þð1=4Þjo�ðð1=4ÞÞ:25oÞ2Þ

: (7:2:16)

Solution: The corresponding amplitude in terms of

dB and the phase responses are

20log HðjoÞj j ¼ 20logð10Þþ20log ð1þ joÞj j�40log joj j

�20log 1=½ð1þ jðo=4Þ�ðo=4Þ2�
			 			;

(7:2:17)

ffHðjoÞ ¼ffð1þ joÞ þ ffð1=joÞ2

þ ff½1=ð1þ jo=4� ðo=4Þ2Þ�: (7:2:18)

The asymptotic amplitude plot is obtained by add-

ing the asymptotic plots of each of the terms. The

first term on the right in (7.2.17) is equal to 20 dB for

all values of o. The third term corresponds to a

double pole at the origin and the asymptote goes

through the corner frequency o ¼ 1 with a slope of

–40 dB/decade. The high-frequency asymptote of the

second term in (7.2.17) starts at the corner frequency

o ¼ 1 and has a slope of 20 dB/decade. The fourth

term corresponds to a pair of complex poles. Not-

ing t ¼ 1=4 and 2xt ¼ :25 (x¼ .5, damping factor).

The high-frequency asymptote of the complex pair

of poles starts at the corner frequency o ¼ 4 with a

slope of –40 dB/decade. All of these are sketched in

Fig. 7.2.4 using MATLAB software.

Before we obtain the composite amplitude

asymptotic Bode plot of the transfer function, we

need to locate the lowest frequency asymptote.

Using (7.2.15b), the corresponding asymptote is a

line through the point
ffiffiffiffi
K
p
¼

ffiffiffiffiffi
10
p

at a slope of –40

dB/decade on the 0 dB axis. We are now ready to

sketch the asymptotic Bode magnitude plot of the
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transfer function by adding the asymptotic plots of

each of the four terms. Start at a low frequency say

o ¼ :1, follow the low-frequency asymptote that

passes through o ¼
ffiffiffiffiffi
10
p

on the 0 dB axis to

the first corner frequency o ¼ 1 corresponding

to the (joþ 1Þ factor. Since this is a numerator

factor, the next asymptote changes from –40 dB/

decade to –20 dB/decade and continues to the

next corner frequency located at o ¼ 4. The next

asymptote takes into consideration of the sec-

ond-order factor in the denominator. The last

high-frequency asymptote starts at o ¼ 4 with a

change in slope to –60 dB/decade. The individual

amplitude and phase plots of the transfer func-

tion are shown in Fig. 7.2.4a and b. We can

obtain the actual amplitude plot by correcting

for the errors in the asymptotic plots and the

true functions. An easy way to do is find the

amplitudes at the corner frequencies and then

sketch the function through the computed values.

Bode plots are only sketches. If accurate plots are

desired, software packages, such as MATLAB,

need to be used to obtain the desired results.

Phase approximations can be used for the phase

angle asymptotic plots. To get a sketch, it is easier

to make use of arctangent function to obtain the
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1/(1 + 0.25s – (0.25s)2)
(a)

(b)

Fig. 7.2.4 (a) Bode
amplitude and (b) Bode
phase plots of individual
factors

%Plot individual terms (Figure 7.2.4 Example 7.2.1)
sys1=tf (10,1 ); sys2=tf ([1 1],1); sys3=tf(1,[1 0 0]);
sys4=tf(1,[-0.25 0.25 1]);
bode(sys1,’k’,sys2,’k––’,sys3,’k-.’,sys4,’k:’,{0.01,100})
legend(’10’,’1+s’,’1/s^2’,’1/(1+0.25s-(0.25s)^2)’)

%Plot the whole Bode plot (Figure 7.2.5, Example 7.2.1)
num=10*[1 1];
den=[-(1/4) (1/4) 1 0 0];
w=logspace(-2,2,100);
bode(num,den,w)
grid

MATLAB code for Example 7.2.1
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phase angles at some important frequencies, such

as at corner frequencies, and sketch the function

using these values. The amplitude and phase plots

for the composite are given in Fig. 7.2.5a,b using

the MATLAB code given below.

7.2.1 Gain and Phase Margins

We would like to consider two important

topics that are used in the stability analysis of

feedback control systems. Our discussion will be

brief. The characteristic polynomial of a feedback

control system is DðsÞ ¼ 1þH0ðsÞ ¼ 0 with

H0ðsÞ ¼ G1ðsÞG2ðsÞHðsÞ (see 7.1.10). Practicing engi-
neers use the gain margin (GM) and the phase margin

(FM), see, for example, Melsa and Schultz (1969).

Graphical analysis is more appealing to engineers

than analytical analysis. Gain and phase margins are

measures of relative stability of the feedback control

system. These are defined at the phase and margin

crossover frequencies op and oc.

GM ¼
1

H0ðjopÞj j with ffHðjopÞ ¼ �1800;

op ¼ phase crossover frequency;

(7:2:19)

FPM ¼ 1800 þ ffH0ðjocÞ
� �

with HðjocÞ ¼ 1;

oc ¼ gain crossover frequency: (7:2:20)

They are measures on how closely H0ðjoÞ
approaches a magnitude of unity and a phase of –

1808 quantifying the relative stability of the system.

They can be read using the Bode plots. Negative

phase margin implies instability.Most engineers use

the criteria that a phase margin of 308 and a gain

margin of 6 dB are safe margins. Analytical compu-

tation of gain and phase margins may not be possi-

ble since it requires factoring polynomials.

Example 7.2.2 Using the following methods obtain

the gain and phase margins:

a. Analytical methods and b. MATLAB for the

following function:

H0ðsÞ ¼
5

s3 þ 3s2 þ 4sþ 2
) HðjoÞ

¼ 5

ð2� 3o2Þ þ joð4� o2Þ : (7:2:21)
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Fig. 7.2.5 Bode amplitude
and phase plots of the
composite function

n=5 ;d=[1 3 4 2];
w=logspace(–2,2,100),
[mag, phase]=bode
(n,d,w);margin(mag, phase,w)

MATLAB code for Example 7.2.2
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Solution: a. Equate the imaginary part to zero, i.e.,

ImðH0ðjoÞÞ ¼ 0. Solving forop and then evaluating

the real part at this frequency, we have

ImðH0ðjoÞÞ ¼ 0;op ¼ 2! ReðH0ðjopÞÞ
¼ �1=2: (7:2:22)

We can increase the gain by 2 before the real part

becomes –1. The gain margin in dB is

GM ¼ 20 logð2Þ ffi 6 dB: (7:2:23)

We could also solve for op by noting that the char-

acteristic polynomial

DðsÞ ¼ 1þ aH0ðsÞ ) 0! s3 þ 3s2 þ 4sþ 12

¼ ðs2 þ 4Þðsþ 3Þ ¼ 0

has imaginary roots given by s ¼+ j2. See the discus-

sion on Routh table Chapter 6. For phase margin, we

need to equate H0ðjoÞj j ¼ 0 and solve foro ¼ oc. This

requires software, such as MATLAB. These result in

25 ¼ð2� 3o2Þ2 þ o2ð4� o2Þ2

! o6 þ o4 þ 4o2 � 21 ¼ 0:

We can use MATLAB command roots

([1,0,1,0,4,0,–21]) and obtain the real positive

root of the polynomial given by oc ¼ 1:4315

resulting in

ffH0ðjoÞ o¼oc¼1:4315j

¼ ff 5=ð2� 3o2Þ þ joð4� o2Þ
� �

o¼oc¼1:4315
� �1460:

The phase margin, the difference between this angle

and –1808, is

FM � 180� � 146� ¼ 34�: (7:2:24)

b. Analytical computation may not be possible

and computational tools, such as MATAB,

are good to use. For this example the code is

given below. MATLAB Bode plots are given in

Fig. 7.2.6. The gain and the phase margins are

shown. &
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Example 7.2.2
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7.3 Classical Analog Filter Functions

7.3.1 Amplitude-Based Design

Noting HðjoÞj j is even, start with

HðjoÞj j2 ¼ HðjoÞHð�joÞ

¼

PM
l¼0

alo2 l

1þ
PN
l¼1

blo2 l

;N 
M: (7:3:1)

The goal is to determine the coefficients al and bl so

that (7.3.1) satisfies a given set of specifications on

the amplitude response. Letting o! s=j, we have

the product HðsÞHð�sÞ. The minimum phase trans-

fer function is obtained by assigning the left half-

plane poles and zeros of HðsÞHð�sÞ to HðsÞ.
In this section we will consider Butterworth,

Chebyshev I, and Chebyshev II filter functions.

The ideal low-pass filter function was defined in

Chapter 6 and is

HLpðjoÞ ¼ P o=2oc½ �e�jot0 ;
oc ¼ 2pfc; cut - off frequency: (7:3:2)

The ideal low-pass filter response in (7.3.2) is not

physically realizable, see Section 6.10.1. The next

best thing is approximate an ideal filter response.

We have seen that a simple RC circuit approximates

a low-pass filter. There are four types of filters

identified by

1. HLpðjoÞ, low-pass function
2. HHpðjoÞ, High-pass function

3. HBpðjoÞ, Band-pass function
4. HBeðjoÞ, Band-elimination function

Low-pass filter specifications:

Pass band : 0 � oj j � oc;
1

1þe2 � HLpðjoÞ
		 		2� 1 or � XdB � 20 log HLpðjoÞ

		 		 � 0dB

Stop band : oj j 
 or; HLpðjoÞ
		 		2� ð1=A2Þ; or 20 log HLpðjoÞ

		 		 � �YdB;oc5or

8<
:

9=
;: (7:3:3a)

High-pass filter specifications:

Pass band : oc � oj j � 1; 1
1þe2 � HHpðjoÞ

		 		2� 1 or � X dB � 20 log HHpðjoÞ
		 		 � 0 dB

Stop band : 0 � oj j � or; HHpðjoÞ
		 		2� ð1=A2Þ; or 20 log HHpðjoÞ

		 		 � �Y dB;or5oc:

8<
:

9=
;: (7:3:3b)

Band-pass filter specifications:

Pass band0:ol � oj j � oh;
1

1þe2 � HBpðjoÞ
		 		2� 1 or � X dB � 20 log HBpðjoÞ

		 		 � 0 dB

Stop bands :0 � oj j � o1 and o2 � oj j � 1; HBpðjoÞ
		 		2� ð1=A2Þ;

or 20 log HBpðjoÞ
		 		 � �Y dB;o15ol;oh5o2:

8>><
>>:

9>>=
>>;

(7:3:3c)

Band elimination filter specifications:

Pass bands : 0 � oj j � ol;oh � o � 1; ð1=ð1þ e2ÞÞ � HBeðjoÞj j2� 1

or � X dB � 20 log HBeðjoÞj j � 0 dB

Stopband : o1 � oj j � o2 ; 0 � HBeðjoÞj j2� ð1=ð1þ e2ÞÞ;
or � YdB 
 20 log HBeðjoÞj j;ol � o1;oh 
 o2:

8>>>><
>>>>:

9>>>>=
>>>>;
: (7:3:3d)
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These are illustrated in Fig. 7.3.1a,b,c,d in terms of

the squares of amplitudes and in dB scale on all the

figures. For simplicity the responses are assumed to

be smooth.

7.3.2 Butterworth Approximations

A simple RC circuit was considered in Chapter 6

with a transfer function (see 6.5.16b)

HðjoÞ ¼ 1

joRCþ 1
; HðjoÞj j ¼ HðsÞ s¼jo

		

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ðo=ocÞ2

q ; oc ¼ 1=RC: (7:3:4)

It has a single parameter oc controling the ampli-

tude response. Assuming the input and the

output transforms as XðjoÞ and YðjoÞ, we have

YðjoÞ ¼ HðjoÞXðjoÞ. This implies YðjoÞj j ¼
HðjoÞj j XðjoÞj j. The filter acts like a gate in the

sense that low frequencies are passed with very little

attenuation and the high frequencies are attenuated

significantly. The shape of the amplitude response

function HðjoÞj j controlswhat frequencies are allowed
through and what frequencies are attenuated or elimi-

nated. To bemore specific, in the low-pass filter design,

we assume we have three bands defined by

Pass band : 0 � o � oc;

transition band: oc5o5or;

stop band : or � o � 1: (7:3:5)

The frequencies 0 � o � oc in the input will be

allowed to pass through the low-pass filter without

much attenuation and therefore we call this band of

frequencies as the pass band. The band of frequen-

cies or � o � 1 in the input signal will be attenu-

ated by the low-pass filter significantly and this

band is called the stop band. In between these

two bands the filter amplitude response will have

to be tapered or gradual and the input frequencies

are attenuated gradually. A popular function

that can act as a low-pass filter that satisfies

the above criterion is a Butterworth function

defined by

HBuðjoÞj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2ðo=ocÞ2n

q : (7:3:6)

The subscript Bu on H is usually not shown and

seen from the context. The e term controls how far

the filter amplitude characteristic will go down to

when o ¼ oc from 1 at o ¼ 0 and the value of n

controls how fast the magnitude characteristic

attenuates in the stop-band region. We have

shown that the ripple amplitude in the pass band

having the value for small e is 1� ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ e2

p
Þ �

e2=2 (see 6.10.10). The pass-band and stop-band

specifications for the low-pass filter are given in

(7.3.3a) and the specifications are identified in

Fig. 7.3.1a. It is common to specify these two in

terms of the dB scale, as identified in this figure.

Using the edges of the frequency bands oc and or,

we can write

(a) (b)

(c) (d) 

Fig. 7.3.1 Analog filter
amplitude specifications:
(a) low pass, (b) high pass,
(c) band pass, and (d) band
elimination
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HBuðjoÞj j2o¼oc
¼ 10 logð1=ð1þ e2ÞÞ

¼ �X dB) e

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ðx=10Þ � 1

p
: (7:3:7)

HBuðjoÞj j2o¼or
¼10logð1=A2Þ

¼�YdB:10log
1

1þ e2ðor=ocÞ2n

¼�YdB)ðnÞinteger


 log½ð10:1Y�1Þ=ð10:1X�1Þ�
2logðor=ocÞ

: (7:3:8)

ðnÞinteger 

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 � 1Þ

p
� logðeÞ

logðor

oc
Þ

ffi lnðA=eÞ
ðor=ocÞ � 1

: (7:3:9)

Now compute the transfer function HBuðsÞ from
(7.3.6). That is,

HBuðjoÞj j2¼ HBuðsÞHBuð�sÞ o2¼�s2j : (7:3:10)

Since the amplitude response function has one in the

numerator, we need to compute only the poles of the

transfer function. They can be found by solving

1þ e2ðo
oc
Þ2n o2¼�s2j ¼ 1þ e2

ð�s2Þn

o2n
c

� �
¼ 0 (7:3:11)

) s2nþ1 ¼
oc

e1=n

� 
ejð2nþ1þnÞ

p
2n;

n ¼ 0; 1; 2; . . . ; 2n� 1: (7:3:12)

The left half-plane poles of HBuðsÞ in the exponen-

tial and trignometric forms are

s2nþ1 ¼ oc=e1=n
� 

ejð2nþ1þnÞ
p
2n;

n ¼ 0; 1; . . . ; n� 1: (7:3:13a)

s2nþ1 ¼ oc=e1=n
� 

½�sinð2nþ 1

2n
pÞ

þ jcosð2nþ 1

2n
pÞ�;n¼ 0;1; . . . ;n� 1: (7:3:13b)

Since s2nþ1j j ¼ ðoc=e1=nÞ, poles of the Butterworth

function are equally spaced on a circle of radius

(oc=ðe1=nÞÞ on the splane. Selecting the poles on the

left half of the s plane, the transfer function is

HBuðsÞ ¼
ð�s1Þð�s3Þ . . . ð�s2n�1Þ

ðs� s1Þðs� s3Þ . . . ðs� s2n�1Þ
:

Note HBuð0Þ ¼ 1ð Þ: (7:3:14)

Example 7.3.1 Compute the values of e and n and

derive Butterworth transfer function for the specifi-

cations given in Fig. 7.3.2 with �X ¼ �2 dB and

�Y ¼ �15dB.

Solution: From (7.3.7) and in (7.3.8), e ¼ :7648
and n 
 3:76. Since n has to be an integer, it follows

that n ¼ 4: From (7.3.13b), the left-half s-plane

poles and the transfer function are

s1;7 ¼ ðoc=0:93516Þð�0:38268+j0:92388Þ;
s3;5 ¼ ðoc=0:93516Þð�0:92388+j0:38268Þ

HBuðsÞ ¼
ð�s1Þð�s3Þð�s5Þð�s7Þ

ðs� s1Þðs� s3Þðs� s5Þðs� s7Þ
: (7:3:15)&

Maximally flat amplitude property of the

Butterworth function: Consider

HBuðjoÞj j2 ¼ 1

1þ e2ðo=ocÞ2n
:

Even function of ðo=ocÞ2 ¼ l:
� 

: (7:3:16)

That is,

HBuðjlÞj j2¼ HBuðjoÞj j2 ðo=ocÞ2¼l

			 ¼ 1

1þ e2ln

Fig. 7.3.2 Specifications in Example 7.3.1
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Expanding this function in power series in the

neighborhood of l ¼ 0, we have

1

1þ e2ln
¼1þ ð0Þlþ :::þ ð0Þln�1þ ð�e2Þlnþ :::

(7:3:17)

A simple way to see this is divide the numerator (1)

by the denominator ð1þ e2lnÞ. The coefficients for
the terms lk; k ¼ 1; 2; :::; n� 1 are identically zero.

That is, ðn� 1Þ derivatives of the Butterworth func-

tion are equal to zero. This is called the maximally

flat property. Butterworth approximation starts

with 1 at o ¼ 0 and monotonically goes to zero as

o!1. It has the maximally flat response in both

pass and stop bands. In the pass band the magni-

tude of the function goes from 1 to (1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ e2Þ

p
).

Zero error at o ¼ 0 and maximum error at the cut-

off frequency oc is approximately equal to e2=2. It
may be of interest to distribute the error throughout

the pass band and the Chebyshev approximation

achieves that.

7.3.3 Chebyshev (Tschebyscheff)
Approximations

The nth (n40Þ order Chebyshev polynomial is

defined by the transcendental function

CnðaÞ ¼ cosðn cos�1 aÞ

¼ cosðn cos�1ðaÞÞ; aj j � 1

coshðn cosh�1ðaÞÞ; aj j41

�
: (7:3:18)

It can be expressed as a polynomial. To show this,

let

nf ¼ cos�1ðaÞ and CnðaÞ ¼ cosðnfÞ:
ðC0ðaÞ ¼ 1 and C1ðaÞ ¼ aÞ: (7:3:19a)

Using the trigonometric identities, we can write

cnþ1ðaÞ ¼ cos½ðn+1Þf�
¼ cosðnfÞ cosðfÞ+ sinðnfÞ sinðfÞ:

Cnþ1ðaÞ ¼ 2aCnðaÞ � Cn�1ðaÞ;
C0ðaÞ ¼ 1;C1ðaÞ ¼ a: (7:3:19b)

C2
nðaÞ ¼ :5½C2nðaÞ þ 1�:

Using (7.3.19b) the Chebyshev polynomials can be

derived. First few of these are

C0ðaÞ¼1; C1ðaÞ¼a

C2ðaÞ¼2a2�1; C3ðoÞ¼4a3�3a

C4ðaÞ¼8a4�8a2þ1; C5ðaÞ¼16a5�20a3þ5a

(7:3:19c)

These are sketched for n ¼ 1; 2; 3; 4 in Fig. 7.3.3 in

the range 0 � a. Since the Chebyshev polynomials

CnðaÞ have even (odd) powers of a only for neven

0 0.1 0.2 0.3 0.4 0.5
α

0.6 0.7 0.8 0.9 1 1.1
–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3

3.5

C
n
(α

)

n = 1

n = 3

n = 4

n = 2

Fig. 7.3.3 Chebyshev
polynomials,
cnðaÞ; n ¼ 1; 2; 3; 4
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(odd), sketching the polynomials for negative a is

straightforward. For large values of a,

CnðaÞ � 2n�1an; a	 1: (7:3:19d)

Properties of the Chebyshev polynomials (see Scheid

(1968)):

1. Since coshðaÞ is never zero for real o, it fol-

lows that CnðaÞ ¼ 0 only for aj j � 1: The roots

of CnðaÞ=0, ak; k ¼ 1; 2; ::; n are real and

akj j51:

2. Since CnðaÞ ¼ cosðn cos�1ðaÞÞ; aj j � 1; it fol-

lows that CnðaÞj j � 1 for aj j � 1.

3. For aj j41, CnðaÞ increases monotonically con-

sistent with the degree n.

4. CnðaÞ is an odd (even) polynomial if n odd (even).

5. The polynomial CnðaÞ oscillates with an

equiripple character varying between a maximum

of +1 and a minimum of –1 for oj j � 1.

6. n�even:Cnð0Þ¼ð�1Þn=2;Cnð�1Þ¼1
n�odd:Cnð0Þ¼0;Cnð+1Þ¼+1ðrespectivelyÞ

" #
:

CnðaÞ ¼ 0; a ¼ cosðð2 kþ 1Þp=2nÞ;
k ¼ 0; 1; 2; :::; n� 1; �1 � a � 1: (7:3:20a)

CnðaÞ ¼ ð�1Þk; a ¼ cosðkp=nÞ;
k ¼ 0; 1; 2; :::; n; �1 � a � 1: (7:3:20b)

7. Slope dCnðaÞ
da a¼1j ¼ n2: (7:3:20c)

Equations (7.3.20a) and (7.3.20b) follow from

0 ¼ cosðn cos�1ðaÞÞ ) n cos�1ðaÞ
¼ kp=2; k-odd; (7:3:21a)

+1¼ cosðncos�1ðaÞÞ) cos�1ðaÞ ¼ kp=n: (7:3:21b)

The Chebyshev polynomial has n roots and they are

located in the range�1 � a � 1. Outside this range,

CnðaÞ is monotonically increasing (or decreasing in

the case of negative a) function. SinceCnðaÞ is either
an even or an odd function, it follows that C2

nðoÞ is

an even function. Chebyshev polynomial gives the

best approximation in the sense that it minimizes the

maximum magnitude of the error for a given value

of n.

Chebyshev 1 approximation: Noting the charac-

teristics of the Chebyshev polynomials in the range

�1 � a � 1, e2C2
nðaÞ varies between 0 and e2 in the

interval aj j � 1 and increases rapidly for aj j41 con-

sistent with n. With these properties in mind, a

low-pass amplitude response function can be

defined, so that the response swings between 1 and

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ e2Þ

p
, in the pass band and monotonically

decreasing property in the stop band. Such a func-

tion is the Chebyshev 1 function given with a sub-

script ðc1Þwith the argument ðo=oc) is given below,

see, for example, in Figs. 7.3.4 and 7.3.5.

Hc1ðjoÞj j2¼ 1

1þ e2C2
nðo=ocÞ

: (7:3:22a)

For o=ocj j � 1; Hc1ðjoÞj j oscillates between 1 and

1=ð1þ e2Þ with equal ripple character.

Hc1ð0Þj j2¼ ð1=ð1þ e2Þ; n� even;

1; n� odd;

�
(7:3:22b)

Fig.7.3.4 Hc1ðjoÞj j; n ¼ 1; 2; 3

Fig. 7.3.5 Hc1ðjoÞj j; n ¼ 4; 5

258 7 Approximations and Filter Circuits



Hc1ðjocÞj j2¼ ð1=ð1þ e2Þ; n� even and n� odd:

(7:3:22c)

The number of peaks ð Hc1ðjoÞj j ¼ 1Þ plus the num-

ber of valleys ð Hc1ðjocÞj j) in the positive frequency

range of the pass band is equal to n. This is referred

to as the equal-ripple property. Fig. 7.3.5 illustrates

this for n ¼ 4; 5. For oj j4 ocj j, Hc1ðjoÞj j decreases
rapidly consistent with the value of n. For e small,

the width of the ripple in the pass band can be

approximated and is e2=2 (see 6.10.10). From the

filter specifications, e gives the permissible range of

amplitudes of the Chebyshev 1 response in the pass

band and the stop-band attenuation constant A

gives a measure of acceptable attenuation in the

stop band. The range of frequencies between

oc and or is the transition band. Chebyshev 1

transfer function can be computed from

Hc1ðsÞHc1ð�sÞ ¼ Hc1ðjoÞHc1ð�joÞ o¼s=j
		

¼ 1

1þ e2c2nðooc
Þ o¼s=j
		 : (7:3:23)

Solving for the roots of the equation

Cnðo=ocÞ o¼s=j
		 ¼+j=e and selecting the left-half-

plane roots results in the following poles of the

transfer function (see Weinberg, 1962):

si ¼oc � sinh
1

n
sinh�1

1

e


 �
 �
sin

2iþ 1

2n
p


 ��

þ j cosh
1

n
sinh�1

1

e


 �
 �
cos

2iþ 1

2n
p


 ��
;

i ¼ 0; 1; 2; :::; n� 1: (7:3:24)

Chebyshev-1 low-pass transfer functions:

Hc1ðsÞ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2
p ð�s1Þð�s2Þ . . .ð�snÞ

ðs� s1Þðs� s2Þ . . .ðs� snÞ
; n�even

ð�s1Þð�s2Þ:::ð�snÞ
ðs� s1Þðs� s2Þ:::ðs� snÞ

; n�odd

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
;

Hc1ðsÞ s¼0j ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2;

p
n�even

0; n�odd:
(7:3:25)

(

Design parameters: e controls the ripple width in

the pass band and n controls the attenuation in the

stop band. That is,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2C2

nðor

oc
Þ

q or¼oc
j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2
p ;

1

A
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2C2
nðor

oc
Þ

q ; or4oc : (7:3:26)

Noting CnðaÞ ¼ coshðn cosh�1ðaÞÞ; aj j41, the

integer n must satisfy

n 
 cosh�1ðð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1
p

Þ=eÞ
cosh�1ðor=ocÞ

� lnð2A=eÞ
½ð2=ocÞðor � ocÞ�1=2

: (7:3:27)

The approximation follows from cosh�1ðxÞ ¼
lnðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

Þ � lnð2xÞ; x 
 1. If the constraints

are given in terms of dB, then

n 
 cosh�1½ð10:1Y � 1Þ=ð10:1X � 1Þ�
cosh�1ðor=ocÞ

: (7:3:28)

Example 7.3.2 Find the Chebyshev 1 transfer func-

tion that has X ¼2 dB ripple in the pass band

and a minimum attenuation in the stop band of

Y ¼15 dB.

Solution: Noting C2
nð1Þ ¼ 1,

10 log
1

1þ e2C2
nðooc
Þ

" #
o¼oc
j ¼ �2 dB

) e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10�2 � 1Þ

q

¼ 0:7648: (7:3:29)

This is the same as in Example 7.3.1. The value of n

is determined from

10 log
1

1þ e2C2
nðooc
Þ

" #
o¼or¼1:69196oc

¼ �15 dBj

) Cnð1:69196Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð101: 5 � 1Þ=ð10:2 � 1Þ

q

¼ 7:2358: (7:3:30)
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Cnð1:69196Þ ¼ coshðn cosh�1ð1:69196ÞÞ ¼ 7:2358;

n 
 cosh�1ð7:2358Þ
cosh�1ð1:69196Þ

¼ 2:387

:

It follows that n ¼ 3 since nmust be an integer. The

maximum attenuation in the stop band and the

transfer function can be determined. These are

10 log
1

1þ e2C3ð1:69196Þ

� �
¼ �20:81dB (7:3:31)

Hc1ðsÞ ¼
ð�s0Þð�s1Þð�s2Þ

ðs� s0Þðs� s1Þðs� s2Þ
;

s0;2 ¼ ocð�0:184445+j0:92078Þ;
s1 ¼ �ocð0:36891Þ: (7:3:32)

Figure 7.3.6 shows the specifications and the

derived amplitude response. &

Chebyshev 1 response has equal ripple property

and is monotonic in the stop band. It has a steep

transition compared to the Butterworth approxima-

tion. Also, the phase response of the Butterworth

filter is better with good delay properties. The idea is

to find a maximally flat pass-band response to

improve the delay performance and retain the

steep transition like the Chebyshev 1. Such a case

is Chebyshev 2 approximation and is discussed

below.

Chebyshev 2 or inverse Chebyshev approxi-

mation: The Chebyshev 2 approximation func-

tion can be derived from Chebyshev 1 function

by first considering the normalized Chebyshev 1

function with the cut-off frequency of one and a

transformation that takes the zero frequency to

1 and vice versa, which is referred to as low-pass

to high-pass transformation. Consider the Che-

byshev 1 function with oc ¼ 1 in the form

Hc1ðjuÞj j2¼ 1

1þ e2C2
nðnÞ

: (7:3:33a)

The low-pass to high-pass transformation

n! ð1=nÞ translates the ripples in the pass band to

the stop band in the region n41 and monotonic

response in the region of n � 1.

Hc1ðj=nÞj j2¼ 1

1þ e2C2
nð1=nÞ

: (7:3:33b)

The transformation translates the ripples in the pass

band to the stop band in the region n41 and gives

monotonic response in the region of n � 1. The low-

pass function is

HC2ðjnÞj j2 ¼ 1� HC1ðj=nÞj j2¼ 1� 1

1þ e2C2
nð1=nÞ

¼ e2C2
nð1=nÞ

1þ e2C2
nð1=nÞ

(7:3:34)

For n ¼ 2 and 3,

C2ðaÞ ¼ 2a2 � 1 and C3ðaÞ ¼ 4a3 � 3a:

With a ¼ 1=n, we have

C2ð1=nÞ ¼ 2ð1=nÞ2 � 1 ¼ ð2� n2Þ=n2;
C3ð1=nÞ ¼ 4ð1=nÞ3 � 3ð1=nÞ ¼ ð4� 3n2Þ=n3:

Therefore,

Hc2;2ðjnÞ
		 		2 ¼

e
2� n2

n2


 �� �2

1þ e
2� n2

n2


 �� �2

¼
e2ð4� 4n2 þ n4Þ
� �

e2ð4� 4n2 þ n4Þ½ � þ n4

(7:3:35a)

Hc2;3ðjnÞ
		 		2¼ e2ð16� 24n2 þ 9n4Þ

� �
e2ð16� 24n2 þ 9n4Þ½ � þ n6

: (7:3:35b)

The responses have the maximally flat property at

n ¼ 0. They are monotonic in the range 0 � n � 1

Fig. 7.3.6 Example 7.3.2
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and have ripples in the range 15n51. The two

functions are sketched in Fig. 7.3.7a,b. e can be

computed from

Hc2ðjnÞj j2n¼1¼
e2

1þ e2
¼ 1

1þ ð1=e2Þ :

The term ð1=e2Þ is related to the ripple width in the

stop band similar to the term e2 used in determin-

ing the ripple width in the pass band in the Cheby-

shev 1. Note Hc2ð0Þj j ¼ 1 for all values of n,

C2
nð0Þ ¼ 0 for n–odd and C2

nð0Þ=1 for n–even.

Therefore,

lim
n!1

Hc2ðjnÞj j ¼ lim
n!1

e2C2
nð1=nÞ

1þ e2C2
nð1=nÞ

¼
0; n� odd

e2=ð1þ e2Þ
� �

; n� even

�
: ð7:3:36Þ

The Chebyshev 2 normalized transfer function can

be computed from

Hc2ðŝÞHc2ð�ŝÞ ¼ Hc2ðjnÞj j2 n¼s=j
		 : (7:3:37)

For the derivation of the Chebyshev 2 function, see

Weinberg (1962). A summary is given below. Che-

byshev 2 function has a maximally flat response in

the pass band as in the Butterworth approximation.

Note Hc2ðjoÞ o¼0 ¼ 1
		 . The left half-plane poles

sn and the zeros zm of the Chebyshev 2 function

normalized to the frequency 1 are determined

using the constant eI obtained from the edges of

the stop-band and the pass-band frequencies

or and oc in terms of e computed from the pass-

band edge specification.

1. n 
 cosh�1½ð10:1Y � 1Þ=ð10:1X � 1Þ�
cosh�1ðor=ocÞ

(Same as in Chebyshev 1:Þ (7:3:38a)

2. eI ¼ ½1=eCnðor=ocÞ�

3. ŝn ¼ � sinh
1

n
sinh�1

1

eI


 �
sin

2nþ 1

2n
p

þ j cosh
1

n
sinh�1

1

eI


 �
cos

2nþ 1

2n
p;

n ¼ 0; 1; :::; n� 1 (7:3:38c)

4. Poles: sn ¼ 1=ŝn (7:3:38d)

5. Zeros: ẑm ¼ j secðð2mþ 1Þp=2nÞ;
m ¼ 0; 1; :::; ðn� 1Þ=2; n� odd

m ¼ 0; 1; :::; ðn=2Þ � 1; n� even

�
:

(7:3:38e)

The function Cn2 is obtained by substituting

ŝ ¼ s=or in the normalized function.

Example 7.3.3 Find the Chebyshev 2 transfer func-

tion that has attenuation of X ¼ 2 dB at the edge

of the pass band and the minimum attenuation in

the stop band of Y ¼15 dB. Note the pass-band

and stop-band specifications are the same as in

Example 7.3.2.

(a) (b)

Fig. 7.3.7 Chebyshev 2
low-pass amplitude response
(a) n ¼ 2, (b) n ¼ 3
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Solution: From Example 7.3.2, e ¼ :76478 and

n ¼ 3. From (7.3.38e), the zeros of the transfer func-

tion are ẑ1; ẑ
�
1 ¼+jð1:1547Þ: The other zero is at

infinity. The constant eI is

eI ¼ ½1=eC3ðor=ocÞ�
¼ ð1=:76478Þð1=14:2998Þ ffi :09144:

Using (7.3.38d), the poles are ŝ0;2 ¼ ð�:6103+
j1:3665Þ; ŝ1 ¼ �ð1:2206Þ. The normalized transfer

function is

Hc2ðŝÞ ¼ K
ðs� z1Þðs� z�1Þ

ðs� s0Þðs� s1Þðs� s2Þ
;

K ¼ ð�s0Þð�s1Þð�s2Þð�z1Þð�z2Þ
ðnote Hc2ð0Þ ¼ 1:Þ:

The denormalized transfer function is obtained

from

Hc2ðsÞ ¼ Hc2ðsÞ s¼s=or

		 :

The amplitude response function is sketched in

Fig. 7.3.8. &

Elliptic filter approximations: Elliptic filter

functions have equal ripple in both bands. Ellip-

tic functions are beyond the scope here (see

Storer, 1957). For a given set of filter amplitude

response specifications, the order of the filter

for the Butterworth (nBu), Chebyshev 1 and 2

(nC1 and nC2), and elliptic filters (nE) satisfy (see

Storer, (1957).):

nBu 
 nC1 ¼ nC2 
 nE: (7:3:39)

7.4 Phase-Based Design

A system is distortionless if its output is the

same as the input except it is attenuated by

the same amount for all frequencies with a con-

stant delay (see Section 6.11). The transfer func-

tion of a linear time-invariant (LTI) system is

given by

HðjoÞ ¼ HðjoÞj jejyðoÞ: (7:4:1)

If yðoÞ is linear, then

yðoÞ ¼ �ot: (7:4:2)

Since linear phase analog filters are not realiz-

able, they are approximated. The group delay

and the phase delays were defined by (6.7.7)

and (6.7.19).

TgðoÞ ¼ �
dyðoÞ
do

; TpðoÞ ¼ �
yðoÞ
o

: (7:4:3)

Linear phase implies that the group delay in (7.4.3)

is a constant. Since we are more interested in the

phase angle, we can write (7.4.1) in the form below

and solve for yðoÞ.

ln½HðjoÞ� ¼ ln HðjoÞj j þ jyðoÞ
¼ ð1=2Þ ln HðjoÞj j2þjyðoÞ
¼ ð1=2Þ ln½HðjoÞHð�joÞ�þjyðoÞ: (7:4:4)

yðoÞ ¼ ð1=jÞ ln½HðjoÞ� � ð1=2jÞ ln½HðjoÞ�
� ð1=2jÞ ln½Hð�joÞ�

¼ ð1=2jÞ ln½HðjoÞ� � ð1=2jÞ ln½Hð�joÞ�

¼ ð�j=2Þ ln HðjoÞ
Hð�joÞ

� �
: (7:4:5a)

The generalized phase function is defined by

yðsÞ ¼ �:5 ln HðsÞ=Hð�sÞ½ �:

From (7.4.3), and using the chain rule given below,

the group delay is given by

Fig. 7.3.8 Amplitude response of the Chebyshev 2 transfer
function in Example 7.3.3
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TgðoÞ ¼ �
dyðoÞ
do

¼ � 1

2j

dðln½HðjoÞ�Þ
do

þ 1

2j

dðln½Hð�joÞ�Þ
do

¼ � 1

2

d ln½HðjoÞ�
dðjoÞ

� �
þ 1

2

d ln½Hð�joÞ�
dð�joÞ

� �� �
:

(7:4:5b)

Chain rule :
d ln½HðjoÞ�

do
¼ d ln½HðjoÞ�

dðjoÞ :
dðjoÞ
do

¼ j
d ln½HðjoÞ�

dðjoÞ


 �
:

Noting the complex-conjugate terms inside the

brackets {.} in (7.4.5b), the group delay is

TgðoÞ ¼ �Re
d ln½HðjoÞ�

dðjoÞ

� �

¼ �Ev d ln½HðsÞ�
ds

� �
s¼jo
		 : (7:4:6)

Notes: The symbol EvfXðsÞg is the even part of

XðsÞ and is

EvfXðsÞg ¼ 1

2
½XðsÞ þ Xð�sÞ�

¼ 1

2

Z1

�1

xðtÞe�stdtþ 1

2

Z1

�1

xðtÞestdt;

EvfXðsÞg s¼jo ¼
		 ½XðjoÞ þ X�ðjoÞ�=2

¼ RefXðjoÞg:
(7:4:7) &

We should note that the group delay function is an

even function. Assuming that the transfer function

HðsÞ ¼ PðsÞ=QðsÞ is a ratio of two polynomials, we

have

d ln½HðsÞ�
ds

¼ d ln½PðsÞ�
ds

� d ln½QðsÞ�
ds

¼ P0ðsÞ
PðsÞ �

Q0ðsÞ
QðsÞ :

The generalized phase and the group delay can be

defined in terms of the variable s by

yðsÞ ¼ � 1

2
ln

HðsÞ
Hð�sÞ

� �
;

yðoÞ ¼ �jyðsÞ s¼jo
		 ! TgðsÞ ¼ �

dyðsÞ
ds

;

TgðoÞ ¼ TgðsÞ s¼jo
		 : (7:4:8)

Using the property that ln½HðsÞ=Hð�sÞ� ¼
ln½HðsÞ� � ln½Hð�sÞ� the group delay can be

expressed in terms of the transform variable s

given below, which is useful in computing the

delay associated with a transfer function and

prime (0) denotes differentiation and

TgðsÞ ¼ �
1

2

P0ðsÞ
PðsÞ þ

P0ð�sÞ
Pð�sÞ �

Q0ðsÞ
QðsÞ �

Q0ð�sÞ
Qð�sÞ

� �
;

ðTgðsÞ ¼ Tgð�sÞÞ: (7:4:9)

This results in the group delay that is real and an

even function of o.

Example 7.4.1 Compute the generalized phase and

the group delay functions for the transfer function

HðsÞ ¼ 1=½as2 þ bsþ c�.

Solution: From (7.4.8), the generalized phase and

group delays are as follows:

Phase : yðsÞ ¼ �ð1=2Þ ln HðsÞ=Hð�sÞ½ �;
yðoÞ ¼ �jyðsÞ s¼jo

		
Group delay:

PðsÞ ¼ 0; P 0ðsÞ ¼ 0; P 0ð�sÞ ¼ 0;

QðsÞ ¼ as2þ bsþ c; Qð�sÞ ¼ as2� bsþ c

Q0ðsÞ ¼ 2asþ b; Q0ð�sÞ ¼ � d

ds
Qð�sÞ

¼ � d

ds
½as2 � bsþ c�

¼ �½2as� b� ¼ �2asþ b

) TgðsÞ ¼ �
1

2
0þ 0� 2asþ b

as2þ bsþ c
� �2asþ b

as2� bsþ c

� �

¼ bc� abs2

ðas2þ cÞ2� b2s2
: (7:4:10a)

TgðoÞ ¼ TgðsÞ s¼jo
		 ¼ bcþ abo2

ðc� ao2Þ2 þ b2o2

(function is real and even): (7:4:10b)&

7.4.1 Maximally Flat Delay
Approximation

If we assume in (7.4.1) that HðjoÞj j ¼ 1, then

HðjoÞ ¼ e�jot0 ; HðjoÞj j ¼ 1;yðoÞ ¼ ffHðjoÞ ¼ �ot0;

tðoÞ ¼ �dffHðoÞ
do

¼ t0: (7:4:11)
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It has flat amplitude, linear phase, and a constant

group delay with respect to o. The system

described by (7.4.11) is distortionless. Using the

analytic continuation(see Balbanian et al., 1969),

the transfer function can be written in the

Laplace transform domain by replacing jo by s.

Let us define a normalized transfer function

using

HðsÞ ¼ HðsÞ s¼st0
		 ¼ e�st0

s¼st0

			 ¼ e�s: (7:4:12)

¼ 1

coshðsÞ þ sinhðsÞ s¼st0
		

¼ 1

½ðcoshðsÞ= sinhðsÞÞ þ 1� sinhðsÞ : (7:4:13)

Storch (1954) approximates e�s by an nth order

rational function of the form in (7.4.13) below

using the power series approximation of the hyper-

bolic sine and cosine functions.

HðsÞ � HnðsÞ ¼
b0

BnðsÞ
¼ b0

bnsn þ bn�1sn�1 þ :::þ b0
;

bn ¼ 1;Hnð0Þ ¼ 1: (7:4:14)

BnðsÞ are the Bessel polynomials and they can be

derived using (see Spiegel, 1968.)

BnðsÞ ¼ ð2n� 1ÞBn�1ðsÞ þ s2Bn�2ðsÞ;
B0ðsÞ ¼ 1;B1ðsÞ ¼ 1þ s: (7:4:15)

For n ¼ 0; 1; 2; 3; 4, these are

B0ðsÞ ¼ 1; B1ðsÞ ¼ 1þ s;

B2ðsÞ ¼ 3þ 3sþ s2; B3ðsÞ ¼ 15þ 15sþ 6s2 þ s3;

B4ðsÞ ¼ 105þ 105sþ 45s2 þ 10s3 þ s4 (7:4:16)

The roots of the polynomials can only be deter-

mined numerically. The transfer function HnðjoÞ

has maximally flat delay characteristics. The trans-

fer function, the phase, and the group delay

responses are given for the Bessel transfer function

(in terms of frequency o) by

HnðjoÞ ¼ HnðoÞj jejynðoÞ; ynðoÞ ¼ ffHnðoÞ;
tnðoÞ ¼ �dynðoÞ=do: (7:4:17)

Example 7.4.2 Show the maximally flat property of

the group delays of HnðsÞ; n ¼ 1; 2 .

H1ðsÞ ¼
1

sþ 1
;H2ðsÞ ¼

3

s2 þ 3sþ 3
: (7:4:18)

Solution: The phase and the delay responses are

given by

y1ðoÞ¼� tan�1ðoÞ;

t1ðoÞ¼�
dy1
do
¼�dð� tan�1ðoÞÞ

do
¼ 1

1þo2
; (7:4:19a)

y2ðoÞ ¼ � tan�1
3o

3� o2


 �
;

t2ðoÞ ¼ �
dy2
do
¼ ð9þ 3o2Þ
ð9þ 3o2Þ þ o4

(7:4:19b)

Expressing these in terms of Maclaurin power

series in the neighborhood of o ¼ 0 , we can show

that the first ð2n� 1Þ derivatives of the group

delay function vanish at the zero frequency and

the maximally flat property follows. This is valid

for all n. &

7.4.2 Group Delay of Bessel Functions

Baher (1990) gives a relationship between an all pole

rational function and its group delay and is sum-

marized below in terms of a Bessel transfer function

HnðsÞ . First, we can write the transfer function (see

(7.4.13)) in the form

HnðjoÞ ¼
b0

ðb0 � b2o2 þ b4o4 � :::Þ þ jðb1o� b3o3 þ b5o5 � :::Þ ¼
b0

EnðoÞ þ jOnðoÞ
: (7:4:20)
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The amplitude, phase, and the corresponding group

delay responses are

HnðjoÞj j2 ¼ b20
E2
nðoÞ þO2

nðoÞ
;

ynðoÞ ¼ � tan�1
OnðoÞ
EnðoÞ

� �
: (7:4:21a)

tnðoÞ ¼ �
dynðoÞ
do

¼ �
EnðoÞ dOnðoÞ

do �OnðoÞ dEnðoÞ
do

E2
nðoÞ þO2

nðoÞ

2
4

3
5:

) tnðoÞ ¼ 1� o2n HnðjoÞj j2ð1=b20Þ: (7:4:21b)

Example 7.4.3 Verify the results in (7.4.19a and b)

using (7.4.21b).

Solution: These can be shown by

n ¼ 1 : 1� o2 H1ðjoÞj j2ð1=b20Þ

¼ 1� o2

1þ o2
¼ 1

1þ o2
¼ t1ðoÞ (7:4:22a)

n ¼ 2 : 1� o4 H2ðjoÞj j2ð1=b20Þ

¼ 1� o4

ð9þ 3o2Þ þ o4
¼ ð9þ 3o2Þ
ð9þ 3o2Þ þ o4

¼ t2ðoÞ: ð7:4:22bÞ �

Notes: NoteHnð0Þ ¼ 1 and the group delay has the

maximally flat response with tnð0Þ ¼ 1: The design

involves finding the n for a set of specifications

including maximum attenuation in the pass band

in dB and a constant delay within a prescribed

tolerance in the pass band. The group delay can be

approximated by using the first two terms in the

series and the approximation is good for n43 (see

Temes and Mitra, 1973). Assuming the frequency is

normalized by t0, that is o ¼ ot0, we have

tnðoÞ ¼ 1� on

b0


 �2

þ� :::
" #

ffi 1� ð2nn!Þ2

ð2nÞ!

 !
ðoÞ2n

" #
: (7:4:23a)

The amplitude response of a Bessel filter function is

Gaussian. The attenuation for a filter of order n43,

the attenuation and the 3 dB frequency can be

approximated by

� 20 log HnðjoÞj j ffi 4:3429o2=ð2n� 1ÞÞ (7:4:23b)

See Problem 7.4.5 for its use of this. &

Example 7.4.4Determine a. the 3 dB frequency and

b.the frequency at which the group delay deviates by

1% for a second-order Bessel function.

H2ðsÞ ¼
3

s2 þ 3sþ 3
;

H2ðjoÞj j2¼ 9

½ð3� o2Þ2 þ 9o2
: (7:4:24a)

Solution: a. It follows that

H2ðjo3dBÞj j2 ¼ 1

2
¼ 9

½ð3� o2
3dBÞ

2 þ 9o2
3dB

) o3dB ¼ 1:36: (7:4:24b)

b. The frequency at which the group delay deviates

is computed using (7.4.22b)

ðt2ðoÞÞ:99 ¼ 1� o4
:99

9þ 3o2
:99 þ o4

:99

� �

¼ :99) o:99 ¼ :56: (7:4:24c) &

In this example, the 3 dB frequency and the fre-

quency at which certain percent deviation in tnðoÞ
from 1 can be analytically computed. For an arbi-

trary n, these can be computed either by (7.4.23) or

by tables (seeWeinberg, 1962.). Table 7.4.1 gives the

Table 7.4.1 Normalized frequencies, o ¼ ot0. Time delay and a loss table giving the normalized frequency o at which the
zero frequency delay and loss values deviate by specified amounts for Bessel filter functions

n 1 2 3 4 5 6 7 8 9 10 11

o3dB 1 1.36 1.75 2.13 2.42 2.70 2.95 3.17 3.39 3.58 3.77

o1%deviation 0.1 0.56 1.21 1.93 2.71 3.52 4.36 5.22 6.08 6.96 7.85

o10%deviation 0.34 1.09 1.94 2.84 3.76 4.69 5.64 6.59 7.55 8.52 9.48
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normalized 3 dB frequency and the frequencies at

which the tðoÞ deviates 1 and 10% from 1. Com-

pare the results in (7.4.24b and c) to the table.

Example 7.4.5 Find n for the Bessel filter specifica-

tions in Fig. 7.4.2a (for the amplitude) and

Fig. 7.4.2b (for the delay) with

1. A delay of t0=.25 ms up to 1 MHz within 1%

deviation

2. A loss of less than 3 dB up to 1 MHz.

Solution: From the specifications, the pass-band

edge of the normalized frequency is

o3dB ¼o3dBt0 o¼2pð106Þ ¼ 2pð106Þð:25ð10�6ÞÞ ffi 1:57
		 :

(7:4:25)

From the first condition, using Table 7.4.1, we have

n 
 4. To satisfy the second condition, again using

Table 7.4.1, n must be at least equal to 3, as

1.36<1.57<1.75. Selecting the higher value n ¼ 4,

the normalized transfer function and the transfer

function with the desired delay are, respectively,

given by (see 7.4.16). See Fig. 7.4.2

HðsÞ ¼ 105

½s4 þ 10s3 þ 45s2 þ 105sþ 105� ;

HðsÞ ¼ HðsÞ s ¼ s=t0j ; t0 ¼ :25ð10�6Þ: (7:4:26) &

7.5 Frequency Transformations

Since the low-pass filter’s cut-off frequency is a

design parameter, it is simpler to use a normalized

low-pass (LP) filter with a cut-off frequency of 1.

The amplitude response of an nth order Butter-

worth LP filter, the normalized filter function s

and the s-domain function are

HLpðjoÞ
		 		 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2ðo=ocÞ
p ;

HLpnðjoÞ
		 		 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2ðoÞ2n
q ;o ¼ o

oc
: (7:5:1)

HLpðsÞ ¼ HLpnðsÞ s¼s=oc

		 : (7:5:2)

Normalized functions are used as a first step in

designing the filters. If the given cut-off frequency

is used, the transfer function coefficients will be

large. Normalization results in smaller coefficents.

Filter transformations are shown in Fig. 7.5.1a,b,c,d.

The normalized Lp (Lpn) to Lp filter transforma-

tion is frequency scaling, as o is scaled by oc.

Figure 7.5.1a illustrates the frequency transfor-mation

from the normalized Lp to Lp and vice versa. Figure

7.5.1b,c,d illustrates the transformations from the

normalized Lp to high pass (Hp), band pass (Bp),

and band elimination (Be), and vice versa.

7.5.1 Normalized Low-Pass to High-Pass
Transformation

The idealHp function can be obtained by frequency

inversion from the Lp function.

s ¼ ðoc=sÞ ) s ¼ jo

¼ oc=jo or o ¼ �oc=o and HHpðsÞ
¼ HLpnðoc=sÞ: (7:5:3)

This transformation is a non-linear transformation.

Figure 7.5.1b gives the frequency transformations

from normalized low-pass specifications to high-

pass specifications and vice versa. If we have a pole

in the normalized low-pass function at s ¼ �p1 , then

(a) (b)

Fig. 7.4.2 Example 7.4.5:
(a) amplitude and (b) group
delay response specifications
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1=ðsþ p1Þ½ �s¼oc=s
¼ ðs=p1Þ=ðsþ ðoc=p1ÞÞ: (7:5:4)

The normalized low-pass transformation to high-

pass transformation converts the pole from

s ¼ �p1 into a zero at the origin and a pole at

s ¼ �oc=p1.

Example 7.5.1 Find the transfer function of the

high-pass filter function with the cut-off frequency

oc using the normalized second-order Butterworth

filter function given below.

HLpnðsÞ ¼
1

½ðs2 þ
ffiffiffi
2
p

sþ 1Þ�
: (7:5:5a)

Solution: The high-pass filter function is given

below. See Fig. 7.5.1b for a sketch of the amplitude

response of a high-pass function.

(a)

(b)

(c)

(d)

Fig. 7.5.1 Illustration of analog-to-analog frequency transformations: (a) normalized low pass  ! low pass,
or ¼ oroc;or ¼ or=oc, (b) normalized low pass  ! high pass, or ¼ oc=or;or ¼ oc=or, (c) normalized low pass  !
band pass, or ¼ minfor1 ;or2g; or1 ¼

ouol�o2
1

ðou�olÞo1
; or2 ¼

o2
2
�ouol

ðou�olÞo2
, (d) normalized low pass  ! band elimination,

or ¼ minfor1 ;or2g;or1 ¼
ðou�olÞo1

ouol�o2
1

;or2 ¼
ðou�olÞo2

ouol�o2
2

:ð7:5:2Þ
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HHpðsÞ ¼ HLpnðsÞ s¼oc=s

		 ¼ s2

s2 þ
ffiffiffi
2
p

ocsþ o2
c

;

HHpðjoÞ
		 		 ¼ oj j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2
c � o2Þ2 þ 2o2

co2

q : (7:5:5b) &

7.5.2 Normalized Low-Pass to Band-Pass
Transformation

Band-pass filter eliminates or significantly attenu-

ates both low and high frequencies. We can inter-

pret the Bp filter operation as passing a signal

through a Hp filter with a cut-off frequency equal

tool and then pass the resulting signal through a Lp

filter with a cut-off frequency equal to oh; ol5oh.

The transformation is

s ¼ ðs2 þ o2
0Þ=Bs; B ¼ ðoh � olÞ;

o2
0 ¼ oloh; o ¼ ðo2 � o2

0Þ=Bo: (7:5:6a)

The frequencies ol and oh are the low-edge and

high-edge frequencies of the band-pass filter. o0 is

the geometricmeanof the two frequenciesol and oh.

It is interesting to point out that if frequency is

plotted on a logarithmic scale, o0 falls midway

between ol and oh. The BP function can be

obtained from the normalized Lp function by

HBpðsÞ ¼ HLpnðsÞ s¼ðs2þo2
0
Þ=Bs

			 ¼ HLpn
s2 þ o2

0

Bs


 �
:

(7:5:6b)

The transformation in (7.5.6a) is a non-linear trans-

formation mapping the frequencies

o ¼ 0! o ¼+o0; o ¼+1! o ¼+1
o ¼ 1! o ¼ �ol and oh;

o ¼ �1! o ¼ �oh and ol

:

For example, for o ¼ 1 ,

1 ¼ o2 � o2
0

Bo
) o2 � ðoh � olÞo� ohol ¼ 0

o ¼ oh � ol

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoh � olÞ2 þ 4ohol

q
2

) o ¼ oh;�ol:

Similarly we can show foro ¼ �1. The normalized

LP zero frequency is mapped to the BP frequencies

o ¼+1. Each LP pole transforms into a pair of

BP poles under this transformation and the order of

the BP function is twice that of LP function.

Figure 7.5.1c illustrates the transformations from

BP to normalized LP specifications and vice versa.

Example 7.5.2 Find the BP function using the trans-

formation in (7.5.6b) from the normalized LP func-

tion and identify the zero and the poles in the BP

function.

HLpnðsÞ ¼ 1=ðsþ p1Þ: (7:5:7)

Solution: The band-pass function is

HBpðsÞ ¼
1

½ðs2 þ o2
0Þ=Bs� þ p1

¼ Bs

½ðs2 þ o2
0Þ þ Bp1s�

:

LP simple pole) zero at s ¼ 0 and poles at

s ¼ ð1=2Þ �Bp1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2p21 � 4o2

0

q� 
: &

7.5.3 Normalized Low-Pass to Band-
Elimination Transformation

A band-elimination (Be) or a band-reject filter elim-

inates or attenuates a band of frequencies some-

where in the middle of the frequency band and

passes outside this band with a small attenuation.

The transformation from the normalized LP func-

tion to the BE function is

s ¼ Bs=ðs2 þ o2
0Þ; B ¼ ðou � olÞ; o2

0 ¼ olou;

o ¼ Bo=ðo2
0 � o2Þ: (7:5:8)

The frequencies ol and oh are the pass-band edge

frequencies of the band-elimination filter. o0 is

the geometric mean of the two frequencies

ol and oh. The corresponding band-stop function

can be obtained from the normalized low-pass

function by

HBeðsÞ ¼ HLpnðsÞ s¼Bs=ðs2þo2
0
Þ

			 ¼ HLpn Bs=ðs2 þ o2
0Þ

� �
:

The transformation in (7.5.8) maps the frequencies

in the following manner.
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Transformations summary: o¼Bo=ðo2 � o2
0Þ;

o2
0 ¼ ouol;B ¼ ou � ol

o ¼ 0) o ¼ 0; o ¼+1) o ¼+1
o ¼ 1) o ¼ �ol and ou;

o ¼ �1) o ¼ �ou and ol:

Some authors refer to B as the notch width of the

notch filter. As in the band-pass case, o0 is the

geometric mean of the two frequencies ol and ou.

Each low-pass pole transforms into a pair of BE

filter poles and the order of the BE function is

twice that of the LP function. Figure 7.5.1d gives

the transformations from BE filter specifications to

normalized LP filter specifications and vice versa.

Example 7.5.3Consider the normalized Lp function

given in (7.5.7). Find the corresponding Be function

using the transformation given in (7.5.8).

Solution: The transformation creates a pair of com-

plex-conjugate zeros on the imaginary axis and a

complex pole pair on the left half of the s plane. The

function is

HBeðsÞ ¼
1

½ðBs=ðs2 þ o2
0ÞÞ þ p1

¼ ðs2 þ o2
0Þ

ðs2 þ o2
0Þp1 þ Bs

: &

In Chapter 6, we considered simple first-order Lp and

Hp filters and second-order Bp and Be filters using

resistors, inductors, and capacitors (see Fig. 6.12.12).

The design of passive filters is primarily based on

reactive components, i.e., inductors (may include

transformers) and capacitors. The transformations

given earlier can be used to derive the Lp, Hp, Bp,

and Be filter circuits from a normalized Lp filter

circuit. This is discussed next. The cut-off frequency

of the normalized Lp filter is oc ¼ 1 rad=s:

These transformations in table 7.5.1 allow for

finding an Lp or a Hp, or a Bp or a Be function

from a normalized Lp function of an RLC filter. It

also gives the changes in the corresponding compo-

nent values. The inductor–capacitor series and par-

allel pairs of components resonate at the frequency

o0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
ðLCÞ

p
in the Bp and Be cases.

Table 7.5.1 Frequency transformations

Transformation Variable transformation Passive element transformation

Normalized low-pass! Low-
pass filter with a cut-off
frequency of oc.

s ¼ ðs=ocÞ;
Ls ¼ ðL=ocÞs;
ð1=CsÞ ¼ ðoc=CsÞ:

Normalized low-pass! High-
pass filter with a cut-off
frequency of o0.

s ¼ ðoc=sÞ;
Ls ¼ ðLoc=sÞ;
Cs ¼ Cðoc=sÞ:

Normalized low-pass! Band-
pass with center frequency o0

and bandwidth B.

s ¼ s2 þ o2
0

Bs
;

Ls ¼ L

B
:
s2 þ o2

0

s
;

1

Cs
¼ B

C
:

s

s2 þ o2
0

:

Normalized low-pass! Band
elimination with center
frequency o0 and notch
width B.

s ¼ Bs

s2 þ o2
0

;

Ls ¼ s

ðs2 þ o2
0Þ
:LB;

1

Cs
¼ ðs

2 þ o2
0Þ

s
:
1

CB
:
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7.5.4 Conversions of Specifications from
Low-Pass, High-Pass, Band-Pass,
and Band Elimination Filters to
Normalized Low-Pass Filters

Given the Lp,Hp, Bp, and Be filter specifications in

Fig. 7.5.1, how do we transform these into a nor-

malized Lp specification? Notation wise, we use the

following:

o for an arbitrary filter function and o for the nor-

malized Lp filter function.

Low pass to a normalized low-pass speci-

fication: The transformation from a low-pass filter

specification to a normalized low-pass specification

is rather simple as the amplitudes remain the same at

the critical frequencies, i.e., at the cut-off frequency

and the edge of the stop-band frequency. The frequen-

cies are of course normalized in the normalized low-

pass filter specifications. These can be summarized by

HLpðocÞ
		 		¼ HLpnð1Þ

		 		; HLpðorÞ
		 		¼ HLpn

or

oc


 �				
				;

oc ¼ 1 and or ¼or=oc 4 1 and or ¼oroc: (7:5:9)

Figure 7.5.1a gives the transformations from the Lp

to the normalized Lp and vice versa.

High pass to the normalized Lp speci-

fications: The Hp filter specifications can be trans-

formed to the normalized Lp filter specifications by

oc ¼ 1 and or ¼ ðoc=orÞ or or ¼ oc=or: (7:5:10)

Figure 7.5.1b gives the transformation from the Hp

filter specifications to the normalized low-pass filter

specifications and vice versa. Note oc4or (high-

pass filter).

Example 7.5.4 Use the Chebyshev 1 approximation

assuming for the specifications given in Fig. 7.5.2a

with oc ¼ 2pð100 kÞ and or ¼ 2pð50 kÞ.

Solution: First, using the high-pass to normalized

low-pass frequency transformation,

o¼ ½2pðocÞ=o� ¼ ½2pð100kÞ=o�;
oc ¼o o¼2pð100kÞ

		 ¼ 2pð100kÞ ¼ 1; o0r o¼2pð50kÞ
		 ¼ 2:

(7:5:11a)

The normalized Lp filter specifications are shown in

Fig. 7.5.2b. The normalized Chebyshev 1 function is

HLpnðjoÞ
		 		2¼ 1

1þ e2C2
nðoÞ

(7:5:11b)

At o ¼ 1, we have �1 ¼ 10 logð1=10:1Þ ¼
10 log½1=ð1þ e2C2

nð1ÞÞ�. Noting that C2
nð1Þ ¼ 1, we

have e ffi :509. At o ¼ 2,

� 10 ¼ 10 logð1=10Þ ¼10 log 1

1þ e2C2
nð2Þ

� �

! 10 ¼ 1þ :259C2
nð2Þ

! Cnð2Þ ffi 5:9

n
 cosh�1ð5:9Þ
cosh�1ð2Þ

¼ 1:87) n¼ 2ðsee ð7:3:29a and bÞÞ:

(7:5:11c)

Using (7.3.19d),

Cnð2Þ ffi ð2þ
ffiffiffiffiffiffiffiffiffiffiffi
4� 1
p

Þn=2¼ 5:9) n
 1:88) n¼ 2:

(7:5:11d)

Noting that C2ðoÞ ¼ 2o2 � 1 and C2
2ðoÞ o¼0

		 ¼ 1 ,

the low-pass normalized amplitude squared

response function and the left half-plane poles are,

respectively, given by

(a) (b)

Fig. 7.5.2 Example 7.5.4
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HLpnðoÞ
		 		2 ¼ 1

1þ e2ð2o2 � 1Þ2
HLpnðoÞ
		 		2

o¼0

¼ 1=ð1þ e2Þ;
pn ¼� sinhf2 sin

ð2nþ 1Þp
4

þ j coshf2 cos
ð2nþ 1Þp

4
;

n¼ 0;1; f2 ¼ ð1=2Þ sinh�1ð1=eÞ:

The Chebyshev 1 normalized second-order transfer

function is

HLpnðsÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2
p ðp0p1Þ

ðs� p0Þðs� p1Þ
: (7:5:11e)

The scaling factor at s ¼ 0 is not 1, as we are dealing

with an even Chebyshev function. That is

HLpnðsÞ s¼0 ¼ ð1=ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2
p

ÞÞ
		 . The desired high-pass

filter transfer function is

HHpðsÞ ¼ HLpnðsÞ s¼oc=s:
		 &

Band-pass to normalized low-pass specifi-

cation: BP filter specifications can be transformed

to normalized LP filter specifications by

s ¼ s2 þ o2
0

Bs
; jo ¼ �jo

2
0 � o2

Bo
¼ j

o2 � o2
0

Bo
;

B ¼ ou � ol;o2
0 ¼ olou: (7:5:12a)

The normalized low-pass critical frequencies are as

follows:

o ¼ ol )
o2

l � ouol

ðou � olÞol
¼ �1 ¼ �oc;

o ¼ jou )
o2

u � ouol

ðou � olÞou
¼ 1 ¼ oc: (7:5:12b)

o ¼ o1 )
o2

1 � ouol

ðou � olÞo1
¼ �or140;

o ¼ o2 )
o2

2 � ouol

ðou � olÞo2
¼ or240: (7:5:12c)

oc ¼ 1 and or ¼ min or1;or2f g: (7:5:12d)

Note the use of the function, min or1;or2f g, as the
two sides of the band-pass spectrum result in

two cut-off frequencies (one positive and the

other one is negative) in the normalized low-

pass specification. Noting that the magnitude

spectrum is even, we need to use the tighter

specification. Figure 7.5.1c illustrates the trans-

formation from the band-pass filter specifica-

tions to the normalized low-pass filter specifica-

tions and vice versa.

Example 7.5.5Use the Butterworth approximation

to find the transfer function assuming for the

specifications of a band-pass filter shown in

Fig. 7.5.3a. The pass-band and the stop-band

edge frequencies are

o1 ¼ 2pð200 kÞ; ol ¼ 2pð300 kÞ; ou ¼ 2pð400 kÞ;
o2 ¼ 2pð800 kÞ: (7:5:13a)

Solution: Using the transformations in (7.5.12b),

the normalized LP frequency is oc ¼ 1 . With

(7.5.12c), we have

o o¼o1
j ¼ ð2pÞ

2

ð2pÞ2
ð200 kÞ2 � ð300 kÞð400 kÞ
ð400 kÞ � ð300 kÞÞð200 kÞ

¼ �4 ¼ �or1: (7:5:13b)

o o¼o2
j ¼ ð2pÞ

2

ð2pÞ2
ð800 kÞ2 � ð300 kÞð400 kÞ
400 k� ð300 kÞð800 kÞ

¼ 6:5 ¼ or2: (7:5:13c)

Note the ð2pÞ2 cancel out. From (7.5.10)

minf4; 6:5g ¼ 4. The tighter specifications corre-

spond to or ¼ 4 and we can ignore the other one.

The normalized low-pass filter specifications are

shown in Fig. 7.5.3b. The normalized Butterworth

low-pass function is given by

(a) (b)Fig. 7.5.3 Example 7.5.5
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HLpnðjoÞ
		 		2¼ 1

1þ e2o2n
: (7:5:13d)

These result in

oc ¼ 1; 20 logð HLpnðj1Þ
		 		Þ ¼ �3 dB) e ffi 1;

20 log jHLpnðoÞjjo¼4 ¼ 20 logð1=ð1þ 42nÞÞ
¼ �15dB! 1þ 42n

¼ 101:5 ) n ¼ 2

ðnÞinteger 

logð1015=10 � 1Þ

2 logð4=1Þ ¼ 1:23! n ¼ 2

ðUsing ð7:3:10aÞÞ

HLpnðoÞ
		 		2¼ 1

1þ o
) HLpnð�sÞ

1

1þ s4
:

) HLpnðsÞ ¼
1

s2 þ
ffiffiffi
2
p

sþ 1
(7:5:13e)

Applying the low-pass to band-pass transforma-

tion, the band-pass transfer function is

HBpðsÞ ¼ HLpnðsÞ
s¼s2þolou

sðou�olÞ

				 : (7:5:13f) &

Substituting the values for oi0s and simplifying the

expression gives the final result.

Band-elimination filter to normalized low-pass

filter specifications: The band elimination filter

specifications can be transformed to normalized

low-pass filter specifications similar to the band-

pass case. These are summarized below.

s ¼ Bs

s2 þ o2
0

; jo ¼ j
Bo

o2
0 � o2

;

B ¼ ou � ol;o2
0 ¼ olou: (7:5:14a)

o ¼ ol )
ðou � olÞol

ouol � o2
l

¼ 1 ¼ oc; o ¼ ou

) ðou � olÞou

ouol � o2
u

¼ �1 ¼ �oc: (7:5:14b)

o ¼ o1 )
ðou � olÞo1

ouol � o2
1

¼ or1;

o ¼ o2 )
ðou � olÞo2

ouol � o2
2

¼ �or2: (7:5:14c)

oc ¼ 1; and or ¼ min or1;or2f g (7:5:14d)

Tighter constaraint results in (7.5.14d). Figure 7.5.1d

illustrates the transformation from the BE filter spe-

cifications to the normalized low-pass filter specifica-

tions and vice versa.

Example 7.5.6 Use the Butterworth approximation

to find an expression for the BE filter specifications

in Fig. 7.5.5a with

ol ¼ 5 kHz; ou ¼ 2pð40Þ kHz;

o1 ¼ ð2pÞ10 kHz; o2 ¼ ð2pÞ20 kHz: (7:5:15a)

Solution: Using the specifications, the normalized

filter attenuation specifications are

o o¼o1
j ¼ ðou � olÞo1

ðouol � o2
1Þ
¼ ð2pÞ

2

ð2pÞ2
ð40� 5Þð10Þ
ð200� 100Þ

¼ 3:5 ¼ or1 (7:5:15b)

o o¼o2
j ¼ ðou � olÞo2

ðouol � o2
2Þ
¼ ð40� 5Þð20Þ
ð200� 400Þ

¼ �3:5 ¼ �or2: (7:5:15c)

We should note that the transformation of the stop-

band edge frequencies gave or1 ¼ �or2j j ¼ 3:5. This

results since o2
0 ¼ o1o2 ¼ olou in our example. The

corresponding normalized low-pass filter specifica-

tions are shown in Fig. 7.5.4b. The order of ðnÞ for
the Butterworth low-pass filter with e ¼ 1 results in

(a) (b)Fig. 7.5.4 Example 7.5.6
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ðnÞint 
 logð101:5� 1Þ=2 logð3:5Þ
� �

ffi 1:366) n¼ 2:

The normalized low-pass and the corresponding

band-elimination filter functions are

HLpnðsÞ ¼
1

s2 þ
ffiffiffi
2
p

sþ 1
;

HBeðsÞ ¼ HLpnðsÞ s ¼
ðou � olÞs
s2 þ olou

				 : (7:5:16) &

7.6 Multi-terminal Components

In Chapter 6 we have studied two-terminal compo-

nents including ideal voltage and current sources,

passive components, resistors, inductors, and capa-

citors. Passive filters require inductors and they

are bulky and not pure. There is coupling between

adjacent inductors. One alternative to passive filters

is active filters with components that have more

than two terminals. The basic component in these is

the operational amplifier (op amp), a multi-terminal

component. Other useful multi-terminal components

include transistors, operational amplifiers, con-

trolled, or dependent sources. We are interested in

the input–output characteristics of these multi-term-

inal components.

7.6.1 Two-Port Parameters

The block diagram of a four terminal or a two-port

network is shown in Fig. 7.6.1a. Figure 7.61b,c gives

two networks, one has only a series element and the

other has only a shunt element. There are two vol-

tage variables and two current variables in time

identified as v1ðtÞ; v2ðtÞ; i1ðtÞ and i2ðtÞ or their

transforms V1ðsÞ; V2ðsÞ; I1ðsÞ and I2ðsÞ: Variable

s may not be shown explicitly.

v1ðtÞ !
LT

V1ðsÞ; v2ðtÞ !
LT

V2ðsÞ;

i1ðtÞ !
LT

I1ðsÞ; and i2ðtÞ !
LT

I2ðsÞ:

Two-port models:

V1ðsÞ
V2ðsÞ

� �
¼

Z11ðsÞ Z12ðsÞ
Z21ðsÞ Z22ðsÞ

� �
I1ðsÞ
I2ðsÞ

� �
;ZijðsÞ �

Z or impedance or

open circuit parameters

� �
;

(7:6:1)

I1ðsÞ
I2ðsÞ

� �
¼

Y11ðsÞ Y12ðsÞ
Y21ðsÞ Y22ðsÞ

� �
V1ðsÞ
V2ðsÞ

� �
;YijðsÞ �

Y or admittance

or short circuit parameters

� �
; (7:6:2)

V1ðsÞ
I2ðsÞ

� �
¼

H11ðsÞ H12ðsÞ
H21ðsÞ H22ðsÞ

� �
I1ðsÞ
V2ðsÞ

� �
;HijðsÞ �Hybrid or H parameters; (7:6:3a)

I1ðsÞ
V2ðsÞ

� �
¼

G11ðsÞ G12ðsÞ
G21ðsÞ G22ðsÞ

� �
V1ðsÞ
I2ðsÞ

� �
;GijðsÞ � Hybrid or G parameters; (7:6:3b)

V1ðsÞ
I1ðsÞ

� �
¼

A B

C D

� �
V2ðsÞ
�I2ðsÞ

� �
;ABCD or transmission or cascade or F parameters: (7:6:4)

The term, open (short) circuit parameters, is used in the

sense that a parameter is determined by assuming the

current (voltage) variable to be zero. For example,

Z21ðsÞ ¼ ½V2ðsÞ=I1ðsÞ� I2ðsÞ¼0
		 and

Y21ðsÞ ¼ I2ðsÞ=V1ðsÞ½ � V2ðsÞ¼0
		 : (7:6:5)

We can obtain one set of parameters from the others

if the second set of parameters exists. The two-port

Z and Y parameters are related by

Y11ðsÞ ¼ Z22ðsÞ
DZ ;Y12ðsÞ ¼ � Z12ðsÞ

DZ ;

Y21ðsÞ ¼ � Z21ðsÞ
DZ ;Y22ðsÞ ¼ Z11ðsÞ

DZ

DZ ¼ Z11ðsÞZ22ðsÞ � Z12ðsÞZ21ðsÞ 6¼ 0:

(7:6:6)
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The Y parameters exist only if DZj j 6¼ 0. See

Appendix A for a review on matrix algebra. The

ABCD parameters are related to the Z parameters

of a two port if Z21 6¼ 0 by (proof is left as an

exercise).

V1

I1

� �
¼

A B

C D

� �
V2ðsÞ
�I2ðsÞ

� �

¼
Z11=Z21 DZ=Z21

1=Z21 Z22=Z21ðsÞ

� �
V2

�I2

� �
: (7:6:7a)

The ABCD parameters are related to the Y para-

meters of a two port by (proof is left as an

exercise.)

V1ðsÞ
I1ðsÞ

� �
¼

A B

C D

� �
V2ðsÞ
�I2ðsÞ

� �

¼
�Y22ðsÞ=Y21ðsÞ �1=Y21ðsÞ

ðY12Y21�Y11Y22Þ=Y21 Y22ðsÞ=Y21ðsÞ

� �

V2ðsÞ
�I2ðsÞ

� �
: (7:6:7b)

Notes: A reciprocal two-port system is symmetric

if its ports can be interchanged without changing

the values of the terminal currents and voltages.

The impedance and admittance matrices, i.e., the

coefficient matrices in (7.6.1) and (7.6.2) of a

reciprocal network are symmetric matrices. In a

similar manner we can define a two-terminal

reciprocal component. Resistors, inductors, and

capacitors are reciprocal, whereas electronic cir-

cuits, such as a diode, are not. RLC networks

are reciprocal, linear, and time-invariant systems.

They satisfy the following relations for a two-

port network:

Z12 ¼ Z21; Y12 ¼ Y21; H12 ¼ �H21;

G12 ¼ �G21; AD� BC ¼ 1: (7:6:8) &

Example 7.6.1 a. Show the circuit in Fig. 7.6.1b

cannot be described by Z parameters.

b. Derive its ABCD parameters.

Solution: a. Noting that I1ðsÞ ¼ �I2ðsÞ and I1ðsÞ
¼ ðV1ðsÞ � V2ðsÞÞ=ZðsÞ, we have Y11ðsÞ ¼
ð1=ZðsÞÞ;Y12ðsÞ ¼ �1=ZðsÞ; Y21ðsÞ ¼ �1=zðsÞ;Y22

ðsÞ ¼ 1=ZðsÞ and

I1ðsÞ
I2ðsÞ

� �
¼
ð1=ZðsÞÞ �1=ZðsÞ
�1=ZðsÞ 1=ZðsÞ

� �
V1ðsÞ
V2ðsÞ

� �
;

D ¼
1=ZðsÞ �1=ZðsÞ
�1=ZðsÞ 1=ZðsÞ

				
				 ¼ 0:

We cannot solve for voltages and the circuit cannot

be described by the Z parameters.

b. TheABCD parameters can be derived in terms

of the Y parameter by using (7.6.7b) and

V1ðsÞ
I1ðsÞ

� �
¼

1 ZðsÞ
0 1

� �
V2ðsÞ
�I2ðsÞ

� �
: (7:6:9a) &

Example 7.6.2 a. Show that the circuit in Fig. 7.6.1c

cannot be described Y parameters.

b. Derive its ABCD parameters.

(a) (b)

(c)

Fig. 7.6.1 Two ports: (a)
general, (b) with only a series
element, and (c) with only a
shunt element
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Solution: Using the Kirchhoff’s voltage law, we

have V1ðsÞ ¼ V2ðsÞ and using the Kirchhoff’s cur-

rent law, we have V1ðsÞ ¼ ZðsÞ½I1ðsÞ þ I2ðsÞ�. As

before we can see the following and short-circuit

parameters do not exist since D ¼ 0:

V1ðsÞ
V2ðsÞ

� �
¼

ZðsÞ ZðsÞ
ZðsÞ ZðsÞ

� �
I1ðsÞ
I2ðsÞ

� �
;

D ¼
ZðsÞ ZðsÞ
ZðsÞ ZðsÞ

				
				 ¼ 0:

Using (7.6.7a), we have

V1ðsÞ
I1ðsÞ

� �
¼

1 0

YðsÞ 1

� �
V2ðsÞ
�I2ðsÞ

� �
: (7:6:9b) &

Ideal transformer: Its symbol is shown in Fig. 7.6.2.

Magnetic coupling provides interaction between

the primary and the secondary coils. There is no

direct electrical connection from the primary to the

secondary. The behavior of an ideal transformer

with time-varying excitation depends only on the

number of turns in the two coils. Let the primary

and the secondary coils have N1 and N2 turns,

respectively, and let a ¼ N2=N1. The voltages

and the currents are related by the equations

v2ðtÞ ¼ av1ðtÞ; i2ðtÞ ¼ �i1ðtÞ=a. The relative voltage

potentials are indicated by the dot convention in

Fig. 7.6.2. The equations for an ideal transformer

can be written in a matrix form in the time or trans-

form domain by

v1ðtÞ
i2ðtÞ

� �
¼

0 a

�a 0

� �
i1ðtÞ
v2ðtÞ

� �
)

V1ðsÞ
I2ðsÞ

� �

¼
0 a

�a 0

� �
I1ðsÞ
V2ðsÞ

� �
: (7:6:10)

If a40 then both dotted terminals have the same

reference voltage polarity in Fig. 7.6.2. Ideal trans-

former cannot be described by either Z or Y para-

meters. Note the ideal transformer is a lossless

network since v1ðtÞi1ðtÞ þ v2ðtÞi2ðtÞ ¼ 0.

Example 7.6.3 The cascade or the ABCD para-

meters of a two-port network is useful in the analy-

sis of cascaded systems. Derive the matrix expres-

sion relating the input–output voltages and currents

using Fig. 7.6.3. The voltages and the appropriate

currents are given in terms of theABCD parameters

(variable s is not shown) as

V1ðsÞ
I1ðsÞ

� �
¼

A1 B1

C1 D1

� �
V2ðsÞ
�I2ðsÞ

� �
;

V3ðsÞ
I3ðsÞ

� �

¼
A2 B2

C2 D2

� �
V4ðsÞ
�I4ðsÞ

� �
: (7:6:11)

Solution: With V2ðsÞ ¼ V3ðsÞ and I2ðsÞ ¼ �I3ðsÞ,
we have

V1ðsÞ
I1ðsÞ

� �
¼

A1 B1

C1 D1

� �
A2 B2

C2 D2

� �
V4ðsÞ
�I4ðsÞ

� �

¼
A1A2 þ B1C2 A1B2 þ B1D2

C1A2 þD1C2 C1B2 þD1D2

� �

V4ðsÞ
�I4ðsÞ

� �
(7:6:12) &

Example 7.6.4 Consider the circuit in Fig. 7.1.1 with

R1 ¼ 1O and the load resistance is assumed to be

infinite at the output. Derive the transfer function

and the element values L1 and C1 using the ABCD

parameters assuming the transfer function given

below.

V2

V1
I2ðsÞ¼0
		 ¼ HBuðsÞ ¼

1

s2 þ
ffiffiffi
2
p

sþ 1
: (7:6:13a)

Solution: Using the the impedance of the series arm

is Z1ðsÞ ¼ R1 þ L1s and the admittance of the shunt

arm isY2ðsÞ ¼ C1s, we can use theABCD parameters

of these from (7.6.9a and b) in (7.6.12) resulting in

V1ðsÞ
I1ðsÞ

� �
¼

1 Z1ðsÞ
0 1

� �
1 0

Y2ðsÞ 1

� �
V2ðsÞ
�I2ðsÞ

� �
:

¼
1 ðR1 þ L1sÞ
0 1

� �
1 0

C1s 1

� �
V2ðsÞ
�I2ðsÞ

� �

¼
1þ ðR1 þ L1sÞC1s ðR1 þ L1sÞ

C1s 1

� �
V2ðsÞ
�I2ðsÞ

� �
:

Fig. 7.6.2 Ideal transformer
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¼)HðsÞ ¼ V2ðsÞ=V1ðsÞ I2¼0j
¼ 1= 1þ R1C1sþ L1C1s

2
� �

: (7:6:13b)

Equating the coefficients in (7.6.13a and b) with

R1 ¼ 1, we have C1 ¼
ffiffiffi
2
p

and L1 ¼ 1=
ffiffiffi
2
p

.

Use of ABCD parameters is a simple way to

analyze ladder networks with series and shunt arms,

as in the last example. In these cases, the input–output

equations can be written using a product of matrices.

In the example, we have assumed a particular circuit,

found its transfer function, equated to the given trans-

fer function, and solved for the element values. It

illustrated the method coefficient matching.

Loading effects on transfer functions: Consider the

cascaded system shown in Fig. 7.6.3. If I2ðsÞ ¼ 0, we

say the System 2 does not load System 1. System 2 is

not effected by any load if I4ðsÞ ¼ 0. These are illu-

strated by the following example.

Example 7.6.5 Find the transfer function

V4ðsÞ=V1ðsÞ of the cascaded system in Fig. 7.6.3

for the two cases a. I4ðsÞ ¼ 0; I2ðsÞ 6¼ 0:

b: I2 ¼ 0; I4 ¼ 0:

Solution: a. From (7.6.12),

V4ðsÞ
V1ðsÞ I4ðsÞ¼0

		 ¼ 1

A1A2 þ B1C2
:

b. Using (7.6.11) and (7.6.12), with

I2ðsÞ ¼ I4ðsÞ ¼ 0, we have

V2ðsÞ
V1ðsÞ

¼ 1

A1
and

V4ðsÞ
V3ðsÞ

¼ 1

A2
) V4ðsÞ

V1ðsÞ I2ðsÞ¼0;I4ðsÞ¼0
		 ¼ 1

A1

� �
1

A2

� �
:

Comparing the two cases, in Case a, part of the

transfer includes the product B1C2, which is not

there in Case b. That is, the transfer function of

the cascaded system is equal to the product of the

two transfer functions. This allows for ease in the

design of individual systems without considering

the other systems in the cascaded systems. Use of

op amps, discussed in the next section, makes this

possible and loading effects can be neglected. &

Doubly terminated two-port networks: Following

parameters are of interest for the network shown in

Fig. 7.6.4, see Nilsson and Riedel (1996).

1. Input impedance Zi ¼ V1=I1
2. Output impedance ZL ¼ VL=IL
3. Current gain I2=I1
4. Voltage gains V2=V1 and V2=Vg.

Now consider the derivation of some of the other

models by using the equations in (7.6.1) relating the

indicated variables in Fig. 7.6.4.

V1ðsÞ ¼ Z11ðsÞI1ðsÞ þ Z12ðsÞI2ðsÞ and
V2ðsÞ ¼ Z21ðsÞI1ðsÞ þ Z22ðsÞI2ðsÞ : (7:6:14a)

V1ðsÞ ¼ ViðsÞ � ZiðsÞI1ðsÞ: (7:6:14b)

VLðsÞ ¼ V2ðsÞ ¼ �ZLðsÞILðsÞ: (7:6:14c)

In the following, the L-transform variable s will be

dropped for simplicity. In terms of the ABCD para-

meters of the two-port network, we have

Vs

Is

� �
¼

1 Zs

0 1

� �
V 01
�I 01

� �
;

V1

I1

� �
¼

A B

C D

� �
V2

�I2

� �
;

V3

I3

� �
¼

1 0

1=ZL 1

� �
V0

�I0

� �
:

Noting that V01 ¼ V1; I
0
1 ¼ �I1;V2 ¼ V02; I

0
2 ¼

�IL; and V02 ¼ V0 , we have

Fig. 7.6.4 Double terminated two-port network

Fig. 7.6.3 Example 7.6.3,
Systems 1 and 2 in cascade
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Vs

Is

� �
¼

1 Zs

0 1

� �
A B

C D

� �
1 0

1=ZL 1

� �
V0

�I0

� �

¼
1 Zs

0 1

� �
Aþ ðB=ZLÞ B

Cþ ðD=ZLÞ D

� �
V0

�I0

� �

¼
AþZsCþðB=ZLÞþðDZs=ZLÞ BþDZs

CþðD=ZLÞ D

� �
V0

�I0

� �
:

¼)V0

Vi
I0¼0j ¼ 1

Aþ ZsCþ ðB=ZLÞ þ ðDZs=ZLÞ
:

Substituting the values for the ABCD parameters

in terms of the open circuit parameters given in

(7.6.7), we have the following result, which can be

derived by solving directly

V0

Vs
¼ Z21ZL

Z11ZL þ ZsZL þ Z11Z22 � Z12Z21 þ Z22Zs

¼ Z21ZL

ðZ11 þ ZsÞðZ22 þ ZLÞ � Z12Z21
: (7:6:15a)

In addition to this we have other important rela-

tions. Some of these are given below:

V1

I1
¼ Z11 �

Z12Z21

Z22 þ ZL
; (7:6:15b)

IL
Vs
¼ Z21

ðZ11 þ ZsÞðZ22 þ ZLÞ � Z12Z21
; (7:6:15c)

V2 I2¼0j ¼ Z21

Z11 þ Zs
Vi; (7:6:15d)

V2

I2
Vi¼0 ¼j Z22 �

Z12Z21

Z11 þ Zs
; (7:6:15e)

I2
I1
¼ �Z21

Z22 þ ZL
; (7:6:15f)

V2

V1
¼ Z21ZL

ZLZ11 þ Z11Z22 � Z12Z21
: (7:6:15 g)

Other parameters of interest include scattering para-

meters (see Seshu and Balabanian, 1959) originated

in the study of transmission lines. These cannot be

obtained by rearranging the voltages and currents

in describing the two-port circuits. However, they

are as good as other parameters and are indirectly

specified using the relationships between external

voltages and currents in terms of incident and

reflected voltages at each of the ports. Image para-

meters grew out of the study of wave propagation.

7.6.2 Circuit Analysis Involving Multi-
terminal Components and Networks

In circuit analysiswewrite a set of equationswith respect

to a reference point or a node. AnN node network has

(N–1) independent equations and we write a set of equa-

tions with respect to a reference point or a node. If we

desire to come up with ðN� 1Þ equations with a differ-

ence reference node, node equationsmake it very simple.

Example 7.6.6 Figure 7.6.5 shows a three-terminal

network and its description of its Y parameters in

terms of Y
ð3Þ
ij ðsÞ in (7.6.16) indicating node 3 is the

reference node.

Fig. 7.6.5 A three-terminal
node network

7.6 Multi-terminal Components 277



I1ðsÞ
I2ðsÞ

� �
¼

Y
ð3Þ
11 ðsÞ Y

ð3Þ
12 ðsÞ

Y
ð3Þ
21 ðsÞ Y

ð3Þ
22 ðsÞ

" #
V1ðsÞ
V2ðsÞ

� �
: (7:6:16)

Derive the two-port short-circuit parameters

assuming node 2 is grounded.

Solution: Assuming the network is a super node, we

have I1ðsÞ þ I2ðsÞ þ I3ðsÞ ¼ 0 and

I1ðsÞ
I2ðsÞ
I3ðsÞ

2
64

3
75 ¼

Y
ð3Þ
11 ðsÞ Y

ð3Þ
12 ðsÞ �½Yð3Þ11 ðsÞ þ Y

ð3Þ
12 ðsÞ�

Y
ð3Þ
21 ðsÞ Y

ð3Þ
22 ðsÞ �½Yð3Þ21 ðsÞ þ Y

ð3Þ
22 ðsÞ�

�½Yð3Þ11 ðsÞ þ Y
ð3Þ
21 ðsÞ� �½Y

ð3Þ
12 ðsÞ þ Y

ð3Þ
22 ðsÞ� ½Y

ð3Þ
11 þ Y

ð3Þ
12 þ Y

ð3Þ
21 þ Y

ð3Þ
22 �

2
664

3
775

V1ðsÞ
V2ðsÞ
V3ðsÞ

2
64

3
75: (7:6:17)

The coefficient matrix in (7.6.17) is a singular indefi-

nite admittance matrix of the three-terminal network

by noting that the three rows (or the three columns)

add to a row of zeros (or columns) and therefore the

determinant of the coefficient matrix is zero.

Equation (7.6.17) reduces to (7.6.16) by deleting the

third row and considering the node 3 as the reference

node, i.e.,V3ðsÞ ¼ 0. If we change the reference node

from 3 to 2, we can obtain the short-circuit para-

meter equations with reference to node 2 by

I1ðsÞ
I3ðsÞ

� �
¼

Y
ð3Þ
11 ðsÞ �½Yð3Þ11 ðsÞ þ Y

ð3Þ
12 ðsÞ�

�½Yð3Þ11 ðsÞ þ Y
ð3Þ
21 ðsÞ� ½Y

ð3Þ
11 ðsÞ þ Y

ð3Þ
12 ðsÞ þ Y

ð3Þ
21 ðsÞ þ Y

ð3Þ
22 ðsÞ�

" #
V1ðsÞ
V3ðsÞ

� �

¼
Y
ð2Þ
11 ðsÞ Y

ð2Þ
12 ðsÞ

Y
ð2Þ
21 ðsÞ Y

ð2Þ
22 ðsÞ

" #
V1ðsÞ
V3ðsÞ

� �
: (7:6:18) &

Problem (7.6.3) makes use of this procedure.

7.6.3 Controlled Sources

Controlled source is a unidirectional, non-autono-

mous active two port having a pair of input term-

inals and a pair of output terminals, one controlled

by the other. The unidirectional property of these

sources provides the important property that the

controlling terminal-pair variables are insensitive

(or independent) of the controlled terminal-pair

variables. These idealized two ports are usually

referred to as controlled sources or transducers

illustrated in Fig. 7.6.6a,b,c,d. They are referred to

as transducers or dependent sources. There are two

variables, voltage and current, at the input and at

the output. We need to consider four cases of con-

trolled-source models. Note circles are used for

both dependent and independent sources.

(a) (b) 

(c) (d) 

Fig. 7.6.6 Controlled
sources (a) CVT, (b) VCT,
(c) VVT, and (d) CCT
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Current-to-voltage transducer (CVT): Output vol-

tage is proportional to the input current.

Voltage-to-current transducer (VCT): Output cur-

rent is proportional to the input voltage.

Voltage-to-voltage transducer (VVT): Output

voltage is proportional to the input voltage.

Current-to-current transducer (CCT): Output

current is proportional to the input current.

v1

v2

� �
¼

0 0

r 0

� �
i1

i2

� �
ðCVTÞ (7:6:19a)

i1

i2

� �
¼

0 0

g 0

� �
v1

v2

� �
ðVCTÞ (7:6:19b)

i1

v2

� �
¼

0 0

m 0

� �
v1

i2

� �
ðVVTÞ (7:6:19c)

v1

i2

� �
¼

0 0

a 0

� �
i1

v2

� �
ðCCTÞ (7:6:19d)

7.7 Active Filter Circuits

7.7.1 Operational Amplifiers,
an Introduction

Operational amplifiers (or op amps or op-amps)

appeared in the market during the 1940s. With inte-

grated circuits, they are the most used components

in circuit design. For a review on op amps, see

Mitra (1969), Van Valkenburg (1982), Daryanani

(1976), and others. Since op amps are available in

packaged forms, the analysis of circuits involving

operational amplifiers is presented in terms of op

amp idealized form. Figure 7.7.1 shows its stan-

dard symbol and the equivalent circuit symbolic

models. Op amps provide high-gain amplification

of the difference between two input voltages

vþ and v�. The requirements for an ideal opera-

tional amplifier are

v0 ¼ Aðvþ � v�Þ ¼ �Avi;
v0�!0 when vi ¼ v� � vþ�!0: (7:7:1)

The two inputs v�and vþ are at the inverting and

non-inverting terminals, respectively, and v0 is the

resulting output signal. When both terminals are

used, the op amp is called a differential input op

(a) (b)

(c) (d)

Fig. 7.7.1 (a) Op amp
symbol, (b) op amp model,
(c) ideal op amp, and (d)
simplified symbol
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amp. The ideal op amp acts like a voltage-to-voltage

transducer (VVT) or simply a controlled voltage

source described by the relation in (7.6.24c). To be

general, the gain of the op amp is a function of

frequency. For our filter applications, frequencies

are below 10 kHz. In this range, the gains are over

10,000. The input impedance of an op amp is around

500 k O and the output impedance is around 300 O.
For our analysis we will assume that the op amp is an

ideal component and is assumed to have an infinite

gain and small output impedance. For a finite output

signal v0ðtÞ, we must have vþ � v�. This property is
referred to as the virtual ground. The input impe-

dance is assumed to be infinite and therefore the

input currents to the ideal op amp are zero. Also,

the output impedance of the ideal op amp is zero.

These allow for the active filter synthesis of a

transfer function using cascaded sections. To be

realistic, we know that all voltages and currents

must be finite. In addition, the op amp is used as

part of a feedback loop and not used in an open

loop. The VVT model of the op amp is shown in

Fig. 7.7.1c. Figure 7.7.1d shows the simplified sym-

bol of the op amp.

7.7.2 Inverting Operational Amplifier
Circuits

Figure 7.7.2 illustrates a single-loop feedback cir-

cuit, where the non-inverting input terminal of the

op amp is grounded. Noting I1ðsÞ ¼ �I2ðsÞ, we have
the following:

I1ðsÞ ¼
ViðsÞ
Z1ðsÞ

ffi �V0ðsÞ
Z2ðsÞ

¼ �I2ðsÞ; (7:7:2)

V0ðsÞ
ViðsÞ

¼ HðsÞ ¼ �Z2ðsÞ
Z1ðsÞ

(inverting circuit transfer function) (7:7:3)

Example 7.7.1 Find the output voltage in terms of the

input voltage for each of the cases inFig. 7.7.3a,b,c,d,e

by assuming the op amps as ideal devices.

Solution: a. The current into the ideal op amp is

zero implies I3ðsÞ ¼ �ðI1ðsÞ þ I2ðsÞÞ and

V0ðsÞ ¼ ZFðsÞI3ðsÞ ¼ �
V1ðsÞ
Z1ðsÞ

þ V2ðsÞ
Z2ðsÞ

� �
ZFðsÞ

¼ � ZFðsÞ
Z1ðsÞ

� �
V1ðsÞ

� ZFðsÞ
Z2ðsÞ

� �
V2ðsÞ: (7:7:4)

If ZiðsÞ ¼ R; i ¼ 1; 2 and ZFðsÞ ¼ R, then

V0ðsÞ ¼ �ðV1ðsÞ þ V2ðsÞÞ.
b. The voltage across the input terminals of the

op amp is approximately zero and follows that

V0ðsÞ � ViðsÞ, a special case of a non-inverting

amplifier or a voltage follower and can be used as a

buffer between a high-resistance source and a low-

resistance load.

c. The node equation at point a in Fig. 7.7.3c is

ðViðsÞ=RaÞ þ ðV0ðsÞ=RbÞ ¼ 0 and the gain is an

inverting gain and is an inverting amplifier.

d. The node equation at point a in Fig. 7.7.3d

1

R1
þ 1

R2

� �
V1ðsÞ �

1

R2
V2ðsÞ ¼ 0¼)V2ðsÞ

¼ 1þ ðR2=R1Þ½ �V1ðsÞ ¼ KV1ðsÞ;
K ¼ 1þ ðR2=R1Þ 
 1: (7:7:5)

Unity gain, i.e., K ¼ 1 if R1 !1 or R2 ¼ 0. It is a

non-inverting amplifier. It is symbolically repre-

sented in Fig. 7.7.3d and V0ðsÞ ¼ KViðsÞ.
e. The circuit in Fig. 7.7.3e gives the difference of

two voltages V0ðsÞ ¼ V1ðsÞ � V2ðsÞ. Verification is

left as an exercise. &

Inverting first-order low-pass and high-pass RC

filter circuits:

Example 7.7.2 Consider the two RC circuits shown

in Fig. 7.7.4a,b. Derive the transfer functions andFig. 7.7.2 Single-loop feeback cicuit with an op amp
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identify the type of filter by considering these at

s ¼ 0 and 1.

Solution: With (7.7.3), the following results:

HaðsÞ ¼
V0ðsÞ
ViðsÞ

¼ � ð1=R1CÞ
sþ ð1=R2CÞ

¼ �R2

R1

ð1=R2CÞ
sþ ð1=R2CÞ

¼ Ka
ð1=R2CÞ

sþ ð1=R2CÞ
ðlow passÞ (7:7:6)

HbðsÞ ¼
V0ðsÞ
ViðsÞ

¼ � R2

R1 þ ð1=CsÞ

¼ �R2

R1

s

sþ ð1=R1CÞ
¼ Kb

s

sþ ð1=R1CÞ
ðhigh passÞ: (7:7:7)

The low-frequency gain in the LP case is

Ka ¼ �ðR2=R1Þ and the high-frequency gain in the

HP case is Kb ¼ �R2=R1. The value of R1 in both

cases should include the input resistance of the source.

Fig. 7.7.4 (a) First-order
low-pass filter and (b) first-
order high-pass filter

(a) 

(b) 

(d) 

(c) 

(e) 

Fig. 7.7.3 Example 7.7.1
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The inverting amplifier draws input current in these

circuits and a voltage follower can be inserted as a

buffer between the source and the filter. &

7.7.3 Non-inverting Operational
Amplifier Circuits

The circuit shown in Fig. 7.7.5a is a generaliza-

tion of the circuit used in Example 7.7.1 (see Part

c.) with R i replaced by ZiðsÞ; i ¼ 1; 2. The transfer

function is

HðsÞ ¼ V0ðsÞ=ViðsÞ ¼ 1þ ðZ2ðsÞ=Z1ðsÞÞ: (7:7:8)

It is a non-inverting op amp filter that synthesizes a

transfer function with a real zero and a pole. The

transfer functions K=ðsþ p1Þ; K=s and Ks are not

realizable by this circuit.

Example 7.7.3Find an active RC circuit that has the

transfer function

HðsÞ ¼ ðsþ aÞ=ðsþ bÞ
¼ 1þ ða� bÞ=ðsþ bÞ½ �; a4b: (7:7:9)

Solution: The circuit in Fig. 7.7.5b has this transfer

function with

Z1ðsÞ ¼ 1 and

Z2ðsÞ ¼
ða� bÞ
ðsþ bÞ ¼

1

½s=ða� bÞ� þ ½b=ða� bÞ� : &

Example 7.7.4 Derive the transfer functions of the

circuits in Fig. 7.7.6ab.

Solution: The input currents into the op amp are

zero and from Fig. 7.7.6a, we have

V1ðsÞ ¼ RA=ðRA þ RBÞ½ �V0ðsÞ or
V0ðsÞ ¼ 1þ RB=RA½ �V1ðsÞ: (7:7:10)

ViðsÞ � V1ðsÞ
R

¼ CsV1ðsÞ ) HaðsÞ

¼ V0ðsÞ
ViðsÞ

¼ K=CR

ðsþ ð1=CRÞÞ ;K ¼ 1þ RB

RA
: (7:7:11)

(a) (b)

(c)

Fig. 7.7.6 Non-inverting op
amp circuits: (a) low-pass
circuit, (b) high-pass circuit,
and (c) simplified low-pass
circuit

Fig. 7.7.5 Example 7.7.3
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Figure 7.7.6c gives the simplified version of the

circuit in Fig. 7.7.6b, where the resistors

RA and RB are not explicit. The circuit is a low-

pass filter. The circuit in Fig. 7.7.6c is a high-pass

filter. The transfer function is

HbðsÞ ¼
V0ðsÞ
ViðsÞ

¼ Ks

ðsþ ð1=CRÞÞ ;

K ¼ 1þ RB

RA
: (7:7:12) &

First-order all-pass functions: The circuit transfer

functions in Fig. 7.7.7a,b are

HaðsÞ ¼
V0ðsÞ
ViðsÞ

¼ s� ð1=RCÞ
sþ ð1=RCÞ ;

HbðsÞ ¼
V0ðsÞ
ViðsÞ

¼ � 1

2

s� ð1=RCÞ
sþ ð1=RCÞ : (7:7:13)

A nice way to find the transfer function is by noting

that the output voltageV0 is the sum of two voltages

V01 and V02. The voltage V01 is determined using

the circuit in Fig. 7.7.7c. Similarly, the voltageV02 is

determined by using the circuit in Fig. 7.7.7d. Using

Fig. 7.7.7c and d, we have

V01 ¼ �
R

R
Vi ; V02 ¼

R

Rþ ð1=CsÞ 1þ R

R

� �

Vi ¼
2R

Rþ ð1=CsÞVi (7:7:14a)

V0 ¼ V01 þ V02 ¼ �Vi þ
2R

Rþ ð1=CsÞVi

¼ ðs� 1=RCÞ
ðsþ 1=RCÞVi: (7:7:14b)

Equation (7.7.13) now follows:

Notes: Table 7.7.1 gives a set of guidelines

for selecting passive component values. See Van

Valkenburg (1982) for additional information. The

input and feedback resistances connected to an op

(a) (b) 

(c) (d) 

Fig. 7.7.7 (a) and (b) First-
order all-pass circuits.
(c) and (d) Illustration of the
principle of superposition by
using these circuits

Table 7.7.1 Guidelines for passive components

Capacitors Inductors Resistors

Largest Smallest Largest Smallest Preferred 1�100 kO
Readily
realizable

1 mF 5pF Readily
realizable

1mH 1 mH Lower limit :1�1 kO

Practical 10mF :2 pF Practical 10mH :1mH Upper limit 100�500 kO
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amp should be within the range of 1 kO to 100 kO:
The cut-off frequency or the center frequency fc of

an active RC filter is determined by capacitors and

resistors. Capacitors are more expensive than resis-

tors and are selected first. A rule of thumb is to select

the capacitor values in the range of (see Carlson,

2000)

10�6=fc5C510�4=fc: (7:7:15)

7.7.4 Simple Second-Order Low-Pass
and All-Pass Circuits

Example 7.7.5 Derive the transfer function of the

circuit in Fig. 7.7.8a. It is one class of popular low-

pass active filter circuits given by Sallen and

Key (1955).

Solution: Considering the voltage division at node

3 and the Kirchhoff’s current law,

Node 1:

V1ðsÞ ¼ V3ðsÞ;V1ðsÞ ¼
RA

RA þ RB
V0ðsÞ�!

V0ðsÞ
V1ðsÞ

¼ 1þ RB

RA
; V3ðsÞ ¼

V0ðsÞ
K

(7:7:16a)

Node 2:

1

R2
V2ðsÞ �

V0ðsÞ
K

� �
þ C1s V2ðsÞ � V0ðsÞ½ �

þ 1

R1
V2ðsÞ � ViðsÞ½ �

¼ 0 (7:7:16b)

Node 3:

1

R2

V0ðsÞ
K
� V2ðsÞ

� �
þ V0ðsÞ

K
C2s ¼ 0: (7:7:16c)

Eliminating V2ðsÞ results in

HðsÞ ¼ V0ðsÞ
ViðsÞ

¼ Kð1=R1R2C1C2Þ
s2 þ ½ð1=R1C1Þ þ ð1=R2C1Þ þ ð1=R2C2Þ � ðK=R2C2Þ�sþ ð1=R1R2C1C2Þ

;K 
 1: (7:7:17)

¼ Ko2
0= s2 þ ðo0=QÞsþ o2

0

� �
;

o2
0 ¼ 1=R1R2C1C2: (7:7:18)

The design strategy is coefficient matching by equat-

ing the coefficients in (7.7.17) with (7.7.18). That is,

determine K and the four element values from the

given parameters o0 and Q. As an example, con-

sider R1 ¼ R2 ¼ 1 and C1 ¼ C2 ¼ 1 and substitute

these values in (7.7.17) resulting in

HðsÞ ¼ K

s2 þ ð3� KÞsþ 1½ � : (7:7:19)

The designer has the choice of selecting

K ¼ 1þ ðRB=RAÞ depending only on the ratio of the

resistorsRB and RA. From (7.7.18), it follows that

Q ¼ 1=ð3� KÞ: (7:7:20)
Fig. 7.7.8 (a) Sallen–Key low-pass filter and (b) simplified
circuit
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The gain constant K is adjusted to satisfy the Q

value and the design requirements of the circuit.

Van Valkenburg (1982) gives several strategies in

selecting the values of the parameters and its

effect on the pole locations. A special case is

when K ¼ 1: &

Notes: The resistors RA and RB are not shown in

the circuit in Fig. 7.7.8b.This simplifies the analysis,

as V0ðsÞ ¼ KV3ðsÞ. There are three constants

RB;RA; and K, one of them depends on the other

two constants. A solution is RB ¼ RAðK� 1Þ. The
gain constant is positive and it is a circuit with a

positive feedback topology. A second-order low-pass

circuit that has a negative gain constant, i.e., with a

negative feedback topology is given in Problem

7.7.10. &

The transfer function of the second-order delay

circuit shown in Fig. 7.7.9 (see Delyiannis, 1969) is

given by (analysis is left as an exercise)

V0ðsÞ
ViðsÞ

¼ HðsÞ ¼ K
s2 þ ½ð2=R2CÞ þ ð1� ð1=KÞÞ=R1C�sþ ð1=R1R2C

2Þ
s2 þ ð2=R2CÞsþ ð1=R1R2C2Þ ;K ¼ R4

R3 þ R4
: (7:7:21)

The condition for the all-pass and the corresponding

second-order all-pass function are

2

R2C
þ ð1� ð1=KÞÞ

R1C
¼ � 2

R2C
;

HðsÞ ¼ K
s2 � o0=Qþ o2

0

s2 þ o0=Qþ o2
0

: (7:7:22)

See Van Valkenburg (1982) for selecting the com-

ponent values, see also Problem 7.7.6.

7.8 Gain Constant Adjustment

The filter circuit provides a gain, which may be dif-

ferent than the required. The gain adjustment

(attenuation and gain enhancement) can be achieved

by first using attenuation circuit at the input end and

later, enhancement circuit at the output end, see

Daryanani (1976) and Van Valkenburg (1982).

Consider the block diagram shown in Fig. 7.8.1a

corresponding to a given transfer function HðsÞ.
The input to the active circuit is through the impe-

dance Z1. We would like to keep the impedance Z1

the same as before and change the input voltage to

the active RC circuit attenuated by a. That is, our
goal is to modify the input end of the circuit so that

the transfer function is given by aHðsÞ; a51. This is

achieved by the circuit in Fig. 7.8.1b. The input and

the voltage divider can be replaced by a Thevenin’s

voltage source VThðsÞ and the resultant Thevenin’s

impedance ZTh. These are

VThðsÞ ¼
Z12

Z11 þ Z12
ViðsÞ ¼ aViðsÞ;

a ¼ Z12

Z11 þ Z12

51: (7:8:1a)

ZTh ¼ Z11Z12=ðZ11 þ Z12Þ ¼ Z1: (7:8:1b)

) Z11 ¼ Z1=a and Z12 ¼ ½a=ð1� aÞ�
Z11 ¼ Z1=ð1� aÞ: (7:8:1c)

Fig. 7.7.9 A second-order
delay line circuit
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The equations are valid for impedances and, of

course as a special case, for resistances. Figure

7.8.1c gives the block diagram with the Thevenin’s

impedance explicitly shown. The transform variable

s is omitted in the above equations. In the case of

resistive gain enhancement, the inverse of the earlier

approach is used at the output end. Our goal is to

modify the given circuit with the transfer function

HðsÞ to bHðsÞ; b41.

Figure 7.8.2a,b gives the Sallen–Key low-pass

and the gain attenuation circuits. Figure 7.8.2c

gives the resistive gain enhancement circuit. The

derivation of the transfer function of the circuit in

(7.8.2b) is left as an exercise. In this circuit, a portion

of the output voltage V0, kV2 is fed back through

the capacitor C1 with k ¼ r12=ðr11 þ r12Þ. The trans-
fer function is

HðsÞ ¼ Kð1=R1R2C1C2Þ
s2 þ ½1=R1C1 þ 1=R2C1 þ 1=R2C2 � Kk=R2C2�sþ 1=R1R2C1C2

: (7:8:2a)

+

−( )iV s
+

1
1R
a

= 2
aR
b

=

1 1C =

2 1C =

1AR =

1BR =
11 2r =

12 1r =

( )oV s
+

(a) (b)

(c)

Fig. 7.8.2 Example 7.8.1,
Gain attenuation and
enhancement

(a)

(c)(b)

Fig. 7.8.1 (a) Active RC
circuit with impedance Z1,
(b) circuit with input
attenuation, and (c) circuit
with Thevenin’s input and
Thevenin’s impedance
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As an example, let C1 ¼ C2 ¼ C and R1 ¼ R2 ¼ R.

Using (7.7.18), the Q of the circuit is

Q ¼ 1=ð3� kKÞ: (7:8:2b)

To keep the sameQ, K can be made larger provided

k is made smaller at the same time. This is called the

resistive gain adjustment. Note that the enhancer

circuit consists of two resistors r11 and r12 at the

output end. Lower case symbols are used to sepa-

rate from the attenuation case. If the current

through the capacitor C1 is small enough, then the

corresponding gain enhancement factor is

b ¼ ½r11 þ r12�=r12: (7:8:2c)

Daryanani (1976) discusses the limitations on the

gain enhancement, which depends on the maximum

current the op amp can deliver.

Example 7.8.1 a.Use the circuit in Example 7.7.5 to

synthesize the transfer function

H1ðsÞ ¼ 2b= s2 þ asþ b
� �

: (7:8:3)

b. Use the attenuation method to synthesize the

transfer function H1ðsÞ=3.
c. Use the gain enhancement method to synthe-

size the transfer function 3H1ðsÞ.

Solution: a. The element values corresponding to

the transfer function in (7.8.3) can be obtained by

comparing it to the equation in (7.7.17) with K ¼ 2.

A solution is

C1 ¼ C2 ¼ 1F;RA ¼ RB ¼ 1O; R1 ¼ ð1=aÞO;
R2 ¼ ða=bÞO: (7:8:4)

The corresponding circuit is shown in Fig. 7.8.2a.

Computations are left as an exercise. b. We may be

tempted to recompute the element values for this

case. This will not be possible since the new gain

constant K ¼ 2=351. The attenuation here is

a ¼ 1=3. Using the above procedure, i.e., replace

the source and the resistor R1 in Fig. 7.8.2a by the

circuit shown in Fig. 7.8.2b. Using (7.8.1c) and

a ¼ 1=3, we haveR11 ¼ R1=a ¼ ð3=aÞ and the shunt

resistance is R12 ¼ R11=ð1� aÞ ¼ 3R1=2 ¼ 3=2a.
We now have two new resistors and the other values

remain the same.

c. In this case, we have b ¼ 341 and we are

interested in gain enhancement. The transfer func-

tion is given below. The new circuit is shown in

Fig. 7.8.2c.

H2ðsÞ ¼ 3H1ðsÞ ¼
6b

½s2 þ asþ b� : (7:8:5)

The resistors r11 and r12 at the output satisfy

b ffi ðr11 þ r12Þ=r12 ¼ 341. In this case we could

have gone back and recompute and come up with

a new set of element values with K ¼ 641. Instead,

the example asks for a modification of the original

circuit in Part a. to illustrate the gain enhancement.

Select r11 ¼ 2; r12 ¼ 1. &

7.9 Scaling

In Chapter 6 we have used circuits with element

values with small numbers, such as 1O; 1H; and
1F. Even though these are unrealistic and imprac-

tical, they simplify the computations. Once the

designs are made with small values, the designer

can transform these into realistic values using scal-

ing. It is used in everyday life. Maps are drawn using

scaling, such as 1 in. represents 1 mile. Frequency

scaling that may correspond to 1 rad represents oa

radians. In Chapter 4 frequency compression and

expansion were considered. For example, if vðtÞ is
replaced by vð10tÞ, then v is compressed in time by a

factor of 10. Similarly, if vðtÞ is replaced by vðt=10Þ,
then v is expanded in time by 10. In a similar man-

ner, if VðjoÞ is replaced by Vðj10oÞ ðor Vðjo=10ÞÞ,
then V has been compressed (or expanded) by a

factor of 10 in frequency.

7.9.1 Amplitude (or Magnitude) Scaling,
RLC Circuits

From our earlier discussion on circuits the impe-

dance of a two-terminal network is a ratio of input

voltage transform VðjoÞ to the input current trans-

form IðjoÞ defined by

ZðjoÞ ¼ VðjoÞ=IðjoÞ: (7:9:1)
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If themagnitude of the impedance ZðjoÞj j is replaced
by kmZðjoÞ, then we say that the impedance is scaled

up or down depending upon km41 or km51 . Con-

sider the three passive components with the element

values Rold O; LoldH; and Cold F. The impedances

of these components and the corresponding magni-

tudes of these impedances are given by

ZR¼Rold;ZL¼ joLold; andZc¼1=joCold

)ZR¼Rold; ZLj j¼ oj jLold; ZCj j¼1= oj jCold:

(7:9:2)

Since the component values are positive and multi-

plying them by km results in

kmZR ¼ kmRold; km ZLj j ¼ oðkmLoldÞ;
km ZCj j ¼ 1=½oðCold=kmÞ�: (7:9:3a)

The new elements with subscripts ‘‘new’’ corre-

sponding to the scaled values are

Rnew ¼ kmRold; Lnew ¼ kmLold; and

Cnew ¼ Cold=km: (7:9:3b)

If the elements are changed according to these, the

input impedance of a circuit is scaled in magnitude

by km. Using the subscripts old and new, the impe-

dances are related by

Znew ¼ kmZold: (7:9:3c)

7.9.2 Frequency Scaling, RLC Circuits

We would like to scale the frequency without alter-

ing themagnitude scaling discussed above. Since the

resistor value is independent of the frequency, it is

unchanged by any frequency scaling. The magni-

tudes of the impedance of the inductor and the

capacitor are preserved by scaling the frequency

and, at the same time, scaling the element values.

That is,

ZLj j ¼oLold¼ðkfoÞðLold=kfÞ¼ ðkfoÞLnew; (7:9:4a)

Zcj j ¼
1

oCold
¼ 1

ðkfoÞðð1=kfÞColdÞ�

¼ 1

ðkfoÞðC=kfÞ
: (7:9:4b)

These two equations point out that if we increase

the frequency by kf, then wemust reduce the induc-

tor and the capacitor values by the factor kf to keep

the two impedances invariant. Correspondingly

the new element values after frequency scaling are

given by

Lnew ¼ ð1=kfÞLold; Cnew ¼ ð1=kfÞCold: (7:9:5)

Magnitude and frequency scaling, RLC circuits:

Simultaneous magnitude and frequency scaling

results in the following scaling equations:

Rnew ¼ kmRold; Lnew ¼ ðkm=kfÞLold;

Cnew ¼ ð1=kmkfÞCold: (7:9:6)

7.9.3 Amplitude and Frequency Scaling in
Active Filters

The active RC filter design is based on starting with

a circuit, finding its transfer function, and match-

ing the circuit transfer function coefficients with

that of desired transfer function coefficients. This

provides more unknowns than equations allowing

for multiple solutions. In our examples, the ele-

ment values are chosen so that the element values

come out to be easy to handle, but not practical.

Amplitude scaling is used so that the designed

values are practical and is illustrated by the follow-

ing example.

Example 7.9.1 The following transfer function

needs to be synthesized by the circuit used in Exam-

ple 7.7.5 with some practical element values:

HðsÞ ¼ Kb

s2 þ asþ b
¼ 10; 000

s2 þ 100sþ 5; 000
; K ¼ 2:

(7:9:7a)

a. Give the appropriate equations in terms of the

element values in the active RC network and the

parameters given in (7.9.7a).

b. Assuming a ¼ 100 and b ¼ 5000, determine a

set of element values that can be used in synthesizing

the filter.
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Solution: The transfer function is

HðsÞ ¼ Kð1=R1R2C1C2Þ
s2 þ ½ð1=R1C1Þ þ ð1=R2C1Þ þ ð1=R2C2Þ � ðK=R2C2Þ�sþ ð1=R1R2C1C2Þ

: (7:9:7b)

Comparing the coefficients in (7.9.7a) and (7.9.7b),

we have

H0 ¼ KðbÞ;

a ¼ 1

R2C2
ð1� KÞ þ 1

R2C1
þ 1

R1C1
;

b ¼ 1

R1R2C1C2
; K ¼ 1þ Rb

Ra
: (7:9:7c)

Noting that K ¼ 2, it follows that RA ¼ RB. There

are an infinite number of possible solutions. Select-

ing the capacitor values equal to 1, we have a simple

solution given by

RB ¼ RA ¼ 1O;C1 ¼ C2 ¼ 1F;R1 ¼ 1=a;R2 ¼ a=b:

) R1 ¼ 0:01O;R2 ¼ 100=5000 ¼ 0:02O:

Clearly, the element values are not practical. One

property of active RC filters is that the resistors

Ri
0s and the capacitors Cj

0s with number sub-

scripts always appear as R iCj products. For exam-

ple, see (7.9.7b). The resistors with letter subscripts

appear as a ratio of resistances in the transfer func-

tion. The components used in the gain attenuation

and enhancement appear as ratios. These allow for

amplitude scaling in the active filter design. If we

increase all the Ri
0s by a factor a and, at the

same time decrease all the capacitor values by this

factor, then the products will remain the same

and the transfer function is unchanged. As an

example, consider a ¼ 106, i.e., Ri ) Rið106Þ and

Ci ) Cið10�6Þ then the corresponding practical

values are

C1 ¼ C2 ¼ 1mF;R1 ¼ ð:01Þ106 ¼ 10 kO;

R2 ¼ :02ð106Þ ¼ 20 kO; RB ¼ RA ¼ 10 kO: (7:9:8)

The two resistors RA and RB appear as a ratio and

can be scaled independently with respect to the other

elements and one choice is given in (7.9.8). &

Frequency scaling is used to shift the frequency

response from one part of the frequency axis to

another part allowing for the filter designs at a

normalized frequency. For a given set of

specifications, look up tables can be generated for

a particular type of filter with a cut-off frequency

equal to 1 rad/s. In the low-pass filter design we

have seen that if a filter that satisfies all the design

criteria corresponding to a cut-off frequency equal

to 1 rad/s, then the transfer function corresponding

to a cut-off frequency ofoc rad/s can be obtained by

replacing s by s=oc in the normalized function.

Suppose the specifications require that the transfer

function given above is to be shifted up along the

frequency axis by a factor of 10, then the corre-

sponding transfer function is

Hðs=ocÞ ¼ Hðs=10Þ7 ¼ 10; 000=ðs=10Þ2

þ 100ðs=10Þ þ 5; 000: (7:9:9)

From (7.9.7c),

Hðs=10Þ ¼ Kð1=R1R2C1C2Þ
ðs=10Þ2 þ ½ð1=R1C1Þ þ ð1=R2C1Þ þ ð1=R2C2Þ � ðK=R2C2Þ�ðs=10Þ þ ð1=R1R2C1C2Þ

¼ Kð10Þð10Þ=R1R2C1C2

s2 þ ½ð10=R1C1Þ þ ð10=R2C1Þ þ ð10=R2C2Þ � ð10K=R2C2Þ�sþ ð1=R1R2C1C2Þð10Þð10Þ
:

Frequency scaling is accomplished by decreasing all

the resistors by a factor of 10 or by decreasing all the

capacitors by 10, not both. By decreasing all the

capacitor values by a factor of 10, the correspond-

ing element values can be computed from (7.9.8), we

have the new element values for the frequency-

scaled network:

C1 ¼ C2 ¼ :1 m F; R1 ¼ 1 kO;

R2 ¼ 2 kO; RB ¼ RA ¼ 10 kO (7:9:10)
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Note that RA and RB are not altered. We can see

now that amplitude and frequency scaling can be

used to synthesize active filter circuits that give

practical element values in the circuit.

Notes: Amplitude scaling effects the impedances

and admittances. Voltage transfer functions are not

affected by amplitude scaling. The transfer function

of the frequency-scaled network is obtained by repla-

cing s by s=kf in the unscaled network. &

7.9.4 Delay Scaling

In Chapter 4 we have seen that time and frequency

goes hand in hand. Consider

xðtÞ ¼ sinðo0tÞ ¼ sinðt=ð1=o0ÞÞ ¼ sinðt=t0Þ;
t0 ¼ 1=o0: (7:9:11)

The inverse relationship between time and fre-

quency given in the last part of the above equation,

o0 ¼ 1=t0 indicates that time compression implies

frequency expansion and vice versa. We further

have seen that the time–bandwidth product of a

system is a constant. Time scaling in a system can

be interpreted as speeding up or slowing down the

response of a system. How do we incorporate time

scaling in the description of the system? The transfer

function and the output of a system with a pure

delay of t0 s are given by

HðjoÞ ¼ e�jot0 ¼ e�jðo=o0Þð1Þ; o0 ¼ 1=t0: (7:9:12a)

yðtÞ ¼ xðt� t0Þ ¼ sinðoðt� t0ÞÞ ¼ sin½ðo=t0Þðt� 1Þ�:
(7:9:12b)

That is, scaling the frequency by t0 corresponds

to the delay of 1 s for the frequency-scaled sys-

tem. We can make use of element-scaling equa-

tions given in (7.9.6a, b, and c) in the delay

scaling and write

Rnew ¼ kmRold; Lnew ¼ ðkmkDÞLold;

Cnew ¼ ðkD=kmÞCold; kD ¼ ð1=t0Þ (7:9:13)

Note the similarity of (7.9.6) to these equations.

Notes: Although filter designs are based on the

frequency domain, they are also evaluated on their

transient responses. They are important in controls

systems. Optimal filter functions generally have

complex poles on the left half of the s-plane close

to the imaginary axis. Systems are evaluated on the

basis of a pair of complex poles of its transfer func-

tion near the imaginary axis and the corresponding

step response. The step response of such a sytem can

be expressed in the transform domain of the form

CðsÞ ¼ 1

s

o2
0

s2 þ 2xo0sþ o2
0

: (7:9:14)

The main interest in the transient response is for

05x51. The corresponding time response is

cðtÞ ¼ 1� e�xo0tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2

q sin odtþ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
x

 !
uðtÞ ;

od ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
:

The time response starts at 0 and steadily rises to the

peak value of maxðcðtÞÞ41 and then it oscillates

around its final value 1. Several specifications are

used in evaluating the transient response (see Ogata,

2004). Some of the related ones to our study are

introduced below.

The delay time td is the time the response takes to

reach half the value the very first time. The rise time tr
is the time required for the response to rise from 10 to

90%. See Section 6.6 for a simple example using an

RC circuit. Peak time is the time required for the

response to reach the first peak of the overshoot.

The maximum overshoot Mp ¼ maxðcðtÞÞ is the

maximum peak value. Section 6.6 illustrates the

time response of a simple RC circuit and the rise

time is proportional to the time constant RC (see

(6.6.4)). In the second-order case, the rise time is

inversely proportional to od.

Filters with poles near the imaginary axis pro-

duce more ringing with a shorter rise time than the

systems with poles away from the imaginary axis.

For example, Chebyshev filter responses have a

larger overshoots and a shorter rise time compared

to Butterworth filters. These have a smaller rise time

compared to Bessel filter responses. Bessel filter

responses have minimal overshoots and are popular

for one of the reasons. &

Example 7.9.2 The Sallen–Key circuit shown

Fig. 7.7.8 is used in the design of delay line filters.
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a. Find its transfer function using (7.7.18) by

assuming K ¼ 1 and o2
0 ¼ 1. Use the scaling

method to obtain a set of realistic component

values.

b.Determine the cascaded circuit using Example

7.4.4 with practical component values resulting in a

delay circuit with a delay of D ¼ :25 m s.

Solution: a. With R1 ¼ 1;R2 ¼ 1;C1 ¼ 2Q;C2 ¼
1=2Q and K ¼ 1, (7.7.17) reduces to

HðsÞ ¼ 1=½s2 þ ð1=QÞsþ 1�: (7:9:15a)

This function can be realized using the circuit shown

in Fig. 7.9.1a. Note the gain is equal to 1. The

analysis is left as an exercise.

b. Example 7.4.4 considered the transfer func-

tions using Bessel polynomial of order 4. The trans-

fer function is given by (see (7.4.18) for the Bessel

polynomial)

HðsÞ ¼ 9:14013

ðs2 þ 5:792425sþ 9:14013Þ
11:4878

ðs2 þ 4:207585sþ 11:4878Þ : (7:9:15b)

Using the standard expressions in terms of

o0i and Qi, we have

HðsÞ ¼ H1ðsÞH2ðsÞ;HiðsÞ ¼
o2

0i

s2 þ ðo0i=QiÞsþ o2
0i

¼ 1

ðs=o0iÞ2 þ ð1=QiÞðs=o0iÞ þ 1
: o01 ¼ 3:023;

Q1 ¼ :522; o02 ¼ 3:389; Q2 ¼ :806: (7:9:15c)

For the delay filter, K ¼ 1: There are two para-

meters for each section, o0i andQ i; i ¼ 1; 2 and

element values can be solved from these. There are

an infinite number of solutions. A solution is

Stage 1: R1 ¼ R2 ¼ 1; C1 ¼ 1:044; C2 ¼ :958;
kf1 ¼ 3:023; km1 ¼ 104

Stage 2: R1 ¼ R2 ¼ 1;C1 ¼ 1:612;C2 ¼ :620;
kf 2 ¼ 3:389; km 2 ¼ 104

Frequency scaling can be used for each section by

replacing each capacitor Cj by Cj=kfi , where kf i is

the frequency scale factor. To have practical ele-

ment values, magnitude scaling can be used by a

factor km i. That is, replace each resistor Rj by

Rjkm i. Then scale the element values to meet the

delay specification of D ¼ :25ð10�6Þ s. The new

capacitor and the resistor values are Cnew ¼

Fig. 7.9.1 Example 7.9.2
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½D=kmkf�Cold and Rnew ¼ kmRold. Final element

values are given by the following:

Stage 1: R1 ¼ R2 ¼ 104O;C1 ¼ ð1:044Þ
:25ð10�6Þ
ð3:023Þð104Þ

¼ 8:63nF;C2 ¼ ð:958Þ
:25ð10�6Þ
3:023ð104Þ ¼ 7:92nF

Stage 2: R1 ¼ R2 ¼ 104 O;

C1 ¼ ð1:612Þ
:25ð10�6Þ
ð3:389Þð104Þ ¼ 11:89nF;

C2 ¼ ð:620Þ
:25ð10�6Þ
ð3:389Þð104Þ ¼ 4:57nF

The circuit is shown in Fig. 7.9.1b. The two cascaded

sections are arranged arbitrarily. For a brief discus-

sion on the arrangement, see Section 7.11. &

Frequency transformations were used in

Section 7.5 to transform a transfer function

from a normalized low pass to other types.

7.10 RC–CR Transformations: Low-Pass
to High-Pass Circuits

A normalized low-pass filter with a cut-off fre-

quencyo ¼ 1 can be transformed into a normalized

high-pass filter with a cut-off frequency o ¼ 1 by

using the relationship:

o ¼ 1=o: (7:10:1)

We can generalize this and write it in the s-domain

assuming the cut-off frequency is equal to oc rather

than 1 by modifying the active RC low-pass filter by

replacing

RiðresistorÞ�!replaced by

CiðcapacitorÞ¼ð1=RiÞ

CjðcapacitorÞ�!replaced by

RjðresistorÞ¼1=Cj

:

(7:10:2)

These replacements are made with respect to the cir-

cuit in Fig. (7.7.8a) and notwith the transfer function,

such as the one in (7.7.17). The gain constants K,

RA and RB are not affected by this transformation.

Example 7.10.1 Use the RC– CR transformation to

determine the second-order high-pass filter transfer

function from the Sallen–Key low-pass filter circuit

given in Example 7.7.4.

Solution: First using the correspondence in (7.10.2),

the high-pass circuit derived from the low-pass circuit

in Fig. 7.7.8 is shown in Fig. 7.10.1a. The resistors

RA and RB need not be shown explicitly andwrite the

transfer function in terms of K ¼ 1þ ðRB=RAÞ (see
Fig. 7.10.1b). The transfer function is

(a)

(b) (c)

Fig. 7.10.1 (a) Sallen–Key
high-pass circuit,
(b) simplified version, and
(c) circuit at o ¼ 1
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HðsÞ ¼ V0ðsÞ
ViðsÞ

¼ Ks2

s2 þ ð1=R2C1Þ þ ð1=R2C2Þ þ ð1� KÞð1=R1C1½ �sþ ð1=R1R2C1C2Þ
;K ¼ 1þ RB

RA
: (7:10:3)

It is good to verify the transfer function at

s ¼ 0 and 1. At dc, the capacitors are open and

no signal will go through and the output is zero.

At o ¼ 1, the capacitors act as shorts and the

corresponding circuit is shown in Fig. 7.10.1c. A

circuit that realizes a negative gain constant uses a

negative feedback topology (see Problem 7.7.5). &

Example 7.10.2 Consider the normalized second-

order low-pass Butterworth function

HLpðsÞ ¼
1

s2 þ
ffiffiffi
2
p

sþ 1

¼ Ko2
0

s2 þ o0=Qð Þsþ o2
0

: (7:10:4a)

a. Determine a Sallen and Key low-pass circuit

corresponding to this function.

b. Use the RC! CR transformation to deter-

mine the corresponding high-pass circuit.

Solution: a. Noting K ¼ 1;Q ¼ 1=
ffiffiffi
2
p

and o0 ¼ 1

and selecting R1 ¼ R2 ¼ 1, the low-pass function is

HLpðsÞ ¼
1

s2þ ð1=QÞsþ 1
¼ 1=C1C2

s2þ ð2=C1Þsþ 1=C1C2
:

(7:10:4b)

) C1 ¼ 2Q ¼
ffiffiffiffiffiffiffi
ð2Þ

p
;C2 ¼ 1=2Q ¼ 1=

ffiffiffiffiffiffiffi
ð2Þ

p
:

The corresponding low-pass circuit is shown in

Fig. 7.10.2a.

b. Using the transformations in (7.10.2), the ele-

ment values for the high-pass circuit are

R1 ¼ 1=2Q ¼ 1=
ffiffiffi
2
p

;R2 ¼ 2Q ¼
ffiffiffi
2
p

;

C1 ¼ 1; and C2 ¼ 1:

We now have the high-pass transfer function given

below and the corresponding high-pass Sallen and

Key circuit is shown in Fig. 7.10.2b.

HHpðsÞ ¼
s2

ðs2 þ ð1=QÞsþ 1Þ : (7:10:5) &

One of the main drawbacks of passive filters is

the use of inductors. Tellegen (1948) devised a

frequency-independent electronic two port called

a gyrator that can be used to replace an inductor

by a gyrator and a capacitor (see Problem

7.10.4). The symbolic representation of a gyrator

is shown in Fig. 7.10.3 and is characterized by

(7.10.6).

V1 ¼ �ri2; V2 ¼ ri1 (7:10:6)

Fig. 7.10.2 Example 7.10.2:
(a) low-pass circuit and
(b) high-pass circuit

Fig. 7.10.3 Gyrator
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7.11 Band-Pass, Band-Elimination
and Biquad Filters

For the design of second-order band-pass filter

circuits, see Delyiannis (1968). Earlier we have

considered a normalized low-pass to high-pass, to

band-pass, and to band-elimination filter transfor-

mations on the network function. For passive fil-

ters, network transformations exist to achieve

these (see Fig. 7.5.3). There is no such network

transformation that exists to modify an active

low-pass filter to a band-pass filter (Mitra, 1969).

We can consider a circuit with a topology that has

the band-pass characteristic. Problem 7.7.6 uses an

alternate way to design a band-pass filter by cas-

cading a low-pass filter and a high-pass filter with

proper isolation.

Example 7.11.1 a.Derive the transfer function (TF)

of the circuit in Fig. 7.11.1.

b.AssumeC1 ¼ C2 ¼ C andR1 ¼ 1. Reduce this

to the TF below by selecting R2 and C.

HðsÞ ¼ �ð1=QÞs
s2 þ ð1=QÞsþ 1½ � : (7:11:1a)

Solution: Kirchhoff’s current laws at nodes 1 and 2

result in

ðV2 � VxÞC2sþ ðV2 � V0Þ=R2 ¼ 0;

V2 ¼ 0! V0 ¼ �R2C2sVx; (7:11:1b)

ð1=R1ÞðVx � ViÞ þ C2sVx þ ðVx � V0ÞC1s ¼ 0:

(7:11:1c)

Note that the equation V2 ¼ �R2C2sVx simply cor-

responds to the inverting op amp circuit studied

earlier and could have been written by inspection.

Substituting Vx from (7.11.1b) into (7.11.1c) and

solving for the transfer function results in

HðsÞ ¼V0

Vi
¼ ð�1=R1C1Þs
s2þð1=R2C1þ 1=R2C2Þsþ 1=R1R2C1C2

:

(7:11:1d)

Comparing (7.11.1d) with (7.11.1a) and equating

the coefficients, we have

o0 ¼ 1=C
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
; Q ¼ ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=R1

p
;

bandwidth ¼ o0=Q ¼ 2=R2C: (7:11:1e)

) C1 ¼ C2 ¼ C; and R1 ¼ 1;

R2 ¼ 4Q2; C ¼ 1=2Q: &

Example 7.11.2Derive the transfer function and the

component values for the twin-T notch circuit in

Fig. 7.11.2 (see Nilsson and Riedel (1966)).

Solution: Using the Kirchhoff’s current law the the

three node equations are as follows:

Node 1: ½V1ðsÞ � ViðsÞ�Csþ ½V1ðsÞ � V0ðsÞ�Cs

þ ð2=RÞ½V1ðsÞ � KV0ðsÞ� ¼ 0 (7:11:2a)

Node 2 : ð1=RÞ½V2ðsÞ�ViðsÞ�þ 2Cs½V2ðsÞ�KV0ðsÞ�

þ ð1=RÞ½V2ðsÞ�V0ðsÞ� ¼ 0 (7:11:2b)

Node 3 :Cs½V0ðsÞ�V1ðsÞ�þð1=RÞ½V0ðsÞ�V2ðsÞ�¼0

(7:11:2c)

RCsViðsÞ
ViðsÞ
0

2
64

3
75 ¼

2ðRCsþ 1Þ 0 �ðRCsþ 2KÞ
0 2ðRCsþ 1Þ �ð2KRCsþ 1Þ

�RCs �1 ðRCsþ 1Þ

2
64

3
75

V1ðsÞ
V2½s�
V0ðsÞ

2
64

3
75 (7:11:3)

Fig. 7.11.1 Example 7.11.1
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Using Cramer’s rule (see Section A.3.2) we have

D ¼
2ðRCsþ 1Þ 0 �ðRCsþ 2KÞ

0 2ðRCsþ 1Þ �ð2KRCsþ 1Þ
�RCs �1 ðRCsþ 1Þ

							

							
;

D3 ¼ ViðsÞ
2ðRCsþ 1Þ 0 RCs

0 2ðRCsþ 1Þ 1

�RCs �1 0

							

							

V0ðsÞ
ViðsÞ

¼ D3

D
¼ s2 þ ð1=RCÞ2

s2 þ ½4ð1� KÞ=RC�sþ ð1=RCÞ2

¼ s2 þ o2
0

s2 þ Bsþ o2
0

;B ¼ o0

Q
: (7:11:4)

) o2
0 ¼ 1=ðR2C2Þ; B ¼ 4ð1� KÞ=RC: (7:11:5)

There are two equations with three unknowns

ðR;C; and KÞ. One of the parameters, usually the

capacitors, can be selected, as these are fewer com-

mercially available components compared to resis-

tors. Then, solve forR andK in terms ofC,B, andQ

(see (7.11.6) as follows:

R¼ ð1=o0CÞ and K¼ 1�ðB=4o0Þ½ � ¼ 1�ð1=4QÞ½ �:
B¼o0=Q: (7:11:6) &

Example 7.11.3 Find the Bainter (1975) circuit

transfer function in Fig. 7.11.3a.

Solution: The circuit has two feedback paths and

can be separated as shown in Fig. 7.11.3b,c, see Van

Valkenburg (1982). Now use the principle of

superposition.

V2 ¼ �ð1=R4C1sÞV 00 � ð1=R3C1sÞV1: (7:11:7a)

ðV 00 � V 0i ÞC2sþ ðV0=R6Þ þ ½ðV0 � V2Þ=R5Þ� ¼ 0:

(7:11:7b)

In addition, we have from the first op amp

V1 ¼ �ðR2=R1ÞVi. Using the circuit, we can see

that V 00 ¼ V0 and V 0i ¼ Vi and

V2 ¼ �ð1=R4C1sÞ þ ð1=R3C1sÞðR2=R1ÞVi;

(7:11:8a)

V2 ¼ ½R5C2sþ ðR5=R6Þ þ 1�V0 � R5C2sVi:

(7:11:8b)

Fig. 7.11.2 Twin-T notch
circuit
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Upon simplifying, the transfer function is

V0

Vi
¼ s2 þ ½R2=R1R3R5C1C2�

s2 þ ½ðR5 þ R6Þ=R5R6C2�sþ 1=R4R5C1C2

¼ ðs2 þ o2
zÞ

s2 þ ðo0=QÞsþ o2
0

: (7:11:9)

Note that Hð0Þ ¼ o2
z=o

2
0; HðjozÞ ¼ 0 and

Hðj1Þ ¼ 1: &

Example 7.11.4 Synthesize the function by an active

filter circuit.

V0

Vi
¼HðsÞ ¼ �H

s2þ ð1=QÞsþ 1
) ðs2 þ ð1=QÞsþ 1Þ

sðsþ ð1=QÞÞ

� �
V0

¼� H

sðsþ ð1=QÞÞVi: (7:11:10a)

V0¼
�1

sþð1=QÞV0þ
�H

sþð1=QÞVi

� �
�1
s


 �
ð�1Þ:

(7:11:10b)

Solution: With (7.11.10b), we can synthesize the

transfer function by using the following steps and

the three corresponding circuits shown in

Fig. 7.11.4:

1. Inverting circuit of gain (–1)

2. Inverting amplifier with a transfer function�ð1=sÞ
3. Circuit that can generate a single real pole, a

lossy integrator, and a circuit that produces a

sum of voltages. &

Transfer functions of the three circuits in Fig. 7.11.4

with a proper feedback results in a second-order Lp

function. Figure 7.11.5 gives such a circuit.

Fig. 7.11.4 Individual parts
of the Tow-Thomas biquad
circuit

(a)

(b) (c)

Fig. 7.11.3 (a) Bainter
(1975) circuit and (b) and
(c) feedback paths of the
circuit
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This circuit’s transfer function can be determined

by noting the output voltage V0 ¼ V1 and using the

three separate transfer functions in (7.11.4) with

arbitrary element values (see Problem 7.11.2.).

V0

Vi
¼ � 1=R3R4C1C2

s2 þ ð1=R1C1Þsþ 1=R2R4C1C2
: (7:11:11a)

If the output V2 is taken, then the corresponding

transfer function has the BP filter form

V2

Vi
¼ �ð1=R3C1Þs

s2 þ ð1=R1C1Þsþ 1=R2R4C1C2
: (7:11:11b)

Tapping at different locations provides different

transfer functions. See the rich history on analog

computers (Scott, 1960). This circuit is referred to as

a Tow–Thomas biquad or simply a biquad circuit,

see Tow (1968) and Thomas (1971).

Synthesis of the general biquadratic function of

the form below is useful.

HðsÞ ¼ ms2 þ csþ d

ns2 þ asþ b
;m ¼ 1 or 0 and

n ¼ 1 or zero: (7:11:12)

See Daryanani (1976) and Deliyannis et al. (1999).

The same topology can be used in generating all the

filter types. The transfer function of the Tow–Tho-

mas three op amp biquad (see Fig. 7.11.6) is given

by (see Tow (1968) and Thomas (1971).). Deliyannis

et al. (1999) provide a summary of the results and

are given below.

HðsÞ ¼ V0ðsÞ
ViðsÞ

¼ ðC1=CÞs2 þ ð1=RCÞ½ðR=R1Þ � ðr=R3Þ�sþ ð1=C2RR2Þ
s2 þ ð1=CR4Þsþ ð1=C2R2Þ : (7:11:13)

Fig. 7.11.5 Tow–Thomas biquad circuit

Fig. 7.11.6 The Tow–
Thomas three op amp
biquad
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This biquad can be used to synthesize different sec-

ond-order filter functions by an appropriate choice

of the component values. That is,

Low pass : C1 ¼ 0;R1 ¼ R3 ¼ 1 (7:11:14a)

High pass : C1 ¼ C;R1 ¼ R2 ¼ R3 ¼ 1 (7:11:14b)

Band pass : C1 ¼ 0; R1 ¼ R2 ¼ 1ðpositive signÞ
(7:11:14c)

Band pass : C1 ¼ 0;R2 ¼ R3 ¼ 1ðnegative signÞ
(7:11:14d)

Band elimination : C1 ¼ C;R1 ¼ R3 ¼ 1(7:11:14e)

All pass : C1 ¼ C;R1 ¼ 1; r ¼ R3=Q (7:11:14f)

Cascade realization: In terms of biquadratic func-

tions, we can write

V0ðsÞ ¼ HðsÞViðsÞ; HðsÞ ¼
YM
i¼1

HiðsÞ;

HiðsÞ ¼ Ki
mis

2 þ cisþ di
nis2 þ aisþ bi

: (7:11:15)

Each of the quadratic functions can be synthesized

and cascaded as shown in Fig. 7.11.7. One of the

terms in (7.11.15) may be a first-order function.

The sections being connected in cascade are isolated

in the sense that each successive circuit does not

load the previous circuit. Since the ideal op amp is

assumed to have infinite input impedance and zero

output impedance, active filter realizations lend

themselves for good implementations in terms of

cascaded networks. If we use the cascade method

to derive the filter structure in terms of second

structures, the following steps are used in deciding

the sequence of the second-order structures:

1. Pole–zero pairing

2. Cascade sequencing, and

3. Gain distribution.

1. How to assign poles and zeros for each HiðsÞ
amongmany possibilities is of interest. The idea is

select a pole–zero pair such that max HiðjoÞj j
�min HiðjoÞj j is as small as possible in the filter

passband. Lueder (1970) presented a nice algo-

rithm on this topic.

2. Having a maximum dynamic range is good. This

is achieved by selecting the neighboring biquads

having the frequencies of maxima as far apart as

possible. For example, if there are three biquads

that have a low-pass, band-pass, and high-pass

characteristics, the order should be low-pass

first, band-pass next, and the high-pass last.

Halfin (1970) presented an efficient algorithm

in this case.

3. Distribute the overall gain of the filter among the

stages, so that the product of all the gains is equal

to the overall gain. Sedra and Bracket (1978) use

the idea of distributing the overall filter gain so

that the maximum voltage at the output of each

stage is the same. The goal of any active filter

designer is to maximize the dynamic range,

minimize the signal-to-noise ratio due to

coefficient quantization, and transmission

sensitivity minimization. For a survey, see

Deliyannis et al. (1999).

7.12 Sensitivities

The transfer function of a filter is a function of its

element values. They are available only within +
few percent of the desired. The components change

due to aging, environment, etc. These may result in

a different filter performance than it is designed for.

In an extreme case, the poles of the filter transfer

function may be shifted to the right half-plane,

resulting in instability. Sensitivity measures can be

used to reduce these effects. Section 7.1 illustrated

two simple examples. Design of the active filters

using the sensitivity measures is beyond our scope.

Discussion is limited to the analysis here.

Active filter synthesis uses the following steps:

1. Find a transfer function that satisfies a given set

of specifications.

2. Select a circuit with a topology that has the

desired transfer function.

3. Select the element values that minimizes some

sensitivity measure(s), or, simply minimize theFig. 7.11.7 HðsÞ ¼ P
N

i¼1
HiðsÞ

298 7 Approximations and Filter Circuits



transmission sensitivity. Designing active filters

using component sensitivity is a major area in

active filter synthesis, as there are infinite

number of possible elment values for a given

transfer function, see Daryanani (1976) and

Van Valkenburg (1982).

Filter designers use computer aids to evaluate

the gain changes to the statistical variations in

the component element values. Consider the

biquadratic function and the corresponding

gain function

HðsÞ ¼ K
s2 þ ðoz=QzÞsþ o2

z

s2 þ ðop=QpÞsþ o2
p

: (7:12:1)

GðoÞ ¼ 20 log HðjoÞj j

¼ 10 log ðo2
z � o2Þ2 þ ðozo=QzÞ2

h i

� 10 log ðo2
p � o2Þ2 þ ðopo=QpÞ2

h i

þ 20 logðKÞ: (7:12:2)

Sensitivity functions with respect to amplitude and

phase: Since the transfer function is a complex

function HðjoÞ ¼ HðjoÞj jejyðoÞ, sensitivities can be

derived with respect to the amplitude and phase

angle. Using sensitivity of HðsÞ and HðjoÞ with

respect to x, we have

SHðsÞ
x ¼ x

HðsÞ
@HðsÞ
@x

: (7:12:3)

SHðjoÞ
x ¼ x

HðjoÞ
@HðjoÞ
@x

¼ x

HðjoÞj jejyðoÞ
@ HðjoÞj jejyðoÞ

@x
:

(17:12:4a)

SHðjoÞ
x ¼ xejyðoÞ

HðjoÞj jejyðoÞ
@ HðjoÞj j
@x

þ x HðjoÞj j
HðjoÞj jejyðoÞ

@ejyðoÞ

@x
:

¼ x

HðjoÞj j
@ HðjoÞj j

@x
þ jx

@ejyðoÞ

@x
: (7:12:4b)

The sensitivities of the transfer function amplitude

and the phase are

S HðjoÞj j
x ¼ Re SHðjoÞ

x

h i
; SyðoÞ

x ¼ ½1=yðoÞ�Im½SHðjoÞ
x �:

(7:12:5)

These are functions of o and can be evaluated at a

particular frequency o ¼ oi.

Example 7.12.1Use (7.12.5) to determine the ampli-

tude and phase sensitivities of the following func-

tion with respect to Q and o0:

HLPðsÞ ¼
o2

0

s2 þ ðo0=QÞsþ o2
0

: (7:12:6a)

Solution:

S
HLPðsÞ
Q ¼ Q

HLpðsÞ
@HLpðsÞ
@Q

¼ � ðo0=QÞs
s2 þ ðo0=QÞsþ o2

0

) S
Hðjo0Þ
Q ¼ �ðo2

0=QÞj
o2

0 � o2
0 þ jðo2

0=QÞ
: (7:12:6b)

) S
HLpðjo0Þj j
Q ¼ ReS

HLpðjo0Þ
Q ¼ �1: (7:12:7a)

The sensitivity function with respect to o0 is

given by

SHLpðsÞ
o0

¼ o0

HLpðsÞ
@HLpðsÞ
@o0

¼ o0

HLpðsÞ
ðs2 þ ðo0=QÞsþ o2

0Þð2o0Þ � o2
0½ð1=QÞsþ 2o0�

ðs2 þ ðo0=QÞsþ o2
0Þ

2

SHLpðjo0Þ
o0

¼ �2o2
0 þ jo2

0=Q

�o2
0 þ jðo2

0=QÞ þ o2
0

¼ 1þ j2Q: (7:12:7b) &

Sensitivities can be used to measure the deviations

in pole frequency, gain, etc.

Multi-element deviations: In Section 7.1, for small

component deviation in a component xj, identified

by Dxj, the deviation in a filter parameter o0 was

given by (see (7.1.9).)

Do0 ¼
Xm
i¼1

So0
xi

Dxi
xi

o0: (7:12:8a)

The variations can be positive or negative.
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Worst-case analysis: In a system or a circuit,

each component affects in its own way on the trans-

fer characteristics. The specifications are generally

specified by the design engineer that any

appreciable departure from the nominal value of

the component is unusable. Let the component

values vary or change within the range

xi � Dxi � xi � xi þ Dxi and Dxi=xi is the

percentage change. If there are n elements, then n

sensitivity functions need to be considered with each

parameter, such as a pole, zero. As an example, if a

pole s ¼ �p1 is under consideration, then the per-

centage change in Dp1= p1j j with respect to n ele-

ments identified below as ei is

Dp1
p1j j
¼
Xn
i¼1

Sp1
ei

Dei
ei


 �
: (7:12:8b)

If all components can change within +1% of their

normal value, in the worst case,

Dp1
p1j j maxj ¼ max

Xn
i¼1

Sp1
ei
ð+:01Þ ¼+:01

Xn
i¼1

Sp1
ei

		 		:
(7:12:8c)

This results in the maximum deviation possible.

Gain sensitivity functions: The gain sensitivity is

defined as the change in gain in dB due to a per-

unit change in the parameter xj by keeping all the

other parameters fixed. The gain sensitivity

expression and the corresponding gain variation

are as follows:

SGðoÞ
x ¼ @GðoÞ

@x=x
¼ @ð20 log HðjoÞj jÞ

@x=x
¼ 8:686S HðjoÞj j

x

(7:12:9a)

DG ¼
X
j

SGðoÞ
xj
½Dxj=xj�: (7:12:9b)

The deviated gains are then compared to the nom-

inal gain at all the frequencies. The procedure is

repeated for each element. This gives information

on gain changes due to small changes in component

values. A second approach is a statistical approach,

unlike the above method is not restricted to small

changes in the component values and is referred to

as a Monte Carlo technique (see Semmelman et al.,

1971). The input to the computer program consists

of a topological description of the circuit along with

the nominal element values, the atmospheric condi-

tions, such as temperature and humidity, and others

including the component aging aspects and manu-

facturing statistical tolerances. The tolerances are

described in terms of distributions, such as uniform,

Gaussian, and the means ðmiÞ, and standard devia-

tions ðsiÞ of the components. General computer

circuit analysis programs are used to analyze the

circuit and are statistically evaluated for its suitabil-

ity and performance. Statistical techniques are gen-

erally computer intensive. These are beyond our

scope here.

Pole (zero) displacements due to parameter

variations: The poles of the transfer functions of

highly optimal filters are close to the imaginary

axis. Any incremental change in one of the network

parameters causes a change in the pole locations

and such a change can make a system even

unstable. Dahlquist and Bjorck (1974) give an in-

teresting example illustrating the effect of a slight

change in the coefficient of a polynomial and the

corresponding change in the roots. The polynomial is

DðlÞ ¼ ðl� 1Þðl� 2Þ:::ðl� 20Þ
¼ l20 � 210l19 þ :::þ 20!: (7:12:10)

Suppose the coefficient –210 is changed to

�ð210þ 2�23Þ in the above polynomial and the

remaining coefficients are unchanged, the roots of

the new polynomial change greatly and, as an exam-

ple, a pair of the roots of this new polynomial are

given by (correct to nine decimal places)

16:730737466+j2:812624894. The moral here is

factor a higher order polynomial first using a

general purpose computer and then use second-

order systems in implementing filters. Quantify-

ing the displacement of poles (or zeros) in a

transfer function due to the incremental varia-

tions of one or more network parameters is of

interest. Mitra (1969) and Budak (1974) give nice

presentations on this topic. The above analysis is

based on the assumption that the change in the

parameter values is small. Truxal (1955) consid-

ers sensitivity functions for larger variations of a

parameter.
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7.13 Summary

In this chapter we have discussed some of the clas-

sical approximation methods that are useful in cir-

cuits, systems, and communication theory. These

are Bode plots and the classical Butterworth and

Chebyshev filter functions. Simple designs that are

based on amplitude and phase responses are dis-

cussed. Active filters make use of op amps that are

multi-terminal components. Two-port models of

circuits are introduced. Active filter synthesis is

introduced by first finding the transfer function of

a circuit with a specific topology and then solving

for component values along with a brief discussion

on sensitivity measures. Amplitude and frequency

scaling is introduced. Specific topics are

 sketches of the amplitude and phase responses

from transfer functions using Bode plots;
 analog filter approximations based on Butter-

worth, Chebyshev, and Bessel functions;
 concepts associated with amplitude- and phase-

based designs;
 frequency transformations relating the transfer

functions of low-pass, high-pass, band-pass, and

band-elimination filter functions to prototype

low-pass filter functions;
 two-port open circuit, short circuit, hybrid, and

ABCD parameters;
 indefinite admittance matrices;
 active filter synthesis including a brief review of

sensitivity analysis.

Problems

7.1.1 Show the formulas given in Table 7.1.1 and the

results in (7.1.6).

7.1.2 a. Show the equality in (7.1.14). An inverting

amplifier circuit has a transfer function given by

HðsÞ ¼ �KR2=½ðR1 þ R2Þ þ KR1�. Use the results

from Part a. to determine the sensitivity functions:

b. SH
K and c. SH

R1
.

7.2.1 This problem deals with sketching the Bode plots

for three simple RC networks that have important

applications in control and communication systems.

Let the transfer function in each case be expressed by

HðjoÞ ¼ HðjoÞj jffHðjoÞ. a. Consider the phase lead

RC network shown in Fig. P7.2.1a. Derive the

expression for the transfer function. Sketch the Bode

amplitude and phase plots of this function. For this

network, the phase angle satisfies the constraint

00 � ffHðjoÞ � 900. b.Consider the phase lag RC net-

work ðffHðjoÞ50Þ shown in Fig. P7.2.1b. Derive the

expression for the transfer function. Sketch the ampli-

tude and phase plots of this function. For this network,

the phase angle satisfies the constraint

�900 � ffHðjoÞ � 00. c. Consider the phase lag-lead

RC network shown in Fig. P7.2.1c. Derive the expres-

sion for the transfer function. Sketch the amplitude and

phase plots of this function.For this network, the phase

angle satisfies the constraint�900 � ffHðjoÞ � 900.

7.2.2 Sketch the Bode amplitude and phase plots of

the transfer function.

HðsÞ ¼ ð1þ staÞ= sð1þ st1Þ½ �; ta4t1;

HðjoÞ ¼ HðjoÞj jejyðoÞ:

7.3.1 Sketch the amplitude response of the

Butterworth amplitude frequency response function

HBuðjoÞj j ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ e2ðo=ocÞ2n�

q
and then use the

Bode plot approximations. Butterworth functions

provide slopes of integer multiples of 10 dB/decade;

they are useful in approximating an arbitrary mag-

nitude function, see Weinberg (1962).

7.3.2 Show the following results for the Chebyshev

polynomials:

Fig. P.7.2.1 Simple RC
circuits
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a. n� even: Cnð0Þ ¼ ð�1Þn=2; Cnð�1Þ ¼ 1; n-odd:

Cnð0Þ ¼ 0;Cnð�1Þ ¼ �1.
b. CnðaÞ ¼ 0; a ¼ cosðð2 kþ 1Þp=2nÞ; k ¼ 0; 1;

2; :::; n� 1; oj j � 1:

c. CnðaÞ ¼ 1; a ¼ cosðip=nÞ; i ¼ 0; 1; 2; :::; n

7.3.3 Show the slope of the n th-order Chebyshev

low-pass approximation at the pass band edge is n

times that of the Butterworth approximation

assuming that they both satisfy the same pass-

band requirements. Do the following steps in your

solution:

a. By induction, show that ½dCnþ1ðaÞ=da� a¼1j ¼
ðnþ 1Þ2.
b. Find the slopes of the two normalized functions

at o ¼ 1.

1= HBuðjoÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2ðoÞ2n

q
and

1= Hc1ðjoÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2C2

nðoÞ
q

:

7.3.4 A low-pass filter is specified by the specifica-

tions oc; or ¼ 2oc; X ¼ 3 dB;Y ¼ 15 dB.

a. Determine the transfer function assuming that

the amplitude response has a maximally flat response.

b. Determine the corresponding group delay

function and sketch the amplitude and the group

delay frequency responses.

7.3.5 Repeat Problem 7.3.4 using the Chebyshev 1

and Chebyshev 2 approximations.

7.3.6 a. Starting from the expression 10 log½1=ð1þ
e2ðor=ocÞ2n� ¼ �YdB, derive the equation given in

(7.3.8).

b. Starting with the equality 1=½1þ e2

ðor=ocÞ2n� ¼ 1=A2, derive the approximation given

in (7.3.9). Use the power series expansion of

lnð1þ aÞ and lnðor=ocÞ ffi ðor � ocÞ=oc.

c. Derive the approximate expression in (7.3.27).

d. Show that the value of n is the same for the

Chebyshev 1 and 2 approximations.

7.4.1 Consider the second-order all-pass function

expressed in terms of o0 and Q by

HðsÞ¼s
2�ðo0=QÞþo2

0

s2þðo0=QÞþo2
0

;H2ðjoÞ¼H2ðsÞ s¼jo
		 ;

HðjoÞ¼ HðjoÞj jffHðjoÞ:

a. Give the function ffHðjoÞ and express it in terms

of o ¼ o=o0.

b. Derive the group delay D2ðoÞ:
c. Find the maximum value of this function by

differentiating the function o0D2ðoÞ with respect

to o, equating it to zero and then using this

value in obtaining the maximum value of the

group delay. Our interest is for Q 
 1. Give an

approximate value of this function for Q ¼ 1.

For a good discussion on this topic, see Blinch-

ikoff and Zverev (1976), Budak (1974), and Van

Valkenburg (1982).

7.4.2 Show that the delay function tðoÞ associated
with HðjoÞ given below satisfies the shown integral

value given below.

HðjoÞ ¼ ½ðb� o2Þ � jao�
½ðb� o2Þ � jao� ;

Z1

0

tðoÞdo ¼ 2p:

7.4.3 The magnitude response function of a filter is

given by HðjoÞj j ¼ ð1� o2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ o6Þ

p
. Noting

that the function 1=ð1þ o6Þ relates to the Butter-

worth function, determine the corresponding mini-

mum phase function HðsÞ.

7.4.4 Consider the function HðsÞ ¼ ½ðs� aÞ=ðs þ
aÞ�; a40. Sketch ffHðjoÞ:

7.4.5 a. Find the value of n of the Bessel function

approximation of group delay of 2 ms with a max-

imum error of 20% in the 0–.4MHz frequency band.

b. Determine the approximate loss using

(7.4.23b) at the frequency .4 MHz

7.5.1 Give the pole–zero plots corresponding to the

normalized low-pass functions given below and the

corresponding high-pass functions using the trans-

formation s! oc=s.

a: H1ðsÞ ¼ 1=ðsþ p1Þ; p140;

b: H2ðsÞ ¼ 1=ðs2 þ asþ bÞ; a; b40:

7.5.2 a. Use the normalized low-pass to band-pass

transformation to convert the low-pass function in

the last problem. Find the locations of the band-

pass filter poles.

b. Find the approximate locations of the band-

pass poles for the narrow-band case, i.e., o0 	 B

and sketch the pole–zero plot.
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7.5.3 a. Use the normalized low-pass to band-elim-

ination transformation for the function in Problem

7.5.1. Find the locations of the band-elimination

filter poles.

b. Find the approximate locations of the band-

elimination filter poles for the narrowband case, i.e.,

o0 	 B and sketch the pole–zero plot.

7.5.4Find the lowest order Butterworth approxima-

tion function HBeðsÞ that satisfies the high-pass fil-
ter requirements with a cut-off frequency of

oc ¼ 2000 rad=s and the stop-band frequency is

or ¼ ð1=2Þoc. The attenuation at the edge of the

pass band is3 dB and the minimum attenuation at

the edge of the stop band is 15 dB. Sketch

HBeðjoÞj j.

7.5.5 Band-pass filters are used to recover a single

frequency from a multiple number of frequencies

(McGillem and Cooper, 1991). The squared

amplitude Butterworth band-pass function with

the center frequency o0, e ¼ 1, and B the band-

width is

HBpðjoÞ
		 		2¼ 1

1þ ðo� o0Þ=pB½ �2n
�  :

Filter the waveform xðtÞ ¼ cosð2pð100ÞtÞ þ
cosð2pð500ÞtÞ and recover the first term.

a. Assume B ¼ 200Hz and solve for the integer

value of n so that the second term in xðtÞ is attenuated
by 20 dB.

b. Assuming n ¼ 2, give the 3 dB B to attenuate

the second term by 20 dB.

7.5.6 Find the Chebyshev 1 approximation satisfy-

ing the band-pass filter specifications.

X ¼ 1dB;Y ¼ 20dB; ol ¼ 2pð300Þ;
oh ¼ 2pð3000Þ;o2 ¼ 2pð9000Þ:

a. Noting that one side of the stop band of the

band-pass filter constraints are not given, give the

value of o1 that keeps the symmetry of the stop

band requirements.

b. Sketch the normalized low-pass amplitude

response function HLpnðjoÞ
		 		 as well as the band-

pass amplitude response function HBpðjoÞ
		 		.

7.5.7 Consider the second-order narrowband notch

filter to suppress f0 ¼ 60 Hz hum.

HBeðsÞ ¼
s2 þ 2bsþ o2

0

s2 þ ðo0=QÞsþ o2
0

; 05b� o0

2Q
:

a. Give the amplitude of the function at o ¼ o0 for

b 6¼ 0.

b. Show that the complete rejection of the input

signal at the output at o0 provided b ¼ 0. Compute

the positive 3 dB frequencies. Sketch the amplitude

response function HBeðjoÞj j using the following steps.
Express the poles of the function in complex form.

That is, s ¼ �o0e
jy ¼ �o0 cosðyÞ+ jo0 sinðyÞ with

05y5p=2. Relate y to the poleQ used in the transfer

function. Sketch the amplitude response function for

y ¼ 450 and 600.

c. Make a qualitative statement about the ampli-

tude response in terms of y and Q.

7.5.8 An electronic audio circuit suffers from a

2.32 kHz signal. Find a band elimination filter

transfer function that can be used for this purpose.

The pass bands are assumed to be in the ranges 0–

1800 Hz and 3000�1 Hz. The attenuation should

be less than 3 dB or less in the pass band. The stop

band is assumed to be in the range 2100–2400 Hz

and themaximum attenuation in this range is 10 dB.

Find the transfer function of a filter satisfying these

requirements and sketch the amplitude response

HBeðjoÞj j in dB.

7.6.1 a. Give the controlled-source model of the

ideal transformer.

b. Show that it is a lossless two port by showing

v1i1 þ v2i2 ¼ 0.

c. Find the input impedance of the ideal trans-

former terminated by a resistor of R Ohms.

7.6.2 Figure P7.6.2 gives symbols for a common-

emitter and a common-base transistors. Determine

the hybrid parameters of the transistor in the

common-base orientation hijb in terms of hije given

Fig. P7.6.2 (a) Common-emitter and (b) common-base
transistors
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below by using the indefinite admittance matrices.

Mitra (1969) gives a procedure illustrating the deri-

vation of the hybrid parameters of a common base

transistor from the hybrid parameters of a common

emitter transistor.

1. Find the short-circuit admittance parameters for

the common emitter from the hybrid parameters.

2. Find the 3� 3 indefinite admittance matrix, see

Section 7.6.2.

3. Delete the row and column corresponding to the

emitter. These results can be extended for an

arbitrary N node circuit.

vB

iC

� �
¼

h11E h12E

h21E h22E

� �
iB

vC

� �
;

vE

iC

� �
¼

h11B h12B

h21B h22B

� �
iE

vC

� �
:

7.6.3 Assuming Z21ðsÞ ¼ Z12ðsÞ in (7.6.1) derive a.

hybrid parameters, b. ABCD parameters and show

that H12ðsÞ ¼ �H21ðsÞ and AD� BC ¼ 1:

7.6.4 Consider the doubly terminated network

shown in Fig. 7.6.7. Derive the equations given in

(7.6.15b)–(7.6.15 g).

7.6.5 a. Determine the short-circuit parameters for

the bridge circuit in Fig. P7.6.5.

b. Determine the open circuit parameters of the

circuit from the results in Part a.

c. Find the ABCD parameters of this circuit and

verify the equality AD� BC ¼ 1.

7.6.6 Determine the transfer function of the net-

work in Fig. P7.6.6, which is given using a. ABCD

parameters,b. n ode, and c. loop equations, see

Problem 7.9.2 for the answer.

7.6.7 Find the input impedance of the infinite ladder

network in Fig. P7.6.7 by equating the input impe-

dances identified in the figure. That is Zi ¼ Z1.

Using this, show that the golden ratio is defined by

Zi=R ¼ ½ð1þ
ffiffiffi
5
p
Þ=2�.

7.7.1 Verify the equations in a. (7.7.6) and b. (7.7.7).

c. Show the transfer function of the circuit given in

Fig. P7.7.1 is HðsÞ ¼ �ðC1=C2Þ½sþ ð1=R1C1Þ�=
ðsþ ð1=R2C2ÞÞ.

7.7.2 Consider the circuit given in Fig. P7.7.2.

a. Write the differential equation using

v0ð0�Þ ¼ v0 when the op amp is ideal.

b. Show that the circuit can be used as an inte-

grator by expressing the ouput in terms of an inte-

gral of the input.

7.7.3 Derive the transfer functions of the circuits in

Fig. P7.7.3a,b,c.

d. Show that the transfer function in (7.7.12)

corresponds to the circuit in Fig. (7.7.6b).

e. Derive the transfer function of the circuit

shown in Fig. P7.7.3d.

Fig. P7.6.5 A bridge
circuit

Fig. P7.6.6 A Ladder network

Fig. P7.6.7 Ladder network of resistors

Fig. P7.7.1 A simple active RC filter with two capacitors
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7.7.4 a. Use Kirchhoff’s current law to show that

the transfer function HaðsÞ in (7.7.13) corresponds

to the circuit given in Fig. 7.7.7a.

b. Use the principle of superposition to show

that the transfer function HbðsÞ in (7.7.13) of the

circuit is shown in Fig. 7.7.7b.

7.7.5 a. Show that V0ðsÞ=ViðsÞ in Fig. P7.7.4 (see

Nilsson and Riedel (1976).) is

V0ðsÞ
ViðsÞ

¼ HðsÞ ¼ �Kb
s2 þ asþ b

;K ¼ R2

R1
;

b ¼ 1

R2R3C1C2
; a ¼ 1

C2

1

R1
þ 1

R2
þ 1

R3

� �
:

7.7.6 a. Show the transfer function in (7.7.21) given

in Example 7.7.6 is valid.

b. Noting that there are infinite number of solu-

tions, Van Valkenberg (1982) suggested several

solutions. One of these is as follows. Assume

o0 ¼ 1; R1 ¼ 1; R2 ¼ 4Q2 ; and R3 ¼ 1: Give the

values for R4 and C.

7.7.7 Consider the circuit shown in Fig. P7.7.5.

a. Show that the transfer function of the circuit

in P7.7.5 is a product of a low-pass function and a

high-pass function of the form HðsÞ ¼ �K½ol=

ðsþ olÞ�½s=ðsþ ouÞ�.
b. Give the gain constant K in terms of

R1 and R2. Do the same in terms of C1;C2;ol

and ou. This can be used as a nonresonant inverting

wideband band-pass filter if ol � ou, see Carlson

(2000). We are faced with a 60 Hz hum and a

(a) (b)

(c) (d)

(e)
Fig. P7.7.3 Simple active
RC filters

Fig. P7.7.2 A simple active RC circuit
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15 kHzwhistle in an audio system.Use this circuit in

designing a band-pass filter for the above specifica-

tions. Use a lower and upper cut-off frequencies

fl ¼ 200 Hz and fu ¼ 4 kHz.

c.Use the thumb rule given in (7.7.15) to find the

capacitor values.

d. Show that HðjolÞj j ffi HðjouÞj j ffi K=
ffiffiffi
2
p

and

Hðjo0Þj j ffi K.

7.8.1 Determine transfer function of the active RC

circuits shown in Fig. P7.8.1a,b. In Fig. P7.8.1b, the

blocks identified by Zis are impedances.

7.8.2 a. Show the transfer function in 7.8.2a is true.

b. Reduce it with R1 ¼ R2 ¼ R and C1 ¼ C2 ¼ C.

Express the pole Q in terms of R;C; k; and K and

comment that K can be made larger provided k is

made smaller for a given Q.

Fig. P7.7.4 A simple active
RC filter

Fig. P7.7.5 A simple active RC filter

Fig. P7.8.1 Simple active
RC filter
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7.8.3 Consider the Sallen–Key low-pass circuit cor-

responding to the transfer function

HðsÞ ¼ Ko2
0

½s2 þ ðo0=QÞ þ o2
0�
; K ¼ 1; o0 ¼ 1:

a.AssumingR1 ¼ R2 ¼ 1, solve for the capacitor

values in terms of the Q value and give the corre-

sponding circuit with some of the elements values

given in terms of Q.

b. Use the resistive voltage divider at the input

such that the Thevenin’s input resistance remains to

be 1 and, at the same time, the voltage gain is

reduced by 2.

c. Use the gain enhancement and Part a so the

voltage gain is increased by 2.

d. Redesign the Sallen–Key circuit correspond-

ing to the parts c and d if possible. Identify the

constraints under which the resistive gain enhance-

ment is valid in Part c.

7.9.1 a. Determine the center frequency and the

bandwidth of the TF (see Fig. 6.12.6).

HðsÞ ¼ V0

Vi
¼ Rs

LCs2 þ RCsþ R

¼ Kðo0=QÞs
s2 þ ðo0=QÞsþ o2

0

;

R ¼ 1;L ¼ 1;C ¼ 1:

b.Use magnitude and frequency scaling that gives a

circuit with the same Q, center frequency of 2 kHz,

and a 1 mF capacitor.

7.9.2 Figure P7.6.6 gives an RLC circuit with the

element values as R1 ¼ R2 ¼ 1;C1 ¼ 1:255;

L1 ¼ :5528 and C2 ¼ :1922. The transfer function

of that circuit is

V0=Vi ¼ R2=½L1C1C2R1R2s
3 þ ðR1L1C1 þ L1C2R2Þs2

þ ðR1R2C1 þ R1R2C2 þ L1Þsþ ðR1 þ R2Þ�:

a. Show that the transfer function results in an

approximate Bessel function.

b. Denormalize the circuit so that the delay line

filter has the dc delay equal to 2 ms with the termi-

nating resistors equal to 1 kO.

7.10.1 a. Find the transfer function of the circuits in

Fig. P7.10.1a and b.

b. Find a set of component values for the active

HP filter by assuming C1 ¼ C2 ¼ 1 for

HðsÞ ¼ s2

ðs2 þ ð
ffiffiffi
2
p
Þsþ 1Þ

:

c. Considering only the dc and infinite frequen-

cies, (see Fig. P7.10.1c) comment on the circuit.

d. Use the amplitude and frequency scaling dis-

cussed in Section 7.9 and derive the scaled version of

the transfer function given in (7.10.3). That is

H 0ðsÞ ¼ Hðs=kfÞ.

Fig. P7.10.1 Active RC
circuit
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7.10.2Using the RC to CR transformation, convert

the LP in Fig. P7.7.5 to a HP.

7.10.3 Show that a. the input impedance of the

circuit in Fig. P7.10.3 is ZðsÞ ¼ ðr2CÞs.

b. Show that the ideal gyrator is a lossless net-

work by showing that v1i1 þ v2i2 ¼ 0.

7.10.4 If an odd-ordered active high-pass filter is to

be implemented then we need a first a simple first-

order RC circuit and a buffer. Give this RC circuit

along with the buffer.

7.10.5 Find an active RC high-pass filter with a 3 dB

cut-off rerquency of 2pð200Þ. At the edge of the stop

band at 2pð60Þ, the attenuationmust be at least 20 dB.

7.11.1 Show the transfer function of the circuit in

Fig. P7.11.1 is

HðsÞ ¼ ðKG1=C1Þs
s2 þ ½fð1=C1ÞðG1 þ G2 þ G3Þ � KG2g þ ðG3=C2Þ�sþ ½ð1=C1C2ÞðG3ðG1 þ G2ÞÞ�

; Gi ¼ 1=Ri:

7.11.2 Show the transfer functions of the circuit in

Fig. 7.11.5 are as follows:

V0ðsÞ
ViðsÞ

¼ � ð1=R3R4C1C2Þ
s2 þ ð1=R1C1Þsþ ð1=R2R4C1C2Þ

;

V2ðsÞ
ViðsÞ

¼ ð1=R3C1Þ
s2 þ ð1=R1C1Þsþ ð1=R2R4C1C2Þ

7.11.3 In Problem 7.3.1 the high-frequency asymp-

totic slopes of Butterworth filter functions were con-

sidered. Nilsson and Reidel (1966) pose a problem

that illustrates the comparison between an n th-order

Butterworth function and a product of n first-order

Butterworth functions. Compare the slopes of the

two functions at the corner frequencies given below.

HBuðsÞ ¼ ½1=ð1þ snÞ� and HBunðsÞ ¼ ½1=ð1þ sÞn�:

x ¼ 20 log HBuðjoÞj jðo ¼ oÞ;
y ¼ 20 log HBunðjoÞj jn; y ¼ 20 log HBunðjoÞj jn

½1=ð1þ o2n
x Þ� ¼ 1=2; ½1=ð1þ o2

cÞ
n� ¼ 1=2: Show

a: ox ¼ 1 and oc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð21=n � 1Þ

q
:

b:
dx

d logðoÞ ¼
�20no2n

½1þ ð1=o2nÞ�o2n
dBs=decade;

c:
dy

d logðoÞ ¼ �
20no2

1þ o2
dBs=decade:

d. Slopes at the corner frequencies: ½dx=
d logðoÞ� o¼1

		 ¼ �10n dBs=decade

Fig. P7.10.3 Synthesis of an inductor using a gyrator and a
capacitor

Fig. P7.11.1 A simple active
RC filter
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e. Illustrate the difference in these functions by

the slopes for n ¼ 1; 2; 3; and 1 at these

frequencies.

f. Comment on the slopes and the suitability of

using the two functions for filtering.

g. In Part a., we have seen that the bandwidth is

given by oc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð21=n � 1Þ

p
. Show that for large n,

the bandwidth can be approximated for large n by

oc ffi :833=
ffiffiffi
n
p

. In the derivation, use the first two

terms in the power series of 21=n ¼ eð1=nÞ lnð2Þ, see Lee
(2004).

7.11.4 Design a unity gain band-reject filter for the

following specifications using the twin-T circuit

given in Fig. 7.11.2 with o0 ¼ 2000 radians=s and

the quality factor Q ¼ 5. Use C ¼ 1mF. Determine

the values of K and R:

7.12.1Derive the expressions for SH
Q and SH

o0
for the

second-order band-pass function in Problem 7.9.1

with K ¼ 1:

7.12.2 Consider the transfer function given in

Example 7.1.1. Compute the worst-case per-unit

change in o0 and Q assuming component

values can change by +1%. Sensitivities of the

components with respect to o0 and Q are given in

Example 7.1.1.
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Chapter 8

Discrete-Time Signals and Their Fourier Transforms

8.1 Introduction

So far in this book we have concentrated on the

continuous-time signals. These included continuous

periodic and aperiodic time signals and the corre-

sponding Fourier series and transform representa-

tions. We divided the continuous signals based on

their energy and power properties. In the case of

periodic signals, the Fourier series coefficients are

discrete. In this chapter, we will start with contin-

uous signals and their sampled versions. The

advances in computers and the ease in implement-

ing discrete algorithms using personal computers

(PCs) made this as an essential area every electrical

engineer should be interested in. Most discrete-time

signals come from sampling continuous signals,

such as speech, seismic, sonar, images, biological,

and other signals. These days, telephone along with

a computer forms an integral part of most commu-

nication systems. The advances in telemetry allow

us to monitor remotely located patients. The ease of

processing discrete-time signals made discrete-time

implementations of analog operations, such as fil-

tering, made it very popular. The analog signals are

first converted to digital signals by making use of a

device referred to as an analog-to-digital (A/D)

converter. The reverse process of reconstructing an

analog signal from a digital signal is achieved by a

device referred to as a digital-to-analog (D/A)

converter.Obviously if the source is an analog device

and the end user requires an analog signal, the use of

a digital processor requires the A/D and the D/A

converters. Although user signals are usually ana-

log, there are many situations wherein the discrete-

time signals are source signals. For example, the

stock prices, the temperatures at a particular time

in a city, grades of students and many others are

digital in nature. The transform study of the dis-

crete-time signals is basic to our study.

In Chapters 3 and 4 we considered continuous

periodic and aperiodic time signals and the corre-

sponding Fourier series and transform representa-

tions. We divided the continuous and discrete-time

signals based on their energy and power properties.

In the case of periodic signals, the Fourier series

coefficients are discrete. In this chapter we will see

that when the function is discrete in time and peri-

odic, then it is described by discrete-time Fourier

series (DTFS). When the time signal is discrete and

aperiodic, then the transform is continuous and

periodic. Table 8.1.1 gives the relationship between

time and frequency representations of periodic and

aperiodic discrete and continuous signals. Most dis-

crete-time signals come from sampling continuous

signals, such as speech, seismic, sonar, images, bio-

logical, and other signals.

In the first part we will consider a signal xðtÞ that
is band limited to B Hertz. It is sampled at periodic

intervals of time t ¼ nts, where ts is the sampling

interval, resulting in the sampled values of the signal

xðntsÞ and ts is tied to the bandwidth of the signal.

Assuming ts is a constant a discrete-time signal can

be defined by

x½n� ¼ xðntsÞ: (8:1:1)

It is defined at discrete times by a sequence of

numbers, denoted by fxng or x½n�, where n is an

integer. Transforming one set of numbers to

another set may correspond to filtering or any

transformation to be done by a discrete system.

To achieve these goals, we need to learn discrete

R.K.R. Yarlagadda, Analog and Digital Signals and Systems, DOI 10.1007/978-1-4419-0034-0_8,
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Fourier transforms of discrete data, fast computa-

tion of the transforms, learn about other trans-

forms, especially the z-transforms (considered in

the next chapter). See Ambardar (2007), Brigham

(1974), Cartinhour (2000), Hsu (1995), McClellan

et al. (2003), Oppenheim and Schafer (1975),

Strum and Kirk (1998), Ziemer and Tranter

(2002) and others.

8.2 Sampling of a Signal

An analog signal xðtÞ is to be converted to a digital

signal by selecting periodically spaced samples of

the signal. Consider the example of an analog signal

shown in Fig. 8.2.1a and the periodically sampled

ideal version of the analog signal xsðtÞ. The samples

of the signal at discrete values t ¼ k ts are xðk tsÞ
where the sampling interval is ts. The values xðk tsÞ
have infinite precision. The following questions

need to be answered:

1. How often must we sample, i.e., what is the value

of the sampling interval ts to get an accurate repre-

sentation of the signal xðtÞ?
2. Given the set of sample values xðk tsÞ, how do we

reconstruct the analog signal from the sampled

values?

In the first case, an analog signal is converted into

a digital signal. That is analog-to-digital conversion

(A/D). In the second case, a digital signal is con-

verted into an analog signal. That is digital-to-analog

conversion (D/A).

8.2.1 Ideal Sampling

Consider the periodic impulse sequence illustrated

in Fig. 8.2.1a with period ts

dtsðtÞ ¼
X1
n¼�1

dðt� ntsÞ: (8:2:1)

The idealized sampler, shown in Fig. 8.2.1b, con-

sists of a device that multiplies two inputs xðtÞ and
dtsðtÞ resulting in the product of these two signals.

The sampled signal is given by

xsðtÞ ¼ xðtÞdtsðtÞ ¼ xðtÞ
X1

n¼�1
dðt� ntsÞ

¼
X1
n¼�1

xðntsÞdðt� ntsÞ: (8:2:2)

xsðtÞ in (8.2.2) is an ideal instanstaneous sampling

waveform and xðtÞ is assumed to be continuous

at t ¼ nts. The sampled values xðntsÞ have infinite

precision. These will be later converted and quan-

tized for transmission. That will be considered

in Chapter 10. The Fourier transform of the peri-

odically sampled signal xsðtÞ is given by

XsðjoÞ ¼ F ½xsðtÞ� ¼ F ½xðtÞ � dtsðtÞ�
¼ F ½xðtÞ� � F ½dtsðtÞ�: (8:2:3)

Using the Fourier transform of the periodic impulse

sequence (see (4.4.17).) and the convolution theorem,

the transform of the sequence xsðtÞ is given below:

xðtÞ !FT XðjoÞ;dtsðtÞ !
FT

dos
ðoÞ¼2p

ts

X1
k¼�1

dðo�kosÞ;

XsðjoÞ ¼ F½xsðtÞ� ¼ XðjoÞ � dos
ðoÞ½ �

¼ 2p
ts

1

2p

� � ð1
�1

XðjaÞdos
ðo� aÞda;

Table 8.1.1 Fourier representations of discrete-time and
continuous-time signals

Time property Periodic Aperiodic

Continuous (t) Fourier series Fourier transform

Discrete [n] Discrete-time
Fourier series

Discrete-time
Fourier transform

(a) (b)
Fig. 8.2.1 Ideal sampling,
(a) dts , (b) Idealized sampler

312 8 Discrete-Time Signals and Their Fourier Transforms



¼ 1

ts

X1
k¼�1

ð1
�1

XðjaÞdðo� a� kosÞdo

¼ 1

ts

X1
k¼�1

Xðjðo� kosÞÞ

¼ 1

ts

X1
m¼�1

XðjðoþmosÞÞ ¼ XsðjoÞ: (8:2:4)

These follow from the sifting property of the

impulse functions. Note the spectrum of the ideally

sampled signal XsðjoÞ is periodic with period

os ¼ 2pfs ¼ 2p=ts.

A special case: Consider a causal function xðtÞ,
i.e., xðtÞ ¼ 0; t50 and has a discontinuity at t ¼ 0.

In such a case, the ideally time sampled signal and

its transform are

xsðtÞ ¼ ð1=2Þxð0þÞdðtÞþ
X1
n¼1

xðntsÞdðt� ntsÞ !
FT

XsðjoÞ

¼ 1

2
xð0þÞþ 1

ts

X1
n¼�1

Xðjðoþ nosÞÞ: (8:2:5)

Important questions: Can xðtÞ be recovered from

xsðtÞ? Or, in other words, can the transform

XðjoÞ recovered from XsðjoÞ? If not, why? Or, at

least, can an approximate version of xðtÞ be recov-
ered from the sampled signal?

Consider an arbitrary signal xðtÞ and its trans-

form XðjoÞ given in Fig. 8.2.2a. For the present

analysis, the shape of the signal or the spectrum is

not critical, whereas its bandwidth is. For simplicity,

XðjoÞ is assumed to be real and the signal is band

limited to W ¼ 2pB rads=s. Figure 8.2.2b gives the

periodic impulse sequence and its transform. Note

the spectrum of the periodic impulse sequence is

also a periodic impulse sequence with period equal

to the sampling frequencyos. Figure 8.2.2c gives the

ideally sampled signal xsðtÞ and its transform. In

sketching the spectrum of the ideally sampled signal,

it is assumed implicitly that os � 2ð2pBÞ. That is,

os � 2W ¼WN ¼ 2pfN: (8:2:6)

The term fN ¼ 2B is called the Nyquist frequency

or theNyquist rate, where B is the highest frequency

(a)

(b)

(c)

Fig. 8.2.2 (a) Signal xðtÞ and
its transform; (b) periodic
impulse sequence and its
transform; and (c) ideally
sampled signal and its
transform
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in the input signal.With the constraint in (8.2.6) and

from Fig. 8.2.2c, the adjacent spectra, i.e.,

Xðjðoþ kosÞÞ and Xðjðoþ ðk� 1ÞosÞÞ do not

overlap. The spectrum of the original signal can be

extracted from the sampled spectrum by passing the

ideally sampled signal through an ideal low-pass fil-

ter. Figure 8.2.3a illustrates the ideal sampling and

reconstruction process of the original signal using an

ideal low-pass filter. The filter transfer function and

the output frequency response are as follows:

HLpðjoÞ ¼ H0P
o
WN

� �
e�jot0 ;

P
o
WN

� �
¼

1; oj j5WN=2

0; 0 Otherwise

(
;

(8:2:7a)

YðjoÞ ¼ HLPðjoÞXsðjoÞ

¼ ðH0=tsÞXðjoÞe�jot0 :
(8:2:7b)

The amplitude of the filter is shown in Fig. 8.2.3b,

where the gain isH0 andWN=2 ¼ 2pB rad/s orBHz

is the bandwidth of the ideal LP filter. The exponen-

tial term (e�jot0 ) is included in the transfer function to
accommodate for the delay caused by the ideal

filter. Noting the properties of the LTI systems,

yðtÞ ¼ F�1fYðjoÞg ¼ ðH0=tsÞxðt� t0Þ: (8:2:7c)

Note yðtÞ in (8.2.7c) is the same as the analog signal

xðtÞ, except it is delayed by t0s and scaled by a gain

factor of ðH0=tsÞ. For ideal reconstruction, the gain
constant isH0 ¼ ts. For simplicity, the delay will be

assumed to be t0 ¼ 0. The sampling interval ts tends

to be small and therefore the gain constant ðH0=tsÞ
tends to be large. Note that the signal xðtÞ is

assumed to be band limited to B Hz and did not

distinguish whether it is a low pass or a band pass

signal. Sampling band pass signals will be consid-

ered in Section 8.2.6. These results are stated in the

following theorem.

8.2.2 Uniform Low-Pass Sampling
or the Nyquist Low-Pass Sampling
Theorem

A real valued signal xðtÞ !FT XðjoÞ that has no

frequency components above B Hz, i.e.,

XðjoÞj j ¼ 0; o ¼ 2pf, f > BHz is uniquely deter-

mined by the samples taken at the uniform rate of

2B samples per second or greater. The signal can

be recovered from the sampled signal if the time

between samples, i.e., the sampling interval ts is

no greater than ð1=2BÞ and it does not specify

where to sample. This will be considered shortly.

Example 8.2.1 Consider the signal

xðtÞ ¼ A cosð2pf1tÞ cosð2pf2tÞ;

f1 ¼ 200 Hz; f2 ¼ 500 Hz:
(8:2:8)

Assuming the signal is ideally sampled with a sam-

pling rate of 2000 Hz find the spectrum of the

sampled signal. Sketch the spectrum of the signal

and determine the range of the bandwidth of the

ideal low-pass filter to recover the signal.

Solution: Using trigonometric relations result in

the following:

xðtÞ ¼ :5A½cosð2pð500� 200ÞtÞ
þ cosð2pð500þ 200ÞtÞ�; (8:2:9a)

XðjoÞ ¼ :5Ap½dðo� 2pð300ÞÞ þ dðoþ 2pð300ÞÞ
þ dðo� 2pð700ÞÞ þ dðoþ 2pð700ÞÞ�:

(8:2:9b)

The transform of the ideally sampled signal is (see

(8.2.4) with os ¼ 2pð2000Þ:)

XsðjoÞ ¼
1

ts

X1
k¼�1

Xðjðoþ kosÞÞ;

(a) (b)

Fig. 8.2.3 (a) Sampling and
the reconstruction process;
(b) HLpðjoÞ
�� ��
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¼ Apð1=2tsÞf:::þ½dðoþ 2pð2700ÞÞþ dðoþ 2pð2300ÞÞ
þ dðoþ 2pð1700ÞÞþ dðoþ 2pð1300ÞÞ�
þ ½dðoþ 2pð700ÞÞþ dðoþ 2pð300ÞÞþ dðo� 2pð300ÞÞ
þ dðo� 2pð700ÞÞ�þ ½dðo� 2pð1300ÞÞ
þ dðo� 2pð1700ÞÞþ dðo� 2pð2300ÞÞ
þ dðo� 2pð2700ÞÞ�þ � � �g : (8:2:10)

See Fig. 8.2.4 for the transforms of the signal and

sampled version. For simplicity we assumed A > 0 .

The terms corresponding to k ¼ �1; 0; 1 in the

expression in (8.2.10) are explicitly shown in

Fig. 8.2.4b. The highest frequency in the input signal

is B=700 Hz. The Nyquist frequency is therefore

1400Hz.Note thatwe are (essentially) using the entire

frequency band between DC and the highest fre-

quency 700Hz.Using theNyquist sampling theorem,

the minimum sampling rate is fs � fN ¼ 2B ¼
1400Hz. So, a sampling rate of fs = 2000 Hz or

2000 samples per second is a valid sampling rate.

From Fig. 8.2.4b, the highest positive frequency in

the term corresponding to k ¼ 0 in (8.2.10) is 700Hz.

The nearest frequency in the term corresponding to

k ¼ 1 is (�1300) Hz, and the lowest frequency in the

term corresponding to k ¼ �1 is 1300Hz. To recover

XðjoÞ, a low-pass filter is neededwith a bandwidth of
B ¼ B0 Hz. The constraint on the bandwidth of the

filter is 700Hz5B051300Hz. &

Proof of the uniform sampling theorem: It will be

proved that when the sampled signal

xsðtÞ ¼
X1
n¼�1

xðntsÞdðt� ntsÞ: (8:2:11)

is passed through an ideal low-pass filter, the signal

xðtÞ can be recovered. Consider the block diagram

shown in Fig. 8.2.3a. The transfer function of the ideal

low-pass filter is assumed to be equal toHLpðjoÞ (see
(8.2.7a)) and its inverse transform is given by

HLpðjoÞ ¼ H0P
o

2pWN

� �
e�jot0 !FT hLpðtÞ;

WN ¼ 2B0;

(8:2:12)

hLpðtÞ ¼ ð2B0H0Þ
sinð2pB0ðt� t0ÞÞ
2pB0ðt� t0Þ

¼ ð2B0H0Þsincð2pB0ðt� t0ÞÞ: (8:2:13)

See (1.2.15) for the sinc function. The output of the

ideal filter (see Fig. 8.2.3a) is

yðtÞ ¼ xsðtÞ � hLpðtÞ !
FT

XsðjoÞHLPðjoÞ ¼ YðjoÞ:
(8:2:14)

By using the leniarity of the convolution integral, we

have

yðtÞ¼xsðtÞ�hLpðtÞ¼
X1

n¼�1
xðntsÞdðt�ntsÞ�

" #
�hLpðtÞ;

¼
X1
n¼�1

xðntsÞ½hLpðtÞ�dðt�ntsÞ�

¼
X1
n¼�1

xðntsÞhLpðntsÞ;

¼
X1
n¼�1

xðntsÞð2B0H0Þsincð2pB0ðt�t0�ntsÞÞ:

(8:2:15)

(a)

(b)

Fig. 8.2.4 (a) XðjoÞ;
(b) spectrum of the ideally
sampled signal
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This is the representation of a band-limited signal by

its sampled values. To illustrate this, consider the

special case

B0 ¼ fs=2;H0 ¼ ts; t0 ¼ 0; or

2B0H0 ¼ fs ts ¼ 1; (8:2:16)

) yðtÞ ¼
X1
n¼�1

xðntsÞ sin cðpðfst� nÞÞ: (8:2:17)

The function yðtÞ, i.e., the reconstructed form of

xðtÞ from the sample values of xðtÞ; xðntsÞ. Equation
(8.2.17) is an interpolation formula. At t ¼ n ts with

fs ts ¼ 1,

yðtÞ t¼k tsj ¼
X1
n¼�1

xðn tsÞsincðfstspðk� nÞÞ

¼
X1
n¼�1

xðntsÞsincðpðk� nÞÞ ¼ xðktsÞ;

(8:2:18)

Note : sincðpðk�nÞÞ¼ sinðpðk�nÞÞ
pðk�nÞ ¼

1; k¼ n

0; k 6¼ n

�
:

Figure 8.2.5 illustrates the interpolation. What can

we say about the values of yðtÞ at t 6¼ kts? For exam-

ple, when t ¼ ð2 kþ 1Þts=2, i.e., at the mid-point in

the interval kts � t5 ðkþ 1Þts, (8.2.17) allows for

determination of the values of xðtÞ in that interval.

They are interpolated values and are given by

yðtÞ t¼ð2 kþ1Þðts=2Þ
�� ¼

X1
n¼�1

xðntsÞsinc½pðfsðð2 kþ 1Þts=2Þ � nÞ�;

¼
X1
n¼�1

xðntsÞsinc
2 kþ 1

2
� n

� �
p

� �
¼
X1
n¼�1

xðntsÞsinc
2ðk� nÞ þ 1

2
p

� �
;

¼ � � � þ xððk� 1ÞtsÞsincð3p=2Þ þ xðktsÞsincðp=2Þ þ xððkþ 1ÞtsÞsincð�p=2Þ þ � � � : (8:2:19)

In (8.2.19), the terms corresponding to n ¼ k� 1;

k; kþ 1 are identified. Noting that sincð�paÞ ¼
sincðpaÞ, an even function, we can simplify (8.2.19)

further. At the sample points, say at t ¼ nts, all the

terms in the summation go to zero, except the n th

term and the result is yðtÞ t¼n tsj ¼ xðn tsÞ.

Example 8.2.2 Let xðntsÞ be the sampled values of

the band-limited function xðtÞ to B ¼ fs=2 and are

given by

xðntsÞ ¼
2; n ¼ 1

�1; n ¼ 2

0; otherwise

8><
>: : (8:2:20)

Evaluate the function yðtÞ at t ¼ :5ts; ts; 1:5ts; 2ts
using the interpolation formula in (8.2.17) and the

sampled values of the function xðtÞ in (8.2.20).

Solution: By using the interpolation formula and

noting that sincðpfstÞ is even, we have
yðtÞ ¼ 2sincðpðfst� 1ÞÞ � sincðpðfst� 2ÞÞ; (8:2:21)

yðtsÞ ¼ 2sincðpðfsts � 1ÞÞ � sincðpðfsts � 2ÞÞ

¼ 2sincð0Þ � sincð�pÞ ¼ 2 ¼ xðtsÞ;

yð2tsÞ ¼ 2sincðð2tsfs � 1ÞpÞ � sincððfsð2tsÞ � 2ÞpÞ

¼ �1 ¼ xð2tsÞ;

Fig. 8.2.5 Interpolation
using three sinc functions
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yðts=2Þ ¼ 2sincðpðfsðts=2Þ � 1ÞÞ

� sincðpðfsðts=2Þ � 2ÞÞ

¼ 2sincðp=2Þ � sincð�3p=2Þ

¼ 1:2732� ð�:212207Þ ffi 1:4854

yð1:5tsÞ ¼ 2sincðp=2Þ � sincð�p=2Þ ffi :637:
See figure 8.2.6 &

Notes: The interpolated function yðtÞ¼0 for t¼ kts,

k is an integer and k 6¼ 1; 2. The interpolating func-

tion yðtÞ has oscillating tails that die out and is

shown in Fig. 8.2.6. xðtÞ is band limited to

B0 ¼ fs=2 and therefore it cannot be time limited

as the product of the spectral width and the time

duration of the function cannot be less than a cer-

tainminimum value. See the uncertainty principle in

Fourier analysis in Section 4.7.3. &

8.2.3 Interpolation Formula and the
Generalized Fourier Series

The interpolation formula is the generalized Fourier

series expansion (see Section 3.3) with the orthogo-

nal basis function set consisting of sinc functions.

sincðpðfst�nÞÞ;f
n¼����2;�1;0;1;2;...g:;�15t51: (8:2:22)

In the first step, the set in (8.2.22) is shown to be an

orthogonal basis set over the interval �15t51.

That is,

ð1
�1

sincðpðfst� nÞÞsincðpðfst�mÞÞdt

¼
kn ¼ ð1=fsÞ; n ¼ m

0; n 6¼ m

�
: (8:2:23)

The constant kn ¼ ð1=fsÞ is the energy contained in

each of the sinc functions. To show this, consider

the two functions and their transforms given by

x1ðtÞ ¼ sincðpfsðt� ntsÞÞ !
FT 1

fs
P

o
2pfs

� �
e�joðntsÞ

¼ X1ðjoÞ; (8:2:24a)

x2ðtÞ ¼ sincðpfsðt�mtsÞÞ !
FT 1

fs
P

o
2pfs

� �
e�joðmtsÞ

¼ X2ðjoÞ: (8:2:24b)

Using generalized Parseval’s theorem assuming

n 6¼ m with osts ¼ 2p and using the transforms

of the sinc functions, we have

ð1

�1

x1ðtÞx2ðtÞdt ¼
1

2p

ð1

�1

X1ðjoÞX�2ðjoÞdo

¼ 1

2pðfsÞ2
ð1
�1

P
o
2pfs

� �� �2

e�joðn�mÞtsdo;

¼ 1

2pðfsÞ2
ðos=2

�os=2

e�joðn�mÞtsdo

¼ 1

2pðfsÞ2
e�joðn�mÞts

�ðn�mÞts

� �o¼os=2

o¼�os=2

;

¼ 1

2pðfsÞ2ðn�mÞts
ejðn�mÞp � e�jðn�mÞp
h i

¼ 0:

(8:2:25)

For n ¼ m;

ð1
�1

x1ðtÞx2ðtÞdt¼
1

ð2pfsÞ2
ð1
�1

P
o
2pfs

� �� �2

e�joðn�mÞts do

¼ 1

2pðfsÞ2
ðos=2

�os=2

do ¼ 1

fs
: (8:2:26)

From (8.2.25) and (8.2.26), it follows that the set

in (8.2.22) is an orthogonal basis set. Therefore,

the generalized Fourier series expansion of yðtÞ is

Fig. 8.2.6 Example 8.2.2
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yðtÞ ¼
X1

k¼�1
Ys½k�sincðpfsðt� ktsÞÞ: (8:2:27)

The generalized Fourier series coefficients can be

determined from

Ys½k� ¼ fs

ð1
�1

yðtÞsincðpfsðt� ktsÞÞdt: (8:2:28)

Noting the transform of the sinc pulse is a rectangular

pulse (see (4.3.28)) and the generalized Parseval’s the-

orem (see (8.2.25)) and F½yðtÞ� ¼ F½xðtÞ� ¼ XðjoÞ
results in the following:

sincðpfsðt�ntsÞÞ

¼sinðpfsðt�ntsÞÞ
pfsðt�ntsÞ

 !FT
1
fs
e�nots ; oj j5os

2

0;otherwise

(
; (8:2:29)

)Ys½k�¼fs
ð1
�1

xðtÞsincðpðfst�nÞÞdt

¼ 1

2p

ðos=2

�os=2

XðjoÞejontsdo;

¼ fs
2pðfsÞ

ð1
�1

XðjoÞejotdo t¼ktsj ¼xðtÞ t¼ktsj ¼xðktsÞ:

(8:2:30)

Since the transform of the function xðtÞ is band

limited to os=2, the limits on the transform integral

can be changed from ðð�os=2Þ; ð�os=2ÞÞ to

ð�1;1Þ in (8.2.30).

Example 8.2.3 Let xðtÞ ¼ sinð2pð1ÞtÞ shown in

Fig. 8.2.7. It is sampled at the Nyquist rate of

fN ¼ 2ð1Þ ¼ 2 samples per second and sampled at

t ¼ 0; :5; 1; 1:5; . . .. The sampled values are equal to

zero indicating that the signal cannot be recovered

from the samples. Nyquist theorem does not identify

where to sample. &

The sampling rate has to be larger than the Nyquist

rate. Its selection is signal dependent and cost-

effectiveness, as the analog-to-digital (A/D) conver-

ters are expensive at both the low and the high sam-

pling rate. Sampling a function at much higher than

the Nyquist rate does not help. Recovering an analog

signal from the samples requires the computation

using more samples than necessary and the errors in

computation nullifies any advantage used in high

sampling. As a guide, the sampling rate is more than

the Nyquist rate, about 2.5–10 times the highest fre-

quency in the signal. For seismic signals, the

frequencies of interest are in few hundred Hertz

range. In these cases, higher sampling rates are used.

For speech, the frequency range of interest is from a

few Hertz to 3.5 kHz. The sampling rate is taken as

8 kHz or 10 kHz. For CDs, the frequency range of the

input signal is from a low frequency of few Hertz to

20 kHz. The sampling rate is taken as 44.1 kHz and

the standard sampling rate for studio quality audio is

48 kHz. The compact disc recording system samples

each of the two stereo signals with a 16-bit A/D

converter at 44.1 kHz (Haykin andVanVeen (2003)).

Example 8.2.4 Consider signal xðtÞ band limited to

ð2pBÞ rad/s. Determine the Nyquist rates for the

functions: a: y1ðtÞ ¼ xð2tÞ; b: y2ðtÞ ¼ xðtÞ cosðo0tÞ

Solution: a.Note y1ðtÞ is formed from xðtÞ by com-

pressing the time axis by a factor of 2. From the

Fourier scale change theorem (see Section 4.3.4), we

have the following:

y1ðtÞ ¼ xðatÞ$FT 1

aj jXðjo=aÞ; a 6¼ 0

) xð2tÞ$FT 1
2
Xðjo=2Þ ¼ Y1ðjoÞ:

Time compression by a factor of 2 results in expan-

sion in frequency by a factor of 2. TheNyquist rate is

given by os1 ¼ 2pð2ð2BÞÞ. It is like playing an audio

tape fast. b. The signal is a modulated signal with a

center frequency o0 with a bandwidth of 2B Hz and

F½y2ðtÞ� ¼ F½xðtÞ cosðo0tÞ� ¼ 0:5Xðjðo� o0ÞÞ

þ 0:5Xðjðoþ o0ÞÞ:

The highest frequency in the modulated signal is

o0 þ 2pB ¼ ðo0 þ osÞ=2. The Nyquist rate is

os2 ¼ os þ 2o0. &

The sinc interpolation function is not the best

way to approximate the function from its sampleFig. 8.2.7 xðtÞ ¼ sin 2pð1Þt, Sampled two times per second
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values, as it decays only at a rate of ð1=tÞ. There are
other better functions. The function xðtÞ is known
at t ¼ nts. The interpolation formula can be

expressed in terms of a function hiðtÞ that is 0 at all

the sampling instants, except at t ¼ 0, where it is 1.

In addition, it is absolutely integrable. Interpolation

formula is given by

yiðtÞ ¼
X1
n¼�1

xðntsÞhiðt� ntsÞ; hiðkts � ntsÞ

¼
1; k ¼ n

0; k 6¼ n

�
:

Since yiðtÞ t¼kts ¼ xðktsÞj , i.e., the interpolation for-

mula gives the same values at the sampling instants

and, at other times, yiðtÞ is an approximation of xðtÞ.
Most commonly interpolating functions are step, lin-

ear, sinc, and raised cosine functions. These are given

below in table 8.2.1. See Ambardar (1999) for addi-

tional discussion on the interpolation functions.

Step interpolation (zero-order-hold) uses a rec-

tangular interpolation function and xðntsÞ to pro-

duce a stepwise or a staircase approximation of xðtÞ.
This is simple and does not depend on the future

values of the signal. It is widely used. The recon-

structed signal is (more on this in Section 8.2.5.)

ycðtÞ ¼ xðntsÞ; nts � t5xððnþ 1ÞtsÞ:

Linear interpolation (first-order hold) uses a linear

approximation and the reconstructed signal is

ylðtÞ ¼ xðntsÞ þ
xððnþ 1ÞtsÞ � xðntsÞ

ts

ðt� ntsÞ; nts � t5ðnþ 1Þts:

It cannot be implemented online since a future value

is required. Sinc interpolation was considered ear-

lier. Raised cosine interpolation function (see

(4.11.9a) for the function and its transform in

(4.11.9b)) uses the roll-off factor b. It reduces to the

sinc interpolation function when b ¼ 0. The raised

cosine function’s decaying rate is proportional to

ð1=t3Þ. Faster decaying results in improved reconstruc-

tion, if the samples are not at exactly at the sampling

instants (i.e., jitter). It requires fewer past values are

needed in the reconstruction. Polynomial-based

interpolationmethods are discussed inAppendixA.9.

8.2.4 Problems Associated with Sampling
Below the Nyquist Rate

Consider the functions x1ðtÞ and x2ðtÞ in Fig. 8.2.8.

They are sampled at a rate shown. Both provide the

same sample values. The function x1ðtÞ cannot be

reconstructed fromthe samplevalues.Fromthe figure,

x1ðtÞ has a higher frequency content than x2ðtÞ. By
sampling the functions at the locations shown, someof

Table 8.2.1 Common interpolation functions

a. ycðtÞ ¼
P1

n¼�1
xðntsÞP ðt� ntsÞ=ts½ �: constant or step interpolation

b. ylðtÞ ¼
P1

n¼�1
xðntsÞL ðt� ntsÞ=ts½ �: linear interpolation

c. ysðtÞ ¼
P1

n¼�1
xðntsÞsinc pðt� ntsÞ=ts½ �: sinc interpolation

d. yrcðtÞ¼
X1
n¼�1

xðntsÞ
cosðpbðt� ntsÞ=tsÞ
ð1� ½2bðt� ntsÞ=ts�2Þ

sincðpðt� ntsÞ=tsÞ: raised cosine interpolation, b� roll-off factor; 0 � b � 1.

Fig. 8.2.8 Two signals sampled at the same locations
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thepeaksandvalleysofx1ðtÞaremissed indicatingthat

x1ðtÞ needs to be sampled at a higher rate than x2ðtÞ:
A spectrumXðjoÞ, its ideally sampled signal spec-

tra by assuming the sampling rates of os1 � 2pð2BÞ
and os252pð2BÞ are shown in Fig. 8.2.9a,b,c. In the

case of os1, the message signal can be recovered. In

the second case ofos2, the sampling rate is lower than

the Nyquist rate. The resultant spectra of the ideally

sampled signal will have overlaps of the adjoining

spectra and the spectral components are added

around half the sampling frequency and the message

signal cannot be recovered by low-pass filtering the

ideally sampled signal and the filtered signal will be

distorted. The distortion caused by sampling below

the Nyquist rate is called aliasing. Most signals are

not band limited. Therefore, a band limiter is neces-

sary before sampling to minimize the aliasing errors.

Example 8.2.5 Consider the amplitude spectrum of

a function xðtÞ given by

XðjoÞj j2¼ 2oc

ðoÞ2 þ o2
c

: (8:2:31)

The signal is sampled at the sampling frequency os

and an ideal low-pass filter is used to recover it from

the sampled signal. Use MATLAB to quantify the

effect of loosing the spectral energy outside of half the

sampling frequency. ForMATLAB, seeAppendix B.

Solution: The energy contained in the signal is

E ¼ 1

2p

ð1
�1

XðjoÞj j2do ¼ 2oc

2p

ð1
�1

1

o2 þ o2
c

do

¼ 2oc

2poc
tan�1ðo=ocÞ 1�1 ¼

�� 1

p
p ¼ 1:

(8:2:32)

The signal is a low-frequency signal, as most of the

spectral energy is concentrated around f ¼ 0. It is not

band limited. If it is filtered using an ideal low-pass

filter with a cut-off frequency equal to half the sam-

pling frequency ðos=2Þ, then some information is lost

and the loss can bemeasured using the spectral energy

contained in the frequency range oj j4os=2 and

Error ¼ 1

p

ð1
os=2

XðjoÞj j2do ¼ 1

p

ð1
os=2

2oc

ðoÞ2 þ o2
c

do

¼ 1� 2

p
tan�1ðos=2ocÞ:

(8:2:33)

(a)

(b)

(c)

Fig. 8.2.9 (a) XðjoÞ, (b)
XsðjoÞ;os1 > 2pð2BÞ
(sampling rate higher than
the Nyquist rate), and (c)
XsðjoÞ;os252pð2BÞ
(sampling rate lower than the
Nyquist rate)
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If the sampling rate goes to infinity, i.e., os !1,

then the error goes to zero as the area under the

integral goes to zero. For the case of os ¼ 2oc the

error is 0.5 or 50%. The error slowly goes down as

we increase the value of the sampling rate. A simple

MATLAB routine and a sketch of the mean

squared error as a function of the ratio of sampling

frequency divided by 2fc is given in Fig. 8.2.10. Note

that 2fc is not the Nyquist rate since the spectrum is

not band limited to fc Hz.

For the two cases fs=2fc ¼ 2 and 4, the errors can

be calculated and are 0.2952 and 0.1560, respec-

tively. In the above example we need to have a

high enough sampling rate to reduce the mean

squared error. We use a pre-sampling filter that

band limits the signal allowing for a decrease in

sampling rate. Such a filter passes frequency com-

ponents that are below the frequency os=2 and

attenuates significantly or even suppress some of

the frequency components above os=2: The band-

limiting filter is referred to as an anti-aliasing filter.

Even if the signal is band limited to os=2, an anti-

aliasing filter is generally used to avoid aliasing that

may result from noise that is ever present in almost

all signals. The anti-aliasing filter may not be shown

explicitly and is assumed to be included in the sys-

tem. The bandwidth of the pre-sampling or anti-

aliasing filter is signal dependent. In simple words,

we state that most of the signal energy is contained

within the bandwidth B Hz and the energy con-

tained outside this band is negligible. See Section

4.7 for bandwidth measures. &

Most of the practical are low-pass signals that

have decaying frequency response. One way to

look at the aliasing error is to put a limit on the

maximum aliasing error at half the sampling fre-

quency which depends on the bandwidth of the

signal. This works out nicely for signals that have

decaying frequency response. The maximum error

occurs at half the sampling frequency. See Spilker

(1977), Ambardar (1995) and others. Another sim-

ple method is select the essential bandwidth which

is taken as the frequency where the spectrum of the

signal xðtÞ given by XðjoÞ reduces to say 1% of its

peak value.

MATLAB Code for Fig. 8.2.10

x=0:.01:5;
y=1-(2/pi)*atan(x);
plot(x,y)
Title (‘Mean-square error’)
xlabel (‘sampling frequency/2fc’)
ylabel (‘mean-square error’)
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Fig. 8.2.10 Example 8.2.6
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Example 8.2.6 Let xðtÞ ¼ e�a tuðtÞ !FT 1=ðaþ joÞ ¼
XðjoÞ; and

XðjoÞj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ o2
p ;Xð0Þ ¼ 1;o ¼ 2pf:

Noting that the maximum aliasing error occurs at

o ¼ os=2, find the sampling frequency fs using the

following methods:

a. a ¼ 1. Maximum aliased magnitude is less

than (1) 5% and (2) 1% of the peak value of the

function XðjoÞj j.
b. a ¼ 2. Use the bandwidth of XðjoÞ as the

frequency at which the amplitude reduces to 1% of

the peak value.

Solution: a. (1). From the statement we have

Xðos=2Þj j � :05 Xð0Þj j ¼ :05. Now

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðos=2Þ2

q � 1

20
! ½1þ ðos=2Þ2�5400

) os ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð399Þ

p
) fs 	 6:36Hz:

(2). In this case, we have Xðos=2Þj j � :01
Xð0Þj j ¼ :01. Correspondingly,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðos=2Þ2

q � 1

100
! ½1þ ðos=2Þ2� > 1000

) os ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4Þ999

p
) fs � 10:06Hz &

b: XðjoÞj j ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ 4
p

) 1% of Xðj 0Þj j ¼ ð1=2Þ
ð:01Þ ¼ :005. For o
 2, XðjoÞj j 	 1=o and

XðjoÞj j 	 1=2pB ¼ :005) B ¼ ð100=pÞHz

) fs � 2B ¼ 200=p 	 64Hz: &

Notes: For most signals, the actual spectrum

may not be available and experimental methods

may be needed to determine the bandwidth of

these. &

Frequency sampling theorem: Since the Fourier

transform and its inverse are related so closely, this

theorem follows naturally the timesampling theo-

rem. Consider a time-limited function such that

xðtÞ ¼ 0; tj j > TN. It has a Fourier transform that

can be uniquely determined from samples at fre-

quency intervals of np=TN and

XðjoÞ ¼
X1

k¼�1
X

jkp
TN

� �
sinðoTN � kpÞ
ðoTN � kpÞ : (8:2:34)

For a proof and for additional discussion, see Mitra

(2006). Some of the digital finite impulse response

(FIR) filters are based upon frequency sampling.

Discrete-time signal bandwidth: The spectrum of

an ideally sampled waveform xsðtÞ (see 8.2.2) is

periodic with period os and the measures of BW

used for the continuous signals with nonperiodic

spectrum cannot be used here. The ideally sampled

signal is uniquely specified for frequencies in the

range 0 to fs=2. The bandwidth of xsðtÞ is the

range of positive frequencies within the range

0�fs=2, for which the amplitude spectrum is greater

than or equal to a times its maximum value, where a
is a constant less than 1. The common one is

a ¼ 1=
ffiffiffi
2
p

corresponding to the 3 dB bandwidth.

8.2.5 Flat Top Sampling

Flat top sampling uses a sample and hold device illu-

strated in Fig. 8.2.11 with the input is assumed to be

xsðtÞ ¼
X1
n¼�1

xðntsÞdðt� ntsÞ !
FT

XsðjoÞ: (8:2:35)

The output of the summer is xðtÞ � xðt� tsÞ. Let the
input is dðtÞ. The output of the first block is

½dðtÞ � dðt� tsÞ�. The transfer functions of the first
block and the integrator are

H1ðjoÞ ¼ F½dðtÞ � dðt� tsÞ�

¼ ½1� e�jots �;H2ðjoÞ ¼ 1=jo:
(8:2:36)

Assuming the input to the integrator is

[dðtÞ � dðt� tsÞ], the output is

hðtÞ ¼
ðt

�1

½dðbÞ � dðb� tsÞ�db

¼
1; 05t5ts

0; otherwise

� �
¼ P

t� ðts=2Þ
ts

� �
: (8:2:37)

The system response to an impulse input is a rec-

tangular pulse of width tss. This operation is the
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zero-order-hold (ZoH) referred to in the last sec-

tion. The function yðtÞ is approximated in the inter-

val nts � t5ðnþ 1Þts using the first term in the

Taylor series.

yðtÞ ¼ yðntsÞ þ y0ðntsÞðt� ntsÞ þ
1

2!
y00

ðntsÞðt� ntsÞ2 þ � � � ; nts � t5ðnþ 1Þts;
(8:2:38)

yðtÞ 	 yðntsÞ; nts � t5ðnþ 1Þts: (8:2:39)

It is called the zero-order-hold since the function is

approximated by the constant term in the Taylor

series. It can be approximated by the first two terms

in the series. That is,

yðtÞ 	 yðntsÞ þ y0ðntsÞðt� ntsÞ; nts � t5ðnþ 1Þts;

y0ðntsÞ ¼
dyðtÞ
dt

t¼ntsj : (8:2:40)

Most systems use ZoH. The transfer function of the

cascaded blocks in Fig. 8.2.11 is

H0ðjoÞ ¼ H1ðjoÞH2ðjoÞ ¼ ½1� e�jots �=jo;

¼ ts
ejots=2 � e�jots=2

2j

1

ots=2
e�jots=2

¼ ts sincðots=2Þe�jots=2: (8:2:41)

The amplitude, phase, and the delay frequency

responses are

H0ðjoÞj j ¼ ts sincðots=2Þj j; ffH0ðjoÞ

¼
�ðots=2Þ; sincðost=2Þ > 0

�ðots=2Þ � p; sincðost=2Þ50

�

Group delay ¼ � dffH0ðjoÞ
do

¼ ts
2XðjoÞ ;

YðjoÞ ¼ H0ðjoÞXsðjoÞ: (8:2:42)

ZoH introduces three modifications:

1. A linear phase shift corresponding to a time

delay of ðts=2Þs.
2. The input transform is band limited to om. The

output transformYðjoÞ is a distorted version ofXðjoÞ
affected by the curvature of the main lobe ofH0ðjoÞ.
3. Transform of the ideally sampled signal is peri-

odic. The envelope of the sinc function is inversely

proportional to the frequency. The output transform

contains distorted and attenuated versions of the

images ofXðjoÞ, centered at nonzeromultiples ofos.

The first one follows since each sample is held

constant for ts seconds. The last two effects are

caused by constant or step interpolation resulting in

high frequency components. The effects of the first

two items can be reduced by increasing the sampling

rate. If the effects of the last two items are not accep-

table, then a continuous-time compensation filter (an

anti-imaging filter) in cascade with the zero-order

hold is needed. The transfer function of such is

given in (8.2.43). See Haykin and Van Veen (2003).

HcðjoÞ 	
ots

2 sinðots=2Þ
; oj j5om5

os

2

0; oj j4os � om

8<
: : (8:2:43)

(a)

(b)

Fig. 8.2.11 Zero-order-hold
(a) Use of a delay
component, a summer and
the process of integration,
(b) representation of these
using block diagrams
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Notes: The output of an ideal sampler and a ‘‘flat

top’’ sampler are

xsðtÞ ¼
X1

n¼�1
xðntsÞdðt� ntsÞ; (8:2:44a)

xflat topðtÞ ¼
X1
n¼�1

xðntsÞP
t� ts=2� nts

ts

� �
: (8:2:44b)

An ideal low-pass filter is needed to recover xðtÞ
from xsðtÞ. On the other hand, an anti-imaging filter

(see (8.2.43)) is necessary to recover xðtÞ from

xflat topðtÞ. In both cases, we assumed that

fs > 2B;B ¼ bandwidth of the signal in Hertz. The

digital-to-analog (D/A) converter with a ZoH takes

the sequence x½n� and creates a signal xflat topðtÞ.
So far, the discussion was centered on the low-

pass signals. Can a sampling rate less than the twice

the highest frequency of a band-pass signal and still

recover the input signal? The answer is yes and is

illustrated below. See Ziemer and Tranter (2002).

8.2.6 Uniform Band-Pass Sampling
Theorem

Given a signal xðtÞ !FT XðjoÞ with

XðjoÞj j¼0;o¼2pf;
fj j�fl
fj j�fu

�
:

bandwidth¼B¼ðfu�flÞHz½ �: (8:2:45)

The signal xðtÞ can be recovered from the sampled

signal if the sampling rate is fs ¼ ð2fu=mÞ, where m
the largest integer that is not exceeding ðfu=BÞ. All

higher sampling rates are not necessarily usable

unless they exceed the Nyquist rate of 2fu.

Example 8.2.7 Consider the band-pass signal spec-

trum XðjoÞ shown in Fig. 8.2.12a. with

fl ¼ 4 kHz and fu ¼ 5 kHz(bandwidth is 1 kHzÞ:
Using the band pass sampling theorem, sketch the

ideally sampled signal spectrum assuming a sam-

pling rate that allows for the recovery of the original

signal from the sampled signal.

Solution: Note

fs ¼ 2fu=m; m ¼ Integer part ofðfu=BÞ ¼ 5;

fs ¼ 2ð5Þ=5 ¼ 2 kHz; (8:2:46a)

XsðjoÞ ¼
os

2p

X1
k¼�1

Xðjðo� kosÞÞ: (8:2:46b)

The band-pass signal can be recovered by noting that

none of the spectra Xðjðo� kosÞÞ; k 6¼ 0 over laps

the spectrumof the continuous signalxðtÞ. The spectra
in (8.2.46b), Xðjðo� kosÞÞ are shifted to the right by

kos for k positive and to the left by kos for k negative.

In Table 8.2.2, the frequency ranges of the terms in

(8.2.46b) for n ¼ 0;�1;�2;�3 and the center fre-

quencies of the corresponding spectra are given. For

example Xðjðo� osÞÞ is centered at 2 kHz and occu-

pies the frequency range ð�3 kHz5f5� 2 kHz;

Fig. 8.2.12 (a) Band-pass
spectra, (b) spectra of the
ideally sampled signal
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6 kHz5f57 kHzÞ. This can be continued with the

entries given in the table and the spectra do not

overlap. By using an ideal band-pass filter with a

pass-band in the range 4 kHz5f55 kHz, the origi-

nal signal can be recovered. Figure 8.2.12a gives an

assumed spectrum for XðjoÞ and Fig. 8.2.12b gives

the ideally sampled signal spectrum corresponding

to the terms identified in Table 8.2.2. &

8.2.7 Equivalent continuous-time and
discrete-time systems

Figure 8.2.13 gives flow diagrams illustrating the

parts of the discrete and the corresponding contin-

uous-time processes in terms of transfer functions.

The output transforms in the two systems can be

related to the input transforms and are

YðjoÞ ¼ ð1=tsÞH0ðjoÞHcðjoÞHðejotsÞHaðjoÞXðjoÞ
¼ GðjoÞXðjoÞ; (8:2:47a)

GðjoÞ ¼ ð1=tsÞH0ðjoÞHcðjoÞHðejotsÞHaðjoÞ:
(8:2:47b)

Note the transfer function Hðejo tsÞ is used

to represent the discrete-data system. If the anti-

aliasing and anti-imaging filters are designed to

compensate for the effects of sampling and recon-

struction, then

ð1=tsÞH0ðjoÞHcðjoÞHaðjoÞ 	 1: (8:2:47c)

8.3 Basic Discrete-Time (DT) Signals

Discrete-time (DT) signals are expressed as simple

time sequences, such as x½n�; where n is an integer:

It exists only at integer values of n.

Unit step sequence: The unit step sequence u½n�
and its delayed (or shifted) versions are defined by

u½n� ¼
1; n� 0

0; n50

�
; u½n�k� ¼

1; n� k

0; n5k

�
: (8:3:1)

The discrete-time unit step sequence has the defined

value u½n� n¼0j ¼ 1. The unit step function uðtÞ is not
defined at t ¼ 0: The unit step sequence and the

delayed step sequences are illustrated in

Fig. 8.3.1a,b. If the integer constant k in (8.3.1) is

negative (positive), then the function is an advanced

(delayed) unit step sequence.

Unit sample sequences: The unit sample

sequence d½n� and its delayed version are defined by

d½n� ¼
1; n¼ 0

0; n 6¼ 0

�
; d½n�k� ¼

1; n¼ k

0; n 6¼ k

�
: (8:3:2)

Fig. 8.2.13 Flow diagrams of a discrete-time processing of continuous signals: (a) discrete-time system with filters on both
ends and (b) equivalent continuous-time system.

Table 8.2.2 Spectral occupancy of Xðjðo� nosÞÞ;o ¼ 2pf;
n ¼ 0;�1;�2;�3
Spectra Frequency ranges (f, kHz) (nfs, kHz)

X(jo) –5 < f <–4, 4 < f <5 0

X(j(o – os)) –3 < f < – 2, 6 < f < 7 2

X(j(o + os)) –7 < f < –6, 2 < f < 3 –2

X(j(o – 2os)) –1 < f < 0, 8 < f <9 4

X(j(o +2os)) –9 < f < –8, 0 < f < 1 –4

X(j(o – 3os)) 1 < f < 2,10 < f < 11 6

Xj((o +3os)) –11 < f < – 10,–2 < f < –1 –6
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These are illustrated in Fig. 8.3.2. Note that d½0� ¼ 1

and d½n� k� is 1 at n ¼ k. The unit sample sequence is

easier to visualize than the impulse function in the

continuous domain. With these definitions, a

sequence of numbers can be expressed as a discrete-

time sequence using the unit sample sequence. For

example, if a discrete-time signal x½n� is multiplied by

the unit discrete-time impulse (or unit sample

sequence) d½n� k� then the result is a discrete-time

impulse with its value equal to x½k�. That is,

x½n�d½n� k� ¼ x½k�d½n� k�: (8:3:3)

The discrete impulse shifts out the value of the

function x½n� at n ¼ k and

X1
n¼�1

x½k�d½n� k� ¼ x½n�: (8:3:4)

In the continuous-time case we deal with integrals

and in the discrete-time case we deal with summa-

tions. The time scaled discrete-time impulse func-

tion is defined for integer values of a and

d½an� ¼ d½n�: (8:3:5a)

In the case of time scaled continuous-time

impulse function was defined (see (1.4.35))

dðatÞ ¼ ð1= aj jÞdðtÞ: (8:3:5b)

Note the scale factor a is not there in (8.3.5a). As

examples, dð2tÞ ¼ ð1=2ÞdðtÞ and d½2n� ¼ d½n�.

Arbitrary sequence: Let the discrete-time sequence

is given by (8.3.4). For simplicity we write the

sequence in the form

fx½n�g ¼ f. . . ; x½�1�;x½0�; x½1�; x½2�; . . .g (8:3:6)

This explicitly identifies the location of each value

on the time axis. On the other hand, if the sequence

is given in terms of a set of numbers, we do not know

the time locations and their values. To alleviate this

problem, an arrow is included on the value below

the number corresponding to the value of the func-

tion at n ¼ 0. The following illustrates this notation:

fx½n�g ¼ f. . . ; x½�2�; x½�1�; x½0�; x½1�; x½2�; . . .g
¼ f. . . ;�3; 0; 0; 1; 2#;�3; . . .g: (8:3:7)

In this case, x½0� ¼ 2 and the values to the left of this

corresponds to the function with negative values of

n and the values to the right corresponds to the

positive values of n. We can use (8.3.4) to represent

(8.3.7) by

x½n� ¼ � � � � 3d½nþ 4� þ d½nþ 1�

þ 2d½0� � 3d½n� 1� þ � � � :
(8:3:8a)

This provides a nice way to look at discrete

sequences that will lead to difference equations.

The DT unit step function can be written in terms

of DT impulses as

Fig. 8.3.1 (a) u[n],
(b) u½n� k�

Fig. 8.3.2 (a) d½n�,
(b) d½n� k�
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u½n� ¼ d½0� þ d½1� þ d½2� þ � � �

¼
X1

k¼�1
u½k�d½n� k� ¼

X1
k¼0

d½n� k�; (8:3:8b)

) d½n� ¼ u½n� � u½n� 1�: (8:3:8c)

Example 8.3.1 Sketch the following functions:

ðaÞ x1½n� ¼ d½n� 1� þ 2d½n� 2� þ 3d½n� 3�;

ðbÞ x2½n� ¼ anu½n�; 0 5 a51:

Solution: Sketches are shown in Fig. 8.3.3. &

Before considering the special cases, we should

note that folding or reversal of a sequence x½n� is
defined by x½�n�. The following illustrates the time

reversal sequences:

u½�n� ¼
1; n ¼ 0;�1;�2;�3; . . .

0; n ¼ 1; 2; 3; . . .

�
;

u½1� n� ¼
1; n � 1

0; n41

�
:

Even and odd sequences: Even sequence xe½n� and
an odd sequence x0½n� satisfy the following relations:

xe½�n� ¼ xe½n� and x0½�n� ¼ �x½n�: (8:3:9a)

Noting x0½0� ¼ 0, we have

XK
n¼�K

xe½n� ¼ xe½0� þ
XK
n¼0

xe½n� and

XK
n¼�K

x0½n� ¼ 0: (8:3:9b)

An arbitrary discrete-time (DT) sequence can be

expressed by

x½n�¼xe½n�þx0½n�)xe½n�¼fx½n�þx½�n�g=2;
x0½n�¼fx½n��x½�n�g=2: (8:3:9c)

The unit step function can be written in terms of its

even and odd parts.

u½n�¼ue½n�þu0½n�; ue½n�¼ ð1=2Þþð1=2Þd½n�;
u0½n�¼ ð1=2Þu½n��ð1=2Þu½�n�: (8:3:9d)

Discrete-time sinc sequence: It is an even sequence

and exists at integer values of n.

sincðnp=NÞ ¼ sinðnp=NÞ
ðnp=NÞ ;

sincð0Þ ¼ 1; sincðnp=NÞ ¼ 0;

n ¼ kN; k ¼ �1;�2; . . . : (8:3:10)

8.3.1 Operations on a Discrete Signal

The operations on discrete-time signals are very

simple and are similar to the analog case, with few

exceptions. The addition of discrete-time sequences

x½n� and y½n� is defined by the pointwise sum

x½n� þ y½n�. Similarly, the product of the two func-

tions y½n� and x½n�, i.e., the pairwise product is given
by y½n�x½n�. The time shift, i.e. delay or advance of a

function by k is expressed by x½n� k� and x½nþ k�,
respectively. The amplitude scaling by a constant c

of a function x½n� is expressed by cx½n�. The ampli-

tude shift of a sequence by a sequence of constantsA

is given by the sequence Aþ x½n�. There are two

important operations that are very useful. These

are decimation and interpolation.

The decimation of a sequence x½n� by c is given by

x½cn�, where c is an integer. If c ¼ 2, the decimation

operation deletes alternate samples resulting in

compression. Decimation by a factor N, i.e.,

c ¼ N in x½cn� is sampling the given function at

Fig. 8.3.3
Example 8.3.1 (a) x1½n�,
(b) x2½n�
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intervals of N samples resulting in x½n� ! x½Nn�.
The operation retains every N th sample corre-

sponding to the indices Nn and discarding others.

For example

fx½n�g ¼ f1#;�1; 1;�1; 1;�1; . . .g ! fx½2n�g

¼ f1#; 1; 1; . . .g: (8:3:11)

The inverse of decimation is the interpolation. The

interpolation of a sequence x½n� by c is given by

x½n=c�, where c is an integer. In the case of x½n=2�,
the given sequence is stretched by introducing an

interpolated value between each pair of sample

values. Interpolation operation slows the signal and

the new sequence is twice the length of the original

sequence. How do we get the interpolated values? In

Section 8.2 of this chapter we considered the interpo-

lation of a sampled function by various methods,

including the use of the Fourier transform of the

signal. Here we only have a discrete set of numbers.

There are several options. These include zero inter-

polation (a zero between samples), step interpolation

(a constant equal to the previous sample), linear inter-

polation (average of the adjacent samples), andmany

others. These simple methods are illustrated below.

fx½n�g ¼ f. . . ; x½�1�; x½0�; x½1�; x½2�; . . .g�!zero interpolation

n!2n
f. . . ; x½�1�; 0; x½0�; 0; x½1�; 0; x½2�; . . .g; (8:3:12)

fx½n�g ¼ f. . . ;x½�1�;x½0�;x½1�;x½2�; . . .g�!step interpolation

n!2n
f. . . ;x½�1�;x½�1�;x½0�;x½0�;x½1�;x½1�;x½2�;x½2�; . . .g ;

(8:3:13)

fx½n�g ¼ f. . . ; x½�1�; x½0�; x½1�; x½2�; . . .g�!Linear interpolation

n!2n

f:::; x½�1�; :5ðx½�1� þ x½0�Þ; x½0�; :5ðx½0� þ x½1�Þ; x½1�; :5ðx½1� þ x½2�Þ; x½2�; . . .g:(8:3:14)

It may seem that decimation and interpolation

operations are inverse operations. This is not true.

Interpolation of the decimated sequence in (8.3.11)

will not recover the original data. If we have the

interpolated sequence, the original sequence can be

recovered.

We can define a variable l, a function of n. For

example, the sequence defined by x½l� ¼ x½�2nþ 3�
gives a new sequence that is obtained by shifting the

sequence to the left by 3, folding the resultant

sequence and then decimating the sequence by 2.

This is summarized by the following:

fx½n�g �!shift to the leftfx½nþ 3�g�!Fold x½�nþ 3�

�!Decimate

n!2n
x½�2nþ 3�:

Example 8.3.2 Determine the sequence x½�2nþ 3�
assuming x½0� ¼ 1; x½1� ¼ 2; x½2� ¼ 0; x½3� ¼ 3;

x½4� ¼ 4 and x½n� ¼ 0 for other n.

Solution: First, let

fng ¼ f0; 1; 2; 3g ! f�2nþ 3g

¼ f3; 1;�1;�3;�5g;
fx½n�g ¼ f1#; 2; 0; 3; 4g ! fx½�2nþ 3�g

¼ fx½3�; x½1�; x½�1�; x½�3�; x½�5�g

! f3#; 2; 0; 0; 0g:

Using the shift, fold, and decimation operations, the

following results:

fx½n�g ¼ f1#; 2; 0; 3; 4g�!
Shift x½n� to

the left by 3
f1; 2; 0; 3#; 4g

�!fold f4; 3#; 0; 2; 1g�!
decimate by 2 f3; 2g

¼ fx½�2nþ 3�g: (8:3:15) &
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8.3.2 Discrete-Time Convolution
and Correlation

The discrete time convolution of two sequences

x[n] and h[n] is defined and its properties are listed in

Table 8.3.1

Most of these properties are simple to prove. The

width property will be proved shortly.

Example 8.3.3 Determine the convolution y½n� ¼
h½n� � x½n� of the sequences x½n� ¼ anu½n�; h½n� ¼
bnu½n�; aj j51; bj j51; a=bj j51 for the following

cases: a: a 6¼ b and a=bj j51; b: a ¼ b using

Xn
k¼0

lk ¼ 1� lnþ1

1� l
; lj j51: (8:3:19a)

Solution: a. The convolution sum is

y½n�¼
X1

m¼�1
x½m�h½n�m�¼

X1
m¼�1

amu½m�bn�mu½n�m�

¼bn
Xn
m¼0

a
b

� �m
¼bn1�ða=bÞ

nþ1

1�ða=bÞ ;¼ anþ1�bnþ1

ða�bÞ

� �
;

a 6¼b;n�0; y½n�¼0;n50: ; (8:3:19b)

b. In this case,

y½n� ¼ anu½n� � anu½n� ¼
X1

m¼�1
amu½m�an�mu½n�m�

¼ an
Xn
m¼0

1 ¼ ðnþ 1Þanu½n�: (8:3:19c) &

Correlation of two sequences: The cross correlation

of two sequences x½n� and h½n� is defined by

rxh½k� ¼ x½k� ��h½k� ¼
X1

k¼�1
x½n�h½nþ k�

¼ x½k� � h½�k�; (8:3:20a)

rhx½k� ¼ h½k� ��x½k� ¼
X1
n¼�1

h½n�x½nþ k�

¼ h½k� � x½�k�: (8:3:20b)

Note (**) is used to define the correlation. The

autocorrelation (AC) of x½n� is even and

Table 8.3.1 Properties of discrete convolution

Definition:

y½n� ¼ x½n��h½n� ¼
P1

k¼�1
x½k�h½n� k� ¼

P1
k¼�1

h½k�x½n� k�

Commutative property:

x½n��h½n� ¼ x½n��h½n�

Distributive property:

x1½n��ðx2½n� þ x3½n�Þ ¼ x1½n��x2½n� þ x1½n��x3½n�

Associative property:

x1½n��ðx2½n��x3½n�Þ ¼ ðx1½n��x2½n�Þ�x3½n�

Shifting property:

If y½n� ¼ x1½n��x2½n� then x1½n� k��x2½n�m� ¼ y½n� ðkþmÞ�:

Convolution with a discrete impulse:

x½n��d½n� ¼ x½n�

Width property:

Given x½n� 6¼ 0 for n ¼ 0; 1; 2; :::;N� 1 and h½n� 6¼ 0 for n ¼ 0; 1; 2; :::;M� 1
If we define y½n� ¼ h½n��x½n�; then the length of the sequence y½n� is NþM� 1 :

y½n� ¼ 0 for n50 and n � NþM� 1:

(8.3-16)

(8.3-17a)

(8.3-17b)

(8.3-17c)

(8.3-17d)

(8.3-17e6)

(8.3-18)
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rx½k� ¼ x½k� ��x½k� ¼
X1

n¼�1
x½n�x½nþ k�

¼ x½k� � x½�k� ¼ rx½�k�: (8:3:20c)

The cross-correlation functions can be expressed in

terms of the convolution and

rxh½k� ¼ x½k� � h½�k� ¼ rhx½�k�: (8:3:20d)

Example 8.3.4 Find the autocorrelation of the

sequence x½n� ¼ anu½n�; aj j51.

Solution: Need to find the values of rx½k� for� 0, as

AC function is even.

rx½k� ¼
X1
n¼�1

anu½n�anþku½nþk� ¼ ak
X1
n¼0

a2n

¼ ak

1� a2
u½k� ! rx½k� ¼

1

ð1� a2Þa
kj j: (8:3:21) &

8.3.3 Finite duration, right-sided,
left-sided, two-sided, and
causal sequences

Finite duration or time-limited sequence:

x½n� 6¼ 0 for n1� n� n2 and zero otherwise (8:3:22a)

Right-sided sequence : x½n� ¼ 0 for

n5n1; n1 is finite (8:3:22b)

Left-sided sequence : x½n� ¼ 0 for n> n2;

n2 is finite (8:3:22c)

Two-sided sequence : x½n� can be of

infinite extent (8:3:22d)

Causal sequence : x½n� ¼ 0; n50 (8:3:22e)

Discrete-time exponentials: One-sided and the two-

sided exponentials are defined by

x1½n� ¼ anu½n�; x2½n� ¼ x1½�n� � 1;

x3½n� ¼ a nj j:
(8:3:23)

In (8.3.23), x1½n� is a right-sided exponential

sequence, x2½n� is a left-sided sequence, and

x3½n� ¼ a nj j is a two-sided sequence. If a is real in

(8.3.23), then the sequences are exponentially decay-

ing if a51 and exponentially increasing if a41. In

addition, if a ¼ 1, x1½n� reduces to the unit step

sequence and x3½n� reduces to the value of 1 for all

integer values of n. If a is complex, then we can write

the two-sided complex exponential sequence by

x½n� ¼ an ¼ ðrejyÞn ¼ rnejny

¼ rn½cosðnyÞ þ j sinðnyÞ�:
(8:3:24)

The real and the imaginary parts are exponentially

decaying if aj j51 and exponentially growing sinu-

soidal sequences if aj j41.

8.3.4 Discrete-Time Energy and Power
Signals

The energy in a sequence x½n� is

E ¼
X1

k¼�1
x½k�j j2:ðx½k� can be real or complexÞ:

(8:3:25)

If the sequence x½n� is obtained from an analog

signal xðtÞ through sampling at ts second interval,

i.e., x½n� ¼ xðntsÞ then the approximate energy in

xðtÞ is tsðEÞ. A DT signal is an energy signal if and

only if 05E51. The normalized average power of a

DT signal is

P ¼ lim
N!1

1

2Nþ 1

XN
k¼�N

x½k�j j2: (8:3:26)

The signal x½n� is a power signal if and only if

05P51. If a sequence does not satisfy the proper-

ties of energy or a power signal, it is neither an

energy nor a power sequence.

Example 8.3.5Determine if the following signals are

energy or power signals or neither.

a: x1½n� ¼ u½n�; b: x2½n� ¼ :5nu½n�; c: x3½n� ¼ ejn:

Solution: a. It is a power signal since its energy

infinite, whereas its power is

P1 ¼ lim
N!1

1

2Nþ 1

XN
k¼�N

u½k�j j2

¼ lim
N!1

1

2Nþ 1
N ¼ 1

2
51: (8:3:27a)
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b. x2½n� is an energy signal since

E2 ¼
X1
n¼�1

:5nu½n� ¼
X1
n¼0

:5n ¼ 1

1� :25

¼ 4

3
51) P2 ¼ 0: (8:3:27b)

c. x3½n� is a power signal since

P3 ¼
1

2Nþ 1

XN
n¼�N

x3½n�j j2 ¼ 1

2Nþ 1

XN
n¼�N

ejn
�� ��2

¼ 151) E ¼ 1: (8:3:27c) &

Periodic sequences: A DT signal x½n� is periodic if

there is a positive integer N so that

x½nþN� ¼ x½n�  xN½n� for all n: (8:3:28)

The fundamental period of x½n� in (8.3.28) is the

smallest positive integer N. N0 is usually used for

the fundamental period. If there is no ambiguity, it

is common to use N for this. The subscript on xN½n�
gives the periodicity of theDT sequence. In addition

to the even and odd DT symmetric sequences, other

symmetries, such as half-wave symmetry can be

defined. A symmetric periodic DT sequence is

half-wave symmetric if

xN½n� ¼ �xN½n�
1

2
N�: (8:3:29)

The average value and the average power in xN½n�
with period N are

xave ¼
1

N

XN�1
k¼0

xN½k�; P ¼
1

N

XN�1
k¼0

xN½k�j j2: (8:3:30)

Here after, for simplicity, we will not show the sub-

script N on periodic x½n�.
For non-periodic signals, the limiting forms of the

above are

xave ¼ lim
M!1

1

2Mþ 1

XM
k¼�M

x½k�;

Pave ¼ lim
M!1

1

2Mþ 1

XM
k¼�M

x½k�j j2: (8:3:31)

All periodic and random signals are power signals.

Example 8.3.6 Show the complex exponential

sequence is periodic with period N0.

x½n� ¼ ejð2p=N0Þn ¼ ejO0n;O0 ¼ 2p=N0: (8:3:32)

Solution: It is a periodic sequence since

x½nþN0� ¼ ejð2p=N0ÞðnþN0Þ

¼ ejð2p=N0Þnejð2pÞ ¼ x½n�: (8:3:33)

There is an important difference between the con-

tinuous exponential function ejo0t and the discrete

exponential sequenceejO0n. In the continuous case,

the functions defined by ejo0t are distinct for dis-

tinct values of o0; whereas, the sequences ejO0n

that differ in frequency by a multiple of 2p are

identical since

ejðO0þ2pkÞn ¼ ejðO0Þn: (8:3:34) &

Example 8.3.7 Find the constraints on O0 so that

x½n� ¼ ejO0n is periodic. That is,

Solution: To be periodic,

x½nþN� ¼ ejO0ðnþNÞ ¼ ejO0nejO0N:

It is equal to x½n� only if ejO0N ¼ 1 or O0N ¼ mð2pÞ.
That is,

O0=2p ¼ m=M ða rational numberÞ: (8:3:35)

The fundamental period is the smallest integer

N0 ¼
N

m
¼ 2p

O0
: (8:3:36) &

Using Euler’s formula, we have the sinusoidal

sequence in terms of the exponential sequence

x½n� ¼ A cosðO0nþ yÞ ¼ ðA=2ÞejðO0nþyÞ

þ ðA=2Þe�jðO0nþyÞ:

The cosine function is periodic if ðO0=2pÞ is a

rational number. This can be generalized and state

that if x1½n� and x2½n� are periodic with periods

N01 and N02, respectively, then the sum of these

two sequences is periodic with period N0 if
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x½nþN0� ¼ x1½nþN0� þ x2½nþN0�

¼ x1½nþN01� þ x2½nþN02�:

This is true only when

mN01 ¼ kN02 ¼ N0: (8:3:37)

If so, then the fundamental period of x½n� is the least
common multiple (LCM) of N01 and N02, which is

divisible by both N01 and N02.

Example 8.3.8 Consider the following sequences

and determine if they are periodic. If a sequence is

periodic, give its fundamental period.

a: x1½n� ¼ ejðp=6Þn;

b: x2½n� ¼ ejð1=6Þn

c: x3½n� ¼ cosðp=6Þnþ cosðp=5Þn;
d: x½n� ¼ x1½n� þ x2½n�:

Solution: a: x1½n� ¼ ejðp=6Þn¼ ejO0n ) O0=2p¼ 1=12.

Since ðO0=2pÞ ¼ ðp=6Þð1=2pÞ ¼ ð1=12Þ is a rational
number, it follows that x1½n� is a periodic sequence

and the fundamental period is N0 ¼ ð2p=O0Þ ¼
ð12Þ.
b. x2½n� ¼ ejð1=6Þn ¼ ejO0n;O0 ¼ ð1=6Þ and O0=2p

¼ 1=12p. It follows that ðO0=2pÞ is not a rational

number and therefore x2½n� is not a periodic

sequence.

c. We note that cosðp=6Þn is periodic with period

N01 ¼ 12 and cosðp=5Þn is periodic with period

N02 ¼ 10. It follows that x½n� is periodic with period

N0 and is equal to the least common multiple of 10

and 12, which is N0 ¼ 60.

d. x4½n� is not periodic since one of the functions
in the sum x2½n� is not periodic. &

Notes: A continuous-time sinusoid cosðo0tþ yÞ is
always periodic, regardless of the value ofo0 and has

a unique waveform for each value of o0. A discrete-

time sinusoid cosðkO0 þ yÞ is periodic only if

ðO0=2pÞ is a rational number and does not have a

uniquewaveform for each valueO0.Note cosðO0kÞ ¼
cosððO0 þ 2pÞkÞ ¼ cosððO0þ4pÞkÞ ¼ � � � .

8.4 Discrete-Time Fourier Series

In Chapter 3, a set of continuous orthogonal basis

functions fejko0t; k ¼ 0;�1;�2; . . .g were used to

find the complex F-series. Similarly, a set of discrete

orthogonal basis sequences jk½n� over an integer

interval ½0;N� 1� can be defined. If any two

sequences jm½n� and jk½n� in the basis set satisfy

XN�1
n¼0

jm½n�j�k½n� ¼
0; m 6¼ k

ak 6¼ 0; m ¼ k

�
: (8:4:1)

then the set is an orthogonal discrete-time basis set.

Consider

jk½n� ¼ ejkð2p=NÞn; k; n ¼ 0; 1; 2; . . . ;N� 1: (8:4:2)

These sequences are functions of two variables

n and k and are periodic with period N in both the

variables n and k. That is,

jkþN½n� ¼ ejðkþNÞð2p=NÞn ¼ ejkð2p=NÞn ¼jk½n�
jk½nþN� ¼ ejkð2p=NÞðnþNÞ ¼ ejkð2p=NÞn ¼jk½n�: (8:4:3)

Using the summation formula in (C.6.1b) in Appen-

dix C, the set in (8.4.2) can be shown to be is an

orthogonal set, i.e.

XN�1
n¼0

jm½n�j�k½n� ¼
XN�1
n¼0

ejmð2p=NÞne�jkð2p=NÞn

¼
XN�1
n¼0

e�jð2p=NÞðk�mÞ; (8:4:4)

¼ 1� e�jðm�kÞð2p=NÞN

1� e�jðm�kÞð2p=NÞ
¼

0; m 6¼ k

N; m ¼ k

�
: (8:4:5)

Whenm ¼ k, the summation reduces toN. Let xs½n�
be an N point periodic sequence, i.e., xs½n� ¼ xs½nþ
N� for all n. Using the orthogonality condition in

(8.4.5), the discrete F-series coefficients can be

derived by expressing xs½n� in the following form in

terms of the discrete F-series coefficients Xds½k� and
solving for them.

xs½n� ¼
1

N

XN�1
m¼0

Xds½m�ejmð2p=NÞn: (8:4:6a)

Multiplying both sides of (8.4.6a) by ejkð2p=NÞn and

summing over n ¼ 0 to N� 1 and using (8.4.5)
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results in the discrete Fourier series (DFS) coeffi-

cient Xds½k�.

XN�1
n¼0

xs½n�e�jkð2p=NÞn ¼
1

N

XN�1
n¼0

XN�1
m¼0

Xds½m�e�jð2p=NÞnðk�mÞ;

¼
XN�1
m¼0

Xds½m�
XN�1
n¼0

e�jð2p=NÞðk�mÞ

" #

¼ NXds½k�;) Xds½k�

¼ 1

N

XN�1
n¼0

xs½n�e�jkð2p=NÞn: (8:4:6b)

The DFS coefficients, the corresponding inverse

discrete F-series (IDFS) values and the symbolic

relations are as follows:

Xds½k� ¼
1

N

XN�1
n¼0

xs½n�e�jkð2p=NÞn;

xs½n� ¼
XN�1
k¼0

Xds½k�ejkð2p=NÞn; (8:4:7)

xs½n� !DFS
Xds½k�: (8:4:8)

Note

Xds½kþN� ¼ 1

N

XN�1
n¼0

xs½n�e�jðkþNÞð2p=NÞn

¼ 1

N

XN�1
n¼0

xs½n�e�jkð2p=NÞn ¼ Xds½k�: (8:4:9)

The DFS coefficients Xds½k� and the data sequence

xs½n� are both periodic with period N.

Example 8.4.1 Let xs½n� is a real periodic sequence

with period N and the DFS coefficients are Xds½k�:
Show that Xds½k� ¼ X�ds½k� and Xds½N=2� are real

when N is even.

Solution: Consider

Xds½�k� ¼
1

N

XN�1
n¼0

xs½n�ejð2p=NÞnk

¼ 1

N

XN�1
n¼0

xs½n�e�jð2p=NÞnk
" #�

¼ X�ds½k�:

(8:4:10a)

Since the DFS coefficients are periodic, it can be

shown that

Xds½k� ¼ X�ds½N� k�: (8:4:10b)

For N even,

Xds½N=2� ¼
1

N

XN�1
n¼0

xs½n�e�jð2p=NÞnðN=2Þ;

¼ 1

N

XN�1
n¼0

xs½n�e�jðnpÞ ¼
1

N

XN�1
n¼0
ð�1Þnxs½n�:

(8:4:11)

That is, the DFS coefficient Xds½N=2� of a real per-

iodic sequence is real. &

Example 8.4.2 Determine the DFS coefficients for

the Nð¼ 4Þ point periodic sequence xs½n� given

below in (8.4.12) and verify the above results.

fxs½n�g ¼ f. . . ; xs½0�; xs½1�; xs½2�; xs½3�; xs½0�;x½1�;
x½2�; xs½3�; . . .g;

xs½0� ¼ 1; xs½1� ¼ 2; xs½2� ¼ 3; xs½3� ¼ 4: (8:4:12)

Solution: Noting O0 ¼ 2p=4 and ejð2p=4Þ ¼ ejp=2 ¼ j,

the DFS coefficients are as follows:

Xds½0� ¼ ð1=4Þð1þ 2þ 3þ 4Þ ¼ 2:5;

Xds½1� ¼
1

4

X3
n¼0

xs½n�e�jð1Þð2p=4Þn ¼
1

4

X3
n¼0
ð�jÞnx½n�

¼ 1

4
ð1� j2� 3þ j4Þ ¼ 1

2
ð�1þ jÞ;

Xds½2� ¼
1

4

X3
n¼0

xs½n�ð�jÞ2n

¼ 1

4
ð1� 2þ 3� 4Þ ¼ � 1

2
;

Xds½3� ¼
1

4

X3
n¼0

xs½n�ð�jÞ3n ¼
1

4
ð1þ j2� 3� 4jÞ

¼ � 1

2
ð1þ jÞ:

Since, N ¼ 4; an even integer and therefore Xds½2�
must be real and is true here. Third, from (8.4.10b)

Xds½1� ¼ X�ds½4� 1� ¼ X�ds½3�. Also, we can verify the

result for xs½0� and
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xs½0� ¼ Xds½0� þ Xds½1� þ Xds½2� þ Xds½3�
¼ 2:5� ð1=2Þ þ ð1=2Þð�1þ jÞ
� ð1=2Þð1þ jÞ ¼ 1: &

8.4.1 Periodic Convolution of Two
Sequences with the Same
Period

It can be shown that the periodic convolution of two

periodic sequences xs½n� and hs½n� is periodic with

the same period N and is

ys½n� ¼ xs½n� � hs½n� ¼
1

N

XN�1
k¼0

xs½k�hs½n� k�

¼ 1

N

XN�1
k¼0

hs½k�xs½n� k� ¼ ys½nþN�: (8:4:13)

Example 8.4.3 Let x1s½n� and x2s½n� be two periodic

sequences with period N and xs½n� ¼ x1s½n�x2s½n�:
Derive the expression for Xs½k� in terms of X1s½k�
and X2s½k�. Show that Xs½k� is a periodic sequence.

Solution: First note xis½n� ¼ xis½nþN�; i ¼ 1; 2 and

xs½n� ¼ xs½nþN�. The DFS expansions of the three

functions are, respectively, given by

xs½n� ¼
XN�1
k¼0

Xds½k�ejO0kn; x1s½n� ¼
XN�1
k¼0

Xd1s½k�ejO0kn;

x2s½n� ¼
XN�1
k¼0

Xd2s½k�ejO0kn;O0 ¼ 2p=N: (8:4:14)

The DFS coefficient

Xds½k� ¼
1

N

XN�1
n¼0

x1s½n�x2s½n�e�jO0kn

¼ 1

N

XN�1
n¼0

XN�1
m¼0

X1s½m�ejO0mn

" #
x2s½n�e�jO0kn;

¼
XN�1
m¼0

Xd1s½m�
1

N

XN�1
n¼0

x2s½n�e�jðk�mÞO0n

" #

¼
XN�1
m¼0

Xd1s½m�Xd2s½k�m�: (8:4:15)

In simplifying the above equation, the following

result is used:

1

N

XN�1
n¼0

x2s½n�e�jðk�mÞO0n ¼ X2s½k�m�:

From (8.4.15), the discrete frequency domain convo-

lution and its symbolic form are

Xds½k� ¼
XN�1
m¼0

Xd1s½m�Xd 2s½k�m�

¼
XN�1
l¼0

Xd1s½k� l�Xd 2s½l�; (8:4:15)

Xds½k� ¼ Xd1s½k� � Xd 2s½k�: (8:4:16)

Noting that Xd1s½k� ¼ Xd1s½kþN� and Xd 2s½k� ¼
Xd 2s½kþN�, it follows that

Xds½kþN� ¼
XN�1
m¼0

Xd1s½m�Xd 2s

½kþN�m� ¼ Xds½k�: ð8:4:17Þ &

8.4.2 Parseval’s Identity

The generalized Parseval’s identity of sequences

x1s½n� and x1s½n� is

1

N

XN�1
n¼0

xd1s½n�xd2s½n� ¼
XN�1
m¼0

Xd1s½m�Xd2s½�m�: (8:4:18a)

This follows from

Xds½k� k¼0j ¼ 1

N

XN�1
n¼0

x1s½n�x2s½n�e�jO0kn
k¼0j

¼
XN�1
m¼0

Xd1s½m�Xd2s½k�m� k¼0j :

The Parseval’s identity of a single sequence can be

obtained by using x2s½n� ¼ x�1s½n� ¼ xs½n� in (8.4.18a)

resulting in

1

N

XN�1
n¼0

xs½n�j j2¼
XN�1
k¼0

Xds½k�j j2: (8:4:18b)

Example 8.4.4 Verify the Parseval’s identity using

the sequence in Example 8.4.2.
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Solution:

1

N

XN�1
n¼0

xs½n�j j2¼ 1

4
ð12 þ 22 þ 32 þ 42Þ ¼ 15

2
;

¼
XN�1
k¼0

Xds½k�j j2¼ð2:5Þ2 þ 1

4
ð2Þ þ 1

4
þ 1

4
ð2Þ ¼ 15

2
:

&

8.5 Discrete-Time Fourier Transforms

Computation of the continuous F- and the inverse

F-transforms involves integrals and analytical com-

putation is possible only in a few cases. Also, the

signal may be available in the form of a waveform

instead of an analytical expression or in terms of a

sequence. The discrete-time Fourier transform of a

sequence is derived from the discrete F-series by

taking the number of sample points in the discrete

F-series to infinity. Presentation is intuitive and fol-

lows that of Haykin and Van Veen (2003).

8.5.1 Discrete-Time Fourier Transforms
(DTFTs)

Let x½n� be a non-periodic sequence obtained from a

single period of the periodic sequence centered at

the origin.

x½n� ¼
xs½n�; nj j �M

0; nj j4M

�
: (8:5:1)

That is, one period of the periodic sequence is

extracted and then it is padded with zeros outside

of the period. In (8.5.1), asM increases, the periodic

replicates of x½n� move further and further away

from the origin. The discrete-time F-series represen-

tation of the periodic signal and the DFS coeffi-

cients are as follows:

xs½n� ¼
XM

k¼�M
Xds½k�ejkO0n;

Xds½k� ¼
1

2Mþ 1

XM
n¼�M

xs½n�e�jO0nk; O0 ¼
2p

2Mþ 1
:

(8:5:2)

From (8.5.1),

xs½n� ¼ x½n�; nj j �M and x½n� ¼ 0; n >M: (8:5:3)

Using (8.5.3), the second equation in (8.5.2) can be

expressed in terms of x½n� as

Xds½k� ¼
1

2Mþ 1

X1
n¼�1

x½n�e�jO0nk;

O0 ¼
2p

2Mþ 1
: (8:5:4)

Now define a continuous periodic function of fre-

quency with period equal to 2p, XðejOÞ; so that the

scaled samples of this function are the discrete-time

Fourier series.

XðejOÞ ¼
X1

n¼�1
x½n�e�jnO; 1

2Mþ 1
XðejOÞ O¼kO0

j

¼ 1

2Mþ 1

X1
n¼�1

x½n�e�jnkO0 : (8:5:5)

For real sequences, with O0 ¼ 2p=ð2Mþ 1Þ, we

have

xs½n� ¼
1

2p

XM
k¼�M

XðejkO0ÞejkO0nO0: (8:5:6)

As M increases, the spacing between the harmonics

in the discrete Fourier series decreases (see (8.5.4)).

In the limit, as M!1, dO ¼ O0 and O ¼ kO0 is

some value on the frequency axis. The summation

becomes an integral and

x½n� ¼ 1

2p

ðp
�p

XðejOÞejnOdO; (8:5:7)

lim
M!1

ð�ÞMO0 ¼ lim
M!1

2pð�ÞM
2Mþ 1

¼ � p: (8:5:8)

The discrete-time Fourier transform (DTFT) and its

inverse along with their symbolic relations are as

follows:

XðejOÞ ¼
X1
n¼�1

x½n�e�jnO;

1

2p

ðp
�p

XðejOÞejnOdO ¼ x½n�; (8:5:9)
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x½n� !DTFT
XðejOÞ ¼ XðejOÞ

�� ��ejyðOÞ;
Ffx½n�g ¼ XðejOÞ: (8:5:10)

The transform XðejOÞ of a non-periodic sequence is

the discrete-time Fourier spectrum or the spectrum

of the sequence x½n�. Some authors use

XðOÞ or XðjOÞ instead of XðejOÞ. XðejOÞ is the pre-
ferred notation, as it explicitly shows that the spec-

trum is periodic and it will be used here. As in the

continuous case, the DTFT is in general complex.

The quantities XðejOÞ
�� �� and yðOÞ ¼ ffXðejOÞ are the

amplitude (ormagnitude) and phase (or angle) spec-

tra of the sequence x½n�. The DTFT is valid for both

real and complex sequences and has interesting

properties, similar to the properties of the continu-

ous F-transform. For a real sequence x½n�, its ampli-

tude spectrum is even and the phase spectrum is

odd, which follows directly from the definition. A

sufficient condition for the existence of XðejOÞ is the
sequence x½n� is absolutely summable. That is,

X1
n¼�1

x½n�j j51: (8:5:11)

Note the unit step sequence does not satisfy (8.5.11).

8.5.2 Discrete-Time Fourier Transforms
of Real Signals with Symmetries

A real sequence x½n� can be written in terms of its

even and odd parts xe½n� and x0½n� (see (8.3.9c)).

Making use of the even and odd sequence proper-

ties, the DTFT of these can be written as

xe½n� !DTFT
xe½0� þ 2

X1
n¼1

xe½n� cosðnOÞ; (8:5:12a)

x0½n� !DTFT
�j2

X1
n¼1

x0½n� sinðnOÞ: (8:5:12b)

That is, if a real sequence is even, then its DTFT is

real and even and if it odd, then its DTFT is pure

imaginary and odd. The DTFT of an arbitrary real

sequence x½n� is

XðejOÞ ¼
X1
n¼�1

x½n�e�jnO

¼
X1
n¼�1

xe½n�e�jnOþ
X1
n¼�1

x0½n�e�jnO; (8:5:13)

¼ x½0� þ 2
X1
n¼1

xe½n� cosðnOÞ
" #

þ ð�1Þj2
X1
n¼1

x0½n� sinðnOÞ
" #

¼ ReðXðejOÞÞ

þ jImðXðejOÞÞ:

Example 8.5.1 Find the DTFT of the following

sequences xi½n�; i ¼ 1; 2. Sketch the responses for

Part a. and identify the important values for a ¼ :8.

a: x1½n� ¼ anu½n�; aj j51ðright-side sequenceÞ
b: x2½n� ¼ �anu½�n� 1�ðleft-side sequenceÞ:

(8:5:14)

Solution: Noting that u½n� ¼ 0; n50 and u½n� ¼ 1;

n � 0, and using (8.5.9), we have

a:X1ðejOÞ¼
X1

n¼�1
x1½n�e�jnO¼

X1
n¼0
ðae�jOÞn¼ 1

1�ae�jO

¼ 1

ð1�acosðOÞÞþ jasinðOÞ: (8:5:15a)

Themagnitude and the phase responses are periodic

with period 2p and

X1ðejOÞ
�� �� ¼ 1

½1þ a2 � 2a cosðOÞ�1=2
;

ffX1ðejOÞ ¼ � tan�1
a sinðOÞ

1� a cosðOÞ

� �
: (8:5:15b)

Figure 8.5.1 gives these plots for one period, namely for

0 � O52p. We could plot these for �p � O5p as

they are periodic. The amplitude response is even and

phase response is odd. The maximum and the mini-

mum values of the amplitude response for a ¼ 0:8

can be seen by noting cosðOÞj j � 1. The maximum

and minimum values are located at O ¼ 2 kp
and O ¼ ð2 kþ 1Þp. The values are given by

1=ð1� aÞ ¼ 5 and 1=ð1þ aÞ ¼ 0:5555, respectively.

The responses are plotted in Fig. 8.5.1 for

0 � O52p. The phase response is a bit more compli-

cated, as the arctangent functions is involved. First
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ffX1ðe�jkpÞ ¼ 0; k ¼ 0;�1;�2; ::::

A simple way to find the peak phase angle is by

MATLAB. For a ¼ :8; the peak amplitudes and the

phases are equal to 5 and 0.932 rad/s, respectively.

b:X2ðejOÞ¼�a�1ejO�a�2ej2O����¼
X1
n¼�1

x2½n�e�jnO

¼�a�1ejO½1þa�1ejOþa�2ej2Oþ����

¼ �a�1ejO
ð1�a�1ejOÞ ; a

�1ejO
�� ��51!X2ðejOÞ

¼ 1

1�ae�jO
; aj j41: (8:5:15c)

The transforms have the same forms, except the

constraints on the constant 0a0 are different. To

find the time sequence from the transform, i.e. the

inverse transform, we need to know whether the

sequence is a right-side or a left-side sequence. &

The group delay tðOÞ of a sequence x½n� can be

defined using its transform as follows:

x½n� !DTFT
XðejOÞ ¼ XðejOÞ

�� ��ejfðOÞ;
tðOÞ ¼ �dfðOÞ=dO: (8:5:16)

SincefðOÞ is periodic with period 2p, so is the group
delay tðOÞ.

Time limited sequences: Linear phase is an impor-

tant property in the digital filter design. In the follow-

ing wewill consider the expressions for theDTFTof a

time limited real sequences h½n� ¼ 0; n4N; n50 that

have the four conditions stated below. We further

assume that the samplesh½n� have a. an even symmetry

about the mid point of the sequence and b. an odd

symmetry about the mid point of the sequence. &

Sequences of interest (see Fig. 8.5.2):

Type 1 sequence: N–odd: Sequence with an even

symmetry over its mid point.

Fig. 8.5.1 (a) X1ðejOÞ
�� ��,

(b) ffX1ðejOÞ

Fig. 8.5.2 Four sequences,
(a) Type 1, (b) Type 2,
(c) Type 3, (d) Type 4
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Type 2 sequence: N–even: Sequence with an even

symmetry over its mid point.

Type 3 sequence: N–odd: Sequence with an odd

symmetry over its mid point.

Type 4 sequence: N–even: Sequence with an odd

symmetry over its mid point.

1. Sequence has an even symmetry if

h½n� ¼ h½N� 1� n� (8:5:17)

2. Sequence has an odd symmetry if

h½n� ¼ �h½N� 1� n� (8:5:18)

We will consider Type 2 and 3 sequences and the

other two are left as exercises.

Type 2 sequence: The even symmetry h½n� ¼ h½N�
1� n� allows us to write

HðejOÞ¼
XN=2�1
n¼0

h½n�e�jnOþ
XN�1
n¼N=2

h½n�e�jnO

¼
XN=2�1
n¼0

h½n�e�jnOþ
XðN=2Þ�1
m¼0

h½N�1�m�e�jOðN�1�mÞ:

¼
XðN=2Þ�1
n¼0

h½n� e�jnOþejnOe�jðN�1ÞO
n o

;

¼
XðN=2Þ�1
n¼0

2h½n�cosðððN�1Þ=2Þ�nÞO
" #

e�jOðN�1Þ=2:

A2ðejOÞe�j2pððN�1Þ=2Þ: (8:5:19)

We have made use of the following in simplifying

the above expression:

e�jnO þ ejnOe�jðN�1ÞO
n o

¼ e�jðN�1ÞO=2 ej½ðN�1Þ=2�n�O þ e�j½ðN�1Þ=2�n�O
n o

¼ 2 cos½ðN� 1Þ=2� n�O:

Note A2ðejOÞ is real and the phase angle is

�fðN� 1Þ=2gO, which is linear with respect to O.
Also, ðN� 1Þ=2 is not an integer since N is even.

Type 3 sequences: The DTFT of this sequence

can be determined by noting that N is odd and the

sequence has an odd symmetry over its mid point

implying the value of the sequence in the middle is

zero. These result in

h½n� ¼ �h½N� 1� n� and h½ðN� 1Þ=2� ¼ 0: (8:5:20)

Splitting the sequence h½n� into fh½0�; h½1�; :::;
h½ðN� 3Þ=2�g, h½ðN� 1Þ=2� ¼ 0 and fh½ðNþ1Þ=2Þ�;
:::h½N� 1�g, the transform can be expressed as

HðejOÞ ¼
XN�1
n¼0

h½n�e�jnO ¼
XðN�3Þ=2
n¼0

h½n�e�jnO

þ
XN�1

n¼ðNþ1Þ=2
h½n�e�jOn: (8:5:21)

XN�1
n¼ðNþ1Þ=2

h½n�e�jOn ¼ �
XðN�3Þ=2
m¼0

h½m�e�jOðN�1�mÞ

¼ �
XðN�3Þ=2
n¼0

h½n�e�jOðN�1�nÞ:

Using this result in (8.5.21), we have

HðejOÞ ¼
XðN�3Þ=2
n¼0

h½n�e�jnO �
XðN�3Þ=2
n¼0

h½n�e�jOðN�1�nÞ

¼ 2j
XðN�3Þ=2
n¼0

h½n� e�jOn � e�jOðN�1�nÞ

2j

� �
;

¼ 2j
XðN�3Þ=2
n¼0

h½n�e�jðN�1Þ=2

ejO½ððN�1Þ=2Þ�n� � e�jO½ððN�1Þ=2Þ�n�

2j

� �
;

¼ j 2
XðN�3Þ=2
n¼0

sin½ðN� 1

2
� nÞO�

" #
e�jOðN�1Þ=2

¼ A3ðejOÞðje�jOðN�1Þ=2Þ: (8:5:22)

The phase angle ff je�jOðN�1Þ=2

 �

is linear. Also,

A 3ðejOÞ is real and odd symmetric about O ¼ 0

and O ¼ p and

A3ðejOÞ ¼
XðN�3Þ=2
n¼0

sin
N� 1

2
� n

� �
O

� �
: (8:5:23)
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Summary: Type 1 sequence:

HðejOÞ¼ h
N�1
2

� �
þ
XðN�3Þ=2
n¼0

2h½n�cos N�1
2
�n

� �
O

� �( )

e�jOðN�1Þ=2¼A1ðejOÞe�jOðN�1Þ=2: (8:5:24)

A1ðejOÞ : Even symmetric about O ¼ 0 and O ¼ p;

Hðej0Þ ¼ h½ðN� 1Þ=2� þ
XðN�3Þ=2
n¼0

2 h½n�:

Type 2 sequence:

HðejOÞ¼
XN=2�1
n¼0

2h½n�cos½nO�ððN�1Þ=2ÞO�
" #

e�jOðN�1Þ=2

¼A2ðejOÞe�jOðN�1Þ=2; (8:5:25)

Hðej 0Þ ¼
XðN=2Þ�1
n¼0

2 h½n�:

A2ðejOÞ: Even symmetric about O ¼ 0 and is odd

symmetric about O ¼ p! HðejpÞ ¼ 0.

Type 3 sequence:

HðejOÞ ¼ j 2
XðN�3Þ=2
n¼0

h½n� sin½ððN� 1Þ=2Þ � nÞO�
" #

e�jOðN�1Þ=2 ¼ A3ðejOÞejððp=2Þ�ðN�1ÞO=2Þ; (8:5:26)

A3ðejOÞ : Odd symmetric about O ¼ 0 and

O ¼ p! Hðej0Þ ¼ 0 and HðejpÞ ¼ 0:

Type 4 sequence:

HðejOÞ ¼ 2
XðN=2Þ�1
n¼0

h½n� sin½nO�ððN� 1Þ=2ÞO�
" #

je�jOðN�1Þ=2 ¼ A4ðejOÞejðp=2�ðN�1ÞO=2Þ: (8:5:27)

A4ðejOÞ : Odd symmetric about O ¼ 0 and even

symmetric about O ¼ p! Hðej0Þ ¼ 0: &

These finite length sequences will be useful in

studying finite impulse response (FIR) filters in

Chapter 9 are considered. Specifications are given

in terms of A iðejOÞ and h i½n� can be determined

given AiðejOÞ. &

8.6 Properties of the Discrete-Time
Fourier Transforms

The DTFT of a sequence and its inverse were given

before and are (see (8.5.9)):

XðejOÞ ¼
X1

n¼�1
x½n�e�jnO; x½n�

¼ 1

2p

ðp

�p

XðejOÞejOndO; x½n�  !DTFT
XðejOÞ:

(8:6:1)

8.6.1 Periodic Nature of the Discrete-Time
Fourier Transform

The F-transform of the discrete-time signal x½n� is
periodic with period 2p. That is,

XðejðOþ2pÞÞ ¼ XðejOÞ: (8:6:2)

The continuous-time transform is defined in terms

of o in radians/second over the entire range

�15o51. When the analog signals are sampled

at a sampling frequency of fs Hertz, the spectrum of

the digitized signal is periodic with period

os ¼ 2pfs ¼ ð2p=tsÞ. The normalized frequency

O ¼ ð2pf=fsÞ defines the digital frequency.

Notes: In the continuous-time domain, periodic

signals are expressed in terms of discrete F-series

coefficients. In the discrete-time domain, the sam-

ples xðntsÞ are located at discrete times and the

DTFT is continuous and periodic with period 2p.
The interest is in the digital frequency b and Oj j � p
or in the range 0 � O52p. &

Example 8.6.1 Find the DTFT of the sequence

x½n� ¼ 1; 0 � n5N. Give the expressions for the

magnitude and the phase characteristics of the
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transform. Sketch the magnitude and phase

responses for 05O52p assuming N ¼ 21:

Solution: The transform, its amplitude and phase

responses are as follows:

XðejOÞ ¼
XN�1
n¼0

e�jOn ¼ 1� e�jOn

1� e�jO
;
X1
n¼�1

x½n�j j ¼ N51;

(8:6:3)

¼ e�ON=2

e�jO=2
ðejON=2 � e�jON=2Þ=2j
ðejO=2 � e�jO=2Þ=2j

¼ e�jOðN�1Þ=2
sinðON=2Þ
sinðO=2Þ ; (8:6:4)

XðejOÞ
�� �� ¼ sinðON=2Þj j

sinðO=2Þj j ; ffXðe
jOÞ

¼ �ðN� 1ÞO=2þ arg
sinðON=2Þ
sinðO=2Þ

� �
: (8:6:5)

The amplitude XðejOÞ
�� �� is even and the phase

ffXðejOÞ is odd. Both are periodic with period 2p.
At O ¼ 0, the function is indeterminate and

lim
O!0

sinðON=2Þ
sinðO=2Þ ¼ N: (8:6:6)

Note XðejOÞ ¼ 0 when O ¼ 2 kp=N; k 6¼ 0. The spa-

cing between zero crossings is (2p=NÞ. The phase

angle corresponding to the main lobe is

�ðN� 1ÞO=2 resulting in a value of �ðN� 1Þp=N
at O ¼ ½2p=N��. At O ¼ ð2p=NÞþ, the phase angle

jumps by p rad reaching a value of p=N since

sinðON=2Þ= sinðO=2Þ is positive in the main lobe

and negative in the first side lobe. This process is

repeated and at O ¼ 2p, the phase angle takes the

value of 0 completing one period. The sequence

h½n� and 20log HðejOÞ
�� ��, 0 � O � p are shown in

Fig. 8.6.1 for N ¼ 21. The side lobes of the ampli-

tude response become smaller as O goes away from

p on both of its sides. The peak of the first side lobe

appears near the middle of the first side lobe and is

approximately equal to –13.29 dB. &

Notes: The amplitude spectrum of a typical win-

dow is shown in Fig. 8.6.2. It is even and 2p periodic

and the frequency interval of interest is 0 � O � p.
The windows of interest have linear phase. The high

frequency decay rate of the envelope of the spec-

trum side lobes tells how fast the spectrum envelope

decays after the first zero crossing.

Window parameters: (See Fig. 8.6.2):

GP = Peak gain of main lobe

¼ N;Gp=N ¼ 1 ¼ 0 dB

Gs = Peak side lobe gain,

Gs=Gp 	 0:2172 ¼ �13:3 dB
OM = Half-width of main lobe = 2p=N (8.6.7)

O3 ¼ 3 dB = half-width, W3=WM ¼ 0:44

O6 ¼ 6 dB = half-width, W6=WM ¼ 0:6

Os = Half-width of main lobe to reach

Ps;Ws=WM ¼ 0:81

High-frequency attenuation = 20dB=decade

8.6.2 Superposition or Linearity

Assuming DTFT½xi½n�� ¼ XiðejOÞ and a0is are con-

stants, the linearity property is

XM
i¼1

aixi½n� !
DTFT XM

i¼1
aiXiðejOÞ: (8:6:8)
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8.6.3 Time Shift or Delay

This property states

x½n� n0� !
DTFT

e�jOn0XðejOÞ: (8:6:9)

This follows from

Ffx½n� n0�g ¼
X1

n¼�1
x½n� n0�e�jnO

¼
X1

m¼�1
x½m�e�jðmþn0ÞO

¼
X1

m¼�1
x½m�e�jmO

" #
e�n0O:

Example 8.6.2 Show that the following relationship

is true:

x½n� ¼ ejO0nXðejOÞ ¼ 2pdðO�O0Þ; O0j j � p: (8:6:10)

Solution: This can be shown using the sifting prop-

erty of the impulse function.

x½n� ¼ 1

2p

ð1

�1

2pdðO�O0ÞejnOdO¼ ejnO O¼O0
¼j ejnO0 : &

Example 8.6.3 Find the DTFTs of the following

functions using the pair in (8.6.10) and the shift

property.

a: x1½n� ¼ 1; b: x2½n� ¼ cosðO0nÞ; O0j j � p: (8:6:11)

Solution: a. Using O0 ¼ 0 in (8.6.10), we have the

result as follows:

x1½n� ¼ 1 !DTFT
2pdðOÞ: (8:6:12)

b. Using the Euler’ formula and (8.6.10) results in

x2½n� ¼cosðO0nÞ¼ :5ðeþjO0nþ e�jO0nÞ !DTFT
pdðO�O0Þ

þpdðOþO0Þ¼X2ðejOÞ: (8:6:13) &

8.6.4 Modulation or Frequency Shifting

The dual of time shifting is the frequency shifting

and is given below

ejnO0x½n�  !DTFT
XðejðO�O0ÞÞ: (8:6:14a)

An extension of this is the modulation in time and

the corresponding transform pair is

x½n� cosðnO0Þ ¼ x½n� e
jnO0 þ e�jnO0

2

� �
 !DTFT

1

2
XðejðO�O0ÞÞ þ XðejðOþO0ÞÞ
h i

:

(8:6:14b)

8.6.5 Time Scaling

Time scaling deals with the DTFT of x½cn�, where
‘‘C’’ is an integer. For example, consider y½n� ¼ x½2n�,
then y½n� has only the even samples of x½n�. This is
decimation (see Section 8.3.1). To simplify the nota-

tion define the following sequence assumingm as an

integer:

P

0.707P

0.5P

PSL

Ω
High-frequency decay

0
Ω

π

High-frequency decay

ΩMΩ3 Ω6 ΩS

DTFT magnitude spectrum of a typical windowFig. 8.6.2 Amplitude
spectrum of typical windows
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xðmÞ½n� ¼
x½n=m� ¼ x½k�; n ¼ km; n and k are integers

0; n 6¼ km:

�
(8:6:15)

The time scaling property is

xðmÞ½n� !
DTFT

XðejmOÞ: (8:6:16)

This can be seen from

F½xðmÞ½n�� ¼
X1
n¼�1

xðmÞ½n�e�jnO ¼
X1

k¼�1
x½km�e�jkðmOÞ

¼ XðejmOÞ ðperiodic with period 2p=mÞ:

It illustrates the inverse relationship between time

and frequency. The signal spreads in time ðm > 1Þ
corresponds to its transform being compressed.

Time reversal: A special class of time scaling is

time reversal and it results in reversal in frequency.

That is,

F½x½�n�� ¼
X1

n¼�1
x½�n�e�jnO

¼
X1

m¼�1
x½m�e�jmð�OÞ ¼ Xðe�jOÞ: (8:6:17)

Note that

F½x½�n��j j ¼ Xðe�jOÞ
�� �� ¼ XðejOÞ

�� �� ¼ F½x½n��j j:

8.6.6 Differentiation in Frequency

This property is

nx½n� !DTFT
j
dXðejOÞ
dO

: (8:6:18)

This is shown by

dXðejOÞ
dO

¼ d

dO

X1
n¼�1

x½n�e�jnO
" #

¼
X1
n¼�1

ð�jnÞx½n�½ �e�jnO:

Example 8.6.4 Derive the DTFT of the function

y½n� ¼ ðnþ 1Þanu½n�; aj j51 using

anu½n� !DTFT 1

1� ae�jO
; aj j51; a 6¼ 0: ð8:6:19Þ

Solution: From the differentiation property,

y½n� ¼ nanu½n� þ anu½n� !DTFT
j
dð1=ð1� ae�jOÞ

dO

þ 1

1� ae�jO
¼ 1

ð1� aejOÞ2
;

) y½n� ¼ ðnþ 1Þanu½n� !DTFT 1

ð1� ae�jOÞ2
;

aj j51; a 6¼ 0:

(8:6:20) &

Example 8.6.5 Find the DTFT of x½n� ¼ a nj j;
aj j51; a 6¼ 0.

Solution: x½n� can be expressed as a sum of the

right-and left-side sequences in the form

x½n� ¼ anu½n� þ a�nu½�n� � d½n�. The transforms of

each of these are

anu½n� !DTFT 1

1� ae�jO
; (8:6:21a)

a�nu½�n� !DTFT 1

1� aejO
; (8:6:21b)

d½n� !DTFT
1: (8:6:21c)

Note the time reversal property of the DTFT was

used to find the DTFT of a�nu½�n�. With these and

making use of the linearity property of the DTFT,

we have the DTFT pair

x½n� ¼ a nj j !DTFT 1

1� ae�jO

þ 1

1� aejO
� 1; aj j51; a 6¼ 0: (8:6:21d) &

8.6.7 Differencing

The differencing property stated below can be

shown using the linearity and the time-shifting

properties of the DTFT.
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x½n� � x½n� 1� !DTFT
ð1� e�jOÞXðejOÞ: (8:6:22)

Example 8.6.6 Find the DTFTs of the sequences

a: x1½n� ¼ d½n� ðbythe directmethodÞ;
b: x2½n� ¼ u½n�
c: x3½n� ¼�u½�n�1�; d: x4½n� ¼ sgn½n�:

Solution: a.

Ffd½n�g ¼
X1
n¼�1

d½n�e�jnO ¼ 1: (8:6:23a)

b. LetUðejOÞ ¼ DTFTfu½n�g. The unit step sequence

is a limiting form of the sequence anu½n� with a! 1.

Since u½n� is not absolutely summable, the transform

of the unit step sequence cannotbeobtainedby taking

the limit of the transform as a! 1 in (8.6.19). Noting

that d½n� ¼ u½n� � u½n� 1�, and defining

F½u½n�� ¼ UðejOÞ, we have

F½d½n�� ¼ 1 ¼ UðejOÞ � e�jOUðejOÞ
¼ ð1� e�jOÞUðejOÞ: (8:6:23b)

Since ð1� e�jOÞ O¼0 ¼ 0j , it follows that the trans-

form of the unit step sequence will have an impulse,

in addition to the transform in (8.6.21a) with a ¼ 1,

resulting in

u½n� !DTFT
UðejOÞ ¼ AdðOÞ þ 1

1� e�jO

¼ pdðOÞ þ 1

1� e�jO
; Oj j � p:

(8:6:24)

The average value of the unit step sequence is (1/2)

and its transform is pdðOÞ. Example 4.4.10 illu-

strated the continuous F-transform of a unit step

function.

c. The DTFT of x3½n� can be determined by

� u½�n� 1� ¼ u½n� � 1 !DTFT
pdðOÞ þ 1

1� e�jO

�2pdðOÞ ¼ �pdðOÞ þ 1

1� e�jO
: (8:6:25)

d: F½sgn� ¼ F½u½n� � u½�n�� ¼ pdðOÞ þ 1

1� e�jO

� pdð�OÞ � 1

1� ejO
¼ 1

1� e�jO
� 1

1� ejO
:

(8:6:26)

Note the transform is given by the difference

between a complex function and its conjugate illus-

trating the transform of an odd function and is

imaginary. &

Inverse discrete-time Fourier transform (IDTFT):

Finding the inverse transform

x½n� ¼ 1

2p

ðp
�p

XðejOÞejOndO:

is difficult, as it involves complex integration. Sim-

ple cases are illustrated in Example 8.6.7. Alternate

methods suggested below are preferable.

1. Since XðejOÞ is periodic, use the F-series of

this function (i.e., in the frequency domain O) and
then find the corresponding Fourier series coeffi-

cients in the time domain. These methods are use-

ful in designing filters and are discussed in Chapter

9.

2. z-Transforms, discussed in the next chapter, can

be used to find the IDTFTs.

Example 8.6.7 Find the inverse DTFTs of the peri-

odic functions with period 2p

a: XðejOÞ ¼ 2pdðO� O0Þ;

b: XðejOÞ ¼
1; Oj j �W

0; W5 Oj j � p

�
: ð8:6:27Þ

c: Use Part b: to find the DTFTs of the sequences

x1½n� ¼ cosðO0nÞ and x2½n� ¼ sinðO0nÞ:

Solution: a. The inverse transform is

x½n� ¼ 1

2p

ðp
�p

XðejOÞejOndO

¼
ðp
�p

dðO� O0ÞejOndO ¼ ejnO0 ;
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) x½n� ¼ ejnO0 !DTFT
2pdðO� O0Þ;

� p5O � p;

b:x½n�¼ 1

2p

ðp

�p

XðejOÞejnOdO¼ 1

2p

ðW

�W

ejnOdO¼sinðWnÞ
pn

;

) x½n� ¼ sinðWnÞ
pn
 !DTFT 1; Oj j �W

0;W5 Oj j � p

�
: (8:6:29)

c. Using Euler’s formula and the results in Part a,

the DTFTs of the periodic signals are as follows

with period 2p:

x1½n� ¼ cosðO0nÞ ¼ :5ðejO0n þ e�jO0nÞ !DTFT

p½dðO� O0Þ þ dðOþ O0Þ�
¼ X1ðejOÞ;�p5O0 � p; (8:6:30)

x2½n� ¼ sinðO0nÞ ¼ ð1=2jÞðejO0n � e�jO0nÞ !DTFT

� jp½dðO� O0Þ � dðOþ O0Þ�
¼ X2ðejOÞ;�p5O0 � p: (8:6:31) &

8.6.8 Summation or Accumulation

The accumulation property is the discrete-time

counterpart of the integration in the continuous

domain. The summation property is shown later in

Section (8.6.11) and is

Xn
m¼�1

x½m� !DTFT
pXðej0ÞdðOÞ

þ 1

1� e�jO
XðejOÞ; Oj j � p: (8:6:32)

Example 8.6.8 Find the DTFT of u½n� using the

accumulation property.

Solution: Noting that u½n� ¼
Pn

m¼�1
d½m� (see (8.3.8b)),

d½n� !DTFT

1, we have

u½n� ¼
Xn

m¼�1
d½m� !DTFT

pdðOÞ

þ 1

ð1� e�jOÞ ¼ UðejOÞ; Oj j � p: (8:6:33) &

8.6.9 Convolution

Discrete-time convolution property of x1½n� and
x2½n� is as follows:

y½n� ¼ x1½n� � x2½n� ¼
X1

k¼�1
x1½k�x2½n� k�

¼
X1

k¼�1
x1½n� k�x2½k� ¼ x1½n� � x2½n�; (8:6:34)

y½n� ¼ x1½n� � x2½n� ¼
X1

k¼�1
x1½k�x2½n� k�

¼ !DTFT
X1ðejOÞX2ðejOÞ: (8:6:35)

As in the continuous case the time-domain

convolution results in the multiplication in

the frequency domain and this property

plays an important role in discrete-time linear

systems. Using the definition of the transform,

we have

YðejOÞ ¼ F
Xn

k¼�1
x1½k�x2½n� k�

( )

¼
X1

n¼�1

Xn
k¼�1

x1½k�x2½n� k�
 !

e�jOn;

¼
X1

k¼�1
x1½k�

X1
n¼�1

x2½n� k�e�jOn
 !

¼
X1

k¼�1
x1½k�X2ðejOÞe�jOk;

¼ X2ðejOÞ
X1

k¼�1
x1½k�e�jOk

" #

¼ X2ðejOÞX1ðejOÞ: (8:6:36)
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Convolution in discrete-time corresponds to multi-

plication in frequency. The accumulation property

given in (8.6.32) can now be shown using the con-

volution theorem and F½u½n�� ¼ pdðOÞþ
½1=ð1� e�jOÞ�. That is,

x½n� � u½n� ¼
X1

k¼�1
x½k�u½n� k�

¼
Xn

k¼�1
x½k� !DTFT

XðejOÞUðejOÞ

¼ XðejOÞ pdðOÞ þ 1

ð1� e�jOÞ

� �

¼ pXðej0Þ þ 1

ð1� e�jOÞXðe
jOÞ; Oj j � p:

(8:6:37)

Example 8.6.9 Using the DTFTs of the sequences

given below (see (8.6.21a)), find the convolution

y½n� ¼ x1½n� � x2½n� using the convolution

property.

x1½n� ¼ anu½n�; x2½n�
¼ bnu½n�; 05 aj j; bj j51; a: a 6¼ b; b: a ¼ b:

(8:6:38)

Solution: a. The DTFTs of the two sequences are

given by

X1ðejOÞ ¼ Ffx1½n�g ¼
1

1� ae�jO
; X2ðejOÞ

¼ Ffx2½n�g ¼
1

1� be�jO
;

YðejOÞ ¼ X1ðejOÞX2ðejOÞ

¼ 1

ð1� ae�jOÞð1� be�jOÞ : (8:6:40)

Using the partial fraction expansion, we have

YðejOÞ ¼ �a
ðb� aÞð1� ae�jOÞ þ

b
ðb� aÞð1� be�jOÞ :

(8:6:41)

Finding the partial fraction expansion in terms of

p ¼ e�jO would make it a bit easier. Using the

DTFT pair in (8.6.21a), the time sequence is

y½n� ¼ �a
b� a

anu½n� þ b
b� a

bnu½n�

¼ anþ1 � bnþ1

a� b
u½n�; a 6¼ b; aj j; bj j51:

(8:6:42)

b. From (8.6.20), we have y½n� ¼ ðnþ 1Þanu½n�;
aj j51. &

8.6.10 Multiplication in Time

Dual to the convolution in time is multiplication in

time and

y½n� ¼ x1½n�x�2½n� !
DTFT 1

2p
½X1ðejOÞ � X2ðe�jOÞ�

¼ YðejOÞ: (8:6:43)

Periodic convolution:

1

2p
X1ðejOÞ � X2ðe�jOÞ

¼ 1

2p

ð
2p

X1ðejaÞX2ðe�jðO�aÞÞda: (8:6:44)

The transform of the product of two sequences is

the periodic convolution of the two transforms. It can

be seen that

F½y½n�� ¼ YðejOÞ ¼
X1
n¼�1

x1½n�x�2½n�e�jnO

¼
X1
n¼�1

1

2p

ð
2p

X1ðejaÞejanda�x�2½n�e�jOn:

2
4

Interchanging the order of summation and integra-

tion results in
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YðejOÞ ¼ 1

2p

ð
2p

X1ðejaÞ
X1
n¼�1

x�2½n�e�jðO�aÞn
" #

da

¼ 1

2p

ð
2p

X1ðejaÞ
X1
n¼�1

x2½n�ejðO�aÞn
" #�

da;

¼ 1

2p

ð
2p

X1ðejaÞX�2ðejðO�aÞÞda

¼ 1

2p

ð
2p

X1ðejaÞX2ðe�jðO�aÞÞda:

8.6.11 Parseval’s Identities

The discrete versions of the Parseval’s identities are

as follows:

X1
n¼�1

x1½n�x�2½n� ¼
1

2p

ð
2p

X1ðejOÞX2ðe�jOÞdO;

ðGeneralized Parseval ’s identityÞ; (8:6:45a)

X1
n¼�1

x½n�j j2 ¼ 1

2p

ð
2p

XðejOÞ
�� ��2dO;

ðParseval ’s identityÞ; (8:6:45b)

These can be seen by

YðejOÞ O¼0j ¼
X1

n¼�1
x1½n�x�2½n�e�jnO O¼0j

¼ 1

2p

ð
2p

X1ðejaÞX2ðe�jðO�aÞÞda O¼0j ;

¼ 1

2p

ð
2p

X1ðejaÞX2ðe�jaÞda

¼ 1

2p

ð
2p

X1ðejOÞX2ðe�jOÞdO:

Note that if x2½n� ¼ x1½n� ¼ x½n�, then X2ðe�jOÞ ¼
X�1ðejOÞ ¼ X�ðejOÞ.

Example 8.6.10 Use the Parseval’s identity and the

DTFT pair in (8.6.29) to determine the energy con-

tained in the discrete-time signal x½n� ¼ sinðWnÞ=pn:

Solution: From the F-transform pair,

E ¼
X1
n¼�1

x½n�j j2 ¼
X1
n¼�1

sin2ðWnÞðpnÞ2

¼ 1

2p

ðW

�W

ð1Þ2dO ¼W

p
: (8:6:46) &

8.6.12 Central Ordinate Theorems

From the DTFT and the IDFT, it follows that

Xðej0Þ ¼
X1
n¼�1

x½n�; x½0� ¼ 1

2p

ð
2p

XðejOÞdO: (8:6:47)

8.6.13 Simple Digital Encryption

For an introduction to data encryption, see Hershey

and Yarlagadda (1986). It is a vast area and most of

these techniques are based onmanipulating the data

in time domain. A simple spectral based encryption

can be seen by using the DTFT illustrated below.

Example 8.6.11 Using x½n� !DTFT

XðejOÞ, find the

DTFT of ð�1Þnx½n�.

Solution:

Ffð�1Þnx½n�g ¼
X1
n¼�1

ð�1Þnx½n�e�jnO

¼
X1
n¼�1

x½n�e�jnðOþpÞ ¼ XðejðOþpÞÞ:

(8:6:50)

Multiplying the time sequence by ð�1Þn simply

changes the sign of the data with odd indexes.

Since the DTFT spectrum is periodic with period

equal to 2p, this operation corresponds to the spec-

tral inversion in the frequency band 0 � O � p. In
Chapter 10, Example 10.4.1, we will consider the

analog frequency band inversion. &
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8.7 Tables of Discrete-Time Fourier Transform (DTFT) Properties and Pairs

Table 8.7.1 Discrete-time Fourier transform (DTFT) properties

xi½n� !DTFT
XiðejOÞ

Linearity:

x½n� ¼
PM
i¼1

aixi½n� !DTFT PM
i¼1

aiXiðejOÞ:

Time shift or delay:

x½n� n0� !DTFT
e�jOn0XðejOÞ; n0 is an integer:

Frequency shift and modulation:

ejO0nx½n� !DTFT
XðejðO�O0ÞÞ:

x½n� cosðnO0Þ !DTFT
1
2 XðejðO�O0ÞÞ þ XðejðOþO0ÞÞ
� 

:

Conjugation:

x�½n� !DTFT
X�ðe�jOÞ:

Time reversal:

x½�n� !DTFT
Xðe�jOÞ:

Time scaling:

xðmÞ½n� ¼
x½n=m�; n ¼ km
0; n 6¼ km

� �
 !DTFT

XðejmOÞ:

Times n property:

nx½n� !DTFT
j dXðe

jOÞ
dO :

First difference:

x½n� � x½n� 1� !DTFT
ð1� e�jOÞXðejOÞ:

Summation or accumulation:

Pn
k¼�1

x½k� !DTFT
pXðej0ÞdðOÞ þ 1

1�e�jO Xðe
jOÞ; Oj jp:

Time convolution:

x1½n� � x2½n� !DTFT
X1ðejOÞX2ðejOÞ:

Multiplication in time:

x1½n�x�2½n� !
DTFT

1
2p X1ðejOÞ � X2ðe�jOÞ
� 

; periodic convolution:

Even and odd parts of a real function:

x½n� ¼ xe½n� þ xo½n� !DTFT
ReðXðejOÞÞ þ jImðXðejOÞÞ:

xe½n� !DTFT
ReðXðejOÞÞ; xo½n� !DTFT

jImðXðejOÞÞ:

Parseval’s theorem:P1
n¼�1

x1½n�x�2½n� ¼ 1
2p

R
2p

X1ðejOÞX2ðe�jOÞdO:
P1

n¼�1
x½n�j j2¼ 1

2p

R
2p

XðejOÞ
�� ��2dO:

Central ordinate theorems:

Xðej0Þ ¼
P1

n¼�1
x½n�;x½0� ¼ 1

2p

R
2p

XðejOÞdO:
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8.8 Discrete-Time Fourier-transforms
from Samples of the Continuous-
Time Fourier-Transforms

In Section 8.2, xðtÞ is sampled signal at a sampling

rate of fs ¼ ð1=tsÞ > 2ðBÞ; B ¼ Bandwith of xðtÞ:
The continuous-time F-transform of xðtÞ and its

inverse are

XðjoÞ ¼
ð1

�1

xðtÞe�jotdt;xðtÞ

¼ 1

2p

ð1

�1

XðjoÞejotdo; xðtÞ !FT XðjoÞ:

(8:8:1)

Table 8.7.2 Discrete-time Fourier transform (DTFT) pairs

Unit sample function:

d½n� n0� !DTFT
e�jOn0

Constant:

x½n� ¼ A !DTFT
A2pdðOÞ; Oj j � p:

Periodic functions:

ejO0n !DTFT
2pdðO� O0Þ; Oj j; O0j j � p:

cosðO0nÞ !DTFT
p½dðO� O0Þ þ dðOþ O0Þ�; Oj j; O0j j � p:

sinðO0nÞ !DTFT
�jp½dðO� O0Þ � dðOþ O0Þ�; Oj j; O0j j � p:

P1
k¼�1

d½n� kN� !DTFT
O0

P1
k¼�1

dðO� kO0Þ; O0 ¼ 2p=N:

Unit pulse sequences:

u½n� !DTFT
pdðOÞ þ 1

1� e�jO
; Oj j � p:

�u½�n� 1� !DTFT
�pdðOÞ þ 1

1� e�jO
; Oj j � p:

Exponential sequences:

anu½n� !DTFT 1

1� ae�jO
; aj j51:

�anu½�n� 1� !DTFT 1

1� ae�jO
; aj j > 1:

a nj j; a51  !DTFT 1� a2

1� 2a cosðOÞ þ a2

ðnþ 1Þanu½n� !DTFT 1

ð1� ae�jOÞ2
; aj j51:

Sinc functions:

x½n� ¼ sinðWnÞ
pn
 !DTFT 1; Oj j � p

0;W Oj j � p

�

x½n� ¼ 1; 0nN� 1
0;otherwise

� �
 !DTFT

ejOðN�1Þ=2
sinðON=2Þ
sinðO=2Þ
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The transform is then approximated using the rec-

tangular integration formula with a sampling inter-

val of ts s. That is,

XðjoÞ ffi
X1
n¼�1

ts½xðntsÞe�jonts �  Xos
ðjoÞ;os ¼ 2pfs:

(8:8:2)

Note that Xos
ðjoÞ is a periodic function with period

os ¼ ð2p=tsÞ and is an approximation ofXðjoÞ in the
frequency range oj j � os=2, as

Xos
ðjðoþ ð2p=tsÞÞ ¼ ts

X1
n¼�1

xðntsÞe�jðoþð2p=tsÞÞnts

¼ ts
X1
n¼�1

xðntsÞe�jonts ¼ Xos
ðjoÞ:

(8:8:3)

The transform XðjoÞ is arbitrary and Xos
ðjoÞ is

periodic. If xðtÞ is band limited to half the sampling

rate, the signal xðtÞ can be recovered from the

sampled signal and the signal spectrum is

XðjoÞ ¼
Xos
ðjoÞ; oj j � os=2

0; oj j > os=2

�
: (8:8:4)

The discrete-time Fourier transform (DTFT) was

defined earlier assuming x½n� ¼ xðntsÞ and

XðejOÞ ¼
X1
n¼�1

x½n�e�jnO: (8:8:5)

From this review, the following conclusions can be

made:

1. The DTFT is periodic, whereas the continuous

Fourier transform is not periodic.

2. The sampling interval ts is not included in (8.8.5).

Approximation to the continuous F-transform

can be obtained from the DTFT of the sampled

signal by multiplying it by ts.

3. The DTFT is defined in terms of the normalized

frequency, O ¼ ots ¼ o=fs where fs is the sam-

pling frequency. The normalized frequency O is

referred to as the digital frequency and is mea-

sured in radians/sample or in radians/cycle. Not-

ing that the DTFT is periodic with period 2p, one

period of the DTFT gives its complete

information.

4. Most of the continuous-time functions are time

limited to, say T ¼ Nts seconds. In computing

the transform, two variables need to be selected,

the sampling interval ts and the number of sam-

ple pointsN. Note that if xðtÞ has discontinuities,
taking its Fourier transform XðjoÞ and then the

inverse transform, F�1½XðjoÞ�, gives half-values

of the function at the discontinuities. Therefore,

the sampled values at these locations are taken as

half-values. For example, if xðtÞ ¼ e�tuðtÞ, then
x½0� ¼ :5:

5. The spectrum of the sampled signal in the inter-

val 0 � o5os ¼ ð2p=tsÞ is

Xos
ðjoÞ ffi ts

XN�1
n¼0

xðntsÞe�jðotsÞn; 0 � o5os ¼ 2p=ts:

(8:8:6)

6. Finally, considering Item 4 above in approximat-

ing the continuous Fourier transform using the

DTFT, the number of sample points, the sam-

pling interval, and the sample values need to be

considered.

Example 8.8.1 In this example, some of the impor-

tant facets associated with computing the transform

xðtÞ ¼ e�2tuðtÞ using DTFT are discussed. What

should be the interval T before sampling the signal

and the number of samples to be used?Use Example

8.2.6 Part b to find the sampling interval.

Solution: First xðtÞ is not time limited. For dis-

crete computations, only a finite interval of time

needs to be considered, say T. Find T such that in

the interval 0 � t5T,xðTÞ551.For T ¼ 4 and 5,

we have xð4Þ ¼ :00033 and xð5Þ ¼ :000045. Both
are small enough, either one would be adequate

and let T ¼ 4: From Example 8.2.6, the sampling

interval is ts ¼ ð1=fsÞ � p=200. The number of

samples is T=ts 	 255: Discrete computations of

transforms are the most efficient if the number of

sample points N is a power of 2. SelectN ¼ 256: The

next step is to identify the sample values. Noting that

xðtÞ has a jump discontinuity at t ¼ 0, thefirst sample

value is ½xð0�Þþ xð0þÞ�=2 ¼ :5 ¼ xð0Þ. The sample

values are
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fxðntsÞg ¼ f:5; e�2nts ; n ¼ 1; . . . ; 255g:

The discrete-time Fourier transform is approxi-

mated at the frequency sampled values using

(8.8.6). That is,

Xos
ðjðk=NÞosÞ ffi ts

XN�1
n¼0

xs½n�e�j2pðkn=NÞ;

k ¼ 0; 1; . . . ;N� 1:

This is a periodic sequence with period N ¼ 256.

The samples in the frequency domain are spaced

apart by ð1=NÞfs ¼ ð1=256Þ64 ¼ :25Hz.

Notes: TheDTFT is a periodic, continuous function

of O and the sampled transform values computed

from the DTFT are discrete and periodic. The spec-

trum of the analog signal is continuous. Increasing

the product ðNtsÞ implies a longer signal and the

discrete transform has more frequency values. Since

the sampling frequency is not changed, the effect of

increasing ðNtsÞ introduces more frequency values.

The frequency interval between the spectral compo-

nents is reduced. The sampling interval ts (ts ¼ 1=fs)

controls the accuracy in the approximation obtained

by the DTFT compared to the actual evaluation of

the continuous Fourier transform. &

As an example, consider that a signal of a 10-s

interval that is band limited to 4 kHz. We are inter-

ested in estimating the spectrum of the segment using

the above procedurewith a resolution of, say 0.1Hz in

the spectral spacing. From the Nyquist sampling the-

orem, a sampling rate of 10 kHz would be adequate.

)Number of samples¼ fs=frequency resolution

¼ 10 kHz=:1 Hz¼ 100;000:

Transform algorithms are most efficient if the num-

ber of sample points, N is a power of 2. The next

highest number that is a power of 2 is 217 ¼ 131072.

The length of the corresponding segment is equal to

T ¼ Nts ¼ N=fs ¼ 131; 072=10; 000 	 13:1 s:

8.9 Discrete Fourier Transforms (DFTs)

In the last section, the spectrum of the sampled

signal Xos
ðoÞ in the interval 0 � o5os ¼ ð2p=tsÞ

was given in (8.8.6). If we sample this function at

intervals of ð2p=NtsÞ in one period, then we have N

values Xos
ðokÞ; ok ¼ 2pk=N. That is,

Xos
ðj2pk=NÞ ¼ ts

XN�1
n¼0

xðntsÞe�jð2pk=NÞn;

k ¼ 0; 1; 2; . . . ;N� 1: (8:9:1)

There are N sample values in time xðntsÞ and N

sample values of the spectrum in (8.9.1). These

results can be applied to digital data by starting

with x½n� ¼ xðntsÞ; n ¼ 0; 1; 2; . . . ;N� 1 and defin-

ing the discrete Fourier transform (DFT) by

X½k�  DFT½x½n�� ¼
XN�1
n¼0

x½n�e�jð2p=NÞkn;

k ¼ 0; 1; 2; . . . ;N� 1: (8:9:2)

Note that multiplying X½k� by ts results in the spec-

tral values in (8.9.1). The next question is how can

the data x½n� be obtained from the discrete Fourier

transform coefficients X½k�? It turns out that these
can be determined by

x½n� ¼ 1

N

XN�1
k¼0

X½k�ejð2p=NÞkn;

n ¼ 0; 1; 2; . . . ; ðN� 1Þ: (8:9:3)

The following shows that (8.9.3) is valid. Substituting

the DFT values (see (8.9.2)) in (8.9.3) results in

1

N

XN�1
k¼0

X½k�ejð2p=NÞnk

¼ 1

N

XN�1
k¼0
½
XN�1
m¼0

x½m�e�jð2p=NÞmk�ejð2p=NÞkn

¼ 1

N

XN�1
m¼0

x½m�
XN�1
k¼0
½ejð2p=NÞðn�mÞk�

¼1

N

XN�1
m¼0

x½m�
XN�1
k¼0
½ejð2p=NÞðn�mÞ�k

" #
: (8:9:4)

Using the summation formula for the finite geo-

metric series in (C.6.1a) results in

XN�1
k¼0
ðejð2p=NÞðn�kÞÞk ¼

0; n 6¼ m

N: n ¼ m

�
: (8:9:5)
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) 1

N

XN�1
m¼0

x½m�
XN�1
k¼0
½ejð2p=NÞðn�mÞ�k

" #
¼ x½n�: (8:9:6)

The data x½n� is now tied to the discrete Fourier

transform coefficients, or DFTs identified as X½k�s.
We can summarize the results in terms of DFTs,

inverse DFTs, and the symbol for the transform

pair as follows:

X½k�  DFT½x½n��

¼
XN�1
n¼0

x½n�e�jð2p=NÞkn; k ¼ 0; 1; 2; . . . ;N� 1;

(8:9:7a)

x½n� ¼ IDFT½X½k�� ¼ 1

N

XN�1
k¼0

X½k�ejð2p=NÞkn;

n ¼ 0; 1; 2; . . . ; ðN� 1Þ; (8:9:7b)

x½n� !DFT
X½k�: (8:9:8)

The sequences x½n�; 0 � n � N� 1 and X½k�;
0 � k � N� 1 form a discrete Fourier transform

(DFT) pair.

Notes: There areN equations each to determine the

DFTs and the IDFTs. The exponential function

e�jð2p=NÞ is periodic with period N: Indices in the

DFT and IDFT variables are restricted to the prin-

cipal range 0 � n; k � N� 1. The multiplicative

terms in the forward and the inverse transforms

e�jð2p=NÞkn take one of the values in the set

1; e�jð2p=NÞ; e�j2ð2p=NÞ; . . . ; e�jðN�1Þð2p=NÞ
n o

: (8:9:9)

This follows from the fact that for 0 � k; n � N�
1; the product ðknÞ can be written as

kn ¼lNþm; 0 � k; n;m � N� 1;

k; n; l;m and N; integers: (8:9:10)

In compact form we can use modulo (mod)

N arithmetic. That is,

kn ¼ lNþm  mmodðNÞ  ½m�modðNÞ

¼ ½m�ðNÞ; 0 � m � N� 1: (8:9:11)

Therefore,

le�jð2p=NÞkn ¼ e�jð2p=NÞ½mþlN� ¼ e�jð2p=NÞme�jð2p=NÞðlNÞ

¼ e�jð2p=NÞm; 0 � m � N� 1: (8:9:12)

Noting this, only N terms in (8.9.9) are needed to

compute the DFT. The DFT and IDFT have

implied periodicity with period N. That is,

X½kþN� ¼
XN�1
n¼0

x½n�ejð2p=NÞnðkþNÞ

¼
XN�1
n¼0

x½n�ejð2p=NÞnkejð2p=NÞnN;

¼
XN�1
n¼0

x½n�ejð2p=NÞnk ¼ X½k�: (8:9:13a)

x½nþN� ¼ 1

N

XN�1
n¼0

X½k�ej2pðnþNÞk=N

¼ 1

N

XN�1
n¼0

X½k�ej2pðnÞk=N ¼ x½n�: (8:9:13b)

At a later time, time and frequency shifts will be

considered, such as x½n� n0� and X½k� k0�, where
k0 and n0 are some integers. Since the integers

½n� n0� and ½k� k0� may fall outside of the range

½0;N� 1�, these integers need to be converted to a

number in the principal range using mod N arith-

metic. For example,

½�1�mod 16 ¼ 15; ½17�mod 16 ¼ 1; x½½kþ 1�mod 16�
¼ x½ðkþ 1� 16Þ� ¼ x½k� 15�:

These will not be identified explicitly and implied

from the context. &

Notes: Modular arithmetic was introduced by Carl

FriedrichGauss in hisworkDisquisitions Arithmetica,

see Hawking (2005). Gauss is considered to be one of

the great mathematicians who ever lived. His work

laid the foundation for number theory. Many of the

digital coding and encryption algorithms are based

on number theory. See Gilbert and Hatcher (2000),

Hershey and Yarlagadda (1986), and others. &
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Interestingly, the same algorithm can be used to

compute both the forward and the inverseDFT trans-

forms, which can be seen by rewriting (8.9.7b) as

x½n� ¼ 1

N

XN�1
k¼0
½X�½k�e�jð2p=NÞnk�� : (8:9:14a)

Pictorially (8.9.8) can be described by

X½k� ! X�½k� ! DFTfX�½k�g

! 1

N
ðDFTfX�½k�gÞ� ¼ x½n�: (8:9:14b)

8.9.1 Matrix Representations of the DFT
and the IDFT

The discrete Fourier transform (DFT) can be written

in amatrix formand in compact form (seeAppendix 1

for a brief review of matrices) using the equations

x½n� ¼ 1

N

XN�1
n¼0

X½k�ejnð2p=nÞk !DFT
X½k�

¼
XN�1
k¼0

x½n�e�jkð2p=NÞn (8:9:15)

These are

X½0�
X½1�
:

:

:

X½N� 1�

2
666666664

3
777777775
¼

1 1 : : : 1

1 e�jð2p=NÞ : : : e�jð2p=NÞðN�1Þ

: : : : : :

: : : : : :

: : : : : :

1 e�jð2p=NÞðN�1Þ : : : e�jð2p=NÞðN�1Þ
2

2
666666664

3
777777775

x½0�
x½1�
:

:

:

x½N� 1�

2
666666664

3
777777775
; (8:9:16a)

X ¼ ADFTx: (8:9:16b)

The vectors X and x are N-dimensional column

vectors and the matrix ADFT is a N�N complex

matrix and is referred to as a discrete Fourier trans-

form (or DFT) matrix. A typical entry in ADFT, say

ðk; nÞ entry, is

ADFTðk; nÞ ¼ e�jð2p=NÞðk�1Þðn�1Þ ¼W
ðk�1Þðn�1Þ
N ; WN

¼ e�jð2p=NÞ; 1 � k � N; 1 � n � N:

(8:9:17)

The constantWN is anN th root of unity, asWN
N ¼ 1.

From the second row or column in the ADFT matrix

we have the roots of unity. The exponent t in the

entries Wt
N ¼ e�jð2p=NÞt is called the twiddle factor or

rotation factor, see Rabiner and Gold (1975). All the

entries inADFT can be simplified to one of the values

in the following set (see 8.9.12):

1; e�jð2p=NÞ; e�jð2p=NÞ2; . . . ; e�jð2p=NÞðN�1Þ
n o

: (8:9:18)

The IDFT in (8.9.21b), in a matrix form and its

compact from are

x½0�
x½1�
:

:

:

x½N� 1�

2
666666664

3
777777775
¼ 1

N

1 1 : : : 1

1 ejð2p=NÞ : : : ejð2p=NÞðN�1Þ

: : : : : :

: : : : : :

: : : : : :

1 ejð2p=NÞðN�1Þ : : : ejð2p=NÞðN�1Þ
2

2
666666664

3
777777775

X½0�
X½1�
:

:

:

X½N� 1�

2
666666664

3
777777775
; (8:9:19a)
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x ¼ 1

N
A�DFTX: (8:9:19b)

A typical entry, say the ðn; kÞ entry in A�DFT is

A�DFTðn;kÞ ¼ ejð2p=NÞðn�1Þðk�1Þ

¼W
�ðn�1Þðk�1Þ
N ; WN ¼ e�jð2p=NÞ: (8:9:20)

These matrices are known asVandermonde matrices

(see Hohn (1958)). Note that the matrices

ADFT and ðð1=NÞA�DFTÞ are symmetric matrices.

That is,

ADFTðk; nÞ ¼ ADFTðn; kÞ and A�DFTðk; nÞ
¼ A�DFTðn; kÞ; (8:9:21)

)ðADFTÞð1=
ffiffiffiffi
N
p
Þð1=

ffiffiffiffi
N
p
ÞðA�DFTÞ

¼ IN or A�1DFT ¼ ð1=NÞA�DFT: (8:9:22)

That is, ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ

p
ÞADFT is a unitary matrix.

Example 8.9.1 Given the data x½0� ¼ 1; x½1� ¼ �1;
x½2� ¼ 1; x½3� ¼ 2, find the discrete Fourier trans-

form (DFT) of this sequence using the DFT matrix.

Using the DFT coefficients and the A�DFT matrix,

find the corresponding data sequence.

Solution: For N ¼ 4; we have ðe�jð2p=NÞÞkn ¼
ðe�jð2p=4ÞÞkn ¼ ðe�jðp=2ÞÞkn ¼ ð�jÞkn. Now, the data

vector, the DFT matrix and DFT sequence (or

coefficients) are

x ¼

1

�1
1

2

2
6664

3
7775;ADFT ¼

1 1 1 1

1 �j ð�jÞ2 ð�jÞ3

1 ð�jÞ2 ð�jÞ4 ð�jÞ6

1 ð�jÞ3 ð�jÞ6 ð�jÞ9

2
6664

3
7775 ¼

1 1 1 1

1 �j �1 j

1 �1 1 �1
1 j �1 �j

2
6664

3
7775 (8:9:23)

X¼

1 1 1 1

1 �j �1 j

1 �1 1 �1
1 j �1 �j

2
6664

3
7775

1

�1
1

2

2
6664

3
7775¼

3

j3

1

�j3

2
6664

3
7775: (8:9:24)

The DFT matrix is symmetric and it contains only

N ¼ 4 distinct elements 1, 1; j; j2 ¼ �1; and j3 ¼ �j
corresponding to the 4-point DFT. If we can save 1

and j, we can generate the others by changing the sign

of these. The data sequence can be computed from

the DFT vector by

x ¼ 1

4
A�DFTX ¼

1

4

1 1 1 1

1 j �1 �j
1 �1 1 �1
1 �j �1 j

2
6664

3
7775

3

j3

1

�j3

2
6664

3
7775 ¼

1

�1
1

2

2
6664

3
7775:

(8:9:25) &

8.9.2 Requirements for Direct
Computation of the DFT

DFT is a transformation that takes a set of N com-

plex (or real) values in time to N complex (or real)

values in frequency( see (8.9.16a)). It involves the

multiplication of a N�N complex matrix by a N-

dimensional vector. The direct computation of DFT

requires N2 complex multiplications and NðN� 1Þ
additions. Fast Fourier transform (FFT) algorithms,

considered in the next chapter, reduces these num-

bers significantly. FFT algorithms are most effective

when the number of data points N is a power of 2.

DFT is applicable for real and complex data and

can be implemented using real multiplications.

First, let x½n� ¼ Re½x½n�� þ jIm½x½n�� and

X½k� ¼
XN�1
n¼1
½Refx½n�g

þ jImfx½n�g� Re Wkn
N

� �
þ jIm Wkn

N

� �� 
;

¼
XN�1
n¼0

Re x½n�f gRe Wkn
N

� �
�
XN�1
n¼0

Im x½n�f gIm Wkn
N

� �

þ j
XN�1
n¼0

Re x½n�f gIm Wkn
N

� �"

þ
XN�1
n¼0

Im x½n�f gRe Wkn
N

� �#
; k ¼ 0; 1:::;N� 1:

¼Re½X½k�� þ j Im½X½k��; k¼ 0;1 . . . ;N� 1: (8:9:26)
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Computation of X½k� requires 4N2 real multiplica-

tions. For fixed or floating point operations, multi-

plications are computationally more expensive

compared to the additions or transfer of data. We

will come back to this topic in Section 9.3.

Interestingly,

x�½n� !DFT
X�½�k�ModðNÞ: (8:9:27)

This follows from

DFTfx�½n�g ¼
XN�1
n¼0

x�½n�e�j2pnk=N ¼
XN�1
n¼0

x½n�ej2pnk=N
" #�

;

¼
XN�1
n¼0

x½n�e�j2pnð�kÞ=N
" #�

modðNÞ

¼ X�½�k�modðNÞ:

8.10 Discrete Fourier Transform
Properties

DFT properties are similar to the continuous case.

In proving these properties, we will assume that the

discrete-time sequences are given by xdi½n�;
0 � n � N� 1, and their discrete Fourier trans-

forms are given by Xdi½k�; 0 � k � N� 1. That is,

IDFTfXi½k�g ¼ xi½n� !
DFT

Xi½k�
¼ DFTfx i½n�g; i ¼ 1; 2; . . .

Xi½k� ¼
XN�1
k¼0

xi½n�e�jð2p=NÞnk; xi½n�

¼ 1

N

XN�1
k¼0

Xi½k�ejð2p=NÞnk: (8:10:1)

Notes: In the following one variable may be

replaced by another variable. The variable n and k

will be used to identify the time and the frequency

sequences. Most of the proofs follow by using the

basic definitions of the DFT (or IDFT). Both x½n�
and X½k� are assumed to have implied periodicity

with period N, i.e.

x½nþN� ¼ x½n� and X½kþN� ¼ X½k�;

x½n� ¼ x½n�modN  x½n�N and X½k�
¼ X½k�modN  X½k�N:

8.10.1 DFTs and IDFTs of Real Sequences

The DFT of a real sequence xd½n� has conjugate

symmetry. That is,

X½�k� ¼ X�½k� ¼ X½N� k�: (8:10:2)

These can be shown as follows:

X�½k� ¼
XN�1
n¼0

x½n�e�j2pnk=N
" #�

¼
XN�1
n¼0

x½n�e�j2pnð�kÞ=N ¼ X½�k�;

X½N� k� ¼
XN�1
k¼0

x½n�e�jð2p=NÞnðN�kÞ

¼
XN�1
k¼0

x½n�ejð2p=NÞnk ¼ X�½k�:

We can show that if X½k� is real, then

x½�n� ¼ x�½n� ¼ x½N� n�.

Notes: The DFT of two real valued sequences x1½n�
and x2½n� can be determined from the DFT of the

complex sequence x½n� ¼ x1½n� þ jx2½n� as follows:

x½n� ¼x1½n� þ jx2½n� !
DFT

X½k�; x½n� !DFT
X½k�

x1½n� !
DFT

X1½k�; x2½n� !
DFT

X2½k�

X1½k� ¼
1

2
X½k� þ X�½N� k�f g;X2½k�

¼ � 1

2
j X½k� � X�½N� k�f g:

8.10.2 Linearity

The linearity property follows directly from the

definition:

XM
i¼1

aixi½n� !
DFT XM

i¼1
aiXi½k�: (8:10:3)

Example 8.10.1 Find the Nð¼ 8Þ point DFT of the

sequence {x½n�} and sketch the coefficients.

x½n� ¼ cosð2pn=NÞ; n ¼ 0; 1; 2; . . . ;N� 1: (8:10:4)
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Solution: Using Euler’s identity and the linearity

property, the DFT coefficients are

X½k� ¼ DFTfx½n�g ¼ DFTfcosð2pn=NÞÞg
¼ :5DFTfejð2pn=NÞg þ :5 DFTfe�jð2pn=NÞg;

¼ 1

2

XN�1
n¼0

ejð2pn=NÞð1�kÞ þ
XN�1
n¼0

e�jð2pn=NÞð1þkÞ

" #
(8:10:5)

) X½k� ¼ N

2
d½k� 1� þN

2
d½kþ 1�

¼ N

2
d½k� 1� þN

2
d½k�Nþ 1�: (8:10:6a)

The closed form expression for X½k� is obtained by

using (C.6.1b). Also, note that d½kþ 1� is outside of
the interval 0 � n5N, which can be resolved by

noting the DFT coefficients have implicit periodicity

with period N and write d½kþ 1� ¼ d½k�Nþ 1�.
Thus there are two discrete-time impulses in the

interval 0 � k5N. Here, Xd½k� reduces to

X½k� ¼ 4d½k� 1� þ 4d½k� 7�: (8:10:6b)

The transform sequence is shown in Fig. 8.10.1.

Note the DFT sequence is real and has even sym-

metry. Furthermore, we can see thatX�½k� ¼ X½k� ¼
X½N� k�. &

8.10.3 Duality

The duality property is

x½n� !DFT
X½k��!

Change to

1

N
X½n� !DFT

x½�k�:

(8:10:7)

To show this, start with the IDFT in terms of X½k�
and rewrite the function in terms of a different

variable other than n and k, say l, and then replace

l by –l. That is,

x½n� ¼ 1

N

XN�1
k¼1

X½k�ejð2p=NÞnk

! x½l� ¼ 1

N

XN�1
k¼1

X½k�ejð2p=NÞl k;

) x½�l� ¼ 1

N

XN�1
r¼0

X½r�e�jð2p=NÞl r:

Now let l ¼ k; r ¼ n; and taking the ð1=NÞ inside
the summation results in the proof of the duality

property as follows:

x½�k� ¼
XN�1
n¼0
ðX½n�=NÞe�jð2p=NÞnk; (8:10:8)

) X½n�=N ¼ IDFT of x½�k�
or the DFTfX½n�=N�g ¼ x½�k�:

Example 8.10.2 Use the function in Example 8.10.1

to verify the duality principle.

Solution: We have

x½n� ¼ cosð2pn=NÞn !DFT ðN=2Þd½k� 1�
þ ðN=2Þd½k� ðN� 1Þ� ¼ XðkÞ: (8:10:9)

Now consider y½n� !DFT
Y½k� with

y½n� ¼ :5d½n� 1�

þ :5d½n� ðN� 1Þ� !DFT XN�1
n¼0

:5fd½n� 1�

þ d½n� ðN� 1Þ�ge�j2pnk=N

) Y½k� ¼ :5½e�jð2p=NÞk þ ejð2p=NÞk�
¼ cosðð�2p=NÞkÞ ¼ cosð2pk=NÞ

Note

y½k� ¼ x½�k�: (8:10:10) &

8.10.4 Time Shift

The time shift property is

[X]k

Fig. 8.10.1 Example 8.10.1
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x½n�m�modðNÞ !
DFT

X½k�e�jð2p=NÞkm or

x½n�m�modðNÞe
jð2p=NÞkm !DFT

X½k�: (8:10:11)

We know that x½n� and X½k� can be considered as

periodic sequences and X½k� represents the DFT

coefficients for one period of x½n�. By using a new

variable l ¼ n�m, and simplifying, we have

DFTfx½n�m�g ¼
XN�1
n¼0

x½n�m�e�jð2p=NÞnk

¼
XN�1
l¼0

x½l�e�jð2p=NÞðlþmÞk

¼
XN�1
l¼0

x½l�e�jð2p=NÞlk
( )

e�jð2p=NÞmk

¼ X½k�e�jð2p=NÞmk: (8:10:12)

8.10.5 Frequency Shift

The dual to time shift property is the frequency shift

property given below and can be shown taking the

IDFT of the coefficients on the right.

x½n�ejð2p=NÞmn !DFT
X½k�m�modðNÞ: (8:10:13)

8.10.6 Even Sequences

If a function is even, i.e., x½�n� ¼ x½n�  xe½n�, then
the DFT is real and even. It can be written as

xe½n� !
DFT

Xe½k� ¼
XN�1
n¼0

xe½n� cos
2p
N
nk

� �
: (8:10:14)

This can be verified using

xe½�n� ¼ xe½N� n� ¼ xe½n�; (8:10:15)

) DFTfxe½n�g ¼
XN�1
n¼0

xe½n�e�jð2p=NÞkn

¼
XN�1
n¼0

xe½n� cos
2p
N

nk

� �

�j
XN�1
n¼0

xe½n� sin
2p
N
nk

� �
: (8:10:16)

The second term on the right is

XN�1
n¼0

xe½n� sin
2p
N
nk

� �
¼
XN�1
n¼0

xe½�n� sin
2p
N
nk

� �

¼
XN�1
n¼0

xe½N� n� sin 2p
N
nk

� �
;

¼
XN�1
m¼0

xe½m� sin
2p
N
ðN�mÞk

� �
;

¼
XN�1
m¼0

xe½m� sin
2p
N
Nk

� ��
cos

2p
N
ð�mkÞ

� �

þ cos
2p
N
ðNk

� �
Þ sin �2p

N
mk

� ��
;

¼
XN�1
m¼0

xe½m� sin
2p
N
Nk

� ��
cos

2p
N
ð�mkÞ

� �

þ cos
2p
N
ðNkÞ

� �
sin �2p

N
mk

� ��
;

¼ �
XN�1
m¼0

xe½m� sin
2p
N
km

� �

¼
XN�1
n¼0

xe½n� sin
2p
N
nk

� �
¼0:

A number is equal to its negative only when it is

zero. The coefficients are real and follow from

(8.10.16) and (8.10.17). Noting the periodicity of

the DFT coefficients, we have

Xe½�k� ¼ Xe½N� k� ¼
XN�1
n¼0

xe½n� cos
2p
N

nðN� kÞ
� �

;

¼
XN�1
n¼0

xe½n� cos
2p
N
kN

� �
cos

2p
N
ðknÞ

� ��

þ sin
2p
N
kN

� �
sin

2p
N
kn

� ��
;

¼
XN�1
n¼0

xe½n� cos
2p
N
nk

� �
¼ Xe½k� ð ) Xe½k�

¼ Xe½�k�; even sequenceÞ: (8:10:18)

8.10.7 Odd Sequences

If a function is odd, i.e., x½�n� ¼ �x½n�  x0½n�, then
the DFT is real and even. The DFT coefficients of

an odd function are odd and imaginary and
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DFT½x0½n� ¼ �j
XN�1
k¼0

x0½n� sin
2p
N
nk

� �
: (8:10:19)

The proof of this is very similar to the last property.

As a final comment on this topic, we have seen that

a sequence can be expressed in terms of its even and

odd parts. The above two properties allow for the

computation of the DFT of an arbitrary periodic

sequence in terms of the sum of DFTs of even and

odd sequences. That is,

x½n� ¼ xe½n� þ x0½n� !
DFT

XðejOÞ
¼ RefXðejOÞg þ jImfXðejOÞg ; (8:10:20)

xe½n� !
DFT

RefXðejOÞg;

x0½n� !
DFT

ImfXðejOÞg: (8:10:21)

It follows that if x½n� is real and even, then XðejOÞ is
real and even and if x½n� is real and odd then XðejOÞ
is real and imaginary.

8.10.8 Discrete-Time Convolution
Theorem

In Section 8.4.1 the periodic (or cyclic) convolution

of two functions x½n� and h½n� with the same period

N was defined by

y½n� ¼ x½n� � h½n� ¼
XN�1
m¼0

x½m�h½n�m�modðNÞ

¼
XN�1
m¼0

x½n�m�modðNÞh½m�:

(8:10:22)

The time convolution theorem stated below can be

proven by starting with the left side of the above

equation and rearranging the terms and then sim-

plifying it. That is,

x½n� � h½n�modðNÞ !
DFT

X½k�H½k� (8:10:23)

y½n� ¼
XN�1
i¼0

x½i�h½n� i� ¼
XN�1
i¼0

1

N

XN�1
k¼0

X½k�ejð2p=NÞik
" #

1

N

XN�1
m¼0

H½m�ejð2p=NÞmðn�iÞ
" #

;

¼ 1

N

XN�1
k¼0

XN�1
m¼0

X½k�H½m�ejð2p=NÞmn

1

N

XN�1
i¼0

ejð2p=NÞike�jð2p=NÞim

" #
; (8:10:24)

¼
XN�1
i¼0

x½i�h½n� i� ¼ 1

N

XN�1
k¼0

X½k�H½k�ejð2p=NÞkn: (8:10:25)

Example 8.10.3 Write the periodic convolution of

the following two periodic sequences with period

N ¼ 3. Compute these using a. the time sequence

and b. the DFT.

fx½n�g ¼ fx½0�; x½1�; x½2�g ¼ f1; 2; 3g; fh½n�g
¼ fh½0�; h½1�; h½2�g ¼ f1;�1; 1g; (8:10:26)

y½n� ¼
XN�1
i¼0

x½i�h½n� i�;y½n�

¼ x½0�h½n�þx½1�h½n�1�þx½2�h½n�2�: (8:10:27)

Solution: a. Using h½�n� ¼ h½N� n�, the periodic

convolution values are as follows:

y½0� ¼ x½0�h½0� þ x½1�h½�1� þ x½2�h½�2�
¼ x½0�h½0� þ x½1�h½2� þ x½2�h½1�;

y½1� ¼ x½0�h½1� þ x½1�h½0� þ x½2�h½2�;
y½2� ¼ x½0�h½2� þ x½1�h½1� þ x½2�h½0�;

Matrix form :

y½0�
y½1�
y½2�

2
64

3
75¼

h½0� h½2� h½1�
h½1� h½0� h½2�
h½2� h½1� h½0�

2
64

3
75

x½0�
x½1�
x½2�

2
64

3
75:

(8:10:28)

Note the structure of the coefficient matrix on the

right in (8.10.28) has a pattern, which can be written

in general terms after this example. Noting that

x½0� ¼ 1; x½1� ¼ 2; x½2� ¼ 3 and h½0� ¼ 1; h½1� ¼ �1;
h½2� ¼ 1, the convolution values are

y½0�
y½1�
y½2�

2
64

3
75¼

1 1 �1
�1 1 1

1 �1 1

2
64

3
75

1

2

3

2
64
3
75¼

0

4

2

2
64
3
75: (8:10:29)
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b. In matrix form, the transform values are

X½0�
X½1�
X½2�

2
64

3
75 ¼

1 1 1

1 e�jð2p=3Þ e�j2ð2p=3Þ

1 e�j2ð2p=3Þ e�j4ð2p=3Þ

2
64

3
75

x½0�
x½1�
x½2�

2
64

3
75 ffi

6

�1:5þ j:8660

�1:5� j:8660

2
64

3
75 ; (8:10:30)

H½0�
H½1�
H½2�

2
64

3
75 ¼

1 1 1

1 e�jð2p=3Þ e�j2ð2p=3Þ

1 e�j2ð2p=3Þ e�j4ð2p=3Þ

2
64

3
75

h½0�
h½1�
h½2�

2
64

3
75 ffi

1

1þ j1:7321

1� j1:7321

2
64

3
75: (8:10:31)

The product of the transform coefficients in matrix form are given by

Y½0�
Y½1�
Y½2�

2
64

3
75 ¼

X½0�H½0�
X½1�H½1�
X½2�H½2�

2
64

3
75 ¼

1ð6Þ
ð1þ j1:7321Þð�1:5þ j:8660Þ
ð1� j1:7321Þð�1:5� j:8660Þ

2
64

3
75 ¼

6

�3� j1:7321

�3þ j1:7321

2
64

3
75: (8:10:32)

These involve complex arithmetic resulting in

rounded values. The IDFT of the vector in (8.10.32)

gives approximations of the results in (8.10.29). &

The periodic convolution can be written in general

matrix and symbolic forms of two periodic sequences

x½0�; x½1�; :::; x½N� 1� and h½0�; h½1�; :::; h½N� 1� as

follows:

y½n� ¼ x½n� � h½n� ¼
XN�1
i¼0

x½i�h½n� i�modðNÞ

¼
XN�1
i¼0

h½i�x½n� i�modðNÞ: (8:10:33)

y½0�
y½1�
y½2�
:

:

:

y½N� 1�

2
666666666664

3
777777777775

¼

h½0� h½N� 1� h½N� 2� : : : h½1�
h½1� h½0� h½N� 1� : : : h½2�
h½2� h½1� h½0� : : : h½3�
: : : : : : :

: : : : : : :

: : : : : : :

h½N� 1� h½N� 2� h½N� 3� : : : h½0�

2
666666666664

3
777777777775

x½0�
x½1�
x½2�
:

:

:

x½N� 1�

2
666666666664

3
777777777775

; (8:10:34a)

y ¼ Hx: (8:10:34b)

The vectors y and x areN-dimensional column vec-

tors and H is a N�N circulant matrix having N

distinct elements with a pattern. First,

h½n�; n ¼ 0; 1; 2; . . . ;N� 1 is placed in column 1 in

H. Column 2 is obtained by circularly shifting col-

umn 1 down by 1. Similarly, column 3 is obtained by

circularly shifting the column 2 down by 1 and

so on. The diagonal entries are the same and the

entries in each sub diagonal are the same.

8.10.9 Discrete-Frequency Convolution
Theorem

The discrete-frequency convolution theorem is a

dual to the time convolution theorem and is given
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below. The proof of this is very similar to the time

convolution theorem.

x½n�h½n� !DFT 1

N
½X½k� �H½k��modðNÞ

¼ 1

N

XN�1
i¼0

X½i�H½k� i�modðNÞ: (8:10:35)

8.10.10 Discrete-Time Correlation
Theorem

In Section 8.3.2 we briefly discussed the discrete

cross correlation and the convolution (see (8.3.20a

and b)). The discrete cross correlation of two

N point sequences is

rxh½n� ¼
XN�1
i¼0

x½i�h½iþ n�modðNÞ !
DFT

DFTfrxh½n�g:

(8:10:36)

Note that we are using the variable n for the cross

correlation function, as we are using the variable k

for the DFT function. The discrete correlation the-

orem is stated by

XN�1
i¼0

xðiÞhðnþ iÞmodðNÞ !
DFT

X�½k�H½k�: (8:10:37)

This can be proven using the following steps:

XN�1
i¼0

x½i�h½nþ i�modðNÞ ¼
XN�1
i¼0

1

N

XN�1
k¼0

X½k�ejð2p=NÞik
" #

1

N

XN�1
m¼0

H½m�ejð2p=NÞðnþiÞm
" #

;

¼
XN�1
i¼0

1

N

XN�1
k¼0

X�½k�e�jð2p=NÞik
" #�

1

N

XN�1
m¼0

H½m�ejð2p=NÞðnþiÞm
" #

;

¼ 1

N

XN�1
k¼0

XN�1
m¼0

X�½k�H½m�ejð2p=NÞmn

1

N

XN�1
i¼0

e�jð2p=NÞikejð2p=NÞim

" #
; (8:10:38a)

¼ 1

N

XN�1
k¼0

X�½k�H½k�ejð2p=NÞnk: (8:10:38b)

Note the bracketed term in (8.10.38a) is equal to 1 if

m ¼ k and zero otherwise. As in the periodic con-

volution, DFTs can be used to compute the cross

correlation by first computing the DFTs of the two

sequences and then take the IDFT of X�d½k�Hd½k�.

8.10.11 Parseval’s Identity or Theorem

It states that if x½n� is real, then

XN�1
n¼0

x2½n� ¼ 1

N

XN�1
k¼0

X½k�j j2: (8:10:39)

This can be shown using (8.10.36) with x½n� ¼ h½n�
and is left as an exercise.

Example 8.10.4 Verify the Parseval’s theorem using

hd½n� in Example 8.10.3.

Solution:

h½0� ¼ 1; h½1� ¼ �1; h½2� ¼ 1) H½0� ¼ 1;

H½1� ¼ 1þ jð1:7321Þ;H½2� ¼ 1� j1:7321;

X2
n¼0

h2½n� ¼ 3;
X2
n¼0

h2½n� ¼ 1

3

X2
k¼0

H½k�j j2¼ 3 (8:10:40)

ð1=3Þ
X2
k¼0

H½k�j j2 ¼ ð1þ 1þ jð1:7321Þj j2

þ 1� jð1:7321Þj j2Þ=3
¼ ð1þ 2ð4:0001ÞÞ=3 ffi 3: &

8.10.12 Zero Padding

As mentioned earlier, computational complexity is

significantly lower in the computation ofDFTwhen

N, the number of sample points in the data, is a

power of 2, i.e., with the use of fast Fourier trans-

form (FFT) algorithms discussed in the next chap-

ter. This brings up the interesting question, what is

the effect of adding zeros to the end of a sequence?

Let the sequence have N1 sample points and let N2
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zeros be added resulting in N ¼ N1 þN2 sample

points. Noting that the DFT spectrum is periodic

with period 2p, the sample points are now spaced

ð2p=ðN1 þN2ÞÞ instead of ð2p=N1Þ apart. That is, as
more zeros are added, DFT provides closer spaced

samples of the transform of the original sequence.

We should note that we do not have any more

frequency information content than before. It

gives a better display. Also, by appropriately pad-

ding a required number of zeros ðN2Þ so that

N ¼ N1 þN2 is a power of two, fast DFT algo-

rithms can be used.

8.10.13 Signal Interpolation

In Chapter 1 and in an earlier part of this chapter we

have made use of different interpolation functions.

In this chapter we have discussed using the sinc and

other functions to find interpolated values of the

sampled signal. We can make use of the idea of zero

padding in the frequency domain using the DFT,

which is the dual of improving the spectral resolu-

tion by zero padding in the time domain discussed in

the last section. Since the sampling frequency is

fs ¼ 1=ts, increasing the sampling rate reduces

the sampling interval, which, in turn, increases the

number of samples in the interval. Let fs1 be the

sampling rate used to determine N sampled values.

Increasing the sampling rate from fs1 toMfs1 would

introduce interpolated values between samples.

Procedure: The sample sequence with Nsample

points with even and odd cases by

x½n� : x½0�; x½1�; x½2�; x½1
2
ðN� 1Þ�;

:::; x½N� 1�;N� odd ; (8:10:41a)

x½n� : xd½0�; x½1�; x½2�; x½
1

2
N�;

:::; x½N� 1�;N� even : (8:10:41b)

1. Take theDFTof the given sequence.DFTfx½n�g ¼
X½k�.

2. Insert zeros in the middle of the DFT sequence to

create a MN point DFT. The cases for N even

and odd are handled differently.

N-odd: Form the MN point DFT Y½k� as

Y½k� : X½0�;X½1�;X½2�; :::;X½1
2
ðN� 1Þ�;

ððMN�NÞ zerosÞ;X½1
2
ðNþ 1Þ�; . . . ;X½N� 1�:

(8:10:41c)

N-even:Form the MN point DFT Y½k� as

Y½k� : X½0�;X½1�;X½2�; :::; 1
2
X½1
2
N�;

ððMN�N� 1Þ zerosÞ;
1

2
X½1
2
N�; 1

2
X½1
2
Nþ 1�; . . . ;X½N� 1�: (8:10:41d)

3. Determine IDFT [Y½k�] to obtain the MN point

sequence y½n�, which may be complex. Since x½n�
is a real sequence, use only Re fy½n�g and multi-

ply by M.

Example 8.10.5 Use the above method to interpo-

late the two sequences given below using the factor

M ¼ 1 in the above procedure assuming the cases

N ¼ 3 and 4.

a: x½0� ¼ 0; x½1� ¼ 1; x½2� ¼ 2;

b: x½0� ¼ 0; x½1� ¼ 1; x½2�; x½3� ¼ 3:

Solution: With the steps given above, the following

results:

Note that x½k� ¼ xint½2 k�; k ¼ 0; 1; 2; . . . ;N� 1.

The interpolated values are the values in between.

Note that in the second case x½0� ¼ 0; x½3� ¼ 3;

and x½4� ¼ 0 indicating that the interpolated value

at xd;int½7� will be the average value between 0 and 3,

which is equal to 1.5. Similar arguments can be

given for the odd case. &

a. N =3: x½n� : 0; 1; 2; X½k� : 3;�1:5þ j:866;�1:5� j:866

Y½k� : 3;�1:5þ j:866; 0; 0; 0;�1:5� j:866
! xint½n� : 0; 0; 1; 2; 2; 1

b.N=4: x½n� : 0; 1; 2; 3; X½k� : 6;�2þ j2;�2; 2� j2

Y½k� : 6;�2þ j2; 12ð�2Þ; 0; 0; 0; 12ð�2Þ; 2� j2

xint½n� : 0; :0858; 1; 1:5; 2; 2:9142; 3; 1:5
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Notes: If a band-limited signal is sampled at a

rate higher than the Nyquist rate, then the inter-

polated sequence will be exact at the sampling

intervals and the values between the samples will

be interpolated values. In the case of periodic

band-limited signals, the interpolation is exact.

Table 8.10.1 Discrete Fourier transform (DFT) properties

Linearity:

x½n� ¼
PM
i¼1

aixi½n� !DTFT PM
i¼1

aiXi½k� ¼ X½k�; a 0i s are constants:

Time shift or delay:

x½n� i�modðNÞ !DTFT
X½k�e�jð2p=NÞik:

Frequency shift:

x½n�ejð2p=NÞni !DTFT
X½k� i�modðNÞ:

Time reversal:

x½�n�modðNÞ !
DTFT

X½�k�modðNÞ:

Alternate inversion formula:

x½n� ¼ 1
N

PN�1
k¼0

X�½k�e�jð2p=NÞ
� ��

:

Conjugation:

x�½n� !DTFT
X�½�k�modðNÞ:

Duality:

X½n� !DTFT
Nx½�k�modðNÞ:

Circular convolution and correlation:

PN�1
i¼0

x½n�h½n� i�modðNÞ ¼ x½n� � h½n�modðNÞ !DTFT
X½k�H½k�:

PN�1
i¼0

x½i�h½nþ i�modðNÞ !
DTFT

X�½k�H½k�:

PN�1
i¼0

x½i�x½nþ i�modðNÞ !
DTFT

X½k�j j2:

Multiplication:

x½n�h½n� !DTFT
1
N ½X½k� �H½k�modðNÞ� ¼ 1

N

PN�1
i¼0

x½i�H½k� i�modðNÞ:

Real sequences:

x½n� ¼ xe½n� þ x0½n� !DTFT
A½k� þ jB½k�:

xe½n� !DTFT
A½k�; x0½n� !DTFT

Bd½k�:

Parseval’s theorem:

PN�1
n¼0

x½n�j j2¼ 1
N

PN�1
k¼0

X½k�j j2:
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In other cases the interpolation can be poor. If

the signals are not band limited, then the inter-

polation will be obviously poor. For x½n� real, the
discrete transform coefficients satisfy the conjugate

symmetry property, X½N� k� ¼ X�½k�: If the pro-

cedure for insertion of the zeros discussed earlier

is followed for the interpolation, the conjugate

symmetry will be preserved in Y½k�. That is,

Y½MN� k� ¼ Y�d½k�: IDFT of Y½k� will result in a

real sequence, see Ambardar (1995). &

8.10.14 Decimation

Decimation is an inverse operation of interpolation.

It reduces the number of samples by discarding

M� 1 samples and retaining every M th sample.

Note that the corresponding new sampling rate

must be above the Nyquist sampling rate to avoid

aliasing. This to be of any value, the original signal

is assumed to be oversampled.

8.11 Summary

This chapter started with analog signals that are

sampled to obtain discrete-time signals. Fourier

analysis of discrete time limited signals is discussed

in terms of discrete-time and discrete Fourier trans-

forms. The following gives a list of some of the

specific topics:

� Ideal sampling of a continuous signal
� Continuous Fourier transforms of the sampled

signals
� Low-pass and band-pass sampling theorems
� Basic discrete-time signals and operations,

including decimation and interpolation
� Basic concepts of discrete-time convolution and

correlation
� Discrete-time periodic signals and the correspond-

ing discrete Fourier series and their properties
� Derivation of the discrete-time Fourier transform
� Properties of the discrete-time Fourier transform
� Discrete Fourier transforms and the inverse dis-

crete Fourier transforms
� Periodic convolution and correlation and their

computations directly and through DFT

� Zero-padding, interpolation, and decimation

associated with discrete-time signals
� Tables of properties associated with discrete

Fourier transforms.

Problems

8.2.1 Consider the function xðtÞ ¼ cos o0tÞð . Illus-

trate the aliasing phenomenon by decreasing os, or

equivalently, increasing the sampling interval. Use a

low-pass filter of bandwidth equal to ðos=2Þ. In your
solution use the following steps. Work out the solu-

tion using os > 2o0 and show that the cosine func-

tion is recoverable. Now reduce the sampling fre-

quency such that os52o0. Sketch the spectrum of

the ideally sampled signal and show that the signal

exists in the frequency range 05ðos � o0Þ5os=2.

8.2.2 Given xðtÞ is band limited to os=2, determine

the Nyquist rates for the functions.

a: yaðtÞ ¼ dxðtÞ
dt ;

b: ybðtÞ ¼ x2ðtÞ;
c: ycðtÞ ¼

Ðt
�1

xðaÞda;

8.2.3 Consider the function xðtÞ ¼ cos o0tþ yÞ;ð
f0 ¼ o0=2p ¼ 200 Hz. From the low-pass sampling

theorem we know that there will not be any aliasing

if os > 2o0. Now consider that xðtÞ is sampled at

two different frequencies one below and one above

the Nyquist frequency given by a: fs ¼ 600 Hz;

b: fs ¼ 160 Hz. In the first case, we know that there

will not be any aliasing. In the second case, the signal

xðtÞ sampled at fs ¼ 160Hz describes a cosine func-

tion that is not the given function, but a sampled

version of some other cosine function. Give the cor-

responding function xaðtÞ ¼ A cos 2pfatþ yÞð . That

is, find fa. Sketch the two functions xðtÞ and xaðtÞ on
the same figure and identify the points where the two

functions coincide. (xaðtÞ ¼ Aliased version of xðtÞ).

8.2.4 The acoustic pulse received by a receiver is

represented by xðtÞ ¼ Asinc2ðo0tÞ. Noting the

transform of this function is a triangular function,

give the minimum sampling rate, the expression for

the spectrum of the ideally sampled signal, and the

minimum band width of the ideally low-pass filter

required to reconstruct xðtÞ from the sampled signal.
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8.2.5 Find the minimum sampling rate that can be

used to determine the samples that completely specify

the following signals by assuming ideal sampling:

a. x1ðtÞ ¼ ½sin 2pð100ÞtÞ=ð2pð100ÞtÞ�;ð
b. b: x2ðtÞ ¼ cos 2pð100Þtð þðp=3ÞÞ þ sin 2pð200ÞtÞð

8.2.6 A signal xðtÞ is band limited to the range

f05f5500Hz. Find the minimum sampling rate

for xðtÞ without aliasing assuming a. f0 ¼ 0; b.

f0 ¼ 100Hz

8.2.7 The signal xðtÞ ¼ A cos 2pð100ÞtÞð is sampled

at 150Hz.Describe the corresponding signal after the

sampled signal is passed through the following filters:

a. An ideal low-pass filter with a cut-off frequency

of 20 Hz

b. An ideal band-pass filter with a pass band

between 60 Hz and 120 Hz

8.2.8 Consider the sampled sequence xð0Þ ¼ 1;

xðtsÞ ¼ 0; xð2tsÞ ¼ 1; xðntsÞ ¼ 0; n 6¼ 0; 1; 2. Sketch

the interpolated functions using a. step, b. linear,

and c. sinc interpolations.

8.2.9 Let F½xðtÞ� ¼ XðjoÞ with XðjoÞ ¼ 0; oj j2pB.
Using the results in Section 8.2.3, show

ð1

�1

xðtÞj j2dt ¼ ts
X1
n¼�1

x2ðntsÞ; ts ¼
1

2B
; fsts ¼ 1:

8.2.10Use the band-pass sampling theorem to deter-

mine the possible sampling rates so that the following

signal can be recovered from the sampled signal:

xðtÞ !FT XðjoÞ ¼ P
oþ oc

2pð2BÞ

� �
þP

o� oc

2pð2BÞ

� �
;

B ¼ 8 kHz;oc ¼ 2pfc ¼ fc ¼ 64 kHz:

Assuming the sampling rates of a. fsa ¼ 200 kHz;

b. fsb ¼ 20 kHz; and c. fsc ¼ 16 kHz, illustrate how

the signal can be recovered from the sampled signals

if possible.

8.3.1 Sketch the following sequences assuming

x½n� ¼ ð1� nÞfu½n� � u½n� 3�g:

a: ya½n� ¼ x½2n� 1�;
b: yb½n� ¼ x½n2 � 1�;
c: yc½n� ¼ x½1� n�:

8.3.2 Find the even and odd parts of the functions.

a: xa½n� ¼ u½n�; b: xb½n� ¼ ð1=2Þnu½n�.

8.3.3 Let x½n� ¼ xe½n� þ x0½n�. Show

E ¼
X1

n¼�1
x2½n� ¼

X1
n¼�1

x2e ½n� þ
X1

n¼�1
x20½n�:

8.3.4 Derive the following identities and then sim-

plify the results when N!1:

a: S ¼
XN�1
n¼0

an ¼ 1� aN

1� a
; aj j51;

b:
XN�1
n¼0

nan ¼ ðN� 1ÞaNþ1 �NaN þ a

ð1� aÞ2
;

c:
X1
n¼�1

e�a nj j ¼ 1þ e�a

1� e�a
:

8.3.5 Find the closed form expression for

y½n� ¼ anu½n� � u½n�; aj j51.

8.3.6Find the cross correlation of the two sequences

given by x½n� ¼ u½n� � u½n� nx� and h½n� ¼ u½n��
u½n� nh� for the cases: a: nx ¼ nh ¼ 2; b: nx ¼ 2;

nh ¼ 3.

8.4.1 Determine the DTFS of the following

sequences by using Euler’s theorem and then by

identifying the discrete Fourier series coefficients.

Identify the periods.

a: xs a½n�¼1þ sin pn=2þ yÞ;ð

b: xsb½n�¼cos np=20Þþ sin np=40Þ;ðð
c. xsc½n� ¼ cos2½np=8�

8.4.2 Find the DTFS coefficients of the N-periodic

discrete-time functions

a. xsa½n� ¼
P1

l¼�1
d½n� lN�;

b. xb½n� ¼
1; 0 � nj j �M
0;M5n5N�M

�
.

8.4.3 Determine the time-domain sequences with

period N ¼ 7 with the DTFS coefficients

a. Xsa½k� ¼ ð1=2Þ;
b. Xsb½k� ¼ cos 2 kp=NÞ:ð
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8.4.4 a. Show that Xs½k� ¼ X�s ½N� k� for the follow-
ing sequence:

xs½n� ¼
1; 0 � n5ðN� 1Þ=2
0; ðN� 1Þ=2þ 1 � n � N� 1;

�

xs½n� ¼ xs½nþN�:

b. Given the periodic sequences

xs½n� ¼ f0; 0; 1; 2g; hs½n� ¼ f1; 2; 0; 0g;
xs½n� ¼ xs½nþ 4� and hs½n� ¼ hs½nþ 4�:

find the DTFS of the function ys½n� ¼ xs½n�hs½n�.
Illustrate the generalized Parseval’s identity by

using the DTFS of the functions xs½n�; hs½n�
and ys½n�.

8.4.5 Use the sequences in Problem 8.4.4b to deter-

mine ys½n� ¼ xs½n� � hs½n�.

8.4.6 Give an example of two sinusoidal sequences

that are equal. Hint: Assume cos O1pkþ yÞ ¼ð
cos O2pkþ yÞð with O1 6¼ O2 and show the two

functions are equal.

8.5.1 Show that

x�½n� !DTFT X�ðe�jOÞ and x�½�n� !DTFT X�ðejOÞ:

8.5.2 Derive an expression for the convolution

y½n� ¼ x½n� � x½n�; x½n� ¼ anu½n�.

8.5.3 Show that

DFTf:5d½n� þ :25d½n� 2� þ :25d½nþ 2�g ¼ cos2ðOÞ:

8.5.4 Find the inverse transform of

XðejOÞ ¼ 1; Oj j � Oc;XðejOÞ ¼ 0;Oc5 Oj j � p:

8.5.5 Consider the two-sided sequence

x½n� ¼ a nj j; aj j51. Write this expression in terms of

the right-side and left-side sequences. Then, derive

the expression for the DTFT of this sequence using

the time reversal property. Be careful about the

sample point at n ¼ 0:

8.5.6 Use the central ordinate theorems to evaluate

the sums.

a:
X1
n¼0

nan; b:
X1
n¼�1

a nj j; c:
X1
n¼�1

sin
WnÞ
ðpnÞ

�

8.5.7 Verify the results given in Section 8.5.2 for

Type 1 and 4 sequences.

8.6.1 Prove the time reversal property in (8.6.17).

8.6.2 a. Determine the DTFT of the function

x½n� ¼ ð1=3Þu½n�:
b.Use the time reversal property to determine the

DTFT of ð3Þnu½�n�.

8.6.3 Find the DTFT of the function

y½n� ¼ ðnþ 1Þ2x½n�:

8.6.4 Determine the convolutions x1½n� � x2½n� for
the following cases:

a: x1½n� ¼ u½n�; x2½n� ¼ u½n�;
b: x1½n� ¼ u½n�; x2½n� ¼ :5nu½n�:

8.6.5 Determine

a:
X1
n¼�1

ð1=2Þ nj j; b:
X1
n¼0

nð1=2Þn:

by using the central ordinate theorems.

8.8.1 Find the DFTs of the sequences

a: fx½n�g ¼ ½1; 1;�1;�1�;
b: fx½n�g ¼ ½1;�1; 1;�1�

8.8.2 Compute the DFTs of the following N- point

sequences. For Part c., use Euler’s formula for the

cosine function in determining the DFT assuming

k0 is an integer.

a: x½n� ¼ an; 0 � n5N;

b: x½n� ¼ u½n� � u½n� n0�; 05n05N;

c: x½n� ¼ cos no0Þ;o0 ¼ 2pk0=N; 0 � n5N� 1; k0ð
is an integer.

8.8.3 Determine the 8-point DFT sequence of

x½n� ¼ d½n� þ 2d½n� 3�.

8.8.4 Consider a sequence x½n�; 0 � n � N� 1 with

X½k� ¼ DFTfx½n�g. Find the DFTs the two

sequences given below in terms of X½k�:
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fy½n�g ¼
x½n=2�; n even

0; n odd

�
; fy½n�g

¼
x½n�; n ¼ 0; 1; 2; . . . ;N� 1

0; n ¼ N;Nþ 1; . . . ; ð2N� 1Þ

�
:

8.8.5 Compute the DFT of x½n� 3�mod ðNÞ directly
and then using the time-shift theorem.

8.8.6 Determine y½n� ¼ x½n� � h½n� directly and then

using the DFT for the sequences

x½n� ¼ ð1=3Þn; h½n� ¼ sin ðp=2ÞnÞ; n ¼ 0; 1; 2; 3:ð

8.8.7 Show that the DFT of a real sequence x½n�
satisfies the relation X½N� k� ¼ X�½k�: (*) denotes
conjugation.

8.8.8TheDFT sequence of a real time signal is given

by fX½k�g ¼ 4; j; 0;Xf g, where X is the missing

value. Use the symmetry property of DFT to deter-

mine the missing value. Find the corresponding

time sequence.

8.8.9 Derive an expression DFT ½y½n�� ¼
DFT½ð�1Þnx½n�� in terms of X½k�.

8.9.1 Show that for N ¼ 4, ð1=NÞADFTA
�
DFT ¼ IN

(an identity matrix)

8.9.2 Derive the matrix ð1=NÞA2
DFT with N ¼ 4.

What can you say about this matrix?

8.9.3 Given xðtÞ ¼ LðtÞ, estimate the sampling fre-

quency and sampling interval by choosing the

bandwidth of xðtÞ as the frequency where XðjoÞj j
is 10% of its maximum.

8.10.1 Use Example 8.10.3 to compare the number

of multiplications required to compute the convolu-

tion directly and by using the DFT.

8.10.2 Write the sequence r½n� in matrix form

r½n� ¼
XN�1
i¼0

x½i�x½nþ i�ModðNÞ:

8.10.3 Consider the two discrete N-point real

sequences xd1½n� and xd2½n� and x½n� ¼ x1½n�þ
jx2½n�; n ¼ 0; 1; . . . ;N� 1 with F½xi½n�� ¼ Xi½k�;
i ¼ 1; 2 and

ðxd1ÞT ¼ c 0123½ �; ðxd2ÞT ¼ c 2345½ �; xd ¼ xd1 þ jxd2:

a. First show the following in general terms and

then b. verify this using the sequences:

X1½k� ¼ :5 Xd½k� þ X�½N� k�f g;X2½k�
¼ �:5j X½k� � X�½N� k�f g:

8.10.4 Find the N� point DFT of the sequences

x1½n� ¼ ejO0n for two cases:

a: O0 ¼ 2pk0=N; b: O0 6¼ 2pk0=N:ðk0 is an integerÞ:

8.10.5 Consider the sequence xd½n� ¼ f0; 1; 0; 1g.
Compute its DFT and then use the interpolation

technique discussed in Section 8.10 assuming

M ¼ 2 and 4.
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Chapter 9

Discrete Data Systems

9.1 Introduction

In the last chapter we have discussed the concepts of

discrete Fourier transforms (DFTs). In this chapter

we will briefly review these and discuss its fast

implementations. There are several algorithms that

come under the topic-fast Fourier transforms

(FFTs). The first FFTmethod of computing the

DFT was developed by Cooley and Tukey (1965).

These are innovative and useful in the signal proces-

sing area.

Continuous Fourier transforms (CFTs) in the

analog and the discrete Fourier transforms (DFTs)

in the discrete domains are the corner stones of

signal analysis. In the continuous domain we stu-

died the Laplace transforms, which are related to

the continuous Fourier transforms. The discrete

counter part of the Laplace transforms is z-trans-

forms related to the discrete-time Fourier trans-

forms (DTFTs). Table 9.1.1 summarizes the vari-

ables in the continuous-time Fourier transforms,

the Laplace transforms, the discrete-time Fourier

transforms, and the z-transforms. In this chapter

we will study some of the basics associated with

the z-transforms and its applications.

Digital filters have been popular in recent years

and will continue to be in the future. In its simplest

form, a digital filter is a computer program that

takes a set of data and converts into another set of

data. Discrete data systems may correspond to

filtering or some other operation. In the analog

case we have to worry about component value

tolerances and the responses can change in time.

The responses of analog systems cannot be dupli-

cated, as the component values may be different

from one batch to another. The responses of the

filters can change if the operating conditions of the

filter change. On the other hand, in the digital case,

every time we process a set of data the output will be

the same. Digital filters are more flexible and can be

altered by simply changing the computer code. At

low frequencies, analog components are bulky. We

may have to deal with magnetic coupling if induc-

tors or transforms are used as components in the

analog system. Analog filters may have to be rede-

signed and the circuit implementations may be dif-

ferent if the frequencies change. On the other hand,

modifying digital filters may represent a change of

computer code. Digital technology is modern and

powerful signal processing algorithms can be

designed. Digital filters can be time shared and

process several signals simultaneously. Digital inte-

grated circuits design is much simpler compared to

analog integrated circuit technology. They require

lower power consumption and the digital circuitry

can be fabricated in smaller packages. Digital stor-

ing is much cheaper. Searching and selecting digital

information is simple and processing the data is

straightforward. Digital reproduction is much

more reliable and the cost of digital hardware con-

tinues to come down every year.Most source signals

and the recipients are analog in nature. To replace

an analog filter by a digital filter, the analog signal

Table 9.1.1 Discrete-time and continuous-time signals and
their transforms

Continuous-time transform/
variable

Discrete-time transform/
variable

Continuous Fourier transform/
o or f

Discrete time Fourier
transform/O

Laplace transform/s z-transform/z

R.K.R. Yarlagadda, Analog and Digital Signals and Systems, DOI 10.1007/978-1-4419-0034-0_9,
� Springer ScienceþBusiness Media, LLC 2010
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needs to be converted to a digital signal by using an

analog-to-digital (A/D) converter. The digital sig-

nal is then passed through a digital filter and the

output of the filter needs to be converted back to

analog data using a digital-to-analog (D/A)

converter.

Digital signal processing (DSP) area has been

popular during the past 30+ years. It will continue

to be of interest in many areas, including seismic

signal processing, speech processing, image proces-

sing, radar signal processing, and others. Tele-

phone industry has taken the lead in the signal

processing area. There are excellent texts available

in the general area of signal processing. Some of

these include Ambardar (2007), Strum and Kirk

(1988), Mitra (1998), Oppenheim and Schafer

(1975), Rabiner and Gold (1975), Cartinhour

(2000), Ludeman (1986), and many others. For an

excellent review on the spectral analysis, see Otnes

and Enochson (1972), Marple, (1989), Press et al.

(1989), and many others. For a historical survey on

the spectral estimation, see Robinson (1982).

MATLAB provides digital analysis and design

software, see Ingle and Proakis (2007). Also, see

Ramirez (1975), Smith III (2007), Smith, (2002) on

FFT and its applications.

9.2 Computation of Discrete Fourier
Transforms (DFTs)

Power spectrum: Most signals in practice are

analog signals. Spectral analysis and estimation of

these signals is basic. A simple method of power

spectrum estimation of an analog signal xðtÞ
involves N values of xðtÞ sampled every ts s

(or fs ¼ 1=ts samples/s) resulting in x½n� ¼ xðntsÞ;
n ¼ 0; 1; 2; . . . ;N� 1. The DFT of the signal x½n� is
(see Section 8.9)

X½k� ¼
XN�1
n¼0

x½n�e�jð2p=NÞnk;

k ¼ 0; 1; 2; . . . ;N� 1: (9:2:1a)

The power spectrum estimate is defined at

ðN=2Þ þ 1 frequencies by

Pð0Þ ¼ 1

N2
Xð0Þj j2;

Pðos=2Þ ¼
1

N2
XðN=2Þj j2;

os ¼ 2pfs; fs ¼ 1=ts

PðokÞ ¼
1

N2
X½k�j j2þ X½N� k�j j2
h i

;

ok ¼
2pk
Nts

; k ¼ 1; 2; :::;
N

2
� 1: (9:2:1b)

From Chapter 4 we note that a rectangular window

spectrum has a great deal of leakage into the side

lobes. A tapered window w½n�, such as a Hamming

window to be discussed later, can be used in estimat-

ing the spectrum to reduce the spectral leakage. A

windowed signal y½n� ¼ x½n�w½n� is to be used in the

estimation. Another popular method of spectral

estimation is the Blackman–Tukey method, see

Press et al. (1990). In its simplest form, it involves

the computation of the data autocorrelation and

then determining the spectrum using DFT. The

spectrum of the autocorrelation is the power spec-

tral density.

9.2.1 Symbolic Diagrams in Discrete-Time
Representations

Symbolic diagrams or signal flow graphsare a net-

work of directed branches connected at nodes is a

pictorial representation of an algorithm. Figure

9.2.1 gives the flow graph symbols that are common

in two different forms. Source nodes do not have

any incoming braches and are used for input

[ 1]x n −
z–1

x[n]

(a)

(d) (e) (f)

(b) (c)

1z− x [n−1]x[n]ax[n] ax[n]

[ ]y n

x[n] x[n] y[n]+

a

x[n] ax[n]
×

x[n] x[n] y[n]

[ ]y n

+
+

Fig. 9.2.1 Two flow graph representations: (a) and (d), sum-
mers; (b) and (e), multipliers; (c) and (f), delays
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sequences. Sink node has only one entering branch

and is used for the output sequence. In addition,

summers and multiplier symbols are shown and are

self-explanatory. The symbols z�1 are used to iden-

tify delay components. In Section 9.4 z-transforms

will be studied. Some authors use the multiplier

constant above the line and others use it below the

line. If the multiplier constant a is not shown, then

it is 1.

Example 9.2.1 Using the symbol representations

in Fig. 9.2.1, write difference equations relating the

variables w½n� and y½n� in terms of x½n� and w½n� 1�
in Fig. 9.2.2a,b.

Solution: The two diagrams in Fig. 9.2.2 result in

the same equations and are given as follows:

w½n� ¼ ax½n� þ bw½n� 1�; y½n� ¼ w½n� þ cw½n� 1�:
&

9.2.2 Fast Fourier Transforms (FFTs)

First a brief review of the discrete Fourier transform

(DFT) is given below. The discrete Fourier trans-

form is a transformation that takes a set ofN values

in time to N values in frequency. First, the trans-

form vector is given byX ¼ ADFTx (see (8.9.16a and

b)), where the matrix ADFT is a N�N matrix with

its ðk; nÞ entry being (see (8.9.17))

ADFTðk; nÞ ¼ e�jð2p=NÞðk�1Þðn�1Þ

�W
ðk�1Þðn�1Þ
N ;

1 � k; n � N; WN ¼ e�j2p=N: (9:2:2a)

The vectors X and x are N-dimensional column

vectors. In matrix form the DFT coefficients can

be expressed in terms of Wn
N ¼ ðe�j2p=NÞ

n by

X½0�
X½1�
X½2�
:

:

X½N� 1�

2
666666664

3
777777775
¼

1 1 1 : : 1

1 W1
N W2

N : : WN�1
N

1 W2
N W4

N : : W
2ðN�1Þ
N

: : : : : :

: : : : : :

1 WN�1
N : : : W

ðN�1Þ2
N

2
6666666664

3
7777777775

x½0�
x½1�
x½2�
:

:

x½N� 1�

2
666666664

3
777777775
: (9:2:2b)

Note Wn
N takes one of the values in the set

1; e�jð2p=NÞ; e�jð2p=NÞ2; :::; e�jð2p=NÞðN�1Þ
� �

for any N,

see (8.9.18).

The properties in Table 9.2.1 allow for the deri-

vation of a fast Fourier transform (FFT) algorithm.

We will consider an Nð¼ 2nÞ-point decimation-in-

x[n] a y[n]

b c

z−1z−1

w[n]

x[n]
x

a

+

b c

y[n]

(b)(a)

+

x x

w[n]Fig. 9.2.2 Example 9.2.1

Table 9.2.1 Properties of the function WN ¼ e�jð2p=NÞ

1. WnþN
N ¼ ejð2p=NÞðnþNÞ ¼ ejð2p=NÞn ¼Wn

N (9.2.3a)

2. W
nþN=2
N ¼ �e�jð2p=NÞ ¼ �Wn

N (9.2.3b)

3. WkN
N ¼ e�jð2pÞk ¼ 1; k is an integer (9.2.3c)

4. W2 k
N ¼ e�j 2ð2p=NÞk ¼ e�j;ð2p=ðN=2ÞÞk ¼ Wk

N=2 (9.2.3d)
5. e�jð2p=NÞn 2 A ¼ 1; e�jð2p=NÞ; e�jð2p=NÞ2; :::; e�jð2p=NÞðN�1Þ

� �
(9.2.3e)
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frequency FFT algorithm. It is based on expressing

one N-point DFT algorithm by two N/2-point

DFTs, then four (N/4)-point DFTs, and so on.

The algorithm at the end reduces to ðN=2Þ-2-point
transforms. The 1-point transform is trivial as

X½0� ¼ x½0�:TheDFT of a 2-point sequence is deter-

mined by noting W1
2 ¼ e�j2p=2 ¼ �1: The DFT

values in scalar and matrix form are as follows:

X½0� ¼ x½0�W0
2 þ x½1�W0

2 ¼ x½0� þ x½1�
X½1� ¼ x½0�W0

2 þ x½1�W1
2 ¼ x½0� � x½1�

; (9:2:4a)

X½0�
X½1�

� �
¼

1 1

1 �1

� �
x½0�
x½1�

� �
: (9:2:4b)

Decimation-in-frequency FFT algorithm: Starting

with the DFT of a set of data x½n�; n ¼ 0; 1; ::;N� 1

and N ¼ 2n, the DFT coefficients (see 9.2.1a.),

X½k�, are obtained in terms of WN ¼ e�j2p=N as

follows:

X½k� ¼
XN�1
n¼0

x½n�e�jð2p=NÞnk

¼
XN�1
n¼0

x½n�Wnk
N

¼
XN=2�1
n¼0

x½n�Wnk
N þ

XN�1
n¼N=2

x½n�Wnk
N :

(9:2:5)

Note the variable n is used for the time variable

and k is used for the frequency variable Using

m ¼ n� ðN=2Þ in the second summation in (9.2.5)

and noting W
kðN=2Þ
N ¼ e�jð2p=NÞkðN=2Þ ¼ ð�1Þk result

in

XN�1
n¼N=2

x½n�Wkn
N ¼

XN=2�1
m¼0

x
N

2
þm

� �
W

kðmþN
2Þ

N

¼
XN=2�1
m¼0

x
N

2
þm

� �
Wmk

N W
kðN=2Þ

N ; (9:2:6)

X½k� ¼
XN=2�1
n¼0

x½n� þ ð�1Þkx nþN

2

� �� �
Wkn

N ;

k ¼ 0; 1; 2; :::;N� 1: (9:2:7)

Now separate the coefficients into X½2 k� and
X½2 kþ 1� and use Table 9.2.1:

X½2 k� ¼
XN=2�1
n¼0

x½n� þ ð�1Þ2 kx nþN

2

� �� �
W

nð2 kÞ
N

¼
XN=2�1
n¼0

x½n� þ x nþN

2

� �� �
Wnk

N=2; (9:2:8a)

X½2kþ1� ¼
XN=2�1
n¼0

x½n�þð�1Þð2kþ1Þx nþN

2

� �� �
W

nð2kþ1Þ

N

¼
XN=2�1
n¼0

x½n� � x nþN

2

� �� �
Wnk

N=2�Wn
N;

k ¼ 0; 1; 2; . . . ;
N

2
� 1:

(9:2:8b)

One N-point DFT is reduced to two ðN=2Þ-point
DFTs. One N-point DFT requires N2 multiplica-

tions and ððN� 1Þ additions), see (9.2.2b). Two

ðN=2Þ-point DFTs require only 2ðN=2Þ2 multiplica-

tions and 2ðN� 1Þ additions.

Example 9.2.2 Assuming N ¼ 4, show that the use

of (9.2.8a and b) successively results in the DFT

values. Illustrate the algorithm using the flow

graph representation.

Solution: a. From (9.2.8a) and (9.2.8b), we have

(note W 0
4 ¼ 1; W1

4 ¼ �j; and W 2
4 ¼ �1)

X½2 k� ¼
X1
n¼0
fx½n� þ x½nþ 2�gW2nk

4 ;

X½2 kþ 1� ¼
X1
n¼0
fx½n� � x½nþ 2�gWn

4W
2nk
4 ; k ¼ 0; 1:

(9:2:9)

First, at stage 0, i.e., to start with, define

x0½n� ¼ x½n�; n ¼ 0; 1; 2; 3: At stage i, identify the

variables as xi½n�. Algorithm has two stages corre-

sponding to N ¼ 4 ¼ 2n; n ¼ 2. From (9.2.9), we

have the following.

Direct:

X½0� ¼ fx0½0� þ x0½2�g þ fx0½1� þ x0½3�g
¼ fx1½0�g þ fx1½1�g ¼ x2½0� ¼ X½0� ; (9:2:10a)
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X½2� ¼ fx0½0� þ x0½2�g � fx0½1�� þ x½3�g
¼ fx1½0�g � fx1½1�g ¼ x2½1� ¼ X½2� ; (9:2:10b)

X½1� ¼ fx0½0� �x0½2�gþfW 0
4 ðx0½1� �x½3�Þg

¼ fx1½2�gþfx1½3�g ¼ x2½2� ¼X½1� ; (9:2:10c)

X½3� ¼ fx0½0� � x0½2�g � fW1
4ðx0½1� � x0½3�Þg

¼ fx1½2�g � fx1½3�g ¼ x2½3� ¼ X½3� : (9:2:10d)

Individual identifications at each stage from

(9.2.10):

Stage 0:

x0½0� ¼ x½0�; x0½1� ¼ x½1�; x0½2� ¼ x½2�: (9:2:11a)

Stage 1:

x1½0�¼fx0½0� þ x0½2�g ;x1½1�¼fx0½1� þ x0½3�g ;
x1½2�¼fx0½0� � x0½2�g ;x1½3�¼fW0

4ðx0½1� � x½3�Þg :
(9:2:11b)

Stage 2:

x2½0�¼fx1½0�g þ fx1½1�g ; x2½1�¼fx1½0�g � fx1½1�g ;
x2½2�¼fx1½2�g þ fx1½3�g ; x2½3�¼fx1½2�g � fx1½3�g :

(9:2:11c)

End results:

X½0�¼x2½0�; X½2�¼x2½1�;X½1�¼x2½2�; X½3�¼x2½3� :
(9:2:11d)

These equations can be used to draw the flow graph

using the symbols in Fig. 9.2.3. For clarity, the

multipliers are shown under the lines rather than

above. Interestingly, the above equations can be

seen from the flow graph in Fig. 9.2.3.

Interestingly, if the variables arein binary form,

the argument k in X½k� ¼ X½ðk1k0Þ2� is related to

the argument n in x2½ðn1n0Þ2� by the relation

k ¼ ðk1 ¼ n0; k0 ¼ n1Þ: For additional information

on this, see Oppenheim and Schafer (1999). &

The above results can be extended for anyN ¼ 2n

with n stages. Figure 9.2.4 gives the flow graph for

N ¼ 8 ¼ 23. Note the multipliers are identified

above and below the lines for clarity.

For a general derivation of the decimation-in-

frequency algorithm and other algorithms, see

Oppenheim and Schafer (1999), and others.

Notes: The decimation refers to the process of

reducing the number of operations for an N ¼ 2n

point DFT, expressing theN-point DFT in terms of

2 ðN=2Þ ¼ 2n�1-point DFTs and successively

expressing them in n stages with the input sequence

in natural order.
Number of computations in an FFT algorithm: In

Section 8.9.2 the computational aspects of discrete

Fourier transforms were considered. These results

are compared with FFT computational require-

ments. In the N-point FFTalgorithm with N ¼ 2n,

we have n ¼ log2ðNÞ stages. FFT computation

requires ðN=2Þn ¼ ðN=2Þ log2ðNÞ complex multipli-

cations and nN ¼ N log2ðNÞ complex additions.

Computers use real arithmetic and each complex

multiplication requires four real multiplications

and three real additions. The amount of effort to

do multiplication is much larger than additions. We

Fig. 9.2.3 Flow graph
representations for N ¼ 4
using the decimation-in-
frequency FFT algorithm

9.2 Computation of Discrete Fourier Transforms (DFTs) 371



can compare the number of multiplications by the

direct method versus FFT by the ratio

R ¼ N2

:5N log2ðNÞ
¼ N

:5n
� N

n
: (9:2:12)

For a large N ¼ 2n, the difference in the number of

computations by FFT is significantly lower.

Note that :5N log2ðNÞ is nearly linear, whereas N2

is quadratic. For smallN, the difference in the num-

ber of computations in computing the DFT and

FFTis not that significant. As an example, consider

N ¼ 210, the ratio in (9.2.12) is R � 204. The DFT

requires N2 values of Wkn
N ; k; n ¼ 0; 1; 2; . . . ;N� 1,

whereas FFT requires at mostN such values at each

stage. Earlier, we have seen that

e�jð2p=NÞnk ¼ e�jð2p=NÞm; 0 � m � N� 1. The logical

way of course is to compute Wk
N once,

k ¼ 0; 1; 2; . . . ;N� 1, store them, and use them

again and again in each stage. Only about ð3=4ÞN
of these Wk

N are distinct in the FFT algorithm, see

Ambardar (2007). The FFT approach N ¼ 2n is

computationally efficient compared to the direct

method only for n45 ðN432Þ. See Wilf (1986)

for an interesting discussion of algorithms and

their complexity. MATLAB function for com-

puting the DFT of a signal is the fft function. It

can be used for any N. For example, to compute the

DFT of a sequence x ofN values,MATLAB routine

is X ¼ fftðxÞ to get the spectral values and the

routine x ¼ ifftðXÞ gives the data from the spectral

values.

Just like in the continuous case, other discrete

transforms related to discrete Fourier transforms

can be considered, including discrete cosine, sine,

Hartley, and Hilbert transforms. These are beyond

the scope here. See the handbook by Poularikas

(1996).

9.3 DFT (FFT) Applications

In Section 9.2, spectral analysis based on DFT was

considered. Computing DFT via FFT is a tool to

reduce the number of computations. FFT is applic-

able wherever DFT can be used. See, for example,

Marple (1987), O’Shaughnessy (1987), Otnes and

Enochson (1972), Poularikas (1996), Rabiner and

Schafer (1979), Shenoi (1995), and others for FFT

applications.

9.3.1 Hidden Periodicity in a Signal

Although, nothing is forever, some signals can be

considered as periodic at least on a short-time basis.

For example, vowel speech sounds can be consid-

ered as periodic on a short-time basis. Investors in

the stock market would like to know if the price of a

stock has a periodic part in the signal that is hidden.

If so, the investor can sell when the stock is high and

buy when it is low. For a good presentation on

Fig. 9.2.4 Flow graph
representations for N ¼ 8
using the decimation-in-
frequency FFT algorithm
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applying spectral analysis to various physical sig-

nals, see Marple (1987).

Example 9.3.1 Consider the sinusoid xðtÞ ¼
cosð2pð100ÞtÞ that is sampled at twice the Nyquist

rate for three full periods. Find the corresponding

DFT values.

Solution: The frequency of the sinusoid is 100 Hz.

The period of the signal is T ¼ ð1=100Þ s. The

Nyquist rate is 200 Hz. The corresponding sampling

rate and the sampling interval are 400 Hz and

ts ¼ ð1=400Þ s. Since three periods are used, we

have four samples per period and haveN ¼ 12 sam-

ples to find the DFT. Note

cosð2pf0tÞ t¼nts ¼ cosð2pnðf0=fsÞÞ;j
n ¼ 0; 1; 2; . . . ;N� 1 ¼ 11 (9:3:1)

The sampling frequency is divided into N ¼ 12 inter-

vals and the frequency interval isF ¼ fs=N ¼ fs=12 ¼
400=12 ¼ 100=3 referred to as the digital frequency in

Section 8.6.1, where O ¼ 2pðf=fsÞ ¼ 2pF was used.

The DFT frequencies are

kF ¼ kfs=N ¼ kðfs=12Þ;

k ¼ 0; 1; 2; :::;N� 1 ¼ 11:
(9:3:2)

Now, assume f0 is one of these frequencies and

kF ¼ kðfs=NÞ ¼ kðfs=12Þ ¼ f0 for some k. That is,

f0
fs
¼ k

N
¼ k

12
; a rational number: (9:3:3)

For f0 ¼ 100 Hz; fs ¼ 400 Hz, and k ¼ 3, X½3�
gives the appropriate spectral value. This can be

verified by computing DFT of the sequence

x½n� ¼ cosð2pðf0=fsÞnÞ ¼ cosð2pðknÞ=NÞ
¼ cosð2pðknÞ=12Þ; n ¼ 0; 1; 2; . . . ; 11; k ¼ 3

) fx½n�g ¼ f1; 0;�1; 0; 1; 0;�1; 0; 1; 0;�1; 0g:
(9:3:4)

DFTfcosð2pðnkÞ=NÞg ¼ 1
2DFT ej2pnm=N þ e�j2pnm=N

� 	

¼ 1
2

PN�1
n¼0

ejð2p=NÞnðm�kÞ þ 1
2

PN�1
n¼0

e�jð2p=NÞnðmþkÞ ¼ X½k�
:

Using the summation formula for the geometric

series results in the DFT values

X½k� ¼
N=2; k ¼ m

N=2; k ¼ N�m

0; otherwise

8><
>:

9>=
>;

) X½k� : f0; 0; 0; 6; 0; 0; 0; 0; 0; 6; 0; 0g: (9:3:5)

Noting N ¼ 12 and the amplitude of the sinusoid is

1, we have X½3� ¼ X½9� ¼ 6. &

Notes: These results can be extended to a periodic

function xðtÞ ¼ cosð2pðk0=NÞ þ yÞ. The DFT of

xðtÞ has only two nonzero discrete frequency values

and are

X½k� k¼k0 ¼j ðN=2Þejy and X½N� k� k¼k0j ¼ ðN=2Þe�jy:

The frequency spacing F ¼ f0=fs needs to be a

rational function so that the discrete frequency

falls on the input signal frequency. FFT algorithm

can be used with this in mind. Also, leakage results

in DFT if a periodic signal is not sampled for an

integer number of periods. This results in nonzero

spectral components at frequencies other than the

harmonic frequencies of the signal. Many times it is

not easy to find the period of a signal up front. One

solution to this is to use large enough number

of samples. Larger is the time interval, the more

closely is the spectrum sampled. That is, the spectral

spacing F ¼ fs=N is reduced, thus giving a more

accurate estimate of spectrum of the given signal.

Most practical signals are noise corrupted and are

known only for a short time. That is, the signal is a

windowed signal. As we have seen in Chapter 4, the

spectrum of the windowed sinusoid is not a spike,

but a sinc function indicating leakage into the

side lobes. Tapered windows need to be used in

any spectral analysis. If a signal contains several

frequencies, then the spectrum of the windowed

signal is the sum of the spectra of each sinusoid

and it may not have distinct peaks as the main

lobes of the sinusoids might merge. This

happens if the two frequencies in the input signal

are located close enough, then the frequency peaks

may merge. Instead of two separate peaks, there

may be only one single peak. Choosing larger

9.3 DFT (FFT) Applications 373



DFT lengths and good windows improves the accu-

racy of the spectral estimates, see Marple (1987). &

9.3.2 Convolution of Time-Limited
Sequences

The convolution of the sequences x½n� and h½n� was
defined by (see (8.3.16))

y½n� ¼
X1

k¼�1
x½k�h½n� k� ¼

X1
m¼�1

h½m�x½n�m�:

(9:3:6)

Consider x[n] = 0 for n < 0 and n � L, h[n] = 0 for

n < 0 and n �M. Equation (9.3.6) can be expressed

as follows:

y½n� ¼
XL�1
k¼0

x½k�h½n� k� ¼
XM�1
m¼0

h½m�x½n�m�: (9:3:7)

Sequence:

y½n� ¼ 0; n50

y½0� ¼ h½0�x½0�
y½1� ¼ h½1�x½0� þ h½0�x½1�
y½2� ¼ h½2�x½0� þ h½1�x½1� þ h½0�x½2�

:::

y½M� 1� ¼ h½M� 1�x½0�þ
:::þ h½0�x½M� 1�:::

y½Mþ L� 2� ¼ h½M� 1�x½L� 1�
y½n� ¼ 0; n �Mþ L� 1:

(9:3:8)

Example 9.3.2 Find the sequence y½n� correspond-
ing to the convolution of the following sequences

and express y½n� in matrix form:

h½0� ¼ 1; h½1� ¼ �1; h½n� ¼ 0 for n50 and n 4 1;

(9:3:9)

x½0� ¼ 1; x½1� ¼ 1; x½n� ¼ 0 for n50 and n41:

(9:3:10)

Solution:

y½n� ¼ 0; n50

y½0� ¼ x½0�h½0� þ x½1�h½�1� ¼ x½0�h½0� ¼ 1

y½1� ¼ x½0�h½1� þ x½1�h½0� ¼ �1þ 1 ¼ 0

y½2� ¼ x½0�h½2� þ x½1�h½1� ¼ x½1�h½1� ¼ �1

y½n� ¼ 0; n � 3

2
666666664

3
777777775
:

(9:3:11)

The equations in (9.3.11) for y½n� 6¼ 0 can be written

in two equivalent matrix forms and

y ¼
y½0�
y½1�
y½2�

2
64

3
75 ¼

h½0� 0

h½1� h½0�
0 h½1�

2
64

3
75 xð0Þ

xð1Þ

� �

¼ Hx ¼
x½0� 0

x½1� x½0�
0 x½1�

2
64

3
75 h½0�

h½1�

� �
¼ Xh: (9:3:12)

The coefficient matrices X and H are ð3� 2Þ size
matrices. The column vectors y; h; and x are of the

dimensions 3� 1; 2� 1; and 2� 1, respectively.

The entries in the coefficient matrices X and H

have a special structure. For example, the first and

the second columns of the coefficient matrix H are,

respectively, given by

Colðh½0�; h½1�; 0Þ ¼
h½0�
h½1�
0

2
64

3
75;

Colð0; h½0�; h½1�Þ ¼
0

h½0�
h½1�

2
64

3
75: (9:3:13)

The second column is obtained from the first

by rotating the first entry to the second, second entry

to the third, and the third entry to the first. &
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Equations in (9.3.7) can be written in matrix and

symbolic forms for y½n� 6¼ 0 as follows:

y½0�
y½1�
y½2�
:

:

:

y½M� 1�
y½M�
:

:

:

y½Mþ L� 2�

2
6666666666666666666666664

3
7777777777777777777777775

¼

h½0� 0 0 : : 0

h½1� h½0� 0 : : 0

h½2� h½1� h½0� : : 0

: h½2� h½1� : :

: : : : :

: : : : :

h½M� 1� h½M� 2� h½M� 3� : : :

0 h½M� 1� h½M� 2� : : :

: 0 h½M� 1� : : :

: : : : : :

: : : : : h½M� 2�
0 0 0 0 0 h½M� 1�

2
6666666666666666666666664

3
7777777777777777777777775

x½0�
x½1�
:

:

:

x½L� 1�

2
666666664

3
777777775
; y ¼ Hx: (9:3:14a)

Note that x is an L�1 columnmatrix with the ent-

ries x½0�; x½1�; . . . ; x½L� 1�. The vector y is a ðMþ L

�1Þ � 1 column matrix andH is a ðMþ L� 1Þ � L

matrix. The entries in the matrixH have the follow-

ing pattern. The j th column in H is given by

ðj� 1Þ zeros
N coefficients written in the order

h½0�; h½1�; . . . ; h½M� 1�
ðL� jÞ zeros

8>>><
>>>:

9>>>=
>>>;
; 1 � j � L:

(9:3:14b)

If one column or one row of H is known, the entire

matrix can be constructed. Noting that the convolu-

tion is commutative, i.e., y½n� ¼ h½n� 	 x½n� ¼
x½n� 	 h½n�, equations similar to (9.3.14a and b) can

be written by replacing h½n� by x½n� and vice versa.

Computation of convolution via DFT: In Section

8.10, it was shown that a periodic convolution can

be implemented by using the DFT. This idea can be

used here as well and is illustrated by a simple

example. Equation in (9.3.12) can be written as

y ¼
y½0�
y½1�
y½2�

2
64

3
75 ¼

h½0� 0 h½1�
h½1� h½0� 0

0 h½1� h½0�

2
64

3
75

x½0�
x½1�
0

2
64

3
75 (9:3:15)

This set of equations gives the same results as the set

in (9.3.12). Interestingly, (9.3.15) is the same as the

one in (8.10.28), with h½2� ¼ 0 corresponding to a

periodic convolution. Equation (9.3.15) can be

modified by adding the fourth column in the

coefficient matrix and appending the data by

two zeros resulting in (9.3.16).

ya¼

y½0�
y½1�
y½2�
0

2
6664

3
7775¼

h½0� 0 0 h½1�
h½1� h½0� 0 0

0 h½1� h½0� 0

0 0 h½1� h½0�

2
6664

3
7775

x½0�
x½1�
0

0

2
6664

3
7775¼Haxa:

(9:3:16)

The reason for using N ¼ 4 for the extended

sequences is that FFT can be used to find the

convolution. In summary, given h½n�; n ¼ 0; 1; . . . ;

M� 1 and x½n�; n ¼ 0; 1; 2; . . . ;L� 1, we can con-

volve h½n� with x½n� using the appended

sequences as follows. Pad the sequences

h½n� and x½n� with zeros so that they are of length

N � LþM� 1 resulting in the appended

sequences ha½n� and xa½n� of length N, a power

of 2. Convolution of the two extended sequences

results in ya½n� ¼ ha½n� 	 xa½n�. ya½n� is an

appended sequence of y½n� of length 2N� 1. To
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determine the convolution via DFT (or FFT), do

the following steps:

1. Determine Xa½k�¼DFTfxa½n�g andHa½k�¼DFT

fha½n�g .
2. Multiply the DFTs to form the products

Ya½k� ¼ Ha½k�Xa½k�.
3. Find the inverse DFT of Ya½k�. Discard the last

ðN� ðMþ L� 1ÞÞ data points out of ya½n� to
obtain y½n�; n ¼ 0; 1; :::;Nþ L� 2:

There are two methods for computing the dis-

crete convolution, one by the convolution formula

and the other by using DFTs. It may appear that

the effort in computing the convolution via DFT is

more computationally intensive than the direct

convolution. However, using FFT, the number of

computations is fewer, roughly for N432. Even

though the number of computations is fewer for

large N, there are difficulties with the use of DFT.

The data sequence x½n� may be long, say M points

of data. The sequence h½n� is of reasonable size, say
L
M. The computation of the DFTof x½n� may

not be possible due to computer storage con-

straints involving large amount of computations

resulting in a significant delay. There are two

methods, overlap-add and overlap-save, which

can be used for large set of data. Both section

long input sequence into shorter sections. They

are suitable for online implementation if the pro-

cess can tolerate slight delays. The overlap-add

method is discussed below; see Ambardar (2007)

for the overlap-save method.

Overlap-add method: The sequence h½n� of length
Nis assumed to start at n ¼ 0. The sequence x½n� is a
much longer sequence of length M, also starting

n ¼ 0. Partition x½n� into k segments each of

length N (zero padding the last segment if needed).

The data can be expressed in a mathematical

form using a rectangular window wR½n� of length
N by

x½n� ¼
Xk�1
i¼0

xi½n�; xi½n� ¼ x½n�w½n� iN�;

w½n� ¼
1; n ¼ 0; 1; . . . ;N� 1

0; otherwise

�
: (9:3:17a)

That is,

fx½n�g ¼ ffx0½n�g; fx2½n�g; . . . ; fxk�1½n�gg; xi½n�

¼
x½n�Ni�; i ¼ 0; 1; . . . ; k� 1

0; elsewhere

�
:

(9:3:17b)

We can now write

y½n� ¼ h½n� 	 x½n� ¼ h½n� 	
Xk�1
i¼0

xi½n�

¼
Xk�1
i¼0

h½n� 	 xi½n� ¼
Xk�1
i¼0

yi½n�:

It follows that the total convolution is the sum of the

individual convolutions resulting in

y½n� ¼ y0½n� þ y1½n�N� þ :::

þ yk�1½n� ðk� 1ÞN�:
(9:3:18)

The ith segment of the output begins at n ¼ iN, as

do the input segment xi½n�. However, each yi½n� seg-
ment has a length equal to ð2N� 1Þ and therefore

yi½n� s ‘‘overlap’’ each other. We can think of each

yi½n� as having the same length of 2N� 1 points,

where each yi½n� includes zero padding before and/

or after as appropriate, such that the positions of

the sequences are in correct location.

Example 9.3.3 Consider the longer and shorter

sequences given by x½n� ¼ f1; 2; 3; 4g and

h½n� ¼ f1;�1g. a. Use the overlap-add method to

determine the convolution of the sequences. b. Ver-

ify the results using direct convolution.

Solution: a. Here M ¼ 2 and L ¼ 4. Section the

sequence x½n� into two sequences x0½n� ¼ f1; 2g
and x1½n� ¼ f3; 4g. Then determine y0½n� ¼ x0 ½n� 	
h½n� and y1½n� ¼ x1½n� 	 h½n�. By the direct convolu-

tion, the sequences are as follows:

1 0

2 1

0 2

2
64

3
75 1

�1

� �
¼

1

1

�2

2
64

3
75;

3 0

4 3

0 4

2
64

3
75 1

�1

� �
¼

3

1

�4

2
64

3
75

) y0½n� ¼ f1;1;�2g;y1½n� ¼ f3;1;�4g:
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Since the length of the sequence y½n� is

ð4þ 2� 1Þ ¼ 5, the sequence y0½n� needs to

be padded by two zeros at the end. Also, pad

two zeros before the sequence y1½n�. The result is

obtained by overlapping the data and adding them

at appropriate locations given below:

y½n� ¼ y0½n� þ y1½n�N�
¼ f1; 1;�2; 0; 0g þ f0; 0; 3; 1� 4g
¼ f1; 1; 1; 1;�4g:

b. The result can be verified by directly using the

direct convolution given below and the result is the

same in both cases. See the equations in (9.3.19a)

and (9.3.19b):

y 0½ �

y 1½ �

y 0½ �

y 3½ �

y 4½ �

2
66666666664

3
77777777775
¼

x 0½ � 0

x 1½ � x 0½ �

x 2½ � x 1½ �

x 3½ � x 2½ �

0 x 3½ �

2
66666666664

3
77777777775

h 0½ �

h 0½ �

" #

¼

1 0

2 1

3 2

4 3

0 4

2
66666666664

3
77777777775

1

�1

" #
¼

1

1

1

1

�4

2
66666666664

3
77777777775
:

&

9.3.3 Correlation of Discrete Signals

Discrete cross-correlations of two sequences (see

(8.3.20a and b)) were defined as follows:

rxh½k� ¼ x½k� 	 	 h½k� ¼
X1

n¼�1
x½n�h½nþ k�

¼ x½�k� 	 h½k�; (9:3:19a)

rhx½k� ¼ h½k� 	 	x½k� ¼
X1
n¼�1

h½n�x½nþ k�

¼ h½�k� 	 x½k�: (9:3:19b)

The cross-correlation of two causal sequences

x½k� and h½k� with M and L sample points, respec-

tively, are

rxh½k� ¼ x½k� 	 	h½k� ¼
XM�1
n¼0

x½n�h½nþ k�;

rhx½k� ¼ h½k� 	 	x½k� ¼
XL�1
n¼0

h½n�x½nþ k�; (9:3:19c)

rhx½k� ¼ rxh½�k�: (9:3:19d)

The integer k represents the shift of the second

sequence with respect to the first.

Example 9.3.4 Consider the data sequences given

earlier in Example 9.3.2. Give the correlations of

these two sequences and write them in a matrix

form.

Solution: Using (9.3.20c), we have rhx½k�¼0; k��2
and rhx½k� ¼ 0; k � 2:

rhx½�1� ¼ h½0�x½�1� þ h½1�x½0� ¼ h½1�x½0�;
rhx½0� ¼ h½0�x½0� þ h½1�x½1�;
rhx½1� ¼ h½0�x½1� þ h½1�x½2� ¼ h½0�x½1�;
rhx½2� ¼ h½0�x½2� þ h½1�x½1� ¼ 0:

In matrix form)

rhx �1½ �

rhx 0½ �

rhx 1½ �

2
6664

3
7775¼

h 1½ � 0

h 0½ � h 1½ �

0 h 0½ �

2
6664

3
7775

x 0½ �

x 0½ �

" #

¼
�1 0

1 �1
0 1

2
64

3
75 1

1

� �
¼

� 1

0

1

2
64

3
75

&
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The matrix equation can be generalized. The non-

zero cross-correlations can be written in the follow-

ing matrix and symbolic forms:

rhx½�ðM� 1Þ�
rhx½�ðM� 2Þ�

:

:

:

rhx½0�
rhx½1�
:

:

:

rhx½L� 1�

2
6666666666666666666664

3
7777777777777777777775

¼

h½M� 1� 0 : : : 0

h½M� 2� h½M� 1� : : : 0

: : : : : :

: : : : : h½M� 1�
: : : : : h½M� 2�

h½0� h½1� : : : :

0 h½0� : : : :

: 0 : : : :

: : : : : :

: : : : : :

0 0 : : : h½0�

2
6666666666666666666664

3
7777777777777777777775

x½0�
x½1�
:

:

:

x½L� 1�

2
666666664

3
777777775
) y ¼ Hcorrx; (9:3:20)

where y is a column vector of dimension ðMþL�1Þ,
x is a column matrix of dimension L, and Hcorr is a

rectangular matrix of dimensions ðMþ L� 1Þ � L.

If xðkÞ ¼ hðkÞ then the cross-correlation coeffi-

cients are the autocorrelation coefficients.

Notes: In comparing (9.3.14a) and (9.3.20), for

convolution, the first column of H has h½n� in the

normal order. For correlation, the first column of

Hcorr has h½n� in reverse order. In both cases the

other columns can be determined from the first

column.

Computation of the cross-correlation using

DFT: Given h½n�; n ¼ 0; 1; . . . ;M� 1 and x½n�;
n ¼ 0; 1; . . . ; L� 1 determine the cross-correlation

function

rhx½n� ¼
X
k

h½k�x½kþ n�: (9:3:21)

Considering the equations for the convolution (see

(9.3.14a)) and the cross-correlation (see (9.3.20)),

we see that both have the same general form and

the same computational procedure can be used for

both cases. The following step-by-step procedure

can be used.

1. Zero-pad both sequences to length N � Lþ
M� 1. To use FFT, use N a power of 2.

2. Find the DFTs of h½n� and x½n�.
3. Rhx½k� ¼ H	½k�X½k�; k ¼ 0; 1; 2; :::;N� 1.

4. Find the inverse DFT of Rhx½k�.

Power spectral density: The autocorrelation

(AC) sequence of x½n� plays a major role in spectral

estimation, as its power spectral density is

X½k�j j 2 ¼ Sx½k�. It is

Sx½k� ¼
XN�1

n¼�ðN�1Þ
rx½n�e�jð2p=NÞnk ¼

XN�1
n¼0

rx½n�e�jð2p=NÞnk

þ
XN�1
n¼0

rx½n�ejð2p=NÞnk � rx½0�: (9:3:22)

9.3.4 Discrete Deconvolution

We have seen in the analog domain when a signal

goes through a linear time-invariant system, then

the signal is modified by the impulse response of the

system. The same is true in the digital domain. The

convolution of two sequences that are of finite

width was defined earlier and

y½n� ¼ x½n� 	 h½n� ¼
Xn
k¼0

h½k�x½n� k�: (9:3:23)

There are three functions x½n�; h½n�; and y½n�.
In finding the convolution, x½n� and h½n� are

known and y½n� is determined by (9.3.23). In the

deconvolution problem, the output sequence

y½n� and the input data x½n� are known and h½n� is
to be determined. There are four ways to achieve this
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goal. These are as follows: 1. recursion, 2. polynomial

division, 3. using DFT, and 4. Lp deconvolution.

Deconvolution by recursion: From (9.3.23) h½0� ¼
y½0�=x½0�. Now separate the term h½n� in (9.3.23) and

write in the following form and determine succes-

sively the values of h½n� for n40:

y½n� ¼
Xn
k¼0

h½k�x½n� k� ¼ h½n�x½0� þ
Xn�1
k¼0

h½k�x½n� k�:

(9:3:24)

Example 9.3.5 In Example 9.3.3 the convolution

sequence y½0� ¼ 1; y½1� ¼ 0; y½2� ¼ �1was computed

using the sequences x½0� ¼ 1; x½1� ¼ 1 and h½0� ¼ 1;

h½1� ¼ �1. Verify the sequence h½n� using the recur-

sion method.

Solution:

h 0½ � ¼ y 0½ �=x 0½ � ¼ 1;

h 1½ � ¼ 1=x 0½ �ð Þ y 1½ � � h 0½ �x 1½ �f g ¼ 0� 1 ¼ �1:
(9:3:25) &

This method is not practical in the presence of noise.

Deconvolution using polynomial division in

terms of z-transforms will be considered in Section

9.8.1. The DFT method makes use of DFTsof

the sequences with Y½k� ¼ H½k�X½k�. Then,

H½k� ¼ Y½k�=X½k� and its inverse DFT gives h½n�.
This procedure is similar to the one in the analog

domain. It has at least two disadvantages. One of

them is X½k�s may be zero resulting in division by

zero. Also, it is sensitive to noise in the input.

Fourth method is based onminimizing theLp errors

discussed in Section 3.3.

Deconvolution by Lp methods: The output is

assumed to be the convolution of two sequences,

say an input sequence x½n�, a linear discrete system

response sequence given by h½n�, and an additive

noise sequence e½n�. The output is
y n½ � ¼ h n½ � 	x n½ �þ e n½ �; n¼ 0;1;2; . . . ;N�1: (9:3:26)

The noise signal can only be described by statistical

measures. An interesting error measure is the

Lp; 1 � p � 1 measure defined by

ej jp¼
XN�1
n¼0
ðy½n� � ðh½n� 	 x½n�ÞÞp: (9:3:27)

Minimization of this error in terms of the unknowns

h½n� is a difficult problem for an arbitrary p. The

general solution can only be determined by iterative

means, see the articles by Byrd and Payne (1979)

and Yarlagadda et al. (1985). There is a simple

solution when p ¼ 2, which is used if the noise

sequence is from a Gaussian distribution. These

problems can be described under the general pro-

blem of solving a set of equations that are

overdetermined and underdetermined system of

equations. In Section A.6 we consider the solutions

of overdetermined and underdetermined system of

equations. Consider the system of equations in the

symbolic matrix form

Ah ¼ y: (9:3:28a)

The least-squares solution to the overdetermined

system in (9.3.28a) is (see (A.8.16b))

y ¼ Ah) ðATAÞh ¼ ATy) h ¼ ðATAÞ�1ATy:

(9:3:28b)

The matrix ½ðATAÞ�1A] is a pseudo-inverse of the

matrix A. The MATLAB routine to compute this

inverse is

pinvðAÞ ¼ ðATAÞ�1AT: (9:3:29)

The inverses of the matrix ðATAÞ may not exist. In

such cases, a diagonal matrix dI, where d is a small

positive number, is added to the matrix ðATAÞ. This
is called diagonal loading. An approximate solution

of (9.3.28) is then given by

h ffi ðATAþ dIÞ�1Ay: (9:3:30)

Example 9.3.6 Solve the following set of equations

using the least-squares solution:

Ah ¼
1 0

2 1

0 2

2
64

3
75 1

�1

� �
þ

e

�e
e

2
64

3
75

¼
1

1

�2

2
64

3
75þ

e

�e
e

2
64

3
75 ¼ yþ

e

�e
e

2
64

3
75: (9:3:31)
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Solution: The pseudo-inverse of A and the solution

vector are, respectively, given as follows:

ðATAÞ�1AT ¼ 1

21

5 �2
�2 5

� �
1 2 0

0 1 2

� �

¼ 1

21

5 8 �4
�2 1 10

� �
;

h ¼ 1

21

5 8 �4
�2 1 10

� � 1

1

�2

2
64

3
75þ

e

�e
e

2
64

3
75

8><
>:

9>=
>;

¼ 1

21

21

�21

� �
þ 1

21

�7e
7e

� �
¼

1� :3333e
�1þ :3333e

� �
:

Clearly if e ¼ 0, the solution coincides with the

vector h we started with. &

Notes: Implementation of discrete algorithms gener-

ally requiresmultiplications,whichare expensive com-

pared to additions. The following table gives a rough

comparison of how expensive the additions, multipli-

cations, and data transfers are for fixed and floating

point machines by assuming one unit of expense cor-

responding to an addition compared to other opera-

tions. This gives a comparison of the computational

expense and not the individual machine comparison,

see Stine (2003) and Swartzlander Jr. (2001).

Multiplication Addition Transfer

Fixed point 10 1 0.5

Floating point 2 1 0.5

From this table one can appreciate how much FFT

algorithms are cost-effective in implementing the

discrete Fourier transform when the number of

data points N is large. &

In the following, z-transforms, the discrete-time

counterpart of the L-transforms, will be presented.

Theory behind z-transforms is rather sophisticated

and our presentation will be simple. See Oppenheim

and Schafer (1999) for a detailed discussion on this

topic.

9.4 z-Transforms

The DTFT of the sequence x½n�, XðejOÞ exists pro-
vided that x½n� is absolutely summable (see (8.5.11),

which is repeated below in (9.4.1)). This is sufficient

but not necessary:

X1
n¼�1

x½n�j j51: (9:4:1)

The DTFT pair is

XðejOÞ ¼
X1

n¼�1
x½n�e�jnO  !DTFT 1

2p

ðp

�p

XðejOÞejnOdO

¼ x½n�: (9:4:2)

The DTFT of x½n�e�ns and the corresponding

DTFT are as follows:

DTFT½x½n�e�ns� ¼
X1
n¼�1

½x½n�e�ns�e�jnO

¼
X1
n¼�1

x½n�e�jðsþjOÞn ; (9:4:3)

x½n�e�jnO  !DTFT
XðejðsþjOÞÞ: (9:4:4)

The convergence of the sequence x½n� e�jnO can now

be defined in terms of e�ns, which is similar to the

convergence of L-transforms, see Section 5.4. It is

desirable to use the notation

z ¼ esþjO ¼ esejO ¼ rejO and lnðzÞ
¼ sþ jO and ð1=zÞdz ¼ jdO: (9:4:5)

Using these in (9.4.1), the time sequence and the

corresponding z-transform are

x½n� ¼ 1

2pj

I
XðzÞzn�1dz; XðzÞ

¼
X1
n¼�1

x½n�z�n: (9:4:6)

The z-transform of a discrete-time sequence x½n� is
defined in terms of a complex variable z by

Zfx½n�g ¼ XðzÞ ¼
X1
n¼�1

x½n�z�n: (9:4:7a)

The range of values of the complex variable z for

which the summation converges is called the region

of convergence (ROC). The inverse z-transform and
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the symbolic relationship between x½n� and XðzÞ
are, respectively, given by

x½n� ¼ Z�1½XðzÞ� ¼ 1

2pj

I
CXðzÞzn�1dz

� �

I
C�contour integral


 �
; x½n�$z XðzÞ:

(9:4:7b)

The contour integral is around a circle of radius r in

the counterclockwise direction enclosing the origin

on the z-plane, see Fig. 9.4.1. The complex domain

integration requires knowledge of complex vari-

ables, which is beyond our scope.

The z-transform exists when the sum in (9.4.7a)

converges. A necessary condition for convergence is

absolute summability of x½n�z�n. Let z ¼ rejO. The

absolute summability of x½n�z�n is

X1
n¼�1

x½n�r�nj j51: (9:4:8)

The range of r for which the sum converges is the

region of convergence (ROC).

9.4.1 Region of Convergence (ROC)

Example 9.4.1 Determine the z-transform of the

right-sided sequence x1½n� ¼ anu½n�.

Solution: The z-transform of x1½n� is

X1ðzÞ ¼
X1
n¼�1

x1½n�z�n ¼
X1

n¼�1
anu½n�z�n

¼
X1
n¼0
ðaz�1Þn ¼ 1

1� az�1
¼ z

z� a
; zj j4 aj j:

(9:4:9)

ROC is the range of values of z for which

az�1
�� ��51 or zj j4 aj j. The transform is represented

by a rational function of the complex variable z. As

in the Laplace transforms, we can describe a

rational function XðzÞ in terms of its poles (the

roots of the denominator) and zeros (the roots of

the numerator) on the complex z-plane. There is a

pole at z ¼ a and a zero at z ¼ 0 and these are

shown in Fig. 9.4.2. The ROC is outside the circle

of radius a. The boundary of the ROC is zj j ¼ aj j.
The ROC does not contain any poles and is outside

the circle of radius zj j ¼ a. &

Example 9.4.2 Consider the left-side sequence

x2½n� ¼ �bnu½�n� 1�; b 6¼ 0.

Solution: The z-transform is

X2ðzÞ ¼
X1
n¼�1

x2½n�z�n ¼ �
X1
n¼�1

bnu½�n� 1�z�n:

(9:4:10)

u½n�; u½�n�; and u½�n� 1� ¼ u½�ðnþ 1Þ� are sket-
ched in Fig. 9.4.3a,b,c and

X2ðzÞ ¼ �
X�1

n¼�1
ðb=zÞn: (9:4:11)

Using the change of variablem ¼ �n in (9.4.12), we

have

X2ðzÞ ¼ �
X1
m¼1
ðz=bÞm ¼ 1�

X1
m¼0
ðz=bÞn

¼ 1� 1

1� ðz=bÞ ¼
z

z� b
; zj j5 bj j: (9:4:12)

See the pole–zero plot and the region of conver-

gence in Fig. 9.4.4.

In the last two examples, a right-side and a left-

side sequences were considered. If a ¼ b, the two

Re(z )

Im(z)

r

0

Fig. 9.4.1 Contour of
integration on the z-plane.

Re(z)

Im(z)Fig. 9.4.2 Example 9.4.1:
region of convergence ða40Þ
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transforms are identical except the ROC is different.

The z-transform of the sequence and the ROC need

to be known before the sequence can be identified.

Example 9.4.3 Determine the z-transformof the

two-sided sequence y½n� ¼ anu½n� þ bnu½�n� 1�
and the ROC.

Solution: The z-transform of the sum is obtained by

adding the two transforms and

YðzÞ ¼
X1
n¼�1

ðanu½n� � bnu½�n� 1�Þz�n

¼
X1
n¼0

anz�n � 1þ
X1
m¼0
ðz=bÞn: (9:4:13)

First and the second sums on the right-hand side

have the ROCs zj j4 aj j and zj j5 bj j, respectively.
The sum of the two functions and the corresponding

ROC are given by

YðzÞ ¼ z

z� a
þ z

z� b
;

ROC : f zj j4 aj jg \ f zj j5 bj jg: (9:4:14)

The ROC in (9.4.15) exists only if there is an overlap

of the regions identified by the regions

f zj j4 aj jg and f zj j5 bj jg. If bj j4 aj j, then the trans-

form converges in the annular region shown in Fig.

9.4.5a identified by aj j5 zj j5 bj j. If bj j5 aj j, there is
no region of overlap and therefore the ROC is the

null set. &

Example 9.4.4 Give the ROC of the sequence.

x½n�¼
6¼0; N1�n�N2

0; Otherwise

� �
 !z XðzÞ¼

XN2

n¼N1

x½n�z�n:

(9:4:15)

Solution: For z 6¼ 0 or 1, each term will be finite

and the function XðzÞ converges. If N150 and

N240, the sum includes both negative and positive

powers of z. As zj j ! 0, the terms with negative

powers of z become unbounded. As zj j ! 1, the

terms with positive powers of z become

unbounded. Therefore, the ROC of the function

XðzÞ of a finite sequence is the entire z-plane

except for z ¼ 0 and z ¼ 1. If N1 � 0; the ROC

includes z ¼ 1 and if N2 � 0, the ROC

includes z ¼ 0. &

Example 9.4.5 Find XðzÞ for x½n� in Fig. 9.4.6 and

make a pole–zero plot.

Solution: First,

XðzÞ ¼
X2
n¼�2

x½n�z�n ¼ 1:z�ð�2Þ þ ð�6Þ:z�ð�1Þ

þ 9:z0 þ 4:z�1 þ ð�12Þ:z�2

¼ z2 � 6zþ 9þ 4z�1 � 12z�2

¼ z4 � 6z3 þ 9z2 þ 4z� 12

z2

¼ ðz� 2Þ2ðz� 3Þðzþ 1Þ
z2

:

Im(z)

β β
Re(z)

Fig. 9.4.4 Pole–zero plot
and ROC of X2ðzÞ.

(a) (b) (c)

Fig. 9.4.3 (a) u½n�, (b) u½�n�,
and (c) u½�ðn� 1Þ�

Im(z)

Re(z)

2

Im(z)

Re(z)

α β

α + β
2

α + β

αβ

Fig. 9.4.5 (a) ROC of YðzÞ and (b) no region of convergence
when jaj4jbj
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The poles of XðzÞ are at the origin and have zeros at

z ¼ �1; 2; and 3. See the pole–zero plot in

Fig. 9.4.6b. TheROCof this function spans the entire

z-plane corresponding to the region enclosed between

the poles at zero and those located at infinity. &

Example 9.4.6 Derive the z-transform of the

sequence for the following two cases: a being arbi-

trary and a ¼ 1:

x½n� ¼
an; 0 � n � N� 1

0; otherwise

�
: (9:4:16)

Solution:

XðzÞ ¼
XN�1
n¼0

anz�n ¼
XN�1
n¼0
ðaz�1Þ

¼ 1� aNz�N

1� az�1
; ROC : zj j40: (9:4:17)

a ¼ 1) x½n� ¼
1; 0 � n � N� 1

0; otherwise

� �
 !z 1� z�N

1� z�1

¼ XðzÞ; ROC : zj j 6¼ 0: (9:4:18)

See Fig. 9.4.7 for the pole-zero plot assuming

N¼11 &

Notes on the ROC of a rational function

XðzÞ: The ROC depends on the poles of the

function XðzÞ at z ¼ rie
jyi ; ri40. The maximum

and minimum magnitudes of these poles are identi-

fied by rmax ¼ max rij j and rmin ¼ min rij j. If the

degree of the denominator of XðzÞ is smaller than

the degree of the numerator, then XðzÞ has at least
one pole at1.

1. The ROC does not contain any poles.

2. If the sequence is a finite sequence, then the ROC

of XðzÞ is the entire z-plane except possibly

z ¼ 0 or z ¼ 1.

3. If x½n� is a right-side sequence, i.e., x½n� ¼ 0;

n5N151, and XðzÞ converges for some values

of z, the ROC is rmax5 zj j � 1 with a possible

exception of z ¼ 1.

4. If x½n� is a left-sided sequence, i.e., x½n� ¼ 0;

�15N25n andXðzÞ converges for some values

of z, then theROC is 0 � zj j5rmin with a possible

exception of z ¼ 0

5. If x½n� is a two-sided sequence and the region

of convergence of the right- and left-sided

sequences are, respectively, given by r15 zj j
and zj j5r2 and XðzÞ converges for some values of

z, then the ROC takes the form r15 zj j5r2, where

r1 and r2 are the magnitudes of the poles of XðzÞ.
Example 9.4.7 Find the z-transforms of the follow-

ing sequences and their ROCs:

a: x1½n� ¼ d½n�;

b: x2½n� ¼ u½n�;

c: x3½n� ¼ �u½�n� 1�;

d: x6½n� ¼ a nj j; aj j51:

Solution:

a: X1ðzÞ ¼
X1
n¼�1

d½n�z�n ¼ z0 ¼ 1;

d½n� !z 1;ROC : all z (9:4:19)

Fig. 9.4.6 (a) x½n� and (b)
pole–zero plot

11th order pole

Im(z)

Re(z)

a

6

Fig. 9.4.7 Example 9.4.6: pole–zero plot ðN ¼ 11Þ
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b: X2ðzÞ ¼
X1
n¼0

z�n ¼ 1

1� z�1
¼ z

z� 1
;ROC : zj j41

(9:4:20)

c: X3ðzÞ ¼ 1� 1

1� z�1
¼ z

z� 1
;ROC : zj j51

(9:4:21)

d: x6½n� ¼ a nj j ¼ anu½n�þanu½�n�1�

 !z z

z�a
� z

z�ð1=aÞ

¼ ða
2�1Þ
a

z

ðz�aÞðz�ð1=aÞÞ ;

ROC : aj j5 zj j5 1

a

����
����; aj j51: (9:4:22) &

9.4.2 z-Transform and the Discrete-Time
Fourier Transform (DTFT)

Note XðzÞ is a function of the complex variable z.

The point z ¼ rejO is located at a distance r from the

origin at an angle O from the positive real axis.

If x½n� is absolutely summable, then the DTFT

can be obtained from the z-transform by setting

z ¼ rejO r¼1j :

X ejO
 �

¼ X zð Þ z¼e jOj (9:4:23)

The equation zj j ¼ ejO
�� �� ¼ 1 describes a circle of unit

radius ðr ¼ 1Þ centered at the origin in the z-plane.

The frequency O in the discrete-time Fourier trans-

form corresponds to the point on the unit circle at an

angleO in radianswith respect to the positive real axis.

As the discrete-time frequency varies in the range

�p to p, in the z-plane, it corresponds to one time

around the unit circle. Inwords, (9.4.23) states that the

DTFT of a discrete-time signal x½n� can be obtained

from the z-transform XðzÞ by evaluating it on the

unit circle. The z-transform of the sequence is

assumed to exist and the DTFT of the sequence

exists provided that the region of convergence of

XðzÞ includes the unit circle. The DTFT function

is represented by XðejOÞ ¼ XðejOÞ
�� ��ejyðOÞ, where

XðejOÞ
�� �� is called the amplitude (or magnitude)

response and yðOÞ is called the phase (or angle)

response. The amplitude and the phase responses

are periodic with period 2p.

Example 9.4.8 Use the z-transforms to determine

the DTFT of the discrete-time function

x½n� ¼ u½n� � u½n�N�;N40$z XðzÞ

¼
XN�1
n¼0

z�n; ROC : zj j40: (9:4:24)

Solution: Since ROC of XðzÞ includes the unit cir-
cle, the DTFT XðejOÞ exists. It is periodic with per-

iod 2p and phase response is linear:

XðejOÞ ¼ XðzÞ z¼ejO ¼j
XN�1
n¼0

z�n ¼ 1� z�N

1� z�1 z¼ejOj

¼ 1� e�jNO

1� e�jO
¼ e�jOðN�1Þ=2

sinðNO=2Þ
sinðO=2Þ :

(9:4:25)

The amplitude and the phase responses are, respec-

tively, given by

X ejO
 ��� ��¼ sin NO=2ð Þ

sin O=2ð Þ

����
����;ffX ejO

 �
¼O N�1ð Þ=2: (9:4:26)

&

9.5 Properties of the z-Transform

Let the ROC of xi½n� is Rxi and R 0 is the ROC after

the appropriate operation. The ROC is stated in

terms of set theory. The proofs are simple for

many of these and are omitted.

9.5.1 Linearity

Let xi½n� !
z

XiðzÞ, then

x½n� ¼ a1x1½n� þ a2x2½n�$
z
a1X1ðzÞ þ a2X2ðzÞ

¼ XðzÞ;ROC :R0  Rx1 \ Rx2;

(9:5:1)
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where R 0 is the ROC of x½n�, which is the proper

subset of the ROCs of x1 and x2. Note the intersec-

tion of the subsets represented by Rx1 \ Rx2 in

(9.5.1). Expansion of the ROC takes into considera-

tion pole cancellations with zeros in XðzÞ.

9.5.2 Time-Shifted Sequences

The z-transform of the time-shifted sequence and

the corresponding ROC are

Zfx½n�n0�g¼
X1
n¼�1

x½n�n0�z�n

¼
X1

m¼�1
x½m�z�ðmþn0Þ¼z�n0

X1
m¼�1

x½m�z�m¼z�n0XðzÞ;

x½n�n0� !
z

z�n0XðzÞ;ROC:R0R\f05 zj j51g:
(9:5:2)

Noting the multiplication factor z�n0 , additional

poles are introduced when n040 and, at the same

time, some of the poles at1 are deleted. In a similar

manner if n050 then additional zeros are intro-

duced at z ¼ 0 and some of the poles at 1 are

deleted. This implies that the points z ¼ 0 and

z ¼ 1 are either added or deleted from the ROC

by time shifting the function. The special cases

include the unit delay and advance operations:

x½n� 1� !z z�1XðzÞ;ROC :

R0 ¼ Rx \ f05 zj jg; (9:5:3a)

x½nþ 1� !z zXðzÞ;ROC : R0

¼ R \ f zj j51g: (9:5:3b)

9.5.3 Time Reversal

If x½n� !z XðzÞ;ROC ¼ R, then x½�n� !z Xð1=zÞ;
ROC :R0 ¼ 1=R: ð9:5:4Þ
Reversing in time results in the transformation

z) ð1=zÞ in the transform and, the points in the

ROC R0 corresponds to the inverses of the points in

R. This can be shown by

Zfx½�n�g ¼
X1
n¼�1

x½�n�z�n ¼
X1

m¼�1
x½m�zm ¼Xð1=zÞ:

Example 9.5.1 Find z½x½n�� ¼ z½u½�n�� directly and

then verify using the result in (9.5.4):

XðzÞ ¼
X1
n¼�1

x½n�z�n ¼
X0
n¼�1

ðz�1Þn ¼
X1
n¼0

zn

¼ 1

1� z
;ROC : R0 ¼ zj j51:

Solution: Noting that u½n� !z ð1=ð1� z�1ÞÞ and

using the transformation z! 1=z results in the

above equation verifying the time reversal theorem.

We note that the closed-form expression for the sum

is valid if zj j51. Also, the ROC of the unit step

sequence is zj j41. Reversing the sequence results

in the ROC from zj j51. &

9.5.4 Multiplication by an Exponential

If a is a complex number, then

Zfanx½n�g ¼
X1
n¼�1

anx½n�z�n ¼
X1
n¼�1

x½n�ðz=aÞ�n

¼ Xðz=aÞ;

anx½n� !z Xðz=aÞ;ROC : R0 ¼ aj jR: (9:5:5)

Change in the argument of Xðz=aÞ resulted in

the multiplication of ROC boundaries by aj j. ROC

expands or contracts by the factor of aj j. In the

special case of a ¼ ejO0n:

ejO0nx½n� !z Xðe�jO0zÞ;ROC :R0 ¼ R: (9:5:6)

Example 9.5.2 Determine the z-transform of the

real sequence y½n� ¼ rn cosðO0nÞu½n�.

Solution:Noting rnu½n� !z z=ðz� rÞ;ROC : zj j4 rj j
we can write

y½n� ¼ 1

2
rnejO0nx½n� þ 1

2
rne�jO0nu½n� !z 1

2

z

z� rejO0

þ 1

2

z

z� re�jO0
¼ YðzÞ ;
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y½n� ¼ rn cosðO0nÞu½n� !
z

YðzÞ

¼ z2 � r cosðO0Þz
z2 � 2r cosðO0Þzþ r2

;ROC : zj j4 rj j:

(9:5:7a)

In a similar manner,

rn sinðO0nÞu½n� !
z r sinðO0Þz

z2 � 2r cosðO0Þzþ r2
;

ROC : zj j4r:

(9:5:7b)

&

9.5.5 Multiplication by n

The z-transform of nx½n� is

y½n� ¼ nx½n� !z �z dXðzÞ=dz½ � ¼ YðzÞ;

ROC : R0 ¼ R:
(9:5:8)

This can be seen by differentiating both sides with

respect to zof the following equation:

XðzÞ ¼
X1
n¼�1

x½n�z�n! dXðzÞ
dz
¼
X1
n¼�1

ð�nÞx½n�z�n�1:

Multiplying both sides by (�z) and identifying the

appropriate time and transform terms, (9.5.8) fol-

lows. The region of convergence is the same for

XðzÞ and YðzÞ.

Example 9.5.3 Determine the z-transform of the

right-side sequence x½n� ¼ nanu½n�; a40 using the

multiplication by n property.

Solution: Noting that anu½n� !z ðz=ðz� aÞÞ;ROC :

zj j4 aj j, by using (9.5.8), we have

nanu½n� !z �z dðz=ðz� aÞÞ
dz

¼ az

ðz� aÞ2
;

ROC : zj j4 aj j:
(9:5:9)

&

9.5.6 Difference and Accumulation

The z-transforms of these are

y1½n� ¼ x½n� � x½n� 1� !z XðzÞ½1� z�1�
¼ Y1ðzÞ;R0  R \ f zj j40g; (9:5:10a)

y2½n� ¼
Xn

k¼�1
x½k� !z 1

ð1� z�1ÞXðzÞ

¼ Y2ðzÞ;R0  R \ f zj j41g : (9:5:10b)

9.5.7 Convolution Theorem and the
z-Transform

Convolution theorem states that the convolution in

the time domain corresponds to the multiplication

in the z-domain and

y½n� ¼ x½n� 	 h½n� !z XðzÞHðzÞ
¼ YðzÞ;ROC : Ry  ðRx \ RhÞ: (9:5:11)

This can be shown using the expression for the

convolution of two sequences x½n� and h½n� and
then by using the transform pairs as shown below:

x½n� !z XðzÞ and h½n� k� !z z�kHðzÞ;

y½n� ¼
X1

k¼�1
x½k�h½n� k� ¼

X1
k¼�1

h½k�x½n� k�;

YðzÞ ¼
X1
n¼�1

y½n�z�n ¼
X1
n¼�1

X1
k¼�1

x½k�h½n� k�
" #

z�n

¼
X1

k¼�1
x½k�

X1
n¼�1

h½n� k�z�n
" #

¼
X1

k¼�1
x½k� HðzÞz�k

� 	

¼ HðzÞ
X1

k¼�1
x½k�z�k ¼ HðzÞXðzÞ

The ROC of YðzÞ contains the intersection of the

ROC of XðzÞ and YðzÞ: If a zero of one of the trans-

forms cancels with a pole of the other, then the

ROCof YðzÞ will be larger than the intersection of

Rx and Rh.

Example 9.5.4 Verify the result in (9.5.10b) by using

(9.5.11).
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Solution: Noting u½n� k� ¼ 0; k4n, y½n� can be

expressed by

y½n� ¼
Xn

k¼�1
x½k� ¼

X1
k¼�1

x½k�u½n� k�

¼ x½n� 	 u½n� !z XðzÞzfu½n�g

¼ XðzÞ z

ðz� 1Þ ;ROC :R0  ðR \ f zj j41gÞ:

(9:5:12) &

Example 9.5.5Find the z-transform of the following

sequence:

y½n� ¼ x½n� 	 h½n�; x½n� ¼ nanu½n�; h½n�
¼ ðbÞ�nu½�n�; a ¼ �b ¼ �1=2: (9:5:13)

Solution: Using the multiplication by n property,

we have

x½n� ¼ nanu½n� !z az

ðz� aÞ2
¼ XðzÞ;

ROC : zj j4 aj j; (9:5:14a)

h½n� ¼ bnu½n� !z z

ðz� bÞ ;ROC : zj j4 bj j: (9:5:14b)

Using (9.5.14a and b), the time reversal property,

and the convolution theorem, we have

x½n� ¼ nð�1=2Þnu½n� !z �ð1=2Þz
ðzþ ð1=2ÞÞ2

¼ XðzÞ;ROC : zj j4ð1=2Þ ;

h½n� ¼ ð1=2Þ�nu½�n� !z 1=z

ð1=zÞ � ð1=2Þ

¼ �2
z� 2

¼ HðzÞ;ROC : zj j52 ;

(9:5:14c)

YðzÞ ¼ HðzÞXðzÞ ¼ z

ðz� 2Þðzþ ð1=2ÞÞ2
;

ROC :
1

2
5 zj j 5 2: (9:5:14d)

We have a pole outside and one inside the unit circle

resulting in a transform that has the annular region

of convergence given in (9.5.14d). See Fig. 9.5.1 for

pole-zero plots and ROC. &

9.5.8 Correlation Theorem and the
z-Transform

In Section 8.3 the cross-correlation of two

sequences x½n� and h½n� was defined by

rxh½k� ¼ x½k� 	 	h½k� ¼
X1
n¼�1

x½n�h½nþ k�

¼
X1

m¼�1
x½m� k�h½m�: (9:5:15)

Correlation theorem:

rxh½k�¼
X1

n¼�1
x½n�h½nþk� !z XðzÞHð1=zÞ

¼RxhðzÞ;ROC:RxhðRx\RhÞ: (9:5:16)

This can be seen by first noting that

rxh½k� ¼ x½k� 	 h½�k�. Using the convolution and

the time reversal properties, we can see the result

in (9.5.16). Again there is a possibility of pole–zero

cancellations and therefore Rxh  ðRx \ RhÞ. In

the case of autocorrelation, we have h½n� ¼ x½n�
and the autocorrelation (AC) theorem in (9.5.16)

reduces to

rxx½k� ¼ rx½k� ¼
X1
n¼�1

x½n�x½nþ k� !z XðzÞXð1=zÞ

¼ RxðzÞ;ROC : Rxh  ðRx \ RhÞ: (9:5:17)

Re(z)

Im(z)

1
2

−
1 2

Re(z)

Im(z)

1
2

−
1

Re(z)

Im(z)

1 2

Fig. 9.5.1 Example 9.5.5:
pole–zero plots and the
ROCS: (a)XðzÞ; (b) HðzÞ;
and (c)YðzÞ
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Example 9.5.6 Using a. the direct and b. the trans-

form methods, find the AC of

x½n� ¼ anu½n�; aj j51: (9:5:18)

Solution: a. Since the AC function is even, we need

to find rx½k�; k � 0 and then use rx½�k� ¼ rx½k�. For
k � 0, since aj j51, we have

rx½k� ¼
X1
n¼0

ananþk ¼ ak
X1
n¼0
ða2Þn ¼ 1

1� a2
ak; k � 0:

Autocorrelation is even) rx½k�

¼ a kj j=ð1� a2Þ;�15k51:
(9:5:19a)

b. By the autocorrelation theorem,

RxðzÞ ¼ XðzÞXðz�1Þ ¼ 1

1� az�1
1

1� az

¼ � 1

a
z

ðz� aÞðz� ð1=aÞÞ ;

ROC : aj j5 zj j5 1

aj j :

(9:5:19b)

) a kj j  !z a2 � 1

a
z

ðz� aÞðz� ð1=aÞÞ : (9:5:19c)

The region of convergence is an annular ring and

the AC sequence is a two-sided sequence. Note the

poles of the z-transform in (9.5.19c). &

9.5.9 Initial Value Theorem in the Discrete
Domain

If the sequence x½n� is causal, i.e., x½n� ¼ 0; n50; as

z!1; z�n ! 0 for n40, we have

x½0� ¼ lim
z!1

XðzÞ ¼ lim
z!1

X1
n¼0

x½n�z�n

¼ lim
z!1
½x½0� þ x½1�z�1 þ x½2�z�2 þ � � ��;

(9:5:20a)

x½0� ¼ 0) x½1� ¼ lim
z!1

zXðzÞ: (9:5:20b)

9.5.10 Final Value Theorem in the
Discrete Domain

The final value theorem applies only to causal

sequences x½n� and if all the poles of XðzÞ lie within
the unit circle, with the exception that it can have

one pole at z ¼ 1, then

lim
n!1

x½n� ¼ lim
z!1
ð1� z�1ÞXðzÞ if x½1�exists: (9:5:21)

This can be seen by

Zfx½n� � x½n� 1�g ¼ ð1� z�1ÞXðzÞ

¼ lim
N!1

XN
n¼0
fx½n� � x½n� 1�gz�n; (9:5:22)

lim
z!1

lim
N!1

XN
n¼0
fx½n� � x½n� 1�gz�n

¼ lim
N!1

lim
z!1

XN
n¼0
fx½n� � x½n� 1�gz�n

lim
N!1

x½0� � x½�1� þ x½1� � x½0� þ x½2� � x½1� þ :::½ �

¼ lim
N!1

x½N�:

Notes: The final value x½1� is equal to zero if all the

poles of XðzÞ lie within the unit circle. This follows

from the fact that the corresponding time function

contains exponentially damped terms. It is a constant

if XðzÞ has a single pole at z ¼ 1. If the poles are

outside of the unit circle, then the final value theorem

gives incorrect results. Also, x½1� is indeterminate if

there are complex poles on the unit circle. &

Example 9.5.7 Find the initial and final values of

x½n� for the function

XðzÞ ¼ ðz� ð1=3ÞÞ
ðz� 1Þðz� ð1=2ÞÞ ; zj j

41:

Solution: The initial and final values are, respec-

tively, given by

x½0�¼ lim
z!1

XðzÞ¼ lim
z!1

ðz�ð1=3ÞÞ
ðz�1Þðz�ð1=2ÞÞ¼0

lim
n!1

x½n�¼lim
z!1
ð1�z�1ÞXðzÞ

¼lim
z!1

ðz�1Þðz�ð1=3ÞÞ
zðz�1Þðz�ð1=2ÞÞ¼

4

3
: &
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Switched periodic sequences and their z-transforms:

Consider the periodic sequence x½n� with the pro-

perty x½n� ¼ x½nþN�. Now define a causal sequence

y½n� ¼ x½n�u½n�. Let the z-transform of the first

N-point sequence is

X1ðzÞ ¼
XN�1
n¼0

x½n�z�n:

The z-transform of the function y½n� is given by

YðzÞ ¼ X1ðzÞ þ z�NX1ðzÞ þ z�2NX1ðzÞ þ :::

¼ X1ðzÞ½1þ z�N þ z�2N þ :::�

¼ zN

zN � 1
X1ðzÞ; zj j41:

Example 9.5.8 Find the z-transform of the

sequence y½n� ¼ x½n�u½n�; x½n� ¼ sinðnp=2Þ:

y½n� ¼ x½n�u½n� ¼ f0#; 1; 0;�1; 0; 1; 0;�1; :::g:

Solution: The period of the sequence sinðnp=2Þ is 4.
Therefore

x1½n� ¼ f0#; 1; 0;�1g !
z

z�1 � z�3 ¼ X1ðzÞ

) XðzÞ ¼ X1ðzÞ
1� z�4

¼ z�1 � z�3

1� z�4
¼ z

z2 þ 1
:

&

9.6 Tables of z-Transform Properties
and Pairs

Table 9.6.1 Z-transform properties

Two sided signals x½n� !z XðzÞ; h½n� !z HðzÞ
Superposition:

ax½n� þ bh½n� !z aXðzÞ þ bHðzÞ 9:6:1ð Þ
Time shift:

x½n� n0� !
z

z�n0XðzÞ 9:6:2ð Þ
Scaling:

anx½n� !z Xðz=aÞ 9:6:3ð Þ
Multiplication byejnO0 :

ejnO0x½n� !z Xðe�jO0zÞ 9:6:4ð Þ
Time reversal:

x½�n� !z Xð1=zÞ 9:6:5ð Þ
Multiplication by n:

nx½n� !z �z dXðzÞ
dz 9:6:6ð Þ

Accumulation:Pn
k¼�1

x½k� !z z
z�1XðzÞ 9:6:7ð Þ

Difference:

x½n� � x½n� 1� !z ð1� z�1ÞXðzÞ 9:6:8ð Þ
Convolution:

x½n� 	 h½n� !z XðzÞHðzÞ 9:6:9ð Þ
Cross correlation:

x½k� 	 	h½k� !z XðzÞHð1=zÞ 9:6:10að Þ
Autocorrelation:

x½n� 	 	x½n� !z XðzÞXð1=zÞ 9:6:10bð Þ
The following properties hold for causal sequences x½n� ¼ 0; n50:

Initial value theorem:

x½0� ¼ lim
z!1

XðzÞ 9:6:11að Þ
Final value theorem:

lim
n!1

x½n� ¼ lim
z!1
ðz� 1ÞXðzÞ 9:6:11bð Þ

Switched periodic functions:

x½n� ¼ x½nþN�;X1ðzÞ ¼
PN�1
n¼0

x½n�z�n;x½n�u½n� !z zN

zN�1X1ðzÞ 9:6:12ð Þ
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9.7 Inverse z-Transforms

In this section we will consider determining

x½n� ¼ Z�1fXðzÞg by the following methods: (1)

inversion formula, (2) use of z-transform tables,

and (3) power series expansion.

9.7.1 Inversion Formula

The inverse z-transform is

x½n� ¼ 1

2pj

I
c

XðzÞzn�1dz: (9:7:1)

Table 9.6.2 Z-transform pairs

Unit sample:

d½n� !z 1; ROC : all z: 9:6:13að Þ
d½n� k� !z z�k; k > 0; ROC : zj j > 0: 9:6:13bð Þ
d½nþ k� !z zk; k > 0; ROC : zj j51: 9:6:13cð Þ

Unit step:

u½n� !z z

z� 1
; ROC : zj j > 1: 9:6:14að Þ

�u½�n� 1� !z z

z� 1
; ROC : zj j51: 9:6:14bð Þ

Exponential:

anu½n� !z z

z� a
; ROC : zj j > aj j: 9:6:15að Þ

�bnu½�n� 1� !z z

z� b
; ROC : zj j5 bj j: 9:6:15bð Þ

General type:

nanu½n� !z az

ðz� aÞ2
; ROC : zj j > aj j: 9:6:16að Þ

nðn� 1Þ:::ðn� ðk� 2ÞÞan�kþ1u½n�
ðk� 1Þ!  !z z

ðz� aÞk
; ROC : zj j > aj j: 9:6:16bð Þ

�nanu½�n� 1� !z az

ðz� aÞ2
; ROC : zj j5 aj j: 9:6:16cð Þ

ðnþ 1Þanu½n� !z z2

ðz� aÞ2
; ROC : zj j > a: 9:6:16dð Þ

Sequences involving sinusoids:

cosðO0nÞu½n� !
z z2 � cosðO0Þz

z2 � ð2 cosðO0ÞÞzþ 1
; ROC : zj j > 1: 9:6:17að Þ

sinðO0nÞu½n� !
z sinðO0Þz

z2 � ð2 cosðO0ÞÞzþ 1
; ROC : zj j > 1: 9:6:17bð Þ

rn cosðO0nÞu½n� !
z z2 � r cosðO0Þz

z2 � ð2r cosðO0ÞÞzþ r2
; ROC : zj j > r: 9:6:17cð Þ

rn sinðO0nÞu½n� !
z r sinðO0Þz

z2 � ð2r cosðO0ÞÞzþ r2
; ROC : zj j > r: 9:6:17dð Þ

Finite sequence:

an; 0 � n � N� 1
0; otherwise

� �
 !z 1� aNz�N

1� az�1
; ROC : zj j > 0: 9:6:18ð Þ
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It is a contour integral over a closed pathC encircling

the origin in a counterclockwise direction that lies

within the region of convergence of XðzÞ in the z-

plane. The proof requires the knowledge of complex

variables, which is beyond the scope here. See

Churchill (1948), Poularikas (1996), and others. Let

fakg be the set of poles ofXðzÞzn�1 inside the contour
Cand fbkg be the set of poles of XðzÞzn�1 outside the
contour C in a finite region of the z-plane. Now

x½n� ¼ Z�1½XðzÞ�

¼

P
k

ResfXðzÞzn�1; akÞ; n � 0; ð9:7:2aÞ

P
k

ResfXðzÞzn�1; bkg; n50: ð9:7:2bÞ

8>><
>>:

The residue at the multiple and the simple poles at

z ¼ p0 of order k are, respectively, given by

ResfXðzÞzn�1g¼ lim
z!p0

1

ðk�1Þ!
dk�1½ðz�p0ÞkXðzÞzn�1�

dzk�1

ðMultiple poleÞ; (9:7:2c)

ResfXðzÞzn�1; p0g ¼ XðzÞzn�1ðz� p0Þ z¼p0
��

ðSimple poleÞ: (9:7:2d)

Example 9.7.1 Find the inverse z-transform of the

following function using the residues

XðzÞ ¼ z

ðz� :5Þðz� 2Þ ;

ROC : :55 zj j52: See Fig 9:7:1 (9:7:3a)

Solution: The function has a single pole inside and

a single pole outside the unit circle. Therefore, it is a

two-sided sequence. From (9.7.2c), we have

x½n� ¼ ResfXðzÞzn�1; :5g

¼ zðz� :5Þzn�1
ðz� :5Þðz� 2Þ z¼:5j ¼ � ð:5Þ

n

1:5
; n � 0;

(9:7:3b)

x½n� ¼ �ResfXðzÞzn�1; 2g

¼ � zðz� 2Þzn�1
ðz� :5Þðz� 2Þ z¼2j ¼ � 2n

1:5
; n50:

(9:7:3c) &

9.7.2 Use of Transform Tables (Partial
Fraction Expansion Method)

This method is based upon expressingXðzÞ as a sum
of simple functions XiðzÞ by using partial fraction

expansion (see Section 5.9.2.), where each one of

these functions have inverse transforms that are

readily available in a table. This method is limited

to rational functions and will need a table of

z-transform pairs that provides the appropriate

transform pairs xi½n� !
z

XiðzÞ. The inverse trans-

form is given by

x½n� ¼ Z�1 XðzÞf g ¼ Z�1
XM
i¼1

XiðzÞ
( )

¼
XM
i¼1

Z�1 XiðzÞf g ¼
XM
i¼1

xi½n�: (9:7:4)

We considered partial fraction expansions when we

studied Laplace transforms and the procedure here

is the same with a slight modification. This

approach provides closed-form solutions. From

Table 9.6.2 we see that z appears in the numerator

of the z- transform functions. Therefore, find

XðzÞ=z, and then use the partial fraction expansion

discussed in Section 5.4. The expansion of a rational

function XðzÞ can be obtained by multiplying each

term in the expansion by z. The function XðzÞ=z
takes the form

XðzÞ
z
¼ a0 þ a1zþ � � � þ aMzM

b0 þ b1zþ � � � þ bNzN
: (9:7:5)

If M4N, then divide the numerator polynomial by

the denominator polynomial and

Re( )z

Im( )z

1

2

1 2

Fig. 9.7.1 Example 9.7.1: Poles, zeros, and the ROC
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½XðzÞ=z� ¼ RðzÞ þ X0ðzÞ;RðzÞ

¼ ½cM�NzM�N þ cM�N�1z
M�N�1 þ � � � þ c1zþ c0�

X0ðzÞ ¼
d0 þ d1zþ � � � þ dN�1z

N�1

b0 þ b1zþ � � � þ bNzN
: (9:7:6)

Note that the numerator polynomial in the rational

function X0ðzÞ in (9.7.6) is of degree (N�1) or less.
The denominator of this rational function is then

factored and expanded using partial fraction expan-

sion. The inverse z-transform of XðzÞ can now be

computed:

Z�1 XðzÞ½ � ¼ Z�1 zRðzÞ½ �
þ Z�1 zfpartial fraction expansion of X0ðzÞg½ �
¼ x1½n� þ x2½n�; (9:7:7)

lZ�1½c0z� ¼ c0dðnþ 1Þ;Z�1½c1z2� ¼ c1d½nþ 2�; :::;
Z�1½ckzkþ1� ¼ ckd½nþ kþ 1�; :::; x1½n� ¼ Z�1½zRðzÞ�

¼
XM
m¼N

cM�md½nþ ðM�mþ 1Þ�: (9:7:8)

In the following we will concentrate on the second

part in (9.7.7) by considering all simple poles and

later we will consider a single multiple pole plus

simple poles.

Example 9.7.2 Find the inverse z-transform of the

function

XðzÞ ¼ z½2z� ð4=3Þ�
½z2 � ð4=3Þzþ ð1=3Þ� ;ROC : zj j41: (9:7:9)

Solution: From the ROC the sequence is a right-

side sequence. Now

XðzÞ
z
¼ 1

z� ð1=3Þ þ
1

z� 1

) XðzÞ ¼ z

z� ð1=3Þ þ
z

z� 1
;ROC : zj j41:

XðzÞ
z ¼ 1

z�ð1=3Þ þ 1
z�1) XðzÞ ¼ z

z�ð1=3Þ þ z
z�1 ;

ROC : zj j41) x½n� ¼ ð1=3Þnu½n� þ u½n�
: &

Multiple pole case: See Section 5.8 on the partial

fraction expansion with multiple poles.

Example 9.7.3 Find x½n� ¼ Z�1fXðzÞg for the

cases: a: zj j41 and b: zj j5ð1=2Þ :

XðzÞ ¼ 3z3 � ð5=2Þz2

ðz� ð1=2ÞÞ2ðz� 1Þ
;ROC : zj j41: (9:7:10)

Solution:

a. The sequence is a right-side sequence since the

ROC is zj j41. We have a double pole at

z ¼ ð1=2Þ and a single pole at z ¼ 1:

X0ðzÞ¼
XðzÞ
z
¼ ð3z2�ð5=2ÞzÞ
ðz�ð1=2ÞÞ2ðz�1Þ

¼ A12

ðz�ð1=2ÞÞ2
þ A11

ðz�ð1=2ÞÞþ
A3

ðz�1Þ; (9:7:11)

A12 ¼ ðz� ð1=2ÞÞ2X0ðzÞ z¼1=2
��

¼ 3z2 � ð5=2Þz
ðz� 1Þ z¼1=2 ¼ 1

�� ;

A11 ¼
d

dz

3z2 � ð5=2Þz
ðz� 1Þ

� �
z¼1=2
��

¼ ðz� 1Þð6z� ð5=2Þ � ð3z2 � ð5=2ÞzÞ
ðz� 1Þ2

" #
z¼1=2
�� ¼ 1;

A3 ¼
3z2 � ð5=2Þz
ðz� ð1=2ÞÞ2 z¼1j ¼ 2;

X0ðzÞ ¼
ð3z2 � ð5=2ÞzÞ
ðz� ð1=2ÞÞ2ðz� 1Þ

¼ 1

ðz� ð1=2ÞÞ2
þ 1

ðz� ð1=2ÞÞ þ
2

z� 1
(9:7:12)

) XðzÞ ¼ z

ðz� ð1=2ÞÞ2
þ z

z� ð1=2Þ þ
2z

z� 1
:

(9:7:13)

The last step involves determining the inverse trans-

forms. In doing so, the ROC of the z-domain func-

tion should be kept in mind. From Table 9.6.2,

392 9 Discrete Data Systems



z

ðz� aÞ !
z

anu½n�; z

ðz� aÞ2
 !z nan�1u½n�;

z

ðz� aÞ3
 !z 1

2!
nðn� 1Þan�2u½n�; . . . : (9:7:14)

The ROC is outside of the unit circle and the inverse

transform is

x½n� ¼ ½nð1=2Þn�1 þ ð1=2Þn þ 2�u½n�; (9:7:15)

x½0� ¼ 3; x½1� ¼ 1þ ð1=2Þ þ 2 ¼ 7=2;X½2�
¼ 1þ ð1=4Þ þ 2 ¼ 13=4; . . . (9:7:16)

b. Now use the transform pairs corresponding to

the left-side sequences given below:

� u½�n� 1� !z z

z� 1
; zj j51;

� anu½�n� 1� !z z

z� a
; (9:7:17)

� nanu½�n� 1� !z az

ðz� aÞ2
; zj j5 aj j: (9:7:18)

) XðzÞ¼ z

ðz� ð1=2ÞÞ2
þ z

z� ð1=2Þ þ
2z

z� 1
:

(9:7:19)

x½n� ¼ � ð2Þðnð1=2ÞnÞu½�n� 1� � ð1=2Þn

u½�n� 1� � 2u½�n� 1�:
(9:7:20a)

x½0� ¼ 0; x½�1�
¼ 4� 2� 2 ¼ 0; x½�2�
¼ 16� 4� 2 ¼ 10; x½�3�
¼ 6ð8Þ � 8� 2 ¼ 38; ::: ; (9:7:20b)

x½n� ¼ f. . . ; 38; 10; 0#; 0; . . .g: (9:7:21)

&

Notes: It is uncommon to come across multiple

poles of order more than 2. It is simple to use

the repeated application of simple pole case, see

Example 5.8.2. &

Example 9.7.4 Find the sequence x½n� ¼ z�1fXðzÞg:

XðzÞ ¼ zðzþ 1Þ
ðzþ 0:5Þðz� 2Þðz� 0:75Þ :

Solution: Using the partial fraction expansion, we

can write

X0ðzÞ ¼
XðzÞ
z
¼ ðzþ 1Þ
ðzþ 0:5Þðz� 2Þðz� 0:75Þ

A1

ðzþ 0:5Þ

þ A2

ðz� 2Þ þ
A3

ðz� 0:75Þ ;

A1 ¼
ðzþ 1Þ

ðz� 2Þðz� 0:75Þ

����
z¼�0:5

¼ 4

25
;

A2 ¼
ðzþ 1Þ

ðzþ 0:5Þðz� 0:75Þ

����
z¼2
¼ 24

25
; and

A3 ¼
ðzþ 1Þ

ðzþ 0:5Þðz� 2Þ

����
z¼0:75

¼ � 28

25

) XðzÞ ¼ 4

25
� z

ðzþ 0:5Þ þ
24

25
� z

ðz� 2Þ

� 28

25
� z

ðz� 0:75Þ :

Since the ROC is not specified, the sequence cannot

be uniquely determined from the XðzÞ alone. There-
fore we will identify all possible ROCs correspond-

ing to this function and find the sequences asso-

ciated with each of them. To find the various

possible ROCs, we first make a pole–zero plot as

shown in Fig. 9.7.2a. Using the properties of the

ROC, the different possible ROCs are shown in

Fig. 9.7.2b–e.

1. ROC : zj j5:5: ROC extends inward to include

the origin and x½n� is a left-sided sequence:

x½n� ¼ � 4

25
� � 1

2


 �n

u½�n� 1� � 24

25
� 2ð Þn

u½�n� 1� þ 28

25
� 3

4


 �n

u½�n� 1�:

2. ROC : ð1=2Þ5 zj j5ð3=4Þ: ROC is a ring and x½n�
is two sided:

x½n� ¼ 4

25
� � 1

2


 �n

u½n� � 24

25
� 2ð Þn

u½�n� 1� þ 28

25
� 3

4


 �n

u½�n� 1�:
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3. ROC : ð3=4Þ5 zj j52: ROC is a ring and x½n�
sequence is two sided:

x½n� ¼ 4

25
� � 1

2


 �n

u½n� þ 24

25
� 2ð Þn

u½n� þ 28

25
� 3

4


 �n

u½�n� 1�:

4. ROC : zj j42: x½n� is a right-sided sequence:

x½n� ¼ 4

25
� � 1

2


 �n

u½n� þ 24

25
� 2ð Þn

u½n� � 28

25
� 3

4


 �n

u½n�: &

9.7.3 Inverse z-Transforms by Power
Series Expansion

From the definition of the z-transform of a sequence

x½n�, we can write

XðzÞ ¼
X1
n¼�1

x½n�z�n ¼ � � � þ x½�2�z2 þ x½�1�z1

þ x½0� þ x½1�z�1 þ x½2�z�2 þ � � � : (9:7:22)

If XðzÞ can be expanded in a power series, x½n� can
be determined for positive n(negative n) by identify-

ing the coefficients for the negative powers of z

(positive powers of z).

Example 9.7.5 Find the inverse z-transform using

power series for the function in (9.7.10)

assuming two cases of ROC identified by

a: zj j41; b: zj j5ð1=2Þ.

Solution: a. Since the ROC is zj j41, the sequence is

a right-side sequence and therefore the power series

of the function contain negative powers of z. Divide

the numerator by the denominator in (9.6.23) by

division. It can be written by

XðzÞ ¼ 3þ ð7=2Þz
2 � ð15=4Þzþ ð3=4Þ

z3 � 2z2 þ ð5=4Þz� ð1=4Þ

¼ 3þ 7

2
z�1 þ ð13=4Þz� ð29=8Þ þ ð7=8Þz

�1

z3 � 2z2 þ ð5=4Þz� ð1=4Þ
) x½0� ¼ 3; x½1� ¼ 7=2; x½2� ¼ 13=4; :::

(9:7:23)

b. Since the ROCis inside the circle of radius (1/2),

the sequence is a left-side sequence. It can be

Im(z) Im(z) Im(z)

Re(z)

Re(z)

Re(z) Re(z)1

2
−

1

Unit Circle

2

3

4

1

2
−

1

Unit Circle

2

3

4

1

2
−

1

Unit Circle

2

3

4

Im(z) Im(z)

1

2
−

1

Unit Circle

2

3

4

Re( )z

1

2
−

1

Unit Circle

2

3

4

(a)

(d) (e)

(b) (c)

1
ROC:

2
z <

1 3
ROC:

2 4
z< <

3
ROC: 2

4
z< <

ROC: 2z >

Fig. 9.7.2 (a) Pole–zero plot, (b) ROC : zj j5:5, (c) ROC : ð1=2Þ5 zj j5ð3=4Þ, and (d) ROC : ð3=4Þ5 zj j52,ROC : zj j42
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obtained by expanding the function in terms of

positive powers. This is achieved by first writing

the polynomials in the numerator and the denomi-

nator in reverse order and then making use of long

division to obtain series in terms of positive powers

of z:

XðzÞ ¼ �ð5=2Þz2 þ 3z3

�ð1=4Þ þ ð5=4Þz� 2z2 þ z3

¼ 10z2 þ �ð38=4Þz3 þ 20z4 � 10z3

�ð1=4Þ þ ð5=4Þz� 2z2 þ z3

) x½�1� ¼ 0; x½�2� ¼ 10; x½�3� ¼ 38; . . . :

(9:7:24)
&

Notes: If the ROC is in an annular region, we can

separate the z-transform corresponding to the right-

side sequence and the left-side sequence and follow

the above procedure. &

Example 9.7.6 Find the inverse z-transform of the

following function:

XðzÞ ¼ log
1

1� az�1

� �
; zj j4 aj j: (9:7:25)

Solution: Using the power series expansion Spiegel

(1968), we have

XðzÞ ¼ � logð1� az�1Þ ¼
X1
n¼1

1

n
ðaz�1Þn

) x½n� ¼
ð1=nÞan; n � 1

0; n � 0

(
:

(9:7:26)

The ROC is outside the circle of radius aj j and x½n� is
a right-side sequence. &

9.8 The Unilateral or the One-Sided
z-Transform

The unilateral transform is useful since most of our

sequences are right sided. The causal part of an

arbitrary sequence y½n� is y½n�u½n�. The unilateral or
one-sided transform is

XIðzÞ ¼ ZIfx½n�g ¼
X1
n¼0

x½n�z�n: (9:8:1)

An important property of this transform is its ROC

and is outside of a circle in the z-plane.

9.8.1 Time-Shifting Property

Consider the transform pair x½n� !z XIðzÞ. The

transforms of the delayed and advanced sequences

are given below and can be shown by starting with

the definition of the unilateral transform of these

sequences and reducing them into the appropriate

forms:

a: x½n�m� !z z�mXIðzÞ þ z�mþ1x½�1�

þ z�mþ2x½�2� þ � � � þ x½�m�; m40;
(9:8:2)

b: x½nþm� !z zmXIðzÞ � zmx½0�

� zm�1x½1� � � � � � zx½m� 1�; m40:
(9:8:3)

a. First consider (9.8.2). The one-sided transform

of the delayed sequence is given by

ZI x½n�m�f g ¼
X1
n¼0

x½n�m�z�n ¼
X1
k¼�m

x½k�z�ðmþkÞ:

(9:8:4)

Separating (9.8.4) into two parts x½n�; n50

and x½n� for n � 0, we have

X1
k¼�m

x½k�z�ðmþkÞ ¼ fz�mþ1x½�1� þ z�mþ2x½�2�

þ � � � þ x½�m�g þ z�m
X1
k¼0

x½k�z�k

¼ z�mfx½�1�zþ x½�2�z2

þ :::þ x½�m�zmg
þ z�mXIðzÞ;m40: (9:8:5)

b. Now consider the one-sided transform of the

advanced sequence
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ZIfx½nþm�g ¼
X1
n¼0

x½nþm�z�n

¼
X1
k¼0

x½k�z�ðk�mÞ �
Xm�1
k¼0

x½k�z�ðk�mÞ

(9:8:6a)

¼� fzmx½0� þ x½1�zm�1 þ � � �
þ x½m� 1�z1g þ zmXI½z�: (9:8:6b)

The relations in (9.8.2) and (9.8.3) provide amethod

to solve constant coefficient difference equations.

This generally involves two discrete functions, an

output y½n� and an input x½n�. The procedure par-

allels that of solving constant coefficient differential

equations and the Laplace transform. In the follow-

ing it is assumed that one-sided transforms are in

use and the subscript (I) will not be shown on X

explicitly. The procedure involves first finding the

z-transform of the difference equation in terms of

the two transforms YðzÞ and XðzÞ. In determining

YðzÞ, the initial conditions on y½n� need to be

known. The input x½n�and thereforeXðzÞ is assumed

to be known. Solve for YðzÞ and then take the

inverse transform of this function resulting in y½n�.
Two simple examples are considered below, one

with zero input, but with initial conditions, and

the second one has both input and initial conditions.

Example 9.8.1 Consider the second-order difference

equation given by

y½n� ¼ y½n� 1� þ y½n� 2�; y½�2� ¼ �1; y½�1� ¼ 1:

(9:8:7)

Determine y½n� for several values of n by a. using the
equation in (9.8.7) directly and then b. verify this

result using the one-sided z-transform. Cadzow

(1973) uses (9.8.7) to generate a model for rabbit

population.

Solution: a. By the direct method, we have

y½0� ¼ 0; y½1� ¼ 1; y½2� ¼ 1;

y½3� ¼ 2; y½4� ¼ 3; y½5� ¼ 5;

y½6� ¼ 8; y½7� ¼ 13; . . . :

Note y½n� at location n is the sum of the values at the

two previous locations. The sequence results in Fibo-

nacci numbers, see Hershey and Yarlagadda (1986).

b. Taking the one-sided z-transform of the equa-

tion in (9.8.7) results in

YI½z� ¼ Zfy½n� 1�g þ Zfy½n� 2�g
¼ z�1YIðzÞ þ y½�1� þ z�2YIðzÞ
þ z�1y½�1� þ y½�2�
¼ z�1YIðzÞ þ 1þ z�2YIðzÞ þ z�1 � 1 (9:8:8)

) YIðzÞ ¼
z�1

1� z�1 � z�2
¼ z

z2 � z� 1
;

Poles : p1 ¼ ð1=2Þ þ ð
ffiffiffi
5
p

=2Þ; p2 ¼ ð1=2Þ � ð
ffiffiffi
5
p

=2Þ:
(9:8:9)

The region of convergence is zj j4 1
2 1� j

ffiffiffi
5
p�� ��. The

partial fraction expansion is

YIðzÞ
z
¼ 1

z2 � z� 1
¼ A

z� z1
þ B

z� z2

¼ A

z� ðð1�
ffiffiffi
5
p
Þ=2Þ
þ B

z� ðð1þ
ffiffiffi
5
p
Þ=2Þ

;

A ¼ 1ffiffiffi
5
p ;B ¼ � 1ffiffiffi

5
p

) YIðzÞ ¼
ð1=

ffiffiffi
5
p
Þz

z� ðð1þ
ffiffiffi
5
p
Þ=2Þ
þ �ð1=

ffiffiffi
5
p
Þz

z� ðð1�
ffiffiffi
5
p
Þ=2Þ

) y½n� ¼ 1ffiffiffi
5
p 1þ

ffiffiffi
5
p

2

� �n
� 1ffiffiffi

5
p 1�

ffiffiffi
5
p

2

� �n( )
u½n�;

(9:8:10)

y½n� � :4472ð1:618Þn; n� 1; (9:8:11)

y½0� ¼ 1ffiffiffi
5
p ½1� 1� ¼ 0; y½1�

¼ 1ffiffiffi
5
p 1

2
þ

ffiffiffi
5
p

2


 �
� 1

2
�

ffiffiffi
5
p

2


 �� �
¼ 1: &

Example 9.8.2 Determine y½n� ¼ x½n� 	 h½n�; x½n�
¼ f1#; 1; 1g; and h½n� ¼ f1#;�1; 1g.

Solution: The z-transforms of the two finite length

sequences x½n� and h½n� are

XðzÞ¼1þz�1þz2;HðzÞ¼1�z�1þz�2; (9:8:12a)
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YðzÞ ¼ HðzÞXðzÞ ¼ 1þ z�2 þ z�4

) y½n� ¼ f1#; 0; 1; 0; 1g:
(9:8:12b) &

In the convolution of two sequences x½n� and h½n�
are known and y½n� ¼ x½n� 	 h½n� needs to be found.

In Section 9.3.4, the deconvolution problem was

identified and three methods were discussed. In the

deconvolution problem, y½n� and x½n� are assumed

to be known and h½n� is to be determined. Such a

problem has practical importance, as it is a system

identification problem. That is, determine the unit

sample response of a system h½n�. In the method of

deconvolution using polynomial long division,HðzÞ is
obtainedYðzÞ=XðzÞ. This is illustrated in the follow-

ing example.

Example 9.8.3 Determine h½n� using (9.8.12b).

Solution:

H zð Þ ¼ Y zð Þ
X zð Þ ¼

1þ z�2 þ z�4

1� z�1 þ z�2
¼ 1þ �z

�1 þ z�4

1þ z�1 þ z�2

¼ 1� z�1 þ z�2 þ z�3 þ z�4

1þ z�1 þ z�2
¼ 1� z�1 þ z�2

) h n½ � ¼ f1#;�1; 1g &

9.9 Discrete-Data Systems

In this section, basic concepts associated with dis-

crete-time systems will be discussed. Presentation

will be very similar to the continuous-time systems

studied in Chapter 6. Our discussion will be brief. A

discrete-time system is represented by a block dia-

gram shown in Fig. 9.9.1 mapping x½n� into y½n�.
The T inside the block diagram is some transforma-

tion that converts the input data into output data.

We can characterize a discrete-time data system by

putting constraints on the transformation T:

y½n� ¼ Tfx½n�g: (9:9:1)

Principles of additivity and proportionality: A

system is said to be additive if Tfx1½n� þ x2½n�g ¼
Tfx1½n�g þ Tfx2½n�g. This is sometimes referred to

as the superposition property. A system is homoge-

neous if it satisfies the principle of proportionality,

y½n� ¼ Tfax½n�g ¼ afx½n�g for a constant a and for

any input sequence.

Linear systems: A system that is both additive

and homogeneous is called a linear system. A

system is linear if for any inputs xi½n� and

for any constants ai; i ¼ 1; 2,

Tfa1x1½n� þ a2x2½n�g

¼ a1Tfx1½n�g þ a2Tfx2½n�g:
(9:9:2)

Example 9.9.1 Consider the systems described by

the following transformations. In each case, deter-

mine whether the corresponding system is linear or

nonlinear:

a: y1½n� ¼ Ax½n� þ B;B 6¼ 0;

b: y2½n� ¼ x2½n�;

c: y3½n� ¼ nx½n�:

Solution: Using (9.9.2), it follows that

a1Tfx1½n�g ¼ a1Ax1½n� þ a1B ;

a2Tfx2½n�g ¼ a2Ax2½n� þ a2B;

Tfa1x1½n� þ a2x2½n�g ¼ a1Ax1½n� þ a2Ax2½n� þ B

6¼ a1Tfx1½n�g þ a2Tfx2½n�g:

a. This indicates that the system is nonlinear. It

is a linear system if B ¼ 0:

b. It is easy to see that the system is nonlinear.

Any time, if the transformation has a power of

the input other than one, the system is nonlinear.

c. The outputs corresponding to the inputs x1ðtÞ;
x2ðtÞ and a1x1ðtÞ þ a2x2ðtÞ are

aiTfxi½n�g ¼ nxi½n�; i ¼ 1; 2 and Tfa1x1ðnÞ
þ a2x2ðnÞg ¼ nfa1x1½n� þ a2x2½n�g ¼ a1Tfx1½n�g
þ a2Tfx2½n�g
) System is linear: &

x½n� ! Tf:g ! y½n�:

Fig. 9.9.1 A discrete-data system
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Shift (or time) invariance: A discrete-time system

is shift invariant if and only if y½n� ¼ Tfx½n�g
implies that for every input signal x½n� and every

time shift k,

Tfx½n� k�g ¼ y½n� k� (9:9:3)

Example 9.9.2 Are the following systems shift

invariant?

a: y½n� ¼ x2½n�;

b: y½n� ¼ nx½n�;

c: y½n� ¼ x½k0n�; k0 � a positive integer:

Solution:

a. The response of this system corresponding to

the input x½n� n0� is y1½n� ¼ Tfx½n� n0�g ¼
x2½n� n0� ¼ y½n� n0�. Therefore, the system is

shift invariant.

b. The response of this system corresponding to

the input x½n� n0� is y2½n� ¼ nx½n� n0� 6¼ ðn� n0Þy
½n� n0�. Therefore, the system is shift variant.

c. The response of this system corresponding to

the input x½n� n0� is y3½n� ¼ x½k0n� n0� 6¼ x½k0
ðn� n0Þ�. Therefore, the system is a shift-variant

system and is a compressor. If k0 ¼ 1 then the sys-

tem is shift invariant. &

Linear shift-invariant systems: A linear shift-

invariant system (LSI) is linear and also shift invar-

iant. From Chapter 8, we can write that a discrete-

time signal x½n� is

x½n� ¼
X1

k¼�1
x½k�d½n� k�: (9:9:4)

Modeling a discrete-data system is an important

topic of study. In the case of analog systems we

have defined the impulse response and we called the

transform of the impulse response as the transfer

function of the system. In a similar manner we can

define the unit sample (discrete impulse) response or

simply impulse response. To stick with the analog

impulse response notation,many authors use impulse

response rather than a unit sample response. The unit

sample response or the impulse response provides a

complete description of a linear shift-invariant

system. We will use the impulse response here. If

h½n� is the response of a linear time-invariant system

to the input unit sample d½n�, then the response to the

input d½n� k� is h½n� k�. Using the linearity prop-

erty,we canwrite the response of a linear system to an

input x½n�given in (9.9.4). The output is

y½n� ¼ Tfx½n�g ¼ T
X1

k¼�1
x½k�d½n� k�

" #

¼
X1

k¼�1
x½k�Tfd½n� k�g ¼

X1
k¼�1

x½k�h½n� k�

¼ x½n� 	 h½k�: (9:9:5)

The output of an LSI system is the convolution of

the input sequence with the unit impulse response

h½n�, which gives a complete characterization of the

LSI system.

Causality: A causal signal x½n� is zero for n50. A

system is causal if, for any time n, the response of the

system y½n� depends only on the present and the past

inputs x½n�; x½n� 1�; :::; and does not depend on the

future inputs x½nþ 1�; x½nþ 2�; :::. The response of a
causal system satisfies the following, where ff�g is an
arbitrary function:

y½n� ¼ ffx½n�; x½n� 1�; :::g: (9:9:6)

If a system does not satisfy this constraint, then the

system is non-causal. In real-time processing appli-

cations, we cannot predict the future values and

therefore non-causal systems are not physically rea-

lizable. In the case of off-line processing, i.e., if we

have all the values of the signal, then it is possible to

design a non-causal system to process the data.

Such a situation is common in data processing.

Example 9.9.3 Classify each of the following sys-

tems are causal or not;

a: y½n� ¼ x½n� � x½n� 1� þ x½n� 2�;

b: y½n� ¼ x½�n� þ x½nþ 1�;

c: y½n� ¼ x½2n� :

Solution: The system in part a is causal, whereas the

systems in parts b and care non-causal as they

require the knowledge of future values. &
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The systems described by constant coefficient dif-

ference equations given below are linear shift-invar-

iant systems:

y½n� ¼ �
XN
k¼1

aky½n� k� þ
XL
k¼0

bkx½n� k�: (9:9:7)

A system described by (9.9.7) is a recursive linear

system if at least one of the coefficients ak is not zero

and the output depends on previous values of the

output as well as the input. For a non-recursive

linear system, a½k� ¼ 0 and is described by the dif-

ference equation,

y½n� ¼
XL
k¼0

bkx½n� k�: (9:9:8)

Stability: The stability of a discrete system can be

defined in terms of the input–output behavior as in

the analog case. A system is called BIBO stable if

every bounded input produces a bounded output. For

linear systems BIBO stability requires that the sam-

ple response h½n� must be absolutely summable. We

can show this by starting with a bounded input such

that x½n�j j �M for all n and the convolution sum in

(9.9.5). That is,

y½n�j j �
X1

k¼�1
h½k�x½n� k�

�����
����� �M

X1
k¼�1

h½k�j j:

(9:9:9a)

For a system to be BIBO stable, i.e., to have a

bounded output y½n�j j51 to a bounded input, the

unit sample response of a shift-invariant system

must be absolutely summable:

X1
k¼�1

h½k�j j51: (9:9:9b)

Example 9.9.4 Show the system described by

y½n� ¼ n x½n�j j; x½n� ¼ Au½n�;A40 and finite is not

BIBO stable.

Solution: The output y½n� ! 1 as n!1 and the

system is not BIBO stable. &

Notes: The response of a discrete-time linear time-

invariant system y½n� consists of two parts, one due

to the natural response (due to initial conditions)

and the second due to the source. A system is said to

be asymptotically stable, if and only if the natural

response goes to zero as n!1, and is unstable if it

grows without bound. We can see this very clearly

by making use of the transforms and by expanding

the z-domain function into its partial fraction

expansion and then taking the inverse terms. The

natural response depends upon the characteristic

modes of the system. The roots of the characteristic

polynomial of the system are the modes. Let a typi-

cal root be given by z ¼ l ¼ lj jejb. Noting that

ln ¼ lj jnejbn, we can summarize the results using

the three cases:

1: lj j51; lim
n!1

ln ! 0;

2: lj j41; lim
n!1

ln !1;

3: lj j ¼ 1; lj jn! 1 for all n: (9:9:10)

The linear discrete-time system is asymptotically

stable if and only if the characteristic roots, i.e.,

the poles of the transfer function of the system, are

inside the unit circle. It is unstable if there is at least

one root outside the unit circle and/or if there are

multiple roots on the unit circle. It is marginally

stable if and only if there are no roots outside the

unit circle and only simple roots on the unit circle. A

marginally stable system is not BIBO stable. Dis-

cussion on general stability analysis is beyond the

scope here.

Example 9.9.5 Show that the system described by

the following equation is stable:

y½nþ 2� þ y½nþ 1� þ 2y½n� ¼ x½nþ 1� þ x½n�:

Solution: The characteristic polynomial can be

obtained as follows:

zfy½nþ2�þy½nþ1�þ2y½n�g¼ z2þ zþ2;

¼ðzþ z1Þðzþ z2Þ¼ 0:

) z1 ¼ �ð1=2Þ þ j
ffiffiffi
7
p

=2; z2 ¼ z	1; z1z2 ¼ 2. Since zij j41

the system is unstable. &

Classification of LSI systems based on the duration of

the impulse response: We can classify the linear

shift-invariant (LSI) systems based upon the dura-

tion of their (discrete impulse or simply impulse)

responses. Without losing any generality, we will
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consider causal systems. The systems that have

finite-duration impulse response (FIR) are called

FIR systems. On the other hand, the systems with

infinite-duration impulse response are called IIR sys-

tems. The system described by (9.9.7) is an IIR

system if at least one ak 6¼ 0, whereas the system

described by (9.9.8) is an FIRsystem. As in the

analog systems the transform analysis is basic to

filter designs. Since the systems need to work with

any set of initial conditions, the designs are based on

zero initial conditions.

9.9.1 Discrete-Time Transfer Functions

Consider the difference equation in (9.9.7). Assum-

ing the initial conditions are all equal to zero and

taking the z-transform of this equation result in

YðzÞ ¼ �
XN
k¼1

akz
�kYðzÞ þ

XL
k¼0

bkz
�kXðzÞ; (9:9:11a)

) YðzÞ ¼

PL
k¼0

bkz
�k

1þ
PN
k¼1

akz�k
XðzÞ ¼ HðzÞXðzÞ;

HðzÞ ¼ YðzÞ
XðzÞ ¼

PL
k¼0

bkz
�k

1þ
PN
k¼1

akz�k
: (9:9:11b)

As in the analog caseHðzÞ is called the transfer func-

tion and h½n� is the impulse response or the unit

sample response. A discrete-time linear time-invariant

system can be described by its difference equation, its

transfer function, or by its poles and zeros. From our

earlier discussion on the z-transforms, we can write

the expressions for the system input–output relations

in the time domain or in terms of the transform

domain. That is,

y½n� ¼ h½n� 	 x½n�$z YðzÞ ¼ HðzÞXðzÞ;

HðzÞ ¼ zfh½n�g; h½n� ¼ z�1fHðzÞg:
(9:9:11c)

Linear time-invariant discrete-time systems are

described by either constant coefficient difference

equations relating the output to the input or the

impulse response h½n� or the discrete-time transfer

function HðzÞ !z h½n�. Since the impulse response

and the corresponding transfer function are related,

we can discuss the stability of a discrete linear time-

invariant system in terms of the poles of the transfer

function. The transfer function in (9.9.11b) is

HðzÞ ¼

PL
k¼0

bkz
�k

1þ
PN
k¼1

akz�k

¼ K
ðz� z1Þðz� z2Þ � � � ðz� zLÞ
ðz� p1Þðz� p2Þ � � � ðz� pNÞ

:

(9:9:12a)

Notes: he poles of the transfer function are called

the natural frequencies or natural modes and they

determine the time domain behavior of the system

response. For example, if we have poles outside the

unit circle, the response grows exponentially and the

system is unstable. If we have multiple poles on the

unit circle, then the response has polynomial

growth. If a system has a simple pole on the unit

circle, then the system is referred to as marginally

stable. If we require that the function is a minimum

phase function, then all the zeros and poles must be

inside the unit circle. &

Special cases of the general model are useful in

defining digital filters. These are 1. the autoregres-

sive moving average filter (ARMA); moving average

filter (MA); and the autoregressive filter (AR).

These are explicitly expressed by

HARMAðzÞ¼

PL
k¼0

bkz
�k

1þ
PN
k¼1

akz�k
;

YðzÞ¼HARMAðzÞXðzÞ;

y½n� ¼�
XN
k¼1

aky½n�k�þ
XL
k¼0

bkx½n�k�;

(9:9:12b)

HMAðzÞ ¼
XL
k¼0

bkz
�k;

YðzÞ ¼ HMAðzÞXðzÞ;

y½n� ¼
XL
k¼0

bkx½n� k� (9:9:12c)
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HARðzÞ ¼
1

1þ
PN
k¼1

akz�k
;YðzÞ ¼ HARðzÞXðzÞ;

y½n� ¼ x½n� �
XN
k¼0

aky½n� k�: (9:9:12d)

All three models are used in different applications.

They are related, at least in the limit, see Marple

(1987). The ARmodels are used extensively in spec-

tral estimation. AR and ARMA models are used in

digital filter designs discussed in a later section.

9.9.2 Schur–Cohn Stability Test

If we know the pole locations of a transfer function,

the stability of that system can be determined. Fac-

toring an nth order polynomial is not always possi-

ble. A stability test that does not require factoring a

polynomial is the Schur–Cohn test (Proakis and

Manolakis, 1988) and it starts with the denominator

polynomial of the transfer function

AðzÞ ¼ 1þ
XN
k¼1

akz
�k: (9:9:13)

The procedure involves deriving a set of polyno-

mials (proof is beyond the scope here)

AmðzÞ¼
Xm
k¼0

am½k�z�k;am½0�¼1andBmðzÞ¼z�mAmðz�1Þ

¼
Xm
k¼0

am½m�k�z�k: (9:9:14)

The stability test computes a set of coefficients,

called reflection coefficients, Ki; i ¼ 1; 2; . . . ;N

from AðzÞ. The recursive computation uses the fol-

lowing steps:

1. ANðzÞ ¼ AðzÞ and KN ¼ aNðNÞ ¼ aN; ð9:9:15Þ

2. Compute Am�1ðzÞ ¼ AmðzÞ�KmBmðzÞ
ð1�K2

mÞ
;Km ¼ amðmÞ:

(9.9.16)

The polynomial AðzÞ given in (9.9.13) has all its

roots inside the unit circle if and only if the coeffi-

cients Kmj j51;m ¼ 1; 2; :::;N.

Example 9.9.6 Use the Schur–Cohn test to show

that all the roots of the polynomial AðzÞ given

below in the transfer function lie inside the unit

circle:

HðzÞ ¼ z

z2� z�ð1=2Þ ¼
z�1

½1� z�1�ð1=2Þz�2� ¼
z�1

AðzÞ :

Solution: The following steps are used to determine

the reflection coefficients.

A2ðzÞ¼AðzÞ¼ 1� z�1� :5z�2¼
X2
k¼0

a2½k�z�k!K2

¼ a2½2� ¼�:5; B2ðzÞ¼�:5� z�1þ z�2;

A1ðzÞ ¼
A2ðzÞ � K2B2ðzÞ

1� K2
2

¼ ð1� z�1 � 0:5z�2Þ þ 0:5ð�0:5� z�1 þ z�2Þ
1� ð0:5Þð0:5Þ

¼ :75� 1:5z�1

:75
¼ 1� 2z�1;K1 ¼ �2:

Since K1j j > 1, the Schur–Cohn test indicates the

system is unstable. Also, the roots of the polynomial

are z ¼ ð1=2Þ � ðð
ffiffiffi
3
p
Þ=2Þ indicating one of the roots

is outside the unit circle and the system is unstable.&

The above recursive algorithm leads to a lattice

filter realization. Such implementation has impor-

tant applications in speech processing, see Rabiner

and Schafer (1978).

9.9.3 Bilinear Transformations

Consider the mapping (bilinear transformation) of

the s-plane to the z-plane by

s ¼ c
z� 1

zþ 1

� �
; z ¼ cþ s

c� s
; c is a constant:

(9:9:17)
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Some authors use c ¼ 2=ts and tie it to the sam-

pling interval. Note that ðs=cÞ s¼joa

�� ¼ jðoa=cÞ,
where c is a normalizing factor in the frequency

domain and the subscript a on o is introduced to

distinguish from the digital frequency to be dis-

cussed later. In filter designs, it is one of the inter-

mediate steps. Using c ¼ 1 will not affect the final

results in the design. To investigate the effects of

this transformation, let

s ¼ sþ joa and z ¼ re j rO: (9:9:18)

If we let s ¼ 0, we have the complex variable z in the

form

z ¼ ejO ¼ 1þ joa

1� joa
¼ e j2 tan�1ðoaÞ: (9:9:19)

The analog and digital frequencies are related by

O ¼ 2 tan�1ðoaÞ or oa ¼ tanð:5OÞ: (9:9:20)

This transformation is sketched in Fig. 9.9.1 for one

period. It is a nonlinear one-to-one transformation

that compresses the analog frequency range

�15oa51 to the digital frequency range

�p5O5p. It avoids aliasing at the expense of dis-

torting or warping the analog frequencies.

For s ¼ aþ jb,

zj j ¼ 1þ aþ jb
1� a� jb

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ aÞ2 þ b

ð1� aÞ2 þ b2

s
: (9:9:21)

This implies the following (see Fig. 9.9.2):

ðLeft half of the s� planeÞa50, zj j51

ðInside the unit circle in the z� planeÞ; (9:9:22a)

ðImaginary axis on the s� planeÞa ¼ 0, jzj ¼ 11

ðOn the unit circle in the z� planeÞ; (9:9:22b)

ðRighthalfofthes�planeÞa40,jzj41

ðOutsidetheunitcircleinthez�planeÞ: (9:9:22c)

If we have a polynomial in the z-domain, bilinear

transformation converts it into the s-plane and we

can use any stability tests that are available for s-

domain polynomials.

Example 9.9.7 Use the bilinear transformation and

the Routh table to show that the polynomial

DðzÞ ¼ z2 � z� 0:5 represents an unstable system.

Solution: Using (9.9.17) with c ¼ 1, we have

DðzÞ z¼ð1þsÞ=ð1�sÞ
�� ¼s

2þ2s�ð1=3Þ
ð1�sÞ2

¼0

)s2þ2s�ð1=3Þ¼0: (9:9:23a)

Routh table:

s2 1 �ð1=3Þ
s 2

s0 �ð1=3Þ

�������
:

(9:9:23b)

Fig. 9.9.1 Warping effect of
the bilinear transformation
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There is one sign change in the first column of the

Routh table indicating that the s-domain polyno-

mial has one root in the right half of the s-plane

implying DðzÞ has one root outside the unit circle

and the system is unstable. &

Notes: Equation (7.12.10), an example by

Dahlquist and Bjorck (1974), was given illustrating

the effect of a slight change in the coefficient of a

polynomial and the corresponding significant

change in the roots of the polynomial. It is best to

implement filters using second-order sections with a

possible one first-order section (if the characteristic

polynomial is odd in the case). Second-order sys-

tems are important. &

Second-order systems and the stability triangle:

The transfer function, the corresponding character-

istic polynomial, and its roots are

HðzÞ ¼ K
1þ b1z

�1 þ b2z
�2

1þ a1z�1 þ a2z�2
; (9:9:24)

DðzÞ¼ z2þa1zþa2¼ðzþp1Þðzþp2Þ¼0; (9:9:25)

p1; p2 ¼ ð�a1=2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða21 � 4a2Þ

q
=2

� �
;

a1 ¼ �ðp1 þ p2Þ; a2 ¼ p1p2:

(9:9:26)

The system is stable if all the poles lie inside the unit

circle in the z-plane.

Stability implies

a2j j ¼ p1p2j j ¼ p1j j p2j j51;

a1j j ¼ �ðp1 þ p2Þ51þ a2: (9:9:27)

These conditions can also be derived from the

Schur–Cohn stability test. From the recursive

equations in (9.9.14) and (9.9.15), we can also

write (left as an exercise).

K1 ¼ a1=ða1 þ a2Þ; K2 ¼ a2: (9:9:28)

Since the Schur–Cohn stability criterion requires

that the coefficients K1j j; K2j j51 for the system to

be stable, the constraints can be expressed by

K2j j ¼ a2j j51 and K1j j ¼
a1

1þ a2

����
����51

) �15a251;�1� a25a151þ a2:

(9:9:29)

The stability conditions can be expressed in ða1; a2Þ
coefficient plane shown in Fig. 9.9.3. The second-

order system is stable if and only if the point

ða1; a2Þ lies inside the triangle and the triangle is

called the stability triangle (Proakis and Manola-

kis, 1988).

9.10 Designs by the Time and Frequency
Domain Criteria

In Section 6.5.1, we have seen that for a continuous-

time linear time-invariant system with a transfer

function HaðsÞ, the system response to the input est

can be expressed by

yðtÞ ¼ HaðsÞest; (9:10:1a)

where HaðsÞ is the system transfer function. To dif-

ferentiate the s-domain functions from the z-domain

functions the subscriptis used in (9.10.1a) to denote

that it is an analog function. Interestingly, zn plays a

similar role in discrete-time systems as est played in

the continuous-time systems. That is, if x½n� ¼ zn

1z <

1z >

1z =

Im(z)

Re(z)

s jw=

σ < 0 σ > 0

Im(z)

Re(z)

(a) (b)

Fig. 9.9.2 Regions of
stability in the z- and
s-planes
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then the response of the discrete-time linear shift-

invariant system is given by the convolution

y½n� ¼ h½n�zn ¼
X1

k¼�1
h½k�zn�k

¼
X1

k¼�1
h½k�z�k

 !
zn ¼

X1
k¼�1

h½k�z�k
" #

zn ¼HðzÞzn:

(9:10:1b)

The above result is valid only for the values of z for

whichHðzÞ, the transfer function of the discrete-time

linear shift-invariant system, exists. Now consider

replacing an analog system by an A/D converter–

digital filter–D/A converter combination as shown in

Fig. 9.10.1, which is discrete representation continu-

ous-time filter. If the continuous signal is sampled

every tsS interval, then

x½n� ¼ esðntsÞ z¼estsj ¼ zn; y½n� ¼ HðestsÞesnts : (9:10:2)

Considering the block diagrams in Fig. 9.10.1, the

nth sample of the output yðtÞ in (9.10.1a) can now be

expressed by

yðntsÞ ¼ HaðsÞesnts : (9:10:3)

If the analog and the discrete system responses are

to be equal at the sample values, i.e., the discrete-

data system is designed to mimic the analog system

in the sense that the responses are the same at the

sampling instants yðntsÞ ¼ yðtÞ t¼ntsj , then

HðestsÞ s¼jo
�� ¼ HðejotsÞ � HaðjoÞ;

� os=25o5os=2: (9:10:4)

It implies that

X1
n¼�1

h½n�e�nsts¼
Z1

�1

haðtÞe�stdt�
X1
n¼�1

½tshaðntsÞ�e�snts :

Note that z ¼ ests in (9.10.2) is not a good transfor-

mation since it does not convert a rational transfer

function HaðsÞ into a rational function in the z-

domain. This gives us an impetus to study designs

that make use of the impulse responses of the con-

tinuous systems at the sample points and other

transformations that transform HaðsÞ to a rational

Fig. 9.10.1 A/D converter–digital filter–D/A converter

Fig. 9.9.3 Stability triangle
in the ða1; a2Þ coefficient
plane
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functions in the z-domain, such as the bilinear

transformations.

9.10.1 Impulse Invariance Method by
Using the Time Domain Criterion

In this method the discrete system model imitates

the continuous-time system by matching the

impulse response of a continuous system. We

should note that if ts ! 0, the two responses

match at every point, which is impractical in reality.

In addition, if the analog function is not frequency

limited, then aliasing problems will arise in the fre-

quency domain, as the sampling rate may not be

sufficient. In the bilinear transformation method,

discussed later, aliasing problems will not arise.

The criterion for impulse invariance method is

the equivalence of the analog and discrete systems,

both having the same impulse response at the sam-

ple points, see Fig. 9.10.1. We can write the outputs

in the continuous time and discrete time. First,

yaðtÞ ¼ haðtÞ 	 xaðtÞ ¼
Z1

�1

xaðaÞhaðt� aÞda;

haðtÞ ¼ L�1fHaðsÞg; (9:10:5)

) yaðtÞ t¼ntsj � ts
X1

k¼�1
xaðktsÞhaðnts � ktsÞ

¼
X1

k¼�1
xa½n�ftsha½n� k�g: (9:10:6)

Consider the simple transfer functionHaðsÞ and the

corresponding time response haðtÞ by

HaðsÞ ¼
Ai

ðsþ siÞ
$z Aie

�sit:

At t ¼ nts, we have the time response and its trans-

form given by

hðntsÞ ¼ Aie
�sints ; n � 0; h½n� ¼ haðntsÞ;

HðzÞ ¼ Ai

X1
n¼0

e�sintsz�n

¼ Ai

1� e�sits z�1
; e�sits z�1
�� ��51: (9:10:7)

This can be generalized for the multiple pole case.

HaðsÞ ¼
Ai

ðsþ siÞm
 !LT Ai

ðm� 1Þ! ðtÞ
m�1e�sit ¼ hðtÞ

) haðntsÞ ¼
Ai

ðm�1Þ! ðntsÞ
m�1e�sints ; n � 0

0; n50

( )
:

(9:10:8a)

For example, in the case of m ¼ 2 in (9.10.8a), we

have, by using (9.5.9)

haðntsÞ ¼ Aitsnðe�sitsÞnu½n� ¼ Aitsa
nu½n�; a ¼ e�sits ;

Aitsna
nu½n� !z Aits

az

ðz� aÞ2
; zj j4 aj j: (9:10:8b)

Then, the corresponding s-domain and the corre-

sponding z-domain functions are

Ai

ðsþ siÞ2
) Aits

e�sits z

ðz� e�sitsÞ2
: (9:10:8c)

Since all the classical filter transfer s-domain func-

tions have simple poles, we need to consider only

simple poles. Complex pole cases can be handled by

combining the terms corresponding to the complex

pole and its conjugate. The two important complex

pole cases in the s-domain and the corresponding z-

domain functions are as follows:

sþ a

ðsþ aÞ2 þ b2
) 1� e�ats cosðbtsÞz�1

1� 2e�ats cosðbtsÞz�1 þ e�2atsz�2

(9:10:9a)

b

ðsþ aÞ2 þ b2
) e�ats sinðbtsÞz�1

1� 2e�ats cosðbtsÞz�1 þ e�2atsz�2
:

(9:10:9b)

Note if a ¼ 0, the L-transforms correspond to the

cosine and sine functions and the digital resonator

functions are obtained from analog functions. Fol-

lowing gives a summary of the procedure to deter-

mine the z-domain transfer function from an s-

domain function:

Impulse invariance method:

HaðsÞ ¼
XN
i¼1

HaiðsÞ ) HðzÞ ¼
XN
i¼1

HaiðzÞ:
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Example 9.10.1 Consider the RC circuit shown in

Fig. 9.10.2a with RC ¼ 1

a. Give the expressions for the impulse response

and sketch the magnitude response HaðjoÞj j and
the magnitude responses of the discrete-time filter

using the impulse invariance method assuming

ts ¼ 1 and ts ¼ :1.
b. Give the difference equation and the correspon

ding flow diagram that simulates the response of the

RC circuit using the symbols in Fig. 9.2.1.

Solution: The transfer function of the RC circuit,

its impulse response, the corresponding impulse

response h½n�, and its z-transform along with its

amplitude response are as follows:

a: HaðsÞ ¼
1

RCsþ 1
RC¼1j ¼ 1

sþ 1
$L e�tuðtÞ

¼ haðtÞ; HaðjoÞj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ 1
p ; (9:10:10a)

h½n� ¼ ðe�tsÞnu½n�$z 1

1� e�ts z�1
¼ HðzÞ; (9:10:10b)

HðejOÞ
�� �� ¼ HðzÞj jz¼ejO¼

1

1� e�ts e�jO

����
����

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� e�2ts � 2e�ts cosðOÞ�

p ;O ¼ ots:

(9:10:11)

Note the frequency variables in the discrete and the

continuous domains are related byO ¼ ots. For the
sampling intervals ts ¼ 1 and ts ¼ :1,

Hðe jOÞ
�� ��

ts¼1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1� e�2� 2e�1 cosðOÞ�
p ;

Hðe j0Þ
�� ��

O¼0;ts¼1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1� e�2� 2e�1�
p ;

(9:10:12a)

Hðe jOÞ
�� ��

ts¼:1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1� e�: 2� 2e�:1 cosðOÞ�
p ;

Hðe j0Þ
�� ��

O¼0;ts¼:1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1� e�:2� 2e�:1�
p : (9:10:12b)

The amplitude responses given in (9.10.12a)

and (9.10.12b) are periodic with period 2p
ðin theO domainÞ or 2p=ts ðin theo domainÞ. Amp-

litude plots are shown in Fig. 9.10.2b. For compar-

ison purposes, the sketches

HaðjoÞj j; HðejOÞ
�� ��

ts¼1; and HðejOÞ
�� ��

ts¼:1

are normalized so that the peak values at o ¼ 0

coincide. The shape of the digital filter amplitude

response for the sampling interval ts ¼ :1 with period
equal toos ¼ 20p in theo domain is very close to the

analog response in the frequency interval

ð0;os=2Þ ¼ ð0; 10pÞ. On the other hand, the digital

filter magnitude frequency response for the sampling

(a) 

(b) (c)

Fig. 9.10.2 (a) RC circuit, (b) normalized sketches of Hðe j OÞ ¼ Hðe j o tsÞ
��
ts¼0:1; 1; HaðjoÞ, and (c) simulation diagram
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interval ts ¼ 1 with period os ¼ 2p shows the peri-

odicity and the aliasing problems created by a low

sampling rate.

From the input–output transform relations of

the discrete-time system, we have

YðzÞ ¼HðzÞXðzÞ; HðzÞ ¼ 1

1� e�ts z�1
;

1� e�ts z�1
� 	

YðzÞ ¼ XðzÞ; (9:10:13a)

y½n� � e�tsy½n� 1� ¼ x½n�: (9:10:13b)

Equation (9.10.13b) can be simulated using three

components, namely delay, multiplier, and summer

shown in Fig. 9.10.2c. The simulation (or a symbolic)

diagram of the equation in (9.10.13b) is shown in

Fig. 9.10.2c. It illustrates the responses of an RC

filter and the digital filter for the simple RC circuit.

Notes: In the impulse invariance method, the ana-

log and digital filters have the same values at the

sample points of the impulse response. In practice, it

is customary to scaleHðzÞ to KHðzÞ at a convenient
frequency location so that the s-domain function

and the z-domain functions match at a convenient

location, usually at the frequency corresponding to

the highest amplitude. It depends upon the type of

the filter. In the case of a low-pass and band-elim-

ination filters, the frequency locations are at dc, in

the high-pass filter case, it is atos=2 ðor O ¼ pÞ and
in the band-pass case it is at the center frequency.

Let the s-domain and its impulse-invariant

z-domain functions are

HaðsÞ ¼ 1=ðsþ skÞ ) HðzÞ ¼ z=ðz� e�sktsÞ; z ¼ ejO:

The dc gain of the analog transfer function HaðsÞ is
ð1=skÞ and the dc gain of the digital transfer func-

tion is 1=ð1� e�sktsÞ obtained by evaluating the

z-domain function at z ¼ 1or O ¼ 0. In the above

discussion we considered the design bymatching the

time domain analog and digital responses for an

impulse input. Obviously filters can be designed to

match the time domain analog and digital responses

for any input, such as step, ramp; see Strum and

Kirk (1988).

The impulse invariance method results in a recur-

sive filter based on the time response of the contin-

uous system, i.e., the design in time domain. The

drawback is the aliasing error near half of the

sampling frequency. This can only be minimized

by increasing the sampling rate, i.e., by reducing

the sampling interval making the implementation

expensive. Since there is maximum aliasing at

os=2, this method cannot be used for high-pass

and band-elimination filters and is restricted to

low-pass and band-pass filters. &

9.10.2 Bilinear Transformation Method
by Using the Frequency Domain
Criterion

In the ideal analog filter design specifications we

generally identify ranges of frequencies for passband,

stopband, and transition bands, where, in each fre-

quency range, the amplitude gains of the frequency

responses are assumed to be constant. That is, they

are assumed to have piecewise constant amplitude

responses over certain bands. We have considered in

Chapter 6 the low-pass, high-pass, band-pass, and

band-elimination analog filter ideal and non-ideal

filter characteristics. The edges of these bands are

identified as the critical frequencies of the filter.

Before proceeding we note that the digital filter fre-

quency response in terms of the variableo is periodic

with period 2p. The digital frequencies are the

normalized frequencies by the sampling frequency.

That is, the digital frequency is given by

O ¼ 2pfd=fs ¼ ðodtsÞ, where fs is the sampling fre-

quency and the corresponding sampling interval is

ts ¼ 1=fs. To avoid any confusion, we have added a

subscript on o to identify that od ¼ O=ts is a digital

frequency variable and oa is the analog variable in

the bilinear transformation (see (9.9.20)):

oa ¼ tanðodts=2Þ: (9:10:14)

Note the subscripts ono s. The bilinear transforma-

tion method of designing a digital filter is based

upon the frequency amplitude response values at

the frequency edges of the passband and stopband

and other important frequencies. The procedure is

given below.

1. Identify the critical frequencies and ranges, i.e.,

identify the passband, stopband, transition

band, the maximum attenuation points, etc., of

the desired digital filter. Let these frequencies be
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identified by Oi. Compute a new set of

frequencies

oai ¼ tanðOi=2Þ ¼ tanðodi ts=2Þ: (9:10:15)

2. Find a transfer function HaðsÞ that satisfies the
given specifications of the digital filter at the new

frequencies obtained from (9.10.15).

3. Substitute s by ðz� 1Þ=ðzþ 1Þ and obtain HðzÞ
as a ratio of two polynomials in the variable z

yielding a digital filter that satisfies the given

digital filter specifications.

The digital filter specifications include the

required attenuation characteristics of the filter plus

the desired sampling frequency or the highest fre-

quency in the input signal. In most applications, the

highest frequency of a signal is known or assumed. If

the highest frequency in the signal to be processed is

given by oh, then the minimum sampling frequency

must be larger than twice the highest frequency in the

signal, i.e., fs � 2oh=2p ¼ 2fh;oh ¼ 2pfh, or the

sampling interval must satisfy ts � p=oh ¼ 1=2fh.

Following examples illustrate the design of digital

filters using bilinear transformation.

Example 9.10.2 Repeat the implementation of a

digital filter starting with the transfer function of

the RC circuit discussed in Example 9.10.1 using the

bilinear transformationmethod with the 3 dB band-

width equal to O3dB ¼ p=4:

Solution: The transfer function corresponding to

the simple RC circuit was given in (9.10.9). The

first step is to find the critical frequencies.

1. The 3 dB frequency: oa ¼ tanðodts=2Þ ¼
tanðp=8Þ ¼ :414.

2. The transfer function corresponding to this spe-

cification is

HaðsÞ ¼
1

ðs=oaÞ þ 1
¼ :414

sþ :414 :

3. Replace s by ðz� 1Þ=ðzþ 1Þ and simplify

HðzÞ ¼ :414

½ z� 1ð Þ= zþ 1ð Þ� þ :414 ¼
:414 zþ 1ð Þ

1:414z� :586

¼ :293 zþ 1ð Þ
z� :414 ¼

:293 1þ z�1
 �

1� :414z�1

The corresponding frequency response of the dis-

crete-time filter (or digital filter) is

HðejOÞ ¼ HðzÞ z¼ejOj ¼ :293ð1þ e�jOÞ
1� :414e�jO ;

YðzÞ ¼ HðzÞXðzÞ:
(9:10:16)

It is always a good idea to check the values at

important frequencies

O ¼0 :Hdðej0Þ¼1;O3dB ¼p=4:Hdðejp=4Þ¼ :707;

O¼p :HdðejpÞ¼ :293ð1þe�jpÞð1�:414e�jpÞ¼0:

It may be easier to compute these values by

evaluating the digital filter function HðzÞ at

z ¼ 1; z ¼ e jp=4 and at z ¼ e j p ¼ �1, respectively.
The simulation diagram can be obtained by

writing the output transform in terms of three

equations given below using an intermediate vari-

able PðzÞ:

YðzÞ ¼ ½1þ z�1�PðzÞ;PðzÞ ¼ 1

1� :414z�1

� �
X1ðzÞ;

or PðzÞ ¼ :414z�1PðzÞ þ X1ðzÞ; (9:10:17a)

X1ðzÞ ¼ :293XðzÞ: (9:10:17b)

The corresponding difference equations can

be obtained by noting that x½n� !z XðzÞ;
x1½n� !

z
X1ðzÞ; p½n� !

z
PðzÞ;

and p½n� 1� !z z�1PðzÞ,

x1½n� ¼ 0:293x½n�;

p½n� ¼ x1½n� þ :414p½n� 1�;

y½n� ¼ p½n� þ p½n� 1�:

(9:10:17c)

The filter can be implemented by the simulation

diagram shown in Fig. 9.10.3. &

Example 9.10.3 Design a digital filter, which has

a monotonic amplitude frequency response to

be within 3 dB in the pass band of 0–1000 Hz

and the response goes down to 10 dB at

frequencies beyond 2 kHz. Assume the sampling

rate is 10 kHz.
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Solution: The critical frequencies are

od1 ts ¼ 2pð1000Þð1=10000Þ

¼ :2p and od2 ts ¼ 2pð2=10Þ ¼ :4p:
(9:10:18)

1. Compute oai; i ¼ 1; 2 by

oa1 ¼ oc ¼ tanð0:4p=2Þ ¼ tanð0:2p=2Þ ¼ 0:3249;

oa2 ¼ or ¼ tanð0:2pÞ ¼ 0:7265:

2. Since a monotonic amplitude response is

required, we will use Butterworth filter with

oc ¼ :3249 and or ¼ :7265. The analog low-

pass amplitude characteristic is shown in

Fig. 9.10.4. To find the order of the filter, find

the value of n such that

20 log HðjoaÞj joa¼or
¼ 10 log

1

1þ ðor=ocÞ2n

� �10 dB! ½1þ ð2:236Þ2n� � 10:

It shows that n ¼ 2 would satisfy the design specifi-

cations and the corresponding amplitude at

or is � 14:15 dB. Figure 9.10.5 gives the sketch

for the analog amplitude frequency response.

The second-order analog Butterworth filter with

a cutoff frequency of oc ¼ 0:3249 has poles at

s ¼ s1; s2 ¼ 0:3249ð�0:707� j0:707Þ ¼ �0:23� j0:23.

The analog function is

HaðsÞ ¼
s1s2

ðs� s1Þðs� s2Þ
¼ 0:1058

s2 þ 0:46sþ 0:1058
:

3. Determine the digital filter function by replacing

s by ðz� 1Þ=ðzþ 1Þ in the analog functionHaðsÞ.
This results in the transfer function

HðzÞ¼ 0:1058

½ðz�1Þ=ðzþ1Þ�2þ0:46½ðz�1Þ=ðzþ1Þ�þ0:1058

¼ 0:1058ðz2þ2zþ1Þ
1:5658z2�1:7884zþ0:6458;YðzÞ¼HðzÞXðzÞ:

The frequency response of this filter function is

HðejOÞ ¼ HðzÞ z¼ejOj

¼ 0:1058ðz2 þ 2zþ 1Þ
1:5658z2 � 1:7884zþ 0:6458 z¼ejOj

¼ 0:1058ðej2O þ 2ejO þ 1Þ
1:5658ej2O � 1:7844ejO þ 0:6458

:

The amplitudes can be obtained at the important

frequencies using HðzÞ and

O ¼ 0; z ¼ 1 : HðzÞ z¼1j ffi 1;

O ¼ p; z ¼ �1 : HðzÞ z¼�1 ¼ 0j :

Evaluation at the two frequencies O ¼ :2p and

O ¼ :4p is left as an exercise. &

All-pass filters: Adigital all-pass function satisfies

HapðejOÞ
�� �� ¼ 1 for all O: (9:10:19)

Example 9.10.4 Show that the functions below

satisfy (9.10.19). For Part a, show that

Haðe j OÞ
�� �� ¼ 1. For Part b, show first that

HbðzÞHbðz�1Þ
�� �� ¼ 1 and then Hðe j OÞ

�� ��2¼ 1:

a. HaðzÞ ¼
bþ z�1

1þ bz�1
; b:HbðzÞ ¼

aþ bz�1 þ z�2

1þ bz�1 þ az�2
:Fig. 9.10.4 Low-pass filter specifications in the analog

domain and the resultant response

Fig. 9.10.3 Simulation diagram (or realization of (9.10.17c))
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Solution:

a. HaðejOÞ
�� �� ¼ HaðzÞj j

z¼e jO
¼ bþ e�jO

1þ be�jO

����
����

����
2

¼ ½bþ cosðOÞ�2 þ sin2ðOÞ
½1þ b cosðOÞ�2 þ ðb sinðOÞÞ

¼ 1þ b2k þ 2bk cosðOÞ
1þ b2k þ 2bk cosðOÞ

¼ 1:

(9:10:20a)

b:HbðzÞHbðz�1Þ¼
aþbz�1þz�2
1þbz�1þaz�2

aþbzþz2
z2þbzþaz2

¼1) HðejOÞHðe�jOÞ
�� ��¼ HðejOÞ

�� ��2¼1:
(9:10:20b)

&

Notes: Bilinear transformation method is one of

the best ways of designing IIR digital filters and is

restricted to the design of approximations to filters

with piecewise constant frequency amplitude char-

acteristics, such as low-pass, high-pass; see Rabiner

and Gold (1975). It has several advantages over the

impulse invariance method. In the impulse invar-

iance method, there is the problem of aliasing. The

bilinear transformation method does not create any

aliasing problems, as there is one-to-one mapping

from the s-domain to the z-domain. It requires a

lower sampling rate compared to the impulse invar-

iance method and produces filters that have much

sharper roll-off rate in the stopband. The designs

result in a rational function with poles and zeros.

These have impulse responses with infinite time

duration. These are IIR or recursive filters. Finite

impulse response (FIR) filters have finite duration.

IIR filters have non-linear phase responses, whereas

the FIR filters can be designed with linear phase and

therefore a constant delay.

The IIR filters are sensitive to the filter coeffi-

cient accuracy. Since the implementation of digital

filters depend upon the word lengths of the filter

coefficients, any inaccuracies in the filter implemen-

tation can change the filter behavior. For stability,

the roots of the characteristic polynomial of the IIR

filters must be inside the unit circle. For example,

the ideal digital generators imply a ¼ 0 in (9.10.9a

and b). This implies the poles of the digital resona-

tor function are located on the unit circle. The

recursive filter designs are well established only for

amplitude responses that are piecewise constant,

such as low-pass, high-pass. Non-recursive filters

can be designed for an arbitrary amplitude response

with N coefficients.

To approximate a recursive filter by a nonrecursive

filter requires N to be large. The nonrecursive and

the recursive filters are equal only in the limit, i.e.,

N!1. Nonrecursive filters do not have any sta-

bility problems. Recursive filters take less proces-

sing delay and therefore are faster compared to the

non-recursive filters. If the processing delay is not a

critical factor in an application and the phase

response of the filter needs to have a linear phase,

then the non-recursive filter is the choice. &

9.11 Finite Impulse Response (FIR) Filter
Design

The F-series expansion of a periodic function

xTðtÞ ¼ xTðtþ TÞ;o0 ¼ 2p=T is

xTðtÞ¼
X1

k¼�1
Xs½k�ejko0t;

Xs½k�¼
1

T

ZT=2

�T=2

xTðtÞe�jko0tdt;xTðtÞ !
FS

Xs½k�: (9:11:1)

The time function is continuous and the F-series

coefficients are discrete. In Chapter 8, it was seen

that if the time function h½n� is discrete, then its

DTFT HðejOÞ is periodic and continuous in the

frequency domain. Although FIR filters can be

designed with arbitrary periodic functions in the

frequency domain in terms of their Fourier series,

the interest here is to design nonrecursive digital

filters with linear phase.

The discrete-time Fourier transform (DTFT) of

the sequence h½n� is

HðejOÞ ¼
X1
n¼�1

h½n�e�jnO � H2pðejOÞ: (9:11:2)

For simplicity, the subscript 2p is not shown on H

on the left in (9.11.2). The series expansions in
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(9.11.1) and (9.11.2) have the same general form,

except one is F-series in continuous time and the

other one is in continuous frequency. The proce-

dures discussed in Chapter 3 can be used to derive

HðejOÞ ¼
X1
n¼�1

h½n�e�jnO !FS 1

2p

Z p

�p
HðejOÞejOndO¼ h½n�:

(9:11:3)

In addition, note the difference in the signs of the

exponentials in (9.11.1) and (9.11.2). The expression

for HðejOÞ is the synthesis equation and the integral

expression for the filter coefficients h½n� is the ana-

lysis equation.

For the digital filter design, the design steps

include the specifications on the filter transfer func-

tion HðejOÞ, derivation of its F-series, and truncat-

ing the number of coefficientsN to be of reasonable

size for practical reasons. As in the time domain,

Fourier series approximation of a periodic function

with discontinuities results in overshoots and

undershoots before and after the discontinuity,

i.e., Gibbs phenomenon; see Section 3.7. The same

is true in the Fourier series of a periodic frequency

function. Noting the sampling interval is ts s, the

Fourier series pair in (9.11.3) can be written in terms

of the sampling frequency os ¼ 2pfs ¼ 2p=ts as

follows:

HðejotsÞ¼
X1
n¼�1

h½n�e�jnots !FS 1

2pZ os=2

�os=2

HðejotsÞejnotsdðotsÞ

¼h½n�; (9:11:4a)

1

2p

Z os=2

�os=2

HðejotsÞejnotsdðotsÞ

¼ 1

os

Z os=2

�os=2

HðejotsÞejnotsdo ¼ hðntsÞ : (9:11:4b)

Consider the four basic filters, low-pass, high-pass,

band-pass, and band-elimination FIR filters with lin-

ear phase. In Section 8.5.2 the discrete-time Fourier

transforms of real signals with symmetries were con-

sidered. The transfer function of a causal linear phase

filter can bewrittenwith filter coefficients with even or

odd symmetry by the following equations:

HðejOÞ ¼ HðejOÞ
�� ��ejaO : Filter coefficients with

even symmetry; (9:11:5a)

HðejOÞ ¼ j HðejOÞ
�� ��ejaO : Filter coefficients with

odd symmetry. (9:11:5b)

9.11.1 Low-Pass FIR Filter Design

Starting with the ideal filter periodic function with

period equal to 2p, we have

HLpðe jOÞ ¼ HLpðe jOÞ
�� ��e jffHLpðe jOÞ: (9:11:6)

If an arbitrary transfer function HðejOÞ has a piece-

wise linear phase characteristics, then

dffHLpðejOÞ
dO

¼ constant: (9:11:7)

If we have a sequence, say x½n� and is delayed by l

samples resulting in x½n� l�, then

DTFTfh½n� l�g ¼ e�jOlHðejOÞ: (9:11:8)

The amplitude and phase responses of the ideal

digital low-pass filter are shown in Fig. 9.11.1a,b

for one period. Our goal is to determine the impulse

response hLp½n� from HLpðejOÞ.
To simplify the analysis, first neglect the phase

part of the transfer function in determining the filter

Fig. 9.11.1 Amplitude and phase responses of an ideal digi-
tal low-pass filter
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coefficients and later consider the delay using

(9.11.8). The amplitude and phase responses of the

low-pass filter are

HLpðejOÞ
�� �� ¼ 1; 0 � Oj j � Oc

0;Oc5 Oj j5p

�
;

ffHLpðejOÞ ¼
aO;a � constant; 0 � Oj j � Oc

0;Oc5 Oj j5p

�
:

The complex F-series coefficients of the amplitude

response and the corresponding transform are

ĥLp½n� ¼
1

2p

Zp

�p

HLPðejOÞ
�� ��ejnOdO

¼ 1

2p

ZOc

�Oc

ejnOdO ¼ 1

np
ejnOc � e�jnOc

2j

� �

(9:11:9a)

¼ 1

np
sinðnOcÞ; n ¼ 0;�1;�2; :::; (9:11:9b)

ĥLp½n�  !
DTFT

ĤLpðejOÞ ¼
X1
n¼�1

ĥLp½n�e�jnO: (9:11:9c)

Note the infinite number of coefficients in (9.11.9c)

in the F-series approximation of the ideal low-pass

filter approximation, which is impractical for imple-

mentation and

ĥLp½�n� ¼ ĥLp½n�; (9:11:10)

ĥLp½0�¼ lim
n!0

sinðnOcÞ
np

� �
¼ lim

n!0

Oc cosðnOcÞ
p

� �
Oc¼p=4

¼1

4
:

(9:11:11)

The coefficients ĥLp in (9.11.9c) is real and can be

positive and negative even though the function

HLpðejOÞ
�� �� is real and nonnegative. They are equal

in the sense that the integral squared error between

HLpðejOÞ
�� �� and ĤLpðejOÞ goes to zero. There will be

overshoots and undershoots before and after the

discontinuity in the F-series approximation. The

filter coefficients in (9.11.9) are not only a function

of n but also a function of the cutoff frequency Oc,

which needs to be specified. As an illustration, let

Oc ¼ p=4. The coefficients ĥLp½n� are listed in

Table 9.11.1 for n ¼ 0;�1;�2; . . . ;�10.
From (9.11.9b), for large N, the coefficients are

proportional to n�1. The sample response is non-

causal, as ĥLp½n� in (9.11.9b) is nonzero for n50:

Now shifting all the coefficients to the right by 10

results in a causal sequence and

hLp½n� ¼ ĥLp½n� 10� ¼ K

ðn� 10Þp sinð½n� 10�OcÞ;

n ¼ 0; 1; 2; . . . ; 20: (9:11:12a)

The frequency response of this filter is

HLpðejOÞ ¼
X20
n¼0

hLp½n�e�jnO

¼ hLp½0� þ hLp½1�e�jO þ � � � þ hLp½20�e�20O

¼ e�j10OfhLp½0�ej10O þ hLp½1�e j9O

þ � � � þ hLp½10� þ � � � þ hLp½19�e�j9O

þ hLp½20�e�10Og:
(9:11:12b)

Consider the sum

hLp½n�e�jnOþhLp½20�n�e�jð20�nÞO

¼ 2hLp½n�
ej½10�n�Oþ e�j½10�n�O

2

� �
e�j10O

¼2hLp½n�cos½ð10�nÞO�e�j10O; n¼1;2; . . . ;9 ð9:11:12cÞ
)HLpðejOÞ

¼ hLp½10�þ2
X9
n¼0

hLp½n�cos½ð10�nÞO�
( )

e�j10OejpbðOÞ

(9:11:13a)

¼ AðejOÞejpbðOÞ
h i

e�j10O (9:11:13b)

¼ HLpðejOÞ
�� ��

¼ hLp½10� þ 2
X9
n¼0

hLp½n� cos½ð10� nÞO�
( )�����

�����
(9:11:13c)

ffHLpðejOÞ ¼ �10Oþ pbðOÞ : (9:11:13d)

Table 9.11.1 Ideal low-pass filter FIR coefficients with Oc ¼ p=4
n 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10
ĥLp[n] 0.25 0.225 0.159 0.075 0 �0.045 �0.053 �0.032 0 0.025 0.032
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In (9.11.13b), bðOÞ is 0 or 1, depending on whether

AðejOÞ is positive or negative and the function ð�10OÞ
is linear with respect to O. For practical reasons, the
phase plots need to be in the interval

�p � P ¼ ½�LOþ pb� � p. Otherwise, the phase

increases without limit and showing the sketches is

not possible. The function �LOþ pb is a piecewise

linear function ofOwith 1808 jumps at those values of

Owhere AðejOÞejpbðOÞ
� 	

changes sign. The term pbðOÞ
is usually not shown in (9.11.13d). The amplitude

response is sketched in Fig. 9.11.2 assuming 11 coeffi-

cients hLp½0�; hLp½1�; . . . ; hLp½10�. From (9.11.13a),

HLpðej0Þ ¼ hLp½10� þ 2
X9
n¼0

hLp½n�;

HLpðejpÞ ¼ hLp½10� þ 2
X9
n¼0

hLp½n�ð�1Þn:

Increasing the number of coefficients increases the

number of ripples in the passband and the stopband

due to the discontinuity in the approximating func-

tion; see Gibbs phenomenon in Section 3.7.2. At the

discontinuity, the F-series converges to the half-

value and here, it is

½ HLpðejp=4Þ
�� ���þ HLpðejp=4Þ

�� ��þ�=2 ¼ 0:5:

9.11.2 High-Pass, Band-Pass,
and Band-Elimination FIR Filter
Designs

High-pass filter design: Consider the amplitude

responses of the ideal digital low-pass and Hp

filters shown in Fig. 9.11.3a,b for one period. In

Fig. 9.11.3b, it is shown as Oc. The ideal Hp filter

amplitude response function and its F-series are

HHpðejOÞ
�� �� ¼ 0; 05 Oj j5p� Oa

1; p� Oa5 Oj j5p

� �
; HHPðejOÞ

¼ HHPðejðOþ2pÞÞ; (9:11:14)

HHpðejOÞ
�� �� � X1

n¼�1
ĥHp½n�e�jnO ¼ ĤHpðejOÞ:

The coefficients ĥHp½n� are related to the coefficients

in the low-pass case ĥLp½n�. Starting with an ideal

Fig. 9.11.2 Low-pass filter frequency response HLPðejOÞ
�� ��

with 11 coefficients

−π

1

( )j
LpH e Ω

c−Ω cΩ

−π

1

( )j
HpH e Ω

c−π + Ω c− Ω

−π

1

( )j
BpH e Ω

l−Ω lΩh−Ω

0−Ω 0Ω

hΩ

−π

1

( )j
BeH e Ω

l−Ω lΩh−Ω

0−Ω 0Ω

hΩ

Ω

Ω

Ω

Ω

π

π

π

π

(a)

(b)

(c)

(d)

Fig. 9.11.3 Ideal digital filter amplitude responses: (a) low-
pass, (b) high-pass, (c) band-pass, and (d) band elimination
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low-pass amplitude response with a cutoff fre-

quency Oc and shifting the low-pass frequency

response function by p result in the high-pass filter

function

HHpðejOÞ ¼ HLpðejðO�pÞÞ: (9:11:15)

Using the results in (9.11.9a) and comparing the

coefficients results in the following:

HHpðejOÞ
�� �� � X1

n¼�1
ĥHp½n�e�jnO ¼ ĤHpðejOÞ

¼ ĤLpðejðO�pÞÞ ¼
X1
n¼�1

ĥLp½n�e�jnO O!O�pj

¼
X1
n¼�1

ĥLp½n�e�jnðO�pÞ

¼
X1
n¼�1

ĥLp½n�ejnp
n o

e�jnO ) ĥHp½n�

¼ ð�1ÞnĥLp½n�:
(9:11:16a)

In approximating the Hp function, the number of

coefficients is truncated to (2L+1) resulting in

ĥHp½n�; 0 � nj j � L and the other coefficients are

assumed to be zero. The causality problem can be

handled by shifting all the coefficients to the right

by L. That is,

hHp½n� ¼ ĥHp½n� L�; HHpðejOÞ ¼
X2Lþ1
n¼0

hHp½n�e�jO:

(9:11:16b)

These results could have been obtained directly

using the F-series approximation of the high-pass

function instead of deriving Hp filter coefficients

from the Lp filter coefficients.

Example 9.11.1 Consider an ideal HP filter with a

cutoff frequency of 1 kHz and the sampling fre-

quency is 5 kHz. Using the F-series, determine the

coefficients of the filter.

Solution: The digital cutoff frequency is

O ¼ ots fc¼1 kHz

�� ¼ o=fs fc¼1 kHz

��
¼ 2pð103Þð1=5ð103ÞÞ ¼ :4p rad=s:

Now set the cutoff digital frequency as p� Oc ¼
0:4p) Oc ¼ 0:6p. The cutoff frequency of the

digital Lp isOc ¼ 0:6p. Now design a low-pass filter

with this cutoff frequency. The filter coefficients are

ĥLp½n� ¼ ð1=npÞ sinð0:6npÞ; n ¼ 0;�1;�2; . . . :

Assuming the number of filter coefficients is equal

to 2Lþ 1 ¼ 21, determine the Hp filter coefficients

and then shift the coefficients to the right by L

samples. These result in

hHp n½ � ¼ �1ð Þ n�Lð Þ 1=p n� Lð Þ½ � sin 0:6p n� Lð Þð Þ;
n ¼ 0; 1; 2; . . . ; 2L:

&

Digital band-pass filter design using the low-pass filter

design: Consider the ideal amplitude res-ponses of

Bp and Lp functions in Fig. 9.11.3c,a with frequen-

cies as identified. Considering one period, the band-

pass function can be obtained by shifting the low-

pass function to the right and to the left by O0. That

is O! ðO� O0Þ and O! ðOþ O0Þ. The band-

pass function in terms of the low-pass function is

HBpðejOÞ ¼ HLpðejðO�O0ÞÞ þHLpðejðOþO0ÞÞ: (9:11:17)

The upper and lower cutoff frequencies of the BP

filter are Ou and Ol and the center frequency is

O0 ¼ ½Ou þ Ol�=2: In terms of the Bp frequencies,

the ideal Lp filter response is centered at O ¼ 0 with

a cutoff frequency Oc ¼ ½Ou � Ol�=2. The Bp filter

response is

HBpðejOÞ
�� �� � X1

n¼�1
ĥBp½n�e�jnO

¼
X1
n¼�1

ĥLp½n�e�jnO O!O�O0
j

þ
X1
n¼�1

ĥLp½n�e�jnO O!OþO0
j

¼ ĤBpðejOÞ ¼
X1
n¼�1

ĥLp½n�½n�e�jnðO�O0Þ

þ
X1
n¼�1

ĥLp½n�½n�e�jnðOþO0Þ

¼
X1
n¼�1

ðĥLp½n�ejnO0Þe�jnO

þ
X1
n¼�1

ðĥLp½n�e�jnO0Þe�jnO:
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Using Euler’s theorem and combining two typical

terms in the last equation results in

HBpðejOÞ
�� �� � X1

n¼�1
f2ĥLp½n� cosðnO0Þge�jnO0

¼ ĤBpðejOÞ: (9:11:18a)

The Bp filter coefficients are related to the LP filter

coefficients by

ĥBp½n� ¼ 2ĥLp½n� cosðnO0Þ: (9:11:18b)

Example 9.11.2 Consider an ideal Bp filter with a

pass band from 1 to 1.5 kHz with a sampling fre-

quency of 5 kHz. Determine the coefficients for the

Bp filter.

Solution: Just like in the last example, using

the sampling frequency fs ¼ 5 kHz, the upper, the

lower, and the center frequencies of the band-pass

spectrum are

Ou ¼ outs ¼ ou=fs ¼ 2pð1:5Þð103Þ=5ð103Þ ¼ 0:6p;

Ol ¼ olts ¼ ol=fs ¼ 2pð103Þ=5ð103Þ ¼ 0:4p ;

O0 ¼ ðOu þ OlÞ=2 ¼ 0:5p: (9:11:19a)

The cutoff frequency of the Lp filter is

Oc ¼ ðOu � OlÞ=2 ¼ 0:1p. The coefficients in the

low-pass design in Example 9.10.3 and the corre-

sponding band-pass filter coefficients for the filter

centered at O0 ¼ :5p are, respectively, given by

h
_

Lp
½n� ¼ ð1=npÞ sinðnOcÞ ¼ ð1=npÞ sinð0:1npÞ;

(9:11:19b)

ĥBp½n� ¼ 2 cosð0:5npÞĥLp½n�; n ¼ 0;�1;�2; . . . :

(9:11:19c)

Truncating the number of coefficients to (2L+1)

coefficients and shifting the coefficients to the right

by L result in the coefficients for a causal band-pass

filter by

hBp n½ � ¼ ĥBp n� L½ �

¼ 2 cos 0:5 n� Lð Þpð Þ sin 0:1p n� Lð Þð Þ
p n� Lð Þ ;

n ¼ 0; 1; 2; . . . ; 2L: (9:11:19d)

&

Digital band-elimination filter design using the band-

pass filter design: The derivation for the filter coef-

ficients for the band-elimination filter follows that

of the band-pass filter. The proof is left as an exer-

cise. As before, we have

O0 ¼ ðOu þ OLÞ=2; Oc ¼ ðOu � OlÞ=2; (9:11:20a)

HBeðejOÞ
�� �� ¼ 1� HBpðejOÞ

�� �� � 1�
X1
n¼�1

ĥBp½n�e�jnO

¼ ð1� ĥBp½0�Þ �
X1
n¼�1
n6¼0

ĥBp½n�e�jnO

¼
X1
n¼�1

ĥBe½n�e�jnO ¼ ĤBeðejOÞĥBe½0�

¼ ð1� ĥBp½0�Þ; ĥBe½n� ¼ �ĥBp½n�;
n ¼ �1;�2; . . . ;�L: (9:11:20b)

Table 9.11.2 FIR Filter Coefficients for the Four Basic Filters

Low pass: ĥlp½n� ¼ 1
np sinðnOcÞ; n ¼ 0;�1;�2; . . . ;�L; HLpðejOÞ

�� �� ¼ 1; Oj j5Oc

0;Oc5 Oj j5p

�
; ð9:11:21Þ

High pass: ĥHp½n� ¼ ð�1ÞnĥLp½n�; n ¼ 0;�1;�2; . . . ;�L; HHpðejOÞ
�� �� ¼ 1; p� Oc5 Oj j5p

0; 05 Oj j5p� Oc

�
; ð9:11:22Þ

Band pass:

ĥBp½n� ¼ 2 cosðnO0ÞĥLp½n�; n ¼ 0;�1;�2; . . . ;�L

HBpðejOÞ
�� �� ¼ 1;Ol5 Oj j5Ou

0; 05 Oj j5Ol and Ou5 Oj j5p

�
8<
: ; ð9:11:23Þ

Band elimination:

ĥBe½0� ¼ 1� ĥBp½0�; ĥBe½n� ¼ �ĥBp½n�; n ¼ �1;�2; . . . ;�L

HBeðejOÞ
�� �� ¼ 0;Ol5 Oj j5Ou

1; 05 Oj j5Ol and Ou5 Oj j5p

�
8><
>: : ð9:11:24Þ
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To find the causal filter coefficients, the coefficients

need to be shifted byL. The filter coefficients for the

non-causal low-pass, high-pass, band-pass, and

band-elimination filters are given in Table 9.11.2.

To have the causal filter the coefficients need to be

shifted to the right by L resulting in (2L+1)

coefficients.

9.11.3 Windows in Fourier Design

The F-series approximation of ideal filter functions

results in ripples before and after the discontinuity

and the series converges to the half-value of the

function at the discontinuities. Since the HP, BP,

and BE filters are designed using LP filter amplitude

responses it is instructive to study the Gibbs phe-

nomenon of the amplitude response of a noncausal

low-pass filter. Fourier series is optimum only in the

sense of minimizing the error energy. Truncating the

number of coefficients to a length of ð2Lþ 1Þ
results in

ĥ½n�wR½n� ¼
ĥ½n�; nj j � L

0; nj j4L

( )
; wR½n� ¼

1; nj j � L

0; nj j4L

�
:

(9:11:25)

ĤRðejOÞ ¼
XL
n¼�L

ĥ½n�e�jnO ¼
X1
n¼�1

ĥ½n�wR½n�e�jnO:

(9:11:26)

The subscript R indicates the coefficients are for the

ideal filter function with the rectangular window

resulting in ripples in the frequency amplitude

response before and after the discontinuity at the

cutoff frequency. A tapered window, instead of a

rectangular window, would reduce the ripples; see

Harris (1978) and Ambardar (2007).

Fig. 9.11.4 (a) Hamming window function, (b) amplitude response, and (c) phase response
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Hamming window: The symmetric Hamming win-

dow is a popular window defined by

wH½n� ¼
0:54þ 0:46 cosðnp=LÞ; nj j � L

0; otherwise

� �
 !DTFT

0:54WRðejOÞ þ 0:23WRðejðOþ2p=NÞÞ

þ 0:23WRðejðO�2p=NÞÞ ¼WHðejOÞ;N ¼ 2Lþ 1:

(9:11:27)

Figure 9.11.4 gives an example with the number of

coefficients equal to 21 illustrating the time domain

sequence and the corresponding amplitude and

phase responses of a Hamming window. The peak

sidelobe attenuation is approximately �42.7 dB

compared to �13.3 dB in the rectangular window.

Windowminimized the sidelobe level at the expense

of the high-frequency decay rate. Hamming window

is a practical window that has essentially fixed side-

lobe levels. Another window that is popular is the

Kaiser window that has a variable parameter that

controls the peak sidelobe level. It is considered to

be nearly optimal in the sense that of having the

most energy in its main lobe for a given sidelobe

amplitude, see Oppenheim and Schafer (1999).

Illustration of the effect of a window on the filter

design: Fourier series expansion of the filter func-

tions that have discontinuities result in ripples

before and after the discontinuity. The ripple reduc-

tion is illustrated using the simple cosine window

function. The window and its transform are

wC½n� ¼ ðejp=N þ e�jp=NÞ=2 ¼ cosðpn=NÞ;�L5n5L;

N ¼ 2Lþ 1;

(9:11:28a)

WCðejOÞ ¼ pdðO� O0Þ þ pdðO� O0Þ;O0 ¼ p=N:

(9:11:28b)

With these, we have

ĤCðejOÞ ¼
XL
n¼�L

wC½n�ĥ½n�e�jnO ;

wC½n�ĥ½n� !
DTFT

WCðejOÞ 	 ĤðejOÞ; (9:11:29a)

ĤðejOÞ ¼
X1

n¼�1
ĥ½n�e�jnO; WCðejOÞ ¼

XL
n¼�L

wC½n�e�jnO:

(9:11:29b)

Noting the time domain multiplication corresponds

to frequency domain convolution, we have

ĤLP;FIRðejOÞ	WcðejOÞ

¼ 1

2p

Zp

�p

ĤLp;FIRðejyÞWcðejðy�OÞÞdy

¼ 1

2p

Zp

�p

ĤLp;FIRðejyÞp½dðO�O0�yÞþdðOþO0�yÞ�dy

¼1
2
ĤLp;FIRðejðOþ

p
NÞÞþ1

2
ĤLp;FIRðejðO�

p
NÞÞ: (9:11:30)

Equation (9.11.30) illustrates that the convolution

of the simple cosine window function with the Four-

ier series expansion of the filter function resulted in

the addition of two shifted functions separated by

2p=N. Figure 9.11.5a,b illustrates the effects of

superimposing two shifted versions of the frequency

responses obtained by using the Fourier series

expansion of a low-pass filter to reduce the ripples

(a) (b)

Fig. 9.11.5 (a) Two shifted
versions of low-pass filter
responses and (b) reducing
the Gibbs phenomenon by
averaging the two responses
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around a discontinuity. Noting that the ripples

alternate in sign, adding the responses reduce the

overshoots to about 2% at the expense of increasing

the transition width of the filter. This can be

extended for the Hamming window in (9.11.27). It

has a constant and a cosine term. Now there are

three copies and using the above analysis we can see

how the Hamming window results in further reduc-

tion of the ripple size at the expense of the filter

transition width. The equations are

ĤH;FIRðejOÞ ¼
XL
n¼�L

wH½n�ĥ½n�e�jnO ;

wH½n�ĥ½n�  !
DTFT

WHðejOÞ 	 ĤðejOÞ; (9:11:31a)

ĤðejOÞ ¼
X1
n¼�1

ĥ½n�e�jnO;

WHðejOÞ ¼
XL
n¼�L

wH½n�e�jnO: (9:11:31b)

An important measure to compare windows is the

peak sidelobe gain. For the rectangular and theHam-

mingwidows, they are 13.3 and 42.7 dB.Another way

to evaluate them is by the Poisson summation for-

mula, see Yarlagadda and Allen (1982).

Notes: Fourier series design is a practical method for

linear phase filter designs. There are no simple answers

in selecting a particular window and the number of

samples in it. Ludeman (1986) gives a systematic pro-

cedure in the design of FIR low-pass filters.

1. The stop-band filter amplitude response is rela-

tively insensitive to the number of filter coefficients.

Select a window that satisfies the minimum stop-

bandattenuation.Formost applicationsHamming

would be adequate. The minimum stop-band filter

approximate attenuations for the rectangular and

the Hamming windows are�21 and�53 dB.
2. Let the edges of the passband and stopband be

O1 and O2. Main lobe width of the window is an

estimate of the filter transition width. If the win-

dow width is N, then the transition widths of the

rectangular and Hamming windows are (4p=N)

and ð8p=NÞ. As a starting point, select

N � k
2p

O2 � O1
ðk ¼ 2; rectangular;

k ¼ 4 Hamming windowÞ: (9:11:32a)

Oppenheim and Schafer (1989) suggest a good esti-

mate of the filter transition width as 1:81p=ðN� 1Þ
for a rectangular window and 6:27p=ðN� 1Þ for the
Hamming window. Estimate the number of window

samples by

N ¼ Attenuation in the stop band� 8

2:285ðfrequency transition widthÞ :

(9:11:32b)

3. Most designs require an integer delay. Select so

that N(an odd number)� ð2Nþ 1Þ.
4. Select the cutoff frequency for the response as

Oc ¼ O1 and the delay a ¼ ðN� 1Þ=2.
5. A trial response is

h½n� ¼ sin½Ocðn� ðN� 1Þ=2Þ�
p½n� ðN� 1Þ=2� w½n�: (9:11:33)

The type of the window selected is based on the

stop-band attenuation requirements.

6. Plot ĤðejOÞ and check if the design specifications

are satisfied. If the attenuation requirement at

O ¼ O1 is not satisfied, adjust Oc. Normally, we

increase the value on the first iteration. Go back

to the last step and check to see if the attenuation

specifications are satisfied. If they are satisfied,

check to see if the number of coefficients can be

reduced. If so, reduce N. The designs require

computer facilities, such as MATLAB, as the

procedure is iterative to satisfy the amplitude

specifications. For MATLAB, see Ingle and

Proakis (2007). Ludeman (1986) gives a systema-

tic procedure to determine the digital filter coef-

ficients in an A/D–digital filter–D/A structure.

This is given below.

Example 9.11.3 Consider the low-pass filter design

in an A/D–digital filter–D/A with the specifica-

tions shown in Fig. 9.11.6a. The filter is required

to have a linear phase. Assume the sampling rate is

equal to be fs ¼ 100 or the sampling interval is

ts ¼ ð1=100Þ. The transition band of the analog

filter is assumed to be in the range 30p5o545p.
The pass-band and stop-band attenuations must

be no more than 3 dB and at least 50 dB.
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The digital frequencies are Oi ¼ oits and the edges

of the passband and stopband of the digital filter

are O1 ¼ 30p=100 ¼ :3p; O2 ¼ 45p=100 ¼ :45p.
The digital filter specifications are shown in

Fig. 9.11.6b. A Hamming window is used to have

the stop-band attenuation over 50 dB.

NðInitial sample sizeÞ � k
2p

ðO2 � O1Þ
;

k ¼ 4 for the Hamming window:

This gives a stop-band attenuation of 53:3 dB.

To have an integer delay, select N ¼ 55:

Set Oc ¼ O1 ¼ 0:3p. The integer delay is

a ¼ ðN� 1Þ=2 ¼ 27. The trial impulse response

from (9.11.33) is

h½n�¼sin½Ocðn�ððN�1Þ=2Þ�
pðn�ððN�1Þ=2Þ ½0:54�0:46 cosð2pn=54Þ�;

0�n�54:

wH½n� is a causal sequence and the sign is negative

before 0.46 in the above equation, which is different

to the one in (9.11.2). Figure 9.11.7a gives the Ham-

ming window sequence and Fig. 9.11.7b gives the

corresponding filter response. The corresponding

amplitude and phase responses are plotted using

MATLAB given in Fig. 9.11.7c,d. The sketches are

plotted using the MATLAB (see Section B.11). The

attenuation at frequency O1 is 6 dB, which is more

than the specified at frequency O1. So increase the

cutoff frequency to say Oc ¼ :33. Check the fre-

quency response to see if all the specifications are

satisfied. If satisfied, then see by trial and error, if

the value of N can be reduced and still satisfy the

requirements. By trial and error, N ¼ 29 and

h½n� ¼ sin½Ocðn� 29Þ�
pðn� 29Þ ½:54� :46 cosð2pn=29Þ�;

0 � n � 28:

The final amplitude and phase filter responses are

shown in Fig. 9.11.8a,b. Note that if (9.11.32b) had

been used to find the initialN, it comes out to be 39,

which is closer to the final N. The input–output

equation of the FIR filter corresponding to the

value N is given below requiring Nmultiplications

and N� 1 additions.

y½n� ¼
XN�1
k¼0

h½k�x½n� k� ¼ h½0�x½n� þ h½1�x½n� 1�

þ � � � þ h½N� 1�x½n� ðN� 1Þ�: (9:11:34)
&

9.12 Digital Filter Realizations

Consider the realization of IIR filter using sum-

mers, multipliers, and delay components given in

Fig. 9.2.1, assuming the design specifications

resulted in a transfer function (or the difference

equation) given below:

Y½z� ¼ HðzÞXðzÞ;HðzÞ ¼

PM
k¼0

bkz
�k

1þ
PN
k¼1

akz�k
;M � N;

(9:12:1a)

y½n� ¼ �
XN
k¼1

aky½n� k� þ
XM
k¼0

bkx½n� k�: (9:12:1b)

The output transform YðzÞ in (9.12.1a) can be writ-

ten in terms of two parts, an all pole model and an

all zero model given below. The output transform

(a) (b) 

Fig. 9.11.6 (a) Analog and
(b) digital frequency
response specifications
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can be written in terms of an intermediate function

PðzÞ as follows:

YðzÞ ¼
XM
k¼0

bkz
�k

 !
PðzÞ; (9:12:2a)

PðzÞ ¼ 1

1þ
PN�1
k¼1

akz�k
XðzÞ or

PðzÞ þ
XN�1
k¼1

ak½z�kPðzÞ� ¼ XðzÞ :

(9:12:2b)

Noting p½n�k� !z z�kPðzÞ and y½n�k� !z z�k YðzÞ,
the corresponding difference equations are

p½n� ¼ x½n� �
XN
k¼1

akp n� k½ �;

y½n� ¼
XM
k¼0

bkp n� k½ � Form 1ð Þ: (9:12:3)

Figure 9.12.1a uses (9.12.3) to realize a second-

order ðN ¼ 2Þ system, which is a direct form. Similar

procedure can be used to determine a structure for

any N. Orders higher than 2 are highly sensitive to

small changes in the coefficients. The standard

0 5 10 15 20 25 30 35 40 45 50
–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Index (n)

A
m

pl
itu

de
Impulse Response with 55 Coefficients, h(n)

(b)(a)

0 10 20 30 40 50 54
0

0.2

0.4

0.6

0.8

1

Hamming window, wH[n]: N = 55

Index (n)

A
m

pl
itu

de

0 0.1pi 0.2pi 0.3pi 0.4pi 0.5pi 0.6pi 0.7pi 0.8pi 0.9pi pi
–200

–150

–100

–50

0

50

100

150

200

Frequency (Ω), (0 ≤Ω≤π)

P
ha

se
 (

de
g)

Phase plot for the FIR filter in degrees

(d)(c) 

0 0.1pi 0.2pi 0.3pi 0.6pi 0.7pi 0.8pi 0.9pi pi0.45pi
–80

–70

–60

–50

–40

–30

–20

–10

0
–3

X: 0.8955
Y: –3.007

Frequency (Ω), (0 ≤Ω≤π)

20
 lo

g 
|H

(e
jΩ

)|
,(

dB
)

Amplitude Frequency Response for the FIR filter in dB
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Fig. 9.12.1 (a) Direct and
(b) modified direct form
realizations of a second-
order system
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approach is to use second-order realizations. The

equations in (9.12.2a and b) can be modified by

redefining the functions as follows. The realization

uses the difference equation in (9.12.5) and is shown

in Fig. 9.12.1b, which is referred to as a modified

direct form:

YðzÞ ¼
XM
k¼0
ðbk=b0Þz�k

 !
; (9:12:4a)

P 0ðzÞ ¼ b0XðzÞ

1þ
PN�1
k¼1

akz�k

or P 0ðzÞ ¼ b0XðzÞ �
XN�1
k¼1

akz
�k (9:12:4b)

) p 0½n� ¼ b0x½n� �
XN
k¼1

akp
0½n� k�;

y½n� ¼
XM
k¼0

bk
b0

p 0½n� k�: (9:12:5)

9.12.1 Cascade Form of Realization

The transfer function is written in terms of a pro-

duct of second-order functions. That is,

HðzÞ ¼ HkðzÞHk�1ðzÞ:::H1ðzÞ: (9:12:6)

The second-order terms or the biquadratic terms

are

HkðzÞ ¼
b0 k þ b1 kz

�1 þ b2 k
1þ a1 kz�1 þ a2 kz�2

¼ b0 k
1þ b01 kz

�1 þ b02 kz
�2

1þ a1kz�1 þ a2 kz�2
;

bik ¼ b0ikb0k; i ¼ 1; 2: (9:12:7)

The transfer function HðzÞ can be realized by the

cascade form in Fig. 9.12.2. IfN happens to be odd,

then one of the above functions, sayHKðzÞ is a first-
order system and b02K ¼ a2K ¼ 0. Furthermore,

since the coefficient b0 k is separated from the other

part, we can combine all the multipliers into a single

multiplier b00 ¼ b01b02:::b0 k.

Notes: In a digital filter realization, it is necessary

to avoid overflows. This is achieved by using scal-

ing. The topic is beyond the scope here, see Ifeachor

and Jervis (1993).

9.12.2 Parallel Form of Realization

In this form the transfer function is expressed as a

sum of second-order terms with real coefficients in

(9.12.8). Its realization in terms ofHiðzÞ is shown in

Fig. 9.12.3:

HðzÞ ¼
Xk�1
i¼1

HiðzÞ;

HiðzÞ ¼
b0i þ b1iz

�1

1þ a1iz�1 þ a2iz�2
; YðzÞ ¼

Xk�1
i¼1
½HiðzÞXðzÞ�:

(9:12:8)

Special cases:

b0i ¼ c and b1i ¼ a1i ¼ a2i ¼ 0) HiðzÞ ¼ c;

(9:12:9a)

b1i ¼ a2i ¼ 0) HiðzÞ ¼ b0i=½1þ a1iz
�1�;

(9:12:9b)

b0i ¼ a1i ¼ a2i ¼ 0) HiðzÞ ¼ b1iz
�1: (9:12:9c)

Fig. 9.12.2 Cascade form of realization using possibly first-
and second-order systems

H1(z)

H2(z)

Hk–1(z)

x[n] y[n]

Fig. 9.12.3 Parallel realization in terms of biquadratic
sections
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9.12.3 All-Pass Filter Realization

Example 9.12.1 Show the transfer function of the

system in Fig. 9.12.4 is

HapðzÞ ¼
d1d2þ d1z

�1þ z�2

1þ d1z�1þ d1d2z�2
; Y1ðzÞ ¼HapðzÞX1ðzÞ:

(9:12:10a)

Solution: From Fig. 9.12.4, we have

X2ðzÞ ¼ X1ðzÞ � d1z
�1X2ðzÞ � d1d2z

�2X2ðzÞ
� d1d2X1ðzÞ ) X2ðzÞ
¼ X1ðzÞ½1� d1d2�=½1þ d1z

�1 þ d1d2z
�2�

Y1ðzÞ ¼ z�2X2ðzÞ þ d1z
�1X2ðzÞ

þ d1d2½z�2X2ðzÞ þ X1ðzÞ� (9:12:10b) &

simplifying these results in (9.12.10a).

9.12.4 Digital Filter Transposed
Structures

Additional implementations can be generated using

the transposition (TP) theorem, see Oppenheim

et al. (1999). Each realization contains delay com-

ponents, branches going from one node to another

involving multipliers, summers, or summing nodes

and branch points. The TP theorem states that the

transfer function is unchanged if the following

sequences of network operations are conducted on

a digital structure:

1. Reverse the direction of all branches.

2. Change branch points into summing nodes and

vice versa.

3. Interchange the input and output.

Figure 9.12.5a,b gives two second-order struc-

tures, a modified direct form and a transposed

direct form. These forms are equivalent by solving

for y½n� in terms of x½n�

Direct form:

p½n� ¼ �a1p½n� 1� � a2p½n� 2� þ x½n�;

y½n� ¼ b0p½n� þ b1p½n� 1� þ b2p½n� 2�:

Transposed direct form:

q½n� ¼ b0x½n� þ q1½n� 1�; y½n� ¼ q½n�;
q1½n� ¼ �a1y½n� þ b1x½n� þ q2½n� 1�;
q2½n� ¼ �a2y½n� þ b2x½n�:

9.12.5 FIR Filter Realizations

Consider the output of the FIR filter

y½n� ¼
XM�1
k¼0

h½k�x½n� k�; YðzÞ ¼ HðzÞXðzÞ; HðzÞ

¼
XM�1
k¼0

h½k�z�k: (9:12:11)

A simple transversal or a tapped-delay line filter is

shown in Fig. 9.12.6. A transposed structure corre-

sponding to this filter can be used as well. Noting

Fig. 9.12.4 Realization of a second-order all-pass function
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that we are interested in linear phase FIR filters, we

can reduce the number of multipliers by noting that

these filters satisfy either the symmetry or asymme-

try condition

h½n� ¼ �h½M� 1� n�: (9:12:12)

We can reduce the number of multiplications to

ðM� 1Þ=2 for M odd and M=2 for Meven by

using (9.12.12). With even symmetry, the transfer

function in (9.12.11) is

HðzÞ ¼

PM=2�1

k¼0
h½k�½z�k þ z�ðM�1�kÞ�; M even

PðM�3Þ=2
k¼0

h½k�½z�k þ z�ðM�1�kÞ�

þh½ðM� 1Þ=2�z�ðM�1Þ=2; M odd

8>>>>>><
>>>>>>:

(9:12:13)

9.13 Summary

This chapter dealt with fast Fourier transforms,

convolution, correlation, discrete-time systems

analysis, z-transforms, filtering algorithms, and

realizations of the discrete-time filters. Following

gives a list of some of the specific topics in this

chapter.

� Review of the discrete Fourier transforms (DFTs)
� Computation of the DFT using fast Fourier

transforms algorithms and its efficiency
� Computation of convolution and correlation of

time-limited sequences
� Use of overdetermined system of equations in the

deconvolution problem
� One- and two-sided z-transforms
� Solutions of difference equations using one-sided

z-transforms
� BIBO stability and the stability of discrete-time

linear time-invariant systems

Fig. 9.12.6 Direct-form
realization of the FIR filter

(a) (b)

Fig. 9.12.5 (a) Direct form and (b) transposed direct form
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� Basic infinite impulse response (IIR) filter designs
� Digital filter designs by matching the impulse

response of an analog system
� The design of finite impulse response (FIR) fil-

ters based on window design
� Digital filter simulation diagrams

Problems

9.2.1Use the flow graph in Fig. 9.2.3 corresponding

to the 4-point discrete Fourier transform implemen-

tation to write the relations in matrix form in the

form X ¼ ADFTx. Show that ADFT is the 4� 4 DFT

matrix.

9.2.2 Make a table that gives the number of com-

plex multiplications required by the direct method

of computing the DFT ðNDirect ¼ N2Þ versus com-

puting the DFT using FFT NFFT ¼ ðN=2Þ log2ðNÞ
assuming that N ¼ 2n for n ¼ 2; 3; 4; 5; 6; 7; 8; 9; 10

and the ratios NDFT=NFFT for each of these cases.

9.2.3 Show that DFT can be used to compute

the inverse DFT. That is, show x½n� ¼
ðDFTðX	½k�ÞÞ	=N.

9.3.1 Consider the data sequence fx½0�; x½1�; x½2�;
x½3�g and the corresponding DFT sequence

fX½0�;X½1�;X½2�;X½3�g: Now introducing a set of

M ¼ 3 zeros in the middle of the DFT sequence

results in seven DFTvalues. Let this new sequence

be XNew½k�. What can you say about its conjugate

symmetry of this new sequence? The time sequence

obtained from the interpolated sequence will not be

real. Now consider the DFT sequence fX½0�;X½1�;
ð1=2ÞX½2�; 0; 0; 0; ð1=2ÞX½2�;X½3�g. What can you

say about the conjugate symmetry of this sequence

and its IDFT? Would this be a proper way of inter-

polating the time sequence in the case of a time

sequence with even number of samples?

9.3.2 Show that the power spectral density can be

computed by taking the DFT of the autocorrela-

tion sequence or by using the DFT coefficients

directly.

9.3.3 a. Determine the convolution of the sequ-

ences x½n� ¼ f1#;�1; 1g and h½n� ¼ f1#; 0;�1g

b. Use the overlap-add method to determine the

convolution of the following sequences: x½n� ¼
f1#; 2; 3; 4g and h½n� ¼ f1#;�1g.

9.3.4Determine the autocorrelation of the sequence

h½n� given in Part b in the last problem directly and

by DFT.

9.3.5 Determine the number of multiplications req-

uired to compute the convolution of two sequences,

each of length 32 and compare this result using FFT.

9.3.6 Consider the following overdetermined sys-

tem of equations. Solve these equations by minimiz-

ing the least-squared error:

y ¼
y1

y2

y3

2
64

3
75 ¼

1

2

1

2
64
3
75 ¼

a11

a21

a31

2
64

3
75h ¼

1

1

1

2
64
3
75h ¼ Ah:

Hint: Define E ¼ ðy1 � a11hÞ2 þ ðy2 � a21hÞ2þ
ðy3 � a31hÞ2. Use @E=@h ¼ 0 to solve for h. Use

(9.3.28b) and show the results are the same by the

two methods.

9.4.1 Find the z-transforms of the following

sequences. Give the ROC in each case:

a: x½n� ¼ ðn� 2Þ cosðO0ðn� 2ÞÞu½n� 2�
b: y½n� ¼ nx½n�; x½n�$z XðzÞ ðUse x½n�

in Part a to determine the transformÞ
c: x½n� ¼ anu½n�; aj j51;

d: x½n� ¼ anu½�n�; aj j41;

e: x½n� ¼ d½n� 3� þ 2d½n� 1� þ d½n�;

f: x½n� ¼ an sinðO0nÞ:

9.5.1 Derive the expression given in (9.5.19b).

9.5.2 Determine the final value of the sequence that

has the z-transform:

XðzÞ ¼ z

z� a
; zj j4 aj j:

Identify the necessary condition(s) so that the final

value theorem is applicable. Give the results for two

cases: a: a ¼ 1; b: aj j51.

9.5.3 Find the initial value x½0� of the sequence

x½n� !z XðzÞ from

XðzÞ ¼ z

ð1� :5z�1Þð1� :4z�2Þ ;ROC : zj j4:5:
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Hint: In your solution, first express XðzÞ in terms of

a ratio of polynomials in z. Check to see its behavior

as z!1. What can you say about the causality

of the sequence? You need to separate the causal

part by using the long division and then use the

theorem.

9.5.4 Find the z-transform of the following

sequences:

a: x½n� ¼ ðn� 1Þan�1 cosðOoðn� 1ÞÞu½n� 1�;
b: x½n� ¼ e�nu½n� 1�:

9.5.5 Find the inverse z-transforms of the following

functions using the partial fractions and then by

using the long division:

a: XðzÞ ¼ zðz� 1Þ
ðz� 1Þ2ðz� :5Þ

;ROC : zj j41;

b: XðzÞ ¼ z

ðz� 1Þðz� :5Þ2
;ROC : zj j41:

9.5.6 Is the system described by y½n� þ :5y½n� 1� ¼
x½n� stable?

9.5.7 Find the response of the following system

assuming the two indicated cases:

y½n� � y½n� 1� ¼ ð:5Þnu½n�;
a: y½�1� ¼ 0; b: y½�1� ¼ 1:

9.5.8Given x½n� below determine the pole–zero plot

ofXðzÞ. What can you say about the uniqueness of a

function XðzÞ if it is determined from the pole–zero

plots?

x½n� ¼
an; 0 � n �M� 1

0; otherwise

�
:

9.5.9Use the z-transforms to compute the convolu-

tion of the following sequences:

a: x½n� ¼ d½n� � d½n� 1�; h½n� ¼ d½n� 2� þ 2d½n� 3�;
b: x½n� ¼ ð1=2Þnu½n�; h½n� ¼ f1#;�1g:

9.5.10Determine the autocorrelations of the follow-

ing sequences using z-transforms:

a: x½n� ¼ d½n� þ d½n� 1�; b: h½n� ¼ ð1=2Þnu½n�:

9.5.11 Use the sequences given in the last problem

and the z-transforms to determine the following

cross-correlations. Verify the result that rxh½k� ¼
rhx½�k�:

a: rxh½k� ¼
X1
n¼�1

x½n�h½nþ k� ¼ x½�k� 	 h½k� ;

b: rhx½k� ¼
X1
n¼�1

h½n�x½nþ k� ¼ h½�k� 	 x½k� :

9.6.1 Some times it is easier to compute the z-trans-

form of a function by considering differentiation

with respect to a second variable. Consider the fol-

lowing two cases:

a. Is it possible to find the z-transform in (9.6.17a)

from (9.6.17b) byassumingO0 is a continuous vari-

able and by noting that that sine and cosine func-

tions are related through a derivative? If so, derive

the corresponding expression. If not, explain.

b. Derive the z-transform of the function x½n� ¼
nanu½n� using the result in (9.6.15a) and then

using a as the second variable.

9.7.1 Consider the function HðzÞ ¼ ð�zþ 1Þ=ðz2 �
zþ 1Þ; YðzÞ ¼ HðzÞXðzÞ. a. By using the long divi-

sion, determine h½n�; n � 0. b. By using long

division, determine h½n�; n � 0. c. Write the

difference equation in terms of y½n� and x½n�. The
impulse response is y½n� ¼ h½n�. Assuming h½�1� ¼
h½�2� ¼ 0, determine h½n�; n ¼ 0; 1; 2; 3. d. Repeat

the last part to determine h½0�; h½�1� and h½ � 2�
assuming h½1� ¼ h½2� ¼ 0.

9.7.2 Find x½n� for the following ROCs:

a: zj j51; b: zj j43; c: 25 zj j53 for the function

XðzÞ ¼ z=½ðz� 3Þðz� 2Þðz� 1Þ� using the partial

fraction expansion.

9.7.3 Find the inverse transforms of the following

functions:

a: XðzÞ ¼ ðzþ 2Þ2=z;ROC : 05 zj j51;
b: X2ðzÞ ¼ z2=ðz� aÞ; ROC : aj j5 zj j51

c: X3ðzÞ ¼
1

1� az
;ROC : zj j5ð1= aj jÞ:

9.7.4 Find the causal response corresponding to the

system function HðzÞ ¼ 1=ðz� :5Þ2.
9.8.1 Determine the values of a and b so that the

linear shift-invariant system described by the

following unit sample response is stable:
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h½n�¼
an;n�0
bn;n50

�
ðUse:

X1
n¼0

aj jn¼ð1=ð1� aj jÞ; aj j51Þ

9.8.2 Consider the system described by the differ-

ence equation y½n� ¼ x½n� � 5x½n� 1�. Is this system
stable? Noting that this system is an example of an

FIR filter, what can you say about the stability of

FIR filters in general?

9.8.3 Is the system described by y½n� � :4y½n� 1� ¼
x½n� a time-invariant or a time-varying system? Is it a

causal system? Determine the stability of the system.

9.8.4 Find the step response of the system described

by y½n� ¼ y½n� 1� þ x½n�. What can you say about

the stability of this system? Answer this by using the

BIBO stability test assuming x½n� ¼ u½n� and then by

using the z-transforms.

9.8.5 Consider the transfer function given by

HðzÞ ¼ 1=½1� 1:5z�1 � 0:5z�2�. a. Determine the

stability of this system using the roots of the char-

acteristic polynomial. b.Use the Schur–Cohn stabi-

lity test to verify the result. c. Convert the problem

to the analog case using the bilinear transformation

to determine the stability of the system.

9.8.6 Consider the second-order transfer func-

tion HðzÞ ¼ 1=½1þ a1z
�1 þ a2z

�2�. Determine the

impulse responses of this system assuming that the

poles satisfy the following:

a: real and distinct poles ðzi ¼ :6; :4Þ;
b: real and equal poles ðzi ¼ 0:5; 0:5Þ;
c: complex conjugate polesðzi ¼ re�jO0 ¼ 0:5e�jp=4Þ:

9.9.1Using the impulse invariance method and con-

vert the following transfer function into a discrete

domain transfer function HðzÞ. Assume fs ¼ 2Hz

for the two cases as indicated:

HaðsÞ ¼ ðsþ 1Þ=ðs2 þ asþ 2Þ; a: a ¼ 4; b: a ¼ 1:

9.9.2 Use the step invariance method with ts ¼ 1

to convert the transfer function HaðsÞ ¼ 1=ðsþ 1Þ
into a discrete domain transfer function HðzÞ.
Use the following steps. Determine YaðsÞ ¼
HaðsÞXaðsÞ;XaðsÞ ¼ ð1=sÞ. Find the output

response yðtÞ: Determine the sampled response

yðntsÞ and the corresponding z-domain function

from y½n� ¼ yðntsÞ. The transfer function of the digi-

tal filter that matches the step response is

HsðzÞ ¼ YðzÞ=XðzÞ;XðzÞ ¼ Zfu½n�g ¼ z=ðz� 1Þ:

9.10.1 Show the transfer function derived in 9.10.18b

satisfies all the required specifications.

9.10.2 Show that the all-pass functions of the form

given below satisfy HðejOÞ
�� �� ¼ 1:

HðzÞ ¼ P
P

k¼1

z�1 � a	k
1� akz�1

H:

9.11.1 Show that the following result is true:

HðejOÞ ¼
X1
n¼�1

h½n�e�jnO

 !FS 1

2p

ðp
�p

HðejOÞejOndO ¼ h½n�:

9.11.2 In Section 9.11.2, the Fourier series expan-

sions of the high-pass, band-pass, and band-elimi-

nation filters in terms of the low-pass filter Fourier

series coefficients were derived. a. Derive these

expressions by using the integrals directly. b. Derive

these by using impulse functions.

9.11.3 Consider a comb filter defined by the impulse

response h½n� ¼ d½n� � d½n� k�. Determine the

transfer function in the z-domain first and then deter-

mine the frequency amplitude and phase responses

for two cases k ¼ 5; 6. The amplitude response of this

filter looks like the rounded teeth of a comb and

therefore is referred to as a comb filter.

9.11.4 Find the Fourier series expansion of a differ-

entiation function HaðjoÞ ¼ jo; oj j � p=T. Use a

11-point window to determine the coefficients of

the series expansion using a.rectangular and b.Ham-

ming windows. Sketch the amplitude responses:

HaðjoÞ ¼ jo; oj j � p=T:

9.12.1 Show the two realizations in Fig. 9.12.5a,b

result in the same transfer function.

9.12.2 Find a realization of the all-pass function

given below using two multipliers plus a multiplica-

tion by (�1) and four delay components. Hint: Use

the form YðzÞ ¼ a½XðzÞ � z�2YðzÞ� þ b½z�1XðzÞ � z

�1YðzÞ� þ z�2XðzÞ in your solution:

HapðzÞ ¼
aþ bz�1 þ z�2

1þ bz�1 þ az�2
; YðzÞ ¼ HapðzÞXðzÞ:
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Chapter 10

Analog Modulation

10.1 Introduction

In this chapter we will consider some of the funda-

mental concepts associated with analog modula-

tion. Communication of analog signals from one

location to another is accomplished by using either

a wire channel or a radio channel. The source sig-

nals, such as voice, pictures, and in general base-

band signals are not always suitable for direct trans-

mission over a given channel. These signals are first

converted by an input transducer into an electrical

waveform referred to as the baseband signal or the

message signal. The spectral contents of the base-

band signals are located in the low-frequency

region. The wire channels have a low-pass transfer

function and can be used for transmitting signals

that have a bandwidth less than the channel band-

width. The radio channels have a band-pass char-

acteristic. Low-pass signals can be transmitted

through radio channels by using a modulator.Mod-

ulation is the process of alteration of a carrier wave

in accordance with the message (modulating signal).

The signal obtained through modulation is called

the modulated signal. The term baseband is used to

denote the band of frequencies of the signal deliv-

ered by the source or the input transducer. As an

example, the audio voice band, i.e., the range of

frequencies, 0 to 3.5 kHz, is a baseband. There are

several reasons for modulation. Some of these are

discussed below.

The audio band is about the same for all

humans. Speech production, in simple terms, can

be visualized as a filtering operation in which a

sound source excites a vocal tract filter

O’Shaughnessy (1987). In a room, if every one

is talking at the same time, we cannot understand

what each one is saying. If one person is talking

loud enough, we may be able to understand him

or her. Similarly if every radio station transmits

at the same frequency, then the received signal, at

the front of the radio receiver, will have a linear

combination of all the signals that are trans-

mitted. There is no way we can understand one

signal from another. One way to avoid this pro-

blem is shift each radio station band of frequen-

cies corresponding to a different location, i.e., use

modulation and then transmit. This allows for

simultaneous transmission of several stations. A

second example is, if telephone communications

need to be established between two cities, we need

to have thousands of telephone lines. Can you

imagine how much copper we need for such

construction? Instead, we could modulate each

signal and put several telephone conversations

on the same telephone line. Such a process is

called frequency-division multiplexing. The dual

to frequency-division multiplexing (FDM) is the

time-division multiplexing (TDM). The signals

are sampled and allocated at recurring time slots

for transmission.

We use antennas to transmit and receive signals.

A rule of thumb for the length of xz an antenna is at

least quarter wavelength. The wavelength is given

by the parameter l ¼ c=fc, where c is the speed of

light and ð1=fcÞ gives a typical period. (1/4) comes

from the fact that if we know (1/4) of a period of a

cosine or a sine function, we know the entire period

of these functions. To put this in perspective, con-

sider a speech signal. The antenna length required to

recover the speech signal (note the speed of light is

3ð108Þ m/s) is

1

4

3ð108Þ
f

� �
m=s

cycles=s
: (10:1:1)

R.K.R. Yarlagadda, Analog and Digital Signals and Systems, DOI 10.1007/978-1-4419-0034-0_10,
� Springer ScienceþBusiness Media, LLC 2010
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The antenna length for a 1 kHz in the voice band

requires the antenna length by

1

4

3ð108Þ
f

f¼1 kHz

�� � 47miles: (10:1:2)

Obviously, such an antenna is impractical. Noting

that the antenna length is inversely proportional to

the frequency, we can use reasonable sizes of anten-

nas by shifting or translating the frequencies to a

higher level by modulation. Other reasons include,

for example, that if we want to transmit signals that

can penetrate through different media, we use differ-

ent frequency bands.Again,modulation is necessary.

In summary, modulation is used to translate the

spectral contents of signals so that they can be effi-

ciently transmitted and the spectral content of the

modulated message signal lies in the operating fre-

quency band of a communication channel. Second,

the modulation puts the information content of a

signal in a form that is less vulnerable to noise and/or

interference. Third, modulation allows for simulta-

neous transmission of several signals that occupy

essentially the same frequency ranges over a channel

to the respective destinations. Finally, modulation is

necessary to reduce noise and/or interference. Theore-

tically, any type of modulation, amplitude, frequency

modulation, etc., could be used at any transmission

frequency. However, to have some semblance and

have high efficiencies, regulations specify the modula-

tion type, bandwidth, and type of information that can

be transmitted over the designated frequency bands.

Divisions of frequency spectrum Poularikas and

Seely (1991):

Telephony, navigation, industrial

communication

3–300 kHz

AM broadcasting, military

communication and amateur

and citizen band radio

.3�30 MHz

FM broadcasting, TV

broadcasting, and land

transportation

30�300 MHz

UHF TV, radar, and military

applications

.3�3 GHz

Satellite and space

communications,

microwave, and radar

3�30 GHz

Research and radio astronomy Above 30 GHz

There are also assigned amateur radio bands

above 30 kHz. Analog modulation schemes can be

divided into two schemes, namely continuous-wave

modulation and pulse modulation, which allow for

propagation of a low-frequency message signal

using a high-frequency carrier. The carrier is gener-

ally assumed to be a sinusoid of the form

xcðtÞ ¼ AðtÞ cosðoctþ fðtÞÞ: (10:1:3)

Usually, for analog signals, one of the functions

AðtÞ or fðtÞ is a function of the message mðtÞ and
the other is a constant. The frequency

oc½or fc ¼ oc=2p� is called the carrier frequency.

Although in (10.1.3), we have used a cosine function,

a sine function can also be used, as the sine and the

cosine functions are the same except one is a phase-

shifted version of the other. The functions

AðtÞ and fðtÞ are called the instantaneous amplitude

and phase angle of the carrier. We will see later that

sinusoidal carrier is not necessary. The continuous-

wave (CW) modulation uses two types of modula-

tion. When AðtÞ is linearly related to the message

signal and fðtÞ is a constant, then the result is a

linear modulation. When fðtÞ or its derivative is

linearly related to the message signal, then we have

the cases of phase or frequency modulation. Frequency

and phase modulations are referred as angle modula-

tion schemes, as the phase angle of the carrier has the

message information.Phase and frequencymodulations

are non-linear modulations. In the analog pulse mod-

ulation, the message is sampled at discrete-time inter-

vals and the amplitude, width, or position of a pulse

has the information about the message signal. In the

strict sense, pulse modulation is a message-proces-

sing technique. We will be interested in pulse

amplitude modulation (PAM), pulse width (or

duration) modulation (PWM), and pulse position

modulation (PPM). If the value of each sample is

quantized, i.e., only a finite number of levels, say a

power of 2 are kept. Then each sample is repre-

sented by n bits. Such a process is called pulse code

modulation. There are other modulation schemes

Ziemer and Tranter (2002).

After the signal is received at the destinationweneed

to undo the modulation, which is referred to as the

demodulation. In the case of the multiplexed signal, it

needs to be demultiplexed and demodulated before it

can be used. Most of this chapter deals with the math-

ematical development that essentially involves the eva-

luation and the description of the spectra of the signals
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at various locations of the signal as it goes through

modulation, transmission, demodulation, and the

recovery of the signal. The performance of various

modulation schemes are judged on the basis of how

well a particular scheme performs in the presence of

noise. This requires knowledge of random process,

which is beyond the scope of our study. Therefore,

our analysis will be based on simple concepts. Before

we study various types of modulation schemes, we like

to introduce few components that are non-linear in

nature and are useful in building communication sys-

tems. For references on analog communications, see

Ziemer andTranter (2002), Simpson andHouts (1971),

Carlson (1975), Lathi (1983), and others.

10.2 Limiters and Mixers

The input�ouput relations of a non-linear system

were discussed in Section 6.9. A limiter is a non-

linear circuit that has output saturation. A hard

(ideal) limiter takes the input signal and the output

is a constant vL if the input is positive and is �VL if

the input is negative. Limiter–band-pass filter com-

bination is a device that takes the input waveform,

limits the waveform between two limits+VL, and is

then passed through a band-pass filter. As an exam-

ple consider the input, a band-pass signal given by

vinðtÞ ¼ RðtÞ cosðoctþ fðtÞÞ;
RðtÞ � 0 for all t: (10:2:1)

RðtÞ is the envelope and fðtÞ is the phase angle of the
signal. Figure 10.2.1 gives the block diagram of a

limiter cascaded by a band-pass filter. Passing vinðtÞ
through a limiter, results in a clipped signal. Hard

limiters introduce dc as well as high frequencies.

Passing the clipped signal through an ideal BP filter

centered on the frequency oc with a BW greater

than the message BW results in

voðtÞ ¼ KVL cos½octþ fðtÞ�: (10:2:2)

Figure 10.2.2a gives a simple limiter and Fig. 10.2.2b

gives sketches of an input and the corresponding out-

put of the limiter. Passing the output voutðtÞ through a

band-pass filter makes it a sinusoidal signal.

( )inv t 0 ( )v t
Fig. 10.2.1 Block diagram
of a hard limiter with a band-
pass filter

Fig. 10.2.2 (a) A simple limiter and (b) ideal limiter characteristics with an input and the corresponding output wave forms
(printed with permission from the book Couch (1997))
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10.2.1 Mixers

An ideal mixer is an electronic circuit that imple-

ments a mathematical multiplier operation of the

message signal vinðtÞ and a sinusoidal signal gener-

ated by a local oscillator vLoðtÞ ¼ Ac cosðoctÞ. Con-
sider the block diagram in Fig. 10.2.3. The output of

the non-linear device is described below where the

higher-order terms are neglected.

v1ðtÞ ¼ KðvinðtÞ þ vLoðtÞÞ2 þ other terms

� K½v2inðtÞ þ 2vinðtÞvLoðtÞ þ v2LoðtÞ�: (10:2:3)

Assuming the BP filter removes all the terms except

the cross-product term, vinðtÞvLoðtÞ we have

v0ðtÞ ¼ K1vinðtÞ cosðoctÞ; (10:2:4)

where K1 is a constant that includes the filter gain.

In obtaining the expression in (10.2.4), we assumed

vinðtÞ and v2inðtÞ are low-frequency functions.Wewill

see that the function given in (10.2.4) will be called

later as a double-sideband (DSB) modulated signal.

Furthermore, v2LoðtÞ ¼ A2
c cos

2ðoctÞ ¼ A2
c ½ð1=2Þ þ

ð1=2Þ cosð2octÞ� contains the dc component and the

frequency component at ((2oc) or ð2fcÞ in Hertz) and

the other terms in (10.2.3) are outside the frequency

band of the band-pass filter. There are othermethods

that can be used in achieving this goal. These include

the use of a continuously variable transconductance

device, such as a dual-gate FET and using a square

wave oscillator. See Couch (2001).

10.3 Linear Modulation

When the carrier amplitude is linearly related to the

message signal, it is called as linear modulation

described by (10.3.1). The phase angle fðtÞ ¼ f0 is

assumed to be a constant. Without losing any gen-

erality for our analysis here we assume f0 ¼ 0.

xcðtÞ ¼ AðtÞ cosðoctþ f0Þ � AðtÞ cosðoctÞ: (10:3:1)

There are many modulation schemes. A few are

listed below:

1. Double-sideband (DSB) modulation.

2. Amplitude modulation (AM).

3. Single-sideband (SSB) modulation.

4. Vestigial sideband (VSB) modulation.

10.3.1 Double-Sideband (DSB)
Modulation

The DSB signal is

xDSBðtÞ ¼ yðtÞ ¼ AcmðtÞ cosðoctÞ; oc ¼ 2pfc:

(10:3:2)

Ac cosðoctÞ is the carrier signal, fcðor ocÞ is the carrier
frequency, and mðtÞ is the message or the information

signal. Frequencies will be referred in terms of either

o ¼ 2pf in radians per second or f in Hertz. The

amplitude of the time function multiplying cosðoctÞ
in (10.3.2) given by aðtÞ ¼ AcmðtÞj j is called the envel-

ope of the DSB signal. The message signal is generally

a low-pass signal and is assumed to be band limited to

B ¼ fm Hz. That is,

F½mðtÞ� ¼MðjoÞ ¼ 0;o > 2pfm:

The transform of the modulated signal is (see the

modulation theorem in Chapter 4)

XDSBð joÞ ¼
1

2
Mð jðo� ocÞÞ þ

1

2
Mð jðoþ ocÞÞ:

(10:3:3)

The DSB signal can be generated using the block

diagram shown inFig. 10.3.1. Figure 10.3.2 illustrates

the time and frequency waveforms for a simple case.

Fig. 10.2.3 Generation of
v0ðtÞ ¼ K1vinðtÞ cosðoctÞ

Fig. 10.3.1 Generation of a double-sideband modulated
signal
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Figure 10.3.2a gives an arbitrary message signal

with its F-transform. For simplicity we assumed the

transform is real, even, and positive. The message

signal mðtÞ is assumed to cross the time axis for the

reasons and these are referred to as crossover points

to be discussed later. Figure 10.3.2b shows the carrier

and its transform. Figure 10.3.2c shows the DSB

signal, where the dotted line is the carrier envelope

of the modulated signal. The spectrum of the modu-

lated signal is obtained by translating and scaling the

message spectrum MðjoÞ to ð1=2ÞMðjðo+ocÞÞ. It
has two parts: upper and the lower sidebands. The

spectra above the carrier frequency, fc i.e., the

portion of the spectrum between fc and fc þ B (and

also before �fcÞ, i.e., the spectrum between

�ðfc þ BÞ and � fc is the Upper SideBand (USB).

The spectrum below the carrier frequency, fc i.e., the

portion of the spectra between ðfc � BÞ and fc (and

also between �fc and � ðfc � BÞ) is the Lower

Sideband (LSB). The bandwidth of the message is

BHz and the bandwidth of the DSB signal is

ð2BÞHz. The carrier frequency is assumed to be large

enough that the spectra around fc and ð � fcÞ do not

overlap, i.e., ðfc � BÞ > 0. In the broadcast applica-

tions, a radiating antenna can radiate only a narrow-

band of frequencies without distortion. To avoid this

distortion, we assume that fc � B, which is a reason-

able assumption. Otherwise, we will not be able to

recover the message signal.

10.3.2 Demodulation of DSB Signals

Recovery of the message signal from the modulated

signal is demodulation or detection. First, let us con-

sider the coherent (or synchronous) detection

scheme shown in Fig. 10.3.3. The received DSB

(a)

(b)

(c)

Fig. 10.3.2 Signals and their spectra associated with double-sideband modulation: (a)MðjoÞ ¼ F ½mðtÞ�, (b)VLoðjoÞ ¼
F ½vLoðtÞ�, and (c)XDSBðjoÞ ¼ F½xDSBðtÞ�
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signal is xrðtÞ ¼ yðtÞ þ nðtÞ. nðtÞ is the noise signal,
and it can only be described statistically, which is

beyond our scope here. For simplicity, we will

assume that xrðtÞ � yðtÞ here. In the case of the

synchronous or coherent modulation scheme the

received signal is multiplied by the local carrier

signal cosðoctÞ. The output of the multiplier is

dðtÞ ¼ xrðtÞ cosðoctÞ � xDSBðtÞ cosðoctÞ

¼ AcmðtÞ cos2ðoctÞ

¼ 1

2
AcmðtÞ þ

1

2
AcmðtÞ cosð2octÞ: (10:3:4)

It has two parts, the message part ð1=2ÞAcmðtÞ, a
low-frequency signal, occupying the frequency range

ð0;BÞHz. The second part ð1=2ÞAcmðtÞ cosð2octÞ is
a band-pass signal with its positive spectrum between

ð2fc � BÞ and ð2fc þ BÞ and a negative spectrum

between ð�2fc � BÞ and ð�2fc þ BÞ. Since fc � B,

a low-pass filter with a BW greater than BHz with a

gain constant H0 will result in the output

yðtÞ � ðH0=2ÞAcmðtÞ: (10:3:5)

All systems have an inherent delay. Since an ideal

delay in the received signal does not matter, as far as

the understanding the modulation scheme and the

delay will not be explicitly shown. Also, we did not

consider any noise in the received signal.

Coherent demodulation requires that the oscilla-

tors at the transmitter and the receiver must have the

same phase as well as the frequency. Any difference

in the frequency and/or phase between the oscillators

at the transmitter and the receiver require additional

discussion. Let the expressions for the received

signal and the local oscillator be given by xrðtÞ ¼
AcmðtÞ cosðoctÞ and cosððoc þ DoÞtþ dÞ, respec-

tively. We should note that we are assuming for

simplicity d as a constant, rather than a function of

time. The frequency and the phase errors between the

transmitter and the receiver oscillators are, respec-

tively, given by Do and d: By using trigonometric

formulas, we have

dðtÞ ¼ AcmðtÞ cosðoctÞ cosððoc þ DoÞtþ dÞ;

¼Ac

2
mðtÞcosððDoÞtþdÞ

þ Ac

2
mðtÞcosðð2ocþDoÞtþdÞg: (10:3:6)

Note the second term in (10.3.6) is centered at

ð2oc þ DoÞ, which is much larger than the BW of

the low-frequency signal mðtÞ. Passing dðtÞ through
a LP results in the output

yðtÞ ¼ 1

2
AcmðtÞ cosððDoÞtþ dÞ: (10:3:7)

In the case of coherence, i.e., when Do ¼ 0 and

d ¼ 0, the output

yðtÞ ¼ ð1=2ÞAcmðtÞ

is a scaled version of the message signal. We now

consider the cases with respect to the difference in the

oscillator frequency and the phase shift at the trans-

mitter and the receiver separately. That is, ifDo ¼ 0,

then (10.3.7) reduces to yðtÞ ¼ AcmðtÞ cosðdÞ. The
output is proportional to the input if d is a constant

and not equal to +ðp=2Þ, resulting in only attenua-

tion and no distortion. If d ¼+ðp=2Þ then the out-

put is zero. If the phase error d varies randomly, say

due to variations in signal propagation paths, cosðdÞ
varies randomly, which is undesirable. If d ¼ 0 and

Do 6¼ 0, we have

yðtÞ ¼ ðAc=2ÞmðtÞ cosððDoÞtÞ: (10:3:8)

The output is the desiredmessagemultiplied by a low-

frequency sinusoid cosððDoÞtÞ. This is referred to as

the beating effect and the distortion can be serious.

Since the bandwidth of the signal B� fc ¼ ðoc=2pÞ,
Do=ð2pBÞ can be appreciable. Human year can

tolerate a drift in frequency of a few Hertz. To avoid

this problem, one can send a carrier signal, usually

referred to as a pilot at a reduced level. At the receiver

the pilot is separated by using a narrowband band-

pass filter centered at the pilot frequency.

Another approach to generate a phase synchro-

nized receiver signal uses a non-linear device

Fig. 10.3.3 Synchronous demodulation
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described by the block diagram in Fig. 10.3.4. The

output of the squarer is

y1ðtÞ¼ðAcmðtÞcosðoctÞÞ2

¼ðA2
c=2Þm2ðtÞþðA2

c=2Þm2ðtÞcosð2octÞ: (10:3:9)

First,

ðA2
c=2ÞF½m2ðtÞ� ¼ ðA2

c=2Þ½Mð joÞ 	Mð joÞ�

� ðA2
c=2ÞMcð joÞ;

) Y1ð joÞ ¼
A2

c

2
Mcð joÞ þ

A2
c

4
½Mcð jðoþ 2ocÞÞ

þMcð jðo� 2ocÞÞ�: (10:3:10)

Since the message signal is a low-pass signal with a

bandwidth of B Hz, m2ðtÞ is also low-pass signal

with a bandwidth of 2B Hz, whereas the signal

ð1=4Þ½m2ðtÞ cosð2octÞ� is a band-pass signal centered
at ð2fcÞ with a bandwidth of 4B. Passing the signal

y1ðtÞ through a narrowband band-pass filter with a

bandwidth Df� 4B, the transform of the output of

the band-pass filter consists of two narrow pulses

centered at f ¼+2fc. Since these are assumed to be

very narrow pulses, we can approximate them by

impulses and the output transform and its inverse

are as follows, where Ks are constants.

Y2ðjoÞ ’ K½dðoþ 2ocÞ þ dðo� 2ocÞ� !
FT

y2ðtÞ
¼ K1cosð2octÞ: (10:3:11)

This signal has the same phase as the input carrier,

or, in other words, this signal is in phase synchronism

with the input carrier. The frequency of the input

carrier is fc, whereas the frequency of the sinusoid

y2ðtÞ is 2fc and we will use this concept below.

10.4 Frequency Multipliers and Dividers

A frequency multiplier has the input and output sinu-

soids xðtÞ ¼ A cosðoctÞ and yðtÞ ¼ C cosðNoctÞ;
respectively, where N is an integer; Aand Care some

constants. Since the output frequency is an integer

multiple of the input frequency, an N-law non-linear

device can be used to generate the harmonics of the

original signal. The output of this device is fed into a

narrowbandband-pass filter centered at the frequency

Nfc resulting in yðtÞ. Figure 10.3.4 works as a fre-

quency multiplier.

Now consider a simple frequency divider with the

system in Fig. 10.4.1. Let the input be a sinusoid

xðtÞ ¼ A cosð2pfintÞ. The output of the narrow-

band band-pass filter is assumed to be

c cosð2pfouttÞ; where c is a constant. The output of

the frequency multiplier is assumed to be rðtÞ ¼
cosð2pðM� 1ÞfouttÞ. Now

eðtÞ ¼ A cosð2pfintÞ cosð2pfoutðM� 1ÞtÞ

¼ A

2
cosð2pððM� 1Þfout � finÞtÞ

þ A

2
cosð2pððM� 1Þfout þ finÞtÞ:

Frequencies in eðtÞ :

f1 ¼ ½ fin þ ðM� 1Þfout� and f2 ¼ ½ fin � ðM� 1Þfout�:
(10:4:1)

Fig. 10.3.4 Generation of y2ðtÞ

Fig. 10.4.1 Frequency divider
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Anarrowband BP filter with a center frequency of f2
can eliminate the frequency f1, resulting in the out-

put frequency f2 ¼ fin � ðM� 1Þfout. Since f2 ¼ fout,

we have

fout ¼ fin=M and yðtÞ ¼ c cosð2pfouttÞ

¼ c cosð2pðfin=MÞtÞ: (10:4:2)

The feedback circuit in Fig. 10.4.1 works as a fre-

quency divider.

Example 10.4.1 The input xðtÞ in Fig. 10.4.2a is

assumed to be real signal band limited to 5 kHz. It

ismodulated by a carrierwith frequency fc ¼ 20 kHz.

Show that the system can be used as a speech scram-

bler by identifying the spectra at various locations by

assuming all the filters are ideal with the cut-off fre-

quencies as identified. See Carlson (1975).

Solution: From the block diagram, y1ðtÞ ¼
xðtÞ cos 2pð20 kÞt, y2ðtÞ=HP filtered version of

y1ðtÞ, y3ðtÞ ¼ y2ðtÞ cos 2pð25 kÞt, and rðtÞ ¼ LP-fil-

tered version of y3ðtÞ. Now

Y1ðjoÞ ¼ 0:5½Xðjo� 2pð20 kÞÞ

þ Xðjoþ 2pð20 kÞÞ�;

Y2ðjoÞ ¼ HHpðjoÞY1ðjoÞ;

Y3ðjoÞ ¼ 0:5½Y2ðjðoþ 2pð25 kÞÞÞ

þ Y2ðjðo� 2pð25 kÞÞÞ�

¼ Y3ðjoÞ; RðjoÞ ¼ HLpðjoÞY3ðjoÞ:

Noting that the filters are assumed to be ideal and

ignoring all the delays involved in the system for

simplicity, the spectra at various locations on the

block diagram are sketched in Fig. 10.4.3. From the

input and the output spectra, we see that we have

(a)

x(t)r(t)

(b)

Fig. 10.4.2 (a) Speech scrambler and (b) descrambler

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 10.4.3 Spectra of the functions at locations identified in Fig. 10.4.2
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used lower sideband and the output spectrum is the

inverted frequency spectrum of the input. Consider-

ing only the positive frequencies, we have

RðjoÞ¼Xðjð2pð5kÞ�oÞÞ;0
o
 2pð5kÞ: (10:4:3)

The system is a speech scrambler based on frequency

inversion. Use of a descrambler, same as the scram-

bler, recovers the original signal. Higher level of

security can be achieved by dividing the signal spec-

trum into bands and encrypting each band. &

Notes: There are several products available in the

market that performs the analog frequency inver-

sion. In Example 8.6.11, frequency inversion is

implemented in the digital domainby replacing a

discrete signal x1½n� by ð�1Þnx1½n�. &

10.5 Amplitude Modulation (AM)

We note that xDSBðtiÞ ¼ 0 whenmðtiÞ ¼ 0; where tis

are zero crossover points. See Fig. 10.3.2c. If

mðtÞ � 0 then the envelope of the DSB signal is

proportional to the message signal. In this case,

we can recover the message signal by detecting

the envelope of the DSB signal, which is simpler

to do than the coherent detection scheme. In

coherent detection, we need the same carrier

frequency and the phase at the input and the

outputs.

Message signals can take both negative and posi-

tive values. To avoid zero crossovers, add a con-

stant A to the message signal mðtÞ, so that

ðAþmðtÞÞ > 0orA � minfmðtÞgj j for all t: (10:5:1)

The AM modulation index or the sensitivity of the

AM signal is defined by

m ¼ minmðtÞj j=A: (10:5:2)

With m, ðAþmðtÞÞ can be written in terms of a

scaled version, mnðtÞ by

ðAþmðtÞÞ ¼ A 1þ mðtÞ
minmðtÞj j

minmðtÞj j
A

� �

¼ A½1þ mmnðtÞ�;

mnðtÞ ¼ mðtÞ= minmðtÞj j: (10:5:3)

If 0 
 m 
 1, we have ð1þ mmnðtÞÞ � 0. The ampli-

tude modulated signal is

yðtÞ ¼ ½AþmðtÞ�Ac cosðoctÞ

¼ AAc½1þ ðmðtÞ=AÞ� cosðoctÞ

� A0c½1þ ðmðtÞ=AÞ� cosðoctÞ

¼ A0c½1þ mmnðtÞ� cosðoctÞ; A0c ¼ AAc:

(10:5:4)

Noting A0cð1þ mmnðtÞÞ > 0, the envelope of the sig-

nal A0c½1þ mmnðtÞ� cosðoctÞ is

aðtÞ ¼ A0cð1þ mmnðtÞÞ
�� �� ¼ A0cð1þ mmnðtÞÞ: (10:5:5)

This points out that an envelope detector will

recover the function A0cð1þ mmnðtÞÞ.

Notes: Computation of the minimum value of the

function mðtÞ is not always easy to find. Most signals

approximately have symmetrical maximum andmini-

mum values. That is, maxmðtÞ � �minmðtÞ and

mnðtÞ � mðtÞ= mðtÞj jmax: (10:5:6)

Assuming the minimum value of mnðtÞ is �1, the
AM signal is

xAM tð Þ ¼ A0c 1þ mmn tð Þð Þ cos octð Þ;A0c ¼ AcA:

(10:5:7) &

Example 10.5.1 Give the expressions for the AM

signal for the message signals

a: maðtÞ ¼ 4 cosðo0tÞ þ 3 cosð3o0ÞtÞ; o0 ¼ 2pð100Þ
(10:5:8)

b: mbðtÞ ¼ 4 cosðo0tÞ � 3 cosð2o0tÞ þ 2 cosð4o0tÞ;
o0 ¼ 2pð100Þ: (10:5:9)

Solution: a. Cosine function is bounded by 1 and

max maðtÞj j 
 7. At t ¼ k=ð2f0Þ; for k� odd we

have minmaðtÞ ¼ �7. The magnitudes of the mini-

mum and the maximum are the same. Using

(10.5.7), the AM signal is

xAMðtÞ ¼ A0c½1þ mmnðtÞ� cosðoctÞ;

mnðtÞ ¼
1

7
½4 cosðo0tÞ þ 3 cosð3o0Þt�
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) xAMðtÞ ¼ A0cð1þ m
1

7
½4 cosð2pf0tÞ

þ 3 cosð2pð3f0Þt�Þ cosðoctÞ: (10:5:10)

b. We can find the minimum and maximum values

by using MATLAB code given below.

t ¼ 0 : :0001 : : 01;

y ¼ 4 	 cosð2 	 pi 	 100 	 tÞ � 3 	 cosð2 	 pi 	 300 	 tÞ
þ 2 	 cosð2 	 pi 	 400 	 tÞ
½Y1; I� ¼ maxðyÞ; ½Y2; J� ¼ minðyÞ:

The maximum, the minimum values of mbðtÞ, and
the corresponding AM signal are

maxðmbðtÞÞ ¼ 5:1647; minðmbðtÞÞ

¼ �5:9643; (10:5:11)

xAMðtÞ ¼ Að1þ mð1=5:9643Þ½4 cosðo0tÞ

� 3 cosð2o0Þtþ 2 cosð4o0tÞ�Þ cosðoctÞ:
(10:5:12) &

10.5.1 Percentage Modulation

The modulation index m is usually expressed as a

percentage.Foranenvelopedemodulation,we require

0 
 m 
 1. When m ¼ 1, we have 100% modulation.

If m > 1, we have over-modulation and phase cross

overs result in the AM signal, which result in envelope

distortion. This is undesirable since our goal is to

detect the envelope of the AM signal. There is no

modulation ifmðtÞ ¼ 0. Let

Amax ¼ max A0c 1þ mmn tð Þð Þ
� �

;

Amin ¼ min A0c 1þ mmn tð Þð Þ
� �

: (10:5:13)

The modulation percentages of an AM signal are

defined by

% Positive modulation ¼ Amax � A0c
A0c

� 100

¼ max½mmnðtÞ� � 100;

(10:5:14a)

% Negative modulation ¼ A0c � Amin

A0c
� 100

¼ �min½mmnðtÞ� � 100;

(10:5:14b)

% Modulation ¼ Amax � Amin

2A0c
� 100

¼ max½mmnðtÞ� �min½mmnðtÞ�
2

� 100:

(10:5:14c)

Example 10.5.2 Illustrate the percentage modula-

tions for the normalized signal given by

mnðtÞ ¼ cosðomtÞ and m ¼ :5. Use the expression

xAMðtÞ ¼ A0c½1þ :5 cosðomtÞ� cosðoctÞ.

Solution: This is tone modulation, as the message

signal is a sinusoid (or a tone). The maximum and

minimum values of mnðtÞ ¼ cosðomtÞ are +1 and

�1, respectively and

xAMðtÞ ¼ A0c½1þ :5 cosðomtÞ� cosðoctÞ;

% Positive modulation¼A0cð1þ :5Þ�A0c
A0c

¼ 50%;

% Negative modulation¼ A0c� :5A0c
A0c

¼ 50%;

% Percentage modulation¼ A0cð1þ :5Þ �A0cð:5Þ
2A0c

¼ 50%:

&

10.5.2 Bandwidth Requirements

Assuming the message signal ismðtÞ !FT MðjoÞ, the
AM signal and its transform are

xAMðtÞ ¼ Ac½AþmðtÞ�cosðoctÞ !
FT

XAMðjoÞ;

XAMð joÞ ¼ pAAc½dðo� ocÞ þ dðoþ ocÞ�

þ Ac

2
½Mð jðo� ocÞÞ þMð jðoþ ocÞÞ�:

(10:5:15)

Figure 10.5.1 shows an assumed spectrum of the

message signal mðtÞ and the corresponding spec-

trum of the AM signal. If the message signal band-

width is BHz, then the bandwidth of the AM signal

is 2B Hz, i.e., two times the bandwidth of the mes-

sage signal. If A ¼ 0, then

xAMðtÞjA¼0 ¼ AcðAþmðtÞÞ cosocðtÞjA¼0
¼ AcmðtÞ cosocðtÞ ¼ xDSBðtÞ:
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Since there is no carrier term in the DSB signal, it is

called amplitude modulated signal with a suppressed

carrier. The transmission bandwidths of AM and

DSB are the same.

10.5.3 Power and Efficiency of an
Amplitude Modulated Signal

Modulation processes are compared on the basis of

modulation efficiency Z. It is the ratio of the percen-

tage of the power in the sidebands conveying the

message to the total power in the modulated-carrier

signal. The time average of x2AMðtÞ is defined over

the period of the carrier Tc ¼ 2p=oc using the

notaion :h i by

x2AMðtÞ
� �

¼ 1

Tc

Z
Tc

x2AMðtÞdt

¼ fAcðAþmðtÞÞ cosðoctÞg2
D E

¼A2
c

2
A2 þm2ðtÞ þ 2AmðtÞ
� �

þ A2
c

2
½A2 þm2ðtÞ þ 2AmðtÞ� cosð2octÞ
� �

:

(10:5:16)

The time average of the message signal is assumed

to be zero, i.e., it does not have a DC component

and mðtÞh i ¼ 0, a standard assumption for most

signals. Second, mðtÞ is a low-frequency signal

and the highest frequency in the message is much

smaller than the carrier frequency. It varies slowly

(a)

(b)

Fig. 10.5.1 (a) Spectrum of a message signal and (b) spectrum of the AM signal

Fig. 10.5.2 AM signal
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compared to the carrier signal. This implies that the

time average over one period of the second term in

(10.5.16) is (period of cosð2octÞ is Tc=2.)

Z
Tc=2

A2
c

2
½A2þm2ðtÞþ2AmðtÞ�cosð2octÞdt�0: (10:5:17)

See Fig. 10.5.2. We are assuming mðtÞ is approxi-
mately flat for one period of the carrier. The

time average of a sum is equal to the sum of the

time averages. With A0c ¼ AAc, and assuming

mðtÞ cosð2octÞh i ’ 0, we have

x2AMðtÞ
� �

� A2
cA

2

2
þ A2

c

2
m2ðtÞ
� �

¼ A2
c

2
½A2 þ m2ðtÞ

� �
�

¼ ðA
0
cÞ

2

2
1þ m2 m2

nðtÞ
� �� �

: (10:5:18)

First term does not have mðtÞ and the second term

contains mðtÞ. The average power contained in the

message is Pinf ¼ m2ðtÞ
� �

. Themodulation efficiency

is defined by the ratio

Z ¼
m2ðtÞ
� �

A2 þ m2ðtÞh i : (10:5:19)

The AM signal (see 10.5.8.) and the efficiency of the

AM signal in terms of mnðtÞ are

xAMðtÞ ¼ AcðAþmðtÞÞ cosðoctÞ

¼ A0cð1þ mmnðtÞÞ cosðoctÞ:

Z ¼
m2 m2

nðtÞ
� �

1þ m2 m2
nðtÞ

� � : (10:5:20)

In addition to the average power, another measure

is the peak envelope power (PEP). It is the average

power if mðtÞ is a constant at its maximum value.

The PEP of the AM signal is

PPEP ¼ ððAcAÞ2=2Þ½1þmaxðmðtÞÞ�2: (10:5:21)

Example 10.5.3 Compute the efficiencies of the fol-

lowing assuming mbnðtÞ ¼ mbnðtþ TÞ.

a: manðtÞ ¼ cosðoctÞ;

b: mbnðtÞ ¼
1; 05t5ðT=2Þ
�1; ðT=2Þ5t5T

	
: (10:5:22)

Solution: a. The average power in manðtÞ is

cos2ðomtÞ
� �

¼ :5þ :5 cosð2omtÞh i ¼ :5. The effi-

ciency of a tone modulated signal is

Z ¼ Efficiency ¼ ð1=2Þm2=½1þ ð1=2Þm2�: (10:5:23)

With m 
 1, the upper limit on Z for a single sine or a
cosine wave is (1/3) or 33.33%. b. For the square

wave, m2
bnðtÞ

� �
¼ 1 and the efficiency is

Z ¼ m2=½1þ m2� and its upper limit on Z is

Z ¼ 1=2 ¼ 50%. For a single tone modulation, only

33% of total power is useful. For a square wave,

only 50% of the total power is useful. The efficiency

of an AM signal of a periodic function can be deter-

mined using the Parseval’s theorem. &

10.5.4 Average Power Contained
in an AM Signal

The Federal Communication Commission (FCC)

rates AM broadcast band transmitters by the aver-

age power in the carrier Ac cosðoctÞ (see Couch

(1997)), i.e., P ¼ ðAcÞ2=2.

Example 10.5.4 Find the PEP for a 5000 W AM

transmitter connected to a 50 O load assuming

mðtÞ ¼ cosð2pð1000ÞtÞ.

Solution: Since P ¼ 5000 ¼ :5ðAcÞ2=50, the peak

voltage is Ac ¼ 707V across the load during

the times of no message. The total average power

contained in the AM signal xAMðtÞ ¼ AcðA þ
mðtÞÞ cosðoctÞ ¼ AcAð1þ mmnðtÞÞ cosðoctÞ is

P ¼ 1

2

ðA0cÞ
2

50

 !
þ m2

2

ðA0cÞ
2

50

 !
m2

nðtÞ
� �

¼ ðA
0
cÞ

2

100
ð1þ 1

2
Þ ¼ 1:5ðA2

cÞ=100 ¼ 7500 W:

Note that we assumed A ¼ 1; A0c ¼ AAc ¼ Ac and

m ¼ 1 in computing the above power. The peak
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voltage across the 50 O resistor and the PEP are,

respectively, given by

A0cð1þmaxðm cosðomtÞÞ ¼ 2A0c ¼ 1414 V) PPEP

¼ 4
1

2

ðA0cÞ
2

50

" #
¼ 20;000W:

The average and peak powers are 7500 and

20,000 W, respectively. &

10.6 Generation of AM Signals

Generation of an AM signal is considered next. See

Lathi (1983) and Couch (1993).

10.6.1 Square-Law Modulators

A diode can be used as a non-linear device in a

square-law modulator. See Fig. 10.6.1. The voltage

across eðtÞ and the current through the diode iðtÞ
can be approximated by

i � aeþ be2: (10:6:1)

Assuming the diode and the resistor R as a compo-

site non-linear component, we can write

eðtÞ ¼ kþmðtÞ þ A cosðoctÞ; (10:6:2)

) iðtÞ � akþ bk2þ bA2

2
þ ðaþ 2bkÞmðtÞ þ bm2ðtÞ

� �

þA½aþ 2bkþ 2bmðtÞ� cosðoctÞ

þ bA2

2
cosð2octÞ

	 

: (10:6:3)

The input voltage to the BP filter is RiðtÞ. The first
term in (10.6.3) is a low-frequency signal, as it is a

function a dc component and the message signal.

Noting that the second and third terms are

ðcosðoctÞÞ and in ðcosð2octÞÞ, respectively, we can

see that the third term has a much higher-frequency

component compared to the second term. Passing

the signal RiðtÞ through a band-pass filter centered

at the carrier frequency oc ¼ 2pfc results in the out-

put signal

xAMðtÞ ¼ RA½aþ 2bkþ 2bmðtÞ� cosðoctÞ

¼ RAðaþ 2bkÞ½1þ 2b

aþ 2bk
mðtÞ� cosðoctÞ

¼ A0c 1þ m
mðtÞ

mðtÞj jmax

� �
cosðoctÞ;

A0c ¼ RAðaþ 2bkÞ; m ¼ 2b mðtÞj jmax

ðaþ 2bkÞ : (10:6:4)

The constants a; b; and k are selected so that the

modulation index is less than 1.

10.6.2 Switching Modulators

AM signal can be generated using a switching

circuit shown in Fig. 10.6.2. The first part of

the circuit with the diode and the resistor R acts

as a switching circuit assuming c� maxð mðtÞj jÞ.
The voltage vbb0 can be expressed in terms of

Fourier series with harmonic terms cosðnoctÞ. A
band-pass filter centered at fc with twice the

bandwidth of the message signal recovers the

frequencies around the carrier frequency resulting

in an AM signal.

Bandpass
filter

ωc

+

–

b

b'

a

a'

e(t)

i(t)

+

−

R

+ −
Acos(2 fct)

k+m(t) xAM (t)

+

−

Fig. 10.6.1 Square-law AM
modulator
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The voltage vbb0 is

vbb0 ¼ ½c cosðoctÞ þmðtÞ�wTðtÞ: (10:6:5)

wTðtÞ is a periodic square wave switching function

shown in Fig. 10.6.3. Its F-series is

wTðtÞ ¼
1

2
þ 2

p
½cosðoctÞ �

1

3
cosð3octÞ

þ 1

5
cosð5octÞ � þ . . .�; (10:6:6)

)vbb0 ðtÞ¼
1

2
½ccosðoctÞþmðtÞ�þ

2

p
½ccosðoctÞ

þmðtÞ�cosðoctÞ�
2

3p
½ccosðoctÞþmðtÞ�cosð3octÞ...

¼ c

2
þ 2

p
mðtÞ

� �
cosðoctÞ þ other terms: (10:6:7)

The ‘‘other terms’’ identified in (10.6.7) corre-

spond to the frequencies outside of the passband

of the BP filter. When this signal is passed

through a BP filter, centered at the carrier fre-

quency oc with twice the bandwidth of mðtÞ, the
output of the filter results in the AM signal given

below, where constants are selected so that m is

less than 1.

voutðtÞ �
c

2
þ 2

p
mðtÞ

� �
cosðoctÞ: ðc� max mðtÞj jÞ:

(10:6:8)

) voutðtÞ ¼
c

2
½1þ 4

pc
mðtÞ� cosðoctÞ

¼ c

2
½1þ mmnðtÞ� cosðoctÞ: (10:6:9)

10.6.3 Balanced Modulators

A DSB modulated signal can be generated using

two AM signal generators. See Fig. 10.6.4. Note

y1ðtÞ ¼ mðtÞ cosðoctÞ þ A cosðoctÞ;
y2ðtÞ ¼ �mðtÞ cosðoctÞ þ A cosðoctÞ : (10:6:10)

yðtÞ ¼ y1ðtÞ � y2ðtÞ ¼ 2mðtÞ cosðoctÞ: (10:6:11)

vbb'

+ +

−

R

b

b'

c

c'+

+

−−

c cos(ωct)

m(t)

−

Bandpass
filter

ωc

νout (t)

Fig. 10.6.2 Switching
modulator

Fig. 10.6.3 Square wave wTðtÞ

Fig. 10.6.4 Balanced
modulator
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The carrier term cancels out in (10.6.11) provided

the modultors match.

10.7 Demodulation of AM Signals

Now consider recovering the message signal (i.e.,

demodulation) from an AM signal.

10.7.1 Rectifier Detector

Consider the circuit in Fig. 10.7.1. The input to the

demodulator is assumed to be

xAMðtÞ ¼ ½AþmðtÞ� cosðoctÞ: (10:7:1)

Noting that the diode is short when its voltage

across is positive and open when it is negative. The

rectified signal can be written as

vrecðtÞ ¼ AþmðtÞ½ � cosðoctÞf gwTðtÞ: (10:7:2)

The switching function wTðtÞ is the same as before

and its F-series in (10.6.6). The rectified signal is

vrecðtÞ¼ AþmðtÞ½ �cosðoctÞf g 1

2

	
þ 2

p
½cosðoctÞ

�1

3
cosð3octÞþ

1

5
cosð5octÞ�þ . . .�




¼ 1

2
AþmðtÞ½ �cosðoctÞf gþ 2

p
AþmðtÞ½ �1

2

1þ cosð2octÞ½ � þ higher order terms:

(10:7:3)

Passing this signal through a LP filter with the

message signal BW BðB� fcÞ results in

v0ðtÞ ¼ H0ðAþmðtÞÞ: (10:7:4)

The dc component ðH0AÞ can be removed using a

high-pass filter (or a dc blocking capacitor) resulting

in the output H0mðtÞ:

10.7.2 Coherent or a Synchronous
Detector

If a copy of the carrier is available at the receiver,

coherent, or synchronous detection shown in

Fig. 10.7.2 can be used. The output of the

multiplier is

dðtÞ¼ ðAþmðtÞÞcos2ðoctÞ

¼ 1

2
ðAþmðtÞÞþ1

2
ðAþmðtÞÞcosð2octÞ: (10:7:5)

Passing this through a LP filter results in

yðtÞ ¼ 1

2
ðAþmðtÞÞ: (10:7:6)

A blocking capacitor can be used to suppress the

dc term ðA=2Þ. The rectifier detection circuits oper-

ate without the carrier at the receiver. Coherent

detector can demodulate any AM signal regardless

of the value of A. Synchronous detectors are also

referred as product detectors.

+
+

−
[A + m(t)]cos(ωct) vrec(t)

c

RL Hom(t)

−

+

−

Lowpass
filter

Fig. 10.7.1 Rectifier AM detector

Fig. 10.7.2 Coherent AM demodulation
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10.7.3 Square-Law Detector

This detector uses a simple non-linear device,

such as a squarer. The output of the square-law

device in Fig. 10.7.3 (Ac ¼ 1 is assumed for sim-

plicity) is

x2AMðtÞ ¼ fðAþmðtÞÞ cosðoctÞg2

¼ 1

2
½A2 þm2ðtÞ þ 2AmðtÞ�½1þ cosð2octÞ�:

(10:7:7)

Assuming A� maxð mðtÞj jÞ and ðmðtÞ=AÞ2�
ðmðtÞ=AÞ, the LP filter filters out all the terms that

involve cosð2octÞ resulting in

y0ðtÞ¼
A2

2
1þ2mðtÞ

A
þ mðtÞ

A

� �2
" #

�ð:5A2þAmðtÞÞ:

(10:7:8)

Blocking capacitor suppresses the dc termA2=2 and

the output is AmðtÞ. Coherent detector can demo-

dulate any AM signal regardless of any A:

10.7.4 Envelope Detector

If the message signal takes positive and negative

values, the DSB modulated signal has crossover

points. See Fig. 10.3.2. Detecting the envelope of the

DSB signal will not recover the message signal. AM

signal with less than 100%modulation does not have

crossover points and the envelope detector recovers

the message. Figure 10.7.4 gives a simple envelope

detector.During thepositivehalf cycleof the received

signal, i.e., when xcðtÞ ¼ Ac½Aþ mðtÞ� cosðoctÞ40,

the diode is forward biased and it acts like a short

circuit and the capacitor C charges up to the peak

value of the received signal. As the input signal falls

below its peak value, the diode turns off as the

capacitor voltage cannot follow the input and the

charge across the capacitor is discharged through

the resistorR until the input voltage becomes greater

than the capacitor voltage. At that time, the diode

turns on again and the output voltage follows to the

input peak voltage and the process is repeated. Dur-

ing the time the diode is off, the charge across the

capacitor will discharge through the resistor. The

rate of discharge during this portion of the cycle

depends upon the RC time constant and the peak

voltage across the capacitor vp. The capacitor voltage

follows the equation

v0ðtÞ ¼ vpe
�ð1=RCÞtuðtÞ: (10:7:9)

The time interval for the positive half cycle is

ð1=2fcÞ. Figure 10.7.5a,b shows two extreme

cases. In the first case, the time constant t ¼ RC

is too small, i.e., ð1=RCÞ is large, and the

capacitor discharges too fast and the capacitor

voltage may reach zero value before the input is

in the next positive half cycle (see Fig. 10.7.5a.).

In the second case, the time constant t is large,

i.e., ð1=RCÞ is small and the capacitor cannot

discharge fast enough and the output may miss

some pulses (see Fig. 10.7.5b.). These point out

that the time constant must be much smaller than

the inverse of the bandwidth of the message sig-

nal, ð1=BÞ, and much larger than the period of

the carrier ð1=fcÞ. That is,

ð1=fcÞ � RC� ð1=BÞ: (10:7:10)

The output is

yðtÞ � ðAþmðtÞÞ: (10:7:11)

Fig. 10.7.3 Square-law AM detector

Fig. 10.7.4 AM envelope detector
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The dc part can be removed using a bias removal

capacitor. The envelope detector has a poor response

at low frequencies.

Notes: AM radios can be used as storm detectors.

When there is lightning, the input to the envelope

detector is the received signal plus noise. We can

assume the noise is a large spike of voltage and it

discharges according to (10.7.9). See Fig. 10.7.6.

The demodulated signal is simply the response of

the RC circuit, not the message signal.

Example 10.7.1 Determine the upper bound on the

RC time constant to ensure the capacitor voltage of

the detector follows the envelope with mðtÞ ¼
cosðomtÞ.

Solution: Without loosing any generality, we can

assume that the AM wave form and the capacitor

voltage as in Fig. 10.7.7.

xAMðtÞ ¼ A0c½1þ m cosðomtÞ� cosðoctÞ; 05m51;

fc ¼ oc=2p� om=2p ¼ fm: (10:7:12)

During the negative half cycle, the charge across the

capacitor is discharged through the resistor and is

described earlier by (10.7.9). It can be approximated

by using the first two terms of the power series expan-

sion of the exponential decaying function (see

(10.7.13)) in the time interval 0 
 t 
 p=om. Envelope

of the tone modulated signal and its derivative are

(see Fig. 10.7.7)

vcðtÞ ¼ vpe
�t=RC � vpð1� ðt=RCÞÞ;

venvðtÞ ¼ A0c½1þ m cosðomtÞ�: (10:7:13)

Slope of the envelope:
dvenvðtÞ

dt

¼ �mA0com sinðomtÞ:
(10:7:14)

To avoid missing the next peak, the magnitude of

the slope of the voltage response of the RC circuit

must be greater than the slope of the envelope.

That is,

tt

Fig. 10.7.5 Response of the envelope detector for two cases: (a) RC time constant too small and (b) RC time constant too
large

t

Fig. 10.7.6 Response of an envelope detector during a
thunderstorm

0t 0
1

c

t
f

+

( )cv t
( )envv t

envelope

pv

t

Fig. 10.7.7 Approximation of the capacitor voltage

10.7 Demodulation of AM Signals 445



dvc
dt

����
���� � dvpð1� t=RCÞ

dt

����
���� ¼ vp

RC
� dvenv

dt

����
����:

Using (10.7.12) and (10.7.13), we have

½A0cð1þ m cosðomtÞÞ=RC� � mA0com sinðomtÞj j. Since
sinðomtÞj j � sinðomtÞ, we can drop the absolute

value sign and

A0cð1þ m cosðomtÞÞ
RC

� mA0com sinðomtÞ or

RC 
 ð1þ m cosðomtÞÞ
mom sinðomtÞ

: (10:7:15)

The upper bound in (10.7.15) can be determined by

first taking its partial derivative with respect to t and

equating it to zero. That is,

sinðomtÞð�m2omÞ sinðomtÞ � ½1þ m cosðomtÞ�ðmomÞ cosðomtÞ
m sin2ðomtÞ

¼ 0:

)ð�momÞ½sin2ðomtÞþcos2ðomtÞ��omcosðomtÞ¼0)cosðomtÞ¼�m;sinðomtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

p
:

RC 
 ð1þ m cosðomtÞÞ
mom sinðomtÞ

¼ 1

om

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
m

" #
: (10:7:16) &

10.8 Asymmetric Sideband Signals

The amplitude spectrum of a real signal is even

and the phase spectrum is odd. Knowing the

spectral information of a signal for o � 0 can

be used to determine its spectral information

for o50. If we know the spectral information

on one side of a double-sideband modulated

signal, i.e., the spectrum above (or below) the

carrier frequency then we can determine the

complete spectrum. We need only one of the

sideband.

10.8.1 Single-Sideband Signals

An upper single-sideband (USSB) signal has a zero-

valued spectrum for fj j5fc, where fc is the carrier

M( j )

− 0
(a) (b)

Lower sideband Upper sideband

(d)

Ideal lowpass

Ideal highpass

(f)

(c)

(e)

1

0

( )DSBX jω
0.5

c c m+c m−−− − − +

1
( )HPH j

c− c 0

( ) ( )HP DSBH j X jω
0.5

c c m+

0

1
( )LPH j

c− c 0

0.5

cc m−c− c m− +

( ) ( )LP DSBH jω X jω

ωc ωmωm ω m
ω

ω

mωc

−− −ωc ωm ωc

ωc

ω
ω

ω

ω

ω ω ω ω ω

ω

ω ω ω ω ω
ω

ω

ω

ω ω

ω

ω

ω

ω

ω

ω

ω

Fig. 10.8.1 (a) Message spectrum, (b) DSB spectrum, (c) ideal high-pass filter spectrum, (d) spectrum of the upper sideband
signal, (e) ideal low-pass filter spectrum, and (f) spectrum of the lower-sideband signal
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frequency. Similarly a lower single-sideband signal

(LSSB)signal has zero-valued spectrum for

fj j > fc. An obvious way to have a single-sideband

signal is by using an ideal low-pass (or an ideal

high-pass filter) to obtain an LSSB (USSB) signal.

Figure 10.8.1a gives an example of a double-

sideband signal spectrum and Fig. 10.8.1d,f

shows the spectra of the LSSB and USSB signals

using ideal filters with the responses shown in

Fig. 10.8.1c,e. Since the ideal filters are not physi-

cally realizable, LSSB and USSB signals can only be

approximated.

Example 10.8.1 Using mðtÞ ¼ cosðomtÞ, derive the

expressions for the USSB and the LSSB signal using

the Hilbert transforms (see Section 5.10).

Solution: The Hilbert transform of mðtÞ, DSB,

USSB, and LSSB signals (see Fig. 10.8.2 for the

spectra) are

m̂ tð Þ ¼ H m tð Þf g;

m tð Þ ¼ cos omtð Þ !HT
m̂ tð Þ ¼ sin omtð Þ; (10:8:1)

xDSBðtÞ ¼ AcmðtÞ cosðoctÞ

¼ Ac

2
cosðoc � omÞtþ

Ac

2
cosðoc þ omÞt;

(10:8:2)

xUSSBðtÞ¼
Ac

2
cosðocþomÞt

¼ Ac

2
½cosðomtÞcosðoctÞ�sinðomtÞsinðoctÞ�;

(10:8:3)

xLSSBðtÞ¼
Ac

2
cosðoc�omÞt

¼ Ac

2
½cosðomtÞcosðoctÞþsinðomtÞsinðoctÞ�:

(10:8:4)

The sideband signals can be expressed for the tone

(and for any message mðtÞ) signal by

xUSSB tð Þ ¼ :5Ac m tð Þ cos octð Þ � m̂ tð Þ sin octð Þ½ �;

xLSSB tð Þ ¼ Ac

2
m tð Þ cos octð Þ þ Ac

2
m̂ tð Þ sin octð Þ:

(10:8:5) &

10.8.2 Vestigial Sideband Modulated
Signals

Ideal filters are not physically realizable and the use

of non-ideal filters results in generating an SSB

signal is not exactly an SSB signal. The resultant

sideband signal will have most of one of the side-

bands and a vestige (a trace) of the other sideband.

Such a signal is referred to as a vestigial sideband

modulated signal (VSB). The following example

illustrates a simple case of a VSB signal spectrum

(Ziemer and Tranter, (2002)).

Example 10.8.2 Assuming mðtÞ ¼ a1 cosðo1tÞþ
a2 cosðo2tÞ, illustrate the VSB spectra.

(a) (b)

(c) (d)

Fig. 10.8.2 (a) MðjoÞ, (b) DSB signal spectrum, (c) LSB signal spectrum, and (d) USSB signal spectrum
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Solution:

xDSBðtÞ ¼ mðtÞ cosðoctÞ ¼ ð1=2Þa1 cosððoc � o1ÞtÞ

þ ð1=2Þa2 cosððoc � o2ÞtÞ

þ ð1=2Þa1 cosððoc þ o1ÞtÞ

þ ð1=2Þa2 cosððoc þ o2ÞtÞ: (10:8:6)

The spectra of mðtÞ and the DSB signal are

shown for o > 0 in Fig. 10.8.3a,b. Passing the

DSB signal through a high-pass filter with the char-

acteristic shown in Fig. 10.8.3c, the output of the

VSB filter is

xVSBðtÞ ¼
1

2
a1a cosððoc � o1ÞtÞ

þ 1

2
a1ð1� aÞ cosððoc þ o1ÞtÞ

þ 1

2
a2 cosððoc þ o2ÞtÞ; 05a51: (10:8:7)

The VSB signal given above contains most of the

upper sideband and a small portion or a trace of

the lower sideband as can be seen from Fig. 10.8.3.

The size of the trace depends upon the parameter a.
In this simple example, the term corresponding

to the frequency component ðfc � f2Þ is eliminated,

whereas the amplitude of the frequency component

(fc � f1Þ term is significantly reduced. Note the

multiplication factor a. &

10.8.3 Demodulation of SSB and VSB
Signals

The SSB and the VSB signals can be recovered

using coherent demodulation in Fig. 10.8.4. Fol-

lowing gives the analysis of the demodulation

scheme for the SSB signal. The analysis for

VSB is left as an exercise. By using (10.8.4) and

(10.8.5)

dðtÞ ¼ xSSBðtÞ cosðoctÞ ¼
Ac

2
mðtÞ cos2ðoctÞ

+
Ac

2
m̂ðtÞ cosðoctÞ sinðoctÞ

¼ Ac

4
mðtÞ þ Ac

4
mðtÞ cosðð2ocÞtÞ

+
Ac

4
m̂ðtÞ sinðð2ocÞtÞ: (10:8:8)

Note F½m̂ðtÞ�j j ¼ �jsgnðoÞMðjoÞj j ¼ MðjoÞj j;
mðtÞ and m̂ðtÞ are both LP signals with a band-

width of fm. Since fc � fm, passing dðtÞ through
an ideal LP filter results in

yðtÞ � kmðtÞ: (10:8:9)

Fig. 10.8.3 (a) Message spectrum, (b) DSB spectrum, (c)
non-ideal HP filter spectrum, and (d) vestigial upper single-
sideband spectrum

Fig. 10.8.4 Synchronous demodulation of SSB
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10.8.4 Non-coherent Demodulation
of SSB

The effect of a non-coherent demodulation scheme

in SSB is similar to the one on the DSB case. Let the

local carrier at the receiver be cosððoc þ DoÞtþ dÞ.
Note the phase difference d is assumed to be

a constant. Using the product demodulation, using

(–) sign for the USB, the (þ) sign for the LSB signal,

we have

dðtÞ ¼ Ac

2
½mðtÞ cosðoctÞ

+m̂ðtÞ sinðoctÞ� cosððoc þ DoÞtÞ þ dÞ

¼Ac

4
½mðtÞcosðDotþdÞþmðtÞcosðð2ocþDoÞtþdÞ�

+
Ac

2
m̂ðtÞ½sinðDotþdÞ� sinððocþDoÞtÞþdÞ�:

(10:8:10)

Passing dðtÞ through a low-pass filter results in

yðtÞ � Ac

4
½mðtÞ cosðDoþ dÞ+m̂ðtÞ sinðDoþ dÞ�:

(10:8:11)

If Do and d are both zero, then the output is

yðtÞ � ðAc=4ÞmðtÞ. The recovered signal will be dis-

torted when they are not equal to zero. Specifically,

when Do ¼ 0, the output is

yðtÞ � Ac

4
½mðtÞ cosðdÞ+m̂ðtÞ sinðdÞ�: (10:8:12)

Since F½x̂ðtÞ� ¼ �j sgnðoÞXðjoÞ, it follows that

F½x̂ðtÞ�j j ¼ Xð joÞj j. The phase error in the local car-

rier results in a phase distortion in the detector out-

put. When d ¼ 0, the effect of the frequency error is

equivalent to generating another SSB signal with a

new carrier frequency Do. Voice signals sound

slightly different and a frequency shift of +20Hz

are tolerable for these signals. For voice signals,

d ¼ 0 is usually not required, as the detector output

is a linear combination of mðtÞ and m̂ðtÞ and the dis-

tortion is tolerable. In video and data transmission,

phase distortion can be critical. Ideal filters are phy-

sically unrealizable and good sideband conventional

filters are difficult to design. Good sideband suppres-

sion is possible with crystal filters (Couch (2001)).

Notes: A compromise between DSB and SSB is

vestigial sideband modulation (VSB). VSB signals

are easy to generate using realizable filters. The

increase in bandwidth of VSB from SSB is approxi-

mately 25%. Partial transmission of the two bands

allows for exact recovery of the baseband signal

using a synchronous detector. &

10.8.5 Phase-Shift Modulators
and Demodulators

Another way to generate SSB signals is by the use of

phase-shift modulators. See Fig. 10.8.5. The design

of these is not simple and the imperfections usually

result in distortion in the low-frequency compo-

nents. The basic unit in these modulators is a�908
phase-shift network, a Hilbert transformer with the

transfer function (see 5.11.2)

HðjoÞ ¼ �jsgnðoÞ: (10:8:13)

Hilbert transformer is a quadrature filter, as its out-

put is a sine function if its input is a cosine function.

The signals identified at different locations on the

Fig. 10.8.5 Phase-shift
modulator ((–) upper SSB
signal, (+) lower SSB signal)
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block diagram in Fig. 10.8.5 are given by

x1ðtÞ ¼ m̂ðtÞ; x2ðtÞ ¼ mðtÞ cosðoctÞ and x3ðtÞ ¼
m̂ðtÞ sinðomtÞ. The output of the modulator for the

upper and the lower sideband modulations are

given by

yðtÞ ¼ mðtÞ cosðoctÞ+m̂ðtÞ sinðoctÞ: (10:8:14)

[(+), lower sideband, (–) upper sidebands.]

Example 10.8.3 Using the single-tone modulating

signal mðtÞ ¼ cosðomtÞ, determine the output of

the modulator shown in Fig. 10.8.5.

Solution: Hilbert transform of the message signal is

m̂ðtÞ ¼ H½cosðomtÞ� ¼ sinðomtÞ. Then

yðtÞ ¼ cosð2pfmtÞ cosð2pfctÞ
+ sinð2pfmtÞ sinð2pfctÞ ¼ cosð2pðfc+fmÞtÞ;

)USSB signal ¼ cosð2pðfc þ fmÞtÞ;
LSSB signal ¼ cosð2pðfc � fmÞtÞÞ: (10:8:15)

Phase-shift demodulator: Figure 10.8.6 gives the

phase-shift SSB demodulator. Now we will show

that xUSSBðtÞ ¼ mðtÞ cosðoctÞ � m̂ðtÞ sinðoctÞ: The
corresponding output is

dðtÞ ¼ ½mðtÞ cosðoctÞ � m̂ðtÞ sinðoctÞ� cosðoctÞ
þHf½mðtÞ cosðoctÞ � m̂ðtÞ sinðoctÞ� sinðoctÞg

¼ mðtÞ
2
þmðtÞ

2
cosð2octÞ �

m̂ðtÞ
2

sinð2octÞ

þH
mðtÞ
2

sinð2octÞ
� �	 


� 1

2
^̂mðtÞ þH

m̂ðtÞ
2

cosð2octÞ
� �	 


: (10:8:16)

Hilbert transform of a sum is the sum of the Hilbert

transforms of the individual terms. If xðtÞ is a Lp

function and yðtÞ is a non-overlapping Hp function,

then (see (5.10.23))

HfxðtÞyðtÞg ¼ xðtÞHfyðtÞg: (10:8:17)

In addition, we note that mðtÞ and m̂ðtÞ are low-pass
functions with a bandwidth of BHz. The spectra of

mðtÞ ðand m̂ðtÞÞ do not overlap the spectra of

cosð2octÞ and sinð2octÞ, assuming fc � B, which is

a valid assumption. Using this and (10.8.16), we have

^̂mðtÞ ¼ �mðtÞ;Hfcosð2octÞg

¼ sinð2octÞ;Hfsinð2octÞg ¼ � cosð2octÞ

Hfð1=2Þm̂ðtÞ cosð2octÞg ¼ ð1=2Þm̂ðtÞ sinð2octÞ;
Hfð1=2ÞmðtÞ sinð2octÞg ¼ �ð1=2ÞmðtÞ cosð2octÞ:

) dðtÞ ¼ mðtÞ

In the phase-shift modulators and demodulators, it

is common to generate sinðoctÞ from cosðoctÞ using
a 908 phase shifter. The transmitted SSB signal

contains only one sideband, and the envelope of

the SSB signal does not correspond to the message

signal.

Bandwidth comparisons:

BWSSB5BWVSB5BWDSB ¼ BWAM: (10:8:18)

10.9 Frequency Translation and Mixing

So far we considered linear frequency translation

in the modulation schemes. We assumed a single

carrier frequency and used mixing or heterodyning.

Fig. 10.8.6 Phase-shift
demodulator: (+) for upper
single-sideband input and (–)
for lower single-sideband
input
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A radio should be able to receive all signals and

recover any of these. Frequency location of a modu-

lated signal depends upon the carrier frequency oc

and it is captured using a band-pass filter centered

at this frequency with a bandwidth twice that of the

message signal. First, consider the basic associated

with mixers and up/down converters.

The inputs to the mixer are (see Fig. 10.9.1)

mðtÞ !FT MðjoÞ and vLoðtÞ ¼ 2 cosððo1 þ o2ÞtÞ.
The input and the output spectra are given below.

vm tð Þ ¼ m tð Þ cos o1tð Þ !FT 1=2ð ÞM j oþ o1ð Þð Þ
þ 1=2ð ÞM j o� o1ð Þð Þ ¼ Vm joð Þ; (10:9:1)

emðtÞ ¼ 2mðtÞ cosðo1tÞ cosðo1 þ o2Þt
¼ mðtÞ cosðo2tÞ þmðtÞ cosðð2o1 þ o2ÞtÞ;

(10:9:2a)

EmðjoÞ ¼ F½emðtÞ� ¼ ð1=2ÞMðjðoþ o2ÞÞ
þ ð1=2ÞMðjðo� o2ÞÞ
þ ð1=2ÞMðjðoþ 2o1 þ o2ÞÞ
þ ð1=2ÞMðjðo� 2o1 � o2ÞÞ: (10:9:2b)

The spectra at various locations are shown in

Fig. 10.9.2. The subscript mon eðtÞ in Fig. 10.9.1

indicates that it corresponds to the input mðtÞ.
Signal spectrum of mðtÞ;MðjoÞ is shown in

Fig. 10.9.2a. For simplicity, it is assumed to be

real. The spectra VmðjoÞ and EmðjoÞ are shown in

Fig. 10.9.2c,d. By using a BP filter with a center

frequency of o2 and with a bandwidth (BW) larger

than twice the bandwidth of the message signal

mðtÞ, we obtain the output

ymðtÞ ¼ mðtÞ cosðo2tÞ !
FT ð1=2ÞMðjðoþ o2ÞÞ

þ ð1=2ÞMðjðo� o2ÞÞ: ð10:9:3Þ

Its spectrum is shown in Fig. 10.9.2e. The block dia-

gram in Fig. 10.9.1 shifts the spectrum of the signal

mðtÞ cosðo1tÞ centered at the frequency o1 to the

spectrum of the signal mðtÞ cosðo2tÞ centered at the

frequency o2. That is, it translates a signal spectrum

fromo1 to o2. It is possible that a signal located at a

frequency other than o1 may be translated to the

same location as o2 by the above system. Consider

the signal kðtÞ, whose spectrum KðjoÞ is shown in

Fig. 10.9.2b, which is assumed to be different than

MðjoÞ. Now let vkðtÞ ¼ kðtÞ cosððo1 þ 2o2ÞtÞ is the
input to the system in Fig. 10.9.1. The spectrum of

vkðtÞ is shown in Fig. 10.9.2e and is given by

VkðjoÞ ¼ ð1=2ÞKðjðo� o1 � 2o2ÞÞ

þ ð1=2ÞKðjðoþ o1 þ 2o2ÞÞ:

The signal ekðtÞ and its transform EkðjoÞ (see Fig.

10.9.2 f.) are as follows:

ekðtÞ ¼ 2 kðtÞ cosððo1 þ 2o2ÞtÞ cosððo1 þ o2ÞtÞ

¼ kðtÞ cosðo2tÞ þ kðtÞ cosðð2o1 þ 3o2ÞtÞ:

EkðjoÞ ¼ F½ekðtÞ� ¼ ð1=2ÞKðjðoþ o2ÞÞ
þ ð1=2ÞMðjðo� o2ÞÞ
þ ð1=2ÞMðjðoþ ð2o1 þ 3o2ÞÞ
þ ð1=2ÞMðjðo� ð2o1 þ 3o2ÞÞ:

ð10:9:4Þ

x BP Filter

)( jH BP

0 B−2 2 B+2

(b)

1

1 2( ) ( ) cos( 2 )kv t k t t t= +

t)cos(2 21 +

)(tem

)(tek
2ω

)( jωH BP

2( ) ( ) cos( )my t m t t=
)cos()()( 2ttktyk =

(a)

ω

ωω

ω ω

ω
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ω

Fig. 10.9.1 (a) Mixer and
(b) HBpðjoÞ
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Fig. 10.9.2a (a) MðjoÞ; (b) KðjoÞ, (c) VmðjoÞ, (d) EmðjoÞ, (e) EkðjoÞ, (f) VkðjoÞ; ðgÞEkðjoÞ; ðhÞYkðjoÞ;o � 0
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It is shown in Fig. 10.9.2 g. Passing ekðtÞ through
a Bp filter with the center frequency o2 with a

bandwidth twice that of results in (see Fig. 10.9.2 h

for the spectra of ykðtÞ.)

ykðtÞ ¼ kðtÞcosðo2tÞ !
FT ð1=2ÞKðjðoþ o2ÞÞ

þ ð1=2ÞKðjðo� o2ÞÞ:
(10:9:5)

See Table 10.9.1 for the input and the output func-

tions for the two cases. Both the output spectra are

centered at the frequency o2. The input frequency

o1 þ 2o2 is the image frequency of the desired fre-

quency o1. If the input to the system in Fig. 10.9.1

is vmðtÞ þ vkðtÞ, neither ymðtÞ nor ykðtÞ can be recov-
ered. Such a problem can appear in radio receivers.

Superheterodyne receiver provides a way to avoid

this problem.

10.10 Superheterodyne AM Receiver

Block diagram of the superheterodyne AM receiver

is shown in Fig. 10.10.1. The receiver consists of a

radio-frequency (RF) section that has an amplifier

and a band-pass filter; a mixer; an intermediate-fre-

quency (IF) section that has an amplifier and a fixed

filter; an envelope detector; and an audio section that

has an amplifier and a speaker. Although we use

oð¼ 2pf Þ0s, the frequencies f 0s are used as well in

Hz. The front end of the AM radio receiver has all

the AM signals in the form of a signal:

Received radio signal ¼
X

viðtÞ þNoise:

ðniÞðtÞ is one of the radio signalsÞ:

We are interested in the AM signal vLðtÞ ¼
gðtÞ cosðoctÞ, where gðtÞ ¼ A½1þ mmðtÞ�; A, a

constant; mðtÞ !FT MðjoÞ is the message signal;

and m, the modulation index. The bandwidth of

mðtÞ is assumed to be B Hz.

The RF section consists of a tunable band-pass

filter-amplifier. Turning the knob of the oscillator,

identified by Ac cosðoc þ oIFÞt, automatically

adjusts the center frequency of the filter to fc (note

the two arrows in Fig. 10.10.1) resulting in an ampli-

fied signal at point L by

vLðtÞ ¼ gðtÞcosðoctÞþnoise� gðtÞcosðoctÞ;oc

¼ 2pfc: (10:10:1)

Shortly we will consider the image frequencies. For

simplicity, the noise is assumed to be negligible.

vLðtÞ is the input to the mixer. The carrier frequency

is assumed to be oc þ oIF; fIF ¼ oIF=2p is the inter-

mediate frequency (IF). Then, at locationM, on the

block diagram in (10.10.1),

vMðtÞ ¼ AcgðtÞ cosðoctÞ cosððoc þ oIFÞtÞ
¼ ð1=2ÞAcgðtÞ cosðoIFtÞ
þ ð1=2ÞAcgðtÞ cosðð2oc þ oIFÞtÞ: (10:10:2)

The spectrum of the first term on the right in (10.10.2)

is centered at the intermediate frequency (IF)oIF. The

spectrum of the second term is centered at

Table 10.9.1 Inputs and outputs of the system in Fig. 10.9.1

Input Output

vmðtÞ ¼ mðtÞ cosðo1tÞ ymðtÞ ¼ mðtÞ cosðo2tÞ
vkðtÞ ¼ kðtÞ cosððo1 þ 2o2ÞtÞ ykðtÞ ¼ kðtÞ cosðo2tÞ

cos( )c c IFA t+

( )i
i

v t∑

2T RF IFB B f< <

( )Lv t
L

( )Mv t

M
X

~

( )Nv t

N

C ( )Pv t
P

IF TB B≅
cf IFf AFB B=

ω ω

Antenna

RF Filter
& AMP

AF Filter
& AMP

IF Filter
& AMP

Envelope
detector

AVC

Speaker

Fig. 10.10.1 Superheterodyne
AM receiver, B=message
BW, BT ¼ 2B ¼ AM
transmission BW,RF= radio
frequency, IF = intermediate
frequency, AF= audio
frequency, BRF � 2B ¼ RF
filter bandwidth, BIF ¼ 2B ¼
IF filter bandwidth,
BIF ¼ B ¼ Audio filter
bandwidth
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ð2oc þ oIFÞ, which is removed by the BP IF filter

centered at oIF with a bandwidth of 2B kHz. A stan-

dard IF frequency for an AM radio is 455 kHz. Then,

at point N, the output of the IF filter and amplifier is

vNðtÞ ¼ k2gðtÞ cosðoIFtÞ; k2 � a constant: (10:10:3)

This signal is demodulated using an envelope

detector and a bias removal capacitor. The signal

at point P is the recovered message signal. Assum-

ing that the AF filter (with a bandwidth of BHz)

rejected most of the noise present in the signal, the

signal vP at P is

vPðtÞ � k3mðtÞ; k3 � a constant:

Now briefly consider image frequencies. If we are

trying to recover a signal with a carrier frequency

oc, we also receive a signal having a carrier fre-

quency at oc þ 2oIF. The image frequency is sepa-

rated from the desired frequency by 2 oIF or . The

image frequency signal is eliminated by the RF

band-pass filter amplifier. Since the image frequency

is separated from the desired signal frequency by

900 kHz, i.e., close to 1 MHz and the RF filter

need not be a narrowband filter, see Ziemer and

Tranter (2002).

The AM broadcast band occupies the frequency

range from 540 kHz to 1.6 MHz. Noting the IF is

455 kHz, the tunable range of frequencies is from

ð540 kHzþ 455 kHzÞ ¼ 995 kHz to ð1600 kHz

þ 455 kHzÞ ¼ 2055 kHz:

Example 10.10.1 Illustrate the superheterodyne

receiver assuming the desired station is centered at

fc ¼ 550 kHz and the message BW bandwidth BHz.

Discuss the image frequency signal and the band-

width (BW) requirements on the RF filter.

Solution: First consider the RF filter BW so that the

image frequency signal is eliminated by it. The signal

generated at point M is located at the center fre-

quency fc þ fIF ¼ ð550þ 455Þ ¼ 1005 kHz. The cor-

responding image frequency signal (say kðtÞÞ is

located at the center frequency fc þ 2fIF ¼
ð550þ 2ð455ÞÞ ¼ 1460 kHz, which is removed by

the RF filter with a BW larger than two times the

BW of the message signal, i.e., the transmission BW.

The output of themixer for the input gðtÞ at pointL is

lvLðtÞ ¼ AcgðtÞ cosð2pð550 kÞtÞ cosðð2pð1005 kÞtÞ

¼ ðAc=2ÞgðtÞ½cosð2pð1555 kÞtÞ

þ cosð2pð455 kÞtÞ�:

This is filtered by a good IF filter centered at

455 kHz with bandwidth 2B.The signal at pointN is

vNðtÞ � bgðtÞ cosð2pð455 kÞtÞ: ðb is a constantÞ:

This is fed into a proper demodulator, such as an

envelope detector followed by a bias removal cir-

cuit. Assuming that the AF filter–amplifier (with a

bandwidth of BHz) amplifier rejected most of the

noise present in the signal, the signal at point P is

vPðtÞ � amðtÞ; a� a constant: (10:10:4)

The output of the AF filter–amplifier drives a

speaker resulting in the desired audio signal. &

Notes: There are three main frequencies: audio (A),

intermediate (I), and the radio (R) frequenciesof inter-

est in a superheterodyne receiver. The audio fre-

quency (AF) band is assumed to be between 0 and

5 kHz; the radio frequency (RF) band corresponding

to the carrier frequency fc is in the frequency range

fc � 5 kHz5f5fc þ 5 kHz. The IF band range is

450 kHz5f5460 kHz: The RF filter amplifier in the

superheterodyne receiver is a variable filter centered

at the desired frequency fc ¼ oc=2p and the BW of

the band-pass RF filter BWRF > 2B ¼ 10 kHz. The

image frequency is separated from the desired signal

frequency by approximately 1 MHz. The IF filter is a

fixed filter centered at fIF ¼ 455 kHz with the band-

width of 10 kHz and is designed to do most of the

filtering. The superheterodyne receiver can separate

closely spaced signals.

In Fig. 10.10.1 there is a feedback loop taking the

information from the envelope detector to the IF

filter amplifier providing the automatic gain or

volume (AGC or AVC)control if there is fading in

the signal. The AGC detects the signal level and

either increases or decreases its amplitude before it

passes the signal to the next stage. It is achieved by

rectifying the receiver’s audio signal and finding its

average value. It is used to increase (or decrease) the

IF stage’s gain. &
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AM broadcast range standards (see Couch (2001)

and Roden (1996))

Assigned frequency, fc 10 kHz increments

from 540 to 1700 kHz

Channel bandwidth 10 kHz

Carrier frequency

stability

–20 Hz of the assigned

frequency

Maximum power

licensed

50 kW

AM broadcast stations in the United States are

licensed by the Federal Communications Commission

(FCC). Since the spacing between the carrier’s fre-

quencies of AM radio stations must be at least

10 kHz, the entire frequency band can support only

a few over 100 stations. There are several factors FCC

uses in the decision process. The location and the

height of the antenna are important as a low-power

station in a rural area. It is less critical compared to a

high-power station in a city. For stations that are

nearby, the spacing between the carrier frequencies

must be separated by 30 kHz or more. To avoid

interference between stations, directional antennas

are used. The radiated power affects the range of

transmission. FCC takes this into consideration

when assigning carrier frequencies. The antenna pat-

tern controls the range as a function bearing from the

antenna. Radio stations use directional antennas to

provide service to their customers. The time of broad-

cast affects the range of transmission. The transmis-

sion characteristics at medium frequencies depend

upon temperature, humidity, and the time of opera-

tion, day, or night and others. Clear channel stations

operate full time (day and night) and have maximum

licensed power of 50 kW and they have assigned

special carrier frequencies (see Couch, 2001). These

stations cover large areas. Nonclear-channel stations

are assigned special frequencies. Some of them may

have the same as the clear-channel frequencies if they

can be operated without interference of the clear sta-

tions. These secondary stations operate using direc-

tional antennas with low power for a local area with a

power of 1 kW. If they are allowed to operate at

night, they use a night time power of 250 W or less.

Night time sky wave interference is large at the fre-

quencies these stations operate. International AM

broadcast stations operate in the shortwave band

(3–30 MHz) at 500 kW to 1 MW range.

Distortions: In Example 6.5.8, the response of a

simple RC network for a square pulse resulted in a

rounded and spread out pulse causinglinear distortion.

These distortions can be partially corrected using a

deconvolution filter. Systems that cause non-linear

distortion were studied briefly in Section 6.9.

Example 10.10.2 Consider that an AM signal is

transmitted through a second-order non-linear

channel and the received signal is given below. Iden-

tify the terms in yðtÞ.

yðtÞ ¼ a1xAMðtÞ þ a2x
2
AMðtÞ þ a3x

3
AMðtÞ; xAMðtÞ

¼ gðtÞ cosðoctÞ; gðtÞ ¼ AcðAþmðtÞÞ:

Solution:

yðtÞ ¼ a1gðtÞ cosðoctÞ þ a2g
2ðtÞ cos2ðoctÞ

þ a3g
3ðtÞ cos3ðoctÞ

¼ ða2=2Þg2ðtÞþ½a1gðtÞþð3=4Þa3g3ðtÞ�cosðoctÞ
þða2=2Þg2ðtÞcosð2octÞþð1=4Þa3g3ðtÞcosð3octÞ:

(10:10:5)

Equation (10.10.5) indicates that the channel non-

linearity affected the output. The term that multi-

plies cosðoctÞ is ½a1gðtÞ þ ð3=4Þa3g3ðtÞ�, where the

non-linear distortion term is ð3=4Þa3g3ðtÞ. The BW
of g3ðtÞ is three times that of gðtÞ. Channel non-
linearities increase the BW of the signal

and interfere with other signals on the channel.

Meteorological conditions change with the

weather conditions. These change the effective

channel transfer function, causing random attenua-

tion of the signal referred to as fading. One way to

reduce the slow variations due to fading is use auto-

matic gain control (AGC), see Lathi (1983). &

10.11 Angle Modulation

AM tends to be noisy during thunderstorms. Angle

modulation provides much better quality of the sig-

nal at the receiver at the expense of higher transmis-

sion bandwidth. The angle modulated signal is

xcðtÞ ¼ Ac cosðoctþ fðtÞÞ: (10:11:1)
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The constant Ac is the carrier constant and the

instantaneous phase angle and the instantaneous

frequency of the carrier are, respectively, given by

yiðtÞ ¼ octþ fðtÞ; oiðtÞ ¼
dyiðtÞ
dt
¼ oc þ

df
dt
:

(10:11:2a)

The term df=dt is the frequency deviation in radians
per second. The maximum or peak frequency devia-

tion in Hertz is defined by

Df ¼ oi � ocj j=2p; maxDf

¼ max oi � ocj j=2p: (10:11:2b)

Special cases of the angle modulated schemes:

1. Phase modulation (PM).

2. Frequency modulation (FM).

In the phase modulation, the phase fðtÞ is

varied according to the message signal mðtÞ. In

the frequency modulation, the frequency is varied

according to the message signal and a transfer

function hðtÞ to be defined shortly. These can be

expressed by

fðtÞ ¼
Z t

�1

mðaÞhðt� aÞda: (10:11:3)

Using this in (10.11.1) results in the angle modu-

lated signal

xcðtÞ ¼ Ac cos½octþ
Z t

�1

mðaÞhðt� aÞda�: (10:11:4)

If hðtÞ ¼ kpdðtÞ, then

xPMðtÞ ¼ A cos½octþ
Z t

�1

mðaÞdðt� aÞda�

¼ A cos½octþ kpmðtÞ�: (10:11:5)

kp is the phase deviation constant in radians per unit

of mðtÞ: The phase angle fðtÞ is varied linearly with

the message signal mðtÞ: If hðtÞ ¼ kfuðtÞ, then

xFMðtÞ ¼ A cos½octþ kf

Z t

�1

mðaÞuðt� aÞda

¼ Ac cos½octþ kf

Z t

�1

mðaÞda�

¼ Ac cos½octþ kf

Z t

mðaÞda�: (10:11:6)

This is a frequency modulated (FM) signal. It is

common to leave the lower limit out as the

starting time may not be known and the message

signal mðtÞ is assumed to have no dc component.

Otherwise, the integral in (10.11.6) would

diverge as t!1. The instaneous frequencyand

the frequency deviation of the carrier are defined

as follows.

Instantaneous frequency:

oiðtÞ ¼ dyi=dt ¼ oc þ df=dt: (10:11:7)

Frequency deviation of the carrier:

¼ df=dt ¼ kfmðtÞ / mðtÞ: (10:11:8)

Integrating this, the phase deviation of the fre-

quency modulated signal is

fðtÞ ¼ kf

Z t

t0

mðaÞdaþ f0; kf ¼ 2pfd: (10:11:9)

kf is the frequency-deviation constant with units,

radians per second per unit mðtÞ: It is generally

written in terms of the frequency deviation con-

stant fd, and the units are Hertz per unit of

mðtÞ: In addition, f 0 is the phase deviation at

t ¼ t0.

Notes: A PM signal corresponding to mðtÞ is

also an FM signal corresponding to the mod-

ulating signal ½dmðtÞ=dt�. With FM, the fre-

quency deviation is proportional to the mes-

sage mðtÞ. Whereas, with PM, the frequency

deviation is proportional to dmðtÞ=dt: FM

and PM are similar and the following gives a

summary.

Replacing kpmðtÞ by kf
Rt
mðaÞda changes the PM

signal to an FM signal

Repalcing kf
Rt
mðaÞda by kpmðtÞ changes FM

signal to a PM signal &
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Example 10.11.1 Give the expression for the FM

signal with mðtÞ ¼ A cosðomtÞ.

Solution: From (10.11.6), the FM signal is

xFMðtÞ ¼ Ac cos octþ A
2pfd
2pfm

sinðomtÞ
� �

¼ Ac cos½octþ b sinðomtÞ�; b ¼ A
fd
fm
:

(10:11:10)

The term b is called the FM modulation index. &

Example 10.11.2 Give the expression for the PM

signal assuming mðtÞ ¼ A sinðomtÞ.

Solution: From (10.11.5), the PM signal is

xPMðtÞ ¼ Ac cos½octþ kpA sinðomtÞ�

¼ Ac cos½octþ b sinðomtÞ�; b ¼ kpA:

(10:11:11)

Interestingly the phase and frequency modulated sig-

nals have the same general form given in (10.11.10)

and (10.11.11) corresponding to the sinusoidal mes-

sage signals, A cosðomtÞ for the FM and A sinðomtÞ
for the PM signal. The modulation index is

b ¼ Afd
fm
; FM

Akp; PM

(
: (10:11:12)

Since the difference between a sine and a cosine

function is a 908 phase shift and the frequency is

the same in both cases, the spectral analysis for both

PM and FM signals can be discussed for a tone

signal modulation at the same time. &

Example 10.11.3 Show that angle modulation does

not satisfy the linearity property and therefore is a

non-linear modulation scheme.

Solution: Consider PM and FM of the signal

m1ðtÞ þm2ðtÞ by

xPMðtÞ ¼Ac cos½octþ kpðm1ðtÞ þm2ðtÞÞ�

6¼ Ac cos½octþ kpm1ðtÞ�

þ Ac cos½octþ kpm2ðtÞ�;

xFMðtÞ¼Ac cos½octþðkf
Z t

mðaÞdaþkf

Z t

m2ðaÞda�;

6¼ Accos½octþ kf

Z t

m1ðaÞda�

þ Accos½octþ kf

Z t

m2ðaÞda�: &

The angle modulated signals (see (10.11.5) and

(10.11.6).) can be written in the form

xcðtÞ ¼ Ac cosðoctþ fðtÞÞ

¼ AcRe½ej½octþfðtÞ��

¼ AcRe½ejoctejfðtÞ�;

(10:11:13)

xPMðtÞ ¼ AcRe½ejðoctþkpmðtÞÞ�
xFMðtÞ ¼ AcRe½ejðoctþfðtÞÞ�;

fðtÞ ¼ 2pfd

Z t

mðaÞda: (10:11:14)

Re [.] corresponds to the real part of the function

inside the brackets. Angle modulation is also called

exponential modulation. Figure 10.11.1 illustrates

the waveforms of a sinusoidal message signal

Modulating signal

AM

FM

PM

Fig. 10.11.1 A sinusoidal modulating signal and the corre-
sponding AM, FM, and PM signals
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along with the corresponding AM, FM, and

PM signals. The AM signal is assumed to be

AcðAþmðtÞÞ cosðoctÞ with ðAþmðtÞÞ > 0. We

will consider the spectra of the sinusoidally modu-

lated AM signal and the angle modulated signals

shortly. Note xcðtÞj j ¼ Ac cosðoctþ fðtÞÞj j ¼ Acj j.
The frequency content of an angle modulated sig-

nal changes according to the message signal and exact

spectral description of all angle modulated signals is

not possible. The frequency deviation of an angle

modulated signal from the carrier frequency is given

in (10.11.2b). The frequency varies in the range

oc �max
df
dt

����
����

� �

 Frequency deviation


 oc þmax
df
dt

����
����

� �
: (10:11:15)

FM signal has a maximum (minimum) frequency

deviation wherever the message signal is negative

maximum (negativeminimum). The phasemodulated

signal has maximum (minimum) frequency deviation

wherever the message signal has positive maximum

(negative minimum) slope. Later we will consider

these in analytical terms. In the case of the sinusoidal

modulation, the modulated signals are very similar,

whereas for square wavemodulation the FM and PM

waves are distinctly different. Earlier we pointed out

that PM and FMmodulations are intimately related.

By just looking at an angle modulated signal, we

cannot tell whether it is a PM signal or an FM signal.

10.11.1 Narrowband (NB) Angle
Modulation

By approximating the cosine and the sine functions

using power series, cosðfðtÞÞ � 1 and sinðfðtÞÞ
� fðtÞ for fðtÞj j � 1, the angle modulated signal

reduces to a NB angle modulation scheme given by

xcðtÞ ¼ Ac cos½octþ fðtÞ�

¼ Ac½cosðoctÞ cosðfðtÞÞ � sinðoctÞ sinðfðtÞÞ�;
(10:11:16)

� Ac cosðoctÞ � AcfðtÞ sinðoctÞ: (10:11:17)

This approximate representation is very similar to

the amplitude modulated signal.

xAMðtÞ ¼ AcðAþmðtÞÞ cosðoctÞ
¼ AcA cosoctþAcmðtÞ cosðoctÞ: (10:11:18)

Both the NB angle modulated signal and the AM

signal have the carrier component. In the secondpart of

the AM signal, we have the DSB part [AcmðtÞ
cosðoctÞ]; whereas, in the second part of the NB angle

modulated signal we have the term [�fðtÞ sinðoctÞ]
and in AM we have the term AcmðtÞ cosðoctÞ. The
NBFM and NBPM signals are given by

xNBPMðtÞ ¼Ac cosðoctÞ
� AckpmðtÞ sinðoctÞ; (10:11:19)

xNBFMðtÞ¼Ac cosðoctÞ�Ackf

Z t

mðaÞda

2
4

3
5sinðoctÞ:

(10:11:20)

Example 10.11.4 Illustrate the differences between

the AM and the NB angle-modulated signals using

tone modulation, see (10.11.10) and (10.11.11).

Solution: The narrowband FM (NBFM) and nar-

rowband PM (NBPM) modulated signals can be

approximated by

xFMðtÞ ¼Ac cos½octþ A
fd
fm

sinðomtÞ� � Ac cosðoctÞ

� AcðA
fd
fm
Þ sinðomtÞ sinðoctÞ ¼ xNBFMðtÞ;

(10:11:21)

xPMðtÞ ¼ Ac cos½octþ Akp sinðomtÞ�
� Ac cosðoctÞ � AcðAkpÞ sinðomtÞ sinðoctÞ
¼ xNBPMðtÞ: (10:11:22)

They both have the same general form. Using the

trigonometric formulas, we have

xNBFMðtÞ ¼Ac cosðoctÞþ
1

2
Ac A

fd
fm

� �
½cosðocþomÞt

� cosðoc�omÞt�; (10:11:23)

xNBPMðtÞ ¼ Ac cosðoctÞ þ
1

2
AcðAkpÞ½cosðoc þ omÞt

� cosðoc � omÞt�; (10:11:24)
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) XNBFMðjoÞ ¼ Acp½dðo� ocÞ þ dðoþ ocÞ�

þ AAcp
2

fd
fm
½dðo� ðoc þ omÞÞ

� dðo� ðoc � omÞÞ
þ dðoþ ðoc þ omÞÞ
� dðoþ ðoc � omÞÞ�: (10:11:25)

The NBFM spectrum is sketched in Fig. 10.11.2 for

positive frequencies. Note the horizontal axis is

given in terms of frequency f ¼ ðo=2pÞ in Hertz

rather than in terms of radians per second. The

derivation and sketch for the spectrum of the

NBPM is left as an exercise. Comparing this with

the AM signal we see that both the NBFM and the

AM signals require the same bandwidth, i.e., 2fm.

NB angle modulation schemes are not that much of

use as they are, except that they can be used as a first

step in generating wideband modulation discussed

next. Note the bandwidth of the NBFM is 2 om.

10.11.2 Generation of Angle Modulated
Signals

Implementations of the NBFM and NBPM schemes

are illustrated Fig. 10.11.3a,b based on (10.11.21)

and (10.11.22). Since the sine is a phase-shifted cosine

function, it can be generate from the cosine function

using a 908 phase shifter, see Fig. 10.11.3c.

Narrowband-to-wideband conversion: There are

two standard methods referred to as the direct and

indirect methods to generate a wideband angle

modulated signal.

Indirect method: A simple way to generate a

wideband signal is first generate a NB signal and

use a frequency multiplier and a band-pass filter

that filters out the undesired frequencies. Let the

input to the square-law device is a NB angle modu-

lated signal. The NB signal and the output of the

square-law device are (fðtÞ is a function of mðtÞ.)
x1ðtÞ ¼ A1 cosðo1tþ fðtÞÞ; fðtÞj j � 1;

y1ðtÞ ¼ x21ðtÞ ¼ A2
1 cos

2ðo1tþ fðtÞÞ

¼ 1

2
A2

1 þ
1

2
A2

1 cosð2o1tþ 2fðtÞÞ: (10:11:26)

(a)

(b)

(c)

Fig. 10.11.3 Generation of
narrowband angle
modulated signal (a) NBFM,
( b) NBFM, and (c) phase
shifter

Fig. 10.11.2 Spectrum of a narrowband FM signal
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Passing y1ðtÞ through a BP filter with the center

frequency of (2f1Þ with sufficient bandwidth (dis-

cussed in the next section) results in

y0ðtÞ ¼ A2
1 cosð2o1tþ 2f1ðtÞÞ: (10:11:27)

One can use an n-law device and obtain the output

An
1 cos

nðno1tþ nf1ðtÞÞ. Using trigonometric identi-

ties (10.11.27) can be written in terms of a sum of

harmonic terms. Using a NBBP filter with the cen-

ter frequency of fc ¼ nf1 with sufficient BW, the

output is

yðtÞ ¼ Ac cosðoctþfðtÞÞ; oc ¼ no1; fðtÞ ¼ nf1ðtÞ:
(10:11:28)

Selecting a large n will result in a wide-band modu-

lated signal. Note the increase in the carrier fre-

quency from f1 to nf1.

Direct method: In this method FM is generated

using a voltage-controlled oscillator (VCO), whose

frequency is controlled by the modulating signal.

One way to generate an FM directly is by varying

a capacitance or an inductance of a tuned oscillator.

Direct method provides large frequency deviations.

One of the major disadvantages is that carrier fre-

quency tends to drift and frequency stabilization is

needed, see Couch (2001).

10.12 Spectrum of an Angle Modulated
Signal

To find the frequency content of a signal, such as an

angle modulated signal, all we need to do is take the

Fourier transform of this signal. Unfortunately,

closed form solutions for the transforms of the

angle modulated signals do not exist for all most

all message signals. To start with we will consider

tone angle modulated signals. Recall that the angle-

modulated signal can be expressed as (see (10.11.10)

and (10.11.11))

xcðtÞ ¼ Ac cos½octþ b sinðomtÞ�;

b ¼
ðAfd=fmÞ; FM

Akp; PM
:

	
(10:12:1)

Recall that in deriving this expression we have used

two different message signals, a cosine function for

the FM case and a sine function for the PM case.

Since the sine and the cosine functions of the same

frequency are the same except for the phase shift,

spectral analysis of the signal in (10.12.1) gives us

the necessary information, and therefore, we can

spectral analyze the signals for both FM and PM

at the same time.

In Chapter 1, Section 1.6.3 functions of periodic

functions were considered. With fðtÞ ¼ b sinðomtÞ
in (10.11.13), we have

xc tð Þ ¼ AcRe ejoctejb sin omtð Þ
h i

;om ¼ 2pfm: (10:12:2)

Since b sinðomtÞ is periodic with period T ¼ ð1=fmÞ,
so is ejb sinðomtÞ. It can be seen from (10.12.3) below.

Since it is periodic, it can be expressed in terms of F-

series in (10.12.4).

e jb½sinðomðtþTÞÞ� ¼ e jb sinðomtÞ ¼ yTðtÞ;omT ¼ 2p;

(10:12:3)

e jb sinðomtÞ ¼
X1

k¼�1
Xs½k�ej2pkfmt;

Xs½k� ¼
1

ð1=fmÞ

Zð1=2fmÞ

�ð1=2fmÞ

ejb sinðomtÞe�j2pkfmtdt;

om ¼ 2pfm: (10:12:4)

Using l ¼ 2pfmt in the above integral and

t ¼+ð1=2fmÞ ) l ¼+p and dl ¼ 2pfmdt, we

have the F-series coefficients

Xs½k� ¼
1

2p

Zp

�p

e�jðkl�b sinðlÞÞdl � JkðbÞ: (10:12:5)

This integral cannot be determined analytically and

numerical methods are needed. JkðbÞ is the Bessel

function of the first kind of order k with respect to

real b. See Poularikas (1996) for a detailed discussion

onBessel functions. TheBessel functions JkðbÞ canbe
expanded using power series for b 6¼ 0 and k 6¼ 0.

We will discuss this special case shortly.

JkðbÞ ¼
X1
n¼0

ðb=2Þkþ2nð�1Þn

ðnþ kÞ!ðnÞ! ; �15b51:

(10:12:6)
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10.12.1 Properties of Bessel Functions

Some properties of Bessel functions can be derived

by using either (10.12.5) or (10.12.6) assuming b is

real, see Whittaker and Watson (1927). These are

given below.

1. J�kðbÞ ¼ ð�1ÞkJkðbÞ; k ¼ 0; 1; 2; . . . (10:12:7)

By replacing k by �k in (10.12.6) and noting that

1=½ðn� kÞ!� ¼ 0 for n5k and 0! ¼ 1,

J�kðbÞ ¼
X1
n¼0

ð�1Þnðb=2Þ2n�k

n!ðn� kÞ! ¼
X1
n¼k

ð�1Þnðb=2Þ2n�k

n!ðn� kÞ!

¼
X1
m¼0

ð�1Þmþkðb=2Þ2mþk

m!ðmþ kÞ! : (10:12:8)

The last equality in (10.12.8) is obtained by seting

n ¼ mþ k. From this equation, (10.12.7) follows.

Furthermore, from the integral in (10.12.5), we

have the special case

2. J0 0ð Þ ¼ 1

2p

Zp

�p

e�jkldy ¼ 1;

Jk 0ð Þ ¼ 1

2p

Zp

�p

e�jkldl ¼ e�jkl

2p �jkð Þ
l¼p
l¼�p ¼ 0;k 6¼ 0:
��

(10:12:9)

For small values of b, by keeping only the first term
in the series in (10.12.6), we have

JkðbÞ � bk=2kk!; (10:12:10a)

For b 
 :3; J0ðbÞ � 1; J1ðbÞ � b=2; JkðbÞ
� 0; k > 1: (10:12:10b)

For large values of b, JkðbÞ can be approximated

by

JkðbÞ �

ffiffiffiffiffiffi
2

pb

s
cos b� p

4
� np

2

� �
: (10:12:10c)

That is, JkðbÞ behaves like a sinusoidal function

with decreasing amplitude and

lim
k!1

JkðbÞ ¼ 0 for a fixed b: (10:12:10d)

3. For k ¼ 0; 1 and b � 4, good approximations

for J0ðbÞ and J1ðbÞ are

J0ðbÞ �
cosðb� p

4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2Þb

p ;

J1ðbÞ �
sinðb� p

4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2Þb

p : (10:12:10e)

4. Bessel functions can be derived using a difference

equation (see Poularikas (1996))

ð2 k=bÞJkðbÞ ¼ Jk�1ðbÞ þ Jkþ1ðbÞ: (10:12:11)

5. X1
k¼�1

J2kðbÞ ¼ 1 for all b: (10:12:12)

This is shown below.

X1
k¼�1

J2k bð Þ ¼ 1

2pð Þ2
X1

k¼�1

Zp

�p

Zp

�p

e jb sin yð Þ�jky�jb sin fð Þþjkfð Þdydf : (10:12:13)

Interchanging the order of summation and double integration, we have

X1
k¼�1

J2k bð Þ ¼ 1

2pð Þ2
Zp

�p

Zp

�p

e jb sin yð Þ�sin fð Þ½ �
X1

k¼�1
ejk f�yð Þdydf:
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The summation can be simplified by using the rela-

tionship derived in Example 3.4.4 and

X1
n¼�1

dðt� nTÞ ¼ 1

T

X1
k¼�1

ejko0t; o0 ¼
2p
T
: (10:12:15)

Noting the limits on the integral, we are only inter-

ested in the limited range of �p 
 ðf� yÞ 
 p

and T ¼ 2p and the summation can be expressed by

1

2p

X1
k¼�1

ejko0t ¼ dðf� yÞ: (10:12:16)

The summation in (10.12.15) can be simplified

and

X1
k¼�1

J2kðbÞ ¼
1

ð2pÞ2
Zp

�p

Zp

�p

e jb½sinðyÞ�sinðfÞ�ð2pÞdðf� yÞdfdy ¼ 1

2p

Zp

�p

dy ¼ 1:

Line spectra of tone modulated signals: From

(10.12.2), the angle modulated tone signal can be

expressed using Bessel functions.

xcðtÞ ¼ AcRe ejoctejb sinðomtÞ
h i

¼ AcRe ejoct
X1

k¼�1
JkðbÞej2pkfmt

" #

¼ AcRe
X1
k¼1

JkðbÞejðocþkomÞt

" #

¼ Ac

X1
k¼�1

JkðbÞ cosððoc þ komÞtÞ: ð10:12:17aÞ

¼ AcfJ0ðbÞ cosðoctÞ þ J1ðbÞ½cosðoc þ omÞt
� cosðoc � omÞt� þ J2ðbÞ½cosðoc þ 2omÞt
þ cosðoc � 2omÞt� þ . . . (10:12:17b)

Figure 10.12.1 shows the one-sided line spectra

of xcðtÞ. From (10.12.17b), the spectrum of a

tone angle modulated signalconsists of a car-

rier-frequency fc plus an infinite numberof

sideband frequency frequencies ð fc+kfmÞ;
k ¼ 1; 2; 3; . . . The spectral amplitudes depend

on the value of JkðbÞ and the amplitudes

become small for large values of k. How many

terms we need to keep in (10.12.17b) so that it

is a good approximation of the modulated sig-

nal? This depends upon the modulation index b:
If b� 1, only J0 and J1 are significant and the

other coefficients are not. The spectrum can be

approximated by the carrier and the two side-

bands for small b.

xcðtÞ � Ac cosðoctÞ þ AcJ1ðbÞ cosðoc þ omÞt
� AcJ1ðbÞ cosðoc � omÞt; b� 1: (10:12:18)

For tone modulation, narrowband angle modula-

tion is a low-deviationmodulation. For b� 1,

several terms in (10.12.17b) are needed. Large b
implies wider bandwidth. From the power series

expansion of the Bessel functions in (10.12.6),

Fig. 10.12.1 One-sided line
spectra
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JkðbÞj j � 1 if k=bj j � 1. Selected values of JkðbÞ
are given in Table 10.12.1. Blanks in the table

correspond to JkðbÞj j5:01. See Gradshteyn and

Ryzhik (1980) for an extensive table of values of

Bessel functions. The number of terms in

approximating the angle modulated signal

depends on what percentage of power need to

be kept in the approximated signal. The average

power can be computed using the Parseval’s

theorem.

We can see from Table 10.12.1 that JkðbÞj j falls
off rather rapidly for k=bj j > 1.

10.12.2 Power Content in an Angle
Modulated Signal

The average power in xcðtÞ is given by P ¼ x2cðtÞ
� �

and is

P ¼ lim
T!1

1

T

ZT=2

�T=2

x2cðtÞdt ¼ A2
c cos

2ðoctþ fðtÞÞ
� �

¼ 1

2
A2

c þ
1

2
A2

c cosð2octþ 2fðtÞÞh i: (10:12:19)

Since the carrier frequency, fc is very large com-

pared to the BW of the message signal W, xcðtÞ
has negligible frequency content in the dc region.

The envelope of the angle modulated signal is

approximately flat over one period (1=2fc). The

time average over this period is zero and

cosð2ðo c tþ fðtÞÞh i � 0. The average power in an

angle modulated signal is independent of the mes-

sage signal and the carrier frequency and is

P ¼ 1

2
A2

c : (10:12:20)

Returning to the sinusoidal modulated signal, let

the power contained in the carrier and k upper

lower sidebands be identified by PK
r . The power

contained in a sinusoid, JkðbÞ cosððoc+komÞtÞ is
equal to (J2kðbÞ=2). Therefore

PK
r ¼

1

2
A2

c

XK
k¼�K

J2kðbÞ; (10:12:21)

Lim
K!1

PK
r ¼

1

2
A2

c

X1
k¼�1

J2kðbÞ ¼
1

2
A2

c

ðsee ð10:12:13ÞÞ: (10:12:22)

To keep 98% or more of the power in angle modu-

lated signal for a single message tone, K frequencies

need to be kept above and below the carrier fre-

quency such that

Pr ¼ PK
r =P � :98: (10:12:23)

The corresponding BW of the angle modulated sig-

nal is BW � 2Kfm; fm is the frequency of the single

tone signal. It turns out that Kis equal to the integer

part of ðbþ 1Þ for Pr � :98 and the bandwidth is

approximated by

BW � 2ðbþ 1Þfm: (10:12:24)

Table 10.12.1 Bessel function values

k/JkðbÞ Jk(.1) Jk(.2) Jk(.5) Jk(1) Jk(2) Jk(5) Jk(8) Jk(10)

0 0.997 0.990 0.938 0.765 0.224 �0.178 0.172 �0.246
1 0.050 0.100 0.242 0.440 0.577 �0.328 0.235 0.043

2 0.001 0.005 0.031 0.115 0.353 0.047 �0.113 0.255

3 0.003 0.003 0.020 0.129 0.365 �0.291 0.058

4 0.020 0.034 0.391 �0.105 �0.220
5 0.002 0.007 0.261 0.286 �0.234
6 0.001 0.131 0.338 �0.014
7 0.053 0.321 0.217

8 0.018 0.224 0.318

9 0.006 0.126 0.292

10 0.001 0.061 0.208

11 0.026 0.123

12 0.010 0.063

13 0.003 0.029

14 0.001 0.012
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Example 10.12.1 Consider the phase modulated sig-

nal with Ac ¼ 10; Akp ¼ 5 and mðtÞ ¼ A sinðomtÞ.
Find the average power, bandwidths contained in

the PM signal assuming three message signal fre-

quencies fm ¼ 1; 2; 4 kHz.

Solution: The PM signal is (see (10.12.1))

xPMðtÞ ¼ Ac cos½octþ kpmðtÞ�

¼ 10 cosðoctþ 5 sinðomtÞÞ:
(10:12:25)

The average power contained in the signal is

P ¼ A2
c=2 ¼ 50W. From (10.12.25), b ¼ Akp ¼ 5

which is independent of themessage signal frequency

and the BWs are

BW ¼ 2 bþ 1ð Þfm ¼
2 5þ 1ð Þ1 ¼ 12 kHz; fm ¼ 1 kHz

2 5þ 1ð Þ2 ¼ 24 kHz; fm ¼ 2 kHz

2 5þ 1ð Þ4 ¼ 48 kHz; fm ¼ 4 kHz

8><
>: : &

Example 10.12.2 Assuming the transmitted signal is

an FM signal with Ac ¼ 10 and mðtÞ ¼ A cosðomtÞ

and A fd ¼ 5 k, give an approximate FM transmis-

sion BW.

Solution: The average power is P ¼ 50W. The FM

signal is

xFMðtÞ ¼ Ac cosðoctþ fðtÞÞ

¼ Ac cosðoctþ kf

Z t

mðaÞdaÞ

¼ Ac cos foctþ
Akf
om

sinðomtÞg
� �

;

¼ Ac cos ðoctþ b sinðomtÞ�½ �;

b ¼ A
kf
om
¼ Að2pfdÞ

2pfm
¼ Afd=fm:

(10:12:26)

Message frequencies and the BWS:

b ¼

5k=1k ¼ 5; fm ¼ 1k

5k=2k ¼ 2:5; fm ¼ 2k

5k=4k ¼ 1:25; fm ¼ 4k

8>><
>>:

9>>=
>>;
; BW ¼ 2 bþ 1ð Þfm ¼

2 5þ 1ð Þ1 ¼ 12kHz; fm ¼ 1kHz

2 2:5þ 1ð Þ2 ¼ 14kHz; fm ¼ 2kHz

2 1:25þ 1ð Þ4 ¼ 18kHz; fm ¼ 4kHz

8>><
>>:

9>>=
>>;
: &

The expression for BW of an angle modulated can

be generalized from tone signals to arbitrary signals.

First, let

D¼Deviationconstant

¼ peak frequencydeviation

bandwidthof themessage signal mðtÞ : (10:12:27)

For an arbitrary signal we replaced b by themessage

signal signal BW in for D. The transmission BW of

an angle modulated signal can be estimated by the

following rules:

BT ¼ 2ðDþ 1ÞW ðCarson’s ruleÞ; (10:12:28)

BT � 2ðDþ 2ÞW ðmodifiedCarson’s sruleÞ:
(10:12:29)

Carson’s rule underestimates the bandwidth of FM

signals in the cases of 25D510.

Notes: If D� 1 then we have the narrowband

(NB) angle modulated signal and its transmis-

sion BW is 2 W. If D� 1 then the BW is

approximately equal to 2 DW and is a wideband

signal. The spectrum of an angle modulated sig-

nal is centered at the carrier frequency with a

BW BT and is independent of the carrier

frequency. &

Example 10.12.3 The peak frequency deviation of a

commercial FM signal is limited to 75 kHz. Let the

message signal BW is 15 kHz. Determine the FM

transmission BW.

Solution: The deviation ratio and the transmission

bandwidth from (10.12.28) are
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D ¼ 75=15ð Þ ¼ 5) BT ¼ 2 5þ 1ð Þ15 ¼ 180kHz

(10:12:30) &

FCC standards suggest the commercial FM trans-

mission bandwidth to be 200 kHz. &

Notes: BW of an angle modulated signal is signifi-

cantly larger than the AM BW. It is more immune

to noise allowing for a smaller transmission power

independent of the message. FM trades signal

power to BW. Constant amplitude of an angle

modulated signal makes it less susceptible to non-

linear distortion. &

10.13 Demodulation of Angle
Modulated Signals

The simplest method converts an angle modulated

signal to an AM signal and the message is recovered

using envelope detection. For other methods, see

Couch (2001).

10.13.1 Frequency Discriminators

A block diagram of the steps involved in demodu-

lating an FM signal is shown in Fig. 10.13.1. The

instantaneous frequency of an FM signal is propor-

tional to the message signal and an ideal FM detec-

tor (a demodulator) is a device that produces an

output that is proportional to the instantaneous

input frequency. Neglecting the delay and noise,

the received signal xrðtÞ is approximately the same

as the transmitted angle modulated signal xcðtÞ, i.e.,

xrðtÞ ¼ xcðtÞ.
xcðtÞ ¼ Ac cos½octþ fðtÞ�

¼
Ac cos½octþ kf

Rt
mðaÞda�; kf ¼ 2pfd;FM

Ac cosðoctþ kpmðtÞÞ;PM
:

8><
>:

(10:13:1)

Note that transmission delays are ignored here,

as they do not affect the message recovery

process. The amplitude variations of an angle

modulated signal can be eliminated by a lim-

iter–band-pass system in Fig. 10.2.1. BP filter is

centered at oc with sufficient bandwidth. The

input to the differentiator is assumed to be

xcðtÞ in (10.13.1).

Simple frequency discriminators – basic concepts: A

simple frequency discriminator is an ideal dif-

ferentiator followed by an envelope detector,

see Fig.10.13.1. Assuming the input to the discrimi-

nator is xcðtÞ ¼ Ac cosðoctþ fðtÞÞ, the output of

the differentiator is

x0cðtÞ ¼
dxcðtÞ
dt
¼ �Ac oc þ

df
dt

� �
sinðoctþ fðtÞÞ:

(10:13:2)

x0cðtÞ is amplitude and angle modulated. The coeffi-

cient term in (10.13.2)

yðtÞ ¼ Ac oc þ
df
dt

� �
40 if oc4�

df
dt

for all t:

(10:13:3)

Note the carrier frequency fc � Message signal

bandwidth. Therefore the second inequality in

(10.13.3) is valid. Then we can say that the envelope

of x0cðtÞ is yðtÞ.

yðtÞ ¼ Acðoc þ d½2pfd
Z t

mðaÞdaÞ=dt�Þ

¼ Acðoc þ 2pfdÞmðtÞ: (10:13:4)

Removal of dc term Aoc results in the output

Acð2pfdÞmðtÞ. Note the filter gains are not included

in (10.13.4). Including all the gains and all the

constants as discriminator constant KD, the

output is KDmðtÞ. The frequency discriminator can

also be used to demodulate PM signals when

fðtÞ ¼ kpmðtÞ, see (10.13.1). Correspondingly,

yDðtÞ in (10.13.4) for this case is

Fig. 10.13.1 FM
discriminator with a band-
pass limiter
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yDðtÞ ¼ Ackp
dmðtÞ
dt

: (10:13:5)

Integration of this function results in the message

signal proportional to mðtÞ. Including all the gain

constants in the detection process, we can write the

output as KD1mðtÞ.
Simple discriminator circuits: Figure 10.13.2a

gives the block diagram of the derivative operation.

Figure 10.13.2b,c,d gives three simple differentiator

circuits. The transfer functions and the amplitude

responses of the RC and RL circuits are

HRCðjoÞ ¼
R

Rþ ð1=joCÞ ¼
jo

joþ ð1=RCÞ ; HRCðjoÞj j

¼ oj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoÞ2 þ ð1=RCÞ2

q : (10:13:6a)

HRLðjoÞ ¼
joL

Rþ joL
; HRLðjoÞj j

¼ oLj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðoLÞ2

q ¼ oj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ ðR=LÞ2

q :

(10:13:6b)

See Fig. 10.13.2e for their amplitude responses. For

low frequencies,

HRCð joÞj j � RC oj j; fj j � ð1=2pRCÞ;

HRLð joÞj j � ðL=RÞ oj j; fj j � ð1=2pðL=RÞÞ:
(10:13:7a)

These circuits act as differentiators in the low-fre-

quency range (see ( jo) below)

HRCðjoÞ� joRC andHRLðjoÞ¼ joL=R: (10:13:7b)

RC circuit output:

vðtÞ ¼ RC
dxFMðtÞ

dt

¼�RCAc ocþ kf mðtÞ
� �

sinðoctþ kf

Z t

mðaÞdaÞ:

(10:13:8)

Passing vðtÞ through an envelope detector and a

blocking capacitor gives the output proportional

to mðtÞ. The 3 dB frequencies of the RCand the

RL circuits are ð1=2pRCÞ and ðR=2pLÞ and must

exceed the carrier frequency (see Fig. 10.13.2e.).

(a) (b) 

(c) (d) 

( )RLCH j

c

( )RLH j

1

c

(e) (f) 

ω
ω

ω ω

Fig. 10.13.2 (a)
Differentiation – a block
diagram, (b) a simple low-
pass circuit used as a
differentiator, (c) a simple
low-pass circuit used as a
differentiator, (d) a simple
band-pass circuit used for a
differentiator, (e) low-pass
amplitude transfer
characteristic, and (f) band-
pass amplitude transfer
characteristic
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Discreminator constants: Kd ¼ Acð2pÞRC and Kd

¼ Acð2pÞL=R:

TheRC andRL circuit amplitude responses point out

that they have a small linear region of operation. A

tuned circuit in Fig. 10.13.2d increases the linear

region. Now

HRLCðjoÞ ¼
joL

Rð1� o2LCÞ þ joL
; HRLCðjoÞj j

¼ oLj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ð1� o2LCÞ2 þ ðoLÞ2

q :

See Fig.10.13.2 f. The linearity of the RLC circuit

can be improved by using two balanced circuits

shown in Fig. 10.13.3a, each tuned to slightly dif-

ferent frequency. The amplitude characteristics of

the top and the bottom RLC circuits in

Fig. 10.13.3b with the subscipts a and b are

HAðjoÞj j and HBðjoÞj j.). The center frequencies

of the Bp filters are fia ¼ 1=2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLiaCiaÞ

p
; fib ¼

1=2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLibCibÞ

p
;with f1a > fc and f1b5fc. The over-

all amplitude characteristic is approximately equal

to (see Ziemer and Tranter (2002).)

HðjoÞj j � HAðjoÞj j � HBðjoÞj j: (10:13:9)

The two tuned circuits are used to balance out the dc

when the input has a carrier frequency equal to fc.

That is HðjocÞj j ¼ 0. The second part of the circuit in

Fig. 10.13.3a is a simple balanced envelope detector.

The input to the cascaded tuned circuit with the

balaced envelope detector is supplied by a center-

tapped transformer with the input xFMðtÞ. Since

HðjocÞj j ¼ 0, we do not need the DC block after

the envelope detectors and therefore the low-

frequency response is significantly improved.

10.13.2 Delay Lines as Differentiators

Delay lines can be used since

yðtÞ ¼ x0cðtÞ ¼
dxcðtÞ
dt
’ xcðtÞ � xcðt� tÞ

t
; (10:13:10)

) YðjoÞ ¼ 1

t
½XcðjoÞ � e�jotXcðjoÞ�

¼ 1

t
XcðjoÞ½1� e�jot�: (10:13:11)

(a)

(b)

( ) ( ) ( )A BH j H j H j≈ −ω ω ω

Fig. 10.13.3 (a) FM-to-AM
conversion discriminator
and (b) amplitude
characteristic
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If otj j � 1, then 1� e�j2pft � j2pft. This can be

seen by expanding the exponential using power ser-

ies and keeping only the first two terms. It follows

that

YðjoÞ � joK1XcðjoÞ;K1 � a constant: (10:13:12)

The system shown in Fig. 10.13.4 approximates a

differentiator provided

t� 1=ðfc þMaximum frequency deviationÞ:
(10:13:13)

See Couch (2001) and Ziemer and Tranter (2001)

for other popular FM detectors.

10.14 FM Receivers

Most FM receivers are of the superheterodyne type

shown in Fig. 10.14.1. The basic operations in AM

and FM receivers are the same except that we have

an AM detector after the IF amplifier and filter in

the AM case, whereas we have an FM detector or

discriminator in the FM case. The commercial FM

radios have a tuning range from 88 to 108 MHz

compared to 540 to 1600 kHz for AM. The inter-

mediate frequency is 10.7 MHz in FM compared to

455 kHz in the AM case. The FM transmission

bandwidth is approximately 200 kHz compared to

10 kHz for AM.

10.14.1 Distortions

The angle-modulated signal has the property that

xcðtÞj j ¼ Ac providing less susceptibilty to non-lin-

ear distortion. Now consider the effects of a non-

linear channel on an angle modulated signal Lathi,

(1983). Consider that the angle modulated signal

xcðtÞ ¼ Ac cosðoctþ fðtÞÞ is transmitted over a

non-linear channel with the output

yðtÞ ¼ a1xcðtÞ þ a2x
2
cðtÞ þ a3x

3
cðtÞ;

¼ Aca1 cosðoctþ fðtÞÞ þ a2A
2 cos2ðoctþ fðtÞÞ

þ a3A
3 cos3ðoctþ fðtÞÞ;

¼ a2ðA2=2Þ þ ½a1Aþ ð3=4Þa3A3� cosðoctþ fðtÞÞ
þ ða2=2ÞA2 cosð2octþ 2fðtÞÞ
þ ða3=4ÞA3 cosð3octþ 3fðtÞÞ: (10:14:1)

It has four terms corresponding to a third-order non-

linearity. The second term is the angle modulated

signal. Its spectrum is centered at fc. The spectra of

the remaining terms are centered at dc, 2fc, and 3fc.

The linear term is undistorted and can be recovered

from the received signal by passing yðtÞ through a

band-pass filter centered at fc. See Example 10.10.2

Fig. 10.14.1 FM
superheterodyne receiver

Fig. 10.13.4 Differential or Approximation
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for the effects of channel non-linearities of an AM

signal. Channel non-linearities cause unwanted mod-

ulation with carrier frequencies 2oc and 3oc. They

also produced distortion of the desired signal. Angle

modulated signals are more robust to noise corruption

compared to AM. The constant amplitude of angle

modulated signals gives immunity against fading.

Angle modulated signals use larger bandwidth com-

pared to AM. They exchange SNR for the transmis-

sion bandwidth.

Relations between PM and FM signals:

FM signal of the message mðtÞ is a PM signal of the

message signal
R t

mðaÞda.

PM signal of the messagemðtÞ is an FM signal of the

message ½dmðtÞ=dt�

Lathi (1983) states that ‘‘if mðtÞ has a large peak

amplitude, and its derivative has a relatively small

amplitude, PM tends to be superior to FM. For

opposite conditions, FM tends to be superior to

PM’’. Comparing PM and FM with respect to

SNRs, PM is superior if the message signal is con-

centrated at lower end of the frequency baseband

and FM is superior if it is concentrated at the high

end of the baseband.

10.14.2 Pre-emphasis and De-emphasis

Commercial broadcasting FM uses a pre-emphasis

filter that emphasizes the high frequencies in the

baseband at the transmitter, see Lathi (1983),

Couch (2001), and others. In simple terms, it does

the derivative operation boosting high-frequency

components of the baseband signal at the transmit-

ter. At the receiver the high-frequency components

de-emphasize are de-emphasized by attenuating the

high frequencies emphasized at the transmitter.

Since most noise injected into the signal in the

channel during transmission is at the high end,

attenuation of the high-frequency components

reduces the noise part significantly in the baseband

at the receiver. Figure 10.14.2 gives the block dia-

gram identifying the pre-emphasis circuit–FM

modulator–FM demodulator–de-emphasis circuit.

The circuits for the pre-emphasis and the de-empha-

sis and their corresponding Bode plot frequency

responses are shown Fig. 10.14.3a,b.

Transfer functions:

V1o

V1i
¼HPEðjoÞ ¼K

1þ jot1
1þ jot2

;K¼ R2

R1þR2
;t1

¼RC;t2 ¼
R1R2C

R1þR2
; (10:14:2a)

(a)

(b)

Fig. 10.14.3 (a) Pre-emphis
filter and its frequency
response and (b) de-
emphasis filter and its
frequency response

DeemphasisAdditive noise
Preemphasis

( ) ( )( )Frequency Frequency
( )

modulator demodulator 1/ ( )channel
d

PE

PE

m t km tH j
H j

H j

↓ ≈
→ → → →⎯⎯⎯→ ⎯⎯⎯→ω

ω

ωFig. 10.14.2 Pre-emphasis
and de-emphasis in a
frequency modulated system
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V2o

V2i
¼HDEðjoÞ¼

1=joC
R1þð1=joCÞ

¼ 1

1þ jot1
;t1¼R1C:

(10:14:2b)

Standard values are t1 ¼ R1C ¼ 75 ms and

t2 ¼ R2C� R1C with o1 ¼ 1=t1 ando2 ¼ 1=t2.
We can show that

HPEðjoÞHDEðjoÞ � K; a constant foro� o2:

(10:14:2c)

10.14.3 Distortions Caused by Multipath
Effect

When a transmitted signal xðtÞ arrives at the

receiver by two or more paths with different

delays, the received signal is a sum of these sig-

nals and its effect on the signal to be received is

referred to as multipath effect. A simple model for

a multipath communication channel, assuming

two paths, is Hsu (1995)

yðtÞ ¼ xðtÞ þ axðt� tÞ; a51 and t > 0: (10:14:3a)

) YðjoÞ ¼ XðjoÞ þ ae�jotXðjoÞ ¼ ½1þ ae�jot�XðjoÞ

¼HðjoÞXðjoÞHðjoÞ ¼ ½1þ ae�jot�

¼ 1þ a cosðotÞ � ja sinðotÞ

¼ HðjoÞj je�ðjotþtan�1ða sinðotÞ=ð1þa cosðotÞÞÞ;

HðjoÞj j ¼ ½1þ a2 þ 2a cosðotÞ�1=2: (10:14:3b)

The amplitude response HðjoÞj j is periodic with

period T ¼ 2p=t (see Fig. 10.14.4a.). For a ¼ 1,

Hðj0Þj j ¼ 2 and Hðjðp=tÞÞj j ¼ ð1� aÞ. To compen-

sate for the multipath channel induced distortion,

an equalization filter with the following transfer

function is needed.

HeqðjoÞ � ½1=HðjoÞ� ¼ 1=½1þ ae�jot�
¼ 1� ae�jot þ a2e�j2ot � . . . : (10:14:4)

Since e�jokt is a periodic function, a tapped delay line
filter can be used as shown in Fig. 10.14.4b to

approximate the equalization. The output is

z tð Þ¼
XN
k¼1

aky t� k�1ð Þt½ � !FT
XN
k¼1

ake
�jo k�1ð Þt

 !
Y joð Þ

¼Heq joð ÞY joð Þ; (10:14:5)

HeqðjoÞ¼
XN
k¼1

ake
�joðk�1Þt¼1�ae�jotþa2e�j2ot�...;

(10:14:6)

!a1 ¼ 1; a2 ¼ �a; a3 ¼ a2; . . . ; aN ¼ ð�aÞN�1:
(10:14:7)

Noting that aj j51, the needed number of coeffi-

cients depends upon the size of a.

Notes: Echo suppression is important in telephone

communication. HðjoÞj j has dips or nulls

at o ¼+ð2 k� 1Þp=t; k ¼ 1; 2; . . .. Sound echoes

(a)

(b)

y(t)

a1 a2 aN

z(t)a1y(t)
Fig. 10.14.4 (a) HðjoÞj j and
(b) tapped delay line
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with a delay of 5 ms correspond to a transmission

path of distance of a few feet. For delays longer than

50 msec, humans hear the delayed speech signal as a

distant echo, see McClellen et al. (2003).

10.15 Frequency-Division Multiplexing
(FDM)

In telephone communications, for example, we may

need several hundred channels, from one point to

another. One way to do is string 100 different lines,

i.e., one conversation per line, which is highly ineffi-

cient, see Carlson (1975). By transmitting a single

telephone conversation, we are using only a small

frequency band and not using the remaining chan-

nel frequency band. At the front end of a receiver we

have all the stations, i.e. it is a frequency-division

multiplexed signal. FDM is a technique, wherein

several message signals are first modulated with dif-

ferent center frequencies and with sufficient band-

width so that they do not interfere with each other

and transmitted simultaneously on one channel.

FDM scheme is illustrated in Fig. 10.15.1

using single-sideband modulation. We assumed

three different signals with real spectra of different

shapes in Fig. 10.15.2. Shapes of the spectra

are not critical, whereas the location of the

spectra and the corresponding bandwidths of the

signals are important. We need to first band

limit the signals and adjacent frequency bands

need to be placed apart to minimize any inter-

ference. These are then modulated using the

carrier frequencies fi ¼ obi=2p; i ¼ 1; 2; 3 with

ob1 þ o15ob2 þ o25ob3, see Fig. 10.15.2. It illus-

trates the spectras using the SSB modulation. The

signals are then summed resulting in the composite

signal referred to as the baseband signal with a

bandwidth of ob3 þ o3 r/s. Here upper sidebands.

One can use either upper or low sidebands, not

both, for the signals to be multiplexed. In addition

to band limiting the signals, to minimize any over-

laps of the spectra in the adjacent bands in the

multiplexed signal, guard bands are included.

The received RF signal xcðtÞ is demodulated

to recover the baseband signal xbðtÞ, which is

band-pass filtered to obtain the three baseband

signals xb1ðtÞ; xb2ðtÞ; and xb3ðtÞ. These are then

(a) 

(b) 

(c) 
2 2b +2b 3 3b +3b0

( )bX j

1 1b +1b

1( )bX j 2 ( )bX j 3 ( )bX j

0 0 0

Guard band Guard band

3b 3 3b +2 2b +2b1 1b +1b

1( )X j

01− 1

2 ( )X j

2− −2

3( )X j

3 30 0

ω

ω

ω

ω

ω

ω

ω

ω

ωω ωωωω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω ω ωω

ω ω ω

ω ω

ω ω

Fig. 10.15.2 (a) Spectra of
the message signals, (b)
spectra of the SSB signals,
o � 0, and (c) spectrum of
the baseband signal, o � 0

Fig. 10.15.1 Frequency-division multiplexing
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demodulated to recover the message signals. Figure

10.15.3 gives a block diagram that illustrates the

demultiplexing scheme and the demodulators recover

the signals in the demultipexing scheme. We will now

illustrate FDM using AM and FM stereo multiplex-

ing. AM stereo systems were not implemented until

the 1980s. Five different types of AM stereo systems

wereproposed, seeMennie (1978).Receivermanufac-

turers did not want to build all five decoding circuits

to recover the transmitted stereo AM signal. FCC

decided to let the market place decide on the best

system.

10.15.1 Quadrature Amplitude
Modulation (QAM) or Quadrature
Multiplexing (QM)

This scheme is shown in Fig. 10.15.4.m1ðtÞ andm2ðtÞ
are different messages. The DSB signals are

m1ðtÞ cosðoctÞ and m2ðtÞ sinðoctÞ that occupy the

same frequency space.

The carrier signals Ac cosðoctÞ andAcsinðoctÞ
are usually generated by one oscillator. For simpli-

city, Ac is assumed to be 1. The QAM signal is

xQAMðtÞ¼m1ðtÞcosðoctÞþm2ðtÞsinðoctÞ; (10:15:1)

) XQAMðjoÞ ¼
1

2
½M1ðjðo� ocÞÞ þM1ðjðoþ ocÞÞ

þ e�jðp=2ÞM2ðjðo� ocÞÞ
þ ejðp=2ÞM2ðjðoþ ocÞÞ�: (10:15:2)

Figure 10.15.4 gives the coherent demodulation

scheme to recover m1ðtÞ andm2ðtÞ. Note

xrðtÞ cosðoctþ yÞ � rUðtÞ ¼ 2m1ðtÞ cosðoctÞ
� cosðoctþ yÞ þ 2m2ðtÞ sinðoctÞ
� cosðoctþ yÞ; (10:15:3a)

xrðtÞ sinðoctþ yÞ � rLðtÞ ¼ 2m1ðtÞ cosðoctÞ
� sinðoctþ yÞ þ 2m2ðtÞ sinðoctÞ
� sinðoctþ yÞ: (10:15:3b)

Fig. 10.15.4 Quadrature
multiplexing and
demultiplexing

Fig. 10.15.3 Frequency-
division demultiplexing
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Using the trigonometric identities, the outputs of

the LP filters can be derived as follows.

2 sinðaÞ cosðbÞ ¼ sinða� bÞ þ sinðaþ bÞ;
2 cosðaÞcosðbÞ ¼ cosða� bÞ þ cosðaþ bÞ

2 sinðaÞ sinðbÞ ¼ cosða� bÞ � cosðaþ bÞ

rUðtÞ ¼ m1ðtÞ cosðyÞ �m2ðtÞ sinðyÞ
þm1ðtÞ cosð2octþ yÞ þm2ðtÞ sinð2octþ yÞ;

(10:15:4a)

rLðtÞ ¼ m1ðtÞ sinðyÞ þm2ðtÞ cosðyÞ
þm1ðtÞ sinð2octþ yÞ
�m2ðtÞ cosð2octþ yÞ: (10:15:4b)

The terms m1ðtÞ sinðyÞ+m2ðtÞ cosðyÞ are low-fre-

quency terms. The remaining terms are centered at

the frequency ð2fcÞ. LP filtering rUðtÞ and rLðtÞ
results in

y1ðtÞ ¼ m1ðtÞ cosðyÞ �m2ðtÞ sinðyÞ;

y2ðtÞ ¼ m2ðtÞ cosðyÞ þm1ðtÞ sinðyÞ: (10:15:5)

If y ¼ 0, i.e., the input and the output oscillators are

phase synchronized, then yiðtÞ ¼ miðtÞ; i ¼ 1; 2 and

we have recovered the input signals. If y 6¼ 0; then we

have co-channel interference and the output is a mix-

ture of the scaled versions of the inputs. Clearly, the

phase difference between the transmitter and the

receiver oscillators identified by the phase angle y is

critical. If y is small, we can approximate the outputs

to the input message signals. The phase error results

in attenuation, which can be time-varying and cross-

talk results. The interference is measured by the

amplitude ratio sinðyÞ= cosðyÞ ¼ tanðyÞ. For the

interference to be 20 dB or below, the ratio must be

less than or equal to (.1) and the mismatch must be

less than y ¼ tan�1ð:1Þ � 5:70.

Quadrature multiplexing is an efficient way of

transmitting two signals that are located within the

same frequency band. If the input signals

miðtÞ; i ¼ 1; 2 have bandwidthsBi, then the trans-

mission bandwidth of the QAM signal is given by

2Bmax;Bmax ¼ maxðBiÞ. We are transmitting two

signals in the same band and therefore we have

saving in the transmission bandwidth. The

quadrature multiplexing can be used for both DSB

and SSB siganls. Non-coherent demodulation of

QM is not possible since the envelope of the modu-

lated signal is Ac

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

1ðtÞ þm2
2ðtÞ�

q
. Quadrature

multiplexing is very useful and has significant num-

ber of applications. One, in particular, is the use of

QM for transmission of color signals in commercial

television broadcasting, see Lathi (1983). QAM is

referred to as frequency-domain multiplexing rather

than frequency-division multiplexing as the modu-

lated spectra of the signals in QM overlap rather

than apart.

AM stereo systems: There are several AM stereo

systems that are available on the market. Most widely

used system is the Motorola compatible quadrature

amplitude modulation or C-QUAM, a trade mark of

Motorola. See Couch (2001) and Stremler, (1992) for a

good discussion on this topic.We should keep in mind

that all AM radios do not have the stereo capabilities.

In its simplest formof theAMstereo signal generation,

the inputs consist of a dc offset ðV0Þ, left-channel, and
the right-channel audio signals mLðtÞ andmRðtÞ. The
signal m1ðtÞ ¼ V0 þmLðtÞ þmRðtÞ is used to modu-

late a cosine carrier. The quadrature carrier is modu-

lated by the difference signal m2ðtÞ ¼ mLðtÞ �mRðtÞ.
QAM signal allows for mono reception using m1ðtÞ.
Stereo AM receivers use an envelope detector to

recover the sum signal ½mLðtÞ þmRðtÞ� and a quad-

rature product detector to recover the difference signal

½mLðtÞ �mRðtÞ�. Sum and difference networks can be

used to recover the left-channel and the right-channel

audio signals.

10.15.2 FM Stereo Multiplexing
and the FM Radio

Consider the block diagram shown in Fig. 10.15.5a,

where the inputs are the left (L) and the right (R)

signals mLðtÞ andmRðtÞ. These two signals are used

to generate mLðtÞ þmRðtÞ and mLðtÞ �mRðtÞ using
the sum and the difference networks. The message

signals are assumed to be band limited to the fre-

quency band 30 Hz to 15 kHz. Three baseband sig-

nals, namely mLðtÞ �mRðtÞ, mLðtÞ þmRðtÞ and a

‘‘pilot signal ’’cosð2pð19kÞtÞ are generated as illu-

strated in the block diagram in Fig. 10.15.5a. The
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pilot signal is used to generate a 38 kHz signal

using a frequency doubler and then the left minus

right signal is double-side modulated by the car-

rier. The output is

xbðtÞ ¼ ðmLðtÞ þmRðtÞÞ þ Ac½mLðtÞ �mRðtÞ�

� cosð2pð38 kÞtÞ þ Ap cosð2pð19 kÞtÞ:
(10:15:6)

The pilot signal is part of the baseband signal and

allows for synchronization at the receiver. The base-

band signal xbðtÞ is then modulated using a frequency

modulator. Figure 10.15.5b gives the baseband spec-

trum XbðjoÞ, where the spectral shapes of the signals
are assumed. The message signal is assumed to have a

15 kHz bandwidth. The bandwidth of the baseband

signal is 53 kHz. At the receiver (see Fig. 10.15.6), FM

signal is demodulated using an FM detector. Base-

band signal is passed through three filters, a LP filter

with a bandwidth of 15 kHz, a BP filter centered at

38 kHz with bandwidth equal to 30 kHz, and a pilot

filter, a narrowband BP filter centered at 19 kHz.

Using the pilot signal and a frequency doubler, the

carrier signal is generatedwith the carrier frequency of

38 kHz. Then the DSB signal is demodulated using

this carrier, which is then passed through a low-pass

filter with a bandwidth equal to 15 kHz. We can

recover mLðtÞ andmRðtÞ from mLðtÞ þmRðtÞ and
mLðtÞ �mRðtÞ.

10.16 Pulse Modulations

If a signal xðtÞ is adequately described by its sample

values xðntsÞ, it can be transmitted using analog

pulses. In these schemes, the sampled values are

represented by a set of pulses with some character-

istic of the input analog waveform.We will consider

the pulse amplitude modulation and later very

Fig. 10.15.6
Demultiplexing of FM
stereosignal

(a)

(b)

Fig. 10.15.5 (a) FM stereo
multiplexing block diagram
and (b) baseband spectrum
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briefly on pulse duration and pulse position

modulations.

10.16.1 Pulse Amplitude Modulation
(PAM)

The signal xðtÞ is ideally sampled at a sampling rate

equal to fs > 2B, and the sampling interval is

ts ¼ ð1=fsÞ. From (8.2.2), the ideally sampled signal is

xsðtÞ ¼
X1

n¼�1
xðntsÞdðt� ntsÞ ¼ xðtÞ 	 dtsðtÞ;

dtsðtÞ ¼
X1

n¼�1
dðt� ntsÞ: (10:16:1)

Pulse amplitude modulated signal xPAMðtÞ results
when xsðtÞ is passed through a filter with the

impulse response hðtÞ given below. Now

hðtÞ ¼ P
t� ðt=2Þ

t

� �
; (10:16:2a)

xPAMðtÞ ¼ xsðtÞ 	 hðtÞ

¼
X1
n¼�1

xðntsÞP
t�ðt=2Þ� nts

t

� �
: (10:16:2b)

Figure 10.16.1 illustrates a smooth function, xðtÞ,
and the pulse amplitude modulated signal obtained

by passing the sampled signal xsðtÞ through a filter

with the impulse response given in (10.16.2b) result-

ing in xPAMðtÞ.
Let us briefly review the frequency analysis of the

PAM signal (see Chapter 8). Let F½xðtÞ� ¼ XðjoÞ
and F½xsðtÞ� ¼ XsðjoÞ. The transforms of the ideally

sampled signal and the transform of the PAM signal

are

XsðjoÞ ¼ fs
X1
n¼�1

Xðjðo� nosÞÞ; (10:16:3)

xPAMðtÞ !
FT

XPAMð joÞ ¼ XsðjoÞHð joÞ;

hðtÞ !FT Hð joÞ; (10:16:4)

Hð joÞ ¼ F½hðtÞ� ¼ tsincðot=2Þe�jot=2;

sincðot=2Þ ¼ sinðot=2Þ
ðot=2Þ ;

(10:16:5a)

XPAMðjoÞ ¼ fst sincðot=2Þe�jpft
X1
n¼�1

Xðjðo� nosÞÞ; o ¼ 2pf: (10:16:5b)

The high-frequency roll-off characteristic of HðjoÞj j
acts as a low-pass filter and the filter attenuates the

upper portion of the message spectrum. This loss of

high-frequency content is referred to as the aperture

effect. This depends on the size of the pulse width t.
The ratio ðt=tsÞ is a measure of the flatness of the

function HðjoÞj j. Passing the signal xPAMðtÞ
through an ideal low-pass filter gives the signal

that approximates the original signal. If t is small,

i.e., ð1=tÞ � ðfs=2Þ then the magnitude spectrum

HðjoÞj j is fairly constant in the region of interest

and the recovered signal approximates the original

signal. Aperture effect can be neglected if

t=ts 
 ð:1Þ. If not, an equalization filter is needed

with the transfer function HeðjoÞ � ð1=HðjoÞÞ to
reduce distortion.

Among many analog pulse modulation schemes,

pulse width (duration) modulation (PWM or PDM)

andpulse position modulation (PPM) have been

popular. A PWM signal consists of a sequence of

pulses, in which each pulse has a width proportional

to the value of the signal at the sampling instant. A

PPM signal consists of pulses, in which the pulse

displacement from a specified time reference is pro-

portional to the sample values of the message signal.

For a discussion on these, see Ziemer and Tranter

(2002).

10.16.2 Problems with Pulse Modulations

PAM, PDM, and PPMare vulnerable to noise.When

a pulse of width t passes through a channel, the out-

put will be significantly distorted. See Example 6.6.3

for an illustration in transmitting a finite width pulse

( )x t and PAM ( )tx

Fig. 10.16.1 xðtÞ(smooth function) and xPAMðtÞ(pulsed
wave form)
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through a simple RC circuit. The output of the RC

circuit is distortedwith infinite timewidth (or not time

limited). This is a simple illustration showing the

problems associated with a band-limited channel.

Other problems may include signal interference from

other sources, and noise, in general. Analog pulse

modulation schemes have problems as the variables,

amplitudes for PAM, durations for PDM, and posi-

tions for PPM can vary over a wide continuous range.

Digital schemes use a set of bits to represent a number

and each bit can be transmitted individually. As an

example, we can assume that a pulse of amplitude

Acorresponds to a one and a pulse with zero ampli-

tude (i.e., no pulse) corresponds to a zero. At the

receiver all we need to do is make a decision if the

pulse exists or not at the recever, making decoding

simpler and robust, leading to pulse code modulation

(PCM), see Ziemer and Tranter (2002).

There is no exact formula to determine the

output pulse width of an amplitude modulated

signal. A rough rule of thumb that relates the

output pulse duration and channel bandwidth is

Carlson (1975)

tmin � 1=2B: (10:16:6)

Maximum number of resolved output pulses per

unit time is about

2B ¼ 1=tmin: (10:16:7)

Intersymbol interference: If the channels are linear

and distortionless, the transmitted signal can be

decoded without any problem. In reality, channels

are band limited and, as a result, the output pulses

spread during transmission. See the discussion on

transmitting a rectangular pulse through a simple

RC circuit in Example 6.6.3. Since several of pulses

in sequence are transmitted at a time, spreading of

these pulses cause overlap of pulses into adjacent

and nearby time slots due to the limitations on the

channel bandwidth. This is intersymbol interference

(ISI). In Chapter 8 sinc pulses of the form

pðtÞ ¼ sincð2pBtÞ were used to represent a signal

with a bandwidth of B Hz (see (8.2.17))

yðtÞ ¼
X1
n¼�1

xðntsÞsincðpðfst� nÞÞ; fs ¼ 2B: (10:16:8)

Noting that yðntsÞ ¼ xðntsÞ in (10.16.8), fs ¼ 2B

samples per second can be transmitted, assuming

there is no interference from one pulse to the next.

Obviously if the channel is not distortionless, then

the pulses read at the receiver will not be free of

interference from the other samples. There are sev-

eral problems associated with the sinc pulses. First,

the sinc pulse is physically unrealizable, as the pulse

exists for all times. If the pulse is truncated, the

bandwidth of such a pulse will be larger than B.

Second, the sinc pulses decay slowly at a rate pro-

portional to ð1=tÞ from the peak. This is a serious

practical problem. For example, if the value of B in

sincð2pBtÞ deviates from its nominal value, then the

pulse amplitudes will not be zero at multiples of

ð1=2BÞ causing interference with all the pulses. The

interference at the center of a pulse caused by other

pulses has the form
P
ð1=nÞ adding up to large

amplitude. Same thing would happen if the sam-

pling of the pulses is not measured exactly at

t ¼ nts. Time jitter, caused by the variations of the

pulse positions at the sampling instants, is a pro-

blem. In Chapter 8, various interpolation methods

were discussed. One of them is the raised cosine

pulse that decays at a rate proportional to ð1=t3Þ
from the peak.

Notes: The raised cosine function and its transform

were given in (4.11.9 and b). See Fig. 4.11.1 for their

sketches. Tapering of the frequency responses is

controlled by the roll-off factor b with 0 
 b 
 1.

If b ¼ 0, the spectrum of the raised cosine function

reduces to the ideal LP filter spectrum with a mini-

mum bandwidth of 1=ts. The roll-off factor b repre-

sents excess bandwidth as a fraction of the mini-

mum bandwidth ð1=2tsÞ. The bandwidth of a raised

cosine pulse varies from a minimum of

fB ¼ 1=ð2tsÞHz ðfor b ¼ 0Þ to a maximum of

fB ¼ 1=ðtsÞHz ðfor b ¼ 1Þ. With b ¼ 1, the pulse is

a raised cosine pulse with 100% excess bandwidth.

If the desired pulse transmission rate is ð1=tsÞ
pulses/s, then the BW is

fB ¼ ð1þ bÞ=2ts Hz: (10:16:9a)

Given fB, then the allowable pulse rate is

1=ts ¼ 2fB=ð1þ bÞ: (10:16:9b) &
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10.16.3 Time-Division Multiplexing (TDM)

Frequency-division multiplexing (FDM) assigns a

frequency band for each signal. In the TDM, a time

slot is allotted for each signal. TDM is used to

transmit a composite signal consisting of several

different signals over a single channel. It is like a

student taking several courses during a semester and

each course is offered at different times. TDM is

easier to visualize compared to FDM. TDM is a

serial process, whereas FDM is a parallel process.

They are duals, one is in time and the other is in

frequency. Figure 10.16.2a illustrate the conceptual

scheme of TDM. Each of the input signals is band

limited by a low-pass filter, which removes frequen-

cies that are not essential to an adequate representa-

tion of the signal under consideration. The outputs

of the low-pass filters are the inputs to a commu-

tator. Some older systems use a rotary mechanical

system and in the newer systems, this process is

implemented by electronic switching. Each signal

is sampled at a rate higher than (about 1.1 times)

the Nyquist sampling rate to avoid aliasing pro-

blems. The samples are then interleaved. This inter-

leaving process is illustrated assuming two signals,

for simplicity, in Fig. 10.16.2b. The composite sig-

nal, a frame, consists of the interleaved pulses of the

input signal is transmitted over the channel. If all

the signals have the same bandwidth, one frame of

the composite signal consists of the samples

s1s2 . . . sN (i.e., N input signals). If the input

signals have unequal bandwidths, then the signals

with larger bandwidths must transmit more

samplesin each frame. The implementation is sim-

pler if the bandwidths of the signals are

harmonically related. As an example, consider that

there are four sourcesm1ðtÞ;m2ðtÞ;m3ðtÞ, and m4ðtÞ
with bandwidths 3B;B;B; and B Hz, respectively.

The Nyquist rates for these signals are

6B; 2B; 2B; and 2B, respectively. If the commuta-

tor rotates at 2B rotations per second, then in

one rotation we have three samples from the

first signal and one sample from each of the

three remaining signals. That is, there are six

samples in each frame. The commutator must

have poles connected to the signals shown in

Fig. 10.16.2a at the transmitter and the receiver

and they must be synchronized.

TDM bandwidth: Let tTDM be the time spacing

between adjacent samples in the time-multiplexed

signal with N input signals. Assuming that all the

input signals have the same bandwidth BHz and the

sampling interval is the same for each signal, then

tTDM ¼ ts=N and the sampling rate for each signal is

ts ¼ 1=fs; fs � 2B. Assuming the TDM signal is a LP

signal with bandwidth BTDM, then the required

(a)

(b)

Fig. 10.16.2 (a) TDM
switching (several inputs)
and (b) TDM waveforms
ðN ¼ 2Þ
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minimum sampling rate of the TDM signal is

2BTDM and therefore

BTDM ¼
1

2tTDM
¼ N

2ts
¼ 1

2
Nfs � NBHz: (10:16:10a)

If we have N signals with bandwidths equal to

Bi; i ¼ 1; 2; . . . ;N, then

BTDM �
Xn
k¼1

Bi

 !
: (10:16:10b)

Interestingly, the required bandwidths for TDM

and FDM are the same.

TDM receiver: At the receiving end, the compo-

site signal is demultiplexed using a commutator, see

Fig.10.16.2a. The outputs are then demodulated

using low-pass filters. The input and the output

commutators have to be synchronized to recover the

signals. Without precise synchronization, TDM is

useless. A popularmethod used tomaintain synchro-

nization is to insert a relatively high dc component

in one of the channels allowing the receiver commu-

tator in sync with the transmitter commutator.

Comparison between FDM and TDM: In time-

division multiplexing, each signal is assigned a

time slot, whereas a frequency slot is allocated

for each of the signals. In TDM, the signals are

separate in time and the corresponding frequen-

cies are jumbled. In FDM, the signals are sepa-

rated in the frequency domain and are jumbled in

the time domain. TDM is implemented in a series

operation and is simpler to visualize than FDM.

FDM requires sub-carrier modulators, band-pass

filters, and demodulators for each message signal.

TDM requires commutators and the demodula-

tors, which are low-pass filters. Since FDM is in

frequency, high-quality channel is desired, as har-

monic distortion caused by non-linearities can

result in intermodulation distortion. Such pro-

blems do not appear in TDM, as each channel is

assigned a separate recurring time interval. There

is no cross talk in TDM if the pulses are separated

and non-overlapping. To reduce cross talk, guard

times are provided between pulses. This is

analogous to the FDM guard bands. Carlson

(1975) gives a nice presentation quantifying these.

10.17 Pulse Code Modulation (PCM)

In Section 10.16.2 some of the problems associated

with analog pulse modulations were discussed. If

digital schemes are used with ones and zeros, for

example, then when the pulses are received, only

the existence or non-existence of these pulses

needed to be decided. Digital modulation is more

robust.

PCM is a three-step process consisting of sam-

pling, quantizing, and encoding as shown in

Fig. 10.17.1. A continuous-time signal xðtÞ is

sampled by measuring the amplitudes of the con-

tinuous signal at times kts seconds, where the sam-

pling interval ts is determined by sampling theo-

rem, see Section 8.2. The sample values are

xðktsÞ ¼ x½k�.
These values are represented by a finite set of

levels using quantization methods and are then

coded, see Haykin (2001) and Couch (1995).

10.17.1 Quantization Process

Here, only uniform quantization is discussed. The

sample values are divided into regions of uniform

width and an integer code is assigned to each

region.

Midrise quantization: Figure 10.17.2 gives an

eight 8 ¼ 23-level, a 3-bit mid-riser quantizer. The

mid-riser is so-called because the origin is in the

middle of a rising part of the staircase-like function.

It has the same number of positive and negative

levels, symmetrically positioned about the origin.

On top of the characteristics, a 3-bit normal code

ðb2b1b0Þ is identified from the lowest value of 000

(level 0) to the highest value 111 (level 7). The nor-

mal binary representation of an integer between 0

and 2n�1 is

( ) ( ) [ ] ˆ[ ] PCM codesx t x kt x k x k=⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯→ →Sampler Quantizer EncoderFig. 10.17.1 Pulse code
modulation

478 10 Analog Modulation



L ¼ bn�12
n�1 þ bn�22

n�2 þ . . .þ b02
0;

bi ¼ 0 or 1; ðLÞ2 ¼ bn�1bn�2 . . . b0: (10:17:1)

The sampled values are assumed to be bounded and

�A5x½k�5A. This range is divided intoL ¼ 8 equal

intervals in Fig. 10.17.2. Each interval is mapped

onto a quantized value. For example, the output of

the quantizer is assigned by the quantized value

Q½x1 
 x½k�5x2� ¼ x̂2½k�:

See Table 10.17.1 for the others. The quantization

step size is xi � xi�1 ¼ D and x̂i � x̂i�1 ¼ D. Note

that a simple 3-bit binary code is assigned for each

range correspondingto eight possible levels.

Now consider how to decide on the number of

levels needed in the quantization process. The input

sample amplitude can take any value in the range

x½k�j j5A, where A is chosen using the statistics of

the signal, see Rabiner and Schafer (1978). If the

input goes outside this range, then there is overload.

The range is then divided into Lintervals. Assuming

equal width (i.e, uniform quantization), in each

interval, the step sizeis

D ¼ 2A=Lð Þ: (10:17:2a)

Encoder assigns a unique code word to each of theL

quantization levels to each of the sampled values of

x½n� using (10.17.1). Let qe½n� be the quantization

error generated by the quantization process

expressed by

qe½n� ¼ x½n� � x̂½n� and � ðD=2Þ 
 qe½n� 
 ðD=2Þ:
(10:17:2b)

Since the error is random, it can only be described in

statistical terms. When the quantization process is

fine enough, the distortion produced by the quanti-

zation can be viewed as additive and independent

noise source with zero mean and the variance deter-

mined by the quantization step sizeD. The number of

levels is usually assumed to be greater than or equal

to 64. In Example 1.7.1, the uniform density function

was discussed. Using b ¼ D=2 and a ¼ �D=2 in

(1.7.8) and (1.7.10) results in

Mean value ¼ 0 andVariance ¼ s2e ¼ D2=12:

(10:17:3)

Signal distortion due to quantization can be con-

trolled by choosing a small enough step size D
related to the number of levels used in the quantiza-

tion so that L ¼ 2n. Figure 10.17.3 gives an example

of a continuous waveform xðtÞ, its sample values,

quantized sample values, code numbers, and the

pulse code modulated (PCM) sequence, see Taub

and Schilling (1971). Signal varies between

�4 and 4V. The quantization step size between

levels is set at 1 V resulting in L ¼ 8 quantization

levels located at �3:5;�2:5;�1:5;�:5;þ:5;þ1:5;
þ2:5;þ3:5V. Table 10.17.2 gives the nearest quan-

tization levels, code numbers, and their binary

representations. Each sample value xðktsÞ is

approximated by the quantized value q½xðktsÞ�, one
of the L ¼ 2n levels closest to xðktsÞ and a binary

code is used representing this value.

000

001

101

111

010

011

100

110

2x̂

3x̂

4x̂

1̂x

4x̂−

3x̂−

2x̂−

1x̂−
1x 2x 3x1x−2x−3x− [ ]x k

[ ]x̂ k

Fig. 10.17.2 Uniform symmetric mid-riser quantizer input–
output characteristic

Table 10.17.1 Quantization values and codes correspond-
ing to Fig. 10.17.2

Range of x[n]
Quantized
values

A simple binary code,
b2b1b0

�A5x½k�5x�3 x̂�4 000

x�35x½k�5x�2 x̂�3 001

x�2 
 x½k�5x�1 x̂�2 010

x�1 
 x½k�5x0 x̂�1 011

x�1 
 x½k�5x1 x̂1 100

x1 
 x½k�5x2 x̂2 101

x2 
 x½k�5x3 x̂3 110

x3 
 x½k�5A x̂4 111
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For example, the sample value of 1.3 (see

Fig. 10.17.3.) is assigned the quantized value 1.5

with the code number 5, (ð5Þ2 ¼ ð101Þ). A simple

signaling format uses a positive pulse for a 1 and a

negative pulse for a 0. Such a format is preferable

compared to a pulse and no pulse, since the average

value of a positive negative pulse is zero. To trans-

mit101, three pulses, a positive, a negative, and a

positive pulse, are used.

Signal-to-noise ratios and the number of levels in

uniform quantization: The transmitted waveform is

not known. For simplicity, to determine the signal-to-

noise ratios, the input signal is assumed to be a sinu-

soid xTðtÞ ¼ A cosðo0tÞ. Its peak-to-peak excursion

is2A. The average power of the sinusoid is P ¼ A2=2.

Assuming the number of levels in the quantization is

L; the quantizer step size is then D ¼ 2A=L, see

(10.17.1). Assuming the noise is uniform, the variance

given in (10.17.3) is used as a measure of the noise

power. The signal-to-noise ratios (SNRs) are

SNR¼ P

s2e
¼ A2=2

D2=12
¼D2L2=ð4Þð2Þ

D2=12
¼ 3

2
L2: (10:17:4)

ðSNRÞdB ¼ 1:76þ 20 logL ¼ 1:76þ 20 logð2nÞ
¼ 1:76þ 6:02n dB: (10:17:5)

A 6 dB=bit, some times referred to as the 6 dB rule,

requires one bit for every 6 dB signal-to-noise ratio

applicable to the uniform quantization. This is used

to determine the required number of bits for a given

signal-to-noise ratio. For example, CD recording

systems use n ¼ 16 bits A/D converter to convert

stereo music from an analog signal to a digital sig-

nal. This gives a signal-to-noise ratio of approxi-

mately 96 dB:

Quantization is an irreversible process and the

noise produced by it is part of the transmitted signal

and the original signal is not recoverable. It is serious

when the signal level is small and covers only a few of

the lower quantizing levels. In speech, for example,

low amplitudes are more probable than larger ampli-

tudes. Hence, smaller step sizes at low amplitudes

and larger step sizes at larger, less likely, amplitudes.

This allows for adaptive quantization based on sta-

tistical measures, see Rabiner and Schafer (1978).

10.17.2 More on Coding

In the normal binary code presented above, each

code word consists of nbits representing 2n distinct

Table 10.17.2 Binary representation of quantized values
Nearest quantized

value
�3.5 �2.5 �1.5 �0.5 0.5 1.5 2.5 3.5

Code number 0 1 2 3 4 5 6 7
PCM sequence 000 001 010 011 100 101 110 111

Fig. 10.17.3 Natural
sample values, quantized
samples, code numbers, and
the binary sequence
representing the code
numbers (reprinted with
permission from Taub and
Schilling (1971))
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levels, see (10.17.1). Table 10.17.3 gives the ordinal

number between 0 
 k 
 L ¼ 2n � 1; n ¼ 3, the nor-

mal binary code and the corresponding normal (or

reflected)Gray code. In Fig. 10.17.3, eight levels, 0�7
were considered and the binary codes by their equiva-

lents ð0Þ2 ¼ 000 to ð7Þ2 ¼ 111. One of the problems

with the normal binary code is that all the bits asso-

ciated with a function at adjacent times can change

from one level to the next level. Note

ð3Þ2 ¼ 011 and ð4Þ2 ¼ 100. For example, going from

level 3 to level 4, each bit has to be changed from 0 to

1 and 1 to 0.Gray code alleviates this problem. There

are many possible Gray codes and one of them is the

reflectedGray code. In this code, two successive code

words of weight a (i.e., the number of ones in the

code is a), differ in only and exactly two positions. A

procedure to convert a normal binary code to

reflected Gray code and vice versa is given below

(� represents modulo 2 addition).

Normal binary code word:

bn�1bn�2 . . . b1b0 (10:17:6)

Normal Gray code word:

gn�1gn�2 . . . g1g0: (10:17:7)

Normal binary code to normal Gray code:

gi ¼
bi; i ¼ n� 1

bi � biþ1; i 6¼ n� 1:

	
(10:17:8)

Normal Gray code to normal binary code:

bi ¼
gi; i ¼ n� 1

gi � biþ1; i 6¼ n� 1

	
(10:17:9)

For example, the normal Gray corresponding to the

normal binary code b3b2b1b0 ¼ 1000 is

g3 ¼ b3 ¼ 1; g2 ¼ b2 � b3 ¼ 1;

g1 ¼ b1 � b2 ¼ 0; g0 ¼ b0 � b1 ¼ 0: (10:17:10)

Table 10.17.2 gives the normal binary code and the

corresponding normal Gray code for N ¼ 8.

Notes: The normal Gray code is a reflected Gray

code as its generation involves iterated reflec-

tions, see Problem 17.10.4. The weight of a code

is the number of 1s in it. For example, the code

word 110 has a weight of 2. A relevant property

of the normal Gray code is that successive n-bit

code words of weight k differ in only and

exactly two positions, see Hershey and Yarlagadda

(1986). &

10.17.3 Tradeoffs Between Channel
Bandwidth and Signal-to-
Quantization Noise Ratio

From the low-pass Nyquist sampling theorem, a

signal xðtÞ with a bandwidth of BHz requires the

minimum sampling rate of 2B samples per second.

Each sample is coded into n binary pulses and the

pulse rate is 2nB pulses per second.

PCM transmission bandwidth: For a binary

PCM, L quantizing levels are used with L ¼ 2n ðn ¼
log2ðLÞÞ and n binary pulse needs to be transmitted

for each sample of the message signal. Let the band-

width of the message be WHz. Using the low-pass

sampling theorem, the minimum sampling rate is

fsð� 2WÞ and nfs binary pulses per second needs to

be transmitted. Assuming bipolar signaling, i.e.,

using positive and negative pulses of equal ampli-

tude corresponding to 1 and 0, the transmission

bandwidth is

B ¼ 2W log2ðLÞ: (10:17:11a)

For the minimum sampling rate and the minimum

value for bandwidth in transmitting pulses,

(10.17.12a) gives a lower bound, as the bandwidth of

a pulse is inversely proportional to the pulse width, see

Section 4.7. A better expression for the bandwidth is

B ¼ 2Wa log2ðLÞ; a � 1: (10:17:11b)

Table 10.17.3 Normal binary and Gray code represen-
tations for N¼8.

k
Normal Binary Code

b2b1b0

Normal Gray Code

g2g1g0

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100
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If the PCM requires a smaller quantization error,

then a larger value of L and a larger transmission

bandwidth is required. Error can be exchanged for

bandwidth.

Example 10.17.1 Bandwidths of telephone lines

vary, as they are operated by different private com-

panies. Assuming the bandwidth of the telephone

line is 3.5 kHz, determine the pulse rate in bits/

second to transmit binary data on a telephone line

using the raised cosine pulses with b ¼ 0:5.

Solution: Using (10.16.10c) results in

Data rate ¼ 1

ts
¼ 2fB

1þ b
¼ 2ð3:5Þ103

1þ :5 ¼ 4667 bits=s:

(10:17:12) &

10.17.4 Digital Carrier Modulation

Pulse signals cannot be transmitted as they are, as

they have significant power at low frequencies. They

are suitable only for transmission over a pair of

wires and cannot be transmitted over a radio link,

as this would require very large size of antennas,

see Section 10.1. To alleviate these problems, modu-

lation is used. PCM waveforms have both low

and high frequencies. The pulses representing the

sample values can be transmitted on an RF carrier

by using analog pulse modulation schemes. Digital

modulation process corresponds to switching or key-

ing the amplitude, phase, or frequency of the contin-

uous-wave carrier between either of the two values

corresponding to 0 and 1. The three types of binary

digitalmodulation schemes are amplitude-shift keying

(ASK)(or on–off keying [OOK]), frequency-shift

keying (FSK), and phase-shift keying (PSK) (or

phase reversal keying [PRK]).

Amplitude-shift keying (ASK): In binary ASK,

the modulated signal is

xASKðtÞ ¼ :5Ac 1þ dðtÞ½ � cosðoctÞ: (10:17:13)

The function dðtÞ is the NRZ data waveform and it

takes on values+1. See Fig. 10.17.4a for an example.

The corresponding coherent ASK signal is shown in

Fig.10.17.4b.Every time the signal is turnedonby the

presence of 1 in the data, the phase is the same as the

continuation of the previous pulse shown by the

Binary
data

1 0 1 1 0

(a)

(b)

(c)

(d)

Fig. 10.17.4 Data and
modulated signals: (a)
nonzero binary data, (b)
ASK signal, (c) PSK signal,
and (d) FSK signal
waveform
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dotted line. Furthermore, the expression in (10.16.14)

contains the unmodulated carrier component. The

amplitude-shift keying signal has the same form as

the amplitude modulated signal.

Phase-shift keying (PSK) or phase reversal

keying (PRK): In PSK, the modulated signal is

expressed by

xPSKðtÞ ¼ AcdðtÞ cosðoctÞ: (10:17:14)

Using the waveform in Fig. 10.17.4a and noting that

the signal for 0 is the negative of the signal for a 1,

PSK produces the waveform shown in Fig. 10.17.4c.

Note the phase reversals in the modulated wave-

form corresponding to the locations at the disconti-

nuities in dðtÞ: For example, there is a discontinuity

at t ¼ tb resulting in the phase reversal in the modu-

lated signal at this location.

Frequency-shift keying (FSK): In binary FSK,

the modulated signal is expressed by

xFSKðtÞ ¼
Ac cosðo1tÞ; symbol 0

Ac cosðo2tÞ; symbol 1

	
(10:17:15)

An example of this function is shown in

Fig. 10.17.4d corresponding to the waveform in

Fig. 10.17.4a. The binary FSK waveform can be

viewed as the superposition of two binary ASK

waveforms with two different carrier frequencies

o1 ando2. There are several options for selecting

the carrier frequencies o1 ando2. For a detailed

discussion on this, see Roden (1991).

Generation and detection of binary modulated

waves: The equations given above can be used to

generate ASK, PSK, and FSK waveforms, see

Fig.10.17.5a,b,c. For ASK and PSK product mod-

ulators are used. Figure 10.17.5c illustrates a simple

modulator that consists of two oscillators and a

switch for FSK.

Power spectral densities (PSDs): The data are

random and random spectral analysis is needed to

determine the PSDs of the three modulation

schemes, which is beyond the scope here. Interested

reader should consult the book by Lathi (1983).

Detection: Simple schemes use multipliers (i.e., pro-

duct modulator [s]) with a locally generated sinusoi-

dal carrier(s) to demodulate the three modulated

waveforms. For the ASK and PSK, the scheme in

Fig. 10.17.5a can be used. An integrator that oper-

ates on the multiplier output for successive bit inter-

vals acts as a low-pass filter. By using a decision

device that compares the output of the integrator

with a preset threshold, a decision is made that the

output is 1 if the threshold exceeds the preset value

and 0 otherwise. In the absence of noise, the output

of the product multiplier of a PSK is

2AcdðtÞcosðoctÞcosðoctÞ¼AcdðtÞþAcdðtÞcosð2octÞ:
(10:17:16)

Noting that oc � data rate, the integrator elimi-

nates the second term resulting in NRZ data wave

form. The difference in the demodulation of a bin-

ary ASK and a binary PSK is the choice of the

threshold level. See Fig. 10.17.5c for FSK.

For the demodulation of a binary FSK wave,

two multipliers and two integrators are used as in

Fig. 10.17.6b. It results in two outputs and the

comparator compares them. If the output ltop pro-

duced in the upper path associated with the fre-

quency o1 is greater than the output lbottom pro-

duced in the bottom path associated with the

frequency o2, the output is 0. Otherwise, the ouput

is 1. Products of the two multipliers are given below

for the input frequencies oi; i ¼ 0; 1 on the top and

the bottom paths

Ac cosðoitÞ cosðo0tÞ ¼ :5Ac cosððoi � o0ÞtÞ

þ :5Ac cosððo1 þ o0ÞtÞ:
(10:17:17a)

(a) (b) (c)

Fig. 10.17.5 Generation of
(a) ASK, (b) PSK, and (c)
FSK
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Ac cosðoitÞ cosðo1tÞ ¼ :5Ac cosððoi � o1ÞtÞ

þ :5Ac cosððoi þ o1ÞtÞ
(10:17:17b)

If the input bit corresponds to 0 andoi ¼ o1, then the

output of the integrator on the top gives ltop ¼ :5Ac

and the integrator at the bottom gives lbottom ¼ 0. The

comparator decides that the input bit is 0. Similarly if

the input bit is 1 and oi ¼ o2 , then the output of the

integrator on the top gives ltop ¼ 0 and the output at

the bottom gives lbottom ¼ :5Ac resulting in the deci-

sion the input bit is 1.

10.18 Summary

This chapter presented on some of the basics on

analog modulation, demodulation, time-division,

and frequency-division multiplexing, and a brief

presentation on binary digital communations. Spe-

cific topics that were discussed in this chapter are:

 Linear modulation: double-sidebandmodulation,

amplitude modulation, single-sideband modula-

tion, and vestigial sideband modulation.
 Modulation and demodulation of DSB, AM,

SSB, and VSB.
 Power, efficiencies, and bandwidths of the mod-

ulation schemes.
 Frequency translation and mixing along with

superheterodyne receivers.

 Distortions caused by non-linear channels.
 Frequency and phase modulations.
 Generation of angle modulated signals.
 Spectral analysis of angle modulated signals.
 Bessel functions and bandwidth requirements for

angle modulated signals.
 Demodulation of angle modulated signals along

with superheterodyne receivers.
 Distortions caused by non-linear channels and

multipath are briefly discussed.
 Frequency-division and time-division multi-

plexing.
 Analog pulse modulation schemes.
 Pulse code modulation.
 A brief presentation of binary digital

communciations.

Problems

10.2.1 Consider that we have a non-linear device,

whose output is yðtÞ ¼ aðA1 cosðo0tþ y1ÞÞ2. Show
that the non-linear device in cascade with a BP filter

can be used as a frequency doubler and give the

center frequency of the BP filter.

10.3.1 Show that coherent demodulation can be

used to demodulate an AM signal.

10.4.1 Consider the block diagram shown in

Fig. P10.4.1 with the input signal as given. Sketch the

spectrum of the output signal, which is the spectrum of

a ‘‘scrambled’’ version of the input signal. Then, show

(a)

(b)

Fig. 10.17.6 Coherent
detectors: (a) ASK and PSK
and (b) FSK
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that an identical system can be used to ‘‘unscramble’’

the scrambled signal. That is, recover mðtÞ from xðtÞ.

10.5.1 Find the average power in xAMðtÞ ¼
Ac½1þ mmðtÞ� cosðoctÞ,

mðtÞ ¼
XN�1
i¼0

ai cosðoitþ yiÞ; aj j 6¼ 1:

10.5.2 Sketch the function xAMðtÞ ¼ ð1 þ
mmnðtÞÞ cosðoctÞ assuming the following for the

modulation index: m51; m ¼ 1; and m > 1:

a: mnðtÞ ¼ cosðomtÞ;

b:mnðtÞ
¼

1; 05t5T=2

�1; �T=25t50

(
; mnðtÞ ¼mnðtþTÞ:

10.5.3 Give the expression for the AM signal

assuming mðtÞ ¼ 4 cosðo0tÞ � 3 cosð3o0tÞ

10.5.4 What is the largest a so that an envelope

detector detects the modulating signal mðtÞ ¼
½sinðomtÞ þ a cosðomtÞ� from the AM signal

xAMðtÞ ¼ Ac½1þ mmðtÞ� cosðoctÞ?

10.6.1 Let the input–output characteristic of a system

be yðtÞ ¼ axðtÞ þ bx2ðtÞ, xðtÞ ¼ ½mðtÞ þ cosðoctÞ�. a.
Find YðjoÞ.

mðtÞ !FT mðjoÞ ¼ ^ o
2pb

� �

Use a filter that can recover the message. Identify

the center frequency, constraints on the constants,

filter type, and its bandwidth. b. Assuming

mðtÞ ¼ cosðomtÞ show that the results derived in

Part a. are valid.

10.7.1 The AM and DSB signals can be demodu-

lated using a signal with its F-series

pðtÞ ¼ Xs½0� þ
X1
k¼1

a½k� cosðkoctÞ:

Give the expressions for the outputs of the demodu-

lator for the DSB and AM cases. What is the differ-

ence in the two demodulators in these cases? Assume

the bandwidth of the message signal oB is much,

much smaller than the frequency, i.e., oB � oc.

10.7.2 Amethod of detecting a message signal from

an AM signal is by using a rectifier detector.

First, assume the rectified AM signal is

yðtÞ ¼ ðAþmðtÞÞ cosðoctÞj j.
Now express cosðoctÞj j in terms of its trigono-

metric F-series and then use a LP filter to filter out

all the high-frequency components. Use a bias

removal capacitor to obtain the message signal.

Go through the mathematical details of these steps.

10.7.3 An AM signal is to be demodulated by an

envelope detector. The message is band limited to

5 kHz and the carrier frequency is 100 kHz. Give the

limits on the detector time constant to avoid signifi-

cant distortion.

10.8.1 Figure P10.8.1 gives a block diagram to gen-

erate an SSB signal, see Carlson (1975). Assuming

the input is a band-limited voice signal to a band-

width of 3500 Hz, sketch the spectra at each point

identified in the block diagram.

10.8.2 Use Example 10.8.2 to show that a synchro-

nous detector recovers the message.

10.8.3 Consider the SSB modulated signal xSSBðtÞ
¼ ½AþmðtÞ� cosðoctÞ � m̂ðtÞ sinðoctÞ.

Express this function in the form xSSBðtÞ ¼
AðtÞ cosðoctþ yðtÞÞ using tables.Note that the expres-

sion has the time-varying amplitude AðtÞ and the

time-varying phase yðtÞ. a.Use an envelope detec-

tor, a low-pass filter, and a bias removal capacitor

to obtain mðtÞ: Give the constraints on ½AþmðtÞ�
and m̂ðtÞ.

Fig. P10.8.1 An SSB signal generator

Fig. P10.4.1 A simple Scrambler
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b. Show that a square-law detector does not work to

demodulate an SSB signal.

10.8.4 Consider the SSB signal xSSBðtÞ ¼
mðtÞ cosðoctÞ þ m̂ðtÞ sinðoctÞ. At the receiver,

it is demodulated using the local carrier

cos½ðoc þ DoÞtþ d� and passed through a low-pass

filter. a:Give the output of the demodulator. Show

that if the local oscillator is coherent with the

transmitter, then the output is a scaled version of

the input message.

b: Give the expression for the output assuming

Do ¼ 0 in terms of mðtÞ; m̂ðtÞ and d.
c. What is the transform of the output in Part

b.? Show that the phase error in the local oscillator

gives rise to phase distortion. Comment on the dis-

tortions in the amplitude?

10.9.1 Find the image frequency for the following

receiver. The RF frequency we are tuning is

assumed to be 10 MHz. The local oscillator fre-

quency is assumed to be equal to 11 MHz. These

give us the intermediate frequency of 1 MHz. Give

the image frequencies.

10.10.1 A superheterodyne receiver uses an inter-

mediate frequency of 455 kHz. The receiver is tuned

to a transmitter having the carrier frequency

fc ¼ 780 kHz. Find some permissible frequencies

of the local oscillator and the corresponding image

frequencies. Assuming the received signal is

given by xAMðtÞ¼Ac½AþmðtÞ� cosðoctÞ;oc ¼ 2pfc
express the functions at each location of the super-

heterodyne receiver.

10.11.1 Determine the instantaneous frequency of

the angle modulated signal xaðtÞ ¼ Ac cosðoctþ
fðtÞÞ by assuming oc ¼ 2pð106Þ and fðtÞ ¼ 20t2.

10.11.2 Derive the expression for the narrowband

(NB) phase modulated signal and sketch the spec-

trum. Give the bandwidth of the corresponding

NBPM signal.

10.11.3 Consider the message waveform shown in

Fig. P10.11.3. Sketch the plots showing how the

instaneous frequency changes with time of the FM

and PM signals.

10.11.4 Show that an FM demodulator–integrator

can be used as a PM demodulator. Show that an

integrator–PM modulator can be used as an FM

modulator.

10.11.5. Find a. the average power and b. the max-

imum frequency and phase deviations of xcðtÞ given
below and its bandwidth.

xcðtÞ ¼ 10 cos½2pð108Þtþ ð:1Þ sinð2pð2000ÞtÞ�

10.11.6 Consider the angle modulated signal given

in Problem 10.11.5 with kp ¼ 10. a. Assuming the

modulation is PM, determine the message signal

mðtÞ. Estimate the bandwidth of the modulated

signal. b. Assuming the modulation is frequency

modulation with kf ¼ 10p. Find the message signal

mðtÞ and estimate the bandwidth.

10.12.1 Consider the frequency modulated signal

with a carrier 100 MHz and is modulated with a

100 kHz sinusoid. The frequency deviation assumed

to be 1 MHz. Determine the signal bandwidth by

keeping eight sidebands. If the modulated signal is

passed through an ideal band-pass filter with a cen-

ter frequency 100 MHz with a bandwidth equal to

the bandwidth calculated earlier, what percentage

of the signal power will be passed? You need to

make use of the Bessel function table given in

Table 10.12.1.

10.14.1 Pre-emphasis and de-emphasis filters were

given in Fig. 10.14.3a,b. Derive their transfer func-

tions. Show that HPEðjoÞHDEðjoÞ � K; a constant

for o� o2. Hint: For frequencies in the range

o� o2, approximate HPEðjoÞ by its numerator

term. See Lathi, (1983) on the use of these and the

improvements on the signal-to-noise ratios.

10.14.2 In Section 10.14.3 a tapped delay line was

considered to reduce the effect of multipath trans-

mission errors by making use of an inverse filter

function HeqðjoÞ given below. Make use of the

Fig. P10.11.3 A message signal
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identity below in obtaining the impulse response of

such a filter.

Heqð joÞ ¼
1

1þ ae�jot
;
X1
k¼0

bk ¼ 1

1� b
; bj j51

10.15.1 Quadrature multiplexing is used in AM

stereo broadcasting. Harris Corporation proposes

a modulated signal xcðtÞ ¼ ½A cosðoctÞ þ xLðtÞ
cosðoct� f0Þ þ xRðtÞ cosðoctþ f0Þ�, ðf0 ¼ 150Þ.
a. Use xcðtÞ ¼ m1ðtÞ cosðoctÞ þm2ðtÞ sinðoctÞ and
identify m1ðtÞ and m2ðtÞ. b. Show that sum signal can

be recovered using an envelope detector and the differ-

ence signal can be detectd using a product detector.

10.16.1 In the demodulation of a pulse amplitude

modulation scheme, a simple method is simply hold

the level of a given pulse until next pulse appears.

The holding circuit can be considered as a linear

system with a rectangular unit-impulse response.

We studied zero-order hold devices before. Give a

simple block diagram that has a transfer function,

which results in the approximation of the impulse

response hðtÞ ¼ P½ðt� ts=2Þ=ts�.

10.16.2 Let HðjoÞ ¼ F½hðtÞ� with the identity given

below. Show hðntsÞ as indicated.

X1
n¼�1

Hðjðoþ ð2pk=tsÞÞ ¼ 1; oj j 
 ðp=tsÞ;

hðntsÞ ¼ F�1½HðjoÞ� ¼
1=ts; n ¼ 0

0; n ¼ 0

(

This is the Nyquist’s pulse-shaping criterion. It is

basic to the baseband signaling systems through a

band-limited channel, see Ziemer and Tranter

(2002).

10.17.1 A speech signal with a bandwidth of

4 kHz is sampled, quantized, and transmitted

using a PCM system. It is desired that the data

sample at the receiving end must be known

within +5% of the peak-to-peak full-sacle value

of the amplitude +A. Determine the number of

samples must each digital word contain. Estimate

the bandwidth of the PCM signal assuming the

pulse is P½ðt� t0Þ=t� by assuming k ¼ 1 and 2 in

(10.17.11b).

10.17.2 A standard assumption for the the fre-

quency band of an audio signal is in the fre-

quency range 300 Hz to 3.2 kHz. A PCM signal

is generated with a sampling rate of 8000 sam-

ples per second with signal-to-quantizing ratio

of 44 dB. a. Determine the number of bits

needed to satisfy the signal-to-noise ratio con-

straint. b. Determine the minimum required

PCM bandwidth.

10.17.3 Start with a binary channel with a bit rate of

64000 bits/s and we like to transmit a speech signal

with a bandwidth of 4 kHz. Find the sampling rate,

the number of quantization levels, and the number

digits per sqample to transmit using this channel.

10.17.4 The two bit normal Gray code is generated

below.

0 0 0

0 1 0 1

n ¼ 1 : ! 4
Prefix the entries above the line with a zero

and prefix those below with alone
� � : n ¼ 2

1 1 1 1

0 1 0

In the above, we have written a zero and one for

the normal Gray code for n ¼ 1. In the second

step, we draw a line of reflection and use the bits

generated earlier on top of the line. Below the line

we write the reflected bits as shown. To obtain the

Gray code for n ¼ 2, we prefix the entries above

the line with a zero and with a one below the line.

Continue this procedure to determine the 3 bit

normal Gray code.

10.17.5 Sketch the ASK, PSK, and FSK signals

assuming the input bits are 1011001.
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Appendix A

Matrix Algebra

Analog and discrete-time signal analysis and design

involves significant involvement of matrices. They

provide a compact way of representing circuit and

system equations. Obtaining a solution of a set of

equations is one of the important steps in the circuit

and system analysis. Cramer’s rule allows us to

solve a system of equations. Finding the discrete

Fourier transform of a set of data essentially corre-

sponds to the multiplication of a matrix times a

vector. The presentation of fast Fourier transforms

in terms of matrices shows the beauty and the sim-

plicity associated with the fast algorithms. Matrix

theory is an important topic and every undergrad-

uate student in electrical engineering should have a

basic knowledge. In this short appendix we present

the basic properties and some useful results, includ-

ing determinants, inverses, generalized inverses,

vector norms, and solutions of over- and underde-

termined system of equations, eigenvalue–eigen vec-

tor decompositions, singular value decompositions,

and others. At the end of this appendix, two numer-

ical-based interpolation methods are presented to

complement the spectrally based interpolation

methods discussed in Section 8.2. Matrix theory is

an established area and there are good texts avail-

able. See, for example, the books by Hohn (1958),

Perlis (1958), and many others. Some of the exam-

ples are worked out usingMATLAB. See Appendix

B for a discussion on MATLAB.

A.1 Matrix Notations

In this section we will consider matrix notations,

representation of a set of equations in terms of

matrices and their solutions.

A matrix is a rectangular array of numbers or

transforms of dimension m � n (read ‘‘m by n’’

matrix, generally written as (m� n), where m

denotes the number of rows and n is the number of

columns. In the following, we have a matrix

A of dimension m � n; a row vector y of dimen-

sion ð1 � nÞ, or simply an n-dimensional row vector

and a column vector x of dimension ðm� 1Þ.

A ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

. ..
.

am1 am2 � � � amn

2
66664

3
77775;

y ¼ y1 y2 . . . yn½ �; x ¼

x1

x2

..

.

xm

2
66664

3
77775: (A:1:1)

We will use boldfaced capital letters, such as A, for

matrices and boldface lower case letters, such as x

for vectors. A typical entry or element in A is given

by aij and is located in the ith row and the jth col-

umn and use lowercase letters with subscripts for

the matrix entries. A square matrix is an array of

m � m entries or elements. A diagonal matrixD is a

square matrix with each of the off-diagonal ele-

ments is zero and the main diagonal elements are

given by dii and is written sometimes as

D ¼ diaðd11; d22; :::; dmmÞ for simplicity. An identity

matrix of dimension ðn� nÞ is a diagonal matrix

identified by In with each diagonal entry equal to 1

and zeros everywhere else. The subscript on I is

usually not included for simplicity. A null matrix

of dimensions m�n is identified by the null matrix 0

R.K.R. Yarlagadda, Analog and Digital Signals and Systems, DOI 10.1007/978-1-4419-0034-0,
� Springer ScienceþBusiness Media, LLC 2010
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and it consists of all zeros. The sum of the diagonal

elements of a square matrix A is the trace and is

trðAÞ ¼
Xm
i¼1

aii: (A:1:2)

A.2 Elements of Matrix Algebra

Equality of two matrices of the same dimensions

A ¼ B means that the corresponding elements of

A and B are equal, i.e., aij ¼ bij. The addition of

two matrices C ¼ Aþ B means that a typical entry

in the matrix C is given by cij ¼ aij þ bij for all i; j

and two matrices must be of the same dimensions.

The negative of a matrix B ¼ �A means that

bij ¼ �aij. The transpose of a matrix F ¼ AT

means that fij ¼ aji. In the case of a matrix with

complex entries, the conjugate of a matrix is given

by G ¼ A. Note the bar above the matrix and the

entries in the matrixG are given by gij ¼ �aij. That is,

a0ijs are replaced by the conjugates of aij. The matrix

A� denotes that A� ¼ ð AÞT. That is, the superscript
ð�Þ denotes the complex-conjugate transpose of the

matrix. A is a symmetric matrix if A ¼ AT. That is

aij ¼ aji. The matrix A is a skew symmetric matrix if

A ¼ �AT; i.e., aij ¼ �aji. The matrix A is called

Hermitian if A ¼ A� and skew Hermitian if

A ¼ �A�. A matrix B is called orthogonal if

BBT ¼ BTB ¼ I, an identity matrix. A complex

matrix C is called a unitary matrix if

CC� ¼ C�C ¼ I.

Example A.2.1Matrix examples of some of these are

as follows.A is symmetric, B is skew symmetric,C is

a Hermitian,D is diagonal, T is an upper triangular,

N is a lower upper triangular, X is an orthogonal,

and U is a unitary matrix.

A ¼
2 1 0

1 �1 1

0 1 5

2
64

3
75; B ¼

0 1 2

�1 0 3

�2 �3 0

2
64

3
75;

C ¼
1 1þ j 2� j3

1� j 2 3

2þ j3 3 0

2
64

3
75; (A:2:1a)

D ¼
1 0 0

0 3 0

0 0 5

2
64

3
75; T ¼

2 2 3

0 �1 2

0 0 1

2
64

3
75;

N ¼
1 0 0

2 1 0

3 4 9

2
64

3
75; X ¼ 1ffiffiffi

2
p

1 1

1 �1

� �
; (A:2:1b)

U ¼ 1

2

1 1 1 1

1 �j �1 j

1 �1 1 �1
1 j �1 j

2
6664

3
7775: (A:2:1c) &

Matrix operations: Let � be a scalar then the entries

in the matrix B ¼ �A are bij ¼ �aij for all i; j. Let A
and B be two matrices of dimensions ðm� nÞ and
ðp� qÞ, respectively. Then the matrix product AB is

defined only for n ¼ p. That is, thematrix productAB

is defined only when the number of columns in A is

equal to the number of rows in B. The matrix A is

conformable to the matrix B for multiplication AB.

Note that the matrix B may not be conformable to

the matrix A for the matrix multiplication BA. The

dimension of the matrix product AB is ðm� qÞ.The
ik th entry in C ¼ AB; is as follows:

cik ¼
Xn
j¼1

aijbjk; i¼ 1;2; :::;m;k¼ 1;2; :::;q (A:2:2)

We obtain the ikth element in the matrix productAB

bymultiplying the elements in the ith row ofA by the

corresponding elements of the kth column in B and

add the terms. Note the outer subscript j on a and the

outer subscript j on b should be the same.The trans-

pose of the sum of two matrices is the sum of their

transposes. That is ðAþ BÞT ¼ AT þ BT. The trans-

pose of the product of two matrices A and B is

ðABÞT ¼ BTAT: (A:2:3)

Order of the two matrices should be kept in tact in

dealing with transposes of matrices. Interestingly if

AB 6¼ BA and AB ¼ 0, it does not necessarily imply

A ¼ 0 or B ¼ 0. Also, AB ¼ AC does not imply

B ¼ C. Let A and B are square matrices of the

same dimensions with AB ¼ BA, then we say that
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the two matrices are commutative. Given the two

matrices A and B of the same dimensions m�n and

n�m, respectively, then

trðABÞ ¼
Xm
i¼1

Xn
j¼1

aijbji

" #
; trðABÞ ¼

Xn
j¼1

Xm
i¼1

bjiaij

" #
;

trðABÞ ¼ trðBAÞ: (A:2:4)

Matrices are generally not commutative. They

satisfy the associative and distributive properties,

provided they are conformable for addition and

multiplication. Multiplication by the identity

matrix is commutative. These are stated as follows:

ðABÞC ¼ ðABÞC and AðBþ CÞ ¼ ABþ AC;

(A:2:5a)

AI ¼ IA ¼ A: (A:2:5b)

Example A.2.2 Given the two matrices A and B as

below, find the matrix productsAB and BA and the

traces of the two matrices.

A ¼
1 2 1

0 1 2

� �
; B ¼

1 0

2 1

1 2

2
64

3
75;

AB ¼
6 4

4 5

� �
; BA ¼

1 2 1

2 5 4

1 4 5

2
64

3
75 :

The matrix product AB is a 2 by 2 matrix and the

product BA is a 3 by 3 matrix. Noting that B ¼ AT,

the matrix products are both symmetric. The traces

are given by

trðABÞ ¼ 6þ 5 ¼ 11; trðBAÞ ¼ 1þ 5þ 5 ¼ 11:
&

Example A.2.3 Consider the following DFT

matrices and identify their properties.

A1 ¼
1ffiffiffi
2
p

1 1

1 �1

� �
; A2 ¼

1ffiffiffi
3
p

1 1 1

1 e�j2p=3 e�j4p=3

1 e�j4p=3 e�j2p=3

2
64

3
75:

(A:2:6)

Solution: A1 is a real symmetric matrix and A2 is a

symmetric complex matrix. Furthermore, since

A1A
T
1 ¼ AT

1A1 ¼ I2;A2A
�
2 ¼ A�2A2 ¼ I3, it follows

that A1 is an orthogonal matrix and A2 is a unitary

matrix. &

A.2.1 Vector Norms

Length of a vector is an important measure of the

vector. To generalize this concept, associate a vector

with a nonnegative scalar that gives in some sense a

measure of its magnitude. This will be important

when the errors between the desired and computed

values are evaluated. The Lp norm is defined for a

vector x of dimension n by

xk kp¼ ð x1j j
pþ x2j jpþ � � � þ xnj jpÞ1=p; 1 � p <1:

(A:2:7)

If the subscript p is not explicitly identified, then the

properties given below apply for all p.The following

properties of the norms are useful:

xk k > 0 if x 6¼ 0; xk k ¼ 0 if x ¼ 0; (A:2:8a)

�xk k ¼ �j j xk k; � a scalar; (A:2:8b)

xþ hk k � xk k þ hk k: (A:2:8c)

In particular,L2 norm of a vector x is of interest and

is defined by

xk k2¼ ð x1j j
2þ x2j j2þ � � � þ xnj j2Þ1=2: (A:2:8d)

For simplicity, the subscript 2 in (A.2.8) will be

omitted in the following. The inequality in (A.2.8c)

is an important property. Specifically,

xþ hk k ¼ ðxþ hÞ�ðxþ hÞ½ �1=2

¼ x�xþ h�hþx�hþ h�x½ �1=2� x�xþ h�h½ �1=2:

An important special case is when x�h ¼ 0 resulting

in

xþ hk k ¼ xk k þ hk k: (A:2:8e)

For a detailed discussion on the vector and matrix

norms, see Wilkinson (1965).
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The norm xk k1 is interpreted as max xij j. The
simplest of all the distributions is Gaussian, which is

of interest here and the L2 norm is applicable. Inter-

estingly, if U is a unitary matrix, then

Uxk k2¼ xk k2: (A:2:9)

Notes: Lp norms give some information about the

vectors. For example, L1 norm relates to the abso-

lute sum of the entries in the vector, L2 norm relates

to the power in the vector, and L1 norm gives the

peak absolute deviation from zero. In Section 3.3

the selection of p in theLp norm based on the type of

distribution the data came from was considered. In

this appendix, L2 norm is of interest. This measure

allows for simple solutions for over- and underde-

termined system of equations. &

Example A.2.4 Compute the Lp norms of the fol-

lowing vector for p ¼ 1; 2;1:

x ¼ 1 1þ j 1� j½ �:

Solution:

xj j ¼ 1
ffiffiffi
2
p ffiffiffi

2
p� �

; xk k1¼
X3
n¼1

x½n�j j ¼1þ 2
ffiffiffi
2
p

; xk k2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
n¼1

x½n�j j2
vuut ¼

ffiffiffi
5
p

; xk k1¼
ffiffiffi
2
p

:

MATLAB codes for finding these are

The answers are

xk k1¼ 3:8284; xk k2¼ 2:2361; xk k1¼ 1:4142:

A.3 Solutions of Matrix Equations

The solution of a set of linear equations is basic in

matrix analysis. Considering a m� n matrix A and

an n-dimensional vector x given in (A.1.1), we

define the matrix equation

y ¼

y1

y2

..

.

ym

2
66664

3
77775 ¼ Ax ¼

a11 a12 . . . a1n

a21 a22 � � � a2n

..

. ..
. ..

. ..
.

am1 am2 � � � amn

2
66664

3
77775

x1

x2

..

.

xn

2
66664

3
77775

¼

a11x1 þ a12x2 þ � � � þ a1nxn

a21x1 þ a22x2 þ � � � þ a2nxn

..

.

am1x1 þ am2x2 þ � � � þ amnxn

2
66664

3
77775: (A:3:1)

The matrix A transforms a vector xinto another

vector y. In most cases the dimensions of x and y

are the same. For example, the discrete Fourier

transform (DFT) vector of a set of data x (see

(8.9.16a)) is expressed by a transformation and the

entries in the corresponding matrix that executes

this transformation are

y ¼ ADFTx; ðADFTÞik ¼ e�j2pði�1Þðk�1Þ=N: (A:3:2a)

The 3-point DFT of the data vector, written in

terms of a column vector x is

y ¼
y1

y2

y3

2
64

3
75 ¼ ADFTx ¼

1 1 1

1 e�j2p=3 e�j4p=3

1 e�j4p=3 e�j2p=3

2
64

3
75

x1

x2

x3

2
64

3
75:

(A:3:2b)

Since ð1=
ffiffiffi
3
p
ÞADFT is a unitarymatrix, it follows that

ð1
ffiffiffi
3
p
ÞADFTx

�� ��
2
¼ yk k2. Note that length of the

vector y is equal to the length of the vector x.

A.3.1 Determinants

The determinant of a matrix A, a scalar quantity, is

defined for a square matrix

� ¼ Aj j ¼ AT
�� �� ¼ detðAÞ: (A:3:3a)

It may be positive or negative despite the bars in the

notation in (A.3.3a). The determinant of a 2� 2

matrix is

Aj j ¼
a11 a12

a21 a22

����
���� ¼ a11a22 � a12a21: (A:3:3b)

>>x1¼norm (x,1), x2
¼norm (x,2), x3¼ norm (x,inf)
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The determinants of larger matrices are evaluated

by expansions involving reduced arrays. For each

element aij in the square matrix A, a cofactor is

defined by

�ij ¼ ð�1Þiþj Mij

�� ��: (A:3:4)

The submatrix M ij is the matrix obtained from

the coefficient matrix A by deleting the ith row

and the jth column and M ij

�� �� is the determinant of

the matrix Mij. Since ð�1Þiþj ¼ �1, it follows that
the signs depend on whether ðiþ jÞ is even or odd.

The determinant of a n� nmatrix A is by using the

i th row of the matrix A by Laplace’s expansion

� ¼ Aj j ¼ ai1�i1 þ ai2�i2 þ � � � þ ain�in: (A:3:5a)

The ith row can be any one of the rows and the

expansion is simpler if there are many zeros in that

row. Determinant is a scalar quantity and it can be

determined using either a row or a column. By using

the i th column of the matrix A results in

� ¼ Aj j ¼ a1j�1j þ a2j�2j þ :::þ anj�nj: (A:3:5b)

The determinant of a 3� 3 matrix reduces to a sum

of three terms in (A.3.4), involving 2� 2 determi-

nants, which can be computed using (A.3.3). The

determinant of a triangular matrix is the product of

diagonal entries. The determinants of orthogonal

and unitary matrices equal to 1.

Example A.3.1 Expand the determinant given

below. Give the trace of the matrix A.

Solution: By using the first row, we have

Aj j ¼ � ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

�������

�������
¼ a11ða22a33 � a32a23Þ

� a12ða21a33 � a31a23Þ þ a13ða21a32 � a31a22Þ:

¼ a11a22a33 � a11a32a23 � a12a21a33 þ a12a31a23

þ a13a21a32 � a13a31a22: (A:3:6)

The trace of the matrix A is

trðAÞ ¼ a11 þ a22 þ a33: (A:3:7) &

A.3.2 Cramer’s Rule

Given a set of equations in (A.3.8) with the coeffi-

cient matrix A being square, i.e., m ¼ n; we would

like to find its solution, that is, solve for x. The set is

written symbolically as

Ax ¼ y: (A:3:8)

There are several ways to obtain the solution. Two

ways of solution are considered below, one by

Cramer’s rule and the other by finding the inverse

of the coefficient matrix. A square matrix A has an

inverse A�1 if and only if Aj j 6¼ 0. In that case, it is

called a nonsingularmatrix, whereas if Aj j ¼ 0, it is a

singular matrix. Cramer’s rule makes use of the

determinant of the matrix A and the cofactors

obtained from this matrix. The ith unknown is

xi ¼
1

�
ð�1iy1 þ�2iy2 þ � � � þ�niynÞ;

� ¼ Aj j; i ¼ 1; 2; . . . ; n: (A:3:9)

Noting that � is in the denominator in (A.3.9),

the necessary condition for the solution of the set

of equations with n ¼ m in (A.3.8) is that

� ¼ Aj j 6¼ 0. An interesting way of visualizing the

Cramer’s rule is as follows. Replace the jth column

of the matrixA by the column vector y and calculate

the determinant of this matrix, which is defined by

�j. The solutions are given by

xj ¼
�j

�
; j¼ 1;2; :::;n; �j ¼

a11 a12 ::y1:: a1n

a21 a22 ::y2:: a2n

: : :::::: :

: : ::::: :

: : ::::: :

an1 an2 :::yn:: ann

��������������

��������������

;

�j ¼ y1�1jþ x2�2j þ :::þ yn�nj: (A:3:10)

Computations become laborious for a set of equa-

tions with the order of the coefficient matrix n

greater than 3. MATLAB provides good numerical

solutions.

Example A.3.2 Write the following equations in

matrix form, see (A.3.1). Using (A.3.10), solve

them by Cramer’s rule
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x1 þ 2x2 þ 3x3 ¼ 9

�x1 þ x2 þ x3 ¼ 2

x1 þ 2x2 þ x3 ¼ 5

: (A:3:11)

Solution: In matrix form, we have

y1

y2

y3

2
64

3
75 ¼

9

2

5

2
64
3
75 ¼

1 2 3

�1 1 1

1 2 1

2
64

3
75

x1

x2

x3

2
64

3
75; y ¼ Ax:

(A:3:12)

The determinants are as follows:

Aj j ¼
1 2 3

�1 1 1

1 2 1

�������

�������
¼ 1ð1� 2Þ � ð�1Þð2� 6Þ

þ 1ð2� 3Þ ¼ �6; (A:3:13)

�1 ¼
9 2 3

2 1 1

5 2 1

�������

�������
¼ 9ð1� 2Þ � 2ð2� 6Þ

þ 5ð2� 3Þ ¼ �6; (A:3:14a)

�2 ¼
1 9 3

�1 2 1

1 5 1

�������

�������
¼ �9ð�1� 1Þ þ 2ð1� 3Þ

� 5ð1� 3Þ ¼ �6; (A:3:14b)

�3 ¼
1 2 9

�1 1 2

1 2 5

�������

�������
¼ 9ð�2� 1Þ � 2ð2� 2Þ

þ 5ð1þ 3Þ ¼ �12: (A:3:14c)

Solution:

x1 ¼ �1=� ¼ 1; x2 ¼ �2=� ¼ 1; x3 ¼ �3=� ¼ 2:

(A:3:15) &

A.3.3 Rank of a Matrix

Rank of a matrix is defined as the largest number of

independent columns (or rows) in the matrix. When

a square matrix of order n is nonsingular, i.e.,

Aj j 6¼ 0, its rank is n. This implies that if there are

n columns of A given by a1; a2; :::; an, then the only

solution of the equation

�1a1 þ �2a2 þ � � � þ �nan ¼ 0 (A:3:16)

is �i ¼ 0; i ¼ 1; 2; :::; n. That is, the vectors ai;

i ¼ 1; 2; :::; n are independent. If they are dependent,

then there is a set of �i, not all equal to zero, such

that (A.3.16) is satisfied. If a matrix is singular, then

the rank of that matrix is less than n.

A rectangular matrixA is of rank r if and only if it

has at least one determinant of a submatrix of order

r, that is, not zero, but has no submatrix of order

more than r that its determinant is not zero. Ele-

mentary operations given below will not alter the

rank of a matrix.

1. Interchange of two rows (or columns).

2. Multiplicationof a row (or a column)byanonzero.

3. Addition to one row (column) by a scalar multi-

ple of a different row (column).

Example A.3.3 Find the ranks of the following two

matrices using elementary operations:

A ¼
1 1 1

2 2 b

1 a 1

2
64

3
75ða and b can take any value:Þ;

B ¼
2 1 1

1 0 2

� �

Solution: The matrices can be reduced to a triangu-

lar matrix by the following operations:

(1) Multiply the first row by 2 and subtract from the

second row 2 and replace it by the second row.

(2) Multiply the first row by –1 and add to the third

row and replace the third row by this.

(3) Interchange the second and the third rows. All

these operations are indicated by the following.

Note the symbol ð	Þ indicates the rank of the

matrix does not change.

A ¼
1 1 1

2 2 b

1 a 1

2
64

3
75 	

1 1 1

0 0 b� 2

1 a 1

2
64

3
75

	
1 1 1

0 0 b� 2

0 a� 1 0

2
64

3
75 	

1 1 1

0 a� 1 0

0 0 b� 2

2
64

3
75:
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If a ¼ 1 and b 6¼ 2 or a 6¼ 1 and b ¼ 2 then the

rank of the matrix A is 2. If a ¼ 1 and b ¼ 2 then

the rank of the matrixA is 1. If a 6¼ 1 and b 6¼ 2, the

rank of the matrix A is 3.

In the case of the matrix B, the rank can be at most

2, as it has 2 rows and 3 columns. Note that there is

one 2� 2 triangular matrix given below and its

determinant is

det
1 1

0 2

� �
6¼ 0) RankðBÞ ¼ 2: �

A.4 Inverses of Matrices and Their Use
in Determining the Solutions of a Set
of Equations

Inverse of the square matrix A, denoted by A�1

exists only if Aj j 6¼ 0. It satisfies

AA�1 ¼ A�1A ¼ I; an identity matrix: (A:4:1)

Given a system of matrix equations y ¼ Ax with

Aj j 6¼ 0, then the solution of this system is

x ¼ A�1y: (A:4:2)

A typical entry in the vector x, xi is given in terms of

yi are

xi ¼ �i1y1 þ �i2 þ :::þ �inyn (A:4:3)

Comparing this with the Cramer’s rule, it follows

from (A.3.9) that �ij ¼ �ji=�. The following matrix

with entries �ji is called the adjoint matrix

Adj½A� ¼

�11 �21 . . . �n1

�11 �22 . . . �n2

..

. ..
.

. . . ..
.

�1n �2n . . . �nm

2
66664

3
77775: (A:4:4)

Note the subscripts of the entries in adj½A�. The
inverse of A in terms of adj½A� is

A�1 ¼ 1

�
adj½A�: (A:4:5)

Interestingly, the inverse of the product of two non-

singular matrices A and B is

ðABÞ�1 ¼ B�1A�1: (A:4:6)

Example A.4.1 Solve the matrix equation given in

(A.3.12) by first finding the inverse of the matrix and

then verify the solution obtained in that example.

Solution: The entries in the adjoint matrix are

given by

�11 ¼
1 1

2 1

����
���� ¼ �1;�12 ¼ �

�1 1

1 1

����
���� ¼ 2;

�13 ¼
�1 1

1 2

����
���� ¼ �3;�21 ¼ �

2 3

2 1

����
���� ¼ 4;

�22 ¼
1 3

1 1

����
���� ¼ �2;

�23 ¼ �
1 2

1 2

����
���� ¼ 0;�31 ¼

2 3

1 1

����
���� ¼ �1;

�32 ¼ �
1 3

�1 1

����
���� ¼ �4;�33 ¼

1 2

�1 1

����
���� ¼ 3:

The determinant of A was computed earlier in

(A.3.13) and is equal to (�6). The adjoint matrix

and the inverse of the matrix A are given by

adj½A� ¼
�1 4 �1
2 �2 �4
�3 0 3

2
64

3
75;

A�1 ¼ adj½A�
Aj j ¼

1

ð�6Þ

�1 4 �1
2 �2 �4
�3 0 3

2
64

3
75:

The solution is the same as before.

x ¼ A�1y ¼ 1

6

1 �4 1

�2 2 4

3 0 �3

2
64

3
75

9

2

5

2
64
3
75

¼ 1

6

9� 8þ 5

�18þ 4þ 20

27� 15

2
64

3
75 ¼

1

1

2

2
64
3
75: &

Notes: If A is an n� n square nonsingular matrix,

then the solution of the systemof equationsAx ¼ y is
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unique and is x ¼ A�1y. Discrete Fourier transform

matrices are very useful and are used in Chapters 8

and 9. Since the matrix ð1=
ffiffiffiffi
N
p
ÞADFT is a unitary

matrix, i.e., ½ð1=
ffiffiffiffi
N
p
ÞADFT�½ð1=

ffiffiffiffi
N
p
ÞA�DFT� ¼ I, it fol-

lows that the inverse discrete transform (IDFT) can

be used to obtain the data vector from the DFT

vector. That is, if y ¼ ADFTx, the DFT vector, then

the data vector x can be obtained from y from

x ¼ ð1=NÞA�DFTy.

A.5 Eigenvalues and Eigenvectors

The German word ‘‘eigen’’ can be translated as

‘‘characteristic.’’ Every square matrix A is associated

with an eigenvalue l and an eigenvector x with

Ax ¼ lx or ðA � lIÞx ¼ 0: (A:5:1a)

The constant l is the characteristic root of the char-
acteristic polynomial of A given by

dðlÞ ¼ lI� Aj j ¼ 0: (A:5:1b)

The vector x is the characteristic vector. The system

in (A.5.1a) is a homogeneous system of equations and

has a solution x 6¼ 0 only if lI� Aj j ¼ 0. The roots

of this equation are li; i ¼ 1; 2; :::; n and some of

these values may be equal.

Example A.5.1 Find the eigenvalues and the eigen-

vectors of the matrix

A ¼
0 1

�2 �3

� �
: (A:5:2)

Solution: First,

lI�Aj j ¼
l �1
2 lþ 3

����
����¼ l2þ 3lþ 2¼ ðlþ 2Þðlþ 1Þ

¼ 0) l1 ¼�2;l2 ¼�1: (A:5:3)

The eigenvalues are distinct and the corresponding

eigenvectors can be computed from

Ax1 ¼ l1x1 or ðl1I� AÞx1

¼ 0)
�2 �1
2 �2þ 3

� �
x11

x21

� �
¼ 0: (A:5:4a)

Note the rank of the coefficient matrix ðl 1I� AÞ is
1, which indicates that there is a single vector that

satisfies this equation. The corresponding equation

and a solution is given by

x12 ¼ �2x11; x11 ¼ 1; x12 ¼ �2) x1 ¼
1

�2

� �
:

(A:5:4b)

Note that kx1; k 6¼ 0 satisfies (A.5.4a). For simpli-

city k is taken as 1. Similarly,

Ax2 ¼ l2x2 or ðl2I� AÞx2

¼ 0)
�1 �1
2 �1þ 3

� �
x12

x22

� �
¼ 0

) x12 ¼ 1; x22 ¼ �1; x2 ¼
x12

x22

� �
¼

1

�1

� �
:

(A:5:5)

With Axi ¼ xili; i ¼ 1; 2 results in

A x1 x2½ � ¼ x1l1 x2l2½ � ¼ x1 x2½ �
�2 0

0 �1

� �

(A:5:6)

X ¼ x1 x2½ � ¼
1 1

�2 �1

� �
; X�1 ¼

�1 2

2 �2

� �
:

(A.5.6) can be written in the form

AX ¼ X�) A ¼ X�X�1: (A:5:7)

The order of the eigenvalues can be arranged in the

increasing or decreasing or any desired order. The

vectors can be normalized so that the length of each

of the vectors is 1. That is, for example, the length of

x2 is
ffiffiffi
2
p

. The corresponding normalized vector is

ðx2=
ffiffiffi
2
p
Þ. Arranging the eigenvalues in increasing

values in terms of their magnitudes, with the nor-

malized, the solution is

A ¼
0:7071 �0:4472
�0:7071 0:8944

� � �1 0

0 �2

� �

�
2:8284 1:4142

2:2361 2:2361

� �
¼ XDX�1: (A:5:8)

MATLAB code to determine the (A.5.8) is

½X;D� ¼ eigðAÞ: (A:5:9) &
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In the above example, the matrix A has distinct

roots. If a matrix has multiple roots, then these

results need to be generalized. Every matrix A can

be expressed in the Jordan form identified by

A ¼ XJX�1: (A:5:10)

The matrix J is block diagonal, where each block is a

triangular matrix and is given by

J1

J2

. .
.

. .
.

. .
.

JK

2
66666666664

3
77777777775
;

Ji ¼

li 1

li 1

. .
. . .

.

. .
. . .

.

li 1

li

2
66666666664

3
77777777775
: (A:5:11)

The matrix J is the Jordan matrix. If the eigenva-

lues are distinct, then J is a diagonal matrix con-

sisting of the eigenvalues li; i ¼ 1; 2; :::; n as diago-

nal entries. The complete analysis of this is beyond

the scope here. In the following a simple example is

given to illustrate the multiple root case. See Pearl

(1973).

Example A.5.2 Express the following matrix in the

form A ¼ XJX�1.

A ¼
3 1 �2
�1 �1 4

0 �1 3

2
64

3
75: (A:5:12)

Solution: The characteristic polynomial is

lI� Aj j ¼
l� 3 �1 2

�1 lþ 1 �4
0 1 l � 3

�������

�������
¼ l3 � 5l2 þ 8l� 4 ¼ ðl� 2Þ2ðl� 1Þ:

(A:5:13)

It has a double root l ¼ 2 and a simple root at

l ¼ 1. The eigenvector corresponding to the eigen-

value l ¼ 2 is

ðA� l1IÞx1 l1¼2j ¼
2 1 �2
�1 �2 4

0 �1 2

2
64

3
75

x11

x21

x31

2
64

3
75

¼ 0) x1 ¼
1

1

1

2
64
3
75:

Rank of ðA� 2IÞ is 2 and there is only one charac-

teristic vector of A (up to a multiplication within

a constant) corresponding to the characteristic

root 2 that satisfies the equation ðA� 2IÞx ¼ 0.

The eigenvector corresponding to the eigenvalue

l ¼ 1 is

ðA� l3IÞx3 l3¼1j ¼
2 1 �2
�1 �2 4

0 �1 2

2
64

3
75

x13

x23

x33

2
64

3
75

¼ 0) x3 ¼
0

2

1

2
64
3
75:

There are only two characteristic vectors. The

matrix A is not similar to a diagonal matrix and is

similar to a Jordan matrix. A third-order transfor-

mation matrix is needed that transforms A to the

Jordan form. Two vectors x1 and x3 are already

determined. A third vector x2 is needed. Consider

the following matrix equation:

A x1 x2 x3½ � ¼ x1 x2 x3½ �J

3 1 �2
�1 �1 4

0 �1 3

2
64

3
75 x1 x2 x3½ � ¼ x1 x2 x3½ �

2 1 0

0 2 0

0 0 1

2
64

3
75:

The vector x2 can be obtained by equating the sec-

ond column on each side. That is,
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3 1 �2
�1 �1 4

0 �1 3

2
64

3
75x2 ¼ ð1Þx1 þ ð2Þx2; x2 ¼

x21

x22

x23

2
64

3
75

)
1 1 �2
�1 �3 4

0 �1 1

2
64

3
75

x12

x22

x32

2
64

3
75 ¼

x11

x21

x31

2
64

3
75 ¼

1

1

1

2
64
3
75:

A solution is

x2 ¼
1

�2
�1

2
64

3
75:

The transformation matrixX and the matrix decom-

position A ¼ XJX�1 are, respectively, given by

X ¼ x1 x2 x3½ � ¼
1 1 0

1 � 2 2

1 � 1 1

2
64

3
75;

X�1 ¼
0 �1 2

1 1 �2
1 2 �3

2
64

3
75;

A¼XJX�1 ¼
1 1 0

1 �2 2

1 �1 1

2
64

3
75

2 1 0

0 2 0

0 0 1

2
64

3
75

0 �1 2

1 1 �2
1 2 �3

2
64

3
75:

(A:5:14)

Notes: This example illustrated the computation of

the transformation matrix X that transforms the

given matrix A into a Jordan form in the form

J ¼ X�1AX. This is a similarity transformation.

Finding the structure of the Jordan matrix is com-

plicated, especially if the multiplicity of an eigenva-

lue is large. The transformation matrixX is the right

modal matrix or simply the modal matrix of A. Its

inverse X�1 is the left modal matrix of A. For a nice

compact presentation on this topic, see Frame

(1964). MATLAB code to determine the modal

matrix and the Jordan matrix is

½X; J� ¼ jordanðAÞ: (A:5:15)

The output gives themodal matrixX and the Jordan

matrix J given the matrix is A.

Symmetric matrices are an important class of

matrices in signal and system analysis. A real sym-

metric matrix S ¼ ST is similar to a diagonalmatrix.

That is, there exists an orthogonal matrix

P with P�1 ¼ PT, such that

S ¼ PDPT: (A:5:16)

Ayres (1962) gives an example with simple numbers

that illustrates the case of multiple eigenvalues,

which is given below.

Example A.5.3 Find the eigenvalue–eigenvector

decomposition of the symmetric matrix S ¼ PDPT.

S ¼
7 �2 1

�2 10 � 2

1 �2 7

2
64

3
75: (A:5:17)

Solution: The eigenvalues of the matrix are

lI� Sj j ¼ l3 � 24l2 þ 180l� 432

¼ ðl� l1Þðl� l2Þðl� l3Þ
¼ ðl� 6Þ2ðl� 12Þ:

Since l1 ¼ 6; l 2 ¼ 6; l 3 ¼ 12, an extra step is

needed to find the modal matrix, as there is a double

root. For the eigenvalue l ¼ 6, the corresponding

eigenvector is

ðA� l1Þp1 ¼
� 1 2 �1
2 � 4 2

� 1 2 � 1

2
64

3
75

p11

p12

p13

2
64

3
75 ¼ 0

) p1 ¼
p11

p12

p13

2
64

3
75 ¼

1

0

�1

2
64

3
75:

For the second eigenvalue, l2 ¼ 6 a vector p2 needs

to be determined that is orthogonal to the vector p1.

That is pT1 p2 ¼ 0. A solution is

p2 ¼
p12

p22

p32

2
64

3
75 ¼

1

�

1

2
64

3
75 ¼

1

1

1

2
64
3
75:
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Note � is arbitrary in p2 and is selected as 1. The

eigenvector corresponding to the eigenvalue 12 is

ðA� l3IÞp3 ¼
5 2 �1
2 2 2

�1 2 5

2
64

3
75

p31

p32

p33

2
64

3
75 ¼ 0

) p3 ¼
1

�2
1

2
64

3
75:

The lengths of the three vectors defined earlier as L2

norms are

p1k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 02 þ 12 ¼

p ffiffiffi
2
p

; p2k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 12 þ 12

p
¼

ffiffiffi
3
p

; p3k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 22 þ 12

p
¼

ffiffiffi
6
p

:

Putting these eigenvectors and normalizing the vec-

tors by their lengths, the corresponding orthogonal

transformation matrix is

P ¼ p1=
ffiffiffi
2
p

p2=
ffiffiffi
3
p

p3=
ffiffiffi
6
p� �

:

The eigenvalue–eigenvector decomposition of the

matrix S is given by

S¼PDPT¼
1=

ffiffiffi
2
p

1=
ffiffiffi
3
p

1=
ffiffiffi
6
p

0 1=
ffiffiffi
3
p
�2=

ffiffiffi
6
p

�1=
ffiffiffi
2
p

1=
ffiffiffi
3
p

1=
ffiffiffi
6
p

2
64

3
75

6 0 0

0 6 0

0 0 12

2
64

3
75

�
1=

ffiffiffi
2
p

0 �1=
ffiffiffi
2
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
6
p
�2=

ffiffiffi
6
p

1=
ffiffiffi
6
p

2
64

3
75: (A:5:18)

The decomposition is not unique since not all the

diagonal entries in D are different. &

Example A.5.4Determine the eigenvalue–eigenvector

decompositions of the following matrices, where the

matrix A is given in A.5.2.

a: B1 ¼ AAT; b: B2 ¼ ATA: (A:5:19a)

Solution: The eigenvalue–eigenvector decomposi-

tions of such matrices are useful in the singular

value decomposition in the next section. The com-

putation is left as an exercise.

B1 ¼
1 �3
�3 13

� �
; B2 ¼

4 6

6 10

� �
: (A:5:19b)

B1¼P1�1P
T
1 ¼

�0:9732 �0:2298
�0:2298 0:9732

� �

�
0:2918 0

0 13:7082

� � �0:9732 �0:2298
�0:2298 0:9732

� �
: (A:5:20a)

B2¼P2�2P
T
2 ¼

�0:8507 0:5257

0:5257 0:8507

� �

�
0:2918 0

0 13:7082

� � �0:8507 0:5257

0:5257 0:8507

� �
: (A:5:20b)

&

Cayley–Hamilton theorem Horn and Johnson

(1990) is stated below without proof.

Cayley–Hamilton theorem: Consider an n� n

matrix A and its characteristic polynomial

dðlÞ ¼ lI� Aj j ¼ 0. Every square matrix satisfies

its characteristic polynomial. That is,

dðAÞ ¼ 0: (A:5:21)

Example A.5.5 a: Show that the matrix given in

(A.5.2) satisfies its characteristic polynomial

dðlÞ ¼ l2 þ 3lþ 2 ¼ 0. b: Find the inverse of the

matrix A using (A.5.21).

Solution: a: dðAÞ ¼ A2 þ 3Aþ 2I ¼ �2 �3
6 7

� �

þ 0 3
�6 �9

� �
þ 2 0

0 2

� �
¼ 0 0

0 0

� �
. (A.5.22)

b: The polynomial matrix dðAÞ can be written in

the form

� 1

2
A2 � 3

2
A

� �
¼ I or A � 1

2
A� 3

2
I

� �
¼ I) A�1

¼ � 1

2
A� 3

2
I

� �
:

A�1 ¼ �
0 1=2

�1 �3=2

� �
�

3=2 0

0 3=2

� �

¼
�3=2 �1=2
1 0

� �
: (A:5:23)

Inverse exists here since Aj j 6¼ 0. This theorem can

be used to find integer powers of A: &

Notes: Section A.2.1 considered the Lp norms of

vectors. An important matrix norm is the L2

norm. The L2 norm of an n� n matrix A is
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Ak k2¼ ½maximum characteristic root of A�A�1=2:
(A:5:24)

This is also called the spectral norm. Note the

determinant of the matrix A is the product of its

characteristic roots. &

A.6 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) is an important

tool in signal processing, as it provides robust solu-

tions in spectral analysis, filter design, system identi-

fication, estimation theory, applications in statistics,

and many others. See Scharf (1991) for applications.

Given a m� n matrix A of rank r, there exists

three matrices identified as follows: an n� n unitary

matrix V; m�m unitary matrix U; and a r� r

diagonal matrix D with the diagonal entries that

are strictly positive; and the SVD is given by

A ¼ U�V�; � ¼
D 0

0 0

� �
: (A:6:1)

If the rank of the matrix A is r ¼ m ¼ n then the

matrix � reduces to the simple case � ¼ D and the

diagonal elements in D are strictly positive; that is,

dii > 0. The decomposition is valid for both real and

complex matrices. For a proof and a general discus-

sion, see Pearl (1973). The SVD decomposition can

be determined as follows. First, find the

eigenvalue–eigenvector decomposition of the two

matrices

ðA�AÞ ¼ Vð���ÞV� and ðAA�Þ ¼ Uð���ÞU� :
(A:6:2)

Note ðAA�Þ and ðA�AÞ have the same nonzero eigen-

values. See Example A.5.4 for an illustration. Equa-

tion (A.6.2) indicates that the unitarymatricesU and

V are modal matrices of ðAA�Þ and ðA�AÞ, respec-
tively, thus providing a way to determine these

matrices. Let the nonzero eigenvalues of ðA�AÞ be
�21; �

2
2; :::; �

2
r . The diagonal entries of � are called the

singular values of the matrix A and are ordered as

�1 
 �2 
 ::: 
 �r > 0: (A:6:3)

They are determined from the diagonal matrix

ð���Þ. Singular values are fairly insensitive to per-

turbations in the matrix A compared to its eigenva-

lues. Noting that A ¼ U�V� and assuming � is a

nonsingular matrix, we have ��1 ¼ D�1. Then

U ¼ AV��1 ¼ AVD�1: (A:6:4)

The SVD can be determined by first finding V, ��1

and then U by (A.6.4). If the matrix � is singular,

then its inverse will be its generalized inverse dis-

cussed below.

Example A.6.1 Determine the SVD for the real

matrix A given in (A.5.2).

Solution: The matrices ðAATÞ and ðATAÞ are,

respectively, given by

ðAATÞ ¼
1 �3
�3 13

� �
; ðATAÞ ¼

4 6

6 10

� �
: (A:6:5a)

Eigenvalue–eigenvector decomposition of ATA:

ATA ¼
4 6

6 10

� �
¼ VDTDVT ¼

�0:8507 0:5257

0:5257 0:8507

� �

�
0:2918 0

0 13:7082

� � �0:8507 0:5257

0:5257 0:8507

� �

¼
0:5257 �0:8507
0:8507 0:5257

� �
13:7082 0

0 0:2918

� �

�
0:5257 0:8507

� 0:8507 0:5257

� �
:

Using the positive square roots of the diagonal

entries of DDT and computing D�1 results in

U¼ AVD�1 ¼
0 1

�2 �3

� � �0:8507 0:5257

0:5257 0:8507

� �
0:2701 0

0 1:8512

� �

¼
�0:2298 0:9732

0:9732 0:2298

� �
:

Arranging the singular values in decreasing order in

the SVDof the nonsingularmatrixA, the SVDofA is

A ¼ UDVT ¼
�:2298 :9732

:9732 :2298

� �
3:7025 0

0 :5402

� �

�
�:5257 �:8507
�:8507 :5257

� �
: (A:6:5b)
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The singular values are 3.7025 and 0.5402.

MATLAB command for the SVD decomposition is

½U;�;V� ¼ svdðAÞ: (A:6:6) &

When A is not a square matrix, the SVD requires

some knowledge of generalized or conditional inverses.

See Rao and Mitra (1971) and Graybill (1983).

A.7 Generalized Inverses of Matrices

Given a matrix A of dimension m� n with rank r,

we like to find a generalized inverse matrixA� which
has some of the properties of A�1. The matrix A� is

also called as pseudo inverse or Moore–Penrose

inverse. The conditions for existence are

1: AA� is symmetric (A:7:1a)

2: A�A is symmetric (A:7:1b)

3: AA�A ¼ A (A:7:1c)

4: A�AA� ¼ A� : (A:7:1d)

If a generalized inverse of a m� n matrix A exists,

then its inverse A� has the dimension n�m and

ðA�Þ� ¼ A. Each matrix has a unique generalized

inverse. The generalized inverse of a null matrix is

also a null matrix. The discussion here will be con-

centrated on matrices that are of full rank. The

generalized inverses are as follows:

Rank ofA ism; thenA� ¼ATðAATÞ�1 andAA� ¼ I

(A:7:2a)

Rank of A is n; then A� ¼ ðATAÞ�1Aand A�A ¼ I

(A:7:2b)

In the case of a nonsingular square matrix A, it

follows that

A� ¼ATðAATÞ�1 ¼ATðATÞ�1A�1 ¼A�1: (A:7:2c)

MATLAB command for the generalized inverse of

A is

A� ¼ pinvðAÞ: (A:7:2d)

Example A.7.1 Find the generalized inverses for the

following matrices:

a: A¼
1 0

2 1

0 2

2
64

3
75;

b: B¼
1 2 0

0 1 2

� �
;

c: �1 ¼
1 0

0 2

0 0

2
64

3
75;

d: �2 ¼
1 0 0

0 2 0

� �
;

e: � ¼
D 0

0 0

� �
; (A:7:3a)

D is a diagonal matrix.

Solution: a: The generalized inverse of the matrix

A is

A� ¼ ðATAÞ�1A ¼
5 2

2 5

� ��1 1 2 0

0 1 2

� �

¼ 1

21

5 8 �4
�2 1 10

� �

¼
0:2381 0:3810 �0:1905
�0:0952 0:0476 0:4762

� �
: (A:7:3b)

b: Noting that B ¼ AT, it follows:

B� ¼
0:2381 �0:0952
0:3810 0:0476

�0:1905 0:4762

2
64

3
75: (A:7:3c)

Similarly,

��11 ¼
1 0

0 1=2

0 0

2
64

3
75;��12 ¼

1 0 0

0 1=2 0

� �
;

��1 ¼ D�1 0

0 0

" #
: (A:7:3d) &

Notes: Singular value matrix decomposition is

often used in computing the generalized inverses

and ranks of defective matrices. See Stewart (1973).
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A.8 Over- and Underdetermined System
of Equations

Consider the system of equations with real entries

y ¼ Ax̂þ e: (A:8:1)

In (A.8.1) y is a known m-dimensional known vec-

tor, x̂ is an unknown n-dimensional vector, A is a

known m� n-dimensional matrix, and e is an

m-dimensional unknown error vector. Given an

estimated vector y, ŷþ e, we are interested in find-

ing the vector x̂ from the set of equations

ŷ ¼ y� e ¼ Ax̂: (A:8:2)

by minimizing the error vector for the overdeter-

mined and underdetermined cases

a: m > n; b: m � n: (A:8:3)

A. 8.1 Least-Squares Solutions
of Overdetermined System of Equations
(m > n)

In the case of overdetermined system of equations,

there are more equations than unknowns. Except in

trivial cases there is no solution for such a system. If

no solution exists, then a solution is desired that

minimizes the error using some error measures.

The error vector is

e ¼ y� ŷ ¼ y� Ax̂ ¼

y1 � ŷ1

y2 � ŷ2

:

:

:

ym � ŷm

2
666666664

3
777777775
: (A:8:4)

The errors can only be considered in statistical

terms. Lp; 1 � p � 1 errors were considered in Sec-

tion 9.3 and are

Ep ¼
Xm
i¼1
ðyi � ŷij jp: (A:8:5)

The simplest of these is the L2, i.e., the least-squares

error measure, which assumes the error density

function is Gaussian. It can be expressed in the form

E2 ¼ ðy� Ax̂ÞTðy� Ax̂Þ: (A:8:6)

Example A.8.2 Consider the system of equations

given below. Find the error measure in (A.8.6) and

find the solution by minimizing the least-squares

error:

y ¼
9

2

5

2
64
3
75 ¼

1

�1
1

2
64

3
75x̂ ¼ Ax̂: (A:8:7)

Solution: There are three equations in one unknown

and there is no solution of x that satisfies all the

equations. The error vector and its L2 measure are

e ¼ ðy� Ax̂Þ ¼
9� x̂

2þ x̂

5� x

2
64

3
75; (A:8:8)

E2 ¼ eTe ¼ ð9� x̂Þ2 þ ð2þ x̂Þ2 þ ð5� x̂Þ2: (A:8:9)

The least-squares error is minimized by taking the

partial of E2 with respect to the unknown vector (in

this case, a scalar x) and solve for the vector x ¼ x.

Taking the partial with respect to x and solving for

it results in

@E2

@x̂
¼ �2ð9� x̂Þ þ 2ð2þ x̂Þ � 2ð5� x̂Þ

¼ 0) x ¼ x̂ ¼ 4: (A:8:10)

Note that least-squares solution does not satisfy any

one of the equations in (A.8.7). The least-squares

solution is machine like. Suppose there is a fork in

the road and like to get an answer to decide which

road to take. Least-squares solution suggests going

between the two roads, i.e., go into bushes! For this

reason L 1 measure is considered superior in some

cases. Moon and Stirling (2000) suggest the selec-

tion of p on the basis of error density function.

Least-squares solution gives good results in most

applications. It can be used to obtain other Lp solu-

tions using iterative algorithms, such as Iteratively
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Reweighted Least Squares (IRLS) algorithm. See

Byrd and Payne (1979). &

Least-squares solution in general terms: consider

Xn
i¼1

ajix̂i � yj ¼ ej; j ¼ 1; 2; :::;m: (A:8:11)

Our goal is to choose x̂0is so that

E2 ¼
Xm
j¼1

e2j ¼ minimum: (A:8:12)

Taking the partial derivatives with respect to x̂i and

equating them to zero results in

@

@xk

Xm
j¼1

e2j ¼ 0!
Xm
j¼1

ej
@ej
@xk
¼ 0; k ¼ 1; 2; :::; n:

(A:8:13)

From (A.8.11), it follows that

@ej
@xk
¼ ak j: (A:8:14a)

Using these in (A.8.13) results in

Xm
j¼1

Xn
i¼1

x̂iaji� yj

" #
ajk ¼ 0; k¼ 1;2; :::;m: (A:8:14b)

This can be written in the form

Xn
i¼1

x̂i
Xm
j¼1

ajiajk

" #
¼
Xm
j¼1

yjajk; k ¼ 1; 2; :::; n:

(A:8:14c)

This is a system of n linear equations in n unknowns

x̂1; x̂2; :::; x̂n and can use any method to compute

the solution. Considering the double summations

in the above equation, it is hard to visualize the

above analysis and the following example illustrates

the ideas.

Example A.8.2 Illustrate the above procedure using

the following system of equations:

a11 a12

a21 a22

a31 a32

2
64

3
75 x̂1

x̂2

� �
¼

y1

y2

y3

2
64

3
75) y ¼ Ax̂; m ¼ 3;n ¼ 2:

(A:8:15)

Find the best least-squares solution for this over-

determined system of equations.

Solution: First

a11x̂1 þ a12x̂2 � y1 ¼ e1

a21x̂1 þ a22x̂2 � y2 ¼ e2

a31x̂1 þ a32x̂2 � y3 ¼ e3

:

e21 þ e22 þ e23 ¼ minimum

Using (A.8.14),

k¼ 1 :
Xm¼3
j¼1

aj1aj1

 !
x̂1þ

Xm¼3
j¼1

aj1aj2

 !
x̂2 ¼

Xm¼3
j¼1

aj1 yj

k¼ 2 :
Xm¼3
j¼1

aj2aj1

 !
x̂1þ

Xm¼3
j¼1

aj2aj2

 !
x̂2 ¼

Xm¼3
j¼1

a2jyj:

These equations can be written in the following

forms:

a11a11 þ a21a21 þ a31a31 a11a12 þ a21a22 þ a31a32

a12a11 þ a22a21 þ a32a31 a12a12 þ a22a22 þ a32a32

� �
x̂1

x̂2

� �
¼

a11y1 þ a1y2 þ a31y3

a12y1 þ a22y2 þ a32y3

� �
:

)
a11 a21 a31

a12 a22 a32

� � a11 a12

a21 a22

a31 a32

2
64

3
75 x̂1

x̂2

� �
¼

a11 a21 a31

a12 a22 a32

� � y1

y2

y3

2
64

3
75) ATAx̂ ¼ ATy:

(A:8:16a)

This set of equations is referred to as the normal

equations. Interestingly, in obtaining the last equation,

first, multiply the equation in (A.8.15) byAT, find the

inverse of the matrix (ATA) and then determine x by
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x ¼ ðATAÞ�1ATy: (A:8:16b)

The matrix A� ¼ ðATAÞ�1A is the generalized

inverse discussed earlier. Inverse of the matrix AAT

may not always exist. This happens in real data and,

in these cases, ðATAÞ is replaced by ðATAÞ þ �I,
where � is some small positive number. This is

referred to as diagonal loading.

Example A.8.3 Use the equation in (A.8.16b) to

verify the solution given in (A.8.10).

Solution:

ðATAÞ ¼ 1 �1 1½ �
1

�1
1

2
64

3
75¼ 3;

x̂¼ ðATAÞ�1ATy¼ 1

3
1 �1 1½ �

9

2

5

2
64
3
75¼ 4: &

Solutions of overdetermined system of equations

are often used to reduce the effects of random

noise in deconvolution (see Section 9.3.4) and in

curve fitting. See Moon and Sterling (2000), and

others.

A.8.2 Least-Squares Solution
of Underdetermined System of
Equations (m � n)

Here, the number of equations m is assumed to be

equal or fewer than the number of unknown’s n.

The following assumes the rank of thematrixA ism.

Consider the matrix equation in (A.8.2)

y ¼ Ax̂: (A:8:17)

Ifm ¼ n and the determinant of A6¼ 0, the solution is

x̂ ¼ A�1y. In the case of m < n, there are an infinite

number of solutions and like to find a vector x̂ with

E2 ¼ x̂
T
x̂; (A:8:18)

being minimal. This is the minimum energy condition

and the corresponding solution is the least-squares

solution. There are two sets of equations to consider,

one is the given underdetermined systemof equations

and the other is the minimum energy condition. The

problem is to find x̂ in (A.8.17) using the minimum

error condition with E2 being minimum. In the first

step, the set of equations is written in the form

y ¼ Ax̂ ¼ A11 A12½ �
x̂1

x̂2

� �
: (A:8:19)

Note A11 is a m�m nonsingular matrix. This

involves rearranging the columns in the matrix A

and the corresponding entries in the vector x̂. A

particular solution is

x̂1 ¼ A�111 y� A�111 A12x̂2; x̂2 ¼ 0:

These two equations can be written in the matrix

form

x̂ ¼
x̂1

x̂2

� �
¼ A�111 y� A�111 A12x̂2

0

" #
: (A:8:20)

This can be treated as an overdetermined system of

equations. Minimization of the scalar function

E2 ¼ x̂
T
1 x̂1 þ x̂

T
2 x̂2 involves the solution of the over-

determined system of equations given by

A�111 A12

I

" #
x̂2 ¼

A�111 y

0

" #
: (A:8:21)

First, solve for x̂2 using the least-squares solution of

the overdetermined system of equations in (A.8.21)

and then use x̂1 ¼ A�111 y� A�111 A12x̂2 to determine x̂1:

Least-squares solution using generalized

inverses: Asmentioned earlier, there aremany solu-

tions for underdetermined system of equations. It

can be seen the solution x̂ ¼ �y satisfies the matrix

equation y ¼ Ax̂. That is,

y ¼ Ax̂ ¼ A½A�y� ¼ AATðAATÞ�1y ¼ y: (A:8:22)

Example A.8.4Find the least-squares solution of the

system of equations given below using (A.8.20) and

then verify the results using the generalized inverse

of the matrix A.

y ¼
1

1

� �
¼

1 0 2

0 1 �1

� � x̂1

x̂2

x̂3

2
64

3
75 ¼ Ax̂: (A:8:23)

504 Appendix A Matrix Algebra



Solution: First

y ¼
1

1

� �
¼

1 0 2

0 1 �1

� � x̂1

x̂2

x̂3

2
64

3
75 ¼ ½A11jA12�

x̂1

x̂2

x̂3

2
64

3
75;

A11 ¼ I;A12 ¼
2

�1

� �
; x̂1 ¼

x1

x2

2
64

3
75; x̂2 ¼ x̂3

Using (A.8.21) results in

A�111 A12 ¼
2

�1

� �
;

2

� 1

1

2
64

3
75x̂3 ¼

1

1

0

2
64
3
75: (A:8:24)

Now solve the above set of overdetermined system

of equations on the right for x̂3. It is

x̂3 ¼
1

6
2 �1 �1½ �

1

1

0

2
64
3
75 1

6
:

Using x̂1 ¼ A�111 y� A�111 A12x̂2 (see the first set of

equations in (A.8.20).) results in

x̂1

x̂2

x̂3

2
64

3
75 ¼

�2
1

1

2
64

3
75ð1=6Þ þ

1

1

0

2
64
3
75 ¼

2=3

7=6

1=6

2
64

3
75 (A:8:25)

The solution can be verified using the generalized

inverse A�. That is,

A¼
1 0 2

0 1 �1

� �
;ðAATÞ�1¼

5 �2
�2 2

� ��1
¼1

6

2 2

2 5

� �
;

A�¼ATðAATÞ�1¼
1 0

0 1

2 �1

2
64

3
751
6

2 2

2 5

� �
¼

1=3 1=3

1=3 5=6

1=3 �1=6

2
64

3
75;

x̂¼ATðAATÞ�1y¼
1 0

0 1

2 �1

2
64

3
751
6

2 2

2 5

� �
1

1

� �

¼
1=3 1=3

1=3 5=6

1=3 �1=6

2
64

3
75 1

1

� �
¼

2=3

7=6

1=6

2
64

3
75:

) x̂1¼2=3;x̂2¼7=6;x̂3¼1=6: (A:8:26) &

A.9 Numerical-Based Interpolations:
Polynomial and Lagrange Interpolations

In Section 8.2 spectrally based interpolation meth-

ods were considered. The methods presented here

do not use the spectrum of the signal. Taylor’s

series expansion of a continuous function xðtÞ
with continuous derivatives was considered earlier

(see (3.1.2)). It uses its value at t ¼ a and the deri-

vatives of xðtÞ at this location. In many cases they

may not be known or may not even exist. Follow-

ing methods use the values of the function at dis-

crete locations and the function is approximated

by a polynomial that matches exactly at the dis-

crete locations. Discussion on this topic is minimal

and is included here to complement spectral-based

interpolations.

A.9.1 Polynomial Approximations

A function xðtÞ is assumed to be known at discrete

locations t0 < t1 < � � � < tN�1 by xðt0Þ; xðt1Þ; . . . ;
xðtN�1Þ. Consider the approximation function xaðtÞ

xaðtÞ ¼
XN�1
k¼0

akt
k: (A:9:1)

At t ¼ ti (A.9.1) can be written in algebraic, matrix,

and symbolic forms as follows:

xðtiÞ ¼ xaðtÞ t¼tij ¼
XN�1
k¼0

akt
k
i ; i ¼ 0; 1; 2; ::;N� 1:

(A:9:2)

xaðt0Þ
xaðt1Þ
:

:

:

xaðtN�1Þ

2
666666664

3
777777775
¼

1 t0 t20 : : : tN�10

1 t1 t21 : : : tN�11

: : : : : : :

: : : : : : :

: : : : : : :

1 tN�1 t2N�1 : : : tN�1N�1

2
666666664

3
777777775

a0

a1

a2

:

:

:

aN�1

2
666666666664

3
777777777775

;

x¼Ta; (A:9:3)
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x and a are n-dimensional vectors and T is an

N�N nonsingular Vandermonde matrix, see

Hohn (1958). Its determinant is not zero provided

t0is are distinct as

detðTÞ ¼ Tj j ¼ �
i >j
ðti � tjÞ ¼ ½ðt1 � t0Þ�½ðt2 � t1Þðt2 � t0Þ� . . . ½ðtN�1 � tN�2Þ . . . ðtN�1 � t0Þ�:

Example A.9.1 Approximate the function xðtÞ ¼
cos p=2ð Þtð Þ over the interval [0, 2], with t0 ¼ 0;

t1 ¼ 1; and t2 ¼ 2 using (A.9.3).

Solution: Noting that xðt0Þ ¼ 1; xðt1Þ ¼ 0 and

xðt2Þ ¼ �1 results in

1

0

�1

2
64

3
75 ¼

1 0 0

1 1 1

1 2 4

2
64

3
75

a0

a1

a2

2
64

3
75) a0 ¼ 1;

a1 ¼ �1; and a2 ¼ 0: (A:9:4)

The cosine function is approximated by a straight

line (see Fig. A.9.1).

xaðtÞ ¼ a0 þ a1tþ a2t
2 ¼ 1� t: (A:9:5) &

A.9.2 Lagrange Interpolation Formula

The polynomial approximation discussed above

requires the solution of a set of equations. The

Lagrange interpolation formula avoids solving a

system of equations. xðtÞ is known at

t0; t1; t2; . . . ; tN�1. The interpolation formula is

xaðtÞ¼xðt0Þ
ðt�t1Þðt�t2Þ:::ðt�tN�1Þ
ðt0�t1Þðt0�t2Þ:::ðt0�tN�1Þ

þxðt1Þ
ðt�t0Þðt�t2Þ:::ðt�tN�1Þ
ðt1�t0Þðt1�t2Þ:::ðt1�tN�1Þ

þxðtN�1Þ
ðt�t0Þðt�t1Þ:::ðt�tN�2Þ

ðtN�1�t0ÞðtN�1�t2Þ:::ðtN�1�tN�2Þ
:

(A:9:6)

From this, it follows that xaðtiÞ ¼ xðtiÞ; i ¼ 0;

1; :::;N� 1. For other values of t, i.e., for t 6¼ ti,

xaðtÞ interpolates the values using the interpolation

formula.

Example A.9.2 Find the Lagrange interpolation for-

mula using the information

t0 ¼ 0; t1 ¼ 1; t2 ¼ 2; xð0Þ ¼ 1; xð1Þ ¼ 1; xð2Þ ¼ 2:

Solution: The Lagrange interpolation formula is

xaðtÞ ¼ ð1Þ
ðt� 1Þðt� 2Þ
ð0� 1Þð0� 2Þ þ ð1Þ

ðt� 0Þðt� 2Þ
ð1� 0Þð1� 2Þ

þ 2
ðt� 0Þðt� 1Þ
ð2� 0Þð2� 1Þ ¼

1

2
ðt2 � tþ 2Þ:

(A:9:7) &

Problems

A.2.1 Show that a real matrix A is a sum of a sym-

metric and a skew symmetric matrix.

A.2.2 Show the equality in (A.2.4).

A.2.3 Show that the L2 norms of the vectors x and

ðUxÞ are the same.

x ¼
1

1

1

2
64
3
75;U ¼ 1ffiffiffi

3
p

1 1 1

1 e�j2p=3 e�j2pð2Þ=3

1 e�j2pð2Þ=3 e�j2pð4Þ=3

2
64

3
75:

Fig. A.9.1 Approximation of x(t), xa(t)

506 Appendix A Matrix Algebra



A.3.1 Show that the determinant of a skew sym-

metric matrix is zero.

A.3.2 a. Write the following equations in a matrix

form. b. Use Cramer’s rule to find I1ðsÞ and I2ðsÞ.

ViðsÞ ¼ R1I1ðsÞ � ð1=C1sÞI2ðsÞ
0 ¼ �ð1=C1sÞI1ðsÞ þ ½L1sþ ð1=C1sÞ
þ ðR2=ðR2C2sþ 1ÞÞ�I2ðsÞ:

A.3.3 Find the ranks of the following matrices:

a: A ¼
3 2 1

2 3 2

1 1 3

2
64

3
75; b: B ¼ 2 2 2

1 1 0

� �
:

A. 4.1 Find the inverses of the following matrices:

a: A ¼
0 1 0

0 0 1

�3 �2 �1

2
64

3
75; b: B ¼

1 2 3

0 1 2

0 0 1

2
64

3
75:

A.5.1 a: Show that DðlÞ ¼ lI� Aj j ¼ l3 þ a1l
2 þ

a2lþ a3 for the matrix given below.

A ¼
0 1 0

0 0 1

�a3 �a2 �a1

2
64

3
75:

The matrixA is referred to as the companion matrix

of the characteristic polynomial, as the coefficients

in the polynomial are explicitly included in the com-

panion matrix. b: Assuming the values, a1 ¼ 5;

a2 ¼ �8; a3 ¼ �4, determine the decomposition in

the form

A ¼ X�1JX; J ¼
2 1 0

0 2 0

0 0 1

2
64

3
75:

A.5.2 Consider the matrix given below with the

following three cases. Express it, in each case, in

the form A¼XJX�1: a: "¼0 and �¼0, b: " 6¼ 0 and

�¼ 2, c: "¼ 0 and �¼ 2.

A ¼
1 �

0 1þ "

� �
:

A.5.3 Discrete convolutions and correlations can

be expressed in terms of circulant matrices Moon

and Stirling (2000). One of the classic books in

the general area of Toeplitz matrices is by

Grenander and Szego (1958). A circulant matrix

C is defined by

C ¼

c0 c1 : : : cm�1

cm�1 c0 : : : cm�2

cm�2 cm�1 : : : cm�3

: : : : : :

: : : : : :

: : : : : :

c1 c2 : : : c0

2
666666666664

3
777777777775

;

C ¼
Xm�1
i¼0

ciP
i;P ¼

0 1 0 0

0 0 0 0

: :

: :

: :

0 0 0 : : : 0 1

1 0 0 : : : 0 0

2
666666666664

3
777777777775

:

The eigenvalues and the corresponding eigenvectors

of a circulant matrix are given by

li ¼
Xm�1
k¼0

cke
�j2pðikÞ=m; xi ¼

1

e�j2pi=m

e�j2pð2iÞ=m

:

:

:

e�j2pðm�1Þi=m

2
666666666664

3
777777777775

;

i ¼ 1; 2; :::;m:

Using these results, determine X such that

C ¼ ð1=mÞXDX�.

C ¼
0 1 0

0 0 1

1 0 0

2
64

3
75:

Notes: Eigenvalues of circulant matrices can be

obtained using the DFT of the sequence

fc0; c1; :::; cm�1g. The eigenvectors of every m�m

circulant matrix depend only on ci; i ¼ 0; 1; . . . ;

m� 1, thus allowing for the ease in computing the
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sums, products of these same size matrices by using

their eigenvalue–eigenvector decompositions.

A.6.1 Determine the SVD of

A ¼
2 1

0 2

� �
:

A.7.1 Find the generalized inverse of the matrix A

given below using the following:

A ¼
1 0

2 1

0 2

2
64

3
75;A ¼ U�V�;

U ¼
�0:2673 0:4082 0:8729

�0:8018 0:4082 �0:4364
�0:5345 �0:8165 0:2182

2
64

3
75;

� ¼
2:6458 0

0 1:7321

0 0

2
64

3
75;V ¼ �:7071 :7071

�:7071 �:7071

� �
:

A.8.1 Determine the least-squares solution of the

following system of equations:

y ¼
1

2

1

2
64
3
75 ¼ Ax ¼

1 0

1 1

0 1

2
64

3
75 x1

x2

� �
:

A.8.2 Show that the vector x ¼ A�y is a least-

squares solution to the matrix equation Ax ¼ y

among all vectors such that the L2 norm of the

vector x is minimized.

A.9.1 Approximate the function xðtÞ ¼ cosððp=2ÞtÞ
in the interval [0, 2] using the polynomial approx-

imation with four equally spaced points. Sketch the

given function and the polynomial approximation

function.

A.9.2 Use the function xðtÞ ¼ cosððp=2ÞtÞ using

four equally spaced points and their values of the

function in the interval [0, 2] using Lagrange inter-

polation formula. Sketch the function xðtÞ and the

function obtained by the formula.
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Appendix B

MATLAB1 for Digital Signal Processing

B.1 Introduction

MATLAB is short for MATrix LABoratory soft-

ware developed by The Math Works, Inc. It is a

premier scientific software package for numeric

computation, data analysis, graphics, and design is

extensively used by students and researchers in the

scientific community. It was first designed to do

math operations on matrices. It has quickly grown

to include an array of special toolboxes and func-

tions to facilitate solving most technical problems,

especially those related to signal processing. One of

the strongest assets of MATLAB is that there are

over 1000 built-in functions, with the toolboxes

providing additional functions that are useful in

almost every aspect of science. In addition,

MATLAB is user friendly and allows the user to

write custom functions. It also supports a wide

array of graphic plots and visualization to effi-

ciently represent the data. In the following it will

be assumed that the student is familiar with basics

of MATLAB. This appendix will focus on some

common uses of MATLAB for digital signal

processing.

Most electrical engineering departments require

a basic MATLAB course before the signal analy-

sis course. There are several texts that provide the

basics of MATLAB programming. See Etter

(1993), Palm (2001), Chapman (2005), Etter,

Kuncicky with Hull (2002). In addition to the

general references given earlier, there are several

books that use MATLAB for digital signal pro-

cessing. See, for example, Ingle and Proakis

(2007), Mitra (2006), and others. There are sev-

eral links to online MATLAB tutorials available

on the web:

ftp://ftp.eng.auburn.edu/pub/sjreeves/

matlab_primer_40.pdf

http://www.mathworks.com/academia/

student_center/tutorials/launchpad.html

http://users.ece.gatech.edu/	bonnie/book/
book.html

http://www.ee.ucr.edu/EESystems/docs/

Matlab/

B.2 Signal Representation

In any computer-based application it is important

to realize that all signal are processed as digital

signals. Continuous-time signals are approximated

by their sampled values for processing. In

MATLAB signals are represented as vectors or

arrays. For example, consider the sinc function

(see Section 1.2.8) defined as

yðxÞ ¼ sincðxÞ ¼ sinðpxÞ
px

(B:2:1)

The sinc function is plotted in Fig. B.2.1a. Even

though the curve is continuous in nature, it is an

interpolated version of the discrete signal in

Fig. B.2.1b. These discrete values are stored in the

computer and are used in any computation invol-

ving the signal. The MATLAB code used to

generate these plots and its explanation is given in

the code block below. It provides good online help

for every keyword. More information about the

built-in command may be obtained by typing

‘‘help keyword’’ or ‘‘doc keyword’’ at the

MATLAB prompt. For example, help sinc, doc

sinc, help title, help plot, etc.
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Matlab Code for representing a sinc function

–3*pi/2 –pi –pi/2 0 pi/2 pi 3*pi/2

–0.2

0

0.2

0.4

0.6

0.8

1

x

y 
=

 s
in

c(
x)

Sinc Function

(a)

–3*pi/2 –pi –pi/2 0 pi/2 pi 3*pi/2

–0.2

0

0.2

0.4

0.6

0.8

1

x

y 
=

 s
in

c(
x)

Sinc Function

(b) 

Fig. B.2.1 (a) Continuous-time plot of sinc function and (b) underlying discrete signal

%Clear all pre-existing variables from memory
clear all

% Create a vector or array with values -3pi/2 to 3pi/2 with increments of 0.1
x = -3*pi/2:0.1:3*pi/2;

% Evaluate (B.2.1) for these values using the function sinc
y = sinc(x);

% Make x,y continuous plot and enable grid
plot(x,y); grid on;

% Set and label tick marks for the x-axis
set(gca,’XTick,-3*pi/2:pi/2:3*pi/2);
set(gca,’XTickLabel,{’-3*pi/2,’-pi,’pi/2,’0,’pi/2,’pi,’3*pi/2’});

% Label x & y axes
xlabel(’x’); ylabel(’y = sinc(x)’);

% Title figure
title(’Sinc Function’);

% Set x and y axes range
axis([-3*pi/2 3*pi/2 -0.3 1.1]);

% Make discrete stem x,y plot and enable grid
stem(x,y); grid on;

% Adjust and set axes
set(gca, ’XTick, -3*pi/2:pi/2:3*pi/2);
set(gca, ’XTickLabel, {’-3*pi/2, ’-pi, ’pi/2, ’0,’pi/2,’pi,’3*pi/2’});
xlabel(’x’); ylabel(’y = sinc(x)’);
title(’Sinc Function’);
axis([-3*pi/2 3*pi/2 -0.3 1.1]);
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B.3 Signal Integration

Many of the DSP algorithms in signal processing

require the approximation of integrals. These

include Fourier transforms, analog convolution,

analog correlation, and others. A simple way to

implement integration is to use the rectangular inte-

gration formula, see (1.3.3a).)

A ¼
Zb

a

xðtÞdt ¼
XN�1
n¼0

xðaþ n�tÞ�t: (B:3:1)

Example B.3.1 Using rectangular integration, illus-

trate the evaluation of xðtÞ ¼
ffiffi
t
p

the integral above

assuming a ¼ 0; b ¼ 1 and �t ¼ 0:1. Give the

MATLAB script and verify the result in (B.3.2).

A ¼
Zb

a

ffiffi
t
p

dt ¼ t3=2ð2=3Þ b
a ¼
�� 2

3
ðb3=2 � a3=2Þ

¼ 2

3
¼ 0:6667: (B:3:2)

Solution: Using the rectangular integration for-

mula with xðtÞ ¼
ffiffi
t
p

, we have

A � 0:1
X10
n¼0

xð0þ :1nÞ;

where xð0þ :1nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0þ ð:1ÞnÞ

p
: (B:3:3)

First construct the following vector and use it in

B.3.3 to approximate the integral:

x ¼ ½xð0Þ xð0:1Þ xð0:2Þ xð0:3Þ xð0:4Þ xð0:5Þ xð0:6Þ xð0:7Þ xð0:8Þ xð0:9Þ xð1Þ�:

The MATLAB code to implement the integral approximation is given below.

With delta_t = 0.1, the integral is approximated

as A=0.710509. Whereas, with delta_t = 0.01, the

integral is approximated as A = 0.671463, which is

much closer to the theoretical value of 0.6667. The

signals corresponding to the different delta_t are

shown in Fig. B.3.1a,b. Observe that a larger num-

ber of samples result in an approximation much

closer to the theoretical value of the integral.

B.4 Fast Fourier Transforms (FFTs)

In Chapters 8 and 9 the discrete Fourier transform

(DFT) and its fast implementation (FFT) algo-

rithms were considered. The MATLAB function

‘‘fft’’ can be used to compute the frequency

response. The command Y = fft(X) returns the

discrete Fourier transform (DFT) of X, computed

%Clear all pre-existing variables from memory
clear all

%Set the variable delta_t that controls number of samples
delta_t = 0.1;

%Create a vector with values from 0 to 1 with increments of delta_t=1
t = 0:delta_t:1;

%Create vector x as described above
x = sqrt(t);

%Make stem plot and set axes
stem(t,x); grid on;
xlabel(’t’); ylabel(’x(t)’);
axis([0 1.1 0 1.1]);

%Approximate and display integral value using B.3.3
A=sum(x)*delta_t;
sprintf(’Integral value A with delta_t=%g is %g’,delta_t,A);

MATLAB Code for example B.3.1
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using a fast Fourier transform (FFT) algorithm. Y

= fft(X,n) returns the n-point DFT of X. If the

length of X is less than n, X is padded with trailing

zeros up to length n. If the length ofX is greater than

n, the sequence is truncated. For example, if the data

are given by x ¼ ½1; 2; 3�, then fft(x), fft(x,4), and

fft(x,2) are given by

x ¼ ½1; 2; 3��!fftðxÞ ½6:0000;�1:5000þ j0:8660;

� 1:5000� j0:8660� ¼ X;

X ¼ ½1; 2; 3��!
fftðx;4Þ

½6;�2� j2; 2� 2þ j2� ¼ X;

x ¼ ½1; 2; 3��!
fftðx;2Þ

½3;�1� ¼ X:

In the following, a simple cosine function is used to

illustrate the use of fft to find the frequency spec-

trum of a given signal. We generate a 64-point

cosine signal with 10 samples per period. Then the

fft function is used to find the frequency spectrum,

see Fig. B.4.1a,b.

The fft function produces complex spectral

values. The complex values are difficult to visualize

and therefore we will plot the magnitude of the

complex value. Notice how the peak of the fre-

quency spectrum occurs at 0.1*fs and �0.1*fs.
This is reasonable as the cosine function has 10

samples per period. Ideally we would expect to see

two impulses in the frequency spectrum; however,

that is not the case because the 64-point cosine

signal has one incomplete period in the end. If the

MATLAB code were to be modified such that t =

0:59 and N = 60, we get the plots in Fig. B.4.2.

Notice that having complete periods in the original

signal results in a more ideal frequency spectrum.
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Fig. B.4.1 (a) 64-point cosine signal and (b) 64-point FFT magnitude spectrum
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Fig. B.3.1 (a) x(t) with delta_t = 0.1, (b) x(t) with delta_t = 0.01.
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MATLAB Code for Fig. B.4.1

B.5 Convolution of Signals

MATLAB convolution function can be used to

multiply two polynomials.

Example B.5.1 Use the MATLAB function, conv, to

determine themultiplicationAðxÞBðxÞ ¼ CðxÞ below.

AðxÞ ¼ 2x2 þ xþ 1; BðxÞ ¼ 3x3 � 2x2 þ 1;

CðxÞ ¼ AðxÞBðxÞ (B:5:1)

Solution: First write the coefficients of the polyno-

mials in the form of vectors as a ¼ [2,1,1], b ¼
[3, �2, 0, 1]. Now compute the convolution using

the command below and the corresponding poly-

nomial CðxÞ.
c ¼ conv ða; bÞ ) c ¼ ½6 � 1 1 0 1 1�;

(B:5:2)

) CðxÞ ¼ 6x5 � x4 þ x3 þ ð0Þx2 þ xþ 1: (B:5:3)

clear all

%set signal length
t=0:63;
%set FFT length
N=64;

%Construct and plot the cosine signal
x = cos (2*pi*t/10);
stem(t,x); grid on;
xlabel(’t’);
ylabel(’cos( 2\pi * t/10 )’);
axis([0 64 -1.1 1.1]);

%Compute N point FFT of the signal and take absolute its value to find
%magnitude of the frequency response
X=abs(fft(x,N));

%Shift 0 frequency to the center
X=fftshift(X);

f_ratio =[-N/2:N/2-1]/N;

%Plot frequency response
figure,plot(f_ratio,X); grid on;
xlabel(’frequency / f_s’);
title(’Frequency spectrum’);
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Fig. B.4.2 (a) 60-point
cosine signal and (b) 60-
point FFT magnitude
spectrum
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MATLAB Code for Example B.5.1

Example B.5.2Use the MATLAB function, conv, to

determine the convolution of signals x1½n� and x2½n�.
See the functions inside the MATLAB code block

for the values. See the sketches for x1½n� and x2½n� in
Fig B.5.1.

Solution: The MATLAB code for the convolution is

given above. Note the length of the convolution

sequence is longer than either of the input signals. See

the width property of discrete convolution in Section

8.3.2.

clear all

%Input the signals x1[n] and x2[n]
x1= [0 0 1 2 3 4 3 2 1 0 0 ];
x2= [0 0 0 0 1 1 1 0 0 0 0 ];

%Compute convolution result
y=conv(x1,x2);

%Make plots using subplot to have multiple graphs in one figure.
figure,subplot(3,1,1)
stem(x1); grid on;
xlabel(’n’);
ylabel(’x_1[n]’);
axis([0 11 0 5]);

subplot(3,1,2)
stem(x2); grid on;
xlabel(’n’);
ylabel(’x_2[n]’);
axis([0 11 0 2]);

subplot(3,1,3)
stem(y); grid on;
xlabel(’n’);
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Fig. B.5.1 (a) Signals x1½n�;
(b) x2½n� and
(c) y½n� ¼ x1½n� � x2½n�.
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B.6 Differentiation Using Numerical
Methods

Numerical differentiation methods estimate the

derivative of a function, gðxÞ at x ¼ xn, i.e., g
0ðxnÞ

using the backward difference, forward difference,

and the central difference functions, see (1.3.1).

These approximate the slope of the function at xn.

MATLAB Code for Example B.6.1

Example B.6.1 Consider the polynomial

fðxÞ ¼ x3 � 6x2 þ 11x� 6:

Use MATLAB to sketch the functions fðxÞ and
f 0ðxÞ using a backward difference equation.

Solution: The following MATLAB code gives the

sketches for fðxÞ and f 0ðxÞ given in Fig. B.6.1. &

The polynomial fðxÞ has three roots at x ¼ 1; 2; 3.

The zeros of the derivative polynomial corre-

spond to the local minima or local maxima of

the function fðxÞ. It does not have a global

minimum or a global maximum, as the range of

the function is �1 < x <1. Critical points can

be determined using the following statements and

are 1.4 and 2.6.

B.7 Fourier Series Computation

Exponential F-series coefficients (see Chapter 3)

can be determined using the discrete Fourier

transforms discussed in Chapter 9. See for a brief

discussion in approximating integrals in Section

B.3. The period is T and is divided into N intervals

of ts seconds each.

F-series coefficents: Xs½k� ¼
1

T

Z
T

xTðtÞe�jk!0tdt !0¼2p=T
��

¼ 1

Nts

XN�1
n¼0
ðtsxðntsÞÞe�jð2p=NtsÞntsk ¼ 1

N

XN�1
n¼0

x½n�e�jð2p=NÞkn : (B:7:1)

clear all

x = 0:0.1:4;
%compute function f(x)
f = x.^3 - 6*x.^2 + 11*x -6;

%plot function and label axes
subplot(2,1,1);
plot(x,f); grid on;
xlabel(’x’); ylabel(’f(x)’);
title(’Third order polynomial’);

%compute backward difference using function diff, then take ratio to obtain
%derivative
df = diff(f)./diff(x);

%plot the derivative and label axes
subplot(2,1,2);
plot(x(2:length(x)),df); grid on;

title(’Derivative of third order polynomial’);
xlabel(’x’); ylabel(’df’);

Product = (df(1:length(df)-1).*df(2:length(df)));
Critical = x(find(Product<0)+1)
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The spectral coefficients repeat periodically with

period N. That is Xs½k� ¼ Xs½kþN�. We assumed

that the first sample starts at t ¼ 0 and the last

sample at ðT� tsÞ not at t ¼ T. As we have seen in

Chapter 3 that the Fourier series coefficients of most

functions decay as a function of k. There is spectral

overlap due to the periodic nature of the spectra of

the sampled signal. Select N large enough so as to

minimize the overlap.

Example B.6.1 Compute the F-series coefficients

using MATLAB of (see Lathi (1998)

xðtÞ ¼ e�t=2; 0 � t < p; xðtÞ ¼ xðtþ TÞ; T ¼ p:

(B:7:2)

Solution: The samples start at t ¼ 0, which is the

same as the sample at t ¼ T and is not equal to the

sample value at t ¼ T� ts. We know that the F

series converge to the average of the two values on

two sides if there is a discontinuity. Therefore the

value of the function at t ¼ 0 is not equal to 1 but it

is taken as ðe�p=2 þ 1Þ=2 ¼ 0:604. From our discus-

sion in Chapter 3, the signal has a jump discontinu-

ity and therefore we can predict that the Fourier

series coefficients decay slowly as ð1=nÞ. We further

assume that the number of Fourier series coeffi-

cients Xs½n� to be determined is based on the con-

straint that the amplitudes of the coefficients Xs½n�
are negligible for n 
 N=2. It is safe to select a value

of n such that Xs½n�j j < 0:01. This implies that the

100th harmonic is about 1% of the fundamental.

N ¼ 200 satisfies the requirement. Use N, a power

of 2, say N ¼ 256 and then use the fft algorithm.

Extracting the first ten of these gives the first ten

coefficients of the complex F series coefficients in

terms of their magnitudes and phase angles and are

given in Table B.7.1.

These approximate values can be verified by using

the compact harmonic Fourier series coefficients.

Xs½0� ¼ 0:504; k > 1; d ½k� ¼ 0:504
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16 k2
p
� �

;

�½k� ¼ � tan�1ð4 kÞ (B:7:3)

Table B.7.1 Amplitudes and phase angles of the harmonic
Fourier series coefficients (Example B.7.1)

xTðtÞ ¼ Xsð0Þ þ
P1
k¼1

d½k� cosðk!0tþ �½k�Þ ;

whereT ¼ p;!0 ¼ 2:

Amplitudes Phase angle (in degrees)

Xsð0Þj j .5058 ffXsð0Þ 0

d[1] .2454 �[1] �75.9622
d[2] .1255 �[2] �82.8719
d[3] .0840 �[3] �85.2317
d[4] .0631 �[4] �86.4175
d[5] .0506 �[5] �87.1299
d[6] .0422 �[6] �87.6048
d[7] .0362 �[7] �87.9437
d[8] .0316 �[8] �88.1977
d[9] .0281 �[9] �88.3949
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order polynomial and its
derivative over the range
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For k ¼ 9, the amplitude and the phase angle

of the coefficient are, respectively, given by

0.504*(2/sqrt(1þ16*81)) ¼ 0.0280, �atanð36Þ*
180/pi ¼ �88:40748. &

MATLAB Code for Example B.7.1

B.8 Roots of Polynomials, Partial Fraction
Expansions, Pole�Zero Functions

Given a polynomialDðsÞ, we like to find the roots of
this polynomial using MATLAB.

DðsÞ ¼ 3s3 � 2s2 þ 1: (B:8:1)

MATLAB function roots can provide the required

solution:

r ¼ rootsð½3;�2; 0; 1�Þ ) 0:5974þ j 0:5236;

0:5974� j 0:5236;�0:5282: (B:8:2)

MATLAB gives the results of complex numbers

in the form 0:5974þ :5236i rather than

0:5974þ j 0:5236. If the roots are given, then we

can obtain the polynomial using the MATLAB

script and the results as given below.

polyðrÞ ) 1:0000 0�0:6667 0:0000

0:3333) s3 � 0:6667sþ 0:3333: (B:8:3)

We can use MATLAB to convert a transfer func-

tion given in terms of a ratio of two polynomials

into a transfer function expressed in terms of its

zeros, poles, and the gain constant, and vice versa.

The corresponding commands are

Zp2tf converts zero�pole�gain
to transfer function; (B:8:4)

Tf2zp converts transfer function to

zero�pole�gain: (B:8:5)

clear all
%Select the value of M, i.e., the number coefficients equal to 10
T = pi; N = 256; M=10 ;

%Generate N values of time starting at t = 0 at time intervals of
ts = T/N;
t=0:ts:ts*(N-1);

%Convert the above as a column vector
t = t’;

%Define the function x = exp(-t/2) , we define x(0)=0.604
%Note that MATLAB sequence starts at index n = 1
xk = exp(-t/2);
x(1)=.604;

%Use fft to determine the spectrum and divide it by the number
%of sample points N
Xn = fft(xk)/N;

%Find the amplitudes and the phase angles of the complex FS coefficients
Xamp = abs(Xn);
Xphase = angle(Xn)*180/pi;

%Note that amplitudes will be twice the values computed above for k=2,. . .,M.
X0=Xamp(1);
Xk=2*Xamp(2:M);

%Display the coefficients and phase angle
[X0;Xk]
Xphase(1:10)
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B.8.1 Partial Fraction Expansions

A rational transfer function can be written as

HðsÞ ¼ BðsÞ
AðsÞ ¼

XM�N
n¼0

kns
n þNðsÞ

AðsÞ : (B:8:6)

Example B.8.1 Use the MATLAB residue function

to find the partial fraction expansions of the follow-

ing functions:

a: HaðsÞ ¼
2s3þ 2s2þ 6sþ 7

s2þ sþ 5

¼ 2sþ �2� j2:0647

sþ 0:5� j2:1794
þ �2þ j2:0647

sþ 0:5þ j2:1794
;

b: HbðsÞ ¼
1

s3 þ 4s2 þ 5sþ 2

¼ 1

ðsþ 1Þ2
� 1

ðsþ 1Þ þ
1

ðsþ 2Þ :

Solution: a: The vectors and the MATLAB state-

ment for the partial fraction expansion are as

follows:

b ¼ 2 2 6 7½ �; a ¼ 1 1 5½ �;
r; p; k½ � ¼ residue b; að Þ (B:8:7)

Outputs:

r ¼ � 2:0000 � 2:0647i; � 2:0000 þ 2:0647i ;

p ¼ � 0:5000 þ 2:1794i;� 0:5000� 2:1794i;

k ¼ ½2 0� :

The residues are in the vector r, the poles are in

vector p, and the entries in the vector k are the

coefficients identified in (B.8.6).

b: Vectors in the MATLAB statement: b ¼ 1½ �;
a ¼ 1 4 5 2½ �.

Outputs:

r ¼ 1:0000; � 1:0000; 1:0000;

p ¼ �2:0000; � 1:0000; � 1:0000;

k ¼ ½ �ðk is identically zeroÞ

B.9 Bode Plots, Impulse and Step
Responses

There are several MATLAB functions available for

analysis and designs of linear systems. These func-

tions include bode, nyquist, rlocus, step, and others.

B.9.1 Bode Plots

Example B.9.1 Use MATLAB to sketch the magni-

tude in dB and the corresponding phase angle plots

for the fourth-order Butterworth function

HðsÞ ¼ 1

½s4 þ 2:6131s3 þ 3:4142s2 þ 2:6131sþ 1� :

Solution: Following MATLAB statements would

produce the Bode magnitude in dB and the phase

angle in degrees plots shown in Fig. B.9.1.

MATLAB Code for example B.9.1

B.9.2 Impulse and Step Responses

MATLAB has built in routines for impulse and step

responses for a given transfer function. The coeffi-

cients of the numerator (num) and the denominator

(den) polynomials are written in decreasing powers.

Example B.9.2UseMATLAB to sketch the impulse

and step responses of the function

HðsÞ ¼ 1=½s2 þ 1:7967sþ 2:114�:

Solution: The required MATLAB code and plots is

given below. See Fig B.9.2 for plots

clear all

%define numerator and denominator
num=1; den=[1 2.6131 3.4142 2.6131 1];

%Use function bode to make plot
bode(num,den); grid on;
title(’Bode plot for a fourth order Butterworth function’);

518 Appendix B MATLAB1 for Digital Signal Processing



MATLAB Code for Example B.9.2
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clear all

%define numerator and denominator
num=1; den=[1 1.7967 2.1140];

%Use function tf to construct system with transfer function with given
%numerator and denominator
sys1= tf(num,den);

%use function impulse to make plot of impulse response
subplot(121);
impulse(sys1); grid on;

%use function step to make plot of impulse response
subplot(122);
step(sys1); grid on;
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B.10 Frequency Responses of Digital
Filter Transfer Functions

Consider the function

HðzÞ ¼ BðzÞ
DðzÞ ¼

b0 þ b1z
�1 þ b2z

�2 þ � � � þ bnz
�n

d0 þ d1z�1 þ d2z�2 þ � � � þ dnz�n

(B:10:1)

The MATLAB function freqz function uses three

inputs B, A, and N given below. The argument N

specifies the number of normalized frequency values

over the interval ½0; p�. TheMATLAB program that

determines the plots of the magnitudes uses the

following statement:

MATLAB Code for Example B.10.1

B ¼ ½b0; b1; . . . ;bn�; A ¼ ½d0; d1; . . . ; dn�;
½Hz;wT� ¼ freqzðB;A;NÞ: (B:10:2)

Example B.10.1 Use the MATLAB freqz function

to sketch the frequency amplitude and phase

responses of

HðzÞ¼0:1432
1þ3z�1þ3z�2þz�3

1�0:1801z�1þ0:3419z�2�0:0165z�3 :

(B:10:3)

Solution: MATLAB code is given below and the

plots are shown in Fig. B.10.1.

B.11 Introduction to the Construction
of Simple MATLAB Functions

Instead of typing commands directly, we can type

functions (subroutines). These are called script files

or M-files. They use the variables that are local to

themselves and do not appear in the main

workspace. The following illustrates a simple func-

tion dB conversion. M-file begins with a word func-

tion, followed by the output argument(s), an equal

sign, and the name of the function, such as the

simple function given below that converts magni-

tude to dB with an illustration of how to construct

this function, see Etter (1993).

clear all

num = 0.1432.*[1 3 3 1];
den =[1 -.1801 .3419 -.0165];

%Use freqz function to determine frequency response
[H,w]= freqz(num,den);

%Find magnitude and phase of complex values stored in H
magH=abs(H); phaH=angle(H);

%Normalize frequency to be between 0 and 1 for use in plot
w_norm=w/pi;

%Make plots of magnitude and phase
figure,subplot(2,1,1),plot(w_norm,magH); grid on;
title(’Magnitude Response’)
xlabel(’Normalized frequency (x \pi rad/sample)’);
ylabel(’Magnitude (dB)’);

subplot(2,1,2); plot(w_norm,phaH/pi); grid on;
title(’Phase response’);
xlabel(’Normalized frequency (x \pi rad/sample)’);
ylabel(’Phase in pi units’);

function [dB]= dbconversion(mag)
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1. Open a New M-File (corner of the menu bar). A

window editor will pop up.

2. Type the following script and save it with file

name dbconversion.

3. To use this function, type dB=dBconversion (67).

MATLAB Script for Fig. 9.11.6

4. Press ‘‘enter’’ and the MATLAB will respond the

dB value 36.5215.

B.12 Additional MATLAB Code
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Fig. B.10.1 Plots of
amplitude and phase
responses for
example B.10.1

clear all

%Compute a Hamming Window
N=55; %Set number of points
for n=0:N-1,

w(n+1)=(0.54-(0.46*cos((2*pi*n)/(N-1))));
end

figure(1) %Corresponds to Figure 9.11-6a.
stem(0:N-1,w) %Plot Hamming window, w(n)
xlabel(’Index (n)’); ylabel(’Amplitude’)
title(’Hamming window, w_H[n]: N=55’)
axis([0 55.5 0 1.1])

%Compute the impulse response, h(n) for a Hamming window
for n=0:N-1,

if n==(N-1)/2,
h(n+1)=0.3; %Passband

else
h(n+1)=(sin(0.3*pi*(n-((N-1)/2)))/(pi*(n-((N-1)/2))))*w(n+1);

end
end
figure(2) %Corresponds to Figure 9.11-6b.
stem(0:N-1,h) %Plot the impulse response
xlabel(’Index (n)’); ylabel(’Amplitude’)
title(’Impulse Response with 55 Coefficients, h(n)’)
axis([0 55.5 -0.1 0.35])
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%Compute the Frequency Response for the FIR filter in dB
Xw=fft(h,3024); %Zero pad input and return

%3024 point DFT
XwdB=db(abs(Xw)); %Compute magnitude (in dB)
NXwdB=XwdB-max(XwdB); %Normalized magnitude spectrum
ws=[0:1/length(XwdB):0.5-0.5/length(XwdB)]; %Normalized Frequency

%(from 0 to 0.5*ws)

figure(3) %Corresponds to Figure 9.11-6c.
plot(ws*2*pi,NXwdB(1:length(XwdB)/2)); %Plot the Frequency response
set(gca,’XTick’,0:0.1*pi:pi)
set(gca,’XTickLabel,{’0,’0.1pi,’0.2pi,’0.3pi,’0.4pi,’0.5pi,’0.6pi,’0.
7pi,’0.8pi,’0.9pi’pi’})
xlabel(’Frequency (\Omega), (0 \leq \Omega \leq \pi)’)
ylabel(’20 log |H(e^j^\Omega)|,(dB)’)
title(’Amplitude Frequency Response for the FIR filter in dB’)
axis([0 pi -80 0])
grid

%Compute the Phase plot for the FIR filter in degrees
Xphase = angle(Xw)*180/pi;
figure(4) %Corresponds to Figure 9.11-6d.
plot(ws*2*pi,Xphase(1:length(XwdB)/2)) %Plot the filter Phase response
set(gca,’XTick’,0:0.1*pi:pi)
set(gca,’XTickLabel,{’0,’0.1pi, ’0.2pi, ’0.3pi, ’0.4pi, ’0.5pi,’0.6pi, ’0.
7pi, ’0.8pi, ’0.9pi,’pi’})
xlabel(’Frequency (\Omega), (0 \leq \Omega \leq \pi)’)
ylabel(’Phase (deg)’)
title(’Phase plot for the FIR filter in degrees ’)
axis ([0 pi -200 200])
grid
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Appendix C

Mathematical Relations

Following is a summary of mathematical relations

that are useful. For an extensive list of the formulas,

see Abramowitz and Stegun, Editors [1964], Spiegel

[1966], and others.

C.1 Trigonometric Identities

sin x� yð Þ ¼ sin xð Þ cos yð Þ � cos xð Þ sin yð Þ (C:1:1)

cos x� yð Þ ¼ cos xð Þ cos yð Þ  sin xð Þ sin yð Þ (C:1:2)

tan x� yð Þ ¼ tan xð Þ � tan yð Þ
1 tan xð Þ tan yð Þ (C:1:3)

cos x� p=2ð Þð Þ ¼  sin xð Þ (C:1:4)

sin x� p=2ð Þð Þ ¼ � cos xð Þ (C:1:5)

cos 2xð Þ ¼ cos2 xð Þ � sin2 xð Þ (C:1:6)

sin 2xð Þ ¼ 2 sin xð Þ cos xð Þ (C:1:7)

cos xð Þ cos yð Þ ¼ cos x� yð Þ þ cos xþ yð Þ½ �=2 (C:1:8)

sin xð Þ sin yð Þ ¼ cos x� yð Þ � cos xþ yð Þ½ �=2 (C:1:9)

sin xð Þ cos yð Þ ¼ sin x� yð Þ þ sin xþ yð Þ½ �=2 (C:1:10)

cos2 xð Þ ¼ 1þ cos 2xð Þ½ �=2 (C:1:11)

sin2 xð Þ ¼ 1� cos 2xð Þ½ �=2 (C:1:12)

A cos xð Þ þ B sin xð Þ ¼ C cos xþ �ð Þ;

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
; � ¼ � tan�1 B=Að Þ

A ¼ R cos �ð Þ;B ¼ sin �ð Þ (C:1:13)

cos �ð Þ ¼ ej� þ e�j�
	 


=2 (C:1:14)

sin �ð Þ ¼ ej� � e�
j�

� �
=2j (C:1:15)

C.2 Logarithms, Exponents and Complex
Numbers

logaðABÞ ¼ logaðAÞ þ logaðBÞ (C:2:1)

logaðA=BÞ ¼ logaðAÞ � logaðBÞ (C:2:2)

logaðApÞ ¼ p logaðAÞ (C:2:3)

logaðAÞ ¼
logbðAÞ
logbðaÞ

(C:2:4)

logeðAÞ ¼ lnðAÞ ¼ ð2:30258::Þ log10ðAÞ (C:2:5)

eAeB ¼ eðAþBÞ ; eA=eB ¼ eðA�BÞ (C:2:6)

Complex Numbers:

A ¼ ReðAÞ þ jImðAÞ ¼ Aj jej�A ;

Aj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ReðAÞ�2 þ ½ImðAÞ�2

q
; (C:2:7a)

�A¼
tan�1½ImðAÞ=ReðAÞ�; ReðAÞ> 0

�1800� tan�1½ImðAÞ=ð�ReðAÞÞ�; ReðAÞ< 0



(C:2:7b)

ReðAÞ¼ Aj jcosð�AÞ;ImðAÞ¼ Aj jsinð�AÞ ; (C:2:7c)

A� ¼ ReðAÞ � jImðAÞ; (C:2:7d)

523



j2 ¼ �1; 1=j ¼ �j; 6 (C:2:8)

Ap ¼ rpejp�A ; (C:2:9)

ðAÞ1=n ¼ ½rejð�Aþ2 kpÞ�1=n ¼ r1=nejð�Aþ2 kpÞ=n; (C:2:10)

lnðrej�AÞ ¼ lnðrÞ þ jð�A þ 2 kpÞ; k ¼ integer:

(C:2:11)

C.3 Derivatives

dðcxnÞ
dx

¼ ncxn�1 ; (C:3:1)

desx

dx
¼ sesx; (C:3:2)

d cosðuÞ
dx

¼ � sinðuÞ du
dx
; (C:3:3)

d sinðuÞ
dx

¼ cosðuÞ du
dx
; (C:3:4)

d tanðuÞ
dx

¼ sec2ðuÞ du
dx
; (C:3:5)

dðuvÞ
dx
¼ u

dv

dx
þ v

du

dx
; (C:3:6)

dðu=vÞ
dx

¼ 1

v2
v
du

dx
� u

dv

dx

� �
; (C:3:7)

dðunÞ
dx
¼ nun�1

du

dx
; (C:3:8)

dy

dx
¼ dy

du

du

dx
; (C:3:9)

d

dx
lnðuÞ ¼ 1

u

du

dx
; (C:3:10)

d logaðuÞ
dx

¼ logaðeÞ
u

du

dx
; a 6¼ 0; 1; (C:3:11)

dðeuÞ
dx
¼ eu

du

dx
; (C:3:12)

duv

dx
¼ vuv�1

du

dx
þ uv lnðuÞ dv

dx
; (C:3:13)

d sinhðuÞ
dx

¼ coshðuÞ du
dx
; (C:3:14)

d coshðuÞ
dx

¼ sinhðuÞ du
dx
; (C:3:15)

d tanhðuÞ
dx

¼ sech2ðuÞ du
dx
; (C:3:16)

d sinh�1ðuÞ
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

u2 þ 1

r
du

dx
; (C:3:17)

dcosh�1ðuÞ
dx

¼ �1ffiffiffiffiffiffiffiffiffiffiffi
u2�1
p du

dx
;

þifcosh�1ðuÞ>0;u>1

�ifcosh�1ðuÞ<0;u>1

( )
; ðC:3:18Þ

d tanh�1ðuÞ
dx

¼ 1

1� u2
du

dx
; �1 < u < 1; (C:3:19)

C.4 Indefinite Integrals

Z
udv ¼ uv�

Z
vdu; (C:4:1)

Z
fðnÞgdx ¼ fðn�1Þg� fðn�2Þg0 þ �:::ð�1Þn

Z
fgðnÞdx;

fðnÞ ¼ dnfðxÞ
dxn

; gðnÞ ¼ dng

dxn
; (C:4:2)

Z
ðaþ bxÞndx ¼ ðaþ bxÞnþ1

bðnþ 1Þ ; 0 < n; (C:4:3)

Z
dx

aþ bx
¼ 1

b
ln aþ bxj j; (C:4:4)

Z
dx

ðaþ bxÞn ¼
�1

ðn� 1Þðaþ bxÞn�1
; 1 < n; (C:4:5)

Z
dx

x2 þ a2
¼ 1

a
tan�1ðx=aÞ; (C:4:6)

Z
dx

a2 � x2
¼ 1

2a
ln

aþ x

a� x

h i
; (C:4:7)

Z
cosðaxÞdx ¼ ð1=aÞ sinðaxÞ; (C:4:8)
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Z
x cosðaxÞdx ¼ ð1=a2Þ cosðaxÞ þ ð1=aÞx sinðaxÞ;

(C:4:9)

Z
x2 cosðaxÞdx ¼ð2x=a2Þ cosðaxÞ

þ ½ðx2=aÞ � ð2=a3Þ� sinðaxÞ;
(C:4:10)

Z
sinðaxÞdx ¼ �ð1=aÞ cosðaxÞ; (C:4:11)

Z
x sinðaxÞdx ¼ ð1=a2Þ sinðaxÞ � ðx=aÞ cosðaxÞ;

(C:4:12)

Z
x2 sinðaxÞdx ¼ð2x=a2Þ sinðaxÞ

þ ½ð2=a3Þ � ðx2=aÞ� cosðaxÞ;
(C:4:13)

Z
axdx ¼ ax

lnðaÞ ; a > 0; a 6¼ 1; (C:4:14)

Z
xeaxdx ¼ eax

x

a
� 1

a2

� �
; (C:4:15)

Z
x2eaxdx ¼ eax

a
x2 � 2x

a
þ 2

a2

� �
; (C:4:16)

Z
eax cosðbxÞdx ¼ eax½a cosðbxÞ þ b sinðbxÞ�

a2 þ b2
;

(C:4:17)

Z
eax sinðbxÞdx ¼ eax½a sinðbxÞ � b cosðbxÞ�

a2 þ b2
;

(C:4:18)

Z
cosðbxÞeaxdx ¼ eax

a2 þ b2
½a cosðbxÞ þ b sinðbxÞ�;

(C:4:19)

Z
sinðbxÞeaxdx ¼ eax

a2 þ b2
½a sinðbxÞ � b sinðbxÞ�;

(C:4:20)

Z
cosðaxÞ cosðbxÞdx ¼ sinða� bÞx

2ða� bÞ þ
sinðaþ bÞx
2ðaþ bÞ ;

a2 6¼ b2; (C:4:21)

Z
sinðaxÞ sinðbxÞdx ¼ sinða� bÞx

2ða� bÞ �
sinðaþ bÞx
2ðaþ bÞ ;

a2 6¼ b2; (C:4:22)

Z
sinðaxÞcosðbxÞdx¼�cos½ða�bÞx�

2ða�bÞ �
cos½ðaþbÞx�
2ðaþbÞ ;

a2 6¼b2; (C:4:23)

C.5 Definite Integrals and Useful
Identities

Zb

a

fðxÞdx ¼ �
Za

b

fðxÞdx; (C:5:1)

Zb

a

fðxÞdx ¼
Zc

a

fðxÞdxþ
Zb

c

fðxÞdx; (C:5:2)

Z1

0

xne�axdx ¼ n!

anþ1
; a > 0; (C:5:3)

Z1

0

e�r
2x2dx ¼

ffiffiffi
p
p

2r
; r > 0; (C:5:4)

Z1

0

sinðpxÞ
x

dx ¼
p=2 ; p > 0

0 ; p ¼ 0

�p=2; p < 0

8><
>: ; (C:5:5)

Z1

0

dx

x2 þ a2
¼ p

2a
: (C:5:6)

C.6 Summation Formulae

Xn
k¼0

ak ¼ 1� anþ1

1� a
; a 6¼ 1; (C:6:1a)

XN�1
i¼0

ejðm�kÞð2p=NÞn ¼
0; m 6¼ k

N;m ¼ k


; (C:6:1b)
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X1
k¼0

ak ¼ 1

ð1� aÞ ; aj j < 1; (C:6:2)

X1
0

kak ¼ a

ð1� aÞ2
; aj j < 1; (C:6:3)

Xn
k¼0

k ¼ nðnþ 1Þ
2

; (C:6:4)

Xn
k¼0

k2 ¼ nðnþ 1Þð2nþ 1Þ
6

: (C:6:5)

C.7 Series Expansions

ð1þ xÞn ¼ 1þ nxþ nðn� 1Þ
2!

x2 þ :::; (C:7:1)

ex ¼ 1þ xþ x2

2!
þ x3

3!
þ; . . . ;�1 < x <1; (C:7:2)

lnð1þ xÞ ¼ x� x2

2
þ x3

3
�; . . . ;�1 < x � 1; (C:7:3)

sinðxÞ ¼ x� x3

3!
þ x5

5!
�; . . . ;�1 < x <1; (C:7:4)

cosðxÞ ¼ 1� x2

2!
þ x4

4!
� x6

6!
þ; . . . ;�1 < x <1;

(C:7:5)

tanðxÞ ¼ xþ x3

3
þ 2x5

15
þ :::; xj j < p

2
; (C:7:6)

sin�1ðxÞ ¼ xþ x3

2ð3Þ þ
1ð3Þ
2ð4Þ

x5

5
þ 1ð3Þð5Þ
2ð4Þð6Þ

x7

7

þ; . . . ; xj j < 1; (C:7:7)

cos�1ðxÞ ¼ p
2
� sin�1ðxÞ; xj j < 1; (C:7:8)

tan�1ðxÞ ¼ x� ðx3=3Þ þ ðx5=5Þ � ðx7=7Þ þ :::; xj j < 1

�ðp=2Þ � ð1=xÞ þ ð1=3x3Þ � ð1=5x5Þ þ :::; þif x 
 1;� if x � �1½ �


: (C:7:9)

C.8 Special Constants and Factorials

p ¼ 3:14159:::; (C:8:1)

e ¼ 2:71828 . . . ; (C:8:2)

1 rad ¼ 180�=p; (C:8:3)

n! ¼ 1:2:3; . . . ; n; ! ¼ 1: (C:8:4)
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