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Preface to third edition

This book is designed to meet the special, but not exclusive, needs of civil
engineering students reading for degrees and diplomas and for Engineering
Council Parts I and II examinations at universities and colleges of higher
education.

Having as its main feature a substantial number of worked examples, its
purpose is to augment lecture courses and standard textbooks on fluid
mechanics and hydraulics by illustrating the application of the underlying
theory to a wide range of practical situations. The inclusion of exercise
problems, with answers, will enable students to assess their understanding of
the theory and methods of analysis and design. Aspects of relevant theory,
in concise form and accompanied by explanation, are included at the beginning
of each chapter. The book should prove useful not only to students but also
to practising engineers as a concise working reference.

The contents are concentrated on the types of problem commonly encoun-
tered by civil engineers in the field of hydraulic engineering as compared
with the wider fields covered by fluid mechanics texts. Due to space limitations,
however, the text does not extend into the specialist fields of mathematical
simulation models required, for example, for esturial flow computations and
detailed waterhammer analysis. ‘

S.1. units are used throughout and standard symbols for physical properties
employed. The numerical procedures illustrated are appropriate to the use
of electronic calculators, but readers may find it instructive to write programs
for execution on microcomputers for problems requiring repetitive solutions
or numerical methods.

Keeping to the original objectives and the structure of the book, additional
text and worked examples have been added to the ‘third edition, notably
Chapter 8 covering uniform and non-uniform flows in open channels, sluice
gates ‘and some basic culvert flow problems. The revised edition has also
been enlarged to include spillway structures and energy dissipation, design
of regime channels and sediment transport in rigid bed channels. Also,
additional reading publications and problems to be solved are provided
where appropriate.

The authors are indebted to Professor P. Novak, Emeritus Professor of
Civil and Hydraulic Engineering, University of Newcastle-upon-Tyne, for
his helpful criticisms and advice throughout the preparation of this book:



Chapter 1
Properties of Fluids

C. Nalluri

1.1 Introduction

A fluid is a substance which deforms continuously, or flows, when subjected
to shear stresses. The term fluid embraces both gases and liquids; a given
mass of liquid will occupy a definite volume whereas a gas will fill its con-
tainer. Gases are readily compressible; the low compressibility, or elastic
volumetric deformation, of liquids is generally neglected in computations
except those relating to large depths in the oceans and in pressure transients
in pipelines.

This text however deals exclusively with liquids and more particularly with
Newtonian liquids, i.e. those having a linear relationship between shear
stress and rate of deformation.

1.2 Engineering units

MKS (Metre-Kilogramme-Second) system is the internationally agreed
version of metric system (SI) of units. All physical quantities can be described
by a set of three primary units, mass (kg), length (m) and time (s) designated
by M, L and T respectively.

The unit of force is called newton (N) and 1 N is the force which accel-
erates a mass of 1 kg at a rate of 1 m/s2. 1 N = 1 kg m/s” :MLT™?).

The unit of work is called the joule (J) and it is the energy needed to
move a force of 1 N over a distance of 1 m, i.e. 1 Nm(:ML?T~?). Power is
the energy or work done per unit time and its unit is the watt (W). 1 W =
1 Nm/s = 1 J/s(:ML?T™?).

1.3 Mass density and specific weight

Mass density (p) or density of a substance is defined as the mass of the
substance per unit volume (kg/m* ML™?) and is different from specific
weight (y), which is the force exerted by the earth’s gravity (g) upon a unit
volume of the substance (y = pg: N/m* ML™2T"?). In a satellite where
there is no gravity, an object has no specific weight but possesses the same
density that it has on the earth.
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1.4 Relative density

Relative density (o) of a substance is the ratio of its mass density to that of
water at a standard temperature (4°C) and pressure (atmospheric) and is
dimensionless (M"L"T").

For water: p = 10° kg/m®, y = 10° x 981 = 10* N/m* and o = 1.

1.5 Viscosity of fluids

Viscosity is that property of a fluid which, by virtue of cohesion and inter-
action between fluid molecules offers resistance to shear deformation. Dif-
ferent fluids deform at different rates under the action of the same shear
stress. Fluids with high viscosity such as syrup deform relatively more slowly
than low viscosity fluids such as water.

All fluids are viscous and ‘Newtonian fluids’ obey the linear relationship

T=u :—;— (Newton’s law of viscosity) (.Y

where 7 is the shear stress (N/m%:ML~'T~?), du/dy the velocity gradient, or
rate of deformation (radians/s:T~'), and u the coefficient of dynamic (or
absolute) viscosity (Ns/m” or kg/ms: ML™'T™").

A smaller unit of viscosity, called the poise, is 1 gm/cm s. 1 kg/ms =
10 poises.

Kinematic viscosity (v) is the ratio of dynamic viscosity to mass density
expressed in m%/s(L>T™!).

A smaller unit of kinematic viscosity is the stoke (1 cm?/s). 1 m¥s =
10* stokes.

Water is a Newtonian fluid having a dynamic viscosity of 107*Ns/m? or
kinematic viscosity of 107® m?/s at 20°C.

1.6 Compressibility and elasticity of fluids

All fluids are compressible under the application of an external force and
when the force is removed they expand back to their original volume
exhibiting the property that stress is proportional to volumetric strain.

The bulk modulus of elasticity, K = pressure change/volumetric strain
= dp/(dV/V):(N/m*:ML~'T~?)
(1.2)

Water with a bulk modulus of 2-1 x 10” N/m? at 20°C is 100 times more
compressible than steel, but it is ordinarily considered incompressible.
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1.7 Vapour pressure of liquids

A liquid in a closed container is subjected to partial vapour pressure due to
the escaping molecules from the surface; it reaches a stage of equilibrium
when this pressure reaches saturated vapour pressure. Since this depends
upon molecular activity, which is a function of temperature, the vapour
pressure of a fluid also depends upon its temperature and increases with it.
If the pressure above a liquid reaches the vapour pressure of the liquid,
boiling occurs; for example if the pressure is reduced sufficiently boiling may
occur at room temperature.
The saturated vapour pressure for water at 20°C is 2-45 X 10°N/m?.

1.8 Surface tension and capillarity

Liquids possess the properties of cohesion and adhesion due to molecular
attraction. Due to the property of cohesion, liquids can resist small tensile
forces at the interface between the liquid and air, known as surface tension
(o:N/m:MT"2). If the liquid molecules have greater adhesion than cohesion,
then the liquid sticks to the surface of the container with which it is in
contact resulting in a capillary rise of the liquid surface; a predominating
cohesion on the other hand causes capillary depression. The surface tension
for water is 73 X 1073N/m at 20°C.

The capillary rise or depression h of a liquid in a tube of diameter d can
be written as

h = 4 g cos 8/pgd (1.3)

where @ is the angle of contact between liquid and solid.

Surface tension increases the pressure within a droplet of liquid. The
internal pressure, p, balancing the surface tensional force of a small spherical
droplet of radius, r, is given by

P= (1.4)

Worked examples

Example 1.1
The density of an oil at 20°C is 850 kg/m>. Find its relative density and
kinematic viscosity if the dynamic viscosity is 5 X 107 *kg/ms.
Solution:
Relative density, 0 = p of oil/p of wazer
= 850/10°
= (-85
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Kinematic viscosity, v = u/p
=5 X 107850
= 5-88 X 10"°m?¥s.

Example 1.2
If the velocity distribution of a viscous liquid (# = 0-9 Ns/m?) over a fixed
boundary is given by u = 0-68y — y? in which u is the velocity in m/s at a
distance y metres above the boundary surface, determine the shear stress at
the surface and at y = 0-34 m,
Solution:
u =068y — y?
. du/dy = 0-68 — 2y; hence (du/dy), _ ¢ = 0-68 5!
and (du/dy)y _ p3am =0

Dynamic viscosity of the fluid, g = 0-9 Ns/m?
From equation 1.1

t = pdu/dy, shear stress (t)y =0 =09 x 068

= 0-612 N/m?
andat y=034m,7=0.

Example 1.3
At a depth of 8-5 km in the ocean the pressure is 90 MN/m?.

The specific weight of the sea water at the surface is 10-2 kN/m® and its
average bulk modulus is 24 x 10°%kN/m2. Determine (a) the change in

specific volume, (b) the specific volume, and (c) the specific weight of sea
water at 8-5 km depth.

Solution:
Change in pressure dp at a depth of 8-5 km = 90 MN/m?
=9 x 10* kN/m?
Bulk modulus, K = 2:4 x 10® kN/m?
From K = dp/(dV/V), dV/V = 9 x 10%2-4 x 10°
=375 x 1072

Defining specific volume as 1/y (m*/kN), the specific volume of sea water
at the surface = 1/10-2 = 9-8 x 10 2m%/kN.
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.. Change in specific volume between that at the surface and at 8-5 km
depth, dV = 3-75 x 1072 x 9-8 x 1072

= 36-75 x 107* m*/kN
The specific volume of sea water at 8-5 km depth

=98 x 1072 — 3675 x 107*

= 9-44 X 10~’m*/kN
.. The specific weight of sea water at 8-5 km depth

= 1/specific volume
1/9-44 x 1072
10-6 kN/m>.

Recommended reading

1. Brown, R.C. (1950) Mechanics and properties of maiter. London:
Longman.

2. Massey, B.S. (1972) Mechanics of fluids. London: Van Nostrand-
Reinhold.

Problems

1. (a) Explain why the viscosity of a liquid decreases while that of a gas"
increases with an increase of temperature.
(b) The following data refer to a liquid under shearing action at a
constant temperature. Determine its dynamic viscosity.
du/dy (rad/s): 0 02 04 06 08
T (N'm?»): 0 1 19 31 4

2. A 300 mm wide shaft sleeve moves along a 100 mm diameter shaft at
a speed of 0-5 m/s under the application of a force of 250 N in the direction
of its motion. If 1000 N of force is applied what speed will the sleeve attain?
Assume the temperature of the sleeve to be constant and determine the
viscosity of the Newtonian fluid in the clearance between the shaft and its
sleeve if the radial clearance is estimated to be 0-075 mm. ’

3. A shaft of 100 mm diameter rotates at 120 rad/s in a bearing 150 mm
long. If the radial clearance is 0-2 mm and the absolute viscosity of the
lubricant is 0-20 kg/ms find the power loss in the bearing.

4. A block of dimensions 300 mm X 300 mm X 300 mm and mass 30 kg
slides down a plane inclined at 30° to the horizontal, on which there is a thin
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film of oil of viscosity 2-3 x 10™* Ns/m2. Determine the speed of the block if
the film thickness is estimated to be 0-03 mm.

5. Calculate the capillary effect in mm in a glass tube of 6 mm diameter
when immersed in (i) water, and (ii) mercury, both liquids being at 20°C.
Assume o to be 73 x 107 N/m for water and 0-5 N/m for mercury. The
contact angles for water and mercury are zero and 130° respectively.

6. Calculate the internal pressure of a 25 mm diameter soap bubble if
the tension in the soap film is 0-5 N/m.



Chapter 2
Fluid Statics

C. Nalluri

2.1 Introduction

Fluid statics is the study of pressures throughout a fluid at rest and the
pressure forces on finite surfaces. Since the fluid is at rest there are no shear
stresses in it. Hence the pressure, p, at a point on a plane surface (inside the
fluid or on the boundaries of its container), defined as the limiting value of
the ratio of normal force to surface area as the area approaches zero size,
always acts normal to the surface and is measured in N/m? (pascals, Pa) or
in bars (1 bar = 10° N/m? or 10° Pa).

2.2 Pascal’s law

Pascal’s law states that the pressure at a point in a fluid at rest is the same in
all directions. This means it is independent of the orientation of the surface
around the point.

Consider a small triangular prism of unit length surrounding the point in a
fluid at rest (fig. 2.1).

Since the body is in static equilibrium, we can write:

pr(ABX 1) —ps(BCxX1)cos =0 (i)
andp;, (AC X 1) —p3(BC X 1)sinf - W=20 (i)

From (i) p; = ps, since cos 8 = AB/BC
and (ii) gives p; = pa, since sin 8 = AC/BC and W = 0 as the prism
shrinks to a point.

S PIEP2=Pa

2.3 Pressure variation with depth in a static incompressible fluid

Consider an elementary cylindrical volume of fluid (of length, L, and cross-
sectional area, dA) within the static fluid mass (fig. 2.2), p being the
pressure at an elevation of y and dp being the pressure variation correspond-
ing to an elevation variation of dy.
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Y
lon
n

BR

P1

Figure 2.1 Pressure at a point

For equilibrium of the elementary volume
PAA —pgdALsin 6 — (p + dp) dA = 0
or dp = — pg dy (since sin 8 = dy/L)

p being constant for incompressible fluids, we can write

f®=-%f®

which_gives = —pgy+ C
When y =y, p = p,, the atmospheric pressure (fig. 2.3).

A>
5 O

\

Elevation axis

y + dy

» Datum axis

Figure 2.2 Pressure variation with elevation

(2.1)
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y Po (Atmosphere)

— T =
h=y,—y
Yo
P
y Datum
TIZ777777777

Figure 2.3 Pressure and pressure head at a point

< From (i) p — pa = pg(Yo — )
= pgh
or the pressure at a depth h, p = p, + pgh

= pgh above atmospheric pressure
2.2)

Note (a) If p = pgh, h = p/pg and is known as the pressure head in metres
of fluid of density, p.

(b) Equation (i) can be written as p/pg + y = constant which shows
that any increase in elevation is compensated by corresponding
decrease in pressure head.

(p/pg + y) is known as piezometric head and such a variation is
known as hydrostatic pressure distribution.

If the static fluid is a compressible liquid p is no longer constant and it is
dependent on the degree of its compressibility. Equations 2.1 and 1.2 yield
the relationship

—=—=_-& (2.3)

where p is the density at a depth, h, below the free surface at which its
density is p,.

2.4 Pressure measurement

The pressure at the earth’s surface depends upon the air column above it.
At sea level this atmospheric pressure is about 101 kN/m? equivalent to 10-3
m of water or 760 mm of mercury columns. A perfect vacuum is an empty
space where the pressure is zero. Gauge pressure is the pressure measured
above or below atmospheric pressure. The pressure below atmosphere is
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also called negative or partial vacuum pressure. Absolute pressure is the
pressure measured above a perfect vacuum, the absolute zero.

(a) A simple vertical tube fixed to a system, whose pressure is to be measured,
is called a piezometer (fig. 2.4a). The liquid rises to such a level that the
liquid column’s height balances the pressure inside.

(b) A bent tube in the form of U, known as a U-tube manometer is much
more convenient than a simple piezometer. Heavy immiscible mano-
meter liquids are used to measure large pressures and small pressures
are measured by using lighter liquids (fig. 2.4b).

(¢) An inclined tube or U-tube (fig. 2.4c) is used as a pressure measuring
device when the pressures are very small. The accuracy of measurement
is improved by providing suitable inclination.

(d) A differential manometer (fig. 2.4d) is essentially a U-tube manometer
containing a single liquid capable of measuring large pressure differences
between two systems. If the pressure difference is very small the mano-
meter may be modified by providing enlarged ends and two different
liquids in the two limbs and is called differential micromanometer.

R ICAKTR
=

a. Piezometer

d. Differential manometers

Figure 2.4 Pressure measurement devices
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If the density of water is p, a water column of height, h, produces a
pressure p = pgh and this can be expressed in terms of any other liquid
column h, as p, gh;, p being its density.

.. h in water column = (p/p)h, = oh, (2.4)

where o is the relative density of the liquid.

For each one of the above pressure measurement devices an equation can
be written using the principle of hydrostatic pressure distribution, expressing
the pressures in metres of water column (equation 2.4) for convenience.

2.5 Hydrostatic thrust on plane surfaces

Let the plane surface be inclined at an angle of 8 to the free surface of water
as shown in fig. 2.5.

If the plane area, A, is assumed to consist of elemental areas, dA, the
elemental forces, dF, always normal to the surface area, are parallel. There-
fore the system is equivalent to one resultant force, F, known as the hydro-
static thrust. Its point of application, C, which would produce the same
moment effects as the distributed thrust, is called the centre of pressure.

Wecanwrite,F=de=J’pghdA=pgsin6fdAx
A A A

= pgsin 0 AX
= pgh A (2.5)

where h is the vertical depth of the centroid, G.
Taking moments of these forces about 0 — 0
Fx‘,=pgsinBJ'dAx2
A

. The distance to the centre of pressure, C

x(,=fdAx2/jdAx
A A

_ second moment of the area about 0 — 0
first moment of the area about 0 — 0

= I,/AX

(2.6)

Butl, =1, + AX? (parallel axis rule) where I, is the second moment of area
of the surface about an axis through its centroid and parallel to axis 0 — 0.

' Xe = X + LJAR (2.7)
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Figure 2.5 Hydrostatic thrust on a plane surface

which shows that the centre of pressure is always below the centroid of the
area.

Depth of centre of pressure below free surface, h, = x, sin 8

= hy = h + I sin? 6/Ah (2.8)

For a vertical surface 8 = 90°

= hy =h+ I/Ah (2.9)

Figure 2.6 Vertical plane surface
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Table 2.1 Second moments of plane areas

Shape Size Second moment of area I, about
an axis GG through centroid
b +2 a7
" ;
lg=f bdxxx=2b]x2dx
Rectangle dx “a2 1° .
s—-L [ | (—i——G =l—2-bd

Triangle =1 h?
&7 36 b
Circle I, = nd*/64
G G

The distance between centroid and centre of pressure,
GC = I /Ah (fig. 2.6) (2.10)
. The moment of F about the centroid,
F x GC = pgh A x I,/Ah
=pgl,

which is independent of depth of submergence.
Note (a) Radius of gyration of the area about G,

ke = VIJA (2.11)
giving h, = h + k;/h (2.12)

(b) When the surface area is symmetrical about its vertical centroidal
axis, the centre of pressure always lies on this symmetrical axis but
below the centroid of the area.

If the area is not symmetrical, an additional co-ordinate, y,,, must be fixed
to locate the centre of pressure completely.
By moments (fig. 2.7),
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y‘,J‘dF=J-dFy
A A

or y, pgx sin 0A=fpgxsin 6dA y
A

g._.
>

Yo

v

Figure 2.7 Centre of pressure of an asymmetrical plane surface

2.6 Pressure diagrams

Another approach to determine hydrostatic thrust and its location is by the
concept of pressure distribution over the surface (fig. 2.8).

L 4 v
3 Z < _7
hl’
,
h hy ~
JL_'%%
pghy
a. Horizontal surface b. Vertical surface c¢. Inclined surface

Figure 2.8 Pressure diagrams

Total thrust on a rectangular vertical surface subjected to water pressure
on one side (fig. 2.9) by pressure diagram:

Average pressure on the surface = pgH/2

.. Total thrust, F = average pressure X area of surface
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(pgH/2) H X B

1 2
= — X
5 peH” x B
= volume of the pressure prism (2.14)
or total thrust/unit width = % pgH?
= area of the pressure diagram (2.15)

and the centre of pressure is the centroid of the pressure prism.

Pressure prism

Figure 2.9 Pressure prism

2.7 Hydrostatic thrust on curved surfaces

Consider a curved gate surface subjected to water pressure as in fig. 2.10:

The pressure at any point h, below the free water surface is pgh and is
normal to the gate surface and the nature of its distribution over the entire
surface makes the analytical integration difficult.

However, the total thrust acting normally on the surface can be split into
two components and the problem of determining the thrust approached
indirectly by combining these two components.

Considering an elementary area of the surface, dA (fig. 2.11), at an angle 0
to the vertical, pressure intensity on this elementary area = pgh

.. Totai thrust on this area, dF = pgh dA
Horizontal component of dF, dF, = pgh dA cos 6
Vertical component of dF, dF, = pgh dA sin @
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———

Curved surface

N
Pressure diagram "~

Figure 2.10 Hydrostatic thrust on curved surface

4
dF,

v D C
I
1o

.

Area, A

a. Surface containing liquid b. Surface displacing liquid

Figure 2.11 Thrust components on curved surfaces

. Horizontal component of the total thrust on the curved area A,

Fx=fpghdAcos0=pgl_1Av
A

where A, is the vertically projected area of the curved surface;

or F, = pressure intensity at the centroid of a vertically projected area
(BD) x vertically projected area (2.16)
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and vertical component, F, = j p gh dA sin 0
A

= pg J’ dV, dV being the volume of the water
A

prism (real or virtual) over the area dA.
S Fy=pgV

= the weight of water (real or virtual) above the curved surface
BC bounded by the vertical BD and the free water surface
CcD (2.17)

. The resultant thrust, F = VF; + F, (2.18)
acting normally to the surface at an angle,

a = tan™' (F,/F,) to the horizontal. (2.19)

2.8 Hydrostatic buoyant thrust

When a body is submerged or floating in a static fluid various parts of the
surface of the body are exposed to pressures dependent on the depths of
submergence.

Consider two elemental cylindrical volumes (one vertical and one hori-
zontal) of the body shown (fig. 2.12) submerged in a fluid, the cross-sectional
area of each cylinder being dA.

Vertical upthrust on the cylinder BC = (p. — pu) dA

Surface area, A

Figure 2.12 Submerged body and buoyant thrust
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<. Total upthrust on the body = J' (p. — pv) dA
A
= J pgh dA
A

=[png
A

= pg V = weight of fluid
displaced (2.20)

where V is the volume of the submerged body displacing the fluid.
Horizontal thrust on the cylinder BD = (pv — po) dA

- Total horizontal thrust on the body = f (p» — po) dA
A

= 0 (since p, = pa)

Hence it can be concluded that the only force acting on the body is the
vertical upthrust known as the buoyant thrust or force which is equal to the
weight of fluid displaced by the body (Archimedes’ principle). This buoyant
thrust acts through the centroid of the displaced fluid volume.

2.9 Stability of floating bodies

The buoyant thrust on a body of weight, W, and centroid, G, acts through
the centroid of the displaced fluid volume and this point of application of
the buoyant force is called the centre of buoyancy, B, of the body. For the
body to be in equilibrium, the weight, W, must equal the buoyant thrust, F,,
both acting along the same vertical line (fig. 2.13).

For small angles of heel, the intersection point of the vertical through the
new centre of buoyancy, B’, and the line, BG, produced is known as the
metacentre, M, and the body thus disturbed tends to oscillate about, M. The
distance between G and M is the metacentric height.

Conditions of equilibrium:

(a) Stable equilibrium (fig. 2.14a): If M lies above G, i.e. positive meta-
centric height, the couple so produced sets in a restoring moment equal
to W GM sin 6 opposing the disturbing moment and thereby bringing
the body back to its original position and the body is said to be in stable
equilibrium; this is achieved when BM> BG.

(b) Unstable equilibrium (fig. 2.14b): If M is below G, i.e. negative meta-
centric height, the moment of the couple further disturbs the displace-
ment and the body is then in unstable equilibrium. This condition
therefore exists when BM < BG.
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a. Equilibrium condition b. Disturbed condition

Figure 2.13 Centre of buoyancy and metacentre

DISt
"Iblbg .
e
\at ' / ’ /
M G G¢M

a. Stable b. Unstable ¢. Neutral

Figure 2.14 Conditions of equilibrium

(c) Neutral equilibrium (fig. 2.14c): If G and M coincide, i.e. zero meta-
centric height, the body floats stably in its displaced position. This
condition of neutral equilibrium exists when BM = BG.

2.10 Determination of metacentre

In fig. 2.15, AA is the water-line and when the body is given a small tilt &
two wedge forces, due to the submergence and the emergence of the wedge
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areas AOA’ on either side of the axis of rolling, are imposed on the body
forming a couple which tends to restore the body to its undisturbed condition.
The effect of this couple is the same as the moment caused by the shift of
the total buoyant force F, from B to B’, the new centre of buoyancy.

Figure 2.15 Determination of metacentre

The buoyant force acting through B’,
Fo, =W + df — df = W = F,
By moments about B, Fy, x BB’ = df x gg

- BB' = df x gg/F} = df x gg/W
=df x gg/pg V (i)
where V is the volume of the displaced fluid.

The wedge force, df = pg x § AA’ X 4b x L (for small angles) where L is
the length of the body.

AA’ = 1b g and g = 2(%) + Z(lb) =%

2 3\2°) T3\3°) =3
ng%bGX%bXLX%b
*“ BB’ = BM 0 = o8 V from (i)
or BM = L Lb¥v = v 2.21)

12

where I is the second moment of the plan area of the body at water level
about its longitudinal axis.
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Hence the metacentric height, GM = BM — BG
= I/V - BG (2.22)

2.11 Periodic time of rolling (or oscillation) of a floating body
For a small displacement 6, restoring moment, T, = WGM 6 = W m 6,
where W is the weight of the body

. Angular acceleration due to T,,

a = T/, where I is the mass moment of inertia given by M k?, M
being the mass of body (W/g) and k its radius of gyration about the
centroid.

- a =W m 6/(W/g)k? = m g 6/k? or a is proportional to 8.

Hence the motion is simple harmonic and its periodic time,

T = 2x Vdisplacement/acceleration

=2 m—é% =27 Vidigm 2.23)

For larger values of m, the floating body will no doubt be stable (BM >

BG) but the period of oscillation decreases, thereby increasing the fre-

quency of rolling which may be uncomfortable to passengers and also the

body may be subjected to damage. Hence the metacentric height must be
fixed, by experience, according to the type of vessel.

2.12 Liquid ballast and the effective metacentric height

For a tilt angle 6, the fluid in the tank (fig. 2.16a) is displaced thereby
shifting its centroid from G to G’. This is analogous to the case of a floating
vessel, the centre of buoyancy of which shifts from B to B’ through a small
heel angle 0.

Hence we can write:

GG’ = GM 8 = 0 I/V (since in the case of floating vessel
BB’ = BM @ = 6 1/V)

When the vessel heels, the centroids of the volumes V, and V, in the
compartments (fig. 2.16b) will move by 6 1,/V, and 8 1,/V, thus shifting the
centroid of the vessel from G to G’.

. By taking moments:
W GG’ = W| 8 I]/V| + Wz (] Iz/Vz

or pg V GG’ = Pig V| o l]/V| + pg Vz 8 lz/Vg
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(2)

Figure 2.16 Floating vessel with liquid ballast

Hence GG =p, 60 (1, + L)/p V,

V being the volume of displaced fluid by the vessel whose second moment of
area at floating level about its longitudinal axis is I. B’ is the new centroid of
the displaced liquid through which the buoyant force F,, (= pg V) acts,
thereby setting a restoring moment = pg V NM 8, NM being the effective
metacentric height.

NM = BM - GN — BG
BM = I/V; GN = GG'/8 = (p/p) (I, + L)V

. _I=(p/p) (I, + 1)
. NM = v

- BG (2.24)

-0 +5)

and if p, = p, NM = Y,

BG

2.13 Relative equilibrium

If a body of fluid is subjected to motion such that no layer moves relative to
an adjacent layer, shear stresses do not exist within the fluid. In other
words, in a moving fluid mass if the fluid particles do not move relative to
each other, they are said to be in static condition and a relative or dynamic
equilibrium exists between them under the action of accelerating force and
fluid pressures are everywhere normal to the surfaces on which they act.
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Uniform linear acceleration

A liquid in an open vessel subjected to a uniform acceleration adjusts to the
acceleration after some time so that it moves as a solid and the whole mass
of liquid will be in relative equilibrium.

A horizontal acceleration (fig. 2.17a) a, causes the free liquid surface to
slope upward in a direction opposite to a, and the entire mass of liquid is
then under the action of gravity force, hydrostatic forces and the accelerating
or inertial force ma,, m being the liquid mass.

pg h-dA T
— - ay
hr 4
1 ‘ 2 h
— /,‘" d
it
\ /] H pdA
N ]
N /
— f~—— .
N L peh-dAs,
pghy  pa,H| pgH
a. Horizontal acceleration b. Vertical acceleration

Figure 2.17 Fluid subjected to linear accelerations

For equilibrium of a particle of mass m, say on the free surface:
F sin & = ma, and F cos 8 — mg = 0 or F cos § = mg
- Slope of free surface, tan 6 = ma,/mg = a,/g (2.25)

and the lines of constant pressure will be parallel to the free liquid surface.
A vertical acceleration (fig. 2.17b) (positive upwards) a, causes no dis-
turbance to the free surface and the fluid mass is in equilibrium under
gravity, hydrostatic forces and the inertial force ma,.
For equilibrium of a small column of liquid of area dA

pPdA=phdA g+ phdAa,

- p, the pressure intensity at a depth h below free surface
= pgh (1 + a,/g) (2.26)

Radial acceleration

Fluid particles moving in a curved path experience radial acceleration.
When a cylindrical container partly filled with a liquid is rotated at a constant
angular velocity @ about a vertical axis the rotational motion is transmitted
to different parts of the liquid and after some time the whole fluid mass
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assumes the same angular velocity as a solid and the fluid particles experience
no relative motion.

A particle of mass, m, on the free surface (fig. 2.18) is in equilibrium
under the action of gravity, hydrostatic force and the centrifugal accelerating
force mw’r, w’r being the centrifugal acceleration due to rotation.

o

o rad/s

Figure 2.18 Fluid subjected to radial acceleration

The gradient of the free surface,
tan 8 = dy/dr = me’r/mg = wr/g
y = w’r’/2 g + Constant, C
Whenr =0,y =0and hence C =0
sy = @’rl2g 2.27)

which shows that the free liquid surface is a paraboloid of revolution and
this principle is used in a hydrostatic tachometer.

Worked examples

Example 2.1

A hydraulic jack having a ram 150 mm in diameter lifts a weight of 20 kN
under the action of a 30 mm diameter plunger. The stroke length of the
plunger is 250 mm and if it makes 100 strokes per minute, find by how much
the load is lifted per minute and what power is required to drive the plunger.

Solution:
Since the pressure is the same in all directions and is transmitted through the
fluid in the hydraulic jack (fig. 2.19),
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pressure intensity, p = F/fa = W/A
. Force on the plunger, F = W (a/A)
20 x 10° (30°/150°)
= 800 N

Distance moved per minute by the plunger
100 x 0-25

=25m
<. Distance through which the weight is lifted per minute
25 (30%/150%)

=1m

. Power required = 20 x 10* x 1/60 Nm/s
= 333-3 W.
F

Plunger

Figure 2.19 Hydraulic jack

Example 2.2

A U-tube containing mercury (relative density 13.6) has its right-hand limb
open to atmosphere and the left-hand limb connected to a pipe conveying
water under pressure, the difference in levels of mercury in the two limbs
being 200 mm. If the mercury level in the left limb is 400 mm below the
centre line of the pipe, find the absolute pressure in the pipeline in kPa.
Also find the new difference in levels of the mercury in the U-tube, if the
pressure in the pipe falls by 2 kN/m?.

Solution:

Starting from the left-hand side end (fig. 2.20a)
p/p g + 0-40 — 13-6 x 0-20 = 0 (atmosphere)
- p/pg = 2:32 m of water
orp = 10° x 9-81 x 2:32 = 22.76 kN/m?
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The corresponding absolute pressure = 101 + 22-76
123-76 kN/m?

123-76 kPa.

(b)

Figure 2.20 U-tube manometer

When the manometer is not connected to the system the mercury levels in
both the limbs equalise and are 300 mm below centre line of pipe and
writing the manometer equation for new conditions (fig. 2.20b)

20-76 x 10°/10° x 981 + 030 + x/2 — 136 x =0

. X, the new difference in mercury levels = 0-184 m or 184 mm.

Example 2.3
A double column enlarged ends manometer is used to measure a small
pressure difference between two points of a system conveying air under
pressure, the diameter of U-tube being 1/10 of the diameter of the enlarged
ends. The heavy liquid used is water and the lighter liquid in both limbs is
oil of relative density 0-82. Assuming the surfaces of the lighter liquid to
remain in the enlarged ends, determine the difference in pressure in milli-
metres of water for a manometer displacement of 50 mm.

What would be the manometer reading if carbon tetrachloride (relative

density 1.6) were used in place of water, the pressure conditions remaining
the same?

Solution:

Referring to fig. 2.21, the manometer equation can be written as:
pi/pg + 0-82h — 0-05 — (h — 0-05 + 2 dx) 0-82 = p,/pg

and by volumes displaced
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dx A = (0-05/2)a
or 2 dx = 0-05(a/A) = 0-05(1/10)2
~o(pr — p2)/pg = 941 x 107 m or 9-41 mm of water.

0 <l —— FEAF 0
/! T 0 Oil /ﬂ.'-._.: <
dx 4 “Area, A
h 50|mm Area, a
0o— 44— — —LTRET )
r
: 1
Water

Figure 2.21 Differential micromanometer

For the same pressure conditions if y is the manometer reading using
carbon tetrachloride, the manometer equation is:

pi/pg + 0-82h — 1-6y — 0-82 (h — y + 2 dx) = p./pg
and 2 dx = y/10?
~ (p1 — p2)/pg = 9-41 x 107* = 0-788y
Hence y, the manometer displacement
= 9-41 x 107%/0-788

11-94 x 10™* m or 11:94 mm of carbon tetrachloride.

Example 2.4
One end of an inclined U-tube manometer is connected to a system carrying

air under a very small pressure. If the other end is open to atmosphere and
the angle of inclination is 3° to the horizontal and the tube contains oil of
relative density 0.8, calculate (i) the air pressure in the system for a mano-
meter reading of 500 mm along the slope, and (ii) the equivalent vertical
water column height,

Solution:
The manometer equation gives (fig. 2.22):
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Figure 2.22 Inclined U-tube manometer

p/pg —z=0and z = hsin 6

p = p.gh sin 8, p, being the density of oil
= (-8 x 1000 x 9-81 x 0-5 X sin 3°
= 205-36 N/m?

If h' is the equivalent water column height and p the density of water, we
can write:

p = pgh’ = p,gh sin 6

~ h' = (p,/p) hsin 0
=g hsin 0
= 0-8 X 0-5 X sin 3°
= 2:09 X 1072 m.
Example 2.5

(a) An open steel tank of base 4 m square has its sides sloping outwards
such that its top is 7 m square. If the tank is 2 m high and is filled with
water, determine the total thrust and its location (i) on the base, and (ii) on
one of the sloping sides.

(b) If the four sides of the tank slope inwards so that its top is 1 m square,
find the thrust and its location on the base when it is filled with water.
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a. Sides sloping outwards

1m
-
—%
2 m
je——4 m—p]

b. Sloping inwards

Figure 2.23 Open tank with sloping sides

Solution:
Pressure intensity on the base, p = pg X 2 N/m?
Hence total thrust on the base, P = p X A

Referring to fig. 2.23a and b, thrust P = pg X 2 X 4 X 4 = 314 kN
for both cases (Pascal’s or hydrostatic paradox), and by symmetry this acts
through the centroid of the base.

Total thrust on a side (fig. 2.23a):

Length of sloping side = V 155 +22=25m

By moments,

0+ - 25, 5,01 sy 25
> ><ZSXx—4x25x2+2x2><15x25x3
13-75x = 125 + 3:125
L X=1.136 m
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. Depth of immersion,

h = X sin 0
2
= . X —
1-136 25
=091 m
Hence total thrust, F = pgh A

10° x 9-81 X 0-91 X (—7;—4) X 2-5

122-75 kN
Centre of pressure: h, = h + I sin? 6/A h
I, = (1/12)4 x 2:5% + 2 X (1/36)1-5 x 25

= 5-208 + 1-302
= 6-51 m*
. .5)2
o =091 + f541) (2/2:5)
—=2-5 x 091
= 091 + 0-333
= 1243 m
Example 2.6

A2 m X 2 m tank with vertical sides contains oil of density 900 kg/m® to a
depth of 0-8 m floating on 1-2 m depth of water. Calculate the total thrust
and its location on one side of the tank. (See fig. 2.24.)

)

Figure 2.24 Oil and water thrusts on a side of a tank
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Solution:
Total thrust on one vertical side, F = volume of the pressure prism

- [% pug (08) + pog X 08 X 12+ 2 pg (1~2)2] 2

= 5.65 + 16:95 + 14-13
= 36-73 kN
Centre of pressure, h,: by moments,

36-73 x h, = 5-65 (1-2 + 0-8/3) + 1695 x 1-2/2 + 14-13 X 1-2/3
= 829 4 10-17 + 5-65
= 24-11

h, = 24-11/36-73

= (0-656 m above the base.

Example 2.7

(a) A circular butterfly gate pivoted about a horizontal axis passing through
its centroid is subjected to hydrostatic thrust on one side and counterbalanced
by a force, F, applied at the bottom as shown in fig. 2.25. If the diameter of
the gate is 4 m and the water depth is 1 m above the gate determine the
force F, required to keep the gate in position.

(b) If the gate is to retain water to its top level on the other side also,
determine the net hydrostatic thrust on the gate and suggest the new con-
ditions for the gate to be in equilibrium. (See fig. 2.26.)

Figure 2.25 Circular gate

Solution: )
(a) Water on one side only:
Hydrostatic thrust on the gate,
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P=pghA=10"x981 x 3 x %mz
369.83 kN

and the distance, CG = Ig/AE

T 4,0 5
= — -4 X
4/41: 3

= (-333 m.
Taking moments about G,
369-83 X 0333 = F x 2
F = 61-64 kN.

(b) If the gate is retaining water on the other side also, the net hydrostatic
thrust is due to the resultant pressure diagram with a uniform pressure
distribution of intensity equal to pgh (fig. 2.26).

4 hrd h
/]
by TR\
R = pgh-A G\\ h,
/
\
_Jr_ 1/ \
pghy pgh;

7777777777777 7707

Figure 2.26 Gate retaining water on both sides

-~ Net hydrostatic thrust R = pgh A
= 10° x 981 x 1 x 1n#?
123-28 kN.

This acts through centroid of the gate, G, and since its moment about
G is zero, F = 0 for the gate to be in equilibrium, for any depth, h, of
water above the gate on the other side.

Example 2.8
An open tank 3 m X 1 m in cross-section (fig. 2.27a) holds water to a depth
of 3 m. Determine the magnitude, direction and line of action of the forces

exerted upon the plane surfaces AB and CD and the curved surface BC of
the tank.
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Solution:
Force on face AB/m length = area of pressure diagram (fig. 2.27b)
- %p g X 22 = 1962 kN/m

acting normal to the face AB at a depth of (2/3) x 2 = 1-33 m from water
surface.
Force on curved surface BC/m length:

Horizontal component, F, (from pressure diagram)
—pgx2 %1 +%pgx 12 = 24.52 kN/m

Vertical component, F, = weight of water above the surface

2
=pgx2x1x1+pgx”>;1 x 1
= 27-32 kN/m

. Resultant thrust, F = V24522 + 21322
= 36-71 kN/m

acting at an angle, @ = tan™! (27-:32/24-52) = 48°5’, to the horizontal and
passing through the centre of curvature of the surface BC.

A Z'Pﬁ—{'—wi

‘ 3m

\

\
3m \
pg~2\
B S RlsY
y \
&
pg3  \
C

a. Tank elevation b. Pressure dia.

Figure 2.27 Open tank with plane and curved surfaces

Force on surface CD/m length:
Uniform pressure intensity on CD = pg X 3 N/m?

. Total thrust on CD = uniform pressure X area
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=pg X3 x1xl
= 29-43 kN/m

acting vertically downwards (normal to CD) through the mid-point of the
surface CD.

Example 2.9
A 3 m diameter roller gate retains water on both sides of a spillway crest as
shown in fig. 2.28. Determine (i) the magnitude, direction and location of

the resultant hydrostatic thrust acting on the gate per unit length, and (ii)
the horizontal water thrust on the spillway per unit length.

Solution:
Thrust on the gate:

Gate

S esasd Spillway

s m amary

Figure 2.28 Roller gate on a spillway

Left side: horizontal component = % pg X 3?

= 44-14 kN/m

. 1
vertical component = pg X ~ = 32 x |

2 4
= 34-67 kN/m

Right side: horizontal component = % pg (1-5)?

11-03 kN/m

vertical component

L
pgx443 x 1

17-34 kN/m
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. Net horizontal component on the gate (left to right)
= 44-14 — 11-03
= 33-11 kN/m

and net vertical component (upwards) = 34-67 + 17-34
= 50-01 kN/m

.. Resultant hydrostatic thrust on the gate
= V(33.11)* + (50.01)
= 60 kN/m

acting at an angle, a = tan~! (33-11/50-01) = 33°30’ to the vertical and
passes through the centre of the gate (normal to the surface).

. Depth of centre of pressure = r + 1 oS
= 1-5 (1 + cos 33°30')

2-75 m below the free surface of left
side.

Horizontal thrust on the spillway:
From pressure diagrams (see fig. 2.28), thrust from left-hand side

—lgx3+pgxyxi

2
= 34.33 kN/m
and from right-hand side = % (pg %X 1-5 + pg x 3:5) X 2

= 49-05 kN/m
. Resultant thrust (horizontal) on the spillway
49-05 — 34-33
14-72 kN/m towards left.

I

Example 2.10

The gates of a lock (fig. 2.29) are 5 m high and when closed include an angle
of 120°. The width of the lock is 6 m. Each gate is carried on two hinges
placed on the top and bottom of the gate. If the water levels are 4-5 m and
3 m on the upstream and downstream sides respectively, determine the
magnitudes of the forces on the hinges due to water pressure.

Solution:
Forces on any one gate (say AB) are: F, the resultant water thrust, T, the
thrust of gate, BC, normal to contact surface and, R, the resultant of hinge
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R, Sin 30°

5m 45m
3m = F112
F,/2 i
‘Rb_Sin 30° 7777 :

a. Plan view b. Section a—a

Figure 2.29 Lock gates

forces. Since these three forces keep the gate in equilibrium they should
meet at a point, D (fig. 2.29a).

Resolution of forces along AB and normal to AB givess(ABD=BAD=
30°):

Tcos30°=Rcos30°0rT=R . (i)
andF = Rsin30° + Tsin30°orF =R (ii)
Length of gate = 3/sin 60° = 3.464 m.

The resultant of water thrusts on either side of the gate, F=F, — F,

F, = %pg (4-5) x 3-464

= 344 kN acting at 4-5/3 = 1-5 m from the base
andF2=%pgx32x3-464

= 153 kN acting at 3/3 = 1 m from the base
.. Resultant water thrust, F = 344 — 153
= 191 kN = R from (ii)

Total hinge reaction, R = R, + Ry, (sum of top and bottom hinge
forces) (iii)

from (ii) F/2 = R sin 30°
or (F, — F,)/2 = R, sin 30° + R,, sin 30° (iv)
Taking moments about the bottom hinge (fig. 2.29b):

3?““x1-5—%3x1=R,sin3o°x5

R, = 72:6 kN
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191 — 72:6
118-4 kN

and hence from (iii) Ry,

Example 2.11

A rectangular block of wood floats in water with 50 mm projecting above
the water surface. When placed in glycerine of relative density 1:35, the
block projects 75 mm above the surface of glycerine. Determine the relative
density of the wood.

Solution:
Weight of wooden block, W = upthrust in water = upthrust in glycerine

= weight of fluid displaced
W=pugAh=pgA(h-50x107") = psg A(h =75 x 107%)

p, Py, and p; being the densities of water, wood and glycerine respectively
and A, the cross-sectional area of the block and h, its height.

_ -3

.. The relative density of glycerine, pg/p = :—_—3(5)—);—%%_—; = 1-35.
o h = 14643 x 10~> m or 146-43 mm.

Hence the relative density of wood, p,/p = 1—4—61:—2-2-;—50 = 0-658.

Example 2.12

(a) A ship of 50 MN displacement has a weight of 100 kN moved 10 m
across the deck causing a heel angle of 5°. Find the metacentric height of the
ship.

(b) A homogeneous circular cylinder of radius, R, and height, H, is to float
stably in a liquid. Show that R must not be less than V2r(1=1) H in order
to float with its axis vertical, where r is the ratio of relative densities of the
cylinder and the liquid. Hence establish the condition for R/H to be minimum.

Solution:
Referring to fig. 2.30a,
100 x 10 = 1000 kN m

moment due to the shifting of W from G

Moment heeling the ship

to G’
=W x GG’
. . . __1000 _ 1
. GG' = GM sin 6 30 X 10° o™
Hence GM, the metacentric height = 1 023 m

50 x sin 5°
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radius R

|
Mé .

G* H_<

B T Liquid
rd= 5 rd = §

ol -

F, = W = 50 MN ;
@ (b)

Figure 2.30 Determination of metacentric height and stability conditions

Referring to fig. 2.30b,
Weight of cylinder = weight of liquid displaced.

If the depth of submergence is h, we can write

pgs\aR? H = pgs,aR2 h, p being the density of water

and hence, s;/s, = r = h/H (i)

0G = H/2 (ii)

and OB = h/2 = r H/2 (iii)
~BG=0G-0OB=H/2-rH/"2
=H2) (1 - 1)

4
and BM = I/V = %/ aR? rH

= R%*/4rH
For stable condition, BM > BG
R¥4rH > (H/2) (1 — 1)
or R/H?>2r (1 - 1)
RH> VE{I=T)

and hence, R > V2r (1 — r) H
For limiting value of R/H, r (1 — r) is to be minimum

ordlr(1-r1)]=0

o1 —2r=0and hence r =

DN | et
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Example 2.13
An oil tanker 3 m wide, 2 m deep and 10 m long contains oil of density 800
kg/m® to a depth of 1 m. Determine the maximum horizontal acceleration
that can be given to the tanker such that the oil just reaches its top end.
If this tanker is closed and completely filled with the oil and accelerated
horizontally at 3 m/s? determine the total liquid thrust (i) on the front end,
(ii) on the rear end, and (iii) on one of its longitudinal vertical sides. (See
fig. 2.31.)

[~
10 m //]Th T~
b ~  pghD T
ay Al = 10 m
— /
& g —_— ]/ 2m —_—i, = 3 m/s?]
T /‘_— - /——
1m j SSu—— Ja—
L /
pg(2 + h)C g2
a. Half full b. Full

Figure 2.31 Oil tanker subjected to accelerations

Solution:
From fig. 2.31a, maximum possible surface slope = 1/5 = a,/g

.. a,, the maximum horizontal acceleration = (1/5) X 9.81
= 1962 m/s%.

When the tanker is completely filled and closed, there will be pressure
built up at the rear end equivalent to the virtual oil column (h) that would
assume a slope of a,/g (fig. 2.31b).

(i) total thrust on front end AB = % pg X 22 X 3 = 58-86 kN
(ii) total thrust on rear end CD:

Virtual rise of oil level at rear end,

h=10 x tan @ = 10 X a,/g = 10 X 3/9-81 = 3-06 m

p = Pe(3:06) + pg (2 + 3-06)
B 2

.. Total thrust on C Xx2x3

= 239 kN
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(iii) total thrust on side ABCD = volume of the pressure prism

=%ng22X10+%ng3'()6X10X2

=%pg(2+3-06)X2x10

= 496 kN.

Example 2.14
A vertical hoist carries a square tank of 2 m X 2 m containing water to the
top of a construction scaffold with a varying speed of 2 m/s per second. If

the water depth is 2 m, calculate the total hydrostatic thrust on the bottom
of the tank.

If this tank of water is lowered with an acceleration equal to that of
gravity, what are the thrusts on the floor and sides of the tank?

Solution:
Vertical upward acceleration, a, = 2 m/s’
Pressure intensity at a depth h = pgh (1 + a,/g)
= pgh (1 + 2/9-81)
= 1-204 X gh kN/m?
- Total hydrostatic thrust on the floor

intensity X area
1204 X 981 x 2 x 2 x 2
94-5 kN

Downward acceleration = — 9-81 m/s?

Pressure intensity at a depth h = pgh (1 — 9-81/9-81)
=0

. There exists no hydrostatic thrust on the floor nor on the sides.

Example 2.15

A 375 mm high open cylinder, 150 mm in diameter, is filled with water and
rotated about its vertical axis at an angular speed of 33-5 rad/s. Determine
(i) the depth of water in the cylinder when it is brought to rest, and (i) the

volume of water that remains in the cylinder if the speed is doubled. (See
fig. 2.32.) '
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(150 mm Diay
T l _F- _1 -
320 mm |
I 375 mm 375 mm
AL\ :
| 13 S i

P

a. @ = 335 rad/s

b. @ = 67-0 rad/s

Figure 2.32 Rotating cylinder

Solution:
Angular velocity, @ = 33-5 rad/s
Height of the paraboloid (fig. 2.32a), y = w’r’/2g
= (33-5 x 0-075)%/19-62
=032 m

Amount of water spilled out = volume of the paraboloid

x volume of circumscribing cylinder

f— B

5 7 (0075)% X 032

283 x 107* m®
7(0-075)* x 0-375
=663 x 107> m?

Original volume of water

.. Remaining volume of water = (6-63 — 2-83) X 10~7?
=38x 107 m’
Hence depth of water at rest = 3-8 X 10~%/7(0-075)?
= 0215 m
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If the speed is doubled, @ = 67 rad/s
(67 x 0-075)%/2g
= 1287 m

The free surface in the vessel assumes the shape as shown in fig. 2.32b, and
we can write:

1-287 — 0-375 = wr?/2g
1= V2g x 0:912/672 = 0-063 m

- Volume of water spilled out

. Height of paraboloid

= %n (0-075)2 x 1-287 — %n (0-063) x 0-912

= 5684 x 1073 m?
Hence volume of water left = (663 — 5-684) x 10~2
= 0.946 x 10~* m®.

Recommended reading

1. Davis, C.V. and Sorensen, K.E. (Editors) (1969) Handbook of applied
hydraulics. New York: McGraw-Hill.

2. Rouse, H. (1946) Elementary mechanics of fluids. Chichester: Wiley.

3. Streeter, V.L. and Wylie, E.B. (1975) Fluid mechanics. New York:
McGraw-Hill.

Problems

1. (a) A large storage tank contains a salt solution of variable density
given by p = 1050 + kh in kg/m®, where k = 50 kg/m*, at a depth h
metres below the free surface. Calculate the pressure intensity at
the bottom of the tank holding 5 m of the solution.

(b) A Bourdon type pressure gauge is connected to a hydraulic cylinder
activated by a piston of 20 mm diameter. If the gauge balances a
total mass of 10 kg placed on the piston, determine the gauge
reading in metres of water.

2. A closed cylindrical tank 4 m high is partly filled with oil of density
800 kg/m*® to a depth of 3 m. The remaining space is filled with air under
pressure. A U-tube containing mercury (relative density 13-6) is used to
measure the air pressure, with one end open to atmosphere. Find the gauge
pressure at the base of the tank when the mercury deflection in the open
limb of the U-tube is (i) 100 mm above, and (ii) 100 mm below the level in
the other limb.
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3. A manometer consists of a glass tube, inclined at 30° to horizontal,
connected to a metal cylinder standing upright. The upper end of the
cylinder is connected to a gas supply under pressure. Find the pressure in
millimetres of water when the manometer fluid of relative density 0-8 reads
a deflection of 80 mm along the tube. Take the ratio, r, of the diameters of
the cylinder and the tube as 64. What value of r would you suggest so that
the error due to disregarding the change in level in the cylinder will not
exceed 0-2%?

4. In order to measure the pressure difference between two points in a
pipeline carrying water, an inverted U-tube is connected to the points and
air under atmospheric pressure is entrapped in the upper portion of the
U-tube. If the manometer deflection is 0-8 m and the downstream tapping is
0-5 m below the upstream point, find the pressure difference between the
two points.

5. A high pressure gas pipeline is connected to a macromanometer
consisting of four U-tubes in series with one end open to atmosphere and a
deflection of 500 mm of mercury (relative density 13-6) has been observed.
If water is entrapped between the mercury columns of the manometer and
the relative density of the gas is 1-2 X 1073, calculate the gas pressure in
N/mm?, the centre line of the pipeline being at a height of 0-50 m above the
top mercury level.

6. A dock gate is to be reinforced with three identical horizontal beams.
If the water stands to depth of 5 m and 3 m on either side, find the positions
of the beams, measured above the floor level, so that each beam will carry
an equal load, and calculate the load on each beam per unit length.

7. A storage tank of a sewage treatment plant is to discharge excess
sewage into the sea through a horizontal rectangular culvert 1 m deep and
1.3 m wide. The face of the discharge end of the culvert is inclined at 40° to
the vertical and the storage level is controlled by a flap-gate weighing 4-5 kN,
hinged at the top edge and just covering the opening. When the sea water
stands to the hinge level, to what height above the top of the culvert will the
sewage be stored before a discharge occurs? Take the density of the sewage
as 1000 kg/m* and of the sea water as 1025 kg/m*.

8. A radial gate, 2 m long, hinged about a horizontal axis, closes the
rectangular sluice of a control dam by the application of a counter-weight W
(see fig. 2.33).

Determine (i) the total hydrostatic thrust and its location on the gate when
the storage depth is 4 m, and (ii) for the gate to be stable, the counter-
weight W. Explain what will happen if the storage increases beyond 4 m.
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Figure 2.33 Hinged radial gate

9. A sector gate of radius 3 m and length 4 m retains water as shown in
fig. 2.34.

r=3m

!‘ Hinge
60°

Figure 2.34 Sector or tainter gate

Determine the magnitude, direction and location of the resultant hydrostatic
thrust on the gate.

10. The profile of the inner face of a dam is a parabola with equation y
= 0-30 x? (see fig. 2.35). The dam retains water to a depth of 30 m above
the base. Determine the hydrostatic thrust on the dam per unit length, its
inclination to the vertical and the point at which the line of action of this
thrust intersects the horizontal base of the dam.

11. A homogeneous wooden cylinder of circular section, relative density
0-7, is required to float in oil of density 900 kg/m*. If d and h are the
diameter and height of the cylinder respectively, establish the upper limiting
value of the ratio h/d for the cylinder to float with its axis vertical.

12. A conical buoy floating in water with its apex downwards has a
diameter d and a vertical height h. If the relative density of the material of
the buoy is s, prove-that for stable equilibrium,
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30 m Dam -

///// Yy YIIDIY.
Heel

Figure 2.35 Parabolic profile of the inner face of a dam

hid <1/ s .
2 11—+

13. A cyclindrical buoy weighing 20 kN is to float in sea water whose
density is 1020 kg/m>. The buoy has a diameter of 2 m and is 2-5 m high.
Prove that it is unstable.

If the buoy is anchored with a chain attached to the centre of its base, find
the tension in the chain to keep the buoy in vertical position.

14. A floating platform for offshore drilling purposes is in the form of
a square floor supported by 4 vertical cylinders at the corners. Determine the
location of the centroid of the assembly in terms of the side L of the floor
and the depth of submergence h of the cylinders, so as to float in neutral
equilibrium under a uniformly distributed loading condition.

15. A platform constructed by joining two 10 m long wooden beams as
shown in fig. 2.36 is to float in water. Examine the stability of a single beam
and of the platform and determine their stability moments. Neglect the
weight of the connecting pieces and take the density of wood as 600 kg/m’.

)7
{ 03m 0-6 m ,03m |
r 1 ™ =1
0-25 m h 4 025 m %% Z
i el I pi)%
$=—03 m
a. Single beam b. Platform

Figure 2.36 Floating platform
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16. A rectangular barge 10 m wide and 20 m long is 5 m deep and
weighs 6 MN when loaded without any ballast. The barge has two compart-
ments each 4 m wide and 20 m long, symmetrically placed about its central
axis, and each containing 1 MN of water ballast. The water surface in each
compartment is free to move. The centre of gravity without ballast is 3-0 m
above the bottom and on the geometrical centre of the plan. (i) Calculate
the metacentric height for rolling, and (i) if 100 kN of the deck load is
shifted 5 m laterally find the approximate heel angle of the barge.

17, A U-tube acceleration meter consists of two vertical limbs connected
by a horizontal tube of 400 mm long parallel to the direction of motion.
Calculate the level difference of the liquid in the U-tube when it is subjected
to a horizontal uniform acceleration of 6 m/s2.

18. An open rectangular tank 4 m long and 3 m wide contains water up
to a depth of 2 m. Calculate the slope of the free surface of water when the
tank is accelerated at 2 m/s?, (i) up a slope of 30°, and (i) down a slope of
30°.

19. Prove that, in the forced vortex motion (fluids subjected to rotation
externally) of a liquid, the rate of increase of the pressure, p, with respect to
the radius, r, at a point in liquid is given by dp/dr = paw’r, in which w is the
angular velocity of the liquid and p is its mass density. Hence calculate the
thrust of the liquid on the top of a closed vertical cylinder of 450 mm
diameter, completely filled with water under a pressure of 10 N/cm?, when
the cylinder rotates about its axis at 240 rpm.



Chapter 3
Fluid Flow Concepts and
Measurements

C. Nallurni

3.1 Kinematics of fluids

The kinematics of fluids deal with space-time relationships for fluids in
motion. In the Lagrangian method of describing the fluid motion one is
concerned to trace the paths of the individual fluid particles (elements) and
to find their velocities, pressures, etc., with the passage of time. The co-
ordinates of a particle A(x,y,z) at any time, t, (fig. 3.1a) are dependent on
its initial co-ordinates (a,b,c) at the instant t,, and can be written as functions
of ab,cand t, i.e.

x = ¢, (a,b,c,t)
y = ¢ (a,bc,t)
z = ¢; (a,b,c,t)

The path traced by the particles over a period of time is known as the
pathline. Due to the diffusivity phenomena of fluids and their flows, it is
difficult to describe the motion of individual particles of a flow field with
time. More appropriate for describing the fluid motion is to know the flow
characteristics such as velocity and pressure, of a particle or group of
particles at a chosen point in the flow field at any particular time; such a
description of fluid flow is known as Eulerian method.

In any flow field, velocity is the most important characteristic to be

A(t) v (3)
W

X
A(t) (y) as S
a z . dy
(2) 5
c
a. Pathline b. Velocity vector

Figure 3.1 Descriptions of fluid flow

47
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identified at any point. The velocity vector at a point in the flow field is a
function of s and t and can be resolved into u, v and w components,
representing velocities in the x, y and z directions respectively; these com-
ponents are functions of x,y,z and t and written as (fig. 3.1b):

u = f; (x,y,z,t)
v =1 (x.y,z,t)
w = f; (x,y,2,t)

defining the vector V at each point in the space, at any instant t. A
continuous curve traced tangentially to the velocity vector at each point in
the flow field is known as the streamline.

3.2 Steady and unsteady flows

The flow parameters such as velocity, pressure and density of a fluid flow
are independent of time in a steady flow whereas they depend on time in
unsteady flows. For example, this can be written as:

(aV/dt), .y ... = 0 for steady flow (3.13)
and (3V/dt), , , # 0 for unsteady flow (3.1b)

At a point, in reality these parameters are generally time dependent but
often remain constant on average over a time period T. For example, the
average velocity u can be written as:

t+T
u= —,;,— u dt where u = u(t) = 1 = v’ (t),
t
u’ being the velocity fluctuation from mean, with time t; such velocities are
called temporal mean velocities.

In steady flow, the streamline has a fixed direction at every point and is

therefore fixed in space. A particle always moves tangentially to the stream-

line and hence in steady flow the path of a particle is a streamline.

3.3 Uniform and non-uniform flows

A flow is uniform if its characteristics at any given instant remain the same
at different points in the direction of flow; otherwise it is termed as non-
uniform flow. Mathematically this can be expressed as:

(8V/3s), = 0 for uniform flow (3.2a)
and (8V/3s), + 0 for non-uniform flow (3.2b)

The flow through a long uniform pipe at a constant rate is steady uniform
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flow and at a varying rate is unsteady uniform fiow. Flow through a diverg-
ing pipe at a constant rate is steady non-uniform flow and at a varying rate is
unsteady non-uniform flow.

3.4 Rotational and irrotational flows

If the fluid particles within a flow have rotation about any axis, the flow is
called rotational and if they do not suffer rotation, the flow is in irrotational
motion. The non-uniform velocity distribution of real fluids close to a
boundary causes particles to deform with a small degree of rotation whereas,
the flow is irrotational if the velocity distribution is uniform across a section
of the flow field.

3.5 One, two and three dimensional flows

The velocity component transverse to the main flow direction is neglected in
one dimensional flow analysis. Flow through a pipe may usually be charac-
terised as one dimensional. In two dimensional flow, the velocity vector is a
function of two co-ordinates and the flow conditions in a straight, wide river
may be considered as two dimensional. Three dimensional flow is the most
general type of flow in which the velocity vector varies with space and is
generally complex.
Thus in terms of the velocity vector V(s,t), we can write:

V =f(x,t) — one dimensional flow (3.3a)
V = f (x,y,t) — two dimensional flow (3.3b)
V = f (x,y,z,t) — three dimensional flow (3.3¢)

3.6 Streamtube and continuity equation

A streamtube consists of a group of streamlines whose bounding surface is
made up of these several streamlines. Since the velocity at any point along a
streamline is tangential to it, there can be no flow across the surface of a
streamtube and therefore, the streamtube surface behaves like a boundary
of a pipe across which there is no flow. This concept of the streamtube is
very useful in deriving the continuity equation.

Considering an elemental streamtube of the flow (fig. 3.2), we can state:
mass entering the tube/second = mass leaving the tube/second
since there is no mass flow across the tube (principle of mass conservation).
L Vi dA| = p; Vo dA,
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Figure 3.2 Streamtube

where V, and V, are the steady average velocities at the entrance and exit

of the elementary streamtube of cross-sectional areas dA, and dA; and p,

and p, are the corresponding densities of entering and leaving fluid.
Therefore, for a collection of such streamtubes along the flow:

Y A =p, V2 A, (3.9)

where p; and p, are the average densities of fluid at the entrance and exit,
and V, and V, are the average velocities over the entire entrance and exit
sections of areas A, and A, of the flow tube.

For incompressible steady flow, equation 3.4 reduces to the one dimens-
ional continuity equation:

AV, =A,V,=0 (3.5)

and Q is the volumetric rate of flow called discharge, expressed in m?/s
(:L*T™"), often referred to as cumecs.

3.7 Accelerations of fluid particles
In general, the velocity vector V of a flow field is a function of space and
time, written as:
V =f(s,t)

which shows that the fluid particles experience accelerations due to (a)
change in velocity in space (convective acceleration), and (b) change in
velocity in time (local or temporal acceleration).

(2) Tangential acceleration
If Vi, in the direction of motion = f (s.t)

_ Ny,
dv, = 5 ds + a dt
_ds 9V, 9V,
or dV /dt = at s a
VAL (3.6)

os ot
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dV,/dt being the total tangential acceleration equal to the sum of tangential
convective and tangential local accelerations.

(b) Normal acceleration
The velocity vectors of the particles negotiating curved paths (fig. 3.3a) may
experience both change in direction and magnitude.
V, + AV AN
n Vo AL 4

\ 3
a v,

>

| ] Vs + AV
|

b. Velocity vectors

a. Curved path

Figure 3.3 Curved motion

Along a flow line of radius of curvature, r, the velocity vector Vs at A
changes to V, + AV at B. The vector change AV can be resolved into two
components, one along the vector V; and the other normal to the vector V,.
The tangential change in velocity vector AV, produces tangential convective
acceleration whereas the normal component AV,, produces normal convec-
tive acceleration,

AV, _@)
As At/

From similar triangles (fig. 3.3b):
AV, IV, = Asir
or AV, /As = VJr

AV, /At (=

.~ The total normal acceleration can now be written as:

V2 a8V,
dv,/dt = . + p 3.7
3V, /3t being the local normal acceleration.

Examples of streamline patterns and their corresponding types of acceler-
ation in steady flows (:8V/3t = 0) are shown in fig. 3.4.

Fluid flows between straight parallel boundaries (fig. 3.4a) do not experi-
ence any kind of accelerations whereas between straight converging (fig.
3.4b) or diverging boundaries the flow suffers tangential convective acceler-
ation or decelerations.
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—

el
—— L

a. No accelerations b. Tangential convective
exist accelerations

SN =

c. Normal convective d. Tangential and normal
accelerations convective accelerations

Figure 3.4 Streamline patterns and types of acceleration

Flow in a concentric curved bend (fig. 3.4c) experiences normal convec-
tive accelerations while in a converging (fig. 3.4d) or diverging bend both
tangential and normal convective accelerations or decelerations exist.

3.8 Two kinds of fluid flow

Fluid flow may be classified as laminar or turbulent. In laminar flow, the
fluid particles move along smooth layers, one layer gliding over an adjacent
layer. Viscous shear stresses dominate in this kind of flow in which the
shear stress and velocity distribution are governed by Newton’s law of
viscosity (equation 1.1). In turbulent flows, which occur most commonly in
engineering practice, the fluid particles move in erratic paths causing in-
stantaneous fluctuations in the velocity components. These turbulent fluc-
tuations cause an exchange of momentum setting up additional shear stresses
of large magnitudes. An equation of the form similar to Newton's law of
viscosity (equation 1.1) may be written for turbulent flow replacing u by 7.
The coefficient #, called the eddy viscosity, depends upon the fluid motion
and the density.

The type of a flow is identified by the Reynolds number, R, = pVL/u,
where p and p are the density and viscosity of the fluid and V is the flow
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velocity and L is a characteristic length such as the pipe diameter (D) in the
case of a pipe flow. Reynolds number represents the ratio of inertial forces
to the viscous forces that exist in the flow field and is dimensionless.

The flow through a pipe is always laminar if the corresponding Reynolds
number (R. = pVD/p) is less than 2000 and for all practical purposes the
flow may be assumed to pass through a transition to full turbulent flow in
the range of Reynolds numbers from 2000 to 4000.

3.9 Dynamics of fluid flow

The study of fluid dynamics deals with the forces responsible for fluid
motion and the resulting accelerations. A fluid in motion experiences, in
addition to gravity, pressure forces, viscous and turbulent shear resistances,
boundary resistance, and forces due to surface tension and compressibility
effects of the fluid. The presence of such a complex system of forces in real
fluid flow problems makes the analysis very complicated.

However, a simplifying approach to the problem may be made by assuming
the fluid to be ideal or perfect i.e. non-viscous or frictionless and incom-
pressible. Water has a relatively low viscosity and is practically incompress-
ible and is found to behave like an ideal fluid. The study of ideal fluid
motion is a valuable background information to encounter the problems of
civil engineering hydraulics.

3.10 Energy equation for an ideal fluid flow

Consider an elemental streamtube in motion along a streamline (fig. 3.5) of
an ideal fluid flow.

Elevation

Figure 3.5 Euler’s equation of motion
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The forces responsible for its motion are the pressure forces, gravity and
accelerating force due to change in velocity along the streamline. All frictional
forces are assumed to be zero and the flow is irrotational i.e. uniform
velocity distribution across streamlines.

By Newton’s second law of motion along the streamline (Force = mass x
acceleration):

pdA—(p+dp)dA—pgdAdscosB=pdAds%
or —dp—pgdscosO=pds%

The tangential acceleration (along streamline) for steady flow,

dVv dv
Y - v—=
dt ds

and cos 6 = dz/ds (fig. 3.5)
o —dp—pgdz=pVdV
ordz + dp/pg + d(V)*/2g =0 (3.8)

(equation 3.6)

Equation 3.8 is the Euler equation of motion applicable to steady state,
irrotational flow of an ideal and incompressible fluid.
On integration along the streamline, we get:

2
z+ P, A = Constant (3.9a)
P 2g
P, Vi P, Vi
i - = 2 4 —= .
orz,; + — + % 2, + p 2 (3.9b)

The three terms on the left-hand side of equation 3.9a have the dimension
of length and the sum can be interpreted as the total energy of a fluid
element of unit weight. For this reason equation 3.9b, known as Bernoulli’s
equation, is sometimes called the energy equation for steady ideal fluid flow
along a streamline between two sections 1 and 2.

Bernoulli’s theorem states that the total energy at all points along a steady
continuous streamline of an ideal incompressible fluid flow is constant and is
written as:

2
z+ 2+ v = Constant
rg 28

where z = elevation, p = pressure and V = average (uniform) velocity of
the fluid at a point in the flow under consideration.

The first term, z, is the elevation or potential energy per unit weight of
fluid with respect to an arbitrary datum, z N m/N (or metres) of the fluid,
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called elevation or potential head. The second term, p/pg, represents the
work done in pushing a body of fluid by fluid pressure and is known as
pressure energy per unit weight of fluid. The work done over a volume V is
pVandV = W/pg, where W is the corresponding weight of fluid, giving
the pressure energy per unit weight as p/pg N m/N (or metres) of the fluid,
called pressure head. The third term, V?/2g, is the kinetic energy per unit
weight of fluid (K.E. = {mV? and mass m = W/g) in N m/N (or metres) of
the fluid, known as velocity head.

The units of the total energy can be written as N m/N of fluid (or metres)
of fluid in which case it is known as total head.

3.11 Modified energy equation for real fluid flows

Bernoulli’s equation can be modified in the case of real incompressible fluid
flow (i) by introducing a loss term in the equation 3.9b which would take
into account the energy expended in overcoming the frictional resistances
caused by viscous and turbulent shear stresses and other resistances due to
changes of section, valves, fittings, etc., and (ii) by correcting the velocity
energy term for true velocity distribution. The frictional losses depend upon
the type of flow; in a laminar pipe flow they vary directly with the viscosity,
the length and the velocity and inversely with the square of the diameter
whereas in turbulent flow they vary directly with the length, square of the
velocity and inversely with the diameter. The turbulent losses also depend
upon the roughness of the interior surface of the pipe wall and the fluid
properties of density and viscosity.
Therefore, for real incompressible fluid flow, we can write:

2 2
z,+p—‘+ﬁ=z,+£2-+ﬂz—+l~osses (3.10a)
P 28 Pg 2

where a is the velocity (kinetic) energy correction factor.

Note (a) A general energy equation from the principles of conservation of
energy can be derived for a fluid flow taking into account the mass, momentum
and heat transfer and the thermal energy due to friction in real fluid. For a
steady flow situation between two sections of a flow field, an energy equation
of the form

z; + p/pg + V%2 + E,, =
22 + Palpag + V22 + J[(I, — 1) + q] (3.10b)

can be written where E,j, is the external energy supplied by some machine, I
is the internal energy, q is the heat energy transferred to the surroundings of
the fluid and J is the mechanical equivalent of heat; this equation reduces to
equation 3.10a in the case of a real incompressible fluid flow without the
supply of external energy, the loss term being J[(I, — I,) + q]. Thus the
Bernoulli’s equation is a specific case of energy equation.
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Note (b) Veloctiy energy correction factor, a:

v
v
area, dA
mass, m ’
Velocity profiles
ra
_
a. Uniform distribution b. Nonuniform distribution

Figure 3.6 Velocity (kinetic) energy correction factor

Total kinetic energy over the section =
2 kinetic energies of individual particles of mass, m.
In the case of uniform velocity distribution (fig. 3.6a), each particle moves
with a velocity V and its kinetic energy is mV?2,
.. Total kinetic energy at the section = % mM+m+m+...)V?

= 3 (Wig) V2

= V?/2g per unit weight of fluid.

In the case of non-uniform velocity distribution (fig. 3.6b), the particles
move with different velocities.

Mass of individual elements passing through an elementary area dA
=pdAv

-~ Kinetic energy of individual mass element

=%pdAvv2

and hence total kinetic energy over the section

j%pv3dA
A

o % p AV VZor o % p AV3, V being the average velocity at the

section.

= %J' (vIV) dA G.11)



FLUID FLOW CONCEPTS AND MEASUREMENTS 57

(For turbulent flows « lies between 1.03 and 1.3 and for laminar flows « is
2:0.)
« is commonly referred to as the Coriolis coefficient.

3.12 Separation and cavitation in fluid flow

Consider a rising main (fig. 3.7a) of uniform pipeline.
At any point, by Bernoulli’s equation:
Total energy = z + p/pg + v?/2g = Constant

For a given discharge the velocity is the same at all sections (uniform
diameter) and hence we have: z + p/pg = Constant.

As the elevation z increases, the pressure p in the system decreases and if
p becomes vapour pressure of the fluid, the fluid tends to boil liberating
dissolved gases and air bubbles. With further liberation of gases the bubbles
tend to grow in size eventually blocking the pipe section thus allowing the
discharge to take place intermittently. This phenomenon is known as sep-
aration and greatly reduces the efficiency of the system.

If the tiny air bubbles formed at the separation point are carried to a
high pressure region (fig. 3.7b) by the flowing fluid, they collapse extremely
abruptly or implode producing a violent hammering action on any boundary
surface on which the imploding bubbles come in contact and cause pitting
and vibration to the system which is highly undesirable. The whole pheno-
menon is called cavitation and should be avoided while designing any hy-
draulic system.

Intermittent
flow Low Pressure
region

ee S R0

Liberation —V,p TTrige gy

of air bubbles e \‘7_&
Z High N

Pressure region

Z + p/pg = Const. p/pg + V*/2g = Const.

a. Rising main of uniform diameter b. Horizontal converging-diverging pipe

Figure 3.7 Separation and cavitation phenomena
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3.13 Impulse-momentum equation

Momentum of a body is the product of its mass and velocity (kg m/s: MLT™')
and Newton’s second law of motion states that the resultant external force
acting on any body in any direction is equal to the rate of change of momentum
of the body in that direction.

In x direction, this can be expressed as:

-4
FX - dt (MX)

or F,dt = d(M,) (3.12)

Equation 3.12 is known as implulse-momentum equation and can be written
as:

F.dt = m dv, (3.13)

where m is the mass of the body and dv is the change in velocity in the
direction considered; F dt is called the impulse of applied force F.

Momentum correction factor (B)
In the case of non-uniform velocity distribution (fig. 3.6b), the particles
move with different velocities across a section of the flow field.

.. Total momentum of the flow = X momenta of individual elements of
mass, m and can be written as : j pdAvv=P8AVV
A
where V is the average velocity at the section.

1 v\?
=—I\= 3.14
A (§) o G19
(For turbulent flows § is seldom greater than 1.1 and for laminar flows §
is 1-33.)

B is commonly referred to as the Boussinesq coefficient.

3.14 Energy losses in sudden transitions

Flow through a sudden expansion experiences separation from the boundary
to some length downstream of the flow. In these regions of separation
turbulent eddies form with a consequence of pressure loss dissipating in the
form of heat energy.

Referring to fig. 3.8a (the pressure against the angular area A, — A, is
experimentally found to be the same as the pressure p,, just before the
entrance).
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a. Sudden expansion . b. Sudden contraction

Figure 3.8 Energy losses in sudden transitions

Energy equation: p,/pg + V,%/2g = p,/pg + V,*/2g + loss (i)

Momentum equation: Net force on the control volume between 1 and 2
= rate of change of momentum

PAL+ P (A2 — A) —pA=pQ (V. — V) (i)
Continuity equation: A;V, = A,V,=Q (iii)
- The head or energy loss between 1 and 2 (from equations (i), (ii) and (iii)),
hy = (V; — V,)%/2g (3.15)

Referring to fig. 3.8b, the head loss is mainly due to sudden enlargement of
flow from vena-contracta to section 2 and therefore, the contraction loss can
be written as (from equation 3.15):

hy = (Ve — V2)?/2g | (i)
where V, is velocity at vena-contracta v — c.
By continuity, AV.=AV,=Q

Ve = (AYAY) V, = VL/C,

where C. is the coefficient of contraction (= AJ/A),).
. Equation (iv) reduces to:

hy = (UC, = 1) V,2/2g = k V,*/2g (3.16)

where k is a function of the contraction ratio A,/A,.

3.15 Flow measurement through pipes

Application of continuity, energy and momentum equations to a given
system of fluid flow makes velocity and volume measurements possible.
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(a) Venturi meter and orifice meter

A pressure differential is created along the flow by providing either a gradual
(venturi meter) or sudden (orifice plate meter) constriction in the pipeline,
and is related to flow velocities and discharge by the energy and continuity
principles. (See fig. 3.9.)

Bernoulli’s equation between inlet section and constriction:

pi/pg + v\*/2g = po/pg + v,2/2g neglecting losses

- 2 2
SR P VoV @
Pg 2g
Continuity equation gives: a,v; = a,v, = Q (ii)
From (i) and (ii)
—a, [_28h
Vi=a a2 — ap
aaz 2gh
and . Q = a\vy = ——— 3.17
URlves (3.17)

or Q = a, ,k_zf’-g_h_l where k = a,/a, (3.18)

Equation 3.18 is an ideal equation obtained by neglecting all losses.

The actual discharge is, therefore, written by introducing a coefficient Cy in
equation 3.18

2gh
k2 -1

Discharge, Q = Cy a, (3.19)

Piezometer

Throat ~—

'Constriction *~

a. Venturi meter b. Orifice meter

Figure 3.9 Discharge measurement through pipes
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The numerical value of C,, the coefficient of discharge, will depend upon
the ratio a,/a,, type of transition, velocity and viscosity of the flowing fluid.

The gradual transitions of the venturi meter (fig. 3.9a) between its inlet
and outlet induce least amount of losses and the value of its C, lies between
0.96 and 0.99 for turbulent flows.

The transition in the case of an orifice plate meter (fig. 3.9b) is sudden
and hence the flow within the meter experiences greater losses due to
contraction and expansion of the jet through the orifice. Its discharge co-
efficient has a much lower value (0.6 to 0.63) as the area a, in equation 3.17
refers to the orifice and not to the contracted jet.

The reduction in the constriction diameter causes velocity to increase, and
correspondingly a large pressure differential is created between inlet and
constriction, thus enabling greater accuracy in its measurement. High velo-
cities at the constriction cause low pressures in the system and if these fall
below the vapour pressure limit of the fluid, cavitation sets in which is highly
undesirable. Therefore, the selection of the ratio d,/d,; is to be considered
carlefully. This ratio may be kept between 4 and 3 and a more common value
18 3.

(b) Pitot tube
A Pitot tube in its simplest form is an L-shaped tube held against the flow as
shown in fig. 3.10, creating a stagnation point in the flow.

The stagnation pressure at point 2 (velocity is zero),

po/pg = pi/pg + v*/2g by Bernoulli’s equation.
. h, the rise in water level or pressure differential between 1 and 2
(b2 — p1)pg = V'I2g
or v, the velocity = V2gh (3.20)

The actual velocity will be slightly less than the velocity given by equation
3.20 and it is modified by introducing a coefficient, K (usually between 0-95
and 1-0) as:

v =K V2gh 3.21)

pi/pg

A

o m———
2™ Stagnation point

Figure 3.10 Pitot tube
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3.16 Flow measurement through orifices and mouthpieces

(a) Small orifice
If the head, h, causing flow through an orifice of diameter, d, is constant
(small orifice: h > d) as shown (fig. 3.11), by Bernoulli’s equation:

h + pi/pg + vi*/2g = 0 + p,/pg + v,*/2g + losses

With p, = p, (both atmospheric), assuming v, = 0 and ignoring losses
we get

v,2/2g = h
or the velocity through the orifice, v, = V2gh (3.22)

Equation 3.22 is called Torricelli’s theorem and the velocity is called the
theoretical velocity.

The actual velocity = C, V2gh where C, is the coefficient of velocity
defined as:

C, = actual velocity/theoretical velocity (3.23)

The jet area is much less than the area of the orifice due to contraction and
the corresponding coefficient of contraction is defined as:

C. = area of jet/area of orifice, a (3.24)

At a section very close to the orifice, known as the vena-contracta, the
velocity is normal to the cross-section of the jet and hence the discharge can
be written as: '

Q

area of jet X velocity of jet (at vena-contracta)
=C.a x C, V2gh
= Cqa V2gh (3.25)

Figure 3.11 Small orifice (h > d)
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where C, is called the coefficient of discharge and defined as:

Cy = actual discharge/theoretical discharge, a V' 2gh

=C.C, (3.26)

Some typical orifices and mouthpieces (short pipe lengths attached to
orifice) and their coefficients, C., C, and C, are shown in fig. 3.12.

(b) Large rectangular orifice (see fig. 3.13)

As the orifice is large the velocity across the jet is no longer constant;
however, if we consider a small area, b dh, at a depth, h,

the velocity through this area = V2gh (equation 3.22)
. The actual discharge through the strip area,

dq = C4 X area of strip X velocity through the strip
= Cy4 b dh V2gh

.. Total discharge through the entire opening, (h from H, to H,)

Q=qu=cdb\@r h'2 dh
HZ

= 2c, Vb m¥ - B

(3.27)
2z
SZo Ce =10
Cd =0 Cv = 0‘8
Cd = 0'8
a. Sharp edged orifice b. Bell mouthed orifice c. Mouthpiece
< Z
Vary with
Cc =05 C.=10 flare and
G =10 G =075 length
Cd = 0-5 Cd = 0-75
d. Borda’s (re-entrant) e. Divergent tube

mouthpieces

Figure 3.12 Hydraulic coefficients for some typical orifices and mouthpieces
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Figure 3.13 Large rectangular orifice

Modification of equation 3.27

(@) If V, is the velocity of approach, the head responsible for the strip
velocity is h + a V,%/2g (fig. 3.14a) and hence the strip velocity is

V2g(h + a V,2/2g), a being the kinetic energy correction factor
(Coriolis coefficient).

- Discharge through the strip, dq = C4 b dh V2g(h + o V,%/2g)
and the total discharge,

Q= f dq = % Ca V2g b [(H; + o V,22g)*? — (H, + a V,22g)*?

(3.28)
(b) Side wall of the tank inclined at an angle 8 (see fig. 3.14b):
The effective strip area = b dh/cos g
. Discharge, Q = j dq=| ;2 Vo + o Vii2g)
H, cosf
=2 b 29 0\¥2 _
=3Ca \/igcosﬁ[(Hl + a V,°/2g)
(Hy + a V,12g)*?) (3.29)

(c) Submerged orifice (see fig. 3.14¢c):
It can be shown by the Bernoulli’s equation that the velocity across the
jet is constant and equal to V2gH or V2g(H + a V.212g) if V, is
considered.

-. The discharge through a submerged orifice,
Q = C4 X area of orifice % velocity
=CyA V2g(H + a V,%/2g) (3.30)

Note: Discharge under varying head: Since the head causing flow is varying,
the discharge through the orifice varies with time.
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aVa2/2g Energy line av,2 /Zg

a. Orifice with approach b. Orifice in inclined ¢. Submerged
velocity wall orifice

Figure 3.14 Velocity of approach — large rectangular orifice

If h is the head at any instant t (see fig. 3.15), the velocity through the
orifice at that instant = V 2gh

Let the water level drop down by a small amount, dh, in a time dt.

We can write: Volume reduced = Volume escaped through the orifice

— A dh = C4a V2gh dt (dh is negative)
A dh

dt = - —— 5 331
. Time taken to lower the water level from H; to Hj:
ZA(H||/2 _ HleZ)
T= f dt = 3.32
Cqa Vg (3:32)
- A —_
\ 4
-
Z AP
H,
h I
H,
ma

Figure 3.15 Time of emptying a tank
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3.17 Flow measurement in channels

Notches and weirs are regular obstructions placed across open streams over
which the flow takes place. The head over the sill of such an obstruction is
related to the discharge through energy principles. A weir or a notch may be
regarded as a special form of large orifice with the free water surface below
its upper edge. Thus equation 3.27 with H, = 0, for example, gives the
discharge through a rectangular notch. In general, the discharge over such
structures can be written as

Q=KH" (3.33)
where K and n depend on the geometry of notch.
(a) Rectangular notch

Considering a small strip area of the notch at a depth, h, below free water
surface (see fig. 3.16), the total head responsible for the flow is written as:

h + & V,%/2g, a being the energy correction factor.

<~ The velocity through the strip = V2g(h + a V,2/2g)
and discharge, dq = Cy4 b dh V2g(h + a V,%/2g)

- The total discharge,

H
Q=qu=c.,\/2_gbf (h + & V,2/2g)2 dh

- % Ca VIEb[(H + a V28" — (aV228)*?]  (3.34)

The discharge coefficient C4 largely depends upon the shape, contraction of
the nappe, sill height, head causing flow, sill thickness, etc.
As the effective width of the notch for the flow is reduced by the presence

Energy line

e p— J— Nappe

1110 (H + oV,2/2g)

Figure 3.16 Rectangular notch with end contractions
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of end contractions, each contraction being one-tenth of the total head
(experimental result), equation 3.34 is modified as: (in S.L. units)

Q=184[b—01n(H + a V,22g)] [(H + a V,7/2g)** — (« V.2 2)"?]
(3.35)

taking an average value of C4 = 0-623. This is known as Francis formula,
n being the number of end contractions.
Note: (a) Bazin formula:

Q = (0-405 + 0-003/H,;) V2g b (H,)*? (3.36)
where H, = H + 1-6 (V,2/2g)
(b) Rehbock formula:
Q = [1-78 + 0-245(H./P)] b(H.)** (3.37)

where H, = H + 0-0012 m, and P the height of sill, the coefficient of
discharge, C, being:

Cyq = 0-602 + 0-083 (H./P) (3.38)
(b) Triangular or V-notch

A similar approach to determine the discharge over a triangular notch of an
included angle 6, results in the equation

8 ) o VaZ)Slz (a Va2)5/2]
Q=15 Cq V2g tan > [(H + TS 22 (3.39a)

If the approach velocity V, is neglected, equation 3.3%a reduces to

Q-= 18—5 Cs Vg tan g H"? (3.39b)

(¢) Cipolletti weir
This is a trapezoidal weir with 14° side slopes (1 horizontal : 4 vertical). The
discharge over such a weir may be computed by using the formula for a
suppressed (no end contractions) rectangular weir with equal sill width.

A trapezoidal notch may be considered as one rectangular notch of width

b and two half V-notches (apex angle -;- 8) and the discharge equation

written as: Q = %’Cd V2g (b — 0-2H) H** + ng Ca V2g tan % 6 1
4 (3.40)

Equation 3.40 reduces to that for a suppressed rectangular weir (weir with
no end contractions) if the reduction in discharge due to the presence of end
contractions is compensated by the increase provided by the presence of two
half V-notches.
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. We can write: % Cs V2g X 0-2H x H¥"? = 1% Cs V2g tan % 6 H3?

Assuming Cy constant throughout, we get

1 1 1

10=-= =0 =14

tan 3 0 s O 5 6 =142

(d) Proportional or Sutro weir
In general, the discharge through a.y type of weir may be expressed as
Q o« H". A weir with n = 1, i.e. the discharge is proportional to the head
over the weir’s crest, is called a proportional weir (fig. 3.17).

Figure 3.17 Sutro or proportional weir

Sutro’s analytical approach resulted in the relationship,
x o« y~122

for the proportional weir profile and to overcome the practical limitation (as
y = 0, x = ©) he proposed the weir shape in the form of hyperbolic curves
of the equation:

x_f(;_2 . ]
L [1 pe tan y/a | (3.41)

where a and L are the height and width of the rectangular aperture forming
the base of the weir.

The discharge, Q = C, L(2ga)'? (H — a/3) (3.42)

The proportional weir is a very useful device, for example, in chemical
dosing and sampling, irrigation outlets, etc.

(e} Ogee spillway

Excess flood flows behind dams are normally discharged by providing spill-
ways. The profile of an Ogee spillway conforms to the shape of a sharp
crested weir (see fig. 3.18) at a design head, H,. A discharge equation
similar to that of the weir, but with a higher discharge coefficient, Cg4,,
(since the reference sill level for the spillway is slight shifted), written in the
form
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Figure 3.18 Cross-section of an Ogee spillway

Q= %Cdo B V2g He™” (B43)

is applicable, in which Hye = Hg + V,*/2g, V, being the velocity of
approach. For spillways of P/Hy. = 3 the value of Cy, = 0-75; fig. 3.19
shows the variation of C4, with P/H,.. For heads other than the design
head the discharge coefficient varies as the underside of the nappe no longer
conforms to the spillway profile; fig. 3.20 shows the variation of C4/Cgy, with
H./Hg., H, being any other energy head with a corresponding discharge
coefficient, Cg4. For larger values of P/H the approach velocity, V,, may be
negligible leading to H, ~ H.

J —
0-72 ——
Cao
0-64
0:56 [T T T T B S — N —
0-0 1-0 20 3.0
P/Hq,

Figure 3.19 Variation of Cyo with P/Hg.
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1-10
1-00 ’//
Co/Cao ]
0-90
0-80 ™17 T | B T 1T
0-00 0-40 0-80 1-20 1-60

H./Hq.
Figure 3.20 Variation of C4/Cyp with H/Hg.

(f) Other forms of flow measuring devices

Open channel flows may also be measured by broad crested weir and venturi
flume (see Chapter 8) and some special structures like Crump weir (see
Novak et al.”, for example).

Effect of submergence of flow measuring structures

If the water level (H,) downstream of a measuring device is below the sill
level, the discharge is said be modular (free flow, Q) and the above equations
are valid to compute the free flows. When the downstream water level is
above the sill level, the structure is said to be drowned and the discharge
(non-modular or drowned flow) is affected, i.e. reduced. The non-modular
flow, Q,, is given by the equation

Q. = Qf[l - (%)m]o'm G4

where m is the exponent of H; (upstream water level above sill) in the weir
equations; m = 1.5 for rectangular weir and m = 2-5 for triangular weir.

Worked examples

Example 3.1 -
A pipeline of 300 mm diameter carrying water at an average velocity of
4-5 m/s branches into two pipes of 150 mm and 200 mm diameters. If the
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average velocity in the 150 mm pipe is g— of the velocity in the main pipeline,

determine the average velocity of flow in the 200 mm pipe and the total flow
rate in the system in l/s. (See fig. 3.21.)

+01,V1=5/8V
D; = 150 mm
o
V = 4-5m/s ﬁ_’oz, D2=200mm
D = 300 mm

Figure 3.21 Branching pipeline
Solution:

Discharge, Q = AV = Q; + Q, by continuity
S AV = A|V| + Asz

1 032 x45=170152 x > x 45 + L 5 (02)2

4:r(03) x45-4n(015) x8x45+4n(02) X V,
or V, = 8-:54 m/s

and total flow rate, Q = %  (0-3)2 X 4-5

= 0-318 m/s
= 318 I/s.

Example 3.2

A storage reservoir supplies water to a pressure turbine (fig. 3.22) under a .
head of 20 m. When the turbine draws 500 I/s of water the head loss in the
300 mm diameter supply line amounts to 2-5 m. Determine the pressure
intensity at the entrance to the turbine. If a negative pressure of 30 kN/m?
exists at the 600 mm diameter section of the draft tube 1-5 m below the
supply line, estimate the energy absorbed by the turbine in kW neglecting
all frictional losses between the entrance and exit of the turbine. Hence find
the output of the turbine assuming an efficiency of 85%.

Solution:
Referring to fig. 3.19, by Bernoulli’s equation (between points 1 and 2):
z, + p/pg + V,22g = z, + po/pg + V,2/2g + Loss (i)

With section 2 as datum equation (i) becomes (p, = 0 and V, = 0)

20 = py/pg + V,2/2g + 25
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Figure 3.22 Flow through a hydraulic turbine

By the continuity equation Q = A,V, = A;3V;3

<. Average velocities, V, = Q/A, = 0-5/% (0-3)> = 7-07 m/s

and V; = Q/A, = 0-5/% (0-6)> = 1-77 m/s

S palpg = 20 — 2:5 — (7-07)*/2g
14-95 m of water
pg X 14.95 = 9-81 x 1495
= 146-95 kN/m?
Between sections 2 and 3 we can write:
Z; + pa/pg + V*2g = 23 + pslpg + V;2/2g + E, + Losses (ii)

where E,; is the energy absorbed by the machine/unit weight of water
flowing.
Assuming no losses between 2 and 3, equation (ii) reduces to

15 + 1495 + (7-07)%/2g = -30 x 10°/pg + (1-77)%2g + E,
~ B¢ = 1-5 + 14-95 + 2.55 + 3-06 — 0-16

or p;

= 21-9 N m/N
Weight of water flowing through the turbine/s,
W =pgQ
= 10° x 9-81 x 0-5

= 4-905 kN/s
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.. Total energy absorbed by the machine

= E, X W = 21.9 X 4-905
= 107-42 kW
Hence its output = efficiency X input
= 0-85 x 107-42
= 91-31 kW.
Example 3.3

A 500 mm diameter vertical water pipeline discharges water through a
constriction of 250 mm diameter (fig. 3.23). The pressure difference between
the normal and constricted sections of the pipe is measured by an inverted
U-tube. Determine (i) the difference in pressure between these two sections
when the discharge through the system is 600 l/s, and (ii) the manometer
deflection, h, if the inverted U-tube contains air.

Solution:
Discharge, Q = 600 l/s = 0-6 m®/s
5V, = 0-6/% (0-5)? = 3-056 m/s
(by continuity)
and V,, = 0-6/% (0-25)2 = 7-54 m/s
By Bemnoulli’s equation between aa and bb (assuming no losses):
0-50 + pJ/pg + (3-056)%12g = 0 + pu/pg + (7-54)*/2g
or (pa — pv)/pg = [(7-54)* — (3-056)*)/2g — 0-50
= 2-42 - 0-50 ‘
= 1-92 m of water (i)

500 mm Dia.

250 mm Dia.

Figure 3.23 Flow through a vertical constriction
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10* x 9-81 x 1.92
18-8 kN/m?

“+ Pa — Pn

Manometer equation:
Pa/pg — (h + x — 0-50) + x = py/pg
- (Pa — Pv)/pg = h — 0-50 = 1-92 from equation (i)
or h =192 + 0-50
= 242 m.

Example 3.4

A drainage pump having a tapered suction pipe, discharges water out of
a sump. The pipe diameters at the inlet and at the upper end are 1 m and
0-5 m respectively. The free water surface in the sump is 2 m above the
centre of the inlet and the pipe is laid at a slope of 1 (vertical) : 4 (along
pipeline). The pressure at the top end of the pipe is 0-25 m of mercury
below atmosphere and it is known that the loss of head due to friction
between the two sections is 1/10 of the velocity head at the top section.
Compute the discharge in Vs through the pipe if its length is 20 m. (See
fig. 3.24.)

Solution:
By the continuity equation: Q = avy; = azvs @)
By Bernoulli’s equation between (1), (2) and (3):
2+0+0=0+py/pg+ v,%/2g =20 x % + pa/pg + vi%i2g + (1/10)v3/2g
(ii)

assuming the velocity in the sump at (1) as zero and a datum through (2).

0-5 m Dia.

Figure 3.24 Flow through the suction pipe of a pump
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The pressure at the top end, ps/pg
atmosphere

= —0-25 x 13-6
= —3-4 m of water
S 11 X v2g =2 -5+ 34=04
or v52/2g = 0-4/1-1 = 0-364 m
vy = 2:67 m/s

Hence discharge, Q = a; X v3 = %n (0-5)* x 2-67

= 0-524 m®/s
= 524 I/s.

Example 3.5

0-25 m of mercury below

75

A jet of water issues out from a fire hydrant nozzle fitted at a height of 3m
from the ground at an angle of 45° with the horizontal. If the jet under a
particular flow condition strikes the ground at a horizontal distance of 15m
from the nozzle, find (i) the jet velocity, and (ii) the maximum height the jet
can reach and its horizontal distance from the nozzle. Neglect air resistance.

(See fig. 3.25.)
Solution:
In the horizontal direction, acceleration a = 0
. V; cos 8, = V cos 8 = Constant
and in time t, horizontal distance covered x; = V cos 8 X t

ort=x/Vcos0

and vertical distance y1=Vsinf xt-— % gt (sihce a= —g)

. = . X1 _1 ( X1 )2 ..
' Vsmﬂxvcose 2 8\Voos 6 from (ii)

=x tan@—%gxlzseczﬂlv2
Co-ordinates of the point where the jet strikes the ground are:

y=-3m and x=15m
-~ from (iii)) V = 11-07 m/s

Highest point P: velocity vector is horizontal and is V cos 8 from (i)

®

(ii)

(i)
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Figure 3.25 Jet dynamics

-. In the vertical direction, initial velocity = V sin 6
final velocity = 0

giving 0 — V2 sin” 6 = -2g y,,, (since a = —g)
OF Ymax = V2 sin 6/2g = 3-12 m
we can also write: 0 = Vsin § — g t,
or t, = Vsin 6/g (iv)
and horizontal distance Xp = Vcos 6 Xt,
= V2 sin2 6/2g
=6-24 m. v)
Note: Total horizontal distance traversed by the jet
=2x, = V?sin2 /g (vi)

Example 3.6

A 500 mm diameter siphon pipeline discharges water from a large reservoir.
Determine (i) the maximum possible elevation of its summit for a discharge
of 2-15 m%/s without the pressure becoming less than 20 kN/m? absolute,
and (ii) the corresponding elevation of its discharge end. Take atmospheric
pressure as 1 bar and neglect all losses.

Solution:

Consider the three points, A, B and C along the siphon system as shown in
fig. 3.26.
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B
-1
-
Zc
Reservoir /
500 mm Dia.
siphon @1

Figure 3.26 Siphon pipeline
Discharge, Q = av = 2-15 m%/s
-, Velocity, v = 2-15/% z (0-5) = 10-95 m/s

and v¥/2g = 6-11 m
Atmospheric pressure = 1 bar = 10° N/m?
= pressures at A and C
Minimum pressure at B = 20 kN/m? absolute (given)

By Bernoulli’s equation between A and B (reservoir water surface as datum):

0410 oo g s BX1I® oy
pg pg

—-6-11 =2-04m

" zg = 10°/pg — _20_;(g_1_0_3

Between A and C (with exit end as datum):

zc + pa/pg + 0 = 0 + pc/pg + 6-11

- zc = 6:11 m (pa = pc = atmospheric pressure)
Hence the exit end is to be 6-11 m below the reservoir level.
Example 3.7
A horizontal bend in a pipeline conveying 1 cumec of water gradually
reduces from 600 mm to 300 mm in diameter and deflects the flow through
an angle of 60°. At the larger end the pressure is 170 kN/m?. Determine the

magnitude and direction of the force exerted on the bend. Assume g = 1-0.
(See fig. 3.27.)
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Figure 3.27 Forces on a converging bend

Solution:
Discharge, Q = 1 m3/s = A, Vi = A,V,: continuity equation

. VI

1/% 7 (0-6)2 = 3-54 m/s

and V, 1/% 7 (0-3)° = 14-15 m/s

Energy equation neglecting friction losses:
p/pg + Vi%/2g = polpg + Vi2g
Pressure at 1, p, = 170 x 10° N/m?
170 x 10° = (3-54°  (14-15)°
10° x 9-81 19-62 19-62
or p;, = 762 x 10* N/m?

Momentum equation: Gravity forces are zero along the horizontal plane and
the only forces acting on the fluid mass are pressure and momentum forces.
Let F, and F, be the two components of the total force, F, exerted by the
bent boundary surface on the fluid mass; these are considered positive if F,
is left to right and F, upwards.
In x-direction:

PiA + Fx — poA; cos 6 = pQ(V, cos 8 — V)
and in y-direction:
0+ F, — p2A; sin 8 = pQ(V, sin 8 — 0)

SopaApg =

]
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- Fy = 10° X 1 (14-15 cos 60° — 3-54) + 7-62 X 10° X %n (0-3)% cos 60°
~ 17 x 10° x %n(0-6)2
= —4-2 x 10* N (negative sign indicates F, is right to left)

and F,

10° x 1 (14-15 sin 60°) + 7-62 X 10* X %n (0-3)? sin 60°

1-7 x 10* N (upwards).

According to Newton’s third law of motion, the forces R, and R, exerted by
the fluid on the bend will be equal and opposite to F, and F,.

. R, = —F, = 42 x 10* N (left to right)
and R, = —F, = —1.7 x 10* N (downwards)
.. Resultant force on the bend,
R=VRI+ R

=453 x 10* N or 453 kN
acting at an angle, 8 = tan™' (R,/R,)

= 22° to the x-direction.

Example 3.8
Derive an expression for the normal force on a plate inclined at 6° to the
jet.

A 150 mm X 150 mm square metal plate, 10 mm thick, is hinged about
a horizontal edge. If a 10 mm diameter horizontal jet of water impinging
50 mm below the hinge keeps the plate inclined at 30° to the vertical, find
the velocity of the jet. Take the specific weight of the metal as 75 kN/m°.
Referring to fig. 3.28a, force in the normal direction to the plate,

F = (mass X change in velocity normal to the plate) of jet
F = paV [V cos (90 — 6) — 0}
= paV?sin 6 N

Now referring to fig. 3.28b,
F = p aV? sin 60°

= 10° x %n (0-01)% X sin 60° X V? = 6:8 X 102 V2 N

Weight of the plate, W = 0-150 x 0-150 x 0-010 X 75000
= 1687 N
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a. Inclined plate b. Hinged plate

Figure 3.28 Forces on flat plates

Taking moments about the hinge,
F X 50 sec 30° = W x 75 sin 30°
or 6-8 x 1072 V2 x 50 sec 30° = 16-87 x 75 sin 30°
sV =12-7 m/s

Example 3.9

Estimate the energy (head) loss along a short length of pipe suddenly
enlarging from a diameter of 350 mm to 700 mm and conveying 300 litres
per second of water. If the pressure at the entrance of the flow is 105 N/m?,
find the pressure at the exit of the pipe. What would be the energy loss if
the flow were to be reversed with a contraction coefficient of 0-627

Solution:
Case of sudden expansion:

Q =03 m’¥s = av; = a,v,

Vi =312 m/s and v, = 0-78 m/s and hence h, = (3-12 — 0-78)%/2g
= 0-28 m of water

10° N/m?

pressure p;,

By energy equation:
PU/pg + vi’/2g = pylpg + V28 + (vi — v,)Y/2g
10-2 + 0-5 = p,/pg + 0-03 + 0-28
S pdpg = 1039 m or p, = 1-02 x 10° N/m?
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Case of sudden contraction:
h = (1/C. — 1)? v¥/2g where v is the velocity in the smaller pipe

= (1/0-62 — 1)* (3-12)*/2g

= (-186 m of water.
Example 3.10
A venturi meter is introduced in a 300 mm diameter horizontal pipeline
carrying water under a pressure of 150 kN/m?. The throat diameter of the
meter is 100 mm and the pressure at the throat is 400 mm of mercury below

atmosphere. If 3% of the differential pressure is lost between inlet and
throat, determine the flow rate in the pipeline.

Solution:
Bernoulli’s equation between inlet and throat:

pi/pg + vi*f2g = palpg + v2g + 0-03 (pi/pg — P2/pPg)
5 0:97 (pr — p2)lpg = (v2* — vi°)/2g
p1 = 150 x 10* N/m? = 15-29 m of water
p. = —400 mm of mercury = —0-4 X 13-6 m of water
= —5-44 m of water
L (P - p2)lpg = 1529 — (=5-44)
= 20-73 m
and hence (v, — v¢%)/2g = 0-97 x 20-73
=20-11m ()
From continuity equation:
ajvy = 4V,
~ovy = (ax/a)va = (do/d))v,
= (10/30)%v, = (1/9)v, (i)
From (i) and (ii):
v,2 (1 — 1/81)/2g = 20-11

_ [Zg x 20-11
or v, = 1 181 = 19-89 m/s

.. Flow rate, Q = ayv, = %n (0-1)? x 19-98

= 0-157 m?/s or 157 U/s.
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Example 3.11

A 50 mm X 25 mm venturi meter with a coefficient of discharge of 0-98 is to
be replaced by an orifice meter having a coefficient of discharge of 0-6. If
both meters are to give the same differential mercury manometer reading
for a discharge of 10 I/s, determine the diameter of the orifice.

Solution:
Discharge through venturi meter = discharge through orifice meter
k = a,/a, = (50/25)*> = 4 for the venturi meter
and k, for the orifice meter = (50/d,)> where d, is the diameter of orifice

2gh
42 -1

- 0. 1 052 2
—-06x4n(005) "koz—l

orkaZ_l =M

- Q = 001 = 0-98 x %n (0-05)2

0-98
50)2 50
ko= (22) =257 d, = = 312
ko (d., or V37T mm
Example 3.12

A Pitot tube was used to measure the quantity of water flowing in a pipe of
300 mm diameter. The stagnation pressure at the centre line of the pipe is
250 mm of water more than the static pressure. If the mean velocity is 0-78
times the centre line velocity and the coefficient of the Pitot tube is 0-98,
find the rate of flow in I/s.

Solution:
The centre line velocity in the pipe, v = K V2gh
=098 V2 x 981 x 025
= 2:17 m/s
-~ mean velocity of flow = 0-78 x 2-17
= 1-693 m/s

Hence the discharge, Q = av
= %n (0-3) x 1-693

= 0-12 m*/s or 120 VUs.
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Example 3.13

A large rectangular orifice 0-40 m wide and 0-60 m deep placed with the
upper edge in a horizontal position 0-90 m vertically below the water surface
in a vertical side wall of a large tank, is discharging to atmosphere. Calculate
the rate of flow through the orifice if its discharge coefficient is 0-65.

Solution:
The discharge rate when b = 0-4 m, H, = 0-90 + 0:60 = 1-5 m,
H, = 0-90 m and Cy = 0-65 from equation 3.27,

= % x 0-65 X V3g x 0-40 X [(1-5)*2 — (0-9)*7]
= 0-755 mYs.

Example 3.14

A vertical circular tank 1-25 m diameter is fitted with a sharp edged circular
orifice 50 mm diameter in its base. When the flow of water into the tank was
shut off, the time taken to lower the head from 2 m to 0-75 m was 253
seconds. Determine the rate of flow in I/s, through the orifice under a
steady head of 1-5 m.

Solution:

T = 253 seconds, H; = 2m, H; = 0-75 m, a = %n (0-05)2 = 196 X
103 m? and A = %:r (1:25) = 1228 m?

.. From equation 3-32, C4 = 0-61

Hence steady discharge under a head of 1-5 m = Cqa V2gH
= 0-61 x 1:96 x 1073 x V2g x (1:5)'?

= 0-0065 m’/s or 6-5 I/s.

Example 3.15

Determine the discharge over a sharp crested weir 4-5 m long with no lateral
contractions, the measured head over the crest being 0-45 m. The width of
the approach channel is 4-5 m and the sill height of the weir is 1 m.

Solution:
Equation 3.35 is rewritten as:
Q= 1-84b [(H + V,22g)¥* — (V.2 129)*%] (i)
for a weir with no lateral contractions (suppressed weir) and a = 1.
Equation (i) reduces to: Q = 1-84 b (H)** (ii)
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neglecting velocity of approach as a first approximation,

- from (ii) Q = 1-84 x 4.5 x (0-45)*2

= 2-5m’/s
Now velocity of approach, V, = 2-5/4-5 (1 + 0-45)
= 0-383 m/s
and V,%/2g = 7-48 x 10~ m
7 Q = 1-84 X 4-5 [(0-45 + 0-00748)* — (0-00748)2]
= 2:556 m%fs.

Example 3.16
The discharge over a triangular notch can be written as:

Q = (8/15) C4 V2g tan % 0 H>2

If an error of 1% in measuring H is introduced determine the corresponding
error in the computed discharge.

A right angled triangular notch is used for gauging the flow of a laboratory
flume. If the coefficient of discharge of the notch is 0-593 and an error of
2 mm is suspected in observing the head, find the percentage error in
computing an estimated discharge of 20 U/s.

Solution:
We can write Q = K H"?
- dQ =52 K H”? dH

5/2 K H*? dH
and dQ/Q = Tﬂs’z—

=512 dT{‘i G)

~. If dH/H is 1%, the error in the discharge, dQ/Q = 2:5% from (i)
Q = 0-02 = 8/15 x 0-593 x V2g x 1 x H"?
H*? = 1-4275 x 10~2 or H = 0-183 m or 183 mm
and dQ/Q = (2-5) (dH/H)
= 2-5 X 2/183 = 2-73%.

Example 3.17
If the velocity distribution of a turbulent flow in an open channel is given by
a power law,

L _ <1)1/7
Vmax Y
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where v is the velocity at a distance y from the bed and v,,,, is the maximum
velocity in the channel with a flow depth of y,, determine the average
velocity and the energy (@) and momentum () correction factors; assume
the flow to be two-dimensional.

Solution:
If the mean velocity of flow is V, the discharge per unit width of the channel
is :

Yo
YoV =q = fovdy

which gives q = (7/8)ViaxYo-
Therefore V = q/yo = (7/8)Vimax-

The kinetic energy correction factor «, given by equation 3.11, can be
written as

k] (3 orm 2o ) T

Replacing vpnax {= (8/7)V} and integrating we obtain a = 1-045. The
momentum correction factor, §, given by equation 3.14 can be written as

bt (or- i ) T

Again replacing vmax and integrating we obtain g = 1.016.
Note: The energy and momentum correction factors a and f for open
channels may be computed by the equations

a=1+3e>—-2e%and B=1+ £ where € = (Vpax/V) — 1.

If the velocity distributions are not described by any equation and if the
measured data is available, « and § values may be computed by graphical
methods; plots of [ vdy, [ v®dy and [ v2dy will give V, aand 8 respectlvely

Example 3.18

An Ogee spillway of large height is to be designed to evacuate a flood
discharge of 200 m*/s under a head of 2 m. The spillway is spanned by piers
to support a bridge deck above. The clear span between piers is limited to
6 m. Determine the number of spans required in order to pass the flood
discharge with the head not exceeding 2 m; assume the pier contraction
coefficient k, = 0-01 and the abutment contraction coefficient k, = 0-10.

Solution:

The flow between the piers and abutments is contracted, thus reducing the
spillway width for the flow to B.. Each pier has two end contractions and
abutment one; and hence the effective width is given by

B. = B — 2(nk, + k,)H,, n being the number of piers.
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The pier contraction coefficient depends on the shape of its nose (k, = 0 for
pointed nose and k;, = 0-02 for square nose), whereas the abutment contraction
coefficient may be as high as 0-2 for square abutment, reducing to zero for
rounded abutment. If the velocity of approach, V,, is not negligible, a trial
and error procedure is to be used for the discharge computations; for large
heights (P), V, =~ 0 and hence H, ~ H. Here assuming V, =~ 0 we can write
equation 3.43 as

Q =200 = %cdo V(2g) {6(n + 1) — 2(n x 0-01 + 0-10)2:0)2%2

which gives n = 4-36 with C4, = 0-75 (P/H > 3). Hence provide five piers.
Thus the clear span of the spillway (for flow) = 30 m. From the discharge
equation we can now compute the corresponding head for this flow. In fact
the spillway is capable of discharging a larger flood flow at the specified
design head of 2 m. A stage (head)—discharge relationship can be established
by using appropriate discharge coefficients (read from fig. 3.20).

Recommended reading

1. BS 1042, Part I (1964) Methods for the measurement of fluid flow in pipes.
London: British Standards Institution.

- BS 3680, Part 4A (1965) Methods of measurement of liquid flow in open
channels. London: British Standards Institution.

. Prandtl, L. (1952) Essentials of fluid dynamics. Glasgow: Blackie.

- Rouse, H. (1959) Advanced mechanics of fluids. Chichester: Wiley.

. Shames, I.H. (1962) Mechanics of fluids. Maidenhead: McGraw-Hill.

. Webber, N.B. (1971) Fluid mechanics for civil engineers. London:
Chapman.

7. Novak, P., Moffat, A.I.B., Nalluri, C. and Narayanan, R. (1990) Hy-

draulic Structures. London: Chapman & Hall.

(28]
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Problems

1. A tapered nozzle is so shaped that the velocity of flow along its axis
changes from 1-5 m/s to 15 m/s in a length of 1:35 m. Determine the
magnitude of the convective acceleration at the beginning and end of this
length.

2 The spillway section of a dam ends in a curved shape (known as the
bucket) deflecting water away from the dam. The radius of this bucket is
5 m and when the spillway is discharging 5 cumecs of water per metre length
of crest, the average thickness of the sheet of water over the bucket is 0-5 m.

Compare the resulting normal or centripetal acceleration with the acceleration
due to gravity.
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3. The velocity distribution of a real fluid flow in a pipe is given by the
equation v = Vp,,, (1 — r¥/R?), where V,,,, is velocity at the centre of the
pipe, R is pipe radius, and v is the velocity at radius, r, from the centre of
the pipe. Show that the kinetic energy correction factor for this flow is 2.

4. A pipe carrying oil of relative density 0-8 changes in diameter from
150 mm to 450 mm, the pressures at these sections being 90 kN/m? and
60 kN/m? respectively. The smaller section is 4 m below the other and if the
discharge is 145 I/s determine the energy loss and the direction of flow.

5. Water is pumped from a sump (see fig. 3.29) to a higher elevation by
installing a hydraulic pump with the data:

Discharge of water = 6:9 m*/min
Diameter of suction pipe = 150 mm
Diameter of delivery pipe = 100 mm
Energy supplied by the pump = 25 kW.

(i) Determine the pressure in kN/m? at points A and B neglecting all losses.
(i) If the actual pressure at B is 25 kN/m? determine the total energy loss in
kW between the sump and the point B.

6. A fire-brigade man irntends to reach a window 10 m above the
ground with a fire stream from a nozzle of 40 mm diameter held at a height
of 1-5 m above the ground. If the jet is discharging 1000 //min, determine
the maximum distance from the building at which the fireman can stand to
hit the target. Hence find the angle of inclination with which the jet issues
from the nozzle.

l— 100 mm Dia.

Figure 3.29 Flow through a hydraulic pump
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7. A pipeline 600 mm diameter conveying oil of relative density 0-85 at
the rate of 2 cumecs has a 90° bend in a horizontal plane. The pressure at
the inlet to the bend is 2 m of oil. Find the magnitude and direction of the
force exerted by the oil on the bend. If the ends of the bend are anchored by
tie-rods at right angles to the pipeline, determine tension in each tie-rod.

8. The diameter of pipe bend is 300 mm at inlet and 150 mm at outlet
and the flow is turned through 120° in a vertical plane. The axis at inlet is
horizontal and the centre of the outlet section is 1-5 m below the centre of
the inlet section. The total volume of fluid contained in the bend is 85 X
1072 m®. Neglecting friction, calculate the magnitude and direction of the
force exerted on the bend by water flowing through it at a rate of 0-225 m?/s
when the inlet pressure is 140 kN/m?.

9. A sluice gate is used to control the flow of water in a horizontal
rectangular channel, 6 m wide. The gate is lowered so that the stream
flowing under it has a depth of 800 mm and a velocity of 12 m/s. The depth
upstream of the sluice gate is 7 m. Determine the force exerted by the water
on the sluice gate assuming uniform velocity distribution in the channel and
neglecting frictional losses.

10. A jet of water S0 mm diameter strikes a curved vane at rest with a
velocity of 30 m/s and is deflected through 135° from its original direction.
Neglecting friction, compute the resultant force on the vane in magnitude
and direction.

11. A horizontal rectangular outlet downstream of a dam, 2-:5 m high and
1-5 m wide discharges 70 m*/s of water on to a concave concrete floor of
12 m radius and 6 m long, deflecting the water away from the outlet to
dissipate energy. Calculate the resultant thrust the fluid exerts on the floor.

12. A venturi meter is to be fitted to a pipe of 250 mm diameter where the
pressure head is 6 m of water and the maximum flow 9 m*/min. Find the
smallest diameter of the throat to ensure that the pressure head does not
become negative.

13. (a) Determine the diameter of throat of a Venturi meter to be intro-
duced in a horizontal section of a 100 mm diameter main so that deflection
of a differential mercury manometer connected between the inlet and throat
is 600 mm when the discharge is 20 I/s of water. The discharge coefficient of
the meter is 0-95.

(b) What difference will it make to the manometer reading if the meter is
introduced in a vertical length of the pipeline, with water flowing upwards
and the distance from inlet to throat of the meter is 200 mm?

14. A Pitot tube placed in front of a submarine moving horizontally in
sea 16 m below the water surface, is connected to the two limbs of a U-tube
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mercury manometer. Find the speed of the submarine for a manometer
deflection of 200 mm. Relative densities of mercury and sea water are 13-6
and 1-026 respectively.

15. In an experiment to determine the hydraulic coefficients of a 25 mm
diameter sharp-edged orifice, it was found that the jet issuing horizontally
under a head of 1 m travelled a horizontal distance of 1-5 m from vena-
contracta in the course of a vertical drop of 612 mm from the same point.
Further, the impact force of the jet on a flat plate held normal to it at vena-
contracta was measured as 5.5 N. Determine the three coefficients of the
orifice assuming an impact coefficient of unity.

16. A swimming pool with vertical sides is 25 m long and 10 m wide.
Water at the deep end is 2:5 m and shallow end 1 m. If there are two outlets
each 500 mm diameter, one at each of the deep and shallow ends, find the
time taken to empty the pool. Assume the discharge coefficients for both
the outlets as 0-8.

17. A convergent-divergent nozzle is fitted to the vertical side of a tank
containing water to a height of 2 m above the centre line of the nozzle. Find
the throat and exit diameters of the nozzle, if it discharges 7 I/s of water into
the atmosphere, assuming that (i) the pressure head in the throat is 2-5 m of
water absolute, (ii) atmospheric pressure is 10 m of water, (iii) there is no
hydraulic loss in the convergent part of the nozzle, and (iv) the head loss in
the divergent part is one-fifth of exit velocity head.

18. When water flows through a right-angled V-notch, show that the
discharge is given by Q = kH>?, in which k is a dimensional constant and H
is the height of water surface above the bottom of the notch. (i) What are
the dimensions of k if H is in metres and Q in m*/s? (ii) Determine the head
causing flow when the discharge through this notch is 1-42 I/s. Take Cy =
0-62. (iii) Find the accuracy with which the head in (ii) must be measured if

the error in the estimation of discharge is not to exceed 1%%.

19. (a) What is meant by a ‘suppressed’ weir? Explain the precautions
that you would take in using such a weir as discharge measuring structure.
(b) A suppressed weir with two ventilating pipes is installed in a laboratory
flume with the following data:

Width of flume = 1000 mm

Height of weir (P) = 300 mm

Diameter of ventilating pipes = 30 mm

Pressure difference between the two sides of the nappe = 1 N/m?
Head over sill (h) = 150 mm

Density of air = 1-25 kg/m’

Coefficient of discharge, Cy = 0-611 + 0-075 (h/P)
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Assuming a smooth entrance to the ventilating pipes and neglecting the
velocity of approach, find the air demand in terms of percentage of water
discharge.

20. State the advantages of a triangular weir over a rectangular one, for
measuring discharges.

The following observations of head and the corresponding discharge were
made in a laboratory to calibrate a 90° V-notch.

Head (mm) 50 75 100 125 150
Diff,'s‘;“ge 0-81 224 476 803 12:66

Determine K and n in the discharge equation, Q = K H" (H in m, Q in m?/s)
and hence find the value of the coefficient of discharge.

21. A reservoir has an area of 8-5-ha and is provided with a weir 4-5 m
long (C4 = 0-6). Find how long will it take for the water level above the sill
to fall from 0-60 m to 0-30 m.

22 A submerged weir of 1 m height spans the entire width of a rectangular
channel 7 m wide. Find the discharge when the depths of flow on the
upstream and downstream sides of the weir are 1-8 m and 1-25 m. Use
Francis formula for the free discharge. Consider velocity of approach and
assume the energy correction factor (Coriolis coefficient), a = 1-1.

23. (a) An overflow Ogee spillway is to be designed to pass a discharge
of 2000 m*/s of flood flow at an upstream water surface elevation of 200-00m
AOD. The effective crest length is 75 m and the elevation of the bed is
165 m AOD. Determine the design head and the height of the crest.
(b) What would be the discharge through the spillway in (a) if the water
surface elevation reaches 202-00 m AOD? What would be the minimum
pressure on the spillway crest under this discharge condition? Hint: the
minimum pressure under the nappe is given by p,, = —1-17 pgH{(H/Hy) — 1}.



Chapter 4
Flow of Incompressible Fluids
in Pipelines

R. E. Featherstone

4.1 Resistance in circular pipelines flowing full

A fluid moving through a pipeline is subjected to energy losses from various
sources. A continuous resistance is exerted by the pipe walls due to the
formation of a boundary layer in which the velocity decreases from the
centre of the pipe to zero at the boundary. In steady flow in a uniform .
pipeline the boundary shear stress t,, is constant along the pipe, since the
boundary layer is of constant thickness, and this resistance results in a
uniform rate of total energy or head degradation along the pipeline. The
total head loss along a specified length of pipeline is commonly referred to
as the ‘head loss due to friction’ and denoted by h;. The rate of energy loss

or energy gradient S; = _EL

The hydraulic grade line shows the elevation of the pressure head along
2

the pipe. In a uniform pipe the velocity head, %, is constant and the

energy grade line is parallel with the hydraulic grade line (fig. 4.1). Applying
the Bernoulli equation to sections 1 and 2,

P1 aV,? P2 aV,?
i+ —+——=Z,+ =+ —=—+h
T pg 2 pg 2
. Pi P2
andsince Vi, =V,,Z,+ —=2Z,+—+h 4.1
1 2, £y o8 08 f 4.1)

In steady uniform flow the motivating and drag forces are exactly balanced.
Equating between sections 1 and 2:

(p1 — p2)A + pg AL sin 8 = 1, PL 4.2)

where A = area of cross-section, P the wetted perimeter and t,, the boundary
shear stress.

Rearranging equation (4.2) and noting that L sin 0 = Z, — Z,;

P — P2 7, PL
L= Py 7 7,20
pg ATy

91
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%
i l |5
\ J\Energy gl’ade line
— hs = Head loss due
to friction
Pt
pg Hydraulic grade line \

:&;
Datum
Figure 4.1 Pressure head and energy gradients in full, uniform pipe flow
. _Ph—Pp
and, from equation (4.1), h; = —g +Z, -2,
PL
whence h; = L
gA
he
orro=png=pgRSf 4.3)

where R (hydraulic radius) = A (= D/4 for a circular pipe of diameter D).

The head loss due to friction in steady uniform flow is given by the Darcy-
Weisbach equation:

_ALV?

€= 2g D

the derivation of which is to be found in any standard textbook. A is a non-
dimensional coefficient which, for turbulent flow, can be shown to be a
function of K/D, the relative roughness, and the Reynolds number, Re =

(4.4)

%. k is the effective roughness size of the pipe wall. For laminar flow,

(Re = 2000), h; can be obtained theoretically in the form of the Hagen-
Pouiseuille equation:

2ulLV

b= e D?

(4.5)

Thus in equation (4.4) A = % for laminar flow.
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In the case of turbulent flow experimental work on smooth pipes by Blasius
(1913) yielded the relationship
_ 03164

A
Reﬁ

(4.6)

Later work by Prandtl and Nikuradse on smooth and artificially roughened
pipes revealed three zones of turbulent flow:
(i) smooth turbulent zone in which the friction factor A, a function of
Reynolds number only and expressed by
1 ReV 4

L9
VA %8 7251

(ii) transitional turbulent zone in which 4 is a function of both k/D and Re
(iii) rough turbulent zone in which A is a function of k/D only and expressed
by:

L _ 2 log 37D (4.8)

@.7)

Equations (4.7) and (4.8) are known as the Kirman-Prandtl equations.
Colebrook and White (1939) found that the function resulting from addition
of the rough and smooth equations (4.7) and (4.8) in the form:

_1__=_2|0g[ k 2.51]
VA 37D ReVA

fitted observed data on commercial pipes over the three zones of turbulent
flow. Further background notes on the development of the form of the
Karmén-Prandtl equations are given in Chapter 7. The Colebrook-White
equation, (4.9) was first plotted in the form of a A — Re diagram by Moody
(1944) (fig. 4.2) and hence is generally referred to as the ‘Moody diagram’.
This was presented originally with a logarithmic scale of A. Figure 4.2 has
been drawn, from computation of equation (4.9), with an arithmetic scale of
A for more accurate interpolation.

Combining the Darcy-Weisbach and Colebrook-White equations, (4.4)
and (4.9), yields an explicit expression for the V:

(4.9)

k 251w
\% 2V2eD S log [3-7D+ D 2gDSf] (4.10)

This equation forms the basis of the Charts for the hydraulic design of
channels and pipes (4th edition) produced by the Hydraulics Research Station®.
A typical chart is reproduced as fig. 4.3.

Due to the implicit form of the Colebrook-White equation a number of
approximations in explicit form in A have been proposed.

Moody produced the following formulation:

k 106 /3
A = 0-0055 [1 + (200005 + Re) ] (4.11)
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This is claimed to give values of A within +5% for Reynolds numbers

between 4 x 10° and 1 x 107 and for K/D up to 0-01.

More recently Barr' proposed the following form based partly on an
approximation to the logarithmic smooth turbulent element in the Colebrook-
White function by White:

IR U (_k_  31250)
Vi 5\37D 7 R®
Further development by Barr’ led to an even closer approximation which
was expressed as:

. [ k_, 502 log (Re/4518 log (Re/7))]
37D Re (1 + Re%%%/29 (D/k)°7)

(4.12)

1
—_ = — 4.13
7T (4.13)
Typical percentage errors in A given by (4.13) compared with the solution of
the Colebrook-White function are:

k Reynolds number

D 3 x10* 3 x 10° 3 x 10°
1073 -0-12 0-00 -0-07
1074 -0-16 -0-07 +0-03

The values given by (4.13) should be sufficiently accurate for most purposes
but substitution of these values once into the right hand side of the Colebrook-
White function produces A values with a maximum discrepancy of +0-04%.

4.2 Resistance to flow in non-circular sections

In order to use the same form of resistance equations such as the Darcy
(4.4) and Colebrook-White (4.9) it is convenient to treat the non-circular
section as an equivalent hypothetical circular section yielding the same
hydraulic gradient at the same discharge.

The ‘transformation’ is achieved by expressing the diameter D in terms of
the hydraulic radius R = (%) and since for circular pipes R = %, equations
(4.4) and (4.9) become

_ALV?
f= 8g R (4.14)
1 k 2:51v
d = =21 [ + ] 4.1
VT 828R T v RVT. @19
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Discharge Q (I/s) for pipes flowing full
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Figure 4.3 Extract from Charts for the hydraulic design of channels and pipes.
Reproduced by permission of the Controller H.M.S.0., courtesy
Hydraulics Research Station, Wallingford, England. Crown copyright.

Due to the fact that in the actual non-circular section the boundary shear stress
is not constant around the wetted perimeter, whereas it is in the equivalent
circular section, the ‘transformation’ is not exact but experiments have shown
that the error is small.

It is important to note that the equivalent circular pipe does not have the
same area as the actual conduit; their hydraulic radii are equal.

4.3 Local losses

In addition to the spatially continuous head loss due to friction, local head
losses occur at changes of cross-section, at valves and at bends. These local
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losses are sometimes referred to as ‘minor’ losses since in long pipelines their
effect may be small in relation to the friction loss. However the head loss at a
control valve has a primary effect in regulating the discharge in a pipeline.

Typical values for circular pipelines
2

) Vv
Head loss at abrupt contraction = K. 2—;
where V, = mean velocity in downstream section of diameter D,; D, =
upstream diameter.

D,
D,
K. 0-5 0-45 0-38 0-28 0-14 0

0 0-2 0-4 0-6 0-8 1-0

Note that the value of K. = 0-5 relates to the abrupt entry from a tank into a
circular pipeline.

V)2 (A 2
Head loss at abrupt enlargement = 2—; (—A-?- - 1)
VZ
Head loss at 90° elbow = 1-0 EE
vZ
Head loss at 90° smooth bend = —ZE
V2
Head loss at a valve =K, _ZE

where K, depends upon the type of valve and percentage of closure. See also
reference 6.

The following examples demonstrate the application of the above theory and
equations to the analysis and design of pipelines.

Worked examples

Example4.1

Crude oil of density 925 kg/m> and absolute viscosity 0-065 Ns/m? at 20°C is
pumped through a horizontal pipeline 100 mm in diameter, at a rate of 10 I/s.
Determine the head loss in each kilometre of pipeline and the shear stress at the
pipe wall. What power is supplied by the pumps per kilometre length?

Solution:
Determine if the flow is laminar.
Area of pipe = 0-00786 m?

Mean velocity of oil = 1-27 m/s
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Reynolds number (Re = V:)) _ 127 x 0-1 x 925

0-065
Re = 1810

Thus the flow may therefore be assumed to be laminar:

Hence A = o = 0-0354.
Re

2 . 72
Friction head loss/km = ALVZ _ 0-0354 x 1000 x 1-27

22D 19-62 x 0-1
=292m
Boundary shear stress 7, = pg R S
0-1 29-2
T, = 925 X 9-81 % y X 1000

T, = 6:62 N/m?
Power consumed = pg Q h;
= 925 x 9-81 x 0-01 x 29-2 watts
= 2-65 kW/km

Note that if the outlet end of the pipeline were elevated above the head of
oil at inlet the pumps would have to deliver more power to overcome the
static lift. This is dealt with more fully in Chapter 6 which covers pumps.

Example 4.2

A uniform pipeline, 5000 m long, 200 mm in diameter and roughness size

0-03 mm, conveys water at 15°C between two reservoirs, the difference in
water level between which is maintained constant at 50 m. In addition to the

2 2
entry loss of 0-5 lZIg— a valve produces a head loss of 1

(a) the Colebrook-White equation

(b) the Moody diagram

(c) the Hydraulics Research Station Charts, and
(d) an explicit function for A. (See fig. 4.4.)

Solution:
Apply the Bernoulli equation to A and B

c y2 2 2 2
_0S5V2 V2 10V2 ALV

2g 2g 2g 2e D
Gross  entry  velocity valve friction
head loss head head head

loss loss

v .a=1-0.

Determine the steady discharge between the reservoirs using

(@)
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Entry loss

‘ ¥
A = ——— ——
l —— Gross
2 Head loss head
Lat valve (H)
1

Figure 4.4

(a) Colebrook-White equation: = — 2 log [ k + 251 ] (ii)

1
Vi 37D ReVA

The solution to the problem is obtained by solving (i) and (ii) simul-
taneously. However, direct substitution of 4 from (i) into (ii) yields a
complex implicit function in V which can only be evaluated by trial or
graphical interpolation.

A simpler computational procedure is obtained if terms other than
the friction head loss in equation (i) are initially ignored; in other words
the gross head is assumed to be totally absorbed in overcoming friction.
Then equation 4.10 can be used to obtain an approximate value of V.

. / hy k 251 v

e V=-— -

ie 2 ./2gD L log 37D + ™ (iii)
D /2gD I—

—50m: -
H =50 m; = 001

whence V= — 2 V19-62 x 0-2 x 0-01

o [0-03 x 1073 L 251 x 113 X 10~ ]
37 x 02 02 V19-62 x 0-2 x 0-01

V = 1-564 m/s

The terms other than friction loss in equation (i) can now be evaluated:

Writing h;

- v:_
hy = 115zg = 1435 m
(where h,, denotes the sum of the minor head loss).
A better estimate of hg is thus he = 50 — 1-435 = 48-565 m.
Whence from equation (iii)) V = 1-544 m/s.
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Repeating until successive values of V are sufficiently close yields
V = 1-541 m/s and Q = 48-41 /s with hy=48-61 mand h,, = 1-39 m

Convergence is usually rapid since the friction loss usually predominates.

(b) The use of the Moody chart, fig. 4.2, involves the determination of the

(©)

Darcy friction factor. In this case the minor losses need not be neglected
initially. However the solution is still iterative and an estimate of the
mean velocity is needed.

: - : =_2%x02 _ .
Estimate V = 2-0 m/s; Re = 113 x 10°6 = 354 ¥ 10°
Relative roughness, % = 0-00015

From the Moody chart A = 0-015

Rearranging (i); V= (iv)

And a better estimate of mean velocity is given by

v= | 19'3201’; 505000 = 1-593 m/s
11-5 + 0-015 X 5000

0-2

: _1593x02 _
Revised Re = 113 % 10-6 = 282 % 10°

whence A = 0-016 and equation (iv) yields: V = 1-54 m/s

Further change in A due to the small change in V will be undetectable in
the Moody diagram.
Thus, accept V = 1-54 m/s; Q = 48-41 |/s.

The solution by the use of the Hydraulics Research Station Charts is
basically the same as method (a) except that values of V are obtained
directly from the chart instead of from equation (4.10).

Making the initial assumption that hy = H, the hydraulic gradient
(™/100 m) = 1-0.

Entering fig. 4.3 with D = 0-2 m and ]%:] = 1-0 yields V = 1-55 m/s.
11-5 V?
2

The minor loss term = 1-41 m and a better estimate of h; is

therefore 0-972 m/100 m.
Whence from fig. 43 V = 1.5 m/s and Q = 47-1 I/s. Note the loss
of fine accuracy due to the graphical interpolation in fig. 4.3.
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. . 1 k 5-1286)
(d) Using equation (4.12), Vol 2 log (-——3.7 D + Re0®

Assuming V = 2.0 m/s, A = 0-0156 (from (v))

Using equation (iv) V =

V = 1-563 m/s; A = 0-0161 (from (v))
whence V = 1:54 m/s

Thus, accept V = 1-54 m/s which is essentially identical with that
obtained using the other methods.

Example 4.3 (Pipes in series)
Reservoir A delivers to reservoir B through two uniform pipelines AJ : JB of
diameters 300 mm and 200 mm respectively. Just upstream of the change in
section, which is assumed gradual, a controlled discharge of 30 I/s is taken
off.

Length of AJ = 3000 m; length of JB = 4000 m; effective roughness size
of both pipes = 0-015 mm; gross head = 25-0m. Determine the discharge to
B, neglecting the loss at J. (See fig. 4.5.)

Solution:
Apply the energy equation between A and B.
0-5 v,? V,2
= 2g 1 + hf,l + hf'z + i
. 05 V2 MLV KLV | VP .
.e.H= + + ==
e 2g 2g D, + 2g D, 2g @

Since A, and A, are initially unknown the simplest method of solution is to
input a series of trial values of Q;.

Entry loss

=
~‘§
" —

Figure 4.5
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Since Q, = Q, — 30 (I/s), the corresponding values of Reynolds number can
be calculated and hence A, and 4, can be obtained from the Moody diagram,
fig. 4.2. The total head loss H, corresponding with each trial value of Q, is
then evaluated directly from equation (i). From a graph of H v. Q, the value
of Q corresponding with H = 25 m can be read off.

k2

— = 0-00005; == = 0-000075
D, D,
Q, (I/s) 50 60 80
V, (m/s) 0-707 0-849 11132
V, (m/s) 0-637 0-955 1-591
Re, (X 10 1-88 225 3-00
Re; (X 10°) 1-13 1-69 281
A 0-0164 0-016 0-0156
A 0-0184 0-018 0-016
H(m) 11-82 2267 51-66

From the graph (fig. 4.6) Q, = 62-5 I/s, whence Q, = 32-5 I/s.
Note: This problem could also be solved by the ‘quantity balance’ method of
pipe network analysis (see Chapter 5).

60
d 1
£
2 40 //
]
=
E 25
g 2 //
=
I/
v L 4
0
40 50 60 70 80
Discharge (1/s)
Figure 4.6

Example 4.4 (Head loss in pipe with uniform lateral outflow)

Determine the total head loss due to friction over a 100 m length of a 200 mm
diameter pipeline of roughness size 0-03 mm which receives an inflow of
150 I/s and releases a uniform lateral outflow of 1-0 /s per metre. (See
fig. 4.7.)
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Theory: Note that the pressure head (Fpg_) at any section is not simply

h; — hg, since momentum effects occur along the pipe due to the continual
withdrawal of water. In addition the velocity head decreases along the pipe.
Thus applying the energy equation to 1 and section X

2

2
-E-‘-+V—‘=£"—+PD,(+hf,‘+Vx
re 28 P8 T2

where PD, is the increase in pressure head due to the change in momentum

between 1 and X. However the present example will deal only with the

evaluation of the friction head loss hg .

The flowrate in the pipe at section X is

Q=0Q, — gx

The hydraulic gradient at x is
dhy A Q7 _ 2, -1
ax " 2gDAZ B AQ5 where B =5
dh
= B A Q- P

and the total head loss due to friction between the inlet and outlet is
L
he=B | A [0 - o7 dx @)
(4]

Now A, is given by

friction head loss (hg,)

hy

lateral outflow q(m>/s/m)

EEEREEBEEEEEREREEREERER
) - ?2—2:"'

B X 4,! X J

1

Figure 4.7
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Thus, an exact analytical solution to (i) is not possible but it could be
evaluated approximately by summation over finite intervals ox.

However, if we take a constant value of A, based on the average of the
inlet and outlet values an approximate, explicit solution is obtained. Thus
the solution to (i) is

2,370
hf=BI[Q.2x—qux2+ﬂ]

3
212
=BIL[Q.—qLQ.+q3L] (i)
k _003 _
D= 200 = 0-00015
Q, = 150 I/s; Q; =50 Vs
V, = 4775 Vs; V, = 159 I/s
Re] = 845 x 105, Re. = 2-82 x 105
whence 4, = 0-014; A2 = 0-016 (from Moody diagram)
Taking 2 = 0-015 and substituting into (ii):

hy = 4-195 m.

Alternatively, by calculating the head loss in each 10 m interval and
summating, the variation of A along the pipe can be included, and a more
accurate result should be obtained.

Then, using equation (ii) with subscripts 1 and 2 indicating the upstream
and downstream ends of each section and with L = 10 m the table shows the
head loss in each section.

X A] A.z Ah"
(m) (m)
10 0-014 0-014 0-760
20 0-014 0-014 0-659
30 0-014 0-0144 0-573
40 0-0144 0-0148 0-499
50 0-0148 0-0152 0-427
60 0-0152 0-0152 0-355
70 0-0152 0-0154 0-287
80 0-0154 0-0156 0-225
90 0-0156 0-016 0-173
100 0-016 0-0164 0-127

hf = EAhf = 4-086 m

Example 4.5 (Flow between tanks where the level in the lower tank is
dependent upon discharge)
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A constant head tank delivers water through a uniform pipeline to a tank, at
a lower level, from which the water discharges over a rectangular weir.
Pipeline length 20-0 m, diameter 100 mm, roughness size 0-2 mm. Length of
weir crest 0-25 m, discharge coefficient 0-6, crest level 2-5 m below water
level in header tank. Calculate the steady discharge and the head of water
over the weir crest. (See fig. 4.8.)

Solution:
For pipeline, H = 1'52gV2 + 12;“1;2 ~ (25— h) (i)
orH=2—g%(15+'—‘5L)=(2-5—h) (ii)
Discharge over weir: Q = % Cp V2g B h*? (iii)
ie. Q= % x 0-6 X VIO6Z x 025 x h*?
= 0-443 h*?
i,e. h = (0'973)2/3 (iv)
Then in (ii) ZQZZ (1 5+ %) =25- (.()-mes
or 2gQ sz (1 >+ ADL) * (&3)73 =25 )

Since A is unknown this equation can be solved by trial or interpolation
i.e. inputting a number of trial Q values and evaluating the left-hand side of
equation (v):

Q ( A L) ( Q )2’3
Hi=ogaz\1°* ) *oas
For the same values of Q, the corresponding values of h are evaluated from
equation (iv).
For each trial value of Q, the Reynolds number is calculated and the

Figure 4.8
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friction factor obtained from the Moody diagram, for% = 0-0002. See table
below.
whence Q = 0-0213 m%/s (21-3 I/s) when H, = 2-5 m
and h = 0-132 m.

Q m’/s Re A H, (m) h(m)
0-010 1-13 x 10° 0-0250 0-617 0-08
0-015 1-69 x 10° 0-0243 1-287 0-105
0-018 2-03 x 10° 0-0241 1-810 0-118
0-020 225 x 10° 0-0241 2215 0-126
0-022 2-48 x 10° 0-0240 2:655 0-135

Example 4.6 (Pipes in parallel)

A 200 mm diameter pipeline, 5000 m long and of effective roughness 0-03 mm

delivers water between reservoirs the minimum difference in water level

between which is 40 m.

(a) Taking only friction, entry and velocity head losses into account, deter-
mine the steady discharge between the reservoirs.

(b) If the discharge is to be increased to 50 I/s without increase in gross
head determine the length of 200 mm diameter pipeline of effective
roughness 0-015 mm to be fitted in parallel. Consider only friction
losses.

Solution:
(a) Using the technique of Example 4.2:

_ALV? 15V
2D 2

yields Q = 43-52 Us.
(b) (See fig 4.9.)

o

Figure 4.9
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In the general case where local losses, (h,,) occur in each branch:

0-5V,? A\ .
H= =57 4 by + b+ hog + b Bz + 50 0)
. 2 V 2
alSO H = O 5 Vl + hm.l + hf.l + hm.B + hf.3 + hrn,3 + _2‘;" (ll)

where h,, g = head loss at junction.

Note that the head loss along branch 2 is equal to that along branch 3.
The local losses can be expressed in terms of the velocity heads. Thus

equation (i) or (ii) can be solved simultaneously with the continuity equation

at B

i.e. Ql = 02 + 03 (lli)
and h_ > = h; (iv)

and using the Colebrook-White equation (or Moody chart) for A.
If friction losses predominate equation (i) reduces to

H = hey + by,

MLIQ2 | ALQR
Zg D] A|2 2g D2A22

ALL Q2 _ AL, Qa2
2g D, A22 2g D3 A32

Since D, = D3 and L, = L; we have
Q7% = ;Q4 (vii)
Also Q; = 005 — Q,

Equation (vii) can be solved by trial, of Q,, and using the Moody diagram
to obtain the corresponding A values.

e.H=

v)

(vi)

Equation (iv) becomes:

For example: —]I;-z- = 0-00015; II;—: = 0-000075
Try Q; = 0-022 m?/s; Q; = 0-028 m’/s
Re, = 1-24 x 10%; Re; = 1-58 x 10°
A, = 0-0182; A3 = 0-017

42Q7% = 881 x 107% 13Q;% = 133 x 10°°

By adjusting Q; and repeating, equation (vii) is satisfied when 1,Q,* =
1-10 x 1073
Now equation (v) can be solved:
k

Q, = 0-05 m%/s; Re, = 2-816 x 10%; T)L = 0-00015
]
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4Q,2

whence A, = 0-0161; 2 DAL

= 0-01039
1-10 X 1075 (5000 — L,)

Substituting into (v), 40 = 0-01039 x L, + 19-62 x 0-2 x 0-031422

whence L; = 3355 m
and L, = 1645 m
or duplicated length = 1645 m.

Example 4.7 (Design of a uniform pipeline)

A uniform pipeline of length 20 km is to be designed to convey water at a
minimum rate of 250 I/s from an impounding reservoir to a service reservoir,
the minimum difference in water level between which is 160 m. Local losses

. . . 10 V2
including entry loss and velocity head total 2y

(a) Determine the diameter of standard commercially available lined spun
iron pipeline which will provide the required flow when in new condition
(k = 0-03 mm).

(b) Calculate also the additional head loss to be provided by a control valve
such that with the selected pipe size installed the discharge will be
regulated exactly to 250 I/s.

(c) An existing pipeline in a neighbouring scheme, conveying water of the
same quality, has been found to lose 5 per cent of its discharge capacity,
annually, due to wall deposits (which are removed annually).

(i) Check the capacity of the proposed pipeline after one year of use
assuming the same percentage reduction; and
(ii) determine the corresponding effective roughness size.

Solution:
(a):
_ALVZ 10 V? .
60 = 2% D + % (i)
Neglecting minor losses in the first instance
_ALV? ..
hy =H = 22D (ii)
1 k 2-51
== 121 +
VI o T les [3-7 D Re\/T] (i)

Combining (ii) and (jii)

/ hy k 251 v .
V=-2 —
2gD L log 37D + n (iv)
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Substituting h; = 160 in equation (iv), and caiculating the corresponding
discharge capacity for a series of standard pipe diameters; (and noting that
there is no need to correct for the reduction due to minor losses each time
since there is a considerable percentage increase in capacity between adjacent
pipe sizes) the following table is produced

D mm 150 200 250 300 350 400

Qls 20-3 43-6 78-6 127-3 191-1 271-5

Thus a 400 mm diameter pipeline is required.
Now check the effect of minor losses

_lov?

Q=27151ls; V=216 m/s; h,
2g

= 2-38 m

hs = 157-6 and revised Q = 269-4 I/s;

the 400 mm diameter is satisfactory.
(b): To calculate the head loss at a valve to control the flow to 250 I/s
calculate the hydraulic gradient corresponding with this discharge:

V = 199 m/s
h; may be obtained by trial in equation (iv) until the right-hand side = 1-99
Thus, hy = 137 m

10 V2 _
2

Thus, valve loss = 160 — 137 — 2:0 = 21-0 m
Alternatively using the Moody chart:

Minor head loss, h,, = 2:0m

1-99 X 0-4

= . — . . = = * ;
k/D = 0:03/400 = 0-000075; Re = T-—— =5 = 7:04 x 10°
B . 0-0136 X 20000 X 1-99* _
A = 0-0136; h; = 962 X 04 = 13725 m

Adopting hy = 137 m; 10 V¥/2g = 2.0 m

Additional loss by valve = 160 — (137 + 2-0) = 21 m.
(c): (i) 5% annual reduction in capacity.
Capacity at end of 1 year = 0-95 x 269-4 = 255-9 I/s; pipe will be
satisfactory if cleaned each year.
(ii) To calculate the effective roughness size after 1 year’s operation,
use equation (iv)
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ie = antilog (— v ) - 25l v)
37D 2g D h/L DV2g D h/L
Q = 25591l/s; V = 2036 m/s
2
he = 160 — 102;/ = 157-89 m

whence from (v), k = 0-0795 mm.

Example 4.8 (Effect of booster pump in pipeline)

In the gravity supply system illustrated in Example 4.6, as an alternative to
the duplicated pipeline, calculate the head to be provided by a pump to be
installed on the pipeline and the power delivered by the pump. (See fig.
4.10.)

Solution:
L =5000m; D= 200 mm; k= 0.03 mm;
H = 40 m; Q = 50 Us;
H,, = manometric head to be delivered by the pump.

Total head = H,, + H

c Y2 2
H+Hm=152gv +"2gL‘];

V =159 m/s; Re = 2-83 x 10°; 0-00015

Ol

whence A = 0-0162 from Moody chart.
whence H + H,, = 5248 m
and H, = 1248 m

. . _pgQH,
Hydraulic power delivered 1000 kW

P = 9-81 x 0-05 x 12-48
P =612 kW
Note that the power consumed Pc will be greater than this.

Pc=B

Where 7 = overall efficiency of the pump and motor unit.
(Pump/pipeline combinations are dealt with in more detail in Chapter 6.)
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Figure 4.10

Example 4.9 (Resistance in non-circular conduit)

A rectangular culvert to be constructed in reinforced concrete is being
designed to convey a stream through a highway embankment. For short
distances upstream and downstream of the culvert the existing stream channel
will be improved to become rectangular and 6 m wide. The proposed culvert
having a bed slope of 1:500 and length 100 m is 4 m wide and 2 m deep and
is assumed to have an effective roughness of 0-6 mm. The design discharge
is 40 m?/s at which flow the depth in the stream is 3-0 m. Water temperature =
4°C. Entry and exit from the culvert will be taken to be abrupt (although in
the final design transitions at entry and exit would probably be adopted).
Determine the depth at the entrance to the culvert at a flow of 40 m%/s. (See
fig. 4.11.)

Solution:

Referring to fig. 4.11:

Apply the energy equation to 1 and 2
2 2

Vi Vi - . ,
Z+y + —ZE =y;+ —ZE- + entry loss + friction loss in culvert + exit loss
®

The entry loss coefficient, k., may be less than 0-5 which is commonly
adopted for entry from a reservoir. Assuming that the loss at the contraction
is similar to that for concentric pipes, k. will depend on the ratio of upstream
and downstream areas of flow, derived from the table in section 4.3 as
follows:

AjylA, 0-0 0-04 0-16 0-36 1-0

k. 0-5 0-45 0-38 0-28 0-0

Assume y, = 4:0 m (say) then A,/A; = 8/24 = 0-3

whence k. = 0-3
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-1 Entry loss Exit loss V42
- S [ 4 oy
= ( V,2 =

V] Y1 —— 2g —_— —1 y3 'V_'.-

— V. 3
77 P/ /477 -2 = 777777 7777777

Z t l
o) @
Figure 4.11

Discharge = 40-0 m’/s; V, = % = 5.0 m/s

2
03 Y2 _ 0-38 m
2g

entry loss

Vo — Vy)?
The exit loss (expansion) is expressed as (_22g§3)

V;3 = 2-22 m/s, waence exit loss = 0-39 m

T 18
Friction head loss in culvert: referring to section 4.2, the resistance in the
duct can be calculated by ‘transforming’ the cross-section into an equivalent
circular section by equating the hydraulic radii. For the culvert R = % = % m
and the equivalent diameter, D, is therefore 2-67 m (= 4R).

Note that either the Colebrook-White equation (4.9) or its graphical form
(fig. 4.2) can now be used with D = 2-67 m.

Kinematic viscosity of water at 4°C = 1-568 x 10~ m?/s
5 X 267

V,; = 5 m/s; RC=W=S-SX106
k _06x1073
D~ 26 = 0-000225

From the Moody chart A = 0-014

_ 0-014 x 100 x 5?
19-62 x 2-67
Vy? _ 222

_Z—g_ 962 - 025 m

hy

= 0-668 m (say 0-67 m)
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2
In (i) 02 + y, + % = 3.0 + 0-25 + 0-38 + 0-67 + 039

2

2g (6y,)?
whence, by trial y, =437 m

ie. 02 +y, + = 449 m

Since this is close to the assumed value of y; the entry loss will not be
significantly altered.

Example 4.10 (Pumped storage scheme — pipeline design)
The four pump-turbine units of a pumped storage hydro-electric scheme are
each to be supplied by a high-pressure pipeline of length 2000 m. The
minimum gross head (difference in level between upper and lower reservoirs)
= 310 m and the maximum head = 340 m.

The upper reservoir has a usable volume of 3-25 X 10° m® which could be
released to the turbines in a minimum period of 4 hours.

Max. Power output required/turbine = 110 MW
Turbo-generator efficiency = 80 per cent
Effective roughness of pipeline = (-6 mm

Taking minor losses in the pipeline, power station and draft tube to be 3-Om,

(a) Determine the minimum diameter of pipeline to enable the maximum
specified power to be developed.

(b) Determine the pressure head to be developed by the pump-turbines
when reversed to act in the pumping mode to return a total volume of
3-25 x 10° m? to the upper reservoir uniformly during 6 hours in the
off-peak period. (See fig. 4.12.)

Solution:
(a) Pipe capacity must be adequate to convey the required flow under
MINIMUM head conditions:

b
— Losses

h,

Pump/Turbine

Figure 4.12 Pumped-storage power scheme in generating mode
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Q max/unit = 3-25 x 10°/4 X 3600 = 56-25 m3/s

efficiency X pg Q He
10°

where He = effective head at the turbines

0-8 X 1000 x 9-81 x 56-25 x He
10°

Power generated: P = MW = 110 MW

ie 110 =

whence He = 249-18 m
Total head loss = 310 — 249-18 = 60-82 m
Head loss due to friction = 60-83 — minor losses
= 60-83 — 3.0=5782m

A LV? 1 [ k 2:51 ]
hf = and =-2lo +
" 2D U V12 137D " ReVZ
Since the hydraulic gradient is known but D is unknown it is preferable to
use equation 4.10 in this case rather than use the Moody chart.

k + 2:51 v

: / he
ie. V=-2 /2¢D L log 37D h
D ./2g D L

aD?V
4

Substituting values of D yields the corresponding discharge under the avail-
able hydraulic gradient.

and Q =

D (m) 1-0 20 25 2:6 2-65

Q (m%s) 4.47 27-32 48-87 54123 56-875

Hence required diameter = 2-65 metres.

(b) In pumping mode: Static lift = 340 m
Q = 325 x 10°%(6 x 4 x 3600) = 37-616 m®/s

Since the diameter of the pipeline is known it is more straight-forward to
use the Moody chart in this case.

= 6-82 m/s

Re—v—:)—682x265x10(’

= 1-8 x 107
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% = 0-6 x 1073/2-65 = 0-000226
A = 0-0138
_ALV?Z _ 0-0138 x 2000 X 6-822
(=D - 19ex26 - 4®m
Total head on pumps = 340 + 24-69 + 3-0
= 367-69 m.
Example 4.11

A high-head hydroelectric scheme consists of an impounding reservoir from

which the water is delivered to four Pelton Wheel turbines through a low

pressure tunnel, 10000 m long, 4-0 m in diameter, lined with concrete,
which splits into four steel pipelines (penstocks) 600 m long, 2-0 m in

diameter each terminating in a single nozzle the area of which is varied by a

spear valve. The maximum diameter of each nozzle is 0-8 m and the

coefficient of velocity (C,) is 0-98. The difference in level between reservoir

and jets is 550 m. Roughness sizes of the tunnel and pipelines are 0-1 mm

and 0-3 mm respectively.

(a) Determine the effective area of the jets for maximum power and the
corresponding total power generated.

(b) A surge chamber is constructed at the downstream end of the tunnel.
What is the difference in level between the water in the chamber and
that in the reservoir under the condition of maximum power? (See
fig. 4.13.)

Solution:
Let subscript T relate to tunnel and P to pipeline

_05Q%  Ilr Qy + ApLpQp’ + a V)

H = +h 1
A7 T 2gD; A7 T 2gDeAR T 2g T M ®
Hydraulic grade line Surge chamber
her
Tunnel he
- hI n
(Lt; Ar; k) H
Penstock oV;
(Lp; Ap; kp) 2g
T

Nozzle Turbine

Figure 4.13 Tunnel and penstock
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where h; , = head loss in nozzle; V; = velocity of jet issuing from nozzle.
h, » can be related to the coefficient of velocity C, (see fig. 4.14).

anPZ _ a’ijz

h + 28 Tg- + hy, (i)
)
2g (h + ——aPZVP )
and V, = C, g (iif)
o
apVp:  aV)? o
whence h + P2gP = C:Z ;g and substituting in (ii),
oV (1 .
b = 205 (& - 1) @)

Let a = area of each jet, N = number of jets (nozzles) per turbine, and
. _ Qr _0Qp _ QOr
since Qp == 7 and V; = Na — iNa

0.5+}‘T_L’r

. D Q’ [ ApL ]
2 T T P L-p
. = a2z |t
(i) becomes: 2g H = Qy Al 16 [ DpAy?

arJQTZ
NZ x 16 X C2 X a2 2

At

. =%
"~ 16DpAp?’ G 16N?C,2

(v) becomes: 2g H = Q4° (E +F+ %) = Q2 (C + %)

where C=E + F

and Qy = Eg;—) (vi)

ay V2
2g

Power of each jet (P) = pg Q,

_ ®p QT3
128N3a?
Qp O

d = <P _ 4T = =T
and since Q, N aN and V, n

P = o p QT3
128N3a?
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% Vp?
— 28

—

-
hl n

e =
I

b v}

2g

Figure 4.14 Pressure and velocity conditions at nozzle

32
substituting for Qr from (vi), P = £ 33 e H
128N°a ( G)
C+ -
a

l a2 )3/2 a2J3
Thus P o 2 (Ca2+ G/ ~(Ca+0)
For max % =0 ie. —a*?(Ca®+ G) 2x2Ca+ (Ca®+ G)—%a_m =0

-3a® C _
whence (a2 + G) +1=0

_ [c i
ora= 2C (vii)
= /4_a

and Dy = - (viii)

To evaluate Ay, Ap assume V1 = Vp = 5 m/s

Rer = 176 X 105 (k/D)y = % = 0-000025
Rep = 88 x 105  (k/D)p = 0'—0323 = 0-00015
Ap = 0-0095 A = 0-013

Noting that in this example N = 1 and taking a; = 1-0
E = 0-1536; F = 0-0247; C = 0-1783; G = 0-065
whence from (vii) and (viii), D; = 0-737 m

From (vi), Qr = 142.0 m%s; Vy =113 m/s; Vp = 11-3 m/s
Using revised estimates of V1 and Vp = 11-3 m/s
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Rer = 40 x 10% Rep = 20 x 10°
Ay = 0-0092; Ap = 0013
whence Dy = 0-742 m
Qr = 14398 m*/s; Vy = 11-46 m/s = Vp

Power = 497-4 MW; Head loss in tunnel = 157-24 m
= difference in elevation between water in reservoir and surge shaft.
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Problems

(Note: Unless otherwise stated assume water temperature is 15°C
(v = 1-13 x 107°® m%s).)

1. A pipeline 20 km long delivers water from an impounding reservoir to
a service reservoir the minimum difference in level between which is 100 m.
The pipe of uncoated cast iron (k = 0-3 mm) is 400 mm in diameter. Local
0 V2
28
(a) Calculate the minimum uncontrolled discharge to the service reservoir.

(b) What additional head loss would need to be created by a valve to
reguiate the discharge to 160 1/s?

losses, including entry loss and velocity head amount to
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2. A long, straight horizontal pipeline of diameter 350 mm and effective
roughness size 0-03 mm is to be constructed to convey crude oil of density
860 kg/m> and absolute viscosity 0-0064 Ns/m? from the oilfield to a port at
a steady rate of 7000 m*/day. Booster pumps, each providing a total head of
20 m with an overall efficiency of 60 per cent are to be installed at regular
intervals. Determine the required spacing of the pumps and the power
consumption of each.

3. A service reservoir, A, delivers water through a trunk pipeline ABC
to the distribution network having inlets at B and C.

Pipe AB: length = 1000 m; diameter = 400 mm; k = 0-06 mm.

Pipe BC: length = 600 m; diameter = 300 mm; k = 0-06 mm.

The water surface elevation in the reservoir is 110 m o.d. Determine the
maximum permissible outflow at B such that the pressure head elevation at
C does not fall below 90.0 m o.d. Neglect losses other than friction, entry
and velocity head. Outflow at C = 160 I/s.

4. (a) Determine the diameter of commercially available spun iron pipe
(k = 0-03 mm) for a pipeline 10 km long to convey a steady flow
of 200 I/s of water at 15°C from an impounding reservoir to a
service reservoir under a gross head of 100 m. Allow for entry
loss and velocity head. What is the unregulated discharge in the
pipeline?
(b) Calculate the head loss to be provided by a valve to regulate the
flow to 200 I/s.

5. Booster pumps are installed at 2 km intervals on a horizontal sewage
pipeline of diameter 200 mm and effective roughness size, when new, of
0-06 mm. Each pump was found to deliver a head of 30 m when the pipeline
was new. At the end of one year the discharge was found to have decreased
by 10 per cent due to pipe wall deposits while the head at the pumps
increased to 32 m. Considering only friction losses determine the discharge
when the pipeline was in new condition and the effective roughness size
after one year.

6. An existing spun iron trunk pipeline 15 km long, 400 mm in diameter
and effective roughness size 0-10 mm delivers water from an impounding
reservoir to a service reservoir under a minimum gross head of 90 m. Losses
12 v2

in bends and valves are estimated to total in addition to the entry loss

and velocity head.

(a) Determine the minimum discharge to the service reservoir.

(b) The impounding reservoir can provide a safe yield of 300 I/s. Determine
the minimum length of 400 mm diameter uPVC pipeline (k = 0-03 mm)
to be laid in parallel with the existing line so that a discharge equal to
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the safe yield could be delivered under the available head. Neglect local
12 V2

losses in the new pipe and assume local losses of in the duplicated

length of the original pipeline.

7. A proposed small-scale hydro-power installation will utilise a single
Pelton Wheel supplied with water by a 500 m long, 300 mm diameter
pipeline of effective roughness 0-03 mm. The pipeline terminates in a nozzle
(C, = 0-98) which is 15 m below the level in the reservoir. Determine the
nozzle diameter such that the jet will have the maximum possible power
using the available head and determine the jet power.

8.  Oil of absolute viscosity 0-07 Ns/m? and density 925 kg/m? is to be
pumped by a rotodynamic pump along a uniform pipeline 500 m long to
discharge to atmosphere at an elevation of + 80 m o.d. The pressure head
elevation at the pump delivery is 95 m o.d. Neglecting minor losses compare
the discharges attained when the pipe, of roughness 0-06 mm, is (a) 100 mm,
(b) 150 mm and state in each whether the flow is laminar or turbulent.

9. A pipeline 10 km long is to be designed to deliver water from a river
through a pumping station to the inlet tank of a treatment works. Elevation
of delivery pressure head at pumping station = 50 m o.d.; elevation of water
in tank = 30 m o.d. Neglecting minor losses, compare the discharges obtain-
able using

(a) a 300 mm diameter plastic pipeline which may be considered to be
smooth
(i) using the Colebrook-White equation
(ii) using the Blasius equation;
(b) a 300 mm diameter pipeline with an effective roughness of 0-6 mm
(i) using the Kdrman-Prandtl rough law
(ii) using the Colebrook-White equation.

10. Determine the hydraulic gradient in a rectangular concrete culvert
1 m wide and 0.6 m high of roughness size 0-06 mm when running full and
conveying water at a rate of 2-5 m%/s.



Chapter 5

Pipe Network Analysis

R. E. Featherstone

5.1 Introduction

Water distribution network analysis provides the basis for the design of new
systems and the extension of existing systems. Design criteria are that
specified minimum flow rates and pressure heads must be attained at the
outflow points of the network. The flow and pressure distributions across a
network are affected by the arrangement and sizes of the pipes and the
distribution of the outflows. Since a change of diameter in one pipe length
will affect the flow and pressure distribution everywhere, network design is
not an explicit process. Optimal design methods almost invariably incorporate
the hydraulic analysis of the system in which the pipe diameters are sys-
tematically altered (see for example reference 3).

Pipe network analysis involves the determination of the pipe flow rates
and pressure heads which satisfy the continuity and energy conservation
equations. These may be stated:

(i) Continuity: The algebraic sum of the flow rates in the pipes meeting at a
junction, together with any external flows, is zero.

I = NP(J)
2 QU - Fj = 0, J= 1, NJ (5.1)
I=1

in which Qy, is the flow rate in pipe 1J, at junction I, NP(J) is the number of
pipes meeting at junction J, F, is the external flow rate (outflow) at J and NJ
is the total number of junctions in the network.

(i) Energy conservation: The algebraic sum of the head losses in the pipes,
together with any heads generated by in-line booster pumps, around any
closed loop formed by pipes is zero.

1 = NP(I)
Zhyyy—Hm, =0,1I=1,NL (5.2)
J=1

in which hy ;, is the head loss in pipe J of loop I and Hm,; is the
manometric head generated by a pump in line I, J.
When the equation relating energy losses to pipe flow rate are introduced

121
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into equations (5.1) or (5.2) systems of non-linear equations are produced.
No method exists for the direct solution of such sets of equations and all
methods of pipe network analysis are iterative. Pipe network analysis is
therefore ideally suited to digital computer application but simple networks
can be analysed with the aid of a pocket calculator.

The earliest systematic method of network analysis, due to Professor
Hardy-Cross, and known as the head balance or ‘loop’ method is applicable
to systems in which the pipes form closed loops. Assumed pipe flow rates,
complying with the continuity requirement, equation (5.1), are successively
adjusted, loop by loop, until in every loop equation (5.2) is satisfied within
a specified small tolerance. In a similar, later, method, due to Cornish,
assumed junction head elevations are systematically adjusted until equation
(5.1) is satisfied at every junction within a small tolerance; it is applicable to
both open and closed-loop networks. These methods are amenable to desk
calculation but can be programmed for automatic digital computer analysis.
However convergence is slow since the hydraulic parameter is adjusted at
one element (either loop or junction) at a time. In later methods such as the
Newton-Raphson and Linear Theory methods, systems of simultaneous
linear equations, derived from equations (5.1), (5.2) and the head loss v.
flow rate relationship, are formed, enabling corrections to the hydraulic
parameters (flows or heads) to be made over the whole network simul-
taneously. Convergence is much more rapid but since a number of simultaneous
linear equations, depending on the size of the network, have to be solved,
the Newton-Raphson and Linear Theory methods are only realistically
applicable to computer evaluation.

The majority of the worked examples in this chapter illustrate the use of
equations (5.1) and (5.2) in systems which can be analysed by desk cal-
culation using either the head balance or quantity balance methods. In
addition to friction losses, the effect of local losses and booster pumps is
shown. The networks illustrated have been analysed by computer but the
intermediate steps in the computations have been reproduced, enabling the
reader to follow the process as though it were by desk calculation; the
numbers have been rounded to an appropriate number of decimal places.
An example showing the Linear Theory method is given.

5.2 The head balance method (‘Loop’ method)

This method is applicable to closed-loop pipe networks. It is probably more
widely applied to this type of network than the quantity balance method.
The head balance method was originally devised by Professor Hardy-Cross
and is often referred to as the Hardy-Cross method. Figure 5.1 represents
the main pipes in a water distribution network.

The outflows from the system are generally assumed to occur at the nodes
(junctions); this assumption resuits in uniform flows in the pipelines which
simplifies the analysis.
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Inflow V4
oo /

Figure 5.1 Closed loop type network

For a given pipe system, with known junction outflows the head balance
method is an iterative procedure based on initially estimated flows in the
pipes. At each junction these flows must satisfy the continuity criterion.

The head balance criterion is that the algebraic sum of the head losses
around any closed loop is zero; the sign convention that clockwise flows
(and the associated head losses) are positive is adopted.

The head loss along a single pipe is

hy = KQ?
If the flow is estimated with an error AQ

hy = K(Q + 4Q)* = K[Q? + 2Q4Q + AQ?
Neglecting AQ?, assuming AQ to be small:

h. = K(Q? + 2Q4Q)

Now round a closed loop Zh; = 0 and AQ is the same for each pipe to
maintain continuity.

Zh, = ZKQ? + 2AQZKQ = 0

: _ _IKQ* _  EKQ?
Q
Zh

which may be written AQ = — IThO

where h is the head loss in a pipe based on the estimated flow Q.

5.3 The quantity balance method (‘nodal’ method)
Figure 5.2 shows a branched pipe system delivering water from the im-

pounding reservoir A to the service reservoirs B, C and D. F is a known
direct outflow from J.
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If Z; is the true elevation of the pressure head at J the head loss along
each pipe can be expressed in terms of the difference between Z; and the
pressure head elevation at the other end.

For example: hy o) = Z5 — Z,.

Expressing the head loss in the form: h, = KQ?, N such equations can be
written where N is the number of pipes.

ie. [Za = 2] = [(SIGN) Kas(|Qasl)? ]
Zg — Z, | = | (SIGN) Kg,(|Qgy|)?

and in general LZ;, — Z;,1 = L(SIGN) Ky (|Qul)?- (5.3)

(SIGN) is + or — according to the sign of (Z; — Z,). Thus flows towards the
junction are positive and flows away from the junction are negative.

Kj; is composed of the friction loss and minor loss coefficients.

The continuity equation for flow rates at J is:

2Qy-F(=Qa+Qp +Qg +Qpy—F) =0 (5.4)

Examination of equations, sets (5.3) and (5.4) shows that the correct
value of Z, will result in values of Qy;, calculated from set (5.3) which will
satisfy equation (5.4).

Rearranging set (5.3) we have

12 :
[l = 1M (2 2)7] 55
I

The value of Z; can be found using an iterative method, by making an
initial estimate of Z;, calculating the pipe discharges from equation set (5.5)
and testing the continuity condition in equation (5.4).

If (£Qy; — F) # 0 (with acceptable limits) a correction, AZ, is made to Z,
and the procedure repeated until equation (5.4) is reasonably satisfied. A
systematic correction for AZ, can be developed: expressing the head loss

Za
X —_ = — — Zy — —
= o Zs Zs
A ~]B
Zc
=|C
J Zy
| X b
F

Figure 5.2 Branched-type pipe network
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along a pipe as hy = KQ? for a small error in the estimate Z;, the
correction AZ; can be derived as:
2(2Qu — Fy)

Qu

l‘lL.lJ

AZJ =

Example 5.7 shows the procedure for networks with multiple unknown
junction head elevations.
Evaluation of Kj;:

_ AL, C
2g DA?  2g

where C,,, = sum of the minor loss coefficients. A can be obtained from the
Moody chart using an initially assumed value of velocity in the pipe (say 1
m/s). A closer approximation to the velocity is obtained when the discharge
is calculated. For automatic computer analysis equation (5.5) should be
replaced by the Darcy-Colebrook-White combination:

Q=-2A (25D o | K, 251V (5.6)
L ®({37D -
D . /2gD T

For each pipe h; j; (friction head loss) is initialised to Z; — Z;, Qy calculated
from equation (5.6) and h¢ y; re-evaluated from hgyy = (Z; — Z)) — K, Q3.
This subroutine follows the procedure of Example 4.2.

Ku 22 (= Kr + Kp)

5.4 Newton Raphson method

The Newton Raphson method differs from the ‘head’ and ‘quantity’ balance
methods in that it makes corrections to assumed heads or flow rates over the
whole network simultaneously (see reference 4).

5.5 The linear theory method

The energy conservation equations when expressed in terms of flow rate
produce a set of non-linear equations:
NP(I)
> KyQf =0,1=1,NL
J=1
in which NL is the number of closed loops.
By writing the head loss (h, p) in pipe, p, as h. , = K'(p)Q(p) in which

K'(p) = K(p) Q.(p)
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where Q,(p) is the estimated, or current value of Q, the non-linear equations
are transformed into linear equations. When the NL linearised loop equations
are combined with NJ-1 independent continuity equations a system of NP
linear equations is formed. Solving by Gaussian elimination, the values of
Q(p) are obtained. Since initial values of Q are estimated the procedure is
repeated until successive Q(p) values are sufficiently close. Like the Newton
‘Raphson method, the Linear Theory method is not suited to hand calculation;
it also converges much more quickly than the ‘head’ or ‘quantity’ balance
methods. Example 5.8 illustrates the technique.

Worked examples
Example5.1

Neglecting minor losses in the pipes determine the flows in the pipes and the
pressure heads at the nodes. (See fig. 5.3.)

Data:
Pipe AB BC CD DE EF AF BE
Length (m) 600 600 200 600 600 200 200

Diameter (mm) 250 150 100 150 150 200 100

Roughness size of all pipes = 0-06 mm
Pressure head elevation at A = 70 m o.d.

Elevation of pipe nodes

Node A B C D E F
Elevation

(m 0.d.) 30 25 20 20 2 25

teo te

220 A 120 'B 50 c

— N ~

100 @ 10 @ Jlo

F 60  |E 20 D

40 50 130

Figure 5.3
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Procedure:
1. Identify loops. When using hand calculation the simplest way is to
employ adjacent loops, e.g. Loop 1: ABEFA; Loop 2: BCDEB.
2. Allocate estimated flows in the pipes. Only one estimated flow in
each loop is required; the remaining flows follow automatically from the
continuity condition at the nodes, e.g. since the total required inflow is
220 Vs, if Qap is estimated at 120 I/s then Qar = 100 V/s. The initial flows
are shown in fig. 5.3.
. AL

3. The head loss coefficient K = 2g DA
each pipe, 4 being obtained from the A v. Re diagram (fig. 4.2) corresponding
with the flow in the pipe. Alternatively Barr’s equation (4.12) may be used.

If the Reynolds numbers are fairly high (£ 10°), it may be possible to
proceed with the iterations using the initial A values making better estimates
as the solution nears convergence.

The calculations proceed in tabular form. Note that Q is written in I/s
simply for convenience; all computations are based on Q in m*/s. However

(hy = KQ|Q)) is evaluated for

h; /Q could have been expressed in ({;‘;) yielding AQ directly in 1/s.

Loop Pipe k/D  Q(l/s) Re(x 10 A K h(m) huo (m%/s)

AB 0-00024 120-00 5-41 0-0157 7970 11-48 95-64
BE 0-00060 10-00 1-31 0-0205 33877-0 3-39 338-77
EF 0-00040 -60-00 4-51 0-0172 11229-1 -40-42 673-75
FA 0-00030 -100-00 5-63 0-0162 8366 -—8-36 83-66

_ =Fh - (=3391) _ _ T —3391 119182
AQ = S = T Tot s = 001423 = 1423 1s
. m
Loop Pipe Q(Us) Re(x 105 A K he (M)  huo (——, )
m’/s
BC 500 376 00174 113597 2840 567-98
) CD 100 1113 00205 338770 3.39 338.77
DE  -20-0 1,50 00189 123389  —4.94 246-78
EB -2423 273 00180 312329 —18-34 75677
> 851 191030
AQ = —2:23 Vs

(Note that the previously corrected value of flow in the ‘common’ pipe, EB, has
been used in loop 2.)
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Loop Pipe Q(i/s) Re(x 10°) A K hy (m)  hyo
AB 13423 6-05 00156 7919 1427  106-30
1 BE 26-46 2.98 0-0188 310677 2175 82205
EF  -4577 344 00175 114249 -23.93  522.02
FA  —8577 4-83 00164 8469  —6-23 72-64

z : 1523-
AQ = —1.92 Vs >86 o1

Proceed to loop 2 again and continuing in this way the solution is obtained
within the required specified limit on Lh, in any loop after several further
iterations. The solution given is obtained for Zh, < 0-01 m but an acceptable
result may be achieved with a larger tolerance.

Final values (Flows in direction Pressure heads
of pipe identifier; e.g. A — B)

Pipe Q(l/s) hy (m) Node Pressure head (m)
AB 131-55 13-70 A 40-00

BE 25-02 19:55 B 31-29

FE 48-45 26-67 C 11-57

AF 88-45 6-59 D 10-05

BC 46-53 24-74 E 14-74

CD 6-55 1-52 F 38-41

ED 23-47 6-69

Example 5.2

In the network shown a valve in BC is partially closed to produce a local

2
head loss of 10-0 V;gc . Analyse the flows in the network. (See fig. 5.4.)

Figure 5.4
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Roughness of all pipes = 0-06 mm

Pipe AB BC CD DE BE EF AF

Length (m) 500 400 200 400 200 600 300
Diameter (nm) 250 150 100 150 150 200 250

Solution:

The procedure is identical with that of the previous problem. Kgc is now

composed of the valve loss coefficient and the friction loss coefficient.
With the initial assumed flows shown in the table below: Qgc = 50 I/s;

Re = 3-7 x 10°; k/D = 0-0004; A = 0-0174 (from Moody chart).

Hence K; = 7573 and K,, = 1632 and Kgc = 9205.

Loop Pipe k/D  Q(fs) Re(x 10°) A K  h.(m) huo (ETT;)

AB 0-00024 120-00 5-41 0-0157 664-2 9-56 79-70
BE 0-0004 10-00 0-75 0-0208 4526-5 0-45 45-26
EF 0-0003 -40-00 2:25 0-0175 27112 —4-34 108-45
FA 0-00024 -80-00 3-61 0-0163 4137 -2-65 33-10

r 303 266-51

AQ = —-5-69 I/s

Loop Pipe k/D  Q(l/s) Re(x 10%) A K hy (m) hyo

BC (0-0004 50-00 375 0-0174 92052 23-01 460-26
CD  0-0006 10-00 1-13 0-0205  33877-0 339 33877
DE 0-0004 —20-00 1-50 0-0190 82260 -—-3-29 164-52
EB 00004 —4-31 0-32 00242 52664 —0-10 - 2270

L 23001 986-25
AQ = —-11-67 U/s -

Proceeding in this way the solution is obtained within a small limit on Lh, in
any loop:

Final values

Pipe AB BE FE FA BC CD ED

Q(/s) 11152 1648 4848 8848 3505 495  34.95
hy, (m) 831 115 626 320 1157 091 952

Example 5.3

If in the network shown in Example 5.2 a pump is installed in line BC
boosting the flow towards C and the valve removed, analyse the network.
Assume that the pump delivers a head of 10 m. (Note: In reality it would
not be possible to predict the head generated by the pump since this will
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depend upon the discharge. The head-discharge relationship for the pump
e.g. H= AQ? + BQ + C must therefore be solved for the discharge in the
pipe at each iteration. However, for the purpose of illustration of the basic
effect of a pump the head in this case is assumed known.) An example of a
network analysis in which the pump head discharge curve is used is given in
Chapter 6 (Example 6.8). Consider length BC. (See fig. 5.5)

The net loss of head along BC (Zg — Z¢) is (h; — H,) where H,, = total
head delivered by pump. The K value for BC is now due to friction only; the
head loss for BC in the table now becomes hsec = (KQ3c — 10-0) m.
Otherwise the iterative procedure is as before.

Solution:

Loop Pipe k/D  Q(/s) Re(x 105 A K b (m) huo (ﬁ)

AB 0-00024 120-00 5-41 0-0157 664-2 9-56 79-70
1 BE 0-00040  10-00 0-75 0-0208 4526-5 0-45 45-26
EF 0-00030 —40-00 2:25 00175 27112 —4-38 108-45
FA 0-00024 -80-00 3-61 0-0163 4137 -2-65 33-10

L 3.03 266-51

AQ = =569 I/s

Loop Pipe k/D  Q(/s) Re(x 105 A K  h.(m) hyo
BC 0-00040 50-00 3-76 0-0174 75730 893 178-66

2 CD  0-00060 10-00 1-13 0-0205 33877-0 3-39  333.77

DE 0-00040 -20-00 1-50 0-0189 822596 -3.29 164-52
EB 0-00040 —4-31 0-32 0-0242 52664 —0-10 2270

z 893 704-65

AQ = —634 /s
Loop Pipe  Q(l/s)  Re(x 10°) A K hy (m) huo
AB 114-31 5:15 0-0158 668-4 873 76-41
1 BE 10-65 0-80 0-0206 4482-9 0-51 47-74
EF —45-69 2-57 0-0173 2680-2 -5-59 122-46
FA —85-69 3.66 0-0162 411-2 =302 35-24
) 0-63 281-85
AQ = ~1-11 Vs -

Figure 5.5
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After similar further iterations:

Final values:

Pipe AB BE FE FA BC CD ED

Q(l/s) 113-21 890 4679 879 4430 430 2570
hy (m) 8-57 037 5-83 3-10 4-95 0-711 529

Example 5.4
Determine the discharges in the pipes of the network shown in fig. 5.6
neglecting minor losses.

Pipe Length (m) Diameter (mm)
AJ 10000 450

BJ 2000 350

Cl 3000 300

DJ 3000 250

Roughness size of all pipes = 0-06 mm

The friction factor A may be obtained from the Moody diagram, or using
Barr’s equation, using an initially estimated velocity in each pipe. Sub-
sequently A can be based on the previously calculated discharges. However,
unler . there is a serious error in the initial velocity estimates, much effort is
saved by retaining the initial A values until perhaps the penultimate or final
correction.

Solution:

Estimate Z; (pressure head elevation at J) = 150-0 m a.o.d. (Note that the
elevation of the pipe junction itself does not affect the solution.)

See tables on pages 132 and 133.

Figure 5.6
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3rd correction

Pipe Velocity

No. (Estimate) A K Zi-2 (m%s) (Q/h) x 1073 (Q’ ;“)

(I-J) m/s /s
AJ 20 00145 649 7737 03452 446 217
BJ 1-0 0016 503 —263 —00723  27-50 0-75
cl 1-8 00155 1581 —2263 ~—0-119% 5.29 1-69
DJ 23 0016 4061 4763 —0-1083 2.27 221

£ +0-0450 0-0395

AZ; =227 m; Z; = 12490 m

Final values:

Qay = 0:344 m¥/s; Qg = 0-105 m%/s; Q¢ = 0-127 m’/s;
Qip = 0-112 m%/s.

Example 5.5

If in the network of Example 5.4 the flow to C is regulated by a valve to
100 Vs, calculate the effect on the flows to the other reservoirs; determine
the head loss to be provided by the valve.

The principle of the solution is identical with that of the previous example
except that the flow in JC is prescribed and is simply treated as an EXTERNAL
OUTFLOW at J. See table on page 134. In this example the flow rates in
the pipes have been evaluated directly from equation (5.6).

_ / he k 251y
Q=-2A /gD 3 log 37D + 0
D ./2gD I‘

in which h; = Z; — Z,, since there are no minor losses. This approach is
ideal for computer analysis; if minor losses are present use the iterative
procedure described on page 98.

The method is also suitable for desk analysis using an electronic calculator
since for each pipe the only variable is h¢ and equation (5.6) can be written:

= — Cs ]
Q C, VI log [Cz + v
in which C,, C, and C; are constant for a particular pipe.

The corresponding velocities and A values have been evaluated and
tabulated; this data may be useful for those who wish to work through the
example using the Moody diagram as in Example 5.4.

Note that Q is expressed in Vs; in evaluating XQ/h the flow is also
expressed in /s so that the units in the correction term: AZ = 2(ZQ - F)y/
(£Q/h), are consistent.




134

CIVIL ENGINEERING HYDRAULICS

Example 5.5 calculations; Estimate Z, = 150-00 a.0.a.

Pipe Al BJ DJ
k/D 0-000133 0-000171 0-000240
1st correction
. Pipe zZ, -2,
Junction (1-3) (=h) (m Q(l/s) Q/h V(m/s) A
Al 50-00 279-32 5-59 1-76 0-0143
J BJ ~30-00 ~255-95 8-53 2-66 0-0146
DJ -75-00 -137-90 1-84 2-81 0-0155
¥ -114.53 15-96
. _2(EQ -F) _2(-144-53 — 100) = g
Correction to Z; = TQh = 1596 = —26:89 m
Z,=12311m
2nd correction
Junction Pipe Z, - Z QV/s) Q/h V(m/s) A
Al 76-89 349-70 4-55 220 0-0140
J BJ =311 -77-61 24-96 0-81 0-0164
DJ —-48-11 -109-50 2-28 223 0-0158
AZy =394 m; Z; =12705m
3rd correction
Junction Pipe Z, - Z, Q(l/s) Q/h V(m/s) A
Al 72-95 340-2 4-66 2-14 0-0141
J BJ -7-05 -119- 17-01 1-25 0-0156
DJ —52:05 —114-08 2-19 232 0-0158
AZy; =052m; Z; = 12757 m
Final values:
Z, =12755 m
Pipe Al JB ID
Q/s) 33898 124-36 114-65

Head loss due to friction along JC

Diameter = 300 mm; A = 0-0707 m?; Q = 0-100 m%s: V = 1-415 m/s
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= 1415 x 03 _ 4 . =0
Re = 135706 376 x 10°; k/D = 0-0002
_ i _ 0016 x 3000 x 1-415* _
whence 4 = 0:016; h; = 1962 X 03 = 1633 m
(See fig. 5.7.)
. Head loss at valve = Zy — Z¢c — by

i

J/X

J
Figure 5.7

Example 5.6

127-55 — 100-00 — 16-33 = 11-22 m

Z; = 127-55
H 100

135

In the network as before, a pump, P, is installed on JB to boost the flow to
B. With the flows to C and D uncontrolled and the pump delivering
10 metres head, determine the flows in the pipes. (See fig. 5.8.)

(Note that in the case of rotodynamic pumps the manometric head delivered
varies with the discharge (see Chapter 6). Thus it is not strictly possible to
specify the head and it is necessary to solve the pump equation H, = AQ? +
BQ + C together with the resistance equation for JB. However to illustrate
the effect of a pump in this example let us assume that the head does not

vary with flow.)

Solution:

The analysis is straightforward, and follows the procedure of Example 5.5.

The head giving flow along JB is:
hysp =2y —Zpg — Hp
The final solution is:
Zy; = 11966 m o.d.

Pipe A) JB IC JD
Q(l/s) 357-7 141-6 110-8 105-3
Example 5.7

Determine the flows in the network shown in fig. 5.9, neglecting minor

losses.



136 CIVIL ENGINEERING HYDRAULICS

Figure 5.8

Data:
Pipe AB BC BD BE EF EG
Length (m) 10000 3000 4000 6000 3000 3000
Diameter (mm) 450 250 250 350 250 200

Roughness of all pipes = 0-03 mm (= k)
Solution:

In this case there are two unknown pressure head elevations which must
both therefore be initially estimated and corrected alternately.

Estimate Zg = 120-0 m 0.d.; Zg = 95.0 m o.d.

1st correction

Junction Pipe Z -7 Q(l/s) Q/h V(m/s) A
) aI-n (=h)
AB 30-00 219-77 7-33 1-38 0-0139
B CB -20-00 -71-38 3.57 1-45 0-0155
DB —40-00 —86-75 4-34 1.77 0-0151
EB =25 -135-00 5-40 1-40 0-0145

L -7335 20-63

AZp = +7-11 m; Zg = 112:89 m

Proceed to junction E noting that the amended value of Zg is now used:

Junction Pipe Z -7 Q(l/s) Q/h V(m/s) A
@ (I-1)
BE 17-89 112-81 6-31 1-17 0-0149
E FE -20-00 ~71-38 3.57 145 0-0155
GE —35-00 —53.38 1-53 1-70 0-0159

) 11-95 11-40

AZg = -2'1m; Zg=929m
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y 150
= 100
- 80
A C -
B F 60
G
Figure 5.9
2nd correction
Junction Pipe Z, - 2Z Q(l/s) Q/h V(m/s) A
AB 37-11 246-21 6-63 1-55 0-0137
B CB -12-89 ~56-38 4-37 1-15 0-0160
DB —32-89 -78-16 6-06 1-59 0-0153
EB -19-99 -119-75 5-99 1-25 0-0148
) —8-07 23-06
AZg = —07Tm; Zg = 112-19 m
Junction Pipe Z,— Z; Q(l/s) Q/h V(m/s) A
BE 929 117-48 6-09 1.22 0-0148
E FE -17-9 —67-26 376 1:37 0-0156
GE -329 -51-64 1-57 1-64 0-0159
b -1-43 11-42
AZg = —025m; Zg =92-65m

Example 5.8
Analyse the network of Example 5.1 by the Linear Theory method.
Solution:
(See fig. 5.3.)
Pipe AB BE EF FA BC CD DE

Pipe Number 1 2 3 4 5 6 7

Junction Continuity equations (flow rates in m®/s)
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- Q= Q4= -0-22
Ql-Qz“Qs= 0-060
Qs ~ Qs = 0-040
Q+Q;—-Q;= 0050
-Q+ Q= 0040
The loop energy conservation equations are:
KiQ, + K;Q; - K3Q; — K{Q, = 0
—K2Q; + K5Q5 + K5Q6 — K5Q; = 0
K’ values are evaluated from

K'Q = KQ|Q| = 2—;31;‘_2 QlQ|, (Q in m¥s).

A values have been obtained from Barr’s equation (4.12), using the assumed
value of 0-030 m*/s in each pipe, in the directions shown in fig. 5.3.

Pipe No. k/D Re(x 10%) A K K’
1 0-00024 135 0-0184 931-89 27-95
2 0-00060 3-38 0-0188 31005-0 930-15
3 0-00040 2:25 0-0182 11878-11 356-34
4 0-00030 1-69 0-0182 938-16 28-14
5 0-00040 2:25 0-0182 1187811 35634
6 0-00060 3-38 0-0188 31005-00 930-15
7 0-00040 2:25 0-0182 11878-11 356.34

The continuity and energy conservation equations can be written:

[ -1 -1 '[’ 1] [—0-2207

1 -1 -1 Q; 0-060

1 -1 03 0'040

1 1 : -1 || Qq 0-050

-1 1 Qs 0-040

2795 930-15 —356-34 —28-14 Q¢ 0-0

L -930-15 356-34 930-15 —356-341LQ,] L 0.0

Solution by Gaussian elimination yields:

Q, =0-128; Q;= 0-019; Q3 =0052; Q4= 0-092;

Qs = 0-049; Qg = —0-009; Q; = 0-021 (in m%/s)

Revised values of K’ are determined using the average of the assumed and
revised flow rates in each pipe. After four further corrections the final flows

are similar to those given in Example 5.1.
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Problems

1. Calculate the flows in the pipes of the pipe system illustrated in
fig. 5.10. Minor losses are given by Cy, V?/2g.

Data:
Minor loss
Pipe Length Diameter Roughness Coefficients
(m) (mm) (mm) (Cw)
AB 5000 400 0-15 10-0
BC, 7000 250 0-15 15-0
BC, 7000 250 0-06 10-0
" 100
A 60
Cl 3
B
G
Figure 5.10

(Note: While this problem could be solved by the method of Example 4.1,
the method of quantity balance facilitates a convenient method of solution.
Note that the pressure head elevations at the ends of C, and C, are identical.)
2. In the system shown in problem 1, an axial flow pump producing a
total head of 5-0 metres is installed in pipe BC; to boost the flow in this
branch. Determine the flows in the pipes.
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(Note: Although it is not strictly possible to predict the head generated by a
rotodynamic pump since this varies with the discharge (see Chapter 6) axial
flow pumps often produce a fairly flat head-discharge curve in the mid-
discharge range.)

3. Determine the flows in the network illustrated in fig. 5.11; minor
losses are given by C,, V%/2g.

. Length Diameter k C
Pipe (m) (mm) (mm) "
AB 20000 500 0-3 20
BC 5000 350 0-3 10
BD, 6000 300 03 10
BD, 6000 250 0-06 10
100
A C
B D;, ;60
_1‘ 'L—-E'
D,
Figure 5.11

4, In the system illustrated in fig. 5.12 a pump is installed in pipe BC to
provide a flow of 40 I/s to reservoir C. Neglecting minor losses calculate the
total head to be generated by the pump and the power consumption assuming
an overall efficiency of 60 per cent. Determine also the flow rates in the
other pipes.

¢ 150
g 145
A
C
90
B =1
D

Figure 5.12
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Data:
Pipe Length (m) Diameter (mm) Roughness (mm)
AB 10000 400 0-06
BC 4000 250 0-06
BD 5000 250 0-06
5. Determine the pressure head elevations at B and D and the discharges

in the branches in the system illustrated in fig. 5.13. Neglect minor losses.

Pipe Length (m) Diameter (mm) Roughness (mm)
AB 20000 600 0-06
BC 2000 250 0-06
BD 2000 450 0-06
DE 2000 300 0-06
DF 2000 250 0-06
» 200
80y
A 60
C =
B E
D 50___
F
Figure 5.13
6. Determine the flows in a pipe system similar in configuration to that
2
in Q5. A valve is installed in BC producing a minor loss of 20 %; otherwise
consider only friction losses.
Pipe Length (m) Diameter (mm) Roughness (mm)
AB 20000 450 0-06
BC 2000 300 0-06
BD 10000 400 0-06
DE 3000 250 0-06

DF 4000 300 0-06
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7. Determine the flow in the pipes and the pressure head elevations at
the junctions of the closed-loop pipe network illustrated, neglecting minor
losses. All pipes have the same roughness size of 0-03 mm. The outflows at
the junctions are shown in I/s. (See fig. 5.14.)

}eo f 50
A ~B: C
Inlet
E D
l 50 l 40
Figure 5.14

Pipe AB BC CD DE EA BE
Length (m) 500 600 200 600 600 200

Diameter (mm) 200 150 100 150 200 100

Pressure head elevation at A = 60 m a.o.d.

(Note: A more rapid solution is obtained by using the head-balance method.
However the network can be analysed by the quantity balance method but
in this case FOUR unknown pressure heads, at B, C, D and E are to be
corrected. If the quantity balance method is used, set a fixed arbitrary
pressure head elevation to A, say 100 m.)

8. Determine the flow distribution in the pipe system illustrated in
fig. 5.15 and the total head loss between A and F. Neglect minor losses. A
total discharge of 200 I/s passes through the system.

200 I/s

s nf I CE
L

Figure 5.15
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Pipe AB BCE BE BDE EF
Length (m) 1000 3000 2000 3000 1000
Diameter (mm) 450 300 250 350 450
Roughness (mm) 0-15 0-06 0-15 0-06 0-15

9. In the system shown in problem 7 (fig. 5.14) a pump is installed in BC
to boost the flow to C. Neglecting minor losses determine the flow distri-
bution and head elevations at the junctions if the pump delivers a head of

15-0 m.

10. Determine the flows in the pipes and the pressure head elevations at
the junctions in the network shown in fig. 5.16. Neglect minor losses and
take the pressure head elevation at A to be 100 m. The outflows are in Us.
All pipes have a roughness of 0-06 mm.

1?’J‘/SO

c /20

. A
Inlet
30
u / D / 20
G F E
Yo ¥ Y10
Figure 5.16
Data:
Pipe AB BH HF FG GA
Length (m) 400 150 150 400 300
Diameter (mm) 200 200 150 150 200
Pipe BC CD DH DE EF
Length (m) 300 150 300 150 300
Diameter (mm) 150 150 150 150 150
11. Analyse the flows and pressure heads in the pipe system shown in

fig. 5.17. Neglect minor losses.
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100
A / 60
B C
g 90 :
= E D
E
Figure 5.17
Data:
Pipe AB BC CD DE EF
Length (m) 1000 400 300 400 800
Diameter (mm) 250 200 150 150 250

Roughness (mm) 0-06 0-15 0-15 0-15 0-06




Chapter 6
Pump-pipeline System Analysis
and Design

R. E. Featherstone

6.1 Introduction

This section deals with the analysis and design of pipe systems which in-
corporate rotodynamic pumps. The reader is referred to standard texts
(Recommended reading 1 and 4) for details of the construction and per-
formance characteristics of pumps. The civil engineer is mostly concerned
with pump selection, in the design of pumping stations, and therefore
the design of the shape of pump impellers will not be dealt with here.
Rotodynamic pumps can be sub-classified according to the shape of the
impellers into three main categories:
(i) centrifugal (radial flow)
(ii) mixed flow, and
(iii) propeller (axial flow).
For the same power input and efficiency the centrifugal type would generate
a relatively large pressure head with a low discharge, the propeller type a
relatively large discharge at a low head with the mixed flow having charac-
teristics somewhere between the ‘other two.

Pump types may be more explicitly defined by the parameter called
SPECIFIC SPEED (N;) expressed by

NvQ

I_i%
where Q is the discharge, H the total head and N the rotational speed
(rev/min). This expression is derived from dynamical similarity considerations
and may be interpreted as the speed in rev/min at which a geometrically

scaled model would have to operate to deliver unit discharge (e.g. 1 I/s)
when generating unit head (e.g. 1 m).

N, =

Pump type N, range (Q—Vs; H-m)
centrifugal up to 2600

mixed flow 2600 to 5000

axial flow 5000 to 10000

145
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The total head generated by a pump is also called the manometric head
(Hy,) since it is the difference in pressure head recorded by pressure gauges
connected to the delivery and inlet pipes on either side of the pump,
provided that the pipes are the same diameter.

6.2 Hydraulic gradient in pump-pipeline systems

Figure 6.1 shows a pump delivering a liquid from a lower tank to a higher
tank, through a static lift Hgy at a discharge Q. It is clear that the pump
must generate a total head equal to Hgy plus the pipeline head losses.

Vs
Vg = velocity in delivery pipe

velocity in suction pipe

hig = head loss in delivery pipe (friction, valves, etc.)
h); = head loss in suction pipe
h,, = local losses

Manometric head is defined as the rise in total head across the pump.

u =&+V_d’_(&+v_3) (6.1)
" pg 2 pg 2
Ps A Pd V4
Now->=2 -2 _p. Po_5 Vo
ow o2 Z, 2% hy, o Zy + hy 2
{z
V72 i
f Valve loss
hyg ~ \‘
~. Z,
Hp
Hsr Suction Delivery pipe
pipe 1 {] Datum
- =
he | = —— l:-fEsntry + bend
\J —34 v

Figure 6.1 Total energy and hydraulic grade lines in pipeline with pump
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Thus Hy, = Z; — Z; + hyg + by
or Hm = HST + hld + hls (6.2)

Note that the energy losses within the pump itself are not included; such

losses will affect the efficiency of the pump.
Total head v. discharge and efficiency v. discharge curves (fig. 6.2) for
particular pumps are obtained from the manufacturers.

Head -1 100

Efficiency <4 80

Total head (m)
8 8
Efficiency, per cent

L
&
<

Discharge (1/s)

Figure 6.2 Typical performance curve for centrifugal pump

The total head-discharge curves for a centrifugal pump can generally be
expressed in the functional form

H, = AQ*+BQ+C (6.3)

The coefficients A, B and C can be evaluated by taking three pairs of Hy,
and Q from a particular curve and solving equation (6.3).
~ The power consumed by a pump when delivering a discharge Q (m%s) at
a head H,, (m) with a combined pump/motor efficiency 0 is

P= p_g__(:_Hg watts

6.3 Multiple pump systems

(a) Parallel operation

Pumping stations frequently contain several pumps in a ‘parallel’ arrange-
ment. In this configuration (fig. 6.3) any number of the pumps can be
operated simultaneously, the objective being to deliver a range of discharges.
This is a common feature of sewage pumping stations where the inflow rate
varies during the day. By automatic switching according to the level in the
suction well any number of the pumps can be brought into operation.
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Manifold

——

-~ ‘Reflux’ valves

p

Figure 6.3 Pumps operating in parallel

In predicting the head v. discharge curve for parallel operation it is
assumed that the head across each pump is the same. Thus at any arbitrary
head the individual pump discharges are added as shown in fig. 6.4.

Single pump

Two pumps

Three pumps

Q)

Total head

Discharge
Figure 6.4 Characteristic curves for identical pumps operating in parallel

(b) Series operation
This configuration is the basis of multistage and borehole pumps; the dis-
charge from the first pump (or stage) is delivered to the inlet of the second
pump, and so on. The same discharge passes through each pump receiving
a pressure boost in doing so. Figure 6.5 shows the series configuration
together with the resulting head v. discharge characteristics which are clearly
obtained by adding the individual pump manometric heads at any arbitrary
discharges. Note that, of course, all pumps in a series system must be
operating simultaneously.

The reader is referred to R.E. Bartlett’s? and P. Novak et al.’s® books for
practical details of pumping station design and operation.

6.4 Variable speed pump operation

By the use of variable speed motors the discharge of a single pump can be
varied to suit the operating requirements of the system.
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3 pumps

Head elevation | Hm

2 pumps

Total head

1 pump

Discharge

Figure 6.5 Pumps operating in series

Using dimensional analysis and dynamic similarity criteria (see Chapter 9)
it can be shown that if the pump delivers-a discharge Q, at manometric head
H, when running at speed N,, the corresponding values when the pump is
running at speed N, are given by the relationships

= (g) 6.4)
H, = H, (%f)z 6.5)

In constructing the characteristic curve for speed N,, several pairs of
values of Q,, H, from the curve for N, can be obtained and transformed
into homologous points Q,, H; on the N, curve. (See fig. 6.6.)

6.5 Suction lift limitations

Cavitation, the phenomenon which consists of local vaporization of a liquid
and which occurs when the absolute pressure falls to the vapour pressure of
the liquid at the operating temperature, can occur at the inlet to a pump and
on the impeller blades, particularly if the pump is mounted above the level
in the suction well. Cavitation causes physical damage, reduction in discharge
and noise, and to avoid it the pressure head at inlet should not fall below a
certain minimum which is influenced by the further reduction in pressure
within the pump impeller. (See fig. 6.7.)

If p, represents the pressure at inlet then (p’p;gp") is the absolute head
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(QI’ Hl)

Head—discharge
relationship
at speed N,

(Q2, Hy)

Manometric head

Head —discharge
relationship
at speed N,

Discharge —»

Figure 6.6 Effect of speed change on pump characteristics

at the pump inlet above the vapour pressure (p,) and is known as the net
positive suction head, NPSH.

Thus NPSH = (u) =Py B (6.6)
pPg pg Pg
where p, = ambient atmospheric pressure
V.2

H, = manometric suction head = h; + hy, + 2_g 6.7)
where h; = suction lift; h,; = total head loss in suction pipe
and V; = velocity head in suction pipe

p = density of liquid.

Figure 6.7 Head conditions in suction pipe
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Values of NPSH can be obtained from the pump manufacturer and are
derived from full-scale or model tests; these values must not be exceeded if
cavitation is to be avoided.

NPSH
m
tests found this to be strongly related to specific speed.

In recent years electro-submersible pumps in the small to medium size
range have been widely used. This type eliminates the need for suction pipes
and provided that the pump is immersed to the manufacturer’s specified
depth, the problems of cavitation and cooling are avoided.

Thoma introduced a cavitation number o (= ) and from physical

Worked examples

Example 6.1

Tests on a physical model pump indicated a cavitation number of 0-12. A
homologous (geometrically and dynamically similar) unit is to be installed
where the atmospheric pressure is 950 mb, and the vapour pressure head
0-2 m. The pump will be situated above the suction well, the suction pipe
being 200 mm in diameter, of uPVC, 10 m long; it is vertical with a 90°
elbow leading into the pump inlet and is fitted with a foot-valve. The foot-
valve head loss (h,) = 4-5 V.2/2g; bend loss (h,) = 1.0 V%/2g. The total
head at the operating discharge of 35 I/s is 25 m. Calculate the maximum
permissible suction head and suction lift.

Solution:
Pa = 950 mb = 0-95 x 10-198 = 9-688 m of water.

Pa Py _ 9-688 — (-2 = 9-488 m of water.
rg
NPSH = 6 Hm = 0-12 X 25 = 3-0 m.
From equation (6.6) maximum permissible suction head
H; = (9-488 — 3-0) = 6-488 m.

Now calculate the losses in the suction pipe.

2
WﬂﬂW$Z=MmmR“W%M®

k = 0-03 mm (wPVC); k/D = 0-001 whence A = 0-0167
“o hg = 0053 m; h, =45 %0063 =028 m; h,=0063m
S he=04m
hy = suction lift = H, — h, — V,2/2g = 6-488 — 0-463 = 6-025 m.
(See also Example 6.7.)
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Example 6.2

A centrifugal pump has a 100 mm diameter suction pipe and a 75 mm
diameter delivery pipe. When discharging 15 I/s of water, the inlet water-
mercury manometer with one limb exposed to the atmosphere recorded
a vacuum deflection of 198 mm; the mercury level on the suction side was
100 mm below the pipe centreline. The delivery pressure gauge, 200 mm
above the pump inlet, recorded a pressure of 0-95 bar. The measured input
power was 3-2 kW. Calculate the pump efficiency. (See fig. 6.8.)

Solution:
Manometric head = rise in total head

2 2
Hm=&+v_2+z_(ﬂ+xl_)
pg  2g PE  pPg
1 bar = 10-198 m of water

% = 0-95 X 10-198 = 9-69 m of water

P
Pg
V, =339 m/s; V,%2g = 0-588 m
Vi =191 m/s; V,¥2g =018 m
Then Hm = 9-69 + 0-588 + 0-2 — (—2-793 + 0-186) = 13-09 m

—-0-1 — 0-198 X 13-6 = —2-793 m of water

output power _ pg QH,, (watts)
input power 3200 (watts)

Efficiency (n) =

p = 28X 0015 x 1309

32 = (-602 (60-2 per cent).

f Delivery pipe

Suction pipe

198 mm

Mercury manometer

Figure 6.8
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Example 6.3

Calculate the steady discharge of water between the tanks in the system
shown in fig. 6.1, and the power consumption. Pipe diameter (Ds = Dy) =
200 mm; Length = 2000 m; k = 0-03 m2m (uPVC). Losses in valves, bends

plus the velocity head amount to 6-2 !-. Static lift = 10-0 m.

2
Pump characteristics:
Discharge (I/s) 0 10 20 30 40 50
Total head (m) 25 232 20-8 16-5 12-4 7-3
Efficiency (per cent) — 45 65 n 65 45

The efficiencies given are the overall efficiencies of the pump and motor
combined.

Solution:
The solution to such problems is basically to solve simultaneously the head-
discharge relationships for the pump and pipeline:

For the pump, head delivered at discharge Q may be expressed by

H,=AQ>+BQ+C @)
and for the pipeline, the head required to produce a discharge Q is given by

2 2
I;'g"fz + ; 2[; ?\2 (from equation (6.2)) (i)

where K,, is the minor loss coefficient.

A graphical solution is the simplest method and also gives the engineer a
visual interpretation of the ‘matching’ of the pump and pipeline.

Equation (ii) when plotted (H v. Q) is called the ‘system curve’. Values of
H corresponding with a range of Q values will be calculated: k/D = 0-03;
values of A obtained from Moody diagram.

Hm = HST +

Q (Vs) 10 20 30 40 50
Re(x 10°) 0-56 1-13 1-10 2:25 281
A 00210 00185 00172 00165 0-0160
hy (m) 1-08 3-82 7-99 13-63 20-65
H,, (m) 0-03 0-13 0-29 0-51 0-80
H (m) 1111 13-95 18-28 24-14 31-45

Alternatively the combined Darcy-Colebrook-White equation can be used,

_=2aD? [ h K 2:51 v
Q= i 2gDL log 37Dt .
D 2g D t
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In evaluating pairs of H and Q it is now preferable to take discrete values of
hy, calculate Q explicitly from the above equation and add the static lift and
minor head loss.

h¢ (m) 2:0 40 8-0 16-0
Q (I/s) 14-06 20-57 30-00 43-61
hy, (m) 0-06 0-13 0-29 0-61
H (m) 12-06 14-13 18-29 26-61

The computed system curve data and pump characteristic curve and data are
now plotted on fig. 6.9.

The intersection point gives the operating conditions; in this case H,, =

17-5m; Q = 28-01/s. The operating efficiency is 71 per cent. Therefore, power
consumption

P= 1000 x 9-81 x 0-028 x 17-5
0-71

= 6770 watts (6-77 kW).

Example 6.4 (Pipeline selection in pumping system design)
An existing pump, having the tabulated characteristics, is to be used to pump
raw sewage to a treatment plant through a static lift of 20 m. A uPVC pipeline

-180
30 - Efficiency
70
25
Manometric head J 0 =
8
20 System 50 w
z curve &
g d40 &
g1 f © §
i’ 3]
Pipeline losses - 30 E
10 ;
-120
5k Static lift
- 10
1 1 ] |
0 10 20 30 40

Discharge (l/s)

Figure 6.9
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10km long is to be used. Allowing for minor losses totalling 10 V2/2g and taking
an effective roughness of 0-15 mm because of sliming, select a suitable
commercially available pipe size to achieve a discharge of 60 l/s. Calculate the
power consumption.

Discharge (I/s) 0 10 20 30 40 50 60 70
Total head (m) 45 447 437 425 406 380 350 310

Overall efficiency
(per cent) — 3 50 57 60 60 53 40

Solution:
At 60 /s, total head = 35-0 m, therefore the sum of the static lift and pipeline
losses must not exceed 35-0 m.

Try 300 mm diameter: A = 0-0707 m?; V = 0-85 m/s;
Re = 225 x 10°; k/D = 0-0005; A = 0-019

0-019 x 10000 x 0-852
0-3 X 19-62

H; + hg = 43-32 (> 35) — pipe diameter too small.
Try 350 mm diameter: A = 0-0962 m?; V = 0-624 m/s;
Re = 193 x 10°; k/D = 0-00043; A = 0-0185

£742
he = 10-48 m; hm=%zi=o-zm

H, + h; + h,, = 30-68 (< 35 m) — O.K.

The pump would deliver approximately 70 I/s through the 350 mm pipe
and to regulate the flow to 60 I/s an additional head loss of 4:32 m by valve
closure would be required.

Friction head loss = =2332m

1000 x 9-81 x 0-06 x 35

0-55 x 1000 = 3885 kW.

Power consumption P =

Example 6.5 (Pumps in parallel and series)

Two identical pumps having the tabulated characteristics are to be installed
in a pumping station to deliver sewage to a settling tank through a 200 mm
uPVC pipeline 2-5 km long. The static lift is 15 m. Allowing for minor head
losses of 10-0 V2/2g and assuming an effective roughness of 0-15 mm calculate
the discharge and power consumption if the pumps were to be connected:
(a) in parallel, and (b) in series.
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Pump characteristics

Discharge (I/s) 0 10 20 30 40
Total head (m) 30 275 23-5 17-0 7-5
Overall efficiency (per cent) — 44 58 50 18

Solution:

The ‘system curve’ is computed as in the previous examples; this is, of
course, independent of the pump characteristics. Calculated system heads
(H) are tabulated below for discrete discharges (Q)

H=HST+hf+hm

Q (Us) 10 20 30 40
H (m) 16-53 20-80 2737 36-48

(a) Parallel operation

The predicted head v. discharge curve for dual pump operation in parallel
mode is obtained as described in section 6.3 (a), i.e. by doubling the dis-
charge over the range of heads (since the pumps are identical in this case).
The system and efficiency curves are added as shown in fig. 6.10. From the

intersection of the characteristic and system curves the following results are
obtained:

Manometric head

Single pump
20

Pipeline losses

Head (m)

i
8

Static lift ~ 20

1 1 1 |
10 20 30 40
Discharge (I/s)

Figure 6.10 Parallel operation
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Single pump operation, Q = 22-5l/s; H,, =24 m; n = 0-58
Power consumption = 9-13 kW

Parallel operation, Q = 28-5l/s; H,, =26 m; 7 = 0-51
(corresponding with 14-25 I/s per pump)

Power input = 14-11 kW,

(b) Series operation
Using the method described in section 6.3 (b) and plotting the dual-pump
characteristic curve, intersection with the system curve yields (see fig. 6.11):

-1 80
60 Two pumps
- 70
50 -
Efficiency -1 60 §
_ 40 |- System curve < 50 !g
g 5
T 30 Single pump -1 40 8
T Head g
- 30 @
20
= 20
10
Static lift - 10
1 | I 1
0 10 20 30 40

Discharge (1/s)
Figure 6.11 Series operation

Q=23251s; H, =28m; n = 0-41
Power input = 21-77 kW,

Note that for this particular pipe system, comparing the relative power
consumptions the parallel operation is more efficient in producing an increase
in discharge than the series operation.

Example 6.6 (Pump operation at different speeds)

A variable speed pump having the tabulated characteristics, at 1450 rev/min, is
installed in a pumping station to handle variable inflows. Static lift = 15 m;
diameter of pipeline = 250 mm; length 2000 m, k = 0-06 mm. Minor loss =
10-0 V3/2g.
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Determine the total head of the pump and discharge in the pipeline at
pump speeds of 1000 rev/min and 500 rev/min.
Pump characteristics at 1450 rev/min.

Discharge (1/s) (] 10 20 30 40 50 60 70
Total head (m) 45-0 440 425 395 350 29.0 200 60

Solution:
The characteristic curve for speed N, using that for speed N, can be con-
structed using equations (6.4) and (6.5) (section 6.4) i.e.

H, = H, (%)2 (i)
Q=0 (%) (i)

where (H,, Q,) are pairs of values taken from the N, curve and (Hs, Q,) are
the corresponding points on the N, curve.
The system curve is computed giving the following data:

Discharge /s 20 40 60 80
System head (m) 16-40 20-08 26-12 34-23

Construct the pump head-discharge curves for speeds of 1000 rev/min and
500 rev/min using equations (i) and (ii). Q;, H, values (at 1450 rev/min) can
be taken from the tabulated data (or from the plotted curve in fig. 6.12).
For example, taking Q, = 20 I/s, H, = 425 m at 1450 rev/min, the
corresponding values at 1000 rev/min are:

1000 2
1450> = 13-79 I/s; H, = 42-5 (1450) =202 m

Taking three other pairs of values the following table can be constructed.

Qz=20x( 1000

N
(rev/min)
Q 0 20 40 60
1450 H, 45 425 35 20
1000 Q, 0 1379 2750 4138
H, 214 202 16-65 9-50
500 Q, 0 69 1390 2070

H, 535 5-05 4-16 2-40
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The computed values are now plotted together with the system curve (see
fig. 6.12).
Operating conditions:

at N = 1450 rev/min: Q = 55 i/s; H,, = 250 m
at N = 1000 rev/min: Q =33 Il/s; H,, = 18-5m

at N = 500 rev/min: no discharge produced.

50 -
N = 1450 rev/min
40 -
E 30|
! System curve
° N = 1000 rev/min
T 20F
10 - - _ :
Static lift N = 500 rev/min
1 1 1 | |
10 20 30 40 50
Discharge (I/s)
Figure 6.12
Example 6.7

A laboratory test on a pump revealed that the onset of cavitation occurred,
at a discharge of 35 I/s, when the total head at inlet was reduced to 2-5 m
and the total head across the pump was 32 m. Barometric pressure was
760 mm Hg and the vapour pressure 17 mm Hg. Calculate the Thoma
cavitation number. The pump is to be installed in a situation where the
atmospheric pressure is 650 mm Hg and water temperature 10°C (vapour
pressure 9-22 mm Hg) to give the same total head and discharge. The losses
and velocity head in the suction pipe are estimated to be 0-55 m of water.
What is the maximum height of the suction lift?

Solution:
NPSH = (& - Hs) — Pv (equation (6.6)) ()
prg prg
where H, = manometric suction head.

P _ 10-3 m of water; P 0-23 m of water
PE Pg
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Pa
(Pg

SNPSH =25-023=227m
Cavitation number

NPSH _ 2-27

Installed conditions: ;;; = 8-84 m; p; = (-1254 m (at 10°C).

Pa Pv . .
NPSH = —= — H; — =~ (equation (i
g og (eq (i)

- 2:27 = 8-84 — H; — 0-1254
whence H; = 6:44 m

Hy = hs + hy + V/2g
whence h; = 6-44 — 0-55 = 5-89 m

where h, = suction lift.

Example 6.8

An impounding reservoir at elevation 200 m delivers water to a service

reservoir at elevation 80 m through a 20 km long 500 mm diameter coated
2

C.1. pipeline (k = 0-03 mm). Minor losses amount to 20 ;I—g Determine the

steady discharge. (4109 1/s.)
A booster pump having the tabulated characteristics is to be installed on

the pipeline. Determine the improved discharge and the power consumption.
(See fig. 6.13).

Q (Vs) 0 100 200 300 400 500 600
Hp, (m) 600 580 540 470 384 260 80

Overall efficiency . . . . . .
(per cent) — 330 530 620 620 540 280

The effective gross head is now H. = H + H,, where H,, is a functidn of
the total discharge passing through the pump.

Thus H, = f, (Q?) 0]
The head H_. is overcome by the pipeline losses
H =1, (Qz) (ii)

The discharge in the system is therefore evaluated by equating (i) and (ii);
this can be done graphically as in the previous examples.
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Figure 6.13

Compute the head loss discharge curve (f, (Q?)) for the pipeline using one of
the methods described in Chapter 4. The relationship is (equation (ii)):

Total pipeline head loss (m) 120 130 140 150 160

Discharge (/s) 410-9 4287 44575 46225 47825

Using a common head datum of 120 m equations (i) and (ii) are now
plotted (see fig. 6.14):

The point of ifitersection yields: Q = 465 U/s; H,, = 32 m; n = 58 per cent

9-81 x 0-465 x 32-0
0-58

= 251-67 kW.

Power consumption =

180 A s
Pump + gravity head characteristic
_—— \l&e v — Q) (eq. i) =
8
Ol g
3 [TTo- 5
2 1va :
140 1 g
[89]
120 . . ’ ,
300 350 ,400 450 500 550
/
Discharge (I/s)

Figure 6.14
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Example 6.9 (Pipe network with pump, using head discharge curve)

Neglecting minor losses, determine the discharges in the pipes of the network
illustrated in fig. 6.15 (a) with the pump in BC absent, (b) with the pump,
which boosts the flow to C in operation, and calculate the power consumption.

Pipe Length Diameter Roughness
(m) (mm) (mm)
AB 5000 300 0-06
BC 2000 200 0-06
BD 3000 150 0-06

Pump characteristics

Discharge (I/s) 0 20 40 60 80 100

Total head (m) 40.0 38-8 354 295 210 10-0

Efficiency (per cent) — 50-0 70-0 73-0 58-0 22-0
Solution:

Plot the pump head v. discharge curve (see fig. 6.16).

The analysis is carried out using the quantity balance method, noting that
with the pump in operation in BC the head producing flow is: Hgc = Z¢ —
Zg — H,, where H, is the head delivered by the pump at the discharge in the
pipeline. Initially H,, can be obtained using an estimated pipe velocity but
subsequently the computed discharges can be used.

(a)

Pipe AB BC BD

k/D 0-0002 0-0003 0-0004

A values obtained from the Moody diagram using initially assumed values
of pipe velocity.

| 10 %
A

Figure 6.15
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40
E
= 30
bt
=
s 20— Pump characteristics
g
10
0 i | 1 T | 1 1 ¥
10 20 30 40 50 60 70 80
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Figure 6.16

With the pump not installed:
Zg = 8025 m
Qap = 84:87 l/s; Qpc = 5897 l/s; Qpp = 259 /s
(b) Estimate Zp = 80 m.
Units in table: V = m/s; H, (pump total head) = m; Q = m/s.
‘Head’ = head loss in pipeline.

A = area of pipe (m?). H; is initially obtained from an estimated flow in
BC of 60 V/s (29 m).

Pipe V(est) Re x 10° A H Head Q Q/h x 1073 Q/A

(m/s) m (m)  (ms) (m/s)
AB 20 53 00155 — 200 00871 436 1-23
BC 20 53 00170 290 -590 -00820 139 26
BD 20 53 00178 — —400 -00262 065 15

£ —00211 640
AZg = 66 m; Zg = T34l m.

Note that H, at each step is obtained from the H v. Q curve corresponding
with the value of Qgc at the previous step.

Pipe V(est) Re x 10° A Hp, Head Q Q/h x 1072 Q/A
AB 15 398 0016 — 26-59  0-0989 372 1-40
BC 25 4-42 0017 220 -45-41 —0-0720 1-58 2-30
"BD 15 199 0018 — —33-41 -—0-0238 0-71 1-35

z . 6-01
AZg = 1-03m; Zg= 7444 m. 0-0031
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Pipe V(est) Rex10° i1 H, Head Q Qhx10° QA

AB 14 37 0016 — 25-56  0-0969 3-79 1-37

BC 23 4-07 0-0165 24-8 —49-24 -0-0760 1-54 2:4

BD 135 1-79 00185 — 3444 —0-0239 0-69 1-35
L -—0-003 6-02

AZy = =09 m; Zp = 73-45 m.

Pipe V(est) Re x 10° A Hp, Head Q Q/h x 1073 Q/A

AB 14 37 0016 — 26-55 0-0988 372 1-4
BC 24 4-2 0-0165 23-0 -46-45 -0-0738 1-59 2:35
BD 135 1-79 0-0185 — 3345 -0-0236 0-70 1-33

I 0-0014 6-01
AZg = 047 m; Zg = 7392 m. %

Final values:

Zg = 7379 m
QAB = 98-1 l/S; QBC = 74.5 I/S; QBD =236 l/s
H,=235m

At the pump discharge of 74-5 I/s, efficiency = 64 per cent,

9-81 x 0-0745 x 23-5
0-64

= 26.83 kW.

whence Power =

Recommended reading

1. Anderson, H.H. (1981) ‘Liquid Pumps’, in Kempe’s Engineers Year
Book, Vol. 1, F9, London: Morgan-Grampian.

2. Bartlett, R.E. (1974) Pumping Stations for Water and Sewage. Barking:
Elsevier Applied Science Publishers.

3. Novak, P., Moffat, A.L.B., Nalluri, C. and Narayanan, R. (1990)
Hydraulic Structures. London: Chapman & Hall.

4. Wislicenus, G.F. (1965) Fluid Mechanics of Turbo-machinery. Vols 1 and
2. London: Dover Publications.

Problems

1. A rotodynamic pump having the characteristics tabulated below de-
livers water from a river at elevation 52-0 m o.d. to a reservoir with a water
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level of 85 m o.d., through a 350 mm diameter coated cast iron pipeline,
2

2000 m long (k = 0-15 mm). Allowing 10 ;I—g for losses in valves, etc.

calculate the discharge in the pipeline and the power consumption.

Qs 0 50 100 150 200
H,, (m) 60 58 52 41 25
n% — 44 65 64 48
2. If in the system described in problem 1, the discharge is to be increased

to 175 I/s by the installation of a second identical pump,

(a) determine the unregulated discharges produced by connecting the
pumps, (i) in parallel, and (ii) in series.

(b) Calculate the power demand when the discharge is regulated (by valve
control) to 175 Us in the case of (i) parallel operation, and (ii) series
operation.

3. A pump is required to discharge 250 I/s against a calculated system
head of 6-0 m. Assuming that the pump will run at 960 rev/min, what type
of pump would be most suitable?

4. The performance characteristics of a variable speed pump when running
at 1450 rev/min are tabulated below, together with the calculated system
head losses. The static lift is 8-0 m. Determine the discharge in the pipeline
when the pump runs at 1450, 1200 and 1000 rev/min.

Qls 0 10 20 30 40
H,, (m) 20-0 19-2 17-0 13-7 87
System head loss (m) — 0-7 2-3 4-8 9-0

5. A pump has the characteristics tabulated when operating at 960 rev/min.
Calculate the specific speed and state what type of pump this is. What
discharge will be produced when the pump is operating at a speed of
700 rev/min in a pipeline having the system characteristics given in the table.
Static lift is 2:0 m. What power would be consumed by the pump itself?

Q (I/s) 0 S0 100 150 200 250 300

H,, (m) 70 63 55 5-0 4-6 41 35
Pump efficiency % — 200 400 560 710 81-0 820
System head loss(m) — 010 035 080 140 210 3-40
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6. (a) Tests on a rotodynamic pump revealed that cavitation started when
the manometric suction head, Hg, was 5 m, the discharge 60 I/s and
the total head 40 m. Barometric pressure was 986 mb, and the
vapour pressure 23-4 mb. Calculate the NPSH and the Thoma
cavitation number.

(b) Determine the maximum suction lift if the same pump is to operate
at a discharge of 65 I/s and total head 35 m under field conditions
where the barometric pressure is 950 mb and vapour pressure
12-5 mb. The sum of the suction pipe losses and velocity head are
estimated to be 0-6 m.

7. The characteristics of a variable speed rotodynamic pump when
operating at 1200 rev/min are as follows:

Q (Vs) 0 10 20 30 40 50 60
Hn (m) 470 460 425 384 340 272 200

The pump is required to be used to deliver water through a static lift of 10 m
in a 300 mm diameter pipeline 5000 m long and roughness size 0-15 mm, at a
rate of 70 I/s. At what speed will the pump have to operate?

8. The steady level, below ground level, in an abstraction well in a
confined aquifer is calculated from the equation
Q R,
=20+ —
2= 20+ ToKe 08 T, ™)

where Q is the abstraction rate (m*/day), K the coefficient of permeability
of the aquifer (m*/day/m?), b the aquifer thickness (m), R, the radius of
influence of the well, and r,, the radius of the well.
K = 50 m*/day/m?;, b=20m; r, = 0-15 m.

During a pumping test the observed z, was 50 m when an abstraction
rate of 30 I/s was applied.

Under operating conditions the submersible borehole pump delivers the
groundwater to the surface from where an in-line booster pump delivers the
water 1o a reservoir the level in which is 20 m above the ground level at the

well site. The pipeline is 500 m long, 200 mm in diameter and of roughness
2

size 0-3 mm. Minor losses total 10 Z_g



PUMP-PIPELINE SYSTEM ANALYSIS AND DESIGN 167

Pump Characteristics

(a) Borehole pump (b) Booster pump
Dii‘cv';;"ge 0 10 20 30 40 0 10 20 30 40
T"(’;')h"ad 100 96 87 74 56 | 220 215 204 190 174

Assuming that the radius of influence of the well is linearly related to the
abstraction rate determine the maximum discharge which the combined
pumps would deliver to the reservoir.

9. The discharge in a pipeline delivering water under gravity between
two reservoirs at elevations 150 m and 60 m is to be boosted by the
installation of a rotodynamic pump, the characteristics of which are shown
tabulated.

The pipeline is 15 km long, 350 mm in diameter and has a roughness value
of 0-3 mm. Determine the discharges (a) under gravity flow conditions, and
(b) with the pump installed. Assume a minor loss of 20 V2/2g in both cases.

Pump characteristics

Discharge (I/s) 0 50 100 150 200 250
Manometric head (m) 50-0 490 465 420 360 282

10. Reservoir A delivers water to service reservoirs C and D through
pipelines AB, BC and BD. A pump is installed in pipeline BD to boost the
flow to D.

Elevations of water in reservoirs: Z, = 100 m; Z¢c = 60 m; Zp = 50 m.

Pipe Length (m) Diameter (mm) Roughness (mm)
AB 10000 350 0-15
BC 4000 200 0-15
BD 5000 150 0-15

Pump characteristics

Discharge (I/s) 0 20 40 60 80
Total Head (m) 30-0 27-5 23-0 17-0 9-0
Efficiency (per cent) — 44-0 68-0 66-0 44-0

Neglecting minor losses calculate the flows to the service reservoirs:
(a) with the pump not installed;
(b) with the pump operating and determine the power consumption.



Chapter 7

Boundary Layers on Flat Plates
and in Ducts

R. E. Featherstone

7.1 Introduction

A boundary layer will develop along either side of a flat plate placed edgewise
into a fluid stream (fig. 7.1). Initially the flow in the layer may be laminar
with a parabolic velocity distribution. The boundary layer increases in thickness

X
= 500000

U,
with distance along the plate and at a Reynolds number 9

turbulence develops in the boundary layer. The frictional force due to the
turbulent portion of the boundary layer may be considered as that which
would be found if the entire length were turbulent minus that corresponding
to the hypothetical turbulent layer up to the critical point.

For rough plates Schlichting gave an expression for the maximum height
of roughness elements such that the surface may be considered hydraulically
smooth:

100 v
k < Us

The theory of boundary layers on smooth flat plates is to be found in
standard texts.

(7.1)

7.2 The laminar boundary layer

In 1908 Blasius developed analytical equations for the flow in a laminar
boundary layer formed on a flat plate for the case of zero pressure gradient
along the plate. Taking the outer limit of the boundary layer as the position
where v = 0-99 Uy the boundary layer thickness &, at distance x from the
leading edge was given as:

S5x
o, = W (7.2)

U() X
where Re, = ——
v
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Figure 7.1 Boundary layer formation on flat plate

U
Local boundary shear stress 7, = 0-332 u 70 Re,'? (7.3)
Drag along one side of a plate of length L and width B;
L
F, = f 7, B dx = 0-664 Bu Uy Re, 1?2 (7.9)
o
U 2
orF,= GBL p —20— (7.5)
133
where C; = ————ReLm (7.6)

7.3 The turbulent boundary layer

Studies have shown that the velocity profile in the turbulent boundary layer
is approximated closely over a wide range of Reynolds numbers by the
equation:

v _(y 7
5~ (3) &
If the turbulent boundary layer is assumed to develop at the leading edge of
the plate

s 037x
8 =0 " ) ==X :
037 x (U0 ) - R (7.8)

vy \4

Boundary shear stress: 7, = 0-0225 p Uy? (U 3 ) (7.9)
0 Ux

. Uy
Drag on one side of plate: F; = C; BL p > (7.10)

where C; = %‘L% (7.11)
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7.4 Combined drag due to both laminar and turbulent boundary layers

Where the plate is sufficiently short that the laminar boundary layer forms
over a significant proportion of the length the total drag may be calculated
by considering the turbulent boundary layer to start at the leading edge,
deducting the drag in the turbulent boundary layer up to x, and adding the
drag in the laminar boundary layer.

133x, . 0074 L 0074 x, Ug?
Re 7 Re,”? ~ Re "5) Bp 2 (7.12)
X,0 X.0

Hence F, = (

7.5 The displacement thickness

Due to the reduction in velocity in the boundary layer the discharge past a
point on the surface is reduced by an amount

E)
éq = J’o (Up = v) dy. (7.13)

The displacement thickness is the distance, 8* by which the surface would
have to be moved in order to reduce the discharge of an ideal fluid at
velocity Ug by the same amount.

']
Then Up 8* = j (Uo — v) dy (1.14)

Assuming that the velocity distribution is:

ULO = (%)1/7 (equation (7.7))
. ULO [ 6 (UO U, (%)m) dy (7.15)

. 7 11/7 &
8 =[Y‘§(s) ”‘"]

Figure 7.2 Displacement thickness
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whence 8* = (7.16)

oo |

7.6 Boundary layers in turbulent pipe flow

In Chapters 4 and 5 the analysis and design of pipelines was demonstrated
using the Darcy-Weisbach and Colebrook-White equations. The latter
equation '

1 _ 9t [ k| 2-51]
Vi B137D " RevVZ

owes its origin to the theoretical hypothesis of Professor L. Prandtl for the
general form of the velocity distribution in full pipe flow supported by the
experimental work of J. Nikuradse. Using the concept of the exchange of
momentum due to the transverse velocity components in turbulent flow
Prandtl developed his ‘mixing theory’ expressing the shear stress 7, in terms

of the velocity gradient g—; and ‘mixing length’ ¢ in the form:
- zﬁy
tT=pf ( dy (7.17)

Prandtl further assumed the mixing length to be directly proportional to the
distance from the boundary and that the shear stress was constant and hence
equal to the boundary shear stress 1z,

2 dv 2
Hence 1, = p (xy) E; (7.18)
dv _1 (%1
whence dy " x y (7.19)

The term J% has the dimensions of velocity and is called the ‘shear

velocity’ and represented by the symbol v*.

From equation (7.19) ;v: = ;1(— log.y + C (7.20)
AN W 4
or ==~ log, Y (7.21)

where y' is the ‘boundary condition’, i.e. the distance from the boundary at
which the velocity becomes zero. (See fig. 7.3.)

Observations of friction head loss and velocity distribution on smooth and
artificially roughened pipes, conveying water, by J. Nikuradse revealed that
the forms of the velocity distribution in the smooth and rough turbulent
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]
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e

Figure 7.3

zones were different. For the smooth turbulent zone he assumed y’' to be

proportional to vl* and equation (7.21) therefore becomes

*
o= Alog ("vy) +B (1.22)

where A and B are constants.
x

v y) and a
v

From the experimental data Nikuradse plotted ;V; against log (
straight line fit having the equation:

yo_s. u) :
- =575 log( " + 55 (7.23)
verified the hypotheses. The mean velocity is obtained by integration:

v=_1 fz d
= D | 2mmvde
4

and substitution of v from equation (7.23) yields:

ok

A\ v D
v‘—57510g >

+ 1.75 (7.24)
The equation for the Darcy friction factor can consequently be obtained:

Since 1, = pg R = pg % T (see Example 7.5)

f_~ %o i
47 2D’ [ \/; (7.25)

substitution into (7.25) yields:

1 VD Vi 1 ReVA
7T'°2'°g( v 2-51)°'\/T 2loe 5051 (7.26)
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Similarly for the rough turbulent zone Nikuradse found y’ to be proportional
to k and obtained the velocity distribution in the form:

v y
X =575log Y + 85 (7.27)
V _s. D,
and o 575 log K + 4.75 (7.28)
whence —— = 2 log = + 1-74 (7.29)
Vi § 2% '
1 37D
or v il 2 log B (7.30)

Equations (7.26) and (7.30) are referred to as the Kdrman-Prandt] equations.
While equation (7.30) was obtained for artificially roughened pipes Colebrook
and White (1939) found that the addition of the Karman-Prandtl equations
produced a ‘universal’ function which fitted data collected on commercial
pipes covering a wide range of Reynolds numbers and relative roughness
values. The Colebrook-White equation was expressed as
1 _ ( k 2:51 )

s 2log 37D + ReV i (7.31)
k now becomes the ‘effective roughness size’ equivalent to Nikuradse’s
uniform roughness elements.

7.7 The laminar sub-layer

The A v. Re curves for artificially roughened pipes are shown in fig. 7.4.

At the lower range of Reynolds numbers the curves for the rough pipes
merge into the single smooth pipe curve. Thus, rough pipes can behave like
smooth ones at low Reynolds numbers. This phenomenon is explained by
the presence of a sub-layer, formed adjacent to the boundary, in which the
flow is laminar. The presence of such a layer was also confirmed by the
velocity distributions obtained by Nikuradse. At low Reynolds numbers the
sub-layer is sufficiently thick to cover the boundary roughness elements so
that the turbulent boundary layer is, in effect, flowing over a smooth
boundary, fig. 7.5a.

The sub-layer thickness decreases with increasing Reynolds number and
at high Reynolds numbers the roughness elements are fully exposed to
the turbulent boundary layer. At intermediate Reynolds numbers, in the
transitional turbulent zone, the friction factor is influenced by both the
relative roughness and Reynolds number.

Figure 7.6 shows a sub-layer formed on a smooth boundary beneath a
turbulent boundary layer.
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010
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Figure 7.4 Variation of A with Re for artificially roughened pipes
. dv
In the laminar sub-layer, T = pu d_y

whence dv_ T and v = —% (7.32)
dy pv pY

At the upper boundary of the sub-layer, y = &', the velocities given by
equations (7.23) and (7.32) are identical and 7 = 1,.

* S 2 87
Whence v* (5-75 log ¥ V‘S + 5-5) = () 9 the solution to
v
which is: &' = %—V (71.33)
Substituting v* = V /% and introducing D on both sides yields
6’ 32-8
A 7.34
D ReVZ (7.34)
8" oF — T 9 e
201, f
a. Smooth turbulent  b. Transitional ¢. Rough turbulent

Figure 7.5 Variation in thickness of laminar sub-layer with Reynolds number
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V*
e— ¥ = 57510g — + 55
v¥ v
Turbulent
y’ -‘L Laminar

Figure 7.6 Laminar sub-layer on smooth boundary

Thus the thickness of the laminar sub-layer decreases with Reynolds number.
For rough surfaces the zone of turbulent flow is clearly related to the ratio

of the magnitudes of 6’ and k. Since %— is inversely proportional to Re V4

the quantity
Revi will be proportional to —k7
D é
2k
Each of the curves in fig. 7.4 should therefore deviate from the smooth pipe

law at the same value of LS Thus superimposing all curves by plotting

&
1 D
I 2 log 2k on a base of
ReVi
— (fig. 7.7
D (fig. 7.7)
2k

shows that the transition from the smooth law begins when 8’ is approximately
4 k and ends when k is approximately 6 8'. (See fig. 7.7.)

Worked examples

Example 7.1

A thin smooth plate 2 m long and 3 m wide is towed edgewise through

water, at 20°C, at a speed of 1 m/s.

(a) Calculate the total drag and the thickness of the boundary layer at the
trailing edge.

(b) If the plate were towed with the 3 m side in the direction of flow, what
would be the drag?
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Figure 7.7 The transition zone for artificially roughened pipes

Solution (a):
varc = 1 X 107° m%s; p = 1000 kg/m®

Assuming the laminar layer to become unstable at Re, = 500 000, the length
of the layer, x, = 0-5 m

Using equation (7.11) for the combined drag in the laminar and turbulent
layers,

fea

133x,  0074L 0074 xo) Uy®

Re.o™ * Ret™ ~ Re, /) P72
P =2(1-33x0-5+0-074x2_0-074x0-5 3 X 1000 x 1
: 707-1 182 13-8 2
F,=1917N

Boundary layer thickness: experiments have shown that when the turbulent
boundary layer develops downstream of the laminar layer, the characteristics
of the turbulent layer are those of one which develops at the leading edge.

037 L
Thusé._=—lw=0-041m
If the drag were assumed to be due entirely to the turbulent boundary layer:
2
F,=2CBLp U—2°-
0-074 _ 0-074 _
G= Re, > ~ 182 ~ 2004

Fs=2x0-0041x2x3x1000x%=24-6N
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Solution (b):
B=20; L=230
From equation (7.11)

_ 133 X 0-5 , 0-074 X 3 _ 0:074 X 0:5 1

Fs—2x2( 071 T 1974 138 )1000"2
= 1901 N.

Example 7.2

A 5 m long smooth model of a ship is towed in fresh water of kmematlc
viscosity 1 x 107® m%/s at 3-5 m/s. The wetted hull area is 1-4 m2. What is
the skin friction drag?

Solution:
Assuming that a turbulent boundary layer develops at the leading edge:
2

. Ug
Drag = G A p —

2
0-074 35 x5
G = R Ret =10~ 179X 10°
whence C; = 0-00263
3-5%

And Drag = 0-00263 x 1-4 X 1000x—2—

= 22-55 N.

Example 7.3

Water enters a 300 mm diameter test section of a water tunnel at a uniform
velocity of 15 m/s. Assuming that the boundary layer starts 0-5 m upstream
of the test section estimate the increase in axial velocity at the end of a 3 m
test section due to the growth of the boundary layer. Take v = 1 X 1079 m%s.

Solution:
Length of boundary layer = 3-5 m.

Re, = 15 x 3-5 x 10° = 52-5 x 10°

Re '® = 350
_037L _037x35_
b= o TE = 35 0-037 m

From section 7.5, assuming that the velocity distribution in the boundary
layer is of the form

UL = (%)m (equation (7.15))
0
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the displacement thickness is expressed by

&% = g (equation (7.16))

or 6* = 0-004625 m
Effective duct diameter = 300 — 9-25 = 290-75 mm
Then U() AO = UL AL

_300_
290-75

Change in pressure due to boundary layer formation: apply Bernoulli
equation assuming ideal fluid flow:

Po, U’ _p U2
pg 2 pg 28

2
whence U, =15 ( ) = 1597 m/s

Po — PL =Ah=UL2_U02
Pg 2
072 _ 182
Ah = B9 =15 Lo
2
Example 7.4

Water at 20°C enters the 250 mm square working section of a water tunnel
at 20 m/s with a turbulent boundary layer of thickness equal to that from a
starting point 0-45 m upstream. Estimate the length of the sides of the
divergent duct for constant pressure core flow at 1 m, 2 m and 3 m down-
stream from the duct entrance.

Solution:
o,
From equation (7.16) displacement thickness: 8,* = ?"
. 0-37 x
From equation (7.7) é, = Re, 5

At 1 m from the entrance of the working section the length of the boundary
layer = 1-45 m.

20 X 145 _
Rex = Tx 10 =

whence 6 = 0-01726 m
and 6* = 0-00216 m = 2-16 mm

Thus section size = 254-:32 mm square.

29 x 10°

At 2 m from entrance, boundary layer is 2-45 m long
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6* = 3-29 mm
". section size = 256-58 mm
At 3 m from entrance
6* =432 m

*. section size = 258-64 mm.

Example 7.5 .
The velocity distribution in the rough turbulent zone is expressed by:

[T
p

Local axial velocities measured at 25 mm and 75 mm across a radius from
the inner wall of a 150 mm diameter pipe conveying water at 15°C were
0-815 m/s and 0-96 m/s respectively. Calculate the effective roughness size,
the hydraulic gradient and the discharge.

=575 log% + 85 (equation (7.27)) )

Writing v* = % and inserting the pairs of values of v and y in the
velocity distribution equation:
0-96 75

0 = 575108 22 + 85 (i)
0'335 = 5.75 log 3k5— + 85 (iii)

(Note that y can be expressed in millimetres since —yk-

is dimensionless; the
calculated value of k will then be in millimetres.)

0-96 — 0-815 75
Hence—$—— 5-75 lo, g25

whence v* = 0-0528
and 1, = 2:79 N/m?

_0:96_
50538 575]og 3 485

whence k = 1-55 mm

Substituting for v* in (ii)

The hydraulic gradient (Sf = %) can be related to the boundary shear

stress thus:
Consider an element of flow in a pipeline (see fig. 7.8):
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P
[2:3

E=
oz

Figure 7.8

For steady, uniform flow, equate the forces on the element of length SL.
(Ppr—p)A+pgAdLsina=r1, PSL

e PLTP s TPOL
(1] pg A
or hy = 1& where R = A/P = D/4
pg R
he . _ 00528
L = 5= 5306 x 0-0375 ~ 000758

The discharge can now be evaluated using the Darcy-Colebrook-White
combination:

k 251 v
=-2AV2gDS | [ + ]
Q B 137D " DVvRDS,

Q =13371/s
Mean velocity V = 0-757 m/s
Re = 1-004 x 10°

k _ 155
D= 150 - 0-0103
Referring to the Moody chart this is in the rough turbulent zone.

Alternatively, as shown previously (section 7.6) the mean velocity V can
be expressed thus:

A\ D
= 575 log — + 475
V,/p o8 2k

whence V = 0762 m/s and Q = 1345 I/s




BOUNDARY LAYERS ON FLAT PLATES AND IN DUCTS 181

Location of local velocity equal to mean velocity.

- 2
v to/‘; = 5-75 log -l-)! + 3-75 (from equations (7.28) and (7.29))
. 2y _
i.e. log D = 0-6522
2y
D= 0-22275
y = 16-7 mm.
Example 7.6

The velocity distribution in the smooth turbulent zone is given by:

v vy
— =575 log "

+ 55 (equation (7-23))

<

The axial velocity at 100 mm from the wall across a radius in a 200 mm
perspex pipeline conveying water at 20°C was found to be 1-:2 m/s. Calculate
the hydraulic gradient and discharge. v = 1-0 X 107® m%/s

1.2 v* x 0-1 .

- 5-75 log———1 < 10_6+ 55
(Note that y must be expressed here in metres.)
Solve by trial or graphical interpolation:

Solution:
v* = 0-045 m/s (= \/-:2)
p

T,
Now §; = —— (see previous Example
(=52 R (see p. ple)
__ 0045
9-806 x 0-05
Now if the flow is assumed to be in the smooth turbulent zone (k/D = 0) the

discharge may be calculated from the Darcy-Colebrook-White equation in
the form:

. §¢ = 0-00413

Q

2-51 v
- 24 VDS log (-22Lr )
gL 8\ D vag D s,

3203 1/s
V =102 m/s; Re = 2-04 x 10°
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Example 7.7

Sand grains 0-5 mm in diameter are glued to the inside of a 200 mm,
diameter pipeline. At what velocity of flow of water at 15°C will the surface
roughness (a) cause the flow to depart from the smooth pipe, and (b) enter
the rough pipe curve.

Solution (a):
The transition from the smooth law begins when 6’ = 4 k

whence' &' = 4 X 0-5 = 2-0 mm

Also 6’ = ﬁ—'f/% (equation (7.34))
2.0 = 32-8 x 200
ReVv i
whence ReV'A = 3280-0 )
The smooth turbulent zone is represented by:
1 _ 5 og REVA
VT £ 251
| S 52480 _ _
\/T_ZIOg—Z-Sl 6-232

Then from (i) Re = 20441 (= ?)

whence V = 0-102 m/s.

Solution (b):
At k = 66’ the flow enters the rough turbulent zone.
5 < 328D
ReVZ
ReV'1 = 78751-0 (ii)
The rough turbulent zone is represented by

L 510 37D _ 5 1o 37X 200
Vi ™ 2705

= 6-341
Substituting in (ii): Re = 499372-0

whence V = 2-5 m/s.

= 0-0833
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Problems

1. A pontoon 15 m long 4 m wide with vertical sides floats to a depth of
0-5 m. The pontoon is towed in sea water at 10°C (p;, = 1024 kg/m>, y =
1-31 x 1073 Ns/m?) at a speed of 2 m/s. (a) Determine the viscous resistance
and the thickness of the boundary layer at the downstream end. (b) What is
the shear stress at the mid-length?

2. Sealed hollow pipes 2 m in external diameter and 6 m long, fitted with
rounded nose-pieces to reduce wave-making drag, are towed in a river to a
construction site; the pipes float to a depth of 1-5 m. The towing speed is
5 m/s in the water which has a density of 1000 kg/m> and dynamic viscosity
1-2 x 107> Ns/m’. Determine the viscous drag of each pipe assuming
(a) that a turbulent boundary layer exists over the entire length, and (b) that
the drag is a combination of that due to the laminar and turbulent boundary
layers.

3. Air of density 1.3 kg/m* and dynamic viscosity 1-8 X 10~> Ns/m?
enters the test section 1 m wide x 0-5 m deep of a wind tunnel at a velocity
of 20 m/s. Determine the increase in axial velocity 10 m downstream from
the entrance to the test section due to the development of the boundary
layer assuming that this forms at the entrance to the test section.

4. Wind velocities over flat grassland were observed to be 3-1 m/s and
3-3 m/s at heights of 3 m and 6 m above the ground respectively. Determine
the effective roughness of the surface and estimate the wind velocity at a
height of 25 m.

5. The centre line velocity in a 100 mm diameter brass pipeline (k = 0-0)
conveying water at 20°C was found to be 3-5 m/s. Determine the boundary
shear stress, the hydraulic gradient, the discharge and the thickness of the
laminar sub-layer.

6. The velocities at 50 mm and 150 mm from the pipe wall of a 300 mm
diameter pipeline conveying water at 15°C were 1-423 m/s and 1-674 m/s
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respectively. Determine the effective roughness size, the hydraulic gradient,
the discharge and the Darcy friction factor and using equation (7.35) et seq.
verify that the flow is in the rough turbulent zone.

7. Show that the equation

vmax — v
V1,/p

applies to full-bore flow in circular pipes both in the rough and smooth
turbulent zones.

= 5-75 log %



Chapter 8

Steady Flow in Open Channels

R. E. Featherstone and C. Nalluri

8.1 Introduction

Open channel flow, for example, flow in rivers, canals and sewers not
flowing full, is characterised by the presence of the interface between the
liquid surface and the atmosphere. Therefore, unlike full pipe flow, where
the pressure is normally above atmosphere pressure, but sometimes below
it, the pressure on the surface of the liquid in open channel flow is always
that of the ambient atmosphere.

The energy per unit weight of liqguid flowing in a channel at a section
where the depth of flow is y and the mean velocity is V is

a'V?
2g

where z is the position energy (or head), @ is the bed slope and a the
Coriolis coefficient

(af=ﬁf:v3dA)'

The motivating force establishing flow is predominantly the gravity force
component acting parallel with the bed slope but net pressure forces and
inertia forces may also be present. Flow in channels may be unsteady,
resulting from changes in inflow such as floods or changes in depth caused

H=2z+ycos8 + (see fig. 8.1) (8.1)

~—— Total energy line

Liquid surface

Datum

Figure 8.1 Energy components
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by control gate operation, etc. Steady flow can either be uniform or varied
depending upon whether or not the mean velocity is constant with distance.
In gradually varied flow there is a gentle change in depth with distance; a
common example is the back-water curve, fig. 8.2 (a). Rapidly varied
surface profiles are created by changes in channel geometry, for example
flow through a venturi flume, fig. 8.2 (b).

— Gate
I',"I”’I’7""'7""'//"”",,,'J”,'77
(a)
—
—
= ——-/
i )
EiE i i i i " i i i i gl i i o ol i ol ol i Gl i I

Figure 8.2 Steady, varied flow surface profiles

Steady uniform flow occurs when the motivating forces and drag forces are
exactly balanced over the reach under consideration. This type of flow is
analogous with steady pressurised flow in a pipeline of constant diameter.
Thus the area of flow in the channel must remain constant with distance, a
condition requiring the bed slope and channel geometry to remain constant.
The liquid surface is parallel with the bed.

8.2 Uniform flow resistance

The nature of the boundary resistance is identical with that of full pipe flow
(Chapter 4) and the Darcy-Weisbach and Colebrook-White equations for
non-circular sections may be applied. (See section 4.2.)

Noting that the energy gradient S; is equal to the bed slope S, in uniform
flow:

. hy o o _AV?
Darcy-Weisbach . = S=S8, = 82 R (8.2)
. 1 k 251w
Colebrook-White ol 2 log [ 48 R + RV \/T] (8.3)
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Eliminating A from (8.2) and (8.3) yields

Kk 1255 v
=—V§7ﬁ:1[ + ] 8.4
g 8 [128R * RVIgRS. (8.42)

A _ _ Area of flow
P  Wetted perimeter

where R =

In addition to the Darcy-Weisbach equation the Manning equation is widely

used in open channel water flow computations. This was derived from the
16

Chezy equation V = C VR S, by writing C = Bn— resulting in

R2/3
V= - S.'?  (S.I. units) (8.4b)

n is called the Manning roughness factor and its value is related to the type
of boundary surface. If the value of n is taken to be constant regardless of
depth then, unlike the Darcy friction factor it does not account for changes
in relative roughness, nor does it include the effects of viscosity. See. table
8.1; the Manning equation is in general applicable to shallow flows in rough
boundaries and for a boundary of roughness k the Manning n may be
written as (Strickler’s equation):

"= ®4)

where k is in metres.

Table 8.1 Typical values of Manning’s n

Type of Surface n

Concrete

Culvert, straight and free of debris 0-011

Culvert, with bends, connections and some debris 0-013

Cast on steel forms 0-013

Cast on smooth wood forms 0-014

Unfinished, rough wood form 0-017
Excavated or dredged channels

Earth, after weathering, straight and uniform 0-022

Earth, winding, clean 0-025

Earth bottom, rubble sides 0-030

For a comprehensive list see Open-channel Hydraulics by Ven Te Chow.’

8.3 Channels of composite roughness

In applying the Manning formula to channels having different n values for
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the bed and sides it is necessary to compute an equivalent n value to be used
for the whole section. The water area is ‘divided’ into N parts having wetted
perimeters Py, P,._.Py with associated roughness coefficients ng, Ny._.Ny.
Horton and Einstein assumed that each sub-area has a velocity equal to the
mean velocity.

N 23

Z P;n;¥2

Thusn = | =L — (8.5)
P

where P = total wetted perimeter.

Pavlovskij and others equated the sum of the component resisting forces to
the total resisting force and thus found

N 1
2 (Pin?)
n={=__ > (8.6)

/2

Lotter applied the Manning equation to sub-areas and equated the sum of

the individual discharge equations to the total discharge. Thus the equivalent
roughness coefficient is:

PR5/3
n= P. R_5/3) 8.7)
1%

oy

n;
8.4 Channels of compound section

A typical example of a compound section (two-stage channel) is a river
channel with flood plains. The roughness of the side channels will be different
(generally rougher) than that of the main channel and the method of analysis is
to consider the total discharge to be the sum of component discharges
computed by the Manning equation.

Thus in the channel shown in fig. 8.3, assuming that the bed slope is the
same for the three sub-areas:

0= (ﬁ R, + ﬁ R,2? + As R32’3) S 2
m n, n3

Als ng A3y nz

Figure 8.3 Compound channel section
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The above assumption leads to large discrepancies between computed and
measured discharges under flood flow (above bank-full stages) conditions.
The interaction between the slower moving berm flows and the fast moving
main channel flow significantly increases head losses. As a result, the discharge
computed by this conventional method will overestimate the flow. Utilising
the recent research data from the Flood Channel Facility at Wallingford,
Ackers'? has shown that the discrepancy between the conventional calcu-
lations and the measured flow is dependent on flood flow levels. He formu-
lated appropriate correction factors for each region of flow; a detailed
exposure of the analysis of the research is beyond the scope of the book.

8.5 Channel design

The design of open channels involves the selection of suitable sectional
dimensions such that the maximum discharge will be conveyed within the
section. The bed slope is sometimes constrained by the topography of the
land in which the channel is to be constructed.

In the design of an open channel a resistance equation, the Darcy or
Chezy or Manning, may be used. However at least one other equation is
required to define the relationship between width and depth. This second
series of equations incorporates the design criteria; for example in rigid
boundary (non-erodible) channels the designer will wish to minimise the
construction cost resulting in what is commonly termed ‘the most economic
section’. In addition there may be a constraint on the maximum velocity
to prevent erosion or on the minimum velocity to prevent settlement of
sediment.

In the case of erodible (unlined channels excavated in natural ground e.g.
clay, silts, etc.) the design criterion will be that the boundary shear stress
exerted by the moving liquid will not exceed the ‘critical tractive force’ of
the bed and side material.

(a) Rigid boundary channels — economic section.
Using the Darcy-type resistance equation,

8g A KA3?
C=AJyT S ="pmr
A = 1{(y); P = {(y).
3
Q max. is achieved when d—Q = 0i.e. 4 (A—) =0
dy dy \ P

3A2dA A’ dP
P dy P>dy

whence3Pd—A— Ag£=0
dy dy
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Figure 8.4

For a given area %—3 = 0; then for Q max., % = 0, i.e. the wetted perimeter

is a minimum. For a trapezoidal channel (see fig. 8.4):
A = (b + Ny)y
P=b+2yV1+N?

For a given area A,

P=%—-Ny+2yvl+N2

dp A

Foerax.d—y=—?—N+2 V1+N =0
i.e.%=—(b+Ny)—Ny+2yV1+N2=0
or b+2Ny=2y V1+N? (8.8)

It can be shown that if a semicircle of radius y is drawn with its centre in the
liquid surface it will be tangential to the sides and bed. Thus the most economic
section approximates as closely as possible to a circular section which is known
to have the least perimeter for a given area.
For a rectangular section (N = 0) and b = 2y.

(b) Mobile boundary channels (erodible)

The ‘critical tractive force’ theory and the ‘maximum permissible velocity’
concept are commonly used in the design of erodible channels for stability.

(i) Critical tractive force theory

The force exerted by the water on the wetted area of a channel is called the
‘tractive force’. The average ‘unit tractive force’ is the average shear stress
given by T, = pg R S,. Boundary shear stress is not, however, uniformly
distributed; the distribution varies somewhat with channel shape but not
with size. For trapezoidal sections the maximum shear stress on the bed may
be taken as pg y S, and on the sides as 0-76 pg y S, (See fig. 8.5); however,

the shear distribution depends on the channel aspect ratio, b/y (see Table
8.2).
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— V4
Ts
T
Figure 8.5 Distribution of shear stress on channel boundary
Table 8.2 Maximum bed/side shear stress
Aspect ratio, b/y To max/ PZYSo s max’/ P2YSo
2 0-890 0-735
4 0-970 0-750
>8 0-985 0-780

If the shear stresses can be kept below that which will cause the material
of the channel boundary to move, the channel will be stable. The critical
tractive force of a particular material is the unit tractive force which will not
cause erosion of the material on a horizontal surface. Material on the sides
of the channel is subjected, in addition to the shear force due to the flowing
water, to a gravity force down the slope. It can be shown (see e.g. Chow’)
that if 7, is the critical tractive force the maximum critical shear stress due
to the water flow on the sides is

_ sin® 0
sin’ ¢

Tes = Teb (8.9
where 0 is the slope of the sides to the horizontal, and ¢ is the angle of
repose of the material.

Table 8.3 gives some typical values of critical tractive force and permissible
velocity.

(ii)) Maximum permissible mean velocity concept.

This appears to be a rather uncertain concept since the depth of flow has a
significant effect on the boundary shear stress. Fortier and Scobey® published
the values in Table 8.3 for well-seasoned channels of small bed slope and
depths below 1 m.

8.6 Uniform flow in part-full circular pipes

Circular pipes are widely used for underground storm sewers and waste-
water sewers. Storm sewers are usually designed to have sufficient capacity
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so that they do not run full when conveying the computed surface run off
resulting from a storm of a specified average return period. Under these
conditions ‘open channel flow’ conditions exist. However more intense
storms may result in the capacity of the pipe, when running full at a
hydraulic gradient equal to the pipe slope, being exceeded and pressurised
pipe conditions will follow. Waste-water sewers, on the other hand, generally
carry very small discharges and the design criterion in this case is that the
mean velocity under the design flow conditions should exceed a ‘self-cleansing
velocity’ of 0-61 m/s so that sediment will not be permanently deposited.

Although the flow in sewers is rarely steady (and hence non-uniform),
some commonly used design methods adopt the assumption of uniform flow
at design flow conditions; the Rational Method for storm sewer design is an
example and foul sewers are invariably designed under assumed uniform
flow conditions. Mathematical simulation and design models of flow in
storm sewer networks take account of the unsteady flows using the dynamic
equations of flow but such models often incorporate the steady uniform flow
relations in storage-discharge relationships.

Geometrical properties; flow equations (see fig. 8.6).

z=—> -y
= -1 2—2)
8 = cos (D
A_rz(e_sm20)
2
P=D2¢8
A
R=%
k 1-255 v
V=-V32gRS, | [ + ] 8.10
8 |18 R T RVIERS, (8.10)
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Q = -A VI RS, log [14"5 Rt 132252;8 ] (8.11)

8.7 Steady, rapidly varied channel flow-energy principles

The computation of non-uniform surface profiles caused by changes of
channel section, etc., requires the application of energy and momentum
principles.

The energy per unit weight of liquid at a section of a channel above some
horizontal datum is

H=2z+ycos 6+ aV¥2g (see fig. 8.1)
For mild slopes cos 6 = 1.0
H=z+y+aV¥2g (8.12)

Specific energy is measured relative to the bed:
E,=y+ a Vg
or E; =y + a Q%/2g A?

For a steady fixed inflow into a channel the specific energy at a particular
section can be varied by changing the depth by means of a structure such as
sluice gate with an adjustable opening. Plotting E, v. y for a section where
the relationship A = f(y) is known and Q is fixed results in the ‘specific
energy curve’; fig. 8.7 shows that at a given energy level two alternative
depths are possible.

y

Depth

Specific energy E;

Figure 8.7 Specific energy curve

Specific energy becomes a minimum at a certain depth called the critical
depth (y,). For this condition
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dE, _, aQdA _

dy Algdy
Now dA/dy = B, the surface width
2
B
whence ®QB _ 1or Q . A A (8.13)

Adg Vela B

For the special case of a rectangular channel and where & = 1-0.

V2 02 q2
— = 1; i.e. the Froude number is unity and y. = 3/— = 3/
gy gb 8

(8.14)

where q = discharge/unit width.
At the critical depth,

2
Es.min =Yy + Z_; and V. = v gY¥e

Es.min =Y + %
In a rectangular channel the depth of flow at the critical flow is 2/3 X the
specific energy at critical flow.
The velocity corresponding with the critical depth is called the critical
velocity.
At depths below the critical the flow is called supercritical and at depths
above the critical the flow is subcritical or ‘tranquil’.

From the specific energy equation we can write

A [BE
Q=A a,(Es Y)

which shows that Q = f(y) for a constant E,. This exhibits a maximum
discharge occurring at a depth equal to critical depth (see fig. 8.21).

8.8 The momentum equation and the hydraulic jump

The hydraulic jump is a stationary surge and occurs in the transition from a
supercritical to subcritical flow (fig. 8.8).

A smooth transition is not possible; if this were to occur the energy would
vary according to the route ABC on the E, curve. At B the energy would be
less than that at C, corresponding with the downstream depth, y,. Therefore
a rapid depth change occurs corresponding with the route AC on the E;
curve. The depth at which the jump starts is called the ‘initial depth’, y; and
the downstream depth the ‘sequent depth’, y,. For a given channel and
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Figure 8.8 The hydraulic jump

discharge there is a unique relationship between y; and y, which requires

application of the momentum equation.
Steady state momentum equation. (See fig. 8.9.)

Assuming hydrostatic pressure distribution:
PEATL + PQBIVL — BV2) ~ pgAs¥, + pgAS, — pgAS; = 0
y = depth of centre of area of cross-section

and A = (A, + A2
. _ . Q — -
Le. Ay, + E BiVi— V) — Ay, + A(So — 8) =0 (8.15)

Equation 8.15 may be rewritten as M; = M,, where

M=AF+3BV =)
The M function (specific force) exhibits a minimum value at critical depth.

When applied to the analysis of the hydraulic jump the term (S, — S;) may
be neglected. In the special case of a rectangular channel the above equation

Jsf
—_— —
= V. -
Vo 2,
]

Py
—————t—',
1 So 1
) ()

Reference diagram for momentum equation

Figure 8.9
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reduces to a quadratic which can be solved either for y; or y,. Taking B = B..

1 A
AVZ f v dA)

B = Boussinesq coefficient =

yi=2 (V1+8pE7 - 1) (8.16)
ory, = ”? (V1 + 86FZ — 1) (8.17)
where F; = Ve and F;, = Vi (Froude numbers)
T Ve, " Vay
The energy loss through the jump (= E; — E,) can also be shown as
| (2 = 1)’
Ey = —————— 8.18
- 4y1y2 ( )

The length of the jump is a function of the approach flow Froude number
and for F,; > 9, the length is approximately equal to 7y,. The excess kinetic
energy of the downstream flow over a control structure (such as a spillway)
is often destroyed by the formation of a hydraulic jump (energy dissipator)
over a confined solid structure known as a stilling basin (see Chow’).

8.9 Steady gradually varied open channel flow

This condition occurs when the motivating and drag forces are not balanced
with the result that the depth varies gradually along the length of the
channel (fig. 8.10).

\v_
——
) S¢
2g -
ycosé =

T TP rryys

z ‘6

Figure 8.10 Varied flow in channel
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The dynamic equation of gradually varied flow is obtained by differentiating
the energy equation: H = z + y cos 6 + a V?/2g with respect to distance
along the channel bed (x-direction)

2

dx  dx  © dx ~ dx \¥ 2g
=_9H ¢ _ - _4z
Now §; = ax S, = sin 8 ix
dy _ So — S
' d V2)
cos 6 + dy (a 2
_d_(12)=£( Q >=_202 dA
dy \2g dy \2g A? 2g A* dy
and (31—1;‘ = B, the width at the liquid surface.
d (12) __9B
dy \2g A’g
Since channel slopes are usually small cos 8 = 1.0
dy - So _ Sf
whence i . o°B (8.19)

which gives the slope of the water surface relative to the bed. Space does
not permit a full discussion of the various types of surface profile which can
occur, nor on the ‘classification’ of these surfaces according to the channel
slope. Treatment of these topics is to be found for example in Open-channel
Hydraulics by Ven Te Chow.’; see example 8.24 on water surface profiles.

8.10 Computations of gradually varied flow

Equation (8.19) has analytical solutions (by direct integration) which require
tables of varied flow functions to facilitate the computation e.g. Bresse
(wide channels) and Bakhmeteff.? The graphical integration method is widely
applicable. However, with the advent of electronic calculators and especially
digital computers it is often more convenient to use numerical methods;
such methods are applicable to general cases of non-prismatic channels of
varying slope.

Computations of gradually varied surface profiles should proceed upstream
from the control section in subcritical flow and downstream from the control
section in supercritical flow.
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8.11 Graphical and numerical integration methods

Consider two channel sections at distances x, and x, at which the depths are
y2 and y,.
X2 y2
X; — X = j dx = dx
Xy Y

dy

dx

dy = area under the dy

v. y curve (fig. 8.11).

Therefore, take a series of y values, compute g—; from equation (8.19) and
dx

dy
the distance between them. Alternatively if dy is small the curve of g—; v.y

find the area, AA, between successive y values on the v. y curve to find

may be approximated by straight lines between y, and y, (Ay)
. dx
ie. Ax = dy Ay

whence a numerical method may be exclusively used. (See fig. 8.11.)

8.12 The direct step method

The direct step method is a simple method applicable to prismatic channels.
As in the graphical integration method depths of flow are specified and the
distances between successive depths calculated.
Consider an clement of the flow (fig. 8.12).
Equating total heads at 1 and 2
, Vi V,?

SoAx+yl +a|i=y2+ a’zi"'Sfo
E, - E,
So - Sf
where E is the specific energy.

In the computations S; is calculated for depths y, and y, and the average
taken denoted by S;.

ie. Ax = (8.20)

8.13 The standard step method

The standard step method is applicable to non-prismatic channels and there-
fore to natural rivers. The station positions are predetermined and the
objective is to calculate the surface elevations, and hence the depths, at the
stations. A trial and error method is employed. (See fig. 8.13.)
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i
dy AA
)’1‘I IY2 y
Figure 8.11 Graphical integration method
o \/l2 [/ 4 v22
+ +he=8,Ax + y, +
Y 28 t =8, AX + y, %
Z,=Yyy; Z=S,Ax +y, and assuming &, = @, = a
o Vlz [+ 4 V22
+ he = Z, + —%=
Z, 2 + he =27, 22
.- a V3 a V,2
writing H, = Z, + 2g| s Ho =2, + Z—gz’

equation (8.21) becomes Hy; + hy = H,

Proceeding upstream (in subcritical flow), for example, H, is known and
Ax is predetermined. Z, is estimated, for example by adding a small amount
to Z;; y, is obtained from: y, = Z, — z,. The area and wetted perimeter,
and hence hydraulic radius corresponding with y, are obtained from the

known geometry of the section.

2 Fr———
a12Vl ﬁ Sf —— SfAX
. I WV,

Y

l”

A4

Y2
SoAx I \

Z3 —

Datum z ?§ o~

@ ®

Figure 8.12 The direct step method
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Figure 8.13 The standard step method

2y.2
Calculate S, = % and S; = Stz + Sea
R, 2
o V22 a V22
Icul =
Calculate 2 and Hp) =7, + 2

Calculate Hy;) = H; + §; Ax

Compare H(;) and H,; if the difference is not within prescribed limits (e.g.
0-001 m), re-estimate Z, and repeat until agreement is reached; Z,, y, and
H) = H, are then recorded and Z, and H, become Z; and H, for the
succeeding station.

8.14 Canal delivery problems

When a channel is connected to two reservoirs its discharge capacity depends
upon inlet (upstream) and outlet (downstream) conditions imposed by the
water levels in the reservoirs. The reservoir—canal—reservoir interaction
depends upon the channel characteristics such as its boundary roughness,
slope, length between reservoirs and the state of water levels in the reservoirs.

Case 1: upstream reservoir water level is constant

For a given boundary characteristic the discharge rate in the channel depends
on whether it is a long or short channel with a mild or critical or steep bed
slope. A long channel delivers water with no interference from the downstream
water levels, i.e. with no downstream control; only the inlet controls the
flow rate. This suggests that any water surface profiles likely to develop with
the available downstream water levels will not be long enough to reach the
inlet, thus allowing the inlet to discharge freely. On the other hand if the
channel is short, the water surface profiles could submerge the inlet and this
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submergence affects the flow rate. The types of profile and their appropriate
lengths would depend on the channel slope.

(a) Long channel with mild slope (see fig. 8.20)

The flow on entering the inlet establishes uniform conditions from a short
distance downstream of the entry. Thus at entry we have two simultaneous
equations to compute the flow depth, y, and discharge, Q, or velocity:

energy equation: upstream water level above inlet, H = yo + aVi/2g
+ KaV?/2g
uniform flow resistance equation (say Manning’s) V = (1/n)R23§1?2

See worked example 8.7 for the solution of these two equations.

(b) Long channel with critical slope

The flow now establishes with its normal flow depth equal to the critical
depth from the inlet, thus allowing maximum possible discharge through the
channel. We now have at the channel entry two equations enabling the
computations of Q and y:

energy equation at inlet: H = y. + aV.2/2g + oKV 2/2g
either the critical depth criterion: ¥Q?B/gA> = 1

or the appropriate uniform flow resistance equation.

(c) Long channel with steep slope

The flow depth at entry is critical, the channel delivering maximum possible
discharge, and if the channel is sufficiently long uniform flow will establish
further downstream of the entry. The flow up to this point will be nonuniform
with the development of an S, profile which asymptotically merges with the
uniform flow depth (see worked example 8.8).

The problems are much more complicated if the channels are short, i.e.
any downstream control or disturbance (e.g. downstream water level vari-
ations) extends its influence right up to the entry, thus submerging the entry
and changing the delivery capacities of the channel. Such problems are
solved iteratively by computer.

Case 2: downstream water level is constant and upstream level varies

Long channel with mild slope: here the discharge gradually increases with
increasing upstream level (y,) with the formation of M; profiles and attains
uniform flow conditions (Q = Qo) when y, = y,, the downstream level.
Further increases in y; produce M, profiles, ultimately delivering a maximum
discharge whose critical depth is equal to y,. Any further rise in y; would
develop an M, profile terminating with its corresponding critical depth, now
greater than y,; this necessitates a corresponding increase in V2.

Case 3: both water levels varying (mild slope)
For a constant Q the levels y;, and y, are fluctuating, thus leading to a
number of possible surface profiles. With y; = y,, uniform flow is established.
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However, for water levels above uniform flow depth M; profiles develop
with the upper limit occurring when y, = y; + S¢L, L being the length of the
channel between reservoirs. For water levels below uniform depth M,,
profiles develop with the minimum depth of flow occurring when y; = y,,
the critical depth corresponding to the given discharge.

8.15 Culvert flow

Highway cross-drainage is normally provided with culverts, bridges and
dips. Culverts are submerged structures buried under a high level embank-
ment (see fig. 8.14). The culvert consists of a pipe barrel (conveyance part,
i.e. the channel) with protection works at its entrance and exit. It creates a
backwater effect to the approach flow, causing a pondage of water above the
culvert entrance. The hydraulic design of the culvert is based upon the
characteristics of the barrel flow (free surface flow, orifice flow or pipe flow)
conditions which depend on its length, roughness, gradient and upstream
and downstream water levels.!°

Free entrance conditions:

(1) H/D < 1-2; yp > y. < y2 < D; any length; mild slope: open channel
subcritical flow.

(2) H/D < 1-2; yo > y. > y» < D; any length; mild slope: open channel
subcritical flow.

(3) H/D < 1-2; yo < y. > y2 < D; any length; steep slope: open channel
supercritical flow; critical depth at inlet.

(4) H/D < 1:2; yg < y. < y2 < D; any length; steep slope: open channel
supercritical flow; formation of hydraulic jump in barrel.

KV*/2g

TEL 2
—_— - - \4— Embankment V2'i2g

-5 1 < \ -
4 "= TWL
- |H < D < fte =
Y1 y2 —
7777707777777 S N 7/ A
[ - i

(L = length of culvert; D = height of culvert; So = bed slope; y; = depth at
entrance; y, = depth at exit; yo = uniform flow depth; y. = critical depth; K = entry
loss coefficient; TEL: total energy line; TWL: tail water level.)

Figure 8.14 Culvert flow
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Submerged entrance conditions:

(5) H/D > 1.2; y, < D; short; any slope: orifice flow.
(6) H/D > 1-2; y, < D; long; any slope: pipe flow.
(7) H/D > 1-2; y, > D; any length; any slope: pipe flow.

See worked example 8.27 for a complete analysis of culvert flow.

8.16 Spatially varied flow in open channels

Spatially varied flow (SVF) is represented by the discharge variation along
the length of the channel due to lateral inflow (side spillway channel) or
outflow (side weir or bottom racks).

(i) Increasing flow (q,, inflow rate per unit length)

In this case there exists a considerable amount of turbulence due to the
addition of the incoming flow, and the energy equation is not of much use.
With the usual assumptions introduced in the development of nonuniform
flow equations, and assuming the lateral inflow has no x-momentum added
to the channel flow, we can deduce an equation for the surface slope as:

2pQq,
gA®
BQ°B
1- 3
gA

So — §¢ —

&l

(8.22)

In the case of subcritical flow all along the channel, the control (critical
depth) of the profile is at the downstream end of the channel. For all other
flow situations the establishment of the control point is essential to initiate
the computational procedures.

In a rectangular channel the location of the control point, x,, may be
written approximately (see Henderson®) as:

8 *2 3
x = —2 P (8.23)
(50~ &)
° CB

where C is the Chezy coefficient and P is the wetted perimeter of the
channel. The control point in a channel will exist only if the channel length
L > x.. In a given length of the channel, for a control section to exist its
slope, Sp, should have a minimum value given by:

gP 28 (qu) 13

> S—+ — [——
So> gt g gL

and the flow upstream of the control is subcritical.

(8.24)

(ii) Decreasing flow (q-, outflow rate per unit length) — side weir
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Assuming the energy loss (due to diversion of the water) in the parent
channel is zero, the water surface slope equation can be deduced as:

aQq,
So—8——>
ﬂ = __LA_ (8.25)
dx « QT .
1- gA3

Equation 8.25 can be extended to be applicable to a side weir of short length
with Sg = §¢ = 0 and o = 1. In the case of a rectangular channel, equation
8.25 is rewritten as:

&)

o 2 620
dx  gB% - Q '
The outflow per unit length, q, = (—dQ/dx) is given by the weir equation:

dQ 2
~h = 3MVE (G - 9" (8.27)

in which Cy is De Marchi’s discharge coefficient, s is sill height and y is flow
depth in the channel. If the specific energy in the channel, E, is assumed
constant, the discharge in the channel at any section is given by

Q=ByvVv2g(E -y (8.28)
Combining equations 8.26, 8.27 and 8.28 and integrating we obtain
3B
x = ——¢wm(y, E, s) + const, (8.29)
2Cum
in which

2E-3 [E—y ., [E=y
E,S) = / - / :
¢M (Y, ’S) E - s y—s 3 sin y—s (830)

The weir length, L, between two sections is then given by

3B . :
L=x—%x=5+— (¢m2 — 1) (8.31)
2 Cpm
The De Marchi coefficient, Cy, for a rectangular sharp crested side weir is
given by
Cm = 0-81 — 0-60F,4 (8.32)

for both subcritical and supercritical approach flows, F,;, being the flow
Froude number. For a broad crested side weir, the discharge coefficient is
given by

Cm = (0-81 — 0-60F,y) K (8.33)
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where K is a parameter depending on the crest length, W, and for a 90°
branch channel is given by

K = 10 for 2L—5

> 20 (8.34)

and

— S —
K = 080 + 0-10 (y‘w ) for YIW > <240 (8.35)
(iii) Decreasing flow (bottom racks)

The flow over bottom racks (e.g. kerb openings) is spatially varied with the
surface slope given by

dy _2:CVy(E-y)

dx 3y - 2E (8.36)

in which ¢ is the void ratio (opening area to total rack area), E is the specific
energy (constant) and C is a coefficient of discharge dependent on the
configuration of openings. Further treatment of these topics can be found
for example in Open Channel Hydraulics by French’.

Worked examples

Example 8.1

Measurements carried out on the uniform flow of water in a long rectangular
channel 3-0 m wide and of bed slope 0-001, revealed that at a depth of flow
of 0-8 m the discharge of water at 15°C was 3-6 m®/s. Estimate the discharge
of water at 15°C when the depth is 1-5 m using (a) the Manning equation,
and (b) the Darcy equation and state any assumptions made.

Solution:
From the flow measurement the value of n and the effective roughness size
(k) can be found

(a) Q= % R*3 8,2 (equation (8.4)) ()
A cusc
= ARwg,
"o
= 0-0137

wheny = 1-5m; Q = 860 m’/s.
(b) Using equation (8.11)
V32g RS, o [ k 1-255 v ]

= - +
Q A 2-303 148 R RV32%g RS,

(ii)
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(noting the conversion to log,)
k + 1-255 v ) — EXP <_ Q x 2:303 )
148R RV32gRS, AV32g RS,

Q x 2-303 1-255 v
k=[EXP(— )— ]x14-8xR=0-00146m
AV32RS,/] RV3%ERS,

Substitution in equation (ii) with y = 1.5 m and k = 0-00146 m yields:
Q = 844 m%/s.

whence (

Example 8.2

A concrete-lined trapezoidal channel has a bed width of 3-5 m, side slopes at
45° to the horizontal, a bed slope 1 in 1000 and Manning roughness coefficient
of 0-015. Calculate the depth of uniform flow when the discharge is 20 m%/s.

(See fig. 8.15.)
AN _ /
1 y
N
ke b |

™ 1

Figure 8.15

Solution:
A=0b+Ny)y=@35+yy
P=b+2yViI+N =35+2V2y
A__B5S+yy

P (35 + 2 V)

Manning equation: Q = A g g1

. _B5+y)y ( B5+yy )2/3 12 .
b Q=505 \Gs+2vy) ©W ®
Setting Q = 20 m*/s equation (i) may be solved for y by trial or by graphical
interpolation from a plot of discharge against depth for a range of y values
substituted into (i). (See fig. 8.16.) (See table below.)
At 20 m*/s depth of uniform flow = 1-73 m.

Of course the graph (fig. 8.16) will enable the depth at any other discharge
to be determined.
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Depth (y) A P R Q
(m) (m?) (m) (m) (m*/s)
1.0 4:50 6-33 0-711 7-56
12 5-64 6-89 0-818 10-40
14 6-86 7-46 0-920 13-67
1-6 8-16 8-02 1.017 17:39
1-8 9-54 8-59 1-110 21-57
20 11-00 9-16 1200 26-21
2:0 (/
g / '
= /
= 1-0
B ~
N
0 5 10 15 20 25 30
Discharge m®/s
Figure 8.16
Example 8.3

Assuming that the flow in a river is in the rough turbulent zone, show that in
a wide river a velocity measurement taken at 0-6 of the depth of flow will
approximate closely to the mean velocity in the vertical. (See fig. 8.17))

' v | C
Velocity
[ distribution
i
Yo y
1 Wﬁnmj'ﬂmm
bt
yl
Figure 8.17
Solution:

In Chapter 7 it was shown that the velocity distribution in the turbulent
boundary layer formed in the fluid flow past a rough surface is:



STEADY FLOW IN OPEN CHANNELS 209

vV —575log 2 + 85 ()
T k
o
p
or = 5.75 log é(—)—! (ii)
To k
p

Noting that the local velocity given by (i) is reduced to zero at y’ = % from

the boundary, the mean velocity in the vertical is obtained from:

1 [*
V=— vdy
Yo Jy

T
575 |2
e, 30y
—t =g
f,, o

whence V = 3303 y,

7 V% 30 30
= 2.303y0 [Yomr"'}'oln)’o-)’o_(y lnr+ylny—Y)]

T,
5-75 J—‘l
= —-———-ﬁ— (yo ln 30 yO

- + ’
2303 y, kK e y)

. _ <. E,. 30 Yo _ 1 )
i.e. V=575 ‘/ P (log = 2303 (iii)

ignoring the single y’ term.

The distance above the bed at which the mean velocity coincides with the
local velocity is obtained by equating (ii) and (iii)

0y 30 y,
k k
ory=037y,=04y,

This verifies the field practice of taking current meter measurements at 0-6
of depth to obtain a close approximation to the mean velocity in the depth.

log = log — 0434

Example 8.4

Derive Chezy’s resistance equation for uniform flow in open channels and
show that the Chezy coefficient, C, is a function of the flow Reynolds
number and the channel relative roughness and is given by
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C =575Vglog

k+§

where &' is the sublayer thickness given by equation 7.33.

Solution;

Balancing the gravity and resisting forces along a reach length, L, of the
channel (for uniform flow) we obtain

pgALS,=tPL (i)
giving the uniform boundary shear stress,
T=pgRS, (8.37)

In turbulent flows 7 < V2 (V is the mean velocity of flow) and we can hence
write :
V=CVRS, (8.38)

Comparing equation 8.38 (Chezy’s) with the Darcy-Weisbach equation
(equation 8.2) we obtain

_ /8%
c_\/_: (8.39)

In pipe flow A = f (R, k/D) and extending this to open channel flow
D. = 4R) .

A =f (4RV/v, k/4R) (8.40)

Equation 8.40 is represented by the same Moody diagram constructed for
pipe flow.

Evaluation of the Chezy coefficient:

The velocity distributions (two-dimensional flows) for smooth and rough
boundaries given by equations 7.23 and 7.27 can be written as:

u/u, = 5-75 log (9u,y/v) (i)
and u/u, = 5-75 log (30y/k) (iii)
In turbulent two-dimensional flows u = V aty = 0-4y, (see worked example

8.3), yo being the flow depth. Also, equation 7.33 suggests thatu, = 11-6 v/§’,
Combining these with (ii) and (iii) and replacing y, by R yields '
2 .
V =575u, log 1 l;, (iv)
k + 3—5'
By writing u, = (g R So)'” in equation (iv) and comparing with the Chezy
equation (equation 8.38) we can deduce
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C =575 Vg log

(8.41)

k ——
*35

Example 8.5

A trapezoidal channel with side slopes 1:1 and bed slope 1:1000 has a 3 m
wide bed composed of sand (n = 0-02) and sides of concrete (n = 0-014).
Estimate the discharge when the depth of flow is 2-0 m.

Solution (see fig. 8.18):

Py(=P3)=2828m; P;=30m; P=8-656m (onsolidsurface only)
Al(=A)=20m? A,=60m? A=10-0m?
Ri(=R3)=07072m; R;=20m; R=1155m

Evaluate composite roughness:

o 15723
Horton and Einstein: n = [EP'PL]
. . 1-5 015123
_ [2(2 828) x 0 0;256 + 3 x 0-02 ] — 00162
277172
Pavlovskij: n = [EP—'H']
P
2(2-828) x 0-014® + 022712
- [ (2-828) 08(?656 3 x 002 ] = 0-0163
53
Lotter: n = % = 0-0157
P; R;
3 ( )
Withy = 2:0m
\, J/
20m
Py
| 30m |
r Pz' |

Figure 8.18
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Discharge (Horton n) = % R 8,12 = 21-49 m’/s

Discharge (Pavlovskij n) = 21-36 m%/s
Discharge (Lotter n) = 22-17 m?/s.

Example 8.6 v

The cross-section of the flow in a river during a flood was as shown in fig. 8.19.
Assuming the roughness coefficients for the side channel and main channel to
be 0-04 and 0-03 respectively, estimate the discharge.

Bed slope = 0-005

Area of main channel (bank full) = 280 m>

Wetted perimeter of main channel = 54 m

Area of flow in side channel = 15225 m?

'4 Om___ | 40m | 50m J
T T b

Figure 8.19

Wetted perimeter of side channel around the solid boundary only (excluding
the interfaces X — X between the main and side channel flows) = 104-24 m
Area of main channel component = 280 + 40 x 1-5 = 340 m?

. 340 (340\P® 152-25(152-25)2’3
Discharge = 5763 ( 54) 0005 + 504 \10a22) VOO

= 3079 m’/s.

Note that the treatment of this problem by the equivalent roughness
methods of Horton and Paviovskij will produce large errors in the computed
discharge due to the inherent assumptions. However the Lotter method should
produce a similar result to that computed above since it uses basically the same
method.

. PR5/3
Lotter equivalent roughness n = —— P. R
igl ( n; )
n = 0-0241
_ 49225 ( 492-25 \**
and Q = 0.024 (158-242) 000

= 3077 m°/s.
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Example 8.7

A long rectangular concrete-lined channel (k = 0-3 mm) 4-0 m wide, bed
slope 1:500 is fed by a reservoir via an uncontrolled inlet. Assuming that
uniform flow is established a short distance from the inlet and that entry
losses = 0-5 V?/2g determine the discharge and depth of uniform flow in the
channel when the level in the reservoir is 2-5 m above the bed of the channel
at inlet. ’

Figure 8.20 is an example of natural channel control; the discharge is
affected both by the resistance of the channel and the energy available at the
inlet.

Two simultaneous equations therefore need to be solved:

(i) Apply the energy equation to sections 1 and 2

v? vZ 0.5 Vv? Q? .
25 = + —+ h = + — + = +_“1+0.5 1

orQ, = by ./ 2 (251%;’) (ii)

(i) Resistance equation applied downstream of section 2:

_ k 1:255 v
Q3= - A V3RS, log[14-8R+R 32gRSo] (iii)

Solution:

Equation (ii) could be incorporated in (iii) to yield an implicit equation byy
which could then be found iteratively. However a graphical solution can be
obtained by generating curves for Q v. y from (ii) and (iii).

y (m) 0-4 0-8 1-2 146 2-0 24 25

Q; (ms) 838 1509 1979 2195 2045 1098 0

Q; (m¥s) 214 594 1050 1551 2080 2630 27-70

— e
\32/5; N
2:5m =

Y l
, g\\\\\\\\\\\\, \\\\\\.\\\\\\\\\\\\\\\\\\\\W“
| | '
o) @ &

Figure 8.20
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Q, and Q5 are plotted against y in fig. 8.21 whence discharge = 20-5 m/s at
a uniform flow depth of 1-98 m, given by the point of intersection of the two
curves.

25 | atiib]
2:0
Qavy

15

g L/ 4
/ /

o 10
2 /
] 05

0 10 20 30

Discharge m*/s

Figure 8.21

Note: Care must be taken in treating this method of solution as a universal
case. For example, if the channel slope is steep the flow may be supercritical
and the plots of equations (ii) and (jii) would appear thus (see fig. 8.22).
The solution is not now the point of intersection of the two curves. The
depth passes through the critical depth at inlet and this condition controls
the discharge, given by Q.. Channel resistance no longer controls the flow
and the depth of uniform flow corresponds with Q. on the curve of equation

(ii).

Example 8.8
Using the data of Example 8.7 but with a channel bed slope of 1:300
calculate the discharge and depth of uniform flow.

Solution:

The discharge v. depth curve using the inlet energy relationship, equation
(ii) of Example 8.7 is unaffected by the bed slope. Qs is recomputed from

1
equation (jii) of Example 8.7 with S, = 300°

y (m) 0-4 0-8 1-2 1-6 2:0 2-4 25

Q, (m*s) 838 1506 1979 2195 2045 10-98 0

Q; (m’s) 394 1091 1927 2844 3814 4820 50-77

The plotted curves of Q, v. y and Qs v. y appear as in fig. 8.22. The flow at
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the channel inlet is critical thus controlling the discharge (= Q.). Downstream,

the uniform depth of flow is superecritical.
Summary: Discharge = 21-95 m%s; depth in channel = 1-31 m.

Quvy
Q.

Qsvy

Depth y

Discharge Q

Figure 8.22

Example 8.9
Determine the dimensions of a trapezoidal channel, lined with concrete

(k = 0-15 mm) with side slopes at 45° to the horizontal and bed slope 1: 1000
to discharge 20 m*/s of water at 15°C under uniform flow conditions such

that the section is the most economic.

Solution (see fig. 8.4):
N =10

b+ 2Ny =2y V1 + N2

b+2y=2V2y
orb=0-828y

Then A = 1-828 y*, P = 3-656 y

k 1255
Q=-AV3gRS, log [14-8R+R 32gPt’S ]

This must be solved by trial, calculating Q for a series of y.

y (m) 0-5 10 1-5 1-8 1-9 2:0

Q (m%s) 0-54 3.3 9.5 15-26 17-56 20-06

Adopty = 2-0m
Then b = 1-414 m.
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Example 8.10
A trapezoidal irrigation channel excavated in silty sand having a critical
tractive force on the horizontal of 2-4 N/m? and angle of friction 30° is to be

designed to convey a discharge of 10 m*/s on a bed slope of 1:10000. The
side slopes will be 1 (vert):2 (hor). n = 0-02.

Solution:
The channel bed is almost horizontal and the critical tractive force on the
bed may therefore be taken as 2-4 N/m>.

The limiting tractive force on the sides is:

_ sin® 0 .
Tes = Teb sin? ¢ (see section 8.5 (b))
sin? (26-565°)
= 2.4 _ A A )
2 \/1 sin’ (30°)

=24 V1 — 0-8 = 1:073 N/m?
- 076 pg y S, } 1-073 N/m?

4 1.073
Y T 076 x 1000 x 9-81 x 0-0001

y } 144 m.

Now Q = % - R? §,'2

0= (b+2y)y<(b+2y)y)2’3 5,12

n b+2y VS
(b + 2:88) X 144((b+288)x 144);,,3
10 = 002 (b + 6-44) X

Solving by trial (graphical interpolation) for series of values of b,

b 1-0 20 4-0 80 10-0 12-0

R.H.S. 2-31 311 478 827 10-05 11-84

required b = 9-95 m
V = 0-54 m/s

which agrees reasonably with the maximum mean velocity criterion (table 8.3).

Example 8.11 (Maximum mean velocity criterion)
Using the data of the previous Example determine the channel dimensions

such that the mean velocity does not exceed 0-6 m/s when conveying the
discharge of 10 m®/s.
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Q=AV; 10=A x06

whence A = 1667 m? .
and A = (b + 2y) y

whence b = 16-67/y — 2y

_Auacin_ A" n
Q=4 RS n PO
ie. 10 = 16-67°> x V0-0001
e 0-02 x p¥3

whence P = 12:865 m

andP=b + 2y V35 =16).1i+2y(\/§—1)

ie. 0472y* - 12865y + 1667 = 0
whence y = 1-365 m
and b = 948 m.

Example 8.12

Check the proposed design of a branch of a wastewater sewerage system
receiving the flow from 250 houses. The pipe is 150 mm diameter of vitrified
clay with a proposed bed gradient of 1 in 100. Take the per capita daily
water supply to be 200 1/day (= 1 dry-weather flow, (dwf)) and assume that
the population density is 3-5 persons per house.

Notes: Sewers conveying crude sewage develop a coating of slime on the
inner boundary. The Hydraulics Research Station® recommend an effective
roughness of 3-0 mm for slimed vitrified clay pipes and 6-0 mm for similar
concrete pipes. Due to variations in rate of water consumption during the
day, in general a flow of at least twice the average (2 dwf) is achieved each
day around midday. This flow value is generally used to check the minimum
velocity criterion, and a figure of 6 dwf used to check the pipe capacity.

Solution:
Equations (8.10) and (8.11) can be used to generate curves of velocity and
discharge with variation in depth (see fig. 8.23).

. _ 2 x 250 x 3-5 x 200
2 dwf discharge = 24 % 3600

At this discharge, from the graph (fig. 8.23), depth of flow = 0-056 m and at
this depth V = 0-66 m/s.

The design is satisfactory since a velocity of 0-61 m/s is exceeded.
Note: If the self-cleansing velocity had not been attained the slope of the
pipe would have to be increased, not the diameter.

= 405 Il/s
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0-15
0-10
g Depth versus discharge
=
3 Z
B 005
/"- Depth versus velocity
Y
0 Is } 10 15 Discharge /s
0-5 1 1-0 1.5 Velocity m/s
Figure 8.23

6 dwf discharge = 12-15 I/s.

The pipe will convey 14-8 I/s at 0-95 of depth and 13-6 1/s when full.
This example illustrates the basis of the tables of proportional velocity,
V (part-full) Q (part-full)
V (full) Q (full)

with proportional depth (y/D) which appear in Tables for the hydraulic
design of pipes (Recommended reading 9).

and proportional discharge

Example 8.13

Design a branch within a storm sewer network which has a length of 100 m,
a bed slope of 1 in 150 and roughness size of 0-15 mm and which receives
the storm run off from 3-5 hectares of impermeable surface using the
Rational (Lloyd-Davies) Method. In designing the upstream pipes the
maximum ‘time of concentration’ at the head of the pipe has been found to
be 6:2 minutes. The relationship between rainfall intensity and average
storm duration is tabulated below. ’

storm duration

. 2-0 3.0 40 5-0 6-0 7-0 8-0
(min)

average rainfall intensity

(mm/hr) 94-0 87 738 700 614 572 535

Notes: The (Rational) Lioyd-Davies Method gives the peak discharge (Q,)
from an urbanised catchment in the form:
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=L
360

where A, = impermeable area (hectares)

Q, A, i (m®/s)

i = average rainfall intensity (mm/hr) during the storm.

Since the average rainfall intensity of storms of a given average return
period decreases with increase in storm duration the critical design storm is
that which has a duration equal to the ‘time of concentration of the catch-
ment’ T.. T, is the longest time of travel of a liquid element to the point in
question in the catchment and includes the times of overland and pipeflow;
the time of pipe flow is based on full-bore velocities.

Solution:
The selection of the appropriate pipe diameter is by trial. Noting that
the increment in the pipe size of sewer pipes is 75 mm from 150 mm, try
D = 375 mm.
Full-bore conditions; D = 4 R whence, using equation (8.10)
0-15
3-7 x 0375
2-51 x 1-13 x 107° ]
0-375 x V'19-62 x 0-375 x 0-0067

(noting that S, = 0-0067),
whence Vg = 1-703 m/s and Qg = 0-188 m®/s (from equation (8-11))

Vg = -2 V19-62 x 0-375 X 0-0067 log [

. . 100 .
Travel time along pipe = 170 x 60 — 0-98 min
Thus T, = 6-2 + 0-98 = 7-18 min; whence i = 56-5 mm/hr
i =33 X565 _ o5 3
. inflow = 360 0-55 m’/s.

This is greater than the full-bore discharge (Qf) of the 375 mm pipe which is
therefore too small. Try 600 mm pipe.

Vg = 2:28 m/s

QfF = 0-645 m3ls

Travel time along pipe = 10 ___ 0-73 min
2-28 x 60

T, = 6-93 min; whence i = 57-5S mm/hr

_ 35 x575 _ ) 3
Inflow ————360 0-56 m°/s.




220 CIVIL ENGINEERING HYDRAULICS

A 600 mm diameter pipe is required.
(Note that a 525 mm pipe has a full-bore capacity of 0-454 m/s.)

Example 8.14

A rectangular channel 5 m wide laid to a mild bed slope conveys a discharge

of 8 m%/s at a uniform flow depth of 1-25 m.

(a) Determine the critical depth.

(b) Neglecting the energy loss, show how the height of a streamlined sill
constructed on the bed affects the depth upstream of the sill and the
depth at the crest of the sill.

(c) Show that if the flow at the crest becomes critical the structure can
be used as a flow measuring device using only an upstream depth

measurement.
Solution:
2
=3L, q=8-16mus.
(a) y. . Q=7 6 m”/s.m
1-6
= 3 — -
Ye 981 0-639 m.
(b)
V.2 { Total energy line
1
2 '1» = le
FM
N Y2
' :
[}
@ @
Figure 8.24

Neglecting losses between 1 and 2 (see fig. 8.24)
E =E;
Es,l = Es'z + z

In the case of uniform rectangular channel the specific energy curve is the
same for any section and if this is drawn for the specified discharge it can be
used to show the variation of y, and y,.
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-Q 2 - 2
y v(—by) Vi2g E, =y+ V2

(m) (m/s) (m) (m)

02 80 3262 3-462
03 5.33 1-45 175

04 4.0 0-815 1:215
06 267 0-362 0-962
0-8 2:00 0-204 1-004
1-0 1-60 0-130 1-130
12 1-33 0091 1-291
1-4 1-14 0-067 1-467
1-6 1-00 0051 1-651

For small values of z (crest height) and assuming that the upstream depth
is the uniform flow depth (y,), (see fig. 8.25) the equation:

Es.l = Es.2 + z

can be evaluated (for y,) by entering the diagram with y, (= y,) moving
horizontally to meet the E, curve (at x) setting off z to the left to meet the
E; curve again at W, which corresponds with the depth at the crest Y.
This procedure can be repeated for all values of z up to z. at which height
the flow at the crest will just become ‘critical’. Within this range of crest
heights the upstream depth (the uniform flow depth, y,) remains unaltered.
Of course the solution can also be obtained from the equation:
Ve V2,
2g y2 2g
but it is important to realise that if z exceeds z, then y; will not remain equal
10 Yp.
If z exceeds z. the E; curve can still be used to predict the surface profile;

v+

Esl Yi -
Y1 X i
E
¥2 = wz l
£ c e/ ° s
a Z y2 z |
A

Figure 8.25
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y, remains equal to y.. Set off z to the right from C (right-hand diagram of
fig. 8.25).
Note that y, has increased (to y{) to give the increased energy to convey the
discharge over the crest.

The solution, using a numerical method of solution of the energy equation
for greater accuracy is tabulated: the graphical method described gives
similar values. (See fig. 8.26.) (See table below.)

z(m) 01 02 03 04 05 06 07 08 09

yi(m) 125 125 125 1.28 1-39 1-50 1-61 1-715  1-82

y>(m) 113 100 08 0639 0639 0639 0639 0639 0-639

2‘0 m
g 15 LTy versus z
2 =g
2 10
T Y2 versus z
0-5

0 01 02 03 04 05 06 07 08 09 10
Sill height, z m

Figure 8.26

(c) (See fig. 8.27.)

V12
a—=
| 2% _
v
?\'dzg
hy H, Y1 Ve

Figure 8.27
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V'
H =y + 28
now y. = 2/3 H; (see section 8.7)
2H, V.2
H=—+
T3 2g

Note that H, is the upstream energy measured relative to the crest of the
sill. In practice the upstream depth above the crest (h;) would be measured
o V|2

and the velocity head is allowed for by a coefficient C, and energy

losses by Cq4
2 2
Q=3b /FCCon

(see BS 3680 Part 4A).
See also Example 8.18 which illustrates the effect of downstream conditions
on the existence of critical flow over the sill.

Example 8.15

Venturi Flume: A rectangular channel 2-0 m wide is contracted to a width of
1-2 m. The uniform flow depth at a discharge of 3 m%/s is 0-8 m. (a) Cal-
culate the surface profile through the contraction, assuming that the profile
is unaffected by downstream conditions. (b) Determine the maximum throat
width such that critical flow in the throat will be created. (See fig. 8.28.)

Solution;

In principle the system, and method of solution is similar to that of Example
8.14. However the specific energy diagrams for any of the contracted sections
are no longer identical with that for section 1.

V2
EI=E2=(YZ+_;)

Entering with y, (= y,) to meet the E, curve for section 1 (width B) at X
and moving vertically to meet the curve for width b’ yields yj, the depth in
the throat. (See fig. 8.29).
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Figure 8.28

If the throat is further contracted to b” the vertical through X no longer
intercepts the E; curve for width b”; this means that the energy at 1 is
insufficient and must rise to meet the specific energy at 2 corresponding with
the critical depth at 2 (E; 2min)-

For a given discharge a minimum degree of contraction is required to
establish critical flow at the throat; this is b, corresponding with the specific
energy curve which is just tangential to the vertical through X. Provided it is
recognised that if b < b, y, will be greater than y, the problem can be
solved numerically.

. Q?
A = P ]
t uniform flow E, = y, + 22 B2 )'n2
32
=0-8 +
8 19-62 x 2% x 0-8
=0979 m
Depth 1 /
e x it ™ Throat width b"
y1(= ¥n) E, /
YZ / /
y2©) [* Esz(mi_n)’ / [ \\ Throat width b’
B
E—’

Figure 8.29
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If flow at throat were critical, the minimum specific energy would be
Ye+Ye/2=15y,

2 2
and y. = 3/% = /E-Ob—z
33
Ye = 3/ggr x 122 - 086 m

and E; nin = 1-291 m.

This is greater than the energy upstream at uniform flow: thus the flow in
the throat will be critical.
Therefore y, = 0-86 m and y, is obtained from:

02
1291 =y + ——5—3
h 2g B’ y,’
9 il
IBL=n+ o x Z x y2
whence y; = 1-215 m.

(b) Let b, = the throat width to create critical flow at the specified discharge.
Critical flow can just be achieved with the upstream energy of 0-979 m.

Q

T =Yt by

0]

Since 0-979 m is also the energy corresponding with critical flow at the
throat. y. = 2/3 x 0-979 = 0-653 m

32
19-62 x b2 x 0-653°

The solution to which is b, = 1-816 m.

Notes: In a similar manner to that of Example 8.14 (c), it can be shown that
if the flow in the throat is critical the discharge can be calculated from the
theoretical equation

= % /%g b H,3? (practical form: Q = % /%ﬁ b C, C4 h13’2)

where H, is the upstream energy (h; + V,;%/2g) and h, the upstream depth.
In practice the throat would be made narrower than that calculated in the
Example above in order to create SUPERCRITICAL flow conditions in the
expanding section downstream of the throat followed by a hydraulic jump in
the downstream channel. The reader is referred to BS 3680 Part 4C and also
to Example 8.19.

whence from (i), 0-326 =
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Example 8.16

A vertical sluice gate with an opening of 0-67 m produces a downstream jet
depth of 0-40 m when installed in a long rectangular channel 5-0 m wide
conveying a steady discharge of 20-0 m*/s. Assuming that the flow down-
stream of the gate eventually returns to the uniform flow depth of 2-:5 m.

(a) Verify that a hydraulic jump occurs. Assume a = § = 1-0.

(b) Calculate the head loss in the jump.

(c) If the head loss through the gate is 0-05 V,%/2g calculate the depth
upstream of the gate and the force on the gate.

(d) If the downstream depth is increased to 3-0 m analyse the flow conditions
at the gate.

Solution:
(a) (See fig. 8.30.)

If a hydraulic jump is to form the required initial depth (y;) must be greater
than the jet depth.

.=h V1+8F2_1. F. = Vi 20
n= gl B TS50 x 25 VIER S

i.e. Fg = 0-323 and hence y; = 0-443 m (equation (8-16))
Therefore a jump will form.
(b) Head loss at jump

e ) e B
- YI 2g ys zg

= 0443 — 2.5 + L __4_2_(_‘!_)2]
By = 0-443 25+2g[(0-443) 25

= 1-97 m.
(c) (i) Apply the energy equation to 1 and 2:

A\ V,? V,2
2 =y, + 2 + 0 05 2
V2
V, = 4/0-4 = 10 m/s; ?g- =509 m

i+ -

2
q
" ey

= 5752 m

whence y; = 5-73 m.
(ii) F, = gate reaction per unit width
Apply momentum equation to element of water between 1 and 2

2
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Q’1V12
_ 2g l dhy
= F,
bjt
a X
LT, TTTI T 7 T T T T 77722777777
]
) @

Figure 8.30

(Note that the force due to the friction head loss through the gate is
implicitly included in the above equation since this affects the value of y,.)

1000 [% (5-73°> — 0-4%) + 4 (0-693 — 10)] - F=0

whence F, = 123 kN/m width.

(d) With a sequent depth of 3-0 m the initial depth required to sustain a
jump is 0-327 m (following the procedure of (a)). Therefore the jump will
be submerged (see fig. 8.31), since the depth at the vena contracta is 0-4 m.

Apply the momentum equation to 2 and 3 neglecting friction and gravity
forces.

2 2
M-+pq(V2—Vs)-—E—-gL=O
2 2
S T g \y
whence yg =y, ‘/1 +2F52< —&); where F, = Vs
y2 VEYs
ys = 30m; y,=04m; whence yg =139 m
-
1 N
Je i}
Iy" ‘Y2
/77//74'I’f/’ll’/llII’II7rI,////I' 77777
@ ©)]

Figure 8.31
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Applying the energy equation to 1 and 2:

2 V 2
+ .—
bJ| 2g =y + 2 +005
A\ _
i+ 5 = 674m.

whence the upstream depth, y, is now 6-73 m.

Example 8.17

A sluice gate is discharging water freely (modular flow) under a head of 5 m
(upstream of the gate) with a gate opening of 1-5 m. Compute the discharge
rate per unit width of the gate. If the water depth immediately downstream

of the gate is 2 m (drowned or nonmodular flow), determine the discharge
rate,

Solution:
Referring to fig. 8.30, for the modular/free flow case

q = Csa Vigy, (8.42)
where

Cq = C (8.43)

/ a
1+C,—
ch

The contraction coefficient C. (= y»/a) is a function of a/y;; a reasonable
constant value of C. = 0-60 may be assumed for most conditions. Equation
8.42 can also be written as

q=Cy4a Vng)ﬁ - Ca) (8.44)
where

Cly= S (8.45)

t-(e3)
Y1
For the submerged (nonmodular) flow condition, the discharge

qs = C'4s 2 V28(¥1 — yg) (8.46)

where C'y, = C’4 with C; = 0-60. The depth of submergence, yg, downstream

of the gate (see fig. 8.31) is computed by momentum equation (see Example
8.16) as

Yo . \/1 + 2F32(
¥s

gca) : (8.47)
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(i) Modular flow:
aly; = 0-3; .. C4 = 0-552 (equation 8.43)
hence, q = 8-2 m*/s/m (equation 8.42)
(ii) Nonmodular flow:
C'4s = C'q = 0-610 (equation 8.45)
oq=061x 15 x V[2g(5 — 2)] = 7-08 m>/s/m

Note: if we assume the flow condition immediately downstream of the gate
remains unaffected by submergence, we can obtain V, by the energy and
continuity equations

5+ Vi#2g = 2 + V,22g; 5V, = 0:6 X 1:5V,

as V; = 1-4 m/s; hence q = y; X V; = 7-0 m*/s/m

Example 8.18

A broad-crested weir is to be constructed in a long rectangular channel of mild

bed slope for discharge monitoring by single upstream depth measurement.
Bed width = 4-0. Discharge measurement range from 3-0 m*/s to 20-0 m*/s.

Depth-discharge (uniform flow) rating curve for channel:

Depth (m) 0-5 1-0 1-5 2-0 2-5

Dicharge m®/s 3.00 815 1422 20-8 27-7

Select a suitable crest height for the weir. (See fig. 8.32.)

Solution:
Ideally the design criterion is that a hydraulic jump should form downstream
of the sill. From the table the depth of uniform flow at 20 m3/s is 1-95 m

Vi
Zg&

Y

Figure 8.32
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(¥n)- Required initial depth to sustain a hydraulic Jump of sequent depth
195 m, (y,) is

%= 2 (V1482 ~ 1)

Yi = 0913 m; (= y,)
02
+ —_—
2g (bY3)2

For critical flow conditions at the crest of the sill,

2
Yo =y, = 3/ﬂg— =137m

Vi_ve_ @
22 2 2g(y)
Thus the specific energy at critical flow at the crest of the sill

2
E;; (crit) =y, + \2/; =137 + 0-679 = 2-049 m

To find the minimum sill height equate E; = E,

Es3(=E3) =y, = 0913 + 1529 = 2442 m

and = 0-679 m

ie z + Es‘z (Cl’lt) = E3
i.e. z + 2-049 = 2-442; whence z = 0-393 (say 0-4 m)

The upstream depth can be calculated by equating E; to E; neglecting
losses.

2
Mt =
17 28 oy

whence y1 = 2-17m

i.e 2-442

At the lower discharge of 3-0 m3/s the depth of uniform flow = 0-5 m.
Required initial depth for a hydraulic jump of sequent depth 0-5 m

=029 m (= yy)

The minimum specific energy required to convey the discharge of 3 m3/s
over the sill is that corresponding with critical flow conditions.

2 2
Yo = 3/"E = 0-386 m; \?fg = 0-193 m

E.. = 0-579 m

With the established crest height of 0-4 m the minimum total energy is (E,)
= 0-4 + 0-579 = 0-979 m.



STEADY FLOW IN OPEN CHANNELS 231

Since this is much greater than 0-5 m, the upstream uniform flow depth,
the flow at the crest is certainly critical provided there are no downstream
constraints. '
Check the existence of a hydraulic jump

E; = E; = 0-979 m (neglecting losses)
QZ
+ —
P 2g (bys)?
Since this is less than that required for a jump to form (0-29 m) a hydraulic

jump will form in the channel downstream of section 3. The design is
therefore satisfactory.

= 0-979 m; whence y; = 0:191 m

Example 8.19 (The ‘critical depth flume’)

Using the data of Example 8.15 determine the minimum width of the throat
of the venturi flume such that a hydraulic jump will be formed in the
downstream channel with a sequent depth equal to the depth of uniform
flow. Determine the upstream depth under these conditions. (See fig. 8.33.)

Solution:
Downstream depth (= sequent depth) = depth of uniform flow = 0-8 m.

Q = 3 m’/s; channel width = 2-0 m

3 \Z
V, = X 08 = 1-875m/s; F, = ey = 0-67
) |
/I
— B I b I
@ @ ®

-——————— —
~ e
-~

Hl Y1

¥z ¥s(= ¥Yn)

3
PP IT7T77777 77777 777777777 777777777 777777 //////I/”//TI//////” IIF77777Ir7?

Figure 8.33
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Required initial depth for a hydraulic jump to form in the channel, with a
sequent depth of 0-8 m,

yi=%(\/1 + 8F,2 — 1) = 0-456 m

Thus the maximum value of
QZ
+ .
* 7 2g (bys)?
Conditions in the throat will be critical; if b = throat width,

/ Q?
= 3/=_
Y2, g b2

Equating energies at 2 and 3.

V2
Yoo+ =25 =E; = 1007 m

ys = 0456 m and E; = (Es3) =y = 1-007 m

2
. Q? Q?
e 3[—== + 5 = 1:007
g g b2
2\1/3
1.e. 1-5 (g%) = 1-007 m

whence b = 1-74 m.

(Note that this is narrower than that in Example 8.15 which specifically

stated that, in that case, downstream controls did not affect the flow profile.)

The upstream depth can be calculated, neglecting losses, from E; = E, = E,
QZ

2g B’ y,’

whence y, = 0-98 m.

ie y, + = 1-007 m

(Note that this is greater than the uniform flow depth.)

Example 8.20

A trapezoidal concrete-lined channel has a constant bed slope of 0-0015, a
bed width of 3 m and side slopes 1:1. A control gate increases the depth
immediately upstream to 4-0 m when the discharge is 19-0 m/s. Compute
the water surface profile to a depth 5% greater than the uniform flow depth.

Take n = 0017 and o« = 1-1.

Notes: The energy gradient at each depth is calculated as though uniform
flow existed at that depth. For hand calculation the Manning equation is
much simpler than the Darcy-Colebrook-White equations which could,
however, be incorporated in a computer program.
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Calculations: Using the Manning equation the depth of uniform flow at
19-0 m%*/s = 1-75 m. The systematic calculations are shown in tabular form
below. ((See equation 8.19 and section 8.11.)

o Q°B
yz 3
AA=I gdy=x2—xl whereg=#
y, dy y o — S¢
y B A R dx AA x
(m) (m) (m?) (m) dy (m) (m)
4-0 11-0 28-0 1-956 677-7T1 0
39 10-8 26-91 1-918 679-10 67-8 67-8
3-8 10-6 25-84 1-880 680-65 68-0 135-8
3.7 10-4 24-79 1-840 682-47 68-2 204-0
36 10-2 23-76 1-800 684-59 683 272-3
3.5 10-0 22-75 1-760 687-92 68-6 3409
34 9-8 21-76 1-725 690-00 68-9 409-8
33 9-6 20-79 1-685 693-45 69-2 472-0
32 9-4 19-84 1-646 697-58 69-5 548-5
31 9:2 - 1891 1-607 702-54 70-0 618-5
3.0 9-0 18-00 1-567 708-56 70-6 689-1
2- 8-8 17-11 1-527 715-94 71-2 760-3
2-8 86 16-24 1-487 725-10 72-0 832-3
2-7 84 15-39 1-447 736-64 73-1 905-4
2-6 82 14-56 1-406 751-43 74-4 979-8
2-5 80 13-75 1-365 770-80 76-1 1056
2:4 7-8 12-96 1-324 796-90 78-4 1134
2-3 7-6 12-19 1-282 833-35 81-5 1216
2:2 7-4 11-44 1-240 886-86 86-0 1302
21 7-2 10-71 1-198 971-33 929 1395
20 7-0 10-00 1-155 1120-92 104-6 1499
19 68 9-31 1-111 1448.07 128-5 1628
1-8 6-6 8-64 1-068 2667-73 205-8 1834

The surface profile is illustrated by plotting y v.x on the channel bed.

Example 8.21
Using the data of Example 8.20 compute the surface profile using the direct

step method.

Yo = 4-0 m;
= 0-017;

Solution:

At the control section, depth = 4-0 m,

. Q ) _
Specific energy (y + 7g A2 = 4.0 +

Sf=

Q2 n2

A2 D3

S, = 0:0015; Q = 19 m’/s:

a=11

2

= 544 x 107>

1-1 x 19?
19-62 x 28

A = 280 m?*, R = 1.956 m.

= 4026 m
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y A R E AE S S - Ax x
(m) (m) (m) (m) (m) (m) (m)

40 280 1956 4-026 — b — 0 0
39 2691 1918 3-928 0098 605 x 1075 574 x 10~° 67-84 67-84
3-8 25-84 1880 3-830 0-098 674 x 107 6:39 x 1075 67-98 135-82
37 2479 1840 3733 0097 752 x 1075 7-13 x 1075 6816 20398
ool ¥ | ! i i i d
1-8 864 1-068 2:0712 0-0623 1-28 x 1073 1-16 x 107> 184-94 1809-3

The surface profile is very similar to that calculated by the integration
method (Example 8.20).

Example 8.22
Using the standard step method compute the surface profile using the data
of Example 8.20.

The solution is shown in the table on page 235; the intermediate iterations
where H;y # H(y) have not been included. It is noted that the result is
almost identical with the numerical integration and direct step methods.
However, unless a computer is used the calculations in the standard step
method are laborious and for prismatic channels with constant bed slopes
the other methods would be quicker. The standard step method is par-
ticularly suited to natural channels in which the channel geometry and bed
elevation at spatial intervals, which are not necessarily equal, have been
measured. Variations in roughness coefficient, n, along the channel can also
be incorporated.

Example 8.23

A vertical sluice gate, situated in a rectangular channel of bed slope 0-005,
width 4-0 m and Manning’s n = 0-015, has a vertical opening of 1-0 m and
C. = 0-60. Taking @ = 1-1 and B = 1-0 determine the location of the
hydraulic jump when the discharge is 20 m*/s and the downstream depth is
regulated to 2-0 m.

Solution:

2 .2
(See fig. 8.34.) Note: §; = —21

ATR

Depth at vena-contracta = 1.0 X 0-6 = 0-6 m

Depth of uniform flow (from Manning equation) = 1-26 m
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Figure 8.34

Critical depth, y. = 1-:366 m (equation (8-14))

Initial depth at jump (equation (8.16)) = 0-884 m (Note: y, = 2-0 m.)
Proceeding downstream (in supercritical flow) from the control section,
y = 06 m and using the direct step method with Ay = 0-04 m, the
calculations are shown in the table:

y A R E AE S¢ S¢ Ax x
0-60 24 0-461 4-495 — 0-0438 — — 0
0-64 2-56 0-485 4-063 0-4317 0-0361 0-040 12-36 12-36
0-68 2:72 0-507 3.712 0-3510 0-0300 0-0330 12-50 24-87
072 2.8 0529 3425 02876 00253 0-0278 1267 37-54
0-76 3-04 0-551 3-188 0-2372 0-0216 0-0235 12-85 50-39
0-80 3-20 0-571 2-991 0-1967 0-0185 0-0200 13-07 63-46
0-84 3-36 0-591 2-827 0-1637 0-0160 0-0173 13-31 76-11
0-88 3-52 0-611 2-691 0-1365 0-0140 0-0150 13-61 90-38
Example 8.24

Identify the types of water surface profiles behind (upstream) and between
the gate and hydraulic jump using the data of Example 8.23.

Solution:
The solution here is generalised by re-writing the basic water surface slope
equation (equation 8.19) as:

dy ='_S° <1 _ zsé—;) i)
* e

If the conveyance of a channel is K and its section factor is Z, we can write
Q* = K? $¢ = K¢* Sg, Z2 = A%B and Z2 = « Q%g; equation (i) now
becomes:
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2
w[1- (]
dy L \K/J (i)
* -] "
z
Equation (ii) for the case of a wide rectangular channel with the Manning
resistance equation reduces to:

0= ()]
= Y. (iii)
[+- ()]
y
Equation (iii) is very convenient to identify the types of surface profile once
the normal depth, y,, and critical depth, y,, are established in a channel of

given slope, Sq.

gl

Case (i): mild channel .
In this channel, Sy < S, (critical slope i.e. yo = y.) and hence y, > y..

For y > yo > y. (zone 1): dy/dx is positive i.e. increasing depths along

x — M, profile
For y <y, > y. (zone 2): dy/dx is negative i.e. decreasing depths along
X — M, profile

For y < yp <y, (zone 3): dy/dx is positive i.e. increasing depths along
x — M; profile

Case (ii): steep channel
Here S, > S; and hence yp < y. and, depending on the level of y, again
three profiles (S;, S, and S;) exist.

Case (iii): critical slope channel
Here S = S; and y, = y,; zone 2 is absent and two profiles, C; and Cs,
exist.

Case (iv): horizontal channel
Here Sy = 0 and y, will not exist and hence zone 1 is absent; again two
profiles, H, and H;, exist.

Case (v): adverse slope channel

Now §q is negative with no y, and two profiles, A, and A, exist in this case.
The discharge Q = 20 m*/s and by the Manning resistance equation y, =
126 m. The critical depth in rectangular channel y. = {& Q*/b* g}'* from
@ Q? B/g A% = 1. Hence y. = 1-366 m > y,; hence steep channel with gate
opening below critical depth. The depth upstream of the gate (by energy
balance) = 4:05 m > y. > yo; zone 1 on steep slope; S; profile exists
immediately upstream of the gate.
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The flow downstream of the gate is supercritical (zone 3 of the steep
channel) merging with the controlled subcritical flow with the formation of
hydraulic jump. Here the S; profile forms between the depths, 0-6 m (just
d/s of gate) and 0-884 m, sequential to the controlled depth of 2 m.

Example 8.25

Discharge from a natural lake occurs through a very long rectangular channel
of bed width 3 m, Manning’s n = 0-014 and the bed slope = 0-001. The
maximum level of the water surface in the lake above the channel bed at the
lake outlet is 3 m. Calculate the discharge in the channel. If the channel
slope were to be 0-008, compute the discharge. Also, determine the uniform
flow depth and the minimum length of the channel for the uniform flow to
establish. Ignore entrance losses.

Solution:

(i) Slope = 0-001; first establish whether this is a mild or steep slope. If the
slope were to be assumed critical, the channel will have inlet control with
critical depth; critical depth in rectangular channel = %5H, H being the
energy head (lake level above channel inlet) available.

-. the critical depth at inlet, y. =% X 3 =2m

Since the channel is long (with no downstream control) uniform flow with
depth y, = y. establishes at the inlet itself; using the Manning resistance
equation the corresponding critical slope, S, is computed.

At critical depth the discharge is maximum and is computed from y, =
(q%/g)' (from a Q% B/g A® = 1); Hence, Q = gb = 26-58 m*/s and from
Q =An! R?? S12 the slope, S =S, = 0.0047.

If the channel is other than rectangular in cross section, two simul-
taneous equations (i) the energy equation and (ii) the critical depth criterion,
a Q*> B/g A’ = 1, must be solved for computing y..

Since the bed slope Sy < S, the channel is of mild slope.

Two equations at the inlet to solve two unknowns, depth and velocity, are
required:

(i) energy equation, H = y, + V2/2g and
(ii) the Manning resistance equation, V = n~! R¥? §1?

both are applicable at the inlet (long channel; uniform flow establishes from
the inlet). Simultaneous solution of (i) and (ii) gives

Yo =275 mand V = 2-213 m/s
thus the discharge Qy = 1826 m®/s

The slope S¢ = 0-008 > S, = 0-0047; the channel is a steep sloped one and
the inlet controls the flow. The discharge is maximum (= 26-58 m3/s) with
critical depth at the inlet (y. = 2 m). The corresponding uniform flow depth
(yo) from the Manning resistance equation

26-58 = 3 X yg X (1/0-014) X [(3 X yo)/(3 + 2yo)]** x (0-008)'?
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is computed. Thus yo = 1-64 m; this unform flow establishes in the channel if
its length is at least equal to the length of the surface profile (nonuniform
flow) that exists between the inlet depth, y,, and the uniform flow depth, y,.

The channel is of steep slope and the flow between these two depths
corresponds to region 2 and hence an S, profile develops whose length can
be computed by any appropriate method. By the step method we obtain
L = 80 m between the two depths; the calculations should commence at a
depth slightly less than the critical depth and terminate at a depth slightly
higher than the normal (uniform) depth.

Example 8.26

A rectangular channel (b = 15 m, length = 10 km, slope = 1/10000,
Manning’s n = 0-015) fed by an upstream lake is discharging into a down-
stream lake. If the upstream and downstream lake levels are 1-5 m and 2 m
(above the channel bed) respectively, determine the discharge rate in the
channel.

Solution:
The channel delivery depends upon the following considerations:

(i) Is the channel long (i.e. no downstream control)?
(ii) Is the slope mild or critical or steep?

If we assume a.long and mild channel, two equations at its inlet are appli-
cable, i.e. the energy and resistance equations. If we assume a long and
critical sloped channel, the two equations are the energy equation and the
critical depth criterion. Here it is convenient to assume initially a long and
critical sloped channel. Since the channel is of rectangular cross section,
y. = ¥%H = 1 m. Therefore, from the Manning resistance equation (uniform
flow depth = y.) the critical slope, S; = 0-00256 > S, = 0-0001 (see
Example 8.25). Hence the channel is of mild slope; if we still assume it is
long, we now can obtain the corresponding uniform flow rate, Qq, from the
energy and resistance equations.

(iii) Is the channel long enough to satisfy the above assumptions?

Identify the type of water surface profile based on the discharge, uniform
flow depth and the downstream lake level and compute its length. If the
surface profile length < channel length, the channel is long enough and
uniform flow does exist at the inlet i.e. free inlet. If the profile length >
channel length, the inlet will be drowned (short channel) and the discharge
rate is reduced. To compute the actual discharge rate in a short channel, the
following iterative procedure is to be followed:

(a) Assume Q < Q (since the inlet is drowned) and compute the corre-

sponding flow depth at the inlet by the energy equation.

(b) Compute the new surface profile length corresponding to this discharge
and verify whether it fits between the inlet depth and the downstream
lake level.
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(c) Repeat (a) and (b) until the profile length matches the channel length.

The problem is best approached on a PC for executing these iterative
procedures.

Example 8.27
A concrete twin-box type culvert is proposed to discharge a design flood of
13-5 m%/s. The following data refer to each opening:

Manning’s n = 0-013

height =075 m

width =15m

length =30m

slope = 1/100

entrance conditions = square edge, loss coefficient, K = 0-5

downstream conditions = free jet

Establish the rating curve (discharge versus headwater elevation above the
invert at the entrance) for rising head conditions over a discharge range
from 0 to 13-5 m®/s. Neglect the velocity of approach. Determine the
minimum elevation of the road surface assuming a free board of 300 mm to
avoid any flooding of the highway.

Solution:

The culvert behaviour is dependent on the headwater level, H, the height of
culvert, D, slope, Sy, and length, L; here the outlet is to discharge freely and
has no effect on the type of flow through the culvert.

(i) For H/D = 1-2, open channel flow. If entrance control exists, the depth
at the inlet is critical, i.e. the slope is either critical or steep. Assuming
entrance control, y. = % X H and V. = V/(g y.); hence Q can be computed.
Also, from the Manning resistance equation, the critical slope, S, can be
computed and checked against the proposed slope of the culvert; if the slope
is then found to be mild, the depth and discharge calculations must be
computed by the energy and resistance equations (see Example 8.25).

For H = 0-1 m, y. = 0-067 m and V, = 0-81 m/s

From the Manning equation, S; = 0-00028. The culvert slope S, = 0-01 >
S = 0-0028; steep slope and hence entrance control exists. The energy
equation at the inlet gives

H =y + 05 V22g + V22g = 175y,
and the discharge
Q = b y. V(g yo) = b Vg y.** for one box

where b is the width of the culvert. Various values for y. and hence the
headwater levels (H = 1-75y.) are assumed until H = 12D (the upper
limit for open channel flow).
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Headwater level, H (m) Discharge, Q m®/s (two boxes)
0-175 ' 0-297
0-525 1-544
0-700 2:377
0-900 3-465

(ii) For H/D = 1-2, the culvert entry behaves like an orifice (constriction);
if the normal depth in the barrel corresponding to the orifice discharge is
less than D, the flow downstream of the inlet is free. The orifice flow
equation

Q=CygxbxDx[2g(H - D/2)]1’2 for one box

the discharge coefficient, C4 = 0-62 (assumed). Computations between H =
1-:2D and the value at which y; = D are as below:

Headwater level, H (m) Discharge, Q m%/s (two boxes)
0-900 4-477
1-300 5-943
1-700 7-113
2-100 8-116
2-500 9-007

(iii) For H/D >1-2 and yo = D, pipe flow exists in the culvert. The energy
equation between the inlet and outlet of the culvert gives

H+ SL =D+ (1 +K)V¥2g + SL

where S; is the friction slope given by the Manning equation, as S; = (Vn)?%/
R*3, The above reduce to

Q = 3-41(H - 0-45)'2 for one box; pipe flow condition with the
following:

Headwater level, H (m) Discharge, m3/s (two boxes)
2-500 9-774
2900 10-685
3-100 11-112
3500 11921
3-900 12-679
4-200 13-219
4-368 13-500 (design discharge)

Elevation of the road surface with a free board of 300 mm = 4-368 +
0-300 = 4.668 m above the culvert invert at its inlet.

Example 8.28

A lateral spillway channel, 120 m long and trapezoidal in section, is designed
to carry a discharge which increases at a rate of 3-7 m*/s per metre length.
The cross section has a bed width of 3 m with side slopes of 0-5H : 1V. The
bed slope is 0-15 and Manning’s n = 0-015. Compute the water surface
profile of the design discharge assuming uniform velocity distribution.
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Solution:

The type of surface profile depends upon the length of the channel and
whether the channel characteristics would permit the existence of a control
section, i.e. a section where the depth is critical. The existence of a critical
depth section and its longitudinal location are to be examined first; this is
achieved by a trial and error process using equation 8.23 and the critical
depth criterion, Q> B/g A® = 1. The following table of results is self-
explanatory:

x Q=gx vy, A P B R=A/P C=RYn «x
(m) @%) (m) @) (@m) (m) (m) (m"?/s)  (m)

60 2220 597 3573 1637 897 2-18 76-00 43-0
43 1591 490 2670 1398 7-90 1-91 74-26 56-0
56 2072 557 3224 1548 857 2-08 75-34 47-6
47 173-9 522 2928 1469 822 1-99 74-79 516
52 1924 552 3179 1536 852 207 75-26 48

48 1776~ 529 29-86 14-85 8-29 2:01 74-90 51-0
51 188-7 546 3128 1523 846 205 75-16 48-7
49 181-3 535 3036 1498 835 2:03 75-00 50-0
50 185-0 540 30-78 15-09 8-40 2:04 75-07 49

49-5 1831 538 3061 1505 838 203 75-04 49-6

From the table, x; = 49-5 m > L (= 120 m). As the length available is
greater than x,, the water surface profile upstream of the control section is
in subcritical flow while that of the downstream part is supercritical flow.
The surface profile computations are generally carried out by numerical
integration combined with trial and error; the procedures are laborious and
well described in textbooks of open channel hydraulics (see French’).

The nonuniform flow (GVF and SVF) computations may be carried out
using the advanced numerical methods. The surface slope dy/dx, given by
equations 8.19, 8.22 and 8.25, is a function x and y and can be written as
dy/dx = F(x,y) and the Standard Fourth Order Runge-Kutta (SRK) Method
uses the following operation:

1
Yi+1 = Vi + g (K1 + 2K2 + 2K3 + K4) (8,48)
in which
K; = Ax F(x;, yi)

Kz Ax F(Xi + AX/Z, yi + K1/2)
K3 = Ax F(Xi + AX/Z, y;i + K2/2)
K4 = Ax F(Xi + AX, y; + K3)

The solution is easily achieved with the help of a PC.
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Example 8.29

A rectangular channel of bed width = 2 m, Manning’s n = 0-014, is laid on a
slope of 1/1000. A side weir is to be designed at a section such that it comes
into operation when the discharge in the channel exceeds 0-6 m>/s. A lateral
outflow of 0-15 m?/s is expected to be delivered by the side weir when the
channel discharge is 0-9 m*/s. Compute the elements of the weir.

Solution:

The sill (crest) height of the side weir is decided by the flow depth corre-
sponding to 0-6 m’/s. The normal depths in the channel (by the Manning
resistance equation):

for Q = 0-6 m>/s, yo = 0-33 m, and
for Q = 0:9 m3/s, yo = 0-44 m.

The crest height is therefore (for the weir to come into operation), s = 0-33 m.
For Q = 0-9 m/s, the critical depth in the channel y; = (q%/g)"* = 0-274 m.
Now the sill height s > y; and yo > Yq, the dy/dx of the flow profile over
the weir is positive and the flow is subcritical. De Marchi equation assumes
y1 = Yo = 0-44 m. With the assumption E; = E, we can write

E; = 0-493 = y, + Q/[(b y2)* 2g]; Q2 = 0-90 — 0-15 = 075 m’/s

and hence y, = 0-46 m (subcritical flow). The De Marchi functions ¢, =
—~1-84 and ¢, = —1-42. The De Marchi coefficient Cy = 0-81 — 0-60F
(assuming a sharp crested weir) where F,; = Vi/V(2g) = 0-49. Hence,
Cym = 0-516 and by equation 8-31, the weir length L = 2-442 m.

Recommended reading

1. Ackers, P. (1991) Hydraulic design of straight compound channels.
Wallingford: Hydraulics Research Ltd, Report SR 281.

2. Ackers, P. (1992) Hydraulic design of two-stage channels. Proc Instn Civ.
Engrs, Water, Maritime and Energy Board, Vol. 96, pp. 247-57.

3. Bakhmeteff, B.A. (1932) Hydraulics of Open Channels. New York:
McGraw Hill Book Co.

4. BS 3680: Methods of measurement of liquid flow in open channels.
BS 3680: Part 4A: (1981) Thin plate weirs.
BS 3680: Part 4B: (1969) Long base weirs.
BS 3680: Part 4C: (1981) Flumes.
BS 3680: Part 3A: (1980) Velocity area methods. London: British Stan-
dards Institute.

5. Chow, Ven Te (1959) Open-channel Hydraulics. New York: McGraw
Hill Book Co.

6. Fortier, S. and Scobey, F.C. (1926) Permissible Canal Velocities. Trans
Am Soc Civ Eng, Vol. 89.
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7. French, R.H. (1986) Open Channel Hydraulics. New York: McGraw-
Hill Book Co.

8. Henderson, F.M. (1966) Open Channel Flow. New York: The Macmillan
Company.

9. Hydraulic Research Station (1977) Tables for the hydraulic design of
pipes. Dept. of the Environment. London: H.M.S.O.

10. Novak, P., Moffat, A.L.B., Nalluri, C. and Narayanan, R. (1990) Hy-
draulic Structures. London: Chapman & Hall. :

11. Ranga Raju, K.G. (1993) Flow Through Open Channels, 2nd edn. New
Delhi, Tata: McGraw-Hill Book Co.

Problems

1. Water flows uniformly at a depth of 2 m in a rectangular channel of
width 4 m and bed slope 1:2000. What is the mean shear stress on the
wetted perimeter?

2. (@) At a measured discharge of 40 m%/s the depth of uniform flow in a
rectangular channel 5 m wide and with a bed slope of 1:1000 was 3-05 m.
Determine the mean effective roughness size and Manning’s roughness
coefficient.

(b) Using (i) the Darcy-Weisbach equation (together with the Colebrook-
White equation), and (ii) the Manning equation predict the discharge at a
depth of 4 m.

3. Determine the depth of uniform flow in a trapezoidal concrete-lined
channel of bed width 3-5 m, bed slope 0-0005 with side slopes at 45° to the
horizontal when conveying 36 m®/s of water.

Manning’s roughness coefficient = 0-014.

4, Determine the rate of uniform flow in a circular section channel 3 m
in diameter of effective roughness 0-3 mm, laid to a gradient of 1:1000
when the depth of flow is 1-0 m. What is the mean velocity and the mean
boundary shear stress?

5. A circular storm water sewer 1-5 m in diameter and effective roughness
size 0-6 mm is laid to a slope of 1:500. Determine the maximum discharge
which the sewer will convey under uniform open channel conditions. If a
steady inflow from surface run off exceeds the maximum open channel
capacity by 20 per cent show that the sewer will become pressurised (sur-
charged) and calculate the hydraulic gradient necessary to convey the new
flow.

6. Assuming that a rough turbulent velocity distribution having the form
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A
tO

Vop
exists in a wide river show that the average of current meter measurements

taken at 0-2 and 0-8 of the depth from the surface approximates to the mean
velocity in a vertical section.

30y
k s

=575 log

7. A long, concrete-lined trapezoidal channel with a bed slope 1:1000,
bed width 3-0 m, side slopes at 45° to the horizontal and Manning roughness
2
0-014 receives water from a reservoir. Assuming an energy loss of 0-25 Z—
calculate the steady discharge and depth of uniform flow in the channel
when the level in the reservoir is 2-0 m above the channel bed at inlet.

8. A trapezoidal channel with a bed slope of 0-005, bed width 3 m and
side slopes 1:1-5 (vertical : horizontal) has a gravel bed (n = 0-025) and
concrete sides (n = 0-013). Calculate the uniform flow discharge when the
depth of flow is 1-5 m using (a) the Einstein, (b) the Pavlovskij, and (c) the
Lotter methods.

9. The figure shows the cross-section of a river channel passing through
a flood plain. The main channel has a bank full area of 300 m?, a top width
of 50 m, a wetted perimeter of 65 m and a Manning roughness coefficient of
0-025. The flood plains have a Manning roughness of 0-035 and the gradient
of the main channel and plain is 0-00125. Determine the depth of flow over
the flood plain at a flood discharge of 2470 m?/s.

L 40 m N 50 m ] 40 m

< - J
| T >Te >

Figure 8.35

10. A concrete-lined rectangular channel is to be constructed to convey
a steady maximum discharge of 160 m*/s to a hydro-power installation. The
bed slope is 1:5000 and Manning’s n appropriate to the type of surface
finish is 0-015. Determine the width of the channel and the depth of flow for
the ‘most economic’ section. Give reasons why the actual constructed depth
would be made greater than the flow depth.

11. A concrete-lined trapezoidal channel with a bed slope of 1:2000 is
to be designed to convey a maximum discharge of 75 m*/s under uniform
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flow conditions. The side slopes are at 45° and Manning’s n = 0-014.
Determine the bed width and depth of flow for the ‘most economic’ section.

12. A channel with a bed slope of 1:2000 is to be constructed through a
stiff clay formation. Compare the relative costs of the alternative design
of rectangular concrete-lined and trapezoidal unlined channels to convey
60 m®/s if the cost of the 100 mm thick lining/m? is twice the cost of excavation/
m>. Manning’s n for concrete lining = 0-014 and for the unlined channel
0-025. Side slopes (stable) = 1:1-5.

13. An unlined irrigation channel of trapezoidal section is to be con-
structed through a sandy formation at a bed slope of 1:10000 to convey a
discharge of 40 m*/s. The side slopes are at 25° to the horizontal. The angle
of internal friction of the material is 35° and the critical tractive force is
2-5 N/m?; Manning’s n = 0-022. Assuming that the maximum boundary
shear stress exerted on the bed, due to the water flow, is 0-98 pg y S,,, and
that on the sides is 0-75 pg y S,,, determine the bed width and flow depth for
a non-eroding channel design.

14. A vertical sluice gate in a long rectangular channel 5 m wide is
lowered to produce an opening of 1-0 m. Assuming that free flow conditions
exist at the vena contracta downstream of the gate verify that the flow in the
vena contracta is supercritical when the discharge is 15 m3/s and determine
the depth just upstream of the gate. C, = 0-98; C. = 0-6. Take the upstream
velocity energy coefficient (Coriolis) to be 1-0 and that at the vena contracta
to be 1-2.

15. A sill is to be constructed on the bed of a rectangular channel
conveying a specific discharge of 5 m*/s per metre width. The depth of
uniform flow is 2-5 m. Neglecting energy losses:

(a) determine the variation of the depths upstream of the sill (y,) and over
the sill (y,) for a range of sill heights (z) from 0-1 m to 0-8 m. Take the
Coriolis coefficient to be 1-2.

(b) determine the critical depth (y.), and

(c) the minimum sill height (z.) to create critical flow conditions at the sill.

16. A venturi flume with a throat width of 0-5 m is constructed in a
rectangular channel 1-5 m wide. The depth of uniform flow in the channel at
a discharge of 1-6 m¥s is 0092 m; a = 1-1. Assuming that downstream
conditions do not influence the natural flow profile through the contraction
and neglecting losses verify that the flume acts as a ‘critical depth flume’ and
determine the upstream and throat depths.

Show that for critical flow conditions in the throat the discharge can be
obtained from

_2 /@ n
=3 3bH|
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o V|2

2
Calculate the discharge when the upstream depth is 1-0 m. (Verify that
critical flow conditions are maintained in the throat.)

where b is the throat width and H; = y, +

17. A vertical sluice gate in a long rectangular channel 4 m wide, has an
opening of 1-0 m and a coefficient of contraction of 0-6. At a discharge of
25 m*/s the depth of uniform flow (y,) is 3-56 m. Assuming that a hydraulic
jump were to occur in the channel downstream with a sequent depth equal
to y, and taking the Boussinesq coefficient to be 1:2 what would be the
initial depth of the jump? Hence verify that a hydraulic jump will occur.

Determine the depth upstream of the gate and the hydrodynamic force on
the gate, assuming C, = 0-98 and a = 1-2.

18. If in Problem 17 the gate is raised to give an opening of 1-5 m
determine whether, or not, a hydraulic jump will form. Calculate the depths
immediately upstream of the gate and at the position of the vena contracta
and the force on the gate.

19. A long rectangular channel 8 m wide, bed slope 1: 5000 and Manning’s
roughness 0-015 conveys a steady discharge of 40 m*/s. A sluice gate raises
the depth immediately upstream to 5-0 m. Taking the Coriolis coefficient a
to be 1-1 determine the uniform flow depth and the distance from the gate
at which this depth is exceeded by 10 per cent. What is the depth 5000 m
from the gate?

20. A rectangular channel having a bed width of 4 m, a bed slope of
0-001 and Manning’s n = 0-015 conveys a steady discharge of 25 m®/s. A
barrage creates a depth upstream of 4-0 m. Compute the water surface
profile, taking & = 1-1.

21. A long rectangular channel, 2-5 m wide, bed slope 1:1000 and
Manning roughness coefficient 0-02 discharges 4-5 m*/s freely to atmosphere
at the downstream end. Taking a = 1-1 and noting that at a free overfall the
depth approximates closely to the critical depth, compute the surface profile
to within approximately 10 per cent of the uniform flow depth.

22. A long trapezoidal channel of bed width 3-5 m, side slopes at 45°,
bed slope 0-0003 and Manning’s n = 0-018 conveys a steady flow of 50 m?/s.
A control structure creates an upstream depth of 5-0 m. Taking & = 1-1
determine the distance upstream at which the depth is 4-2 m.

23, Two reservoirs are connected by a wide rectangular channel length
of 1500 m, where Manning’s n is 0-02, the bed slope is 4 X 1074, the channel
entry loss coefficient K = 0-02, the channel invert elevation (u/s) = 101-00 m
AOD and the water level in the u/s reservoir = 104-00 mAOD (constant).
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(a) Determine the limiting downstream reservoir level to cause uniform
flow in the channel.
(b) If the downstream reservoir level is 103-50 m AOD, examine whether

or not it will affect the uniform flow rate (submerged inlet and reduced
flow).

24. A culvert is proposed under a highway embankment where the
design flood is 15 m>/s, the width of the highway is 30 m and the natural
drainage slope is 0-015. The available pipe barrels are corrugated pipes of
diameter in multiples of 250 mm with Manning’s n = 0-024; the entry loss

coefficient = 0-9.

(a) Compute the proposed culvert barrel size if the maximum permissible
headwater level is 4 m above the invert, with the barrel discharging free
at its outlet.

(b) If a fare-edged entry (loss coefficient = 0-25) is chosen, calculate the
required barrel diameter for the conditions in (a).

25, A broad crested side weir is to be designed to deliver 10 m®/s of
water into a branch canal. The main channel conveying 100 m?/s of water is
of rectangular cross section with b = 50 m, S4 = 0-0001 and Manning’s n =
0.02. Compute the length and crest height of the weir.



Chapter 9

Dimensional Analysis,
Similitude and Hydraulic
Models

R. E. Featherstone

9.1 Introduction

Hydraulic engineering structures or machines can be designed using (i) pure
theory, (ii) empirical methods, (iii) semi-empirical methods which are math-
ematical formulations based on theoretical concepts supported by suitably
designed experiments or (iv) physical models, (v) mathematical models.

The purely theoretical approach in hydraulic engineering is limited to a
few cases of laminar flow, for example the Hagen Poisseuille equation for
the hydraulic gradient in the laminar flow of an incompressible fluid in a
circular pipeline. Empirical methods are based on correlations between
observed variables affecting a particular physical system. Such relationships
should only be used under similar circumstances to those under which the
data were collected. Due to the inability to express the physical interaction
of the parameters involved in mathematical terms some such methods are
still in use. One well-known example is in the relationship between wave
height, fetch, wind speed and duration for the forecasting of ocean wave
characteristics.

A good example of a semi-empirical relationship is the Colebrook-White
equation for the friction factors in turbulent flow in pipes (see Chapters 4
and 7). This was obtained from theoretical concepts and experiments de-
signed on the basis of dimensional -analysis; it is universally applicable to all
Newtonian fluids.

Dimensional analysis also forms the basis for the design and operation of
physical scale models which are used to predict the behaviour of their full-
sized counterparts called ‘prototypes’. Such models, which are generally
geometrically similar to the prototype, are used in the design of aircraft,
ships, submarines, pumps, turbines, harbours, breakwaters, river and estuary
engineering works, spillways, etc.

While mathematical modelling techniques have progressed rapidly due to
the advent of high-speed digital computers, enabling the equations of motion
coupled with semi-empirical relationships to be solved for complex flow
situations such as pipe network analysis, pressure transients in pipelines,
unsteady flows in rivers and estuaries, etc., there are many cases, particularly

249
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where localised flow patterns cannot be mathematically modelled, when
physical models are still needed.

Without the technique of dimensional analysis experimental and com-
putational progress in fluid mechanics would have been considerably retarded.

9.2 Dimensional analysis

The basis of dimensional analysis is to condense the number of separate
variables involved in a particular type of physical system into a smaller
number of non-dimensional groups of the variables.

The arrangement of the variables in the groups is generally chosen so that
each group has a physical significance.

All physical parameters can be expressed in terms of a number of basic
dimensions; in engineering the basic dimensions, mass (M), length (L) and
time (T) are sufficient for this purpose. For example, velocity = distance/
time (= LT™'); discharge = volume/time (= L*T"). Force is expressed
using Newton’s law of motion (force = mass X acceleration); hence Force =
MLT™2

A list of some physical quantities with their dimensional forms can be
seen below,

Physical Quantity Symbol Dimensional Form
Length ¢ L
Time t T
Mass m M
Velocity A% LT!
Acceleration a LT?
Discharge Q LTt
Force F MLT2
Pressure P ML~'T?
Power P ML2T-3
Density p ML
Dynamic viscosity u ML-!'T™!
Kinematic viscosity v Lr!
Surface tension o MT?
Bulk modulus of elasticity K ML"!T-2

9.3 Physical significance of non-dimensional groups

The main components of force which may act on a fluid element are those
due to viscosity, gravity, pressure, surface tension and elasticity. The resultant
of these components is called the inertial force and the ratio of this force to
each of the force components indicates the relative importance of the force
types in a particular flow system.
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For example the ratio of inertial force to viscous force,

F _ pL3LT™?
F,  1?
dv -17 -1
Nowr=p-&=uLT L
whence = = pLT™ = pLV = pev
F, u u u

where ¢ is a typical length dimension of the particular system.
&V
The dimensionless term pT is in the form of the Reynolds number.

Low Reynolds numbers indicate a significant dominance of viscous forces in
the system which explains why this non-dimensional parameter may be used
to identify the regime of flow, i.e. whether laminar or turbulent.
Similarly it can be shown that the Froude number is the ratio of inertial
force to gravity force in the form
V2

\'%
F, = (but usually expressed as Fr = ——)
T e Vel

The Weber number, We is the ratio of inertial to surface tension force and

is expressed by

\4
Vlp?

9.4 The Buckingham = theorem

This states that the n quantities Q,, Q,, ... Q,, involved in a physical
system can be arranged in (n—m) non-dimensional groups of the quantities
where m is the number of basic dimensions required to express the quantities
in dimensional form.

Thus £,(Q;, Q,, ... Q) = 0 can be expressed as fr(m;, M, ... Tym)
where ‘f’ means ‘a function of ...’. Each & term basically contains m
repeated quantities which together contain the m basic dimensions together
with one other quantity. In fluid mechanics m = 3 and therefore each x term
basically contains four of the quantity terms.

9.5 Similitude and model studies

Similitude, or dynamic similarity, between two geometrically similar systems
exists when the ratios of inertial force to the individual force components in
the first system are the same as the corresponding ratios in the second
system at the corresponding points in space. Hence for absolute dynamic
similarity the Reynolds, Froude and Weber numbers must be the same in



252 CIVIL ENGINEERING HYDRAULICS

the two systems. If this can be achieved the flow patterns will be geometrically
similar, i.e. kinematic similarity exists.

In using physical scale models to predict the behaviour of prototype
systems or designs it is rarely possible (except when only one force type is
relevant) to achieve simultaneous equality of the various force ratios. The
‘scaling laws’ are then based on equality of the predominant force; strict
dynamic similarity is thus not achieved resulting in ‘scale effect’.

Reynolds modelling is adopted for studies of flows without a free surface
such as pipe flow and flow around submerged bodies, e.g. aircraft, sub-
marines, vehicles and buildings.

The Froude number becomes the governing parameter in flows with a free
surface since gravitational forces are predominant. Hydraulic structures,
including spillways, weirs and stilling basins, rivers and estuaries, hydraulic
turbines and pumps and wave-making resistance of ships are modelled
according to the Froude law.

Worked examples

Example 9.1
Obtain an expression for the pressure gradient in a circular pipeline, of
effective roughness, k, conveying an incompressible fluid of density, p,
dynamic viscosity, u, at a mean velocity, V, as a function of non-dimensional
groups.

By comparison with the Darcy-Weisbach equation show that the friction
factor is a function of relative roughness and the Reynolds number.

Solution:
In full pipe flow gravity and surface tension forces do not influence the flow.
Let Ap = pressure drop in a length L.

Then f,(Ap, L, p,V,D, u, k) =0 (i)

The repeating variables will be p, V and D. Ap clearly is not to be
repeated since this variable is required to be expressed in terms of the other
variables. If u or k were to be repeated the relative effect of the parameter
would be hidden.

fo(my, mz, 713, m4) = 0 (ii)
Then
m = p*DPVYAp (iii)

where a, B and y are indices to be evaluated.
In dimensional form:

m = (ML)*LE (LT )Y ML~'T2

The sum of the indices of each dimension must be zero.
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Thus for M, 0 = a + 1, whence a = —1;
for T,0 = —y — 1, whence y = —2;
and for L,0= ~3a+ 8+ y—1,whence =0
Ap .
=V (iv)
@, =p*DPVTL v)

The s terms are dimensionless and since D and L have the same dimensions
the solution is

=L (vi)
Similarly
m=k (vil)
7, =p*DPVTy (viii)
= (ML™3)*LA LT H*ML!T!
Indices of M: 0 = a + 1; a = -1
Indices of T: 0 = —y — 1; y= -1
Indicesof L: 0= 3a+8+y—-1;, B=-1
my = ;“—V (ix)
Lg(AR L k L) -
N f2(pvz’ b’ D’ pov) = (x)

The 7 terms can be multiplied or divided and since the pressure gradient
is required equation (x) may be reformed thus:

f(ApD k _& )=0
2\L pV?’ D’ pDV

Ap _ pV? [k ]
h —_— = — —=
whence L D ¢ D’ Re
where ¢ means ‘a function of’ the form of which is to be obtained ex-
perimentally.
The hydraulic gra_dient,

4h _ Ap
L pgL

4h _ V2 [L ] ;
whence L ~ @D ¢ D’ Re (xi)
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Comparing (xi) with the Darcy-Weisbach equation,

he  AV2E . o _
1 2% D’ it is seen that A is dimensionless and that
A=¢ [-ll;—, Re].

This relationship enabled experiments to be designed (as described in
Chapter 7) which led eventually to the Colebrook-White equation.

Example 9.2

Show that the discharge of a liquid through a rotodynamic pump having an
impeller of diameter, D, and width, B, running at speed, N, when producing
a total head, H, can be expressed in the form

D N?D? pNDz]
B’ gH’  u

Q=ND3¢[

Solution:
fI(N’ D, Ba Q, gH, P, [l) =0

Note that the presence of g represents the transformation of pressure head

to velocity energy; it is convenient, but not essential, to combine g and H
instead of treating them separately.

f2(m1, 72, 73, W) = 0
Using p, N and D as the recurring variables
m = p*NPfD”B

B
JT1=B

@, = p*NPDYQ
m = (ML) (T HALY L*T!

For M, 0 = a; a=0

For T,0= -8~ 1; g=-1

For L,0=-3a¢+7y+3 y=-3
Y
ND

7 = p*NP D7 (gH)
w3 = (ML) (T HP LY L?T?

gH

whence 73 = N2D?
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7= p*NEDY
my = ML™3)* (T HALYML™'T™!

7}
whence n, = pND2

.f(g Q gH _u )
" '\D’ ND*’ N2D?’ pND?

— N o [, D pNDY]
whence Q = ND ¢[B, gH ' o

2

Note that the & terms may be inverted for convenience and that is

212

a form of the Reynolds number and a form of the square of the

Froude number.

Example 9.3
Show that the discharge, Q, of a liquid of density, p, dynamic viscosity, p,
and surface tension, a, over a V-notch under a head, H, may be expressed
in the form

12 32 2
Q=gvsz/z¢[P ”H ,Pg;'l’o]

where @ is the notch angle, and hence define the parameters upon which the
discharge coefficient of such weirs is dependent.

Solution:
fl(p! g H, Q, u, o 8 =0

i.e. f(m, M, M3, W) =0

Using p, g and H as the repeating variables,
m = p~g’ H'Q
m = (ML 3)* (LT 2 LY L3T!

For M, 0 = a; a=0
For T,0=-28—-1; B =-1/2
For L,0=-3a+8+y+3; y=-52
ﬂl=%
g°H

m=p"gfH u
= ML) (LT 3)PLYML"'T"!
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__nu
- pgl/2 H3/2
m=p“gfH" o
w3 = (ML™*)* (LT"2)A LY ML 2
_ g

pgH’

7= p“gPfH 0

T2

73

7y = 6 (since 6 is itself dimensionless)

R
g1/2 HS/Z’ pgl/Z H3/2’ ngZ’

12 1332 2
Re-arranging; Q= g|/2 H52 ¢ [pg H pgH ’ 9]

)

u o
From energy considerations the discharge over a V-notch is expressed as

Q= % V2g C, tan 6/2 HY?

Comparing the above two forms it is seen that
172 H3/2 2
Cy=f (pg _pgH )
u o

pgl/2 H3/2

The group has the form of the Reynolds number Re and the

pgH’

ag

Hence Cy = f(Re, We)

group is the square of the Weber number, We.

Surface tension effects, represented by the Weber number may become
significant at low discharges.

Example 9.4
Derive an expression for the discharge per unit crest length of a rectangular
weir over which a fluid of density p, dynamic viscosity p, is flowing with a
head H.

The crest height is P. By comparison with the discharge equation obtained
from energy considerations,

q=3 V7 Ca 1"

state the parameters on which the discharge coefficient depends for a given
crest profile.
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Solution:
fi(q, 8, H, p, p, 0, P) = 0
f:(my, My, W3, Mg) = 0

With p, g and H as the repeating variables,
m=p*gPHYq

HI=W

m=p g H” p

™ = T

n;=p*gPHY 0

Iy = 02
pgH

7y =p*gPH'P

= PIH

-'-fz(x/zq 3729 1/2” 32> 02,_2):0
g’ H™ pg™ H™ pgH”" H

12 32 2

— ol2 Yy3nr pg ~ H™ pgH £]=
orq = i i g [PEZHT 0l BT
Hence C4 = f[Re, We, P/H].

In addition, of course, the discharge coefficient will depend on the
crest profile, and the influence of this factor together with that of the
non-dimensional groups in the above expression can only be found from
experiments.

Example 9.5
A spun iron pipeline 300 mm in diameter and 0-3 mm effective roughness is
to be used to convey oil of kinematic viscosity 7-0 x 107> m%s at a rate of
80 1I/s. Laboratory tests on a 30 mm pipeline conveying water at 20°C (v =
1.0 X 107% m?/s) are to be carried out to predict the hydraulic gradient in
the oil pipeline.

Determine the effective roughness of the 30 mm pipe, the water discharge
to be used and the hydraulic gradient in the oil pipeline at the design
discharge.

Solution:
It was shown in Example 9.1 that the hydraulic gradient in a pressure
pipeline is expressed by
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_hy V2 [k ] .
Sf - L - gD D’ Re (l)
For geometrical similarity the relative roughness 1—];— must be the same in

both systems.

k) oz 03 o
(D) 011—300—0001

". roughness of water pipe = 0-001 x 30 = 0-03 mm.

(A uPVC pipeline with chemically cemented joints could be used.)
For dynamic similarity the Reynolds numbers must be the same.

(2) - (w)
vV /water VY /il

1-132 x 0-3
Voir = 1132 m/s; Reipy = 70 x 10-% = 4851-0
4851-0 x 1-0 x 10~°
" Vuater = 003 = 0-1617 m/s

The velocity 0-1617 m/s for water is called the ‘corresponding speed’ for
dynamic similarity.

. Water discharge = 0-114 I/s.

o Seeoi) (V/gD)oir . [ k ]
From (i = since —, Re
( ) Sf(water) (Vz/gD)waler ¢ D

is the same for the two systems at the corresponding speeds.
(1-1322)
" Stioy = 73/ % 0.0017 = 0-00833
Ve (0-16172) ‘
0-03

Example 9.6

A V-notch is to be used for monitoring the flow of oil of kinematic viscosity
8:0 x 107° m?/s. Laboratory tests using water at 15°C over a geometrically
similar notch were used to predict the calibration of the notch when used
for oil flow measurement. At a head of 0-15 m, the water discharge was
12-15 I/s. What is the corresponding head when measuring oil flow and what
is the corresponding oil discharge?

Solution:
In Example 9.3 it was shown that the discharge over a V-notch is given by
12 32 2
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@ is the same for both notches and for dynamic similarity the groups,

ngIZ H3/2

2
and pgH
o

should be the same respectively for the water and oil systems
ie. (Re)oil = (Re)watcr and (we)oil = (we)watcr-

However it will be realised that these two relationships will lead to two
different scaling laws but since the surface tension effect will only become
significant in relation to the viscous and gravity forces at very low heads this
effect can be neglected. The scaling law is therefore obtained by equality of
the Reynolds numbers.

Using subscript ‘o’ for oil and ‘w’ for water,

(). - (5,

—6
whence H, = 0-15 ( 8 x 10

1-13 x 107°

Using equation (i), and since the ¢ [ ] terms are the same for both
systems,

3
) = 0553 m

Qo Ho 5/2
o= ()
_ 0-553)%?
whence Q, = 12-15 (0-15)
Q. = 0-:3171 m%/s (317-1 U/s).
Example 9.7

(a) Show that the net force acting on the liquid flowing in an open channel
may be expressed as

F = pV2¢2 ¢ [Re, Fr, We, k/¢] (i)

where ¢ is a typical length dimension.
(b) A 1:50 scale model of part of a river is to be constructed to investigate
channel improvements. A steady discharge of 420 m*/s was measured in the
river at a section where the average width was 105 m and water depth 3-5 m.
Determine the corresponding depth, velocity and discharge to be re-
produced in the model. Check that the flow in the model is in the turbulent
region and discuss how the boundary resistance in the model could be
adjusted to produce geometrical similarity of surface profiles.

Solution:
(@) f(o, V, ¢, 8. 1,0, k) =0
With p, V and ¢ as the repeating variables dimensional analysis yields
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Vép V2 pVi¢ k]
- 2 p2 -~ £ - 2
F pV€¢[u,g[, 7
i.e. F = pV? 6’2¢[Re, Fr, We, %,]

(b) For dynamic similarity the non-dimensional groups should be equal in
the model and prototype. Surface tension effects will be negligible in the
prototype and its effect must be minimised in small-scale models. Although
the boundary resistance, as reflected in the Re and k/¢ terms, and the
gravity force are both significant, open channel models are operated according
to the Froude law,

5.~ ) 2
BY/m BY/p

where the length parameter is the depth, y. Subscript ‘m’ relates to the
model and ‘p’ to the prototype.

Ym _ 1 =35 _,.
Yo - 50 whence y,, 5 0-07 m
_ _ 420 - 1.
Vo, =Q/A = 105 x 35 35 1-14 m/s.
From (i),
Vo=V, /=114 /L = 0161 mss
m PYVy 50
P
Qv _ VoAn _ Vo (5)m
Qp VoA, Vp (by),
= Vi, & Ay = 1,22,

where 4, is the vertical scale
and 4, is the horizontal scale

Note that the term A is commonly used to indicate a scaling ratio in model
studies. It is not to be confused with the Darcy friction factor.
In this case A, = A, (undistorted model) whence

Q_ [1 (L)’
Q, 50 \50
1 5/2
Qn = 420 x (5) = 0-02376 m3/s

= 23-76 I/s.

The Reynolds number in the model for testing the flow regime is best
expressed in terms of the hydraulic radius:
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105

by = 0 - 2:1m (b, = average width in model = b, X 4,)
Wetted perimeter P, = 2-1 + 2 X 0-07 = 2-24 m
Rp = ﬁz—x—z—g—(ﬂ = 0-0656 m
Re, = %6-5—9 = 10561.6

which indicates a turbulent flow.

The discharge in the model has been determined, in relation to the
geometrical scale, to correspond with the correct scaling of the gravity
forces. In order to scale correctly the viscous resistance forces in the model
the discharge ratio should comply with the Reynolds law with the geometrically
relative roughness.

In the Froude scaled model therefore, the resistance forces would be
underestimated if the boundary roughness were to be modelled to the
geometrical scale and, in practice, therefore roughness elements consisting
of concrete blocks, wire mesh or vertical rods, are installed and adjusted
until the surface profile in the model when operating at the appropriate
scale discharge is geometrically similar to the observed prototype surface
profile.

Example 9.8

(a) Explain why distorted scale models of rivers are commonly used.

(b) A river model is constructed to a vertical scale of 1:50 and a horizontal
scale of 1:200. The model is to be used to investigate a flood alleviation
scheme. At the design flood of 450 m*/s the average width and depth of flow
are 60 m and 4-2 m respectively. Determine the corresponding discharge in
the model and check the Reynolds number of the model flow.

Solution:

(a) The size of a river model is determined by the laboratory space available
(although in some cases special buildings are constructed to house a particular
model, notably the Eastern Schelde model in the Delft Hydraulics Laboratory,
the Netherlands). In the case of a long river reach a natural model scale may
result in such small flow depths that depth and water elevations cannot be
measured with sufficient accuracy, the flow in the model may become
laminar, surface tension effects may become significant and sediment studies
may be precluded because of the low tractive force.

To avoid these problems geometrical distortion, wherein the vertical scale
Ay is larger than the horizontal scale A,, is used, typical vertical distortions
being in the range 5 to 100 with a vertical scale not smaller than 1:100.

(For more detailed discussions on the construction of river and estuary
models and scale effects the reader is referred to the literature in this
chapter’s Recommended reading list.)
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450

(b) Velocity in prototype = 0 xad - 1-786 m/s.
The Froude scaling law is based on the vertical scale ratio
Vi = Vp VA, = 1.786 —5—1(—) = 0-25 m/s
Qu _ Voo (m _ ;32
Q V, by T ™

= (i>3/2 x = = 1.414 x 10-5
50 200
" Qm =450 x 1-414 x 10~° m¥s
= 6-36 l/s
Average dimensions of model channel:
. 60
d = — = .
Width 200 0-30 m
~42 _,.
Depth = 50 = 0-084 m
Hydraulic radius = 0—3—(;(4&# = 0-0538
_ VR _ 0-25 x 0-0538 _
Reynolds number = y - 1x10-6 13450

The flow therefore will be turbulent.

Example 9.9

An estuary model is built to a horizontal scale of 1:500 and vertical scale
1:50. Tidal oscillations of amplitude 5-5 m and tidal period 12-4 h are to be
reproduced in the model. What are the corresponding tidal characteristics in
the model?

Solution:
The speed of propagation, or celerity, of a gravity wave in which the
wavelength is very large in relation to the water depth, y, as in the case of
tidal oscillations is given by c = Vgy. Thus estuary models must be operated
according to the Froude law.
The tidal range is modelled according to the vertical scale.
1 5-5

“Hn=Hy X o5 =22 =01l m

Tidal period, T = % where L is the wavelength. Hence
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E=ﬁ-&=lx Yo _ A
T, p  Cm Ym VA,
1

12:4 X ——
Ty = 200 _ 0.1754 b
1
50

= 10-52 minutes.

Example 9.10
The discharge, Q, from a rotodynamic pump developing a total head, H,
when running at, N, rev/min is given by

D N2D? pND?
B’ gH *

Q=ND’¢ [ ] (see Example 9.2) @)
(a) Obtain an expression for the specific speed of a rotodynamic pump and
show how to predict the pump characteristics when running at different
speeds.

(b) The performance of a new design of rotodynamic pump is to be tested
in a 1:5 scale model. The pump is to run at 1450 rev/min.

The model delivers a discharge of 2-5 I/s of water and a total head of 3 m,
with an efficiency of 65 per cent when operating at 2000 rev/min. What is
the corresponding discharge head and power consumption in the prototype?
Determine the specific speed of the pump and hence state the type of
impeller.

Solution:
(a) For geometrically similar machines operating at high Reynolds numbers

the term 2 becomes unimportant and equation (i) may be rewritten:

22
(Q DND)=0

ND* B’ gH
The term % is automatically satisfied by the geometrical similarity and the
terms N£D3 and ng : should have identical values in the model and prototype.
. { Q Q ..
. (ND-"),.. B (ND3),, @)
2ny2 2ny2
o (927) (52

The scale
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Dm - NP (Hm)l,z
D, =N H, from (iii)

whence, from (ii)

No . \/gg (g_:)” )

If H,, and Qp, are made equal to unity then (iv) becomes:

N, vQ
Nm=_PI_IP3/_4p (V)

NV
The term ?,42 is called the ‘Specific Speed’ and is interpreted as the

speed at which a geometrically scaled model would run in order to deliver
unit discharge when generating unit head. All geometrically similar machines
have the same specific speed.

In the case of the same pump running at different speeds, D,, = D, and
{ii) becomes

oG, 0o (%)
N, TN, T2 AR

and (iii) becomes

x 1450

2000 226 I/s

From (iii)
_ Np Dp)z
By = Ha (S2 5
1450

2
=30 (m X 5) = 3942 m

Power input required = 281 x 00222 x 39-42 _ 134-5 kW
N VO = 1450 V226

Specific speed N, = e (39-42)%4
The impeller is of the centrifugal type (see Chapter 6).

= 1385
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Example 9.11

A model of a proposed dam spillway was constructed to a scale of 1 : 25. The
design flood discharge over the spillway is 1000 m*/s. What discharge should
be provided in the model? What is the velocity in the prototype corresponding
with a velocity of 1-5 m/s in the model at the corresponding point?

Solution:
Example 9.4 showed that the discharge per unit crest length of a rectangular
weir could be expressed as

_ 2 pg"szggEP] -
ng¢[”,a,H )

The governing equation for spillways and weirs is identical.- Flood dis-
charges over spillways will result in very high Reynolds numbers and since
surface tension effects are also negligible the only factor affecting the dis-
charge coefficient is P/H. In modelling dam spillways, therefore, if the ratios
of P/H in the mode! and prototype are identical and the crest geometry is
correctly scaled:

_llz_q_Hyz = constant

g
i.e. Fbm =F,,

Therefore spillway models are operated according to the Froude law and
are made sufficiently large that viscous and surface tension effects are
negligible.

().~ (L),
Q=v¢?

(%), (%),
whence

Qm = 1000 (%)5/2 = 0-32 m¥/s

From (ii)

4
Vo = Va /79= Ve V25
S Vp =135 %x5=75mls.
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Problems

1. The head loss of water of kinematic viscosity 1 X 107® m%s in a
50 mm diameter pipeline was 0-25 m over a length of 10-0 m at a discharge
of 2-0 I/s. What is the corresponding discharge and hydraulic gradient when
oil of kinematic viscosity 8-5 x 107® flows through a 250 mm diameter
pipeline of the same relative roughness?

2. Find the pressure drop at the corresponding speed in a pipe 25 mm in
diameter, 30 m long conveying water at 10°C if the pressure head loss in a
200 mm diameter smooth pipe 300 m long in which air is flowing at a
velocity of 3 m/s is 10 mm of water. Density of air = 1.3 kg/m®, dynamic
viscosity = 1-77 x 10~° Ns/m?. Dynamic viscosity of water = 1-3 X 10™* Ns/m?.

3. A 50 mm diameter pipe is used to convey air at 4°C (density =
1-12 kg/m* and dynamic viscosity 1-815 x 10~ Ns/m?) at a mean velocity of
20 m/s.

Calculate the discharge of water at 20°C for dynamic similarity and obtain
the ratio of the pressure drop per unit length in the two cases.

4. If, in modelling a physical system, the Reynolds and Froude numbers
are to be the same in the model and prototype determine the ratio of
kinematic viscosity of the fluid in the model to that in the prototype.

5. The sequent depth, y,, of a hydraulic jump in a rectangular channel is
related to the initial depth y;, the discharge per unit width, q. g and p.
Express the ratio y,/y; in terms of a non-dimensional group and compare
with the equation developed from momentum principles:

=2 (VI+F - ).

6. A 60° V-notch is to be used for measuring the discharge of oil having
a kinematic viscosity 10 times that of water. The notch was calibrated using
water. When the head over the notch was 0-1 m the discharge was 2-54 1/s.
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Determine the corresponding head and discharge when the notch is used for
oil flow measurement.

7. The airflow and wind effects on a bridge structure are to be studied
on a 1:25 scale model in a pressurised wind tunnel in which the air density
is 8 times that of air at atmospheric pressure and at the same temperature. If
the bridge structure is subjected to wind speeds of 30 m/s what is the
corresponding wind speed in the wind tunnel? What force on the prototype
corresponds with a 1400 N force on the model? (Note the dynamic viscosity
of air is unaffected by pressure changes provided the temperature remains
constant.)

8. A rotodynamic pump is designed to operate at 1450 rev/min and to
develop a total head of 60 m when discharging 250 I/s.

The following characteristics of a 1:4 scale model were obtained from
tests carried out at 1800 rev/min.

Obtain the corresponding characteristics of the prototype and state whether,
or not, it meets its design requirements.

Qm (ifs) 0 2 4 6 8
Hy, (m) 8 7-6 6-4 42 1-0

9. (a) Show that the power output, P, of a hydraulic turbine expressed in
terms of non-dimensional groups in the form

Q D N?D? pND’]
ND* B’ gH’ u
Derive an expression for the specific speed of a hydraulic turbine.
(b) A 1:20 scale model of a hydraulic turbine operates under a constant
head of 10 m. the prototype will operate under a head of 150 m at a
speed of 300 rev/min. When running at the corresponding speed the
model generates 1-2 kW at a discharge of 13-6 I/s. Determine the
corresponding speed, power output and discharge of the prototype.

P = pN°D’ ¢ [

10.  The wave action and forces on a proposed sea wall are to be studied
on a 1:10 scale model. The design wave has a period of 9 seconds and a
height from crest to trough of 5 m. The depth of water in front of the wall is
7 m. :

Assuming that the wave is a gravity wave in shallow water and that the
celerity ¢ = Vgy where y is the water depth determine the wave period,
wavelength and wave height to be reproduced in the model. If a force of
4 kN due to wave breaking on a 0-5 m length of the model sea wall were
recorded, what would be the corresponding force per unit length on the

prototype?




Chapter 10

Ideal Fluid Flow and
Curvilinear Flow

R. E. Featherstone

10.1 ldeal fluid fiow

‘The analysis of ideal fluid flow is also referred to as ‘potential flow’. The
concept of an ideal fluid is that of one which is inviscid and incompressible;
the flow is also assumed to be irrotational. Since flow in boundary layers is
rotational and strongly influenced by viscosity, the analytical techniques of
ideal fluid flow cannot be applied in such circumstances. However in many
situations the flow of real fluids outside the boundary layer, where viscous
effects are small, approximates closely to that of an ideal fluid.

The object of the study of ideal fluid flow is to obtain the flow pattern
and pressure distribution in the fluid flow around prescribed boundaries.
Examples are the flow over airfoils, through the passages of pump and
turbine blades, over dam spillways and under control gates. The governing
differential equations of ideal fluid flow have also been successfully applied
to oscillatory wave motions, groundwater and seepage flows.

10.2 Streamlines, the stream function

A streamline is a continuous line drawn through the fluid such that it is
tangential to the velocity vector at every point. In steady flow the streamlines
are identical with the ‘pathlines’ or tracks of discrete liquid elements. No
flow can occur across a streamline and the concept of a ‘streamtube’ in two-
dimensional flow emerges as the flow per unit depth between adjacent
streamlines.

dy _ v, =
From fig. 10.1 (a) i udy — vdx = 0 (10.1)
The continuity equation for two-dimensional steady ideal fluid flow is
Ju , v
—_— + —— .
0 (10.2)

Equation (10.2) is satisfied by the introduction of a stream function denoted
by v such that

268
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5Q z
a. Streamlines b. Stream tube
Figure 10.1 Two-dimensional ideal fluid flow
_ % - _9% -
u= 3y and v = x whence equation (10.2) becomes
Ty _ v
dydx  axdy
Substitution of u and v in equation (10.1) yields
oy Y . _
3y dy + e dx =0
Now mathematically dy = %% dy + % dx
dy . N .
whence @ 0 where s is the direction along a streamline. Thus ¢ =

constant along a streamline and the pattern of streamlines is obtained by
equating the stream function to a series of numerical constants.

Since 6Q = Vb, where b is the spacing of adjacent streamlines and 8Q the
discharge per unit depth between the streamlines, the velocity vector, V, is
universely proportional to the streamline spacing.

Figure 10.2
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In polar co-ordinates the radial and tangential velocity components, v,
and vy respectively are expressed by

_19%y  _ 9y
Y=g Ve T (10.3)

10.3 Relationship between discharge and stream function

Let 5Q be the discharge per unit depth between adjacent streamlines (fig. 10.2).
6Q =usin@ds — vcos 88
=udy — v &x

oy
3y

6y+%x1e6x

Now éy = ?—;;’ oy + %x'ﬁ ox; whence 6Q = dy = Y, — Y, (10.4)
10.4 Circulation and the velocity potential function

Circulation is the line integral of the tangential velocity around a closed
contour, expressed by

K= fvs ds (10.5)

Velocity potential is the line integral along the s direction between two
points, see fig. 10.3.

B
Pa— Pp = f Vsin a ds (10.6)
A
If «a =0, ¢o — ¢p = 0, thus the potential ¢ along AB is constant.
3¢ . . 0¢ _
Note that 3 V sin a, i.e. 3 - v (10.7)

Figure 10.3
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Lines of constant velocity potential are orthogonal to the streamlines and
the set of equipotential lines and the set of streamlines form a system of
curvilinear squares described as a flow net. (See fig. 10.4.)

il
J
7
|

TTTT) 222227277 /77
(a) ()]

Figure 10.4

10.5 Stream functions for basic flow patterns

(a) Uniform rectilinear flow in x-direction (fig. 10.5 (a))

u=30 Y=w i ()
v=-2L y=—wrt(y) (i
Since v = 0 and equations (i) and (ii) are identical

f(x) =0 and y =uy (10.8)

(b) Uniform rectilinear flow in y-direction (fig. 10.5 (b))
Similarly since u = 0, y = —vx (10.9)

(c) Line source (fig. 10.5 (c))
A line source provides an axi-symmetric radial flow.
Using polar co-ordinates:

_19%y _
v,—rae, Y =1v, 0+ (1)
=%y . __
Vo = 3 Y = —1vy + £(6)

ve = 0, whence y = rv, 0

v, = 4 where q is the ‘strength’ of the source = discharge per unit

2ar
depth.
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/
. N
. N
(a) (b) ©
Figure 10.5

= %‘—i— (10.10)

Similarly a line ‘sink’ which is a negative source is defined by

99

- (10.11)

y=-
10.6 Combinations of basic flow patterns
(a) Source in uniform flow (see fig. 10.6).

The stream function of the resultant flow pattern is obtained by addition
of the component stream functions.

Thus ¢ = uy + 3—2 (10.12)

\//n\\ o

N~ J1IANN
——— AN .
— = 2SI =
- AR -

e /N
d / [ N
) / /

Figure 10.6 Combinations of basic flow patterns
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The streamlines are obtained by solving equation (10.12) for a number
of values of y. Alternatively superimpose the streamlines for the indi-
vidual flow patterns and algebraically add the values of the stream
function where they intersect. Obtain the new streamlines by drawing
lines through points having the same value of stream function.

10.7 Pressure at points in the flow field

The pressure, p, at any point (r, 6) in the flow field is obtained from
application of the Bernoulli equation:
2 2

Po Yo . A where p, and V, are the pressure and velocity

P 28 pg 2
vector in the undisturbed uniform flow and V is the velocity vector at (r, 8).
V is obtained from the orthogonal spacing of the streamlines at (r, 8) or
analytically from V = V.2 + V2.

10.8 The use of flow nets and numerical methods

The analytical methods, as described in section 10.6 and illustrated in
Example 10.1, can be applied to other combinations of basic flow patterns
to simulate, for example, the flow round a cylinder, flow round a corner and
vortex flow. The reader is referred to text on fluid mechanics for a more
detailed treatment of these applications.

In civil engineering hydraulics however the flows are generally constrained
by non-continuous, or complex boundaries. A typical example is the flow
under a sluice gate (fig. 10.4 (b)) and such cases are incapable of solution by
analytical techniques.

(a) The use of flow nets
One method of solution in such cases is the use of the flow net described in
section 10.4. Selecting a suitable number of stream tubes streamlines ‘i’ are
drawn starting from equally spaced points where uniform rectilinear flow
exists such as section A (fig. 10.4 (a)) and A and B (fig. 10.4 (b)). A system
of equipotential lines, ‘¢’, is now added such that they intersect the ‘y’
lines orthogonally. If the streamlines have been drawn correctly to suit the
boundary conditions the resulting flow net will correctly form a system of
curvilinear ‘squares’. As a final test, circles drawn in each ‘square’ should be
tangential to all sides. On the first trial the test will probably fail and
successive adjustments are made to the ‘y’ and ‘¢’ lines until the correct
pattern is produced.

Local velocities are obtained from the streamline spacings (or the spacing
between the equipotential lines since Ay and A¢ are locally equal) in
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relation to the rectilinear flow velocities and hence local pressures are
calculated from the Bernoulli equation (Example 10.1). The technique has
also been widely used in seepage flow problems under water retaining
structures.

(b) Numerical methods

Where computer facilities are available the streamline pattern can be obtained
for complex boundary problems. With computer graphics a plot of the
streamlines can be produced in addition. However the problems can be
solved using an electronic calculator. The method involves the solution of
the Laplace equation using finite difference methods.

Theory: The assumption of irrotational flow when applied to a liquid element
yields

Fole 3 =0 (10.13)
i.e. az‘f + % =0 or V=0 (10.14)

Equation (10.14) is known as the Laplace equation.

Since we have seen that the stream function has numerical values at all
points over the flow field the streamline pattern can be produced if equation
(10.14) can be solved in y at discrete points in the field.

Superimpose a square or rectangular mesh of straight lines in the x- and
y-directions to generally fit the boundaries of the physical system. (See
fig. 10.7.)

Equation (10.14) is to be solved at points such as (x, y) where the grid
lines intersect and must first be expressed in finite difference form.

Using the notation

of (x)

() = 20,y = T10)

a:’

etc,

Taylor’s theorem gives

f(x + Ax, y) = f(x, y) + Axf'(x, y) + A f"(x, y)
Ax

ETH f"(x, y) + —f“’(x yy+ ...

2 3
and f(x — Ax, y) = f(x, y) — Axf'(x, y) + %’-:—- f'(x, y) — é_x_ f"(x, y)
Ax

T fx, y) + ...
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Ay

3

Ay
X
1 0 2

Ay

4

4x | Ax |

Figure 10.7

Adding: f(x + Ax, y) + f(x — Ax, y) = 2f(x, y) + Ax*f"(x, y), neglecting
Ax* and higher order terms.
Thus

(x, y) = f(x + Ax, y) ~ 2f(Ax),(2y) + f(x — Ax, y)]

Since ¢ = f(x, y)
Py _ [vx + 4x,y) — 29(x, y) + p(x — 4x, y)]

ax? Ax?
Similarly
Py _ (v, y+ Ay) - 2y(x, y) + p(x, y — 4Ay)]
3y’ Ay’
Using the grid notation of fig. 10.7 for simplicity equation (10.1) becomes
(y1 — i‘f"g + ¥) + (ys —- ZA'I’ycz; + Ya) _ 0 (10.15)

(where the point x, y is located at point 0 and point x + Ax, y is at point 2
etc.).
Or if Ax = Ay,

Vit P3P -4y, =0 (10.16)

Method of solution

The method of ‘relaxation’ originally devised by Professor Southwell for the
numerical solution of elliptic partial differential equations such as the Laplace,
Poisson and Biharmonic equations describing fluid flow and stress distributions
in solid bodies is not amenable to automatic computation and is not to be
confused with the methods described here.
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Boundary conditions
The solid boundaries and free water surfaces are streamlines and therefore
have constant values of stream function. The allocation of values to the
boundaries can be quite arbitrary: for example in fig. 10.4 the bed can be
allocated a value of 9 = 0 and the surface, y = 100.

Where grid points do not coincide with a boundary the following form of
equation (10.17) for example, is obtained assuming a linear variation of
along the grid lines (fig. 10.8).

¢|+(%)+¢3+¢4
Yo = = : (10.17)
3+ (L)
A
3
Ay Ax —

1 0 2
4

[ 4x | 4Ax |

Figure 10.8

(i) Matrix method. Equations (10.15), (10.16) or (10.17) for the interior

grid points together with the boundary conditions can be globally expressed
in the form

[A] [¥] = [B]

Thus y,, ¢, etc. can be found directly using Gaussian elimination on a
computer.

(ii) Method of successive corrections. This method is also amenable to
computer solution and is probably quicker than (i) above; it can also be
executed using an electronic calculator. Values of y are allocated to the
boundaries and, in relation to these, estimated values are given to the
interior grid points. Considering each interior grid point in turn the allocated
value of , is revised using equations (10.15), (10.16) or (10.17) as appropriate.
This procedure is repeated at all grid points as many times as necessary until
the differences between the previous and revised values of y at EVERY
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grid point are less than a prescribed limit. The discrete streamlines are then
drawn by interpolation between the grid values of Y.

10.9 Curvilinear flow of real fluids

The concepts of ideal fluid flow can be used to obtain the velocity and
pressure distributions in curvilinear flow of real fluids in ducts and open
channels. Curvilinear flow is also referred to as ‘Vortex Motion".

Curvilinear flow is not to be confused with ‘rotational’ flow; ‘rotation’
relates to the net rotation of an element about its axis.

Theory: Consider an element of a fluid subjected to curvilinear motion. (See
fig. 10.9.)

2

. ; v,

Radial acceleration = -2-
r

Equating radial forces,

2
dprdédy = prd6drdy v%

whence
dp _ v’
dr  r
or in terms of pressure head
dh _ vo’
I e (10.18)

Figure 10.9
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10.10 Free and forced vortices

(a) Free vortex motion occurs when there is no external addition of energy;
examples occur in bends in ducts and channels, and in the ‘sink’ vortex.
The energy at a point where the velocity is vq and pressure head is h is
ng
E=h+ (10.19)
2%
E is constant across the radius, hence

dh _ ved (ve) _

0
dr g dr
From (10.19)
Yo' L Yo d (%) _
gr g dr
whence
e _ dr or log. (vgr) = constant
Vo r
hence
ver = constant = K (circulation) (10.20)

(b) Forced vortex motion is caused by rotating impellers or by rotating a
vessel containing a liquid. The equilibrium state is equivalent to the

rotation of a solid body where vs = rw where w is the angular velocity
(rad/s).

Worked examples

Example 10.1

A line source of strength 180 /s is placed in a uniform flow of velocity
0-1 m/s.

(a) Plot the streamlines above the x axis.

(b) Obtain the pressure distribution on the streamline denoted by ¢ = 0.

Solution (a):

It is convenient to consider the uniform flow to be in the-x-direction. This
results in a streamline having the value 9 = 0 which may be interpreted as
the boundary of a solid body.

Y =uy + g_f: (equation (10.12))
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or

= ur i q¢
Y =ursin 6 + o
Setting v successively to 0, —0-01, —0-02 ... and noting that y = —0-1 the

co-ordinates (r, 6) along the streamlines can be obtained from equation
(10.12).

Values of r (m)
v o T T T e T T DT T

0 029 | 029 [ 031 | 035 | 041 | 0-51 | 0-69
—0-01 | 08 | 0-58 | 0-47 | 046 | 0-51 | 0-61 | 0-81
—0-02 | 144 | 087 | 062 | 058 | 061 | 071 | 092
=003 [ 202 | 1117 | 078 | 069 | 0-71 | 0-81 1-04

s

FERSE
N
=N
w

The pairs of co-ordinates, 6 and r are plotted to give the streamline pattern.
The graphical method gives identical results and is clearly quicker; however
the mathematical approach is appropriate in computer applications where
computer graph plotting facilities are available. (See fig. 10.10.)

The graphical construction proceeds as follows: the uniform flow is rep-
resented by a series of equidistant parallel straight lines (defined by , in
fig. 10.10). Discharge between the streamlines was chosen to be 0-010 m%/s.m
in the analytical solution; thus the spacing of the uniform flow streamlines in
the diagram represents to scale a distance of 0-10 m. It is convenient to
choose the streamlines of the source such that the discharge between them is
also 0-010 m*/s.m; the angle A8 is simply obtained since

P = 0-06 Y, = 0-05 } Y, = 0-04

PO Y

AN [ / % = ~008
e

- N\ W, = 0-01

. N\ Yy = -B’.?.Z
p \\\\ \\ ]

—— V’u = —-0:02
j \k‘ A6 Yo =0
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_ 946
Ay, =
i.e. 0-010 = W_A_H

2n
whence AG = 20°

At the points of intersection of the uniform flow and source stream lines the
individual stream functions are added algebraically and the resultant flow
pattern is obtained by sketching the streamlines through points of equal
resultant stream function. The construction and final flow pattern are illu-
strated in fig. 10.10.

Solution (b):
The pressure distribution in the disturbed flow field at r, 8 is obtained from

Pre — Po - V02 - Vr?o

i
[ 2g @)
where V, is the undisturbed velocity and V, g the velocity vector at r, 8.
Vr.O = vr2 + v92
_1oy
Vi =7 20 (equation (10.3))
— 4 urcos (4 + -9
r 2ar
Vg = — oy (equation (10.3))
ar
= — usin 6
: 2
V2 = y? . ( 9 ) .
e =u"+ 2ucos 8 Pl Eye (ii)
#] ' ] M qe
Around the ‘bouy’, (y = 0), ur sin 8 + = 0
.. 9 _ _ursiné
ie oo )
. . 2
Thus V.2, = u? (1 _sin20 smz())
0 6
whence, from (i), since V, = u in this case,
Pro — Po _ U ( . _sin? 0)
o8 2¢0 sin 26 ~o (iii)
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Substitution of u = —0-1 m/s into (iii) yields the pressure distribution for a
range of 0.

Example 10.2

A discharge of 7 m’/s per metre width flows in a rectangular channel. A
vertical sluice gate situated in the channel has an opening of 1-5 m. C, = 0-62,
C, = 0-95. Assuming that downstream conditions permit free flow under the
gate draw the streamline pattern.

Solution: (See fig. 10.11.)

J

| N

S
I Yo ¥ V2
A B C
Figure 10.11
y2=C. Xy, =062X%X15=09m
V.2 sz
— — —— +
¥i 28 y2 + 2 hy Q)]
1\? ) V,? 7
d = —_— —_ —_— - — = .
an hL ((Cv) 1 2g M V2 0-93 7-527 m/s
Soh =031m

Whence from (i) y = 3-97 m (say 4-0 m)

Divide the field into a 1-0 m square grid (see fig. 10.11) and allocate
boundary values and interior grid values of .

Numbering rows and columns from top left-hand corner, note that at
point 4, 7 two of the adjacent grid points do not coincide with the boundary.
Using the notation of fig. 10.8, A, = 0-6 and A; = 0-5.

The results of successive corrections using equation (10.17) in the form

_ ity yYs+ Y,
%— 4

at all interior grid points with the exception of point 4, 7 where equation
(10.17);

¥, ¥
¢1+A2+A3+¢4

1 1
+—+ =
2t %t

wn =
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is used are shown in the following table:

Ist correction

Column 2 3 4 5 6 7
Row 2 80 85 89-5 93-4 97-0 100
3 60 70 79-4 88-19 93-82 100
4 35 43.75 52-03 57-55 61.59* 75-57
*Maximum correction = —28:41
2nd correction
Column 2 3 4 5 6 7
Row 2 80 84-88 89-40 93-67 96-87 100
3 58-75 66-69 74-08 79-78 84-56 100
4 31-87 37-65 42-32 45-92* 51-51 73-79
*Maximum correction = —11-63
Values (all corrections < |1-0|) after 8 iterations
Column 2 3 4 5 6 7
Row 2 76-49 77-86 79-69 83-02 89-39 100
3 5190 53-78 56-59 62:20 74-27 100
4 26-22 27-53 29-69 34-35 45-34 7271
The above is probably sufficiently accurate for most purposes but com-
putations can be continued if required.
Values after 12 iterations
Column 2 3 4 5 6 7
Row 2 75-78 76-84 7871 82-33 89-07 100
3 51-08 52-62* 55-50 61-44 7391 100
4 25-76 26-88 29-09 33.92 45-13 72-67

*Maximum correction |0-125]

The discrete streamline can now be drawn (see fig. 10.12).

Example 10.3

Water flows under pressure round a bend of inner radius 600 mm in a
rectangular duct 600 mm wide and 300 m deep. The discharge is 360 1I/s. If
the pressure head at the entry to the bend is 3-0 m calculate the velocity and

pressure head distributions across the duct at the bend.
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Gate

100 100 100 100 100 100 100
= | I I l |
. ) 7 83 891

-3 -0
I H |
51:1 526 555 614 739

50 60 2o 8o 88 98 100

25 s o 85 go 95

65 ‘5’%.100
125

ST OCT IV ETT T 7777777 77777 FPr 7 7 7rrrry7s Frrrr7

0 0 0 0 0 0 0 0

Final corrected values 45.1
Initial assumed values 96

Figure 10.12

Solution:
(See fig. 10.13.)

Energy at entry to bend,

2
E=h+ Y where V = approach velocity (= 2 m/s)

2g
22
=30+ —=3204m
28
V8.2A Vo'
E=c0nst.=hA+¥=hB=2—g-
dh Vez R .. . . .
ar E from (10-18) and .- the variation of v, with radius is required.

Now vg = % and to evaluate K express the discharge Q as

Q=va9dr
T

i.e.Q=wf l(-dr=Kw [loger—B]
TA r Ta

1-2

—] = 0-208 K
0-6

0-36 = K x 0-3 x log, [
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| b

I'g
i
Plan Section
Figure 10.13
or
K =173
y = ﬂ = . . - ﬂ = .
- VoA = 06 = 2-88 m/S, Va.c 09 1-92 m/s
1-73
=— _ 1.4
Vo.B 12 1-44 m/s
E (= 3-204m)—h+"—"2- h = 3204 = Y
B B 28’ 2g
whence

hy =278 m; hc =3-02m; hg = 3.10 m.

Example 10.4

Water flows round a horizontal 90° bend in a square duct of side length
200 mm, the inner radius being 300 mm. The differential head between the
inner and outer sides of the bend is 200 mm of water. Determine the
discharge in the duct.

Solution:
dh _ Vg :
dar or (equation (10.18))

B ™ 2
Ah=hA—hB=f dh=J’ Yelr dr
A TA gr

where vo, means the tangential velocity at r.

and vp, = % (equation (10.20))
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Vo h I
i .
A C B A l IC B
- e —— -1
| L

T : r I
Velocity Pressure head

Figure 10.14
, _K '“dr_Kz[ 1]"‘ :
s Ah hy — hg = j,ﬁ‘g > ()
K

re ™"
Q= I ng,=WJ’ l"d

A A

Q=leogc(:—z); K=—l'|3
wlogc(—)

[=

- in (i) Ah =

where Q = V2g Ah w log, (-rﬁ) (

I'BZ X l'Az)
fa

l'Bz - I'AZ

A=03m; rg=05m; w=02m; Ah=02m

s Q = 0-076 m’/s.

Example 10-5
A cylindrical vessel is rotated at an angular velocity of w. Show that the
surface profile of the contained liquid under equilibrium conditions is

parabolic.

Solution:
This is an example of forced vortex motion. (See fig. 10.15.)

For all types of curvilinear flow equation (10.18) is applicable.

2
g‘l=ﬂ @)

dr gr
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h
Figure 10.15
and vg . = rw (for the forced vortex) (ii)
2 T2 2
.-.hg—h|=f dh=1f Yor . gr
1 g r r
. 1 (" o’
ie.h — hy = —g—J’rl rw? dr = % [r2? - 7

Taking the origin (r = 0, h = 0) at 0,

2
h= (;—g r? which is a paraboloid of revolution.
Example 10.6

A siphon spillway of constant cross-section 3-0 m wide by 2:0 m deep
operates under a head of 6-0 m. The crest radius is 3-0 m and the siphon has
a total length of 18-0 m, the length from inlet to crest being 5-0 m along the
centre line. V2 V2

(a) Assuming the inlet head loss to be 0-3 2_g’ the bend loss 0-5 2_g’ the

Darcy friction factor 0-012 and & = 1-2, calculate the discharge through
the siphon.

(b) If the level in the reservoir is 0-5 m above the crest of the siphon
calculate the pressures at the crest and cowl and comment on the result.

Solution:

Notes: Siphon spillways are used on dams to discharge floodwater. They are
particularly useful where the available crest length of a free overfall spillway
would be inadequate. Once a siphon spillway has ‘primed’ it operates like
full-bore pipe flow under the head between the reservoir level and the outlet
and has a high discharge capacity per unit area. Unlike a free overfall
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spillway which provides a gradual increase in discharge (see Example 11.9)
the siphon discharge reaches a peak very quickly which may cause a surge to
propagate downstream. For this reason a number of siphons may have their
crests set at different levels so that their priming times are not simultaneous.

Since siphons incorporate one vertical bend at a high level, the resulting
vortex motion can produce very low pressures at the crest which may result
in air entrainment, cavitation and vibration. The design of the crest radius is
therefore of utmost importance.

In this Example while head losses in the direction of flow are taken into
account (i.e. real fluid flow is considered), no energy losses across the flow
occur and the curvilinear flow is treated as in ideal fluid flow. (See
fig. 10.16.)

Using the principles of resistance to flow in non-circular ducts:

H = entry loss + velocity head + bend loss + friction loss, i.e.
2 2 5 V2 2
V- aV + 05V + ALV

H = 03 %t 2 % 3R @
R = hydraulic radius = 0-6 m

_ Vv ( 0-012 X 18)
6= 2 03+12+05—_4x0-6

2
6= )2% (2:09) whence V = 6-:37 m/s

Discharge = 6 X 6:37 = 38-22 m%/s

(Note that the dischargé may be expressed as Q = C4 A V2gh where C,4
is the overall discharge coefficient.)
Net head at crest, H,, of bend = 0-5 — losses

_03V2 ALsV?

Ha =05 2 8gR

=05 — 2-87 x (0.3 + M)

4 X 06
(relative to crest)
= —0-433 m

Tailwater

Figure 10.16 Siphon spillway
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At the crest, A, Hu zg (V;g") (ii)
whence
2
%g_ = Hp - ——(V;;) (iii)
Vou = &
8.A A

The discharge across the section of the duct at the crest,

T8

Q= f vg b dr where b is the width of the duct.

™ K Ip
Q=b| —dr=bK|log —

TA r TA
3822 =3 x K [logc g] = 1532 K
whence K = 24.94

24-940

2
Voa = T3 = 8313 mis; %gi=3-52m

". from equation (iii) %’;— = —0-433 — 3.52 = ~3-953 m

At B (the cowl) Hg = % + == Vg B 4+ 20 (relative to crest)

2g
Since Hg = H,
Po_y, _YeB_,,
Pg 2g
2
Vop = % = 24940 _ 4508 YeB _ e
Ig 5 2g

BB o 0433 - 1268 —~ 20 = =3.701 m

Comment: Neither p,;

nor E are particularly low and there should be no
danger of cavitation. The spillway could satisfactorily operate under a larger
gross head.

The reader should determine the maximum operating head if the crest
pressure is not to fall below — 7 m below atmospheric pressure head.
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Example 10.7

At a discharge of 10 m%/s the depth of uniform flow in a rectangular channel
3 m wide is 2:2 m. The water flows round a 90° bend of inner radius 5-0 m.
Assuming no energy loss at the bend calculate the depth of water at the
inner and outer radii of the bend.

Solution:
(See fig. 10.17.)

Since there is no energy loss between the entry to the bend and points
within the bend, E, = E, = Eg = E

i.e.
V02 V92A Vo'n .
— = + —— = + —=
Hence if vg o and v g can be determined y, and yg can be calculated.
—2om V.o=—10  _ S
Yo = 22 m; Vo—3x2_2—1515m/s, 2g—0117m
L Eo =224+ 0117 =2317Tm
K (1:}
vo, =K and @ = ["vo, yoar Gi)
Ta
E- Y p - K4 substituting in Gi):
ye 2 2g 1? g )

o[- g)u-e [ (E- )
--Q—KLr(E ) =K) (T-g0)a

I K2(1 1
Q-_—K[E]Oge(i')i-“—g(?—;?)]

Plan Section

Figure 10.17
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2
10 = K [2-317 loge (g) + ‘:—g (é _ .517)]

By trial K = 9-71

971 Ve’
Voa = - = 1-942; %ﬁ =0-192 m
_91 _ . Vo _ .
Vop = 5= = 1-2137; 2 = 0-075 m

So¥Ya =2317 - 0192 = 2125 m
yp = 2-:317 — 0-075 = 2-:242 m.

Recommended reading

1. Featherstone, R.E. (1981) ‘Hydraulics (Mechanics of Fluids)’ in Kempe’s
Engineers Year Book, Vol. 1. London: Morgan-Grampjan.

2. Design of Small Dams (1965) US Department of the Interior, Bureau of
Reclamation, US Government Printing Office, Washington.

3. Vallentine, H.R. (1967) Applied Hydrodynamics. London: Butterworth.

Problems

1. Determine the stream function for a uniform rectilinear flow of velocity
V inclined at « to the x axis (a) in Cartesian, and (b) in polar forms.

2. A stream function is defined by ¢ = x y. Determine the flow pattern
and the velocity potential function.

3. Draw the streamlines defining ‘streamtubes’ conveying 1 m%/s per
metre depth for a source of strength 12 m*/s.m in a rectilinear uniform flow
of velocity —1-0 m/s.

4. In the system described in Problem 3 a sink of strength 12 m*/s.m is
situated 5 m downstream from the origin of source in the direction of the
x axis. Draw the streamlines and determine the shape of the ‘body’ defined
by the streamline y = 0,

5. A pollutant is released steadily from the vertical outlet of an outfall
into a river (fig. 10.18) such that it rises vertically without radial flow
(neglecting the effects of entrainment). The pollutant is carried downstream
by a uniform current of 1-0 m/s. A water abstraction is situated 30 m
downstream of the outfall; this may be considered as a line sink the total
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inflow over the 2 m of the stream being 6 m*/s. Neglecting the effects of
dispersion investigate the possibility of the pollutant entering the intake.
(See fig. 10.18.)

—
Pollutant source Ambient flow
¢ — - 1.0 m/s
T7m| !
TTTTTTTTIT I T T T T TR T T 7T T T I T T T T I T T 77

1
| l\ Intake
|
L 30 m E
™ >

Figure 10.18

6. Water flows through a rectangular duct 4 m wide and 1 m deep at

a rate of 20 m%/s. The flow passes through the side contraction shown in
fig. 10.19. Assuming ideal fluid flow and using either a flow net construction
or a numerical method of streamline plotting determine the pressure dis-
tribution through the transition between AA and BB (a) along the centre
line of the duct, and (b) along the boundary if the pressure head at AA is
10 m of water. (See fig. 10.19.)

A
LLLLLLLLL L L LTI L L LI L0l Ll Ll
B
2m ,
1m
'y ] l ] l ] L ] ] !
A0 1 2 3 4 5 6 7 B8
Distance m
Figure 10.19
7. A discharge of 6 m>/s per unit width approaches a vertical sluice gate

in a rectangular channel at a depth of 4 m. The vertical gate opening is
1-5 m and C4 = 0-6. Assuming that downstream conditions do not affect the
natural flow through the gate opening verify that the flow through the
opening is supercritical, draw the streamline pattern and determine the
pressure distribution and force per unit width on the gate. Compare the
value of force obtained with that obtained using the momentum equation.



292 CIVIL ENGINEERING HYDRAULICS

8. Water flows under pressure in a horizontal rectangular duct of width
b and depth w. The pressure head difference across the duct, at a horizontal
bend of radius R to the centre line, is h. Show that if R = 1-5 w the
discharge is obtained from the expression, Q = 2-5 dw V'h.

9. Water flows round a horizontal 90° bend in a square duct of side
length 200 mm, the inner radius being 400 mm. The differential head
between the inner and outer sides of the bend is 150 mm of water. Determine
the discharge in the duct.

10. The depth of uniform flow of water in a rectangular channel 5 m
wide conveying 40 m¥/s is 2-5 m. The water flows round a 90° bend of inner
radius 10 m. Assuming no energy loss through the bend determine the
depth of water at the inner and outer radii of the bend at the discharge of
150 m?/s.

11. A proposed siphon spillway is of uniform rectangular section 5 m
wide and 3 m deep. The crest radius is 3 m and the length of the approach to

the crest along the centre line is 7 m. The overall discharge coefficient is
2

2gv ,» where V is the mean velocity, and the

Darcy friction factor is 0-015. Determine the discharge when the siphon
operates under a head of 6 m with the upstream water level 0-5 m above the
crest and determine the pressure heads at the crest and cowl.

o

0-65, the entry head loss =

12. Water discharges from a tank through a circular orifice 25 mm in
diameter in the base. The discharge coefficient under conditions of radial
flow towards the orifice in the tank is 0-6. A free vortex forms when water is
discharging under a head of 150 mm; at a horizontal distance of 10 mm from
the centre line of the orifice the water surface is 50 mm below the top water
level. Determine the discharge through the orifice.

13. A cylindrical vessel 0-61 m in diameter and 0-97 m deep, open at the
top, is rotated about a vertical axis at 105 rev/min. If the vessel was
originally full of water how much water will remain under equilibrium
conditions?



Chapter 11

Gradually Varied Unsteady
Flow from Reservoirs

R. E. Featherstone

11.1 Discharge between reservoirs under varying head

Figure 11.1 shows two reservoirs, of constant area, interconnected by a
pipeline, water transfer occurring under gravity. Reservoir A receives an
inflow I, while a discharge Q, is withdrawn from B; I, and Q, may be time
variant.

In the general case the head, h, and hence the transfer discharge, will vary
with time and the object is to obtain a differential equation describing the
rate of variation of head with time, %ltl The corresponding rate of change of
discharge is considered to be sufficiently small that the steady state discharge v.
head relationship for the pipeline fiow may be applied at any instantaneous
head; compressibility effects are also neglected. Such unsteady flow situations
are therefore sometimes referred to as ‘quasi-steady’ flow.

Let h = gross head at any instant

Ah; = change in level in A during a small time interval At
Ah, = change in level in B in time At

Then change in total head = Ah = Ah; — Ah; (11.1)

~~ Ah
4 4N

= |1

Figure 11.1

293
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Ah,
t

Continuity equation for B: Q, — Q, = AZAThZ (11.3)

Continuity equation for A: 1 — Q, = A, (11.2)

Note that Q, is the discharge in the pipeline and hence is the inflow rate into
B

From the steady state head v. discharge relationship for the pipeline
A L) Q/’
h = + =
(K"‘ D/2gA?

where A, = area of pipe and K,, the minor loss coefficient.
whence

Q, =Kh'? (11.4)

in which

K= A,

From equations (11.1), (11.2) and (11.3)

1-Q Q- oz)
A A, At

Introducing (11.4),

Ah=<L—Kh"2(L+l)+22—)At

an = (

A] A| Az A2
and in the limit as At — 0,
at = —— dh — (11.5)
(—+—z) _ K" (-—+—)
A A A A

In a similar dynamic system where the upper reservoir discharges to
atmosphere through a pipeline, orifice or valve (fig. 11.2), the term Ah, in
equations (11.1) and (11.3) disappears and a similar treatment, or alter-
natively removing the irrelevant terms A, and Q, from equation (11.5),
yields

_ A dh
or
[ - Kh'"2 =], CL (11.7)

dt
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where K h'? represents the appropriate steady state discharge v. head
relationship for the outlet device.

Figure 11.2

11.2 Unsteady flow over a spillway

The computation of the time variation in reservoir elevation and spillway
discharge during a flood inflow to the reservoir is essential in design of the
spillway to ensure safety of the impounding structure. (See fig. 11.3.)
The continuity equation is
ds

Io = Qw = 5 (11.8)

where %% is the rate of change of storage, or volume, S.

z—f may be expressed as A % where A is the instantaneous plan area of the

reservoir and % the instantaneous rate of change of depth.
Assuming that in the case of a fixed crest free overfall spillway, the

discharge rate Q may be expressed by the steady state relationship

Ay

—
-1

Figure 11.3
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Q= % VIg Cy L b2 (11.9)
where L is the crest length and C,4 the discharge coefficient,
i.e.Q=Kh¥ (11.10)
Equation (11.7) becomes
ds dh
-~ Kh?==2=A%2 :
I, — K it A it (11.11)

Ity is the known time variant inflow rate. Except in the rather special case
where A does not vary with depth and I, is constant, equation (11.11) is
not directly integrable and in general must be evaluated numerically.

11.3 Flow establishment

(See fig. 11.4.)

Figure 11.4 shows a constant head tank discharging to atmosphere through a
pipeline terminated by a control valve. If the valve, which is initially closed,
is suddenly opened the discharge will not instantaneously attain its equilibrium
value and the object is to determine the time taken for this to be attained,
i.e. the time of steady flow establishment.

Initially the total head, H, is available to accelerate the flow but this
decreases as the velocity increases due to the associated head losses. At any
instant the available head = H — K V2 where K is the head loss coefficient,

_ (AL )l
'(D + Kn) o

where K, is the minor loss coefficient.
The equation of motion (Force = mass X acceleration)

pg A, (H - K V?) =pAPL(:i—\t’ (11.12)

where A, = area of pipe cross-section

‘ I

Figure 11.4
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whence

t2 L V2 dv
T = t dt = E fv H——sz (11.13)
) ;

Assuming A = constant in the interval between velocities V; and V, and
writing a> = H, and b? = K, (constant), equation (11.13) becomes

L[ __dv
g Jv, a2 - b* V?

_L (" ( 1 1 )
“2ag)y \a¥bV a bV v
_ L [0 (a+bV)]"z
2gab | = (a—bV)ly,
L [ (VH + VK V) ]V:

= log.

2ge VK H (VH - VK V)
Hence the time for flow establishment is the value of the integral (11.13)
between V = 0 and V = V, where V, is the steady state velocity in the

pipeline under the head H. Therefore, since H = K V,?, equation (11.14)
becomes:

(11.14)
\4

Vo
LV [V°+V] (11.15)

T= 21

22H |V, -V
If the variation of A with discharge is taken into account during the accelerating
period the time of flow establishment must be evaluated by numerical or
graphical integration of equation (11.13).

V=0

Worked examples

Example 11.1

A circular orifice 20 mm in diameter with a discharge coefficient C4 = 0-6 is
fitted to the base of a tank having a constant cross-sectional area of 1-5 m.
Determine the time taken for the water level to fall from 3-0 m to 0-5 m
above the orifice.

Solution:
Since there is no inflow (I = 0), equation (11.7) becomes
—Kh'2 = A, 90

dt
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whence
_dh
dt = —A, Kh?7
Integrating:
t
. : A, ™ dh
Time T = :=odt= -?J:—hﬁ

A| [ 1/2]h| 2 Al [ llz]h"
T 2h =——1h
K nh, K h,
K=C4 A, V2g = 0-6 x 3-142 x 443 = 835 x 10~*

whence

2x1-5 [ 1/2]3-0 ;
=————1h = 36824 sec.
835 x 107* 0-5

Example 11.2
If the tank in Example 11.1 has a variable area expressed by A, = 0-0625 (5 + h)?
calculate the time for the head to fall from 4 m to 1 m.

Solution:
A, dh
dt lhl/2
whence
T2 _ 00625 %°(5+ h)

0-000835 J3, h'? dh

3.0

T = 74-85 (25 h™"2 + 10 h'2 + h*?) dh
05

30
= 74.85 [50 e+ Dy 2 h”]
3 5 0.5
= 6713-75 sec.

Example 11.3

A pipeline 1000 m long, 100 mm in diameter with a roughness size of 0-03 mm
dlscharges water to atmosphere from a tank having a cross-sectional area of
1000 m?. Find the time taken for the water level to fall from 20 m to 15 m
above the pipe outlet.

Solution:

Continuity I — Q = A, ((11}: ()
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The pipeline discharge Q may be expressed by the Darcy-Colebrook-White
equation -

_ [ he k 251 v ,
Q=-2A, /2D L log D + . (ii)
D 2g D -l:

However if this were substituted into (i) the resulting equation would need
to be evaluated using graphical or numerical integration methods. Such a
procedure is fairly straightforward but if constant value of A over the range
of discharges is adopted a direct solution is obtained. In this latter case Q is
expressed by

Ap \/2_8 hl/2

AL
K,,,+D

Q= = K h"? (equation (11.4))

Thus (i) reduces to equation (11.6): dt = %ﬁ

To evaluate K calculate the pipe velocities at values of hy = 20 m and
15 m using equation (ii), i.e. neglecting minor losses, and evaluate A from
the Darcy-Weisbach equation:

s=28Dh
VZ L
(a) when hy = h =20 m, V = 1-46 m/s and A = 0-0184
(b) when hy = h = 15m, V = 1-25 m/s and A = 0-0188
Adopting A = 0-0186 and K,, = 1-5, K = 0-00254.

whence
*A,dh .
T=J:W (since I = 0)
= 2 X 1000y qsiny o
T 0-00254 [20 15"%] = 471660 s
= 131-02 h
Example 11.4

If in Example 11.3 a constant inflow of 5 I/s enters the tank determine the
time for the head to fall from 20 m to 18 m.

A, dh .
e ®
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' dh "
T-a [ = ®
Write y = K h'2 — | (iii)

whenceh=%(y2+2ly+lz)
dh=kl—2(2y+21)dy

yi
(ii) becomes: T = —2 Ar j G+D dy
Yo

K,y
Vi

ie. T = —Z%J’ (1 +§) dy = —2%[y+llogc(y)]
Yo

Substituting for y from (iii)

yi

Yo

Al 172 172 20
T=2%5 [Kh" ~1+1log (Kh'2-1)
18

Using K = 0-00254 (as in Example 11.3),
_ 2 x 1000

T = Soonsar (0:00254 (V20 — VT8) + 0-005 x
[loge (0-00254 V20 — 0-005) — log, (0-0254 VI8 — 0-005)]}
= 329579-8 s
= 91:55 h.

Example 11.5
Reservoir A with a constant surface area of 10000 m? delivers water to
reservoir B with a constant area of 2500 m? through a 10000 m long, 200 mm
diameter pipeline of roughness 0-06 mm. Minor losses including entry and
velocity head, total 20 V*/2g. A steady inflow of 10 I/s enters reservoir A
and a steady flow of 20 I/s is drawn from B.

If the initial level difference is 100 m determine the time taken for this to
become 90 m.

Solution:
Refer to section 11.2 and fig. 11.1.
From equation (11.5)

dh
I QZ) 172 ( 1 l )
— + —=) —-Kh — + —
(A. A, K A, A,
Since, in this case 1, Q,, A, and A, are constant equation (i) can be
directly integrated

(i)
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LetW=(L+9-3>andZ=K(L+L)

A A A A
Then in (i)
_ dh
*=W-zn”?
_[" dh "
and T = . W_zZh"? (ii)
Using the mathematical technique of Example 11.4 this integral (ii)
becomes
2 Zh'?-w
T = =2 [Z (h;'? — h,'?) — W log, (—Zh;T—V-V_) (iii)
A, V2
Now K = 2o VB and A is evaluated as in Example 11.4.
AL
Kn + D

Adopting A = 0-0173, K = 4-678 x 1073
W =90 X 107 and Z = 2-339 x 10~°

Thus from equation (iii), T = 725442 s
= 201-51 h.

Example 11.6
For the system described in Example 11.5 find the time taken for the level in
reservoir A to fall by 1-0 m.

Solution:
Continuity equation for reservoir A (from equation (11.1)):
dh, .
I Q] = A, dt (l)
; 12 1”2 dh, ..
Since Q =Kh",I-Kh =A|—(F (ii)

Thus the rate of change of level in A is related to the instantaneous gross
head h. A numerical or graphical integration method must be used to
evaluate the time taken for the level in A to change by a specified amount
since, in equation (ii) the head h, also varies with time.

Thus

_I-Kn"”

Ah
1 A

At (iii)
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By taking a series of values of h the variation of h with time is evaluated
using equation (jii) in Example 11.5.

h (m) time (s)
99 69786-6
98 140148-3
97 211100-0
9% 282656-0
95 3548270

Plotting h v. time (fig. 11.5 (a)) values of h at discrete time intervals At,
say 100000 s, are obtained. Equation (jii) is then evaluated for Ah, in the
time interval At.

_ The following values are obtained from fig. 11.5 (a) and equation (iii).

h is the average head in the time interval. The negative sign for Ah,
indicates a falling level in A.

Time (s X 10°) 0 1 2 3
h (m) 99 98-5 97-2 95-0
h'? 9-94 9-89 9-89
Ah, (m) —0:355  -0353  —0-349
LAh; (m) —0-355 —-0-708 —1-057

From the graph of Y Ah, v. time (graph (b)) t = 2:95 x 10° s when

95 - 1-00 -
h 961 0-75 4
(m) 3Ah
97 A (m) 0-50 4
98 0-25 1
% T T v L L L] L] T LI
10 20 30 40 10 20 30 40 50
t (s x 10% t (s x 10%)
(a) (b)

Figure 11.5
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Example 11.7
An impounding reservoir is to be partially emptied from the level of the
spillway crest through three 1-0 m diameter valves with C4 = 0-95, and set at
the same level with their axes 20 m below the spillway crest. The variation
of reservoir surface area (A ) with height (h), above the valve centre line is
tabulated (see table below).

Assuming that a continuous inflow of 0-5 m*/s enters the reservoir deter-
mine the time required to lower the level from the spillway crest to 1-0 m
above the valves.

h (m) 0 5 10 15 20
A, (m? X 10°) 25 6-0 11-5 15-0 17-0

Solution:
dh .
[-Q=A 3 ()
Q (the outflow) = 3 X C4 A, V2g h'? = K h'?
where K = 3 x 095 x 0-7854 V2g = 9-915
From () T = | dt = r _Acdh h,,2 (ii)

Since A, is not readlly expressible as a continuous function of h, equation
(ii) is not directly integrable, but may be evaluated graphically or numerically.

———%lﬁ, T = Jm X(h) dh

X(h) is evaluated for a number of discrete values of h and the integral

f: " X(h) dh

obtained from the area under the X(h) v. h curve.

Writing X(h) =

h (m) 20 15 10 5 1

A (h) m? x 105 170 150 11-5 7-0 3-0
X(h) (s m™" x 105 —0.38776 —0-39571 —0-37272 —0-27687 —0-318640

The -ve sign for X(h) indicates that h is decreasing with time. Plotting X(h) v.
the area between h = 20-0 and h = 1-0 yields

T =661 x 10°s = 1836 h.
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Example 11.8
Flood water discharges from an impounding reservoir over a fixed crest
spillway 100 m long; C4 = 0-7. The variation of surface area with head
above the crest (h) is shown in the first two tables on page 287.

Calculate the outflow hydrograph and state the maximum water level and
peak outflow, assuming that an outflow of 20 m%/s exists at t = 0 h.

Solution:
Refer to fig. 11.3.
The continuity equation (equation (11.8)) is

ds .
Iy = Q = ot @)

where S = volume of storage
Q) = outflow rate over spillway crest = % V2g C4 L h*?
= K h¥2 (ii)
Thus (i) becomes
dS A dh
Iy - Kh¥?2==_421 i
© dt ~  dt (i)

Since I, is not a function of h and S is not a readily expressible function
of h equation (iii) is best evaluated using a numerical method. Taking small
time intervals At (iii) may be written:

% Ah

T—Km”=AE_ -
3/2 32
where T = l'ik; By = (h; + Ah)*? + h,
2 2
A=At Ay

A= ;o A= Amy Az = A(h,+ah)

2

Subscripts 1 and 2 indicate values at the beginning and end of each time
interval respectively.

Ah is estimated and adjusted until equation (iv) is satisfied and the
computation proceeds to the next time interval. A curve, or numerical
relationship, relating A with h is required. The above procedure is best
carried out on a digital computer.

A simpler, explicit method, is obtained by writing equation (i) in finite
difference form taking discrete time intervals At.

L+Lh Qi+Q)_ S, -8
2 2 T a ™)
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el +L+ 5 - Q=220 (vi)
At
At each time step the values of S; and Q, are known; hence the value of
the left-hand side (L H S) is known and hence S; and Q; can be found from
curves relating (Z + Q) v.hand Q v. h.
Taking S = L (Ag) X Ah) and At = 1 h = 3600 s, (see bottom table on
page 306).

Table of calculations of outflow rate and head

Time (h) I (m%/s) % -Q LHS Q (m%/s) h (m)
0 20 i160 20 0-21
1 40 1180 1220 20 0-21
2 70 1242 1290 24 0-23
3 100 1360 1412 26 0-25
4 128 1528 1588 30 0-27
5 150 1730 1806 38 0-32
6 155 1949 2035 43 0-35
7 140 2144 2244 50 0-39
8 112 2286 2396 55 0-41
9 73 2359 2471 56 0-42

10 46 2478 56 0-42

Notes: Att=0,Q =20 m3/s, hence h = 0-21 m

28 .28 _
and At+Q 1200; At Q— +Q 20)

hence column 3 is completed.

1604 inflow hydrograph

Y]
<
1

Outflow hydrograph

Discharge m®/s
&8
[}

g

Figure 11.6
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28

Att=1h,Il+Iz+E—Q=ZO+4O+1160=1220
%%+Q= 1220 whence h = 0-21 m and Q = 20 m%/s

Peak outflow = 58 m%/s at t = 95 hrs; hy,,, = 0:42 m

Plotting the inflow and outflow hydrographs (see fig. 11.6).
Note that Q,,,. coincides with the falling limb of the inflow hydrograph.

Example 11.9

A pipeline 5000 m long, 300 mm in diameter and roughness size 0-03 mm
discharges water from a reservoir to atmosphere through a terminal valve.
The difference in level between the reservoir and valve is 20 m which may
be assumed constant. If the valve, which is initially closed, is suddenly

opened, determine the time for steady flow to become established neglecting
2

compressibility effects. Assume minor losses = 52\g,

including velocity head

and entry loss.

Solution:
From equation (11.15), section 11.3, the theoretical time for flow establish-
ment is

_ LV, o [Vo + V]V"
2 H Vo -V
Using the techniques of Chapter 4 the steady state velocity, V,,, under the

head of 20 m is calculated to be 1-23 m/s. Theoretically the time taken to

attain steady flow is infinite (substituting V = V, in equation (i) ); therefore
adopt V, = 099 x 1-23 = 1-2 m/s (say) whence in (i)

T = 5000 x 123 [2-43
19-62 x 20 0-03
The above solution assumes a constant value of A. The reader should

evaluate T, taking account of the variation of A with velocity, using a
graphical or numerical integration of equation (11.13).

T

)

V=0

]=68-9s

Problems

1. A reservoir with a constant plan area of 20000 m? discharges water to
atmosphere through a 2000 m long pipeline of 300 mm diameter and rough-
ness 0-15 mm. The reservoir receives a steady inflow of 20 I/s. If the head
between the reservoir surface and the pipe outlet is initially 40 m determine
(neglecting minor losses) the time taken for the head to fall to 35m.
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2. An impounding reservoir, of constant area 100000 m?2 discharges to a
service reservoir through 20 km of 400 mm diameter pipeline of roughness
0-06 mm. Minor losses amount to 20 V?/2g. The impounding reservoir, of
constant plan area 10000 m?, receives a steady inflow of 30 I/s while a steady
outflow of 10 I/s takes place from the service reservoir. If the initial level
difference is 50 m determine the time taken for the head to become 48 m
and the time for the level in the upper reservoir to fall by 0-5 m.

3. An impounding reservoir delivers water to a hydro-electric plant
through four pipelines each 2-0 m in diameter and 1000 m long with a
roughness of 0-3 mm. The reservoir is to be drawn down using the four
pipelines with by-passes round the turbines to discharge into the tailrace

2
which has a constant level. Allowing % for local losses including velocity

head, entry and by-pass losses determine the time taken for the level in the
reservoir to fall from 50 m above the tail-race to 20 m above the tailrace
assuming a constant inflow of 1-0 m%/s.

Level above tailrace (m) 20 30 40 50

Surface area of reservoir (m? x 10%) 2-0 4-0 6-8 122

4. Using the data given for the reservoir in Example 11.7 obtain the
outflow hydrograph resulting from the following inflow hydrograph if the
spillway is 50 m long. (Assume the outflow rate at t = 0 to be 10 m3/s.)

Time
@ O

'"‘(‘;‘,V/s) 20 40 80 130 216 250 228 176 120 8 52 44 20

1 2 3 4 5 6 7 8 9 10 11 12




Chapter 12
Mass Oscillations and Pressure
Transients in Pipelines

R. E. Featherstone

12.1 Mass oscillation in pipe systems — surge chamber operation

When compressibility effects are not significant the unsteady flow in pipelines
is called ‘surge’. A typical example of surge occurs in the operation of a
medium to high head hydro-electric scheme (fig. 12.1).

If, while running under steady power conditions, the turbine is required to
be closed down, values in the inlet to the turbine runner passages will be
closed slowly. This will result in pressure transients, which involve com-
pressibility effects, occurring in the penstocks between the turbine inlet
valve and the surge chamber. (For details of pressure transients see sections
12.5 et seq.) The pressure transients do not proceed beyond the surge
chamber and hence high pressures in the tunnel are prevented resulting in a
reduced cost of construction.

Due to the presence of the surge chamber the momentum of the water in
the tunnel is not destroyed quickly and water continues to flow, passing into
the surge chamber the level in which stops rising when the pressure in the
tunnel at the surge chamber inlet is balanced by the pressure created by the
head in the chamber.

At this time the level in the chamber will be higher than that in the
reservoir and reversed flow will occur, setting up a long period oscillation

1. Surge chamber
— =X } %

-
YN N
W Tunnel, L, Dy N 0

Penstocks R

Figure 12.1 Medium head hydro-power scheme

309



310 CIVIL ENGINEERING HYDRAULICS

between the two. Figure 12.2 shows a typical time variation of level in a
surge chamber, the oscillations being eventually damped out by friction in
the tunnel, losses at the inlet to the chamber and in the chamber itself.
Since there are many different types of surge chamber and types of inlet

the reader is referred to the Recommended reading for such details. (See
fig. 12.2.)

The governing equations describing the mass oscillations in the reservoir-
tunnel-surge chamber system are:

(a) The dynamic equation: %%\5 +z+FV,|V|+F:VI|V|=0
(12.1)
(b) The continuity equation: V At = A, % +0 (12.2)

L = length of tunnel

z = elevation of water in surge chamber above that in the reservoir
F, = head loss coefficient at surge chamber inlet (throttie)

I dz
V, = velocity in surge chamber | = i

Fr = head loss coefficient for tunnel friction head loss (= AL )
2g DT

)
-
|

= diameter of tunnel

<
I

velocity in tunnel

Ay = area of cross-section of tunnel

e
I

area of cross-section of surge chamber

(o
1

discharge to turbines.

Equations (12.1) and (12.2) can only be integrated directly for cases of
sudden load rejection; tunnel friction and throttle losses may be included.

0 Reservoir level /

S/ Time

Figure 12.2 Surge chamber oscillations
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12.2 Solution, neglecting tunnel friction and throttle losses for
sudden discharge stoppage

F;, Fr and Q = 0 and equations (12.1) and (12.2) become:

Ldv ,

g dt +z=0 (12.3)

VA=A %2 (12.4)
T ar '

. .. .dV A dz
Differentiating (12.4): it = A, (12.5)
L As dZZ _
Hence g Ay A +z=0 (12.6)

This is a linear homogeneous second order differential equation with constant
coefficients the solution to which is

e Ccos 2T 4 o g 2
z = C, cos T + G, sin T (12.7)

where T is the period of oscillation. Since the tunnel is assumed to be
frictionless z = 0 at t = 0

2at

Hence z = C, sin T (12.8)
L A
T=2x [== 12.9
N s Ay (12.9)
&z _ 2z 2nt
at = C, T 08 T (from (12.8)) (12.10)
dz _ y Ar
and at = v A, (from (12.4)) (12.11)
_A 2 2m
chceV—ATCz T cos T
when t=0,V=V, and V, = Dsc, 27 (12.12)
At T
Lo L Ay
Substituting for T from (12.9), C, = V,, '/E A (12.13)
whence (from (12.8)) 2=V, JEAT G 2T )1
£ < g As T
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12.3 Solution, including tunnel and surge chamber losses for
sudden discharge stoppage

Since Q = 0, V; A; = V¢ At whence equation (12.1) becomes:

2
—Igiﬂ+z+(Fs<AT) +FT)V|V|=0

dt A
. LdVv
e, —— — + = .
ie 2 dt +z+FgVI|V[=0 (12.15)

From equations (12.4), (12.5) and (12.15) the following relationships are
obtainable:

Ve % 4 LTFZ + Cexp (-2g A, Fgr z/L Ar) (12.16)
R

FR 2g As
whent = 0, V = V, and z, = Fy V2 whence we obtain:
L A
V2 + 2 __=HT7
Fr 28 A, Fi
Fr V2 _ LAy
Fr 2g A, Fx (12.17)
z max occurs when V = 0

Note that since dz =V, dt = dz

dt A\
and the time corresponding with any value of z is

_ t _ z dZ _ Zz dZ
T, = fo dt = L v " fo o (12.18)

A,

= exp (—2g A, Fg (z + Fy V2)/L A7)
V2 4
o

Equation (12.18) can be evaluated by using graphical integration or numerical
integration method, in the latter case taking small intervals of z.

12.4 Finite difference methods in the solution of the
surge chamber equations

Numerical methods of analysis using digital computers provide solutions to a
wide range of operating conditions, and types and shapes of surge chambers.
Considering the general case of a surge chamber with a variable area and
taking a finite interval At during which V changes by AV and z changes by
Az equations (12.1) and (12.2) become
L AV

g Attt FrVe Vel + BV, VI =0 (12.19)
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Vi A = A % + Qp (12.20)

where subscript m indicates the average value in the interval and A, ,, is the
average area of the surge chamber between z and z + Az.

(a)

(b)

Solution by successive estimates. In each time interval estimate AV. Then,
Vo=V, + %, and from equation (12.19) calculate z,, (= z; + %)
whence z is calculated, noting that V, = Az/At. Subscript i indicates
values at the beginning of the time interval and which are therefore
known. Qy, is known since the time variation of discharge to the turbines
will be prescribed and substitution of Az into (12.20) yields V. If the
two values of V,, agree, the estimated value of AV is correct; otherwise
adjust AV and repeat until agreement is achieved and proceed to the
next time interval.

Alternatively, estimate Az and proceed in similar fashion; this is
preferable if the chamber has a variable area. In both cases the time
variation of z is obtained.

Such calculations are ideally carried out on a digital computer or
programmable calculator, due to the repetitive nature of the com-
putations. However the calculations are simple and since the time interval
can be fairly lengthy in such cases (e.g. 10 sec) basic electronic calculators
can be used.

Direct solution of equations (12.19) and (12.20). From equation (12.20)

aa = 2 (V‘ Ar+ AV - Q“‘) (12.21)
Asm 2
where V, = V; + %
Also zy, = z; + % and V, = %; equation (12.19) becomes
L AV At At ) ( Av)z
== +z+— |V At _ + AV
s At TET A (V,AT+ > AV = Q) £ Fr (Vi + 5
F, 2
o 5 (ak (Ve viav+ A%) Con, (v, AY) 0, 4 03) =0
Rearranging
Fr 2 ( L Ar ( F, Ar Qm))
+ — + | — + _ s AT Ym '
4 4y gAt + 4As.m At FR Vl Az AV + Z;
Ay Q. ( , F )
+ . - + y Ts _ov. -
2A,, At oA, A% (Fr Vi + 25 Qn (-2ViAr + Qu) | = 0

(12.22)
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which is of the form:

aAV?+bAV +c=0 (12.23)
—-b + Vb2 —dac

whence AV =
2a

(12.24)

AV is therefore determined explicitly in each successive time step At and
the corresponding change in z is obtained from equation (12.21). Note that
if V becomes -ve (i.e. on the downswing) the -ve value of Fy is used. As
with most finite difference methods, in this case At should be small since
the use of average values of the variables implies a linear time variation.
A ten second time interval gives a sufficiently accurate solution.

12.5 Pressure transients in pipelines (waterhammer)

Changes in the discharge in pipelines, caused by valve or pump operation,
either closure or opening, result in pressure surges which are propagated
along the pipeline from the source. If the changes in control are gradual the
time variation of pressures and discharge may be achieved by assuming the
liquid to be incompressible and neglecting the elastic properties of the
pipeline such as in the problems on surge analysis dealt with in sections 12.1
to 12.4.

In the case of rapid valve closure or pump stoppage the resulting deceleration
of the liquid column causes pressure surges having large pressure differences
across the wave front. The speed (celerity) of the pressure wave is dependent
on the compressibility of the liquid and the elasticity of the pipeline and
these parameters are therefore incorporated in the analysis.

The simplest case of waterhammer, that due to an instantaneous valve
closure, can be used to illustrate the phenomenon (fig. 12.3).

At time At after closure the pressure wave has reached a point x = cAt
where c is the celerity of the wave. In front of the wave the velocity is Vo
and behind it the water has come to rest. The pressure within the region
0 — x will have increased significantly and the pipe diameter will have
increased due to the increased stress. The density of the liquid will increase

due to its compressibility. Note that it takes a time t = % for the whole

column to come to rest. At this time the wave has reached the reservoir
where the energy is fixed at HR (fig. 12.3 (c)). Thus the increased stored
strain energy in the pipeline cannot be sustained and in its release water is
forced to flow back into the reservoir in the direction of the pressure
gradient. The wave front retreats to the valve at celerity, c (fig. 12.3 (d))

and arrives at t = % (= T) (fig. 12.3 (e)). Due to the subsequent arrest of

retreating column a reduced pressure wave is propagated to the reservoir
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HR Ah| *T¢
- —-_—=_ \ —
1
—Vo h"j V=Vy_, V=
—_— | X Xy

V=Y, 4_V=V0V=0|

(e) ()

Figure 12.3 Pressure transients in uniform pipeline due to sudden valve closure

and the whole sequence repeated. In practice friction eventually damps out
the oscillations.
It will be shown later that in the case of an instantaneous stoppage the

pressure head rise Ah = CVTO where Vo is the initial steady velocity. ¢ may

be of the order of 1300 m/s for steel or iron pipelines. For example if

1300 x 2

V = T ————
o =2 m/s, Ah 9.81

damaging effects of waterhammer.

= 265 m thus giving some idea of the potentially

12.6 The basic differential equations of waterhammer

The continuity and dynamic equations applied to the element of flow éx
(fig. 12.4) yield
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A
N ; o%
N % 5%
LS
ﬁ o%
¥
Datum
Figure 12.4
2
continuity equation: % +V % + CE% =0 (12.25)
. . dh V3V 18V A
=t =+ -+ —VI|V|=0 12.2
dynamic equation x 'y x Tsat ' g \'% (12.26)

¢ is the speed of propagation of the pressure wave given by

1
c= —<l+—cn_6> (12.27)
K TE
where K = bulk modulus of liquid
p = density of liquid
E = elastic modules of pipe material

T = pipe wall thickness
D = pipe diameter
C, is a constant depending on the method of pipeline anchoring.
For a thin-walled pipe fixed at the upper end, containing no expansion
joints, but free to move in the longitudinal direction C, = % — n where 7 is

Poisson’s ratio for the pipe wall material. For steel and iron n = 0-3

C, = 1 — #* for a pipe without expansion joints and anchored throughout its
length.

C=1- g for a pipe with expansion joints throughout its length.

Equation (12.27) can be expressed in the form
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Kl
c= ,"“"‘
P

where K' is the effective bulk modulus of the fluid in the flexible pipeline.
Since the speed of propagation of a pressure wave (or speed of sound) in an

infinite fluid or in a rigid pipeline is ¢ = % the effect of the term (”i"l_lli) is

to reduce the speed of propagation.
For water K = 2-1 x 10° N/m?
For steel E = 2-1 x 10" N/m?

12.7 Solutions of the waterhammer equations

Equations (12.25) and (12.26) can only be solved analytically if certain
simplifying assumptions are made, such as the neglect of certain terms, and
for simple boundary conditions such as reservoirs and valves. Some methods
neglect friction losses which can lead to serious errors in the calculation of
pressure transients.

Since the advent of the digital computer equations (12.25) and (12.26)
when expressed in discretised form can be readily evaluated for a whole
range of boundary conditions and pipe configurations including networks.
The computations proceed in small time steps and the pipeline is ‘divided’
into equal sections. At every ‘station’ between adjacent sections the transient
pressure head and velocity are calculated at each time step. In this way the
complete history of the waterhammer in space and time is revealed. No
simplifying assumptions to the basic equations need be made. Indeed if
interior boundary conditions such as low pressures causing cavitation arise,
especially in sloping pipelines, these can be incorporated in the analysis.

The most commonly used numerical method is probably the method of
‘characteristics’ which reduces the partial differential equations to a pair
of simultaneous ordinary differential equations. These, when expressed
in numerical (finite difference) form can be programmed for automatic
evaluation on a digital computer. Such methods are, however, beyond the
scope of this text.

In the present day, therefore, it hardly seems justifiable to use simplified
methods. However, in the following sections some of these methods will
be illustrated. These were developed before the advent of computers and
represent examples of classic analytical techniques. In some cases friction
can be included and the results, for example for the pressure transients at
closing valves, are very similar to those using the ‘characteristics’ method.
Friction losses are often simplified by assuming them to be localised, for
example at an ‘orifice’ at the outlet from a reservoir. Such losses may also
be discretely distributed along the pipelinc but this makes the analysis more
laborious.



318 CIVIL ENGINEERING HYDRAULICS

The analytical and graphical methods which are included hereafter illustrate
some aspects of the waterhammer phenomenon. The inclusion of additional
features has been kept to a minimum in view of the superiority of numerical
analysis for practical problems.

12.8 The Allievi equations

The differential equations (12.25) and (12.26) cannot be solved analytically
unless certain simplifications are carried out.

(V\-lk ) %t—h and may, therefore, be small.

av . .. 9V . dv Vav = a3V
—_ is small compared with — since — = —— + =—

The term V % is of the order of

ox at dt ax ot
SV () vav )
at ax ov

N (1~ ¥
at Ix/at
in which the last term is small.

Neglecting the friction loss term, in addition, yields

ov._ _goh

- 2o continuity equation (12.28)
%—Y = —g -‘;—: dynamic equation (12.29)

Riemann obtained a solution to such simultaneous differential equations
which may be expressed in the form:

he = h, + F (t - ’;‘) +f (t + E) (12.30)

Vi = V(,—%(F (t —%) —f(t +§)> (12.31)

where F and f mean ‘a function of’ and + x is measured as in fig. 12.5 so
that the signs in (12.28) and (12.29) become positive.
The functions F and f have the dimension of head.

An observer travelling along the pipeline in the + x direction will be at a
position X, = ct + X, at time t, where X, is his position at t = 0.

For the observer the function F (t - %) =F (t _a -:: X") =F (%)

const.
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Thus the function F (t - %) is a pressure (head) wave which is propagated
upstream at the wavespeed c.

By similar argument the function f (t + %) is a pressure wave propagated
in the — x direction at the wavespeed c (fig. 12.5).

AnF (t + %) wave generated, for example by valve operation at x = 0,
will propagate upstream towards the reservoir at which it will be completely

and negatively reflected as a f wave at time % = (%), where T is the

waterhammer period (%) .

Denoting i as the discrete time period with interval T the equations
(12.30) and (12.31) can be written for the downstream control, e.g. valve.

h = hy + F, + f (12.32)
V, =V, —%(Fi - f) (12.33)
Ati=0,t=0thenh, =h, + F, + f,
Vo= Vo - E(F, - £)
Ati=1,t=T h =h, +F, +f,
V.=Vo—§(F.—f.)
and so on.

Since f is the reflected F wave, f, = 0; f;, = —F,:f, = —F, etc.
Thus

hy =h, + F, - F,

Vi=Vo-2E + F)

Figure 12.5
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and h, = h, + F, — F,
_ g
Vz—Vo—;(Fz+F.)

Adding successive pairs of head equations and subtracting successive pairs
of velocity equations

h1+h0=2ho+Fl
h2+h|=2ho+F2-F0

Vo= Vi=8(F +F)
- _8 _
VI_V2__C(F0 FZ)
whence, in general F, — F;_, = é (Vi-y — V)

h; + hi_, — 2h, = § Vi, — V) (12.34)

Boundary conditions.
Valve at downstream end.

The discharge through a valve of area A,; at time i when the pressure
head behind it is h; is given by

Q=0Cs Ai V2 b (12.35)
and the velocity in the pipe immediately upstream is
Vv, = C"*fA—g"" V2g b (12.36)

where Ap is the area of the pipe and C,; the discharge coefficient.
The ratio

Vi CuiAui Vh
Vo - Cd.o Av.o V ho
. _Cai Ay 2_
Denoting 7; = —Cd,o A, and §&° = h.
Vi=V,n§ (12.37)
and h; = h, &? (12.38)

Substituting into equation (12.34) yields

eV,
h, &2 + h, §2, — 2h, = ? Mi-1 &—1 — M &) (12.39)
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cV

and denoting % l: by the symbol p (not fluid density) (12.39a)
E2+EL —2=2p(0imy oy — 1 &) (12.40)

Equation (12.40) represents a series of equations which enable the heads, at
time intervals (T) i = 1, 2, 3 ..., at the valve to be calculated for a
prescribed closure pattern (A,; v. t). The equations are known as the
Allievi interlocking equations.

If the valve closure is instantaneous, 7,-,, in equation (12.40) and

§i2+§oz_2=2p(7’o§o—0)
Now 7, =1&=1

V.

2_1=2=c°
whence &, 0 oh,
b)Y

ho(ho 1) = g

or Ah=h,—ho=C\g]°

Note therefore that if the valve is closed in any time t < % the result is the

same as that for instantaneous closure since 7, = 0.

12.9 Alternative formulation

For a downstream valve boundary condition at discrete time intervals T,
from equation (12.36)

V. =_Cd~i—AV~i\/2 h:

1 A g 1
\'%
ThenVi=Bi Vh,, h|=B_'2
where B, = Cai Avi V2g
Ap

Substituting in equation (12.32) and adding equation (12.33) yields

.2 -
l"—+‘:?V'-ho—2f— Vo

BZ =0

2 N2
whence V; = _Bic + B; ‘/(Eﬁ) + No + h, + 2f (12.41)
2g 2g g
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Note that f; = — F(i—1) (see section 12.8)
F; =§ (Vo — Vi) + f; (12.42)
andh; — h, = F, + f, (12.43)

12.10 The Schnyder—Bergeron graphical method

This graphical method is derived from the Riemann solution to the differential
equations, (12.30) and (12.31).

It can be shown that an observer travelling along the pipeline at the wave
speed, c, will experience pressure head and discharge variations given by the
straight line

—_— ___C —
hes = ur = —2 (Qu = Qx) (12.44)

when moving in the direction of — V (fig. 12.6).

Hence if Qx r and hx 1 are known for the point X at time T the values of
hyx . and Q,; at the point x, t are linearly related by equation (12.44).

Similarly, an imaginary observer travelling at speed ¢ in the + V direction
will experience head and discharge variations given by

hes = Bxr =~ (Que = Qx) (12.45)

Equations (12.44) and (12.45) are obtained from the Allievi equations
and are called ‘waterhammer lines’.

In order to locate the lines in the h, Q plane (see fig. 12.6) the boundary
conditions at the ends of the pipeline are required; these must be expressible

(12-44)

(12-45)
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in a relationship between h and Q. For example, in the case of a downstream
valve, as previously shown, the discharge through a valve of area A, is

Q=CyA, V2gh (12.46)

where h is the pressure head behind the valve.

Since the calculations proceed at discrete time intervals, T, equation
(12.46) represents a series of parabolic curves, Q = Cy A,; V 2gh each of
which may be denoted by ¥,. The upstream boundary condition may typically
be determined by reservoir. The reservoir elevation HR may be constant or
a known function of time. The head is therefore independent of discharge
and for a fixed level with a frictionless pipe is expressed by h, = HR =
constant and shown by a horizontal line on the h v. Q diagram.

Consider the case of a reservoir of fixed level discharging water through a
frictionless pipeline terminating in a valve which is initially partially closed
(fig. 12.7). .

If the valve opening is reduced in such a way that it is fully closed after a
number of discrete waterhammer periods the upstream and downstream
boundary conditions will be as shown in fig. 12.8. The point of intersection
of ¥, and the line HR = const. gives the initial conditions Q,, h,. These

conditions will exist at A (the reservoir) until t = % If at time %, when the

first pressure wave arrives at A, an observer starts towards B at speed c he
will experience discharge and head variations given by the waterhammer
line sloping at —ﬁ. This line is drawn through B, A, — 0-5 and intersects
¥, to give h,, Q, at the valve. The observer now returns to A, (line B, to A, ;)
to the reservoir. He returns to the valve, (line A5 to B;) to meet ¥, the new
valve boundary condition, and so on. When the valve is closed, the condition at
the valve is given by B,. The valve now represents a closed end and the pressure
surges oscillate as described in fig. 12.3. Note that at Bs the pressure, in the case
shown, is subatmospheric and if this approaches —10 m vaporisation will occur.
The effect of such a phenomenon on the waterhammer process is complex and
is not yet fully understood. Some consider that a water column retreats leaving
a vacuum behind; when the momentum of the water column is overcome it is
believed to return to the closed valve resulting in a ‘slamming’ force. This is
probably an over-simplification. Certainly low pressure water will contain a

HR

Figure 12.7
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Ya V3
B4 2
B,
1By
t ™"
h B
! Yo
Aas, Hg
(B09 AOS)
Q
Bs

Figure 12.8

significant amount of free air and the effect of this is to reduce considerably the
wave celerity.

12.11 Pipeline friction and other losses

The omission of pipeline head losses can cause serious errors in water-
hammer computations. Such losses can be represented approximately in the
Schnyder—Bergeron method by assuming that they are concentrated at the
inlet from the reservoir to the pipeline in a device such as an orifice the
head-discharge relationship of which is similar to that of the pipeline head
loss discharge function i.e. hy = K Q? (fig. 12.9).

Jh=KQ

hg

Orrifice

Figure 12.9 Representation of pipeline losses by orifice at inlet to pipe
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The boundary condition at the reservoir is therefore h, = HR — K Q?

AL 1
where K = (-F + Km) K? (12.47)
where K,, is the minor loss coefficient for the pipeline.

Equation (12.47) plots as shown in fig. 12.10 (curve A) on which typical
valve boundary conditions and waterhammer lines have been superimposed.

Discharge Q —»

Bs

Figure 12.10 Schnyder—Bergeron diagram with pipeline losses represented

This representation gives results in close agreement with numerical solutions
of the governing differential equations for the pressure head elevation at the
valve. It is also possible to distribute the friction loss along the pipeline by
imaginary ‘orifices’ placed at spatial intervals. The Schnyder—Bergeron
construction then becomes more laborious and due to the superiority of
numerical solutions of the governing equations in any case is rarely worth
pursuing.

12.12 Pressure transients at interior points
Consider the system shown in fig. 12.11.

An observer leaving A at time, say, T = 1 and travelling towards B at
speed ¢ will meet a similar observer who left B at time T = 1, at ¢ at time
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= L2 L/2
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—*
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Figure 12.11

T+ % (i-e. 1-25 T). Using the graphical method it is necessary to obtain the

location of A; which necessitates the construction of the .5 valve boundary
condition.

Figure 12.12 shows the construction yielding C,.,s and this may be continued
to yle]d C2.25, etc.

Figure 12.12

12.13 Pressure transients caused by pump stoppage

Rapid stoppage of a pump generates a negative pressure wave to, for
example, a reservoir, at which it is reflected as a positive wave. If the flow
from the pump has stopped before the pressure wave has returned, the
reflux valve will close and a ‘dead end’ condition will be created. The cycle

of events occurring when stoppage occurs within a time ZTL is shown by

a Schnyder—Bergeron diagram (fig. 12.13) assuming that the initial negative
pressure transient does not fall to vapour pressurc. Note that the representation
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of pipeline friction simulates the decay of the waterhammer phenomenon.
Long pumping mains are often provided with some form of surge suppressor
such as an air vessel which consists of a closed vessel containing water
maintained at a constant pressure by an air compressor. When negative
pressure transients occur due to pump ‘tripping’ the ‘air vessel’ therefore
introduces water into the pipeline and hence reduces the pressure drop.

If a rotodynamic pump continues to rotate after power cut due to its
inertia, it may continue to provide some discharge and hence reduce the
pressure transients in an analogous way to that of slow, as opposed to rapid,
valve closure. It can be shown that the rate of deceleration of a pump is
given by

dN _ 3600 pg Q Hp
dt 47’ 1IN g

where Q and H,, are the discharge and manometric head at rotational speed
N; I is the moment of inertia of the rotating parts of the pump and motor;
n is the pump efficiency at the discharge Q and speed N.

In using the graphical method and working in finite time intervals At =

(12.48)

T = 2TL the speed N, at the end of At is therefore given by

Head f

System curve

Pump characteristic

o N

Discharge -—

Figure 12.13 Pressure transients due to sudden pump stoppage — Schnyder—
Bergeron diagram
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3600 pg Q, Hyy a1

N, = N, -
2o 472 1IN,

(12.49)

The new pump characteristic curve can then be constructed using the
method of Chapter 5 i.e.

2
H, = H, (II:JJ—?) ; Q2 =0Q, (l:]—?) (12.50)
These curves represent the upstream boundary condition. Note that, apart
from the pump boundary conditions at the first and second time intervals
the remainder can only be produced as the observer waterhammer lines are
constructed at each time interval since they depend upon the values of Q
and H,, at the end of the previous time interval (sce Example 12.7).

The downstream boundary condition (for example a reservoir) is rep-
resented by

_ Q? (AL )
h-HST+2gAp2 = + Kan

Worked examples

Example 12.1

A surge chamber 10 m in diameter is situated at the downstream end of a
low pressure tunnel 10 km long and 3 m in diameter. At a steady discharge
of 36 m*/s the flow to the turbines is suddenly stopped by closure of the
turbine inlet valves. Determine the maximum rise in level in the surge
chamber and its time of occurrence.

Solution:
V, = 7—% = 5093 m/s; Ay = 7-069 m?;, A, = 78-54 m?
From section 12.2; T = 2x % x % = 668-67 s
(equation (12.9)).
From equation (12.12): C, = V, ‘:: % = 5003 x %‘;”; x 6628:7 = 4878

Equation (12.8): z = C; sin sz = 48-78 sin sz

—I—, = 48-78 m occurring after 167-17 sec.

z = maximum, when t
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Example 12.2

A surge chamber 100 m? in area is situated at the end of a 10000 m long,
5 m diameter tunnel; A = 0-01. A steady discharge of 60 m*/s to the turbines
is suddenly stopped by the turbine inlet valve. Neglecting surge chamber
losses, determine the maximum rise in level in the surge chamber and its
time of occurrence.

Solution:

Substitution of a series of values of z into equation (12.17) and using equation
(12.16) enables the z v. V relationship to be plotted. When V = 0 (maximum
upsurge), z is found to be about 37-1 m at a time of 123 seconds.

Z, = =942 m, V, = 3-056 m/s.

Example 12.3

A low pressure tunnel 8000 m long, 4 m diameter, A = 0-012 delivers a
steady discharge of 45 m*s to hydraulic turbines. A surge chamber of
constant area 100 m? is situated at the downstream end of the tunnel,
F; = 1-0. Calculate the time variation of tunnel velocity V, and level in
surge chamber using the finite difference forms of the governing differential
equations given by equations (12.19) and (12.20) if the flow to the turbines
is suddenly stopped.

Solution:
Individual steps in the iterative procedure are not given; the solution is
shown in the table on page 312. The reader should carry out a few calculations.

2
Note that Fp = %‘g—; + F (%)
S

Solving Example 12.3 by the direct method: (equation (12.24)),
Take At = 10's

Ay = 12-.566 m* A, = 100 m? (constant)
oo ()

- vo (135" o0z x 0 _
V°=2_:~=T£§TG6—3581 m/s

2, = Fr V.2 = —15-686 m

In equation (12.24) a = +% = 0-3097
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L
b=——+
g At 4Asm

v; = velocity at beginning of time step (= 3-581 m/s)

_ _ 8000 12-566 x 10
9-81 x 10 4 x 100

At + Fr V;

+ 1-239 x 3.581

b = 8630 (s~
. AT Qm ~m.At 2
€= 7 Fp Vi At - ALY,
¢ = —15-686 + 12366 X 3-581 X 10 | 539 o 35012
2 X 100
(since Q,, = 0)
¢ = 244525 m

AV = (—86:3 + V86:32 — 4 x 0-3097 x 2-4525)/(2 X 0-3097)
(equation (12.24))
AV = —(0-0284 m/s

. V(i+l) = 3.552 m/s

From equation (12.21) Az = -4t (vi Ar + % AV - Q,, )
Az = 100(3581 x 12-566 — 12366 » 0.0284 o)
= 4482 m
i.e. Zi+1) = (z; + Az) = —~15-686 + 4-48
= —11-204 m.

The values V(i,yy; 241y become V; and z; for the next time step and
computations proceed in the same manner. See table on page 331.

Example 12.4
Calculate the speed of propagation of a pressure wave in a steel pipeline
200 mm in diameter with a wall thickness of 15 mm
(a) assuming the pipe to be rigid
(b) assuming the pipe to be anchored at the reservoir, with no expansion
joints, and free to move longitudinally
(c) assuming the pipe to be provided with expansion joints.
In each case determine the pressure head rise due to sudden valve closure
when the initial steady velocity of flow is 1-5 m/s.
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Summary of computations using iterative method

331

Time (s) 0 10 20 30 40 50 60 70
z (m) -15-686 -—-11-204 —6-788 —2-497 1-620 5-519 9-161 12-515
V (m/s) 3-581 3.552 3-475 3-355 3197 3-007 2790 2.55
Time (s) 80 90 100 110 120 130 140
z (m) 15-554 18-254 20-597 22-568 24-153 25-344 26-134
V(m/s) 2288 2010 1720 1417 1-106 0-789 0-468
Time (s) 150 160 170 180
z (m) 2652 2649 2606 2523
V(m/s) 0143 —0-182 —0-50 —0-82
Solution:
K =21x10°N/m? E =21x 10" Nm? #n =03
_ -1 x 10°
(@ c= [ To00 = 1450 m/s
_ Vo _ 1450 x 15
Ah = . 9.81 =221-7m
5

(®) Ci=3-1=09

.= 1 _ 1

1 CID) ( 1 095 X 02 )
P (K *IE 1000 {335 10° ¥ 0015 x 21 x 100

¢ = 1365-2 m/s; Ah = 2087 m
© c,=1—g= 1 - 0-15 = 0-85

¢ = 1373-4 m/s; Ah = 210-0 m.
Example 12.5

A steel pipeline 1500 m long, 300 mm diameter discharges water from a
reservoir to atmosphere through a valve at the downstream end. The speed
of the pressure wave is 1200 m/s. The valve is closed gradually in 20 seconds
and the area of gate opening varies as shown in the first table on page 317.
Neglecting friction, calculate the variation of pressure head at the valve
during closure if the initial head at the valve is 10 m, (a) using the Allievi
method, (b) the method of section 12.9, and (c) the Schnyder—Bergeron

method.
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Solution:
Waterhammer period T = ~ " oo - 25s

Working in time intervals of 2.5 s the corresponding valve areas by inter-
polation are shown in the second table on page 336.

(a) Allievi method

From equation (12.40)

EX+E . —2=2p (ot &mi — Wi &) (1)
h; _ Cai Ay,

where &7 = n "TC.A
O Nl V,0

(where i indicates the discrete time intervals separated by T = 2L (s)) and

. Ca A
Vi =V, 1; & (equation (12.37)) C4 = 0-6 (constant); V, = —4-¥-° A ——=24/2gh,
P
cV, )
3-567 m/s, p = (equation (12.39a))
i 2ghy
Table of calculations
1) () (3) 4) (5) (6)
Te) t(s) n § h (m) v(m/s)
0 0 1 1 10 3-567
1 2-5 0-780 1-2644 15-988 3.518
2 5:0 0-550 1-6908 28-588 3-317
3 7-5 0-347 2-2816 52-057 2-821
4 10-0 0-260 2:2952 52-678 2-128
5 12-5 0-193 2-1508 46-260 1-483
6 15-0 0-147 1-8753 35-166 0-981
7 17-5 0-073 2:0117 40-470 0-526
8 20-0 0 2-0952 43-897 0

Notes: AtT =1
B+8-2=20(M & —m &)
E+1-2=2p(1-078%)
& -1=43632(01 - 078&)
whence & = 1.2644; h, = & x h, = 15-988 m
V, = Vo0& =3-567 x 0-78 x 1-2644 = 3-518 m/s
AtT =2
B+E8-2=20m&-m&)
£ + (1:2644)> — 2 = 43-632 (0-78 X 1-2644 — 0-55 X &,)
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whence & = 1-6908; h, = 28-588 m
V, = 3-567 x 0-55 x 1-6908 = 3-317 m/s

(b) Alternative algebraic method

Table of calculations

M @ 6 “ ) ) Q) ®

Tay t(s) B V(m/s) F(m) f(m) Ah{m}) H (m)
0 0 1-128  3.567 0 0 0 10-0
1 25 0880  3-518 5-988 0 5988  15-988
2 50 0620 3317 24.577 —5-988 18-588  28-588
3 75 0391  2.821 66-634  -24-577  42-057 52-057
4 100 0293  2:128  109-313 —66-634 42-678 52-678
5 125 0218 1483  145-573  —109-313  36-260  46-260
6 150 0165 0991 170-739  —145-573  25-166  35-166
7 175 0083 0526 201-209 —170-739 30-470  40-470
8 200 0 0 235-107 —-201-209 33-898  43-898

333

Notes: i indicates time step; ho = initial head at valve; Vo = initial velocity

in pipe.

Col. (3) B(i) =

Ap

Cd A, (i) V2g

Col. (4) V(i) = ——B(zzzc + B(i) J (B—g—c)z + %‘3 + ho + 26(i)

Col. (5) F(i) = g (Vo — V(i) + )

Col. (6) f(i) = —F(i~1)

Col. (7) Ah() = F(i) + £(i)
Col. (8) h(i) = ho + Ah(i)

(c) The Schnyder—Bergeron method
Generate the curves representing the h v. Q relationship for the downstream
(valve) boundary condition at the discrete time intervals T.

Q=CdA, V2gh
See table on page 315.

Slope of waterhammer lines =

= + ——-—lzm =
~ 981 x 0-07068

17-3 m/(10 Vs).

C

T gAp

+ 1730-5 m/m3/s
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Values of h (m) calculated from the equation: Q = Cd A, V2g h

Ql/s

Time

Period A, (m?) 2 5 10 20 40 60
0 0-03 112-8 178-3 252-1 3566
1 0-0234 86-9 1390 196-7 2781
2 0-0165 62-0 98-1 1386 196-1 2773
3 0-0104 39-1 61-8 87-4 123-6 174-8 214.0
4 0-0078 293 46-3 65-6 92.7 131-1 160-6
5 0-0058 21-8 34.5 48-7 68-9 97-4 119-4
6 0-0044 16-52 26-1 37-0 52-3 74-0 90-5
7 0-0022 8-28 13-1 18:5 26-1 370 45-26
8 0 —_ — — — — —

Figure 12.14 shows the graphical construction with the downstream
boundary conditions at T = 0, 1 ... etc. indicated by y,, ¥, ¥, ... etc. hy,
h, ... etc. indicate the pressure heads at the valve at the discrete water-
hammer periods. (See fig. 12.14.)

60 r W 13 Ps Ya L Z]

20

Head m 5
¥ _m: LS
7
&
&
‘ga
=
s = $

10

' s P - _ - _ - Initial condition
V(/f = " = "—.' - A 1 1 i A n N Y
20 60 100 140 180 220 260

Discharge /s
Figure 12.14
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Summary of pressure heads at the valve

TimePeriod 0 1 2 3 4 S 6 71 8
h (m) 10 160 285 555 550 465 345 400 44-0

Comment: The results of the graphical method are very close to those of the
Allievi and algebraic methods. This would be expected since all three
methods are based on the same basic equations.

Example 12.6
Repeat Example 12.5 incorporating pipeline friction, velocity head and
entry losses. Take pipe roughness to be 0-06 mm.

Solution:
The reservoir boundary condition is computed from equation (4.10)

_ / h¢ k 251 v
=—-2A,./2D L log 3-7D+ ,__hf
D \/Zg D

which gives the discharge for a specified friction head loss (hg).
1.5 V2

2g
discharge relationship and hence the head v. discharge relationship for the
reservoir. See last table on page 336.

The curve h; v. Q is plotted, the values of h,_ being marked off downwards
from the line h = 10-0 m. The valve boundary condition lines are identical
with those of Example 12.5.

Observer waterhammer lines start from Byg.s the method of construction
being identical to that of the previous Example, with the final figure having
the general form of fig. 12.10.

Note that in this case the initial discharge for the given conditions is
correctly represented by the point By.5 since this gives the solution to the
pair of equations

N Q@ (AL
Q =Cy Av, 2gh, and hg, = m (-F + Km)
The maximum transient pressure head elevation at the valve is 51 m which
is higher than that obtained using the “frictionless pipeline’ assumption.

The minor head loss, h,,, (e.g. ) is added to give the head loss v.

Example 12.7

A rotodynamic pump having the tabulated characteristics and inertia 20 kg/m?
delivers water to a reservoir, the level in which is 10 m above that in the
pump suction well, through a 3000 m long pipeline, 300 mm in diameter and
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roughness 0-6 mm. Losses in valves etc. amount to 5 V?/2g. The celerity of
the pressure wave is 1200 m/s. Determine the pressure transients at the
pump when the pump is ‘tripped’.

Pump characteristics at 1450 rev/min (N,)

Q (I/s) 0 20 40 60 80

H;, (m) 40-0 385 35-0 30-5 250

Efficiency (per cent) 44 64 70 60
Solution:

Calculate the head loss v. discharge relationship as in Example 12.6.

Result: (hy includes friction and minor loss)

hy (m) 1-02 2-04 4-08 816 10-20 15-31

Q (I/s) 19-54 27-95 39-92 56-84 63-66 78-10

This is plotted on the h v. Q diagram (system curve) together with the pump
characteristic for 1450 rev/min (curve B (y,)).

The steady state condition is given by the point of intersection of A and
B, i.e.

Q, =781Vs; Hypo =255m; Q/N = 0-053; 5 =062

The slope of the observer waterhammer lines is t;—i— = *17-3m/(10 I/s).
P

Waterhammer period T = ~ ~ 1200 - 5s
At t = 0 the pump starts to slow down, the rate of deceleration being

given by

dN _ 3600 pg Q Hp,
dt 4n 1 q

3600 pg Q, H,, , At
4n% 1 n,

or in finite-difference form

N, =N, - (equation (12.49))

Taken over the 5 s time interval N; = 955 rev/min. Using equations
(12.50) the new characteristic curve is drawn (shown by the broken line (X)
in fig. 12.15).

A time interval of 5 s is however rather long and it may be preferable to
predict the pump characteristic in smaller time intervals, say 0-25 T (1:25 s).

An observer leaving the mid point of the pipeline at t = 0, where he
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experiences a pressure head elevation H,,, , and Q,, since the pipe friction is
considered concentrated at A, will reach the pump at t = 1-25 s. His water-
c
2 Ap through B,,.
Then Ng.»s = 1326-3 rev/min and the pump characteristic using equation
(12.50) is obtained e.g. by the homologous points

hammer line is +

N 1326-3\2. 3 (1326-3)
Hozs = H, ( 1450 ) 3 Qoas = Qo (5o

If we take H, = 40; Q, = 0; Hy.,s = 33-47 m and Q,.,s = 0 and so on.

The curve is shown by 1.,s. The observer line intersects this at H,, = 20 m,
Q =75 1/s, Q/N = 0-056 whence n = 0-59.

From these values, in equation (12.49), No.s = 1184.19 rev/min and the
corresponding pump characteristic is shown by v,.s. (See fig. 12.15.)

Note that an observer leaving B at t = 0 (when he experiences H,, , and

Q,) will reach the pump at % where the boundary conditions are therefore
+c
g Ap
characteristic. Hence H,, 9.5 = 14-5 m; Qq.5 = 72 I/s; Q/N = 0-06; 1 = 0-54.
Proceeding in this way the pump characteristic for T = 1 is obtained (y,).

obtained by the point at which the line through B, meets the pump

40
0 Pump characteristic at N
3 |
System curve
E
°
b
T 20
Yoo
10 | Yo-25
1 4 2‘% X
20 40 60 80 100
Discharge 1/s
—10 B,

Figure 12.15
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The head and discharge at the pump at this time are 9-0 m and 68-5 I/s
respectively. The pump speed is 1004-4 rev/min (compared with 955 rev/min
taking At = 5 s).

The remaining time intervals are treated in similar manner. When the
pump speed becomes very low it may be realistic to consider it to have
stopped since equation (12.49) neglects bearing and other forms of resistance.
In this Exampie suppose' this is assumed to occur at T = 4. The observer
waterhammer line is proceeding towards the boundary condition Q = 0
(i.e. the head axis) but before reaching it experiences a head of —10 m
which is approximately the vapour pressure head (depending upon ambient
conditions).

The subsequent events are not well understood at the present time and it
may be an oversimplification to assume, in the manner of some authors, that
a distinct air gap forms. In the pumping main in question it may be desirable
to fit a surge suppressor but the design of these falls outside the space limits
of this book.

Recommended reading

1. Fox, J.A. (1979) Hydraulic Analysis of Unsteady Flow in Pipe Networks.
London: Macmillan.
2. Jaeger, C. (1955) Engineering Fluid Mechanics (Translated from the
German by P.O. Wolf). London: Blackie.
. Pickford, J. (1969) Analysis of Surge. London: Macmillan.
. Streeter, V.L. and Wylie, E.B. (1967) Hydraulic Transients. New York:
McGraw-Hill.
5. Streeter, V.L. and Wylie, E.B. (1979) Fluid Mechanics. 7th edn. New
York: McGraw-Hill.
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Problems

1. A low pressure tunnel 4 m in diameter, 8000 m long having a Darcy
friction factor of 0-012 delivers 45 m®/s to a hydraulic turbine. A surge
chamber 8 m in diameter is situated at the downstream end of the tunnel.
Taking F; = 1-0 and using the method of section 12-3, plot the variation of
water level in the surge chamber relative to the reservoir level when the flow
to the turbines is suddenly stopped.

2. (a) Repeat problem 1 using a numerical method.

(b) If the discharge to the turbines were to be reduced linearly to zero in
90 seconds calculate the time variation of water level in the surge chamber
and state the maximum upswing and time of occurrence.
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3. A steel pipeline 2000 m long, 300 mm in diameter discharges water
from a reservoir to atmosphere through a control valve, the discharge
coefficient of which is 0-6. The valve is closed so that its area decreases
linearly from 0-065 m? to zero in (a) 15 s, and (b) 30 s. If the initial head at
the valve is 3-0 m and the wave speed is 1333-3 m/s calculate, neglecting
friction, the pressure head and velocity at the valve at the discrete water-
hammer periods.

4. A spun iron pipeline 600 mm in diameter 1500 m long, terminates in a
gate valve. Water is supplied from a reservoir the level in which is 30 m
above the level of the valve. The speed of propagation of a pressure wave in
the pipeline is 1286 m/s. The initial area of valve opening is 0-25 m? and is
closed completely in 14 seconds with the tabulated time area relationship.
Taking A to be constant, = 0-015, determine the pressure head elevation at
the valve and at the mid-length of the pipeline at discrete waterhammer
periods during a time of 14 s.

Time (s) 0 2 4 6 8 10 12 14

Valve

area (m?) 0250 0-190 0-136 0-097 0061 0030 0010 0




Chapter 13
Unsteady Flow in Channels

R. E. Featherstone

13.1 Introduction

River flood propagation, estuarial flows and surges resulting from gate oper-
ation or dam failure are practical examples of unsteady channel flows.
Natural flood flows in rivers and the propagation of tides in estuaries are
examples of gradually varied unsteady flow since the vertical component of
acceleration is small. Surges are examples of rapidly varied unsteady flow.
Consider the two-dimensional propagation of a low wave which has a
small height in relation to its wavelength. (See fig. 13.1.) The celerity, or speed
of propagation relative to the water is given by Vgy where y is the water depth.
Therefore the velocity of the wave relative to a stationary observer is

c=VEytV (13.1)

Note that Froude number F, expressed by -\/—-V_ is the ratio of water velocity
8y

to wave celerity. If the Froude number is greater than unity, which cor-
responds with supercritical flow, a small gravity wave cannot be propagated
upstream. Waves of finite height are dealt with in sections 13.3 et seq.

— IH

—_—V Y

IIT7F 777 777777777777 27777 LO0T777 7777777777

Figure 13.1 Propagation of low wave in channel

13.2 Gradually varied unsteady flow

Examples of gradually varied unsteady flow are floodwaves and estuarial
flows; in such waves the rate of change of depth is gradual.

In one-dimensional form (i.e. depth and width integrated) it can be shown
that the two governing continuity and dynamic partial differential equations
are

341
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3Q . 3A
X at

dy VoV , 13
—_— __—+__
x g ox gat

=0 (13.2)

=8, - S (13.3)

where Q is the discharge at section located at x, with cross-sectional area A
at time t, y is the depth at x, t and V is Q/A. S, is the bed slope and S; the
energy gradient.

These equations were first published by Saint-Venant. However analytical
solutions of these equations are impossible unless, for example, the dynamic
equation (13.3) is reduced to a ‘kinematic wave’ approximation by omitting
the dynamic terms. In this form the equations are often applied to flood
routing and overland flow computations. In general, the equations have to
be evaluated at discrete space and time intervals using numerical methods
such as finite-difference methods. The availability of digital (and also analogue)
computers has enabled the governing equations to be applied to a wide
range of practical problems. Such methods are, however, outside the scope
of this text and the reader is referred to the Recommended reading for more
specialist literature.

However, the case of rapidly varied unsteady flow is, with certain simplifying
assumptions, amenable to direct solution.

13.3 Surges in open channels

A surge is produced by a rapid change in the rate of flow, for example, by
the rapid opening or closure of a control gate in a channel.
The former causes a positive surge wave to move downstream (fig. 13.2 (a));
the latter produces a positive surge wave which moves upstream (fig. 13.2 (b)).
A stationary observer therefore sees an increase in depth as the wave
front of a positive surge wave passes. A negative surge wave, on the other
hand, leaves a shallower depth as the wave front passes.
Negative waves are produced by an increase in the downstream flow, for
example, by the increased demand from a hydropower plant (fig. 13.3 (a))
or downstream from a gate which is being closed (fig. 13.3 (b)).
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Figure 13.2 Positive surge waves
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Figure 13.3 Negative surge waves

Figures 13.2 and 13.3 demonstrate that each type of surge can move either
upstream or downstream.

13.4 The upstream positive surge

Consider the propagation of a positive wave upstream in a frictionless
channel resulting from gate closure (fig. 13.4).

The front of the surge wave is propagated upstream at a celerity, c,
relative to a stationary observer. To the observer, the flow situation is
unsteady as the wave front passes; to an observer travelling at a speed, c,
with the wave the flow appears steady although non-uniform. Figure 13.5
shows the surge reduced to steady state,

The continuity equation is

A (Vi+co)= A (Vo +0) (13.4)
orv, = (A1 Vi —c(A; - A)) (13.5)

A,

The momentum equation is
BAIYI —BA Vo + AL (Vy + ) (V, - V)=10 (13.6)

where ¥, and y, are the respective depths of the centres of area.
Substituting for V, from equation (13.5), equation (13.4) yields

I

—_1V: y2

Y1 VAL"

l/II////I{'/////I///////////////////V/////////////// 77777

Figure 13.4 Upstream positive surge
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Figure 13.5

_ _ Ay 2
A - A —_— = (V, + ¢
g( 2 Y2 lYI) Al (A2 _ A]) ( 1 )

_ (Azy2 — Ay S'-l)]”z _
whence ¢ = [g A, A (A= A V, (13.7)
In the special case of a rectangular channel,

A=Dby y=y/l2

i
. gy2 (v — Y:z)]
From equation (13.7); ¢ = [— G Y -V
q (13.7) 2 yi(y2-y) '
12
whence ¢ = [%3 (Li—y'—)] -V (13.8)

The hydraulic jump can be shown to be a stationary surge.
Putting ¢ = 0 in equation (13.8),

v =802ty

2 2 i
2V
1 y‘=Y22+Y2y|
g
2 2 \'£S
Now F;? {(Froude number)“} = Ey—
1

SYR Yy —2PPy® =0
whence y; = y_21 (V1 + 8F3? - 1)

which is identical with equation (8.17) with g = 1-0.
In the case of a low wave where y, approaches y, equation (13.8) becomes
c=Vgy-V, (13.9)
and in still water (V, = 0)
c=Vgy (13.10)
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13.5 The downstream positive surge

This type of wave may occur in the channel downstream from a sluice gate
at which the opening is rapidly increased. (See fig. 13.6.)
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Figure 13.6 Downstream positive surge

Reducing the flow to steady state.

Continuity: (c — V) A; = (c — V) A, (13.11)
je. v, =SAL=cC :2 + V2 A, (13.12)
1

Momentum: g A] S’-l bl '4 A2 YZ + (C - Vz) A2 (Vz - V]) =0
Substituting for V, yields:

5. <, 172
R

In the case of a rectangular channel

gy 172
c= [2_ ()’1 + )'2)] + V2 (13.14)
Y2

13.6 Negative surge waves

The negative surge appears to a stationary observer as a lowering of the
liquid surface. Such waves occur in the channel downstream from a control
gate the opening of which is rapidly reduced or in the upstream channel as
the gate is opened. The wave front can be considered to be composed of a
series of small waves superimposed on each other. Since the uppermost
wave has the greatest depth it travels faster than those beneath; the retreating
wave front therefore becomes flatter (fig. 13.7).

Figure 13.8 shows a small disturbance in a rectangular channel caused by
a reduction in downstream discharge; the wave propagates upstream.

Reducing the flow to steady state, the continuity equation becomes
(V+c)y=(V—6V+c)(y—6y)
Neglecting the product of small quantities
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Figure 13.7 Propagation of negative surge

__yov
V +o¢)

The momentum equation is

dy = (13.15)

By -y =8y +py(VH O (VHe—(V-8V+)=0

oy (V. + c)
whence oV _——g

8V (V+9
g
Equating (13.15) and (13.16),

yovV.  _ (V +¢) 8V
(V+c)— g

whence c = Vgy — V (13.17)
Substituting for (V + ¢) from (13.16) into (13.17) yields

oy = - 2 Viy

or dy = (13.16)

and in the limit as dy — 0

dy _ _dv
Vy vy (13.18)

For a wave of finite height, integration of equation (13.18) yields
V = -2 Vgy + const

c

—_—
Y y — &y vV — 8V
.V _—

ST7TT7 7777777777777 77777777 /7777777777777

Figure 13.8
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Figure 13.9 Negative surge of finite height

When y = y; V =V, whence const = V, + 2vgy,

From equation (13.17), c = Vgy — V. and substituting in equation (13.19)
yields

c=3Vgy-2Vgy, -V, (13.20)
The wave speed at the crest is therefore

¢ = Vgy, -V, (13.21)
and at the trough

©=3Vgy; -2 Vgy; - V, (13.22)

In the case of a downstream negative surge in a frictionless channel (fig. 13.10),
a similar approach yields

c=Vgy+V (13.23)
V=2 ng-Z Vyz"'Vz (13.24)
c=3 ng—2 Vyz“‘Vz (13.25)
¢ =3 Vegy— 2 Vay; + V, (13.26)
2= Vgy, + Vz (13.27)
—»C1
= Y
—»C2 C -
= V.
Y1 -_—vl y y2 =" Va

Figure 13.10 Downstream negative surge

13.7 The dam break

The dam, or gate, holding water upstream at depth y, and zero velocity, is
suddenly removed. (See fig. 13.11.)
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- C

Figure 13.11

From equation (13.20) c = 3 Vgy — 2 Vgy,
The equation to the surface profile is therefore
x=(ct) = (3Vgy —2Vey)t

4
Ifx=0y= —g—' and remains constant with time. The velocity at x = 0 is

V =V, + 2 Vgy, — 2 Vgy (from equation (13.19))

ie. V= % Vgy,, since V; = 0

Worked examples

Example 13.1

A rectangular channel 4 m wide conveys a discharge of 25 m/s at a depth of
3 m. The downstream discharge is suddenly reduced to 12 m°®/s by partial
closure of a gate. Determine the initial depth and celerity of the positive
surge wave.

Solution:
Referring to fig. 13.4
12 3
=3m; V,=2083m/s; V,= ==
Y 1 27 1 x Y2 ¥
From equation (13.4), (V; + c)y1 = (V2 + ¢} y2 (i)

ie. (2083 + ¢) X 3 = (;3— + c) va
2

3-249

whence ¢ =
(y2-3)
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Substituting in equation (13.8):

172
(y2 - 3) 2 3

By trial y, = 3-75 m; ¢ = 4-35 m/s.

Example 13.2 :
A tidal channel, which may be assumed to be rectangular, 40 m wide, bed
slope 0-0003, Manning’s roughness coefficient, n = 0-022, conveys a steady
freshwater discharge of 60 m*/s. A tidal bore is observed to propagate
upstream with a celerity of 5 m/s. Determine the depth of flow and the
discharge immediately after the bore has passed, neglecting the density
difference between the freshwater and saline water.

Solution:
The depth of uniform flow using the Manning equation = 1-52 m (= y,)
60
Vi=aoxis 153 = 0987 m/s.

y» can be determined using equation (13.8)

172
e c = [&& M] -V,

2 N
_ 9-81 y2 (y2 + 1'52)]"2 _
50 = [ > 152 0-987

By trial y, = 2:66 m.
Using the continuity equation:
Vite)yi=(V2+ 0y,
V2=(V1+C)YI_
y2
_ (0987 + 5:0) x 1-52 _ 5.0
2-66
V, = —1-578 m/s
and Q; = V, by, = —168-2 m%s (upstream).

or

Example 13.3

A rectangular tailrace channel, 15 m wide, bed slope 0-0002 and Manning
roughness coefficient 0-017 conveys a steady discharge of 45 m®/s from a
hydropower installation. A power increase results in a sudden increase in
flow to the turbines to 100 m%/s. Determine the depth and celerity of the
resulting surge wave in the channel.
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Solution:

Using the Manning equation the depth of uniform flow under initial conditions
at a discharge of 45 m%/s = 242 m.

Using equation (13.11)}ie. (c = V) y, = (c — Va) y2

c=V1Y1—V2Y2

(1 — y2)
Qi _
.= b)’1 VZ Y2
(y1 — y2)
_Q 45 _
V, = by, =5 x 242 1-24 m/s
Q| = 100 m3/s, whence ¢ = 6-67 — 3 = 3-67

(y1 — 2:42) ~ (y1 — 2:42)
Substitution in equation (13.13),

3‘67 172
o [2 fyz‘_42 (y: + 2-42)] +1.24
By trial y; = 295 m
367 __ _ 6.02 mis.

€= 295 - 242

Example 13.4

A steady discharge of 25 m*/s enters a long rectangular channel 10 m wide,
bed slope 0-0001, Manning’s roughness coefficient 0-017, regulated by a
gate. The gate is rapidly partially closed resulting in a reduction of the
discharge to 12 m*/s. Determine the depth and mean velocity at the trough
of the wave, the surface profile and the time taken for the wave front to
reach a point 1 km downstream neglecting friction. (See fig. 13.12.)

Solution:
y» = 2:86 m (using Manning’s equation)
-5 ___,
V, = 10 x 2.86 0-874 m/s
=12 _12
0y, wn
From equation (13.24) V=V, - 2 Vg (Vy, — Vy)
whence V=V, -2Vg (Vy, - Vyy)
ie. 12 = 0.874 — 626 (1-691 — Vy7)

i



Figure 13.12

UNSTEADY FLOW IN CHANNELS

Solving by trial, y, = 2:637 m
Then V; = 0-455 m/s
= Vgy, + V, = 6:17 m/s

Time taken to travel 1 km = 2-7 minutes.

Y1

y2{ ==V,

-V, y

CPPP7 777277777777 7770P 78777777727 77777

Figure 13.13

Surface profile: x = ct =

—_ %y

(3 Vey —2Vgy, + Vi)t

or x=(94Vy ~ 106 + 0-874) t
x=(94Vy ~ 9726) t.
Recommended reading
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Problems

1. A rectangular channel 4 m wide conveys a discharge of 18 m*/s at a
depth of 2-25 m. Determine the depth and celerity of the positive surge
wave resulting from (a) sudden, partial gate closure which reduces the

downstream discharge to 10 m®/s, and (b) sudden total gate closure.
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2. At low tide the steady freshwater flow in an estuarial channel, 20 m
wide, bed slope 0-0005, Manning’s roughness coefficient 0-02 is 20 m%/s. A
tidal bore forms on the flood tide and is observed to propagate upstream at
a celerity of 4 m/s. Neglecting the density difference between the freshwater
and the saline water determine the depth and discharge immediately after
the bore has passed.

3. A rectangular channel 10 m wide, bed slope 0-0001, Manning’s rough-
ness coefficient 0-015, receives inflow from a reservoir with a gated inlet.
When a steady discharge of 30 m%/s is being conveyed the gate is suddenly
opened to release a discharge of 70 m3/s. Calculate the initial celerity and
depth of the surge wave.

4, A steady discharge of 30 m%/s is conveyed in a rectangular channel of
bed width 9 m at a depth of 3-0 m. A control gate at the inlet is suddenly
partially closed reducing the inflow to 10 m*/s. Assuming the channel to be
frictionless determine the depth behind the surge wave and the time taken
for the trough of the wave to pass a point 500 m downstream.

5. A rectangular channel 30 m wide discharges 60 m*/s at a uniform flow
depth of 2-5 m into a reservoir. The levels of water in the channel and
reservoir at the reservoir inlet are initially equal. Water in the reservoir is
released rapidly so that the level falls at the rate of 1 m per hour. Neglecting
friction and the channel slope determine the time taken for the level in the
channel to fall 0-5 m at a section 1 km upstream from the reservoir.



Chapter 14
Uniform Flow in
Loose-Boundary Channels

C. Nalluri

14.1 Introduction

The loose boundary (consisting of movable material) of a channel deforms
under the action of flowing water and the deformed bed with its changing
roughness (bed forms) interacts with the flow. A dynamic equilibrium state
of the boundary may be expected when a steady and uniform flow has
developed.

The resulting movement of the bed material (sediment) in the direction of
flow is called sediment transport and a certain critical bed shear stress (z;)
must be exceeded to start the particle movement. Such a critical shear stress
is referred to as incipient (threshold) motion condition, below which the
particles will be at rest and the flow is similar to that on a rigid boundary.

14.2 Flow regimes

Shear stresses above the threshold condition disturb the initial plane boundary
of the channel and the bed and water surface assume various forms depending
on the sediment and fluid flow characteristics. Two distinct regimes of flow
may be identified with the increasing flows with the following bed forms:
(a) Lower regime: ripples (for smaller sediment size < 0-6 mm and low
Froude no. « 1), dunes and ripples, dunes with increasing shear
(7,) and Froude number (F,); further increases in 7, and F, introduce
transition to dunes/plane bed (F, = 1) and
(b) Upper regime: flat bed, antidunes, chutes and pools with large
shear and Froude numbers (> 1).

14.3 Incipient (threshold) motion

Shields? introduced the concept of the dimensionless entrainment function,
F,s> (= %/pgAd) as a function of shear Reynolds number, R.. (= U.d/v)
where p is density of the fluid and A is the relative density of sediment in
the fluid, d the diameter of sediment, g the acceleration due to gravity, U,
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the shear velocity (= V' 1,/p) and v the kinematic viscosity of the fluid, and
published a curve defining the threshold condition (see Fig. 14.1).

When the flow is fully turbulent around the bed material (Re. > 400 and
d > =4 mm) the Shields criterion can be written as

T./pgAd = 0-056 (14.1)
Combining equatior: (14.1) with the uniform boundary shear equation
= pgRS (14.2)
gives the limiting particle size (with A = 1-65) for incipient motion
d =11RS (14.3)

where R is the hydraulic radius and S is the friction gradient.
Combining equation (14.3) and Manning’s equation for mean velocity

V = (1/n) R¥3 s12 (14.4)
with

n =d"/26 (Strickler’s equation) (14.5)
gives

VJ/V (gd) =19 VA (d/R)" V¢ (14.6)

where V. is the critical velocity for the incipient motion of sediment particles.

The recommended values of critical tractive forces and maximum per-
missable mean velocities for different sizes of bed material are listed in
Table 8.2.
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Figure 14.1 Shields diagram
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14.4 Resistance to flow in alluvial (loose bed) channels

The resistance of an alluvial channel varies considerably with flow velocity
once threshold has been passed. The bed introduces additional form drag
due to bed formations and the overall friction factor A rises rapidly to 3 to
4 times its original value. Several attempts have been made to describe a
relationship between the mean velocity V, the depth y, or hydraulic radius
R, slope S and sediment size d, which can be broadly divided into two
categories:

(a) Total resistance approach:

1. Regime channel equation

This was one of the earliest resistance relationship for alluvial channel flow
proposed by Lacey'* in the form

V = 10-8 R¥* 8! (14.7)

in SI units based on the regime canal data from India. Its applicability in channels
or rivers with different sediment sizes and flow depths is questionable.

2. Japanese equation

Sugio™ proposed the following equation using river data from Japan

V = K R*> 8077 (14.8)

in SI units where K = 6-51 for ripples, 9-64 for dunes and 11-28 for
transition regime.

3. Garde—Ranga Raju formula

Garde and Ranga Raju'® analysed data from flumes, canals and natural
streams and a graphical relationship (Fig. 14.2) between the parameters

K, V/V(AgR) versus K, (R/d)"3 S/A

where K, and K, are functions of sediment size (see Fig. 14.3) was proposed.
Figs. 14.2 and 14.3 facilitate the calculations of discharge in alluvial channels.

(b) Grain and form resistance approach
This approach either splits the overall resistance into grain resistance A’ and
form resistance A” (Alam and Kennedy?) or U, into U’, and U, corresponding
to grain and form resistances respectively (Einstein and Barbarossa®).
Introducing the concept of bed hydraulic radius (R,,) charts and graphs have
been produced to predict the resistance equations in alluvial channels. The
proposed methods. are too advanced and are out of scope of the present
book.

Einstein suggested in the case of rectangular channels (bed width B) with
smooth sides the following equation for the hydraulic radius of the bed

Ry, = [1 + 2 (yo/B)] R — 2 (yo/B) R,, (14.9)

where the hydraulic radius corresponding to the walls R,, is computed from
Manning’s equation assuming it is applicable to the side walls and the bed
independently.
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Vanoni and Brooks? proposed for rough channels with smooth sides that

Ry, = A, V2/8gS (14.10)
The bed friction factor A, can be found from

PA=Py 4, + P, A, (14.11)
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where P is the wetted perimeter with suffixes b and w for bed and walls
respectively.
~ Resistance equations of the type Colebrook-White (or appropriate re-
sistance plots e.g. see Fig. 14.9.) can be used to predict A,, in equations 14.9
and 14.11, which is a function of R./A where R, is the Reynolds number and
A is the overall friction factor of the channel.
In the channels where roughness of the walls is different from the bed, the
bed hydraulic radius may be used in place of the total hydraulic radius to
determine the regimes, mean velocities etc.

14.5 Velocity distributions in loose-boundary channels

Einstein’s equation in the form
uw/U," = 5-75 log (30-2 yx/ky) (14.12)

where u is the temporal mean velocity at a distance y from the boundary is
applicable universally for smooth, transition and rough beds. The correction
factor x is a function of k/8’' (&' sublayer thickness given by 11-6 v/U,)
given in Table 14.1

Table 14.1 Correction factor x

k/6' 02 03 05 0-7

1-0 20 40 6-0 10-0
X 07 10 138 1.5 16

1 138 110 1-03 1-0

Equation 14.12 gives the mean velocity, V as
V =5-75 U, log (12.27 Rx/k,) (14.13)

For k/8' > 6-0 the boundary is fully rough and the Manning—Strickler
equation could conveniently be used to calculate the mean velocity.

14.6 Sediment transport

When flow characteristics (velocity, average shear stress etc.) in an alluvial
channel exceed the threshold condition for the bed material the particles
move in different modes along the flow direction. The mode of transport of
the material depends on the sediment characteristics such as its size and
shape, density p; and movability parameter U./W, where W; is the fall
velocity of the sediment particle.

Fall velocities are equally of importance in reservoir sedimentation and
settling processes and may be expressed as

W, = f(shape and density of sediment, no. of particles falling, particle
Reynolds number).
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The fall velocity of a single spherical particle can be written as
W, = V {(4/3)(gAd/Cp) } (14.14)

where Cp, is the drag coefficient. The drag coefficient is a function of the
particle Reynolds number (R.q = W d/v).
For R4 <1

Cp = 24/R.y (14.15)

For particles with a shape factor of 0-7 (natural sands) Cp, is nearly equal
to 1 when R.q4 > =200 whereas it is around 0-4 in the case of spherical
particles (shape factor = 1) for R.q > 2000.

Figure 14.4 may be used to establish fall velocities of sediment particles of
different shape factors.

Some sediment particles roll or slide along the bed intermittently and
some others saltate (hopping or bouncing along the bed). The material
transported in one or both of these modes is called ‘bed load’. Finer
particles (with low fall velocities) are entrained in suspension by the fluid
turbulence and transported along the channel in suspension. This mode of
transport is called ‘suspended load’. The combined transport derived from
the bed material is called ‘total bed material load’. Sometimes finer particles
from upland catchment (sizes which are not present in the bed material),
called ‘wash load’, are also transported in suspension. The combined bed
material and wash load is called ‘total load’.
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Figure 14.4 Fall velocities of sediment particles
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14.7 Bed load transport

Several empirical equations from laboratory flume data have been proposed
by many investigators with the basic assumptions that the sediment is
homogeneous and noncohesive. The results differ appreciably and it is
dangerous to transfer the information to outside the limits of the experiments.
However, one can discern general trends of the transport rate by using
several formulae (with some theoretical background). The following are the
most commonly used equations:

1. Shields equation
Shields used the concept of excess shear responsible for the transport and
presented a dimensionally homogeneous equation

qw A/qS = 10 (7, — t.)/pgAd (14.16)

where qy, is the bed load per unit width and q is the unit discharge in the
channel. Equation 14.16 is based on the ranges of 0-06 < A < 3-2 and
1-56 mm < d < 2:47 mm.

2. Schoklitsch equation
The bed load g, in kg/m.s is given by

g = 2500 §¥2 (Q = qcr) (14.17)
where qc, is the unit discharge at threshold condition given by
ger = 0-20 (A)*3 d¥%/87/ (14.18)

It must be noted that equation 14.17 is not dimensionally homogeneous and
is valid only for q and q in m*/ms.

3. Kalinske equation
For F,q> > 0-09 this can be written as

qv/U. d = 10 [U.,%/ Agd]? (14.19)
Equation 14.19 is dimensionally homogeneous and may not be good for
high transport rates.

4. Meyer— Peter and Muller formula

The energy slope, S is split into two parts and only one part (uS) is
considered to be responsible for transport (grain drag; the other is expended
in the form drag). The factor u is dependent on the bed form (ripple factor)
and is expressed as

r= (CchanneI/ Cgmin)y2 (1420)
where C is the Chezy’s coefficient given by
C = 18 log (12R/k) (14.21)
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in which k = d for C,,;, and k is a function of bed form (= dune height) for
Cchannel-
The ripple factor varies between 0-5 to 1-0 for dune to flat bed condition.
The bed load q, is given by

gv = 8 V (Agd®) [(uRS/Ad) - 0-047]2 (14.22)
Equation 14.22 is dimensionally homogeneous and covers a wide range of
particle sizes and is widely used.

5. Einstein’s® equation
Introducing probability concepts of sediment movement Einstein developed
an empirical relationship

o= f(y) (14.23)
where

4 (shear intensity or flow parameter) = Ad/uRS (= 1/F,4?) (14.29)

@ (transport parameter) = qp/ \/m (14.25)

(Note: uR in equation 14.24 may be treated as grain (bed) hydraulic radius R’)

Figure 14.5 shows the functional relationship (equation 14.23). For small
values of y (< 10) (y is around 20 for threshold conditions) the relationship
between ¢ and y can be expressed as

g =40 (1/y)* (14.26)

Rearranging the Meyer—Peter and Muller equation in terms of ¢ and y
parameters results in:

g = [(4/y) — 0-188]*2 (14.27)
which agrees well with Einstein’s curve in Figure 14.5.
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Figure 14.5 Plot of @ versus y functions
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Einstein’s relationship covers a very wide range of experimental data
(0-785 mm < d < 28-65 mm; 0-052 < A < 1-68).

14.8 Suspended load transport

1. Rouse’s? distribution equation
The vertical (suspended) mass balance equation in a two dimensional flow
was first expressed by O’Brien> as

W, + g, dc/dy = 0 (14.28)

where ¢ is the volumetric concentration of the sediment and g is the
kinematic eddy viscosity (turbulence diffusion coefficient) in the presence of
sediment, equal to e, € being the eddy viscosity for clear water. f is of the
order of unity in the presence of fine sediment and decreases with increasing
particle size. Combining equation 14.28 with the turbulent mixing theory
(log law distribution of velocity) gives the solution for sediment concen-
tration, c at a height, y in a channel as

c/ca = [a (Yo — Y)/y (Yo — a)|W/F2V: (14.29)

where c, is the reference concentration at a height a from the bed and y is
Karman’s constant.

The theoretical distributions of the concentration (equation 14.29) are
shown in Figure 14.6 for different values of W./8yU, with =1 and y = 0-4
(i.e. clear water conditions).

Table 14.2 shows the state of suspension under different values of the
movability parameter U./W,.

Table 14.2 States of suspension

State of suspension Movability parameter, U./W,

Intensive saltation 0-25
Lower-half in suspension
Particles reach surface
Well developed suspension
Homogeneous suspension

S8

The reference level a, may be assumed to be around 2d (d being the
diameter of suspended particles) and c, as bed load corresponding to this
diameter. Equation 14.29 must be used with care as the parameter W,/gxU.
is not accurately computable.

The suspended load transport g, can be obtained by summation as

Yo
G = I cudy (14.30)
a
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where u is given by an appropriate velocity distribution. Equation 14.30 may
be solved either numerically or graphically. Suspended load can generally be
measured easily and accurately and good field measurements of both c and u
predict suspended load with reasonable accuracies.

2. Lane and Kalinske’s’> approximate method
The suspended load q; in wide channels is given by

gs = q c, P e/ Us) (14.31)

in which P is a function of the movability parameter, U./W, and n/y,®,
n being Manning’s coefficient. Figure 14.7 shows the plot of P in SI units.

3. Empirical equations
Several practising engineers have reported several formulae of the type

q; < q° (14.32)

the exponent b varying between 1-9 to 3.
Engelund® alternatively proposed that

qs = 0-5 q (U./W,)* (14.33)
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Figure 14.7 Values the parameter P

14.9 Total load transport

Total load includes both bed material load and wash load. Wash load is
usually caused by land erosion and a useful criterion for its existence may be
taken as the particle Froude number (= V/Vgd) around 20. Due to its
small size fractions wash load moves in suspension and thus can be estimated
from the total suspended load provided the suspended bed material load is
known. The following approaches describe some of the available direct
methods of estimating the total bed material load.

1. Laursen’s'® approach
The cross sectional mean concentration by volume C, of the bed material
load for quartz material was suggested:

C, =160 qv/q (14.34)
applicable to flume data with sand of d < 0-2 mm.

2. Garde’s® equation
Field and flume data with the sediment size range of 0-011 < d (mm) < 0-93
gave

q = 10 (U./d%) (RS/A)* (14.35)
3. Graf’s'? approach

Similar to Einstein’s bed load equation Graf et al using several flume and
stream data including closed conduit data established the equation:
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Pa = 10-39 (ya) > (14.36)
over a range of 1072 < g < 10°,
where

#a = C,VR/V (gAd®) (14.37)
and Y, = AJ/RS (14.38)

4. Ackers—White' formula
The total load is predicted by a transition type equation:

[qeyo/qd}{U./V]" = C[(Fy/A) — 1)™ (14.39)
where
F,, = [U."/V (gAd) ][V/(5-75 log (12-2y,/d)]' ™" (14.40)
With the‘ dimensionless grain diameter, d,, defined by
dg, = d [gAV]"? (14.41)

the coefficients in equation 14.39 are shown in Table 14.3.

Table 14.3 Coefficients in equation 14.39

Coefficient Fine Transitional Coarse
d, <10 1.0 < dg, < 60 dge > 60
n 1-0 n = 1-00 — 0-56 log dy 0-00
A — A =014+ 0-23/\/d_g, 0-17
m — m = 1-34 + 9-66/d,, 1-50
C log C = 2-86 log d, — (log d,;,)2 - 353 0-025

The above relationships have been obtained by flume data with sediments
of different relative densities and size range of 0-04 < d (mm) < 4-0 and
flow Froude numbers up to 0-8. This method of computing total load
transport has been verified successfully with a limited amount of field data.

14.10 Regime channel design

1. Kennedy’s approach _
Regime equations were developed using data from stable channels in the
Indian subcontinent, carrying moderate sediment loads of less than 500 ppm
by weight. These equations do not consider sediment load variable and have
limitations due to the fact that they are applicable to boundary characteristics
similar to those found in the Indian subcontinent.

Kennedy’s equation for nonsilting and nonscouring velocities, V, is given
by



UNIFORM FLOW IN LOOSE-BOUNDARY CHANNELS 365

V = 0.55my" % (14.42)

where yj is the flow depth in metres and V is in m/s; m is the critical velocity
ratio (= V/Vy), a function of the sand size (m = 1 for the standard size, d =
0-323 mm). Table 14.4 shows m values for other sand sizes.

Table 14.4 m values as a function of sand size

Type of sand m Remark

Fine silt 07

Light sand silt 1-0 Standard size (data)
Coarse sand silt 11

Sand loamy silt 1-2

Coarser silt 1-3

Equation 14.42 combined with the Manning equation (8.4b) gives two

equations (Ranga Raju?*)
_ ( 1-818Q )0-378

" \(p + 0-5m
where p = b/yy, b being the bed width of a trapezoidal channel with side
slopes of 0-5H:1V (the final shape of the regime channel is not truly trap-
ezoidal, and the final side slopes are much steeper due to silt deposition on
banks), and

sQ*® _ ((p + 2-236)“’3)

(p + 0513

(14.43)

o (14.44)
Equations 14.43 and 14.44 give any number of solutions for the three
unknowns, b, y, and the slope S for given values of Q, m and Manning’s n.
Usually, the bed slope is assumed to be a reasonable value (based on past
experience and surrounding terrain‘ slope) and p and y,, and hence b, are
computed. Table 14.5 alternatively suggests the recommended values of p
for stable channels as a function of Q.

Table 14.5 Recommended b/y, values

Q(m®s) 50 100 150 500 1000 2000 300-0
p(=bly) 45 50 65 90 120 150 180

2. Lacey’s approach

Lacey proposed the following equations (Kennedy’s equation does not specify
the channel width, and experience suggests that this is an important parameter)
for regime channel design:

P = 475 /Q (14.45)
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Q 13
R = 0-47 (;) (14.46)
S = 3 x 1074PRQYe (14.47)
in which the silt factor, f, is given by:
f=176 \/(—i (1448)

where d is in mm, P and R are in m and Q is in m>/s. The silt factor, f, is a
function of its size, as indicated in Table 14.6. Lacey, combining equations
14.45 to 14.47, suggested the resistance equation:

V = 10-8R?3s13 _ (14.49)

Table 14.6 Silt factor, {

Type of sand f Remark
Very fine silt 0-5 d = 0-081 mm
Fine silt 0-6 0-12
Medium silt 0-85 0-233
Standard silt 1-0 d = 0:323 mm
Medium sand 125 0-505
Coarse sand 1-50 0-725

Equation 14.49 is commonly used in the Indian subcontinent practice in
designing stable (regime) channels. Normally an additional margin of flow
depth (freeboard) is provided in the design to allow any water level fluctu-
ations. The recommended freeboards as function of discharges are shown in
Table 14.7.

Table 14.7 Recommended freeboards for canals

Q (m%/s) <0-75 0-75t0 1-50 150 to 85-0 >85-0
Freeboard (m) 045 0-60 0-75 0-90

3. Blench’s approach

Blench developed more rational formulae (using flume and Indian sub-
continent data), taking into account the effects of bank cohesiveness on
channel geometry and sediment load. In a channel of mean width b and
mean depth y,, the discharge Q is written as

Q = Vby, (14.50)
Blench introduced bed and side factors as f, (= V?/yo) and f, (= V3/b)
respectively, and wrote:

iQ

b= £,

(14.51)
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fs 173
Yo = (fb—?> (14.52)
2 1/4
% = 3.63 (\:’) | (14.53)

f 5/6f 1/12V1/4

S — b 1 - (14.54)
. 16
11-91gQ (1 + 2330)

where c is the sediment concentration in ppm by weight and v is the
kinematic viscosity of water. He suggested f; = 0-1 to 0-3 for slight to high
cohesivity and f, = 1-9 \/d (1 + 0-012c), d being in mm.

4. Simons— Albertson method

Regime channel data from the USA, Punjab and Sind (Indian subcontment)
were analysed by Simons and Albertson; their modified regime equations
have a wider applicability. The channels are classified according to the
nature of the bed and bank material (see Table 14.8) and following equations
were suggested:

b = 0-92B — 0-60 (14.55)
where b is the average width and B the water surface width (in m), and
P, A and R = mQ" (14.56)

where the coefficients m and n are given in Table 14.8.

Table 14.8 Regime equations of Simons and Albertson (Garde and Ranga Raju'')

Sand bed Sand bed and Cohesive bed Coarse noncohesive

Type of channel and banks cohesive banks  and banks boundary
m - 6-33 4-74 4.63 3-4
P
n 0-512 0-512 0-512 0-512
m 2-57 225 2:25 0-939
A
n 0-873 0-873 0-873 0-873
m 0-403 0-475 0-557 0-273
R
n 0-361 0-361 0-361 0-361

The following resistance equations were also proposed by Simons and
Albertson:

Sand bed and banks: V = 933 (R2)13 (14.57)
V3gyeS = 0-885 (Vb/v)*¥  (14.58)
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Sand bed and cohesive banks: V = 10-8 (R25)1? (14.59)
- V2gyeS = 0-525 (Vb/v)*¥  (14.60)
Coarse noncohesive material: V = 4-75 (R%S)" 286 (14.61)

V¥gyeS = 0-324 (Vb/v)*¥  (14.62)

The slope equations (14.58, 14.60 and 14.62) are recommended for Vb/v <
2 x 107 and equations 14.57, 14.59 and 14.61 may be preferred to equation
14.54 for the determination of the slope when Vb/v > 2 x 10’. It has been
suggested that the flow Froude number be kept less than 0-30 for stability
considerations.

5. Nonscouring erodible boundary channel design

This method approaches the criterion that the bed material (coarse) does
not move when the channel carries either clear water or water with fine silt
in suspension (not depositing). The principle of design is to achieve a cross
section in which the boundary material is on the verge of motion (initiation
criterion). The method utilises the information on boundary shear distribution
and the Shields initiation criterion (both on bed and banks) and establishes
either permissable depth or slope (given one or the other). The Manning
resistance equation with the appropriate n value (= dV6/26) further establishes
the bed width required to transport the design discharge. (See worked
example 14.6 for the detailed design procedures.)

In the above approach it is to be noted that not all the boundary particles
are on the verge of motion (side slopes are less sustainable) and such a
section is not economical/efficient. The most desirable section (bed and
bank material at the incipient motion) is of the following profile (Glover and
Florey!?):

Y = Yo COS (Oyﬁ tan ¢) (14.63)
0

The design procedures using equation 14.63 are illustrated by worked example
14.7.

6. Design of stable erodible boundary channel

The most important physical processes in the formation of stable channels
are now well documented and White et al.>? have proposed a solution using
the Ackers—White sediment transport model coupled with the White et al.3!
resistance equation for alluvial channels.

For a defined channel boundary material (i.e. known d and p,) and water
viscosity there are six channel/sediment parameters: Q, Q,, V, B, ypand S. .
Three equations (continuity, the Ackers—White transport equation and the
White et al. resistance equation) and a fourth one based on the variational
principle — minimum stream power, i.e. maximised transport with least
energy expenditure — would then facilitate the design procedures if two of
the six parameters are stipulated. For further detailed information and
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design tables based on this more rational method the reader is referred to
White et al.>2.

14.11 Rigid bed channels with sediment transport

Rigid bed channels are the conveyances with no boundary erosion and the
sediment is fed from external sources, e.g. lined irrigation canals carrying
silt, sewers and outfalls, etc. The channel is designed for no deposition
criteria. The mode of transport and design criteria largely depend on the
sediment and channel characteristics. A great deal of research into the areas
of sediment initiation, transport, cohesivity aspects of sediments, etc. has
taken place and is still currently in progress.>!%2122

Studies of noncohesive suspended silt reveal (Garde and Ranga Raju'!)
that the limiting (for no deposition) concentration (C,). is a function of
sediment size (d), density (p,), fall velocity (W), water discharge (Q), flow
depth (yo), water surface width (B), channel slope (S) and bed friction factor
(A). Figure 14.8 shows the proposed relationship valid for circular, rectangular
and trapezoidal channels.
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Figure 14.8 Limit-deposition concentration of suspended silt in circular, rectangular
and trapezoidal channels
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Novak and Nalluri®? suggested for initiation of noncohesive coarser sedi-
ment (bedload):

Ve _ 0-50 (d_sq)~04 (14.64)
ngsoA B R )

The limit-deposition criterion in the case of rectangular channels is given by
(Mayerle et al.'7):

VS _ . -0-14 0-15 (%)_0‘43 —0-18
VeaTs - 99Dyt e (2 A (14.65)

where C, is the limiting sediment concentration by volume that can be
transported with a velocity V; (self-cleansing). The overall friction factor A,
(Nalluri and Kithsiri®°) is given by:

A, = 0-851 4,786 C,004 p_0-03 (14.66)

where A is the channel’s clear water friction factor given by Colebrook-
White’s equation (equation 4.15). Equations 14.65, 14.66 and 4.15 will give
(by iterative solution) the design velocity for the self-cleansing criterion in
rigid boundary rectangular channels with bedload transportation.

In the case of clean pipe channels, the limit-deposition criterion may be
written as (Nalluri et al.'9):

VS — -0-09 0-21 d50 053 —-0-21 .
ag ~ Y08 DT ¢ (R As (14.67)

with the friction factor A; given by
A = 1:13 2.0%8 C 002 p 001 (14.68)

where A. is the clear water friction factor given by equation 4.15.
The limit-deposition criterion in the case of pipe channels with deposited
flat beds of width b is given by

Vs = 1.94 Cv0-165 (P_>—0‘4 (d—so)—0'57 As 010 (14 69)
VeAds, Yo D ° '
The bed friction factor with trénsport, Asp, is given by
Ap = 6:64* (14.70)
where A is given by
b 0-03
As = (-88 CVO'OI (y_) Ac0~94 (1471)
0

where A, is the clear water friction factor given by equation 4.15.

It must be stressed that the proposed equations 14.64 to 14.71 are developed
by analysing experimental data and are valid within the experimental ranges
of the data used.
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Worked examples

Example 14.1
(a) Starting from first principles show that the fall (sedimentation) velocity
W; of a particle size d in a fluid is given by

W, = A V(gAd)
where A is a function of the drag coefficient Cp, and A is the relative density
of the particle in water {= (p; — p)/p}.
Assuming that for particles of shape factor (SF) = 1
Cp = Constant (= 2) for large diameters
and Cp = 24/R.4 for very fine particles

give the full equation for W; in each of these cases.

(b) Examine the stability of the bed material (p, = 2650 kg/m’), mean
diameter = 1 mm) of a wide stream having a slope of 1073 and carrying a
flow at a depth of 0-3 m.

(c) What type(s) of transport and bed form, if any, do you expect in this
stream?

Solution:
(a) Equating gravity force (weight of the particle) to drag force

1
(b, — ) g 7d°/6 = 5 Cp p (nd*/4) W?

or W,2 = 4Agd/3Cp
or W, = V(4/3Cp) (zAd)

Comparing this with the given equation
A = V(4/3Cp) = f(Rea)
since the drag coefficient Cp, is a function of R4
Coarse sediment: Cp, = 2 (given)
W, = V{(2/3)gAd}
Fine sediment: Cp = 24/Rq = 24vIWd
A = V(W,d/18v)
Hence W, = gAd¥/18v

(b) Threshold condition: Shields criterion
Wide channel > R =y, = 0-3 m

By constructing a d (= 1 mm) line on Fig. 14.1 (Shields diagram)
we obtain



372

CIVIL ENGINEERING HYDRAULICS

T/pgAd = 0-035

or 7, = pU.2 = 0035 X pg X 1-65 x d
Available boundary shear stress

7 = pgRS = 2.943 N/m?

Thus minimum d for stability = 52 mm > 1 mm

Hence the bed material is not stable.

(©) Available 7/pgAd = Ux¥gAd = RS/1-65 x 0.001 = 0-181 and from

Fig. 14.1 this relates to bed dunes to high regime plane bed transition.

Example 14.2
It is intended to stabilise a river bed section with the following data by
depositing a layer of gravel or stone pitching:

Channel width = 20 m

Bed slope = 0-0045
Max. discharge = 500 m?/s
Chezy’s C = 18 log (12R/d); (d is the mean diameter of the

material)
Relative density of the bed material A = 1-65

Determine the depth of flow assuming the section to be rectangular and the
minimum size of stone required for stability. Use Shields criterion for
stability: t/pgAd = 0-05

Solution;

From Shields criterion: d = 12RS

-~ Chezy’s C = 18 log (12R/12RS) = 18 log (1/S) = 4224 m"?/s
Mean velocity, V = Q/A = 500/20 x y, = 42.24 V/(RS) (i)
Hydraulic radius, R = 20y,/(20 + 2y,) (i)
Equations (i) and (ii) give y, = 4-9 m (by iteration)

-~ R = 3-29 m giving d (= 12 RS) = 147 mm

" Provide an armour layer with 150 mm size stones.

Example 14.3
The following data relates to a wide stream:

Slope = 0-0001
Bed material: Size, d = 0-4 mm
Density, ps = 2650 kg/m?
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(a) Find the limiting depth of flow at which the bed material just begins to
move.
(b) Find the corresponding mean velocity in the stream.

Solution:
(a) Problems of this kind may explicitly be solved by using the modified
Shields diagram (Fig. 14.9):

Modified R.. can be written as

R'e. = (Re)*/(v/pgAd)"?
= (48)"%dIv?® (= dy,)

Rler = (1:65 x 9-81)" x 0-0004/(10~¢)%3
=.10-12

- From Fig. 14.9 t/pgAd = 0.035

giving 7. = 0-227 N/m?

Boundary shear in wide channel, 1, = PEYS

Hence for critical condition, PEY.S = 0-227

< The limiting flow depth, y, =0231m
(b) At the threshold condition the bed is plane with roughness, k = d
Chezy’s C (in transition) = 18 log {12R/(k + 26°/7)} (8.41)

where &’ is sublayer thickness given by ' = 11-6v/U,

x 10~2

2
l:.rd

”
.. 100 1000
1 0 g,

3

Figure 14.9 Modified Shields curve
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k=d=00004m; & =116 x 1074V (9-81 x 0-231 X 0-0001)
=77%x10°m
- k + 26'/7 = 0-0004 + 0-000022 = 0-000422 m
-~ C = 18 log (12 X 0-231/0-000422) = 54-7 m"?/s
Hence mean velocity, V = C \/ﬁig)_
= 54-7 x V(0-231 x 0-0001)
= 0-263 m/s

Example 14.4

A wide alluvial stream carries water with a mean depth of 1 m and slope of
0-0005. The mean diameter of the bed material is 0-5 mm with a relative
density of 2-65. Examine the bed stability and bed form, if any. Also
calculate the sediment transport rate that may exist in the channel.

Solution:
Wide channel > R =y, = 1-0m; S = 0-0005; d = 0-0005 m
Sodg =125

From Fig. 14.9 7/pgAd = 0-032
o 1, = 0032 x 1000 x 9-81 x 1-65 X 0-0005
= 0-234 N/m?
Channel boundary shear stress, T, = pgRS = 49 N/m?
Since 1, > 1. sediment transport exists.
Type of transport:
Fall velocity of sediment particle from Figure 14.4
W, = 0-075 m/s
.. Movability parameter, U./W, = 0-93
Referring to Table 14.2, most part of the transport may be treated as bed
load which may be computed using Shields equation (Equation 14.16)
Discharge computations:

Referring to Garde and Ranga Raju’s plots (Figures 14.2 and 14.3)
mean velocity in the channel may be determined.

Ford = 0-5 mm; K, = K, = 0-95 (Fig. 14.3)
-~ K,(R/d)'?S/A = 363 x 1073
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From Figure 14.2 K,V/V (gAR) = 0.20

Hence V = 0-847 m/s giving q = Vy, = 0-847 m%/ms

From Shields equation 14.19, the bed load transport

Qv = 10 (z, — 7.) qS/pgA*d
=10 X (4-9 — 0-292) x 0-847 x 0-0005/1000 x 9-81 X 1-65% x 0-0005
= 1-46 x 1073 m*/ms
= 40 N/ms or 4 kg/ms.

Bed form:
To/pgAd = 4-9/1000 x 9-81 x 1-65 x 0-0005 = 0-61

From Shields curve (Fig. 14.1) the bed form may be in high regime transition
to antidunes; however, the flow Froude no. (= V/ (8Yo) ) is less than 1 and
the bed may be in dune to high regime transition form.

Equivalent bed roughness (k) or dune height:

Using Chezy’s equation, V = C V/(RS)
Chezy’s  C = 0-847/V(1 x 0-0005) = 37-88 m“%/s
Hence from C = 18 log (12R/k) (assuming fully rough bed)
k =95 % 1072 m or 95 mm
Example14.5

A laboratory rectangular flume with smooth sides and rough alluvial bed (d =
6-5 mm) of the following data carries 0-1 m>/s of water:

Bed width =0-5m
Depth of flow = 0-25 m
Slope =3x1073
Find the bed hydraulic radius using the resistance curve for smooth sides
(Fig. 14.9.), bed shear stress and Manning’s coefficient. Also examine the
stability of the bed.
Solution:
Overall hydraulic radius, R = A/P = 0-5 x 0-25/(0-5 + 2 x 0-25)
=0125m
Velocity, V = Q/A = 0-1/(0-5 x 0-25) = 0-8 m/s
. Reynolds no., R, = 4VR/v = 4 x 10°
Overall friction factor, A = 8gRS/V? = 0-046
- Re/A = 8-7 x 10°
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Figure 14.10 Resistance curve for smooth walls

and from Figure 14.10 wall friction factor, A,, = 0-017
From equation 14.11 = PA = Py, + P4,

bed friction factor, A, = 0-075

.. Bed hydraulic radius, R, = 4, V?/8gS (equation 14.10)
= (0-204 m

Bed shear stress, %, = pgR,S = 6 N/m?

From Manning’s equation V = (1/ng) (Ry)**S'"?

Ny = 0-0237
Bed stability:
dy, = 1675

Hence 1./pgAd = 0-056 (Shields criterion) (see Fig. 14.9)
or critical shear stress for stability, 7, = 5-9 N/m?
As 1, = T, the bed is just stable.

(Note: Overall Manning’s n = R¥*$"%/V = 0-017 which may be compared
with Strickler’s equation giving n = d'¢/26 = 0-0166 with k = d)

Example 14.6

Design a stable alluvial channel of trapezoidal cross section with the following
data:

Discharge = 50 m’/s

Bed material size = 4 mm

Angle of repose ¢ = 30°

Bed slope =10"*

Channel side slopes = 2H:1V (tan 8 = 1/2)
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Solution
R'c. = (Ag)"*d/Iv?? = 100-8

From Figure 14.9 F*4 = w/pgAd = 0-054

377

- Ciritical bed shear stress, 7,. = 0-054 x 1000 X 9-81 X 1-65 X 0-004

= 3-496 N/m?

Hence critical shear on slopes, 7, = K 1,
where K = {1 — (sin? @/sin® ¢)}1?2

= {1 — (0-2/0-25)}'2

= 0-447

ST = 0-447 X 3-496 = 1-563 N/m?

(8.9)

Mean boundary shear distribution in a 2H: 1V trapezoidal channel (see

Figure 8.5):

For B/y, > 10 t,./pgy.S = 0-985
Tsm/ PEYoS = 0-78

Using critical shear on bed as the criterion for stability

Toc = Tom = 0-985 X pgy.S

Limiting flow depth, y, = 3:62 m

Using critical shear on sides as the criterion

Te = Tsm = 0-78 X pgy,S

Limiting flow depth, y, = 2-04 m

. Choose y, = 2 m (smaller of the two criteria)

The channel boundary is in threshold condition thus the bed is plane, with

roughness k = d.

- Manning’s n = d"%/26 (Strickler’s formula)

= 0-0153

-~ Mean velocity, V = (1/n)R?3S"2 (Manning’s formula)

Select various By, values and calculate Q (see Table 14.9).

Table 14.9 Design of stable channel

Bly, yom Bm Am> Pm Rm Vm/s Discharge, Q m¥s
10 2 20 48 28-94 1-659 0-916 43.97
11-5 2 23 54 31-04 1-691 0-924 50-09
12 2 24 56 32.94 1-700 0-931 52-14
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Adopt a trapezoidal section of bed width = 23 m
flow depth = 2 m

Example 14.7
The most economical section (i.e. in which the particles are at threshold all

over its perimeter) of an alluvial channel is given by (see Fig. 14.11):

y = ¥, cos (0-8 tan @ x/y,) (14.63)

where g is the angle of repose of the bed material.
Calculate the maximum possible discharge that such a channel in an
alluvium (d = 4 mm, g = 30°) with a bed slope of 10> can carry.
Design the most economical section to carry a discharge of 1 m>/s.

Solution:
The parameters like area (A), perimeter (P), hydraulic radius (R), water
surface width (T) are all functions of flow depth y, and g (see Table 14.10).

Table 14.10 Economic alluvial section as a function of @

P 15° 20° 25° 30° 35° 4° 45°
Aly? 715 5-4 4-21 3-46 279 231 2-00
Ply, 12 8-8 7.0 58 49 42 3-85
Riy, 0625 0615 0602 058 0570 0550  0-520
Tly, 117712 8-63 6-74 5-44 4-49 3-74 3-14

(Note: In order to accommodate lift forces on particles the working value of
@ may be taken as tan~' (0-8 tan o))

Limiting bed shear for d = 4 mm
The = 3-496 N/m? (Shields)

As the shear distribution is uniform and equal to pgy.S
PgY.S = 3-496
~. Flow depth, y, = 0-356 m

Figure 14.11
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. The boundary cross section of the channel is given by equation 14.63:
y = 0-356 cos (1-3x)
From Table 14.10 we can get for ¢ = tan~' (0-8 tan 30°) = 24-8°
A=05m’ R=0214mand T = 243 m
Manning’s n = d'%/26 = 0-0153 and
Mean velocity, V = (0-214)%3(0-001)"2/0-0153
= 0-739 m/s
. Maximum safe discharge, Q, = AV = 0-4 m’/s

Design discharge Q = 1 m%/s
As Q > Q, provide an additional central rectangular section (Fig. 14.12)
to accomodate the excess flow.

Figure 14.12

Velocity in the central section using Manning’s equation
V = (0-356)%3(0-001)2/0-0153 = 1-038 m/s
Additional bed width, b = (1-0 — 0-4)/(1-038 x 0-356) = 1-62 m

(Note: For discharges Q < Q,, the section may be shortened by reducing T
to (T — 2x) as per Table 14.11).

Table 14.11 Design table for Q < Q,

2x/T 0 0-2 0-4 0-6 0-8 1-0
Q/Q, 1 0-615 0-31 0-11 0-015 0

Example 14.8
The following data refer to an alluvial canal:

Average water surface slope = 5 x 10~4

Average water depth =482 m
Width =525m
Average velocity = 2:43 m/s

Grain size distribution: dgy = 50 mm

Estimate the bed load transport in the canal.



380 CIVIL ENGINEERING HYDRAULICS

Solution:
Hydraulic radius, R = 52-5 x 4-82/(52-5 + 2 X 4-82) = 407 m
Cepannet = V/V(RS) = 53-87 m"?/s
Cyrain = 18 log (12R/dg)

(Note: Grain roughness exposed to flow is equivalent to dyg as dso is eroded
and kept in motion as sediment load)

2. Cgrain = 53-8 m"%/s
As Cehannet = Cgrain, ripple factor, u = 1 > flat bed.
Discharge in canal = 4-82 X 2:43 = 11.7 m*/ms
Bed shear, 7, = pgRS = 19-96 N/m?
Critical shear stress for dsp
1. = 0-056 pgAd = 181 N/m?
Bed load transport:
(i) Meyer—Peter and Muller equation (equation 14.22):
Qo = 8 (1-65 x 9-81)"(0-02)**(uRS/Ad — 0-047)**
uRS/Ad = 0-062
o gp = 1-67 X 107* m*/ms
or total bed load = 23 kg/s
(ii) Einstein’s curve (Fig. 14.5)
y = Ad/uRS = 16-12 giving ¢ = 0-015
-~ qp = 0-015 (gAd%)"2 = 1-71 x 107* m’/ms
or total bed load = 24 kg/s
(iii) Schoklitsch equation (equation 14.17):
Bed load in kg/ms, g, = 2500 $*2 (q - qc)
qer from equation 14.18 = 9-27 m*/ms
" g = 6-79 x 1072 kg/ms
or total load = 3-6 kg/s
(iv) Shields equation (equation 14.16)
Qv = 10gS ((% — %)/pgA’d)
= 52 X 107* m*/ms
or total load = 72 kg/s
Shields equation is applicable for the sediment range of 1-56 < d (mm) <
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2-47 and is not reliable in this case where d = 20 mm. Also Schoklitsch’s
equation is not dimensionally homogeneous and does not include coarse
material. Hence the probable total bed load in the canal is around 30 kg/s.

Example 14.9

The following data refer to a wide river:
Depth =3m
Mean velocity =1m/s
Chezy coefficient = 50 m"?/s

Density of sediment = 2650 kg/m>

A sample of wash load (mean diameter of 0-02 mm) taken at half depth of

flow showed a concentration of 200 mg/1 (200 ppm).

(i) Establish the wash load concentration distribution as a function of depth
and calculate the rate of suspended load assuming a homogeneous
distribution.

(ii) Determine the transport rate using Lane and Kalinske’s approximate
method and compare with the above resuit.

Solution:
From Chezy’s formula, (RS)'? = V/C = 0-02
. Shear velocity, U, = (gRS)"? = 0-063 m/s
Fall velocity, W, = 0-00035 m/s (Fig. 14.4)
. Movability parameter, U./W, = 0-063/0-00035 = 180
Referring to Table 14.2. the sediment is almost in homogeneous suspension.
- Total suspended load = 200 x 3 x 1 x 1000/10° = 0-6 kg/ms
Distribution of sediment concentration:
From equation 14;29 >a=15m; ¢, =200 mg/l; y,=3m
W, = 0-00035 m/s (Fig. 14.4.); B=1; x = 04
¢ (y) = 200 [1-5 (3 — y)/1-5 y]0-00035/0~4x0-063
=200 [(3 ~ y)/y]**"* mg/l
Equation 14.31 (Lane and Kalinske) => q,/q = 200 P ¢!5(1/2)0-00555
P from Fig. 14.7: Manning’s n = R¥3$"%/v
§'2 = 0-02/3'2 = 0-01155
~n = 3% x 0-01155/1 = 0-024
" nly,"6 = 0-02
and hence P = 1 at W/U, = 0-00555
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5 qsfq =200 x 1 x e¥%416 = 200 x 1-04
Hence g, = 208 x 1 x 3 x 1000/10° = 0-624 kg/ms
Example 14.10

An alluvial river with the following data discharges water into a downstream
reservoir of 10 X 10° m® capacity.

Width =12m
Depth =4m
Slope =3x10*
Discharge =75 m%/s
Bed material size, dsp = 0-5 mm

Density of bed material = 2600 kg/m>

Determine the total sediment transport rate by Ackers—White formula in
the river and compare the result with that of Graf’s formula. What is the life
expectancy of the reservoir fed by this river?

Solution:
R = A/P = 48/20 = 24 m
Graf’s formula: Equation 14.36 > y. = Ad/RS = 1-146
o Ba = 10-39 x (1-146)"%%2 = 7.37
Hence CVVRI\/W)— =737
or 1-526 x 2-4 C,/(4-5) x 107> = 7-37
2 C, = 9-05 x 1073
Total transport rate = 9-05 x 1075 x 75 = 6-79 x 107> m%/s
Ackers—White’s approach:
dg, = 0-0005 (9-81 x 1-6/107'%)"* = 12-4 (Equation 14.41)
For dg, in transition (1 < d,, < 60):
n =1 - 0-56 log d,, = 0-388
A = 0-14 + 0-23/Vd,, = 0205
m = 1-34 + 9-66/d,, = 2-12
log C = 2-66 log d,, — (log dg)* — 3-53 = —1-865
- C = 0-0136
U, = (9-81 X 2-4 x 0-0003)'? = 0-084 m/s
U." = 0-382; (gAd)"? = 0-0886
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log (12-2 y,/d) = 4.99
<. Fgr = [0-382/0-0886] [1-562/5-75 X 4-99]' ~%3% = 0.726 (Equation 14.40)
Foi/A = 0-726/0-205 = 3-54
. C[Fg/A — 1)*'? = 0-098
q/q = [0-098 X 0-0005/4] [1-562/0-084]"3% = 3.82 x 10> (Equation 14.39)
SQy=382x107° x 75 = 2-86 x 107> m?s
Reservoir life expectancy: _
Ackers—White => Annual deposit = 2-86 x 10~3 x 365 x 24 x 60 x 60
= 9 x 10* m*/year
. Reservoir life = 10 x 109 X 10* = 100 years

Graf = Annual deposit = 6:79 X 1073 x 365 x 24 X 60 X 60

= 2-14 X 10° m*/year

Reservoir life = 10 x 10%2-14 x 10° = 50 years.

(Porosity and consolidation of sediments will affect the filling rate)
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Problems

1. (a) Using Shields threshold criterion 7/pgAd = 0-056 and Strickler’s
equation for Manning’s n = d'6/26 show, for wide channels

(i) d = 11RS (Equation 14.3)
(i) VJV(gd) = 1-9 VA (d/R)""6 (Equation 14.6)
(iif) g = 0.2 (A)** d*%/S7/% (Equation 14.18)

(b) A flood plain river bank in fine silty sand is experiencing extensive
erosion. The bank full discharge of the river is 60 m*/s and the
section is approximately 10 m wide and 2 m deep at this discharge.
The flood plain is protected by a cover of 30 mm size stone rip-rap
whose friction coefficient, A = 0-022. Examine the stability of the
rip-rap cover using Shields criterion.

2. A river bed of the following data is stabilised by the deposition of a
gravel layer:
Channel width = 12 m
Bed slope =5x 1073
Max. discharge = 15 m%/s
Determine the limiting depth of flow assuming the section to be rectangular
if the gravel size is 30 mm.

3. A straight canal with side slopes of 24H : 1V is carrying water with a
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mean depth of 1 m and mean velocnty of 0-87 m/s. The Chezy’s coefficient is
around 25 m'?/s. Determine the minimum size of broken gravel that can be
used as a protective layer around the periphery of the canal. The angle of
internal friction for the stone whose density is 2600 kg/m® may be assumed
as 35°.

4, A channel of trapezoidal cross section (side slopes of 2H: 1V, bed
width of 8 m and flow depth of 2 m) is excavated in gravel (mean diameter
of 4 mm and g of 30°). Determine the limiting bed slope of the channel.

5. A channel bed is protected with 40 Kg stones (p, = 2800 kg/m?). If the
flow depth in the channel is 4 m calculate the critical velocity at which the
stability of the protective layer is in danger. If the velocity in the channel
exceeds this critical velocity by 20% determine the size of the stones that will
be needed for its protection.

6. A long and wide laboratory flume is o be prepared to carry out
experiments to check Shields diagram. It is proposed to cover the bed of the
flume with a layer of homogeneous noncohesive material.

Determine the unit discharge rate and slope of the bed required for a flow
depth of 2 m to investigate the studies using (i) sand with d = 0-125 mm and
(ii) gravel with d = 4 mm. The density of both the materials may be
assumed as 2650 kg/m> with water temperature of 12°C.

7. The following data refer to a wide river:
Flow depth =2m
Mean velocity = 0-71 m/s
Slope = 1/12000
Grain size =1 mm
Density of grains = 2000 kg/m?
Settling velocity = 0-10 m/s

Kinematic viscosity of water = 10™® m?/s

(a) (i) Calculate the rate of sediment transport in N/day using the
Meyer—Peter and Muller formula: g = (4/y — 0-188)*?

(ii) Determine the k value of the bed and identify the possible bed
formation and explain whether the bed is hydraulically smooth or
rough.

(iii) Check whether there will be suspended load or not.

(b) If this river is discharging into a lake of constant water level and the
sediment transport is interrupted at 10 km upstream of the lake,
discuss, with the help of neat sketches, the consquences of the river
regime along this 10 km stretch of the river.
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8. In a wide stream of 3 m depth, the shear stress on the bed is
estimated to be 2-4 N/m®. The concentration of suspended sediment is found
to be 25-8 kg/m? at a point 0-03 m from its bed. The settling velocity of the
sediment is 9-14 mm/s in still water.

(i) Plot the profile of the sediment concentration through the depth with
Karman’s constant, y = 0-4.
(ii) Assuming the velocity profile as

u/u, = 5-8 + 2:5 In (u.y/v)

estimate the suspended load transport per unit width of the channel.

9. Suspended particles 50% by weight with W, = 9-1 mm/s and 50%
with W, = 15-2 mm/s are admitted to a sedimentation tank with a mean
velocity of 0-152 m/s and a depth of 1-52 m. Find the fraction of removal (F)
of the total load if a tank length of 30 m with a bed slope of 10™* is used.

[Hint: Use Sumer’s equation: x/y, = 12V log (1 — F)/(U. — 10W,)]

10. A mountainous creek is monitored to measure the suspended load
by sampling the concentration of silt at its mid-depth.

For a flow depth of 1 m the mean concentration is found to be 21 N/m?
(dry weight) with d = 30u and p, = 2650 kg/m>.

The average width of the creek at the sampling section is 22 m and from
the topographic map of the area its slope was determined to be 3-6 m/km.
Stage-discharge measurements of the creek indicated that its bed roughness
(k-value) could be taken as 0-12 m. The water temperature during sampling
was 20°C.

Calculate the suspended load transport for this flow in the creek.



Answers

1. Properties of Fluids

(1(b)) 5 Ns/m?; (2) 2 m/s, 0-4 Ns/m?; (3) 1-7 kW; (4) 21-3 m/s; (5) 4-9 mm,
—1-9 mm; (6) 80 N/m?.

2. Fluid Statics

(1(a)) 57-63 kN/m?; (1(b)) 31-83 m; (2) 36-9 kN/m?, 10-2 kN/m?; (3) 32 mm,
31-6; (4) 2-94 kN/m?; (5) 0-25 N/mm?; (6) 0-67 m, 2-0 m, 3-53 m, 26-2kN/m;
(7) 0-190 m; (8) 100-7 kN, 3-49 m below water level, 53-3 kN; (9) 171-2kN,
39:23° to horizontal, 1-9 m below water surface (10) 4-83 MN, 66°, 26-21 m

from heel; (11) 0-85; (13) 12-82 kN; (14)— - h above water level; (15) 0,

11-92 sin 6 kNm; (16) 1-41 m, 2-54°; (17) 244 6 mm; (18) 9-10°, 11-12°;
(19) 17-17 kN.

3. Fluid Flow Concepts and Measurements

(1) 15 m/s?, 150 m/s?; (2) 21 m/s?; (4) 3-62 kW, towards 450 mm diam.
section; (5) —50-6 kN/m?, 36-7 kN/m?, 1-34 kW; (6) 3-98 m, 76-8°;

(7) 23-7 kN, 45°, 16:75 kN; (8) 12-91 kN, 9-4° to the horizontal; (9) 811 kN;
(10) 1-35 kN, 67-5° to horizontal; (11) 856 kN, 12-54° to the vertical;

(12) 130 mm; (13(a)) 46-36 mm; (13(b)) No change; (14) 25 km/h;

(15) C, = 096, C. = 0-62, C4 = 0-596; (16) 7 min 51-7 s; (17) 25-5 mm,
39-5 mm; (18) m"%/s, 62-3 mm, 0-6%; (19(b)) 1-6%; (20) 1-48, 2-5, 0-626;
(21) 3 h 10 min; (22) 25-3 m*/w, (23(a)) 5-27 m; 29-72 m; (23(b)) 3396 m/s
—32-57 kN/m?.

4. Flow of Incompressible Fluids in Pipelines

(1(a)) 179-3 I/s; (1(b)) 20-0 m; (2) 8700 m, 22-78 kW; (3) 158 I/s;
(4(a)) 350 mm, 214-7 I/s; (4(b)) 12-47 m; (5) 58-8 I/s, 0-28 mm;
(6(a)) 215-5 I/s; (6(b)) 9350 m; (7) 114-7 mm, 13-4 kKW; (8(a)) 9-5 I/s,
laminar; (8(b)) 24-77 I/s, turbulent; (9(a)(i)) 62-25 I/s, (ii) 64-82 I/s;
(9(b)(i)) 50-13 I/s, (ii) 49-10 I/s; (10) 0-0144,

388
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5. Pipe Network Analysis

(1) ZB = 91.4§ m, QAB = 107-6 l/S, QBC.I = 52-1 l,S, QBC.Z = 55-5 l/s;

2) ZB =910 m, QAB = 110-8 I/S, QBC.I = 55-8 l/S, Qgc_z = 550 l/S;

(3) Zy = 75-31, Qo = 156-4 l/s, Qpc = 563 l/s, Qpp; = 59-2 Vs,
Qpp2=40-91/s; (4) Zg = 132-3m, Qap = 118-3 l/s, Qgc = 40 V/s,

Qgp = 78:3 I/s. Pump total head = 21-75 m, power consumption =

14-22 kW; (5) Zg = 126-7 m, Zp = 109-4 m, Q5 = 505-2 l/s, Qpc =

133-2 I/s, Qpp = 372:0 l/s, Qpg = 221-2 /s, Qpr = 150-8 U/s; (6) ZA =
200m,Zc=100m,Zg =60m, Zg = 50m, Zg = 100:19m, Z, = 71-71 m,
Qap = 279-1 /s, Qpc = 126:7 UUs, Qgp = 152:4 l/s, Qpg = 52-1 /s, Qpf =
100-3 l/S; @ QAB = 104-8 l/S, QBC = 45-4 /s, QCD = —4-6 l/s, QDE, =
—44-6 Vs, Qga = —95-21/s, Qgg = =0-6 l/s, Z, = 60 m, Zg = 39-03,

Zc = 1737, Zp = 18-14 m, Zg = 39-06; (8) Qgce = 62 l/s, Qgg = 45 /s,
Qgpe = 93 /s, head loss in AF 12-:5m; (9) Qap = 106-4 /s, Qgc = 52-5 /s,
Qcp =2-5Vs, Qpg = —37-51/s, Qga = —93-6 /s, Qgg = —6-1V/s, Z, =
60 m, Zg = 38:-50 m, Z¢ = 25-03, Zp = 2477 m, Zg = 39-78 m;

(10) Discharges to nearest 0-5 I/s

Pipe AB BH HF FG GA
Discharge (I/s) 136-5 56-5 25 535 93-5

Pipe BC CD DH DE EF
Discharge (1/s) 30-0 10-0 -24-0 14-0 ~-26-0
Junction A B C D E F G H
Head

elevation (m) 100-00 69-44 64-18 63-85 6322 6731 8394 67-34

(11) Flows given to nearest 0-1 l/s

Pipe AB BC CD DE EF BE
Flow (I/s) 95-3 52 44-7 —499 —44-7 -52
Junction A B C D E F

Head elevation (m) 100 87-70 71-67 65-48 87-66 90-0

6. Pump-Pipeline System Analysis and Design

(1) 136 I/s, 88-9 kW; (2(a)i)) 182 Us, (ii) 192 I/s; (2(b)(H)) 138-4 kW,

(ii) 186-3 kW; (3) Mixed flow; (4) 31 I/s, 20-8 I/s, 10-0 I/s; (5) N, = 5120,
Axial flow, 125 I/s, 6-44 kW, (6(a)) 4-81 m, 0-12; (6(b)) 4-75 m;

(7) 1390 rev/min; (8) 27-5 V/s; (9(w)) 137-6 l/s; (9(b)) 166-0 l/s; (10(a)) Zg =
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90-46 m, Qg = 57-11/s, Qpc = 38:5 Vs, Qgp = 18-6 I/s; (10(b)) Zg =
89-02 m, Qap = 61-5 /s, Qgc = 37-5 /s, Qgp = 24-0 I/s. Head delivered by
pump = 26-5 m, Power consumption = 12-4 kW.

7. Boundary Layers on Flat Plates and in Ducts

(1) 381-6 N, 0-186 m, 4-56 N/m?; (2(a)) 770-8 N; (2(b)) 748-9 N;
(3) 22:23 m/s; (4) 1-95 mm, 3-7 m/s; (5) 16-38 N/m?, 0-067, 23-65 I/s,

0-091 mm; (6) 3-0 mm, 0-0114, 93-9 /s, % = 20-8.

8. Steady Flow in Open Channels

(1) 4-9 N/m?; (2(a)) k = 2-:027 mm, n = 0-0149; (2(b)) Q (Darcy) =

56-21 m%/s, Q (Manning) = 56-57 m*/s; (3) 2-74 m; (4) 3-776 m*/s, 1-83 m/s,
5-48 N/m?; (5) 3:6 m>/s, 0-00324; (7) 17-6 m>/s, 1-67 m; (8(a)) 30-11 m*/s;
(8(b)) 29-29 m*/s; (8(c)) 33-95 m>/s; (9) 2-5 m; (10) Width = 12-25 m,

depth = 6-13 m; (11) Bed width = 3-33 m, depth = 4-02 m; (12) 1-45:1;
(13) Bed width = 20-5 m, depth = 2:297 m; (14) 2-09 m;

asa@) | 01 02 0-3 04 05
vi (m) 2:50 2:50 2:50 2:50 2:50
vz (m) 237 224 210 1-94 1.74
z (m) 0-6 0-7 0-8 0-9 1-0
y; (m) 2:54 2-66 278 2-89 3.01
¥, (m) 1-45 1-45 1-45 1-45 1-45

(15(b)) y. = 1:451 m; (15(¢)) z. = 0-568 m; (16) y, = 1:54 m, y, = 1:047 m,
Q = 0-877 m3/s; (17) Initial depth = 0-639 m, Upstream depth = 7-42m,
Force = 786 kN; (18) Submerged flow at gate, 5-157 m, 2-176 m,

256-93 kN; (19) y,, = 3-5 m, 13000 m, 4-45 m; (20) See table below;

2y, =148 m, y. = 0714 m, y = 1-32 at x = 350 m; (22) 10410 m;
(23(a)) 103-20 m AOD; (23(b)) submerged inlet and reduced flowrate. (24(a))
2:25m; (24(b)) 200 m; 2545 mfors=2mand W = 1 m.

(20)

Depth (m) 4-0 39

3-8 37 3-6 35 34
Distance (m) 0-00 1514  308-3

471-8 6433 8249 1019

Depth(m) 33 32 31 30 29 28
Distance (m) 1230 1464 1733 2057 2468 3110

9. Dimensional Analysis, Similitude and Hydraulic Models

(1) 85 I/s, 0-01445; (2) 352 kN/m?; (3) 242 l/s, 1:3-4; (&) (Length scale)*?;
(6) 0-4645 m, 118-11 I/s; (7) 93-75 m/s, 11-2 kN;
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@ Q, (I/s) 0 103-1  206-2 3093 4124

H,(m) 80 786 664 436 103

ON, = NH—S,‘/?; (9(b)) 15492 rev/min, 27-89 MW, 21-069 m*/s;

(10) 2-85 s, 72 m, 0-5 m, 800 kN/m.

10. Ideal Fluid Flow and Curvilinear Flow

391

(1) V(y cos @ — x sin a), V,(sin @ cos a — cos 8sin a); (2) ¢ = % (x® - y?);

(9) 74-6 m%/s; (10) 2-2 m, 2-66 m; (11) 105-8 m%/s, —5:36 m, —4-40 m;
(12) 0-4 1/s; (13) 200 litres.

11. Gradually Varied Unsteady Flow from Reservoirs

(1) 175-91 h; (2) 36-69 h, 131-39 h; (3) 602-78 h; (4) Peak outflow = 45 m>/s

att=11h.

12. Mass Oscillations and Pressure Transients in Pipelines

(1) zmax = 40-5m at t = 95 s; (2(a)) z max = 40-8 m after 100s;
(2(b)) z max = 37-2 m after 150 s;

G@) re 0 3 6 9 12 15
V(m/s) 423 422 417 4031 3.5 0
h (m) 30 466 809 1700 5303 43674
3®))

time(s) O 3 6 9 12 15 18 21 24 27
V(m/s) 423 423 421 417 412 402 387 362 317 227

30
0

h(m) 30 368 464 596 7-80 10-85 1571 24-42 42-24 86-54 228-46

(4) Waterhammer period = 2:33 5 (T), Z = head elevation (above datum

through valve) (m), Q = discharge at valve.

T 0 1 2 3 4 5

Z (valve) 26 48 107 235 625 1902 376
Z (mid-length) 16-3 174 203 255 429 952 665

Q(I/s) 1071 1066 1046 991 840 367
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13. Unsteady Flow in Channels

(1(a)) y» = 2-815 m, ¢c = 3-54 m/s; (1(b)) y> = 3-:295 m, ¢ = 4-311 m/s;
2) y; = 098 m, y, = 1-807 m, Q, = 46-15 m®/s (upstream);

3 y,=298m,y, =3-54m,c=714m/s; @y, = 2:631 m, 1-515 min;
(5) 36-45 min.

14. Uniform Flow in Loose—Boundary Channels

(1) Safe; (2) 0-57 m; (3) 15 mm; (4) 9-2 x 1073; (5) 695 m/s, 0-6 m;
(6(i)) 0-686 m>/s.m, 82 x 1075 (6(ii)) 2-52 m*/s.m, 1-73 x 10~
(7(a)) 15 kN/day/m, 21 mm, dunes, rough; (8) 21 kg/s.m; (9) 83:4%;
(10) 1060 N/s.



Index

absolute pressure, 10
acceleration, 23
centrifugal, 24
convective, 50
horizontal, 23
local, 50
normal, 51
radial, 23
tangential, 50
uniform linear, 23
vertical, 23
Ackers-White, 364
alluvial, 353
angular velocity, 23
antidune, 353
Archimedes, principle of, 18

back water curves in channels, 186, 233, 236
bed friction, 355
bed hydraulic radius, 355
bed load, 358, 359
bed material load, 358
bed shear, 353
Bernoulli’s equation, 54
Blasius, 168
smooth friction factor, 93
bourdary layers, in turbulent pipe flow, 171
boundary shear stress, 169
combined drag due to laminar and
turbulent boundary layers, 170
displacement thickness, 170
drag, 169
effect of plate roughness, 168
Karman-Prandtl equations, 173
laminar boundary layers, 168
laminar sub-layer, 173
mixing length, 171
Nikuradse, 171, 173
on flat plates, 128, 169, 170
Prandtl mixing theory, 171
shear velocity, 171, 353
thickness, 168
turbulent boundary layers, 169
velocity distribution, 168
Boussinesq, coefficient of, 58, 85
bulk modulus, 2
effect on wave speed, 316

bouyancy, 18
centre of, 18

canal delivery, 201, 238, 239
capillarity, 3
cavitation, 57, 61, 149
number, 151, 159
celerity, 314, 341, 343
centrifugal pumps, 145
channels (see open channel flow)
characteristic curves, pumps, 147
Chezy equation, 187
Colebrook-White equation, 93, 173, 186
column separation, 324, 339
compressibility, 2
concentration, 361
continuity, equation of, 49, 121, 310
two dimensional flow, 268
contraction, coefficient of, 59
Coriolis, coefficient of, 57, 85
corresponding speed, 258
critical depth, 194
critical shear, 353
critical velocity, 194
Culvert, 203, 240
curvilinear flow .
in duct bend, 281, 284
in channel bend, 289
in rotating cylinder, 285
in siphon spillway, 286
curved surface, force exerted due to
hydrostatic pressure, 15

density, mass, 1
specific volume, 4
specific weight, 1

dimensional and model analysis, 249, 250
Buckingham # theorem, 251
coresponding speed, 258
dimensional forms, 250
for pipelines, 252
for rectangular weir, 256
for rotodynamic pumps, 254
for V-notch, 255
Froude number, 251, 252, 260, 261
model studies, 251, 259, 261, 262, 265
non-dimensional groups, 250
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Reynolds number, 251, 255, 258, 262, 265
_ similitude, 251

Weber number, 251, 256, 259, 260
discharge, 50

coefficient of, 63

under varying head, 64, 293
displacement thickness, 170
drag, flow over flat plate, 168
dunes, 353
dynamic similarity, 251

eddy viscosity, 52
Einstein’s equation, 360
energy
equation for ideal fluid flow, 53
equation for real, incompressible flow, 55
kinetic, 55
potential, 54
pressure, 55
total, 54
energy equation, 54, 55, 91, 185, 194
energy losses, 55, 96
losses in pies, 50, 91, 96, 97
of flowing fluid, 91, 185, 193
Engeleund, 362
equilibrium
neutral, 19
relative, 22
stable, 18
unstable, 18
equipotential lines, 271, 273
estuary models, 262
Euler’s equation of motion, 54

fall velocity, 357
floating bodies
equilibrium of, 18
periodic time of oscillation, 21
stability of, 18
stability of vessel carrying liquid, 21
flow
curvilinear, 268
gradually varied, steady, 197, 198
gradually varied, unsteady, (see
quasi-steady flow)
ideal, 268
in channels, 192, 341
in pipe networks, 91, 121
of compressible fluids in pipelines, 91-120
rapidly varied, steady, 193
rapidly varied, unsteady, (see pressure
transients, waterhammer, surges, in
channels)
flow nets, 273
flow regimes, 353
fluid
definition of, 1
ideal, definition, 53
Newtonian, 1, 2
fluid flow, 47
dynamics of, 53

Eulerian description of, 47
ideal, 53
irrotational, 49
kinematics of, 47
Lagrangian description of 47
measurement of, 59—-70
non-uniform, 48
one dimensional, 49
real, 55
rotational, 49
steady, 48
three dimensional, 49
two dimensional, 49
uniform, 48
unsteady, 48
fluids in relative equilibrium, 22
effect of acceleration, 22, 33
forced vortex, 46
fluids, real and ideal, 53, 55, 268
fluid statics, 7
forced exerted by a jet on a flat plate, 79
force on pipe bend and conduits, 77
forced vortex, 278, 285
free surface flow models, 259, 260
free vortex, 278
friction factor, 91
dependence on Reynolds number, 93, 95
in laminar flow, 92
in quasi-steady flow, 293
in smooth pipes, 93
friction losses in pipes, 91, 92, 93,
Froude number, 194, 196, 251, 260, 262,
264, 353

Garde-Ranga Raju formula, 355
gas, definition of, 1
geometric similarity, 251

Hagen-Poiseuille equation, 92
head, 9

potential or elevation, 54

pressure, 9

variable, 65

velocity or kinetic, 55
hydraulic gradient, 91
hydraulic jump, 195, 196

location of, 234
hydraulic radius, 92, 186, 187
hydrostatic thrust (force), on a plane

surface, 11
on a curved surface, 15

ideal fluid flow, 268
boundary conditions, 278
circulation, 270
combination of basic flow patterns, 272
curvilinear flow, 265, 277, 281, 286, 289
equipotential lines, 271, 273
flow nets, 273
forced vortex, 278, 285
free vortex, 278



INDEX
graphical methods, 279 negative surge, 345
Laplace equation, 274 net positive suction head, 150
line sink, 272 Newtonian fluid, 1, 2
line source, 271 " Newton’s law of motion, 56
numerical methods, 274, 281 Newton’s law of viscosity, 2
pathline, 48, 268 Nikuradse, 93, 171, 172, 173
pressure distribution, 273 notches, 66
radial velocity component, 270 Bazin formula, 67
siphon spillway, 285 end contractions, 67
streamlines, 48, 268 Francis formula, 67
stream function, 268, 272 rectangular, 66
streamtube, 47, 268 Rehbock formula, 67
tangential velocity component, 270 suppressed, 67
uniform flow pattern, 271 velocity of approach, 64
impeller, 145 V or triangular, 67
efficiency of, 145
incipient, 353 ogee spillway, 68
irrotational flow, 49, 268 open channel flow (steady)
channel design, 189
Kalinske equation, 359 Chezy equation, 187, 210
kinetic energy correction factor, 56, 57 Colebrook-White equation, 186
composite roughness, 188
Lacey, 355 compound section, 188
laminar boundary layer, 168 critical depth flume, 231
laminar flow, 52 critical tractive force, 190, 191, 192
laminar sub-layer, 173 Darcy-Weisbach equation, 186
Lane, 362 De Marchi coefficient, 205
Laplace equation, 274 economic section, 189
Laursen, 363 energy components, 194
lined canal, 364 energy principles, 194
liquid, definition of, 1 gradually varied flow, 197, 198, 199
logarithmic velocity distribution, 172, 208 hydraulic jump, 195
loose-boundary, 353 Manning formula, 187
losses, 58, 60 mobile boundary, 190
in pipe fittings, 96, 97 momentum equation, 195
sudden contraction, 59 part-full circular pipes, 191
sudden enlargement, 58 rapidly varied flow, 193
rigid boundary, 189
Manning formula, 187, 354 sewers, 191
coefficient of, 187, 189 spatially varied flow, 241, 242, 243
manometer specific energy, 194
differential, 10 storm sewer, 191, 218
inclined, 10 uniform flow, 186
U-tube, 10 uniform flow resistance, 187
mass oscillations in pipelines, 309 velocity distribution, 208
finite difference methods, 312 venturi flume, 223
sudden discharge stoppage, 311, 312 wastewater sewer, 217
surge chamber operation, 309 water surface profiles, 237
metacentre, 19, 20 wetted perimeter, 188
metacentric height, determination of, 19, 22 open channel flow (unsteady)
Meyer-Peter Muller equation, 359 celerity (wave), 341, 343
model studies, (see dimensional analysis) dam break, 347
model testing (see similitude) downstream positive surge, 345
modulus, bulk, 2 gradually varied, 341
momentum, 58 negative surge waves, 345
correction factor, 58 upstream positive surge, 343
equation, 58, 195 orifice
Moody’s chart, 94 constant head, 62
mouthpieces, 63 hydraulic coefficients of, 63
hydraulic coefficients of, 63 large, 63 '

movability parameter, 357 small, 62
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submerged, 65
varying head, 65
orifice meter, 60

Pascal’s law, 7
pathline, 48, 268
piezometer, 10
piezometric pressure head, 9
pipelines
Colebrook-White equation, 93, 186
Darcy-Weisbach equation, 92
design, 108
effective roughness size, 92, 173
friction factor, 93
Hagen-Poiseuille equation, 92
incompressible steady flow resistance, 91
Karman-Prandtl equations, 93, 173
local losses, 96
Moody diagram, 93, 94
Moody formula, 93
networks (see pipe networks)
pipes in series, 101
resistance in non-circular sections, 95
with laterally distributed outflow, 102
pipe networks, 121
effect of booster pump, 129
head balance method, 122
quantity balance method, 123
pitot tube, 61
plane bed, 353
pressure
absolute, 10
at a point, 7
atmospheric, 10
centre of, 11, 12
diagram, 14
distribution, 14
gauge, 10
hydrostatic pressure distribution, 9
measurement of, 9
piezometric pressure head, 9
saturated vapour pressure, 3
stagnation pressure, 61
vacuum, 10
vapour pressure, 3
variation with depth, 8
within a droplet, 4
pressure transients in pipelines, 314
Allievi equations, 318
at interior points, 325
basic differential equations, 315
due to pump stoppage, 326
due to valve closure, 314, 327
pipeline friction and other losses, 324
Schnyder-Bergeron graphical method, 322
waterhammer lines, 322
wave celerity, 314
pumps
cavitation in, 149, 151
characteristic curves, 149
efficiency, 147

impeller, 145

in pipe network, 129, 162

manometric head, 146

manometric suction head, 150
matching, 153

net positive suction head, 150
operation point, 154

parallel operation, 147 .
pipeline selection in pumping system, 154
power input, 147

pump-pipeline system, 146
rotodynamic types, 145

selection, 145

series operation, 148

specific speed, 145

static lift, 146

system curve, 154

Thoma cavitation number, 151, 159
variable speed, 148

quasi-steady flow, 293
between reservoir, 293
establishment in pipeline, 296
over a spillway, 295

reference concentration, 334
regime channel design, 364
Kennedy’s approach, 364
Lacey’s approach, 365
Blench’s approach, 366
Simons— Albertson method, 367
nonscouring boundary, 368
stable erodible boundary, 368
relative density, 2
relative roughness, 92
Reynolds number, 52, 92, 93, 98, 251, 252,
255, 256, 259
Riemann, 318
rigid-boundary, 364
rigid boundary (fixed bed) channels, 369
suspended load, 369
bed load, 370
limit deposition, 370
friction factors, 370
ripples, 353
river models, 259, 260, 261, 262
rotational flow, 268
Rouse’s distribution, 361
Runge-Kutta method, 242

Schnyder-Bergeron graphical method, 322
Schoklitsch equation, 359
sea outfall, 364
separation, 59
sewers, 364
shear stress, 1, 7, 91, 169, 190, 191, 210, 334
shear velocity, 171, 353
Shields criterion, 354
Shields transport equation, 359
similitude, similarity, 251
dynamic, 251



geometric, 251
laws for river models, 259, 261, 262
laws for rotodynamic machines, 263
laws for weirs and spillways, 258, 265
sink, 272
sluice gate, 228
source, 271
specific energy, in channels, 195
specific speed, rotodynamic machines, 145
specific volume, 5
specific weight, 2
spillway, 68
ogee spillway, 69
siphon spillway, 286
static lift, 146
steady flow energy equation, 54, 91
stream function, 270, 271
streamline, 48, 268
patterns of, 51
streamtube, 47, 268
Strickier’s equation, 354
surface tension, 3, 250, 251, 255, 259, 260,
261, 265
surge chambers, 309, 310, 312
suspended load, 358, 361

threshold, 354

tidal flow, 262

tidal period, 262

total energy line, 92, 185

total load, 358, 363

turbulent flow, in pipes, 52, 93

units
force, 1
power, or energy, 1
S I system, 1
work, 1
unsteady flow
negative surge wave, 345
open channels, 341
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pipe flow, 293, 309, 314
positive surge wave, 343, 345

vapour pressure, 3
velocity,
approach, 64
average, 50
coefficient of, 62
components of, 48
distribution, in laminar flow, 168; in open
channel, 208; in pipe, 170—173; on
plates, 168, 169
fluctuations of, 48
temporal mean, 48
vena-contracta, 64
venturi flume, 223
venturi meter, 60
coefficient of discharge, 63
viscosity, 2
dynamic, 2
kinematic, 2
Newton’s law of, 2
volume, specific, 5
vortex
forced, 278, 285
free, 278

wash load, 358
wave propagation speed, 319
effect of free air, 324
wave reflections, dead end, 319
Weber number, 251, 257, 259, 260
weirs, 68
Cipolletti, 67
proportional or sutro, 68
submergence of measuring structures, 70
trapezoidal, 68
wetted perimeter, 91, 96, 188

Young’s modulus, effect on wave speed, 316



Conversion Table (Metric to

Imperial units)

To convert: To: Multiply by:
millimetres (mm) inches (in) 0-03937
metres (m) inches (in) 39-37
metres (m) feet (ft) 3.28
kilometres (km) miles (miles) 0-621
metres (m) yards (yd) 1-094
square millimetres (mm?) square inches (sq in) 0-00155
square metres (m?) square feet (sq ft) 10-765
square metres (m?) square yards (sq yd) 1-196
square kilometres (km?) square miles (sq miles) 0-386
cubic metres (m%) cubic feet (cu ft) 35-32
cubic metres (m?) cubic yards (cu yd) 1-307
litres (1) U.S. gallons (US gal) 0-264
litres (1) Imperial gallons (Imp gal) 0-220
kilograms (kg) pounds (Ib) 2-207
kilograms (kg) tons (ton) 0-0011
newtons (N) pound force (Ibf) 0-2247
newtons {N) kilogram force (kgf) 0-102
newtons per square metre (N/m?) pounds per square foot (psf) 0-0209
kilonewtons per square metre (kN/m?)  pounds per square inch (psi) 0-145
cubic metres (m?) gallons (US gal) 263-16
cubic metres (m*) gallons (Imp gal) 220-0
cubic metres (m?) acre-feet (acre-ft) 0-000811
cubic metres per minute (m*/min) gallons per minute (US gal/min) 250-0
litres per second (I/s) gallons per minute (US gal/min) 15-584
litres per second (I/s) gallons per minute (Imp gai/min)  13-20
viscosity (Ns/m?) viscosity (Ibfs/ft?) 0-0209
kilowatts (kW) horse power (hp) 1-3404
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