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Preface

Purpose

The purpose of The Electrical Engineering Handbook, 3rd Edition is to provide a ready reference for the

practicing engineer in industry, government, and academia, as well as aid students of engineering. The third

edition has a new look and comprises six volumes including:

Circuits, Signals, and Speech and Image Processing

Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar

Sensors, Nanoscience, Biomedical Engineering, and Instruments

Broadcasting and Optical Communication Technology

Computers, Software Engineering, and Digital Devices

Systems, Controls, Embedded Systems, Energy, and Machines

Each volume is edited by Richard C. Dorf, and is a comprehensive format that encompasses the many

aspects of electrical engineering with articles from internationally recognized contributors. The goal is to

provide the most up-to-date information in the classical fields of circuits, signal processing, electronics,

electromagnetic fields, energy devices, systems, and electrical effects and devices, while covering the emerging

fields of communications, nanotechnology, biometrics, digital devices, computer engineering, systems, and

biomedical engineering. In addition, a complete compendium of information regarding physical, chemical,

and materials data, as well as widely inclusive information on mathematics is included in each volume. Many

articles from this volume and the other five volumes have been completely revised or updated to fit the needs

of today and many new chapters have been added.

The purpose of this volume, Computers, Software Engineering, and Digital Devices, is to provide a ready

reference to subjects in the fields of digital and logical devices, displays, testing, software, and computers. Here

we provide the basic information for understanding these fields. We also provide information about the

emerging fields of programmable logic, hardware description languages, and parallel computing.

Organization

The information is organized into three sections. The first two sections encompass 20 chapters and the last

section summarizes the applicable mathematics, symbols, and physical constants.

Most articles include three important and useful categories: defining terms, references, and further infor-

mation. Defining terms are key definitions and the first occurrence of each term defined is indicated in boldface

in the text. The definitions of these terms are summarized as a list at the end of each chapter or article.

The references provide a list of useful books and articles for follow-up reading. Finally, further information

provides some general and useful sources of additional information on the topic.

Locating Your Topic

Numerous avenues of access to information are provided. A complete table of contents is presented at the

front of the book. In addition, an individual table of contents precedes each section. Finally, each chapter

begins with its own table of contents. The reader should look over these tables of contents to become familiar

with the structure, organization, and content of the book. For example, see Section II: Computer Engineering,
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then Chapter 17: Parallel Processors, and then Chapter 17.2: Parallel Computing. This tree-and-branch table

of contents enables the reader to move up the tree to locate information on the topic of interest.

Two indexes have been compiled to provide multiple means of accessing information: subject index and

index of contributing authors. The subject index can also be used to locate key definitions. The page on which

the definition appears for each key (defining) term is clearly identified in the subject index.

The Electrical Engineering Handbook, 3rd Edition is designed to provide answers to most inquiries and direct

the inquirer to further sources and references. We hope that this handbook will be referred to often and that

informational requirements will be satisfied effectively.
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1
Logic Elements

Gregory L. Moss
Purdue University

Peter Graham
University of Minnesota

Richard S. Sandige
California Polytechnic State

University

Lynne A. Slivovsky
California Polytechnic State

University

H.S. Hinton
Utah State University

1.1 IC Logic Family Operation and Characteristics
IC Logic Families and Subfamilies * TTL Logic Family * CMOS

Logic Family * ECL Logic Family * Logic Family Circuit

Parameters * Interfacing between Logic Families

1.2 Logic Gates (IC)
Gate Specification Parameters * Bipolar Transistor Gates *

Complementary Metal-Oxide Semiconductor (CMOS) Logic *

CMOS Design Considerations * Choosing a Logic Family

1.3 Bistable Devices
Latches * Flip-Flops

1.4 Optical Devices
All-Optical Devices * Optoelectronic Devices

1.1 IC Logic Family Operation and Characteristics

Gregory L. Moss

Digital logic circuits can be classified as belonging to one of two categories, either combinational (also called

combinatorial) or sequential logic circuits. The output logic level of a combinational circuit depends only on

the current logic levels at the circuit’s inputs. Conversely, sequential logic circuits have a memory

characteristic, making the sequential circuit’s output dependent not only on current input conditions but also

on the current output state of the circuit. The primary building block of combinational circuits is the

logic gate. The three simplest logic gate functions are the inverter (or NOT), AND and OR. Other basic logic

functions are derived from these three. See Table 1.1 for truth table definitions of the various types of logic

gates. The memory elements used to construct sequential logic circuits are called latches and flip-flops.

The integrated circuit switching logic used in modern digital systems generally comes from one of three

families: transistor-transistor logic (TTL), complementary metal oxide semiconductor logic (CMOS) or

emitter coupled logic (ECL). Each logic family has its advantages and disadvantages. The three major families

are divided into various subfamilies derived from performance improvements in IC design technology. Bipolar

transistors provide switching action in both the TTL and ECL families, while enhancement-mode MOS

transistors form the basis for the CMOS family. Recent improvements in switching-circuit performance are

also attained using BiCMOS technology, the merging of bipolar and CMOS technologies on a single chip.

A particular logic family is usually selected by digital designers based on criteria such as:

1. Switching speed

2. Power dissipation

3. PC board-area requirements (level of integration)

4. Output drive capability (fan-out)

5. Noise immunity characteristics

6. Product breadth

7. Sourcing of components
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IC Logic Families and Subfamilies

Integrated circuit logic families actually consist of several subfamilies of ICs that differ in performance

characteristics. The TTL logic family has been the most widely used family type for applications employing small

scale integration (SSI) or medium scale integration (MSI) integrated circuits. Lower power consumption and

higher levels of integration are the principal advantages of the CMOS family. The ECL family is generally used in

applications requiring high-speed switching logic. Today, the most common device-numbering system used in

the TTL and CMOS families has a prefix of 54 (generally used in military applications and having an operating

temperature range from �55 to 125–C) and 74 (generally used in industrial/commercial applications and having

an operating temperature range from 0 to 70–C). Table 1.2 identifies various logic families and subfamilies.

TTL Logic Family

The TTL family has been the most widely used logic family for many years in applications employing SSI and

MSI. It is moderately fast and offers a great variety of standard chips, but it is a mature technology that is

generally no longer used in new circuit designs.

TABLE 1.2 Logic Families and Subfamilies

Family (Subfamily) Description

TTL Transistor-Transistor Logic

74xx Standard TTL

74Lxx Low power TTL

74Hxx High speed TTL

74Sxx Schottky TTL

74LSxx Low power Schottky TTL

74Asxx Advanced Schottky TTL

74ALSxx Advanced low power Schottky TTL

74Fxx Fast TTL

CMOS Complementary Metal Oxide Semiconductor

4xxx Standard CMOS

74Cxx Standard CMOS using TTL numbering system

74HCxx High speed CMOS

74HCTxx High speed CMOS – TTL compatible

74FCTxx Fast CMOS – TTL compatible

74Acxx Advanced CMOS

74ACTxx Advanced CMOS – TTL compatible

74AHCxx Advanced high speed CMOS

74AHCTxx Advanced high speed CMOS – TTL compatible

ECL (or CML) Emitter Coupled (Current Mode) Logic

10xxx Standard ECL

10Hxxx High speed ECL

TABLE 1.1 Defining Truth Tables for Logic Gates

1-Input Function 2-Input Functions

Input Output Inputs Output Functions

A NOT A B AND OR NAND NOR XOR XNOR

0 1 0 0 0 0 1 1 0 1

1 0 0 1 0 1 1 0 1 0

1 0 0 1 1 0 1 0

1 1 1 1 0 0 0 1
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The active switching element used in all TTL family circuits is the NPN (not pointing in) bipolar junction

transistor (BJT). The transistor is turned on when the base is approximately 0.7 volts more positive than the

emitter and there is a sufficient flow of base current. The turned-on transistor (in non-Schottky subfamilies) is

said to be in saturation and, ideally, acts like a closed switch between collector and emitter terminals. The

transistor is turned off when the base is not biased with a high enough voltage with respect to the emitter. In

this condition, the transistor acts like an open switch between the collector and emitter terminals.

Figure 1.1 illustrates the transistor circuit blocks used in a standard TTL inverter. Four transistors are used

to achieve the inverter function. The gate input connects to the emitter of transistor Q1, the input-coupling

transistor. A clamping diode on the input prevents negative input-voltage spikes from damaging Q1. The

collector voltage (and current) of Q1 controls Q2, the phase-splitter transistor. Q2 in turn controls the Q3 and

Q4 transistors, forming the output circuit called a totem-pole arrangement. Q4 serves as a pull-up transistor,

pulling the output high when it is turned on. Q3 does the opposite to the output, acting as a pull-down

transistor. Q3 pulls the output low when it is turned on. Only one of the two transistors in the totem pole can

be turned on at a time. This is the function of the phase-splitter transistor.

When a high-logic level is applied to the inverter’s input, Q1’s base-emitter junction will be reverse-biased

and the base-collector junction will be forward-biased. This circuit condition will allow Q1 collector current

to flow into the base of Q2, saturating Q2 and providing base current into Q3, and turning on Q3 as well.

VCC

input

output

Q4

D2

Q3

Q2
Q1

D1

R1 R2

R3

R4

input
coupling

Q1

phase-
splitter

Q2

pull-up
(to VCC)

Q4

pull-down
(to GND)

Q3

V
CC

outputinput
VE1 VC1 VB2

VC2

VE2

VB4

VC3

VE4

VB3

input

low

hi

VC1

low

hi

Q2

off

on

VC2

hi

low

VE2

low

hi

Q3

off

on

VC3

open

low

Q4

on

off

VE4

hi

open

output

hi

low

FIGURE 1.1 TTL inverter circuit and operation.
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The collector voltage of Q2 is too low to turn on Q4, so that it appears as an opening in the top part of the

totem pole. A diode between the two totem-pole transistors provides an extra voltage drop, in series with

the base-emitter junction of Q4, to ensure that Q4 will be turned off when Q2 is turned on. The saturated Q3

transistor brings the output near ground potential, producing a low-output result for a high input into the

inverter.

When a low logic level is applied to the inverter’s input, Q1’s base-emitter junction will be forward-biased

and the base-collector junction will be reverse-biased. This circuit condition will turn on Q1, shorting the

collector terminal to the emitter and, therefore, to ground (low-level). This low voltage also acts on the base of

Q2 and turns Q2 off. With Q2 off, insufficient base current flows into Q3, turning it off also. The Q2 leakage

current is shunted to ground with a resistor to prevent the partial turning on of Q3. The collector voltage of

Q2 is pulled to a high potential with another resistor and then turns on Q4, making it appear as a short in the

top of the totem pole. The saturated Q4 transistor provides a low-resistance path from VCC to the output,

producing high output for a low input into the inverter.

A TTL NAND gate is similar to the inverter circuit. The only exception is that the input-coupling transistor

Q1 is constructed with multiple emitter-base junctions and each input to the NAND is connected to a separate

emitter terminal. Any of the transistor’s multiple emitters can turn on Q1. The TTL NAND gate thus functions

in the same manner as the inverter, in that if any of the NAND gate inputs are low, the same circuit action will

take place as with a low input to the inverter. Therefore, any time a low input is applied to the NAND gate, it

will produce high output. Only if all the NAND gate inputs are simultaneously high, will it produce the same

circuit action as the inverter, with its single input high and the resultant output low. Input coupling transistors

with up to eight emitter-base junctions and, therefore, eight-input NAND gates are constructed.

Storage time (the time it takes for the transistor to come out of saturation) is a major factor of propagation

delay for saturated BJT transistors. A long storage time limits switching speed of a standard TTL circuit.

Propagation delay can be decreased and the switching speed increased by placing a Schottky diode between the

base and collector of each transistor that might saturate. The resulting Schottky-clamped transistors then will

not go into saturation, effectively eliminating storage time, since the diode shunts current from the base into

the collector before the transistor can achieve saturation. Digital circuit designs implemented with TTL logic

almost exclusively use one of the Schottky subfamilies to take advantage of a significant improvement in

switching speed.

CMOS Logic Family

The vast majority of new circuit designs today utilize CMOS family devices. The active switching element in all

CMOS family circuits is the metal-oxide semiconductor field-effect transistor (MOSFET). CMOS stands for

complementary MOS transistors and refers to both types of MOSFET transistors, n-channel and p-channel,

used to design this type of switching circuit. While the physical construction and internal physics of a

MOSFET differ from the BJT, the circuit switching action of the two transistor types is quite similar. The

MOSFET switch is essentially turned off and has a very high channel resistance by applying the same potential

to the gate terminal as to the source. An n-channel MOSFET is turned on and has a very low channel

resistance when a high voltage with respect to the source is applied to the gate. A p-channel MOSFET operates

in the same fashion but with opposite polarities; the gate must be more negative than the source to turn on the

transistor.

A block diagram and schematic for a CMOS inverter circuit is shown in Figure 1.2. Note that the circuit has

a simpler and more compact design than that for the TTL inverter. That is a major reason why MOSFET

integrated circuits have a higher circuit density than BJT integrated circuits and is one advantage that

MOSFET ICs have over BJT ICs. As a result, CMOS is used in all levels of integration, from SSI through Very

Large Scale Integration (VLSI).

When a high logic level is applied to the inverter’s input, the p-channel MOSFET Q1 will be turned off and

the n-channel MOSFET Q2 will be turned on. This causes the output to be shorted to ground through the

low-resistance path of Q2’s channel. The turned-off Q1 has a very high channel resistance and acts almost like

an open channel.
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When a low logic level is applied to the inverter’s input, the p-channel MOSFET Q1 will be turned on and

the n-channel MOSFET Q2 will be turned off. This causes the output to be shorted to VDD through the low-

resistance path of Q1’s channel. The turned-off Q2 has a very high channel resistance and acts almost like an

open channel.

CMOS NAND gates are constructed by paralleling p-channel MOSFETs, one for each input, and putting in

series an n-channel MOSFET for each input, as shown in the block diagram and schematic of Figure 1.3.

VDD

A

B

VDD

Q1
(p-chan)

Q2
(p-chan)

Q3
(n-chan)

Q4
(n-chan)

A

B

X
X

inputs

low

Q1

on

Q2

on

Q3

off

Q4

output

hi

low

off

transistors

XA B

low

low

low

hi

hi

hi hi

hi

hi

on off off on

off on on off

off off on on

FIGURE 1.3 CMOS two-input NAND circuit and operation.
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VD2

VD1

VG2

input input
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output

input
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hi

Q1

off
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VD1
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low

Q2
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off

VD2

hi

open

output

hi

low

FIGURE 1.2 CMOS inverter circuit and operation.
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The NAND gate will produce a low output only when both Q3 and Q4 are turned on, creating a low-resistance

path from the output to ground through the two series channels. This can be achieved by having a high input on

both A and B. This input condition will also turn off Q1 and Q2. If either input A or input B or both are low, the

respective parallel MOSFET will be turned on, providing a low resistance path for the output to VDD. This will

also turn off at least one of the series MOSFETs, resulting in a high resistance path for the output to ground.

ECL Logic Family

ECL is the highest-speed logic family available. While it does not offer as large a variety of IC chips as are

available in the TTL or CMOS families, it has been popular for logic applications requiring high-speed

switching, although its power consumption is also relatively high. ECL power consumption, however, does not

increase as the switching frequency increases. At frequencies above 20 MHz, the dynamic power consumption

of CMOS gates will continue to increase and exceed the per-gate consumption of ECL devices. Newer ECL

family devices are available that can be switched at a rate faster than 3GHz.

The active switching element used in ECL family circuits is also the NPN BJT. But unlike the TTL family,

which switches the transistors into saturation while turning them on, ECL switching is designed to prevent

driving the transistors into saturation. Whenever bipolar transistors are driven into saturation, their switching

speed will be limited by the charge-carrier storage delay, a transistor operational characteristic. Thus, the

switching speed of ECL circuits will be significantly higher than that for TTL circuits. ECL operation is based

on switching a fixed amount of bias current, which is less than the saturation amount between two different

transistors. The basic circuit found in the ECL family is the differential amplifier. A bias circuit controls one

side of the differential amplifier, while the other is controlled by the logic inputs to the gate. This logic family is

also referred to as current-mode logic (CML), due to its current switching operation.

Logic Family Circuit Parameters

Digital circuits and systems operate in only two states, logic 1 and 0, usually represented by two different

voltage levels, a HIGH and a LOW. The two logic levels consist of a range of values with numerical quantities

dependent upon the specific family used. Minimum high-logic levels and maximum low-logic levels are

established by specifications for each family. Minimum device output levels for a logic high are called

VOH(min), and minimum input levels are called VIH(min). The abbreviations for maximum output and input
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FIGURE 1.4 TTL and CMOS family logic levels.
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low-logic levels are VOL(max) and VIL(max). Figure 1.4 shows the relationships between these parameters.

Logic voltage-level parameters for selected prominent logic subfamilies are illustrated in Table 1.3. As seen in

this illustration, there are many operational incompatibilities between major logic family types.

Noise margin is a quantitative measure of a device’s noise immunity. High-level noise margin (VNH) and

low-level noise margin (VNL) are defined in Equation (1.1) and Equation (1.2).

VNH ¼ VOHðminÞ � V IHðminÞ ð1:1Þ

VNL ¼ V ILðmaxÞ � VOLðmaxÞ ð1:2Þ

Using the logic voltage values in Table 1.3 for the selected subfamilies reveals that the highest noise immunity

is obtained with logic devices in the CMOS family while the lowest noise immunity is endemic to the ECL

family.

Switching circuit outputs are loaded by the inputs of the devices they are driving, as illustrated in Figure 1.5.

Worst-case input loading current levels and output driving current capabilities are listed in Table 1.4 for

various logic subfamilies. The fan-out of a driving device is the ratio between its output current capabilities at

each logic level and the corresponding gate-input current loading value.

Switching circuits based on bipolar transistors have fan-out that is limited primarily by the current-sinking

and current-sourcing capabilities of the driving device.

CMOS switching circuits are limited by the charging and discharging times associated with the output

resistance of the driving gate and the input capacitance of the load gates. Thus, CMOS fan-out depends on

switching frequency. With fewer capacitive loading inputs to drive, the maximum switching frequency of

CMOS devices will increase.

The switching speed of logic devices depends on the device’s propagation delay time. The propagation

delay of a logic device limits the frequency at which it can be operated. There are two propagation delay times

specified for logic gates: tPHL, delay time for the output to change from high to low, and tPLH, delay time for

the output to change from low to high. Average typical propagation delay times for a single gate are listed in

Table 1.5 for several logic subfamilies. The ECL family has the fastest switching speed.

The amount of power required by an IC is normally specified in terms of the amount of current ICC (TTL

family), IDD (CMOS family) or IEE (ECL family) drawn from the power supply. For complex IC devices, the

required supply current is given under specified test conditions. For TTL chips containing simple gates, the

average power dissipation PD(ave) is normally calculated from two measurements, ICCH (when all gate outputs

are high) and ICCL (when all gate outputs are low). Table 1.5 compares the static power dissipation of several

logic subfamilies. The ECL family has the highest power dissipation for switching frequencies below about

TABLE 1.3 Logic Signal Voltage Parameters for Selected Logic Subfamilies (in Volts)

Subfamily VOH(min) VOL(max) VIH(min) VIL(max)

74xx 2.4 0.4 2.0 0.8

74LSxx 2.7 0.5 2.0 0.8

74ASxx 2.5 0.5 2.0 0.8

74ALSxx 2.5 0.4 2.0 0.8

74Fxx 2.5 0.5 2.0 0.8

74HCxx 4.9 0.1 3.15 0.9

74HCTxx 4.9 0.1 2.0 0.8

74ACxx 3.8 0.4 3.15 1.35

74ACTxx 3.8 0.4 2.0 0.8

74AHCxx 4.5 0.1 3.85 1.65

74AHCTxx 3.65 0.1 2.0 0.8

10xxx �0.96 �1.65 �1.105 �1.475

10Hxxx �0.98 �1.63 �1.13 �1.48
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20 MHz, while the lowest dissipation is found in the CMOS family. Power dissipation for the CMOS family is

directly proportional to gate-input signal frequency. For example, typically, the power dissipation for a CMOS

logic circuit will increase by a factor of 100 if input signal frequency is increased from 1 kHz to 100 kHz.

It is desirable to implement high speed (and, therefore, low propagation delay time) switching devices that

consume low amounts of power. Because of the nature of transistor switching circuits, it is difficult to attain
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FIGURE 1.5 Current loading of driving gates.

TABLE 1.4 Worst Case Current Parameters for Selected Logic Subfamilies

Subfamily IOH(max) IOL(max) IIH(max) IIL(max)

74xx �400 mA 16 mA 40 mA �1.6 mA

74LSxx �400 mA 8 mA 20 mA �400 mA

74ASxx �2 mA 20 mA 20 mA �0.5 mA

74ALSxx �400 mA 8 mA 20 mA �100 mA

74Fxx �1 mA 20 mA 20 mA �0.6 mA

74HCxx �4 mA 4 mA 1 mA �1 mA

74HCTxx �4 mA 4 mA 1 mA �1 mA

74ACxx �24 mA 24 mA 1 mA �1 mA

74ACTxx �24 mA 24 mA 1 mA �1 mA

74AHCxx �8 mA 8 mA 1 mA �1 mA

74AHCTxx �8 mA 8 mA 1 mA �1 mA

10xxx 50 mA �50 mA �265 mA 0.5 mA

10Hxxx 50 mA �50 mA �265 mA 0.5 mA
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high-speed switching with low power dissipation. The continued development of new IC logic families and

subfamilies is due largely to the trade-offs between these two device-switching parameters.

Interfacing between Logic Families

The interconnection of logic chips requires that input and output specifications be satisfied. Figure 1.6

illustrates voltage and current requirements. The driving chip’s VOHmin must be greater than the driven

circuit’s VIHmin, and the driver’s VOLmax must be less than VILmax for the loading circuit. Voltage level shifters

must be used to interface the circuits if these voltage requirements are not met. Of course, a driving circuit’s

output must not exceed the maximum- and minimum-allowable input voltages for the driven circuit. The

current sinking and sourcing ability of the driver circuit’s output must be greater than the total current

requirements for the loading circuit. Buffer gates or stages must be used if current requirements are not

satisfied. All chips within a single logic family are designed to be compatible with other chips in that family.

Mixing chips from multiple subfamilies together within a single digital circuit can have adverse effects on the

overall circuit’s switching speed and noise immunity.

TABLE 1.5 Speed-Power Comparison for a Single Gate in

Selected Logic Subfamilies

Subfamily Propagation Delay

Time, ns (ave.)

Static Power Dissipation,

mW (per gate)

74xx 10 10

74LSxx 9.5 2

74Asxx 1.5 8.5

74ALSxx 4 1.2

74Fxx 3 6

74HCxx 8 0.003

74HCTxx 14 0.003

74Acxx 5 0.010

74ACTxx 5 0.010

74AHCxx 5.5 0.003

74AHCTxx 5 0.003

10xxx 2 25

10Hxxx 1 25
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FIGURE 1.6 Circuit interfacing requirements.
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Defining Terms

Fan-out: The specification used to identify the limit to the number of loading inputs that can be reliably

driven by a driving device’s output.

Logic Level: The high or low value of a voltage variable, assigned as a 1 or a 0 state.

Noise Immunity: A logic device’s ability to tolerate input voltage fluctuation caused by noise without

changing its output state.

Propagation Delay Time: The time delay from when the input logic level to a device is changed until that

device produces the resultant output change.

Truth Table: A listing of the relationship of a circuit’s output produced for various combinations of logic

levels at the inputs.

References

N.P. Cook, Practical Digital Electronics, Upper Saddle River, NJ: Pearson Prentice-Hall, 2004.

R.K. Dueck, Digital Design with CPLD Applications and VHDL, 2nd ed., Albany, NY: Delmar Thomson

Learning, 2005.

T.L. Floyd, Digital Fundamentals, 8th ed., Upper Saddle River, NJ: Pearson Prentice-Hall, 2003.

D.D. Givone, Digital Principles and Design, New York, NY: McGraw-Hill, 2003.

W. Kleitz, Digital Electronics: A Practical Approach, 7th ed., Upper Saddle River, NJ: Pearson Prentice-Hall,

2005.

M.M. Mano, Digital Design, 3rd ed., Upper Saddle River, NJ: Pearson Prentice-Hall, 2002.

R.J. Tocci, N.S. Widmer, and G.L. Moss, Digital Systems: Principles and Applications, 9th ed., Upper Saddle

River, NJ: Pearson Prentice-Hall, 2004.

J.F. Wakerly, Digital Design: Principles and Practices, 3rd ed., Upper Saddle River, NJ: Pearson Prentice-Hall,

2001.

Further Information

Journals & Trade Magazines:

EDN, Highlands Ranch, CO: Reed Business Information.

Electronic Design, Cleveland, OH: Penton Media.

Electronic Engineering Times, Manhasset, NY: CMP Publications.

Internet Addresses for Digital Device Data Sheets:

Texas Instruments, Inc.: ,http://focus.ti.com/general/docs/scproducts.jsp..

ON Semiconductor: ,http://www.onsemi.com/site/products/taxonomy/..

1.2 Logic Gates (IC)1

Peter Graham

This section introduces and analyzes the electronic circuit realizations of the basic gates of the three technol-

ogies: transistor-transistor logic (TTL), emitter-coupled logic (ECL), and complementary metal-oxide semi-

conductor (CMOS) logic. These circuits are commercially available on small-scale integration chips and are

also the building blocks for more elaborate logic systems. The three technologies are compared with regard

to speed, power consumption, and noise immunity, and parameters are defined which facilitate these

comparisons. Also included are recommendations which are useful in choosing and using these technologies.

1Based on P. Graham, ‘‘Gates,’’ in Handbook of Modern Electronics and Electrical Engineering, C. Belove, Ed., New York: Wiley-

Interscience, 1986, pp. 864–876. With permission.
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Gate Specification Parameters

Theoretically almost any logic device or system could be constructed by wiring together the appropriate

configuration of the basic gates of the selected technology. In practice, however, the gates are interconnected

during the fabrication process to produce a desired system on a single chip. The circuit complexity of a given

chip is described by one of the following four rather broad classifications:

. Small-Scale Integration (SSI). The inputs and outputs of every gate are available for external connection

at the chip pins (with the exception that exclusive OR and AND-OR gates are considered SSI).
. Medium-Scale Integration (MSI). Several gates are interconnected to perform somewhat more

elaborate logic functions such as flip-flops, counters, multiplexers, etc.
. Large-Scale Integration (LSI). Several of the more elaborate circuits associated with MSI are

interconnected within the integrated circuit to form a logic system on a single chip. Chips such as

calculators, digital clocks, and small microprocessors are examples of LSI.
. Very-Large-Scale Integration (VLSI). This designation is usually reserved for chips having a very high

density, 1000 or more gates per chip. These include the large single-chip memories, gate arrays, and

microcomputers.

Specifications of logic speed require definitions of switching times. These definitions can be found in the

introductory pages of most data manuals. Four of them pertain directly to gate circuits. These are (see also

Figure 1.7):

. LOW-to-HIGH Propagation Delay Time (tPLH). The time between specified reference points on the

input and output voltage waveforms when the output is changing from low to high.
. HIGH-to-LOW Propagation Delay Tune (tPHL). The time between specified reference points on the

input and output voltage waveforms when the output is changing from high to low.
. Propagation Delay Time (tPD). The average of the two propagation delay times: tPD ¼ (tPD þ tPHL)/2.
. LOW-to-HIGH Transition Time (tTLH). The rise time between specified reference points on the LOW-

to-HIGH shift of the output waveform.

FIGURE 1.7 Definitions of switching times. (Source: P. Graham, ‘‘Gates,’’ in Handbook of Modern Electronics and Electrical

Engineering, C. Belove, Ed., New York: Wiley-Interscience, 1986, p. 865. With permission.)
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. HIGH-to-LOW Transition Time (tTHL). The fall time between specified reference points on the HIGH-

to-LOW shift of the output waveform. The reference points usually are 10 and 90% of the voltage level

difference in each case.

Power consumption, driving capability, and effective loading of gates are defined in terms of currents.

. Supply Current, Outputs High (IxxH). The current delivered to the chip by the power supply when all

outputs are open and at the logical 1 level. The xx subscript depends on the technology.
. Supply Current, Outputs Low (IxxL). The current delivered to the chip by the supply when all outputs

are open and at the logical 0 level.
. Supply Current, Worst Case (Ixx). When the output level is unspecified, the input conditions are

assumed to correspond to maximum supply current.
. Input HIGH Current (IIH). The current flowing into an input when the specified HIGH voltage is applied.
. Input LOW Current (IIL). The current flowing into an input when the specified LOW voltage is applied.
. Output HIGH Current (IOH). The current flowing into the output when it is in the HIGH state. IOHmax

is the largest IOH for which VOH $ VOHmin is guaranteed.
. Output LOW Current (IOL). The current flowing into the output when it is in the LOW state. IOLmax

is the largest IOL for which VOL $ VOLmax is guaranteed.

The most important voltage definitions are concerned with establishing ranges on the logical 1 (HIGH) and

logical 0 (LOW) voltage levels.

. Minimum High-Level Input Voltage (VIHmin). The least positive value of input voltage guaranteed to

result in the output voltage level specified for a logical 1 input.
. Maximum Low-Level Input Voltage (VILmax). The most positive value of input voltage guaranteed to

result in the output voltage level specified for a logical 0 input.
. Minimum High-Level Output Voltage (VOHmin). The guaranteed least positive output voltage when

the input is properly driven to produce a logical 1 at the output.
. Maximum Low-Level Output Voltage (VOLmax). The guaranteed most positive output voltage when

the input is properly driven to produce a logical 0 at the output.
. Noise Margins. NMH ¼ VOHmin � VIHmin is how much larger the guaranteed least positive output

logical 1 level is than the least positive input level that will be interpreted as a logical 1. It represents

how large a negative-going glitch on an input 1 can be before it affects the output of the driven device.

Similarly, NML ¼ VILmax � VOLmax is the amplitude of the largest positive-going glitch on an input

0 that will not affect the output of the driven device.

Finally, three important definitions are associated with specifying the load that can be driven by a gate. Since

in most cases the load on a gate output will be the sum of inputs of other gates, the first definition

characterizes the relative current requirements of gate inputs.

. Load Factor (LF). Each logic family has a reference gate, each of whose inputs is defined to be a unit load in

both the HIGH and the LOW conditions. The respective ratios of the input currents IIH and IIL of a given input

to the corresponding IIH and IIL of the reference gate define the HIGH and LOW load factors of that input.
. Drive Factor (DF). A device output has drive factors for both the HIGH and the LOW

output conditions. These factors are defined as the respective ratios of IOHmax and IOLmax of the gate

to IOHmax and IOLmax of the reference gate.
. Fan-Out. For a given gate the fan-out is defined as the maximum number of inputs of the same type of

gate that can be properly driven by that gate output. When gates of different load and drive factors are

interconnected, fan-out must be adjusted accordingly.

Bipolar Transistor Gates

A logic circuit using bipolar junction transistors (BJTs) can be classified either as saturated or as nonsaturated

logic. A saturated logic circuit contains at least one BJT that is saturated in one of the stable modes of the circuit.
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In nonsaturated logic circuits none of the transistors is allowed to saturate. Since bringing a BJTout of saturation

requires a few additional nanoseconds (called the storage time), nonsaturated logic is faster. The fastest circuits

available at this time are emitter-coupled logic (ECL), with transistor-transistor logic (TTL) having Schottky

diodes connected to prevent the transistors from saturating (Schottky TTL) being a fairly close second. Both of

these families are nonsaturated logic. All TTL families other than Schottky are saturated logic.

Transistor-Transistor Logic

TTL evolved from resistor-transistor logic (RTL) through the intermediate step of diode-transistor logic

(DTL). All three families are catalogued in data books published in 1968, but of the three only TTL is still

available.

The basic circuit of the standard TTL family is typified by the two-input NAND gate shown in Figure 1.8(a).

To estimate the operating levels of voltage and current in this circuit, assume that any transistor in saturation

has VCE ¼ 0.2 and VBE ¼ 0.75 V. Let drops across conducting diodes also be 0.75 V and transistor current

gains (when nonsaturated) be about 50. As a starting point, let the voltage levels at both inputs A and B be

high enough that T1 operates in the reversed mode. In this case the emitter currents of T1 are negligible, and

FIGURE 1.8 Two-input transistor-transistor logic (TTL) NAND gate type 7400: (a) circuit, (b) symbol, (c) voltage

transfer characteristic (Vi to both inputs), (d) truth table. (Source: P. Graham, ‘‘Gates,’’ in Handbook of Modern Electronics

and Electrical Engineering, C. Belove, Ed., New York: Wiley-Interscience, 1986, p. 867. With permission.)
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the current into the base of T1 goes out the collector to become the base current of T2. This current is readily

calculated by observing that the base of T1 is at 3 · 0.75 ¼ 2.25 V so there is a 2.75-V drop across the 4-kO
resistor. Thus IBI ¼ IB2 ¼ 0.7 mA, and it follows that T2 is saturated. With T2 saturated, the base of T3 is at

VC þ VBE4 ¼ 0.95 V. If T4 is also saturated, the emitter of T3 will be at VD3 þ VCE4 ¼ 0.95 V, and T3 will be

cut off. The voltage across the 1.6-kO resistor is 5 � 0.95 ¼ 4.05 V, so the collector current of T2 is about

2.5 mA. This means the emitter current of T2 is 3.2 mA. Of this, 0.75 mA goes through the 1-kO resistor,

leaving 2.45 mA as the base current of T4. Since the current gain of T4 is about 50, it will be well into

saturation for any collector current less than 100 mA, and the output at C is a logic 0. The corresponding

minimum voltage levels required at the inputs are estimated from VBE4 þ VECI, or about 1.7 V.

Now let either or both of the inputs be dropped to 0.2 V. T1 is then biased to saturation in the normal mode,

so the collector current of T1 extracts the charge from the base region of T2. With T2 cut off, the base of T4 is at

0 V and T4 is cut off. T3 will be biased by the current through the 1.6-kO resistor (R3) to a degree regulated

by the current demand at the output C. The drop across R3 is quite small for light loads, so the output level

at C will be VCC � VBE3 � VD3, which will be about 3.5 V corresponding to the logical 1.

The operation is summarized in the truth table in Figure 1.8(d), identifying the circuit as a two-input

NAND gate. The derivation of the input-output voltage transfer characteristic [Figure 1.8(c)], where Vi is

applied to inputs A and B simultaneously, can be found in most digital circuit textbooks. The sloping portion

of the characteristic between Vi ¼ 0.55 and 1.2 V corresponds to T2 passing through the active region in going

from cutoff to saturation.

Diodes D1 and D2 are present to damp out ‘‘ringing’’ that can occur, for example, when fast voltage level

shifts are propagated down an appreciable length (20 cm or more) of microstripline formed by printed circuit

board interconnections. Negative overshoots are clamped to the 0.7 V across the diode.

The series combination of the 130-O resistor, T3, D3, and T4 in the circuit of Figure 1.8(a), forming what is

called the totem-pole output circuit, provides a low impedance drive in both the source (output C ¼ 1) and

sink (output C ¼ 0) modes and contributes significantly to the relatively high speed of TTL. The available

source and sink currents, which are well above the normal requirements for steady state, come into play during

the charging and discharging of capacitive loads. Ideally T3 should have a very large current gain and the

130-O resistor should be reduced to 0. The latter, however, would cause a short-circuit load current which

would overheat T3, since T3 would be unable to saturate. All TTL families other than the standard shown in

Figure 1.8(a) use some form of Darlington connection for T3, providing increased current gain and

eliminating the need for diode D3. The drop across D3 is replaced by the base emitter voltage of the added

transistor T5. This connection appears in Figure 1.9(a), an example of the 74Hxx series of TTL gates that

increases speed at the expense of increased power consumption, and in Figure 1.9(b), a gate from the 74Lxx

series that sacrifices speed to lower power dissipation.

A number of TTL logic function implementations are available with open collector outputs. For example,

the 7403 two-input NAND gate shown in Figure 1.10 is the open collector version of Figure 1.8(a). The open

collector output has some useful applications. The current in an external load connected between the open

collector and VCC can be switched on and off in response to the input combinations. This load, for example,

might be a relay, an indicator light, or an LED display. Also, two or more open collector gates can share a

common load, resulting in the anding together of the individual gate functions. This is called a ‘‘wired-AND

connection.’’ In any application, there must be some form of load or the device will not function. There is a

lower limit to the resistance of this load which is determined by the current rating of the open collector

transistor. For wired-AND applications the resistance range depends on how many outputs are being wired

and on the load being driven by the wired outputs. Formulas are given in the data books. Since the open

collector configuration does not have the speed enhancement associated with an active pull-up, the low to high

propagation delay (tPLH) is about double that of the totem-pole output. It should be observed that totem-pole

outputs should not be wired, since excessive currents in the active pull-up circuit could result.

Nonsaturated TTL. Two TTL families, the Schottky (74Sxx) and the low-power Schottky (74LSxx), can

be classified as nonsaturating logic. The transistors in these circuits are kept out of saturation by the

connection of Schottky diodes, with the anode to the base and the cathode to the collector.
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Schottky diodes are formed from junctions of metal and an n-type semiconductor, the metal fulfilling the

role of the p-region. Since there are thus no minority carriers in the region of the forward-biased junction,

the storage time required to bring a pn junction out of saturation is eliminated. The forward-biased drop

across a Schottky diode is around 0.3 V. This clamps the collector at 0.3 V less than the base, thus maintaining

VCE above the 0.3-V saturation threshold. Circuits for the two-input NAND gates 74LS00 and 74S00 are given

in Figure 1.11(a) and (b). The special transistor symbol is a short-form notation indicating the presence of the

Schottky diode, as illustrated in Figure 1.11(c).

FIGURE 1.9 Modified transistor-transistor logic (TTL) two-input NAND states: (a) type 74Hxx, (b) type 74L00. (Source:

P. Graham, ‘‘Gates,’’ in Handbook of Modern Electronics and Electrical Engineering, C. Belove, Ed., New York: Wiley-

Interscience, 1986, p. 868. With permission.)

FIGURE 1.10 Open collector two-input NAND gate. (Source: P. Graham, ‘‘Gates,’’ in Handbook of Modern Electronics and

Electrical Engineering, C. Belove, Ed., New York: Wiley-Interscience, 1986, p. 868. With permission.)
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Note that both of these circuits have an active pull-down transistor T6 replacing the pull-down resistance

connected to the emitter of T2 in Figure 1.9. The addition of T6 decreases the turn-on and turn-off times of T4.

In addition, the transfer characteristic for these devices is improved by the squaring off of the sloping region

between Vi ¼ 0.55 and 1.2 V [see Figure 1.8(c)]. This happens because T2 cannot become active until T6 turns

on, which requires at least 1.2 V at the input.

FIGURE 1.11 Transistor-transistor logic (TTL) nonsaturated logic. (a) Type 74LS00 two-input NAND gate, (b) type 74S00

two-input NAND gate, (c) significance of the Schottky transistor symbol. (Source: P. Graham, ‘‘Gates,’’ in Handbook of Modern

Electronics and Electrical Engineering, C. Belove, Ed., New York: Wiley-Interscience, 1986, p. 870. With permission.)
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The diode AND circuit of the 74LS00 in place of the multi-emitter transistor will permit maximum input

levels substantially higher than the 5.5-V limit set for all other TTL families. Input leakage currents for 74LSxx

are specified at Vi ¼ 10 V, and input voltage levels up to 15 V are allowed. The 74LSxx has the additional

feature of the Schottky diode D1 in series with the 100-O output resistor. This allows the output to be pulled

up to 10 V without causing a reverse breakdown of T5. The relative characteristics of the several versions of the

TTL two-input NAND gate are compared in Table 1.6. The 74F00 represents one of the new technologies that

have introduced improved Schottky TTL in recent years.

TTL Design Considerations. Before undertaking construction of a logic system, the wise designer

consults the information and recommendations provided in the data books of most manufacturers. Some of

the more significant tips are provided here for easy reference.

1. Power supply, decoupling, and grounding. The power supply voltage should be 5 V with less than 5%

ripple factor and better than 5% regulation. When packages on the same printed circuit board are

supplied by a bus there should be a 0.05-mF decoupling capacitor between the bus and the ground for

every five to ten packages. If a ground bus is used, it should be as wide as possible, and should surround

all the packages on the board. Whenever possible, use a ground plane. If a long ground bus is used, both

ends must be tied to the common system ground point.

2. Unused gates and inputs. If a gate on a package is not used, its inputs should be tied either high or low,

whichever results in the least supply current. For example, the 7400 draws three times the current with

the output low as with the output high, so the inputs of an unused 7400 gate should be grounded.

An unused input of a gate, however, must be connected so as not to affect the function of the active

inputs. For a 7400 NAND gate, such an input must either be tied high or paralleled with a used input.

It must be recognized that paralleled inputs count as two when determining the fan-out. Inputs that are

tied high can be connected either to VCC through a 1-kO or more resistance (for protection from supply

voltage surges) or to the output of an unused gate whose input will establish a permanent output high.

Several inputs can share a common protective resistance. Unused inputs of low-power Schottky TTL

can be tied directly to VCC, since 74LSxx inputs tolerate up to 15 V without breakdown. If inputs of

low-power Schottky are connected in parallel and driven as a single input, the switching speed is

decreased, in contrast to the situation with other TTL families.

3. Interconnection. Use of line lengths of up to 10 in. (5 in. for 74S) requires no particular precautions,

except that in some critical situations lines cannot run side by side for an appreciable distance without

causing cross talk due to capacitive coupling between them. For transmission line connections, a gate

should drive only one line, and a line should be terminated in only one gate input. If overshoots are a

problem, a 25- to 50-O resistor should be used in series with the driving gate input and the receiving

gate input should be pulled up to 5 V through a 1-kO resistor. Driving and receiving gates should

TABLE 1.6 Comparison of TTL Two-Input NAND Gates

Supply Current

Propagation

Delay Time

Noise

Margins

TTL

Type

ICCH
a

(mA)

ICCL

(mA)

tPLH

(ns)

tPHL

(ns)

NMH

(V)

NML

(V)

Load

Factor, H/L

Drive

Factor, H/L

Fan-

Out

74F00 2.8 10.2 2.9 2.6 0.7 0.3 0.5/0.375 25/12.5 33

74S00 10 20 3 3 0.7 0.3 1.25/1.25 25/12.5 10

74H00 10 26 5.9 6.2 0.4 0.4 1.25/1.25 12.5/12.5 10

74LS00 0.8 2.4 9 10 0.7 0.3 0.5/0.25 10/5 20

7400 4 12 11 7 0.4 0.4 1/1 20/10 10

74L00 0.44 1.16 31 31 0.4 0.5 0.24/0.1125 5/2.25 20

aSee text for explanation of abbreviations.
Source: P. Graham, ‘‘Gates,’’ in Handbook of Modern Electronics and Electrical Engineering, C. Belove, Ed., New York: Wiley-

Interscience, 1986, p. 871. With permission.
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have their own decoupling capacitors between the VCC and ground pins. Parallel lines should have

a grounded line separating them to avoid cross talk.

4. Mixing TTL subfamilies. Even synchronous sequential systems often have asynchronous features such

as reset, preset, load, and so on. Mixing high-speed 74S TTL with lower speed TTL (74LS for example)

in some applications can cause timing problems resulting in anomalous behavior. Such mixing is to be

avoided, with rare exceptions which must be carefully analyzed.

Emitter-Coupled Logic

ECL is a nonsaturated logic family where saturation is avoided by operating the transistors in the common

collector configuration. This feature, in combination with a smaller difference between the HIGH and LOW

voltage levels (less than 1 V) than other logic families, makes ECL the fastest logic available at this time. The

circuit diagram of a widely used version of the basic two-input ECL gate is given in Figure 1.12. The power

supply terminals VCC1, VCC2, VEE, and VTT are available for flexibility in biasing. In normal operation, VCC1

and VCC2 are connected to a common ground, VEE is biased to �5.2 V, and VTT is biased to �2 V. With these

values the nominal voltage for the logical 0 and 1 are, respectively, �1.75 and �0.9 V. Operation with the VCC

terminals grounded maximizes the immunity from noise interference.

A brief description of the operation of the circuit will verify that none of the transistors saturates. For the

following discussion, VCC1 and VCC2 are grounded, VEE is �5.2 V, and VTT is �2 V. Diode drops and base-

emitter voltages of active transistors are 0.8 V.

First, observe that the resistor-diode (D1 and D2) voltage divider establishes a reference voltage of �0.55 V at

the base of T3, which translates to �1.35 V at the base of T2. When either or both of the inputs A and B are at

the logical 1 level of �0.9 V, the emitters of T1A, T1B, and T2 will be 0.8 V lower, at �1.7 V. This establishes the

base-emitter voltage of T2 at �1.35�(�1.7) ¼ 0.35 V, so T2 is cut off. With T2 off, T4 is biased into the active

region, and its emitter will be at about �0.9 V, corresponding to a logical 1 at the (A þ B) output. Most of

the current through the 365-O emitter resistor, which is [�1.7�(�5.2)]/0.365 ¼ 9.6 mA, flows through the

100-O collector resistor, dropping the base voltage of T5 to �0.96 V. Thus the voltage level at the output

terminal designated (A þ B) is �1.76 V, corresponding to a logical 0.

When both A and B inputs are at the LOW level of �1.75 V, T2 will be active, with its emitter voltage at

�1.35�0.8 ¼ � 2.15 V. The current through the 365-O resistor becomes [�2.15�(�5.2)]/0.365 ¼ 8.2 mA.

FIGURE 1.12 Emitter-coupled logic basic gate (ECL 10102): (a) circuit, (b) symbol. (Source: P. Graham, ‘‘Gates,’’ in

Handbook of Modern Electronics and Electrical Engineering, C. Belove, Ed., New York: Wiley-Interscience, 1986, p. 872. With

permission.)
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This current flows through the 112-O resistor pulling the base of T4 down to �0.94 V, so that the (A þ B)

output will be at the LOW level of �1.75 V. With T1A and T1B cut off, the base of T5 is close to 0.0 V, and the

(A þ B) output will therefore be at the nominal HIGH level of �0.9 V.

Observe that the output transistors T4 and T5 are always active and function as emitter followers, providing

the low-output impedances required for driving capacitive loads. As T1A and/or T1B turn on, and T2 turns off

as a consequence, the transition is accomplished with very little current change in the 365-O emitter resistor.

It follows that the supply current from VEE does not undergo the sudden increases and decreases prevalent in

TTL, thus eliminating the need for decoupling capacitors. This is a major reason why ECL can be operated

successfully with the low noise margins which are inherent in logic having a relatively small voltage difference

between the HIGH and LOW voltage levels (see Table 1.7). The small level shifts between LOW and HIGH also

permit low propagation times without excessively fast rise and fall times. This reduces the effects of residual

capacitive coupling between gates, thereby lessening the required noise margin. For this reason the faster ECL

(100xxx) should not be used where the speed of the 10xxx series is sufficient. A comparison of three ECL series

is given in Table 1.7. The propagation times tPLH and tPHL and transition times tTLH and tTHL are defined in

Figure 1.7. Transitions are between the 20 and 80% levels.

The 50-O pull-down resistors shown in Figure 1.12 are connected externally. The outputs of several gates can

therefore share a common pull-down resistor to form a wired-OR connection. The open emitter outputs also

provide flexibility for driving transmission lines, the use of which in most cases is mandatory for interconnecting

this high-speed logic. A twisted pair interconnection can be driven using the complementary outputs (A þ B)

and (A þ B) as a differential output. Such a line should be terminated in an ECL line receiver (10114).

Since ECL is used in high-speed applications, special techniques must be applied in the layout and inter-

connection of chips on circuit boards. Users should consult design handbooks published by the suppliers

before undertaking the construction of an ECL logic system.

While ECL is not compatible with any other logic family, interfacing buffers, called translators, are available.

In particular, the 10124 converts TTL output levels to ECL complementary levels, and the 10125 converts

either single-ended or differential ECL outputs to TTL levels. Among other applications of these translators,

they allow the use of ECL for the highest speed requirements of a system while the rest of the system uses the

more rugged TTL. Another translator is the 10177, which converts the ECL output levels to n-channel

metal-oxide semiconductor (NMOS) levels. This is designed for interfacing ECL with n-channel memory

systems.

TABLE 1.7 Comparison of ECL Quad Two-Input NOR Gates (VTT ¼ VEE ¼ 5.2 V, VCC1 ¼ 0 V)

Power Supply

Terminal

Power Supply

Current

Propagation

Delay Time

Transition

Time

Noise

Margins

ECL

Type

VEE

(V)

IE

(mA)

tPLH
a

(ns)

tPHL

(ns)

tTLH
b

(ns)

tTHL
b

(ns)

NMH

(V)

NML

(V)

Test

Load

ECL II

1012 �5.2 18c 5 4.5 4 6 0.175 0.175 Fan-out of 3

95102 �5.2 11 2 2 2 2 0.14 0.145 50 O
10102 �5.2 20 2 2 2.2 2.2 0.135 0.175 50 O

ECL III

1662 �5.2 56c 1 1.1 1.4 1.2 0.125 0.125 50 O
100102d �4.5 55 0.75 0.75 0.7 0.7 0.14 0.145 50 O
11001e �5.2 24 0.7 0.7 0.7 0.7 0.145 0.175 50 O

aSee text for explanation of abbreviations.
b20 to 80% levels.
cMaximum value (all other typical).
dQuint 2-input NOR/OR gate.
eDual 5/4-input NOR/OR gate.
Source: P. Graham, ‘‘Gates,’’ in Handbook of Modern Electronics and Electrical Engineering, C. Belove, Ed., New York: Wiley-

Interscience, 1986, p. 873. With permission.
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Complementary Metal-Oxide Semiconductor (CMOS) Logic

Metal-oxide semiconductor (MOS) technology is prevalent in LSI systems due to the high circuit densities

possible with these devices. p-Channel MOS was used in the first LSI systems, and it still is the cheapest to

produce because of the higher yields achieved due to the longer experience with PMOS technology. PMOS,

however, is largely being replaced by NMOS (n-channel MOS), which has the advantages of being faster (since

electrons have greater mobility than holes) and having TTL compatibility. In addition, NMOS has a higher

function/chip area density than PMOS, the highest density in fact of any of the current technologies. Use of

NMOS and PMOS, however, is limited to LSI and VLSI fabrications. The only MOS logic available as SSI and

MSI is CMOS (complementary MOS).

CMOS is faster than NMOS and PMOS, and it uses less power per function than any other logic. While it is

suitable for LSI, it is more expensive and requires somewhat more chip area than NMOS or PMOS. In many

respects it is unsurpassed for SSI and MSI applications. Standard CMOS (the 4000 series) is as fast as low-

power TTL (74Lxx) and has the largest noise margin of any logic type.

A unique advantage of CMOS is that for all input combinations the steady-state current from VDD to

VSS is almost zero because at least one of the series FETs is open. Since CMOS circuits of any complexity

are interconnections of the basic gates, the quiescent currents for these circuits are extremely small, an

obvious advantage which becomes a necessity for the practicality of digital watches, for example, and one

which alleviates heat dissipation problems in high-density chips. Also a noteworthy feature of CMOS

digital circuits is the absence of components other than FETs. This attribute, which is shared by PMOS

and NMOS, accounts for the much higher function/chip area density than is possible with TTL or ECL.

During the time the output of a CMOS gate is switching there will be current flow from VDD to VSS,

partly due to the charging of junction capacitances and partly because the path between VDD and VSS

closes momentarily as the FETs turn on and off. This causes the dc supply current to increase in

proportion to the switching frequency in a CMOS circuit. Manufacturers specify that the supply voltage

for standard CMOS can range over 3 V # VDD � VSS # 18 V, but switching speeds are slower at the

lower voltages, mainly due to the increased resistances of the ‘‘on’’ transistors. The output switches

between low and high when the input is midway between VDD and VSS, and the output logical 1 level will

be VDD and the logical 0 level VSS [Figure 1.13(c)]. If CMOS is operated with VDD ¼ 5 V and VSS ¼ 0 V,

the VDD and VSS levels will be almost compatible with TTL except that the TTL totem-pole output high

of 3.4 V is marginal as a logical 1 for CMOS. To alleviate this, when CMOS is driven with TTL a 3.3-kO

FIGURE 1.13 (a) Complementary metal-oxide semiconductor (CMOS) NAND gate, (b) NOR gate, and (c) inverter

transfer characteristic. (Source: P. Graham, ‘‘Gates,’’ in Handbook of Modern Electronics and Electrical Engineering, C. Belove,

Ed., New York: Wiley-Interscience, 1986, p. 874. With permission.)
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pull-up resistor between the TTL output and the

common VCC, VDD supply terminal should be

used. This raises VOH of the TTL output to 5 V.

All CMOS inputs are diode protected to prevent

static charge from accumulating on the FET gates and

causing punch-through of the oxide insulating layer.

A typical configuration is illustrated in Figure 1.14.

Diodes D1 and D2 clamp the transistor gates between

VDD and VSS. Care must be taken to avoid input

voltages that would cause excessive diode currents. For

this reason manufacturers specify an input voltage

constraint from VSS � 0.5 V to VDD þ 0.5 V.

The resistance Rs helps protect the diodes from

excessive currents but is introduced at the expense

of switching speed, which is deteriorated by the

time constant of this resistance and the junction

capacitances.

Advanced versions of CMOS have been developed which are faster than standard CMOS. The first of these

to appear were designated 74HCxx and 74HCTxx. The supply voltage range for this series is limited to 2 V #

VDD � VSS # 6 V. The pin numbering of a given chip is the same as its correspondingly numbered TTL

device. Furthermore, gates with the HCT code have skewed transfer characteristics which match those of its

TTL cousin, so that these chips can be directly interchanged with low-power Schottky TTL.

More recently, a much faster CMOS has appeared and carries the designations 74ACxx and 74ACTxx. These

operate in the same supply voltage range and bear the same relationship with TTL as the HCMOS. The driving

capabilities (characterized by IOH and IOL) of this series are much greater, such that they can be fanned out to

10 low-power Schottky inputs.

The three types of CMOS are compared in Table 1.8. The relative speeds of these technologies are best

illustrated by including in the table the maximum clock frequencies for D flip-flops. In each case, the

frequency given is the maximum for which the device is guaranteed to work. It is worth noting that a typical

maximum clocking of 160 MHz is claimed for the 74ACT374 D flip-flop.

FIGURE 1.14 Diode protecion of input transistor gates.

200 O , Rs , k O. (Source: P. Graham, ‘‘Gates,’’ in Handbook

of Modern Electronics and Electrical Engineering, C. Belove,

Ed., New York: Wiley-Interscience, 1986, p. 875. With

permission.)

TABLE 1.8 Comparison of Standard, High-Speed, and Advanced High-Speed CMOS

Standard CMOS

NORGates

High-Speed

CMOS Inverter

Advanced

CMOS Inverter

Parameter Symbol Unit 4001B 4011UB 74HC04 74HCT04 74AC04 74ACT04

Supply voltage VDD-VSS V 15 15 6 5.5 5.5 5.5

Input voltage thresholds VIHmin V 11 12.5 4.2 2 3.85 2

VILmax V 4 2.5 1.8 0.8 1.65 0.8

Guaranteed output

levels at maximum IO

VOHmin V 13.5 13.5 5.9 4.5 4.86 4.76

VOLmax V 1.5 1.5 0.1 0.26 0.32 0.37

Maximum output currents IOH mA �8.8 �3.5 �4 �4 �24 �24

IOL mA 8.8 8.8 4 4 24 24

Noise margins NML V 2.5 2.5 1.7 0.54 1.33 0.43

NMH V 2.5 2.5 1.7 2.5 1.01 1.24

Propagation times tPLH ns 40 40 16 15 4 4.3

tPHL ns 40 40 16 17 3.5 3.9

Max input current leakage IINmax mA 0.1 0.1 0.1 0.1 0.1 0.1

D-flip-flop max frequency

(guaranteed minimum)

4013 B 74HC3 74 74HCT374 A 74AC37 4 74ACT37 4

fmax MHz 7.0 N.A. 35 30 100 100
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CMOS Design Considerations

Design and handling recommendations for CMOS, which are included in several of the data books, should be

consulted by the designer using this technology. A few selected recommendations are included here to

illustrate the importance of such information.

1. All unused CMOS inputs should be tied either to VDD or VSS, whichever is appropriate for proper

operation of the gate. This rule applies even to inputs of unused gates, not only to protect the inputs

from possible static charge buildup, but to avoid unnecessary supply current drain. Floating gate inputs

will cause all the FETs to be conducting, wasting power and heating the chip unnecessarily.

2. CMOS inputs should never be driven when the supply voltage VDD is off, since damage to the input-

protecting diodes could result. Inputs wired to edge connectors should be shunted by resistors to VDD

or VSS to guard against this possibility.

3. Slowly changing inputs should be conditioned using Schmitt trigger buffers to avoid oscillations that

can arise when a gate input voltage is in the transition region.

4. Wired-AND configurations cannot be used with CMOS gates, since wiring an output HIGH to an

output LOW would place two series FETs in the ‘‘on’’ condition directly across the chip supply.

5. Capacitive loads greater than 5000 pF across CMOS gate outputs act as short circuits and can overheat

the output FETs at higher frequencies.

6. Designs should be used that avoid the possibility of having low impedances (such as generator outputs)

connected to CMOS inputs prior to power-up of the CMOS chip. The resulting current surge when

VDD is turned on can damage the input diodes.

While this list of recommendations is incomplete, it should alert the CMOS designer to the value of the

information supplied by the manufacturers.

Choosing a Logic Family

A logic designer planning a system using SSI and MSI chips will find that an extensive variety of circuits is

available in all three technologies: TTL, ECL, and CMOS. The choice of which technology will dominate the

system is governed by what are often conflicting needs, namely, speed, power consumption, noise immunity,

cost, availability, and the ease of interfacing. Sometimes the decision is easy. If the need for a low static power

drain is paramount, CMOS is the only choice. It used to be the case that speed would dictate the selection;

ECL was high speed, TTL was moderate, and CMOS low. With the advent of advanced TTL and, especially,

advanced CMOS the choice is no longer clear-cut. All three will work at 100 MHz or more. ECL might be used

since it generates the least noise because the transitions are small, yet for that same reason it is more

susceptible to externally generated noise. Perhaps TTL might be the best compromise between noise

generation and susceptibility. Advanced CMOS is the noisiest because of its rapid rise and fall times, but the

designer might opt to cope with the noise problems to take advantage of the low standby power requirements.

A good rule is to use devices which are no faster than the application requires and which consume the least

power consistent with the needed driving capability. The information published in the manufacturers’ data

books and designer handbooks is very helpful when choice is in doubt.

Defining Term

Logic gate: Basic building block for logic systems that controls the flow of pulses.
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Further Information

An excellent presentation of the practical design of logic systems using SSI and MSI devices is developed in the

referenced book An Engineering Approach to Digital Design by William I. Fletcher. The author pays particular

attention to the importance of device speed and timing.

The Art of Electronics by Horowitz and Hill is particularly helpful for its practical approach to interfacing

digital with analog.

Everything one needs to know about digital devices and their interconnection can be found somewhere in

the data manuals, design handbooks, and application notes published by the device manufacturers.

Unfortunately, no single publication has it all, so the serious user should acquire as large a collection of these

sources as possible.

1.3 Bistable Devices

Richard S. Sandige and Lynne A. Slivovsky

This section explores bistable devices, also commonly referred to as bistables, latches or flip-flops. Bistable

devices are memory elements and can store one bit of information, such as a logic 1 or a logic 0 state. Latches

and flip-flops are used to implement finite-state machines, counters and registers and are part of the

configurable logic in complex programmable-logic devices and field programmable-gate arrays. Distinguishing

behavior between a latch and a flip-flop is when the output changes due to a change in one or more inputs.

A latch is considered transparent when changes in inputs, and hence stored data, immediately appear at the

output. Edge-triggered flip-flops that change state with respect to a clock signal are not transparent. Output

changes are triggered by a clock event.

The simplest bistable device consists of a pair of cross-coupled inverters where the output from one inverter

feeds the input of the other, as depicted in Figure 1.15. After this circuit is powered up the value stored in the

device, or the Q state, becomes indeterminate and will randomly fall into one of three states shown in

Figure 1.15(b). Logic 0 or logic 1, corresponding to a low- or high-output voltage at Q, are stable states. Once

the circuit moves to one of these states, it will never leave it. There is one metastable point in the center of the

graph that would also satisfy the device’s physical properties. But the likelihood of the circuit spending

significant time in the metastable state is low, since any noise applied to the circuit would cause it to change to

one of the stable states.

Latches

Replacing the inverters in the bistable element in Figure 1.15 with NOR gates provides the inputs to the

bistable that can cause a change in state. Figure 1.16 shows an example of a basic set-reset (S-R) NOR latch

implementation using two cross-coupled NOR gates. The logic symbol recommended for the S-R NOR latch

by the Institute of Electrical and Electronics Engineers (IEEE) is shown to the right of the logic circuit

implementation.

The S-R latch consists of a set (S) input, a reset (R) input and two outputs (Q and QN) that are normally

complements of each other. Table 1.9 shows the operation of the S-R circuit. For S R ¼ 00, Q ¼ last Q,

illustrating that the output for the next state Q is the same as for the present state output. For S R ¼ 01,

Q ¼ 0, specifying that the output for the next state is reset. For S R ¼ 10, Q ¼ 1, indicating that the output
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for the next state is set. In most cases, the input conditions S R ¼ 11 are not allowed for two reasons. If S

R ¼ 11, then the QN output for the bistable element is not logically correct, as it is for all other input

combinations. The second reason is more subtle since the next state of the bistable can be set or reset due to a

critical race condition when the inputs are changed from 11 to 00. Such unpredictability is not desirable and

therefore, the S R ¼ 11 condition is generally not allowed. Latches and flip-flops that contain both a Q and a

QN output (complementary outputs) provide double-rail outputs.

The S-R NAND latch in Figure 1.17 uses two cross-coupled NAND gates. In most cases, the input

conditions �SS �RR ¼ 00 (S R ¼ 11) are not allowed, for the same reasons provided above for the S-R NOR latch.

For �SS �RR ¼ 01 (S R ¼ 10), Q ¼ 1 indicating that the output for the next state is set. For �SS �RR ¼ 10 (S R ¼ 01),

Q ¼ 0 specifying that the output for the next state is reset. For �SS �RR ¼ 11 (S R ¼ 00), Q ¼ last illustrating that

the output for the next state Q is the same as for the present stateoutput.

A gated, S-R latch is generated by AND-ing the inputs S and R with input C, as depicted in Figure 1.18. The

C input acts to enable the latch. When C is asserted, the S-R latch behaves as described. When C is negated,

both data inputs are logic 0, and the latch maintains its current state. Whatever value the output has when

C goes to 0 is latched, captured or stored (memory mode).

The D latch in Figure 1.19 avoids the SR ¼ 11 input conditions by guaranteeing that the data inputs are

complements of each other. The S and R inputs are reduced to a single input, named D for data. The schematic

symbol and characteristic table for the gated D latch circuit are shown in Figure 1.20. When input C is

Q

QN
Vin2

Vout1Vin1

Vout2

Vout1=Vin2

Vin1=Vout2

Metastable

Stable

Stable

(b)(a)

FIGURE 1.15 (a) The bistable element is composed of two inverter gates. (b) This shows the relationship between the

input and output inverter voltages of the bistable element. The circuit has two stable operating points and one metastable

operating point, all satisfying the circuit’s transfer functions.

S QN

QR

S

R Q

Q

FIGURE 1.16 Set-Reset (S-R). This latch is constructed using NOR gates, in a configuration similar to the bistable

element and its corresponding circuit symbol.
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TABLE 1.9 Operation of the S-R Latch

S R Q QN

0 0 last Q last QN

0 1 0 1

1 0 1 0

1 1 0 0

S

QN

Q

R

S

Q

Q

R

FIGURE 1.17 Basic S-R NAND latch and corresponding circuit symbol.

S

QN

Q
R

C

S

R Q

Q

C

FIGURE 1.18 Gated S-R latch, where input C behaves like an enable signal.

QN

Q

D

C

FIGURE 1.19 Gated D latch circuit based on the S-R NOR latch.
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asserted, the D latch is transparent and the value of data input D appears at output Q. When input C is

negated, the last value of data input D is stored in the latch. The D latch is level-sensitive with respect to C.

The next section discusses devices that are edge-sensitive.

Flip-Flops

Early types of flip-flops were master-slave, pulse-triggered devices that had no data-lockout circuitry and

caused a storage error if improperly used due to 1s and 0s catching. To prevent 1s and 0s catching, data-

lockout (also called variable-skew) circuitry was added to some master-slave flip-flop types. Due to the

improved design features and popularity of edge-triggered flip-flops, master-slave flip-flops are not

recommended for newer designs and, in some cases, have been made obsolete by manufacturers, making them

difficult to obtain even for repair parts. For this reason, only edge-triggered flip-flops will be discussed.

Four types of edge-triggered flip-flops are presented here. These are the D, J-K, T and S-R flip-flops. The

D type is the most commonly used because its circuitry generally takes up less space on an IC chip and because

most engineers consider it an easier device to use as the excitation equation to drive the D input is identical to

the next state equation. An example of a positive, edge-triggered D flip-flop circuit is shown in Figure 1.21.

0111

1001

last QNlast Q 10

last QNlast Q 00

QNQDC

D

Q

(a) (b)

Q

C

FIGURE 1.20 Gated D latch: (a) schematic symbol and (b) characteristic table.

PRE

CLR

CLK

Q

D

LATCH 1

LATCH 2

LATCH 3

Q

FIGURE 1.21 Positive, edge-triggered, D flip-flop circuit. (Source: Modified from R.S. Sandige, Modern Digital Design,

New York: McGraw-Hill, 1990, p. 490.)
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The characteristic table illustrating the operation of this flip-flop is shown in Table 1.10. At the rising edge of

the clock input, the value at D is stored in the flip-flop. The D flip-flop can also be constructed by using two

D latches, as shown in Figure 1.22.

The main difference between a latch and an edge-triggered flip-flop is their transparency. The gated D latch

is transparent (the Q output follows the D input when the control input C ¼ l) and it latches, captures or

stores the value at the D input when the control input C shifts to 0. The positive edge-triggered D flip-flop is

never transparent from the time of its data input D to that of its output Q. When the clock is 0, the output Q

does not follow the D input and remains unchanged; however, the value at the D input is latched, captured or

stored when the clock makes a transition from 0 to 1. The flip-flop changes state only on the rising edge of the

clock. Edge-triggered flip-flops are desirable for feedback applications due to their lack of transparency.

Their outputs can be fed back as inputs to the device without causing oscillation. This is true for all types of

edge-triggered flip-flops. A negative, edge-triggered, J-K flip-flop circuit is shown in the circuit diagram in

Figure 1.23 with its corresponding IEEE symbol. Notice that the J-K flip-flop requires eight logic gates,

TABLE 1.10 Characteristic Table of a Positive

Edge-Triggered, D Flip-Flop

D CLK Q QN

0 " 0 1

1 " 1 0

x 0 last Q last QN

x 1 last Q last QN

D

C

Q

Q

D

C

Q

Q QN

QD

CLK

FIGURE 1.22 Positive edge-triggered D flip-flop circuit constructed from two D latches.

CLR

Q

Q

CLK

PRE

K

J

FIGURE 1.23 Negative, edge-triggered, J-K flip-flop circuit. (Source: Modified from R.S. Sandige, Modern Digital Design,

New York: McGraw-Hill, 1990, p. 493.)
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compared to only six logic gates for the D flip-flop in Figure 1.21. The characteristic table for this negative,

edge-triggered flip-flop is shown in Table 1.11. When the J and K inputs are both 1 and the clock makes a 1 to

0 transition, the flip-flop toggles, and the next state output Q changes to the complement of the present state.

By connecting J and K together and renaming it T for toggle, one can obtain a negative, edge-triggered, T flip-

flop.

The behavior of each flip-flop in the characteristic tables can be captured in a characteristic equation. This

equation describes the behavior of a flip-flop at a clock edge. Figure 1.24 shows the D and J-K flip-flops with

their characteristic equations along with the T (or toggle) flip-flop and the S-R flip flop.

Since bistable devices are asynchronous, fundamental-mode, sequential logic circuits, only one input is

allowed to change at a time. This means that for proper operation for a basic latch, only one of the data inputs

S or R for an S-R NOR latch (and the NAND implementation) may be changed at one time. For proper

operation of a gated latch, the data inputs S and R or data input D must meet minimum setup and hold-time

requirements; i.e., the data input(s) must be stable for a minimum period before the control input C changes

the latch from the transparent mode to the memory mode. For proper operation of an edge-triggered flip-flop,

data inputs must meet minimum setup and hold time requirements relative to the clock changing from 0 to 1

(positive edge-triggered) or from 1 to 0 (negative edge-triggered).

An interesting exercise is to design a circuit for a D flip-flop using a J-K flip-flop and some additional gates.

In general, a circuit can be designed that implements the characteristic equation of any flip-flop by using any

other flip-flop and some added logic.

Defining Terms

Bistable, latch and flip-flop: Substitutions for the term bistable device.

Critical race: A change in two input variables resulting in an unpredictable output value for a bistable

device.

Edge-triggered: Term describing the edge of a positive or negative pulse applied to the control input of a

nontransparent bistable device to latch, capture or store the value indicated by the data input(s).

Fundamental mode: Operating mode of a circuit allowing only one input to change at a time.

Memory element: A bistable device or element providing data storage for a logic 1 or a logic 0 state.

Characteristic table: A tabular representation that illustrates the operation of various bistable devices.

Setup and hold time: The time required for the data input(s) to be held stable before or after the control

input C changes to latch, capture or store the value indicated by the data input(s).

TABLE 1.11 Characteristic Table of a Positive, Edge-

Triggered, J-K Flip-Flop

J K Q

0 0 Iast Q (hold)

0 1 0 (clear)

1 0 1 (set)

1 1 1
Q ðtoggleÞ

S

CLK

Q

QR

D

CLK

Q+ = D Q+ = J·Q + KQ Q+ = S + R·QQ+ = T ⊕ KQ

Q

Q

J

CLK

Q

QK

T

CLK

Q

Q

FIGURE 1.24 Common edge-triggered flip-flops and their characteristic equations.
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Toggle: Change in state from logic 0 to logic 1 or from logic 1 to logic 0 in a bistable device.

Transparent mode: Mode of a bistable device where the output responds to data-input signal changes.

Volatile device: A memory or storage device that loses its storage capability when power is removed.

References

ANSI/IEEE Std 91-1984, IEEE Standard Graphic Symbols for Logic Functions, New York, NY: Institute of

Electrical and Electronics Engineers.

ANSI/IEEE Std 991-1986, IEEE Standard for Logic Circuit Diagrams, New York, NY: Institute of Electrical and

Electronics Engineers.

R.S. Sandige, Digital Design Essentials, Upper Saddle River, NJ: Prentice Hall, 2002.

Texas Instruments, The TTL Data Book, Advanced Low-Power Schottky, Advanced Schottky, vol. 3, Dallas,

TX: Texas Instruments, 1984.

J.F. Wakerly, Digital Design Principles and Practices, 3rd ed., Upper Saddle River, NJ: Prentice Hall, 2001

(Updated).

Further Information

Journals published by the IEEE contain the latest information on a variety of topics related to computer design

and realization, including digital devices, logic and circuit design. Look in IEEE Transactions on Computers,

IEEE Transactions on Computer-Aided Design of Integrated Circuits and IEEE Transactions on Very Large-Scale

Integration Systems.

1.4 Optical Devices

H.S. Hinton

Since the first demonstration of optical logic devices in the late 1970s, there have been many different

experimental devices reported. Figure 1.25 categorizes optical logic devices into four main classes. The first

division is between all-optical and optoelectronic devices. All-optical devices are devices that do not use

electrical currents to create the nonlinearity required by digital devices. These devices can be either single-pass

devices (light passes through the nonlinear material once) or they can use a resonant cavity to further enhance

the optical nonlinearity (multiple passes through the same nonlinear material). Optoelectronic devices, on the

other hand, use electrical currents and electronic devices to process a signal that has gone through an optical-

to-electrical conversion process. The output of these devices is either provided by electrically driving an optical

source such as a laser or LED (detect/emit) or by modulating some external light source (detect/modulate).

Below each of these categories are listed some of the devices that have been experimentally demonstrated.

All-Optical Devices

To create an all-optical logic device requires a medium that will allow one beam of light to affect another. This

phenomenon can arise from the cubic response to the applied field. These third-order processes can lead to

purely dielectric phenomena, such as irradiance-dependent refractive indices. By exploiting purely dielectric

third-order nonlinearities, such as the optical Kerr effect, changes can be induced in the optical constants of

the medium which can be read out directly at the same wavelength as that inducing them. This then opens up

the possibilities for digital optical circuitry based on cascadable all-optical logic gates. Although there have

been many different all-optical gates demonstrated, this section will only briefly review the soliton gate (single-

pass) and one example of the nonlinear Fabry–Perot structures (cavity-based).
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Single-Pass Devices

An example of an all-optical single-pass optical logic gate is the soliton NOR gate. It is an all-fiber logic gate

based on time shifts resulting from soliton dragging. A NOR gate consists of two birefringent fibers connected

through a polarizing beamsplitter with the output filtered by a polarizer as shown in Figure 1.26. The clock

pulse, which provides both gain and logic level restoration, propagates along one principal axis in both fibers.

For the NOR gate the fiber length is trimmed so that in the absence of any signal the entering clock pulse will

arrive within the output time window corresponding to a ‘‘1.’’ When either or both of the input signals are

incident, they interact with the clock pulse through soliton dragging and shift the clock pulse out of the

allowed output time window creating a ‘‘0’’ output. In soliton dragging two temporally coincident, ortho-

gonally polarized pulses interact in the fiber through cross-phase modulation and shift each other’s velocities.

This velocity shift converts into a time shift after propagating some distance in the fiber. To implement the

device, the two input signal pulses g1 and g2 are polarized orthogonal to the clock. The signals are timed so

that g1 and the clock pulse coincide at the input to the first fiber and g2 and the clock pulse coincide (in the

absence of g1) at the input to the second fiber. At the output the two input signals are blocked by the polarizer,

FIGURE 1.25 Classification of optical logic devices.

FIGURE 1.26 Soliton NOR gate: (a) physical implementation, (b) timing diagram.
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allowing only the temporally modified clock pulse to

pass. In a prototyped demonstration this all-optical

NOR gate required 5.8 pJ of signal energy and provided

an effective gain of 6.

Cavity-Based Devices

Cavity-based optical logic devices are composed of two

highly reflective mirrors that are separated by a distance

d [Figure 1.27(a)]. The volume between the mirrors,

referred to as the cavity of the etalon, is filled with a

nonlinear material possessing an index of refraction

that varies with intensity according to nc ¼ n0 þ n2 gc

where n0 is the linear index of refraction, n2 is the

nonlinear index of refraction, and gc is the intensity of

light within the cavity. In the ideal case, the character-

istic response of the reflectivity of a Fabry–Perot cavity,

Rfp, is shown in Figure 1.27(b). At low intensities, the

cavity resonance peak is not coincident with the

wavelength of the incident light; thus the reflectivity is

high, which allows little of the incident light to be

transmitted [solid curves in Figure 1.27(b)]. As the

intensity of the incident light g increases, so does the

intercavity light intensity which shifts the resonance

peak [dotted curve in Figure 1.27(b)]. This shift in the

resonant peak increases the transmission which in turn

reduces the reflectivity. This reduction in c will continue

with increasing g until a minimum value is reached.

It should be noted that in practice all systems of

interest have both intensity-dependent absorption

and n2.

To implement a two-input NOR gate using the

characteristic curve shown in Figure 1.27(c) requires a

third input which is referred to as the bias beam, gb. This

energy source biases the etalon at a point on its

operating curve such that any other input will

exceed the nonlinear portion of the curve moving the etalon from the high reflection state. This is illustrated

in Figure 1.27(c) where the gb combines with the inputs g1 and g2 to exceed the threshold of the nonlinear

characteristic curve.

The first etalon-based optical logic device was in the form of a non-linear interference filter (NLIF).

A simple interference filter has a general form similar to a Fabry–Perot etalon, being constructed by

depositing a series of thin layers of transparent material of various refractive indices on a transparent

substrate. The first several layers deposited form a stack of alternating high and low refractive indices, all of

optical thickness equal to one quarter of the operating wavelength. The next layer is a low integer (1–20)

number of half wavelengths thick and finally a further stack is deposited to form the filter. The two outer

stacks have the property of high reflectivity at one wavelength, thus playing the role of mirrors forming a

cavity. A high finesse cavity is usually formed when both mirrors are identical, i.e., of equal reflectivity.

However, unlike a Fabry–Perot etalon with a nonabsorptive material in the cavity, matched (equal) stack

reflectivities do not give the optimum cavity design to minimize switch power because of the absorption in

the spacer (which may be necessary to induce nonlinearity). A balanced design which takes into account the

effective decrease in back mirror reflectivity due to the double pass through the absorbing cavity is

preferable and also results in greater contrast between bistable states. The balanced design is easily achieved

FIGURE 1.27 (a) Nonlinear Fabry–Perot etalon, (b)

reflection peaks of NLFP, and (c) NLFP in reflection

(NOR).
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by varying one or all of the available parameters: number of periods, thickness and refractive index of each

layer within either stack.

Optoelectronic Devices

Optoelectronic devices take advantage of both the digital processing capabilities of electronics and commu-

nications capabilities of the optical domain. This section will review both the SEED-based optical logic gates

and the pnpn structures that have demonstrated optical logic.

Detect/Modulate Devices

In the most general terms the self-electro-optic effect device (SEED) technology corresponds to any device

based on multiple quantum well (MQW) modulators. The basic physical mechanism used by this technology

FIGURE 1.28 (a) Absorption spectra of MQW

material for both 0 and 5 V, (b) schematic of MQW

pin diode, (c) input/output characteristics of MQW pin

diode.

FIGURE 1.29 Symmetric self-electro-optic effect

device (S-SEED). (a) S-SEED with inputs and outputs,

(b) power transfer characteristics, and (c) optically

enabled S-SEED.
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is the quantum confined Stark effect. This mechanism creates a shift in the bandedge of a semiconductor with

an applied voltage. This is illustrated in Figure 1.28(a). This shift in the bandedge is then used to vary the

absorption of incident light on the MQW material. When this MQW material is placed in the intrinsic region

of a pin diode and electrically connected to a resistor as shown in Figure 1.28(b) the characteristic curve shown

in Figure 1.28(c) results. When the incident intensity, gi, is low there is no current flowing through the pin

diode or resistor; thus the majority of the voltage is across the pin diode. If the device is operating at

the wavelength l0, the device will be in a low absorptive state. As the incident intensity increases so does the

current flowing in the pin diode; this in turn reduces the voltage across the diode which increases the

absorption and current flow. This state of increasing absorption creates the nonlinearity in the output signal,

c, shown in Figure 1.28(c). Optical logic gates can be formed by optically biasing the R-SEED close to the

nonlinearity, gb, and then applying lower level data signals g1 and g2 to the device.

The S-SEED, which behaves like an optical inverting S–R latch, is composed of two electrically connected

MQW pin diodes as illustrated in Figure 1.29(a). In this figure, the device inputs include the signal, gi (Set), and

its complement, �gg (Reset), and a clock signal. To operate the S-SEED the gi and �ggi inputs are also separated in

time from the clock inputs as shown in Figure 1.28(b). The gi and �ggi inputs, which represent the incoming data

and its complement, are used to set the state of the device. When �ggi > gi; the S-SEED will enter a state where the

upper MQW pin diode will be reflective, forcing the lower diode to be absorptive. When gi > �ggi the opposite

condition will occur. Low switching intensities are able to change the device’s state when the clock signals are

not present. After the device has been put into its proper state, the clock beams are applied to both inputs. The

ratio of the power between the two clock beams should be approximately one, which will prevent the device

from changing states. These higher energy clock pulses, on reflection, will transmit the state of the device to the

next stage of the system. Since the inputs gi and �ggi are low-intensity pulses and the clock signals are high-

intensity pulses, a large differential gain may be achieved. This type of gain is referred to as time-sequential gain.

The operation of an S-SEED is determined by the power transfer characteristic shown in Figure 1.29(c). The

optical power reflected by the ci window, when the clock signal is applied, is plotted against the ratio of the

total optical signal power impinging on the gi and �ggi windows (when the clock signal is not applied). Assuming

the clock power incident on both signal windows, gi and�ggi, the output power is proportional to the reflectivity,

Ri. The ratio of the input signal powers is defined as the input contrast ratio Cin ¼ Pg=P�ggi
. As Cin is increased

from zero, the reflectivity of the ci window switches from a low value, R1, to a high value, R2, at a Cin value

approximately equal to the ratio of the absorbances of the two optical windows: T ¼ (1–R1)/(1–R2).

Simultaneously, the reflectivity of the other window (ci) switches from R2 to R1. The return transition point

(ideally) occurs when Cin ¼ (1–R2)/(1–R1) ¼ l/T. The ratio of the two reflectivities, R2/R1, is the output

contrast, Cout. Typical measured values of the preceding parameters include Cout ¼ 3.2, T ¼ 1.4, R2 ¼ 50%

and R1 ¼ 15%. The switching energy for these devices has been measured at ,7 fJ/mm2.

The S-SEED is also capable of performing optical logic functions such as NOR, OR, NAND, and AND. The

inputs will also be differential, thus still avoiding any critical biasing of the device. A method of achieving logic

gate operation is shown in Figure 1.30. The logic level of the inputs will be defined as the ratio of the optical

power on the two optical windows. When the power of the signal incident on the gi input is greater than

the power of the signal on the �ggi input, a logic ‘‘1’’ will be present on the input. On the other hand, when the

power of the signal incident on the gi input is less than the power of the signal on the �ggi input, a logic ‘‘0’’ will

be incident on the input.

For the noninverting gates, OR and AND, we can represent the output logic level by the power of the signal

coming from the c output relative to the power of the signal coming from the �cc output. As before, when the

power of the signal leaving the c output is greater than the power of the signal leaving the �cc output, a logic

‘‘1’’ will be represented on the output. To achieve AND operation, the device is initially set to its ‘‘off ’’ or logic

‘‘0’’ state (i.e., c low and �cc high) with preset pulse, Presetc incident on only one pin diode as shown in

Figure 1.30. If both input signals have logic levels of ‘‘1’’ (i.e., set ¼ 1, reset ¼ 0), then the S-SEED AND gate

is set to its ‘‘on’’ state. For any other input combination, there is no change of state, resulting in AND

operation. After the signal beams determine the state of the device, the clock beams are then set high to read

out the state of the AND gate. For NAND operation, the logic level is represented by the power of the �cc output

signal relative to the power of the c output signal. That is, when the power of the signal leaving the �cc output is
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greater than the power of the signal leaving the c output, a logic ‘‘1’’ is present on the output. The operation of

the OR and NOR gates is identical to the AND and NAND gates, except that preset pulse Presetc is used

instead of the preset pulse Preset �cc.Thus, a single array of devices can perform any or all of the four logic

functions and memory functions with the proper optical interconnections and preset pulse routing.

FIGURE 1.30 Logic using S-SEED devices.

FIGURE 1.31 pnpn devices: (a) basic structure, (b) voltage/output characteristics, (c) input/output characteristics, and

(d) timing diagram of device operation.
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Detect/Emit Devices

Detect/emit devices are optoelectronic structures that detect the incoming signal, process the information, and

then transfer the information off the device through the use of active light emitters such as LEDs or lasers.

An example of a detect/emit device is the ‘‘thyristor-like’’ pnpn device as illustrated in Figure 1.31(a). It is a

digital active optical logic device with ‘‘high’’ and ‘‘low’’ light-emitting optical output states corresponding to

electrical states of high impedance (low optical output) or low impedance (high optical output). The device

can be driven from one state to the other either electrically or optically. The optical output can be either a

lasing output or light-emitting diode output. There are several devices that are based on this general structure.

The double heterostructure optoelectronic switch (DOES) is actually an npnp structure that is designed as an

integrated bipolar inversion channel heterojunction field-effect transistor (BICFET) phototransistor

controlling and driving either an LED or microlaser output. The second device is a pnpn structure referred

to as a vertical-to-surface transmission electrophotonic device (VSTEP).

The operation of these pnpn structures can be illustrated through the use of load lines. For the simplest

device, the load consists of a resistor and a power supply. In Figure 1.31(b), we see that for small amounts of

light, the device will be at point A. Point A is in a region of high electrical impedance with little or no optical

output. As the input light intensity increases, there is no longer an intersection point near A and the device

will switch to point B [Figure 1.31(c)]. At this point the electrical impedance is low and light is emitted. When

the input light is removed, the operating point returns via the origin to point A by momentarily setting the

electrical supply to zero [Figure 1.31(d)]. These devices can be used as either optical OR or AND gates using a

bias beam and several other optical inputs.

The device can also be electrically switched. Assuming no input intensity, the initial operating point is at

point A. By increasing the power supply voltage, the device will switch to point C. Point C like point B is in

the region of light emission and low impedance. To turn off the device, the power supply must then be reduced

to zero, after which it may be increased up to some voltage where switching occurs.

A differential pnpn device made by simply connecting two pnpn devices in parallel and connecting that

combination in series with a resistive load is illustrated in Figure 1.32. The operation of the device can be

described as follows. When the device is biased below threshold, that is, with the device unilluminated, both

optical switches are ‘‘off.’’ When the device is illuminated, the one with the highest power is switched ‘‘on.’’ The

increase in current leads to a voltage drop across the resistor which in turn leads to a lowering of the voltage

across both optical switches. Therefore, the one with the lower input cannot be switched ‘‘on.’’ Unless both

inputs were illuminated with precisely the same power and both devices had identical characteristics (both of

these are impossible), only one of the two optical switches will emit light.

The required input optical switching energy density can be quite low if the device without light is biased

critically just below threshold. Since incoherent light from an LED cannot be effectively collected from small

devices or focused onto small devices, a lasing pnpn is needed. Microlaser-based structures are also required to

reduce the total power dissipation to acceptable levels. Surface-emitting microlasers provide an ideal laser

because of their small size, single-mode operation, and

low thresholds. The surface-emitting microlasers consist

of two AlAs/AlGaAs dielectric mirrors with a thin active

layer in between. This active layer typically consists of

one or a few MQWs. The material can be etched

vertically into small posts, typically 1–5 mm in diameter.

Thresholds are typically on the order of milliwatts.

The switching speed of these devices is limited by the

time it takes the photogenerated carriers to diffuse into the

light-emitting region. Optical turn-off times are also

limited by the RC time constant. For devices made so far,

the RC time constants are in the range of 1–10 ns, and

optical switch-on times were ,10 ns. Performance of the

devices is expected to improve as the areas are reduced; FIGURE 1.32 Differential pnpn device.
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switching times comparable to the best electronic devices (,10 ps) are possible, although the optical turn-on

times of at least the surface-emitting LED devices will continue to be slower since this time is determined

by diffusion effects and not device capacitance and resistance. Lasing devices should offer improved optical turn-

on times.

Another approach to active devices is to combine lasers/modulators with electronics and photodiodes as has

been proposed for optical interconnections of electronic circuits. Since the logic function is implemented with

electronic circuitry, any relatively complex functionality can be achieved. Several examples of logic gates have

been made using GaAs circuitry and light-emitting diodes. Again surface-emitting microlasers provide an

ideal emitter for this purpose, because of their small size and low threshold current. However, the integration

of these lasers with the required electrical components has yet to be demonstrated.

Limitations

In the normal operating regions of most devices, a fixed amount of energy, the switching energy, is required to

make them change states. This switching energy can be used to establish a relationship between both the

switching speed and the power required to change the state of the device. Since the power required to switch

the device is equal to the switching energy divided by the switching time, a shorter switching time will require

more power. As an example, for a photonic device with an area of 100 mm2 and a switching energy of 1 fJ/mm2

to change states in 1 ps requires 100 mW of power instead of the 100 mW that would be required if the device

were to switch at 1 ns. Thus, for high power signals the device will change states rapidly, while low power

signals yield a slow switching response.

Some approximate limits on the possible switching times of a given device, whether optical or electrical, are

illustrated in Figure 1.33. In this figure the time required to switch the state of a device is on the abscissa while

the power/bit required to switch the state of a device is on the ordinate. The region of spontaneous switching

is the result of the background thermal energy that is present in a device. If the switching energy for the device

is too low, the background thermal energy will cause the device to change states spontaneously. To prevent

these random transitions in the state of a device, the switching energy required by the device must be much

larger than the background thermal energy. To be able to differentiate statistically between two states, this

figure assumes that each bit should be composed of at least 1000 photons. Thus, the total energy of

1000 photons sets the approximate boundary for this region of spontaneous switching. For a wavelength

of 850 nm, this implies a minimum switching energy on the order of 0.2 fJ. For the thermal transfer region, it

is assumed that for continuous operation, the thermal energy present in the device cannot be removed any

faster than 100 W/cm2 (1 mW/mm2). There has been some work done to indicate that this value could be as

FIGURE 1.33 Fundamental limitations of optical logic devices.
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large as 1000 W/cm2. This region also assumes that there will be no more than an increase of 20–C in the

temperature of the device. Devices can be operated in this region using a pulsed rather than continuous mode

of operation. Thus, high energy pulses can be used if sufficient time is allowed between pulses to allow the

absorbed energy to be removed from the devices. The cloud in Figure 1.33 represents the performance

capabilities of current electronic devices. This figure illustrates that optical devices will not be able to switch

states orders of magnitude faster than electronic devices when the system is in a continuous rather than a

pulsed mode of operation. There are, however, other considerations in the use of photonic switching devices

than how fast a single device can change states. Assume that several physically small devices need to be

interconnected so that the state information of one device can be used to control the state of another device.

To communicate this information, there needs to be some type of interconnection with a large bandwidth that

will allow short pulses to travel between the separated devices. Fortunately, the optical domain can support the

bandwidth necessary to allow bit rates in excess of 100 Gb/s, which will allow high-speed communication

between these individual switching devices. In the electrical domain, the communications bandwidth between

two or more devices is limited by the resistance, capacitance, and inductance of the path between the different

devices. Therefore, even though photonic devices cannot switch orders of magnitude faster than their

electronic counterparts, the communications capability or transmission bandwidth present in the optical

domain should allow higher data rate systems than are possible in the electrical domain.

Defining Terms

Light-amplifying optical switch (LAOS): Vertically integrated heterojunction phototransistor and light-

emitting diode which has latching thyristor-type current-voltage characteristics.

Liquid-crystal light valve (LCLV): Optical controlled spatial light modulator based on liquid crystals.

Multiple quantum well (MQW): Collection of alternating thin layers of semiconductors (e.g., GaAs and

AlGaAs) that results in strong peaks in the absorption spectrum which can be shifted with an applied

voltage.

Nonlinear Fabry–Perot (NLFP): Fabry–Perot etalon or interferometer that has an optically nonlinear

medium in its cavity.

Optical logic etalon (OLE): Pulsed nonlinear Fabry–Perot etalon that requires two wavelengths

(l1 ¼ signal, l2 ¼ clock).

PLZT/Si: Technology based on conventional silicon electronics using silicon detectors for the device inputs

and PLZT modulators for the outputs.

Sagnac logic gate: An all-optical gate based on a Sagnac interferometer. A Sagnac interferometer is com-

posed of two coils of optical fiber arranged so that light from a single source travels clockwise in one and

counterclockwise in the other.

SEED technology: Any device based on multiple quantum well (MQW) modulators.

Soliton: Any isolated wave that propagates without dispersion of energy.

Surface-emitting laser logic (CELL): Device that integrates a phototransistor with a low threshold

vertical-cavity surface-emitting laser.
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2.1 Integrated Circuits (RAM, ROM)

W. David Pricer

The major forms of semiconductor memory, in descending order of present economic importance, are

1. Dynamic Random-Access Memories (DRAMs)

2. Nonvolatile Programmable Memories (PROMs, EEPROMs, Flash, EAROMs, EPROMs)

3. Static Random-Access Memories (SRAMs)

4. Read-Only Memories (ROMs)

Outwardly, DRAMs and SRAMs differ little, except in their relative density and performance. But

internally, DRAMs are distinguished from SRAMs, in that no bi-stable electronic circuit maintains the

information. Instead, DRAM information is stored ‘‘dynamically’’ as charge on a capacitor. Modern designs

feature one field-effect transistor (FET) to access the information for both reading and writing and a thin

film capacitor to store information. SRAMs maintain their bi-stability, as long as power is applied, through a

cross-coupled pair of inverters within each storage cell. Almost always, two additional transistors access the

internal nodes for reading and writing. Most modern cell designs are CMOS, with two P-channel and four

N-channel FETs.

Programmable memories operate more like read-only memories in that they can be programmed at least

once, and some can be reprogrammed a million times or more. Programming typically takes only milliseconds

to complete. A floating-gate FET typically stores the information, which is not indefinitely nonvolatile, in its

storage cells, The discharge time constant is of the order of 10 years. ROMs are generally programmed through

a custom information mask within the fabrication sequence. As the read-only name implies, information can

only be read. The stored information is truly nonvolatile, even when power is removed. This is the densest
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form of semiconductor storage, but also the least flexible. Other forms of semiconductor memories, such as

associative memories and charge-coupled devices, are used rarely.

Dynamic RAMs (DRAMs)

The universally used storage-cell circuit of one transistor and

one capacitor has remained unchanged for more than 30

years. Its implementation, however, has undergone much

change and refinement. The innovations in physical imple-

mentation were driven primarily by the need to maintain a

nearly constant value of stored charge while the surface area of

the cell has decreased. A nearly fixed value of stored charge is

needed to meet two important design goals. For one, the cell

has no internal amplification. Once the information is

accessed, the stored voltage is attenuated by the much larger

bit line capacitance (see Figure 2.1). The resulting signal must

be kept larger than the resolution limits of the sensing

amplifier. DRAMs in particular are also sensitive to a problem

called soft errors. These are typically initiated by atomic

events, such as the incidence of a single alpha particle. That

alpha particle can cause a spurious signal of 50,000 electrons

or more. Modern DRAM designs resolve this problem by

constructing the capacitor in space outside the plane of the

transistors(see Figure 2.2 for examples). Placing the capacitor

in a space unusable for transistor fabrication has allowed great strides in DRAM density, but generally at the

expense of fabrication complexity. DRAM chip capacity has historically increased by about a factor of four every

three years.

DRAMs operate somewhat slower than SRAMs. This derives directly from the smaller signal available from

DRAMs and from certain constraints put on the support circuitry by the DRAM array. DRAMs also need to

periodically ‘‘refresh’’ the lost charge from the capacitor. This charge is lost primarily across the semiconductor

junctions and must be replenished every few milliseconds. Manufacturers usually provide these ‘‘house-

keeping’’ functions with on-chip circuitry.

Signal detection and amplification remain critical areas for good DRAM design. Figure 2.3 illustrates an

arrangement called a ‘‘folded bit line.’’ This design cancels many noise sources starting in the array and

decreases circuit sensitivity to manufacturing process variations. It also yields a high ratio of storage cells per

sense amplifier. The signal from an accessed cell is compared to a reference voltage halfway between a stored 1

and a stored 0. This reference voltage is typically supplied by an on-chip generator. Figure 2.3 shows an

alternative reference-voltage scheme. Note the presence of dummy cells that store the reference voltage. The

stored reference voltage in this case is created by shorting two driven bit lines after one of the storage cells has

been written.

Large DRAM-integrated circuit chips frequently provide other useful features [Kalter et al., 1990]. Faster

access is provided between certain adjacent addresses, usually along a common word line. Some designs

feature on-chip buffer memories, low standby power modes or error-correction circuitry. A few DRAM chips

are designed to mesh with the constraints of particular applications, such as providing image support for CRT

displays. Some on-chip features are effectively hidden from the user. These may include redundant memory

addresses that the manufacturer activates by laser to improve yield.

The largest single market for DRAMs is in microprocessors for personal computers. Modern

microprocessors include an on-chip cache memory that is a small SRAM. The system is formulated so that

almost all memory accesses are satisfied by information already stored in the on-chip cache memory. When

the microprocessor’s activity moves across a program task boundary, massive data transfer is needed between

FIGURE 2.1 Cell and bit line capacitance.
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FIGURE 2.2 (a) Cross-section of stacked capacitors fabricated above the semiconductor surface of a DRAM integrated

circuit. (Source: M. Taguchi et al., ‘‘A 40-ns 64-b parallel data bus architecture,’’ IEEE J. Solid State Circuits, vol. 26, no. 11,

p. 1495. Copyright 1991 IEEE. With permission.) (b) Cross-section of V-shaped stacked capacitors. (Source: H. Yoon et al.,

‘‘A 2.5-V, 333-Mb/s/pin 1-Gbit Double-Data-Rate Synchronous DRAM,’’ IEEE J. Solid-State Circuits, vol. 34, no. 11, p. 1596,

Copyright 1999 IEEE. With permission.)

FIGURE 2.3 Folded bit-line array (with dummy cells).
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the cache and the DRAM ‘‘backing store.’’ Synchronous DRAM (SDRAM) allows the rapid, sequential transfer

of large blocks of data between the microprocessor’s cache and the much larger-capacity SDRAM without

extensive signal ‘‘hand-shaking’’. While SDRAMs do not improve the access time to first data, they greatly

improve the bandwidth between microprocessor and DRAM. Recent DRAM developments have focused on

optimizing the SDRAM role in microprocessor applications. SDRAM features now include variable-size data

block transfer, wrap-around modes that transfer the most urgently needed data in a block first and variable

latency time to first data.

Static RAMs (SRAMs)

Compared to DRAMs, the primary advantages of SRAMs are high speed and ease of use. In addition, SRAMs

fabricated with CMOS technology exhibit extremely low standby power. This latter feature is used effectively in

portable equipment such as pocket calculators. Bipolar SRAMs are generally faster but less dense than FET

versions. Figure 2.4 illustrates two cells. SRAM performance is dominated by the speed of the support circuits,

leading some manufacturers to design bipolar support circuits to FET arrays.

Bipolar designs frequently incorporate circuit consolidation unavailable in FET technology, such as the

multi-emitter cell shown in Figure 2.4(a). Here, one of the two lower emitters is normally forward-biased,

turning one inverter on and the other off for bi-stability. The upper emitters can either extract a differential

signal or discharge one collector to ground in order to write the cell. The word line is pulsed positive to both

read and write the cell.

A few CMOS SRAMs use polysilicon load resistors of very high resistance value in place of the two P-

channel transistors shown in Figure 2.4(b). Most SRAMs are full CMOS designs like the one shown.

Sometimes, the P-channel transistors are constructed by thin-film techniques and are placed over the N-

channel transistors to improve density. When both P- and N-channel transistors are produced in the same

plane of the single-crystal semiconductor, the standby current can be extremely low. Typically, the

current can be measured in microamps for megabit chips. The low standby current is possible

becauseeach cell sources and sinks only that current needed to overcome the actual node leakage within

the cell.

Selecting the proper transconductance of each transistor is an important design focus. The accessing

transistors should be large enough to extract a large read signal but insufficiently large to disturb the stored

information. During the write operation, these same transistors must be able to override the current drive of at

least one of the internal CMOS inverters.

FIGURE 2.4 (a) Bipolar SRAM cell. (b) CMOS SRAM cell.
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The superior performance of SRAMs comes from their larger signal and the lack of need to refresh the

stored information as with a DRAM. As a result, SRAMs need fewer sense amplifiers. These amplifiers are not

forced to match the array’s cell pitch. SRAM design engineers have exploited this freedom to create higher-

performance sense amplifiers.

Practical SRAM designs routinely achieve access times of a few nanoseconds [Kato, 1992]. The cycle time

typically equals access time and, in at least one pipeline design, cycle time is actually less than access time.

SRAM integrated circuit chips have fewer special on-chip features than DRAM chips, primarily because

no special performance enhancements are needed. Many ASICs (application-specific integrated circuits)

use on-chip SRAMs because of their low power requirement and ease of use. Modern microprocessors

include one or more on-chip, cache, SRAM memories, providing a high-speed link between processor

and memory.

Nonvolatile Programmable Memories

Some nonvolatile memories can be programmed only

once. These memories have arrays of diodes or

transistors with fuses or antifuses in series with each

semiconductor cross point. Aluminum, titanium, tung-

sten, platinum silicide and polysilicon have all been used

successfully for fuse technology (see Figure 2.5).

Most nonvolatile cells rely on trapped charge stored

on a floating gate in an FET [Atsumi et al., 2000]. These

cells can be rewritten many times. The trapped charge

is subject to very long-term leakage, of the order of 10

years. The number of times the cell may be rewritten is

limited by programming stress-induced degradation of

the dielectric. Charge reaches the floating gate either by

tunneling or by avalanche injection from a region near

the drain. Both phenomena are induced by overvoltage

conditions and hence the degradation after repeated

erase/write cycles. Commercially available chips typi-

cally promise 100 to 100,000 write cycles. Erasure of

charge from the floating gate may be by tunneling or

by exposure to ultraviolet light. Asperities on the

polysilicon gate and silicon-rich oxide have both

been shown to enhance charging and discharging

of the gate. The cell’s nomenclature is not entirely

consistent throughout the industry. However,

EPROM generally describes cells that are electronically

written but UV-erased. EEPROM can describe cells

that are electronically written and erased.

Cells can be designed with either one or two transistors. Where two transistors are used, the second

transistor is normally a conventional enhancement mode transistor (see Figure 2.6). The second transistor

minimizes disturbance of unselected cells. It also removes some constraints on the writing limits of the

programmable transistor, which in one state may be depletion mode. The two transistors in series then

assume the threshold of the second, or enhancement, transistor, or a very high threshold as determined by

the programmable transistor. Some designs are so well-integrated that the features of the two transistors

are merged.

Flash EEPROMs describe a family of single-transistor cell EEPROMs. Cell sizes are about half that of

two-transistor EEPROMs, an important economic consideration. Care must be taken to prevent these cells

FIGURE 2.5 PROM cells.
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from being programmed into depletion mode. An array of many depletion-mode cells would confound

the read operation by generating multiple signal paths. The cells can be programmed to enhancement-

only thresholds through a sequence of partial-program and monitor subcycles, performed until the

threshold complies with specification limits. Flash EEPROMs require the bulk erasure of large portions of

the array.

A very dense form of Flash EEPROM, called NAND Flash, is achieved by wiring the cells in series. Figure 2.7

depicts a top view of this arrangement. A selected cell within a portion of this array is accessed by applying

positive selection signals to all unselected word lines in a selected series. The selected cell’s threshold cell can

then be sensed. note the high order decoded addressing

applied to the outside transistors. These are not floating-

gate transistors.

The Flash EEPROM market has grown rapidly in

recent years. Electronic cameras, camera phones, many

hand-held consumer products and memory sticks have

fueled this market.

NVRAM has become a generic term encompassing

many forms of nonvolatility. These include SRAM or

DRAM with nonvolatile circuit elements, the various

programmable RAMs just described and some emerging

technologies with combined semiconductor and mag-

netic effects.

FIGURE 2.6 Cross-section of two-transistor EEPROM cell.

FIGURE 2.7 Top view of a NAND Flash memory segment. (Source: K. Imamiya et al., ‘‘A 130-mm2, 256-Mbit NAND

Flash with Shallow Trench Isolation Technology,’’ IEEE J. Solid-State Circ vol. 34, no. 11, p. 1537. Copyright 1999 IEEE.

With permission.)

FIGURE 2.8 ROM cell.
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Read-Only Memories (ROMs)

ROM is the only form of semiconductor storage that is permanently nonvolatile. Information is retained

without applied power, and there is no information loss as in EEPROMs. It is also the densest form of

semiconductor storage. However, ROMs are used less than RAMs or EEPROMs. ROMs must be personalized

by a mask in the fabrication process. This method is cumbersome and expensive unless many identical parts

are made. Also, much of the ‘‘permanent’’ information is not really permanent and must be occasionally

updated.

FIGURE 2.9 Layout of ROS X array.

FIGURE 2.10 Layout of ROS AND array.
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ROM cells can be formed as diodes or transistors at every intersection of the word and bit lines of a ROM

array (see Figure 2.8). one of the masks in the chip-fabrication process programs which of these devices will be

active. Clever layout and circuit techniques may provide further density. Two suchtechniques are illustrated in

Figure 2.9 and Figure 2.10. The X array shares bit and virtual ground lines. The AND array places many ROM

cells in series. This arrangement is similar to that of NAND Flash memory. Each of these series AND ROM

cells is an enhancement- or depletion-channel FET. Sensing is performed by applying positive selection signals

to the gates of all series cells except the gate to be interrogated. The current will flow through all series channels

only if the interrogated channel is in depletion-mode [Kawagoe and Tsuji, 1976].

ROM applications include look-up tables, machine-level instruction code for computers and small arrays

to perform logic. (See Sections 3.4, 3.5 and 3.7 of this volume for more on programmable logic and arrays).

Defining Terms

Antifuse: A fuse-like device that becomes low-impedance when activated.

Application-specific integrated circuits (ASICs): Integrated circuits specifically designed for a

particular application.

Avalanche injection: A physical phenomenon where electrons highly energized in avalanche current at a

semiconductor junction can penetrate into a dielectric.

Depletion mode: An FET that is on when zero-volts bias is applied from gate to source.

Enhancement mode: An FET that is off when zerovolts bias is applied from gate to source.

Polysilicon: Silicon in polycrystalline form.

Tunneling: A physical phenomenon where an electron can move instantly through a thin dielectric.
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2.2 Magnetic Tape1

Peter A. Lee

Computers depend on memory to execute programs and to store program code and data. They also need

access to stored program code and data in a nonvolatile memory (i.e., a form in which the information is not

lost when the power is removed from the computer system). Different types of memory have been developed

for different tasks. This memory can be categorized according to its price per bit, access time, and other

parameters. Table 2.1 shows a typical hierarchy for memory which places the smallest and fastest memory at

the top in level 0 and in general the largest, slowest, and cheapest at the bottom in level 4 [Ciminiera and

Valenzano, 1987]. Auxiliary (secondary or mass) memory of level 4 forms the large storage capacity for

program and code that are not currently required by the CPU. This is usually nonvolatile and is at a low cost

per bit. Computer magnetic tape falls within this category and is the subject of this section.

A Brief Historical Review

Probably the first recorded storage device, developed by Schickard in 1623, used mechanical positions of

cogs and gears to work a semi-automatic calculator. Then came Pascal’s calculating machine based on 10

digits per wheel. In 1812 punched cards were used in weaving looms to store patterns for woven material.

Since that time there have been many mechanical and, latterly, electromechanical devices developed for

memory and storage.

In 1948 at Manchester University in England the cathode ray tube (Williams) and the magnetic drum

were developed. These consisted of 1024 bits and 1280 bits and a magnetic drum capacity of 120K bits.

Cambridge University developed the mercury delay line in 1949, which represented the first fully

operational delay line memory, consisting of 576 bits per tube with a total capacity of 18K bits and a

circulation time of 1.1 ms.

The first commercial computer with a magnetic tape system was introduced in 1951. The UNIVAC I

had a magnetic tape system of 1.44M bits on 150 feet of tape and was capable of storing 128 characters

per inch. The tape could be read at a rate of 100 ips. Optical memories are now available as very fast

storage devices and will replace magnetic storage in the next few years. At present these devices are

expensive although it is envisaged that optical disks with large silicon caches will be the storage

arrangement of the future where computer systems utilizing CAD software and image processing can take

advantage of the large storage capacities with fast access times. In the future, semiconductor memories are

likely to continue their advancing trend.

Introduction

Today’s microprocessors are capable of addressing up to 16 Mbytes of main memory. To take advantage of this

large capacity, it is usual to have several programs residing in memory at the same time. With intelligent

memory management units (MMUs), the programs can be swopped in and out of the main memory to the

auxiliary memory when required. For the system to keep pace with this program swopping, it must have a fast

auxiliary memory to write to. In the past, most auxiliary systems like magnetic tape and disks have had slow

access times, and this has meant that expensive systems have evolved to cater for this requirement. Now that

auxiliary memory has improved, and access times are fast and the memory cheap, computer systems have been

developed that provide memory swopping with large nonvolatile storage systems. Although the basic

technology has not changed over the last 20 years, new materials and different approaches have meant that a

new form of auxiliary memory has been brought to the market at a very cheap cost.

1Based on P.A. Lee, ‘‘Memory subsystems,’’ in Digital Systems Reference Book, B. Holdworth and G.R. Martins, Eds., Oxford:

Butterworth-Heinemann, 1991, chap. 2.6. With permission.
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Magnetic Tape

Magnetic tape currently provides the cheapest form of storage for large quantities of computer data in a

nonvolatile form. The tape is arranged on a reel and has several different packaging styles. It is made from a

polyester transportation layer with a deposited layer of oxide having a property similar to a ferrite material

with a large hysteresis. Magnetic tape is packaged either in a cartridge, on a reel, or in a cassette. The magnetic

cartridge is manufactured in several tape lengths and cartridge sizes capable of storing up to 2 G (giga) bytes of

data. These can be purchased in many popular preformatted styles.

The magnetic tape reel is usually 1/2 inch or 1 inch wide and has lengths of 600, 1200, and 2400 feet. Most

reels can store data at rates from 800 bits per inch (bpi) up to 6250 bpi. The reel-to-reel magnetic tape reader is

generally bulkier and more expensive than the cartridge readers due to the complicated pneumatic drive

mechanisms, but it provides a large data storage capacity with high access speeds [Wiehler, 1974]. An example

of a typical magnetic tape drive with the reel-to-reel arrangement is shown in Figure 2.11.

A cheap storage medium is the magnetic cassette. Based on the audio cassette, this uses the normal audio

cassette recorder for reading and writing data via the standard Kansas City interface through a serial computer

TABLE 2.1 Memory Hierarchy

Data Code MMU

Level 0 CPU register Instruction registers MMU registers

Level 1 Data cache Instruction cache MMU memory

Level 2 On-board cache

Level 3 Main memory

Level 4 Auxiliary memory

Source: P.A. Lee, ‘‘Memory subsystems,’’ in Digital Systems Reference Book,
B. Holdsworth and G.R. Martin, Eds., Oxford: Butterworth-Heinemann, 1991,
p. 2.6/3. With permission.

FIGURE 2.11 (a) Magnetic tape drive. (b) Magnetic tape reel arrangement. (Source: K. London, Introduction to

Computers, London: Faber and Faber, 1986, p. 141. With permission.)
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I/O line. A logic data ‘‘1’’ is recorded by a high frequency and a logic data ‘‘0’’ by a lower frequency. High-

density cassettes can store up to 60 Mbytes of data on each tape and are popular with the computer games

market as a cheap storage medium for program distribution.

Both reel-to-reel and cartridge tapes are generally organised by using nine separate tracks across the tape as

shown in Figure 2.12(a).

Each track has its own read and write head operated independently from other tracks [see Figure 2.12(b)].

Tracks 1 to 8 are used for data and track nine for the parity bit. Data is written on the tape in rows of

magnetized islands, using for example EBCDIC (Extended Binary Coded Decimal Interchange Code).

Each read/write head is shaped from a ferromagnetic material with an air gap 1 mm wide as seen in

Figure 2.13. The writing head is concerned with converting an electrical pulse into a magnetic state and can be

magnetized in one of two directions. This is done by passing a current through the magnetic coil which sets up

FIGURE 2.12 Magnetic tape format. (Source: P.A. Lee, ‘‘Memory subsystems,’’ in Digital Systems Reference Book,

B. Holdsworth and G.R. Martin, Eds., Oxford: Butterworth-Heinemann, 1991, p. 2.6/11. With permission.)

FIGURE 2.13 Read/write head layout. (Source: P.A. Lee, ‘‘Memory subsystems,’’ in Digital Systems Reference Book,

B. Holdsworth and G.R. Martin, Eds., Oxford: Butterworth-Heinemann, 1991, p. 2.6/12. With permission.)
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a leakage field across the 1-mm gap. When the current is reversed the field across the gap is changed, reversing

the polarity of the magnetic field on the tape. The head magnetizes the passing magnetic tape recording the

state of the magnetic field in the air gap. A logic 1 is recorded as a change in polarity on the tape, and a logic 0

is recorded as no change in polarity, as seen in Figure 2.14. Reading the magnetic tape states from the tape and

converting them to electrical signals is done by the read head. The bit sequences in Figure 2.14 show the

change in magnetic states on the tape. When the tape is passed over the read head, it induces a voltage into the

magnetic coil which is converted to digital levels to retrieve the original data.

Tape Format

Information is stored on magnetic tape in the form of a coherent sequence of rows forming a block. This

usually corresponds to a page of computer memory and is the minimum amount of data written to or read

from magnetic tape with each program statement. Each block of data is separated by a block gap which is

approximately 15 mm long and has no data stored in it. This is shown in Figure 2.15.

Block gaps are used to allow the tape to accelerate to its operational speed and for the tape to decelerate

when stopping at the end of a block. Block gaps use up to 50% of the tape space available for recording,

although this may be reduced by making the block sizes larger but has the disadvantage of requiring larger

memory buffers to accommodate the data.

A number of blocks make up a file identified by a tape file marker which is written to the tape by the

tape controller. The entire length of tape is enclosed between the beginning and end of tape markers.

FIGURE 2.14 Write and read pulses on magnetic tape. (Source: P.A. Lee, ‘‘Memory subsystems,’’ in Digital Systems

Reference Book, B. Holdsworth and G.R. Martin, Eds., Oxford: Butterworth-Heinemann, 1991, p. 2.6/12. With permission.)

FIGURE 2.15 Magnetic tape format. (Source: P.A. Lee, ‘‘Memory subsystems,’’ in Digital Systems Reference Book,

B. Holdsworth and G.R. Martin, Eds., Oxford: Butterworth-Heinemann, 1991, p. 2.6/12. With permission.)
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These normally consist of a photosensitive material that triggers sensors on the read/write heads. When a new

tape is loaded, it normally advances to the beginning of a tape marker and then it is ready for access by the

CPU. The end of tape marker is used to prevent the tape from running off the end of the tape spool and

indicates the limit of the storage length.

Recording Modes

Several recording modes are used with the express objective of storing data at the highest density and with the

greatest reliability of noncorruption of retrieved data. Two popular but contrasting modes are the non-return-

to-zero (NRZ) and phase encoding (PE) modes. These are incompatible although some magnetic tape drives

have detectors to sense the mode and operate in a bimodal way. The NRZ technique is shown in Figure 2.14,

where only the 1 bit is displayed by a reversal of magnetization on the tape. The magnetic polarity remains

unchanged for logic 0. An external clock track is also required for this mode because a pulse is not always

generated for each row of data on the tape.

The PE technique allows both the 0 and 1 states to be displayed by changes of magnetization. A 1 bit is given

by a north-to-north pole on the tape, and a 0 bit is given by a south-to-south pole on the tape. PE provides

approximately double the recording density and processor speed of NRZ. PE tapes carry an identification

mark called a burst, which consists of successive magnetization changes at the beginning of track 4. This allows

the tape drive to recognize the tape mode and configure itself accordingly.

Defining Terms

Access time: The cycle time for the computer store to present information to the CPU. Access times vary

from less than 40 ns for level 0 register storage up to tens of seconds for magnetic tape storage.

Auxiliary (secondary, mass, or backing) storage: Computer stores which have a capacity to store

enormous amounts of information in a nonvolatile form. This type of memory has an access time

usually greater than main memory and consists of magnetic tape drives, magnetic disk stores, and

optical disk stores.

Ferromagnetic material: Materials that exhibit high magnetic properties. These include metals such as

cobalt, iron, and some alloys.

Magnetic tape: A polyester film sheet coated with a ferromagnetic powder, which is used extensively in

auxiliary memory. It is produced on a reel, in a cassette, or in a cartridge transportation medium.

Nonvolatile memory: The class of computer memory that retains its stored information when the

power supply is cut off. It includes magnetic tape, magnetic disks, flash memory, and most types of

ROM.
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Further Information

The IEEE Transactions on Magnetics is available from the IEEE Service Center, Customer Service

Department, 445 Hoes Lane, Piscataway, NJ 08855–1331; 800–678-IEEE (outside the USA: 908–981–0060).

An IEEE-sponsored Conference on Magnetism and Magnetic Materials was held in December 1992. The

British Tape Industry Association (BTIA) has a computer media committee, and further information on

standards, etc. can be obtained from British Tape Industry Association, Carolyn House, 22–26 Dingwall

Road, Croydon CR0 9XF, England. The equivalent American Association also provides information on

computer tape and can be contacted at International Tape Manufacturers’ Association, 505 Eighth Avenue,

New York, NY 10018.

2.3 Magneto-Optical Disk Data Storage

M. Mansuripur

Since the early 1940s, magnetic recording has been the mainstay of electronic information storage

worldwide. Audio tapes provided the first major application for the storage of information on magnetic

media. Magnetic tape has been used extensively in consumer products such as audio tapes and video cassette

recorders (VCRs); it has also found application in backup/archival storage of computer files, satellite images,

medical records, etc. Large volumetric capacity and low cost are the hallmarks of tape data storage, although

sequential access to the recorded information is perhaps the main drawback of this technology. Magnetic

hard disk drives have been used as mass storage devices in the computer industry ever since their inception

in 1957. With an areal density that has doubled roughly every other year, hard disks have been and remain

the medium of choice for secondary storage in computers.1 Another magnetic data storage device, the floppy

disk, has been successful in areas where compactness, removability, and fairly rapid access to the recorded

information have been of prime concern. In addition to providing backup and safe storage, inexpensive

floppies with their moderate capacities (2 Mbyte on a 3.5-in. diameter platter is typical nowadays) and

reasonable transfer rates have provided the crucial function of file/data transfer between isolated machines.

All in all, it has been a great half-century of progress and market dominance for magnetic recording

devices, which are only now beginning to face a potentially serious challenge from the technology of optical

recording.

Like magnetic recording, a major application area for optical data storage systems is the secondary storage

of information for computers and computerized systems. Like the high-end magnetic media, optical disks can

provide recording densities in the range of 107 bits/cm2 and beyond. The added advantage of optical recording

is that, like floppies, these disks can be removed from the drive and stored on the shelf. Thus the functions of

the hard disk (i.e., high capacity, high data transfer rate, rapid access) may be combined with those of the

floppy (i.e., backup storage, removable media) in a single optical disk drive. Applications of optical recording

are not confined to computer data storage. The enormously successful audio compact disk (CD), which was

introduced in 1983 and has since become the de facto standard of the music industry, is but one example of

the tremendous potentials of the optical technology.

A strength of optical recording is that, unlike its magnetic counterpart, it can support read-only, write-once,

and erasable/rewritable modes of data storage. Consider, for example, the technology of optical audio/video

disks. Here the information is recorded on a master disk which is then used as a stamper to transfer the

embossed patterns to a plastic substrate for rapid, accurate, and inexpensive reproduction. The same process is

employed in the mass production of read-only files (CD-ROM, O-ROM) which are now being used to

distribute software, catalogues, and other large databases. Or consider the write-once read-many (WORM)

1 At the time of this writing, achievable densities on hard disks are in the range of 107 bits/cm2. Random access to arbitrary

blocks of data in these devices can take on the order of 10 ms, and individual read/write heads can transfer data at the rate of several

megabits per second.
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technology, where one can permanently store massive amounts of information on a given medium and have

rapid, random access to them afterwards. The optical drive can be designed to handle read-only, WORM, and

erasable media all in one unit, thus combining their useful features without sacrificing performance and ease

of use or occupying too much space. What is more, the media can contain regions with prerecorded

information as well as regions for read/write/erase operations, both on the same platter. These possibilities

open new vistas and offer opportunities for applications that have heretofore been unthinkable; the interactive

video disk is perhaps a good example of such applications.

In this article we will lay out the conceptual basis for optical data storage systems; the emphasis will be on

disk technology in general and magneto-optical disk in particular. The first section is devoted to a discussion

of some elementary aspects of disk data storage including the concept of track and definition of the access

time. The second section describes the basic elements of the optical path and its functions; included are the

properties of the semiconductor laser diode, characteristics of the beamshaping optics, and certain features of

the focusing objective lens. Because of the limited depth of focus of the objective and the eccentricity of tracks,

optical disk systems must have a closed-loop feedback mechanism for maintaining the focused spot on the

right track. These mechanisms are described in the third and fourth sections for automatic focusing and

automatic track following, respectively. The physical process of thermomagnetic recording in magneto-optic

(MO) media is described next, followed by a discussion of the MO readout process in the sixth section. The

final section describes the properties of the MO media.

Preliminaries and Basic Definitions

A disk, whether magnetic or optical, consists of a number of tracks along which the information is recorded.

These tracks may be concentric rings of a certain width, Wt, as shown in Figure 2.16. Neighboring tracks may

be separated from each other by a guard band whose width we shall denote by Wg. In the least sophisticated

recording scheme imaginable, marks of length D0 are recorded along these tracks. Now, if each mark can be in

either one of two states, present or absent, it may be associated with a binary digit, 0 or 1. When the entire disk

surface of radius R is covered with such marks, its capacity C0 will be

C0 ¼
pR2

ðWt þWgÞD0

bits per surface ð2:1Þ

Consider the parameter values typical of current optical disk technology: R¼ 67 mm corresponding to 5.25-in.

diameter platters, D0 ¼ 0.5 mm which is roughly determined by the wavelength of the read/write laser diodes,

FIGURE 2.16 Physical appearance and general features of an optical disk. The read/write head gains access to the disk

through a window in the jacket; the jacket itself is for protection purposes only. The hub is the mechanical interface with

the drive for mounting and centering the disk on the spindle. The track shown at radius r0 is of the concentric-ring type.
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and Wt 1 Wg ¼ 1 mm for the track pitch. The disk capacity will then be around 28 · 109 bits, or 3.5 gigabytes.

This is a reasonable estimate and one that is fairly close to reality, despite the many simplifying assumptions

made in its derivation. In the following paragraphs we examine some of these assumptions in more detail.

The disk was assumed to be fully covered with information-carrying marks. This is generally not the case in

practice. Consider a disk rotating at N revolutions per second (rps). For reasons to be clarified later, this

rotational speed should remain constant during the disk operation. Let the electronic circuitry have a fixed

clock duration Tc. Then only pulses of length Tc (or an integer multiple thereof) may be used for writing.

Now, a mark written along a track of radius r, with a pulse-width equal to Tc, will have length ‘ where

‘ ¼ 2p N rTc ð2:2Þ

Thus for a given rotational speed N and a fixed clock cycle Tc, the minimum mark length ‘, is a linear

function of track radius r, and ‘ decreases toward zero as r approaches zero. One must, therefore, pick a

minimum usable track radius, rmin, where the spatial extent of the recorded marks is always greater than the

minimum allowed mark length, D0. Equation (2.3) yields

rmin ¼
D0

2p N Tc

ð2:3Þ

One may also define a maximum usable track radius rmax, although for present purposes rmax¼ R is a perfectly

good choice. The region of the disk used for data storage is thus confined to the area between rmin and rmax.

The total number N of tracks in this region is given by

N ¼ rmax � rmin

Wt þWg

ð2:4Þ

The number of marks on any given track in this scheme is independent of the track radius; in fact, the number

is the same for all tracks, since the period of revolution of the disk and the clock cycle uniquely determine the

total number of marks on any individual track. Multiplying the number of usable tracks N with the capacity

per track, we obtain for the usable disk capacity

C ¼ N

N Tc

ð2:5Þ

Replacing for N from Equation (2.4) and for N Tc from Equation (2.3), we find,

C ¼ 2prminðrmax � rminÞ
ðWt þWgÞD0

ð2:6Þ

If the capacity C in Equation (2.6) is considered a function of rmin with the remaining parameters held

constant, it is not difficult to show that maximum capacity is achieved when

rmin ¼ 1=2 rmax ð2:7Þ

With this optimum rmin, the value of C in Equation (2.6) is only half that of C0 in Equation (2.1). In other

words, the estimate of 3.5 gigabyte per side for 5.25-in. disks seems to have been optimistic by a factor of two.

One scheme often proposed to enhance the capacity entails the use of multiple zones, where either the

rotation speed N or the clock period Tc is allowed to vary from one zone to the next. In general, zoning

schemes can reduce the minimum usable track radius below that given by Equation (2.7). More importantly,

however, they allow tracks with larger radii to store more data than tracks with smaller radii. The capacity of
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the zoned disk is somewhere between C of Equation (2.6) and C0 of Equation (2.1), the exact value depending

on the number of zones implemented.

A fraction of the disk surface area is usually reserved for preformat information and cannot be used for data

storage. Also, prior to recording, additional bits are generally added to the data for error correction coding

and other housekeeping chores. These constitute a certain amount of overhead on the user data and must be

allowed for in determining the capacity. A good rule of thumb is that overhead consumes approximately 20%

of the raw capacity of an optical disk, although the exact number may vary among the systems in use.

Substrate defects and film contaminants during the deposition process can create bad sectors on the disk.

These are typically identified during the certification process and are marked for elimination from the sector

directory. Needless to say, bad sectors must be discounted when evaluating the capacity.

Modulation codes may be used to enhance the capacity beyond what has been described so far. Modulation

coding does not modify the minimum mark length of D0, but frees the longer marks from the constraint of

being integer multiples of D0. The use of this type of code results in more efficient data storage and an effective

number of bits per D0 that is greater than unity. For example, the popular (2, 7) modulation code has an

effective bit density of 1.5 bits per D0. This or any other modulation code can increase the disk capacity beyond

the estimate of Equation (2.6).

The Concept of Track

The information on magnetic and optical disks is recorded along tracks. Typically, a track is a narrow annulus at

some distance r from the disk center. The width of the annulus is denoted by Wt, while the width of the guard

band, if any, between adjacent tracks is denoted by Wg. The track pitch is the center-to-center distance between

neighboring tracks and is therefore equal to Wt 1 Wg. A major difference between the magnetic floppy disk, the

magnetic hard disk, and the optical disk is that their respective track pitches are presently of the order of 100, 10,

and 1 mm. Tracks may be fictitious entities, in the sense that no independent existence outside the pattern of

recorded marks may be ascribed to them. This is the case, for example, with the audio compact disk format where

prerecorded marks simply define their own tracks and help guide the laser beam during readout. In the other

extreme are tracks that are physically engraved on the disk surface before any data is ever recorded. Examples of

this type of track are provided by pregrooved WORM and magneto-optical disks.

It is generally desired to keep the read/write head stationary while the disk spins and a given track is being

read from or written onto. Thus, in an ideal situation, not only should the track be perfectly circular, but also

the disk must be precisely centered on the spindle axis. In practical systems, however, tracks are neither

precisely circular, nor are they concentric with the spindle axis. These eccentricity problems are solved in low-

performance floppy drives by making tracks wide enough to provide tolerance for misregistrations and

misalignments. Thus the head moves blindly to a radius where the track center is nominally expected to be and

stays put until the reading or writing is over. By making the head narrower than the track pitch, the track

center is allowed to wobble around its nominal position without significantly degrading the performance

during the read/write operation. This kind of wobble, however, is unacceptable in optical disk systems, which

have a very narrow track, about the same size as the focused beam spot. In a typical situation arising in

practice, the eccentricity of a given track may be as much as ^50 mm while the track pitch is only about 1 mm,

thus requiring active track-following procedures.

One method of defining tracks on an optical disk is by means of pregrooves that are either etched, stamped,

or molded onto the substrate. In grooved media of optical storage, the space between neighboring grooves is

the so-called land [see Figure 2.17(a)]. Data may be written in the grooves with the land acting as a guard

band. Alternatively, the land regions may be used for recording while the grooves separate adjacent tracks. The

groove depth is optimized for generating an optical signal sensitive to the radial position of the read/write laser

beam. For the push-pull method of track-error detection the groove depth is in the neighborhood of l/8,

where l is the wavelength of the laser beam.

In digital data storage applications, each track is divided into small segments or sectors, intended for the

storage of a single block of data (typically either 512 or 1024 bytes). The physical length of a sector is thus a few

millimeters. Each sector is preceded by header information such as the identity of the sector, identity of the
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corresponding track, synchronization marks, etc.

The header information may be preformatted

onto the substrate, or it may be written on the

storage layer prior to shipping the disk. Preg-

rooved tracks may be ‘‘carved’’ on the optical disk

either as concentric rings or as a single contin-

uous spiral. There are certain advantages to each

format. A spiral track can contain a succession of

sectors without interruption, whereas concentric

rings may each end up with some empty space

that is smaller than the required length for a

sector. Also, large files may be written onto (and

read from) spiral tracks without jumping to the

next track, which occurs when concentric tracks

are used. On the other hand, multiple-path

operations such as write-and-verify or erase-

and-write, which require two paths each for a

given sector, or still-frame video are more

conveniently handled on concentric-ring tracks.

Another track format used in practice is based

on the sampled-servo concept. Here the tracks

are identified by occasional marks placed perma-

nently on the substrate at regular intervals, as

shown in Figure 2.17. Details of track following

by the sampled-servo scheme will follow shortly;

suffice it to say at this point that servo marks

help the system identify the position of the

focused spot relative to the track center. Once the

position is determined it is fairly simple to steer

the beam and adjust its position.

Disk Rotation Speed

When a disk rotates at a constant angular velocity o, a track of radius r moves with the constant linear velocity

V ¼ ro. Ideally, one would like to have the same linear velocity for all the tracks, but this is impractical except

in a limited number of situations. For instance, when the desired mode of access to the various tracks is

sequential, such as in audio and video disk applications, it is possible to place the head in the beginning at the

inner radius and move outward from the center thereafter while continuously decreasing the angular velocity.

By keeping the product of r and o constant, one can thus achieve constant linear velocity for all the tracks.1

Sequential access mode, however, is the exception rather than the norm in data storage systems. In most

applications, the tracks are accessed randomly with such rapidity that it becomes impossible to adjust the rotation

speed for constant linear velocity. Under these circumstances, the angular velocity is best kept constant during the

normal operation of the disk. Typical rotation speeds are 1200 and 1800 rpm for slower drives and 3600 rpm for

the high data rate systems. Higher rotation rates (5000 rpm and beyond) are certainly feasible and will likely

appear in future storage devices.

1 In compact disk players the linear velocity is kept constant at 1.2 m/s. The starting position of the head is at the inner radius

rmin ¼ 25 mm, where the disk spins at 460 rpm. The spiral track ends at the outer radius rmax ¼ 58 mm, where the disk’s angular

velocity is 200 rpm.

FIGURE 2.17 (a) Lands and grooves in an optical disk. The

substrate is transparent, and the laser beam must pass

through it before reaching the storage medium. (b) Sampled-

servo marks in an optical disk. These marks which are offset

from the track-center provide information regarding the

position of focused spot.
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Access Time

The direct-access storage device or DASD, used in computer systems for the mass storage of digital

information, is a disk drive capable of storing large quantities of data and accessing blocks of this data rapidly

and in arbitrary order. In read/write operations it is often necessary to move the head to new locations in

search of sectors containing specific data items. Such relocations are usually time-consuming and can become

the factor that limits performance in certain applications. The access time ta is defined as the average time

spent in going from one randomly selected spot on the disk to another. ta can be considered the sum of a seek

time, ts, which is the average time needed to acquire the target track, and a latency, tl, which is the average

time spent on the target track waiting for the desired sector. Thus,

ta ¼ ts þ tl ð2:8Þ

The latency is half the revolution period of the disk, since a randomly selected sector is, on the average, halfway

along the track from the point where the head initially lands. Thus for a disk rotating at 1200 rpm tl ¼ 25 ms,

while at 3600 rpm t1 . 8:3 ms. The seek time, on the other hand, is independent of the rotation speed, but is

determined by the traveling distance of the head during an average seek, as well as by the mechanism of head

actuation. It can be shown that the average length of travel in a random seek is one third of the full stroke.

(In our notation the full stroke is rmax – rmin.) In magnetic disk drives where the head/actuator assembly is

relatively light-weight (a typical Winchester head weighs about 5 grams) the acceleration and deceleration

periods are short, and seek times are typically around 10 ms in small drives (i.e., 5.25 and 3.5 in.). In optical

disk systems, on the other hand, the head, being an assembly of discrete elements, is fairly large and heavy

ðtypical weight . 100gramsÞ, resulting in values of ts that are several times greater than those obtained in

magnetic recording systems. The seek times reported for commercially available optical drives presently range

from 20 ms in high-performance 3.5-in. drives to about 80 ms in larger drives. We emphasize, however, that

the optical disk technology is still in its infancy; with the passage of time, the integration and miniaturization

of the elements within the optical head will surely produce lightweight devices capable of achieving seek times

of the order of a few milliseconds.

The Optical Path

The optical path begins at the light source which, in practically all laser disk systems in use today, is a

semiconductor GaAs diode laser. Several unique features have made the laser diode indispensable in optical

recording technology, not only for the readout of stored information but also for writing and erasure. The

small size of this laser has made possible the construction of compact head assemblies, its coherence properties

have enabled diffraction-limited focusing to extremely small spots, and its direct modulation capability has

eliminated the need for external modulators. The laser beam is modulated by controlling the injection current;

one applies pulses of variable duration to turn the laser on and off during the recording process. The pulse

duration can be as short as a few nanoseconds, with rise and fall times typically less than 1 ns. Although

readout can be accomplished at constant power level, i.e., in CW mode, it is customary for noise reduction

purposes to modulate the laser at a high frequency (e.g., several hundred megahertz during readout).

Collimation and Beam Shaping

Since the cross-sectional area of the active region in a laser diode is only about one micrometer, diffraction

effects cause the emerging beam to diverge rapidly. This phenomenon is depicted schematically in

Figure 2.18(a). In practical applications of the laser diode, the expansion of the emerging beam is arrested by a

collimating lens, such as that shown in Figure 2.18(b). If the beam happens to have aberrations (astigmatism is

particularly severe in diode lasers), then the collimating lens must be designed to correct this defect as well.

In optical recording it is most desirable to have a beam with circular cross section. The need for shaping the

beam arises from the special geometry of the laser cavity with its rectangular cross section. Since the emerging

beam has different dimensions in the directions parallel and perpendicular to the junction, its cross section at
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the collimator becomes elliptical, with the initially

narrow dimension expanding more rapidly to

become the major axis of the ellipse. The collimating

lens thus produces a beam with elliptical cross

section. Circularization may be achieved by bending

various rays of the beam at a prism, as shown in

Figure 2.18(c). The bending changes the beam’s

diameter in the plane of incidence but leaves the

diameter in the perpendicular direction intact.

Focusing by the Objective Lens

The collimated and circularized beam of the diode

laser is focused on the surface of the disk using an

objective lens. The objective is designed to be

aberration-free, so that its focused spot size is

limited only by the effects of diffraction.

Figure 2.19(a) shows the design of a typical objective

made from spherical optics. According to the

classical theory of diffraction, the diameter of the

beam, d, at the objective’s focal plane is given by

d .
l

NA
ð2:10Þ

where l is the wavelength of light, and NA is the

numerical aperture of the objective.1

In optical recording it is desired to achieve the

smallest possible spot, since the size of the spot is

directly related to the size of marks recorded on the

medium. Also, in readout, the spot size determines the

resolution of the system. According to Equation (2.10)

there are two ways to achieve a small spot: first by

reducing the wavelength and, second, by increasing

the numerical aperture of the objective. The wave-

lengths currently available from GaAs lasers are in the

range of 670–840 nm. It is possible to use a nonlinear

optical device to double the frequency of these diode

lasers, thus achieving blue light. Good efficiencies have

been demonstrated by frequency doubling. Also

recent developments in II–VI materials have improved

the prospects for obtaining green and blue light

directly from semiconductor lasers. Consequently, there is hope that in the near future optical storage systems will

operate in the wavelength range of 400–500 nm. As for the numerical aperture, current practice is to use a lens

with NA . 0:5� 0:6. Although this value might increase slightly in the coming years, much higher numerical

apertures are unlikely, since they put strict constraints on the other characteristics of the system and limit the

tolerances. For instance, the working distance at high numerical aperture is relatively short, making access to the

recording layer through the substrate more difficult. The smaller depth of focus of a high numerical aperture lens

FIGURE 2.18 (a) Away from the facet, the output beam of

a diode laser diverges rapidly. In general, the beam diameter

along X is different from that along Y, which makes the cross

section of the beam elliptical. Also, the radii of curvature Rx

and Ry are not the same, thus creating a certain amount of

astigmatism in the beam. (b) Multi-element collimator lens

for laser diode applications. Aside from collimating, this

lens also corrects astigmatic aberrations of the beam. (c)

Beam shaping by deflection at a prism surface. y1 and y2 are

related by snell’s law, and the ratio d2/d1 is the same as cos

y2/cos y1. Passage through the prism circularizes the

elliptical cross section of the beam.

1 Numerical aperture is defined as NA ¼ n sin y, where n is the refractive index of the image space, and y is the half-angle

subtended by the exit pupil at the focal point. In optical recording systems the image space is air whose index is very nearly unity;

thus for all practical purposes NA ¼ sin y.
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will make attaining/maintaining proper focus more of

a problem, while the limited field of view might restrict

automatic track-following procedures. A small field of

view also places constraints on the possibility of read/

write/erase operations involving multiple beams.

The depth of focus of a lens, d, is the distance away

from the focal plane over which tight focus can be

maintained [see Figure 2.19(b)]. According to the

classical diffraction theory

d .
l

NA2 ð2:11Þ

Thus for a wavelength of l ¼ 700 nm and NA ¼

0.6, the depth of focus is about ^1 mm. As the disk

spins under the optical head at the rate of several

thousand rpm, the objective lens must stay within a

distance of f ^ d from the active layer if proper focus

is to be maintained. Given the conditions under

which drives usually operate, it is impossible to make

rigid enough mechanical systems to yield the

required positioning tolerances. On the other hand,

it is fairly simple to mount the objective lens in an

actuator capable of adjusting its position with the aid

of closed-loop feedback control. We shall discuss the

technique of automatic focusing in the next section.

For now, let us emphasize that by going to shorter

wavelengths and/or larger numerical apertures (as is

required for attaining higher data densities) one will

have to face a much stricter regime as far as

automatic focusing is concerned. Increasing the

numerical aperture is particularly worrisome, since

d drops with the square of NA.

A source of spherical aberrations in optical disk

systems is the substrate through which the light must

travel to reach the active layer of the disk. Figure

2.19(c) shows the bending of the rays at the disk

surface that causes the aberration. This problem can

be solved by taking into account the effects of the

substrate in the design of the objective, so that the

lens is corrected for all aberrations including those

arising at the substrate. Recent developments in molding of aspheric glass lenses have gone a long way in

simplifying the lens design problem. Figure 2.20 shows a pair of molded glass aspherics designed for optical

disk system applications; both the collimator and the objective are single-element lenses and are corrected for

aberrations.

Automatic Focusing

We mentioned in the preceding section that since the objective has a large numerical aperture (NA $ 0.5), its

depth of focus d is rather shallow ðd . 61 mm at l¼ 780 nmÞ. During all read/write/erase operations,

therefore, the disk must remain within a fraction of a micrometer from the focal plane of the objective.

FIGURE 2.19 (a) Multi-element lens design for a high

numerical aperture video disk objective. (Source: D. Kuntz,

‘‘specifying laser diode optics,’’ Laser Focus, March 1984.

With permission.) (b)Various parmeters of the objective

lens. The numerical aperture is NA ¼ sin y. The spot

diameter d and the depth of focus d are given by Equation

(2.10) and Equation (2.11), respectively. (c) Focusing

through the substrate can cause spherical aberration at

the active layer. The problem can be corrected if the

substrate is taken into account while designing the

objective.
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In practice, however, the disks are not flat and they

are not always mounted rigidly parallel to the focal

plane, so that movements away from focus occur a

few times during each revolution. The peak-to-peak

movement in and out of focus may be as much as 100

mm. Without automatic focusing of the objective

along the optical axis, this runout (or disk flutter)

will be detrimental to the operation of the system. In

practice, the objective is mounted on a small motor

(usually a voice coil) and allowed to move back and

forth in order to keep its distance within an

acceptable range from the disk. The spindle turns at

a few thousand rpm, which is a hundred or so

revolutions per second. If the disk moves in and out of focus a few times during each revolution, then the voice

coil must be fast enough to follow these movements in real time; in other words, its frequency response must

extend to several kilohertz.

The signal that controls the voice coil is obtained from the light reflected from the disk. There are several

techniques for deriving the focus error signal, one of which is depicted in Figure 2.21(a). In this so-called

obscuration method a secondary lens is placed in the

path of the reflected light, one-half of its aperture is

covered, and a split detector is placed at its focal

plane. When the disk is in focus, the returning beam

is collimated and the secondary lens will focus the

beam at the center of the split detector, giving a

difference signal DS equal to zero. If the disk now

moves away from the objective, the returning beam

will become converging, as in Figure 2.21(b), sending

all the light to detector #1. In this case DS will be

positive and the voice coil will push the lens towards

the disk. On the other hand, when the disk moves

close to the objective, the returning beam becomes

diverging and detector #2 receives the light [see

Figure 2.21(c)]. This results in a negative DS that

forces the voice coil to pull back in order to return DS

to zero. A given focus error detection scheme is

generally characterized by the shape of its focus error

signal DS versus the amount of defocus Dz; one such

curve is shown in Figure 2.21(d). The slope of the

focus error signal (FES) curve near the origin is of

particular importance, since it determines the overall

performance and stability of the servo loop.

Automatic Tracking

Consider a track at a certain radial location, say r0,

and imagine viewing this track through the access

window shown in Figure 2.16. It is through this

window that the head gains access to arbitrarily

selected tracks. To a viewer looking through

the window, a perfectly circular track centered on

the spindle axis will look stationary, irrespective of

FIGURE 2.20 Molded glass aspheric lens pair for optical

disk applications. These singlets can replace multi-element

spherical lenses.

FIGURE 2.21 Focus error detection by the obscuration

method. In (a) the disk is in focus, and the two halves of the

split detector receive equal amounts of light. When the disk

is too far from the objective (b) or too close to it (c) the

balance of detector signals shifts to one side or the other. A

plot of the focus error signal (FES) versus defocus is shown

in (d) and its slope near the origin is identified as the FES

gain, G.
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the rotation rate. However, any eccentricity will

cause an apparent radial motion of the track. The

peak-to-peak distance traveled by a track (as seen

through the window) depends on a number of

factors including centering accuracy of the hub,

deformability of the substrate, mechanical vibra-

tions, manufacturing tolerances, etc. For a typical

3.5-in. disk, for example, this peak-to-peak motion

can be as much as 100 mm during one revolution.

Assuming a revolution rate of 3600 rpm, the

apparent velocity of the track in the radial

direction will be several millimeters per second. Now, if the focused spot remains stationary while trying to

read from or write to this track, it is clear that the beam will miss the track for a good fraction of every

revolution cycle.

Practical solutions to the above problem are provided by automatic tracking techniques. Here the objective

is placed in a fine actuator, typically a voice coil, which is capable of moving the necessary radial distances and

maintaining a lock on the desired track. The signal that controls the movement of this actuator is derived from

the reflected light itself, which carries information about the position of the focused spot. There exist several

mechanisms for extracting the track error signal (TES); all these methods require some sort of structure on

the disk surface in order to identify the track. In the case of read-only disks (CD, CD-ROM, and video disk),

the embossed pattern of data provides ample information for tracking purposes. In the case of write-once and

erasable disks, tracking guides are ‘‘carved’’ on the substrate in the manufacturing process. As mentioned ear-

lier, the two major formats for these tracking guides are pregrooves (for continuous tracking) and sampled-

servo marks (for discrete tracking). A combination of the two schemes, known as continuous/composite

format, is often used in practice. This scheme is depicted in Figure 2.22 which shows a small section

containing five tracks, each consisting of the tail end of a groove, synchronization marks, a mirror area used

for adjusting focus/track offsets, a pair of wobble marks for sampled tracking, and header information for

sector identification.

Tracking on Grooved Regions

As shown in Figure 2.17(a), grooves are continuous depressions that are either embossed or etched or molded

onto the substrate prior to deposition of the storage medium. If the data is recorded on the grooves, then the

lands are not used except for providing a guard band between neighboring grooves. Conversely, the land

regions may be used to record the information, in which case grooves provide the guard band. Typical track

widths are about one wavelength. The guard bands are somewhat narrower than the tracks, their exact shape

and dimensions depending on the beam size, required track-servo accuracy, and the acceptable levels of cross-

talk between adjacent tracks. The groove depth is usually around one-eighth of one wavelength (l/8), since

this depth can be shown to give the largest TES in the push-pull method. Cross sections of the grooves may be

rectangular, trapezoidal, triangular, etc.

When the focused spot is centered on track, it is diffracted symmetrically from the two edges of the track,

resulting in a balanced far field pattern. As soon as the spot moves away from the center, the symmetry breaks

down and the light distribution in the far field tends to shift to one side or the other. A split photodetector

placed in the path of the reflected light can therefore sense the relative position of the spot and provide the

appropriate feedback signal. This strategy is depicted schematically in Figure 2.23.

Sampled Tracking

Since dynamic track runout is usually a slow and gradual process, there is actually no need for continuous

tracking as done on grooved media. A pair of embedded marks, offset from the track center as in

Figure 2.17(b), can provide the necessary information for correcting the relative position of the focused spot.

The reflected intensity will indicate the positions of the two servo marks as two successive short pulses. If the

beam happens to be on track, the two pulses will have equal magnitudes and there will be no need for

FIGURE 2.22 Servo fields in continuous/composite for-

mat contain a mirror area and offset marks for tracking

(Source: A.B. Marchant, Optical Recording, Reading, Mass.:

Addison-Wesley, 1990, p. 264. With permission.)
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correction. If, on the other hand, the beam is off-

track, one of the pulses will be stronger than the

other. Depending on which pulse is the stronger, the

system will recognize the direction in which it has to

move and will correct the error accordingly. The

servo marks must appear frequently enough along

the track to ensure proper track following. In a

typical application, the track might be divided into

groups of 18 bytes, 2 bytes dedicated as servo offset

areas and 16 bytes filled with other format informa-

tion or left blank for user data.

Thermomagnetic Recording Process

Recording and erasure of information on a magneto-

optical disk are both achieved by the thermomag-

netic process. The essence of thermomagnetic

recording is shown in Figure 2.24. At the ambient

temperature the film has a high magnetic coercivity1

and therefore does not respond to the externally

applied field. When a focused beam raises the local temperature of the film, the hot spot becomes magnetically

soft (i.e., its coercivity drops). As the temperature rises, coercivity drops continuously until such time as the

field of the electromagnet finally overcomes the material’s resistance to reversal and switches its magnetization.

Turning the laser off brings the temperatures back to normal, but the reverse-magnetized domain remains

frozen in the film. In a typical situation in practice, the film thickness may be around 300 Å, laser power at the

disk .10 mW, diameter of the focused spot .1 mm, laser pulse duration .50 ns, linear velocity of the track

.10 m=s, and the magnetic field strength .200 gauss. The temperature may reach a peak of 500 K at the

center of the spot, which is sufficient for magnetization reversal, but is not nearly high enough to melt or

crystalize or in any other way modify the material’s structure.

The materials of magneto-optical recording have strong perpendicular magnetic anisotropy. This type of

anisotropy favors the ‘‘up’’ and ‘‘down’’ directions of magnetization over all other orientations. The disk is

initialized in one of these two directions, say up, and the recording takes place when small regions are

selectively reverse-magnetized by the thermomagnetic process. The resulting magnetization distribution then

represents the pattern of recorded information. For instance, binary sequences may be represented by a

mapping of zeros to up-magnetized regions and ones to down-magnetized regions (non-return to zero or

NRZ). Alternatively, the NRZI scheme might be used, whereby transitions (up-to-down and down-to-up) are

used to represent the ones in the bit-sequence.

Recording by Laser Power Modulation (LPM)

In this traditional approach to thermomagnetic recording, the electromagnet produces a constant field, while

the information signal is used to modulate the power of the laser beam. As the disk rotates under the focused

spot, the on/off laser pulses create a sequence of up/down domains along the track. The domains are highly

stable and may be read over and over again without significant degradation. If, however, the user decides to

discard a recorded block and to use the space for new data, the LPM scheme does not allow direct overwrite;

the system must erase the old data during one disk revolution cycle and record the new data in a subsequent

revolution cycle.

1 Coercivity of a magnetic medium is a measure of its resistance to magnetization reversal. For example, consider a thin film

with perpendicular magnetic moment saturated in the þZ direction. A magnetic field applied along –Z will succeed in reversing the

direction of magnetization only if the field is stronger than the coercivity of the film.

FIGURE 2.23 Push-pull sensor for tracking on grooves.

(Source: A.B. Marchant, Optical Recording, Reading, Mass.:

Addison-Wesley, 1990, p. 175. With permission.)
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During erasure, the direction of the external field is reversed, so that up-magnetized domains in

Figure 2.24 now become the favored ones. Whereas writing is achieved with a modulated laser beam, in

erasure the laser stays on for a relatively long period of time, erasing an entire sector. Selective erasure of

individual domains is not practical, nor is it desired, since mass data storage systems generally deal with

data at the level of blocks, which are recorded onto and read from individual sectors. Note that at least one

revolution period elapses between the erasure of an old block and its replacement by a new block. The

electromagnet therefore need not be capable of rapid switchings. (When the disk rotates at 3600 rpm, for

example, there is a period of 16 ms or so between successive switchings.) This kind of slow reversal allows

the magnet to be large enough to cover all the tracks simultaneously, thereby eliminating the need for a

moving magnet and an actuator. It also affords a relatively large gap between the disk and the magnet,

which enables the use of double-sided disks and relaxes the mechanical tolerances of the system without

overburdening the magnet’s driver.

The obvious disadvantage of LPM is its lack of direct overwrite capability. A more subtle concern is that it is

perhaps unsuitable for the PWM (pulse width modulation) scheme of representing binary waveforms. Due to

fluctuations in the laser power, spatial variations of material properties, lack of perfect focusing and track

following, etc., the length of a recorded domain along the track may fluctuate in small but unpredictable ways.

If the information is to be encoded in the distance between adjacent domain walls (i.e., PWM), then the LPM

scheme of thermomagnetic writing may suffer from excessive domain-wall jitter. Laser power modulation

works well, however, when the information is encoded in the position of domain centers (i.e., pulse position

modulation or PPM). In general, PWM is superior to PPM in terms of the recording density, and, therefore,

recording techniques that allow PWM are preferred.

Recording by Magnetic Field Modulation

Another method of thermomagnetic recording is based on magnetic field modulation (MFM) and is depicted

schematically in Figure 2.25(a). Here the laser power may be kept constant while the information signal is used

to modulate the magnetic field. Crescent-shaped domains are the hallmark of the field modulation technique.

If one assumes (using a much simplified model) that the magnetization aligns itself with the applied field

within a region whose temperature has passed a certain critical value, Tcrit, then one can explain the crescent

shape of these domains in the following way: With the laser operating in the CW mode and the disk moving at

constant velocity, temperature distribution in the magnetic medium assumes a steady-state profile, such as

that shown in Figure 2.25(b). Of course, relative to the laser beam, the temperature profile is stationary, but in

the frame of reference of the disk the profile moves along the track with the linear track velocity. The isotherm

corresponding to Tcrit is identified as such in the figure; within this isotherm the magnetization aligns itself

with the applied field. Figure 2.25(c) shows a succession of critical isotherms along the track, each obtained at

the particular instant of time when the magnetic field switches direction. From this picture it is easy to infer

FIGURE 2.24 Thermomagnetic recording process. The field of the electromagnet helps reverse the direction of

magnetization in the area heated by the focused laser beam. (Source: F. Greidanus et al., Paper 26B-5, presented at the

International Symposium on Optical Memory, Kobe, Japan, September 1989. With permission.)
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how the crescent-shaped domains form and also understand the relation between the waveform that controls

the magnet and the resulting domain pattern.

The advantages of magnetic field modulation recording are that (1) direct overwriting is possible and

(2) domain-wall positions along the track, being rather insensitive to defocus and laser power fluctuations, are

fairly accurately controlled by the timing of the magnetic field switchings. On the negative side, the magnet

must now be small and fly close to the disk surface, if it is to produce rapidly switched fields with a magnitude

of a hundred gauss or so. Systems that utilize magnetic field modulation often fly a small electromagnet on the

opposite side of the disk from the optical stylus. Since mechanical tolerances are tight, this might compromise

the removability of the disk. Moreover, the requirement of close proximity between the magnet and the storage

medium dictates the use of single-sided disks in practice.

Magneto-Optical Readout

The information recorded on a perpendicularly magnetized medium may be read with the aid of the polar

magneto-optical Kerr effect. When linearly polarized light is normally incident on a perpendicular magnetic

medium, its plane of polarization undergoes a slight rotation upon reflection. This rotation of the plane of

FIGURE 2.25 (a) Thermomagnetic recording by magnetic field modulation. The power of the beam is kept constant,

while the magnetic field direction is switched by the data signal. (b) Computed isotherms produced by a CW laser beam,

focused on the magnetic layer of a disk. The disk moves with constant velocity under the beam. The region inside the

isotherm marked as Tcrit is above the critical temperature for writing, that is, its magnetization aligns with the direction of

the applied field. (c) Magnetization within the heated region (above Tcrit) follows the direction of the applied field, whose

switchings occur at times tn. The resulting domains are crescent-shaped.
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polarization, whose sense depends on the direction of magnetization in the medium, is known as the polar

Kerr effect. The schematic representation of this phenomenon in Figure 2.26 shows that if the polarization

vector suffers a counterclockwise rotation upon reflection from an up-magnetized region, then the same

vector will rotate clockwise when the magnetization is down. A magneto-optical medium is characterized in

terms of its reflectivity R and its Kerr rotation angle yk. R is a real number (between 0 and 1) that indicates

the fraction of the incident power reflected back from the medium at normal incidence. yk is generally quoted

as a positive number, but is understood to be positive or negative depending on the direction of

magnetization; in MO readout, it is the sign of yk that carries the information about the state of

magnetization, i.e., the recorded bit pattern.

The laser used for readout is usually the same as that used for recording, but its output power level is

substantially reduced in order to avoid erasing (or otherwise obliterating) the previously recorded

information. For instance, if the power of the write/erase beam is 20 mW, then for the read operation the

beam is attenuated to about 3 or 4 mW. The same objective lens that focuses the write beam is now used to

focus the read beam, creating a diffraction-limited spot for resolving the recorded marks. Whereas in writing

the laser was pulsed to selectively reverse-magnetize small regions along the track, in readout it operates with

constant power, i.e., in CW mode. Both up- and down-magnetized regions are read as the track passes under

the focused spot. The reflected beam, which is now polarization-modulated, goes back through the objective

and becomes collimated once again; its information content is subsequently decoded by polarization-sensitive

optics, and the scanned pattern of magnetization is reproduced as an electronic signal.

Differential Detection

Figure 2.27 shows the differential detection system that is the basis of magneto-optical readout in practically all

erasable optical storage systems in use today. The beam splitter (BS) diverts half of the reflected beam away

from the laser and into the detection module.1 The polarizing beam splitter (PBS) splits the beam into two

parts, each carrying the projection of the incident polarization along one axis of the PBS, as shown in Figure

2.27(b). The component of polarization along one of the axes goes straight through, while the component

along the other axis splits off and branches to the side. The PBS is oriented such that in the absence of the Kerr

effect its two branches will receive equal amounts of light. In other words, if the polarization, upon reflection

FIGURE 2.26 Schematic diagram describing the polar magneto-optical Kerr effect. Upon reflection from the surface of a

perpendicularly magnetized medium, the polarization vector undergoes a rotation. The sense of rotation depends on the

direction of magnetization, M, and switches sign when M is reversed.

1 The use of an ordinary beam splitter is an inefficient way of separating the incoming and outgoing beams, since half the light is

lost in each pass through the splitter. One can do much better by using a so-called ‘‘leaky’’ polarizing beam splitter.
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from the disk, did not undergo any rotations whatsoever, then the beam entering the PBS would be polarized

at 45– to the PBS axes, in which case it would split equally between the two branches. Under this condition,

the two detectors generate identical signals and the differential signal DS will be zero. Now, if the beam returns

from the disk with its polarization rotated clockwise (rotation angle ¼ yk), then detector #1 will receive more

light than detector #2, and the differential signal will be positive. Similarly, a counterclockwise rotation will

generate a negative DS. Thus, as the disk rotates under the focused spot, the electronic signal DS reproduces

the pattern of magnetization along the scanned track.

Materials of Magneto-Optical Data Storage

Amorphous rare earth transition metal alloys are presently the media of choice for erasable optical data storage

applications. The general formula for the composition of the alloy may be written (TbyGd1–y)x(FezCo1-z)1–x

where terbium and gadolinium are the rare earth (RE) elements, while iron and cobalt are the transition

metals (TM). In practice, the transition metals constitute roughly 80 atomic percent of the alloy (i.e., x . 0:2).

FIGURE 2.27 Differential detection scheme utilizes a polarizing beam splitter and two photodetectors in order to convert

the rotation of polarization to an electronic signal. E|| and E’ are the reflected components of polarization; they are,

respectively, parallel and perpendicular to the direction of incident polarization. The diagram in (b) shows the orientation

of the PBS axes relative to the polarization vectors.

# 2006 by Taylor & Francis Group, LLC



In the transition metal subnetwork, the fraction of cobalt is usually small, typically around 10%, and iron is

the dominant element ðz . 0:9Þ. Similarly, in the rare earth subnetwork Tb is the main element ðy . 0:9Þ
while the gadolinium content is small or it may even be absent in some cases. Since the rare earth elements are

highly reactive to oxygen, RE-TM films tend to have poor corrosion resistance and, therefore, require

protective coatings. In multilayer disk structures, the dielectric layers that enable optimization of the medium

for the best optical/thermal behavior also perform the crucial function of protecting the MO layer from the

environment.

The amorphous nature of the material allows its composition to be continuously varied until a number of

desirable properties are achieved. In other words, the fractions x, y, z of the various elements are not

constrained by the rules of stoichiometry. Disks with very large areas can be coated uniformly with thin films

of these media, and, in contrast to polycrystalline films whose grains and grain boundaries scatter the beam

and cause noise, amorphous films are continuous, smooth, and substantially free from noise. The films are

deposited either by sputtering from an alloy target or by co-sputtering from multiple elemental targets. In the

latter case, the substrate moves under the various targets and the fraction of a given element in the alloy is

determined by the time spent under each target as well as the power applied to that target. During film

deposition the substrate is kept at a low temperature (usually by chilled water) in order to reduce the mobility

of deposited atoms and thus inhibit crystal growth. The type of the sputtering gas (argon, krypton, xenon,

etc.) and its pressure during sputtering, the bias voltage applied to the substrate, deposition rate, nature of the

substarte and its pretreatment, and temperature of the substrate all can have dramatic effects on the

composition and short-range order of the deposited film. A comprehensive discussion of the factors that

influence film properties will take us beyond the intended scope here; the interested reader may consult the

vast literature of this field for further information.

Defining Terms

Automatic focusing: The process in which the distance of the disk from the objective’s focal plane is

continuously monitored and fed back to the system in order to keep the disk in focus at all times.

Automatic tracking: The process in which the distance of the focused spot from the track center is

continuously monitored and the information fed back to the system in order to maintain the read/write

beam on track at all times.

Compact disk (CD): A plastic substrate embossed with a pattern of pits that encode audio signals in

digital format. The disk is coated with a metallic layer (to enhance its reflectivity) and read in a drive

(CD player) that employs a focused laser beam and monitors fluctuations of the reflected intensity in

order to detect the pits.

Error correction coding (ECC): Systematic addition of redundant bits to a block of binary data, as

insurance against possible read/write errors. A given error-correcting code can recover the original data

from a contaminated block, provided that the number of erroneous bits is less than the maximum

number allowed by that particular code.

Grooved media of optical storage: A disk embossed with grooves of either the concentric-ring type or

the spiral type. If grooves are used as tracks, then the lands (i.e., regions between adjacent grooves) are

the guard bands. Alternatively, lands may be used as tracks, in which case the grooves act as guard bands.

In a typical grooved optical disk in use today the track width is 1.1 mm, the width of the guard band is

0.5 mm, and the groove depth is 70 nm.

Magneto-optical Kerr effect: The rotation of the plane of polarization of a linearly polarized beam of

light upon reflection from the surface of a perpendicularly magnetized medium.

Objective lens: A well-corrected lens of high numerical aperture, similar to a microscope objective, used to

focus the beam of light onto the surface of the storage medium. The objective also collects and

recollimates the light reflected from the medium.

Optical path: Optical elements in the path of the laser beam in an optical drive. The path begins at the laser

itself and contains a collimating lens, beam shaping optics, beam splitters, polarization-sensitive ele-

ments, photodetectors, and an objective lens.
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Preformat: Information such as sector address, synchronization marks, servo marks, etc., embossed perma-

nently on the optical disk substrate.

Sector: A small section of track with the capacity to store one block of user data (typical blocks are either

512 or 1024 bytes). The surface of the disk is covered with tracks, and tracks are divided into contiguous

sectors.

Thermomagnetic process: The process of recording and erasure in magneto-optical media, involving

local heating of the medium by a focused laser beam, followed by the formation or annihilation of a

reverse-magnetized domain. The successful completion of the process usually requires an external

magnetic field to assist the reversal of the magnetization.

Track: A narrow annulus or ring-like region on a disk surface, scanned by the read/write head during one

revolution of the spindle; the data bits of magnetic and optical disks are stored sequentially along these

tracks. The disk is covered either with concentric rings of densely packed circular tracks or with one

continuous, fine-pitched spiral track.
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Further Information

Proceedings of the Optical Data Storage Conference are published annually by SPIE, the International Society

for Optical Engineering. These proceedings document the latest developments in the field of optical recording

each year. Two other conferences in this field are the International Symposium on Optical Memory (ISOM),

whose proceedings are published as a special issue of the Japanese Journal of Applied Physics, and the Magneto-

Optical Recording International Symposium (MORIS), whose proceedings appear in a special issue of the

Journal of the Magnetics Society of Japan.
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3.1 Combinational Networks and Switching Algebra1

Franco P. Preparata

Introduction to Binary Functions of Binary Variables

A digital system can be analyzed as an interconnection of functional components of basically two types:

1. Storage components, called memory or registers, as appropriate, which store information

2. Combinational components, which do not have any memory capability and whose function is the

implementation of the required information processing activities (computing)

In this section we shall be concerned with the study of combinational components. Consider, for example, a

circuit (the adder) designed to compute the sum of two integers represented in binary (Figure 3.1). The adder has

1All material in this section is adapted from F. Preparata, Introduction to Computer Engineering, New York: John Wiley, 1985,

chap. 3. With permission.
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two sets of input lines, one for each of the two operands A and B and one set of output lines for the sum. Each set

of lines (input and output) consists of as many wires as there are bits in the number it is designed to carry.

Such an adder can be realized by means of a collection of simpler blocks, called adder cells, each of which is

assigned to a fixed position of the operands (that is, the ith cell receives the ith bits of the addends). The adder

is completed by connecting the carry-out output of the ith cell to the carry-in input of the (i þ 1)th cell and

setting c0 permanently to 0 (see Figure 3.2).

Thus, all we need do to design the adder is to design the adder cell, whose behavior is specified in

Figure 3.2(b). The adder cell receives three binary inputs A, B, and C, of which A and B are the operand bits

FIGURE 3.1 A binary adder.

FIGURE 3.2 An adder (a); an adder cell (b); and its behavior (c).

# 2006 by Taylor & Francis Group, LLC



and C is the carry-in bit, and produces two binary outputs C 0 and S, of which S is the sum bit and C0 is the

carry-out bit. A, B, and C (the input variables) are independent and therefore can appear in any one of the

eight configurations shown in Figure 3.2(b); C 0 and S, instead, depend entirely upon the binary values of A, B,

and C. Specifically, the ordered pair (C 0, S) corresponding to a given triple (A, B, C) will represent in binary

the number of 1’s appearing in the binary string ABC; for example, in ABC ¼ 110 there are two 1’s, whence

(C 0, S) will represent in binary the number 2, that is, C0S ¼ 10 [see Figure 3.2(b)].

We recognize a familiar notion; both C 0 and S are functions of (A, B, C), that is, for each of them we have a

domain consisting of the eight possible triples of binary values for (A, B, C) [Figure 3.2(b), three left columns]

and a range consisting of the two values 0,1. Thus C 0 and S are each binary functions of binary variables; now,

we have the following:

A binary function of binary variables is called a switching function. A combinational circuit or

network is a digital subsystem which realizes a switching function.

The conventional way to display a switching function f is that shown in Figure 3.2(b). Specifically, the

combinations of 0’s and 1’s are ordered so that, when viewed as binary numbers, they are in natural order.

Next to each combination, the value of the function is given: this table of function values is called the truth

table of f. The reason for this name is that a binary variable is said to be true when equal to 1 and false

otherwise. So, the function table gives the truth values of the function.

Our objective is to develop a methodology for the design of a combinational network that realizes a given

switching function.

Switching Functions of One and Two Variables

To gain insight into the nature of switching functions,

we begin by considering binary functions of one binary

variable x. This variable can assume only two values, 0

and 1, which form the domain (see Figure 3.3). All the

functions of one variable are obtained by filling a two-

place truth table in all possible ways, that is, in four

ways, shown in Figure 3.3.

We say that a function is degenerate if it does not

depend upon all of its arguments and nondegenerate

otherwise. So we see that function f0 is degenerate: in

fact, it is constant and equal to 0, so we will call it the

constant 0; similarly, f3 will be called the constant 1.

Instead, f1 and f2 are nondegenerate functions: notice that f1ð0Þ ¼ 0 and f1ð1Þ ¼ 1, thus f1ðxÞ ¼ x, so f1 will be

called the identity; f2ð0Þ ¼ 1 and f2ð1Þ ¼ 0 ( f2 maps 0 to 1 and 1 to 0) and will be called the complement

function and denoted by f2ðxÞ ¼ �xx.

We are now ready to consider the binary function of two binary variables x2 and x1. Here the pair (x2, x1)

can assume four possible values (00, 01, 10, 11), which form the domain (see Figure 3.4). All functions are

now obtained by filling a truth table with four entries in all possible ways (Figure 3.4). Obviously, this can be

done in 16 ways; that is, we have 16 binary functions of 2 binary variables. Let us examine these functions g0,

FIGURE 3.3 Truth tables of all functions of one variable.

FIGURE 3.4 Truth tables of all functions of two variables.
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g1; . . . ; g15. We realize that g0 and g15 are, respectively, the constants 0 and 1; moreover, we notice that g3 ¼ x2,

g5 ¼ x1, g10 ¼ �xx1, and g12 ¼ �xx2, that is, the latter are actually nondegenerate functions of only one variable.

The remaining 10 functions g1, g2, g4, g6, g7, g8, g9, g11, g13, g14 are nondegenerate functions of two variables

(i.e., each of them depends upon both variables). We could analyze all of them, but temporarily we content

ourselves with the study of g1 and g7.

For convenience, we redraw the truth tables of functions gl and g7 in Figure 3.5. Function gl is equal to 1 only

when both x2 and x1 are equal to 1; for this reason it is called the AND function. Function g7 is equal to 1 when

either x2 or x1, or both, are equal to 1; for this reason it is called the OR function.

We can now imagine that special devices are available for the realization of some of the functions we have

considered. Specifically, we have a one-input–one-output device, called an inverter [in Figure 3.6(a) we give the

conventional symbol for this device], which realizes the function COMPLEMENT; a two-input–one-output

device [Figure 3.6(b)], called AND gate, which realizes the function AND, and an analogous device

[Figure 3.6(c)], called OR gate, which realizes the function OR.

The output of an AND gate with inputs x1 and x2 will be denoted by x1 · x2 or simply x1x2; analogously, the

output of an OR gate with inputs x1 and x2 will be denoted by x1 þ x2. (The context will avoid confusion with

the symbols ‘‘· ’’ and ‘‘þ ’’ when used in ordinary arithmetic.)

Networks and Expressions

Consider an interconnection of the basic building blocks, AND gates, OR gates, and inverters, such as that

shown in Figure 3.7(a). Such an interconnection we call a network. Notice that each gate output, except the

single-network output, feeds exactly one gate input and that there are no loops; that is, when tracing a path in

the obvious way, in no case will this path traverse the same gate twice. The input terminals are all the

unconnected gate inputs. We may think of constructing this network by connecting to the two input

terminals of gate G1 [see Figure 3.7(b)] the output terminals of two smaller networks. In turn, the latter

networks could be decomposed into even smaller networks, and so on until we reach the simplest networks of

all: terminals. This analysis actually enables us to give an (inductive) definition of a network.

Definition of Combinational Networks

1. Input terminals are networks (elementary networks).

2. If N1 and N2 are networks (represented as black boxes), so are the following:

In analogy with the preceding definition, consider now the following definition of Boolean expressions.

FIGURE 3.6 Symbols for inverter (a), AND gate (b), and OR gate (c).FIGURE 3.5 Study of the AND

and OR functions.
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Definition of Boolean Expressions

1. Variables (both complemented and uncomplemented) and constants are expressions (elementary

expressions).

2. If E1 and E2 are expressions, so are �EE1, E1 · E2, and E1þ E2.1

Example 3.1. x1, 0, x2 are elementary expressions; is an expression; specifically, it is the AND of expressions

E1 ¼ x1 þ ð�xx2x3Þ and E2 ¼ x4.

Suppose that we now assign either a variable (complemented or otherwise) or a constant to each input

terminal of a nonelementary network. Then, with the output of each gate whose inputs are connected to the

input terminals, we can associate an expression, and so on downstream until we associate an expression with

the output of the network [for example see Figure 3.8(a)]. Therefore, we see that there is a one-to-one

correspondence between expressions and networks whose inputs have been assigned (input-assigned

network). Specifically we say that

An expression$ an input � assigned network

Normally we will drop the qualifier input-assigned whenever the context makes it obvious.

Consider the network of Figure 3.8(a). We may now assign to each binary input variable, that is, to x1, x2,

and x3, one of the two possible values 0 or 1. Once this assignment has been made we can easily trace the

FIGURE 3.7 A combinatorial network.

1To avoid any ambiguity, the new expressions E1 · E2 and E1 þ E2 should be parenthesized as ðE1 · E2Þ and (E1 þ E2). However,

we shall conform here to the familiar rules for parentheses adopted in ordinary algebra for ‘‘þ ’’ and ‘‘ · ’’.
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network downstream and calculate a binary value on each internal wire of the network until we obtain a

binary value at the output terminal [Figure 3.8(b)]. Consider what we have done: We have chosen a set of

binary values for (xl, x2, x3) (in our example 001) and have obtained a binary value of u, and for each different

choice of input values the network embodies a well-defined rule for obtaining a value of u. This means that u is

a function of (x1, x2, x3), from which we conclude that any given switching network computes a switching

function of its inputs.

A most remarkable fact—to be shown later—is that the converse of the above statement is also true, that is,

for any given switching function we can design a network that realizes it. The corresponding design techniques

will be presented in the next subsections.

The notion of combinational networks can be slightly generalized to encompass the class of networks in

which a gate output may feed more than one gate.1 A gate output feeding two or more gate inputs is said

to have multiple fan-out. Notice, however, that a network with multiple fan-out gates does not correspond

to a single Boolean expression: indeed, if we want to be able to reconstruct the network from its

description, we must have a distinct expression for each gate having a multiple fan-out.

Switching Algebra

The techniques for designing combinational networks rest on the properties of a fundamental formal system

called switching algebra (which is a special case of more general systems called Boolean algebras, although

frequently switching algebra is referred to as Boolean algebra).

The objects that switching algebra deals with are the (Boolean) expressions defined in the preceding

subsection. The basic axiom is as follows.

FIGURE 3.8 Determination of the output expression of a network.

1The number of inputs driven by the output of a gate is called the fan-out of that gate. Also, the number of inputs of a gate is

called the fan-in of the gate.
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Axiom. Each expression assumes either the value 0 or the value 1 for all assignments of values (0 or l) to its

variables.

We begin by regarding the function of one variable, COMPLEMENT, as a unary operation, that is, as an

operation with one operand x, the function’s argument, which is itself to be regarded as an expression and can

only assume the two values 0 and 1. The table of the operation is repeated below.

Operand
0
1

Complement
1
0

Notice that the complement of 0 is 1, �00 ¼ 1; similarly �11 ¼ 0. It follows that

ð�00Þ ¼ �11 ¼ 0; ð�11Þ ¼ �00 ¼ 1

This is summarized by the identity

��xx�xx ¼ x Involution ð3:1Þ

which describes a fundamental property of COMPLEMENT. Notice also that the constants 0 and 1 are

mutually complementary.

We now regard the functions AND and OR of two variables x1 and x2 as binary operations, that is, as

operations with two operands. Here again x1 and x2 are to be regarded as expressions, and by the axiom, each

can only assume either the value 0 or the value 1. The transformation of each of the function tables to the

corresponding operation table, shown in Figure 3.9, should be self-explanatory. From the inspection of these

operation tables, we can now deduce their characteristic properties. First of all, both tables are symmetric with

respect to the main diagonal, that is, we can exchange the role of x1 and x2; we shall summarize this as follows:

x1 · x2 ¼ x2 · x1 x1 þ x2 ¼ x2 þ x1 Commutativity ð3:2Þ

Next, we notice that 0 · 0 ¼ 0þ 0 ¼ 0 and 1 · 1 ¼ 1þ 1 ¼ 1, which leads to the property, for any expression x,

xx ¼ x x þ x ¼ x Idempotency ð3:3Þ

Since 0 · 1 ¼ 0 and 1 · 1 ¼ 1 we extract the rule x · 1 ¼ x; similarly 0 þ 0 ¼ 0 and 1 þ 0 ¼ 1 gives

x þ 0 ¼ x, and we have the properties

x · 1 ¼ x x þ 0 ¼ x ð3:4Þ

Also, 0 · 0 ¼ 0 and 1 · 0 ¼ 0 yields x · 0 ¼ 0; similarly 0 þ 1 ¼ 1 and 1 þ 1 ¼ 1 yields x þ 1 ¼ 1, thus the

properties

x · 0 ¼ 0 x þ 1 ¼ 1 ð3:5Þ

FIGURE 3.9 Operational tables for (a) AND (b) OR.
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Finally, considering the off-diagonal elements in both operation tables, we see that 0 · 1 ¼ 1 · 0 ¼ 0 and

0 þ 1 ¼ 1 þ 0 ¼ 1; therefore

x · �xx ¼ 0 x þ �xx ¼ 1 Complementarity ð3:6Þ

There is now a collection of additional properties that can be easily derived by means of a useful proof

mechanism called perfect induction, which is stated as follows.

Perfect Induction. Two expressions E1 and E2 on the same set of variables are equivalent (denoted by

E1 ¼ E2) if, for all possible assignments of values to the variables, the values of E1 and E2 coincide.

Perfect induction will now be used to prove the following identities:

x · ðy þ zÞ ¼ xy þ xz x þ yz ¼ ðx þ yÞðx þ zÞ Distributivity ð3:7Þ

Indeed, the claim is proved by the tables in Figure 3.10.

By perfect induction we can also prove the identities

xðx þ yÞ ¼ x x þ xy ¼ x Absorption ð3:8Þ

ðxyÞz ¼ xðyzÞ ðx þ yÞ þ z ¼ x þ ðy þ zÞ Associativity ð3:9Þ

xy ¼ �xx þ �yy x þ y ¼ �xx · �yy ð3:10Þ

(Notice that because associativity holds, we will omit parentheses when writing the AND or the OR of more

than two variables.)

Consider now the identities (3.2)–(3.10) which we have established. They are offered in pairs such that one

term of the pair is obtained from the other by interchanging AND and OR and by interchanging the constants

0 and 1. This fact is summarized as follows.

Principle of Duality. Given a valid identity, we obtain another valid identity by:

1. Interchanging the operators AND and OR

2. Interchanging the constants 0 to 1

We can now concisely summarize the properties of switching algebra which we have just established.

Switching algebra is a set B of elements (Boolean expressions) containing the constants 0 and 1, with the

following operations:

1. Two binary operations, AND and OR, which are commutative (3.2), associative (3.9), idempotent (3.3),

absorptive (3.8), and mutually distributive (3.7).

2. A unary operation, COMPLEMENT (or NEGATION), with the properties of involution (3.1),

complementarity (3.6), De Morgan’s law (3.10).

FIGURE 3.10 Perfect induction proofs of identities (3.7).
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The constants 0 and 1 have the following properties (3.4) and (3.5):

�11 ¼ 0

x · 1 ¼ x x þ 0 ¼ x

x · 0 ¼ 0 x þ 1 ¼ 1

Identities (3.1)–(3.10) given above represent a set of rules—given in dual pairs—that can be applied to

transform an expression into an equivalent expression. It can be shown that rules (3.1)–(3.10) are not

independent and that we can select five of them and derive the others from these; this, however, is outside our

present scope.

Example 3.2. Prove the following identities, without using perfect induction and by transforming the left

side to the right side.

aþ �aab ¼ aþ b ð3:11Þ

aþ �aab ¼ a · 1þ �aab ½by ð3:4Þ�

¼ aðbþ �bbÞ þ �aab ½by ð3:6Þ�

¼ abþ a�bbþ �aab ½by ð3:7Þ�

¼ a�bbþ abþ �aab ½by ð3:2Þ�

¼ a�bbþ abþ abþ �aab ½by ð3:3Þ�

¼ að�bbþ bÞ þ ðaþ �aaÞb ½by ð3:7Þ�

¼ a · 1þ 1 · b ½by ð3:6Þ�

¼ aþ b ½by ð3:4Þ�

An alternative and simpler proof of (3.11) runs as follows:

aþ �aab ¼ ðaþ �aaÞ ðaþ bÞ ½by ð3:7Þ�

¼ 1 · ðaþ bÞ ½by ð3:6Þ�

¼ aþ b ½by ð3:4Þ�

abþ bc þ �aac ¼ abþ �aac ð3:12Þ

abþ bc þ �aac ¼ abþ 1 · bc þ �aac ½by ð3:4Þ�

¼ abþ ðaþ �aaÞbc þ �aac ½by ð3:6Þ�

¼ abþ abc þ �aabc þ �aac ½by ð3:7Þ�

¼ ab · 1þ abc þ �aabc þ �aac · 1 ½by ð3:4Þ�
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¼ abð1þ cÞ þ �aacðbþ 1Þ ½by ð3:7Þ�

¼ ab · 1þ �aac · 1 ½by ð3:5Þ�

¼ abþ �aac ½by ð3:4Þ�

Identities (3.11) and (3.12) are actually theorems that have been proved by using the valid identities

(3.1)–(3.10); (3.11) is sometimes, but improperly, called absorption because of its similarity with (3.8), and

(3.12) is known as the consensus identity. These two identities are quite convenient because they are relatively

easy to memorize and can themselves be applied to accomplish transformations of Boolean expressions. We

could continue deriving identities of this kind to be included in our bag of valid rules; however, the burden of

memorization will rapidly reach the point of diminishing return.

Table 3.1 is a summary of the manipulative rules of switching algebra.

Boolean Expressions: Normal and Canonical Forms

We saw earlier that every Boolean expression involving n distinct variables describes a switching function of

those n variables. We shall now show a very important fact, namely, the converse of the above statement: given

any binary function of n binary variables we can construct a Boolean expression describing that function. Since

every Boolean expression corresponds to a combinational circuit consisting of single fan-out gates, we obtain

the far-reaching result that every switching function is realizable by means of a combinational network.

An expression involves variables in uncomplemented or complemented forms: we call literal any occurrence of

a variable in either form. For example, the expression ½x1 ¼ x2ðx3 þ x4 �xx1Þ��xx3 þ �xx2x4 has four variables and six

literals.

An expression is in normal sum-of-products (SOP) form when it is the OR (sum) of ANDs (products) of

literals. We shall now describe how an arbitrary Boolean expression E can be transformed into an equivalent

expression in normal SOP form.

Reduction to Normal SOP Form

Let expression E ¼ ½x1 þ x2ðx3 þ x4 �xx1Þ�x3 þ �xx2x4 be given.

1. Place all complements directly on variables (by using De Morgan’s laws). In our example,

E ¼ ðx1 þ x2 · �xx3 · x4 �xx1Þx3 þ ��xx�xx2 þ �xx4

¼ ðx1 þ x2 · �xx3ð�xx4 þ ��xx�xx1ÞÞx3 þ x2 þ �xx4

¼ ½x1 þ x2 �xx3ð�xx4 þ x1Þ�x3 þ x2 þ �xx4

TABLE 3.1 Switching Algebra Summary

(P1) XY ¼ YX (S1) X þ Y ¼ Y þ X Commutativity

(P2) X(YZ) ¼ (XY)Z (S2) X þ (Y þ Z) ¼ (X þ Y) þ Z Associativity

(P3) XX ¼ X (S3) X þ X ¼ X Idempotency

(P4) X(X þ Y) ¼ X (S4) X þ XY ¼ X Absorption

(P5) X(Y þ Z) ¼ XY þ XZ (S5) X þ YZ ¼ (Xþ Y)(Xþ Z) Distributivity

(P6) X �XX ¼ 0 (S6) X þ �XX ¼ 1 Complementarity

(C1) X ¼ X Involution

(P7) XY ¼ �XX þ �YY (S7) X þ Y ¼ XY De Morgan’s

(P8) Xð �XX þ YÞ ¼ XY (S8) X þ �XXY ¼ X þ Y

(B1) �11 ¼ 0

(P10) X · 0 ¼ 0 (S10) X þ 1 ¼ 1

(P11) X · 1 ¼ X (S11) X þ 0 ¼ X

(P13) ðX þ YÞðY þ ZÞð �XX þ ZÞ ¼ ðX þ YÞð �XX þ ZÞ (S13) XY þ YZ þ �XXZ ¼ XY þ �XXZ Consensus
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2. Apply the distributive law. In our example,

E ¼ ðx1 þ x2 �xx3 �xx4 þ x1 x2 �xx3Þx3 þ x2 þ �xx4

¼ x1 x3 þ x2 �xx3 x3 �xx4 þ x1x2 �xx3x3 þ x2 þ �xx4

3. Eliminate redundant terms (using idempotency and complementarity). In our example notice that, by

(3.6), x3 �xx3 ¼ 0 and that, by (3.5), all product terms containing a factor 0 are 0 themselves, whereby

E ¼ x x1 x3 þ 0þ 0þ x2 þ �xx4

¼ x x1 x3 þ x2 þ �xx4

The latter expression is in normal SOP form and is equivalent to the given expression.

With reference to expressions on n variables, a special type of product term (AND term) is one that contains

as a factor each variable, either uncomplemented or complemented: these terms are called fundamental

products or minterms. For example, for n ¼ 4, �xx1 �xx2 �xx3x4 and �xx1x2 �xx3x4 are minterms but �xx1 �xx2x4 is not. A normal

SOP expression is said to be in canonical (SOP) form if its product terms are all minterms. We shall now

describe how to transform a normal form expression into a canonical form expression.

Transformation from Normal Form to Canonical Form

Let the normal form expression x1x3 þ x2 þ �xx3 be given.

1. If a product term contains neither xi nor �xxi ‘‘multiply’’ it by ðxi þ �xxiÞ. [Notice that this transforms the

product term into an equivalent expression since xi þ �xxi ¼ 1 by (3.6).] In our example x1x3 does not

contain a literal with index 2: x2 does not contain literals with indices 1 and 3; �xx3 does not contain literals

with indices 1 and 2. Thus,

x1x3 þ x2 þ �xx3 ¼ x1x3ðx2 þ �xx2Þ þ x2ðx1 þ �xx1Þðx3 þ �xx3Þ þ x3ðx1 þ �xx1Þðx2 þ �xx2Þ

2. Apply the distributive law. In our example,

E ¼ x1x3 �xx2 þ x1x3x2 þ x2 �xx1 �xx3 þ x2 �xx1x3 þ x2x1 �xx3 þ x2x1x3 þ �xx3 �xx1 �xx2

þ �xx3 �xx1x2 þ �xx3x1 �xx2 þ �xx3x1x2

3. Eliminate repeated product term using idempotency. In our example, the following sets of terms are sets

of identical terms: (2nd, 6th) (3rd, 8th) (5th, 10th). Thus, after eliminating the repeated terms and

rearranging the order of the indices as (3,2,1), we obtain the canonical expression for x1x3 þ x2 þ �xx3:

E ¼ x3 �xx2x1 þ x3x2x1 þ �xx3x2 �xx1 þ x3x2 �xx1 þ �xx3x2x1 þ �xx3 �xx2 �xx1 þ �xx3 �xx2x1

We begin by introducing a useful notation for minterms. Consider, for example, the minterm �xx4x3x2 �xx1; we

associate with this minterm an ordered binary 4-tuple (b4b3b2b1), where bi corresponds either to xi or �xxi, and bi

¼ 1 if xi is uncomplemented and is 0 otherwise. In our example, with �xx4x3x2 �xx1 we associate 0110: this string is

the binary equivalent of the integer 6, so that we shall denote �xx4x3x2 �xx1 by m6. Referring to the previous

example, the expression E in this new notation becomes m5 þ m7 þ m2 þ m6 þ m3 þ m0 þ m1, or

equivalently, OR (m0, m1, m2, m3, m5, m6, m7).

Suppose now that we have combinational networks F and G, which respectively compute switching

functions f ðx1; . . . ; xnÞ and gðx1; . . . ; xnÞ, and that we connect the outputs of these networks to the inputs of

gates or inverters. Clearly, if f and g are fed, say, to an AND gate, then the function u at the output of this gate

will be 1 only when both f and g are 1, and similarly for the other cases. Obviously u is a function of the same

set of variables fx1; . . . ; xng as f and g, so we obtain the following simple rules for its truth table:
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The truth table of �ff is the entry-by-entry (component-wise) complement of the truth table of f; the

truth table of f · g½orðf þ gÞ� is the component-wise AND (or OR) of the truth tables of f and g.

Given a minterm m of x1; x2; . . . xn (the minterm itself obviously describes a function of these variables), we

recognize that m ¼ 1 exactly when the following conditions hold: if xi appears in m in uncomplemented form,

then xi ¼ 1; if xi appears in m in complemented form, then �xxi ¼ 1, that is, xi ¼ 0. Thus m ¼ 1 only when

each variable attains a specific value, that is, m ¼ 1 for a unique combination of the variables or, equivalently,

the truth table of a minterm has exactly one ‘‘1.’’ (Incidentally, this explains the denomination minterm: a

nondegenerate function with the minimum number of 1’s in its truth table.)

Example 3.3. For n ¼ 4, �xx4 �xx3 �xx2x1 ¼ m1 is 1 when and only when �xx4 ¼ 1, �xx3 ¼ 1, �xx2 ¼ 1, x1¼ 1, that is,

when ðx4x3x2x1Þ ¼ ð0001Þ.

Now, let f be a switching function of arguments x1; . . . ; xn, given by means of its truth table (see Figure 3.11

where n ¼ 3). We may view the truth table of f as the OR of as many distinct truth tables as it has 1’s, each of the

latter truth tables having exactly a single 1 [Figure 3.11(a)]. However, each such table is the table of a minterm!

Moreover, each minterm is a product of literals, which for i ¼ 1; 2; . . . ; n contains either xi or �xxi, depending upon

whether in the combination corresponding to the single 1 in the table the xi entry is 1 or 0. In Figure 3.11, f1¼ 1 in

correspondence to ðx3x2x1Þ ¼ ð011Þ, whence f1 ¼ �xx3x2x1. Similarly, we obtain f2 ¼ x3 �xx2 �xx1 and f3 ¼ x3x2 �xx1.

In conclusion, since f ¼ f1 þ f2 þ f3, we have

f ¼ �xx3x2x1 þ x3 �xx2 �xx1 þ x3x2 �xx1

Notice that this is a most remarkable finding: given a function f by means of its truth table (i.e., as a binary

function of binary variables), we have obtained an expression (actually, a canonical expression) describing that

function!

Once we have an expression for the given function, we shall design the corresponding combinational network.

Before proceeding, however, we recall that in the subsection ‘‘Switching Functions of One and Two Variables’’ we

have introduced AND gates and OR gates as two-input–one-output devices; since we have proved [identity (3.9)]

that the AND and OR operations are associative, we may think of using in our networks devices that realize the

AND (or OR) of more than two inputs; this is indeed technically possible, although, for physical reasons, the

number of inputs may not be too large. Therefore, we see that by using these newly introduced gates, we can

construct the network of Figure 3.11(b), which computes the given function. (This network is a collection of AND

gates feeding a single OR gate and is therefore called an AND-to-OR network.) Notice that we have achieved the

objective set forth at the end of the subsection ‘‘Networks and Expressions’’ and summarized below:

Given a switching function f by means of its truth table (i.e., as a binary function of binary variables),

we can construct a switching network that computes it.

FIGURE 3.11 A switching function and its corresponding AND-to-OR network.
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In Table 3.2, left side, we summarize the important notions concerning SOP canonical expressions.

A discussion analogous to the one just completed can be carried out with reference to normal product-of-sums

(POS) expressions, that is, an AND of ORs of literals. Indeed, all we need in the preceding discussion is a set of

substitutions as dictated by the principle of duality

AND$ OR

Product$ Sum

Minterm$ Maxterm ðsee belowÞ

0$ 1

The conclusions are summarized in Table 3.2, right side. Notice the perfect duality of corresponding

statements in this table. The only novel term in this table is maxterm, the dual of minterm: the reason for the

denomination is that a maxterm describes a nondegenerate function with the maximum number of 1’s in its

truth table. A maxterm is usually denoted by the symbol Mj, specifically Mj ¼ �mmj, that is, Mj ¼ 0 if and only if

mj ¼ 1, and vice versa. For example, for variables x3, x2, x1, M5 ¼ �mm5 ¼ x3 �xx2x1 ¼ ðx3 þ x2 þ �xx1Þ, that is, M5 is

the maxterm which is 0 exactly for (x3x2x1)¼ (101) and is 1 otherwise.

In conclusion, a Boolean function can be specified either as an OR of minterms (corresponding to the 1’s in

the truth table) or as an AND of maxterms (corresponding to the 0’s in the truth table).

Example 3.4.

f ¼ OR ðm3;m4;m6Þ; SOP

f ¼ AND ðM0;M1;M2;M5;M7Þ; POS

TABLE 3.2 Duality of Canonical SOP and POS Expressions

Canonical SOP Expressions Canonical POS Expressions

Minterm — a product of literals

that has as a ‘‘factor’’ each of

the n variables either true or

complemented

Maxterm — a sum of literals

that has as an ‘‘addend’’ each

of the n variables either

true or complemented

Canonical SOP expressions — OR of minterms Canonical POS expression — AND of maxterms

A minterm is a canonical SOP

expression that is 1 for exactly

one combination of the variables

A maxterm is a canonical POS

expression that is 0 for exactly

one combination of the variables

A minterm corresponds to one

switching function whose

truth table has exactly one ‘‘1’’

A maxterm corresponds to one

switching function whose truth

table has exactly one ‘‘0’’

There exists a one-to-one

correspondence between switching

functions and canonical SOP expressions

There exists a one-to-one

correspondence between switching

functions and canonical POS expressions

Decimal equivalent x3 x2 x1 f

0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 1
5 1 0 1 0
6 1 1 0 1
7 1 1 1 0
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Consider now a Boolean function f ðx1; x2; . . . ; xnÞ expressed in canonical SOP form. Each minterm

of f contains either �xxn or xn; therefore, we associate into two separate expressions, F0 and F1, the minterms of f

depending upon whether they contain �xxn or xn, respectively, that is,

f ¼ F0 þ F1

Now from all terms of F0 we can factor out �xxn, i.e., F0 can be written as the AND of �xxn and an expression f0,

which consists exactly of minterms over the variables x1; x2; . . . ; xn�1, that is, F0 ¼ �xxnf0ðx1; x2; . . . ; xn�1Þ.

Similarly, we can express F1 as F1 ¼ xnf1ðx1; x2; . . . ; xn�1Þ. It follows that f can be expressed as

f ðx1; . . . ; xn�1; xnÞ ¼ �xxnf0ðx1; . . . ; xn�1Þ þ xnf1ðx1; . . . ; xn�1Þ ð3:13Þ

In the above relation, we now set xn ¼ 0 and obtain

f ðx1; . . . ; xn�1; 0Þ ¼ 1 · f0ðx1; . . . ; xn�1Þ þ 0 · f1ðx1; . . . ; xn�1Þ

that is, f0ðx1; . . . ; xn�1Þ ¼ f ðx1; . . . ; xn�1; 0Þ. Similarly, if we set xn ¼ 1 in (3.13) we have

f1ðx1; . . . ; xn�1; 1Þ ¼ 0 · f0ðx1; . . . ; xn�1Þ þ 1 · f1ðx1; . . . ; xn�1Þ

that is, f1ðx1; . . . ; xn�1Þ ¼ f1ðx1; . . . ; xn�1; 1Þ. This result is called the fundamental theorem of Boolean algebra

and can be stated as follows.

Fundamental Theorem of Boolean Algebra. Every function f ðx1; . . . ; xnÞ of x1; . . . ; xn; for any xi can be

expressed as

f ¼ �xxi f0 þ xi f1

where f0 ¼ f ðx1; . . . ; xi�1; 0; xiþ1; . . . ; xnÞ and f1 ¼ f ðx1; . . . ; xi�1; 1; xiþ1; . . . ; xnÞ are both functions of the

(n – 1) variables x1; . . . ; xi�1; xiþ1; . . . ; xn.

Other Important Boolean Connectives

Although the operators AND, OR, and NOT are perfectly adequate for the realization of any combinational

network, there are other connectives that are quite important and are now introduced.

The NAND and NOR Connectives

The first of these connectives, called NAND (AND followed by NOT), realizes the function x · y of two variables

x and y; its circuit symbol is given, for two inputs, in Figure 3.12(a). (Note that, as already has been done for the

AND and OR connectives, the function NAND can be generalized to any number of variables, as x · y . . .w.)

The connective NAND is interesting because alone it can be used to realize any combinational network. (We

refer to this property by saying that NAND is logically complete.) Indeed, since we know that AND, OR, and

NOT are adequate for realizing combinational networks, all we need to show is that each of these three

connectives can, in turn, be realized by an expression involving only NAND. This is readily shown below:

(rules C1 and P3, Table 3.1)

a · b ¼ a · b ¼ a · b · a · b ¼ NAND½NANDða; bÞ;NANDða; bÞ�

(rules P7 and P3, Table 3.1)

aþ b ¼ a · b ¼ aa · bb ¼ NAND½NANDða; aÞ;NANDðb; bÞ�

(rule P3, Table 3.1)

�aa ¼ aa ¼ NANDða; aÞ
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These transformations are illustrated in Figure 3.12(b). Thus, given a network consisting of AND, OR, and

NOT gates, by using the above rules, one can transform it into an equivalent one consisting of NAND gates

alone. Besides this rather cumbersome transformation, there is a more direct and useful correspondence

between NAND expressions and SOP expressions, as shown below:

abþ cd ¼ abþ cd ¼ ab · cd ¼ NAND½NANDða; bÞ; NANDðc; dÞ�

So we see that any SOP expression can be realized by a network consisting of NAND gates alone

[see Figure 3.12(c)] by simply replacing with NAND gates both the AND gates and the OR gate in the standard

AND-to-OR realization of the given expression.

As we may expect from duality, there is another connective, NOR, which enjoys analogous properties. This

connective NOR (OR followed by NOT) realizes the function x þ y of x and y, and its symbol is given, for two

inputs, in Figure 3.13(a). Transformations analogous to those obtained above can be easily derived and the

results are shown in Figure 3.13(b) and 3.13(c). Notice that a two-level NAND network corresponds to an SOP

expression, and a two-level NOR network corresponds to a POS expression. These properties make NOR and

NAND gates very attractive and popular in digital design, since entire systems can be realized by using just one

type of component.

The XOR Connective

Finally, we introduce the connective exclusive-OR (frequently abbreviated as XOR), which realizes the

function ðx�yy þ �xxyÞ of two variables x and y. The symbol used for this connective is %, while the circuit symbol

is given in Figure 3.14. The reason for the name exclusive-OR is that (x % y) is equal to 1 if and only if either x

or y, but not both, is equal to 1. (By contrast, the ordinary OR is correctly called inclusive OR, although the

adjective inclusive is normally omitted.)

FIGURE 3.12 (a) Circuit symbol of NAND gate. (b) and (c) NAND gate realization of AND, OR, and NOT gates and

SOP expression.
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The exclusive-OR has several interesting properties,

whose proof is left as an exercise. First, exclusive-OR is

associative

ðx � yÞ� z ¼ x � ðy � zÞ

so that we may omit parentheses and write x % y % z.

Therefore, the exclusive-OR is generalized to an arbitrary number of variables, and we shall have exclusive-OR

gates with correspondingly many input lines. Other important properties, also left as an exercise, are

xðy � zÞ ¼ xy � xz

x � 1 ¼ �xx

It is appropriate to introduce at this point an alternative set of standard symbols for the logic gates

discussed in this chapter. They are displayed in Table 3.3 vis-à-vis their by now familiar counterparts

(symbol set 1) and deserve no additional comments.

Notes and References

Boolean algebra, which—as we saw—provides the formalism for the description of (binary) digital networks,

was developed in the last century, originating with the English mathematician George Boole, who in 1854

published his fundamental work, An Investigation of the Laws of Thought. Boole’s goal was essentially the

development of a formalism to compute the truth or falsehood (i.e., the truth value) of complex compound

statements from the truth values of their component statements. The discipline developed later into a more

complex body of knowledge, known as symbolic logic.

Apparently, early in this century, more than one scientist perceived the applicability of Boolean algebra

to the design of telephone circuits [Ehrenfest, 1910]. It was only in the thirties that the potential was fully

FIGURE 3.13 (a) Circuit symbol of NOR gate. (b) and (c) NOR gate realizations of AND, OR, and NOT gates and POS

expression.

FIGURE 3.14 Symbol for the exclusive OR gate.
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realized, when C.E. Shannon [1938] published his paper ‘‘A Symbolic Analysis of Relay and Switching

Circuits,’’ which became the foundation of switching theory and logical design. Because of the context in

which it was originally used (telephone networks, also called switching networks), the name switching

algebra has become standard for the algebra of functions of two-valued variables. Although initially the

interests of researchers focused on relay networks (also called contact networks), as mechanical devices

were gradually replaced by electronic devices the techniques were tailored to gate networks of the type

described above. The term gate was already in use in the forties to denote the logical elements discussed

earlier.

There are very many good references on Boolean algebra and we may quote only a selected few of them.

Suffice it to mention the texts by Hill and Peterson [1974], Kohavi [1978], and Hohn [1966]. These books give

a sufficiently rigorous formulation of the subject, tailored to the analysis and the design of combinational

networks. In addition, like most of the earlier books, Hohn’s and Kohavi’s texts also contain a discussion of the

Boolean techniques used in connection with relay circuits. (Some of the more recent works completely omit

this topic, which has been but totally overshadowed by the impressive development of electronic networks.)

The reader interested in studying the relation of switching algebra to Boolean algebras in general is referred to

Preparata and Yeh [1973] for an elementary introduction.

Defining Terms

Boolean algebra: The algebra of logical values enabling the logical designer to obtain expressions for digital

circuits.

Boolean expressions: Expressions of logical variables constructed using the connectives and, or, and not.

Boolean functions: Common designations of binary functions of binary variables.

Combinational logic: Interconnections of memory-free digital elements.

Switching theory: The theory of digital circuits viewed as interconnections of elements whose output can

switch between the logical values of 0 and 1.

TABLE 3.3
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3.2 Logic Circuits

Richard S. Sandige and Albert A. Liddicoat

This section discusses two-state (high or low, 1 or 0, or true or false) digital logic circuits. There are two

classifications of two-state logic circuits: combinational logic circuits and sequential logic circuits. By definition,

the external output signals of combinational logic circuits are only dependent on the external input signals

applied to the circuit. Combinational circuits are memory-less because the output states are only dependent

on the current input values. An example of a combinational circuit is an adder. An adder circuit evaluates to

the sum of the current values on the inputs regardless of the previous inputs. In contrast, the output signals of

sequential logic circuits are dependent on both the present state of the circuit and any external input signals

that may exist. Since sequential circuits depend on their present state value, they have feedback and exhibit

memory. An up/down counter is an example of a sequential logic circuit that maintains the current count and

has an external input that indicates if the counter should count up or count down. For an up/down counter,

the next output state (or next count) is a function of both the current count and the external input that

indicates if the counter is counting up or down.

Sequential logic circuits can be subdivided into synchronous circuits and asynchronous circuits. Synchronous

circuits change state when a clock input is activated, while asynchronous circuits change state without a clock.

Asynchronous circuits can be further divided into fundamental-mode circuits and pulse-mode circuits.

Figure 3.15 shows the classification or taxonomy of the logic circuits that have been introduced.

FIGURE 3.15 Graphic classification of logic circuits. (Source: R.S. Sandige, Modern Digital Design, New York:

McGraw-Hill, 1990, p. 440. With permission.)
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Combinational Logic Circuits

The block diagram in Figure 3.16 illustrates the model for combinational logic circuits. Logic elements exist

inside the block entitled combinational logic circuit. The combinational logic circuit may consist of any

configuration of two-state logic elements where the output signals are totally dependent on the input signals to

the circuit, as indicated by the functional relationships in the figure. Combinational logic circuits do not have

feedback loops because these feedback loops introduce memory or state information.

The logic elements can be anything from relays with slow on and off switching action to modern integrated

circuit (IC) transistor switches with extremely fast switching action. Modern ICs exist in various technologies

and circuit configurations, for example transistor-transistor logic (TTL), complementary metal-oxide

semiconductor (CMOS), emitter-coupled logic (ECL), and integrated injection logic (I2L).

The combinational logic circuits do not evaluate instantaneously. There is a delay from the time the inputs

are set to the time that the output has evaluated. Figure 3.16 models this delay using the delay output blocks

that represent a lumped delay. In the figure, the outputs F1 through Fm are assumed to evaluate

instantaneously. Then, at a time Dt1 through Dtm later, the outputs f1 through fm are known. The worst-case

delays through the longest delay path from the inputs to each respective output of the combinational logic

circuit are used for the lumped delay Dt values. The lumped delays provide an approximate measure of circuit

speed or settling time (the time it takes an output signal to become stable after the input signals have become

stable).

Figure 3.17 illustrates the gate-level method (random logic method) of implementing a combinational logic

circuit. Each shape in the gate-level logic circuit represents a different logic function. The external inputs

(D through A) are all on the left side of each logic diagram, while the external outputs (OA through OG) are

all shown on the right side of each logic diagram. Notice that there are no feedback loops in the logic diagrams.

This gate-level logic circuit implements a binary to seven-segment hexadecimal character generator suitable

for driving a seven-segment common cathode LED display like the one in Figure 3.18.

The propagation delays of logic circuits are seldom shown on logic circuit diagrams because these diagrams

are used to indicate the functionality of the circuit. However, delays are inherent in each logic element and

must be considered while designing logic systems. This gate-level combinational logic circuit converts the

FIGURE 3.16 Block diagram model for combinational logic circuits. (Source: R.S. Sandige, Modern Digital Design,

New York: McGraw-Hill, 1990, p. 440. With permission.)
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FIGURE 3.17 Gate-level logic circuit for binary to seven-segment hexadecimal character generator. (Source: R.S. Sandige,

Modern Digital Design, New York: McGraw-Hill, 1990, pp. 258–259. With permission.)

FIGURE 3.18 Seven-segment common cathode LED display. (Source: R.S. Sandige, Modern Digital Design, New York:

McGraw-Hill, 1990, p. 255. With permission.)
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binary input code into the proper binary output code to drive a seven-segment display. The binary codes 0000

though 1111 represented on the signal inputs D(MSB) C B A(LSB) are converted to the binary output code on

the outputs OA through OG. These outputs generate the hexadecimal characters 0 through F when applied

to a seven-segment common cathode LED display. Each of the signal lines D through A (and D bar through

A bar) must be capable of driving the number of gate inputs shown in the brackets ( fan-out requirement) to

both the proper high-level and low-level voltages. The gate-level circuits in Figure 3.17 are designed using the

minimum sum of products (SOP) implementation derived from the 1s of the functions OA though OG,

respectively, represented by the truth table in Table 3.4.

Implementing the circuit shown in Figure 3.17 would require 18 IC chips if the circuit was built out of

discrete logic gates. A more efficient way (in terms of IC package or chip count) to implement the same

combinational logic function would be to use a medium-scale integration (MSI) IC component. MSI

components are single IC chips that contain more complicated logic functions than individual logic gates. For

example, a 4- to 16-line decoder is used with some discrete logic gates in Figure 3.19 to implement the same

seven-segment decoder as is shown in Figure 3.17. The tildes in Figure 3.19 are used to indicate the logical

complements of D0 through D15.

The decoder circuit in Figure 3.19 requires only eight IC packages, as compared to the gate-level circuit in

Figure 3.17 that requires 18 IC packages. Functionally, both circuits perform the same. The output equations

for the circuit in Figure 3.19 are the canonical or standard SOP equations for the 0s of the functions OA

though OG, respectively, represented by the truth table (Table 3.4). The gates that are shown in Figure 3.19

with more than four inputs are eight-input NAND gates. Each unused input is tied to VCC via a pull-up

resistor (not shown on the logic diagram). Tying the unused input of a NAND gate effectively disables that

particular input.

An even more efficient way to implement the same combinational logic function would be to utilize part of

a simple programmable read-only memory (PROM) circuit such as the 27S19 fuse programmable PROM in

Figure 3.20. An equivalent architectural gate structure for a portion of the PROM is shown in Figure 3.21.

A full 4- to 16-line decoder exists on the left side of Figure 3.21 which decodes each line in the truth table

(Table 3.4) so that every row line on the right side of the figure corresponds to the equivalent row in the

truth table for each output function. The right half of Figure 3.21 is programmed using fuses. Intact fuses

are represented by Xs. For every row in the truth table in which a 1 exists for a respective function output,

TABLE 3.4 Truth Table for Binary to Seven-Segment Hexadecimal Character Generator

Binary Inputs Seven-Segment Outputs

D C B A OA OB OC OD OE OF OG

Displayed

Characters

0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 1 0 1 1 0 0 0 0 1

0 0 1 0 1 1 0 1 1 0 1 2

0 0 1 1 1 1 1 1 0 0 1 3

0 1 0 0 0 1 1 0 0 1 1 4

0 1 0 1 1 0 1 1 0 1 1 5

0 1 1 0 1 0 1 1 1 1 1 6

0 1 1 1 1 1 1 0 0 0 0 7

1 0 0 0 1 1 1 1 1 1 1 8

1 0 0 1 1 1 1 1 0 1 1 9

1 0 1 0 1 1 1 0 1 1 1 A

1 0 1 1 0 0 1 1 1 1 1 b

1 1 0 0 1 0 0 1 1 1 0 C

1 1 0 1 0 1 1 1 1 0 1 d

1 1 1 0 1 0 0 1 1 1 1 E

1 1 1 1 1 0 0 0 1 1 1 F

Source: R.S. Sandige, Modern Digital Design, New York: McGraw-Hill, 1990, p. 252. With permission.
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an X should appear in that output’s column. The code for programming the PROM or generating the truth

table of the function can be read either from the truth table (Table 3.4) or directly from each row of the circuit

diagram in Figure 3.21 (expressed in hexadecimal: 7E, 30, 6D, 79,

33, 5B, 5F, 70, 7F, 7B, 77, 1F, 4E, 3D, 4F, and 47) beginning with the

first line, which represents the output when the binary input is set

to 0000, down to the last line, which represents the output when

the binary input is set to 1111. The PROM solution for the

combinational logic circuit requires only one IC package.

Programmable logic devices (PLDs), such as PROM, program-

mable array logic (PAL), programmable logic array (PLA), and

field programmable logic array (FPGA) devices, are fast becoming

the preferred devices for implementing combinational and

sequential logic circuits when application specific integrated circuits

(ASICs) are not used. These devices (a) use less real estate on a PC

board, (b) shorten design time, (c) allow design changes to be

made more easily, and (d) improve reliability because of fewer

connections as compared to discrete logic gates.

Figure 3.22 shows a PAL16L8 implementation for the binary to

seven-segment hexadecimal character generator that also requires

a single IC package. The fuse map for this design was obtained

FIGURE 3.20 PROM implementation for

binary to seven-segment hexadecimal char-

acter generator. (Source: R.S. Sandige, Modern

Digital Design, New York: McGraw-Hill, 1990,

p. 382. With permission).

FIGURE 3.19 Decoder logic circuit for binary to seven-segment hexadecimal character generator. (Source: R.S. Sandige,

Modern Digital Design, New York: McGraw-Hill, 1990, p. 359. With permission.)
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using the software program PLDesigner-XL. Karnaugh maps are handy tools that allow a designer to easily

obtain minimum SOP equations for either the 1s or 0s of Boolean functions with up to four or five input

variables. However, there is a host of commercially available software programs that provide not only

Boolean reduction but also equation simulation and fuse map generation for PLDs and FPGAs.

Xilinx Integrated Software Environment (ISE) is an example of a premier commercial software

package available for logic synthesis for PLDs and FPGAs, for both combinational logic and sequential

logic circuits.

Sequential Logic Circuits

A sequential logic circuit is a circuit that has feedback in which the output signals of the circuit are functions

of all or part of the present state output signals of the circuit, in addition to any external input signals to the

circuit. The vast majority of sequential logic circuits designed for industrial applications are synchronous or

clock-mode circuits.

Synchronous Sequential Logic Circuits

Synchronous sequential logic circuits change states only at the rising or falling edge of the synchronous clock

signal. To allow proper circuit operation, any external input signals to the synchronous sequential logic circuit

must generate excitation inputs that occur with the proper setup time (tsu) and hold time (th) requirements,

relative to the designated clock edge for the memory elements being used. Synchronous or clock-mode

FIGURE 3.21 PROM logic circuit. (Source: R.S. Sandige, Modern Digital Design, New York: McGraw-Hill, 1990, p. 381.

With permission.)
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sequential logic circuits depend on the present state of memory devices, called bistable devices or flip-flops

(asynchronous sequential logic circuits), that are driven by a system clock as illustrated by the synchronous

sequential logic circuit in Figure 3.23.

With the availability of edge-triggered D flip-flops and edge-triggered J-K flip-flops in IC packages, a

designer can choose which flip-flop type to use for the memory devices in the memory section of a

synchronous sequential logic circuit. Many designers prefer to design with edge-triggered D flip-flops rather

than edge-triggered J-K flip-flops because D flip-flops are (a) more cost efficient, (b) easier to design with, and

(c) more convenient, since many of the available PAL devices incorporate edge-triggered D flip-flops in the

FIGURE 3.22 PAL16L8 implementation for the binary to seven-segment hexadecimal character generator. (Source: PAL

Device Data Book, Advanced Micro Devices, Sunnyvale, Calif., 1988, pp. 5–46.)
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output section of their architectures. PAL devices that contain flip-flops in their output section are referred to

as registered PALs (or, in general, registered PLDs). The synchronous sequential logic circuit shown in

Figure 3.24 using edge-triggered D flip-flops functionally performs the same as the circuit in Figure 3.23.

Notice that, in general, more combinational logic gates will be required to implement synchronous

sequential logic circuits using D flip-flops than to implement circuits using J-K flip-flops as memory devices.

Using a registered PAL such as a PAL16RP4A would only require one IC package to implement the circuit in

Figure 3.24. The PAL16RP4A has four edge-triggered D flip-flops in its output section, of which only two are

required for this design.

Generally speaking, synchronous sequential logic circuits can be designed much more quickly than

fundamental-mode asynchronous sequential logic circuits. Synchronous sequential logic circuits are the most

common digital circuits today. With a system clock and edge-triggered flip-flops, a designer does not have to

worry about hazards or glitches (momentary error conditions that occur at the outputs of combinational logic

circuits), since outputs are allowed to become stable before the next clock edge occurs. Thus, sequential logic

circuit designs allow the use of combinational hazardous circuits as well as the use of arbitrary state

assignments, provided the resulting combinational logic gate count or package count is acceptable.

FIGURE 3.23 Synchronous sequential logic circuit using positive edge-triggered J-K flip-flops.

FIGURE 3.24 Synchronous sequential logic circuit using positive edge-triggered D flip-flops.
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Asynchronous Sequential Logic Circuits

Asynchronous sequential logic circuits may change states immediately when any input signal changes state

(either a level change for a fundamental mode circuit or a pulse for a pulse mode circuit). No other input

signal change (either level change or pulse) is allowed until the circuit reaches a stable internal state. Latches

and edge-triggered flip-flops are asynchronous sequential logic circuits and must be designed with care by

utilizing hazard-free combinational logic circuits and race-free or critical race-free state assignments. Both

hazards and race conditions interfere with the proper operation of asynchronous logic circuits. The gated D

latch circuit illustrated in Figure 3.25 is an example of a fundamental-mode asynchronous sequential logic

circuit that is used extensively in microprocessor systems for the temporary storage of data.

Quad, octal, 9-bit, and 10-bit transparent latches are readily available as off-the-shelf IC devices for these

types of applications. For proper asynchronous circuit operation, the signal applied to the data input D of the

fundamental-mode circuit in Figure 3.25 must meet a minimum setup time and hold time requirement relative

to the control input C, changing the latch to the memory mode when C goes to 0. This is a basic require-

ment for asynchronous circuits with level inputs, i.e., only one input signal is allowed to change at one time.

Another restriction is letting the circuit reach a stable state before allowing the next input signal to change.

An example of a reliable pulse-mode asynchronous sequential logic circuit is shown in Figure 3.26. While

the inputs to asynchronous fundamental-mode circuits are logic levels, the inputs to asynchronous pulse-

mode circuits are pulses. Pulse-mode circuits have the restriction that the maximum pulse width of any input

pulse must be sufficiently narrow that an input pulse is no longer present when the new present state output

signal becomes available. The purpose of the double-rank circuit in Figure 3.26 is to ensure that the maximum

pulse width requirement is easily met, since the output is not fed back until the input pulse is removed,

(i.e., goes low or goes to logic 0). The input signal to pulse-mode circuits must also meet the following

restrictions: (a) only one input pulse may be applied at one time, (b) the circuit must be allowed to reach a

new stable state before applying the next input pulse, and (c) the minimum pulse width of an input pulse is

determined by the time it takes to change the slowest flip-flop used in the circuit to a new stable state.

FIGURE 3.25 Fundamental-mode asynchronous sequential logic circuit. (Source: R.S. Sandige, Modern Digital Design,

New York: McGraw-Hill, 1990, p. 470. With permission.)

FIGURE 3.26 Double-rank pulse-mode asynchronous sequential logic circuit. (Source: R.S. Sandige, Modern Digital

Design, New York: McGraw-Hill, 1990, p. 615. With permission.)
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Defining Terms

Application specific integrated circuits (ASICs): Integrated circuits designed using standard cell

libraries for logic gates.

Asynchronous circuit: A sequential logic circuit without a system clock.

Combinational logic circuit: A circuit with external output signals that are totally dependent on the

external input signals applied to the circuit.

Fan-out requirement: The maximum number of loads (gate inputs) a device output can drive and still

provide dependable 1 and 0 logic levels.

Hazard or glitch: A momentary output error that occurs in a logic circuit because of input signal

propagation along different delay paths in the circuit.

Hexadecimal: The name of the number system with a base or radix of 16 with the usual symbols of 0 . . .

9,A,B,C,D,E,F.

Medium-scale integration: A single packaged IC device with 12 to 99 gate-equivalent circuits.

Race-free state assignment: A state assignment made for asynchronous sequential logic circuits such that

no more than a 1-bit change occurs between each stable state transition, thus preventing possible critical

races.

Sequential logic circuit: A circuit with output signals that are dependent on all or part of the present state

output signals fed back as input signals, as well as any external input signals if they should exist.

Sum of products (SOP): A standard form for writing a Boolean equation that contains product terms

(complemented or uncomplemented input variables connected with AND) that are logically summed

(connected with OR).

Synchronous or clock-mode circuit: A sequential logic circuit that is synchronized with a system clock.
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issue, Volume 45, Number 1, pp. 50–62.
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example, ‘‘DIY PLD,’’ in its June 1989 issue, pp. 578–581.
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3.3 Registers and Their Applications

B.R. Bannister, D.G. Whitehead and J.M. Gilbert

The basic building block of any register is the flip-flop. But just as there are several types of flip-flops, there are

many different register arrangements. An idea of the vast range and their interrelationships is shown in

Figure 3.27.

The simplest type of flip-flop is the set-reset flip-flop, constructed simply by cross-connecting two NAND/

NOR gates. This forms an asynchronous flip-flop, in which the set or reset signal determines what the flip-flop

is to do and when it is to operate. If a state change is required, the flip-flop begins to change states when the

input change is detected. This flip-flop is useful as a latch to detect when an event has occurred. It is often

referred to as a flag since it indicates to other circuitry that the event has occurred and remains set until the

controlling circuitry responds by resetting it.

Flags are widely used in digital systems to indicate a state change. All microprocessors have a set of flags

which are used in deciding whether a program branch should be made. The flags available in microprocessors

typically include those indicating the results of the most recent operation: zero, carry, sign and overflow [Intel,

1989; Renesas, 2001]. Specific microprocessors may also include flags associated with a particular operation:

debug, register bank select [Renesas, 2001] or parity [Intel, 1989]. For convenience, although they all act

independently, these flags are grouped together into what is known as the flag register or program status-word

register.

Gated Registers

The conventional meaning of register applies to a collection of identical flip-flops activated simultaneously as a

set rather than individually. Controlling when flip-flops set or reset makes use of synchronous flip-flops,

leaving the D or J-K inputs to determine what the flip-flop is to do logically. That can include setting or

resetting while some other signal, typically the clock, determines when it does it.

The signal controlling the register’s input is applied to all flip-flops simultaneously, and its action depends

on the type of flip-flop used. Edge-triggered flip-flops set or reset according to the value on the data inputs

when the control signal changes. After the flip-flops settle into their new values, the register content is available

Flip-flops

Flags
Gated

Registers

Transparent
Latches

I/O
Ports

Counters

Shift
Registers
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Arrays

Register
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FIGURE 3.27 The register family.
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at the output gating. The correct operation of the circuitry depends upon timing criteria being satisfied and

minimum values quoted by the manufacturers. Each is the smallest time that w the device is guaranteed to

operate correctly, but in practice, the device probably functions satisfactorily with smaller time intervals on at

least some of the parameters. The main timing constraints occur at the flip-flop’s inputs and are illustrated in

Figure 3.28. The interval preceding the active transition of the control input is the setup time, tsu, during

which the data signal must be held steady; th is the hold time and is the interval during which the data signal

must be retained following the active transition of the control input; tw is a minimum pulsewidth indication

that applies to the control inputs such as the clock, reset and clear. The clock pulse width is usually quoted

both for the high state ðtwðHÞÞ and for the low ðtwðLÞÞ and is related to the maximum clocking frequency of the

flip-flops in the register.

In general, these registers are available as 4-bit, 8t-bit or higher powers of two and are used in

multiples of 8 bits in most cases. The number of flip-flops in each register determines the width of the

data bus in a microprocessor or other bus-based system and describes the microprocessor. Early

microprocessors, such as the Z80, as well as many

modern microcontrollers, are said to be 8-bit

processors, indicating that the working registers are

8 bits wide while the registers in modern processors

are typically 32 bits wide. The bit-values in the

register normally represent a numerical value in

standard fixed-point binary, floating point or some

other coded form. Alternatively, they may indicate a

logical pattern, such as the settings of switches in an

industrial controller.

Such collections of flip-flops form the core of any

synchronous circuits, as shown in Figure 3.29. The data

stored in the registers is processed though a combina-

tional logic circuit and returned to one or more

register(s) which may or may not include the register

from where the data was taken.

A bus-organized system allows flexibility to control

the register that provides the data source and the

register(s) that are the recipients of the data. In such

systems it is necessary to control when the data held in

a register is fed on to the output bus. This usually is

achieved by means of three-state (3S) gates at the

register outputs which are disabled, or set to their

FIGURE 3.28 Control timing parameters.
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Logic

FIGURE 3.29 General synchronous circuit.
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high-impedance state, until the data is required. This allows other devices connected to the common bus to

assert their outputs.

A multi-register, bus-structured digital system will have the nth bit of each register connected to bit n of the

data bus at both the input and output of the register. To transfer data from one register to another, or to

transfer a copy of the contents of one register to another register, the output gates of the source register must

be enabled so that the data is fed on to the bus. This data becomes available at the register inputs and is latched

in under the control of the appropriate signals. Under normal circumstances, only one register can assert the

value on to a common bus, while several registers may read data from it. The possibility of a bus contention,

when more than one register attempts to control the bus, should be avoided in the design.

Sets of registers are often grouped together as register arrays. The advantage of using arrays of registers

instead of individual ones is that the array may share some common connections. This reduces the number of

connections required. Registers in an array may be arranged as files where multiple read/write operations take

place simultaneously or, for Random Access Memory (RAM), where only a single read/write operation is

permitted at one time. Array files permit greater operational flexibility than RAM but at the price of additional

data, address and control lines.

An alternative flip-flop is the transparent latch, developed from the simple latch. When enabled by a

control signal, C, by setting C high or at 1, the latch becomes a transparent section of the data path. The data

value at the input reappears at the output. When the control signal disables the latch, C is low or ‘‘0’’. However,

the last value applied to the latch is ‘‘frozen’’ and held until the control signal is taken high again. The 74LS373,

Figure 3.30(a), consists of eight transparent latches with a common control input labeled ENABLE. The

74LS374, Figure 3.30(b), is a typical 8-bit register using positive edge-triggering for all flip-flops. It includes 3S

output gates designed for driving highly capacitive loads, such as those found in bus-organized systems, and

that respond to an output control signal operating quite independently of the flip-flops. Typical minimum

timing figures for the 74LS373 and 74LS374 are shown in Figure 3.30(c), and the waveforms occurring for the

two different types of register are illustrated in Figure 3.30(d).

Shift Registers

There are two modes of operation for a register, either serial or parallel. The registers considered so far have

operated in parallel mode. In parallel operation, the group of bits held in the register may be altered

independently during a single clock pulse. In serial operation, data bits are input (or output) sequentially to

(or from) the register, one bit for every clock pulse. A register that has the facility to move the stored bits left

or right and one place at a time under the control of the clock pulse is called a shift register (Figure 3.31). It is

possible to combine serial and parallel operations in a single register. Registers may be designed that allow any

combination of parallel and/or serial loads, along with parallel and/or serial reads as required.

Shift registers are normally implemented by means of D, S-R or J-K flip-flops. As an example, the 74LS165A

(Figure 3.32) consists of eight S-R-type flip-flops with clock, clock inhibit and shift/load control inputs. Data

presented to the eight separate inputs is loaded into the register in parallel when the shift/load input is taken low.

Shifting occurs when the shift/load input is high and the clock pulse is applied, the action taking place on the

low-to-high transition of the clock pulse. Registers are available that switch on the other clock edge. For

example, the 74LS295A, which is a 4-bit shift register with serial and parallel operating modes, carries out all data

transfers and shifting operations on the high-to-low clock transition. This device also provides 3S operation.

Selection of the mode of operation is carried out by suitable combinations of the MODE SELECT inputs.

One of the most common applications of shift registers is in serial communication between devices. Such

serial communication is particularly important when devices are physically separated and it is not convenient

to have a large number of electrical connections between the two devices. By utilizing a serial connection,

one may use significantly fewer connections than would be required for parallel communication, in which all

bits are transferred simultaneously along individual connections. There are many types of serial

communication but they generally possess the features illustrated in Figure 3.33. Data for transmission

is loaded in parallel into the parallel-in, serial-out shift register. It is then shifted out and transmitted one bit
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at a time. The receiver loads the received bits into the serial-in, parallel-out shift register and, once a complete

set of data bits has been received, it will allow the receiver to read the contents in parallel. If the transmitter

and receiver share a common clock signal then the transmission is said to be synchronous, while if

each generates its own clock then the transmission is asynchronous. In the latter case the device is called a

universal asynchronous receiver transmitter (UART). Many devices can act in both synchronous and

asynchronous modes and are referred to as universal synchronous/asynchronous receiver transmitters

(USARTs).

FIGURE 3.30 (a) 74LS373 and (b) 74LS374. (c) Typical minimum timing values and (d) I/O waveforms for the 74LS373/

374. (Source: TTL Data Book, vol. 1, Texas Instruments, Inc. With permission.)
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Irrespective of whether synchronous or asynchronous transmission is used, it is often necessary to allow

two-way communications. A connection which allows transfer in only one direction is referred to as a simplex

line and if bi-directional communication is required then two simplex lines are required. A connection which

allows bi-directional communication but only in one direction at a time is called a half duplex line, while one

which allows simultaneous transmission in both directions is a full duplex.

In synchronous mode transmission the common clock may be generated by either the receiver or the

transmitter circuit. In the case of two-way communications, one device (the master) may generate a common

clock for both transmission to and reception from slave devices, as in the Serial Peripheral Interface (SPI), or

FIGURE 3.31 Shift register operation.

FIGURE 3.32 The 74LS165A shift register. (Source: TTL Data Book, Vol. 1, Texas Instruments, Inc. With permission.)

Clock Clock

Parallel Data Parallel Data

Serial Data

Present only in Synchronous Transmissions

Present only in Asynchronous Transmissions

FIGURE 3.33 Shift registers used in serial communications.
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each may generate a clock when it wishes to transmit, as in the Inter IC (I2C) bus. In the case of asynchronous

transmission, such as RS-232, the transmitter and receiver have independent clocks which are designed to

operate at approximately the same frequency. Once the receiver detects the beginning of a transmission, it uses

its own clock circuit to determine when each subsequent bit should arrive. In several of these serial protocols

additional lines may be used to indicate, for instance, that a device is ready to send or when a particular device

is being addressed.

As in parallel registers, data may be modified as it is transferred from one register to another. For example,

contents of one register may be added to the contents of another, the resulting sum then being returned to one

of the two registers. The example shown in Figure 3.34 is that of a serial adder. The registers could each be

made up of 74LS165A devices as previously described. The data to be added is transferred to the two shifting

registers, A and B, using parallel loading of data into the registers, carried out prior to the application of the

shift clock pulses shown.

On the rising edge of each clock pulse the data is right-shifted one place. The resultant sum of the two bits

plus any carry bit is, on the same clock edge, entered back into register A. The D-type flip-flop is used to delay

the carry bit until the next add time: data entered at D does not appear at Q until the falling edge of the clock

pulse has occurred, and at such time it is, therefore, too late to modify the previous addition. At the end of the

addition process, when all the data bits have been shifted through the registers, register A contains the sum,

and register B is unchanged.

A single shift register can be arranged to provide its own input by means of feedback circuits, and its action

then becomes autonomous, since the only external signal required is the clock signal. There are only a finite

number of states of the feedback shift register (FSR), and the output sequence from a register with a single

feedback path will, therefore, repeat with a cycle length not greater than 2n bits, where n is the number of flip-

flops in the register. This property can be used to create a counter known as a Johnson counter in which the

shift register has the J and K inputs of the first stage fed directly from the Q
�

and Q outputs, respectively, of the

last stage. This simple form of feedback leads to the name twisted-ring counter, and the result is the generation

of a creeping or stepping code with 2n different states. This form of counter is convenient only when the count

is small, as the number of flip-flops quickly becomes excessive, but is ideal for a simple decade counter. Unlike

standard binary decade counters, the Johnson decade counter requires five flip-flops but no additional

feedback circuitry. Gating needed to detect specific settings of the counter is also very simple [Bannister and

Whitehead, 1987].

Another set of sequences is obtained if the feedback uses exclusive-OR, that is, modulo-2 functions.

By correct choice of function, the linear feedback shift register (LFSR) so formed generates a maximal length

sequence, or m-sequence. A maximal length sequence has a length of 2n – 1 bits (the all-zeros state is not

included, since the mod-2 feedback would not allow any escape from that state, so the sequence has a 0

missing) with useful properties of repeatable randomness and is, therefore, described as a pseudorandom

binary sequence (PRBS). The number of maximal length sequences for a register of length n, and the feedback

FIGURE 3.34 The serial adder using shifting registers.
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arrangements to achieve them, are not at all obvious, but have been worked out for a large number of cases

[Messina, 1972]. A 4-bit LFSR will produce only one maximal length sequence, but a 10-bit register can

produce 30 distinct m-sequences, and a 30-bit register produces no less than 8,910,000 distinct sequences!

Shift registers can be used in parallel to form a first-in, first-out (FIFO) memory. These are typically

128 · 8-bit register memories with independent input and output buses. At the input port, data is controlled

by a shift-in clock operating in conjunction with an input ready signal which indicates whether the memory is

able to accept further words or is now full. The data entered is automatically shifted in parallel to the adjacent

memory location if it is empty and as this continues the data words stack up at the output end of the memory.

At the output port, data transfers are controlled by a shift-out clock and its associated output ready signal. The

output ready signal indicates either that a data word is ready to be shifted out or that the memory is now

empty. FIFOs can easily be cascaded to any desired depth and operated in parallel to give any required word

length. This type of memory is widely used in controlling transfers of data between digital subsystems which

operate at different clock rates and is often known as an elastic buffer.

Register Transfer Level (RTL) Notation

The transfer of data between registers may be described using a simple notation termed the register transfer

level (or register transfer language) (RTL) notation. For data transferred from register A to register B we write:

B A. The symbol is called the transfer operator. Note that this statement does not indicate how many bits

are to be transferred. To define the size of the register we declare the size thus: A[8], B[16], here defining an 8-

bit register and a 16-bit register. If the action to be taken is the transfer of the most significant bit (7th bit) of

register A to the least significant bit (bit 0) of register B, then we write: B[0] A[7]. Usually data is transferred

by the control signal or a clock pulse. If such a signal is designated ‘‘C’’ then we would describe the action by C:

B  A.

Returning to the serial adder circuit shown earlier, we could describe the register transfers thus:

A½8�;B½8�;D½1�

C : A½7�  A½0�� B½0�� D½0�;B½7�  B½0�;D½0�  Carry

Here in the declaration statement we refer to the D-type flip-flop as a single-bit register. Simultaneous

processes are separated by a comma; sequential processes would be separated by a semicolon. The symbol ‘‘%’’

is the exclusive-or (XOR) operator. Other logical operations include NOT, AND, and OR. The AND operation

is also called the masking operation because it can be used to remove (or select) specific sections of data from a

register. Thus the operation A[8]  A[8] and 3CH will result in the most significant two bits and the least

significant two bits of the eight-bit register A being set to zero. Note that 3CH refers to the hexadecimal

number 3C; i.e., 00111100 in binary. Some other terms commonly used are as follows:

D A transfer the complement of A to D

A  Aþ 1 increment A

A[8:15]  B[8:15] transfer bits 8 through 15 from B to A

In order to differentiate between arithmetic and logical operations it is usual to represent logical OR and

AND by ^ and _. Table 3.5 lists some typical RTL examples that include arithmetic, bit-by-bit logic, shift,

rotate, scale and conditional operations. It is assumed that the three registers are set initially to A¼ 10110,

B¼ 11000 and C¼ 00001.

The rotate operations included in Table 3.5 differ from the standard shift in that the data which is shifted out

of one end of the register is inserted into the opposite end of the register. Thus rotating left 110000 by 1 bit

results in 100001.

RTL provides a precise means of specifying circuit behavior and so is often used as part of hardware

description languages (HDL). See section 9.4 for further details.

# 2006 by Taylor & Francis Group, LLC



Input/Output Ports

The working registers provided in microprocessors may be thought of as high-speed extensions to the

memories used for storing programs and data. The random access memories (RAMs) themselves are also arrays

of registers, though the form of circuit used differs considerably from the more conventional register. The need

to transfer data in and out of the system has led manufacturers to produce special registers which are further

extensions to the internal memory and are known as input and output ports. These ports may be integrated

within the processor and connected to the internal bus or may be implemented as a separate device attached to

the external data bus and controlled by external control lines and selected using the external address lines.

A range of external input/output devices was developed for early microprocessors. One of the simplest

input/output ports is the Intel 8212 (Figure 3.35). This has two modes of operation selected by the mode

input, MD. With MD at 0 the device acts as an input port and a peripheral unit can enter data on the DI lines

by sending a high strobe signal, STB. When the central processor is ready for the data it selects the port by

setting the correct address bits on the device select inputs. This enables the 3S output buffers and data is routed

to the processor data bus via the DO lines. This device also includes a service request flip-flop to generate an

TABLE 3.5 Typical RTL Examples

Type of Operation Meaning

Register Bits after

Operation

General

A3  A2 Bit 2 of A to bit 3 of A A¼ 11110

A3  B4 Bit 4 of B to bit 3 of A A¼ 11110

A1–3  B1–3 Bits 1 through 3 of B to bits 1 through 3 of A A¼ 11000

A1,4  B1,4 Bits 1 and 4 of B to bits 1 and 4 of A A¼ 10100

A1–3  Bz Groups of bit Z of B to bits 1 through 3 of A A¼ 11000

Arithmetic

B  0 Clear B B¼ 00000

A  Bþ C Sum of B and C to A A¼ 11001

A  B – C Difference B – C to A A¼ 10111

C  Cþ 1 Increment C by 1 C¼ 00010

Logic

A  B ^ C Bit-by-bit AND result of B and C to A A¼ 00000

A  B _ C4 OR operation result of B with bit 4 of C to A A¼ 11000

C C
�

Complement C C¼ 11110

B B
�
þ 1 2’s complement of B B¼ 01000

B  A % C XOR operation result of A and C to B B¼ 10111

Serial

B  sr B Shift right B one bit B¼ 01100

B  sl B Shift left B one bit B¼ 10000

B  sr2 B Shift right B two bits B¼ 00110

B  rr B Rotate right B one bit B¼ 01100

B  rl2 B Rotate left two bits B¼ 00011

B  scr B Scale B one bit (shift right with sign bit unchanged) B¼ 11100

B  scl B Scale B one bit (shift left with sign bit unchanged) B¼ 10000

B, C  sr2 B, C Shift right concatenated B and C two bits B, C¼ 0011000000

Conditional

If (B4¼ 1) then (C  0) If bit 4 of B is a 1, then C is cleared C¼ 00000

If (B $ C) then (B  0, C1  1) If B is greater than or equal to C, then B is cleared and C is set to 1 B¼ 00000

Initial values: A¼ 10110, B ¼ 11000
|ffl{zffl}

z

and C¼ 00001.

Source: E.L. Johnson and M.A. Karim, Digital Design, Boston: PWS Publishers, 1987. With permission.
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interrupt signal to the processor when the data is ready. In the alternative mode of use, with the mode input at

1, the device select logic routes data from the processor, now connected to the DI inputs, so the 8212 acts as an

output port. The data is immediately available to the peripheral unit on the DO lines, as the 3S output buffers

are permanently enabled. A more sophisticated range of input and output facilities is provided by most

microprocessor manufacturers in the form of programmable input/output ports or peripheral interfaces.

These are special registers with appropriate buffers and additional built-in control and status registers to

facilitate proper system operation. Typical features include not just parallel ports but USARTs based around

shift registers and timer/counter circuits. Such external peripherals have become less popular as

microprocessors have been developed with more sophisticated on-board interfaces.

In a typical modern microprocessor each pin may have several different functions and within each function

may operate in a number of different modes. Figure 3.36 shows the structure of a parallel input/output port of

the M16C microprocessor [Renesas, 2001]. The operation of each bit of this port is controlled by three

FIGURE 3.35 The Intel 8212 parallel inout/output port. (Source: Microprocessor Component Handbook, Intel Corp.

With permission.)

# 2006 by Taylor & Francis Group, LLC



registers. The data direction register (DDR) determines whether each bit of the port acts as an input or an

output while the port latch stores the data to be output by the port. When DDR is low the data applied to the

pin by the external circuit may be read by the microprocessor. When DDR is high the port acts as an output

and the data stored in the port latch is asserted on the port pin (this data may also be read back by the

microprocessor if desired). The third register is the pull-up control register which is only effective when the

port is in input mode. When the corresponding bit of this register is high the pull-up FET acts as a pull-up

resistor while if the bit is low, the pull-up FET is turned off and there is no pull-up resistance on the input.

Counters

A register can be loaded with any combination by applying the correct bit pattern to the input data lines and

activating the control line. As with the feedback shift registers, it is then only a small step to arrange that the

register itself provides the input data by use of feedback connections and, if other circuitry is included to

increment the value each time, we have a synchronous counter. The 74LS191 (Figure 3.37) is a programmable

counter which retains the facility for parallel loading of external data.

Each output may be preset to either level by entering the data at the inputs while the LOAD signal is low.

The outputs change to the new values independently of the count pulses, and counting continues when pulses

are applied to the clock input. The master-slave flip-flops are triggered by a low-to-high transition of the clock.

The ‘‘terminal count’’ and ‘‘ripple clock’’ outputs facilitate cascading of several counters. The ripple clock

carry/borrow output signal, RCO, is a pulse equal in length to the clock pulse when the counter overflows or

underflows, that is, when it is incremented from 1111 or decremented from 0000. By using this signal to reload

the value at the data inputs we create a counter of modulus less than 16. Figure 3.38, for example, shows the

arrangement to give a modulo-5 count, by reloading 1011 each time the ripple clock pulse occurs.

Registered ASICs

Developments in application specific integrated circuits (ASICs), programmable logic devices (PLDs) and

field-programmable gate arrays (FPGAs) over recent years have provided digital system designers with a wide

range of flexible devices which can be programmed for the specific job in hand. These devices typically have a

Pull-up Control
Register

Port Latch

Data Direction
Register

Data Bus

Input/
Output Pin

Vcc

Vcc

Vss

FIGURE 3.36 Parallel input/output port structure of M16C microprocessor.
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set of input/output blocks which may be programmed to link to a set of configurable logic blocks which

contain both combinational elements and flip-flops. Devices also often include clock, initialization, self-test

and program/read-back circuits. Over time, the structure of these devices has not changed radically but they

have increased significantly in terms of the number of elements contained. The Xilinx Spartan XC3S5000, for

example, has approximately 5 million logic gates and over 8000 configurable logic blocks (each of which

FIGURE 3.37 The 74LS191 programmable counter. (Source: TTL Data Book, Vol. 1, Texas Instruments, Inc. With

permission.)
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contains 8 flip-flops) which may be linked to 784 user input/output pins. Clearly to design circuits involving

this level of complexity requires sophisticated CAD tools which are supplied by the device vendors.

Standard Graphic Symbols

The use of standardized graphical symbols is becoming widespread and the family of registers have their own

coherent set of symbols. Two representative examples are given in Figure 3.39. As shown, the 8-bit shift register

is designated SGR8. The direction of shift is given by the arrow. The ‘‘1D’’ is part of a notation called

dependency notation. In the 4-bit parallel register, designated RG4, clock input C1 controls the inputs labeled

1D, of which only one of four is shown. The reset ‘‘R’’ and the clock are common to all units and are shown as

inputs to the common block. The external reset line carries a polarity symbol which indicates that a low signal

must be applied to reset the 4-bit register. For further details see the References at the end of this section.

Defining Terms

Autonomous operation: Operation of a sequential circuit in which no external signals, other than clock

signals, are applied. The necessary logic inputs are derived internally using feedback circuits.

Duplex: Mode of serial communication which allows bidirectional transmission across a connection. Full

duplex allows simultaneous communications in both directions while half duplex permits transmission

in only one direction at a time.

Input/output port: A form of register designed specifically for data input-output purposes in a bus-

oriented system.

FIGURE 3.38 Programmable counter giving modulo-5.

FIGURE 3.39 Standard graphic symbols. (Source: IEEE, Standard Graphic Symbols for Logic Functions, ANSI/IEEE Std.

91–1984, New York, 1984. With permission.)
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Linear feedback shift register (LFSR): An autonomous feedback shift register in which the feedback

function involves only exclusive-OR operations.

Parallel operation: Data bits on separate lines (often in multiples of eight) are transferred simultaneously

under control of signals common to all lines.

Register: A circuit formed from several identical gated flip-flops or latches and capable of storing several

bits of data.

Serial operation: Data bits on a single line are transferred sequentially under the control of a single signal.

Simplex: Mode of serial communication which allows unidirectional transmission across a connection.
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Further Information

The monthly journal IEEE Transactions on Computers regularly has articles involving the design and

application of registers and associated systems. Further information can be obtained from IEEE Service Center,

445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855–1331.

The IEE Proceedings, Computers and Digital Techniques, published bimonthly by the Institution of Electrical

Engineers (Michael Faraday House, Six Hills Way, Stevenage, Herts. SG1 2AY, UK), is also a useful source of

information on the application of register devices.

3.4 Programmable Arrays

George A. Constantinides

Introduction

This article presents an overview of historical and modern programmable arrays of logic, their applications,

and the tools required to make use of them. Programmable logic devices have long been used for prototyping

application specific integrated circuit designs, and are fast becoming the medium of choice for small to

medium end-product production runs.

The first section of this article surveys the evolution of the programmable logic device from the

programmable logic array of the 1970s to the platform field-programmable gate array of 2005. With the ever-

increasing density and complexity of these devices, it is important to consider methods to automate or

partially automate design for them; this is the subject of the second section of the article. Finally, we shall

examine some of the areas of application of this impressive technology.

Architectures

Architectures of programmable logic devices have evolved over the years. The first programmable

arrays specifically targeting logic implementation were called programmable logic arrays (PLAs), introduced
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in the 1970s. PLAs allow the direct implementation of Boolean sum-of-product expressions, through their

programmable AND plane and programmable OR plane. In time the PLA evolved into the programmable

array logic (PAL) device, where the programmability lies only in the AND plane while the OR plane is fixed,

providing better speed and silicon density, as illustrated in Figure 3.40. PALs are very successful at performing

simple logical functions, but the complexity of the programmable AND plane grows rapidly with the size of

the circuit. The further evolution of the PAL into the complex programmable logic device (CPLD), integrating

several PAL-like structures onto a single device, is an attempt to overcome this limitation. The CPLD has

become widespread, and is still commonly used today.

A different type of field-programmable device, and one that is attracting significant attention from

researchers and industrial developers alike, is the field-programmable gate array (FPGA). A traditional

FPGA consists of a sea of small identical logic elements, surrounded by configurable routing, as shown in

Figure 3.41. By wiring these logic elements using the configurable routing, the user can construct any logic

circuit desired. The logic elements themselves may also be configurable, adding further flexibility to the

device. The main logic element used in commercial devices is based on a small read-only memory (ROM)

with four address lines and one data line, known as a 4-input lookup table, or 4-LUT. The programmability

of the ROM allows each logic element to perform any logical function of no more than four inputs, and the

configurability of the routing structure allows these ROMs to be connected in order to form far more

complex circuits. In addition to the 4-LUT, it is usual to include a D-type register in a logic element in order

that sequential logic circuits can be constructed [1], leading to the common logic element structure shown

in Figure 3.42.

In recent years the size of such devices has grown very rapidly. For example, the latest FPGA from Xilinx

contains up to 180,000 4-LUTs compared to just 7,500 available only 5 years ago [2]. This has led to a take up

of FPGA technology for computational purposes, as described in the applications section below. A result of the

increasing use of FPGAs for particular computations such as those in digital signal processing (DSP), is that

manufacturers have tried to tune their architectures towards these applications by altering the logic element

structure, or having a variety of different logic elements within the same FPGA.

>=1

>=1

A B C D

ABCD
ABCD
ABCD

Programmable AND Plane

FIGURE 3.40 PAL structure.

# 2006 by Taylor & Francis Group, LLC



The first modifications that were seen to the basic structure of Figure 3.42 were to enable the efficient

implementation of ripple-carry adders. The ripple-carry adder is built through the replication of a single-bit

adder, or full adder circuit capable of summing any three binary digits to form a sum and a carry output. Since

each bit slice has two outputs, whereas the circuit in Figure 3.42 has only one output, 2n such logic elements

are required for an n-bit adder. In addition, such an adder would be quite slow as a result of the critical

computational path, the carry chain, requiring the use of

configurable routing structures. The solution adopted by

Xilinx to this problem is shown in Figure 3.43. Some

extra fixed-functionality circuitry has been introduced

into the logic cell and some fixed; i.e., non-configurable

routing has been introduced specifically to support the

carry chain. In this logic cell, if the 4-LUT is configured

to perform a two-bit XOR function between the lower

two of its four inputs, then it can be seen that the logic-

cell acts as a single-bit adder. In addition, the

performance of the adder is much enhanced by the

simple logic through which the carry must pass (a single

LOGIC
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OUTPUT

INPUT / OUTPUT

INPUT/ 
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INPUT / OUTPUT

LOGIC
ELEMENT

LOGIC
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LOGIC
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LOGIC
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LOGIC
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FIGURE 3.41 FPGA structure.

4-LUT

FIGURE 3.42 A common logic element.
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multiplexer per bit), and the fixed nature of the carry routing. The penalty for this achievement is the

introduction of an extra multiplexer and XOR gate in fixed logic; if the logic cell is not used for addition, these

will go to waste.

More recently, there has been a move to integrate word-level arithmetic operators as special purpose logic

elements on the device. Modern reconfigurable arrays may thus be classified according to their granularity:

fine-grain, coarse-grain or mixed-grain. This classification refers to the type of data operated on by each logic

element: a fine-grain element operates at the bit level, such as a 4-LUT, while a coarse-grain element operates

at the word level, such as a multiplier. Modern high-end reconfigurable devices from Xilinx and Altera, the two

leading FPGA manufacturers, contain a mixture of these elements, and may therefore be classified as mixed-

grain devices [2,3], while coarse-grain devices are an active area of research [4].

In recent years, with the emergence of deep sub-micron (DSM) effects, it has become particularly important

to move away from a purely fine-grain architecture, as the routing structure has started to consume a

significant portion of the energy required by the device, and has also become the major component of delay,

outweighing the logic delay itself. In the effort to achieve power-efficient designs, it becomes necessary to

jettison some of the reconfigurability afforded by early-generation PLDs. However, in so doing, the PLD

becomes more specialised to a particular domain of application. The recent announcement of the Virtex 4

device from Xilinx [2], which comes in several families dedicated to logic, signal processing, and embedded

systems, is a move in this direction.

Design Tools

Field programmable logic is often contrasted to general-purpose microprocessors as a way of obtaining fast,

low power consumption and flexible implementations of particular algorithms. However, the automation

tools that exist for hardware design are currently not at the comparatively advanced stage of optimising

software compilers. The industrial state-of-the-art in hardware design for PLDs is the use of Verilog [5] or

Very High Speed Integrated Circuit Hardware Description Language (VHDL) [6] at the register-transfer level.

This is a form of description in which the clock-cycle by clock-cycle behaviour of the circuit must be explicitly

specified. Synthesis of circuits from this type of specification is now well understood; mapping to LUT-based

FPGA technology in particular was first considered in detail by Murgai [7].

However, there has been an increasing amount of attention paid to the so-called design productivity gap;

the rate of increase in the design complexity manageable by a team of engineers is lagging behind the rate of

increase in the design complexity which can be manufactured. Much research has therefore focussed on

closing this gap.

4-LUT

Carry In

Carry Out

FIGURE 3.43 A modified logic element capable of a single-bit binary addition.

# 2006 by Taylor & Francis Group, LLC



Recently developed design tools for reconfigurable logic can be classified as domain-specific or domain-

general tools. A domain-specific design tool is one that targets a particular application domain such as image

processing, while a domain-general tool is one applicable across a wide range of application domains. The

advantage of domain-specific compilation is that design methods and resulting architectures can be tailored to

prior knowledge about the application domain, for example the concept of sample period in signal processing

applications. This means that, often, more efficient and higher-level designs can be produced than with a

domain-general approach. This perspective has become even more important recently with the advent of more

domain-specific PLDs such as the Virtex IV series [2].

For domain-general design tools, often the focus has been on trying to migrate software designs into FPGA-

based implementations. In this case, it makes sense to look at the most common software languages as

potential input specifications for hardware design automation tools. To this end, C-based hardware design for

PLDs has become an active area of research [8], and has led to several C-based products such as Handel-C [9]

and Catapult [10]. Many of these approaches are either based on modifying the language to allow hardware-

specific constructs such as true parallelism and configurable data-path width, such as in Handel-C, or through

the insertion of pragmas and other external steering mechanisms to guide the synthesis tool.

Most work on domain-specific compilation has focussed on DSP applications, as they are often

characterised by high levels of potential parallelism combined with simple control flow structures. As such,

attention has been drawn to those languages and specification formats most widely used in the DSP design

community. MATLAB is an extremely popular language in this community [11], and has been the focus of

efforts to compile from MATLAB to FPGAs started at Northwestern University, and now appearing as a

product of Accelchip [12]. Within MATLAB is embedded a graphical programming environment called

Simulink. Simulink has also been the target of FPGA-based design automation, starting with the Synoptix tool

[13]. Simulink is now an accepted format for design entry for FPGAs, with both Xilinx [14] and Altera [15]

offering Simulink-based design flows. In addition to MATLAB-based design, other DSP-specific approaches

have been postulated, including a modified version of C with image-processing extensions called SA-C [16].

Outside the realm of DSP, networking is also considered an application domain that can make use of the fine

granularity parallelism offered by programmable logic devices; Kulkarni [17] and Lee [18] have proposed

domain-specific compilation routes for networking.

Applications

In addition to their traditional role as glue logic, programmable logic devices have been demonstrated to be

appropriate platforms for many computationally intensive tasks. Compared to the alternative of a

microprocessor-based algorithm implementation, very high performance is often achieved from a PLD

implementation when the algorithm can be highly parallelized. For example, cryptographic applications have

shown speedups of 18 times [19], number theory applications 28 times [20], and similar speedups have been

obtained for automatic target recognition [21], pattern matching [8], and Boolean satisfiability [22]. In

addition, even when the degree of parallelism is not very large, there may be a case for a PLD-based

implementation of algorithms that perform many non-standard operations such as bit-level shifting and

masking, which are more efficiently implemented in a bit-level device [4].

Indeed, the only alternative implementation strategy that equals or surpasses the PLD in these measures is

the application specific integrated circuit (ASIC). However, the so-called ‘‘nonrecurring engineering’’ (NRE)

cost of manufacturing an ASIC in the latest technology is now beyond the reach of all but the truly mass-

market products such as games consoles or some graphics cards. Using PLDs allows this NRE cost to be spread

over the entire consumer-base of the PLD, making PLDs the affordable way to achieve high performance. The

application areas of cryptography, video processing and networking have been shown many times to benefit

from the parallelism afforded by modern FPGA devices [4]. Each of these achievements is described in a little

more detail below.

Cryptography has long been recognised as a good match for the computational power of PLDs. Parallelism

comes from the block-based processing inherent in most cryptographic standards. In addition, the finite-field
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arithmetic operations performed are typically a poor match for standard microprocessors, but can be

efficiently implemented in bit-level PLDs [4].

Video processing remains one of the main uses of high-end FPGAs. Video processing tasks, such as edge

detection, are often characterised by a combination of very large data sets, real-time constraints, a large

number of operations on relatively small word-length data, and massive opportunities for parallelism. All

these characteristics fit well with the computational capabilities of modern programmable hardware. PLDs

have been embedded into system-level architectures specifically targeting video processing, such as the Sonic

[23] and UltraSonic [24] boards.

In recent years, one of the growing areas of application for PLDs has been in network security. The high data

rate of network traffic, combined with the large number of possible attack strategies against an insecure

network, result in a large computational burden for firewalls and network intrusion detections systems. The

reconfigurability of PLDs has also been taken advantage of in [18], where rapid customisation can be made to

conform to firewall policies. Network intrusion detection systems typically take advantage of the hardware-

efficiency of detecting the regular expressions corresponding to known attacks [25].

Conclusion

This article has provided an overview of the technologies behind historical and modern programmable logic

devices. While PLDs and FPGAs are now industry-standard components, there remain many questions on

how to obtain the best benefit from heterogeneous PLDs, and indeed what form of PLD provides the best

speed, power, cost, and flexibility trade-off for a given application domain.
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3.5 Arithmetic Logic Units

Bill D. Carroll

Arithmetic logic units (ALUs) are combinational logic circuits that perform basic arithmetic (only addition and

subtraction) or logical (AND, OR and NOT) operations on two n-bit operands. ALUs can be constructed from

standard integrated circuits or programmable-logic devices and are available as single-chip, medium-scale,

integrated circuits.

This section covers the design of arithmetic and logic circuits in sufficient detail for the reader to design and

implement basic logic units and to understand the operation and use of commercial devices. The reader that

requires more detail or an in-depth discussion of the subject should consult the reference list and sources

provided at the end of this section.

In the following material, operands are assumed to be signed, n-bit binary numbers, with the left bit

representing the sign (0 for positive and 1 for negative) in arithmetic operations or in circuits. Negative

numbers are represented in two’s-complement form. The two’s complement of an n-bit number A is A 0 þ 1,

where A 0 represents the bit-wise complement of A. Unsigned n-bit binary numbers are assumed for logic

operations and circuits.

Basic Adders and Subtracters

The basic building block for most arithmetic circuits is the full adder. A full adder is a logic circuit that

produces a two-bit sum (S and C) of three one-bit binary numbers (X, Y and Z). Table 3.6 shows the truth

table and logic equations for a full adder. A logic symbol and gate-level realization of a full adder are shown in

Figure 3.44.

The addition of two n-bit binary numbers (X ¼ xn�1 . . . x1x0 and Y ¼ yn�1 . . . y1y0Þ can be calculated with n

full adders cascaded, as shown in Figure 3.45. Such a circuit is called a ripple-carry adder, since carries

produced by lower-order stages must propagate or ripple through the higher-order stages before completing

the addition operation.
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Ripple-carry adders are simple in operation and structure but are slow. In the worst case (X ¼ 1 . . . 11

and Y ¼ 0 . . . 01), a carry produced in the least-significant full adder must propagate through the more

significant ones. The worst-case add time, tadd, is shown below, where tpd is the propagation delay introduced

at each stage.

tadd ¼ ntpd

This assumes that all addend bits are presented to the adder simultaneously. In the least significant full adder,

tpd represents the time to compute c1 from x0 and y0. In the most significant full adder, the time to compute

sn�1 after cn�1 is received. In the intermediate stages, tpd is the time needed to compute ciþ l from ci. The

propagation delay is approximately equal to the delay of a three-level logic circuit, consistent with the

realization of a full adder shown in Figure 3.44.

Subtraction easily can be performed by adding the minuend to the negative of the subtrahend. In a two’s-

complement number system, X – Y can be obtained by computing X þ Y 0 þ 1. The ripple-carry adder

TABLE 3.6 Full Adder Truth Table and Logic Equations

X Y Z S C

0 0 0 0 0

0 0 1 1 0 S¼XYZþ XY 0 Z 0 þ X 0 YZ 0 þ X 0 Y 0 Z

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0 C¼XYþ XZþ YZ

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

FIGURE 3.44 Full adder.

FIGURE 3.45 Ripple-carry adder for two n-bit binary numbers.
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described above can be modified by placing inverters on the Y inputs of each full adder and by making the

carry-in (c0) equal to 1. The resulting two’s-complement subtracter is shown in Figure 3.46.

A device capable of performing addition or subtraction can be built by replacing the inverters in the

subtracter with exclusive-OR gates and using the carry-in (c0) as a control signal. The resulting

two’s-complement adder/subtracter is shown in Figure 3.47. The device will function as a ripple-carry

adder when c0¼ 0 and as a two’s-complement subtracter when c0¼ 1.

High-Speed Adders

Several adder designs have been developed to perform high speed addition. These include carry-lookahead

adders (CLAs), carry-completion adders, conditional-sum adders and carry-select adders. Carry-lookahead

adders have gained wide acceptance in the design of ALUs due to their speed and because they can be

conveniently implemented in integrated-circuit form.

This material covers only the carry-lookahead approach. Before discussing this approach, it is important to

explain why fully parallel adders are not feasible. Addition is a combinational process, so it is theoretically

possible to construct a 2n-bit full adder that can be used with a three-level combinational logic circuit and

perrform addition of two n-bit numbers in the time equal to the circuit’s delay. However, such circuits,

requiring gate fan-in, are too costly to be implemented for reasonable values of n. Carry-lookahead is a

practical and effective compromise between fully parallel adders and ripple-carry adders. The block diagram of

a four-bit CLA is shown in Figure 3.48(a).

CLAs are based on the observation that a carry-out (ci) of the ith stage of a full adder is produced either by

the propagation of the carry-in (ci�1) through the ith stage or the generation of a carry in the ith stage. This

can be seen in the following logic equations for ci :

ci ¼ xi�1yi�1 þ xi�1ci�1 þ yi�1 ci�1

¼ xi�1yi�1 þ ðxi�1 þ yi�1Þci�1

¼ gi�1 þ pi�1ci�1

FIGURE 3.46 Two’s-complement subtracter.

FIGURE 3.47 Two’s-complement adder/subtracter.
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where gi ¼ xiyi and pi ¼ xi þ yi are the generate and propagate terms, respectively, for stage i for i¼ 0 to

n – 1.

The carry equations for an n-bit adder can be derived by repeatedly applying the above equation. The

following set of equations results for the n¼ 4 case:

c1 ¼ g0 þ p0c0

c2 ¼ g1 þ p1g0 þ p1p0c0

c3 ¼ g2 þ p2g1 þ p2p1g0 þ p2p1p0c0

c4 ¼ g3 þ p3g2 þ p3p2g1 þ p3p2p1g0 þ p3p2p1c0

The carry equations can be calculated by three-level combinational logic circuits to form the carry-lookahead

logic block shown in Figure 3.48(a). The sum (si) bits for the ith stage of an adder can be written in terms of gi,

pi and ci and generated by the logic circuit given in Figure 3.48(b).

The add-time, tadd, for a CLA will be examined next. Assume that both addends are applied to the CLA

simultaneously and that c0¼ 0. Also, let tpd represent the propagation delay of a three-level logic circuit. Two

components contribute to the add time. First, the three-level carry-lookahead logic must produce the carries.

This takes tpd. Then, the summation unit must produce the final values for the sum bits. This step takes a time

equal to the propagation delay of the exclusive-OR gate in the summation unit, which is tpd, since an exclusive-OR

gate can be calculated as a three-level, combinational logic circuit. Hence, the add time for a CLA is

tadd ¼ 2tpd

The above result indicates that the add time of a CLA is not only faster than a ripple-carry adder but also is

independent of the length (n) of the addends. It might be concluded that CLAs provide the final answer to the

high-speed adder problem. However, a closer look at the carry equations above reveals that they become

progressively more complex in the number of product terms and literals. Fan-in constraints eventually will

limit the practicality of calculating the equations in three-level logic. The actual limit is technology-dependent.

Standard single-chip, medium-scale ALUs typically handle four-bit operands, although longer lengths are

certainly feasible with today’s technology.

CLAs may be cascaded to produce an adder for longer operands. Figure 3.49 shows a cascade of four 4-bit

CLAs that produce a 16-bit adder. Carries are produced using carry-lookahead logic within each CLA stage but

must propagate between stages similar to a ripple-carry adder. Consequently, the add time of cascaded CLAs is

dependent on the number of cascade stages. The four-stage adder in Figure 3.49 has a worst-case add time of

5tpd. In general, the add time of an m-stage cascade is (mþ 1)tpd.

The carry-lookahead approach can be applied at a higher level to eliminate the propagation of carries

between CLA stages or blocks. This approach uses block carry-lookahead adders (BCLAs) and block carry-

lookahead (BCL) logic as shown in Figure 3.50. A BCLA is CLA-modified to produce block-carry

FIGURE 3.48 Carry-lookahead adder.
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propagate (P) and block-carry generate (G) outputs instead of a carry-out. BCL logic is a combinational logic

circuit that generates block carries (Cj) for each BCLA from the P and G outputs of lower-order BCLAs and c0.

Logic equations for the block-carry logic can be derived by repeated application of the following equations for

a typical block:

Cj ¼ Gj þ PjCj�1

where

Gj ¼ ½g3 þ p3g2 þ p3p2g1 þ p3p2p1g0�j

and

Pj ¼ ½p3p2p1p0�j

BCLAs and block-carry-logic units are available in standard, medium-scale integrated circuits. An extension of

the carry-lookahead concept to k levels is possible in theory. However, applying more than three levels is

usually not practical.

Multifunction Arithmetic Logic Units

Devices that can provide addition, subtraction and logical operations easily can be designed around the

adders and subtracters in the previous sections. The logic diagram of the first two stages of an n-bit

multifunction ALU is shown in Figure 3.51. Operand inputs for the device are X ¼ xn�1 . . . x1x0 and

Y ¼ yn�1 . . . y1y0 and the output is S ¼ sn�1 . . . s1s0. The function performed on the operands is determined

by the values of the control inputs k2, k1, k0 and cin, as shown in Table 3.7. The given realization simply can

be based on a ripple-carry adder. However, the same design approach can be used with other adders such as

carry-lookahead.

FIGURE 3.49 Cascaded carry-lookahead adders.

FIGURE 3.50 Block carry-lookahead adders.
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Standard Integrated Circuit ALUs

The devices described above are generic in nature but are similar in function and usefulness to

many commercially available integrated-circuit products. Representative products are summarized in

Table 3.8. Manufacturers are phasing out these types of products as newer technologies make them

obsolete.

FIGURE 3.51 Multifunction ALU.

TABLE 3.7 Functions Performed by the Multifunction ALU

Control Inputs

k2 k1 k0 cin Result Function

0 0 0 0 S¼X Transfer X

0 0 0 1 S¼Xþ 1 Increment X

0 0 1 0 S¼Xþ Y Addition

0 0 1 1 S¼Xþ Yþ 1 Add with carry in

0 1 0 0 S¼X – Y – 1 Subtract with borrow

0 1 0 1 S¼X – Y Subtraction

0 1 1 0 S¼X – 1 Decrement X

0 1 1 1 S¼X Transfer X

1 0 0 . . . S¼X OR Y Logical OR

1 0 1 . . . S¼X XOR Y Exclusive-OR

1 1 0 . . . S¼X AND Y Logical AND

1 1 1 . . . S¼NOT X Bit-wise complement

TABLE 3.8 Typical Integrated Circuit Arithmetic and Logic Devices

Part Number Function Features

74F181 4-bit multifunction (16) ALU BCL outputs

74F182 Carry-lookahead generator Use with 74LS181 for BCL

74F183 Full adder Two per package

74F283 4-bit binary adder Internal CL

74F381 4-bit multifunction (8) ALU BCL outputs

74F382 4-bit multifunction (8) ALU Ripple-carry output
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Defining Terms

Arithmetic logic unit (ALU): A combinational logic circuit that can perform basic arithmetic and logical

operations on n-bit binary operands.

Block carry-lookahead adder (BCLA): An adder that uses two levels of carry-lookahead logic.

Carry-lookahead adder (CLA): A high-speed adder that uses extra-combinational logic to generate all

carries in an n-bit block in parallel.

Full adder (FA): A combinational logic circuit that produces the two-bit sum of three one-bit binary

numbers.

Ripple-carry adder (RCA): A basic n-bit adder characterized by the need for carries to propagate from

lower- to higher-order stages.
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Further Information

Information on the theoretical aspects of computer arithmetic can be found in the IEEE Transactions on

Computers, a monthly publication of the Institute for Electrical and Electronics Engineers, Inc., 445 Hoes Lane,

P.O. Box 1331, Piscataway, NJ 08855–1331.

More information on the specifications and applications of integrated circuits is published in data books

and application notes by electronics manufacturers such as Texas Instruments Inc., Fairchild Semiconductor

International Inc. and National Semiconductor Corp.

Discussions of multiplication, division and floating-point arithmetic can be found in numerous textbooks

on computer architecture.

3.6 Programmable Logic

Albert A. Liddicoat and Lynne A. Slivovsky

Introduction

Digital systems today are designed with drastically different implementation techniques. Each technique has

unique advantages and disadvantages in cost, performance, power consumption, design time, manufacturing

time and flexibility. Programmable logic often is used for hardware prototyping, for applications requiring

concurrent hardware and software development and for applications where it is not economical to design a

custom integrated circuit (IC). Systems using programmable logic often benefit from a performance advantage

by using hardware implementation, compared to systems using a general-purpose processor or

microcontroller. For these systems designers also avoid the large initial investment that custom integrated
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circuits require. Figure 3.52 provides the taxonomy for common classifications of digital systems.

Programmable logic devices (PLDs) and field programmable gate arrays (FPGAs) are shown in bold.

Digital systems can be implemented using stored programs that work with a microprocessor or micro-

controller. For these digital systems, designers write custom software for a general-purpose microprocessor or

microcontroller. This approach offers the advantage of using the same microprocessor or microcontroller for

many different applications. This amortizes the development cost of a general-purpose device for a large market.

However, this technique’s disadvantage is with stored program execution. Execution is sequential in nature and

adds overhead costs by fetching and decoding instructions, in contrast with a hardware-based system.

A primary advantage of hardware-based design is that independent computation can occur simultaneously.

For parallel applications, hardware-based design often provides a significant performance advantage over stored

programs executing on a processor. In Figure 3.52, five types of hardware-based designs are shown.

Implementation techniques are arranged from left to right, with the least amount of customization over the

integrated circuits shown on the left side and the greatest amount of customization and integration on the right.

Each hardware-based implementation technique has a range of well-suited applications.

Discrete logic generally is preferred when less than five logic gates are needed for the application. Discrete-

logic ICs often provide one to four logic gates on a single IC. If the application only requires one to four logic

gates of a single type, a discrete-logic IC would be the most cost-effective solution. However, if the application

requires from 5 to 1,000 logic gates, then programmable logic devices (PLDs) often are preferred. PLDs are

integrated circuit devices that can be programmed to implement arbitrary logic functions. Simple PLDs

(SPLDs) are devices implementing two-level logic functions. Simple PLDs come in many configurations and

use different programming methods. Complex PLDs (CPLDs) are comprised of a collection of PLD-like blocks

on a single chip, using a programmable interconnect. CPLD architecture is presented in the following section

of this chapter.

Gate arrays offer more orders of magnitude, more hardware resources, greater logic-gate equivalents and

more memory storage devices than do PLDs. These devices provide multiple logic gates, configurable logic

blocks (CLBs) and flip-flops. In a gate-array product, the semiconductor layer is fixed and cannot be changed.

The gate array can be customized by controlling how the logic gates, configurable logic blocks and flip-flops

are interconnected and set up. Field-programmable gate arrays are customized after the integrated circuits

leave the factory. The logic functions are implemented by using configurable logic blocks, and the

interconnection of these configurable logic blocks and flip-flops is controlled by a programmable interconnect.

FPGA architecture is presented in the following section of this chapter.
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FIGURE 3.52 Taxonomy of digital systems.
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Factory-programmed gate arrays must be customized by the manufacturer. A designer determines how

the logic gates and memory devices are connected and how the read-only memories should be

programmed for specific applications. The designer provides this information to the manufacturer. The

manufacturer can customize the gate array by adding a metal-interconnect layer over the semiconductor

substrate used to connect the logic gates and flip-flops and program read-only memories. Since FPGAs are

programmable by the customer, they do not incur the fixed costs associated with a custom step in IC

manufacturing. Factory-programmed gate arrays, on the other hand, directly implement logic functions by

using logic gates without the programmable interconnect. They typically offer higher performance and are

more cost-effective in higher volumes compared to FPGAs. Since the factory-programmed gate arrays

require an additional fixed cost to produce these ICs, they are often not cost-effective for lower

production volumes.

Application specific integrated circuits (ASICs) provide another level of customization compared to gate

arrays. The semiconductor layer that creates the logic functions, as well as the metal layers connecting the

logic functions, are customizable in an ASIC. The manufacturer provides the designer with a library of

standard logic gates that can be used. The designer can control which logic gate is used, where it is placed and

how it is interconnected. This level of control allows the designer to optimize performance, power

consumption and cost savings by controlling the type and placement of every logic gate. For instance, AND

gates can be designed for high performance, large drive strength, low power consumption or low cost. The

selection of the AND gate and the gate’s placement affects the IC’s performance, power consumption and cost.

But ASICs also require additional fixed costs to customize the metal and semiconductor layers of the

integrated circuit. High production volumes for the IC may offset the fixed costs and allow the ASIC to be a

more cost-effective solution than a gate array. In addition, a digital system may need implemention in an ASIC

to meet the performance or power-consumption requirements of the product.

Finally, a full custom-integrated circuit gives the design the highest level of flexibility and integration. The

design is implemented at the transistor level. The size, location and interconnection of each transistor is

determined by the designer. The designer is not limited to using predesigned logic gates from a library, as is the

case with ASIC implementations. A full custom-integrated circuit gives the designer more flexibility to make

tradeoffs for performance, power consumption and costs compared to an ASIC. The design time and fixed

costs are large for full custom-integrated circuits. High-performance processors are typically designed using

full custom-integrated circuits.

Programmable Elements

Designs are implemented on a PLD by programming the device’s configurable elements. A device’s

programming elements can be classified as one-time programmable (e.g., fuse or antifuse), or reconfigurable.

Reconfigurable programming elements are classified as either volatile (e.g., SRAM) or nonvolatile (e.g., fuse or

EEPROM). They can physically connect two nets in a device or provide a type of memory cell that adds a logic

value to a device component. PLDs contain circuitry allowing each programming element to be addressed

during the configuration.

One-time programmable devices contain elements that can be configured only once. One-time

programmable devices are nonvolatile, since they retain their configuration when power is turned off.

Examples of one-time programmable elements are the fuse and the antifuse. Fuse-based PLDs come with all

available programmable connections held in place by fused metal links. These fuses are blown during

programming by passing a large current through the link. Antifuse-based devices come with no connections in

place and are programmed by growing links that form a connection. Antifuse devices are more common than

fuse-based devices because most potential connection points remain disconnected after configuration.

Reconfigurable devices can be programmed multiple times. Devices today can be programmed thousands of

times. These devices have either volatile or nonvolatile programming elements. CPLDs typically contain

nonvolatile programming elements, such as electrically programmable read-only memory (EPROM) and

electrically erasable programmable read-only memory (EEPROM). EPROM-based devices are programmed

electronically and erased by exposing the programmable elements to ultraviolet light through a window on the
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chip. EEPROM devices are programmed and erased by supplying electronic pulses to the programming

element during configuration. EEPROM elements typically are larger in size than EPROM elements. Flash-

based FPGAs are nonvolatile and use flash memory as the programming element. Similar to EEPROM

elements, flash cells are electrically erasable and have a small cell size. SRAM cells are reconfigurable, volatile

programming elements that lose their configuration when power is turned off. This programming element is

used in the majority of commercially available FPGAs. These devices are configured during programming by

storing the appropriate value (logic 0 or logic 1) in each SRAM cell. Flash and antifuse programming elements

are commonly found in CPLD.

CPLD Architecture

As shown in Figure 3.53, CPLD architecture contains three standard components: macroblocks, IO blocks and

a programmable interconnect. The makeup of each functional block, the number on a particular device and

the number of available IO pins varies among CPLD families and manufacturers. In general, each macroblock

consists of a number of SPLD-like macrocells.

A macrocell implements a logic function using a two-level AND-OR structure, in which the input signals to

the AND gates are programmable. Figure 3.54 depicts a generic macrocell. The logic function is programmed

on the device during configuration, corresponding to the device’s programming element (EEPROM, antifuse).

Additional elements are found in the macrocell that configures the logic function of the macrocell. The output

of the macrocell function is routed to other parts of the CPLD or to an output pin by the programmable

interconnect.

The CPLD macrocell provides additional hardware resources to customize the implemented function. An

exclusive-OR and D flip-flop can be used to invert or store the sum-of-products output. The signal leaving the

AND-OR array can be complemented by configuring the programmable input of the exclusive-OR gate to a

logic 1. There is a D flip-flop in the macrocell registering the AND-OR-array output signal. A set of

multiplexers (MUXs) selects product terms and configures the macrocell output.

There are four multiplexers depicted in the macrocell: a product-term MUX, an output MUX, a feedback

MUX and an output-enable MUX. The product-term MUX can select a single product term within

the macrocell or from another macrocell. The output MUX selects either the combinational output from the

AND-OR (possibly inverted) or the registered output from the flip-flop. The feedback MUX selects the

combinational signal, the registered signal or a signal from the programmable interconnect that is sent back

to the AND-OR array. The enable MUX controls the output enable on the three-state buffer at the macrocell’s

output. The output enable can be controlled by a product term, a global output enable signal, or it can be

always on or always off.

Macro block IO block 

Programmable
interconnect 

FIGURE 3.53 Functional blocks on a CPLD: macroblock, IO and interconnect.
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The programmable interconnect permits signal routing from one macroblock to any other macroblock on

the integrated circuit chip. The programmable interconnect will be discussed in more detail in the FPGA

Architecture section. The IO blocks connect internal nets to IO pins and contain circuitry to configure pins to

meet any one of a number of IO standards supported by the device.

FPGA Architecture

A standard FPGA fabric contains a number of configurable logic blocks and IO blocks and has a

programmable interconnect. A configurable logic block mixes combinational and sequential logic at a

more general level than does the AND-OR array in a CPLD. However, the configurable logic block can

implement only a small part of a complex design. FPGAs that contain specialized dedicated blocks, such as

random access memory (RAM), multipliers and on-chip processors are becoming more common and more

powerful. These are often referred to as platform FPGAs. The devices are capable of implementing large,

complex system-on-chip (SoC) designs. Figure 3.55 depicts a generic layout of the functional blocks on an

FPGA.

The IO blocks determine the electrical characteristics of the IO pin for a particular IO standard and whether

the IO pin is acting as in input, output or bidirectional pin. When configured as an output pin, additional

logic in the IO block determines the signal routed to the pin through a three-state buffer. When acting as an

input, the signal is buffered and routed through a programmable delay. It may also be registered.

FPGAs typically use SRAM cells as the programmable element for configuration. These are volatile memory

elements that must be configured when power is turned on, either by downloading the configuration from a

computer or from an external memory device. The values stored in the SRAM cells depend on the system

implementation. These values are generated during the design flow process, discussed in the last section of this

chapter. In general, SRAM cells control pass transistors, MUX select lines and look-up table entries. They are

depicted in Figure 3.56.

SRAM cells can be configured to drive the select lines of a multiplexer, found in a configurable logic block or

an IO block. A 4:1 MUX is shown in Figure 3.56 (a) where the SRAM cells control which of the four input

signals is routed to the MUX output. The configurable logic distinguishing the FPGA in the spectrum of PLDs

is called the look-up table (LUT). An LUT is a configurable type 0 MUX design that can implement a Boolean

X0 X1 Xn

x x xx x x

x x xx x x
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FIGURE 3.54 Macrocell of a generic GPLD.
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function of n variables, where n is the number of control inputs on the MUX. The LUT must contain 2n SRAM

cells. In Figure 3.56 (a) n is two, there are two MUX control inputs and four SRAM cells and the LUT can

implement any logic function consisting of two variables. Function variables are routed to the select lines of a

multiplexer, and SRAM cells are connected to the data inputs of the MUX. An LUT can be configured to

implement a logic function or it can be configured, with additional logic, to act as RAM. LUTs on FPGAs

typically have four select inputs and can implement a logic function of four variables. A configurable logic

block contains multiple LUTs that can be combined with multiplexers to implement logic functions in the tens

of variables.

When used as a pass transistor control, as in Figure 3.56 (c), the SRAM cell drives the gate of an n-channel

MOS transistor. This transistor behaves like a switch between two wires on the FPGA. To configure a

connection between points A and B, a logic 1 is stored in the SRAM cell. Current flows between the two points

through the transistor. To disconnect points A and B, a logic 0 is stored in the SRAM cell, and the transistor is

turned off.

In the programmable interconnect, when a potential connection lies at the intersection of four nets, six pass

transistors (one vertical, one horizontal and four diagonal) control the intersection’s connectivity, as depicted

in Figure 3.57. The programmable interconnect is configured as a switch matrix permitting the signal on a
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FIGURE 3.55 FPGA fabric.
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FIGURE 3.56 Programmable SRAM control: (a) MUX control, (b) look-up table, (c) pass transistor.
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horizontal net to be routed to any vertical net. There generally are three types of interconnects on an FPGA: a

global interconnect routing signals across the device, a local interconnect routing signals directly between logic

blocks, and a timing interconnect permitting special handling of timing and control signals.

The configurable logic block is the primary configurable-logic element on an FPGA. It contains a number of

look-up tables, flip-flops, multiplexers and specialized carry and control logic, as shown in Figure 3.58. The

exact configuration varies among device families and manufacturers. Both combinational and sequential

functions are implemented in the CLB. Neighboring CLBs have direct interconnects between them, while CLB

input and output signals are routed across the device using the programmable interconnect.

Recent advances in FPGAs include the addition of specialized elements integrated into the fabric, as shown

in Figure 3.59. Dedicated hardware multipliers, optimized for speed and size, have greatly improved the ability

of an FPGA to perform signal and image processing. On-chip processors that access the fabric, called hard-

core processors, enable embedded systems to be designed and implemented on a single chip. The advent of

these processors has coincided with the development of embedded system-software packages for the design

and integration of software running on the processor. Developments also include logic modules on the fabric

and interfacing with external components, such as the PCI bus, to create powerful and diverse systems.

Design Example for CPLD and FPGA

In this section, a design example illustrates how programmable logic is configured to implement a useful

function. An 8-bit, ripple-carry adder will be implemented on a CPLD and FGPA. A modular design technique

is used to partition the 8-bit adder into smaller subcomponents that can be implemented with CPLD and

(a) (b)

FIGURE 3.57 Programmable interconnect: (a) connectivity of four nets can be controlled by configuring six pass

transistors, (b) switch matrix with SRAM cells and pass transistors depicted by one vertical, one horizontal and four

diagonal segments at each intersection.

 
Look Up 
Tables Fast

carry
logic

D Q 
D Q 

D Q 
D Q 

 
Look Up 
Tables 

 
Look Up 
Tables 

 
Look-up
tables MUX

FIGURE 3.58 Configurable logic block.

# 2006 by Taylor & Francis Group, LLC



FPGA building blocks. The adder subcomponent first is implemented using two-level logic suited for CPLD

implementations. The adder subcomponent then is implemented using an FPGA look-up table structure.

A general adder has three input operands, A, B and Cin, and two output operands, S and Cout. The adder

sums the inputs, A, B and Cin, and produces the output sum, S, and the carry-out, Cout. For an 8-bit adder, the

input and output operands A, B and S are 8-bit binary numbers represented as (a7 a6 a5 a4 a3 a2 a1 a0), (b7 b6

b5 b4 b3 b2 b1 b0) and (s7 s6 s5 s4 s3 s2 s1 s0) respectively, where bit 0 is the least significant bit and bit 7 is the

most significant. Cin is the carry into the least significant bit position of the adder and Cout is the carry-out of

the adder’s most significant bit position.

The bit-level-addition operation is represented using the diagram in Figure 3.60. In this figure, the carry in,

Cin, is represented as c0 and the intermediate carries c1–c7 are shown. Figure 3.60 illustrates the 8-bit addition,

broken down into eight 1-bit binary additions starting from the least significant bit position. The first 1-bit

addition computes c0þ a0þ b0 and produces s0 and c1. The second 1-bit addition computes c1þ a1þ b1 and

produces s1 and c2. Generally, for the ith bit position a 1-bit full adder is used to compute ciþ aiþ bi and

produce si and ciþ 1. The task of designing an 8-bit, ripple-carry adder is partitioned into the task of designing

a full adder and then connecting 8 instances of the full adder with cascaded carries, shown in Figure 3.61.

The full adder may be designed using standard combinational-logic design techniques. The minimum sum-

of-products Boolean equation for the sum and carry out functions of a full adder follow:

si ¼ aib
0
ic
0
i þ a0ibic

0
i þ a0ib

0
ici þ aibici ð3:14Þ

ciþ1 ¼ aibi þ bici þ aici ð3:15Þ
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FIGURE 3.59 Platform FPGA with dedicated multipliers and on-chip processor.
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In the previous section of this chapter, the architecture for a CPLD was presented. A CPLD consists of an array

of macroblocks on a single integrated circuit with programmable interconnect. An 8-bit ripple-carry adder

will fit into one macroblock if the macroblock contains 16 or more macrocells. Each macrocell implements a

different Boolean function using programmable product terms. For this example, it is assumed that the CPLD

is constructed using 18 macrocells per macroblock. Each macrocell uses an AND-OR structure with five

programmable product terms. Figure 3.62 indicates how a full adder can be implemented using the CPLD

macrocell above. The Xs indicate where the interconnect has been programmed to be shorted together. For

example, the Xs indicate that the inputs to the first programmable product term, p0, are ai, bi
0 and ci

0.

This product term is equivalent to the first product term in Equation (3.14), p0¼ ai bi
0ci
0. Product terms 1

through 3 implement the remaining three product terms in Equation (3.14). Since there are only four product

terms needed for the sum Boolean function, the last product term, p4, has been programmed to produce a

zero, p4¼ ai, ai
0 ¼ 0. The Boolean equation for the sum bit, si, is implemented by OR-ing together with the five

Cout
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FIGURE 3.61 An 8-bit ripple-carry adder.
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product terms.

si ¼ p0 þ p1 þ p2 þ p3 þ p4

¼ aib
0
ic
0
i þ a0ibic

0
i þ a0ib

0
ici þ aibici þ 0

¼ aib
0
ic
0
i þ a0ibic

0
i þ a0ib

0
ici þ aibici

Similarly, the product terms to implement Equation (3.15) for the carry-out, ci, are programmed in the

bottom macrocell in Figure 3.62.

Each Boolean function is implemented using one CPLD macrocell. To implement an 8-bit adder, the carry

chain must be connected, and the input and output operands must be routed into the appropriate macrocell.

Figure 3.63 shows how one macroblock of a CPLD can implement the 8-bit adder, assuming the

programmable interconnect is correctly configured to connect the input operands, the output operands and

the carry chain.

In the rest of this section, an 8-bit ripple-carry adder will be implemented using FPGA architecture, based

on look-up tables (LUTs) as described in the previous section. FPGA architectures use small, RAM-based LUTs

to implement logic functions. The size and configuration of these LUTs vary depending on product family and

manufacturer. A common CLB structure consists of two small LUTs that can be configured into a larger LUT.

In this example, it is assumed that the CLB can be configured into a 32 · 1-bit LUT. Figure 3.64 (a) shows

how three 32 · 1-bit LUTs can be accessed in parallel to effectively implement a 32 · 3-bit LUT. This LUT in

Figure 3.64 (a) has five address inputs, addr4 addr3 addr2 addr1 addr0, and three data outputs ,d2 d1 d0. Each of

these three 32 · 1-bit LUTs lies in a different CLB. The programmable interconnect is configured to connect

the common LUT address bits for all three LUTs. This 32 · 3-bit LUT implements the two-bit adder in
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FIGURE 3.63 8-bit Ripple-carry adder mapped to a CPLD macroblock.
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Figure 3.64 (b). A 2-bit adder is equivalent to two cascaded full adders. Therefore the 2-bit adder adds

the two 2-bit binary inputs A and B and the carry-in input, producing a 2-bit sum output and a carry-out.

The ai, aiþ 1, bi, biþ 1 and ci inputs are connected to the LUT address bits addr2, addr4, addr1, addr3, and

addr0, respectively. The LUT must be programmed so that the outputs d0, d1 and d2 generate the 2-bit sum,

si, siþ 1 and the carry-out, ciþ 2. Four 2-bit adders are cascaded, as shown in Figure 3.64 (c), to produce an

8-bit adder.

The truth table for the 2-bit adder subcomponent is shown in Figure 3.65 (a). The inputs are the same as

those above. To construct the truth table, inputs are summed using a weighting of one for the ith column

inputs and a weighting of two for the iþ 1st column inputs. In the output, the si, siþ 1 and ciþ 2 columns have

a weighting of one, two and four, respectively. A MUX type 0 design is used to select the appropriate value

from the SRAM cells for the LUT. Figure 3.65 (b) illustrates how three 32 · 1-bit SRAM LUTs are used with

multiplexers to implement the 2-bit adder subcomponent. One 32 · 1-bit SRAM stores the output values for

each of the three Boolean functions needed to implement the 2-bit adder. The independent input variables, on

the left half of the truth table, control which SRAM cells are selected by the multiplexers. Since the truth table

is listed in the order aiþ 1, biþ 1, ai, bi and ci, the most significant bit with respect to the truth-table ordering is

aiþ 1 and the least significant bit is ci. Therefore, the multiplexer lines should be connected as select4¼ aiþ 1,

select3¼ biþ 1, select2¼ ai, select1¼ bi and select0¼ ci.

Four 2-bit adder subcomponents implemented using LUTs, as described above, are cascaded to

implement the 8-bit adder, as shown in Figure 3.64 (c). Figure 3.66 shows how the adder subcomponents

might be mapped to an FPGA architecture with configurable logic blocks. Each row of three CLBs in

Figure 3.66 represents a 2-bit adder subcomponent. The first CLB in the row computes the carry-out of

the 2-bit adder, and the second and third CLBs in each row computes the si and siþ 1 output of each 2-bit

si+1 si

ci+2

ai+1 bi+1 ai bi

ci

addr0

addr1
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FIGURE 3.64 An 8-bit adder implemented for an FPGA architecture using look-up tables. (a) three 32 · 1-bit look-up

tables accessed in parallel, (b) a 2-bit adder subcomponent, and (c) 8-bit adder.
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adder. The programmable interconnect routes the input operands and results to pass in and out of the

configurable logic blocks. The carry outputs are passed to the neighbor, configurable logic blocks using

the direct interconnects. The direct interconnects are much faster than the programmable local and

global interconnects. Since the carry-chain is on the critical path, the direct interconnects improve the

performance of the 8-bit adder.

Programmable Logic Design Flow Using a Hardware Description Language

Sophisticated computer-aided design (CAD) tools help facilitate hardware design. These tools allow the user

to specify a hardware function using a hardware description language (HDL). HDLs are similar to high-level

software programming languages since they allow the designer to work at a high level of abstraction and not be

concerned with the underlying hardware implementation. Verilog and VHDL are hardware description

languages commonly used for hardware design. Our adder function quickly can be specified using Boolean

equations in an HDL. Figure 3.67 lists the VHDL code for an 8-bit ripple-carry adder. The entity section at the

top of the VHDL code lists the input and output signals for the top-level design. In this case A, B and Cin are

ai+1 bi+1 ai bi ci ci+2 si+1 si

ci+2 si+1 si

  0   0   0   0   0     0    0    0   
  0   0   0   0   1     0    0    1   
  0   0   0   1   0     0    0    1   
  0   0   0   1   1     0    1    0   
  0   0   1   0   0     0    0    1   
  0   0   1   0   1     0    1    0   
  0   0   1   1   0     0    1    0   
  0   0   1   1   1     0    1    1   
  0   1   0   0   0     0    1    0   
  0   1   0   0   1     0    1    1   
  0   1   0   1   0     0    1    1   
  0   1   0   1   1     1    0    0   
  0   1   1   0   0     0    1    1   
  0   1   1   0   1     1    0    0   
  0   1   1   1   0     1    0    0   
  0   1   1   1   1     1    0    1   
  1   0   0   0   0     0    1    0   
  1   0   0   0   1     0    1    1   
  1   0   0   1   0     0    1    1   
  1   0   0   1   1     1    0    0   
  1   0   1   0   0     0    1    1  
  1   0   1   0   1     1    0    0   
  1   0   1   1   0     1    0    0   
  1   0   1   1   1     1    0    1   
  1   1   0   0   0     1    0    0   
  1   1   0   0   1     1    0    1   
  1   1   0   1   0     1    0    1   
  1   1   0   1   1     1    1    0   
  1   1   1   0   0     1    0    1   
  1   1   1   0   1     1    1    0   
  1   1   1   1   0     1    1    0   
  1   1   1   1   1     1    1    1   

0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
1
0
0
0
1
0
1
1
1
1
1
1
1
1
1
1
1

0 
0 
0 
1 
0 
1 
1 
1 
1 
1 
1 
0 
1 
0 
0 
0 
1 
1 
1 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
1 
1 
1 

0
1
1
0
1
0
0
1
0
1
1
0
1
0
0
1
0
1
1
0
1
0
0
1
0
1
1
0
1
0
0
1

5

 

5 5

ai+1 
bi+1 
ai
bi
ci

  

     

(a) (b)

FIGURE 3.65 2-bit adder subcomponent design based on FPGA architecture using look-up tables. (a) Truth-table for

2-bit adder subcomponent; (b) three 32 · 1-bit look-up table implementation of adder.
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the inputs and S and Cout are the outputs. The architecture section defines the functions of the hardware

circuits. Since the 8-bit adder is designed with combinational logic, it can be specified using Boolean equations

for each sum and carry bit, as shown in Figure 3.67.

A typical design flow that implements a hardware function using programmable logic begins with the

designer writing the HDL code, such as the VHDL code in Figure 3.67. The behavioral code often is simulated

to ensure that there are no errors in the HDL code. The designer also must assign the circuit’s input and

outputs signals to specific I/O pins on the programmable logic device. Other constraints may be entered,

including timing requirements.

The rest of the design flow is executed automatically using CAD tools. A synthesis CAD tool generates the

design’s hardware representation by using standard logic gates and components. The hardware design is

represented by a netlist, or a text file containing a list of the hardware gates and components. The nets

represent signal names indicating how the hardware devices are interconnected. After the netlist has been

generated, it must be translated, or mapped, to the hardware architecture of the programmable-logic device.

For an FPGA, the netlist is mapped by a CAD tool to the LUT implementation structure in the configurable

logic blocks. The next step is to execute the place and route function that assigns the logic functions to specific

logic blocks on a programmable-logic device. The CAD tool must then determine how to route signals

through the programmable interconnect. Once the placing and routing is complete, a programming file is
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generated that can be downloaded into the programmable logic device. The programming file contains the

binary data to configure the programmable elements in the programmable-logic device. This file is

downloaded into the device using a serial interface. Once the program has been successfully downloaded, the

programmable-logic device will function as it has been programmed.

This chapter began with a discussion on various hardware implementation technologies and the advantages

and disadvantages of each. Programmable logic-device architectures were presented, followed by a design

example to illustrate how these programmable devices implement hardware functions. Finally, the typical

design flow used for hardware design, including programmable logic design, was presented. As technologies

improve, larger and more complex designs will become more feasible with programmable logic.

Defining Terms

Antifuse: An interconnect that originally is open-circuited but can become shorted-circuited by growing a

link to make a connection.

Application specific integrated circuit (ASIC): A semi-custom, integrated circuit designed for a

specific application using standard components found in a library.

Block RAM (BRAM): On-chip RAM that can be configured either as RAM or ROM in a user’s design on

an FPGA.

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 

entity adder8 is 
Port ( 

a: in std_logic_vector(7 downto 0);
b: in std_logic_vector(7 downto 0);
cin: in std_logic; 
s: out std_logic_vector(7 downto 0);
cout: out std_logic); 

 end entity adder8; 

architecture behavioral of adder8 is 
begin 

-- Carry Boolean Equations 
c(1) <= (a(0) and b(0)) or (a(0) and c(0)) or (b(0) and c(0));
c(2) <= (a(1) and b(1)) or (a(1) and c(1)) or (b(1) and c(1)); 
c(3) <= (a(2) and b(2)) or (a(2) and c(2)) or (b(2) and c(2)); 
c(4) <= (a(3) and b(3)) or (a(3) and c(3)) or (b(3) and c(3)); 
c(5) <= (a(4) and b(4)) or (a(4) and c(4)) or (b(4) and c(4)); 
c(6) <= (a(5) and b(5)) or (a(5) and c(5)) or (b(5) and c(5)); 
c(7) <= (a(6) and b(6)) or (a(6) and c(6)) or (b(6) and c(6)); 
cout <= (a(7) and b(7)) or (a(7) and c(7)) or (b(7) and c(7));  

-- Sum Boolean Equations 
s(0)  <= a(0) xor b(0) xor c(0); 
s(1)  <= a(1) xor b(1) xor c(1); 
s(2)  <= a(2) xor b(2) xor c(2); 
s(3)  <= a(3) xor b(3) xor c(3); 
s(4)  <= a(4) xor b(4) xor c(4); 
s(5)  <= a(5) xor b(5) xor c(5); 
s(6)  <= a(6) xor b(6) xor c(6); 
s(7)  <= a(7) xor b(7) xor c(7); 

end architecture adder8; 

FIGURE 3.67 VHDL code for an 8-bit ripple carry adder.
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Complex programmable-logic device (CPLD): A collection of programmable-logic devices with an

interconnection structure on a single integrated circuit.

Configurable logic block (CLB): The programmable-logic element of an FPGA used to implement logic

functions.

Electrically programmable read-only memory (EPROM) cell: A programmable element that can be

electronically programmed by applying a voltage or electric field across the programmable elements. An

EPROM is erased by exposing the programmable elements to ultraviolet light through a window on the

chip.

Electrically erasable programmable read-only memory (EEPROM) cell: Programmable elements

that can be electronically programmed or erased by applying a voltage or electric field across the

programmable elements.

Fabric: Generic term applying to the programmable architecture of an FPGA.

Field programmable gate array (FPGA): A field programmable gate array has significantly more logic

but a smaller programmable-logic block than a programmable-logic device and includes a more

complicated programmable interconnection network to interconnect the programmable-logic blocks.

Flash cell: A memory cell that is electrically erasable, but with a small cell size, similar to an EEPROM

element..

Flip-flop: A digital storage device used to store a binary value.

Full custom integrated circuit: A custom integrated circuit designed for a specific application that allows

complete customization of the semiconductor and metal layers of the integrated circuit.

Fuse: An interconnect that is originally short-circuited but can be open-circuited, or blown, during

programming by passing a large current through the link.

Gate arrays: An integrated circuit device with dedicated hardware resources, such as logic gates and

memory storage devices, that is customized in the field or factory for a specific application.

Hardware description language (HDL): A language type used to specify and design hardware circuits.

Integrated circuit (IC): An electronic circuit that consists of one or more logic gates fabricated on a single

chip.

Macroblock: A programmable-logic block containing several macrocells. The exact number of macrocells

per macroblock varies by product and manufacturer.

Macrocell: The fundamental building block for programmable-logic devices that implements a single sum-

of-products, or two-level AND-OR, logic function using programmable product terms.

Programmable array of logic array (PAL): A logic-integrated circuit device with a two-level AND-OR

structure, suitable to implement arbitrary logic functions. Only the AND gates can be programmed in a

PAL.

Programming element: The device that is configured to implement logic design. Programming elements

can be one-time programmable (e.g., antifuse) or reconfigurable (e.g., flash), and can be volatile (e.g.,

SRAM) or non-volatile (e.g., EEPROM).

Programmable-logic array (PLA): An integrated circuit device with a two-level AND-OR structure

suitable to implement arbitrary logic functions. Both the AND gates and OR gates can be programmed

in a PLA.

Programmable logic device (PLD): A programmable-logic device is a broad classification of

programmable-integrated circuits that consist of 20 to 200 logic gates.

Random access memory (RAM): Memory that stores digital information.

Simple programmable-logic device (SPLD): A programmable-logic device that typically implements

logic functions using programmable two-level logic.

SRAM cell: A single bit of SRAM that is the typical programmable element in a FPGA. The SRAM cells on

an FPAG are stored with logic 0 or logic 1 values during programming to configure the chip.

System on chip (SoC): A complete system on a single chip that may include a processor, memory and

custom digital logic.

Very large scale integration (VLSI): Single integrated circuit devices with more than a million

transistors.
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4.1 Practical Microprocessors

John Staudhammer

A microprocessor (mP) is a semiconductor die containing the component‘s of a computer’s central processor,

complete with instruction processing unit, arithmetic, interrupt electronics and basic communication

facilities. Such devices have been available since the early 1970s and have benefited from continuing

improvements in electronics. As microelectronics technology allowed feature sizes of components to decrease,

more powerful systems were put on single dies. Those developments have changed the functions of

microprocessors, markedly among commercial electronic components. Enhanced electronics capabilities led to

two major trends: an increase in circuit speed and a widening of the datapath. Data acquisition components,

memory blocks and output ports now are commonly added to a basic mP to build a complete microcontroller

(mC) on a single chip. This allows the mC to be used for a wide range of applications, whose function is merely

a matter of programming. Current clock speeds can be set in the low GHz for personal computer chips but are

usually found in the low MHz range for simple control applications. mP systems commonly have either 8, 16

or 32 bits, although original 4-bit and high-end 64-bit processors are available. mC systems form the heart of

embedded devices performing specific control tasks in all applications. These devices are universal and highly

adaptable for control applications. One of the early mPs, the Intel 8080, still is widely used. Similarly, the

Motorola 6800 and its family, the HC11 and related units, are widely used in dedicated control applications.

The original 4-bit mP, intended for calculators and containing a few thousand transistors, has been largely

supplanted by 8-bit and 16-bit units, even when their increased capabilities are not utilized. This is due largely

to economies of scale and design simplifications. High-end mP chips can contain several billion transistors.

The chips are built with CMOS technology, minimizing power consumption.

mP applications in system control and data processing involve adding memory for programs and data

storage and both input and output circuitry. They also may require communication ports and analog–digital

(A/D) converters. Several manufacturers offer these components on a basic mP chip, producing a capable

microprocessor-based controller that needs only programming to be configured into a customized mC

system. Manufacturers also offer CD-ROM software for the customization, design, simulation and

configuration of a chip.

# 2006 by Taylor & Francis Group, LLC



An excellent overview of microprocessors and systems is found in Peatman [2003], Gaonkar [2001],

Gaonkar [2002] and Kheir [1997]. Many books are available for designing systems with mC chips. Most books

are slanted toward a specific device, but the design process remains similar for all mP and mC chips.

The mC is the basic controller of an embedded system. A mC is a mP with memory and peripheral circuits on

the same chip. These include various memory types, interrupt structures, arithmetic-logic units (including

floating-point processing on some advanced chips), communication, timing and data acquisition circuits. As

the feature sizes of switching circuits decrease and the speed improves in excess of Moore’s Law, the

manufacturer has three options:

1. Reduce the chip’s die size — this results in a less expensive device with about the same capabilities.

2. Increase processing power at the same cost.

3. Add peripheral circuits to the processor, putting devices on the chip that normally would be added to

the mP system. Adding the right combination of peripherals to the basic chip offers the most benefit for

system cost.

The chip developments above occur simultaneously, resulting in a successful product line. For example, the

Motorola 6800 processor was introduced about 25 years ago. Today, it is still available, but the manufacturer

advises designers to use the successor chips 6809 MP and 68HC11 mC.

A mP chip communicates with its peripherals through three sets of busses: a bidirectional data bus, a

unidirectional memory-address bus and a bidirectional control bus. The mP sends and receives data on

communication lines; the number and types of these vary among chips. On the same chip, a mC will have a

number of memory elements (typically, different kinds), timers, communication ports, buffers, counters and

analog-digital converters.

All processors require a clock, typically a crystal or a ceramic resonator, that is directly connected to

dedicated pins on the processor. The processor’s internal circuits run at this speed, but external devices (and

communication busses) run at a submultiple of this rate. The bus clock rate is usually 2 to 20 times slower

than that of internal circuits. The advertised clock rate is the internal mP clock rate, not the bus speed.

There are more than 100 different mP and mC chips on the market. They each have peculiarities and may

have advantages for specific applications. They differ in the types of data they handle (such as the number of

basic bits they manage per operation), the amount of processing they do (for example, floating-point

capabilities) and the software support available from the manufacturer or user groups. What makes a mP

practical for any situation is not its claimed prowess (typically stated in MIPS, or millions of instructions per

second), but the ease of use and cost for a given application. That is determined to a large degree by the kind

and amount of software support from the manufacturer.

Types of Microprocessors and Microcontrollers

The annual compendium of mP/mC chips (Markowitz 2004) categorizes these chips by the width of their data

path: 4, 8, 16, 32 or 64 bits. In addition, high-performance chips include bit/word slice chips. These implement

the functions of a central processing unit for a limited number of bits (4 or 8 bits) and are concatenated for a

full-width computer word. For a discussion of these chips, a widely used reference book comes from Mick and

Brick [1980]. Additional references are in the IEEE-ACM Design Automation Conference archives, accessible

through the Internet.

The most precious resource in a mP chip is the number of connection pins. Great efforts are made to use the

pins chosen by the processor’s various control lines and mode selection. A mP may have four or more modes of

operation: it is cheaper to build and support a more flexible chip than to build several different ones.

The majority of mPs work with several data-access means (memory addressing modes); they support

different modes of working with memory and external data items. They use complex instruction set computers

(CSC.) These chips appear as single items in computer-controlled devices; most of these chips are used in

embedded-systems applications, in household appliances and in toys.

Most mPs are 8-bit devices; they use 8-bit-wide datapaths but have memory address busses of 16 bits (with

64K of address space.) Often the data bus is time-multiplexed with lower address bits. The typical instruction
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execution speed is three to seven bus cycles. The 16-bit mP chips have 16-bit address and data lines. The typical

execution speed is a few clock cycles.

mC chips contain a mP and the various components making up a mP system: a random-access memory

(RAM) for holding volatile data; at least one kind of read-only memory (ROM), possibly written in a special

configuration mode and holding the control program; communications peripherals, including parallel and

serial interfaces; and timing and counting circuits to measure input pulses and digital-analog converters.

Because processors use an external clock, usually a crystal clock, timing intervals can be determined with great

precision. Many procedures have been developed for this feature: voltage-to-frequency converters bring pulses

externally to the mP system, which then accurately counts them. These timing and counting capabilities give

mP systems their ubiquitous applicability.

Software for mmmmmP/mmmmmC Systems

mP/mC device manufacturers have made special efforts to make their products attractive to system designers.

Much software is offered with the chips to support their design. ROM-based monitor programs are available

for most chips, so normal communication tasks can be easily accomplished. Programs for usual input/output

tasks, data acquisition, timing and program examples are distributed throughout Internet bulletin boards,

making relatively error-free software available to designers. The bulk of such software is in machine assembly

code, but C-language procedures often are available. Programming then adapts these software snippets to the

task the system is to perform. System task analysis and program system design, as well as validation and

software validation, are still the designer’s responsibilities. The processor carries out instructions that are a

combination of 0 and 1s, which can be difficult to decipher. Programs are written in mnemonic assembly-

language, text-readable form. The manufacturer supplies assemblers and loaders to set the program into the

memory of the mP/mC system. These programs run on personal workstations. Programs that simulate and

monitor the chip’s operation through the PC ports are effective development tools. The typical development-

software package includes an assembler, a loader and a monitor. More user-oriented software for these tasks is

available from third-party vendors. Many of these software packages cost more money but can be cost-

effective. Interactive assemblers and debugging tools are particularly good investments. To find effective

software tools, the manufacturer’s customer engineering group should be consulted.

Packaging and Cost

The simplest processors are housed in dual in-line packages (DIP) of 16 pins or more and resemble

conventional TTL chips. Mid-range processors are housed in large DEP packages of 40 or more pins, but many

reside in dense-pin sockets of 100 or more pins. High-performance chips are found in multi-row pin packages,

can require more than 200 connections and sometimes use unusual chip sockets. These high-performance

chips may require special cooling, typically from a fan clipped to the chip.

Virtually all processors are multi-sourced, making them available from more than one manufacturer. This is

important for continued product support. Processors come in various speed grades. High-speed ones are three to

ten times more expensive than slower ones. Low-end processors, containing no memory and few communication

ports, cost less than a dollar in large quantities; high-end processors approach $1,000 in single units.

Programming of mmmmmPs

Many books explain the fundamentals of mP systems and their programming for various tasks. Some books are

oriented towards specific chips; however, they present ‘‘how-to’’ examples that can be applied to other chips.

They provide good training for all mP/mC systems. Two handy references are Kheir [1997], used in Motorola

68HC11, and Barnett [1995], used in Intel 8051.

Most mP systems are programmed in assembly language. Each instruction the processor executes is given an

English-like name (ADD for adding two numbers), and translator programs can convert this English-like source

code to the 0/1 sequence of bits used by the processor. These programs, used with PC workstations, are available

from chip manufacturers, while convenient assemblers are available from third-party vendors. High-level

language compilers also are available from third-party vendors. Usually, these are C-language compilers, but

Pascal may be available also. The best guide again is the application engineering group of the chip manufacturer.
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Usually, the functions that the mP and mC perform offer time-critical, real-time control. The programs can

become intricate and require detailed knowledge of the the mP chip functions. To select a suitable chip for a given

task, a logical design must be made of the control task for the entire hardware configuration, and a quantitative

evaluation of the system architecture must be completed. This is seldom a simple task but can be performed in a

simplified manner, especially if only order-of-magnitude evaluations are made. A standard reference for the

quantitative analysis of computing systems is Hennessey and Patterson [2004].

mP system programming involves the creation of carefully tailored code to acquire input signals and create

control signals that interact with the controlled actuators and receivers.

Development Support

Complex mP/mC systems are developed top-down. Task requirements are refined until they can be

implemented with relatively simple subroutines. They then are coded and assembled into a control program

loaded into the memory of the processor. The most important support for a designer is software for program

checking, both for logical flow and for cycle-by-cycle activity. Subtle errors and data dependencies often will

occur, and finding them may be a daunting task. Simulators are first-level tools for checking the program.

Simulators do not use actual hardware but instead a software model of it. They calculate the internal action of

the hardware and display the contents of all computer registers and selected memory locations, allowing an

effective check of the internal operations. Many simulators come from third-party vendors.

The actual operation of the mP/mC system can be checked with an in-circuit emulator (ICE), an expensive

but effective tool replacing the mP/mC pin-for-pin in the actual circuit. The ICE uses a powerful device to track

signals, including brief transients, and can be used to show the behavior of the system and the response from

the mP and its associated software.

Comparison of mmmmmP/mmmmmC chips

As with all computer devices, advertised speeds and performance figures must be interpreted cautiously. These

numbers normally refer to manufacturer test cases and may not be directly comparable [Hennessey and

Patterson, 2004]. The numbers may not apply to the user’s requirements. Since the market for mP/mC chips is

highly competitive, small differences become amplified in advertising. Unfortunately, finding valid comparison

numbers for an application requires extensive benchmarking efforts. Advertised figures may be taken as a guide

only if the user’s task is similar to the advertised task. If the selected chip does not pass the comparison with a

comfortable margin, a user should opt for a higher-performance version of the same chip if much program

development has already been completed. Otherwise, another, superior chip should be chosen for a new design.

The mP issue of the magazine EDN is a handy starting place for a detailed overview of commercially

available chips and a comparison of their characteristics.

Trends in mmmmmP/mmmmmC Developments

An entire mP can be used as a building-block in an application specific integrated circuit (ASIC), available

from many vendors. ASIC and VLSI design tools are used to design such systems and are tailored to specific

applications. mP manufacturers are developing mC chips, extending the use of their basic processors. For any

application, the best procedure is to invite several vendors to propose alternate systems. Available chips are

merely indicators of devices yet to come.

High performance chips are becoming more reduced instruction-set computer (RISC) oriented. The basic

idea is to execute one instruction per clock cycle in a more regular processor structure rather than using the

prevailing three to seven clock cycles in the normal complex instruction-set computer (CISC) processor. For

users, the internal structure of the processor makes little difference; the support software is far more critical.

The trend is to make processors simpler, speeding up process execution, even if some programs require more

details to replace CISC ‘‘convenience’’ instructions.

High-end mP systems have such a wide data path (32 or 64 bits) that more than one instruction may be

accessed at a time. These machines are termed very long instruction word (VLIW) machines. They may have

higher throughputs but tend to be more complex internally. RISC and VLIW can provide increased

performance but are not necessarily more cost-effective solutions.
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Microelectronics can produce multi-million and few-billion transistor chips. While expensive, they can

provide a cost-effective solution to complex control and computation problems. However, the humble 8- and

16-bit mC chips are the most cost-effective workhorses for the bulk of control applications.
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Further Information

Microprocessor and microcontroller chips are two of the fastest-changing (and improving) items in electronics.

A large number of reference texts exist, but the latest changes are best tracked through technical magazines and

direct contact with vendors. Contact information is best made through an Internet search engine.

The magazine EDN runs an annual issue on mP and mC developments (Markowitz, 1995). This review is

published late in the year. This special issue is a good snapshot of the state of the industry.

The IEEE magazine Micro publishes detailed articles on device developments and applications of mC

technology. Device specifics are found in the manufacturers’ reference literature. A serious user must become

familiar with the applicable manual and design notes. Even for a modest chip, the reference manual may run

to 300 pages. The manufacturer’s free-of-charge support software is usually a fully-loaded CD-ROM disk. The

usual mC chip is meant to be configured with. flash memory typically loaded from a PC through a parallel or

serial port. Required software is found on the CD-ROM or a bulletin board from the manufacturer.

4.2 Applications

Phillip J. Windley and James F. Frenzel

Microprocessors are cheap, small, and consume little power. In addition, in recent years their performance has

increased at a greater rate than the performance of larger computers. These factors have led to an explosion in

the application of microprocessors. A short section could never do justice to every application; therefore, we

will view representative applications in three broad areas:

. Data collection, where microprocessors are used to monitor sensors and either record the collected

information or communicate the information to some other computer.
. Control, where microprocessors have largely replaced analog electronics for controlling everything from

manufacturing robots to home appliances.
. Computing, where microprocessors have transformed the concept of computer and made parallel

processing possible.

Admittedly, these categories are not strictly disjoint. They do, however, represent the most pervasive uses for

microprocessors at an abstract level.
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Data Collection

In data collection the microprocessor-based system serves primarily as a low-cost data recorder. Basic

functions include the polling of sensors, acceptance of data, data storage, and data transmission or display.

Additional features might include preprocessing of the raw data. Such a classification spans a broad range of

applications, from automotive diagnostics to space-born monitoring stations.

Microprocessors are well suited as the controller for such tasks because of their cost and flexibility. Sufficient

numbers of processors may be used to allow real-time data acquisition. Because the microprocessor is

programmable, sensors may be added, removed, or rearranged without major system impact. Finally, because

the microprocessor is a computational device, calculations may be performed on the recorded data to produce

useful information, such as calculating speed from distance and time. In the next section we will examine the

components of one such system, the retail point-of-sale terminal [Hordeski, 1984].

Point-of-Sale Terminal

The function of a point-of-sale (POS) terminal is characteristic of the applications under the category of data

collection. The microprocessor is not being used for intensive computations, nor for controlling a complex

process, but rather to collect data, perform some processing, and then pass the results on to a central collector.

The cost and flexibility of the microprocessor make it an excellent choice over special-purpose hardware.

System Components. In addition to the microprocessor and storage capability, the typical retail terminal has

one or more input devices for entering prices (e.g., keyboard, bar code scanner) and one or more output

devices for displaying totals (e.g., paper tape, display). Often these terminals are part of a large network of

terminals and may support additional features beyond totaling purchases such as automated inventory control

and credit checking. A complete system is shown in Figure 4.1, including magnetic tape for storing

transactions and a universal asynchronous receiver/transmitter (UART) for communication with a central

processing facility. Because of the high unit volume, it is desirable to keep the cost and complexity low.

Typically, each terminal will have limited storage capability, relying on a central processor for maintaining

store inventory and credit checks. In order to reduce communication traffic with the central processor,

however, each terminal generally has in storage the current price for all items.

Universal Product Code. The use of the Universal Product Code (UPC) has enabled the development of

intelligent POS terminals which can ‘‘read’’ the UPC symbol and determine the identity of the item. The UPC

symbol consists of ten decimal digits, split into two fields of five digits each. Each digit is encoded using a 7bit

binary number, represented by a group of 7 dark (binary 1) and light (binary 0) bars. The five left-hand digits

FIGURE 4.1 Point-of-sale terminal system.
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are encoded using odd parity and the right-hand digits are encoded using even parity. This allows correct

recognition of the symbol, independent of its orientation.

For groceries, the first five decimal digits identify the manufacturer and the second group of five digits

identify the specific product. There are additional codes in use as well, such as the National Drug Code. By

using a microprocessor-based system, a POS terminal can be quickly reconfigured to recognize a different code

(or multiple codes) through a simple software change.

Operation. A typical sale might involve the following steps. The clerk inquires whether the sale is to be a

cash purchase or charged to an account. If the latter, the clerk enters the necessary information and the

terminal transmits a request to a central processor, inquiring as to the available credit. In the interim, items are

entered, either through the bar code scanner or the keypad, and the price and running total are displayed. The

identity of the items purchased is also stored for later transmission to the central processor responsible for

inventory control. Finally, the terminal checks the available credit against the total and records the transaction

for later transmission to the central processor.

Digital Tachometer

Another example of using a microprocessor for data collection is the implementation of a digital tachometer

[Bonert, 1989]. The microprocessor samples the output of a shaft encoder and compares it with a reference

signal to determine the rotational speed. The calculated value is passed to a digital-to-analog converter to

generate an analog speed signal. The system is shown in Figure 4.2.

Speed Evaluation Methods. Various methods may be used to evaluate the speed value, all of which involve

some combination of pulse counting and time measurement. The constant elapsed time (CET) method

provides a good compromise between measurement accuracy and response time. The CET method records the

number of encoder pulses observed during a fixed time interval. The rotational speed, n, is then given by

n ¼ Cp=ðCtm=TcÞ

where Cp is the number of encoder pulses, Ct is the number of clock pulses, m is the number of encoder marks

per turn, and Tc is the clock pulse period.

Implementation. Rather than continuously stopping and resetting external counters, it is possible to take

advantage of features often found in modern microcontrollers, microprocessors containing additional

interface circuitry. Microcontrollers often contain counters, timers, and capture registers. Capture registers

allow the storing of timer or counter values triggered by an external signal. At the start of evaluation, the rising

edge of the next encoder pulse triggers the capture of the timer count and the pulse count. After a minimum

evaluation time has elapsed, the next encoder pulse again triggers the capture of the current counter values.

The rotational speed can then be computed using the difference between the captured values. A flowchart of

the algorithm is shown in Figure 4.3.

FIGURE 4.2 Digital tachometer.
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Performance. Using an encoder with 1024 marks per revolution, a 2-MHz reference clock, and an evaluation

period of 2.3 ms resulted in a measurable speed range of 25.5–4883 rpm. The maximum relative error was

0.123%, induced primarily by the encoder tolerance [Bonert, 1989].

Control

Microprocessors are ubiquitous in control applications. While some custom analog controllers are still built,

the advantages of cost and flexibility inherent in microprocessors make them a natural choice. The advantages

of microprocessors are particularly obvious in mass-produced goods where time-to-market can be a

significant driving force.

Microcontrollers

Microprocessors designed especially for use in control applications are called microcontrollers. Typically, the

major difference between a microcontroller and a standard microprocessor is the presence of scratchpad RAM,

input and output ports, timers, and even analog-to-digital (A/D) and digital-to-analog (D/A) converters

on-chip.

Figure 4.4 shows a simplified microcontroller architecture. The process to be controlled is monitored by

means of sensors. The outputs from the sensors are fed to A/D converters which convert the analog signals

from the sensors to digital signals appropriate for use in the microprocessor. The microprocessor reads

the digital signal from the A/D converter and uses it for input to a control program stored in the

FIGURE 4.3 Tachometer program. (Source: Bonert, 1989.)
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microprocessor memory. The program produces digital outputs which are fed to D/A converters. The analog

outputs from the D/A converters (which are typically low power) are fed to amplifiers, and the amplified signal

is used to control actuators that affect the process being controlled.

Control Applications

Consumer Electronics. A survey of the typical home will show numerous microprocessors where 10 years

ago, there were none. Microprocessors are used for controlling VCRs, TVs, stereo equipment, microwave

ovens, sprinkler systems, telephone equipment, heating systems, and virtually every other appliance using

electricity.

Manufacturing. Microprocessors have found numerous applications in manufacturing. Perhaps none is

better known than the robot. Microprocessor technology has made the modern robot possible. Robot arms

used in manufacturing typically have five or six joints. Current practice is to treat each joint in the robot

arm as a separate servomechanism with its own control system. For example, the PUMA 560 robot arm,

manufactured by Unimation, has six rotating joints. Each joint is controlled by an individual microcontroller

system. Another computer calculates paths and sends individual joint motion information to the six joint

servomechanisms [Fu et al., 1987].

The servomechanism system shown in Figure 4.5 consists of an 8-bit Rockwell 6503 microprocessor, a D/A

converter, an amplifier, a joint motor, and an encoder. The 6503 microprocessor receives joint position

information from the supervisory computer every 28 ms. The microprocessor calculates the joint error

information by comparing the current position to the desired joint position using the PID (proportional-

integral-derivative) control method. The error is converted to an analog signal by the D/A converter and

amplified before going to the joint motor. The encoder is connected to the motor shaft and provides a digital

signal to the microprocessor.

FIGURE 4.4 Typical microcontroller design.

FIGURE 4.5 Microprocessor-controlled servomechanism from a PUMA 560 robot.
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The microprocessor performs the following functions:

1. Receives the desired joint position from the supervisory computer every 28 ms

2. Reads the position signal from the encoder every 0.875 ms

3. Calculates the error every 0.875 ms

4. Sends the error to the D/A converter

The microprocessor calculates joint error and sends the correction signal to the joint motor 32 times for

every joint position received from the supervisory computer.

Transportation. Microprocessors are used for control applications in every facet of the transportation

industry. Microprocessors are used to control the operation of the vehicles themselves such as controlling

engines, air surfaces in aircraft, antilock brakes in automobiles, and rudders in ships. Microprocessors are also

used in wide-area applications such as traffic control.

In controllers for motor traffic, the microprocessor has replaced hardwired logic and analog systems to

provide systems which are much more capable and typically more reliable [Hordeski, 1984]. A typical traffic

light controller is shown in Figure 4.6. The microprocessor provides the CPU, memory, and I/O ports. The

system includes a real-time clock for timing external events and a power-fail restart unit which restarts the

system after a power failure (including restoring volatile data). The system monitors traffic at the intersection

through the use of loop detectors and controls the traffic by changing the traffic lights. Other components of

the system monitor and control pedestrian traffic and provide an interface to the system for human operators.

The loop detectors are paired coils of wire placed under the pavement. The impedance of the loop detectors

changes in response to the presence of a car on the roadway. The change in impedance changes the frequency

of an RC oscillator, which is converted to a digital signal reported to the microprocessor. Loop detectors can be

used to monitor the presence of a car at a traffic light, the length of a line of cars, and the speed of traffic.

The function of the traffic controller is to optimize traffic flow. For example, during busy periods of the day,

the goal may be to optimize flow through an intersection. Another goal may be to ensure that traffic flows

smoothly in certain directions to effectively feed larger roads. Traffic lights can be synchronized to provide a

highway through a busy network of roads by ensuring that a car that enters the roadway and maintains a

recommended speed can travel along the entire length without stopping at a traffic light. On the other hand,

during periods of low use, such as night and early morning, the system may monitor for the presence of a car

at an intersection and immediately switch the light to let it pass.

Microprocessors offer advantages in traffic control situations in addition to optimized traffic flow. When

properly designed, the system can provide a certain degree of fault tolerance. When a loop detector is giving a

FIGURE 4.6 Traffic control system. (Source: M. Hordeski, Microprocessors in Industry, New York: Van Nostrand Reinhold,

1984, p. 398. With permission.)
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faulty value, the system can be programmed to ignore its value and use values from adjoining lanes. An error

report can be forwarded to a central traffic facility and after repairs are made, the loop brought automatically

online. The system can also monitor feedback information from the traffic light to ensure that the lights are

actually lit. When a problem is detected, the system can enter an emergency mode and report the problem.

Social Issues

The explosive growth in the use of microprocessors in control applications has caused discussion about the

utility and safety of such devices.

An issue many people can identify with is feature overload. The advent of cheap microprocessors has turned

design upside-down. Designers can add additional features for very little additional increased manufacturing

cost. Competition spurs even more features until even the simplest of consumer items come with thick

instruction manuals. Naturally, consumers become frustrated with features that are difficult to use.

Perhaps more important are the safety hazards that may be engendered by replacing analog control systems

with digital control systems. Most analog systems are based on physical properties with continuous behavior.

Digital systems, on the other hand, are discrete and are thus much more prone to problems where small errors

can result in large changes in behavior due to the digital representation of value; a single bit change can result

in a large change in magnitude. Digital control systems are becoming more and more prevalent in systems

controlling aircraft, automobiles, nuclear power plants, and other safety-critical systems. Engineers who design

the systems and officials charged with ensuring their safety are still coming to grips with the implications of

this trend. New techniques for analyzing computer system designs for errors are being developed which

promise to alleviate some of these concerns [Windley, 1995].

Computing

While microprocessors have been put to a plethora of interesting special-purpose uses such as data collection

and control, perhaps the most visible use of microprocessors has been in the area of general-purpose

computing.

Microcomputers

The advent of microprocessors has resulted in a personal computer on virtually every desktop. Even the

slowest of these computers rival the performance of the largest computers available 15 years ago.

Figure 4.7 shows the major hardware components of a simple microcomputer. The central processing unit

(CPU) is the execution engine of the microcomputer and is most often a microprocessor. One popular family

of microprocessors used as the CPU in microcomputers is manufactured by Intel. These chips, with names

such as the 8088, 80286, 80386, 80486, and Pentium are used in microcomputers such as the IBM personal

computer. Another important family of microprocessors is the Motorola Power PC series, which is used in

microcomputers manufactured by Apple Computer [Matloff, 1992].

In addition to the CPU, there are a number of other components in a microcomputer. General-purpose

memory is not typically part of the microprocessor but must be added as a separate component. In simple

microcomputers, the memory may be directly attached to the microprocessor. In more complex designs, the

FIGURE 4.7 Major components of a simple microcomputer.
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memory is attached to the microprocessor by a system bus that allows system components other than

the microprocessor to access memory as well. In addition, the memory may have its own controller, called a

memory management unit.

Other components in the system include input/output (I/O) interfaces to devices such as printers,

terminals, disks, mice, and so on. The common feature of all of these devices is that they interface the

microprocessor to the outside world. All of the components in the microcomputer are connected together by a

system bus. The bus is a set of parallel wires that carry information from one component to another.

Multiprocessing

The desire for greatly increased computer performance has fueled research in using microprocessors as the

computing engines in multiprocessors which would achieve performance gains over single-processor

computers through the use of numerous low-cost microprocessors.

There are numerous multiprocessor architectures. An example architecture that is well suited to using large

numbers of microprocessors is the hypercube. The hypercube architecture was originally developed by Charles

Seitz and others at California Institute of Technology in the early 1980s. The hypercube depends on using large

numbers of commodity microprocessors, each with private memory, in a hypercube network [Bell, 1989].

In a hypercube network, N microprocessors are arranged in an n-dimensional cube, where N ¼ 2n. Each

processor is connected to n other processors and the longest communications path from any processor to any

other is n links. For example, a three-dimensional hypercube contains eight processors and is arranged as a

standard cube, where the nodes are the processors and the edges of the cube are the communication paths.

Figure 4.8 shows a four-dimensional hypercube represented as a tesseract. A four-dimensional hypercube

has 16 processors, each is connected to 4 other processors, and the longest path between any two processors

(shown in bold in Figure 4.8) is 4. Thus, doubling the number of processors results in a unit increase in the

communications path length. This logarithmic relationship results in the great advantage of the hypercube: it

scales well. A system with 1024 processors has a maximum communications path length of just 10.

There are several manufacturers of hypercube systems including NCUBE and Intel. Most of these systems

have between 32 and 1024 processors. NCUBE has a hypercube architecture with 8192 nodes operating at 2.4

megaflops each.

Digital Signal Processing

Digital signal processing (DSP) may be considered a specific example belonging to the category of

computation. Specialized microprocessors are finding widespread application in many areas of digital signal

processing such as telecommunications, speech processing, medical imaging, and radar [Aliphas and Feldman,

1987]. These microprocessors are designed for very high data rates and contain specialized circuitry to

accelerate computations that are specific to signal processing. Figure 4.9 illustrates the architectural differences

between digital signal processors and conventional microprocessors.

FIGURE 4.8 A four-dimensional hypercube.
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Architectural Features. A common task among most signal processing algorithms is the summation of

multiple products. The most notable distinction between general-purpose microprocessors and digital signal

processors is the existence of a high-speed multiplier-accumulator [Allen, 1985]. This circuitry can complete a

multiply-add operation in one cycle, as opposed to roughly 25 cycles for a conventional microprocessor.

Traditionally, only fixed-point arithmetic was available, but newer DSP chips provide floating-point arithmetic

with 32 bits of precision.

The second most noticeable feature on DSP chips is the existence of multiple data buses and memories.

Many chips have two data memories, each with a data bus, allowing the simultaneous fetch of two operands

for the multiply-accumulate operation. Furthermore, most chips use the Harvard architecture, characterized

by separate program and data memories, so that instructions and data can be fetched simultaneously. Others

use a modified Harvard architecture, where data can be stored in slower, cheaper program memory and moved

to the faster data memory as needed.

Finally, DSP chips typically have separate arithmetic-logic units (ALU) for data arithmetic and address

calculations. This serves two purposes: (1) data calculations can proceed unhindered by address calculations,

maintaining a high throughput, and (2) each unit can be specialized for its particular task. For example, the

data ALU may have additional circuitry to support saturation arithmetic, whereas the ALU used for address

calculations may provide indexing, auto-increment, or even bit-reversal, an operation required for the fast

Fourier transform (FFT).

Dedicated digital signal processors offer an excellent alternative or supplement to general-purpose

microprocessors for signal processing applications. As a slave to a conventional processor, the DSP chip is

freed from communicating with peripherals, increasing throughput. For additional performance, DSP chips

may be operated in a multiprocessor configuration, controlled by a central processor. Such an arrangement

would be appropriate for applications such as phased-array radar, where the volume of data and uniformity of

the calculations lend themselves to distributed processing.

FIGURE 4.9 Digital signal processor architecture. (Source: Aliphas and Feldman, 1987.)
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Defining Terms

A/D: Analog to digital. Usually a device that changes an analog signal to a digital signal of corresponding

magnitude.

Capture registers: Internal registers which, triggered by a specified internal or external signal, store or

‘‘capture’’ the contents of an internal timer or counter.

D/A: Digital to analog. Usually a device that changes a digital signal to an analog signal of corresponding

magnitude.

Encoder: A sensor that directly creates a digital signal for use in a control application. An example is a shaft

encoder that turns an angular shaft position into a digital signal.

Interrupts: Special hardware on a computer that suspends the executing program so that another

procedure can be run to service an external device.

Microcontroller: A special-purpose microprocessor with scratchpad RAM, input and output ports, timers,

and even analog to digital (A/D) and digital-to-analog (D/A) converters on-chip used in control

applications.

Universal asynchronous receiver/transmitter (UART): Circuitry (often a separate module), which

provides all of the interface functions necessary for a microprocessor to communicate with a serial

device.
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5.1 Light-Emitting Diodes

James E. Morris

The light-emitting diode (LED) has found a multitude of roles as the field of optoelectronics has bloomed.

Infrared devices are used in conjunction with spectrally matched phototransistors in optoisolation couplers;

hand-held remote controllers; interruptive, reflective and fiber-optic sensing techniques; and low-cost IR

sources for fiber optic communications. Visible spectrum applications include simple status indicators and

dynamic power level bar graphs on a stereo or tape deck. This section will concentrate on digital display

applications of visible output devices.

Semiconductor Device Principles

The operation of an LED is based on the recombination of electrons and holes in a semiconductor. As an

electron carrier in the conduction band recombines with a hole in the valence band, it loses energy DE equal to

the bandgap Eg with the emission of a photon of frequency

u ¼ c=l ¼ DE=h ð5:1Þ

where l is the radiation wavelength, c is the velocity of light, and h is Planck’s constant.

The incidence of recombination under equilibrium conditions is insufficient for practical applications,

but can be enhanced by increasing the minority carrier density. In an LED this is accomplished by

forward biasing the diode, the injected minority carriers recombining with the majority carriers within a

few diffusion lengths of the junction edge. Figure 5.1 illustrates the process. The potential barrier eVo is

reduced by forward bias eV leading to net forward current and the minority carrier distributions shown

on either side of the depletion layer. As the carriers diffuse away from the junction edges, these

distributions decay exponentially because of recombination with the majority carriers. Each recombination
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event shown on either side of the junction gives off a photon. This process is called injection

electroluminescence.

Equation (5.1) implies that the radiation emitted will be monochromatic, but in practice DE . Eg, and

there is a spectral distribution corresponding to the energy distributions of the carriers in the conduction and

valence bands.

Semiconductor Materials

Silicon is the most common material used in current semiconductor technologies, but it is not at all suitable

for an LED. The reason is that silicon has an indirect bandgap, and a direct bandgap is required for process

efficiency. Direct and indirect bandgaps are compared in Figure 5.2, where carrier energy is plotted versus

momentum for both cases. The photon momentum

p ¼ hl ¼ hu=c ð5:2Þ

is very small, and conservation of momentum can be readily accommodated by small deviations from the

vertical transition shown in Figure 5.2(a). For the indirect case illustrated in Figure 5.2(b), the energy change

DE defines the photon energy and momentum, again according to Equation (5.1) and Equation (5.2), but

conservation of momentum additionally requires that the much greater electron momentum on the order of

h/2a be accounted for. For lattice dimensions, a, are on the order of 10�10 m and wavelengths, l, are on the

order of 10�6 m; it is clearly not possible for both conservation criteria to be met without the participation of a

third body, i.e., a phonon. The two consequences of this result are that the indirect transition is inefficient

FIGURE 5.1 Light emission due to radiative recombination of injected carriers in a forward-biased pn junction. (Source:

J. Allison, Electronic Engineering Semiconductors and Devices, 2nd ed., London: McGraw-Hill, 1990, p. 302. With

permission.)
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(in that it must transfer momentum and hence thermal energy to the lattice) and less likely to occur than the

direct transition (because of the requirement for all three particles to simultaneously meet the energy and

momentum conditions). Indirect bandgaps therefore lead to long diffusion lengths and recombination times,

which produce good transistors but poor LEDs.

FIGURE 5.3 (a) Plot of momentum versus bandgap energy, and (b) corresponding semiconductor parameters for various

compounds of the GaAs/GaP system; (c) plot of momentum versus bandgap energy for indirect GaP materials showing

special trapping levels. (Source: S. Gage et al., Optoelectronics/Fiber-Optics Applications Manual, 2nd ed., New York: Hewlett-

Packard/McGraw-Hill, 1981, pp. 1.3–4. With permission.)

FIGURE 5.2 (a) Interband recombination in a direct-bandgap semiconductor; (b) recombination in an indirect-gap

semiconductor also involves a momentum change. (Source: J. Allison, Electronic Engineering Semiconductors and Devices,

2nd ed., London: McGraw-Hill, 1990, p. 303. With permission.)
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The most common direct-bandgap semiconductor is GaAs, but the photon wavelength calculated for

Eg ¼ ED ¼ 1.43 eV as listed in Figure 5.3(b) is in the infrared. Such a material may be ideal for

communications and sensory optoelectronic applications but is unsuitable for display purposes. The bandgap

may be adjusted, however, by the substitution of phosphorus for arsenic in the lattice as shown in Figure 5.3(a).

The color range listed corresponds to the range of LED colors commonly available: red, yellow and green. The

direct and indirect bandgaps, ED and El, of GaAs1�xPx vary with x as

ED ¼ 1:441þ 1:091xþ 0:210x2 ð5:3Þ

and

El ¼ 1:977þ 0:144xþ 0:211x2 ð5:4Þ

(Wang, 1989), enabling one to design the material to produce the required LED color.

Note the continuous transition from the direct GaAs to the indirect GaP. The materials have an indirect

bandgap for x . 0.4, and have the same problems as light emitters as silicon. The efficiency of an indirect-gap

emitter can be greatly enhanced by the introduction of appropriate impurity recombination centers, as shown

in Figure 5.3(c). In the process shown, an injected minority carrier electron (in p-type material) is first trapped

by the localized impurity (which is itself electrically neutral but which introduces a local potential to the

lattice, which attracts electrons). The center is then negatively charged and attracts a hole to complete the

recombination process, which produces the photon. The recombination center solves the momentum transfer

problem, because the trapped electron is localized to the impurity lattice site, and has a momentum range

according to the Heisenberg Uncertainty Principle of

Dp , h=2pa ð5:5Þ

that is, sufficient to include the processes shown in the diagram at p , 0. In the cases used as examples, a

nitrogen atom substitutes for a phosphorus, or a zinc–oxygen pair substitutes for adjacent gallium–

phosphorus atoms in the GaAs1–xPx lattice.

The GaAs1�xPx system is well established, but can only produce wavelengths defined by the range of energy

gap widths, i.e., down to green. Blue LEDs require higher band-gap materials:

1. SiC technology is well developed for high temperature semiconductor applications, but it has an indirect

band gap, so its emission efficiency is very poor [Pierret, 1996].

2. GaN is a direct band gap material system producing successful blue and blue-green devices [Jiles, 1994;

Nakamura, 1995; Pierret, 1996]. AlGaInN alloys cover the spectrum from red (,1.9 eV from InN) to

deep UV (,6.2 eV from AlN).

3. II-IV compounds such as ZnS and ZnSe possess direct band gaps in the 1.5–3.6 eV range, offering the

possibility of full spectrum LEDs within the single materials system [Jiles, 1994].

In principle, white light LEDs can be constructed by balancing different wavelengths of different intensities

from different LEDs of a single material system. More commonly, however, part of the output of a blue LED is

absorbed by a yellow-green phosphor coating, with the combined spectrum yielding near-white light.

The discovery and development of n-type and p-type organic materials has led to the growth of a new field of

organic electronics. Juxtaposition of n- and p-type materials produces diode characteristics, directly analogous

to the semiconductor device, and metal-oxide semiconductor field-effect transistor (MOSFET) devices have

also been made. An organic light emitting diode (OLED) requires one of the semi-conducting polymers to be

electro-luminescent, since this is the source of the emitted light rather than junction photo-emission. The

material systems offer the potential for very low cost printed devices, possibly on flexible substrates. This

manufacturing flexibility suggests applications for monochromatic liquid crystal display (LCD) back-lighting,

flexible displays, etc. The basic device might be monochromatic with a wide variety of colors available by

electro-luminescent material selection, but the addition of a red dye, for example, to a blue-green emitter can
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yield a direct white-light device. A wide-area white OLED array can form the basis of a color display with the

addition of sub-pixel RGB filters, as for LCD displays [Howard and Prache, 2001].

Device Efficiency

In considering LED efficiencies, it is convenient to consider the emission process to consist of three distinct

steps: (a) excitation, (b) recombination, and (c) extraction. These will be discussed with reference to Figure 5.4

and semiconductor devices.

(a) Photons created by minority electron recombination on the p-type side of the junction are more likely

to be successfully emitted from the surface of the device, for the structure shown in Figure 5.4(a) and

Figure 5.4(b) if the p-type region is a thin surface layer. For a given total LED current, I, made up of electron,

hole and space-charge region recombination components, In, Ip and Ir, respectively, the electron injection

efficiency (which provides the excitation) is

gn ¼ In=ðIn þ Ip þ IrÞ ð5:6Þ

In principle, all the physical processes described above apply equally to both electrons and holes. However, the

electron mobility, mn, is greater than that of a hole, mp, and since

In=Ip ¼ Nd mn=Na mp ð5:7Þ

(where Nd, Na are n-type donor and p-type acceptor doping densities, respectively) greater gn is attainable for

a given doping ratio than hole injection efficiency, gp. Consequently, LEDs are usually p-n1 diodes constructed

as in Figure 5.4, with the p-layer at the surface.

(b) Some of the recombinations undergone by the excess electron distribution, Dn, in the p-type region will

lead to radiation of the photon desired, but others will not because of the existence of doping and various

impurity levels in the bandgap. The total recombination rate, R, can be written in terms of the radiative and

non-radiative rates Rr and Rnr, as

FIGURE 5.4 Effect of (a) opaque substrate, (b) transparent substrate, and (c) encapsulation on photons emitted at the pn

junction. (Source: (a and b) S.M. Sze, Semiconductor Devices: Physics and Technology, New York: Wiley, 1985, p. 262.

Reprinted by permission of John Wiley & Sons, Inc. (c) J. Allison, Electronic Engineering Semiconductors and Devices, 2nd

ed., London: McGraw-Hill, 1990, p. 307. With permission.)
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R ¼ Rr þ Rnr ð5:8Þ

where

Rr ¼ Dn=tr; Rnr ¼ Dn=tnr; R ¼ Dn=t ð5:9Þ

and where tr and tnr are the minority carrier lifetimes associated with the radiative and non-radiative

recombination processes, and t is the effective lifetime. The radiative efficiency is defined as

Z ¼ Rr=ðRr þ RnrÞ ¼ t=tr ð5:10Þ

and the internal quantum efficiency is

Zi ¼ Zg ð5:11Þ

(c) It is clear from Figure 5.4 that many of the photons generated on either side of the junction will pass

through sufficient bulk semiconductor to be reabsorbed. In fact the photon energy may be ideally suited to

reabsorption if it exceeds the semiconductor direct bandgap. It is obvious, then, why GaAs is opaque and GaP

transparent to photons from Ga(As:P) junctions. Clearly, a greater efficiency might be expected from the

transparent substrate with reflecting contact [Figure 5.4(b)].

The photon must strike the LED surface at an angle less than the critical angle for total internal reflection,

yc, where

sin yc ¼ next=nLED ¼ 1=n ð5:12Þ

and next, nLED are the external and internal refractive indices, respectively. For air, next ¼ 1, but critical angle

loss can be reduced by encapsulating the device in an epoxy lens cap [Figure 5.4(c)] to increase both next . 1

and the angle of incidence at the air interface.

Even within angles less than yc, there is Fresnel loss, with transmission ratio

T ¼ 4n=ð1þ nÞ2 ð5:13Þ

The total external quantum efficiency is then the fraction of photons emitted [Neamen, 1992], given by

Ze ¼ 1=ð1þ auo=ATÞ ð5:14Þ

where a is the average absorption coefficient, yo is the LED volume, and A is the emitting area [Yang, 1988].

In considering LED effectiveness for display purposes, one must also include radiation wavelength in

relation to the spectral response of the human eye [Sze, 1985]. Although the GaP green LED is intrinsically less

efficient than the GaAsP red LED, the eye compensates for the deficiency with a greater sensitivity to green.

More recently developed heterojunction LEDs (Figure 5.5) offer two mechanisms to improve LED

efficiencies [Yang, 1988]. The electron injection efficiency can be enhanced, but, in addition, absorption losses

through the wider 2.1-eV bandgap n-type layer are essentially eliminated for photons emitted by

recombination in the lower 2.0-eV bandgap p-type region.

Improving efficiencies have led to extensive use of LEDs in traffic lights and automotive applications (e.g., in

hazard, brake, turn and running lights).
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Interfacing

In circuit design applications the LED may be treated much as a regular diode, but with a much greater

forward voltage, VF. Since one usually seeks maximum brightness from the device, it is usually conducting

heavily and VF approaches the contact potential. As one moves from GaAs to GaP [Figure 5.3(a)], VF varies

from about 1.5 to around 2.0 V. The variation in VF with temperature (at constant current) follows similar

rules as apply to conventional diodes, but radiant power and wavelengths also change [Gage et al., 1981].

Single LEDs are commonly driven by logic gates, perhaps as status indicators, and some of the simplest

interface circuits are shown in Figure 5.6. In many cases, the gate output will not be able to source or sink

sufficient current for visibility, and an amplifier will be required, as in Figure 5.7. Bar graph displays are

commonly used to indicate signal level on audio equipment, with a modification of the position indicator seen

in Figure 5.8 to guide fine tuning. Matrix LED arrays can be used for flexible, high-density panel displays

[Figure 5.9(a)], and are conventionally controlled by row or column strobing [Figure 5.9(b)] controlled by a

microprocessor interface.

Multiple LEDs are commonly packaged together in a single integrated device, organized in one of the

standard display fonts [Figure 5.10(a)], with decoding often included within the package [Figure 5.10(b)].

FIGURE 5.6 Digital logic can interface directly to LED lamps. (Source: S. Gage et al., Optoelectronics/Fiber-Optics

Applications Manual, 2nd ed., New York: Hewlett-Packard/McGraw-Hill, 1981, p. 2.20. With permission.)

FIGURE 5.5 A GaAlAs heterojunction LED: (a) cross-sectional diagram; (b) energy-band diagram. (Source: E.S. Yang,

Microelectronic Devices, New York: McGraw-Hill, 1988, p. 401. With permission.)
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The 7-segment display is adequate for hexadecimal applications, but the 16-segment display is required for

alphanumerics. To limit pin-out requirements the LEDs of a single package are connected in either the

common anode or common cathode configuration [Figure 5.11(a)] with multiple display digits multiplexed,

as illustrated in Figure 5.11(b).

FIGURE 5.7 LED interfacing for (a) low-power transistor-transistor logic, (b) logic high drive, and (c) CMOS. (Source:

M. Forbes and B.B. Brey, Digital Electronics, Indianapolis: Bobbs-Merrill, 1985, p. 242. With permission.)

FIGURE 5.8 Operational amplifiers or voltage comparators used to decode an analog signal into a bar graph or position

indicator display. (Source: S. Gage et al., Optoelectronics/Fiber-Optics Applications Manual, 2nd ed., New York: Hewlett-

Packard/McGraw-Hill, 1981, p. 23.3. With permission.)
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FIGURE 5.9 Matrix displays. (a) One LED will be turned on by applying the proper signal to one x axis and one y axis.

(b) Character generation using column strobe methods. (Source: S. Gage et al., Optoelectronics/Fiber-Optics Applications

Manual, 2nd ed., New York: Hewlett-Packard/McGraw-Hill, 1981, pp. 2.25, 5.44. With permission.)

FIGURE 5.10 (a) Display fonts used in LED displays. (b) Construction features of a hermetic LED display. (Source:

S. Gage et al., Optoelectronics/Fiber-Optics Applications Manual, 2nd ed., New York: Hewlett-Packard/McGraw-Hill, 1981,

pp. 5.3, 5.6. With permission.)
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Defining Terms

External quantum efficiency: The proportion of the photons emitted from the pn junction that escape

the device structure (but sometimes alternatively defined as ZiZe).

Injection electroluminescence: Electroluminescence is the general term for optical emission resulting

from the passage of electric current; injection electroluminescence refers to the case where the

mechanism involves the injection of carriers across a pn junction.

Internal quantum efficiency: The product of injection efficiency and radiative efficiency corresponds to

the ratio of power radiated from the junction to electrical power supplied.

Acknowledgment

Anjani Kulkarni’s assistance with the preparation of this chapter is recognized with thanks.

References

J. Allison, Electronic Engineering Semiconductors and Devices, 2nd ed., London, England: McGraw-Hill, 1990.

M. Forbes and B.B. Brey, Digital Electronics, Indianapolis, IN: Bobbs-Merrill, 1990.

S. Gage, D. Evans, M. Hodapp, H. Sorensen, R. Jamison, and R. Krause, Optoelectronics/Fiber-Optics

Applications Manual, 2nd ed., New York, NY: Hewlett-Packard/McGraw-Hill, 1981.

W.E. Howard and O.F. Prache, ‘‘Microdisplays based upon organic light-emitting diodes,’’ IBM J. Res. & Dev.,

vol. 45, no. 1, pp. 115–127, 2001.

D. Jiles, Introduction to the Electronic Properties of Materials, London, England: Chapman & Hall, 1994.

FIGURE 5.11 (a) Generalized drive circuits for strobed operation. (b) Block diagram of a strobed (multiplexed) six-digit

LED display. (Source: S. Gage et al., Optoelectronics/Fiber-Optics Applications Manual, 2nd ed., New York: Hewlett-Packard/

McGraw-Hill, 1981, pp. 5.25, 5.23. With permission.)

# 2006 by Taylor & Francis Group, LLC



S. Nakamura, ‘‘A bright future for blue/green LEDs,’’ IEEE Circ. & Devices, vol. 11, no. 3, pp. 19–23, 1995.

D.A. Neamen, Semiconductor Physics and Devices: Basic Principles, Boston, MA: Irwin, 1992.

R.F. Pierret, Semiconductor Device Fundamentals, New York, NY: Addison-Wesley, 1996.

S.M. Sze, Semiconductor Devices: Physics and Technology, New York, NY: Wiley, 1985.

S. Wang, Fundamentals of Semiconductor Theory and Device Physics, Englewood Cliffs, NJ: Prentice-Hall, 1989.

E.S. Yang, Microelectronic Devices, New York, NY: McGraw-Hill, 1988.

Further Information

More extensive semiconductor device treatments of the LED are contained in Semiconductor Devices and

Integrated Electronics by A.G. Milnes (Van Nostrand Reinhold, New York, 1980) and in Introduction to Optical

Electronics by K.A. Jones (Harper and Row, New York, 1987). E. Uiga provides more interfacing and design

detail for the LED as a circuit element in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1995). Wang

[1989] considers second-order effects extensively. In Semiconductor Optoelectronics by J. Singh (McGraw-Hill,

New York, 1996), the emphasis is on communications applications, but the temperature dependence and

frequency response issues covered there are also relevant to displays.

Chapter 2 of Gage et al. [1981] contains detailed information on the optical and thermal design constraints

on the LED package and on LED back-lit display systems. Chapter 6 considers filtering and other techniques

for the contrast enhancement required for direct sunlight viewing.

Professional society magazines are good sources of up-to-date information at the non-specialist level,

especially the occasional special issues devoted to topic reviews. IEEE Spectrum is a good example, as is the

IEEE Circuits & Devices magazine.

The Howard and Prache paper [2001] and S.J.M. Connor et al. (‘‘Towards Full Colour LEP Displays,’’ Proc.

SPIE, 4105, 2001, 9–17) describe different materials systems and optical characteristics for OLED devices. The

March/April 2002 issue of the IEEE Journal on Selected Topics in Quantum Electronics (8, 2) is devoted to high-

efficiency light-emitting diodes, with papers collected into sections on LEDs for communications, lighting,

and UV emission, and on OLEDs.

5.2 Liquid-Crystal Displays

James E. Morris

In a low-power CMOS digital system the dissipation of a light-emitting diode (LED) or other comparable

display technology can dominate the total system’s power requirements. In such circumstances the low-power

dissipation advantage of CMOS technology can be completely lost. This is the situation in which liquid-crystal

display (LCD) technology is commonly used. The LED (or other active system, such as a plasma or vacuum

fluorescent display) emits optical power supplied (comparatively inefficiently) by the system battery or other

source. The passive LCD is fundamentally different in that the optical power is supplied externally (by sunlight

or room lighting typically), and the system source need supply only the relatively minute amount of power

(microwatts per square centimeter) required to change the device’s reflective optical properties.

Principle of Operation

Materials classed as liquid crystals are typically liquid at high temperatures and solid at low temperatures, but

in the intermediate temperature range they display characteristics of both. Although there are many different

types of liquid crystals used, we will concentrate here on the use of nematic crystals in twisted nematic devices,

the most common by far.

The essential feature of a liquid crystal is the long rod-like molecule. In a nematic crystal the molecules align

as shown in Figure 5.12. If the container surface is microscopically grooved, the interface molecules will be

aligned by the grooves and intermolecular forces will maintain that orientation across the liquid crystal

# 2006 by Taylor & Francis Group, LLC



[Figure 5.12(a)]. The molecules will align in an electric field, and beyond a critical value the field may be

sufficient to overcome the alignment with the grooves [Figure 5.12(b)]. (In practice, the transition is not so

abrupt, and groove alignment persists at the interface itself [Figure 5.13].)

The process of alignment in the electric field is the result of the anisotropic dielectric constant characteristic

of liquid crystals. For the electric field parallel to the molecular alignment, er ¼ ek, and for a perpendicular

field, er ¼ e’. In a ‘‘positive’’ liquid crystal, ek . e’, and the molecules align parallel to the field as described

above in order to minimize the system’s potential energy.

FIGURE 5.12 Liquid-crystal/grooved interface (a) with no field applied, and (b) with an electric field e . a critical value.

(Source: J. Allison, Electronic Engineering Semiconductors and Devices, 2nd ed., London: McGraw-Hill, 1990, p. 308.

With permission.)

FIGURE 5.13 Diagram of the orientation of the liquid-crystal axis in a cell (a) with no applied field, (b) with about twice

the critical field, and (c) with several times the critical field. Note slight permanent tilt (a0) and turn (b0) at the surfaces.

(Source: G. Baur, in The Physics and Chemistry of Liquid Crystal Devices, G.J. Sprokel, Ed., New York: Plenum, 1980, p. 62.

With permission.)
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The principle of the twisted nematic cell is illustrated in Figure 5.14. The confining plates, typically 10 mm

apart, are grooved orthogonally, forcing the molecular orientation to spiral through 90 degrees [Figure 5.14(a)].

In the LCD, two polarizers and a mirror are added as shown in Figure 5.14(b). Incident ambient light is

polarized and enters the liquid-crystal cell with the plane of polarization parallel to the molecular

orientation. As the light traverses the cell, the plane of polarization is rotated by the twist in the liquid crystal,

so that it reaches the opposite face with a polarization 90– to the original direction but now parallel to the

FIGURE 5.14 (a) Twisted nematic cell, e ¼ 0. (b) Liquid-crystal display element. (Source: J. Allison, Electronic Engineering

Semiconductors and Devices, 2nd ed., London: McGraw-Hill, 1990, p. 309. With permission.)
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direction of the second polarizer, through which it may therefore pass. The light is then reflected from the

mirror and passes back through the cell, reversing the prior sequence.

When an electric field (greater than the critical field) is applied between the transparent electrodes, usually

conductive indium–tin oxide (ITO) thin films, the 90– twist in the crystal is destroyed as the molecules align

parallel to the field, so that the rotation of the light’s plane of polarization cannot be sustained. Consequently,

the crossed polarizers effectively block reflection of the incident light from the backing mirror, and the surface

appears to be dark, with excellent contrast to the light gray color of the device in the reflecting mode. The

contrast ratio can be further enhanced by the use of the super twisted nematic crystal, where the molecular

orientation is rotated through 270 degrees rather than 90 degrees.

Transmission LCDs function very similarly to the devices just described, but without the mirror, which is

replaced by a powered backlighting source. Obviously, the low-power advantage of the passive device is lost in

this active alternative, but monochromatic backlighting does provide one means of constructing displays with

varied background colors.

Another form of color display is provided by cholesteric crystals. The three main types of liquid crystals,

nematic, cholesteric and smectic, are distinguished by the different types of molecular ordering they display. In

the cholesteric crystal the direction of molecular alignment rotates in each successive parallel plane

(Figure 5.15). The spatial period of the rotation, p, is called the pitch, and Bragg reflections occur when the

wavelength of incident light meets the condition

l ¼ p=n ð5:15Þ

where n is an integer. The liquid crystal can thus appear to be colored in incident white light. In practice, the

color is strongly temperature dependent and the effect is more appropriate to temperature-sensing

applications than to digital displays.

Large area color LCD displays have become commonplace for computer and HDTV monitors, where the

color pixels are organized in the traditional television RGB format, with each pixel made up of three separate

red, green and blue sub-pixels. If each subpixel intensity can be modulated to 256 (8-bit) levels, the pixel has a

range of 2563 (about 16 million) colors. The subpixel colors can be defined by external filters or internal dyes

[Braithwaite and Weaver, 1995]. In the latter case, the dye molecules align with the LCD molecules and absorb

correctly polarized light.

Uiga [1995] discusses some LCD problems, in particular the slow response times and the variation of

effective critical voltages with limited viewing angles and the temperature dependences of both.

FIGURE 5.15 Cholesteric ordering: a large number of planes of nematic ordering are formed where the directors rotate as

we move along a direction perpendicular to the planes. (Source: J. Wilson and J.F.B. Hawkes, Optoelectronics: An Intro-

duction, London: Prentice-Hall, 1989, p. 145. With permission.)
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Interfacing

LCDs can be organized in all the ways available to competing technologies—e.g., LEDs (see Section 5.1),

including seven-segment, alphanumeric, and dot matrix. The LCD differs from LED displays where each pixel

or segment must be a separate device, because the LCD segment or pixel areas are defined by transparent

electrodes separated from a common overlapping backplane by a single liquid crystal [Figure 5.16(a)]. In a

large matrix array it may take a significant period to scan all pixels, and the simple addressing scheme of

Figure 5.16(b) may lead to noticeable flicker. The high off-resistance of the MOSFETs of Figure 5.16(c) can

reduce this problem by increasing the discharge time to hold the LCD on after the address pulse has gone. The

MOSFETs in this active matrix technology are implemented in practice in the form of polysilicon or

hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFT) [Shur, 1990; Braithwaite and Weaver,

1990].

The interfacing requirements, which are otherwise similar in multiplexing techniques, etc., are complicated

by the requirement for zero net DC bias across the cell in order to avoid electrochemical degradation of the

material. LCDs require AC drive signals, and square waves of frequency between 25 Hz and 1 kHz are typically

used [Wilson and Hawkes, 1989]. A square wave is applied to the backplane (Figure 5.17), with in-phase and

FIGURE 5.16 LCD addressing: (a) simple (seven-segment) addressing; (b) matrix addressing; and (c) matrix addressing

with MOSFETs. (Source: J. Allison, Electronic Engineering Semiconductors and Devices, 2nd ed., London: McGraw-Hill, 1990,

p. 312. With permission.)
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antiphase signals to the counter electrode determining whether the given pixel or segment is on or off. In

practice the state is determined by the root mean square (rms) value of the differential voltage applied.

Figure 5.18 illustrates the additional complexity that would be required by even a simple multiplexed

addressing system. The backplane and segment drivers might correspond to rows and columns of a dot matrix,

as implied in the diagram, or the backplanes may identify specific characters of an alphanumeric display.

Calculating the rms values of the difference voltages shown gives 0.42 Vtc for the on pixels and 0.24 Vtc for off,

from which Vtc can be calculated for reliable operation if the critical voltage is known for the LCD to be used.

Defining Terms

Active matrix: Each pixel in a high density display matrix, such as for flat-screen television, requires its

own active (switching element) driver (e.g., a TFT).

Cholesteric: In the cholesteric liquid crystal successive layers of aligned molecules are rotated naturally.

Indium–tin oxide (ITO): A mixture of the semiconducting oxides SnO2 and In2O3; the most common

transparent conductor.

FIGURE 5.17 Drive signals from a direct connect LCD driver. (Source: R. Lutz, Application Note 350, in Interface

Databook, Santa Clara, Calif.: National Semiconductor Corporation, 1990, p. 4–109. With permission.)

FIGURE 5.18 Example of backplane and segment patterns. (Source: R. Lutz, Application Note 350, in Interface Databook,

Santa Clara, Calif.: National Semiconductor Corporation, 1990, p. 4–109. With permission.)
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Nematic: The type of liquid crystal in which the molecular chains align; such alignment can be controlled

across the liquid crystal if it can be constrained at the boundaries.

Twisted nematic: The alignments of the nematic planes are rotated through 90 degrees across the crystal

by constraining alignments to be orthogonal at the boundaries.
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Further Information

Nematic liquid-crystal molecules typically incorporate two separated benzene rings in a complex chain

molecule (Wilson and Hawkes, 1989). The organic chemistry of liquid-crystal compounds will lie outside the

interests of most readers but is briefly reviewed in ‘‘Liquid Crystal Materials for Display Devices,’’ by J.A.

Castellano and K.J. Harrison, in The Physics and Chemistry of Liquid Crystal Devices, edited by G.J. Sprokel

[Plenum, 1980].

One technique used in liquid-crystal color switches requires the use of electrically controlled birefringence.

This topic is covered at an elementary level by Wilson and Hawkes [1989].

An interesting historical perspective on the development of LCD technology is provided by the extensive

reviews of 150 patents in the field contained in Liquid Crystal Devices, edited by T. Kallard (State of the Art

Review, Vol. 7, Optosonic Press, New York, 1973). The book also contains a bibliography of more than 1100

entries.

The various professional societies’ magazines are excellent sources of material for recent developments in

this field (and others). These publications regularly devote a special issue to research developments in a single

field at a level intended for the non-specialist. A good example in the LCD area is provided by two articles on

TFT silicon for active matrix displays contained in the Materials for Flat-Panel Displays issue of the MRS

Bulletin, 21(3), March 1996 (Materials Research Society), which cover the transition from a-Si:H to polysilicon

and the prospects for single crystals.

5.3 Plasma Displays

Larry F. Weber

Introduction

The high image quality and sleek thin profile of large-diagonal plasma displays has generated great consumer

excitement for high definition digital home theatre. This has created explosive growth in manufacturing

capacity and interest in full color plasma displays. This is fueled by the realization that plasma displays can

fulfill the long sought-after goal of consumer-affordable hang-on-the-wall flat-panel television displays with

diagonals in the range of 32 to 80 in. Color plasma displays operate on the same physical principle as

fluorescent lamps. A gas discharge generates ultraviolet light which excites a phosphor layer that fluoresces

visible light. Differing phosphors are used for the red, green, and blue primaries and a full color moving image
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is obtained by modulating each primary color subpixel to one of typically 256 or more intensity levels at 60

times a second.

Color Plasma Display Markets

The plasma display manufacturers have adopted the strategy of a strong attack on the greater than 40-in

diagonal NTSC television and high definition television (HDTV) markets. Display diagonals smaller than 30

in are specifically avoided in this strategy. Plasma displays have found their proper place in the market by

evading the fierce competition from the smaller diagonal liquid crystal displays and CRTs since both of these

technologies have difficulty with 40- to 80-in diagonals. However, recently the very large market for large-

screen flat-panel TV is attracting strong interest from the liquid crystal manufacturers. Liquid crystals are

likely to dominate for diagonals less than 30 in while the plasma displays will dominate for diagonals larger

than 40 in. In this larger diagonal range, projection displays will also play a strong role because they have lower

cost than both the plasma displays and the liquid crystals. The plasma display will enjoy a strong place in the

flat TV market due to its superior image quality compared to the liquid crystal or projection displays.

The potential market for large plasma displays is quite large. The 2004 sales for plasma display modules is

expected to be $5 billion on 2 million units. This is projected to increase to over $10 billion on 9 million units

in 2007. These numbers are for modules sold at the OEM level. There is of course considerable value added to

the final TV set which increases the final selling price to the consumer. In 2004 the 42-in diagonal size had the

most sales. As prices decline in future years the most popular size is expected to increase to 50-in diagonal and

beyond. The largest product available in 2004 was a 71-in diagonal, and this will surely increase as the

technology and the market mature.

Color Plasma Display Attributes

Table 5.1 shows some of the attributes of color plasma displays which make them successful. The following

reviews each attribute.

1. The electrical characteristics of the gas discharge allow plasma displays to be made with diagonals in the

32- to 80-in range. Such large diagonals are facilitated by very strong nonlinearity and inherent memory

of the discharge, as discussed in items 3 and 4 below, which present no practical limitations to the

number of lines that can be multiplexed. Also, the high impedance characteristic (covered below in

item 11) coupled with the ability to use highly conductive opaque electrodes greatly reduces electrode

loss limitations to size. Color plasma display products are available with sizes as great as 71-in diagonal

TABLE 5.1 Color Plasma Display Attributes

1. Diagonals of 32 to 80 in

2. 1 billion colors

3. Very strong nonlinearity

4. Inherent memory

5. Long lifetime

6. Very wide viewing angle

7. Instant update time

8. Good luminance and luminous efficiency

9. CRT-like manufacturing model

10. Tolerant to shock, vibration and

temperature extremes

11. Reasonable impedance characteristics

12. Precise digital grayscale

13. CRT-like color gamut

14. Excellent dark room contrast ratio
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having over 6 million subpixels. In 2004 the largest prototype demonstrated was an 80-in diagonal with

the full 1920 · 1080 HDTV resolution.

2. The all-digital grayscale technique used in color plasma displays allows each primary subpixel to display

as many as 1024 intensity levels. This allows full 30-bit color or as many as 1 billion colors. These 1024

intensity levels are important for reducing the low-level contouring artifacts that are visible for digital

grayscale having fewer intensity levels.

3. The plasma display has a very large nonlinearity due to the electrical characteristic of the gas

discharge used in all plasma displays. This is an electrical nonlinearity, meaning that below a certain

threshold voltage the gas discharge will emit no light. Of course, above that threshold voltage the gas

discharge fires and emits a desired color. Very sharp nonlinearity allows plasma displays to be

multiplexed without limit, which makes very large plasma displays practical. This is demonstrated by

a number of recently developed 1920 · 1080 · 3 subpixel color plasma displays. This is a

considerable advantage when compared to other display technologies such as the liquid crystal. The

liquid crystal display does not have a very good nonlinearity, and therefore some other nonlinear

element, such as a thin-film transistor, is frequently added in series with each liquid crystal element

to increase the display nonlinearity. Of course, this greatly complicates and adds cost to this active

matrix liquid crystal.

4. All color plasma displays have inherent memory which is stored directly in the glass plasma panel.

Memory is very desirable for flat-panel displays because it allows the display to be very bright, even for

very large sizes. This is because a display with memory has a pixel duty cycle of one. Displays without

memory have a pixel duty cycle of one divided by the number of scanned lines. Thus, as the nonmemory

displays get bigger and the number of scanned lines increases, the duty cycle and therefore the brightness

of the display decrease. An additional value of memory is the elimination of flicker because the pixels are

on all of the time.

5. The lifetime of color plasma displays can be very long. Plasma display television products are frequently

delivered with guaranteed specified lifetimes to half luminance of 60,000 h and measured lifetimes in

excess of 100,000 h. While this is better than most CRT products, there is considerable effort to extend

this lifetime further. The failure mode is usually a slow degradation in the phosphor that gradually

decreases the display luminance. In general the blue phosphor degrades the most and the red phosphor

degrades the least. If all of the pixels are aged uniformly with the usual randomly moving television

image, the display will still be usable after the specified lifetime but at reduced luminance. However,

displays used for computer images require a much tougher life specification because images such as

icons may be left on the same screen location for long periods and burn in an image. These problems are

very similar to the phosphor degradation observed on a CRT.

6. One of the major advantages of all plasma displays over liquid crystal and projection displays is the very

wide viewing angle. Plasma displays have a nearly Lambertian light emission distribution in both the

vertical and the horizontal directions, which means that the brightness appears the same in all viewed

directions.

7. Gas discharges switch in microseconds and so plasma displays can be updated instantly. Speed is

especially important for full motion high definition television images.

8. The luminance and luminous efficiency of color plasma displays are quite good. Display module

products having 1000 candelas per meter squared at 1.8 lumens per watt are available [Sato et al., 2002].

Unlike other technologies such as liquid crystal or projection displays, the plasma display is a power-on-

demand technology. This means that power is dissipated by the display in proportion to the luminance

of a given image region. In contrast, the liquid crystal power is mostly in the backlight and the projector

power is mostly in the lamp, so these technologies take the same power independent of image

luminance. This makes the plasma display the lowest power technology for television images since the

average pixel level of a television image is 20% or less. The potential for the luminous efficiency of

plasma displays to increase in the future is substantial, since the currently available 1.8 lumens per watt is

much less than the 80 lumens per watt of a common fluorescent lamp that uses the same fundamental

light generation technology.

# 2006 by Taylor & Francis Group, LLC



9. Color plasma displays are manufactured in a plant that has many features in common with CRT

manufacturing plants. This contrasts sharply with the semiconductor-like manufacturing plant of active

matrix liquid crystal displays (AMLCDs). Therefore, the plasma display plant will cost typically one-

third the cost of the equivalent sized AMLCD plant.

10. The structure can withstand very high levels of shock and vibration when properly mounted. Military

plasma displays have been designed for in excess of 150 Gs of shock. Plasma displays can easily operate at

both high and low temperature extremes. Ac plasma displays have a temperature limit dependent almost

solely on the drive circuit characteristics.

11. Plasma displays have a high input impedance characteristic that makes them easy to drive. The dielectric

constant of the gas is equal to one, which means that plasma displays have virtually the lowest possible

electrode capacitance. This is 1000 times smaller than electroluminescent displays and about 100 times

smaller than liquid crystal displays. This translates to lower current requirements and therefore smaller

drive circuit silicon area for the plasma displays. While plasma displays do require 80-volt address

drivers, it is frequently easier to design high voltage circuits than high current circuits. Also, the larger

displays can be designed with little power dissipation in panel electrodes.

12. The grayscale technique used in color plasma displays is 100% digital, which allows design of an all

digital image system having reduced noise and increased stability in color representations. This is very

important as signal sources with very high quality digital signals, such as those from digital video disks

and HDTV, become widely available.

13. The color gamut of the available plasma display phosphors is very good. While the color coordinates do

not yet exactly match those used in the CRT, future process adjustments are expected to produce the

desired close match.

14. Plasma display products are available with dark room contrast ratios in excess of 5000:1 at all viewing

angles. This is a major advantage over liquid crystal TVs which generally specify contrast ratio only at

the normal viewing direction since the liquid crystal contrast ratio degrades rapidly for off-axis angles.

Dark room contrast is very important for home theatre television displays since these are frequently

viewed in low ambient light conditions.

Gas Discharge Physics

A brief account of gas discharge physics will be covered below. A more detailed discussion of this material is

presented in Weber [1985] and Boeuf [2003].

Figure 5.19 shows the important reactions that occur in a gas discharge for the monochrome gas mixture of

neon and argon. Color plasma displays use a neon-xenon gas mixture, but the fundamental discharge physics

is the same. The reactions in the gas volume include ionization (I), excitation (E), metastable generation (M),

and Penning ionization (P). The three surface reactions that occur at the cathode cause ejection of electrons

from the cathode by a bombarding neon ion, a neon metastable atom or by a high energy photon. For

simplicity, only the neon reactions are shown in Figure 5.19. The most important volume reaction is

ionization (I), which can cause the generation of an avalanche in the gas volume as shown in Figure 5.19. This

avalanche is started by an electron near the cathode, and as it grows toward the anode it generates a large

number of electron-ion pairs. The number of electron-ion pairs increases with increasing applied voltage

across the gas. Ions, photons, or metastable atoms that are transported to the cathode can then eject electrons

with a cathode surface-dependent probability, and these ejected electrons will initiate further avalanches.

These mechanisms act as a positive feedback system that becomes unstable when the loop gain is greater than

1. The onset of the unstable condition is defined as the gas firing voltage. Above this firing voltage the

discharge current will continue to grow without bounds if the initial avalanche is primed with at least a single

electron.

Figure 5.20 shows the I-V characteristic of a typical gas discharge found in plasma displays. Note that the

current is plotted on a log scale over nine orders of magnitude. The most striking feature is the very strong

nonlinearity at the firing voltage, which is a major attribute of gas discharges that allows matrix addressing.
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When the discharge current has sufficient magnitude, space charge distortion sets in and the characteristic

achieves a negative resistance region. Most plasma displays operate near the junction of the normal and the

abnormal glow regions of the characteristic.

One critical aspect of gas discharges is the requirement for external priming as shown in the lower part of

Figure 5.20. The avalanche process shown in Figure 5.19 needs at least one electron to start the discharge

growth. Without this first electron the discharge will not start at any voltage. Priming electrons can come from

a number of different active particles created either by a prior discharge or by neighboring discharging pixels.

Active particles include free electrons, free ions, metastable atoms, and ultraviolet photons.

Figure 5.21 shows the characteristics of the glow discharge commonly found in operating plasma displays.

The light comes from two luminous regions: the negative glow and the positive column. Plasma displays on

the market today use light from both regions. These regions are caused by the space charge distribution of the

electrons and ions that distort the electric field and voltage distribution. The positive column generates light

with a much higher efficiency than the negative glow, and so intense research is now underway to exploit this

advantage of the positive column [Oversluizen, et al., 2004].

Current Limiting for Plasma Displays

To avoid a catastrophic arc, the current in a gas discharge must be limited by some means. There are a number

of ways of accomplishing this, but only two, shown in Figure 5.22, have achieved commercial success.

DC plasma displays use a resistor, a semiconductor current source, or a short applied voltage pulse to limit the

current and have the electrodes in intimate contact with the gas discharge. AC plasma displays limit the

FIGURE 5.19 Model of important gas discharge reactions.
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current with an internal glass dielectric that couples the electrodes capacitively to the gas discharge. Most

current color plasma displays use AC current limiting. DC current limiting is important to understand for

historical and possible future research reasons.

DC displays can have the resistors or current sources connected to a display electrode external to the panel,

which allows only one discharge to be ignited along that electrode at any one time. This works well for scanned

displays. Multiple discharges and DC memory require placing the resistor internal to the panel in series with

each subpixel. Materials and process advances have allowed practical DC color displays with memory to be

made having a resistor per subpixel [Koike et al., 1995].

AC displays can achieve memory and the necessary current limiting with a simple dielectric layer that forms

a capacitor in series with each pixel. When a voltage pulse is applied to an AC panel, the discharge deposits a

charge on the wall that reduces the voltage across the gas. After a short time, the discharge will extinguish and

the light output will end until the applied voltage reverses polarity and a new discharge pulse occurs. This wall

charge allows the AC plasma displays to operate in a memory mode, which greatly increases the brightness of

large displays.

AC Plasma Displays

Figure 5.23 shows the AC monochrome structure that was developed in the late 1960s and is still

manufactured for limited special applications today [Criscimagna and Pleshko, 1980]. These panels are made

FIGURE 5.20 The I-V characteristic of a gas discharge.
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by depositing thin film electrodes on the front and back substrates and then covering those electrodes with a

thin dielectric glass. Recall from Figure 5.22 that this dielectric glass makes a capacitor that is used to limit the

discharge current. This dielectric also is used to store the charge that gives these panels inherent memory. The

two substrates are then sealed together around the perimeter and filled with neon gas. The AC monochrome

panels have a very simple structure that allows the pixels to be isolated simply by the action of electric fields.

The AC plasma panels require the inner surface of the dielectric that is in contact with the gas to have a

special protection layer of magnesium oxide. This MgO layer is necessary for the panel to have low operating

voltages and long life. Being a refractory oxide, MgO sputters away at a very low rate, and it is also well known

for its high secondary electron emission.

Ac displays require that an AC signal, called the sustain voltage, be applied during operation as shown on

the right side of Figure 5.22. The typical sustain frequency for monochrome displays is 50 kHz. For high

luminance color displays it is typically 250 kHz. Figure 5.24 shows the details of this operation for a pixel in

FIGURE 5.21 Luminous regions of a gas discharge.
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FIGURE 5.22 The two current limiting techniques used in plasma display products.
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both the on and off states. When a pixel is discharging, charge collects on the dielectric glass walls and

influences the voltage across the gas. The component of voltage due to this charge is called the wall voltage.

When a pixel is on, the wall voltage changes for each polarity reversal of the sustain voltage. This change in

wall voltage coincides with a pulse of light due to the gas discharge. When the pixel is off, there are no light

pulses, and the wall voltage remains at a zero level.

Pixel addressing is achieved through a partial discharge by introducing an address pulse timed between the

sustain pulses. A write pulse causes the wall voltage to transit from zero volts to the final equilibrium wall

voltage level. Likewise, an erase pulse causes the wall voltage to return to zero.

Color Plasma Display Devices

Color is achieved by placing phosphors in the plasma panel and then exciting those phosphors with the

ultraviolet light of the gas discharge. This is the same principle as that used in the fluorescent lamp. Xenon is

the active UV generating gas, which provides atomic resonance radiation at 147 nm and a molecular band

centered at 173 nm. Neon or helium buffer gases are always mixed with the xenon in order to lower the

operating voltage.

Figure 5.25 shows the two fundamental structures for achieving color. The opposed discharge structure is

very similar to the monochrome AC structure shown in Figure 5.23. The surface discharge structure

(also called coplanar or single-substrate) separates the discharge cathode areas from the phosphor by

applying the sustain voltage only to the lower electrodes while the phosphor is on the top. The surface

discharge approach achieves longer phosphor life because it is not directly sputtered by the energetic ions

that are directed toward the cathodes. For this reason all modern color plasma displays use the surface

discharge structure.

FIGURE 5.23 Monochrome AC plasma display structure.
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The detailed structure for the surface discharge AC plasma displays is shown in Figure 5.26 [Shinoda et al.,

1993]. Note that the structures placed on the front and back substrates each have simple one-dimensional

features. Since the structures on the two substrates are positioned orthogonally, there is no critical alignment

between the two substrates because the pixels will automatically occur wherever the orthogonal electrodes

intersect. This allows for straightforward manufacture of large panels.

The phosphors are placed on the rear substrate of the panel in Figure 5.26 and are excited by the ultraviolet

light generated by the electrodes on the top substrate. This is shown as a single subpixel cross section in

Figure 5.27. Note that the sustain and scan electrodes of Figure 5.27 have been schematically rotated 90– from

the correct positions shown in Figure 5.26 in order to illustrate the action of the discharge. In this design, both

sets of AC sustain electrodes are on the front plate. The AC voltage is applied to these electrodes in the normal

way, and the fringing fields from these electrodes reach into the gas and create a discharge. Note that the

structure in Figure 5.26 and Figure 5.27 has glass barrier rib separators between each subpixel. This is

necessary to reduce crosstalk between the different colors, which will reduce the color purity. These barrier

ribs do not transmit the 147-nm or 173-nm radiation generated by the xenon gas used in color plasma

displays. The phosphors are placed on all walls of the subpixel channel except for the front plate, which has

phosphor-damaging sputtering activity at the cathodes. This nearly complete phosphor coverage of the walls

maximizes luminance while minimizing sputtering damage.

Other important features of the surface discharge structure in Figure 5.26 and Figure 5.27 are the address

electrodes buried beneath the phosphors of the rear plate. These are the column electrodes that are selectively

FIGURE 5.24 Sustain voltage, wall voltage, and light output for AC plasma pixels in the on and off states.
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pulsed depending on the input image data. While these address operations do create discharge activity that

could potentially sputter damage the phosphor, the address pulse frequency is orders of magnitude lower than

the sustain frequency and so the amount of address damage is minimal.

The sustain and scan electrodes shown in Figure 5.26 are made of a conductive transparent material such as

indium–tin oxide. Unfortunately, the resistance is orders of magnitude too high. To correct this problem,

narrow bus electrodes of high conductivity materials, such as silver or chrome-copper-chrome, are placed over

the tin oxide to reduce the electrode resistance to values on the order of 100 ohms.

FIGURE 5.25 Two structural designs of color AC plasma displays.

FIGURE 5.26 Structure of surface discharge color AC panel.
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Grayscale

The memory displays cannot use pulse intensity or pulse width modulation for grayscale because the pixels in

memory mode are either on or off, and such pulse perturbations would in many cases have the undesirable

effect of changing the state of the pixel. Instead these memory displays achieve grayscale by modulating the

percentage of time that the pixel is on in a given frame. This means that the pixels must be addressed multiple

times per frame. In the sequence shown in Figure 5.28 for 256 intensity levels, each frame is divided into eight

subfields and each subfield consists of an address period and a sustain period [Yoshikawa, 1992]. During a

given address period, address pulses are applied to all pixels in the panel according to the subfield image data.

Each of the eight subfields has a sustain period with a different number of sustain cycles which emits an

FIGURE 5.27 Structure details of surface discharge color AC panel.

FIGURE 5.28 Addressing sequence for 256 intensity grayscale in AC memory plasma displays.
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amount of light proportional to the number of sustain cycles. If each data bit of a given pixel intensity word is

allowed to control one of the subfields, then the total number of sustain cycles (and light) per frame will be

proportional to the 8-bit intensity value. This results in a precise inherently digital grayscale.

Defining Terms

AC plasma displays: These employ an internal capacitive dielectric layer to limit the gas discharge current.

DC plasma displays: These employ an internal or external resistor to limit the gas discharge current.

Luminous efficiency: The measure of the display output light luminance for a given input power usually

measured in lumens per watt, which is equivalent to the nit.

Memory: The property of a display pixel that allows it to remain stable in an initially established state of

luminance. Memory gives a display high luminance and absence of flicker.

Metastable atom: An atom in a temporary but long lived excited state in which photon emission is

forbidden by electrodynamic theory. Metastables can give up their energy by ionizing other atoms or

through wall collisions.

Plasma: The fourth state of matter comprised of positive ions and negative electrons of equal and

sufficiently high density to nearly cancel out any applied electric field. Not to be confused with blood

plasma.

Priming: The mechanism whereby particles such as ions, electrons, photons, or metastable atoms provide

the one electron needed to start the gas discharge.

Sputtering: The physical process whereby an ion with kinetic energy in the gas collides with a solid surface

ejecting an atom from the solid into the gas.
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Further Information

A more detailed account of the material presented in this section is provided in Weber [1985] and Boeuf

[2003]. The details of the manufacturing process can be found in Tolner [2003].

The Society for Information Display (SID) annual International Symposium publishes a digest of technical

papers which is the best source for new display developments. Tutorial material can be found in the annual

SID Seminar Lecture Notes. More research-oriented papers can be found in the technical digest of the
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International Display Research Conference which rotates annually among Europe, Japan, and North America.

In addition, SID publishes the Journal of the SID, which contains more detailed archival papers. These materials

can be obtained from the SID at 610 S. 2nd Street, San Jose, CA 95112 or see the web site http://www.sid.org.

Many of these can be found by searching Scitation at http://scitation.aip.org.

The International Electrotechnical Commission (IEC) has a very active plasma display standards group.

Many of the terms and their fundamental usage can be found in the document: Terminology and Letter

Symbols IEC 61988–1 Ed. 1.0. IEC standards are available at http://www.iec.ch/.
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6.1 Introduction

Data acquisition includes everything from gathering data, to transporting it, to storing it. The term data

acquisition is described as the ‘‘phase of data handling that begins with sensing of variables and ends with a

magnetic recording of raw data, may include a complete telemetering link’’ (McGraw-Hill, Dictionary of

Scientific and Technical Terms, Second Edition, 1978). Here, the term variables refers to those physical

quantities that are associated with a natural or artificial process. A data acquisition phase involves a real-time

computing environment where the computer must be keyed to the time scale of the process. Figure 6.1 gives a

simplified block diagram of a data acquisition system current in the early 1990s.

The path the data travels through the system is called the data acquisition channel. Data are first captured

and subsequently translated into usable signals using transducers. In this discussion, usable signals are

assumed to be electrical voltages, either unipolar (that is, single ended, with a common ground so that we need

just one lead wire to carry the signal) or bipolar (that is, common mode, with the signal carried by a wire pair,

so that the reference of the rest of the system is not part of the output). These voltages can be either analog or

digital, depending on the nature of the measurand (the quantity being captured). When there is more than

one analog input, they are subsequently sent to an analog multiplexer (MUX). Both the analog and the digital

signals are then conditioned using signal conditioners. There are two additional steps for those conditioned

analog signals. First they must be sampled and next converted to digital data. This conversion is done by

analog-to-digital converters (ADC).

Once the analog-to-digital conversion is done, the rest of the steps have to deal with digital data only. The

calendar/clock block shown in Figure 6.1 is used to add the time-of-date information, an important parameter

of a real-time processing environment, into the half-processed data. The digital processor performs the overall

system control tasks using a software program, which is usually called system software. These control tasks also

include display, printer, data recorder, and communication interface management. A well-regulated power

supply unit (PSU) and a stable clock are essential components in many data acquisition systems. There are

systems where massive amounts of data points are produced within a very short period of time, and they

are equipped with on-board memory so that a considerable amount of data points can be stored locally. Data

are transmitted to the host computer once the local storage has reached its full capacity. Historically, data

acquisition evolved in modular form, until monolithic silicon came along and reduced the size of the modules.
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The analysis and design of data acquisition systems is a discipline that has roots in the following subject

areas: signal theory, transducers, analog signal processing, noise, sampling theory, quantizing and encoding

theory, analog-to-digital conversion theory, analog and digital electronics, data communication, and systems

engineering. Cost, accuracy, bit resolution, speed of operation, on-board memory, power consumption,

stability of operation under various operating conditions, number of input channels and their ranges,

on-board space, supply voltage requirements, compatibility with existing bus interfaces, and the types of data

recording instruments involved are some of the prime factors that must be considered when designing or

buying a data acquisition system. Data acquisition systems are involved in a wide range of applications, such as

machine control, robot control, medical and analytical instrumentation, vibration analysis, spectral analysis,

correlation analysis, transient analysis, digital audio and video, seismic analysis, test equipment, machine

monitoring, and environmental monitoring.

6.2 The Analog and Digital Signal Interface

The data acquisition system must be designed to match the process being measured as well as the end-user

requirements. The nature of the process is mainly characterized by its speed and number of measuring points,

whereas the end-user requirement is mainly the flexibility in control. Certain processes require data

acquisition with no interruption where computers are used in controlling. On the other hand, there are cases

where the acquisition starts at a certain instance and continues for a definite period. In this case the acquisition

FIGURE 6.1 The block diagram of a data acquisition system.
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cycle is repeated in a periodic manner, and it can be controlled manually or by software. Controllers access

the process via the analog and digital interface submodules, which are sometimes called analog and digital

front ends.

Many applications require information capturing from more than one channel. The use of the analog MUX

in Figure 6.1 is to cater to multiple analog inputs. A detailed diagram of this input circuitry is shown in

Figure 6.2 and the functional description is as follows. When the MUX is addressed to select an input, say,

xi(t), the same address will be decoded by the decoding logic to generate another address, which is used in

addressing the programmable register. The programmable register contains further information regarding how

to handle xi(t). The outcome of the register is then used in subsequent tuning of the signal conditioner.

Complex programmable control tasks might include automatic gain selection for each channel, and hence the

contents of this register are known as the channel gain list. The MUX address generator could be programmed

in many ways, and one simple way is to scan the input channels in a cyclic fashion where the address can be

generated by means of a binary counter. Microprocessors are also used in addressing MUXs in applications

where complex channel selection tasks are involved. Multiplexers are available in integrated circuit form,

though relay MUXs are widely used because they minimize errors due to cross talk and bias currents. Relay

MUX modules are usually designed as plugged-in units and can be connected according to the requirements.

There are applications where the data acquisition cycle is triggered by the process itself. In this case an

analog or digital trigger signal is sent to the unit by the process, and a separate external trigger interface

circuitry is supplied. The internal controller assumes its duties once it has been triggered. It takes a finite time

to settle the signal xi(t) through the MUX up to the signal conditioner once it is addressed. Therefore, it is

possible to process xi�1(t) during the selection time of xi(t) for greater speeds. This function is known as

pipelining and will be illustrated in Section 6.3.

In some data acquisition applications the data acquisition module is a plugged-in card in a computer, which

is installed far away from the process. In such cases, transducers—the process sensing elements—are

connected to the data acquisition module using transmission lines or a radio link. In the latter case a complete

demodulating unit is required at the input. When transmission lines are used in the interconnection, care

must be taken to minimize electromagnetic interference since transmission lines pick up noise easily. In the

case of a single-ended transducer output configuration, a single wire is adequate for the signal transmission,

but a common ground must be established between the two ends as given in Figure 6.3(a). For the transducers

that have common mode outputs, a shielded twisted pair of wires will carry the signal. In this case, the shield,

the transducer’s encasing chassis, and the data acquisition module’s reference may be connected to the same

ground as shown in Figure 6.3(c). In high-speed applications the transmission line impedance should be

FIGURE 6.2 Analog input circuitry —the analog front end.
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matched with the output impedance of the transducer in order to prevent reflected traveling waves. If the

transducer output is not strong enough to transmit for a long distance, then it is best to amplify it before

transmission.

Transducers that produce digital outputs may be first connected to Schmitt trigger circuits for pulse shaping

purposes, and this can be considered as a form of digital signal conditioning. This becomes an essential

requirement when such inputs are connected through long transmission lines where the line capacitance

significantly affects the rising and falling edges of the incoming wave. Opto-isolators are sometimes used in

coupling when the voltage levels of the two sides of the transducer and the input circuit of the data acquisition

unit do not match each other. Special kinds of connectors are designed and widely used in interconnecting

transmission lines and data acquisition equipment in order to screen the signals from noise. Analog and digital

signal grounds should be kept separate where possible to prevent digital signals from flowing in the analog

ground circuit and including spurious analog signal noise.

6.3 Analog Signal Conditioning

The objective of an analog signal conditioner is to increase the quality of the transducer output to a desired

level before analog-to-digital conversion. A signal conditioner mainly consist of a preamplifier, which is either

an instrumentation amplifier or an operational amplifier and/or a filter. Coupling more and more circuits to

the data acquisition channel has to be done taking great care that these signal conditioning circuits do not add

more noise or unstable behavior to the data acquisition channel. General purpose signal conditioner modules

are commercially available for applications. Some details were given in the previous section about program-

mable signal conditioners and the discussion is continued here.

Figure 6.4 shows an instrumentation amplifier with programmable gain where the programs are stored in

the channel-gain list. The reason for having such sophistication is to match transducer outputs with the

maximum allowable input range of the ADC. This is very important in improving accuracy in cases where

transducer output voltage ranges are much smaller than the full-scale input range of an ADC, as is usually the

case. Indeed, this is equally true for signals that are larger than the full-scale range, and in such cases the

amplifier functions as an attenuator. Furthermore, the instrumentation amplifier converts a bipolar voltage

signal into a unipolar voltage with respect to the system ground. This action will reduce a major control task as

far as the ADC is concerned; that is, the ADC is always sent unipolar voltages, and hence it is possible to

maintain unchanged the mode control input which toggles the ADC between the unipolar and bipolar modes

of an ADC.

Values of the signal-to-noise ratio

SNR ¼
RMS signal

RMS noise

� �2

ð6:1Þ

FIGURE 6.3 (a) Connecting transducers to the data acquisition unit, (b) single-ended (unipolar) output, and

(c) common-mode (bipolar) output.
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at the input and the output of the instrumentation amplifier are related to its common-mode rejection ratio

(CMRR) given by

CMRR ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

SNRoutput

SNRinput

s

ð6:2Þ

Hence, higher values of SNRoutput indicate low noise power. Therefore, instrumentation amplifiers are

designed to have very high CMRR figures. The existence of noise will result in an error in the ADC output.

The allowable error is normally expressed as a fraction of the least significant bit (LSB) of the code such as

^(1/X)LSB. The amount of error voltage (Verror) corresponding to this figure can be found considering the bit

resolution (N) and the ADC’s maximum analog input voltage (Vmax) as given in

Verror ¼ 6
Vmax

2N � 1
·

1

X

� �

volts ð6:3Þ

Other specifications of amplifiers include the temperature dependence of the input offset voltage

(Voffset, mV/–C) and the current (Ioffset, pA/–C) associated with the operational amplifiers in use. High slew rate

(V/ms) amplifiers are recommended in high-speed applications. Generally, the higher the bandwidth, the

better the performance.

Cascading a filter with the preamplifier will result in better performance by eliminating noise. Active filters

are commonly used because of their compact design, but passive filters are still in use. The cut-off frequency, fc,

is one of the important performance indices of a filter that has to be designed to match the channel’s

requirements. The value fc is a function of the preamplifier bandwidth, its output SNR, and the output SNR of

the filter.

6.4 Sample-and-Hold and A/D Techniques in Data Acquisition

Sample-and-hold systems are primarily used to maintain a constant magnitude representing the input, across

the input of the ADC throughout a precisely known period of time. Such systems are called sample-and-hold

amplifiers (SHA), and their characteristics are crucial to the overall system accuracy and reliability of

digital data. The SHA is not an essential item in applications where the analog input does not vary more than

^(1/2)LSB of voltage. As the name indicates, a SHA operates in two different modes, which are digitally

FIGURE 6.4 Programmable gain instrumentation amplifier.
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controlled. In the sampling mode it acts as an input voltage follower, where, once it is triggered into its hold

mode, it should ideally retain the signal voltage level at the time of the trigger. When it is brought back into the

sampling mode, it instantly assumes the voltage level at the input.

Figure 6.5 shows the simplified circuit diagram of a monolithic sampling-and-hold circuit and the

associated switching waveforms. The differential amplifiers function as input and output buffers, and the

capacitor acts as the storage mechanism. When the mode control switch is at its on position, the two buffers

are connected in series and the capacitor follows the input with minimum time delay, if it is small. Now, if the

mode control is switched off, the feedback loop is interrupted, and the capacitor ideally retains its terminal

voltage until the next sampling signal occurs. Leakage and bias currents usually cause the capacitor to

discharge and or charge in the hold mode and the fluctuation of the hold voltage is called droop, which could

be minimized by having a large capacitor. Therefore, the capacitance has to be selected such that the circuit

performs well in both modes. Several time intervals are defined relative to the switching waveform of SHAs.

The acquisition time (ta) is the time taken by the device to reach its final value after the sample command has

been given. The setting time (ts) is the time taken to settle the output. The aperture uncertainty or aperture jitter

(tus) is the range of variation of the aperture time. It is important to note here that the sampling techniques

have a well-formulated theoretical background.

ADCs perform a key function in the data acquisition process. The application of various ADC technologies

in a data acquisition system depends mainly on the cost, bit resolution, and speed. Successive approximation

types are more common at high resolution at moderate speeds (,1 MHz). This kind of ADC offers the best

trade-offs among bit resolution, accuracy, speed, and cost. Flash converters, on the other hand, are best

suited for high-speed applications. Integrating-type converters are suitable for high-resolution and -accuracy

applications.

Many techniques have been developed in coupling sample-hold circuits and ADCs in data acquisition

systems because no single ADC or sampling technology is able to satisfy the ever increasing requirements of

data acquisition applications. Figure 6.6 illustrates the various sampling and ADC configurations used in

practice. It can be seen that the sampling frequencies are increased because of pipelining, parallelism, or

concurrent architecture. The increase in the sampling frequency improves the bandwidth, improving in turn

the SNR in the channel.

6.5 The Communication Interface of a Data Acquisition System

The communication interface is the module through which the acquired data are sent as well as other control

tasks are established between the data acquisition module and the host computer (Figure 6.1). There are

basically two different ways of establishing a data link between the two. One way is to use interrupts and the

other is through direct memory access (DMA). In the case of an interrupt-driven mode, an interrupt-request

signal is sent to the computer. Upon receiving it, the computer will first finish the execution of the current

instruction, suspend the next, and then send an interrupt-acknowledge signal asking the module to send data.

FIGURE 6.5 Sample-and-hold circuit diagram and switching waveforms.
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The operation is asynchronous since the sender sends data when it wants to do so. Getting the computer ready

to receive data is known as handshaking. In the case of a DMA transfer, the DMA controller is given the

starting address of the memory location where the data have to be written. The DMA controller asks the

computer to freeze its operations until it has finished writing data directly into the memory. The operation

does not need any waiting time and therefore it is fast.

Data acquisition systems are usually designed to couple with existing computer systems, and many

computer systems provide standard bus architecture, allowing users to connect various peripherals that are

compatible with its bus. Data acquisition systems are computer peripherals that follow the above description.

Since ADCs produce parallel data, many data acquisition systems provide outputs compatible with parallel

instrument buses such as the IEEE-488 (HP-IB or GPIB) or the VMEbus. Personal computer-based data

acquisition boards must have communication interfaces compatible with the computer bus in order to share

resources. The RS-232 standard communication interfaces are widely used in serial data transfer.

Communication interfaces for data acquisition systems are normally designed to satisfy the electrical,

mechanical, and protocol standards of the interface bus. Electrical standards include power supply

requirements, methods of supply, the data transfer rate (baud rate), the width of the address, and the line

terminating impedance. Mechanical requirements are the type, size, and the pin assignments of the

connectors. The data transfer protocol determines the procedure of data transfer between the two systems.

A definition of the timing and input–output philosophy—whether the transfer is in synchronous,

asynchronous, or quasi-synchronous mode and how errors are detected and handled—are important factors

to be considered.

FIGURE 6.6 Coupling techniques for SHA and ADC systems.
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6.6 Data Recording

It is important to provide storage media to cater to large streams of data being produced. Data acquisition

systems use graph paper, paper tapes, magnetic tapes, magnetic floppy disks, hard disks, or any combination

of these as their data recorders. Paper and magnetic tape storage schemes are known as sequential access

storage, whereas disk storage is called direct access storage. Tapes are cost-effective media compared to disk

drives and are still in wide use. In many laboratory situations it will be much more cost effective to network a

number of systems to a single, high-capacity hard drive, which acts as a file server. This adoption of digital

recording provides the ultimate in signal-to-noise ratio, accuracy of signal waveform and freedom from tape

transfer flutter. Data storage capacity, access time, transfer rate, and error rate are some of the performance

indices that are associated with these devices.

6.7 Software Aspects

So far the discussion has been mainly on the hardware side of the data acquisition system. The other most

important part is the software system associated with a data acquisition system, which can generally be divided

into two—the system software and the user-interface program. Both must be designed properly in order to

achieve the maximum use of the system. The system software is mainly written in assembly language with

many lines of code, whereas the user interface is built using a high-level software development tool. One main

part of system software is written to handle the input–output (I/O) operations. The use of assembly language

results in the fast execution of I/O commands. The I/O software has to deal with how the basic input–output

programming tasks such as interrupt and DMA handling are done. The other aspects of system software are to

perform the internal control tasks such as providing trigger pulses for the ADC and SHA, addressing the input

multiplexer, the accessing and editing of the channel-gain list, transferring data into the on-board memory,

and the addition of the clock/calendar information into data. Multitasking software programs are best suited

for many data acquisition systems because it may be necessary to read data from the data acquisition module

and display and print it at the same time. Menu-driven user interfaces are common and have a variety of

functions built into them.

Defining Terms

Analog-to-digital converter (ADC): A device that converts analog input voltage signals into digital

form.

Common-mode rejection ratio (CMRR): A measure of quality of an amplifier with differential inputs

and defined as the ratio between the common-mode gain and the differential gain.

Direct memory access (DMA): The process of sending data from an external device into the computer

memory with no involvement of the computer’s central processing unit.

Least significant bit (LSB): The 20th bit in a digital word.

Multiplexer (MUX): A combinational logic device with many input channels and usually just one

output. The function performed by the device is connecting one and only one input channel at a

time to the output. The required input channel is selected by sending the channel address to the

MUX.

Power supply unit (PSU): The one that generates the necessary voltage levels required by a system.

Sample-and-hold amplifier (SHA): A unity gain amplifier with a mode control switch where the input of

the amplifier is connected to a time-varying voltage signal. A trigger pulse at the mode control switch

causes it to read the input at the instance of the trigger and maintain that value until the next trigger

pulse.

Signal-to-noise ratio (SNR): The ratio between the signal power and the noise power at a point in the

signal traveling path.
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7.1 Digital IC Testing

Michaela Serra

In this chapter, an overview is provided of digital testing techniques, with reference to material containing

details of methodologies and algorithms. First, a general introduction of terminology and a taxonomy of

testing methods and fault models is presented. A discussion is presented of main approaches for the

generation of test patterns, both algorithmically and pseudo-randomly. The article concludes with an

introduction to signature analysis and to built-in self-tests.

Taxonomy and Definitions

Technology advances are causing the density of circuits to continually increase, while the number of I/O pins

remains small in comparison. This causes a serious escalation in complexity, and testing is becoming a major

cost burden (estimated to run as high as 40 percent of total production cost). Moreover, digital devices now

are ubiquitous in many portable electronics for safety-critical applications, such as biomedical devices.

Ensuring reliability through proper testing is crucial. Devices should be tested before and after packaging, after

mounting them on a board and periodically during operation. Different methods may be necessary for each

case, but it is important that defective units be detected as soon as possible in the production chain.

The ruleoften is often invoked: a detection cost C at the component level becomes a cost of 10 C at the board

level, a cost of 100 C for a system and as high as 1,000 C in the field. Testing is generally assumed to be the

means by which some qualities or attributes are determined to be fault-free or faulty. The main purpose of

testing is to detect malfunctions (in a go/no-go test), and to increase yield or a change in the production

process. Testing might also involve fault diagnosis to narrow down the actual location of the malfunction.

Evaluating the reliability and quality of a digital device is commonly called testing, yet it comprises distinct

phases usually kept separate both in the research community and in industrial practice.

1. Verification is the initial phase at design time, ensuring the match of specifications to functionality.

A digital device needs to be verified for correctness. Verification checks that all design rules are followed.

Generally, this type of functional testing checks that the circuit (a) implements what it is supposed to do

and (b) does not implement what it is not supposed to do. Both conditions are necessary. This type of
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evaluation uses a variety of techniques, including logic verification with hardware description languages,

full-functional simulations and the generation of functional test vectors. Verification techniques will not

be discussed.

2. Testing refers to the phase of ensuring that only defect-free production devices are shipped and of

detecting manufacturing faults. Testing methods must (a) be fast enough to be applied to large numbers

of devices during production; (b) take into consideration possible access to large, expensive external

tester machines; and (c) consider whether the implementation of built-in self-tests (BISTs) proves

advantageous. In BIST, the circuit is designed to include self-testing extra circuitry and can signal its

possible failure status directly during testing and in the field. This involves a certain amount of area

overhead, and trade-offs must be considered. The development of appropriate testing algorithms and

tool support can require a large engineering effort but it may need to be done only once per design. The

application speed of this method to many copies of the devices can be of great importance.

If many defects are found in the manufacturing process, the final yield is lowered. Estimates can be

derived for the relationship between manufacturing yield, testing effectiveness (fault coverage) and the

defect level remaining after testing [Williams, 1986]. Let Y denote the yield, a value between 1 (100

percent defect-free production) and 0 (all circuits faulty after testing), that is approximated by the ratio of

‘‘good devices’’ over ‘‘total devices.’’ Let FC be fault coverage, calculated as the percentage of detected

faults over the total number of detectable modeled faults (see below for fault models). The value of FC

ranges from 1 (all possible faults detected) to 0 (no useful testing done). The goal is to estimate the final

defect level (DL) after testing, defined as the probability of shipping a defective product. DL measures the

number of bad devices passing all tests; its value is expressed as number of defects per million (DPM). It

has been shown that tests with high fault coverage for certain fault models also have high defect coverage.

The empirical equation is DL ¼ 1 � Y 1�FCð Þ. Plotting this equation provides interesting and practical

results. For example, if a value of DPM¼ 300 (that is, DL¼ 0.0003¼ 0.03%) and a value of Y¼ 0.5 are

desired, then it must follow that FC ¼ 1 � log 1 � DLð Þ=log Y
� �

¼ 0:999567, which is 99.957 percent.

Conversely, with a similar desired yield Y¼ 0.5 and FC¼ 0.9, then DL ¼ 1 � 0:5 1�0:9ð Þ ¼ 0:06697, implying

that about 6.7 percent of shipped devices are defective. It can be concluded that high fault coverage must

be achieved to obtain an acceptable defect-level value, and that manufacturing yield must be continually

improved to maintain reliability for shipped products.

Most testing techniques focus only on combinational circuits. This is a realistic assumption, based on the

design of sequential circuits by partitioning the memory elements from the control functionality in

the combinational modules. This general approach is used as a method in design for testability (DFT) (see the

next chapter). DFT can encompass any design strategy to enhance a circuit’s testability. Scan design is the best-

known implementation for separating the latches from combinational modules. Some of the latches can be

reconfigured and used as either tester units or as input generator units. These are essential for built-in testing.

Figure 7.1 shows the taxonomy for testing methods. The main division is between online and offline

testing. In the former, each input/output word from a circuit can be tested during normal operation, normally

implying that the circuit has been augmented to contain an embedded coding scheme that provides for error

detection. In the latter, the circuit must suspend normal operation and enter a test mode, when the

appropriate testing method is applied. Offline testing can be performed either through external testing,

possibly by using a tester machine external to the circuitry, or through the use of BIST.

Testing MethodsEnter Test Mode During Normal Operations

On-LineOff-LineExternal
Built-In Self Test (BIST)

FIGURE 7.1 Taxonomy of testing methods.
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Fault Models

At the defect level, an enormous number of failures could be present. It is infeasible to analyze all of them.

Failures are grouped by their logical fault effect on the circuit’s functionality, and this leads to the construction

of logical fault models to test algorithms and evaluate fault coverage [Abramovici et al., 1992; Jha et al., 2003].

A fault denotes the physical failure mechanism; the fault effect denotes the logical effect of a fault on a signal-

carrying net; and an error is defined as the condition (or state) of a system containing a fault (deviation from

correct state). Faults also can be divided into classes according to their characteristics, as shown in Figure 7.2.

Here, only permanent faults, or faults in existence long enough to be observed at test time, are discussed. This

is different from temporary faults (transient or intermittent), which appear and disappear in short time

intervals, and delay faults, which affect the circuit’s operating speed.

The fundamental fault model is a stuck-at fault, implying the fault effect as a line segment stuck at logic 0 or

1 (stuck-at 0 or stuck-at 1). Testing may consider single or multiple stuck-at faults, and Figure 7.3 shows an

example for a simple circuit. The fault-free function is shown as Z, while the faulty output functions,

occurring as single stuck-at faults of either line a stuck-at 0 (a/0) or of line b stuck-at 1 (b/1), are shown as Z*.

A stuck-at fault requires a single input pattern to stimulate the fault by controlling the inputs and making the

faulty output observable. The goal of test-pattern generation algorithms is to find such settings for all

detectable faults. On the other hand, a delay fault defines the effect to be slow-to-rise (from 0 to 1) or slow-to-

fall (from 1 to 0). The final value may be correct, but it is outside the timing parameters that were expected. To

detect such faults, two patterns are applied as stimuli. The first pattern sets a line at a certain value, and the

second changes that value. This increases the complexity of a fault-detection algorithm.

Even considering only single stuck-at faults, not all possible faults need to be explicitly tested. Many have

the same fault effect and are indistinguishable. For example, an input stuck-at-0 fault for an AND gate has the

same logical effect as the output stuck-at-0, and it is necessary to test for only one fault. Fault collapsing is the

process of reducing the number of faults to be examined, using fault-equivalence classes based on fault effects.

Table 7.1 shows the main fault equivalence classes for gates.

Test-Pattern Generation

Test-pattern generation is the process of generating an appropriate (but minimal) subset of all input patterns,

stimulating the circuit inputs so that a desired percentage of detectable faults can be exercised and detected

[Abramovici et al., 1992; Jha et al., 2003]. The process can be divided into two phases: (1) derivation of a test

and (2) test application. For the former, one first must select appropriate circuit models (at the gate or

Faults

Permanent Transient IntermittentDelay

Stuck-at

FIGURE 7.2 Fault characteristics.
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g

Z

Z = x1 x2 + x2 x3

a/0: Z* = x2 x3
b/1: Z* = x1 + x3

FIGURE 7.3 Stuck-at faults.
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transistor level) and the models for faults. A test is then constructed so that the output signal from a faulty

circuit differs from that of a good circuit. This can be computationally expensive, but the process is performed

only once during the design stage. The generation of a test set can be obtained either by algorithmic methods

(with or without heuristics), or by pseudo-random methods. For the second phase, a test is subsequently

applied many times to each device and must be efficient both in space (for pattern storage requirements) and

in time. Often such a set is not minimal, but near minimality may be sufficient. The considerations in

evaluating a test set are (a) the time needed to construct a minimal test set; (b) the size of the test-pattern

generator, in terms of the software or hardware module used to stimulate the circuit tested; (c) the size of the

test set itself; (d) the time to load the test patterns; and (e) the equipment required (if external), or the BIST

overhead (see Figure 7.4).

Most algorithmic test-pattern generators are based on the concept of sensitized paths, through

controllability and observation. Given a line in a circuit, it is necessary to find a sensitized path to

stimulate a possible fault and carry its logical effect to an observable output. For example, to sensitize a path

passing through an AND gate, all other gate inputs must be set to logic 1 to permit the sensitized signal to

carry forward. Figure 7.5 summarizes the principles of constructing a test pattern for each fault through path

sensitization, which is not a full algorithm but underlies the overall logic. In Figure 7.5(a) possible input

patterns are found to test the fault online g/0. Line g must be set to 1 and a faulty signal is expected to be 0.

This leads to the notation g: 1/0. In forward propagation, line h must be set to 0 for the fault to become

observable at output Z: 1/0. In Figure 7.5(b), the second phase of backward propagation is shown, where

TABLE 7.1 Fault Equivalence

Gate Fault Equivalent to:

AND any input/0  ! output/0

OR any input/1  ! output/1

NAND any input/0  ! output/1

NOR any input/1  ! output/0

NOT input/0  ! output/1

input/1  ! output/0

Compare
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Source

Circuit
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Reference
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FIGURE 7.4 Test sets.
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possible controlling inputs are set. Lines a and d must be set to 1 to control line g being 1. This assigns

x1¼ x2¼ 1, forcing line f to be 0. This leaves x3 with a choice of either 0 or 1 to maintain h¼ 0. Two test

patterns are found: (x1 x2 x3)¼ {(1 1 0) or (1 1 1)}.

The best-known algorithms are the D-algorithms (precursors to others), PODEM and FAN. Many

algorithmic variations are used with heuristics and optimizations, often tailored to certain classes of devices

[Abramovici, 1992; Jha et al., 2003]. Major steps can be identified in most automatic test pattern generation

(ATPG) programs: (1) listing the signal on the line where a fault should be detected; (2) sensitizing the path

from that line to a primary output so that the fault can be observed; (3) determining the primary input

conditions needed to set the testing signal (using back propagation); and (4) repeating this procedure until all

detectable faults in a given fault set have been covered. Powerful heuristics speed the steps by helping with the

sequential selection of faults examined and by reducing the amount of back and forward propagation needed.

The process is summarized graphically in Figure 7.6.

Except for heuristics, algorithmic test pattern generation is computationally expensive and can lead to

numerous difficulties, especially in certain types of networks. Newer alternatives are based on pseudo-random

pattern generation [Bardell et al., 1987] and fault simulation. With this strategy, a large set of patterns is

generated pseudo-randomly with the help of an inexpensive hardware or software generator. Typical choices

for these are linear feedback shift registers (LFSR) and linear cellular automata registers (LCAR) (see examples

below). The pseudo-random set stimulates a circuit. Using a fault simulator, the number of faults covered by

this set can be evaluated. An algorithmic test-pattern generator is then applied to find coverage for the

remaining faults — hopefully, a small number — and the pseudo-random set is augmented. However, the

resulting set is large, and fault simulation is computationally expensive. Still, this method presents an

alternative for circuits where the application of deterministic algorithms for all faults is not feasible. Pseudo-

random pattern generation is the main alternative when BIST is introduced, because the overhead costs of

storing even a minimal test set would be impractical in circuit testing.

Output Response Analysis and Built-In Self-Test

Output response analysis uses methods focusing on the output stream, with the assumption that the circuit is

stimulated either by an exhaustive or a pseudo-random set of input combinations. When designing a circuit

with BIST, a decision must be made on how to check the correctness of the circuit’s responses [Bardell et al.,

1987]. It is not feasible to store all expected responses on a chip. A common solution is to reduce circuit

responses to relatively short sequences. This process is called data compaction or signature analysis, and the

short, compacted resulting sequence is called a signature. The normal configuration for data-compaction

testing is shown in Figure 7.7. The circuit is stimulated by an input pattern generator (pseudo-random or even

exhaustive if n , 20); the resulting long output vectors are compacted to a short signature of length k, where k

is usually 16 to 32 bits. The signature is compared to a known good value. The advantages of this method are

that (1) the testing can be done at circuit speed by the appropriate choice of the pseudo-random generator;

List all possible
stuck-at faults

Prune set with
fault equivalence

Use algorithm to
find input patterns

to detect a fault

Use algorithm to delete
from active fault set

all other faults covered
by input patterns

Reach minimal
test set

FIGURE 7.6 Process for test pattern generation.

# 2006 by Taylor & Francis Group, LLC



(2) there is no need to generate algorithmic test patterns; and (3) testing circuitry involves a very small area,

especially if the circuit has been designed using scan techniques (see the next chapter). The issues involve the

design of efficient input generators and compactors.

The main disadvantage of this method is the possibility of aliasing. When a short signature is formed, a

loss of information occurs. This can be caused by a faulty circuit producing the same signature as a fault-free

circuit. The design method for data compaction aims at minimizing the aliasing probability. Using the

compactors described below, the probability of aliasing has been theoretically proven to be 2�k, where k is

the length of the compactor and thus the length of the signature. The result is asymptotically independent of

the size and complexity of the circuit under test. For example, for k¼ 16, the probability of aliasing is

about 10�6. The empirical results show that, in practice, this method is even more effective. This is the

chosen methodology when BIST is required for its effectiveness, speed and small overhead area.

A secondary issue in data compaction is the determination of the expected ‘‘good’’ signature. The best

method is to use fault-free simulation for both the circuit and the compactor. The appropriate comparator

then can be built as part of the testing circuitry [Bardell et al., 1987; Abramovici, 1992; Jha et al., 2003].

The most important issues are in the choices of a pseudo-random generator and a compactor. Although no

‘‘perfect’’ compactor can be found, several have been shown to be effective. Several compaction techniques

have been researched. Counting techniques, including 1s count, syndrome testing, transition count and Walsh

spectra coefficients have been used. Other techniques are based on LFSRs and LCARs. Only these latter

methods are discussed in this article. LFSRs and LCARs are preferred for implementation of the input pattern

generators.

Pseudo-Random Pattern Generators

An autonomous LFSR (ALFSR) is a clocked synchronous shift register, augmented with appropriate feedback

taps and receiving no external input [Bardell et al., 1987]. This provides an example of a general, linear, finite-

state machine, where memory cells are simple D flip-flops and the next state operations are implemented only

by EXOR gates. Figure 7.8(a) shows an ALFSR of length k¼ 3. An ALFSR of length k can be described by a

polynomial with binary coefficients of degree k, where the nonzero coefficients of the polynomial denote the

positions of the respective feedback taps. In Figure 8(a), the high-order coefficient for x3 is 1, and there is a

feedback tap from the right-most cell s2 (reading from right to left); the coefficient for x2 is 0, and no feedback

tap exists after cell s1; however, taps are present from cell s0 and to the left-most stage, since x1 and x0 have

nonzero coefficients. Since this is an autonomous LFSR, there is no external input to the left-most cell.

The state of the ALFSR is denoted by the binary state of its cells. In Figure 7.8(a), the next state of each cell is

determined by the implementation provided by its polynomial and can be summarized as follows:

sþ0 ¼ s2; s
þ
1 ¼ s0 � s2 and sþ2 ¼ s1, where sþi denotes the next state of cell si at each clock cycle. If the ALFSR is

initialized in a nonzero state, it cycles through a sequence of states and eventually comes back to the initial

state. This follows the functionality of next-state rules implemented by its polynomial description. If the
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FIGURE 7.7 Data compaction.
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polynomial chosen to describe the ALFSR is primitive, the ALFSR of length k cycles through all possible 2k�1

nonzero states in a single cycle (see the theory of Galois fields for the definition of primitive).

These polynomials can be found from tables [Bardell et al., 1987].

By connecting the output of each cell to each input of a tested circuit, the ALFSR provides an ideal input

generator. It is inexpensive in its implementation and provides the stimuli in pseudo-random order.

An alternative to an ALFSR is an LCA, a one-dimensional array of two cell types: rule 150 and rule 90 cells

[Cattell et al., 1996]. Each cell is composed of a flip-flop that saves the current state of the cell and an EXOR

gate that computes the next cell state. A rule 150 cell computes its next state as the EXOR of its present state

and of the states of its two (left and right) neighbors, as in sþi ¼ si�1 � si � siþ1, while a rule 90 cell computes

its next state as the EXOR of the states of its two neighbors only, as in sþi ¼ si�1 � siþ1. In Figure 7.8(b), all

connections in an LCA are near-neighbor connections, saving routing area and delays. There are advantages of

using LCAs instead of ALFSRs: the localization of all connections, the ease of concatenation to obtain various

sizes and, most importantly, the concept that LCAs are better pseudo-random pattern generators when used in

autonomous mode. In that mode, they do not show the correlation of bits from the shifting of ALFSRs. The

better pattern distribution provided by LCA as input stimuli provides better detection for delay faults,

requiring a two-pattern stimuli.

As with ALFSRs, LCAs are described by a characteristic polynomial. Through the polynomial, any linear

finite state machine can be built either as an ALFSR or as an LCA. However, it is more difficult to derive the

corresponding LCA with a polynomial, and tables are now used. The main disadvantage of LCA is in the area

overhead costs absorbed by the extra EXOR gates needed for the implementation of the cell rules.

Data Compaction or Signature Analysis

If the left-most cell of an LFSR is connected to an external input, as shown in Figure 7.9, the LFSR can be used

as a data compactor [Bardell et al., 1987]. The underlying operation of such an LFSR is to compute

polynomial division over a finite field. The effectiveness of the signature analysis is based on this functionality,

with the fundamentals coming from the theory of cyclic codes. The divisor polynomial describes the LFSR

implementation. The binary input stream can represent the coefficients (high order first) of a dividend

polynomial. For example, if the input stream is 1001011 (bits are input left to right in time), the dividend

polynomial is represented as x6 þ x3 þ x þ 1. After seven clock cycles are performed for the input bits to have

entered the LFSR, the binary output stream exiting from the right denotes the quotient polynomial. The last

cell state in the LFSR denotes the remainder polynomial.

S0 S1 S2

x3 + x + 1

(a) ALFSR (b) LCA

15090 90 900 0

FIGURE 7.8 Autonomous linear generator.

S0 S1 S2

x4 + x + 1

S3From the circuit

FIGURE 7.9 LFSR as signature analyzer.
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In computing a signature for testing a circuit, the input stream to the LFSR, used as a compactor, is the

output stream from the circuit under test. At the end of the testing cycles, only the last LFSR state is examined

and considered to be the compacted signature of the circuit. In most cases, circuits have many outputs, and the

LFSR is converted into a multiple-input shift register (MISR). An MISR is constructed by adding EXOR gates

to the input of some or all the flip-flop cells; the circuit outputs are fed through these gates into the

compactor. The probability of aliasing for an MISR is the same as that for an LFSR; however, some errors are

missed due to cancellation. This occurs when an error in one output at time t is canceled by the EXOR

operation, with the error in another output at time t þ 1. Assuming equal probabilities for the different errors,

the probability of error cancellation has been shown to be 21–m–N, where m is the number of outputs

compacted and N is the length of the output streams.

Given that the normal signature length varies between k¼ 16 and k¼ 32, the probability of aliasing is

minimal and acceptable in practice. In MISR, the length of the compactor also depends on the number of

outputs tested. If the number of outputs is greater than the length of the MISR, algorithms or heuristics exist

to combine outputs with EXOR trees before feeding them to the compactor. If the number of outputs is much

smaller, choices can be evaluated. The amount of aliasing that occurs in a particular circuit can be computed

by full fault simulation by injecting each possible fault into a simulated circuit and computing the resulting

signature. Changes in aliasing can be performed by changing the polynomial that defines the compactor.

Primitive polynomials, essential for the generation of exhaustive input generators (see above), possess good

aliasing characteristics. All implementations of such linear finite-state compactors, be it LFSR or LCA, possess

the same aliasing properties.

Summary

Accessibility to internal dense circuitry is becoming a greater problem. It is essential that a designer consider

how a device will be tested and incorporate structures into the design to help that testing. Formal DFT

techniques provide testing access points. As test-pattern generation grows more prohibitively expensive,

probabilistic solutions based on data compaction and using fault simulation will become more widespread,

especially if they are supported by DFT techniques and can avoid the major expense of dedicated external

testers. Any chosen technique must be incorporated within the framework of a powerful CAD system that

provides semiautomatic analysis and feedback.

Defining Terms

Aliasing: This occurs if the faulty output produces the same signature as a fault-free output.

Built-in self-test (BIST): The inclusion of on-chip circuitry to provide testing.

Fault coverage: The percentage of detected faults over all possible detectable faults.

Fault simulation: An empirical method to determine how faults affect the operation of a circuit or how

much testing is required to obtain a desired fault coverage.

Linear feedback shift register (LFSR): A shift register formed by flip-flops and EXOR gates, chained

together with a synchronous clock, used either as an input pattern generator or as a signature analyzer.

MISR: Multiple-input LFSR.

Offline testing: A testing process carried out while the tested circuit is not in use.

Online testing: Concurrent testing to detect errors while the circuit is operating.

Pseudo-random pattern generator: This generates a binary pattern sequence where the patterns appear

to be random in the local sense but are deterministically repeatable.

Random testing: A testing process using a set of pseudo-randomly generated patterns.

Signature analysis/data compaction: A test where the output responses of a device over time are

compacted into a characteristic value called a signature, which is then compared to a known good

response.

Stuck-at fault: A fault model represented by a signal stuck at a fixed logic value (0 or 1).
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Test pattern (test vector): An input vector where the faulty output is different from the fault-free output

(the fault is stimulated and detected).
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Further Information

Books by Abramovici et al. [1992] and Jha et al. [2003] give the most comprehensive view of testing methods

and design for testability. More information on deterministic pattern generation also can be found in Fault

Tolerant Computing, edited by D.K. Pradhan, Englewood Cliffs, NJ: Prentice-Hall, 1986. For newer approaches

to random testing, the book by Bardell et al. [1987] contains basic information. The latest state-of-the-art

research is found mainly in proceedings of the IEEE International Test Conference.

7.2 Design for Test

Bulent I. Dervisoglu

Testing of electronic circuits, which has long been pursued as an activity that follows the design and

manufacture of (at least) the prototype product, has currently become a topic of up-front investigation and

commitment. Today, it is not uncommon to list the design for testability (DFT) features of a product among

the so-called functional requirements in the definition of a new product to be developed. Just how such a

major transformation has occurred can be understood by examining the testability problems faced by

manufacturing organizations and considering their impact on time to market (TTM).

The Testability Problem

The primary objective of testing digital circuits at chip, board, or system level is to detect the presence of

hardware failures induced by faults in the manufacturing processes or by operating stress or wearout

mechanisms. Furthermore, during manufacturing, a secondary but equally important objective is to accurately

determine which component or physical element (e.g., connecting wire) is faulty so that quick diagnosis/repair

of the product becomes possible. These objectives are necessary due to imperfections in the manufacturing

processes used in building digital electronic components/systems. All digital circuits must undergo appropriate

level testing to avoid shipping faulty components/systems to the customer. Analog circuits may have minimum

and maximum allowable input signal values (e.g., input voltage) as well as infinitely many values in between

these that the component has to be able to respond to. Testing of analog circuits is often achieved by checking

the circuit response at the specified upper and lower bounds as well as observing/quantifying the change of the

output response with varying input signal values. On the other hand, the behavior of a digital system is

characterized by discrete (as opposed to continuous) responses to discrete operating state/input signal

permutations such that testing of digital circuits may be achieved by checking their behavior under every

operating mode and input signal permutation. In principle this approach is valid. However, in practice, most
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digital circuits are too complex to be tested using such a brute force technique. Instead, test methods have been

developed to test digital circuits using only a fraction of all possible test conditions without sacrificing test

coverage. Here, test coverage is used to refer to the ratio of faults that can be detected to all faults which are taken

into consideration, expressed as a percentage. At the present time the most popular fault model is the so-called

stuck-at fault model that refers to individual nets being considered to be fault-free (i.e., good network) or

considered to be permanently stuck at either one of the logic 1 or logic 0 values. For example, if the device under

test (DUT) contains several components (or building blocks), where the sum of all input and output terminals

(nodes) of the components is k, there are said to be 2k possible stuck-at faults, corresponding to each of the

circuit nodes being permanently stuck at one of the two possible logic states. In general, a larger number of

possible stuck-at faults leads to increased difficulty of testing the digital circuit.

For the purpose of test pattern (i.e., input stimulus) generation it is often assumed that the circuit under test

(CUT) is either fault-free or it contains only one node which is permanently stuck at a particular logic state.

Thus, the most widely used fault model is the so-called single stuck-at fault model. Using this model each fault is

tested by applying a specific test pattern that, in a good circuit, drives the particular node to the logic state which

has the opposite value from the state of the fault assumed to be present in the faulty circuit. For example, to test

if node v is stuck at logic state x (denoted by v/x or v�x), a test pattern must be used that would cause node v to

be driven to the opposite of logic state x if the circuit is not faulty. Thus, the test pattern attempts to show that

node v is not stuck at x by driving the node to a value other than x, which for a two-valued digital circuit must be

the opposite of x (denoted by ,x). This leads to the requirement that to detect any stuck-at fault v/x, it is

necessary to be able to control the logic value at node v so that it can be set to ,v. If the signal value at node v can

be observed directly by connecting it to a test equipment, the particular fault v/x can be detected readily.

However, in most cases, node v may be an internal node, which is inaccessible for direct observation from

outside the component package. In that case, it is necessary to create a condition where the value of the signal on

an externally observable node, say node t, will be different for each of the two possible values that node v can take

on, that is, node t shall be driven to logic state y or ,y depending upon whether node v is at logic state x or ,x,

respectively. Note that x and y may represent the same or different logic states.

The external pins of a component are the only means of applying the stimuli and observing the behavior of

that component. During testing, a test pattern is used as the stimulus to detect the presence of a particular

fault by causing at least one output pin of the component to take on a different value depending upon whether

the targeted fault is present or not. Thus, a test pattern is used for controlling the circuit’s nodes so that the

presence of a fault on a circuit node can be observed on at least one of the circuit’s external pins. Solving the

dual problems of controllability and observability is the primary objective of all test methods. The logic-to-pin

ratio of a digital circuit is a relative measure of the ratio of possible faults in the circuit to the number of signal

pins (i.e., not including the constant power/ground pins) of that component. A large-value logic-to-pin ratio

implies that logic states of a large number of circuit nodes must be controlled using a small number of external

pins. As a result, conflicting requirements for controllability and observability become harder to satisfy, and

the circuit is considered to be more difficult to test.

Consider Figure 7.10, which depicts a single (hypothetical) integrated circuit (IC) component and shows its

internal circuitry which uses four NAND gates. The nodes of the circuit are numbered 1 through 12 and the

external pins of the component are labeled A, B, and C. To detect if node 7 is stuck at logic 0 (i.e., 7/0), a test

FIGURE 7.10 Example logic circuit with internal node 7 stuck at 0 (7/0).
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pattern must be found that sets node 7 (and hence, node 5) to the logic 1 state. This can be achieved by setting

either or both of the external pins A and B to the logic 0 state. Furthermore, to observe (or deduce) the value

of node 7 at the only externally visible circuit pin, C, it is necessary to create a condition where the logic state

of node 12 becomes dependent on the value of node 7. The only path from node 7 to node 12 passes through

node 10, and since node 10 is the output of a NAND gate the second input to that gate (i.e., node 6) must be

set to the logic 1 state by setting input pin A to the logic 1 state. Therefore, the only possible test pattern for 7/0

is A¼ 1 and B¼ 0. At this point, we must still continue the analysis to see if indeed node 12 will reflect the

value of node 7. With input terminals A and B set to logic 1 and logic 0, respectively, node 9 will be set to logic

0, which causes node 11 to become logic 1. With these settings, the value at node 12 will be determined by the

value at node 10 and the test pattern is valid. Table 7.2 shows the values of all circuit nodes when this test

pattern is applied to the circuit of Figure 7.10.

It should be evident from the simple example of a combinational circuit described above that test pattern

generation for digital circuits can be very difficult and involved. The problem becomes much more complex

when dealing with sequential circuits, where the internal state variables (i.e., bistable memory storage elements

such as latches and flip-flops) must be treated as pseudo-inputs and pseudo-outputs that must be controlled and

observed using the external pins of the component. In this case test patterns become test sequences that must

be applied in precise order, and outputs must be observed only at prescribed times. Thus, the testing of

sequential circuits is much harder to achieve compared to the testing of combinational circuits. Computer

programs, called automatic test pattern generation (ATPG) programs, have been developed for generating test

patterns for combinational or sequential circuits. By far, the generation of test patterns for combinational

circuits is better understood and automated than doing the same for sequential circuits.

Before discussing the various techniques that may be used to improve testability of digital circuits, it is

necessary to mention the related problem of determining test effectiveness. A typical digital system contains a

very large number of possible stuck-at faults. This and the logical complexity of the circuits make it

unacceptable to ‘‘guess’’ how effective the test patterns (or the diagnostic program) will be in detecting all

possible faults. This problem is often approached in a formal manner by using a class of test tool called a fault

simulator program. A fault simulator uses the given set of test patterns to simulate the given circuit first when

there are no faults assumed present (i.e., good circuit simulation). Next, the circuit is simulated with the same

set of test patterns, but this time the effects of each possible stuck-at fault are considered one at a time. For a

given test pattern, and given stuck-at-type fault, if the output of the good circuit simulation differs from the

output obtained during fault simulation, then the given fault will be detected by the given test pattern. This

way, it is possible to determine the percentage of all possible stuck-at faults that may be present in a digital

circuit which will be covered by the given set of test patterns.

Most ATPG programs operate by picking a possible fault from among the possible faults, generating a

specific test pattern that covers it, simulating the logic circuit with the newly generated test pattern to

determine which other faults are incidentally covered by the same pattern, and continuing the process until all

faults have been considered. Of the two related processes of test pattern generation and fault simulation, the

latter is by far the more time-consuming one.

A different approach is taken in some testability analysis tools whereby rather than determining which faults

are covered by a given test pattern, the analysis program assigns a numeric value to indicate the degree of

difficulty of controlling and observing the digital circuit’s nodes. This analysis, which can be done much more

quickly compared to performing fault simulation, should be done prior to attempting to generate the test

patterns for a circuit so that time will not be spent unnecessarily on digital circuits which are likely to present

difficulties for the ATPG/fault-simulation process to deal with.

TABLE 7.2 Test Pattern for Node 7/0 for the Circuit in Figure 7.9

A B 1 2 3 4 5 6 7 8 9 10 11 12 C

1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 good circuit

1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 with fault 7/0
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Design for Testability

Low-cost/high-volume manufacturing requires that product testability be considered up front since a product

which is inherently hard to test will cost both time and money to achieve a desired level of quality. There are

many steps that can be taken to improve the testability of digital circuits and systems. The following

subsections describe some of the techniques that can be used.

Ad-Hoc Techniques [Abramovici et al., 1990; Bardell et al., 1978]

Circuit/System Reset Requirements. A simple and straightforward mechanism for resetting a digital

circuit to a known state is an essential requirement for testability. It should be noted that the requirement is

not only for having the reset function provided but further that it should be simple to execute. For example,

applying a defined sequence of external signals to a circuit which must be synchronized with a free-running

clock signal would not be considered a simple reset mechanism. Instead, keeping an external signal at some

logic value for a minimum duration is a much more desirable approach. It is very desirable that the reset

function be asynchronous (i.e., not require system clock pulses to execute) since during power-up a circuit

may need to be reset even before free-running clock pulses can be started.

Clock Control Requirements. Another very important requirement for implementing DFT is the ability

to control the clocking of the internal logic of the digital circuit. If the external clock signal is gated with some

other signals such that it is necessary to determine how to set these other signals to their required values to

allow the externally applied clock pulse to reach the internal flip-flop clock terminals, then the ATPG program

has another level of constraints to resolve in generating the test patterns. Furthermore, some of these

additional requirements may pose difficulties in satisfying them during component and/or system testing.

Most ATPG programs assume that once the test pattern has been applied to the pins of the component, the

system’s response to that pattern can be captured by applying an external clock pulse which enables the

internal flip-flops to respond to the test pattern. Thus, the ATPG programs assume that the internal flip-flop

clock inputs are controlled directly from an external pin of the component. This very desirable characteristic is

often expressed by stating that externally applied clock pulses are not allowed to be gated by other signals before

these reach the clock terminals of the internal flip-flops. A side benefit of this design rule is that it prevents

glitches (i.e., undesirable pulses) which might be generated at the flip-flop clock terminals due to changing the

other inputs to the clock gating circuit while the clock pulse is present.

Managing ‘‘Unused’’ Inputs of Components. When designing digital systems from existing

components there may be inputs of those components that, for the current implementation, are not

needed. For example, if a two-input AND gate is needed to implement a logic circuit on a printed circuit

board, it may be possible to use one of the unused three-input AND gate elements from an IC package already

present on that board. In this case, the unused third input of that AND gate must be connected to the logic 1

level in order that a three-input AND function may be implemented using the other two inputs to that gate.

Thus, the unused input to the AND gate may be connected directly to the Vcc (i.e., power supply) signal.

Similarly, if a flip-flop contains unused preset or clear terminals, these may be tied off to their respective

deasserted states. In many cases printed circuit boards are tested using an in-circuit tester which uses a bed-of-

nails test fixture to make physical contact with selected nets on the board so that their values can be observed

or controlled by the tester. For the in-circuit tester to control the value of a net it has to backdrive the output

of the component which normally drives that net. Since IC components have limited output drive capabilities,

the in-circuit tester can overcome the electrical drive from that component and can force that net to a value

opposite the value which the driving IC is trying to achieve. By keeping such backdriving conditions to last

only a very short period, damage to the opposing IC component is prevented. However, if the net is driven not

by an IC but directly from the Vcc or ground (Gnd) signals, then the in-circuit tester may not be able to

overcome their drive. Furthermore, backdriving the Vcc or Gnd levels would prevent the other IC components

from being able to perform their normal functions. Instead, if the logic signals to such unused terminals are

applied using pull-up or pull-down resistors when connecting these to the Vcc or Gnd levels, respectively,

these signals may be controlled by the in-circuit tester. For example, this way it becomes possible to set/reset a
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flip-flop value by using the normally ‘‘unused’’ preset/clear terminal of that flip-flop. Note that if the flip-flop

contains both a preset and a clear input which are unused, these must be pulled up (or pulled down) through

separate resistors so that each can be controlled by the in-circuit tester independent of the other. This is

illustrated in Figure 7.11.

Synchronous versus Asynchronous Design Style. More than any other issue, discussions concerning

synchronous versus asynchronous design style create the most disagreements concerning design for

testability. Many logic designers who are experienced in using SSI and MSI IC chips have adapted a design

style where synchronous (e.g., clocked) and asynchronous (e.g., self-timed) designs are freely mixed together.

Using clocked flip-flops with asynchronous preset/clear inputs is a typical example of this design style.

Similarly, building latches out of, say, cross-coupled NAND gates and using these as state variables in

implementing finite-state machines used to be a very common technique. However, concerns about system

initialization and pattern generation have made this style undesirable for implementing DFT. Indeed, most of

the so-called structured design styles described below make it a requirement that all internal storage elements

be constructed from clocked flip-flops, and feedback loops in combinational circuits are broken with the

insertion of such flip-flops, along the feedback paths. Asynchronous circuits suffer from combinational

circuit hazards that are glitches created as a result of delay differences along circuit paths. Some hazards may

be prevented by constraining the manner (i.e., sequence) in which circuit inputs are allowed to be changed.

Whereas such constraints may be met during regular system operation, often test pattern generation

algorithms cannot take such constraints into account. Therefore, asynchronous logic may create severe

problems during testing.

Avoiding Redundant Logic. Technically speaking, redundancy is the only reason why a given stuck-at

fault might not be detectable by any test. For example, if an INVERTER function is implemented by tying both

inputs of a two-input NAND gate together, then a stuck-at 1 fault on either one of the inputs becomes

undetectable since the output signal can still be determined correctly by the remaining nonfaulty input signal.

This creates two problems. First, conventional ATPG programs might spend a lot of time trying to generate a

test pattern for such a fault before they declare the fault untestable. Second, the presence of an undetectable

fault can cause a detectable fault to become undetectable (it may also cause an undetectable fault to become

detectable). For example, consider a parity checking circuit in which an existing stuck-at fault may cause the

wrong parity to be generated, and the existence of a second fault may correct the parity and hence hide both

failures. The remedy for these situations is to try to avoid redundancy in the first place, and when this is not

possible provide additional circuit modes where the redundant circuits might be isolated. Alternately (or in

addition) it may be useful to provide additional test points, as described below.

FIGURE 7.11 Using pull-up resistor to tie off unused preset/clear inputs of flip-flops.
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Providing Test Points. A test point is an input or output signal to control or observe intermediate signals

in a logic circuit. For example, if triple redundancy has been used to implement a fault-tolerant circuit,

additional output signals might be provided so that signal values from the identical functional units become

individually observable, improving the testability of the overall circuit. Similarly, control signals might be

provided so that, during testing, outputs from some functional units may be forced into certain states which

allow easier observation of the outputs from other circuits. Recommended sites for inserting test points

include redundant nets, nets with large fan-outs, preset and clear inputs of flip-flops, nets that carry system

clock signals, (at least some of the) inputs to logic circuit gates with large number of inputs (i.e., large fan-in),

data and/or address lines of bus lines, as well as intermediate points in cascaded circuits (such as long ripple

counters, shift registers).

Logic Partitioning. Traditionally logic partitioning has been used as a strategy when the circuit is too

large/complex for the test generation tools to handle. Thus, its objective is to reduce the number of circuit

nodes that must be considered jointly in order to generate test patterns. The partitioning process identifies the

logic cones, which are sections of logic receiving inputs from multiple input sources and generating a single

output. Thus, a digital circuit would be broken into as many individual logic cones as there are individually

observable output signals. Obviously, the logic cones may (and often do) overlap with each other since they

share common input signals or intermediate signals generated from inside one partition and used in another

partition. This is illustrated in Figure 7.12(a), where two overlapping cones of logic are shown. Here, logic

cones O1 and O2 contain primary inputs I1, I2, I3, I4 and I3, I4, I5, I6, respectively. When either partition is

dependent on more inputs than what the ATPG tools or the tester can accommodate, it is possible to insert an

additional gate, controlled by a tester input in order to test each partition independently of the other. This is

illustrated in Figure 7.12(b), where an additional input pin It has been added such that with It set to logic 0 by

the tester, it is possible to test either partition without requiring to control shared inputs I3 or I4. Logic

partitioning has become more important as a result of increased use of pseudo-exhaustive testing (to be

described later).

FIGURE 7.12 (a) Logic partitioning with overlapping logic cones. (b) Adding an additional test point to reduce

dependence on primary inputs.

# 2006 by Taylor & Francis Group, LLC



Testing Embedded Memory Blocks. A major testability problem arises when a regular-structure

memory block such as random-access memory (RAM) or read-only memory (ROM) is embedded into a logic

circuit. This creates three problems:

1. Testing logic that is downstream from the RAM block (i.e., output of RAM block drives the downstream

logic) is difficult since this requires setting the test pattern at the RAM outputs. This problem is usually

solved by providing a bypass mode where data inputs to the RAM (or ROM) block are channeled

directly to the RAM (or ROM) outputs without (or in addition to) being stored inside the RAM block.

This way the RAM data outputs can be controlled by controlling the data inputs as desired.

2. Testing logic that is upstream from the RAM block (i.e., outputs from logic circuit are captured by the

RAM block) is difficult since the observation point is the RAM block. That is, it is necessary to access the

RAM block in order to observe the test results. This problem might be solved by improving the

observability of the RAM inputs and/or making the RAM outputs more easily observable as well as

providing the bypass capability. This way, inputs to the RAM might be bypassed directly to the RAM

outputs where they may be observed. This may require adding an observe-only register to capture the

RAM outputs.

3. Testing of the RAM block itself is difficult since controlling its inputs and observing its outputs require

manipulating the upstream and downstream logic circuit blocks, which may be difficult to achieve.

Solution to this problem involves providing adequate control of the RAM block inputs (data, address,

and read/write control) as well as providing observability of the RAM outputs. In effect, the embedded

RAM block can be made testable as if it was a stand-alone block where established memory test

algorithms can be applied [Breuer and Friedman, 1976].

Figure 7.13 illustrates how to improve testability of an embedded RAM structure.

Structured Techniques

An alternate approach to improving the testability of digital circuits is to carry out the circuit design by

following certain rules that, by construction, assure high testability of the resulting circuits. Since the main

problem in achieving testability of a digital circuit is achieving adequate controllability/observability of its

internal nodes, structured DFT approaches [Bardell and McAnney, 1978] follow strict design rules that are

aimed at achieving this goal. Furthermore, most structured DFT approaches require/recommend additional

design rules aimed at preventing incorrect circuit operation as a result of signal races and hazards.

Level-Sensitive Scan Design (LSSD). Level-sensitive scan design [Eichelberger and Williams, 1978]

imposes strict rules on clock signal usage and allows implementing sequential behavior to be implemented only

using the shift-register latch (SRL). In the first place, by not allowing any feedback involving combinational

circuit elements alone, the LSSD approach prevents timing failures that might be present in purely asynchronous

designs. Furthermore, rigid clocking rules are stated in order to prevent SRL data inputs from changing while the

clock pulse(s) is (are) transitioning. Hence, the digital circuit is separated into two sections: (1) a robust (i.e.,

level-sensitive) multi-input/multi-output combinational circuit and (2) a set of SRL elements with which

FIGURE 7.13 Providing testability in a design containing an embedded memory block.
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sequential behavior is implemented. In addition to their normal system interconnections each SRL is also

connected to its two neighboring SRLs to form a shift-register structure. The serial shift input and shift output

signals are labeled scan-in and scan-out, respectively, and treated as primary input/output terminals. Figure 7.14

shows an LSSD circuit model and the general form of an SRL. The significance of the shift-register (often

referred to as the scan-register) structure is that, during testing, it allows each SRL’s value to be individually

controllable and observable by shifting (i.e., scanning) a serial vector into/out of the scan register. Hence, the

SRLs can be treated as pseudo-input/output terminals, and the testing of the digital circuit is reduced to that of a

combinational circuit only. Figure 7.14(a) shows an LSSD circuit model, and the general form of an SRL is given

in Figure 7.14(b). A possible gate-level circuit implementation of an SRL is shown in Figure 7.14(c).

Among the most important LSSD design rules are the following:

1. All internal storage is implemented using SRLs. Each SRL operates such that the L1 latch accepts one or

the other of the system data-in or the scan-in data values depending upon whether the system clk or the

scan-in clk clock pulse is applied, respectively. The L2 latch accepts the L1 latch value when the scan-out

clk clock pulse is applied. The L1 and L2 latches are stable (i.e., cannot change) when the clocks are off.

2. The SRL clocks system clk, scan-in clk, and scan-out clk must be controlled from primary circuit

terminals and must be operated in nonoverlapping fashion. This eliminates dependency on minimum

circuit delay and assures hazard-free (i.e, level-sensitive) operation.

3. System data-out from SRL1 may feed the system data-in terminal of SRL2 only if the system clk which

feeds SRL1 does not overlap with the system clk which feeds SRL2. This rule prevents the data input to a

latch from changing while its clock signal is transitioning.

FIGURE 7.14 (a) LSSD circuit model. (b) SRL block diagram. (c) SRL logic diagram.
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4. All SRLs are interconnected into one or multiple shift registers by connecting the scan-out terminal from

one SRL to the scan-in terminal of the next one in series. If multiple shift registers are implemented,

each must be capable of being shifted simultaneously with the others and must have its own scan-in and

scan-out primary terminals.

Scan Path. The scan-path [Funatsu et al., 1975] approach can be seen as a generalization of the LSSD

approach since it follows the same principles but uses standard D-type flip-flops as the storage elements

instead of the SRLs. The scannable flip-flops can be implemented using dual-ported latches (similar to the L1

latch in the SRL) or using a multiplexor to select between the scan-in and system data-in signals to feed the D

input of a standard D-type flip-flop, as shown in Figure 7.15.

Scan/Set Logic. Scan/set [Stewart, 1977] is another form of implementing scan technology whereby the

sequential circuit structure is separated from its accompanying scan/set register. This is illustrated in

Figure 7.16. A variation on this scheme is the so-called shadow-register concept that has been implemented in

some off-the-shelf IC components [AMDI, 1987].

Random-Access Scan. Random-access scan [Ando, 1980] uses a technique akin to addressing locations

in a memory (e.g., RAM) block in order to make the states of all storage elements controllable and observable

from primary input/output terminals. Using this approach, each storage element is made individually

addressable (i.e., accessible) so that in order to control and/or observe the value of an individual storage

element it is not necessary to shift in/shift out all other storage elements as well. Figure 7.17(a) shows the

general model of a digital circuit employing the random-access scan approach. A possible gate-level circuit

implementation of an addressable latch is given in Figure 7.17(b).

FIGURE 7.15 Model of a digital circuit with scan path.

FIGURE 7.16 Generic scan/set circuit design.
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Using this approach, each storage element in the circuit is given a unique x/y address and the decoded

address signals are connected to the x/y address inputs of the latches. As seen in the circuit of Figure 7.17(b),

each latch can then be individually written into using the scan-in terminal or its output can be observed using

the scan-out terminal, provided that the pair of x/y address lines connected to the current latch are both

asserted (i.e., set to logic 1). Furthermore, whereas it is also necessary to apply the scan-in clk in order to write

into the latch, no clock is necessary to observe the latch output. This is a convenient feature that allows the

latch values to be selectively observable even while the regular system operations are being executed. The scan-

out values from the individual latches are combined together into a single AND gate and brought out to a

primary output terminal of the circuit. This arrangement works since for any given address only one of the

addressable latches will be selected and the scan-out from all other latches will be forced to the logic 1 state. On

the other hand, a disadvantage of this approach is that before addressing each latch its proper address must

first be applied to the circuit.

Boundary Scan. Unlike the other scan-based techniques described above, boundary scan [IEEE, 1990] is

intended primarily for testing the board-level interconnections among the IC components on a printed circuit

board (PCB). In effect, boundary scan is a special form of scan path that is implemented around every I/O pin

of an IC component in order to provide controllability and observability of the I/O pin values during testing.

FIGURE 7.17 (a) General model for digital circuit implementing random-access scan. (b) Logic diagram for addressable

latch.
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Test control signals provided by an on-chip controller are used to disable the boundary-scan cells during

regular system operation so that signal values can flow in/out of the IC component without interference from

the test circuits. During testing, output pin values can be controlled using values preloaded into the boundary-

scan register. Similarly, signal values received on the input pins can be captured into the boundary-scan

register and subsequently shifted out to be observed on an external tester.

Boundary scan has become an important tool in achieving design for testability following the adoption of

the IEEE 1149.1 Test Access Port and Boundary-Scan Architecture in 1990. The IEEE 1149.1 Standard defines a

mandatory four-pin (plus an optional fifth pin) test access port (TAP) for providing the interface between the

IC component and a digital tester. TAP signals comprise test data input (TDI), test data output (TDO), test

clock (TCK), and test mode select (TMS) plus an optional asynchronous tap reset (TRST*) signal. The overall

IEEE 1149.1 test architecture (see Figure 7.18) includes:

. The TAP

. The TAP controller

. The instruction register (IR)

. A group of mandatory and optional test data registers (TDRs)

The TAP controller is characterized by a 16-state finite-state machine (FSM) whose behavior is defined by

the IEEE 1149.1 Standard. State transitions of the TAP FSM are controlled by the TMS input line and the

dedicated test clock, TCK. Figure 7.19 shows the state-transition diagram for the TAP FSM.

A most important test data register defined by the IEEE 1149.1 Standard is the boundary-scan register that

has individual cells associated with each I/O pin of the IC component. Mandatory and permissible features of

the boundary-scan register cells are defined by the standard. In addition, a special single-bit register called the

BYPASS register has been provided to furnish a more efficient way to shift data through IC components when

multiple ICs are chained together by connecting the TDO output from one component to the TDI input of

another.

Another mandatory feature of the IEEE 1149.1 Standard is the instruction register and an associated list of

mandatory/permissible instructions that govern the behavior of the IC component during testing. The three

mandatory instructions are called SAMPLE/PRELOAD, BYPASS, and EXTEST. SAMPLE allows taking a

snapshot of the normal operation of the IC, whereas PRELOAD is used for shifting the captured values out while

new values are loaded into the boundary-scan register. BYPASS allows shortening the (electrical) distance

FIGURE 7.18 Architecture of IEEE 1149.1 boundary-scan standard.
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between the TDI and TDO pins by providing a single-bit register as a shortcut during scan operations involving

multiple IC components that are connected in series. EXTEST is the ‘‘workhorse’’ instruction that allows driving

the signal values on the component’s output pads from the boundary register while capturing the input values

into their respective cells in the boundary register. This is followed by shifting the captured values out (using the

TDO output) while simultaneously shifting in the new driving values (using the TDI input).

An alternative to using boundary scan is to use a ‘‘traditional’’ in-circuit tester that uses a special ‘‘bed-of-

nails’’ fixture. In this approach [Parker, 1987], every net on a PCB would be probed using a tester pin which

comes in physical contact with that net such that the current signal value of the net can be observed by the

tester. The tester can also be used to control the signal values of the individual nets by injecting appropriate

currents through the tester pins. However, since each net is already connected to an output pin of a

component on the PCB, this approach amounts to backdriving the output drivers of IC components and

therefore poses a potential risk of damage to the IC components. This approach is becoming more difficult

and/or costly to implement as the number of nets goes up and IC pin spacing is reduced. Furthermore, due to

fixturing difficulties, double-sided PCBs cannot be tested in this manner. The IEEE 1149.1 boundary-scan

standard [IEEE, 1990] helps solve these problems by providing convenient direct access to the I/O pins of an

IC component without requiring the traditional bed-of-nails fixture.

The ‘‘CrossCheck’’ Technique. The CrossCheck approach [Gheewala, 1989] uses cells with built-in test

points to observe critical signal values. The test points are connected to an underlining grid structure using

very small FETs called cross-point switches. An on-chip test control circuit generates the necessary signals to

address the individual probe lines and capture the results in a multi-input signature register (MISR). Test

patterns can be generated externally or by using an on-chip pattern generator, and the final test signature (i.e.,

contents of MISR) can be accessed using dedicated test pins, such as by providing an IEEE 1149.1 TAP (see

previous subsection). Figure 7.20 shows how the CrossCheck technique is implemented on an ASIC.

CrossCheck methodology provides a high degree of observability of the ASIC. Since it is not possible to

provide observability of all signals of a design, careful analysis must be performed to determine the most

effective points for inserting the cross-point switches. Similarly, the size of the grid structure for the probe lines

might be chosen to be design-dependent. However, in many instances it may be better to implement the probe

lines as part of the IC master slice in order to reduce the amount of customization to a minimum.

FIGURE 7.19 State-transition diagram for the TAP FSM.
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The benefit offered by the CrossCheck technique is due to the potential for the reduced number of test

patterns necessary to test an ASIC. This is due to the fact that as observability of internal nodes is increased it

becomes easier to generate efficient test patterns which can detect many faults simultaneously. Furthermore,

increased observability of internal nodes also improves diagnosability and may help determine the root cause

of a failure sooner. On the negative side, the CrossCheck technique does not help improve controllability of

internal nodes as achieved using scan-path techniques. Also, a primary disadvantage of the CrossCheck

methodology is area penalty due to routing channels that must be set aside for the grid structure.

Furthermore, added capacitance of the cross-point switches may affect performance, especially in high-speed

applications. In addition, since the technique offers very good observability but no controllability of the

internal nodes, it lacks the advantage offered by scan-based approaches for system debug and internal path-

delay testing [Dervisoglu and Stong, 1991]. However, recent advances have been made that improve the

controllability of internal nodes using the CrossCheck technique in gate-array ICs.

Built-in Self-Test (BIST) Techniques. The term built-in self-test (or BIST) is a generic name given to

any test technique in which an external test resource (e.g., component tester) is not needed to apply test

patterns and check a circuit’s response to those patterns. This implies that the test patterns must be preloaded

into the target device or be generated by the target device itself, in real time. For example, dedicating a section

of an IC component for implementing a ROM-based sequencer to apply prestored patterns to test another

section of that IC would be classified as a BIST technique. It is often more cost effective to generate the test

patterns in real time (i.e., during testing), but in general it is not possible to develop real-time test pattern

generation techniques that generate arbitrarily selected test patterns without additionally generating

unnecessary ones. Note that whereas storing the test patterns in a ROM might be acceptable in some cases,

FIGURE 7.20 (a) Cross-point switch implementation. (b) Overview of the CrossCheck technique.
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the size of ROM necessary to store the test patterns prevents this technique being used for implementing BIST

in large/complex digital circuits.

One approach to test vector generation is to ignore the specifics of the target circuit and enumerate all

possible permutations of inputs. Thus, using exhaustive testing, an n-input combinational logic cone would be

tested by checking its response to all 2**n permutations of input values. In this case, a binary counter can be

used as the test pattern generator (TPG). Other, more efficient counter forms (such as a maximal-length linear

feedback shift register, LFSR) may also be used as the TPG. An LFSR is a special kind of circular-shift register

where the serial data input is determined by an EXCLUSIVE-OR function of some of the bit positions. Bit

positions which are included in the feedback EXCLUSIVE-OR function are referred to as the tap positions. For

any given degree (i.e., number of bits) n of LFSR there is at least one set of tap positions that result in the LFSR

going through all nonzero n-bit permutations when it is started in any nonzero state. An LFSR that can go

through all 2**n states is called a maximal-length LFSR. Figure 7.21 shows a 3-bit maximal-length LFSR and

the state sequence that it produces. Exhaustive testing guarantees that all detectable faults which do not

transform a combinational circuit into a sequential circuit will be detected. Depending upon the clock

frequency, this approach becomes impractical to apply when the number of input variables goes up (usually

above 22) [McCluskey, 1984].

In cases where the number of test patterns necessary to achieve exhaustive testing is too large to be

applicable, a related technique, called pseudo-random testing, may be used. Pseudo-random testing achieves

many of the benefits of exhaustive testing but requires much fewer test patterns. This is achieved by generating

the test patterns in random fashion from among the 2**n possible patterns. However, the random generation

of test patterns is done using a deterministic algorithm that produces test patterns in repeatable sequence.

Before pseudo-random testing is chosen, it is necessary to examine the pseudo-random test resistance of the

circuit. For example, if 500,000 pseudo-random test patterns are applied to a 20-input AND gate, there is only

a 0.00004% probability that an essential test pattern (which sets all 20 inputs to logic 1) will be included

among them.

Yet another related technique is to use pseudo-exhaustive testing that aims at breaking a circuit into separate

partitions and testing each partition exhaustively [Barzilai et al., 1985; Dervisoglu, 1985; Bardell and McAnney,

1984]. Pseudo-exhaustive testing uses the same techniques used in exhaustive testing for testing the individual

partitions without generating test patterns that cover the entire circuit. Mathematical considerations for

pseudo-random/pseudo-exhaustive testing are too complex to describe here. The following example is

presented for illustration purposes only. Figure 7.22 depicts the combinational portion of a digital circuit

consisting of a number of overlapping logic cones that each produce a single output signal. All inputs are

assumed to be connected to scannable flip-flops (i.e., pseudo-inputs) or to primary input pins of the component

such that all inputs are 100% controllable either by controlling the values in the flip-flops or the primary input

pins. All flip-flops are assumed to be scannable and are arranged into a single scan path such that the logic cones

have n or fewer inputs all of which lie within k consecutive bits along the scan path. Outputs from the individual

logic cones connect (not shown here) to the inputs of flip-flops and/or primary output pins. Thus, all logic cone

outputs are also 100% observable. Now, assume that the serial output from the LFSR shown in Figure 7.21 is

connected as the ‘‘scan-in’’ input to the scan-path register shown in Figure 7.22. In this case any consecutive 3-bit

FIGURE 7.21 Three-bit maximal-length LFSR.
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partition of the scan-path register will go through the same state sequence as the LFSR itself, delayed from it by

the number of flip-flops between that partition and the output bit of the LFSR. For example, the third logic cone

that has inputs from flip-flops 4, 5, and 6 will see all input permutations except the all-zeros case which can be

applied separately as a special case. On the other hand, the first logic cone, with inputs from flip-flops 1, 2, and 4,

will not receive all possible nonzero permutations of three input variables. This is because the first logic cone

receives its three inputs from three nonconsecutive positions of the scan-path register. In this case only input

permutations that have even parity across positions 1, 2, and 4 will be received by the first logic cone.

Furthermore, the fourth logic cone that also receives inputs from three nonconsecutive bit positions which are 4

bits apart will receive all 3-bit nonzero input permutations. Analysis of which set of input permutations may be

generated across nonconsecutive n bits of a scan-path register which receives the outputs from an mth degree

(m > n) LFSR is based on linear dependence and is outside the scope of this section. However, the problem may

also be approached statistically by choosing the degree of the LFSR to be higher than n but smaller than k which

is the largest span of inputs to any logic cone. For example, in Figure 7.22 the degree of the LFSR may be chosen

as 4. In this case, the probability that a logic cone which has 4 or fewer inputs separated by k bits (here, k¼ 5)

may be calculated [Lempel and Cohn, 1985]. It should be noted that a logic cone may be tested in full even when

it has not received all 2**n input permutations.

BIST also requires ability to capture the test results without the need for an external tester. This is often

achieved by using a multi-input signature register (MISR) to capture individual test results and compress these

into an overall value called the test signature. Figure 7.23 shows a sample signature register that can compress

test results captured from four separate outputs into a single 4-bit signature. Provided that the test circuit has

deterministic behavior, a signature register can be started in a given starting state, and its final value may be

compared to a known good signature to determine pass/fail status. However, compressing test results into a

single overall signature may prevent proper fault detection if multiple erroneous outputs (which may result

from the same fault being detected on multiple test vectors) causes the final test signature to be correct even

though interim signatures were wrong. The probability that a faulty circuit signature will be the same as the

good circuit signature is known as aliasing probability. It can be shown that if the test length is sufficiently

long, aliasing probability diminishes toward 2�t, where t is the number of bits of the signature register

[Dervisoglu, 1985].

FIGURE 7.22 Overlapping logic cones connected to a common scan path.

FIGURE 7.23 A four-bit parallel-input signature register.
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The two constructs of LFSR and the MISR can be merged into a single multipurpose register in a built-in

logic block observation (BILBO) approach [Konemann et al., 1979] where each register can have multiple

modes of operation including the LFSR mode, MISR mode, SCAN mode, and NORMAL mode. In this case an

on-chip test-control circuit may be used to control the modes of operation of the BILBO registers so that, in

turn, each register is used as a test pattern generator or signature register to test a digital component.

Figure 7.24 illustrates how to use the BILBO scheme in a stepwise fashion to test a large digital circuit.

Path-Delay Testing

Path-delay testing is aimed at testing whether a given component/system operates at a specified performance

level that is often measured as the maximum system clock frequency. For example, the lower bound for the

maximum clock frequency which a microprocessor IC is specified that it can reach needs to be verified.

However, due to the very large number of different operations that a microprocessor can perform it is not

practical to verify correct behavior of such a component operating at maximum clock frequency for every

possible single operation or sequence of operations that it is designed to perform. On the other hand, it may

be possible to examine the structure of the design to discover its logic paths and verify that signals can be

propagated along these paths within a specified propagational delay time between the initiation of a signal

transition at the beginning of the path and the arrival of the final values at the end of that path. This is called

path-delay testing. A modern IC component with typical complexity would contain many hundreds of

FIGURE 7.24 Using BILBO technique to partition and test a large circuit. (a) Testing combinatorial circuit C1. (b) Testing

combinatorial circuit C2.
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thousands of logic paths, so that it becomes impractical to test all of them for at-speed operation. All

synchronous digital circuits are designed so that there is a fixed clock period resulting from the use-constant

frequency clock signals to time their operation. Obviously, the clock period constitutes an upper bound for the

propagational delay through any logic path, since otherwise clock pulses may arrive at the flip-flops while their

data input signals may still be transitioning. On the other hand, propagational delay through some logic paths

may be very close to this upper bound (i.e., clock period) value whereas others may have more slack in them.

It is therefore important to identify the critical paths and perform path-delay testing on these. Hence path-

delay testing can be broken into the two phases of critical-path selection and path-delay test pattern

generation.

Several different approaches can be used in identifying the critical paths, including:

1. Select sufficiently large number of paths selected at random from a list of all logic paths.

2. Calculate worst-case timing for all logic paths and select a certain percentage of the slowest paths.

3. First identify certain key nodes and then select paths that pass through those nodes using either of the

two approaches listed in (1) and (2) above.

The more challenging problem is to generate the test patterns to verify that none of the signal propagations

along a given logic path require longer than the clock-period time to complete. A path-delay test pattern is a

pair of patterns that generates the desired signal transition(s) and provides the sensitization of the signal paths

whereby the generated transition(s) is (are) sensitized through the combinational circuit to the input of a flip-

flop where it will be captured when the system clock is applied. For example, Figure 7.25 shows a

combinational circuit and identifies a specific signal path for which the path delay is to be measured. To

determine the appropriate path-delay test patterns, a dummy AND gate is first added to the circuit as shown.

An input to the AND gate is derived from the output of the combinational circuit through which the input

signal transition is to be propagated. This signal is used in its true or complemented form depending upon

whether the final value of the signal transition is a logic 1 or logic 0, respectively. Other inputs to the dummy

AND gate come from all remaining inputs of gates through which the desired signal transitions must flow. If

the desired signal transition is flowing through an AND or NAND gate, the remaining inputs of these gates are

also fed to the inputs of the dummy AND gate, whereas if the desired signal transitions flow through OR or

NOR gates, their remaining inputs are inverted and then connected to the inputs of the dummy AND gate.

The dummy AND gate is not actually implemented as part of the combinational logic but rather acts as

FIGURE 7.25 Circuit example to illustrate path-delay test pattern generation (all flip-flops are clocked using a common

clock signal that has not been shown).
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a convenient place to collect all the necessary conditions for sensitizing the transitions. For example, in the

example given above the first pattern requires input flip-flops A, B, and C all to be set to the logic 1 value in

order to sensitize a low-to-high transition at the D input, whereas the second test pattern requires A, B, and C

all to remain at logic 1 while D is changed from logic 0 to the logic 1 value. This way the transitions created on

input D will travel through the identified signal path to reach the destination flip-flop Z.

Path-delay test patterns become much easier to generate and also apply to a circuit if the circuit is designed

using scannable flip-flops that are additionally capable of storing two arbitrarily selected values in them. This

can be done in such a fashion that the initial value available at the flip-flop output will be replaced by the

second value when a first clock pulse is applied, and the flip-flop will revert to its normal mode of operation

before the second clock pulse is applied. This way the pair of test patterns that form a path-delay test are first

loaded into the flip-flops (using scan) and then two clock pulses are applied at speed. The final result captured

by the second clock pulse is then scanned out and examined to determine pass/fail status. It is also possible to

get an actual measurement of the path delays by repeating the same test over and over again while

systematically reducing the time distance between the two clock pulses to determine the minimum separation

of the two clock pulses required for proper operation.

Figure 7.26 shows a modified LSSD latch design [Malaiya and Narayanaswamy, 1983] that can be used to

enable path-delay testing as described above. Using this design, it is possible to load any two arbitrary test

vectors to the combinational circuit in rapid succession. First, test vector Q1, Q2,. . .,Qn would be scanned into

the L1 latches outputs by using clocks C3 and C2. Next, the test vector would be moved into the L2 latches by

applying a single C clock. This way the flip-flop outputs would be set to their initial values defined by Q1,

Q2,. . ., Qn. Following this, the second test vector Y1, Y2,. . .,Yn would be scanned into the L1 latches using clock

signals C3 and C2. Now applying the C clock causes the first test vector (Qi) to be replaced by the second test

vector (Yi), and if the C1 clock is applied next, the response of the combinational circuit will be captured in the

L1 latches. This way, the minimum delay between the clock signals C and C1 that is necessary to allow the

signals to propagate through the combinational circuit can be determined. Other flip-flop designs with built-

in features to support double-strobe testing are also possible [Dervisoglu and Stong, 1991].

FIGURE 7.26 Using a three-latch flip-flop design to enable path-delay testing.
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A different and more difficult-to-use approach for generating test patterns for path-delay measurement is to

perform scan-in to load the internal flip-flops with a special pattern that prior circuit analysis will have

determined will be transformed into the actually intended test pattern when the first functional clock pulse is

applied. The circuit analysis required to use this approach amounts to performing simulation in reverse time

flow to determine what state the device under test should be placed in (using scan) so that its next state

corresponds to the desired test pattern.

Future for Design for Test

Present-day trends for striving to achieve shorter time to market while at the same time meeting competitive

cost demands are going to continue into the foreseeable future. Design for testability is one of several areas

that manufacturers from IC components to complete systems are paying increased emphasis to in order to

meet their product goals. Twenty years ago some product managers considered testing as being necessary to

weed out the bad from the good but did not consider DFT to be adding value to a product. However, since

testing is essential, the value of DFT is seen in reducing the cost of an essential item. Hence DFT adds value to

a product at least by an amount equal to the savings in test costs that it brings about. Furthermore, DFT

improves time to market by making it possible to identify initial production problems at an earlier point in

time. For example, initial productions of high-performance ASIC components may contain flaws that prevent

their at-speed operation under certain circumstances. If these flaws are not discovered in a timely manner, they

may turn into ‘‘showstopper’’ issues causing serious delays in revenue shipments of products. Whereas no

‘‘guaranteed’’ solutions exist to prevent and/or find a solution for all types of problems, design for testability is

a rapidly maturing field of digital design.

Defining Terms

Boundary scan: A technique for applying scan design concepts to control/observe values of signal pins of

IC components by providing a dedicated boundary-scan register cell for each signal I/O pin.

Built-in self-test (BIST): Any technique for applying prestored or real-time-generated test cases to a

subcircuit, IC component, or system and computing an overall pass/fail signature without requiring

external test equipment.

Path-delay testing: Any one of several possible techniques to verify that signal transitions created by one

clock event will travel through a particular logic/path in a subcircuit, IC component, or system and will

reach their final steady-state values before a subsequent clock event.

Pseudo-random testing: A technique that uses a linear feedback shift register (LFSR) or similar structure

to generate binary test patterns with statistical distribution of values (0 and 1) across the bits; these

patterns are generated without considering the implementation structure of the circuit to which they

will be applied.

Scan design: A technique whereby storage elements (i.e., flip-flops) in an IC are connected in series to form

a shift-register structure that can be entered into a test mode to load/unload data values to/from the

individual flip-flops.
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8.1 Number Systems

Richard F. Tinder

Number systems provide the basis for conveying and quantifying information. Weather data, stocks,

pagination of books, weights and measures—these are just a few examples of the use of numbers that affect

our daily lives. For this purpose we find the decimal (or arabic) number system to be reliable and easy to

use. This system evolved presumably because early humans were equipped with a crude type of calculator,

their ten fingers. A number system that is appropriate for humans, however, may be intractable for use by a

machine such as a computer. Likewise, a number system appropriate for a machine may not be suitable for

human use.

Before concentrating on those number systems that are useful in computers, it will be helpful to review the

characteristics that are desirable in any number system. There are four important characteristics in all:

. Distinguishability of symbols

. Arithmetic operations capability

. Error control capability

. Tractability and speed

To one degree or another the decimal system of numbers satisfies these characteristics for hard-copy transfer

of information between humans. Roman numerals and binary are examples of number systems that do not

satisfy all four characteristics for human use. On the other hand, the binary number system is preferable for

use in digital computers. The reason is simply put: current digital electronic machines recognize only two
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identifiable states physically represented by a high voltage level and a low voltage level. These two physical

states are logically interpreted as the binary symbols 1 and 0.

A fifth desirable characteristic of a number system to be used in a computer should be that it have a

minimum number of easily identifiable states. The binary number system satisfies this condition. However,

the digital computer must still interface with humankind. This is done by converting the binary data to a

decimal and character-based form that can be readily understood by humans. A minimum number of

identifiable characters (say 1 and 0, or true and false) is not practical or desirable for direct human use. If

this is difficult to understand, imagine trying to complete a tax form in binary or in any number system

other than decimal. On the other hand, use of a computer for this purpose would not only be practical but,

in many cases, highly desirable.

Positional and Polynomial Representations

The positional form of a number is a set of side-by-side (juxtaposed) digits given generally in fixed-point

form as

MSD Radix Point LSD

Nr  = (an−1 . . . a3a2a1a0  .  a−1a−2a−3 . . . a−m)r

Integer Fraction

ð8:1Þ

where the radix (or base) r is the total number of digits in the number system and a is a digit in the set defined

for radix r. Here, the radix point separates n integer digits on the left from m fraction digits on the right.

Notice that an–1 is the most significant (highest-order) digit, called MSD, and that a�m is the least significant

(lowest-order) digit, denoted by LSD.

The value of the number in Equation (8.1) is given in polynomial form by

Nr ¼
X
n�1

i¼�m

air
i

¼ an�1rn�1 þ . . .þ a2r2 þ a1r1 þ a0r0

þa�1r�1 þ a�2r�2 þ . . .þ a�mr�m

 !

r

ð8:2Þ

where ai is the digit in the ith position with a weight ri.

Application of Equation (8.1) and Equation (8.2) follows directly. For the decimal system r ¼ 10, indicating

that there are 10 distinguishable characters recognized as decimal numerals 0; 1; 2; . . . ; r � 1ð¼ 9Þ. Examples

of the positional and polynomial representations for the decimal system are

N10 ¼ ðd3d2d1d0:d�1d�2d�3Þ10

¼ 3017:528

and

N10 ¼
X
n�1

i¼�3

di10i

¼ 3 � 103 þ 0 � 102 þ 1 � 101 þ 7 � 100 þ 5 � 10�1 þ 2 � 10�2 þ 8 � 10�3

¼ 3000þ 10þ 7þ 0:5þ 0:02þ 0:008
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where di is the decimal digit in the ith position. Exclusive of possible leading and trailing zeros, the MSD and

LSD for this number are 3 and 8, respectively. This number could have been written in a form such as

N10 ¼ 03017:52800 without altering its value but implying greater accuracy of the fraction portion.

Unsigned Binary Number System

Applying Equation (8.1) and Equation (8.2) to the binary system requires that r ¼ 2, indicating that there are

two distinguishable characters, typically 0 and (r � 1) ¼ 1, that are used. In positional representation these

characters (numbers) are called binary digits or bits. Examples of the positional and polynomial notations for a

binary number are

N2 = (bn−1 . . . b3b2b1b0 . b−1b−2b−3 . . . b−m)2

= 101101.1012

MSB LSB

and

N ¼
X
n�1

i¼�m

bi2
i

¼ 1 � 25 þ 0 � 24 þ 1 � 23 þ 1 � 22 þ 0 � 21 þ 1 � 20 þ 1 � 2�1 þ 0 � 2�2 þ 1 � 2�3

¼ 32þ 8þ 4þ 1þ 0:5þ 0:125

¼ 45:62510

where bi is the bit in the ith position. Thus, the bit positions are weighted . . ., 16, 8, 4, 2, 1, 1⁄2,
1⁄4,

1⁄8, . . . for any

number consisting of integer and fraction portions. Binary numbers so represented are sometimes referred to as

natural binary. In positional representation the bits on the extreme left and extreme right are called the MSB (most

significant bit) and LSB (least significant bit), respectively. Notice that by obtaining the value of a binary number a

conversion from binary to decimal has been performed. The subject of radix (base) conversion will be dealt with

more extensively later.

For reference purposes Table 8.1 provides the binary-to-decimal conversion for two-, three-, four-, five-,

and six-bit binary. The six-bit binary column is only halfway completed for brevity.

In the natural binary system the number of bits in a unit of data is commonly assigned a name. Examples

are:

. 4-data-bit unit: nibble (or half-byte)

. 8-data-bit unit: byte

. 16-data-bit unit: two bytes (or half-word)

. 32-data-bit unit: word (or four bytes)

. 64-data-bit unit: double-word, etc.

The word size for a computer is determined by the number of bits that can be manipulated and stored in

registers. The foregoing list of names would be applicable to a 32-bit computer.

Unsigned Binary-Coded Decimal, Hexadecimal,
and Octal Systems

While the binary system of numbers is most appropriate for use in computers, it has several disadvantages

when used by humans who have become accustomed to the decimal system. For example, binary machine

code is long, difficult to assimilate, and tedious to convert to decimal. However there exist simpler ways to
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represent binary numbers for conversion to decimal representation. Three examples, commonly used, are

natural binary-coded decimal (NBCD), binary-coded hexadecimal (BCH), and binary-coded octal (BCO).

These number systems are useful in applications where a digital device, such as a computer, must interface

with humans. The NBCD code representation is also useful in carrying out computer arithmetic.

The NBCD Representation

The BCD system as used here is actually an 8, 4, 2, 1 weighted code called natural BCD or NBCD. This

system uses patterns of four bits to represent each decimal position of a number and is one of several

such weighted BCD code systems. The NBCD code is converted to its decimal equivalent by polynomials of

the form

N10 ¼ b3 � 23 þ b2 � 22 þ b1 � 21 þ b0 � 20

¼ b3 � 8þ b2 � 4þ b1 � 2þ b0 � 1

for any b3b2b1b0 code integer. Thus, decimal 6 is represented as (0� 8)þ (1� 4)þ (1� 2)þ (0� 1), or 0110

in NBCD code. Like natural binary, NBCD code is also called ‘‘natural’’ because its bit positional weights are

derived from integer powers of 2n. Table 8.2 shows the NBCD bit patterns for decimal integers 0 through 9.

The NBCD code is currently the most widely used of the BCD codes. There are many excellent sources of

information on BCD codes. One, in particular, provides a fairly extensive coverage of both weighted and

unweighted BCD codes [Tinder, 1991].

Decimal numbers greater than 9 or less than 1 can be represented by the NBCD code if each digit is given in

that code and if the results are combined. For example, the number 63.98 is represented by (or converted to)

NBCD code as

6 3 � 9 8

63:9810 ¼ 0110 0011 � 1001 1000ÞNBCD

¼ 11100011:10011NBCD

TABLE 8.1 Binary-to-Decimal Conversion

Two-Bit

Binary

Decimal

Value

Three-Bit

Binary

Decimal

Value

Four-Bit

Binary

Decimal

Value

Five-Bit

Binary

Decimal

Value

Six-Bit

Binary

Decimal

Value

00 0 000 0 0000 0 10000 16 100000 32

01 1 001 1 0001 1 10001 17 100001 33

10 2 010 2 0010 2 10010 18 100010 34

11 3 011 3 0011 3 10011 19 100011 35

100 4 0100 4 10100 20 100100 36

101 5 0101 5 10101 21 100101 37

110 6 0110 6 10110 22 100110 38

111 7 0111 7 10111 23 100111 39

1000 8 11000 24 101000 40

1001 9 11001 25 101001 41

1010 10 11010 26 101010 42

1011 11 11011 27 101011 43

1100 12 11100 28 101100 44

1101 13 11101 29 101101 45

1110 14 11110 30 101110 46

1111 15 11111 31 101111 47

· ·

· ·

· ·

# 2006 by Taylor & Francis Group, LLC



Here, the code weights are 80, 40, 20, 10; 8, 4, 2, 1; 0.8, 0.4, 0.2, 0.1; and 0.08, 0.04, 0.02, 0.01 for the tens,

units, tenths, and hundredths digits, respectively, representing four decades. Conversion between binary and

NBCD requires conversion to decimal as an intermediate step. For example, to convert from NBCD to binary

requires that groups of four bits be selected in both directions from the radix point to form the decimal

number. If necessary, zeros are added to the leftmost or rightmost ends to complete the groups of four bits as

in the above example. Negative NBCD numbers can be represented either in sign-magnitude notation or 1’s or

2’s complement notation as discussed later.

Another BCD code that is used for number representation and manipulation is called excess 3 BCD (or XS3

NBCD, or simply XS3). XS3 is an example of a biased-weighted code (a bias of 3). This code is formed by

adding 00112 ( ¼ 310) to the NBCD bit patterns in Table 8.2. Thus, to convert XS3 to NBCD code, 0011 must

be subtracted from XS3 code. In four-bit quantities the XS3 code has the useful feature that when adding two

numbers together in XS3 notation a carry will result and yield the correct value any time a carry results in

decimal (i.e., when 9 is exceeded). This feature is not shared by either natural binary or NBCD addition.

The Hexadecimal and Octal Systems

The hexadecimal number system requires that r ¼ 16 in Equation (8.1) and Equation (8.2), indicating that

there are 16 distinguishable characters in the system. By convention, the permissible hexadecimal digits are 0,

1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F for decimals 0 through 15, respectively. Examples of the positional

and polynomial representations for a hexadecimal number are

N16 ¼ ðhn�1 . . . h3h2h1h0 : h�1h�2h�3 . . . h�mÞ16

¼ ðAF3:C8Þ16

with a decimal value of

N ¼
X
n�1

i ¼ �m

hi16i

¼ 10 � 162 þ 15 � 161 þ 3 � 160 þ 12 � 16�1 þ 8 � 16�2

¼ 2803:7812510

Here, it is seen that a hexadecimal number has been converted to decimal by using Equation (8.2).

The octal number system requires that r ¼ 8 in Equation (8.1) and Equation (8.2), indicating that there are

eight distinguishable characters in this system. The permissible octal digits are 0, 1, 2, 3, 4, 5, 6, and 7, as one

TABLE 8.2 NBCD Bit Patterns and Decimal Equivalent

NBCD

Bit Pattern Decimal

NBCD

Bit Pattern Decimal

0000 0 1000 8

0001 1 1001 9

0010 2 1010 NA

0011 3 1011 NA

0100 4 1100 NA

0101 5 1101 NA

0110 6 1110 NA

0111 7 1111 NA

NA ¼ not allowed.
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might expect. Examples of the application of Equation (8.1) and Equation (8.2) are

N8 ¼ ðon�1 . . . o3o2o1o0:o�1o�2o�3 . . . o�mÞ8
¼ 501:748

with a decimal value of

N¼
X
n�1

i¼�m

oi8
i

¼5� 82þ0� 81þ1� 80þ7� 8�1þ4� 8�2

¼321:937510

When the hexadecimal and octal number systems are used to represent bit patterns in binary, they are called

binary-coded hexadecimal (BCH) and binary-coded octal (BCO), respectively. These two number systems are

examples of binary-derived radices. Table 8.3 lists several selected examples showing the relationships between

BCH, BCO, binary, and decimal.

What emerges on close inspection of Table 8.3 is that each hexadecimal digit corresponds to four binary

digits and that each octal digit corresponds to three binary digits. The following example illustrates the

relationships between these number systems:

10110111111:110112 ¼ 0101
5

1011
B

1111
F

: 1101
D

1000
8

¼ 5BF:D816

¼ 010
2

110
6

111
7

111
7

: 110
6

110
6

¼ 2677:668

¼ 1471:8437510

To separate the binary digits into groups of four (for BCH) or groups of three (for BCO), counting must

begin from the radix point and continue outward in both directions. Then, where needed, zeros are added to

the leading and trailing ends of the binary representation to complete the MSDs and LSDs for the BCH and

BCO forms.

Conversion between Number Systems

It is not the intent of this section to cover all methods for radix (base) conversion. Rather, the plan is to

provide general approaches, separately applicable to the integer and fraction portions, followed by specific

examples.

TABLE 8.3 The BCH and BCO Number Systems

Binary BCH BCO Decimal Binary BCH BCO Decimal

0000 0 0 0 1010 A 12 10

0001 1 1 1 1011 B 13 11

0010 2 2 2 1100 C 14 12

0011 3 3 3 1101 D 15 13

0100 4 4 4 1110 E 16 14

0101 5 5 5 1111 F 17 15

0110 6 6 6 10000 10 20 16

0111 7 7 7 11011 1B 33 27

1000 8 10 8 110001 31 61 49

1001 9 11 9 1001110 4E 116 78
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Conversion of Integers

Since the polynomial form of Equation (8.2) is a geometrical progression, the integer portion can be

represented in nested radix form. In source radix s, the nested representation is

Ns ¼ ðan�1sn�1 þ an�2sn�2 þ . . .þ a1s1 þ a0s0Þs
¼ a0 þ sða1 þ sða2 þ . . .þ an�1ÞÞs

¼ a0 þ s
X
n�1

i¼1

ais
i�1

 ! ð8:3Þ

for digits ai having integer values from 0 to s� 1. The nested radix form not only suggests a conversion

process but also forms the basis for computerized conversion.

Consider that the number in Equation (8.3) is to be represented in nested radix r form

Nr ¼ b0 þ rðb1 þ rðb2 þ . . .þ bm�1ÞÞr

¼ b0 þ r
X
m�1

i¼1

bir
i�1

 !

ð8:4Þ

where, in general, m 6¼ n. Then, if Ns is divided by r, the results are of the form

Ns

r
¼ Qþ R

r
ð8:5Þ

where Q is the integer quotient rearranged as Q0 ¼ b1 þ rðb2 þ . . .þ bm�1Þr and R is the remainder R0 ¼ b0.

A second division by r yields Q0=r ¼ Q1 þ R1=r, where Q1 is arranged as Q1 ¼ b2 þ rðb3 þ . . .þ bm�1Þr
and R1 ¼ b1. Thus, by repeated division of the integer result Qi by r, the remainders yield

ðb0; b1; b2; . . . ; bm�1Þr in that order.

The conversion method just described, called the radix divide method, can be used to convert between any

two integers of different radices. However, the requirement is that the arithmetic required by Ns/r must be

carried out in source radix, s. Except for source radices 10 and 2, this poses a severe problem for humans.

Table 8.4 provides the recommended procedures for integer conversion. The radix divide method is suitable

for computer conversion providing, of course, that the computer is programmed to carry out the arithmetic in

different radices.

The integer conversion methods of Table 8.4 can be illustrated by the following simple examples:

Example 8.1 13910 ! N2

Example 8.2 100010112!N10. By positional weights,

N10 ¼ 128þ 8þ 2þ 1 ¼ 13910

N/r Q R

139/2 ¼ 69 1

69/2 ¼ 34 1

34/2 ¼ 17 0

17/2 ¼ 8 1

8/2 ¼ 4 0
4/2 ¼ 2 0
2/2 ¼ 1 0
1/2 ¼ 0 1 13910 ¼ 100010112
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Example 8.3 13910 ! N8

Example 8.4 100010112 ! NBCO

010

2

001

1

011

3

¼ 213BCO

Example 8.5 213BCO ! NBCH

213BCO ¼ 010

2

001

1

011

3

¼ 100010112 ¼ 1000

8

1011

B

¼ 8B16

Example 8.6 2138 ! N5

2138 ¼ 2 � 82 þ 1 � 81 þ 3 � 80 ¼ 13910

N/r Q R

139/5 ¼ 27 4
27/5 ¼ 5 2
5/5 ¼ 1 0
1/5 ¼ 0 1 2138 ¼ 10245

Check: 1 � 53 þ 2 � 51 þ 4 � 50 ¼ 125þ 10þ 4 ¼ 13910

TABLE 8.4 Summary of Recommended Methods for Integer Conversion

by Noncomputer Means

Integer

Conversion Conversion Method

N10 ! Nr Radix division by radix r using Equation (8.5)

Ns ! N10 Equation (8.2) or Equation (8.3)

NsÞs 6¼10 ! NrÞr 6¼10 N10 ! Nr by Equation (8.2) or (8.3)

N10 ! Nr radix division by r using Equation (8.5)

Special Cases for Binary Forms

N2 ! N10 Positional weighting

N2 ! NBCH Partition N2 into groups of four bits starting from radix point,

then apply Table 8.3

N2 ! NBCO Partition N2 into groups of three bits starting from radix point,

then apply Table 8.3

NBCH ! N2 Reverse of N2 ! NBCH

NBCO ! N2 Reverse of N2 ! NBCO

NBCH ! NBCO NBCH ! N2 ! NBCO

NBCO ! NBCH NBCO ! N2 ! NBCH

NNBCD ! NXS3 Add 00112( ¼ 310) to NNBCD

NXS3 ! NNBCD Subtract 00112 ( ¼ 310) from NNBCD

N/r Q R
139/8 ¼ 17 3
17/8 ¼ 2 1
2/8 ¼ 0 2 13910 ¼ 2138
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Conversion of Fractions

By extracting the fraction portion from Equation (8.2) one can write

:Ns ¼ ða�1s�1 þ a�2s�2 þ . . .þ a�ms�mÞs
¼ s�1ða�1 þ s�1ða�2 þ . . .þ a�mÞÞs

¼ s�1 a�1 þ
X
m

i¼2

a�is
�iþ1

 !

s

ð8:6Þ

in radix s. This is called the nested inverse radix form that provides the basis for computerized

conversion.

If the fraction in Equation (8.6) is represented in nested inverse radix r form, then

:Nr ¼ r�1ðb�1 þ r�1ðb�2 þ . . .þ b�pÞÞr

¼ r�1 b�1 þ
X

p

i¼2

b�1r�iþ1

 !

r

ð8:7Þ

for any fraction represented in radix r. Now, if Ns is multiplied by r, the result is of the form

:Ns � r ¼ I � F ð8:8Þ

where I is the product integer, I1 ¼ b�1, and F0 is the product fraction arranged as F1 ¼
r�1ðb�2 þ r�1ðb�3 þ . . .þ b�pÞÞr . By repeated multiplication by r of the remaining fractions Fi, the resulting

integers yield ðb�1; b�2; b�3; . . . b�mÞr , in that order.

The conversion just described is called the radix multiply method and is perfectly general for converting

between fractions of different radices. However, as in the case of integer conversion, the requirement is that the

arithmetic required by .Ns� r must be carried out in source radix, s. For noncomputer use by humans, this

procedure is usually limited to fraction conversions N10 ! Nr, where the source radix is 10 (decimal).

The recommended methods for converting between fractions of different radices are given in Table 8.5.

The radix multiply method is well suited to computer use.

For any integer of radix s, there exists an exact representation in radix r. This is not the case for a

fraction whose conversion is a geometrical progression that never converges. Terminating a fraction

conversion at n digits (to the right of the radix point) results in an error or uncertainty. In decimal, this

error is given by

E10 ¼ a�nr�n þ a�ðnþ1Þr
�ðnþ1Þ þ a�ðnþ2Þr

�ðnþ2Þ þ . . .

¼ r�n a�n þ
X
1

i¼1

a�ðnþiÞr
�ðnþiÞ

" #

r

where the quantity in brackets approaches the value of a�n þ 1. Therefore, terminating a fraction conversion

at n digits from the radix point results in an error with bounds

05E104r�nða�n þ 1Þ ð8:9Þ

in decimal. Equation (8.9) is useful in deciding when to terminate a fraction conversion.

Often, it is desirable to terminate a fraction conversion at (nþ 1) digits and then round off to n from the

radix point. A suitable method for rounding to n digits in radix r is: Perform the fraction conversion to (nþ 1)
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digits from the radix point, then drop the (nþ 1) digit if a�ðnþ1Þ5r=2, or add r�ðn�1Þ to the result if

a�ðnþ1Þ5r=2.

After rounding off to n digits, the maximum error becomes the difference between the rounded result and

the smallest value possible. By using Equation (8.9), this difference is

Emax ¼ r�nða�n þ 1Þ � r�nða�n þ a�ðnþ1Þ=rÞ
¼ r�nð1� a�ðnþ1Þ=rÞ

Then, by rounding to n digits, there results an error with bounds

05 E104r�nð1� a�ðnþ1Þ=rÞ ð8:10Þ

in decimal. If a�ðnþ1Þ5 r=2 and the (nþ 1) digit is dropped, the maximum error is r� n. Note that for

Ns ! N10 ! Nr type conversions, the bounds of errors aggregate.

The following examples illustrate the fraction conversion methods of Table 8.5.

Example 8.7 0:65410 ! N2 rounded to eight bits

.Ns� r F I

0.654� 2 0.308 1
0.308� 2 0.616 0
0.616� 2 0.232 1
0.232� 2 0.464 0
0.464� 2 0.928 0
0.928� 2 0.856 1 0.65410 ¼ 0.101001112

0.856� 2 0.712 1
0.712� 2 0.424 1
0.424� 2 0.848 0 Emax ¼ 2�8

TABLE 8.5 Summary of Recommended Methods for Fraction Conversion

by Noncomputer Means

Fraction Conversion Conversion Method

:N10 ! :Nr Radix multiplication by using Equation (8.8)

.Ns!.N10 Equation (8.2) or Equation (8.6)

:NrÞs 6¼10 ! :NrÞr 6¼10 Ns ! Ns10 by Equation (8.2) or Equation (8.6)

N10 ! Nr radix multiply by Equation (8.8)

Special Cases for Binary Forms

:N2 ! :NBCH Partition.N2 into groups of four bits from

radix point, then apply Table 8.3

:N2 ! :NBCO Partition.N2 into groups of three bits from

radix point, then apply Table 8.3

:NBCH ! :N2 Reverse of :N2 ! :NBCH

:NBCO ! :N2 Reverse of :N2 ! :NBCO

:NBCH ! :NBCO :NBCH ! :N2 ! :NBCO

:NBCO ! :NBCH :NBCO ! :N2 ! :NBCH
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Example 8.8 0:65410 ! N8 terminated at four digits

Example 8.9 0:51668 ! N2 rounded to eight bits and let 0:51668 ! N10 be rounded to four decimal

places.

0:51668 ¼ 5 � 8�1 þ 1 � 8�2 þ 6 � 8�3 þ 6 � 8�4

¼ 0:625000þ 0:015625þ 0:011718þ 0:001465

¼ 0:6538 rounded to four decimal places; E10410�4

.Ns � r F I

0.6538� 2 0.3076 1
0.3076� 2 0.6152 0
0.6152� 2 0.2304 1
0.2304� 2 0.4608 0
0.4608� 2 0.9216 0
0.9216� 2 0.8432 1
0.8432� 2 0.6864 1 0.51668 ¼ 0.101001112 (compare with Example 7)
0.6864� 2 0.3728 1
0.3728� 2 0.7457 0 E10 � 10�4 þ 2�8 ¼ 0:0040

Example 8.10 0:101001112 ! NBCH

0:101001112 ¼ 0:1010
A�

0111
7

¼ 0:A7BCH

Signed Binary Numbers

To this point only unsigned numbers (assumed to be positive) have been considered. However, both positive

and negative numbers must be used in computers. Several schemes have been devised for dealing with negative

numbers in computers, but only four are commonly used:

. Signed-magnitude representation

. Radix complement representation

. Diminished radix complement representation

. Excess (offset) code representation

Of these, the radix 2 complement representation, called 2’s complement, is the most widely used system in

computers.

Signed-Magnitude Representation

A signed-magnitude number consists of a magnitude together with a symbol indicating its sign (positive or

negative). Such a number lies in the decimal range of �ðrn�1 � 1Þ through þðrn�1 � 1Þ for n integer digits in

radix r. A fraction portion, if present, would consist of m digits to the right of the radix point.

.Ns� r F I

0.654� 8 0.232 5
0.232� 8 0.856 1 0.65410 ¼ 51668

0.856� 8 0.848 6 with error bounds
0.848� 8 0.784 6 05E104 7 � 8�4 ¼ 1:71 � 10�3
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The most common examples of signed-magnitude numbers are those in the decimal and binary systems.

The sign symbols for decimal (þ or � ) are well known. In binary it is established practice to use 0 ¼ plus

and 1 ¼ minus for the sign symbols and to place one of them in the MSB position for each number.

Examples in eight-bit binary are

Magnitude

+ 45.510 = 0 101101.12 + 010 = 0 00000002

Sign bit

Magnitude

−12310 = 1 11110112 −010 = 1 00000002

Sign bit

Although the sign-magnitude system is used in computers, it has two drawbacks. There is no unique zero, as

indicated by the examples, and addition and subtraction calculations require time-consuming decisions

regarding operation and sign as, for example, (� 7) minus (� 4). Even so, the sign-magnitude representation

is commonly used in floating-point number systems.

Radix Complement Representation

The radix complement of an n-digit number Nr is obtained by subtracting it from rn, that is rn � Nr . The operation

rn �Nr is equivalent to complementing the number and adding 1 to the LSD. Thus, the radix complement is

Nr þ 1LSD where Nr ¼ rn � 1� Nr is the complement of a number in radix r. Therefore, one may write

Radix complement of Nr ¼ rn � Nr

¼ Nr þ 1
ð8:11Þ

The complements Nr for digits in three commonly used number systems are given in Table 8.6. Notice that the

complement of a binary number is formed simply by replacing the 1’s with 0’s and 0’s with 1’s as required by

2n � 1� N2.

With reference to Table 8.6 and Equation (8.11), the following examples of radix complement

representation are offered.

Example 8.11 The 10’s complement of 47.83 is

N10 þ 1LSD ¼ 52:17

Example 8.12 The 2’s complement of 0101101.101 is

N2 þ 1LSB ¼ 1010010:011

Example 8.13 The 16’s complement of A3D is

N16 þ 1LSD ¼ 5C2þ 1 ¼ 5C3

The decimal value of Equation (8.11) can be found from the polynomial expression

Nradix compl:Þ10 ¼ �ðan�1rn�1Þ þ
X
n�2

i¼�m

air
i ð8:12Þ

for any n-digit number of radix r. In Equation (8.11) and Equation (8.12) the MSD is taken to be the position

of the sign symbol.
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2’s Complement Representation. The radix complement for binary is the 2’s complement

representation. In 2’s complement the MSB is the sign bit, 1 indicating a negative number or 0 if

positive. The decimal range of representation for n-integer bits in 2’s complement is from �ð2n�1Þ through

þð2n�1Þ. From Equation (8.11), the 2’s complement is formed by

N2Þ20s compl: ¼ 2n � N2 ¼ N2 þ 1 ð8:13Þ

A few examples in eight-bit binary are shown in Table 8.7. Notice that application of Equation (8.13) changes

the sign of the decimal value of a binary number (þ to � , and vice versa) and that only one zero

representation exists.

Application of Equation (8.12) gives the decimal value of any 2’s complement number, including those

containing a radix point. For example, the pattern N20s compl: ¼ 11010010:011 has a decimal value

N20s compl:Þ10 ¼ �1 � 27 þ 1 � 26 þ 1 � 24 þ 1 � 21 þ 1 � 2�2 þ 1 � 2�3

¼ �128þ 64þ 16þ 2þ 0:25þ 0:125

¼ �45:62510

The same result could have easily been obtained by first applying Equation (8.13) to N20s compl: followed by the

use of positional weighting to obtain the decimal value. Thus,

N20s compl: ¼ 00101101:101

¼ 32þ 8þ 5þ 0:5þ 0:125

¼ 45:62510

which is known to be a negative number, �45:62510.

Negative NBCD numbers can be represented in 2’s complement. The foregoing discussion on 2’s

complement applies to NBCD with consideration of how NBCD is formed from binary. As an example,

�59:2410 is represented by

0101 1001:0010 0100ÞNBCD ¼ 10100110:11011100Þ20s compl:NBCD

TABLE 8.7 Examples of Eight-Bit 2’s and 1’s

Complement Representations (MSB ¼ Sign Bit)

Decimal Value 2’s Complement 1’s Complement

� 128 10000000

� 127 10000001 10000000

� 31 11100001 11100000

� 16 11110000 11101111

� 15 11110001 11110000

� 3 11111101 11111100

� 0 00000000 11111111

þ 0 00000000 00000000

þ 3 00000011 00000011

þ 15 00001111 00001111

þ 16 00010000 00010000

þ 31 00011111 00011111

þ 127 01111111 01111111

þ 128

TABLE 8.6 Complements for Three

Commonly Used Number Systems

Complement (–Nr)

Digit Binary Decimal Hexadecimal

0 1 9 F

1 0 8 E

2 7 D

3 6 C

4 5 B

5 4 A

6 3 9

7 2 8

8 1 7

9 0 6

A 5

B 4

C 3

D 2

E 1

F 0
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In a similar fashion, negative NBCD numbers can also be represented in 1’s complement following the

procedure given in the next paragraph. Sign-magnitude representation of a negative NBCD number simply

requires the addition of a sign bit to the NBCD magnitude.

Diminished Radix Complement Representation

The diminished radix complement of a number is obtained by

NrÞdim :rad:compl: ¼ rn � Nr � 1

¼ Nr

ð8:14Þ

Thus, the complement of a number is its diminished radix complement. It also follows that the radix

complement of a number is the diminished radix complement with 1 added to the LSD as in Equation (8.13).

The range of representable numbers is �ðrn�1 � 1Þ through þðrn�1 � 1Þ for radix r.

In the binary and decimal number systems, the diminished radix complement representations are the 1’s

complement and 9’s complement, respectively. Examples of 1’s complement are shown in Table 8.7 for

comparison with those of 2’s complement. Notice that in 1’s complement there are two representations for

zero, one for þ 0 and the other for � 0. This fact limits the usefulness of the 1’s complement representation

for computer arithmetic.

Excess (Offset) Representations

Other systems for representing negative numbers use excess or offset codes. Here, a bias B is added to the true

value Nr of the number to produce an excess number Nxs given by

Nxs ¼ Nr þ B ð8:15Þ

When B ¼ rn�1 exceeds the usable bounds of negative numbers, Nxs remains positive. Perhaps the most

common use of the excess representation is in floating-point number systems—the subject of the next section.

Two examples are given below in eight-bit excess 128 code.

Example 8.14

Example 8.15

The representable decimal range for an excess 2n�1 number system is �2n�1 through þð2n�1 � 1Þ for an

n-bit binary number. However, if N2 þ B4 2n�1 � 1, overflow occurs and 2n�1 must be subtracted from

ðN2 þ BÞ to give the correct result in excess 2n�1 code.

Floating-Point Number Systems

In fixed-point representation [Equation (8.1)], the radix point is assumed to lie immediately to the right of the

integer field and at the left end of the fraction field. The fixed-point system is the most commonly used system

for representing bounded orders of magnitude. For example, with 32 bits a binary number could represent

� 4310 11010101 N2’s compl.

þ 12810 10000000 B

8510 01010101 Nxs ¼ � 4310 in excess 128 code

2710 00011011 N2’s compl.

þ 12810 10000000 B

15510 10011011 Nxs ¼ 2710 in excess 128 code
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decimal numbers with upper and lower bounds of the order of ^1010 and ^10� 10. However, for greatly

expanded bounds of representation, as in scientific notation, the floating-point representation is needed.

A floating-point number (FPN) in radix r has the general form

FPNÞr ¼ F � rE ð8:16Þ

where F is the fraction (or mantissa) and E is the exponent. Only fraction digits are used for the mantissa! Take,

for example, Planck’s constant h ¼ 6:625 � 10�34 J · s. This number can be represented many different ways in

floating point notation:

Planck’s constant h ¼ 0:625 � 10�33

¼ 0:625 � 10�32

¼ 0:00625 � 10�31

All three adhere to the form of Equation (8.16) and are, therefore, legitimate floating-point numbers in

radix 10. Thus, as the radix point floats to the left, the exponent is scaled accordingly. The first form for h is

said to be normalized because the MSD of F is nonzero, a means of standardizing the radix point position.

Notice that the sign for F is positive while that for E is negative.

In computers the FPN is represented in binary where the normalized representation requires that the MSB

for F always be 1. Thus, the range in F in decimal is

0:54 F 5 1

Also, the mantissa F is represented in sign-magnitude from. The normalized format for a 32-bit floating-point

number in binary, which agrees with the IEEE standard (IEEE, 1985), is shown in Figure 8.1. Here, the sign bit

(1 if negative or 0 if positive) is placed at bit position 0 to indicate the sign of the fraction. Notice that the

radix point is assumed to lie between bit positions 8 and 9 to separate the E bit-field from the F bit-field.

Before two FPNs can be added or subtracted in a computer, the E fields must be compared and equalized

and the F fields adjusted. The decision-making process can be simplified if all exponents are converted to

positive numbers by using the excess representation given by Equation (8.15). For a q-digit number in radix r,

the exponent in Equation (8.16) becomes

Exs ¼ Er þ rq�1 ð8:17Þ

where E is the actual exponent augmented by a bias of B ¼ rq�1. The range in the actual exponent Er is usually

taken to be

�ðrq�1 � 1Þ4Er4þ ðrq�1 � 1Þ

FIGURE 8.1 IEEE standard bit format for normalized floating-point representation.
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In the binary system, required for computer calculations, Equation (8.17) becomes

Exs ¼ E2 þ 2q�1 ð8:18Þ

with a range in actual exponent of �ð2q�1 � 1Þ4E24þ ð2q�1 � 1Þ. In 32-bit normalized floating-point

form, the exponent is stored in excess 128 code, while the number is stored in sign-magnitude form.

There still remains the question of how the number 0 is to be represented. If the F field is zero, then the

exponent can be anything and the number will be zero. However, in computers the normalized FPN2 limits F

to 0:54F51 since the MSB for F is always 1. The solution to this problem is to assume that the number is

zero if the exponent bits are all zero regardless of the value of the mantissa. This leads, however, to a

discontinuity in normalized FPN2 representation at the low end.

The IEEE standard for normalized FPN2 representation attempts to remove the problem just described.

The IEEE system stores the exponent in excess 2q�1 � 1 code and limits the decimal range of the actual

exponent to

�ð2q�1 � 2Þ4E24þ ð2q�1 � 1Þ

For 32-bit FPN representation, the exponent is stored in excess 127 code as indicated in Figure 8.1. Thus, the

allowable range of representable exponents is from

�12610 ¼ 000000012 through þ 12710 ¼ 111111102

This system reserves the use of all 0’s or all 1’s in the exponent for special conditions [IEEE, 1985; Pollard,

1990]. So that the F field magnitude can diminish linearly to zero when E ¼ �126, the MSB ¼ 1 for F is not

specifically represented in the IEEE system but is implied.

The following example attempts to illustrate the somewhat confusing aspects of the IEEE normalized

representation:

The number 101101.110012 is to be represented in IEEE normalized FPN2 notation.

101101:110012 ¼ :10110111001 � 26

Sign bit ¼ 0 ðpositiveÞ
Exs ¼ 6þ 127 ¼ 13310 ¼ 100001012

F ¼ 0110111001 . . . 00ðthe MSB ¼ 1 is not shownÞ

Therefore, the IEEE normalized FPN is

FPN2 ¼ 0 10000101 0110111001 . . . 0

Still other forms of FPNs are in use. In addition to the IEEE system, there are the IBM, Cray, and DEC systems

of representation, each with its own single- and double-precision forms.

Defining Terms

Binary: Representation of quantities in base 2.

Complement: Opposite form of a number system.

Floating point: Similar to ‘‘scientific notation’’ except used to represent binary operations in a computer.

Hexadecimal: Base 16 number system.

Mantissa: Fraction portion of a floating-point number.

Octal: Base 8 number system.

Radix: Base to which numbers are represented.
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8.2 Computer Arithmetic

S.N. Yanushkevich

Basics of Computing Arithmetic

State-of-the-art computing arithmetic includes:

Binary arithmetic (adders, multipliers, and dividers),

Residue number systems (RNS) arithmetic, and

Stochastic arithmetic.

There are also specialized arithmetics such as multi-valued logic, fuzzy logic, and threshold arithmetic for

neural networks.

Binary arithmetic is prevalent in today’s computers. The addition and subtraction of numbers using binary

arithmetic are fundamental operations performed frequently in any computation. The speed with which these

operations are performed has a strong impact on the overall performance of a computer. The speed of

arithmetic circuit is limited by the longest signal delay in the circuit, often referred to as the critical-path delay.

A commonly used indicator of the value of an arithmetic circuit is its price/performance ratio.

The computational reliability is a key problem of the new generation of computer systems based on

nanotechnology, and can be achieved in various ways, in particular by applying stochastic arithmetic and

residue techniques.

Number Representation and Addition of Binary Numbers

In the decimal system the sign of a number is indicated by a special symbol, ‘‘þ ’’ or ‘‘� ’’. In the binary

system the sign of a number is denoted by the left-most bit. Positive numbers are represented using the

positional number representation. Negative numbers can be represented in three different ways (Figure 8.2):

Sign-and-magnitude, such that the sign symbol distinguishes a number as being positive or negative. While

performing addition, the magnitudes are added, and the resulting sum is given the sign of the operands.

If the operands have opposite signs, it is necessary to subtract the smaller number from the larger one

(logic circuits that compare and subtract numbers are needed). The range of signed integers is

�ð2n�1 � 1Þ � x � 2n�1 � 1. In such a system zero has two representations: positive zero 00. . .0 and

negative zero 10. . .0.

1’s complement; in that system, the negative numbers are defined according to a subtraction operation

involving positive numbers. An n-bit negative number K is obtained by subtracting its equivalent

positive number P from 2n-1; i.e., K ¼ ð2n � 1Þ � P. An advantage of 1’s complement representation is
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that a negative number is generated by complementing all bits of the corresponding positive number.

The addition of 1’s complement numbers may require a correction, so that must be performed, and the

time needed to add two 1’s complement numbers may be twice as long as the time needed to add two

unsigned numbers.

2’s complement; in this system, the negative numbers are defined according to a subtraction operation

involving positive numbers. An n-bit negative number K is obtained by subtracting its equivalent

positive number P from 2n; i.e., K ¼ 2n� P. An advantage of 2’s complement representation is that

when the numbers are added, the result is always correct. If there is a carry-out from the sign-bit

position, it is simply ignored.

The technique of performing a subtraction operation by addition of a complement of the subtrahend can be

generalized for the decimal number system.

Residue Number Systems

The hardware implementation of an arithmetic algorithm is largely affected by the choice of a specific

numbering system. The attractive properties of RNS include carry-free, fault isolating and modular

characteristics; these are widely used particularly in high-speed digital signal processing. The most attractive

property of RNS is that there is no carry propagation inside the set. In an RNS-based system conversion

procedures, from conventional binary representation to residue format and vice versa, are used.

In RNS an integer is represented as a set of residues with respect to a set of relatively prime integers called

moduli. An RNS is defined in terms of a set of relatively prime moduli {r1, r2,. . .,rs} where the greatest common

FIGURE 8.2 Examples of representation and addition of binary numbers: unsigned, sign-and-magnitude, 1’s and 2’s

complemented.
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divisor is equal to 1 for each pair of the moduli. The set of integers {r1, r2,. . .,rs} is called a complete residue

system modulo m if

1. ri 6¼ rj (mod m) whenever i 6¼ j, and

2. for each integer n there corresponds an ri such that n ¼ ri (mod m).

Definitions. If a and b are integers and m is a natural number, the statement a� b (mod m) (a is congruent

to b modulo m) means that the difference, a � b, is exactly divisible by the positive integer m. If a and b are two

integers and a� b (mod m), then b is a residue of a modulo m.

If s different integers {r1, r2,. . .,rs} form a complete residue system modulo m, then s ¼ m. For example, the

sets {1, 2, 3}, {� 1, 0, 1}, and {1, 7, 9} are all complete residue systems modulo 3. The set {0, 1, 2, 3, 4, 5} is a

complete residue system modulo 6. Note this set can be reduced to {1, 5}.

Properties. The following properties are useful in design of modular arithmetic circuits.

Property of addition: If a� b (mod m) and c� d (mod m), then aþ c � bþ d (mod m) and a� c� b� d

(mod m).

The first property of multiplication: If a� b (mod m) and c� d (mod m), then ac� bd (mod m).

Note that properties of addition and multiplication of two congruences can be extended to an arbitrary

number of congruences with the same modulus.

The second property of multiplication (squaring): If a� b (mod m), then an� bn (mod m) for every positive

integer n.

The transitive property: If a� b (mod m) and b� c (mod m), then a� c (mod m).

The proof of the above properties is omitted. A simple way of proving properties of congruences is to write

the congruence a� b (mod m) as the equality a ¼ bþ km, where k is some integer.

Addition, Subtraction, Multiplication, and Division. It follows that two or more congruences may

be added, subtracted, and multiplied provided the same modulus is used throughout; i.e., congruences behave

like ordinary equations in algebra. However, the division of congruences is based on several specific rules,

which derive from the property that it is not always possible to divide both sides of a congruence by the same

integer and obtain a true congruence with the same modulus. For example, it does not follow from 76� 28

(mod 8) that 76/4 is congruent to 28/4 modulo 8.

While in ordinary arithmetic there is an infinite number of integers 0, 1, 2,. . ., in the modular arithmetic

there is essentially only a finite number of integers (Figure 8.3). The operation of division is defined as

solution x� b=a (mod m) of the congruence ax� b (mod m). For example, 13/8 (mod 9) means the solution

x of 8x� 13 (mod 9), which may be written as �x � 13 or x��13 ¼ �4� 5 (mod 9). Thus, 13=9� 5.

Any operation consisting of integers or fractions in ordinary arithmetic will remain true in modular

arithmetic. For example, calculate

11 � 3

2
� 2

3

� �

¼ 11 � 9� 4

6
¼ 55

6

In modular arithmetic (mod 7) the fraction 3/2 means the solution of 2x � 3 (mod 7) or x ¼ 5, since 10 � 3

(mod 7), and 2/3 means the solution of 3x � 2 (mod 7) or x ¼ 3, since 9 � 2 (mod 7). The above operation

becomes

4 � ð5� 3Þ ¼ 4 � 2 ¼ 8 � 1 ðmod 7Þ

On the other hand, 55/6 means the solution of 6x ¼ 55 (mod 7) or 6x � 6 or x � 1, which is the same answer

as before.
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The choice of moduli sets and the conversion of the residue to binary numbers are important issues to

residue arithmetic. The RNS based on the set moduli f2n � 1; 2n; 2n þ 1g is popular in digital signal

processing. These converters are using 2n-bit or n-bit adders.

Binary Adders

The operands of addition are the addend and augend. The addend is added to the augend to form the sum. In

most arithmetic circuits the augmented operand (the augend) is replaced by the sum, whereas the addend is

unchanged. High speed adders are not only for addition but also for subtraction, multiplication, and division.

The speed of a digital processor depends heavily on the speed of adders. The adders add vectors of bits, and the

principal problem is to speed up the carry signal.

An n-bit binary adder is a combinational circuit that has two n-bit inputs A ¼ an�1; . . . ; a0 and

B ¼ bn�1; . . . ; b0 representing the operands A and B, respectively, and n-bit output S ¼ sn�1; . . . ; s0, and

performs binary addition of the input operands. Additional input and output signals, carry-in Ci

and carry-out Ciþ 1 are used to implement module-based architecture—i.e., the design of larger adders.

Full-Adder

A logic network that performs addition at a single bit position is the generic cell used not only to perform

addition but also arithmetic multiplication division and filtering operations.

The truth table for this network (1-bit adder) is given in Figure 8.4(a). Such a network is referred to as a

binary full-adder (FA). The optimized functions of the full adder outputs, sum Si and Ciþ 1, are illustrated in

Figure 8.4(b). The OR and two-level AND-OR combination circuits to implement Si and Ciþ 1,

correspondingly, are shown in Figure 8.4(c), and an alternative circuit formed of two half-adders (HAs),

the subcircuits that compute pi and gi, is given in Figure 8.4(d).

Figure 8.5 illustrates the reduced ordered binary decision diagram (ROBDD), a graph-based representation of

the two-output function of the full adder. In this graph, Shannon expansion (S) is used to represent switching

functions si and ci by decision diagrams. Then, the nodes of the minimized decision diagrams, ROBDD, are

represented by multiplexers (MUX), so that a multiplexer-based full adder is built [Figure 8.5(b)].

FIGURE 8.3 Examples of addition, subtraction, multiplication, and division in residue number system, mod 8.
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FIGURE 8.4 Full-adder: the truth table (a), the formal description (b), the logic network over library of AND, OR and

EXOR gates (c) and the half-adder (HA) based design (d).

FIGURE 8.5 Multiplexer-based synthesis of full adder using Shannon decision diagrams of functions sum si (a) and

carry ci (b).
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Ripple-Carry Adder

The ripple-carry adder is a multilevel network designed by the connection of full-adders (Figure 8.6). For the

multilevel adder the total time required is calculated as the delay from carry-in Ci to carry-out Ciþ 1.

Depending on the position at which a carry signal has been generated, the propagation time can be variable.

In the best case, when there is no carry generation, the addition time will only take into account the time to

propagate the carry signal. With a ripple-carry adder, if the input bits Ai and Bi are different for all positions i,

then the carry signal is propagated at all positions (thus never generated) and the addition is completed when

the carry signal has propagated through the whole adder. In this case the ripple-carry adder is as slow as it is

large. Actually, ripple-carry adders are fast only for some configurations of the input words where carry signals

are generated at some positions. They can be divided into blocks where a special circuit detects quickly if all

the bits to be added are different. These carry-skip adders take advantage both of the generation or the

propagation of the carry signal.

Carry-Lookahead Adder

A nonoptimized 4 bit adder can be made by the use of the generic 1-bit adder cell connected one to the other

(ripple-carry adder). In this case the sum resulting at each stage need to wait for the incoming carry signal to

perform the sum operation. The carry propagation can be sped up in two ways. The first and most obvious

way is to use a faster logic circuit technology. The second way is to generate carries by means of forecasting

logic that does not rely on the carry signal being rippled from stage to stage of the adder. This, a faster

alternative to the carry-ripple adder, can be obtained at the cost of more gates with a larger number of inputs.

To reduce the delay, the carry-propagation path is broken so that a compromise among speed and cost is

obtained by performing addition as a two-step process. First, the values of all carries into the full-adder

modules are determined, and then simultaneously all result bits are computed (Figure 8.7). This adder is called

a carry-lookahead adder. Formally, it is possible to express a carry as a function of all the preceding low order

carries by using the recursivity of the carry function.

A carry generator determines the values of all intermediate carries before the corresponding sum bits are

computed. A sum generator uses precomputed carriers to determine the value of the sum bits.

The cost of addition of two numbers of m and n digits is Oðminfm; ngÞ.

FIGURE 8.6 Ripple-carry 4-bit adder.

FIGURE 8.7 Carry-lookahead adder.
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Multipliers

Combinational multipliers for positive integers are used in floating-point processors and signal processing

applications. An n�m-bit combinational multiplier is a combinational circuit that produces the multi-

plication 04A � B4ð2n � 1Þð2m � 1Þ (product) of two integer numbers: 04A42n � 1 (multiplicand) and

04B42m � 1 (multiplier):

A ¼
X
m�1

i¼0

ai2
i; B ¼

X
n�1

j¼0

bj2
j; m � n

A � B ¼
X

mþn�2

h¼0

X

iþj¼h

aibj

0

@

1

A2h

When the operands are interpreted as integers, the product is generally twice the length of the operands in

order to preserve the information content.

Multiplication can be considered as a series of repeated additions. This repeated addition method that is

suggested by the arithmetic definition is slow, and is almost always replaced by an algorithm that makes use of

positional number representation.

It is possible to decompose multipliers into two parts. The first part is dedicated to the generation of partial

products, and the second one collects and adds them. As for adders, it is possible to enhance the intrinsic

performances of multipliers. Acting in the generation part, the Booth (or modified Booth) algorithm is often

used because it reduces the number of partial products (see Further Reading on page 8-29). The collection of

the partial products can then be made using a regular array, a Wallace tree or a binary tree.

The simplest multiplication can be viewed as repeated shifts and adds (one adder, a shift register, and a

small amount of control logic). The disadvantage is that it is slow. One fairly simple improvement to this is to

form the matrix of partial products in parallel, and then use a 2-dimensional array of full adders to sum the

rows of partial products. This 8� 6 structure, shown in Figure 8.8, is known as an array multiplier. The

multiplier consists of n� 1 ¼ 5, m ¼ 8-bit carry-ripple adders and n ¼ 6 arrays of m AND gates. The delay of

the multiplier is defined as the critical path equal to the sum of the delay of the buffer circuit connecting the

input signal and AND gates, the delay of the AND gate, and the delay of the adders.

FIGURE 8.8 An 8� 6 multiplier: topology of architecture and multiplication scheme.
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The advantage of the array multiplier is that it is a regular structure and a local interconnect: each cell is

connected only to its neighbors. The disadvantage is that the worst case delay path goes from the upper left

corner diagonally down to the lower right corner and then across the ripple carry adder; i.e., the delay is

linearly proportional to the operand size. The method, which can be employed to decrease the delay of the

array multiplier, is to replace the ripple-carry adder with a carry-lookahead adder. Another approach to

collection of the partial products is based on the so-called Wallance tree multiplier (see section on further

reading). The number of operations occurring in multiplication is at most O(mn).

Arithmetic-Logic Units

Arithmetic-logic units (ALUs) are modules capable of realizing a set of arithmetic and logic functions. ALU

performs the specific operations selected dynamically by the control unit of the processor. In Figure 8.9 a

4-bit ALU has two 4-bit data inputs A and B, a carry-in input C0, a 4-bit data output S, and also P and G

outputs that can be used for computing carry-out signal C4 ¼ G _ P � C0. Generic arithmetic and logic

operations performed by ALU are given in Figure 8.9. This 4-bit ALU module can be used to construct

larger ALUs.

Other Number Representations

Besides the positional (radix-2 2’s or 1’s complement) number system, positive integers can be represented in

binary-coded decimal (BCD) notation, 2-1-2-4 code, excess-3 code, or 2-out-of-5. In this section the BCD

format is considered.

Numbers with the fraction part can be represented in the fixed-point and floating-point format. Floating-

point format is dominant in today’s processors.

Binary-Coded-Decimal Format

Let two decimal digits (operands) be denoted by the binary codes A ¼ a3a2a1a0 and B ¼ b3b2b1b0. Note that

4-bit A and B cannot take values larger than 9 (e.g., 1010,1011,1100,1101,1110, and 1111). A carry-in and

carry-out are denoted by C0 and C3. The data output (sum) is S ¼ s3s2s1s0. This sum must be corrected.

These cases are shown in Figure 8.10 along with the circuit of BCD adder that consists of the binary adder

and the correction circuit. The correction circuit implements the addition of number 0110 in the indicated

cases. The combinational circuit is implemented with the optimal representation of the function

cout; z3; z2; z1; and z0. Alternatively, MUX-based design can be used: formally, the circuit can be represented

by a ROBDD and by the diagram in Figure 8.11.

FIGURE 8.9 Example of 4-bit arithmetic-logic units.
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Fixed-Point Format

A fixed-point number consists of integer and fraction parts [Figure 8.12(a)]. The position of the radix point is

assumed to be fixed. Logic circuits that deal with fixed-point numbers are essentially the same as those used

for integers. Fixed-point numbers have a range that is limited by the significant digits used to represent the

number. The integer numbers are fixed-point numbers without a fraction part.

Floating-Point Format

A real number is represented by a mantissa M comprising the significant digits and an exponent E of the radix

R M� RE. In the IEEE 754 standard two sizes of floating-point format are specified: a single-precision 32-bit

format and double-precision 64-bit format. In Figure 8.12(b) the single-precision format is shown, where S is

the sign (so, this representation is sign-and-magnitude), M is the fraction or mantissa, E is the exponent

(positive or negative), and the radix (base) is 2 for computer arithmetic. The 8-bit exponent is specified in the

excess-127 format, which is convenient for adding and subtracting floating-point numbers. The hidden 1 is

added in the formula of the number representation; that is the implicit leading bit in the normalized binary

number 1: M � 2E�127, where 127 is the exponent bias for the single precision (it is 1023 for double

precision). Thus, the 32-bit 00. . .00 in the IEEE 754 standard represents 0, while 000000000. . .01 represents

ð�1Þ0 � ð1þ :0Þ2 � 20�127 ¼ 2�127

¼ 210 � 2�128 � 210 � 10�38

FIGURE 8.11 Decision diagram of the correction function of the BCD adder.

FIGURE 8.10 Decade of BCD adder and the part of a truth table where correction is needed.
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(the smallest fraction that can be represented by this format), and 11. . .11 represents

ð�1Þ1 � ð1þ :111111111111111111111112Þ � 2255�127

¼ �1:111111111111111111111112 � 2128 � �210 � 1038

(the largest negative number to be represented by this format).

Floating-Point Addition, Multiplication and Division

Two floating-point numbers must have equal exponents before they are added. This is implemented as

follows:
. The number with the smaller exponent is chosen, and its mantissa is shifted right a number of steps

equal to the difference in exponents.
. The exponent of the results is set equal to the larger exponent.
. Addition on mantissas is performed, and the sign of the result is determined.
. The resulting value is normalized.

Two numbers are multiplied by adding their exponents and multiplying their mantissas:
. The exponents are added and the exponent bias (127) is subtracted.
. The mantissas are multiplied, and the sign of the result is determined.
. The resulting value is normalized.

Division is implemented in three steps as is multiplication, except that the exponents are subtracted instead

of added, and the mantissas are divided instead of multiplied.

Low Power Computing Arithmetic

Low power arithmetic circuits are in the critical application domain, which demands high-speed computations

and complex functionalities with low consumption. The design for low power arithmetic circuits can be achieved

by optimization tools, by using a power-efficient gate, and by module libraries. On the arithmetic level choice of

the number representation is essential to reduce power consumption (often at the expense of lower speed).

For that purpose the hybrid signed digit (HSD) representation is deployed. It combines both signed and

unsigned digits, and renders the maximum length of carry propagation equal to the maximum distance between

two consecutive signed digits. This representation allows choices from 2’s complement representation where

there are no signed digits, to the conventional fully signed digit representation wherein every digit is signed.

In radix-2 (R ¼ 2) HSD representation, the signed digits can take any value from the set {� 1, 0, þ 1}.

The unsigned digits can assume any of the two values {0, 1}. The addition of two HSD numbers enables a signed

FIGURE 8.12 Fixed-point format (a) and single-precision floating-point format (b).
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digit to stop an incoming carry from propagating further. Consequently, the carries propagate between the

signed digits and the maximum length of carry propagation equals the distance between the signed digits. Thus,

addition in such a representation requires the carry in between all digit positions (signed or unsigned) to

assume any value in the generic signed-digit system. The operations in a signed-digit position are the same as

those in the signed-digit case. First, the signed-digit positions generate a carry-out and an intermediate sum,

based on the two input signed digits and the two bits at the neighboring lower-order, unsigned digit position. In

the second step, the carries generated out of the signed digit positions ripple through the unsigned digits up to

the next higher-order, signed digit position where the propagation stops. All the carry propagation chains

between the signed digit positions run simultaneously.

The most significant digit in the HSD representation is a signed digit, and all the other digits can be

unsigned. For example, given 32 digits, the most significant digit is a signed digit. The remaining digits can

unsigned or signed; for example, the 1st, 2nd, 4th, 8th, and 16th (and 32nd) digits can be signed, and all the

remaining digits can be unsigned. The addition time for such a representation is determined by the longest

possible carry propagation chain between consecutive signed digit positions.

Stochastic Arithmetic

Stochastic arithmetic is applied, in particular, to the implementation of fault tolerance systems, which are

characterized by the ability to recover from transient errors during computing. An example of such systems is

artificial neural networks.

Basics of Stochastic Computing

Stochastic arithmetic is based on special coding of numbers, so-called stochastic encoding. The input numbers

x1 and x2 are encoded by stochastic pulse streams. Stochastic streams are independent (technically this means

that independent generators of random pulse are used with some additional tools for decorrelation of signals)

with mean Eðx1Þ ¼ Px1
and Eðx2Þ ¼ Px2

. Operations with stochastic streams correspond to operations with

probabilities Px1
and Px2

. The result is decoded to the values in the range [0,1].

The information in a pulse stream is contained in the primary statistic of the bit stream, or the probability of

any given bit in the stream being a logic 1. Statistical characteristics of these streams are known; i.e., they can

be measured. The errors are in the form of random variance. The main feature that distinguishes classical

arithmetic computation and stochastic computation is that arithmetic operations are performed via the

completely random data. Its actual value is

1. A random event which cannot be predicted, and

2. Repetition of a computation will result in a different sequence of logic levels.

In a conventional computer logic levels represent data change deterministically from value to value as the

computation proceeds. If the computation is repeated, the same sequence of logic levels will occur.

Stochastic Encoding

A binary number X is compared with a uniform random number generated by a generator of random

numbers (Figure 8.13). The upper limit of numbers is Xmax. The firing probability Pf of the comparator output

is equal to X=Xmax, so the output value bXX which is obtained by accumulating the pulse times follows the

binomial distribution.

Stochastic Adder

The averages of the stochastic pulse stream of two inputs x1 and x2 and the output signal f are E(x1), E(x2) and

Eð f Þ ¼ Eðx1Þ þ Eðx2Þ ¼ Px1
þ Px2

, respectively [Figure 8.14(a)], where autocorrelation function is defined as

Kf ðtÞ ¼ E½½ f ðtÞ � E½ f 	½ f ðt � tÞ		 � E½ð f Þ		. The simplest stochastic adder is implemented by a single OR

gate. The output signal probability is approximately Px1
þ Px2

, except in the high rate region where collisions

are too frequent.
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Stochastic Multiplier

The averages of the stochastic pulse stream of input and output signals are E(x1), E(x2) and

Eð f Þ ¼ Eðx1ÞEðx2Þ ¼ Px1
Px2

; i.e., the output signal is equal to the product of probabilities Px1
and Px2

, and

implemented by a single AND gate [Figure 8.14(b)].

Threshold Logic for Massively Parallel Systems

Neural networks are massively parallel systems. For many years arithmetic circuit design based on threshold

gates has been considered an alternative to traditional logic. The threshold gate design is based on majority, or

threshold logic gates, a fundamental paradigm of decision making in biological systems. Based on this

principle, an arbitrary logic function can be implemented by a set of threshold gates.

Threshold and Majority Gates. A threshold gate (Figure 8.15) is a multiple terminal device that

calculates the weighted sum of the inputs xi; i ¼ 1; 2; . . . ; n. Afterwards this sum is converted into a output y

by comparing the sum with a given threshold level T. A majority gate is defined similarly to a threshold gate

but the output y takes values � 1 and þ 1 that correlate to 1 and 0 values, respectively. The class of all

threshold functions is equivalent to the class of all majority functions.

Threshold Networks for Arithmetic Functions. Multiple addition, multiplication and division have

been shown to be computable by small constant-depth, polynomial-size threshold networks. The efficient

threshold networks for arithmetic functions rely in many cases on the new computational algorithms. These

networks are characterized by a cost and delay comparable to that of logic gates.

FIGURE 8.14 Simplest stochastic adder (a) and stochastic multiplier (b) based on pulse model of computing.

FIGURE 8.13 A coding circuit for generating random pulse sequences.
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Computing Arithmetic of Nanostructures

Conventional electronics emphasized the development of logic families consisting of gates that are networked.

This approach can be adopted for nanoelectronics. While this approach exists, the design of large circuits is

problematic due to reliability issues and interconnection limitations. The alternative approach is massive

parallel computation on locally interconnected networks of computing elements.

Three aspects that are critical in nanocomputing are:

1. Fault tolerance, the ability to recover from transient errors during computing.

2. Robustness to errors, the ability to operate correctly in the presence of errors.

3. Defect tolerance, the ability to operate correctly in the presence of permanent hardware errors that

emerged in the manufacturing process.

To satisfy the above criteria, various methods, design strategies and architectures can be chosen, in

particular using:

. Homogeneous architectures utilizing principles of massive parallelism

. Computational methods that are fault tolerant by nature, for example, stochastic computing

. Error correction coding

. Redundancy
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Further Information

Basics of logic design can be found in many textbooks, for example, in Refs. [6,7]. Details on addition

and multiplication algorithms including floating-point examples, can be found in Ref. [17]. A Wallace tree

multiplier is considered in Ref. [10], and an advanced binary tree based multiplier design has been proposed in

Ref. [11].

Number systems. In Ref. [13], RNS floating-point arithmetic (addition, subtraction, multiplication,

division and square root) for an interval number is discussed with the goal to achieve reliable computation

when hardware representations of numbers have inadequate precision. For example, a double-base

representation (m1 ¼ 2;m2 ¼ 3; n ¼ 2) is x ¼
P

i;j wi;j2
i3j, where i and j are positive integers. For j ¼ 0 and

i ¼ 0, this equation becomes a binary and ternary system representation, respectively. Adder based residue-

to-binary number converters have been reported in Ref. [24]. In Ref. [25], the residue-to-binary number

converters for the RNS f2n � 1; 2n; 2n þ 1g were designed using 2n-bit adders or n-bit adders that are twice

as fast as generic ones, and achieved improvement in area and dynamic range as well.

FIGURE 8.15 Threshold gate.
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Particular modulo arithmetic involves Galois fields. Addition and multiplication in Galois fields, GFð2nÞ,
plays an important role in coding theory and is widely used in digital computers and data transmission or

storage systems. The group theory is used to introduce algebraic system called a field. A field is a set of

elements in which we can do addition, subtraction, multiplication and division without leaving the set.

Stochastic computing. The original motivation for using stochastic arithmetic was the simplicity of

the computational elements involved. Stochastic arithmetic provides the possibility of carrying out

computations with simple hardware, with the following properties: fault tolerance, simple interconnections,

capability to trade off computation time and accuracy without architecture changes [8]. Fault-tolerance

systems and neural networks that are massively parallel systems can benefit from stochastic arithmetic [27].

In Ref. [1], stochastic arithmetic was implemented by computational elements in neural network. In

Ref. [12], the massively parallel stochastic computing architecture for generating products and additions has

been introduced.

Threshold logic. The common model of neural networks is the feedforward multilayer network in which

the basic processing unit is a linear threshold gate. In threshold logic a linear threshold gate computes a

Boolean function f [16]. Effectiveness of threshold logic as an alternative for contemporary logic gates is

determined by the availability cost, and capabilities of the basic building blocks [22,26].

Low power arithmetic circuits design. The hybrid signed digit (HSD) representation, which

employs both signed and unsigned digits, and renders the maximum length of carry propagation equal to the

maximum distance between two consecutive signed digits, was introduced in Ref. [18]. Low power strategy for

VLSI circuit design is outlined in Ref. [19]. In Ref. [2], low-power design style for arithmetic circuits (adders

and multipliers) is studied. Deployment of binary decision diagrams in the low power design is considered in

Ref. [15].

Verification and testing of arithmetic circuits. The verification problem is formulated as follows:

given two circuits C1 and C2 with the same number of inputs and outputs, verify that C1 and C2 produce for

each input assignment the same output sequence. There are two approaches: a complete ordered decision

tree can be generated from the circuit and compared for equivalency; alternatively, ROBDDs can be generated

and compared. This approach is possible due to the fact that both complete ordered decision tree and ROBDD

are canonical forms. The second approach is more compact: the space of global properties of circuits C1 and

C2 is reduced to local properties [29].

Decision diagram technique for arithmetic circuits design. An overview of the technique can be

found in Ref. [29] and this handbook.

Multi-valued arithmetic circuits. Multi-valued logic provides new possibilities for design and

implementation of adders, multiplies and dividers. In multi-valued logic m-level signals are used to carry

information instead of two levels, 0 and 1, in conventional computers [5]. Arithmetic transforms of a multi-

valued function generate pseudo-arithmetic polynomials, which can be linearized using bit manipulation in

word-level representations of multi-output functions [30].

Various aspects of the theory and application of arithmetic circuit designs based on multi-valued gates can

be found in the Proceedings of the Annual IEEE Symposia on multiple valued logic, started in 1970.

Arithmetic computing and new technologies. Research in arithmetic computing is generally

technologically dependent. Novel devices are being investigated, as are the algorithms for arithmetic

computations. The features of the logic and arithmetic implementation for nanodevices are considered in

Refs. [9, 28] and [23].

The homogenous, highly parallel arithmetic circuits, in particular systolic structures [14–21], cellular

automata [3], and error correction coding [20] developed in the last decade, are the focus in nanotechnology.

The logarithmic multiplier can be considered a good candidate for nanotechnology. This multiplier computes

the product of two terms. The property used is logðA � BÞ ¼ logðAÞ þ logðBÞ. To obtain the logarithm of a

number, the look-up tables, recursive algorithms or the segmentation of the logarithmic curve can be used [4].

The reliability problem is the problem of the design of a reliable machine from unreliable elements

formulated by von Neumann. Reliability is actively investigated with respect to nanodevice design.
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8.3 Architecture*

Carl Hamacher, Zvonko Vranesic, and Safwat Zaky

Computer architecture can be defined here to mean the functional operation of the individual hardware units

in a computer system and the flow of information and control among them. This is a somewhat more general

definition than is sometimes used. For example, some articles and books refer to instruction set architecture or

the system bus architecture.

The main functional units of a single-processor system, a basic way to interconnect them, and features that

are used to increase the speed with which the computer executes programs will be described. Following this, a

brief introduction to systems that have more than one processor will be provided.

Functional Units

A digital computer, or simply a computer, accepts digitized input information, processes it according to a list of

internally stored machine instructions, and produces the resultant output information. The list of instructions

is called a program, and internal storage is called computer memory.

A computer has five functionally independent main parts: input, memory, arithmetic and logic, output, and

control. The input unit accepts digitally encoded information from human operators, through

electromechanical devices such as a keyboard, or from other computers over digital communication lines.

The information received is usually stored in the memory and then operated on by the arithmetic and logic

unit circuitry under the control of a program. Results are sent back to the outside world through the output

unit. All these actions are coordinated by the control unit. The arithmetic and logic unit, in conjunction with

the main control unit, is referred to as the processor.

Input and output equipment is usually combined under the term input-output unit (I/O unit). The

simplest example is the video terminal consisting of a keyboard for input and a cathode-ray tube or flat panel

display for output.

The memory unit stores programs and data. There are two main classes of memory devices called primary

and secondary memory. Primary storage, or main memory, is an electronic storage device, constructed from

integrated circuits that consist of many millions of semiconductor storage cells, each capable of storing one bit

of information. These cells are accessed in groups of fixed size called words. A word is typically four or eight

bytes long, with a byte consisting of eight bits. The main memory is organized so that the contents of one word

can be stored or retrieved in one basic operation called a memory cycle.

To provide direct access to any word in the main memory in a short and fixed amount of time, a distinct

address number is associated with each word location. A given word is accessed by specifying its address and

issuing a control command that starts the storage or retrieval process. Small machines such as notebook

computers or personal computers typically have or few hundred megabytes of main memory, while large

*Adapted from V.C. Hamacher, Z.G. Vranesic, and S.G. Zaky, Computer Organization, 4th ed., New York, NY: McGraw-Hill,

1996. With permission.
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server machines can have significantly larger main memories. The time required to access a word for reading

or writing is less than 100 ns.

Although primary memory is essential, it tends to be expensive and volatile. Thus cheaper, more permanent,

secondary storage is used for files of information that contain programs data. A wide selection of suitable

devices is available, including magnetic disks, drums, diskettes, tapes and optically accessed CDs.

Execution of most operations within a computer takes place in the arithmetic and logic unit (ALU) of a

processor. Consider a typical example. Suppose that two numbers located in the main memory are to be

added, and the sum is to be stored back into the memory. Using a few instructions, each consisting of a few

basic steps, determined by the control unit, the operands are first fetched from the memory into the processor.

They are then added in the ALU, and the result is stored back in memory. Processors contain a number of

high-speed storage elements called registers, which are used for temporary storage of operands. Each register

contains one word of data and its access time is about 100 times faster than main memory access time. Large-

scale microelectronic fabrication techniques allow processors to be implemented on a single semiconductor

chip containing many millions of transistors.

Basic Operational Concepts

To perform a given computational task, an appropriate program consisting of a set of machine instructions is

stored in the main memory, usually one instruction per word. Individual instructions are brought from the

memory into the processor for execution. Data used as operands are also stored in the memory. A typical

instruction may be

MOVE MEMLOC;Ri

This instruction loads a copy of the operand at memory location MEMLOC into the processor register Ri. The

instruction requires a few basic steps to be performed. First, the instruction must be transferred from the

memory into the processor, where it is decoded. Then the operand at location MEMLOC must be fetched into

the processor. Finally, the operand is placed into register Ri. After operands are loaded into the processor

registers in this way, instructions such as

ADD Ri;Rj;Rk

can be used to add the contents of registers Ri and Rj, and then place the result into register Rk.

Instruction set design has been intensively studied to determine the effectiveness of the various alternatives.

See Patterson and Hennessey [2005] for a thorough discussion.

The connection between the main memory and the processor that allows for the transfer of instructions and

operands is called the bus, as shown in Figure 8.16. A bus consists of a set of address, data, and control lines.

The bus also allows program and data files to be transferred from their long-term location on magnetic disk or

CD storage to the main memory. Long distance digital communication with other computers is also enabled

by transfers over the bus to the communication line interface, as shown in the figure. The bus interconnects a

number of devices, but only two devices (a sender and a receiver) can use it at any one time. Therefore, some

control circuitry is needed to manage the orderly use of the bus when a number of devices wish to use it.

Normal execution of programs may sometimes be preempted if some I/O device requires urgent control

action or servicing. For example, a monitoring device in a computer-controlled industrial process may detect a

dangerous condition that requires the execution of a special service program dedicated to the device. To cause

this service program to be executed, the device sends an interrupt signal to the processor. The processor

temporarily suspends the program that is being executed and executes the special interrupt service routine.

After providing the required service, the processor switches back to the interrupted program. To appreciate the

complexity of the computer system software programs needed to control such switching from one program

task to another and to manage the general movement of programs and data between primary and secondary

storage, consult Tanenbaum [1999].
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The need often arises during program loading and execution to transfer blocks of data between the main

memory and a disk or other secondary storage I/O device. Special control circuits are provided to manage

these transfers without detailed control actions from the main processor. Such transfers are referred to as

direct memory access (DMA). Assuming that accesses to the main memory from both I/O devices (such as

disks) and the main processor can be appropriately interwoven over the bus, I/O-memory transfers and

computation in the main processor can proceed in parallel, and performance of the overall system is

improved.

Performance

A major performance measure for computer systems is the time, T, that it takes to execute a complete

program for some task. Suppose N machine instructions need to be executed to perform the task. A program

is typically written in some high-level language, translated by a compiler program into machine language, and

stored on a disk. An operating system software routine then loads the machine language program into the

main memory, ready for execution. Assume that, on average, each machine language instruction requires S

basic steps for its execution. If basic steps are executed at the rate of R steps per second, then the time to

execute the program is

T ¼ ðN � SÞ=R

The main goal in computer architecture is to develop features that minimize T.

We will now give an outline of main memory and processor design features that help to achieve this goal. The

first concept is that of a memory hierarchy. We have already noted that access to operands in processor registers is

significantly faster than access to the main memory. Suppose that when instructions and data are first loaded into

the processor, they are stored in a small, fast cache memory on the processor chip itself. If instructions and data in

the cache are accessed repeatedly within a short period of time, as happens often with program loops, then

program execution will be speeded up. The cache can only hold small parts of the executing program. When the

cache is full, its contents are replaced by new instructions and data as they are fetched from the main memory.

A variety of cache replacement algorithms are in use. The objective of these algorithms is to maximize the

probability that the instructions and data needed for program execution are found in the cache. This probability

is known as the cache hit ratio. A higher hit ratio means that a larger percentage of the instructions and data are

FIGURE 8.16 Interconnection of major components in a computer system.
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being found in the cache, and do not require access to the slower main memory. This leads to a reduction in the

memory access basic step time components of S, and hence to a smaller value of T.

The basic idea of a cache can be applied at different points in a computer system, resulting in a hierarchy of

storage units. A typical memory hierarchy is shown in Figure 8.17. Some systems have two levels of cache to

take the best advantage of size/speed/cost tradeoffs. The main memory is usually not large enough to contain

all of the programs and their data. Therefore, the highest level in the memory hierarchy is usually magnetic

disk storage. As the figure indicates, it has the largest capacity, but the slowest access time. Segments of a

program, often called pages, are transferred from the disk to the main memory for execution. As other pages

are needed, they may replace the pages already in the main memory if the main memory is full. The orderly,

automatic movement of large program and data segments between the main memory and the disk, as

programs execute, is managed by a combination of operating system software and control hardware. This is

referred to as memory management.

We have implicitly assumed that instructions are executed one after another. Most modern processors are

designed to allow the execution of successive instructions to overlap, using a technique known as pipelining.

In the example in Figure 8.18, each instruction is broken down into 4 basic steps—fetch, decode, operate and

write—and a separate hardware unit is provided to perform each of these steps. As a result, the execution of

successive instructions can be overlapped as shown, resulting in an instruction completion rate of one per

basic time step. If the execution overlap pattern shown in the figure can be maintained for long periods of

time, the effective value of S tends toward 1.

When the execution of some instruction I depends on the results of a previous instruction, J, which is not yet

completed, instruction I must be delayed. The pipeline is said to be stalled, waiting for the execution of instruction

J to be completed. While it is not possible to eliminate such situations altogether, it is important to minimize the

probability of their occurrence. This is a key consideration in the design of the instruction set of modern

processors and the design of the compilers that translate high-level language programs into machine language.

Now, imagine that multiple functional units are provided in the processor so that more than one instruction

can be in the operate stage. This parallel execution capability, when added to pipelining of the individual

instructions, means that execution rates of more than one instruction completion per basic step time can be

achieved. This mode of enhanced processor performance is called superscalar processing.

The rate, R, of performing basic steps in the processor is usually referred to as the processor clock rate; and

it is of the order of a billion steps per second in current high-performance VLSI processors. This rate is

FIGURE 8.17 Memory hierarchy.
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determined by the technology used in fabricating the processors, and is strongly related to the size or area

occupied by individual transistors. This size feature, which is currently a small fraction of a micron, has been

steadily decreasing as fabrication techniques improve, allowing increases in R to be achieved.

Multiprocessors

Physical limits on electronic speeds and power dissipation prevent single processors from being speeded up

indefinitely. A major design trend has seen the development of systems that consist of a large number of

processors. Such multiprocessors can be used to speed up the execution of large programs by executing

subtasks in parallel. The main difficulty in achieving this type of speedup is in being able to decompose a given

task into its parallel subtasks and assign these subtasks to the individual processors in such a way that

communication among the subtasks can be done efficiently. Figure 8.19 shows a block diagram of a

multiprocessor system, with the interconnection network needed for data sharing among the processors Pi.

Parallel paths are needed in this network in order for parallel activity to proceed in the processors as they

access the global memory space represented by the multiple memory units Mi.

FIGURE 8.18 Pipelining of instruction execution.

FIGURE 8.19 A multiprocessor system.
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Defining Terms

Arithmetic and logic unit: The logic gates and register storage elements used to perform the basic

operations of addition, subtraction, multiplication and division of numeric operands, and

the comparison, shifting and alignment operations on more general forms of numeric and nonnumeric

data.

Bus: The collection of data, address and control lines that enables exchange of information, usually in word-

size quantities, among the various computer system units. In practice, a large number of units can be

connected to a single bus. These units contend in an orderly way for the use of the bus for individual

transfers.

Cache memory: A high-speed memory for temporary storage of copies of the sections of program and

data from the main memory that are currently active during program execution.

Computer architecture: The functional operation of the individual hardware units in a computer system

and the flow of information and control among them.

Control unit: The circuits required for sequencing the basic steps needed to execute machine instructions.

Input-output unit (I/O): The equipment and controls necessary for a computer to interact with a human

operator, to access mass storage devices such as disks and tapes, or to communicate with other

computer systems over communication networks.

Memory hierarchy: The collection of cache, primary, and secondary memory units that comprise the total

storage capability in the computer system.

Memory management: The combination of operating system software and hardware controls that is

needed to access and move program and data segments up and down the memory hierarchy during

program execution.

Memory unit: The unit responsible for storing programs and data. There are two main types of units:

primary memory, consisting of billions of bit storage cells fabricated from electronic semiconductor

integrated circuits, used to hold programs and data during program execution; and secondary

memory, based on magnetic disks, CDs and tapes, used to store permanent copies of programs and

data.

Multiprocessor: A computer system comprising multiple processors and main memory unit modules,

connected by a network that allows parallel activity to proceed efficiently among these units in executing

program tasks that have been sectioned into subtasks and assigned to the processors.

Pipelining: The overlapped execution of the multiple steps of successive instructions of a machine language

program, leading to a higher rate of instruction completion than can be attained by executing

instructions strictly one after another.

Processor: The arithmetic and logic unit combined with the control unit needed to sequence the execution

of instructions. Some cache memory is also included in the processor.

Superscalar processing: The ability to execute instructions at a completion rate that is faster than the

normal pipelined rate, by providing multiple functional units in the pipeline to allow a small number of

instructions to proceed through the pipeline process in parallel.
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8.4 Microprogramming

Jacques Raymond

Since the 1950s when Wilkes et al. [1958] defined the term and the concept, microprogramming has been used

as a clean and systematic way to define the instruction set of a computer. It has also been used to define a

virtual architecture out of a real hardwired one.

Levels of Programming

In Figure 8.20, we see that a computer application is usually realized by programming a given algorithm in a

high-level language. A system offering a high-level language capability is implemented at the system level via a

compiler. The operating system is (usually) implemented in a lower-level language. The machine instruction

set can be hardwired (in a hardware implementation) or implemented via microprogramming (Figure 8.21).

Therefore, microprogramming is simply an extra level in the general structure. Since it is used to define the

machine instruction set, it can be considered at the hardware level. Since this definition is done via a program

at a low level, but is still eventually modifiable, it can also be considered to be at the software level. For these

reasons, the term firmware has been coined to name sets of microprograms. In short, microinstructions that

specify hardware functions (microoperations such as Open a path, Select operation) are used to form a more

complex instruction (Convert to binary, Add decimal). The machine instruction set is defined via a set of

microprogram routines and a microprogrammed instruction decoder.

In a microprogrammed machine, the hardware is designed in terms of its capabilities (ALU, data paths, I/O,

processing units) with little concern for how these capabilities will have to be accessed by the programmers.

The microoperations are decoded from microinstructions. The way programmers view the machine is defined

at the microprogramming level.

This approach offers some advantages over the hardwired approach. The advantages are that it is more

systematic in implementation, modifiable, economical on most designs, and easier to debug. The disadvantages

are that it is uneconomical on simple machines, slower, and needs support software. Like all programs,

microprograms reside in memory. The term ‘‘control memory’’ is commonly used for microprograms.

Microinstruction Structure

On a given hardware, many processing functions are available. In general a subset O of these functions can be

performed in parallel, for example, carrying on an addition between two registers while copying a register on

an I/O bus. These functions are called microcommands.

FIGURE 8.20 Levels of programming in a computer system.
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Horizontal Microinstructions

Each of the fields f of a microinstruction specifies a microcommand. If the format of the microinstruction is

such that all possible microcommands can be specified, the instruction is called horizontal. Most of the time, it

is wasteful in memory as, in a microprogram, not every possible microcommand is specified in each

microinstruction. However, it permits the microprogrammer to fully take advantage of all possible

parallelisms and to build faster machines.

For example, the horizontal specification of an ALU operation,

ALUOperation SourcePathA SourcePathB ResultPath CvtDecimal

specifies both operands, which register will contain the result, whether or not the result is to be converted to

decimal, and the operation to be performed. If this instruction is, for example, part of a microprogram

defining a 32-bit addition instruction, assuming a 16-bit path, it is wasteful to specify twice the source and

result operands.

In some cases, it is possible to design a microinstruction that specifies more microcommands than can be

executed in parallel. In that case, the execution of the microcommand is carried out in more than one clock

cycle. For this reason they are called polyphase microinstructions (as opposed to monophase).

Schemes have been used to optimize the size of the word—for example, bit steering, where the value of one

bit determines how a field is to be interpreted, reduces word size by combining nonparallel function

specifications in one field

Vertical Microinstructions

At the other extreme, if the microinstruction allows only the specification of a single microcommand at a

time, the instruction is then called vertical. In that case, only the necessary commands for a particular

program are specified, resulting in smaller control memory requirements. However, it is not possible to

take advantage of possible parallelism offered by the hardware, since only one microcommand is executed

at a time. For example, the vertical specification of an ALU operation is as follows:

SourceA Reg# 1st Operand

SourceB Reg# 2nd Operand

Result Reg# Result

ALU Op Operation

FIGURE 8.21 A view of computer system levels.
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Diagonal Microinstructions

Most cases fit in between these two extremes (see Figure 8.22). Some parallelism is possible; however,

microcommands pertaining to a given processing unit are regrouped. This results in shorter microprograms

than in the vertical case and may still allow some optimization. For example, a diagonal specification of an

ALU operation is as follows:

SelectSources RegA# RegB# Select Operands

SelectResult Reg# Dec/Bin Result place and format

Select ALU Operation Perform the operation

Optimization

Time and space optimization studies can be performed before designing the microinstruction format. The

reader is referred to Das et al. [1973] and Agerwala [1976] for details and more references.

Microprogram Development

Microassemblers

The first level of specification of microinstructions is, just like its counterpart at the machine level, the

assembler. Although the process and philosophy is exactly the same, it is traditionally called a microassembler.

A microassembler is a software program (it is not relevant to know in which language it is written) whose

function is to translate a source program into the binary code equivalent. Obviously, to write a source

program, a language has to be designed. At assembly level, languages are usually very close to the hardware

structure, and the objects defined are microregisters, gate level controls, and paths. Operations are the

microoperations (sometimes slightly more sophisticated with a microassembler with macrofacilities).

This level provides an easily readable microprogram and does much to help avoid syntax errors. In binary,

only the programmer can catch a faulty 1 or 0; the microassembler can catch syntax errors or some faulty

register specifications. No microassembler exists that can catch all logic errors in the implementation of a

FIGURE 8.22 Microinstruction fields versus microcommands.
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given instruction algorithm. It is still very easy to make mistakes. It should be noted that this level is a good

compromise between convenience and cost.

The following is a typical example of a microprogram in the microassembler (it implements a 16-bit add on

an 8-bit path and ALU):

CLC Clear Carry

Lod A Get first part of first operand

Add B Add to first part of second operand

Sto C Give low byte of final result

Lod a Get second part of first operand

Adc b Add to second part of second operand and to carry bit

Sto c Give high byte of final result

JCS Error Jump to error routine if Result . 65536

Jmp FetchNext

High-Level Languages for Microprogramming

Many higher-level languages have been designed and implemented: see a discussion of some design

philosophies in Malik and Lewis [1978]. In principle a high-level language program is oriented toward the

application it supports and is farther away from the hardware-detailed implementation of the machine it runs

on. The applications supported are mostly other machine definitions (emulators) and implementations of

some algorithms.

The objects defined and manipulated by high-level languages for microprogramming are therefore the

virtual components of virtual machines. They are usually much the same as their real counterparts: registers,

paths, ALUs, microoperations, etc. Furthermore, writing a microprogram is usually defining a machine

architecture. It involves a lot of intricate and complicated details, but the algorithms implemented are mostly

quite simple. The advantages offered by high-level languages to write better algorithms without getting lost in

implementation details are therefore not exploited.

Firmware Implementation

Microprogramming usually requires the regular phases of design, coding, test, conformance acceptance, and

documentation. It differs from other programming activities when it comes to the deliverable. The usual final

product takes the form of hardware, namely a control memory, PROM, ROM, or other media containing the

bit patterns equivalent to the firmware. These implementation steps require special hardware and software

support. They include a linker, loader, PAL programmer, or ROM burner; a test program in a control memory

test bench is also necessary.

Supporting Software

It is advisable to test the microprogram before its actual hard implantation, if the implantation process is

irreversible or too costly to repeat. Software simulators have been implemented to allow thorough testing of

the newly developed microprogram. Needless to say, these tools are very specialized to a given environment

and therefore costly to develop, as their development cost cannot be distributed over many applications.

Emulation

Concept

In a microprogrammed environment a computer architecture is softly (or firmly) defined by the

microprogram designed to implement its operations, its datapaths, and its machine-level instructions. It is

easy to see that if one changes the microprogram for another one, then a new computer is defined. In this
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environment the desired operation is simulated by the execution of the firmware, instead of being the result of

action on real hardwired components.

Since the word simulation was already in use for simulation of some system by software, the word

emulation was chosen to mean simulation of an instruction set by firmware. Of course, ‘‘simulation’’ by

hardware is not a simulation, but the real thing.

The general structure of an emulator consists of the following pseudocode algorithm:

BEGIN

Initialize Machine Components

Repeat

Fetch Instruction

Emulate Operation of the current instruction

Process interrupts

Update instruction counter

Until MachineIsOff

Perform shutdown procedure

END

Many variations exist, in particular to process interrupts within the emulation of a lengthy operation or to

optimize throughput, but the general principle and structure are fairly constant.

Emulation of CPU Operation

One of the advantages of microprogramming is that the designer can implement his or her dream instructions

simply by emulating its operation. We have seen already the code for a typical 16-bit adder, but it is not

difficult to code a parity code generator, a cyclic redundancy check calculator, or an instruction that returns

the eigenvalues of an n * n matrix. This part is straight programming. One consideration is to make sure that

the machine is still listening to the outside world (interruptions), or actively monitoring it (I/O flags) in order

not to lose asynchronous data while looking for a particular pattern in a 1 megabyte string. Another

consideration is to optimize memory usage by combining common processes for different operations. For

example, emulating a 32-bit add instruction and emulating a 16-bit add instruction have common parts. This

is, however, a programming concern not specific to emulation. RISC has made the point that there is not

much to be gained by implementing complex instructions in microcode rather than in assembler.

I/O System and Interrupts

Programming support for I/Os and interrupts is more complicated than for straight machine instructions.

This is due to the considerable speed differences between I/O devices and a CPU, the need for synchronization,

the need for not losing any external event, and the concerns for optimizing processing time.

Microprogramming offers considerable design flexibility, as these problems are more easily handled by

programming than with hardware components.

Other Applications of Microprogramming

The main application of microprogramming is the emulation of a virtual machine architecture on a different

host hardware machine. It is, however, easy to see that the concept of emulation can be broadened to other

functions than the traditional hardware operation.

It is mainly a matter of point of view. Emulation and simulation are essentially the same process but viewed

from different levels. Realizing a 64-bit addition and implementing a communication controller are qualitatively

the same type of task. Once this is considered, there are theoretically no limits to the uses of microprogramming.

From the programmer’s point of view, programming is the activity of producing, in some language,

an implementation of some algorithm. If the language is at the very lowest level, as is the case with

microprogramming, and at the same time the algorithm is filled with intricate data structures and complex
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decisions, the task might be enormous, but nothing says it cannot be done (except, maybe, experience). With this

perspective of the field, we now look at some applications of microprogramming.

Design Optimization

Microprogramming helped design schemes aimed at improving parallel execution of operations, and thus

optimizing performance—for example, very long instruction word (VLIW), or explicit parallel instruction

computing (EPIC).

Operating System Support

One of the first applications, besides emulation, was to support some operating system functions. Since

microprograms are closer to the hardware and programming directly in microcode removes the overhead of

decoding machine-level instructions, it was thought that directly coding operating system (OS) functions

would improve their performance. Success was achieved in some areas, such as virtual memory. In general,

people write most OS functions in assembly language probably because the cost is not offset by the benefits,

especially with rapidly changing OS versions. The problems raised by the human side of programming have

changed the question ‘‘Should it be in microcode or in assembler?’’ to the question ‘‘Should it be in assembler

or in C?’’ This parallels the CISC/RISC debate.

High-Level Languages Support

Early research was done also in the area of support for high-level languages. Support can be in the form of

microprogrammed implementations of some language primitive (for example, the trigonometric functions) or

support for the definition and processing of data structures (for example, trees and lists primitives). Many

interesting research projects have led to esoteric laboratory machines. More common examples include the

translate instructions, string searches and compares, or indexing multidimensional arrays.

The OO paradigm has also been incorporated into CPU design. See Van der Hoeven et al. [1993].

Paging, Virtual Memory

An early and typical application of microprogramming is the implementation of the paging algorithm for a

virtual memory system. It is a typical application since it is a low-level function that must be time-optimized

and is highly hardware dependent. Furthermore, the various maintenance functions which are required by the

paging algorithms and the disk I/Os can be done during the idle time of the processing of other functions or

during part of that processing in order to avoid I/O delays.

Diagnostics

Diagnostic functions have also been an early application of microprogramming. A firmware implementation is

ideally suited to test the various components of a computer system, since the gates, paths, and units can be

exercised in an isolated manner, therefore allowing one to precisely pinpoint the trouble area.

Controllers

Real-time controllers benefit from a microprogrammed implementation due to the speed gained by

programming only the required functions, therefore avoiding the overhead of general-purpose instructions.

Since the microprogrammer can better make use of the available parallelism in the machine, long processes can

still support the asynchronous arrival of data by incorporating the interrupt polling at intervals in these processes.

High-Level Machines

Machines that directly implement the constructs of high-level languages can be easily implemented via

microprogramming. For example, Prolog machines and Lisp machines have been tried. It is also possible to

conceive of an application that is directly microcoded. Although this could provide a high-performance

hardware, human errors and software engineering practice seem to make such a machine more of a curiosity

than a maintainable system.
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Defining Terms

Control memory: A memory containing a set of microinstructions (a microprogram) that defines the

instruction set and operations of a CPU.

Emulator: The firmware that simulates a given machine architecture.

Firmware: Meant as an intermediate between software, which can be modified very easily, and hardware,

which is practically unchangeable (once built); the word firmware was coined to represent the

microprogram in control memory—i.e., the modifiable representation of the CPU instruction set.

High-level language for microprogramming: A high-level language more or less oriented toward the

description of a machine. Emulators can more easily be written in a high-level language; the source code

is compiled into the microinstructions for actual implementation.

Horizontal microinstruction: Theoretically, a completely horizontal microinstruction is made up of all

the possible microcommands available in a given CPU. In practice, some encoding is provided to reduce

the length of the instruction.

Microcommand: A small bit field indicating if a gate is open or closed, if a function is enabled or not, if a

control path is active or not, etc. A microcommand is therefore the specification of some action within

the control structure of a CPU.

Microinstruction: The set of microcommands to be executed or not, enabled or not. Each field of a

microinstruction is a microcommand. The instruction specifies the new state of the CPU.

Vertical microinstruction: A completely vertical microinstruction would contain one field and therefore

would specify one microcommand. An Op code is used to specify which microcommand is specified. In

practice microinstructions that typically contain three or four fields are called vertical.
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9.1 Assembly Language

James M. Feldman and Edward W. Czeck

The true language of computers is a stream of 1s and 0s—bits. Everything in the computer, be it numbers or

text or program, spreadsheet or database or 3-D rendering, is nothing but an array of bits. The meaning of the

bits is in the ‘‘eye of the beholder’’; it is determined entirely by context. Bits are not a useful medium for

human consumption. Instead, we insist that what we read be formatted spatially and presented in a modest

range of visually distinguishable characters. 0 and 1 arranged in a dense, page-filling array do not fulfill these

requirements in any way. The several languages that are presented in this handbook are all intended to make

something readable to two quite different readers. On the one hand, they serve the human reader with his/her

requirements on symbols and layout; on the other, they provide a grammatically regular language for inter-

pretation by a compiler. A compiler, of course, is normally a program running on a computer, but human

beings can and sometimes do play both sides of this game. They want to play with both the input and output.

Such accessibility requires that not only the input but the output of the compilation process be comfortably

readable by humans. The language of the input is called a high-level language (HLL). Examples are C, Pascal,

Ada and Modula II. They are designed to express both regularly and concisely the kinds of operations and the

kinds of constructs that programmers manipulate. The output end of the compiler generates object code —a

generally unreadable, binary representation of machine language, lacking only the services of a linker to turn

it into true machine language. The language that has been constructed to represent object code for human

consumption is assembly language. That is the subject of this section.

Some might object to our statement of purpose for assembly language. While few will contest the concept of

assembly language as the readable form of object code, some see writing assembly code as the way to ‘‘get their

hands on the inner workings of the machine.’’ They see it as a ‘‘control’’ issue. Since most HLLs today give the

user reasonably direct ways to access hardware, where does the ‘‘control’’ issue arise? What assembly
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proponents see as the essential reason for having an assembly language is the option to optimize the

‘‘important’’ sections of a program by doing a better job of machine code generation than the compiler does.

This perspective was valid enough when compilers were mediocre optimizers. It was not unlike the old days

when a car came with a complete set of tools because you needed them. The same thing that has happened to

cars has happened to compilers. They are engineered to be ‘‘fuel efficient’’ and perform their assigned

functions with remarkable ability. When the cars or compilers get good enough and complex enough, the

tinkerer may do more harm than good. IBM’s superscalar RISC computer—the RS6000—comes with superb

compilers and no assembler at all. The Pentagon took a long look at their costs of programming their immense

array of computers. Contrary to popular legend, they decided to save money. The first amendment not

withstanding, their conclusion was: ‘‘Thou shalt not assemble.’’

The four principal reasons for not writing assembly language are

. Any sizable programming job gets done at least four times faster in a HLL.

. Most modern compilers are good optimizers of code; some are superb.

. Almost all important code goes through revisions—maintenance. Reworking old assembly code is

similar to breaking good encryption; it takes forever.
. Most important of all is portability. To move any program to a different computer, you must generate

machine code for that new platform. With a program in a HLL, a new platform is almost free; all it

requires is another pass through the compiler for the target platform. With assembly code, you are back

to square one. Assembly code is unique to the platform.

Given all of that, the question naturally arises: Why have an article on assembly language? We respond with

two reasons, both of which we employ in our work as teachers and programmers:

. An essential ingredient in understanding computer hardware and in designing new computer systems

and compilers is a detailed appreciation of the operations of central processing units (CPUs). These are

best expressed in assembly language. Our undergraduate Computer Engineering courses include a

healthy dose of assembly language programming for this specific reason.
. If you are concerned about either CPU design or compiler effectiveness, you have to be able to look in great

detail at the interface between them—machine language. As we have said, the easiest way to read machine

language is by translating it to assembly language. This is one way to get assembly language, not by writing

in it as a source of code but by running the object code itself through a backward translator called a

disassembler. While many compilers will oblige you by providing an assembly listing if asked, often that

listing does not include optimizations that occur only when the several modules are linked together,

providing opportunities for truly global optimization. Some compilers ‘‘help’’ the reader by using macros

(names for predefined blocks of code) in place of the real machine instructions and register assignments.

The absence of the optimizations and the inclusion of unexpected macros can make the assembly listing

almost useless for obtaining insight into the program’s fine detail. The compilers that we have used on the

DECstations and SPARC machines do macro inclusion. To see what is really going on in these machines,

you must disassemble the machine code. That is precisely what the Think C1 compiler on the Macintosh

does when you ask for machine code. It disassembles what it just did in compiling and linking the whole

program. What you see is what is really there. The code we present for the 68000 was obtained in that way.

These are important applications. Even if most or all other programming needs can be better met in HLLs,

these applications are sufficient reason for many engineers to want to know something about assembly

language.

There are other applications of assembly language, but they tend to be specific to rather specialized and

infrequent tasks. For example, the back end of most HLL compilers is a machine code generator. To write one

of those, you certainly must know something about assembly language. On rare occasions, you may find some

necessary machine-specific transaction which is not supported by the HLL of choice or which requires some

special micro optimization. A ‘‘patch’’ of assembly code is a way to fit this inexpressible thought into the

program’s vocabulary. These are rare events. The reason why we recommend to you this section on assembly

code is that it improves your understanding of HLLs and of computer architecture.
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We will take a single subroutine which we express in C and look at the machine code that is generated on

two representative machines. The machines include two widely used complex instruction set computers (CISCs)

and one reduced instruction set computer (RISC). These are the 680001, the VAX1, and a SPARC1. We will

have two objectives:

. To see how a variety of paradigms in HLLs are translated (or, in other words, to see what is really going

on when you ask for a particular HLL operation)
. To compare the several architectures to see how they are the same and how they differ

The routine attempts to get a count of the number of numbers which occur in a block of text. Since we are

seeking numbers and not digits, the task is more complex than you might first assume. This is why we say

‘‘attempts.’’ The function that we present below handles all of the normal text forms:

. Integers, such as 123 or �17

. Numbers written in a fixed-point format, such as 12.3 or 0.1738

. Numbers written in a floating-point format, such as �12.7eþ19 or 6.781E2

If our program were to scan the indented block of code above, it would report finding six numbers. The

symbols that the program recognizes as potentially part of a number include the digits 0 to 9 and the symbols ‘e’,

‘E’, ‘·’, ‘–’ and ‘þ’. Now it is certainly possible to include other symbols in legitimate numbers, such as HEX

numbers or the like, but this little routine will not properly deal with them. Our purpose was not to handle all

comers but to provide a routine with some variety of expression and possible application. Let us begin.

NumberCount()

We enter the program at the top with one pointer passed from the calling routine and a set of local variables

comprising two integers and eight Boolean variables. Most of the Boolean variables will be used in pairs. The first

element of a pair, for instance, ees of ees and latche, indicates that the current character is one of a particular class

of non-numeric characters which might be found inside a number. If you consider that the number begins at the

first digit, then these characters can occur legally only once within a given number. ees will be set true if the

current character is the first instance of either ‘e’ or ‘E’. The paired variable, latche, is set true if there has ever been

one of those characters in the current number. The other pairs are period and latchp and sign and latchs.

There is also a pair of Booleans which indicate if the current character is a digit and if the scanner is

currently inside a number. Were you to limit your numbers to integers, these two are the only Booleans which

would be needed. At the top of the program, all Booleans are reset (made FALSE). Then we step through the

block looking for numbers. The search stops when we encounter the first null [char(0)] marking the end of the

block. Try running through the routine with text containing the three forms of number. You will quickly

convince yourself that the routine works with all normal numbers. If someone writes ‘‘3..14’’ or ‘‘3.14ee6’’, the

program will count 2 numbers. That is probably right in the first two cases. Who knows in the third?

Let us look at this short routine in C.

# define blk_length 20001

int NumberCount(char block[])

{ int count¼0,inside¼0,digit;

int ees¼0, latche¼0, latchp¼0, period¼0, latchs¼0, sign¼0;

char *source;

source ¼ block;

do {

digit ¼ (*source .¼ ‘0’) && (*source ,¼ ‘9’);

period ¼ (*source¼¼‘.’) && inside && !latchp; && !latche;

latchp ¼ (latchp jj period);

ees ¼ ((*source¼¼‘E’) jj (*source¼¼‘e’)) && inside && !latche;

latche ¼ (latche jj ees);

sign ¼ ((*source¼¼‘þ’) jj (*source¼¼‘�’)) && inside && latche && !latchs;
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latchs ¼ (latchs jj sign);

if (inside) {

if (!(digit jj ees jj period jj sign)) inside¼latchp¼latche¼latchs¼0;

}

else if (digit) {

countþþ;

inside ¼ 1;

}

sourceþþ;

}

while ((*source !¼ ‘\0’) && ((source-block),blk_lengthþ1));

return count;

}

To access values within the character array, the normal C paradigm is to step a pointer along the array. Source

points at the current character in the array; *source is the character (‘‘what source points at’’). source is

initialized at the top of the program before the loop (source ¼ block;) and incremented (sourceþþ;) at the

bottom of the loop. Note the many repetitions of *source. Each one means the same current character. If

you read that expression as the character which source is pointing to, it looks like an invitation to fetch the same

character from memory eight times. A compiler that optimizes by removing common subexpressions should

eliminate all but the first such fetch. This optimization is one of the things that we want to look for.

For those less familiar with C, the meanings of the less familiar symbols are:

¼¼ equal (in the logical sense)

! not

!¼ not equal

&& and

jj or

countþþ increment count by 1 unit (after using it)

C uses 0 as FALSE and anything else as TRUE.

Comparisons Down on the Factory Floor

Now let us see what we can learn by running this program through compilers on several quite different hosts.

The items that we wish to examine include:

I. Subroutine operations comprising:

A. Building the call block

B. The call itself

C. Obtaining memory space for local variables

D. Accessing the call block

E. Returning the function value

F. Returning to the calling routine

II. Data operations

A. Load and store

B. Arithmetic

C. Logical

D. Text

III. Program control

A. Looping

B. if and the issue of multiple tests
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Our objectives are to build three quite different pictures:
. An appreciation for the operations underlying the HLL statements
. An overview of the architectures of several important examples of CISC and RISC processors
. An appreciation for what a HLL optimizer should be doing for you

We will attempt to do all three all of the time.

Let us begin with the calling operations. Our first machine will be the MC68000, one of the classical and

widely available CISC processors. It or one of its progeny is found in many machines and forms the heart of

the Macintosh (not the PowerMac) and the early Sun workstations. Programmatically, the 68000 family shares

a great deal with the very popular VAX family of processors. Both of these CISC designs derive in rather linear

fashion from DEC’s PDP-11 machines that were so widely used in the 1970s. Comparisons to that style of

machine will be done with the SPARC, a RISC processor found in Sun, Solbourne, and other workstations.

Memory and Registers

All computers will have data stored in memory and some space in the CPU for manipulating data. Memory

can be considered to be a long list of bytes (8-bit data blocks) with addresses (locations in the list) spanning

some large range of numbers from 0 to typically 4 billion (4 GB). The memory is constructed physically by

grouping chips so that they appear to form enormously deep columns of bytes, as shown in Figure 9.1.

Since each column can deliver one byte on each request, the number of adjacent columns determines the

number of bytes which may be obtained from a single request. Machines today have 1, 2, 4, or 8 such

columns. (Some machines, the 68000 being our current example, have only 2 columns but arrange to have

the CPU ask for two successive transfers to get a total of 4 bytes.) In general, the CPU may manipulate in a

single step a datum as wide as the memory. For all of the machines which we will consider, that maximum

datum size is 32 bits or 4 bytes. While convention would have us call this biggest datum a word, historical

reason has led both the VAX and MC68000 to call it a longword. Then, 2 bytes is either a halfword or a

word. We will use the VAX/68000 notation (longword, word, and byte) wherever possible to simplify the

reading. To load data from memory, the CPU sends the address and the datum size to the memory and

gets the datum as the reply. To store data, the address is sent and then the datum and datum size.

Some machines require that the datum be properly aligned with the stacking order of the memory columns

in Figure 9.1. Thus, on the SPARC, a longword must have an address ending in 00 (xxx00 in Figure 9.1), and a

word address must end in 0. The programmer who arranges to violate this rule will be greeted with an address

error. Since the MC68000 has only two columns, it complains only if you ask for words or longwords with odd

addresses. Successor models of that chip (68020, 30,

and 40), like the VAX, accept any address and have

the CPU read two longwords and do the proper

repacking.

The instruction explicitly specifies the size and

indicates how the CPU should calculate the address.

An instruction to load a byte, for example, is LB,

MOVE.B, or MOVB on the SPARC, MC68000, and

VAX, respectively. These are followed immediately by

an expression which specifies an address. We will

discuss how to specify an address later. First, we must

introduce the concept of a register.

The space for holding data and working on it in

the CPU is the register set. Registers are a very

important resource. Bringing data in from memory is

quite separate from any operations on that data. Data

in memory must first be fetched, then acted upon.

Data in registers can be acted on immediately. Thus,

the availability of registers to store very active

FIGURE 9.1 Memory arranged as 4 columns of bytes. The

binary addressess are shown in the two formats widely used

in computers. The illustration shows only 32 bytes in a 4 3 8

arrary, but a more realistic span would be 4 3 1,000,000 or

4 3 4,000,000 (4 MB to 16 MB).
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variables and intermediate results makes a processor inherently faster. In some machines, most or all of the

registers are tied to specific uses. The most prevalent example would be Intel’s 80 · 86 processors, which power

the ubiquitous PC. Such architectures, however, are considered quite old-fashioned. All of the machines that

we are considering are of a type called general register machines in that they have a large group of registers

which may be used for any purpose. The machines that we include have either 16 or 32 registers, with only a

few tied to specific machine operations.

Table 9.1 shows the general register resources in the three machines. The SPARC is a little strange. The

machine provides eight global registers and then a window blind of 128 registers which sits behind a frame

which exposes 24 of the 128. A program can ask the machine to raise or lower the blind by 16 registers. That

leaves an overlap of eight between successive yanks or rewinds. This arrangement is called a multiple

overlapping register set (MORS). If you think of starting with register r8 at the bottom and r31 at the top, a

yank of 16 on the blind will now have r49 at the top and r24 at the bottom. r24 to r31 are shared between the

old set and the new. To avoid having to keep track of which registers are showing, the set of 24 are divided into

what came in from the last set, those that are only local, and those that will go out to the next set. These names

apply to going toward increasing numbers. In going the other direction, the ins of the current set will become

the outs of the next set. Almost all other machines keep their registers screwed down to the local masonry, but

you will see in a moment how useful a MORS can be. (Like other useful but expensive accessories, the debate is

always on whether it is worth it [Patterson and Hennessy, 1989].)

Stack. Most subroutines define a number of local variables. NumberCount in C, for example, defines 10

local variables. While these local variables will often be created and kept in register, there is always some need

for a bit of memory for each invocation of (call to) a subroutine. In the ‘‘good old days,’’ this local storage was

often tied to the block of code comprising the subroutine. However, such a fixed block means that a

subroutine could never call itself or be called by something that it called. To avoid that problem (and for other

purposes) a memory structure called a stack was invented which got its name because it behaved like the

spring-loaded plate stack in a restaurant. Basically, it is a last-in-first-out (LIFO) structure whose top is defined

by a pointer (address) which resides in a register commonly called the stack pointer or SP.

Heap. When a subroutine needs space to store local variables, it acquires that space on the stack. When the

subroutine finishes, it returns that stack space for use by other routines. Thus, local variable allocations live

and die with their subroutines. It is often necessary to create a data structure which is passed to other routines

whose lives are independent of the creating routine. This kind of storage must be independent of the creator.

To meet this need, the heap was invented. This is an expandable storage area managed by the system. You get

an allocation by asking for it [malloc (structure_size) in C]. You get back a pointer to the allocation and the

routine can pass that pointer to any other routine and then go away. When it comes time to dispose of the

TABLE 9.1 General Registers in the Three Machines

Reg Special Names Comments

MC68000 16 1 D0..D7

A0..A7

A(ddress) register operations are 32 bits wide. Address generation

uses A registers as bases. D (data) registers allow byte, word,

and longword operations. A7 is SP.

VAX 16 4 r0..r11

AP, FP, SP, PC

AP,FP,SP and PC hold the addresses of the argument block,

the frame, the stack and the current place in the program,

respectively. All data instructions can use any register.

SPARC 32

(136)

4 zero, g1..g7,

i0..i5,

FP, RA, l0..l7,

o0..o5, SP, o7

The 4 groups of eight registers comprise: global (g), incoming

parameters (i), local (l) and outgoing parameters (o). g0 is a

hardwired 0 as a data source and a wastebasket as a destination.

The registers are arranged as a window blind (see text) with

the g’s always visible and the others moveable in multiple

overlapping frames of 24.

The special registers are within the set of general registers. Where a PC is not listed, it exists as a special register and can be used
as an address when the program uses program-relative addressing.
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allocation—that is, return the space for other uses—

the program must do that actively by a deallocation

call [free(pointer) in C]. Thus, one function can

create a structure, several may use it, and another one

can return the memory for other uses, all by passing

the pointer to the structure from one to another.

Both heap and stack provide a mechanism to

obtain large (or small) amounts of storage dynami-

cally. Thus, large structures which are created only at

run time need not have static space stored for them

in programs that are stored on disk nor need they

occupy great chunks of memory when the program

does not need them. Dynamic allocation is very

useful and all modern HLLs provide for it.

Since there are two types of dynamic storage, there

must be some way to lay out memory so that

unpredictable needs in either stack or heap can be

met at all times. The mechanism is simplicity itself.

The program is stuffed into low addresses in memory

along with any static storage (e.g., globals) which are

declared in the program. The entire remaining space

is then devoted to dynamic storage. The heap starts

right after the program and grows toward higher addresses; the stack goes in at the top of memory and grows

down. The system is responsible to see that they never collide (a stack crash). When it all goes together, it looks

like Figure 9.2 [Aho et al., 1986].

There is one last tidbit that an assembly programmer must be aware of in looking at memory. Just as some

human alphabets are written left to right and some right to left (not to mention top to bottom), computer

manufacturers have chosen to disagree on how to arrange words in memory. The two schemes are called big-

endian and little-endian (after which end of a number goes in the lowest-numbered byte and also after a

marvelous episode in Gulliver’s Travels). The easiest way to perceive how it is done in the two systems is to

think of all numbers as being written in conventional order (left to right), but for big-endian you start

counting on the upper left of the page and on little-endian you start counting on the upper right (see Figure

9.1). Since each character in a text block is a number of length 1 byte, this easy description makes big-endian

text read in normal order (left to right) but little-endian text reads from right to left. Figure 9.3 shows the

sentence ‘‘This is a sentence’’ followed by the two hexadecimal (HEX) numbers 01020304 and 0A0B0C0D

FIGURE 9.2 Layout of a program, static storage, and

dynamic storage in memory.

FIGURE 9.3 Byte numbering and number placement for big- and little-endian systems. Hexadecimal numbers are used

for the memory addresses.
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written to consecutive bytes in the two systems. Why must we bring this up? Because anyone working in

assembly language must know how the bytes are arranged. Furthermore, two of the systems we are considering

are big-endian and one (the VAX) is little-endian. Which is the better system? Either one. It is having both of

them that is a nuisance.

As you look at Figure 9.3, undoubtedly you will prefer big-endian, but that is only because it appeals to your

prejudices. In truth, either works well. What is important is that you be able to direct your program to go fetch

the item of choice. In both systems, you use the lowest-numbered byte to indicate the item of choice. Thus, for

the number 01020304, the address will be 13. For the big-endian system, 13 will point to the byte containing

04 and for the little-endian system, it will point at the byte containing 01.

Figure 9.3 contains a problem for some computers which we alluded to in the discussion of Figure 9.1. We

have arranged the bytes to be four in a row as in Figure 9.1. That is the way that the memory is arranged in two

of our three machines. (In the 68000, there are only two columns.) A good way to look at the fetch operation is

that the memory always delivers a whole row and then the processor must acquire the parts that it wants and

then properly arrange them. (This is the effect if not always the method.) Some processors—the VAX being a

conspicuous example—are willing to undertake getting a longword by fetching two longwords and then

piecing together the parts that it wants. Others (in our case, the 68000 and the SPARC) are not so

accommodating. Those machines opt for simplicity and speed and require that the program keep its data

aligned. To use one of those machines, you (or the compiler or assembler) must rearrange Figure 9.3 by

inserting a null byte into Figure 9.2. This modification is shown in Figure 9.4. With this modification, all three

machines could fetch the two numbers in one operation without rearrangement.

Look closely at the numbers 01020304 and 0A0B0C0D in Figure 9.4. Notice that for both configurations, the

numbers read from left to right and that (visually) they appear to be in the same place. Furthermore, as pointed

out in the discussion of Figure 9.3, the ‘‘beginning’’ or address of each of the numbers is identical. However, the

byte that is pointed at by the address is not the same and the internal bytes do not have the same addresses. Getting

big-endian and little-endian machines in a conversation is not easy. It proves to be even more muddled than these

figures suggest. A delightful and cogent discussion of the whole issue is found in Cohen [1981].

The principal objective in this whole section has been accomplished if looking at Figure 9.4 and given the

command to load a byte from location 0000 0019, you get the number 0B in the big-endian machine and 0C

in the little-endian machine.

If you are not already familiar with storing structures in memory, look at the string (sentence) and ask

how those letters get in memory. To begin with, every typeable symbol and all of the unprintable actions

such as tabbing and carriage returns have been assigned a numerical value from the ASCII code. Each

assignment is a byte-long number. What ‘‘This’’ really looks like (HEX, left to right) is 54 68 69 73. The

spaces are HEX 20; the period 2E. With the alignment null byte at the end, this list of characters forms a

proper C string. It is a structure of 20 bytes. A structure of any number of bytes can be stored, but from the

assembly point of view, it is all just a list of bytes. You may access them two at a time, four at a time, or one

FIGURE 9.4 The same items as in Figure 9.3, but with justification of the long integers to begin on a longword boundary.
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at a time. Any interpretation of those bytes is entirely up to the program. Unlike the HLL which requires

that you tell it what each named variable is, assembly language knows only bytes and groups of bytes.

In assembly language, the ‘‘T’’ can be thought of as a letter or the number 54 (HEX). Your choice. Or, more

importantly, your program’s choice.

Addressing

Now that we have both memory and addresses, we should next consider how these processors require that

programmers specify the data that is to be acted upon by the instructions.

All of these machines have multiple modes of address. The VAX has the biggest vocabulary; the SPARC the

smallest. Yet all can accomplish the same tasks. Four general types of address specification are quite common

among assembly languages. These are shown in Table 9.2. They are spelled out in words in the table, but their

usage is really developed in the examples which follow in this and the succeeding sections.

In Table 9.2, formats 1.4 and 1.5 and the entries in 4 require some expansion. The others will be clear in the

examples we will present. Base-index addressing is the mechanism for dealing with subscripts. The base points

at the starting point of a data structure, such as a string or a vector; the index measures the offset from the start

of the structure to the element in question. For most machines, the index is simply a separate register which

counts the bytes from the base to the item in question. If the items in the list are 4 bytes long, then to

increment the index, you add 4. While that is not hard to remember, the VAX does its multiplication by the

item length for you. Furthermore, it allows you to index any form of address that you can write. To show you

what that means, consider expanding numbers stored in words into numbers stored in longwords. The

extension is to preserve sign. The VAX provides specific instructions for conversions. If we were moving these

words in one array to longwords in another array, we would write:

CVTWL (r4)[r5],(r6)[r5] ;convert the words starting at (r4) to longwords starting at (r6)

Note that the same index, [r5], is used for both arrays. On the left, the contents of r5 are multiplied by 2 and

added to r4 to get the address; on the right, the address is r5*4þr6. You would be saying: ‘‘Convert the 4th

word to the 4th longword.’’ This is undoubtedly compact and sometimes convenient. It is also unique to the

VAX.

For the 68000, the designers folded both base-displacement and base-index into one mode and made room

for word or longword indices. It looks like:

TABLE 9.2 Addressing Modes

1. Explicit addresses Example

1.1. Absolute addressing 765 The actual address written into the instruction.

1.2. Register indirect (r3) Meaning ‘‘the address is in register 3.’’

1.3. Base-displacement –12(r3) Meaning ‘‘12 bytes before the address in register 3.’’

1.4. Base-index (r3,r4) Meaning make an address by adding the contents of r3 and r4. This mode has

many variations which are discussed below.

1.5. Double indirect @5(r4) Very uncommon! Means calculate an address as in 1.3, then fetch the longword

there, and then use it as the address of what you really want.

2. Direct data specification

2.1. Immediate/literal #6 or 6 Meaning ‘‘use 6 as the datum.’’ In machines which use #6, 6 without # means

address 6. This is called ‘‘absolute addressing.’’

3. Program-relative

3.1. Labels loop: The label (typically an alphanumeric ending in a colon) is a marker in the

program which the assembler and linker keep track of. The common uses are

to jump to a labeled spot or to load labeled constants stored with the program.

4. Address-modifying forms

(CISC only)

4.1. Postincrement (sp)þ Same as 1.2 except that, after the address is used, it is incremented by the size

of the datum in bytes and returned to the register from which it came.

4.2. Predecrement –(sp) The value in SP is decremented by the size of the datum in bytes, used as

the address and returned to the register from which it came.
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add.1 64(A3,D2.w),D3 ;address ¼ (A3þ64) þsign-extended(D2)

The 68000 limits the displacement to a signed byte, but other than that, it is indeed a rather general indexing

format. If you do not want the displacement, set it to 0.

For the powerful but simple SPARC, the simple base-index form shown in 1.4 is all that you have (or need).

The double-indirect format, 1.5, is so rarely used that it has been left out of almost all designs but the VAX.

What makes it occasionally useful is that subroutines get pointers to ‘‘pass by pointer’’ variables. Thus, if you

want to get the variable, first you must load the address and then the variable. The VAX allows you to do this

in one instruction. While that sounds compact, it is expensive in memory cycles. If you want to use that

pointer again, it pays to have it in register.

The two items under heading 4 are strange at first. Their principal function is adding items to and removing

them from a dynamic stack, or for C, to execute the operation *Xþþ or *(– –X). The action may be viewed

with the code below and the illustration of memory in Figure 9.2:

RISCs abhor instructions which do two unrelated things. Instead of using a dynamic stack, they use a quasi-

static stack. If a subroutine needs 12 bytes of stack space, it explicitly subtracts 12 from SP. Then it works from

there with the base-displacement format (1.3) to reference any place in the block of bytes just defined. If you

want to use a pointer and then increment the pointer, RISCs will do that as two independent instructions.

Let us consider one short section of MC68000 code from our sample program in C to see how these modes

work and to sample some of the flavor of the language:

;ees ¼ ((*source¼¼‘E’) jj (*source¼¼‘e’)) && inside && !latche;

CMPI.B #$45,(A4) ;‘E’ ‘‘compare immediate’’ literal hex 45,

what A4 points at

BEQ first ; ‘‘branch if equal’’ to label first

CMPI.B #$65,(A4) ;‘e’ ‘‘compare immediate’’ literal hex 65,

what A4 points at

BNE second ; ‘‘branch if not equal’’ to label second

first:

TST.W D6 ; ‘‘test word’’ (subtract 0) D6 (‘inside’)

BEQ second ; ‘‘branch if equal’’ to label second

TST.W D3 ; ‘‘test word’’ (subtract 0) D3 (‘latche’)

BEQ third ; ‘‘branch if equal’’ to label third

second:

MOVEQ #00,D0 ; ‘‘move quick’’ literal 0 to D0

BRA fourth ; ‘‘branch always’’ to label fourth

third:

MOVEQ #$01,D0 ; ‘‘move quick’’ literal 1 to D0

fourth:

MOVE.W D0,�6(A6) ; ‘‘move word’’ from D0 to �6(FP)

There are all sorts of little details in this short example. For example, a common way to indicate a comment

is to start with a ‘‘;’’. The assembler will ignore your comments. The ‘‘#’’ indicates a literal, and the ‘‘$’’ that the

literal is written in hexadecimal notation. The VAX would use #^x to express the same idea. ‘‘Compare’’ means

‘‘subtract but save only the condition codes of the result’’ (v or overflow, n or negative, z or zero, and c or

carry). Thus, the first two lines do a subtraction of whatever A4 is pointing at (*source) from the ASCII value

for ‘E’ and then, if the two were equal (the result, zero), the program jumps to line 5. If *source is not ‘E’, then

movl r4,�(sp) ;make room on the stack (subtract 4 from SP) and put the

contents of r4 in that spot
movl (sp)þ, r4 ;take a longword off the stack, shorten the stack by 4 bytes,

and put the longword in r4
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it simply goes to the next line, line 3. The instruction, TST.W D6, is quite equivalent to CMPI.W D6, #0, but

the TST instruction is inherently shorter and faster. On a SPARC, where it would be neither shorter nor faster,

TST does not exist.

Exactly what the assembler or linker does to replace the label references with proper addresses,

while interesting, is not particularly germane to our current topic. Note that the range of the branch is

somewhat limited. In the 68000, the maximum branch is ^32K and in the VAX a mere þ127 to –128. If you

need to go further, you must combine a branch with a jump. For example, if you were doing BEQ farlabel, you

would instead do:

BNE nearlabel

Jmp farlabel ;this instruction can go any distance

nearlabel:

Follow through the example above until the short steps of logic and the addressing modes are clear. Then

progress to the next section where we use the addressing modes to introduce the general topic of subroutine

calling conventions.

Calling Conventions

Whenever you invoke a subroutine in a HLL, the calling routine (caller) must pass to the called routine (callee)

the parameters that the subroutine requires. These parameters are defined at compile time to be either pass-by-

value or pass-by-pointer (or pass-by-reference), and they are listed in some particular order. The convention for

passing the parameters varies from architecture to architecture and HLL to HLL, but basically it always

consists of building a call block which contains all of the parameters and which will be found where the

recipient expects to find it.

Along with the passing of parameters, for each system, a convention is defined for register and stack use

which establishes:

. Which registers must be returned from callee to caller with the same contents that the callee received

(such registers are said to be preserved across a call)
. Which registers may be used without worrying about their contents (such registers are called scratch

registers)
. Where the return address is to be found
. Where the value returned by a function will be found

The convention may be supported by hardware or simply a gentlemanly rule of the road. However the

rules come into being, they define the steps which must be accomplished coming into and out of a

subroutine. The whole collection of such rules forms the calling convention for that machine. In this

section, we look at our three different machines to see how all accomplish the same tasks but by rather

different mechanisms.

The two CISCs do almost all of their passing and saving on the stack. The call block will be built on

the stack; the return address will be put on the stack; saved registers will be put on the stack. Only a few

stack references are passed forward in register; the value returned by the function will be passed back in

register.

How different is the SPARC! The parameters to be passed are placed in the out registers (six are available for

this purpose). Only the overflow, if any, would go on the stack. In general, registers are saved by window-

blinding rather than moving them to the stack. On return, data is returned in the in registers and the registers

restored by reverse window-blinding.

MC68000 Call and Return. Let us look at the details for two of the machines. We start with the 68000,

because that is the most open and ‘‘conventional.’’ We continue with the function NumberCount. Only a

single parameter must be passed—the pointer to the text block. The HLL callee sees NumberCount(block) as
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an integer (i.e., what will be returned), but the assembly program must do a call and then use the returned

integer as instructed. A typical assembly routine would be:

MOVE.L A2,-(SP) ; move pointer to block onto the stack

JSR NumberCount ; save return address on the stack and start

; executing NumberCount

; do something with value returned in D0

The first instruction puts the pointer to the block, which is in A2, on the stack. It first must make room, so

the ‘‘–’’ in –(A7) first subtracts 4 from A7 (making room for the longword) and then moves the longword into

the space pointed to by the now-modified A7. The one instruction does two things: the decrementing of SP

and the storing of the longword in memory.

The next instruction, jump subroutine (JSR), does three things. It decrements SP (i.e., A7) by 4, stores the

return address on the top of the stack, and puts the address of NumberCount in the program counter. We have

just introduced two items which need specific definition:

Return address (RA): This will always be the address of the instruction which the callee should return

to. In the 68000 and the VAX (and all other CISCs), the RA points to the first

instruction after the JSR. In the SPARC and almost any RISC, RA will point to

the second instruction after JSR. That curious difference will be discussed later.

Program counter (PC): This register (which is a general register on the VAX but a special register on the

other machines) points to the place (memory location) in the machine language

instruction stream where the program is currently operating. As each instruction

is fetched, the PC is automatically incremented. The action of the JSR is to save

the last version of the PC—the one for the next fetch—and replace it with the

starting address of the routine to be jumped to.

Summing up these transactions in algebraic form:

Should you wonder how the address of NumberCount gets in there, the linker, which assigns each section of

code to its proper place in memory and therefore knows where all the labels are, will insert the proper address

in place of the name.

This completes the call as far as building the call block, doing the call itself, and picking up the result. Had

there been more parameters to pass, that first instruction would have been replicated enough times to push all

of the parameters, one at a time, onto the stack. Now let us look at the conventions from the point of view of

the callee. The callee has more work.

When the callee picks up the action, the stack and registers are as shown in Figure 9.5. With the exception of

D0 and A7, the callee has no registers . . . yet. The callee must make room for local variables in either register or

memory. If it wants to use registers, it must save the user’s data from the registers. The subroutine can get

whatever space it needs on the stack. Only after the setup will it get down to work. The entire section of stack

used for local variables and saving registers is called the callee’s frame. It is useful to have a pointer (FP) to the

bottom of the frame to provide a static reference to the return address, the passed parameters, and the

subroutine’s local variable area on the stack. In the 68000, the convention is to use A6 as FP. When our routine,

NumberCount, begins, the address in A6 points to the start of the caller’s frame. The first thing the callee must

do is to establish a local frame. It does that with the instruction LINK.

MOVE.L A2,�(A7) A7 ( A7�4 ;a7 ¼ SP

M(A7) ( A2 ;M(x) ¼ memory(address x)

JSR NumberCount SP ( SP-4 ;A7 ¼ SP

M(SP) ( PC ;M(x) ¼ memory(address x)

PC ( address of NumberCount

# 2006 by Taylor & Francis Group, LLC



Typical of a CISC, each instruction does a large piece of the action. The whole entry operation for the 68000

is contained in two instructions:

The first instruction does the frame making; the second does the saving of registers. There are multiple steps

in each. Each double step of decrementing SP and moving a value onto the stack will be called a push. The

steps are as follows:

At this point, the stack looks like Figure 9.6.

The subroutine is prepared to proceed. How it uses those free registers and the working space set aside

on the stack is the subject of the section on optimization in this chapter. For the moment, however, we

simply assume that it will do its thing in exemplary fashion, get the count of the numbers, and return.

We continue in this section by considering the rather simple transaction of getting back.

The callee is obliged to put the answer back where the caller expects to find it. Two paradigms for

return are common. The one that our compiler uses is to put the answer in D0. The other common

paradigm is to put the answer back on the stack. The user will have left enough room for that answer at

FPþ8, whether or not that space was also used for transferring parameters in. Using our paradigm, the

return becomes:

FIGURE 9.5 The stack area of the 68000’s memory and the register assignments that the called subroutine sees as it is

entered at the top. The registers all hold longwords, the size of an address. In typical PC/Macintosh compilers, integers are

defined as 16-bit words. Accordingly, the stack area of memory is shown as words, or half the width of a register.

LINK A6,#$FFF8

MOVEM.L D3-D7/A4,-(SP)

LINK A6,#$FFF8 ;push A6 (A7 < A7–4, M(A7) &z.lsquo; A6)

;move A7 to A6 (SP to FP)

;add FFF8 (-8) to SP (4 words for local variables)

MOVEM.L D3-D7/A4,-(A7) ;push 5 data registers (3..7) and 1 address

;register (A4)

MOVE.W $FFFC(A6),D0 ;answer from callee’s stack frame [-4(FP)] to D0

MOVEM.L (A7)þ,D3-D7/A4 ;registers restored to former values

UNLK A6 ;SP < FP, FP < M(SP), SP < SPþ4

RTS ;PC < M(SP), SP < SPþ4
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When all of this has transpired, the machine is back to the caller with SP pointing at block. The registers look

like Figure 9.5 except for two important changes. SP is back where the caller left it and D0 contains the answer

that the caller asked for.

Transactional Paradigms

The final topic in this section is the description of some of the translations of the simple and ordinary phrases

of the HLLs into assembly language. We will show some in each of our three machines to show both the

similarities and slightly different flavors that each machine architecture gives to the translation.

The paradigms that we will discuss comprise:

. Arithmetic

. Replacement

. Testing and branching, particularly multiple Boolean expressions

. Stepping through a structure

Many studies have shown that most computer arithmetic is concerned with addressing, testing, and

indexing. In NumberCount there are several examples of each. For example, near the bottom of the program,

there are statements such as:

countþþ;

For all three machines, the basic translation is the same: Add an immediate (a constant stored right in the

instruction) to a number in register. However, for the CISCs, one may also ask that the number be brought in

and even put back in memory. The three translations of this pair comprise:

Typical of the VAX, it makes a special case out of adding 1. There is no essential difference in asking it to add 1

by saying ‘‘1,’’ but if one has a special instruction, it saves a byte of program length. With today’s inexpensive

memories, a byte is no longer a big deal, but when the VAX first emerged (1978), they were delivered with less

memory than a PC or Mac would have today. The VAX, of course, can say ADDL #1, r0 just like the 68000, and

for any number other than 1 or 0, it would. Note also that the VAX compiler chose to keep count in register,

while in Think C1 decided to put it on the stack [–2(SP)]. A RISC has no choice. If you want arithmetic, your

FIGURE 9.6 The stack area of the 68000’s memory and the register situation just after MOVEM has been executed. The

memory area between the two arrows is the subroutine’s frame.

MC68000 VAX SPARC

ADDQ.W #$1,$FFFE(A6) INCL R0 add %o2,1,%o2

# 2006 by Taylor & Francis Group, LLC



numbers must be in register. However, once again, we are really talking about the length of the code, not the

speed of the transaction. All transactions take place from registers. The only issues are whether the

programmer can see the registers and whether a single instruction can include both moving the operands and

doing the operand arithmetic. The RISC separates the address arithmetic [e.g., –2(SP)] from the operand

arithmetic, putting each in its own instruction. Both get the job done.

The next items we listed were replacement and testing and branching. We have both within the statement:

digit ¼ (*source .¼ ’0’) && (*source ,¼ ’9’);

The translation requires several statements:

MC68000 VAX SPARC

MOVE.B (A4),D3 clrb r1 add %g0,0,%o1

CMPI.B #$30,D3 cmpb @4(ap),#48 ldsb [%o2],%o0

BLT ZERO blss ZERO subcc %o0, 47,%g0

CMPI.B #$39,D3 cmpb @4(ap),#57 ble ZERO

BLE ONE bgtr ZERO nop

incb r1 subcc %o0,57,%g0

bg ZERO

nop

add %g0, 1,%o1

add %o1,0,%l3

ZERO: ZERO: ZERO:

MOVEQ #$00,D0

BRA DONE

ONE:

MOVEQ #$01,D0

DONE:

MOVE.W D0,$FFF6(A6)

To begin with, all three do roughly the same thing. The only noticeable difference in concept is that the

SPARC compiler chose to compare the incoming character (*source) to 47 (the character before ‘0’) and then

branch if the result showed the letter to be ‘‘less than or equal,’’ while the other two compared it to ‘0’ as asked

and then branched if the result was ‘‘less than.’’ No big deal. But let us walk down the several columns to see

the specific details. Prior to beginning, note that all three must bring in the character, run one or two tests, and

then set an integer to either zero (false) or not zero (true). Also, let it be said that each snatch of code is

purportedly optimized, but at least with the small sample that we have, it looks as if each could be better. We

begin with three parallel walkdowns. Notes as needed are provided below.

MC68000 VAX SPARC

character from M!D# Set (byte) DIGIT to 0 Set (byte) DIGIT to 0

Is (D3-‘0’) ,¼0? Is (*source-‘0’) ,¼0? character from Mfi out1

If ,, branch to label ZERO If ,, branch to ZERO Is (*source-‘/’) ,¼0?

Is (D3-‘9’),¼0? Is (*source-‘9’) ,¼0? If ,¼, branch to ZERO

If ,¼. branch to label ONE If neither, branch to ZERO Is (*source-‘9’) ,¼0?

Add (byte) 1 to DIGIT If neither, branch to

Add 1 to DIGIT

ZERO: ZERO: ZERO:

Put a longword 0 in D0

Branch to label DONE

ONE:

Put a longword 1 in D0

DONE:

Put value in D0 into DIGIT
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Notes:

1. Moving the character into register to compare it with ‘0’ and ‘9’:

a. The first 68000 line moves the next character as a byte into register D3. The other 3 bytes will be

ignored in the byte operations. Remember that the program had already moved the pointer to the

string into A4.

b. The SPARC does the same sort of thing with a pointer in %o2, except with the difference that it sign-

extends the byte to a longword. Sign extension simply copies the sign-bit into the higher-order bits,

effectively making 3E into 0000 003E or C2 into FFFF FFC2. That is what the mnemonic means:

‘‘LoaD Signed Byte.’’

c. The VAX compiler takes a totally different approach—a rather poor one, actually. It leaves not only the

byte in memory but even the pointer to the byte. Thus, every time it wants to refer to the byte—and it

does so numerous times—it must first fetch the address from memory and then fetch the byte itself. This

double memory reference is what @4(ap) means: ‘‘At the address you will find at address 4(ap).’’ The only

thing that makes all this apparent coming and going even remotely acceptable is that the VAX will cache

(place in a fast local memory) both the address and the character the first time that it gets them. Then, it

can refer to them rapidly again. Cache references, however, are not as fast as register references.
2. Testing the character:

The next line (3rd for the SPARC) does a comparison between 48 (or 47) and the character. Compare is an

instruction which subtracts one operand from the other, but instead of putting the results somewhere, it

stores only the facts on whether the operation delivered a negative number or zero or resulted in either

an overflow or a carry. These are stored in flags, single bits associated with the arithmetic unit. The bits

can contain only one result at a time. The 68000 and VAX must test immediately after the comparison or

they will lose the bits. The SPARC changes the bits only when the instruction says so (the CC on the

instruction — ‘‘change condition codes’’). Thus, the subtraction can be remote from the test-and-branch.

The SPARC is explicit about where to store the subtraction—in %g0. %g0 is a pseudo-register. It is

always a 0 as a source and is a garbage can as a destination. The availability of the 0 and the garbage can

serves all the same functions that the special instructions for zeros and comparisons do on the CISCs.
3. The differences in the algorithm to do the tests:

There are two different paradigms expressed in these three examples. One says: ‘‘Figure out which thing

you want to do and then do that one thing.’’ The other says: ‘‘First set the result false and then figure out

if you should set it true.’’ While the second version would seem to do a lot of unnecessary settings to zero,

the other algorithm will execute one less branch. That would make it roughly equivalent. However, the

68000 algorithm is definitely longer—uses more memory for code. That is not really much of an issue,

but why put the result first into a temporary register and then where you really want it?

Compiler Optimization and Assembly Language

Compiler Operations

To understand the optimizing features of compilers and their relation to assembly language, it is best to

understand some of the chores for the compiler. This section examines variable allocation and how it can be

optimized, and the optimization task of constant expression removal. Examples of how compilers perform

these operations are taken from the various systems used in the article.

Variable Allocation. Variables in high-level languages are an abstraction of memory cells or locations.

One of the compiler’s tasks is to assign the abstract variables into physical locations—either registers within

the processor or locations within memory. Assignment strategies vary, but an easy and often-used strategy is to

place all variables in memory. Easy, indeed, but wasteful of execution time in that it requires memory fetches

for all HLL variables. Another assignment strategy is to assign as many variables to the registers as possible and

then assign any remaining variables to memory; this method is typically sufficient, except when there is a

limited number of registers, such as in the 68000. In these cases, the best assignment strategy is to assign
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registers to the variables which have the greatest use and then assign any remaining variables to memory.

In examining the compilers and architecture used in this article, we find examples of all these methods.

In the unoptimized mode, VAX and Sparc compilers are among the many which take the easy approach and

assign variables only to memory locations. In Figures 9.6 and 9.7, the variable assignments are presented for

the unoptimized and optimized options. Note that only one or two registers are used, both as scratch pads, in

the unoptimized option, whereas the optimization assigns registers to all variables. The expected execution

time savings is approximately 42 of the 50 memory references per loop iteration. That does not include

additional savings caused by compact code. Detailed comparisons are not presented since the interpretation of

architectural comparisons is highly subjective.

Unlike the VAX and Sparc compilers, the 68000 compiler assigns variables to registers in both the unop-

timized and unoptimized options; these assignments are depicted in Figures 9.7 and 9.8. Since there are only

eight general-purpose data registers in the 68000 and two are assigned as scratch pads, only six of the

program’s ten variables can be assigned to registers. The question is how the 68000 compiler chose which

variables to assign to registers and which to leave in memory. As might be expected, the compiler assigned

registers based on their usage for the unoptimized option as well as the optimized. The exact counting strategy

is unknown. However, a fair estimate, which yields the same assignment as the compiler, is to count only the

variable’s usage in the loop—the likely place for the program to spend most of its execution time. There are

other ways to estimate the variable usage such as assigning weights to a reference based on its placement

within a loop, its placement within a conditional (if-then-else) statement, etc. These estimates and how they

are applied within a compiler can change the variable allocation as well as the efficiency of the code.

In the optimized case, a slightly different register assignment is used. This is because the optimizer created

another character variable—*source—which it assigned to a register. The motivation for its creation and its

assignment to a register is shown in the next section on constant expression removal.

Even though the assignment of variables to registers gives an improvement in performance, it is not always

possible to assign a variable to a register. In C, one operation is to assign the address of a variable to a pointer-

type variable (e.g., ip ¼ & i). If i were assigned to a register, the operation would become invalid, because a

register does not have a memory address. Although this example appears limited to the C language, the use of

a variable’s address is widespread when subroutine parameters are passed by reference. (Variables sent to a

subroutine are either passed by reference, where the address of the variable is passed to the subroutine,

FIGURE 9.7 The stack area of the 68000’s memory and the register assignments that the Think C1 compiler made with

global optimization turned off. The stack is shown just after the MOVEM instruction. The items in bold are as they would

be after that instruction. While the registers all hold longwords, in typical PC/Macintosh compilers, integers are defined as

words. This figure is the programmatic successor to Figure 9.6.
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allowing modifications to the original variable, or they are passed by value, where a copy of the variable is

passed to the subroutine.) When a parameter is passed by reference its address must be obtained and passed to

the subroutine, an action commonly found in most languages. This action compounds the task of selecting

candidate variables for register assignment.

Constant Expression Removal. The task of allocating program variables to physical locations is accom-

plished by all compilers; we have shown that there are many ways to achieve this goal with varying ease or run-

time performance. This section explores a compiler task which is done strictly for optimization—the removal

of constant expressions. In exploring this task, we show strategies for the recognition of this optimization and

also some caveats in their application.

Constant expressions are subexpressions within a statement which are unchanged during its execution.

An obvious example is the expression vector[x] in the following conditional statement.

if (vector[x] , 100) && (vector[x] . 0) then ...

An astute coder who does not trust compilers would not allow two memory references for vector[x] in the

same conditional statement and would rewrite the code by assigning vector[x] to a temporary variable and

using that variable in the conditional. An astute compiler would also recognize the constant expression and

assign vector[x] to a scratch pad register and use this register for both comparisons. This type of optimization,

where small sections of code (typically one source line) are optimized, is called peep-hole optimization.

Within the example program, the assignment statement which checks if the character is a digit within the

range from ‘0’ to ‘9’ is a statement which can benefit from this type of optimization. The C code lines, with the

unoptimized and optimized SPARC assembly code, are listed below. Note that in addition to the constant

expression removal the optimized code also assigns variables to registers.

digit ¼ (*source .¼ ‘0’) && (*source ,¼ ‘9’);

In translating this line on the SPARC, Figure 9.9 shows the 32 registers visible at any moment in the window-

blinding SPARC. The top 24 shift by 16 in a normal call. The eight globals remain the same. The shift of the

registers is accompanied by copying SP to o6 and the call instruction puts the return address into o7. Accordingly,

a call wipes out the caller’s o7. Register g0 serves as a 0 (as a source) and as a wastebasket (as a destination). ld loads

a longword, and ldsb sign-extends a byte into a longword. The instruction after a branch is executed whether the

FIGURE 9.8 The stack area of the 68000’s memory and the register assignments that the Think C1 compiler made with

global optimization turned on. The stack is shown just after the MOVEM instruction. The items in bold are as they would

be after that instruction. This figure should be compared with Figure 9.7.
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branch is taken or not (delayed branching). An instruction such as add 47, %g0, %o2 adds a constant to 0 and

puts it in the register. This is equivalent to move.l #47, d4 on the 68000. An add or sub with cc appended changes

the condition codes. To do a compare, one uses addcc or subcc and puts the result in g0 (the wastebasket).

The same type of constant expression can be found and removed with a global perspective, typically from

within loops. A simple example is the best way to describe how they can be removed and to offer some caveats

when the compiler cannot see the global picture. The following example code updates each element in the

vector by adding the first element scaled by a constant y. An observation shows that the subexpression,

vector[0] * y, is constant throughout all executions of the loop. An obvious improvement in code is to

calculate the product of vector[0] * y outside of the loop and store its value in a temporary variable. This is

done in the second example.

Constant expression present Constant expression removed

for(i¼ 0; i , size; iþþ) temp ¼ vector[0] * y;

{ vector[i] ¼ vector[i] þ (vector[0] * y); } for(i¼ 0; i , size; iþþ)

{vector[i] ¼ vector[i] þ temp;}

Ideally, the compiler should find and remove these constant expressions from loops, but this is not as

obvious as it may seem. Consider the above example if the following line were inserted in the loop:

y ¼ vector[i-1] þ vector[iþ1]

FIGURE 9.9 SPARC register assignments.
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If each source line is taken in isolation, y appears constant, but y is dependent on the loop index i. Hence

before removing constant expressions, the compiler must map the dependencies of each variable on the other

variables and the loop index. Additionally, other not-so-obvious dependencies—such as when two pointers

modify the same structure—are difficult to map and can result in erroneous object code. This is one of the

difficulties in optimizing compiler operation and why its extent is limited.

A subtle example for constant expression removal is found in our sample program in the reference to *source.

In these statements, the character referenced (addressed) by source is obtained from memory. The pointer

(address) source is changed only at the bottom of the loop and the memory contents addressed by source are static.

A global optimization should obtain the character once at the top of each pass of the loop and save on subsequent

memory references throughout. The 68000 C compiler with the optimization option determined *source to be

constant throughout the loop and assigned register D3 to hold its contents. This saved seven of the eight memory

accesses to *source in each loop pass. The unoptimized 68000 option, the SPARC, and the VAX compilers

did not use global constant expression removal and must fetch the operand from memory before its use.

The Problems. With optimization yielding more efficient code resulting in improved system performance,

why would you not use it? Our favorite, among the several reasons, is the following quote from compiler

documentation: ‘‘Compiling with optimization may produce incorrect object code.’’ Problems are caused by

assumptions used by the compiler which are not held by the programmer. For example, an optimization which

assumes that memory contents do not change with time is erroneous for multi-tasking systems which share

memory structures and also for memory-mapped I/O devices, where memory contents are changed by

external events. For these cases, the data in register may not match the newer data in memory.

Additionally, HLL debuggers do not always work well with the optimization option since the one-to-one

correspondence between HLL code and the object code may have been removed by optimization. Consider the

reassignment of *source to a data register which is performed by the 68000 C compiler. If a debugger were to

modify the contents of *source, then it would have to know about the two locations where it is stored: the

memory and the register. Other types of optimizations which may cause problems are when unneeded

variables are removed or when code is resequenced. If a HLL debugger tries to single-step through HLL code,

there may not be corresponding assembly code, and its execution will appear erroneous.

High-Level Language and Assembly Language Relations

In comparing the various assembly languages from the compiler-generated code, we have not presented a full

vocabulary of assembly languages or the minutiae of the underlying machines. Exploring only the code

generated by the compilers may lead one to believe that all assembly languages and processor architectures are

pretty much the same. This is not really the case. What we have shown is that compilers typically use the same

assembly language instructions regardless of the underlying machines. The compiler writer’s motivation for this

apparent similarity is not because all architectures are the same, but because it is difficult—arguably even

nonproductive—for the compiler to take advantage of the complex features which some CPU architectures

offer. An argument may be made that compilers generate the best code by developing code rather independently

of the underlying architecture. Only in the final stages of code generation is the underlying platform’s hardware

architecture specifically considered [see Aho et al., 1986]. Differences in the architectures and assembly

languages are plentiful; compilers typically do not and probably should not take advantage of such features.

The VAX is one of the best examples of an architecture having an almost extraordinary vocabulary, which is

why it is often considered the prototypical CISC machine. What were the motivations for having this rich

vocabulary if compilers simply ignore it? Early computer programming was accomplished through slightly

alphabetized machine language—mnemonics for opcodes and sometimes for labels. Assembly language rep-

resented a vast improvement in readability, but even though FORTRAN, COBOL and Algol were extant at the

same time as assembly language, their crude or absent optimization abilities led to the popular belief that

really good programming was always done in assembly. This was accepted lore until early studies of optimi-

zation began to have an impact on commercial compilers. It is fair to say that this impact did not occur until

the early 1980s. The VAX and the 68000 were products of the middle and late 1970s. It is no great surprise then

to find that CISC computer architectures were designed to enable and assist the assembly language
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programmer. Such an objective promotes the inclusion of many complex features which the programmer

might want to utilize. However, two facts emerged in the late 1970s which suggested that this rich vocabulary

was provided at too high a cost for its benefit (for a more complete discussion of the emergence of the RISC

concept, which really began with Seymour Cray in the 1960s, see [Feldman and Retter, 1994]):

. It was widely observed that the generation, testing, and maintenance of large programs in assembly

code was extremely expensive when compared to doing the same task in a HLL. Furthermore, the

compilers were improving to the point where they competed quite well with typical assembly code.
. Although initially not widely accepted, it was observed that the rich vocabulary made it very difficult to

set up an efficient processing pipeline for the instruction stream. In essence, the assembly line was

forced to handle too many special cases and slowed down under the burden. When the analysis of

compiled programs showed that only a limited span of instructions was being used, these prescient

designers decided to include only the heavily used instructions and to restrict even these instructions so

that they would flow in unblemished, uniform streams through the production line. Because this focus

resulted in noticeably fewer instructions— though that was not the essential objective—the machines

were called RISC, a sobriquet that came out of a VLSI design project at Berkeley [Patterson and

Hennessy, 1989].

Even though RISC hardware designs have increased performance in essence by reducing the complexity and

richness of the assembly language, back at the ranch the unrepentant assembly language programmer still desired

complex features. Some of these features were included in the assembly languages not as native machine

instructions but essentially as a high-level extension to assembly language. A universal extension is the inclusion of

macros. In some sense, a macro looks like a subroutine, but instead of a call to a distant block of code, the macro

results in an inline insertion of a predefined block of code. Formally, a macro is a name which identifies a

particular sequence of assembly instructions. Then, wherever the name of the macro appears in the text, it is

replaced by the lines of code in the macro definition. In some sense, macros make assembly language a little more

like a HLL. It makes code more readable, makes code maintenance a little faster and more reliable (fix the macro

definition and you fix all of the invocations of the macro), and it speeds up the programmer’s work.

Another extension to some assembly languages is extended mnemonics. Here the coder places a mnemonic

in place of specific assembly language instructions; during code assembly the mnemonic is automatically

translated to an optimal and correct instruction or instruction sequence. These free the coder from the man-

agement of low-level details, leaving the task to a program where it is better suited. Examples of extended

mnemonics include get and put, which generate memory transfers by selecting the addressing mode as well as

the specific instructions based on the operand locations. An increasingly common feature of assembly

languages is the inclusion of structured control statements which emulate high-level language control-flow

constructs such as: if .. then .. else, for loops, while .. do loops, repeat .. until loops,

break, and next. These features remove the tedium from the programmer’s task, allow for a more readable

code, and reduce the cost of code development. An amusing set of examples are found in the assemblers that

we have used on the SPARC. Architecture not withstanding, the assembly programmers wanted VAX assembly

code! In spite of the absence of such constructs in the SPARC architecture, you find expressions such as CMP

(compare) and MOV. Since these are easily translated to single lines of real SPARC code, their only raison

d’etre is to keep the old assembly language programmers happy. Presumably, those who knew not the VAX are

not writing SPARC assembly code.

Summary

After all this fuss over compilers and how they generate assembly code, the obvious question is ‘‘Why bother to

write any assembly code at all?’’ Three reasons why ‘‘some assembly may be required’’ follow.

. A human writing directly in assembly language is probably better than an optimizing compiler in

extracting the last measure of resources (e.g., performance, hardware usage) from the machine. That

inner loop—the code where the processor spends most of its execution cycles—may need to be hand-

optimized to achieve acceptable performance. Real-time systems, where the expedient delivery of the
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data is as critical as its correctness, are another area where the required optimization may be greater

than that achievable by compilers. The disparity in performance between human optimizers and their

machine competitors comes from two special capabilities of the human programmer. These are the

ability to know what the program will be doing—forward vision based on the program’s intent rather

than its structure—and the ability to take advantage of special quirks or tricks that have no general

applicability. If you really need to extract this last full measure of performance, assembly language is the

route. The cost of doing such hand-optimization is much greater than the hours spent in doing it and

getting it debugged. Special quirks and tricks expressible only in assembly language will not translate to

another machine and may disappear even in an ‘‘upgrade’’ of the intended processor.
. There is overhead in using HLL conventions, some of which can be eliminated by directly coding in

assembly language. A typical embedded processor does not need the full span of HLL conventions and

support, such as parameter passing or memory and stack allocation. One can get away with such

dangerous things as global variables which do not have to be passed at all. By eliminating these

conventions, increased performance is obtained. It should be pointed out that code written without

such standard conventions is likely to be very peculiar, bug-prone, and hard to maintain.
. HLLs provide only limited access to certain hardware features of the underlying machine. Assembly

language may be required to access these features. Again, this makes the code unportable and hard to

maintain, but small stubs of assembly code may be required to invoke hardware actions which have no

representation in a HLL. For example, setting or clearing certain bits in a special register may not be

expressible in C. While any address can be explicitly included in C code, how do you reference a register

which has no address? An example of such usage is writing or reading into or out of the status register.

Some machines map these transactions into special addresses so that C could be used to access them,

but for the majority of machines which do not provide this route to the hardware, the only way to

accomplish these actions is with assembly code. To this end, some C compilers provide an inline

assembler. You can insert a few lines of assembly language right in the C code, get your datum into or

out of the special register, and move right back to HLL. Those compilers which provide this

nonstandard extension also provide a rational paradigm for using HLL variable names in the assembly

statements. Where necessary, the name gets expanded to allow the variable to be fetched and then used.

These reasons are special; they are not valid for most applications. Using assembly language loses development

speed, loses portability, and increases the maintenance costs. While this caveat is well taken and widely

accepted, at least for the present, few would deny the existence of situations where assembly language

programming provides the best or only solution.

Defining Terms

Address error: An exception (error interrupt) caused by a program’s attempt to access unaligned words or

longwords on a processor which does not accommodate such requests. The address error is detected

within the CPU. This contrasts with problems which arise in accessing the memory itself, where a logic

circuit external to the CPU itself must detect and signal the error to cause the CPU to process the

exception. Such external problems are called bus errors.

Assembler: A computer program (application) for translating an assembly-code text file to an object file

suitable for linking to become an executable image (application) in machine language. Some HLL

compilers include an inline assembler, allowing the programmer to drop into and out of assembly

language in the midst of a HLL program.

CISC: Complex instruction set computer, a name to mean ‘‘not a RISC,’’ but generally one that offers a very

rich vocabulary of computer operations at a cost of making the processor which must handle this variety

of operations more complex, expensive, and often slower than a RISC designed for the same task. One

of the benefits of a CISC is that the code tends to be very compact. When memory was an expensive

commodity, this was a substantial benefit. Today, speed of execution rather than compactness of code is

the dominant force.
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Compiler: A computer program (application) for translating a HLL text file to an object file suitable for

linking to become an executable image (application) in machine language. Some compilers do both

compilation and linking, so their output is an application.

Condition codes: Many computers provide a mechanism for saving the characteristics of results of a

particular calculation. Such characteristics as sign, zero result, carry or borrow, and overflow are typical of

integer operations. The program may reference these flags to determine whether to branch or not.

Disassembler: A computer program which can take an executable image and convert it back into assembly

code. Such a reconstruction will be true to the machine language but normally loses much of the

convenience factors, such as macros and name equivalencies, that an original assembly language

program may contain.

Executable image: A program in pure machine code and including all of the necessary header information

that allows an operating system to load it and start running it. Since it can be run directly, it is

executable. Since it represents the original HLL or assembly program it is an image.

Flags: See Condition codes.

High-level language (HLL): A computer programming language generally designed to be efficient and

succinct in expressing human programming concepts and paradigms. To be contrasted with low-level

programming languages such as assembly language.

Linker: A computer program which takes one or more object files, assembles them into blocks which are to

fit in particular blocks in memory, and resolves all external (and possibly internal) references to other

segments of a program and to libraries of precompiled subroutines. The output of the linker is a single

file called an executable image which has all addresses and references resolved and which the operating

system can load and run on request.

Macro: A single line of code-like text, defined by the programmer, which the assembler will then recognize

and which will result in an inline insertion of a predefined block of code. In most cases, the assembler

allows both hidden and visible local variables and local labels to be used within a macro. Macros also

appear in some HLLs, such as C (the define paradigm).

Object code: A file comprising an intermediate description of a segment of a program. The object

file contains binary data, machine language for program, tables of offsets with respect to the

beginning of the segment for each label in the segment, and data that would be of use to debugger

programs.

RISC: Reduced instruction set computer, a name coined by Patterson et al. at the University of California at

Berkeley to describe a computer with an instruction set designed for maximum execution speed on a

particular class of computer programs. Such designs are characterized by requiring separate instructions

for load/store operations and arithmetic operations on data in registers. The earliest computers

explicitly designed by these rules were designs by Seymour Cray at CDC in the 1960s. The earliest

development of the RISC philosophy of design was given by John Cocke in the late 1970s at IBM. See

CISC above for the contrasting approach.
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9.2 High-Level Languages

Ted G. Lewis

High-level languages (HLLs), also known as higher-order

languages (HOLs), have a rich history in the annals of

computing. From their inception in the 1950s until

advances in the 1970s, HLLs were thought of as

simple mechanical levers for producing machine-level

instructions (see Table 9.3). Removing the details of the

underlying machine, and automatically converting from a

HLL statement to an equivalent machine-level statement,

releases the programmer from the drudgery of the

computer, allowing one to concentrate on the solution to

the problem at hand.

Over the years, HLLs evolved into a field of study of their own, finding useful applications in all areas of

computing. Some HLLs are designed strictly for solving numerical problems, and some for symbolic

problems. Other HLLs are designed to control the operation of the computer itself, and yet even more novel

languages have been devised to describe the construction of computer hardware. The number of human-

crafted languages has multiplied into the hundreds, leading to highly special-purpose HLLs.

This evolution is best characterized as a shift away from the mechanical lever view of a HLL toward HLLs as

notations for encoding abstractions. An abstraction is a model of the real world whose purpose is to de-

emphasize mundane details and highlight the important parts of a problem, system, or idea. Modern HLLs are

best suited to expressing such abstractions with little concern for the underlying computer hardware.

Abstraction releases the HLL designer from the bounds of a physical machine. A HLL can adopt a metaphor

or arbitrary model of the world. Such unfettered languages provide a new interface between human and

computer, allowing the human to use the machine in novel and powerful ways. Abstractions rooted in logic,

symbolic manipulation, database processing, or operating systems, instead of the instruction set of a central

processing unit (CPU), open the engineering world to new horizons. Thus, the power of computers depends

on the expressiveness of HLLs.

To illustrate the paradigm shifts brought on by HLLs over the past 30 years, consider PROLOG, LISP, SQL,

Cþþ, and various operating system command languages. PROLOG is based on first-order logic. Instead of

computing a numerical answer, PROLOG programs derive a conclusion. LISP is based on symbolic processing

instead of numerical processing and is often used to symbolically solve problems in calculus, robotics, and

artificial reasoning. SQL is a database language for manipulating large quantities of data without regard for

whether it is numeric or symbolic. Cþþ is based on the object-oriented paradigm, a model of the world that

is particularly powerful for engineering, scientific, and business problem solving.

None of these modern languages bear much resemblance to the machines they run on. The idea of a

mechanical lever has been pushed aside by the more powerful idea of language as world builder. The kinds of

worlds that can be constructed, manipulated, and studied are limited only by the HLL designer’s formulation

of the world as a paradigm.

In this section we answer some fundamental questions about HLLs: What are they? What do we mean by

‘‘high level’’? What constitutes a paradigm? What are the advantages and disadvantages of HLLs? Who uses

HLLs? What problems can be solved with these languages?

What Is a HLL?

At a rudimentary level, all languages, high and low, must obey a finite set of rules that specify both their syntax and

semantics. Syntax specifies legal combinations of symbols that make up statements in the language. Semantics

specifies the meanings attached to a syntactically correct statement in the language. To illustrate the difference

between these two fundamental traits of all languages consider the statement, ‘‘The corners of the round table

TABLE 9.3 Each statement of a HLL Translatges

into More than One Statement in a Machine-Level

Language Such as Assembler

Language

Typical Number of

Machine Level Statements

FORTRAN 4–8

COBOL 3–6

Pascal 5–8

APL 12–15

C 3–5
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were sharp.’’ This is syntactically correct according to the rules of English grammar, but what does it mean? Round

tables do not have sharp corners, so this is a meaningless statement. We say it is semantically incorrect.

Statements of a language can be both syntactically and semantically correct and still be unsuitable for

computer languages. For example, the phrase ‘‘. . . time flies . . .’’ has two meanings: one as an expression of

clock speed, and the other as a reference to a species of insects. Therefore, we add one other requirement for

computer languages: there must be only one meaning attached to each syntactically correct statement of the

language. That is, the language must be unambiguous.

This definition of a computer language does not separate a HLL from all other computer languages. To

understand the features of HLLs that make them different from other computer languages, we must

understand the concepts of mechanical translation and abstraction. Furthermore, to understand the

differences among HLLs, we must know how abstractions are used to change the computing paradigm. But

first, what is a HLL in terms of translation and abstraction?

Defining the syntax of a HLL is easy. We simply write rules that define all legal combinations of the symbols

used by the language. Thus, in FORTRAN, we know that arithmetic statements obey the rules of algebra, with

some concessions to accommodate keyboards. A metalanguage is sometimes used as a kind of shorthand for

defining the syntax of other languages, thus reducing the number of cases to be listed.

Defining the semantics of a language is more difficult because there is no universally accepted metalanguage

for expressing semantics. Instead, semantics is usually defined by another program that translates from the

HLL into some machine-level language. In a way, the semantics of a certain HLL is defined by writing a

program that unambiguously maps each statement of the HLL into an equivalent sequence of machine-level

statements. For example, the FORTRAN statement below is converted into an equivalent machine-level

sequence of statements as shown to the right:

X ¼ (B**2 – 4*A*C) PUSH B

PUSH #2

POWER //B**2

PUSH #4

PUSH A

PUSH C

MULT //A*C

MULT //4*(A*C)

SUB //(B**2)–(4*(A*C))

POP X //X¼

In this example, we assume the presence of a

pushdown stack (see Figure 9.10). The PUSH and

POP operations are machine-level instructions for

loading/storing the top element of the stack. The

POWER, MULT, and SUB instructions take their

arguments from the top of the stack and return the

results of exponentiation, multiplication, and sub-

traction to the top of the stack. The symbolic

expression of calculation in fortran becomes a

sequence of low-level machine instructions which

often bear little resemblance to the HLL program.

The foregoing example illustrates the mechanical

advantage provided by FORTRAN because one

FORTRAN statement is implemented by many

machine-level statements. Furthermore, it is much

easier for a human programmer to read and write

FORTRAN than to read and write machine-level

FIGURE 9.10 (a) The stack after PUSH #4 and PUSH B;

(b) the stack after POWER; (c) the stack after PUSH #4,

PUSH A, and PUSH C; (d) the stack after MULT; and (e) the

stack after MULT a second time.
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instructions. One major advantage of a HLL is the obvious improvement in program creation and, later on, its

maintenance. As the size of the program increases, this advantage becomes larger as we consider the total cost to

design, code, test, and enhance an application program.

The FORTRAN program containing the example statement is treated like input data by the translating

program which produces a machine-level sequence as output. In general, the input data is called the source

program, and the resulting translated output is called the object program. There are two ways to obtain an

object program from a source program: compiling and interpreting.

In most cases, FORTRAN is translated by a compiler program. The idea behind a compiler is that the

translator converts the source program in its entirety before any part of the resulting object program is actually

run on the computer. That is, compiling is a two-step process. In some HLLs, however, it is impossible to

entirely convert a source program into an object program until the program executes.

Suppose the storage for A, B, and C in the previous example is not known at the time the program is

compiled. We might want to allocate storage on-the-fly while the program is running, because we do not know

in advance that the storage is needed. This is an example of delayed binding of a variable to its storage

location in memory.

Powerful languages such as Pascal and C permit a limited amount of delayed binding, as illustrated in the

following example written in Pascal. This example also illustrates a limited amount of abstraction introduced

by the HLL.

type rnumber ¼ real; {template}

rptr ¼ ^rnumber; {pointer}

var Aptr, Bptr, Cptr: rptr; {instance}

. . .

{later in the program. . .}

new(Aptr); read(Aptr^); {binding}

new(Bptr); read(Bptr^);

new(Cptr); read(Cptr^);

X :¼ (Bptr^) * (Bptr^) � 4 * (Aptr^) * (Cptr^);

The type statement is an abstraction that defines a template and access mechanism for the variables A, B,

and C that are to be created on-the-fly. The var statement is similar to the DIMENSION statement in that it

tells the translator to allocate space for three pointers: Aptr, Bptr, and Cptr. Each of these allocations will point

to the actual values of A, B, and C according to the previous type statement.

The actual allocation of storage is not known until the program executes the sequence of new() functions in

the body of the program. Each new() function allocates space according to the type statement and returns a

pointer to that space. To access the actual values in these storage spaces, the up arrow, ^, is written following

the variable name. Thus, the read() function gets a number from the keyboard and puts it in the space pointed

to by the pointer variable. Similarly, the value of X is computed by indirect reference to each value stored at the

newly allocated memory location.

The purpose of this example is to illustrate the use of delayed binding in a HLL. Languages such as LISP and

Cþþ require even greater degrees of delayed binding because of the abstractions they support. When the

amount of delayed binding becomes so great that very little of the program can be compiled, we say that the

HLL is an interpreted language, and the translator becomes an interpreter rather than a compiler. This

crossover is often obscure, so some HLLs are translated by both a compiler and an interpreter. BASIC is a

classic example of a HLL that is both interpreted and compiled.

The purpose of delayed binding is to increase the level of a HLL by introducing abstraction. Abstraction is the

major differentiating feature between HLLs and other computer languages. Without abstraction and delayed

binding, most HLLs would be no more powerful than a macro assembler language. However, with abstraction,

HLLs permit a programmer to express ideas that transcend the boundaries of the physical machine.

We can now define HLL based on the concept of abstraction. A HLL is a set of symbols which obey

unambiguous syntactic and semantic rules: the syntactic rules specify legal combinations of symbols, and the

semantic rules specify legal meanings of syntactically correct statements relative to a collection of abstractions.
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The notion of abstraction is very important to understanding what a HLL is. The example above illustrates a

simple abstraction, e.g., that of data structure abstraction, but other HLLs employ much more powerful

abstraction mechanisms. In fact, the level of abstraction of a HLL defines how high a HLL is. But, how do we

measure the level of a HLL? What constitutes a HLL’s height?

How High Is a HLL?

There have been many attempts to quantify the level of a programming language. The major obstacle has been

to find a suitable measure of level. This is further complicated by the fact that nearly all computer languages

contain some use of abstraction, and therefore nearly all languages have a ‘‘level.’’ Perhaps the most interesting

approach comes from information theory.

Suppose a certain HLL program uses P operators and Q operands to express a solution to some problem.

For example, a four-function pocket calculator uses P ¼ 4 operators for addition, subtraction, multiplication,

and division. The same calculator might permit Q ¼ 2 operands by saving one number in a temporary

memory and the other in the display register. In a HLL the number of operators and operands might number

in the hundreds or thousands.

We can think of the set of P operators as a grab bag of symbols that a working programmer selects one at a

time and places in a program. Suppose each symbol is selected with probability 1/P, so the information content

of the entire set is

�
X

P

1

1

P
log

1

P

� �

¼ logðPÞ

Assuming the set is not depleted, the programmer repeats this process P times, until all of the operators

have been selected and placed in the program. The information content contributed by the operators is

P log(P), and if we repeat the process for selecting and placing all Q operands, we get Q log(Q) steps again.

The sum of these two processes yields P log(P)þQ log(Q) symbols. This is known as Halstead’s metric for

program length [Halstead, 1977].

Similar arguments can be made to derive the volume of a program, V, level of program abstraction, L, and

level of the HLL, l, as follows.

P ¼ Number of distinct operators appearing in the program

p ¼ Total number of operators appearing in the program

Q ¼ Number of distinct operands appearing in the program

q ¼ Total number of operands appearing in the program

N ¼ Number of operators and operands appearing in the program

V ¼ Volume ¼ N log2(PþQ)

L ¼ Level of abstraction used to write the program < (2/P)*(Q/q)

1 ¼ Level of the HLL used to write the program ¼ L2V

E ¼ Mental effort to create the program ¼ V/L

Halstead’s theory has been applied to English (Moby Dick) and a

number of programs written in both HLL and machine-level

languages. A few results based on the values reported in Halstead

[1977] are given in Table 9.4. This theory quantifies the level of a

programming language: PL/I is higher level than Algol-58, but

lower level than English.

In terms of the mental effort required to write the same program

in different languages, Table 9.4 suggests that a HLL is about twice

as high level as assembler language. That is, the level of abstraction

of PL/I is more than double that of assembler. This abstraction is

used to reduce mental effort and solve the problem faster.

TABLE 9.4 Comparison of Languages in

Terms of Level, 1, and Programming

Effort E

Language Level, 1 Effort, E

English 2.16 1.00

PL/I 1.53 2.00

Algol-58 1.21 3.19

FORTRAN 1.14 3.59

Assembler 0.88 6.02
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HLLs and Paradigms

A programming paradigm is a way of viewing the world, e.g., an idealized model. HLLs depend on paradigms

to guide their design and use. In fact, one might call HLL designers paradigm engineers because a good HLL

starts with a strong model. Without such a model, the abstraction of a HLL is meaningless. In this section we

examine the variety of paradigms embodied in a number of HLLs.

The procedural paradigm was the earliest programming paradigm. It is the basis of COBOL, FORTRAN,

Pascal, C, BASIC, and most early languages. In this paradigm the world is modeled by an algorithm. Thus, an

electrical circuit’s behavior is modeled as a system of equations. The equations are solved for voltage, current,

and so forth by writing an algorithmic procedure to numerically compute these quantities.

In the procedural paradigm a large system is composed of modules which encapsulate procedures which in

turn implement algorithms. Hierarchical decomposition of a large problem into a collection of subordinate

problems results in a hierarchical program structure. Hence, a large FORTRAN or C program is typically

composed of a collection of procedures (subroutines in FORTRAN and functions in C) organized in layers,

forming a tree structure, much like the organization chart of a large corporation (see Figure 9.11).

Hierarchy is used in the procedural paradigm to encapsulate low-level algorithms, thus abstracting them away.

That is, algorithm abstraction is the major contributor to leveling in a procedural HLL. Figure 9.11 illustrates this

layering as a tree where each box is a procedure and subordinate boxes represent procedures called by parent

boxes, the top-most box is the most abstract, and the lowest boxes in the tree are the most concrete.

Intellectual leverage is limited to control flow encapsulation in most procedural languages. Only the

execution paths through the program are hidden in lower levels. While this is an improvement over machine-

level languages, it does not permit much flexibility. For example, algorithmic abstraction is not powerful

enough to easily express non-numerical ideas. Thus, a C program is not able to easily model an electronic

circuit as a diagram or object that can be reasoned about, symbolically.

One of the reasons procedural HLLs fail to fully hide all details of an abstraction is that they typically have weak

models of data. Data is allowed to flow across many boundaries, which leads to problems with encapsulation. In

FORTRAN, BASIC, Pascal, and C, for example, access to any data is given freely through globals, parameter

passing, and files. This is called coupling and can have disastrous implications if not carefully controlled.

One way to reduce coupling in a procedural language is to eliminate side-effects caused by unruly access to

data. Indeed, if procedures were prohibited from directly passing and accessing data altogether, many of the

problems of procedural languages would go away. An alternative to the procedural paradigm is the functional

paradigm. In this model of the world, everything is a function that returns a value. Data is totally abstracted

away so that algorithms are totally encapsulated as a hierarchical collection of functions. LISP is the most

popular example of a functional HLL [Winston and Horn, 1989].

A LISP statement that limits data access usually consists of a series of function calls; each function returns a

single value which is used as an argument by another function and so on until the calculation is finished. For

example, the FORTRAN statement X ¼ (B**2 – 4*A*C) given earlier is written in functional form as follows:

ASSIGN(X, MINUS(SQUARE(B), TIMES(4, TIMES(A,C))))

This statement means to multiply A times C, then multiply the result returned by TIMES by 4, then subtract

this from the result returned by SQUARE, and so forth. The final result is assigned to X.

FIGURE 9.11 Hierarchical decomposition of procedural program.
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One of the most difficult concepts to adjust to when using the procedural paradigm is the idea that all things

are functions. The most significant implication of this kind of thinking is the replacement of loops with

recursion and branches with guards. Recall that everything is a function that must return a value—even

control structures. To illustrate, consider the functional (non-LISP) equivalent of the summation loop in

FORTRAN, below.

S ¼ 0

DO 20 I ¼ 1,10 SUM(XList, N):

S ¼ S þ X(I) N . 0 j

20 CONTINUE N is N – 1,

SUM is Head(XList) þ SUM (TAIL(Xlist), N)

The functional form will seem strange to a procedural programmer because it is higher level, e.g., more

abstract. It hides more details and uses functional operators HEAD (for returning the first element of XList),

TAIL (for returning the N�1 tail elements of XList), and is for binding a value to a name. Also, notice the

disappearance of the loop. Recursion on SUM is used to run through the entire list, one element at a time.

Finally, the guard N . 0 prevents further recursion when N reaches zero.

In the functional program, N is decremented each time SUM is recursively called. Suppose N ¼ 10, initially;

then SUM is called 10 times. When N . 0 is false, the SUM routine does nothing, thus terminating the

recursion. Interestingly, the additions are not performed until the final attempt to recurse fails. That is, when

N ¼ 0, the following sums are collected as the nested calls unwind:

SUM : XList(10)

: SUMþ Xlist(9)

. . . . . .

: SUMþ XList(1)

Functional HLLs are higher level than procedural languages because they reduce the number of symbols

needed to encode a solution as a program. The problem with functional programs, however, is their high

execution overhead caused by the delayed binding of their interpreters. This makes LISP and PROLOG, for

example, excellent prototyping languages but expensive production languages. LISP has been confined to

predominantly research use; few commercial products based on LISP have been successfully delivered without

first rewriting them in a lower-level language such as C. Other functional languages such as PROLOG and

STRAND88 have had only limited success as commercial languages.

Another alternative is the declarative paradigm. Declarative languages such as Prolog and STRAND88 are

both functional and declarative. In the declarative paradigm, solutions are obtained as a byproduct of meeting

limitations imposed by constraints. Think of the solution to a problem as the only (first) solution that satisfies

all constraints declared by the program.

An example of the declarative paradigm is given by the simplified PROLOG program below for declaring an

electrical circuit as a list of constraints. All of the constraints must be true for the circuit() constraint to be

true. Thus, this program eliminates all possible R, L, C, V circuits from consideration, except the one displayed

in Figure 9.12. The declarations literally assert that Circuit(R, L, C, V) is a thing with ‘‘R connected to L, L

connected to C, L connected to R, C connected to V, and V connected to R.’’ This eliminates ‘‘V connected

to L,’’ for example, and leaves only the solution shown in Figure 9.12.

Circuit(R, L, C, V):

Connected(R, L)

Connected(L, C)

Connected(L, R)

Connected(C, V)

Connected(V, R)
FIGURE 9.12 Solution to declaration for Cir-

cuit(R, L, C, V).
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One interesting feature of declarative languages is their ability to represent infinite calculations.

A declaration might constrain a solution to be in an infinite series of numbers, but the series may not

need to be fully computed to arrive at an answer.

Another feature of such languages is their ability to compute an answer when in fact there may be many answers

that meet all of the constraints. In many engineering problems, the first answer is as good as any other answer.

The declarative paradigm is a very useful abstraction for unbounded problems. Adding abstraction to the

functional paradigm elevates declarative languages even higher. Solutions in these languages are arrived at in

the most abstract manner, leading to comparatively short, powerful programs.

Perhaps the most common use of declarative languages is for construction of expert systems [Smith, 1988].

These kinds of applications are typically diagnostic. That is, they derive a conclusion based on assertions of

fact. An electrical circuit board might be diagnosed with an expert system that takes symptoms of the ailing

board as its input and derives a conclusion based on rules of electronic circuits—human rules of thumb given

it by an experienced technician—and declarative reasoning. In this example, the rules are constraints

expressed as declarations. The expert system program may derive more than one solution to the problem

because many solutions may fit the constraints.

Declarative languages have the same inefficiencies as functional languages. For this reason, expert system

applications are usually developed in a specialized declarative system called an expert system shell. A shell

extracts the declarative or constraint-based capability from functional languages such LISP and PROLOG to

improve efficiency. Often it is possible to simplify the shell so that early binding is achieved, thus leading to

compiling translators rather than interpreters. Very large and efficient expert systems have been developed for

commercial use using this approach.

Yet another paradigm used as the basis of modern languages such as Cþþ and Object Pascal is the object-

oriented programming (OOP) paradigm [Budd, 1991]. OOP merges data and procedural abstractions into a

single concept. In OOP, an object has both storage capacity and algorithmic functionality. These two abstrac-

tions are encapsulated in a construct called a class. One or more objects can be created by cloning the class.

Thus, an object is defined as an instance of a class [Lewis, 1991].

OOP actually represents a culmination of ideas of procedural programming that have evolved over the past

three to four decades. It is a gross oversimplification to say that OOP is procedural programming, because it is

not, but consider the following evolution.

Procedure ¼ Algorithm þ Data Structures

Abstract Data Structure ¼ Implementation Part þ Interface Part

Class ¼ Abstract Data Structure þ Functions

Object ¼ Class þ Inheritance

The first ‘‘equation’’ states that a procedure treats algorithms and data separately, but the programmer must

understand both the data structure and the algorithms for manipulating the data structures of an application.

This separation between algorithms and data is a key feature of the procedural paradigm. During the 1970s

structured programming was introduced to control the complexity of the procedural paradigm. While only

partially successful, structured programming limited procedures to less powerful control structures by elimi-

nating the GOTO and programs with labels. However, structured programming did not go far enough.

The next improvement in procedural programming came in the form of increased abstraction, called ADT

(abstract data structures). An ADT separates the interface part of a procedure from its implementation part.

Modula II and AdaTM were designed to support ADTs in the form of modules and packages. The interface part

is an abstraction that hides the details of the algorithm. Programming in this form of the procedural paradigm

reduces complexity by elevating a programmer’s thoughts to a higher level of abstraction, but it still does not

remove the problem of how procedures are related to one another.

Classes group data together into clusters that contain all of the functions that are allowed to access and

manipulate the data. The class concept is a powerful structuring concept because it isolates the data portion of

a program, thus reducing coupling and change propagation.

The class construct invented by the designers of Simula67 enforced the separation of interface and imple-

mentation parts of a module, and in addition introduced a new concept. Inheritance is the ability to do what
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another module can do. Thus, inheritance relates modules by passing on the algorithmic portion of a module

to other modules. Inheritance in a programming language like SmallTalk, Object Pascal, and Cþþ means even

greater abstraction because code can be reused without being understood.

An object is an instance of a class. New objects inherit all of the functions defined on all of the classes used

to define the parent of the object. This simple idea, copied from genetics, has a profound impact on both

design and programming. It changes the way software is designed and constructed, i.e., it is a new paradigm.

Object-oriented thinking greatly differs from procedural thinking (see Table 9.5). In OOP a problem is

decomposed into objects which mimic the real world. For example, the objects in Figure 9.12 are resistor,

inductor, capacitor, and voltage source. These objects have real-world features (state) such as resistance,

inductance, capacitance, and voltage. They also have behaviors defined by sinusoidal curves or phase shifts. In

short, the real-world objects have both state and function. The state is represented in a program by storage and

the function is represented by an algorithm. A resistor is a program module containing a variable to store the

resistance and a function to model the behavior of the resistor when it is subjected to an input signal.

The objects in an object-oriented world use inheritance to relate to one another. That is, objects of the same class

all inherit the same functions. These functions are called methods in SmallTalk and member functions in Cþþ

[Ellis and Stroustrup, 1990]. However, the state or storage attributes of objects cloned from the same class differ.

The storage components of an object are called instance variables in SmallTalk and member fields in Cþþ.

The wholism of combining data with instructions is known as ADTs; the concept of sending messages instead

of calling procedures is the message-passing paradigm; the concept of interactive, nonlinear, and iterative

development of a program is a consequence of an object’s interface specification being separated from its

implementation part; the notion of modeling the real world as a network of interacting objects is called OOD

(object-oriented design); the concept of specialization and reuse is known as inheritance; and OOP is the act of

writing a program in an object-oriented language while adhering to an object-oriented view of the world.

Perhaps an analogy will add a touch of concreteness to these vague concepts. Suppose automobiles were

constructed using both technologies. Table 9.6 repeats the comparison of Table 9.5 using an automobile design

and manufacturing analogy.

We illustrate these ideas with a simple Cþþ example. The following code declares a class and two subclasses

which inherit some properties of the class. The code also shows how interface and implementation parts are

separated and how to override unwanted methods. Figure 9.13 depicts the inheritance and class hierarchy for

this example.

class Node{

public: //The interface part...

Node() {} //Constructor function

virtual~Node() {} //Destructor function

virtual int eval() { error(); return 0;} //Override this function

}

TABLE 9.5 Procedural versus Object-Oriented Thinking

Procedural Object-Oriented

Instructions and data are separated. Objects consist of both data and instructions.

Software design is linear, e.g., it progresses from design through

coding and testing. This means change is difficult to

accommodate.

Software design is interactive with coding and testing.

This means change is easier to accommodate.

Programs are top-down decompositions of procedures, e.g.,

trees.

Programs are networks of objects that send messages to

one another without concern for tree structure.

Program components are the real world, thus making

programming more of a magic art.

Program components have abstractions of correspondence

with the real world, thus making programming more

of a discipline.

New programs are mostly custom built with little reuse

from earlier programs. This leads to high construction

costs and errors.

New programs are mostly specializations of earlier

programs through reuse of their components. This

leads to low construction costs and higher quality.
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The Node class consists of public functions that are to be overridden by descendants of the class. We know

this because the functions are virtual, which in Cþþ means we expect to replace them later. Therefore we

call this an abstract class. Also, Node() is the name of both the constructor and destructor member functions.

A constructor is executed when a new object is created from the class, and the destructor is executed when the

object is destroyed. These two functions take care of initialization and garbage collection which must be

performed before and after dynamic binding of objects to memory space. Figure 9.13 shows this Node as an

abstract class from which all other subclasses of this application are derived.

Now, we create a subclass that inherits the properties (interface) of Node() and adds a new property, e.g.,

Binop. Binop is an abstraction of the binary operators of a pocket calculator, which is the real-world object

being simulated by this example program. The expression to be calculated is stored in a binary tree, and Binop

sprouts a new left and right subtree when it is created and deletes this subtree when it is disposed.

FIGURE 9.13 Partial class hierarchy for a Cþþ program that simulates a pocket calculator. The shaded Node class is an

abstract class that all other classes use as a template.

TABLE 9.6 Analogy with an Automobile Manufacturer

Procedural Object-Oriented

Vendors and Assemblers work from their own plans. There is

little coordination between the two.

Vendors and Assemblers follow the same blueprints; thus

the resulting parts are guaranteed to fit together.

Manufacturing and design are sequential processes. A change

in the design causes everyone to wait while the change

propagates from designers to workers on the production line.

Design interacts with production. Prototypes are made

and discarded. Production workers are asked to give

suggestions for improvement or on how to reduce costs.

Changes on the manufacturing floor are not easily reflected as

improvements to the design on the drafting board.

Changes in implementation rarely affect the design as

interfaces are separated from implementation. Thus,

the materials may change, but not the need for the parts

themselves.

New cars are designed and constructed from the ground up,

much like the first car ever produced.

New cars are evolutionary improvement to existing base

technology, plus specializations that improve over last

year’s model.
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class Binop : public Node { //Derive Binop from Node

public:

Node *left, *right; //Pointers to left and right subtrees

~Binop() { delete left; delete right;} //Collect garbage

Binop( Node *lptr, Node *rptr) {left ¼ lptr; right ¼ rptr;}

}

Next, we define further specializations of Binop: one for addition of two numbers, Plus(), and the other for

multiplication, Times(). The reader can see how to extend this to other operators.

class Plus: public Binop {

public: //Add member functions to Binop

Plus( Node *lptr, Node *rptr): Binop(lptr, rptr) {} //Use Binop

int eval() { return left-.eval()þright-.eval();} //Do Addition

};

class Times: public Binop {

public: //Add member functions to Binop

Times( Node *lptr, Node *rptr): Binop( lptr, rptr) {} //Use Binop

int eval() { return left-.eval()*right-.eval();} //Do Multiply

};

In each case, the special-purpose operations defined in Plus() and Times() reuse Binop’s code to perform

the pointer operations. Then they add a member function eval() to carry out the operation. This illustrates

reuse and the value of inheritance.

At this point, we have a collection of abstractions in the form of Cþþ classes. An object, however, is an

instance of a class. Where are the objects in this example? We must dynamically create the required objects

using the new function of Cþþ.

Node *ptr ¼ new Plus ( lptr, rptr); //Create an object and point to it

int result ¼ ptr-.eval(); //Add

delete ptr;

The foregoing code instantiates an object that ptr points to, sends a message to the object telling it to

perform the eval() function, and then disposes of the object. This example assumes that lptr and rptr have

already been defined elsewhere.

Clearly, the level of abstraction is greatly raised by OOP. Once a class hierarchy is established, the actual data

processing is hidden or abstracted away. This is the power of the OOP paradigm.

The pure object-oriented languages such as SmallTalk80 and CLOS have achieved only modest success due

to their unique syntax and heavy demands on computing power. Hybrid HLLs such as Object Pascal and Cþþ

have become widely accepted because they retain the familiar syntax of procedural languages, and they place

fewer demands on hardware.

Although OOP is an old technology (circa 1970), it began to gain widespread acceptance in the 1990s because

of the growing power of workstations, the increased use of graphical user interfaces, and the invention of hybrid

object-oriented languages such as Cþþ. Typically, Cþþ adds 15–20% overhead to an application program due

to delayed binding of objects to their methods. Given that the power of the hardware increases more than 20% per

annum, this is an acceptable performance penalty. In addition, OOP is much more suitable for the design of

graphical user-interface-intensive applications because the display objects correspond with programming

objects, thus simplifying design and coding. Finally, if you know C, it is a small step to learn Cþþ.

Summary and Conclusions

HLLs: What are they? What do we mean by ‘‘high level’’? What constitutes a paradigm? What are the

advantages and disadvantages of HLLs? Who uses HLLs? What problems can be solved with these languages?
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HLLs are human inventions that allow humans to control and communicate with machines. They obey

rules of syntax and unambiguous semantics which are combined to express abstract ideas. HLLs are called

‘‘high level’’ because they express abstractions.

We have chosen to define the level of a HLL in terms of the information content of its syntax and semantics.

The Halstead measure of language level essentially says that the higher a HLL is, the fewer symbols are needed

to express an idea. Thus, if language A is higher than language B, a certain program can be expressed more

succinctly in A than B. This is clearly the case when comparing HLLs with various machine-level languages,

where a single statement in the HLL requires many statements in the machine-level language.

HLLs differ from one another in the abstractions they support. Abstract views of the world are called

paradigms, and the guiding principle of any HLL is its programming paradigm.

We have compared the following programming paradigms: procedural, functional, declarative, and object-

oriented. Procedural programming has the longest history because the first HLLs were based on low-level

abstractions that are procedural. FORTRAN, COBOL, C, and Pascal are classical examples of the procedural

languages.

Functional and declarative languages employ higher levels of abstraction by restricting the world view to

simple mechanisms: mathematical functions and constraints. It may seem odd that such restrictions increase

the level of abstraction, but languages like LISP and PROLOG hide much of the detail found to be necessary in

the procedural paradigm. This increases the measure of level defined in this section.

Object-oriented programming embraces a novel abstraction that seems to fit the world of computing:

objects. In this paradigm, the world is modeled as a collection of objects that communicate by sending

messages to one another. The objects are related to each other through an inheritance mechanism that passes

on the algorithmic behavior from one class of objects to another class. Inheritance permits reuse and thus

raises the programming abstraction to a level above previous paradigms.

The future of HLLs is uncertain and unpredictable. It is unlikely that anyone in 1970 would have predicted

the acceptance of functional, declarative, or object-oriented paradigms in the 1990s. Therefore, it is unlikely

that the following predictions bear much relationship to computing in the year 2000. However, it is instructive

to project a few scenarios and explain their power.

Functional and declarative programming result in software that can be mathematically analyzed, thus leading

to greater assurances that the software actually works. Currently these paradigms consume too much memory

and machine cycles. However, in the year 2000, very high-speed machines will be commonplace. What will we use

these powerful machines for? One answer is that we will no longer be concerned with the execution efficiency of a

HLL. The drawbacks of functional and declarative languages will fade, to be replaced by concern for the

correctness and expressiveness of the HLL. If this occurs, functional and declarative languages will be the

preferred HLLs because of the elevated abstractions supported by the functional and declarative paradigms.

Applications constructed from these HLLs will exhibit more sophisticated logic, communicate in non-numeric

languages such as speech and graphics, and solve problems that are beyond the reach of current HLLs.

Object-orientation is an appealing idea whose time has come. OOP will be to the 1990s what structured

programming was to the 1970s. Computer hardware is becoming increasingly distributed and remote. Networks

of workstations routinely solve problems in concert rather than as stand-alone systems. This places greater

demands on flexibility and functionality of applications. Consider the next step beyond objects—servers:

Server ¼ Object þ Process

A server is an object that is instantiated as an operating system process or task. The server sends messages to

other servers to get work done. The servers ‘‘live’’ on any processor located anywhere on the network. Software

is distributed and so is the work. OOP offers the greatest hope for distributing applications in this fashion

without loss of control. Should this scenario come true, the OOP paradigm will not only be appropriate, but

contribute to greater HLL leverage through reusable objects, distributed servers, and delayed binding of

methods to these servers.

Object-oriented languages, databases, and operating systems are on the immediate horizon. Graphical user-

interface servers such as X-Windows already exist, lending credibility to this scenario. At least for the near

future, HLLs are most likely to become identical with the object-oriented paradigm.
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Defining Terms

Abstract class: A class consisting of only an interface specification. The implementation part is

unspecified, because the purpose of an abstract class is to establish an interface.

Abstraction: Abstraction in computer languages is a measure of the amount of separation between the

hardware and an expression of a programming idea. The level of abstraction of a high-level language

defines the level of that language.

ADT: An abstract data type (ADT) is a software module that encapsulates data and functions allowed to be

performed on that data. ADTs also separate the interface specification of a module from the implemen-

tation part to minimize coupling among modules.

Assembler: A computer program for translating symbolic machine instructions into numerical machine

instructions. Assemblers are considered low-level languages for programming a computer.

Class: A specification for one or more objects that defines state (data) and functions (algorithms) that all

objects may inherit when created from the class. A class is a template for implementing objects.

Compiler: A computer program that translates the source program statements of a high-level language into

lower-leveled object program statements. Compilers differ from interpreters in that they do not imme-

diately perform the operations specified in the source program. Instead, a compiler produces an object

program that in turn performs the intended operations when it is run.

Coupling: A measure of the amount of interaction between modules in a computer program. High

coupling means that a change in one module is likely to affect another module. Low coupling means

there is little impact on other modules whenever a change is made in one module.

Declarative paradigm: A programming paradigm in which the world is modeled as a collection of rules

and constraints.

Delayed binding: The process of postponing the meaning of a programming object until the object is

manipulated by the computer. Delayed binding is used by interpreters and compilers, but more often it

is employed by interpreters.

Functional paradigm: A programming paradigm in which the world is modeled as a collection of mathe-

matical functions.

HLL (also HOL): A HLL is a set of symbols which obey unambiguous syntactic and semantic rules: the

syntactic rules specify legal combinations of symbols, and the semantic rules specify legal meanings of

syntactically correct statements relative to a collection of abstractions.

Implementation part: The definition or algorithm for a programming module which gives the details of

how the module works.

Instance variables: Data encapsulated by an object.

Interface specification: The definition of a programming module without any indication of how the

module works.

Interpreter: Acomputer programthat translates and performs the intended operations of thesource statements

of a high-level language program. Interpreters differ from compilers in that they immediately perform the

intended operations specified in the source program, and they do not produce an object program.

Member fields: Instance variables of a Cþþ object.

Member functions: Methods defined on a Cþþ object.

Metalanguage: A formal language for defining other languages. A metalanguage is typically used to define

the syntax of a high-level language.

Methods: Functions allowed to be performed on the data of an object.

Metric: A measure of a computer program’s complexity, clarity, length, difficulty, etc.

Object: An instance of a class. Objects have state (data) and function (algorithms) that are allowed to

manipulate the data.

Object-oriented paradigm: A programming paradigm in which the world is modeled as a collection of

self-contained objects that interact by sending messages. Objects are modules that contain data and all

functions that are allowed to be performed on the encapsulated data. In addition, objects are related to

one another through an inheritance hierarchy.
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Object program: Machine form of a computer program, which is the output from a translator.

Paradigm: An idealized model, typically used as a conceptual basis for software design. Programming

paradigms dictate the approach taken by a programmer to organize, and then write, a computer

program.

Procedural paradigm: A programming paradigm in which the world is modeled as a collection of

procedures which in turn encapsulate algorithms.

Prototyping: A simplified version of a software system is a prototype. Prototyping is the process of

designing a computer program through a series of versions; each version becomes a closer

approximation to the final one.

Pushdown stack: A data structure containing a list of elements which are restricted to insertions and

deletions at one end of the list, only. Insertion is called a push operation and deletion is called a pull

operation.

Recursion: A procedure is called recursive if it calls itself.

Reuse: Programming modules are reused when they are copied from one application program and used in

another. Reusability is a property of module design that permits reuse.

Semantics: The part of a formal definition of a language that specifies the meanings attached to a

syntactically correct statement in the language.

Source program: Symbolic form of a computer program, which is the input to a translator.

Syntax: The part of a formal definition of a language that specifies legal combinations of symbols that make

up statements in the language.
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9.3 Data Types and Data Structures

Johannes J. Martin

The study of data types and data structures is a part of the discipline of computer programming. The terms

refer to the two aspects of data objects: their usage and their implementation, respectively. The study of data

types deals with the identification of (abstract) data objects in the context of a programming project and with

methods of their more or less formal specification; the study of data structures, on the other hand, is concerned

with the implementation of such objects using already existing data objects as raw material.

Concretely, the area addresses a basic problem of programming: the reduction of complex objects, such as

vectors, tensors, text, graphic images, sound, functions, directories, maps, corporate organizations, models of

ecosystems or machinery, or anything else that a program may have to deal with, to the only native objects of

digital computers: arrays of binary digits (bits). The fundamental problem of this reduction is managing

program complexity. Two organizational tools are essential to its solution: abstraction and hierarchical

structuring. Abstraction refers to the separation of what computational objects are used for from how they are

reduced to (i.e., implemented by means of) simpler ones. Hierarchical structuring refers to breaking this

reduction up into small manageable steps. Through several steps of abstraction more and more complex

objects are constructed, each one reduced to the previous, simpler generation of objects. This process ends

when the desired objects have been composed.
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Abstract Data Types

An abstract data type is one or more sets of computational objects together with some basic operations on

those objects. One of these sets is defined by the type either by enumeration or by generating operations and is

called the carrier set of the type. Customarily it is given the same name as the type. All other sets are called

auxiliary sets of the type. In exceptional cases a type may have more than one carrier set.

The heart of the specification of an abstract data type is the definition of its functions, their syntax and

semantics. Their syntax is specified by their functionalities and their semantics by algebraic axioms. For more

details see Martin [1986].

With sets A and B, the expression A ! B denotes the set of all functions that have the domain A and the

codomain B. Functions f 2 A! B (traditionally denoted by f: A! B) are said to have the functionality A! B.

The collection of basic operations does not need to be minimal. It should, however, be rich enough so that

all other operations that one might wish to perform on the objects of the carrier set can be expressed

exclusively by these basic operations. The type Boolean, for example, consists of the set of Boolean values,

Boolean ¼ {true, false}, with the operations not, and, and or.

In general, things are not quite this simple. To be useful for programming purposes, even the type Boolean

requires at least one additional function. This function, called a conditional expression, provides a choice of one

of two given values depending on a given Boolean value. It has the form:

f: Boolean 3 SomeType 3 SomeType ! SomeType

and, with a, b 2 SomeType, is defined by:

f (true, a, b) ¼ a and

f (false, a, b) ¼ b

The syntactical form of conditional expressions varies for different programming languages that provide this

construct. For example, in the language C it has the form:

Boolean ? SomeType : SomeType. /* with the result type of SomeType */

The set SomeType is an auxiliary set of the type Boolean.

Fundamental Data Types

The fundamental types listed next are supported by almost all modern high-level programming languages

(reference books on Pascal, Modula II, C, and Ada are listed among the references at the end of this section):

Integer, Real (sometimes called Float), Character, and Boolean

Since their carrier sets are ordered (one of the operations of these types is #), these types are also called scalar

types. All provide operations for comparing values; in addition, Integer and Real come equipped with the

usual arithmetic operations (+,�,*, /)and Boolean with the basic logical operations (not, and, or). Most

computers support these operations by hardware instructions. Thus, while bit arrays are the original native

objects of a digital computer, the fundamental scalar types may be viewed as the given elementary building

blocks for the construction of all other types.

Type Constructors

Enumerated Types

Beginning with Pascal, modern languages provide a rather useful constructor for scalar types, called

enumerated types. Enumerated types have finite (small) carrier sets that the programmer defines by

enumerating the constants of the type (specified as identifiers). For example, if the type Boolean were not

available in Pascal, its carrier set could simply be defined by:

type Boolean ¼ (false, true)
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In Pascal, enumerated types are automatically equipped with operations for comparison as well as with

the functions succ and pred; i.e., successor and predecessor. In the above example, succ(false) ¼ true,

pred(true) ¼ false; succ(true) and pred(false) are not allowed.

Records

Values of scalar types can be arranged into tuples by a construct called a record (also called a structure in some

languages). Into programming languages, records introduce the equivalent of the Cartesian product. Tuples

can be viewed as abstract data types. Consider pairs as an example:

The type Pairs:

Carrier set: Pairs,

Auxiliary sets: A, B;

Operations: pair 2 A 3 B ! Pairs;

first 2 Pairs ! A;

scnd 2 Pairs ! B;

where " a 2 A, b 2 B

first (pair (a, b)) ¼ a; scnd (pair(a, b)) ¼ b;

Using Pascal notation this type is defined by:

type Pairs ¼ record first: A; scnd: B end

By providing the so-called field names, first and scnd, the programmer implicitly chooses the names for the

selector functions. Pascal does not provide the function ‘‘pair.’’ Instead, it permits the declaration of variables

of type Pairs whose component values may be set (by assignment) and retrieved:

p: Pairs; {declaration of p as a variable of type Pairs}

p.first :¼ a; p.scnd :¼ b; {p now has the value of ‘‘pair(a,b)’’ above}

if p.first ¼ x then . . . else . . . {p.first is Pascals notation for ‘‘first(p)’’}

The sets A and B can be of any type including records. Furthermore, since there is no restriction on the

number of fields records may have, they can represent arbitrary tuples.

Arrays

Arrays permit the construction of simple function spaces, I ! A. The domain I, a scalar type — in some

languages restricted to a subset {0, 1,. . ., n} of the integers — is called the index set of the array; A is an

arbitrary type. In Pascal, the mathematical notation f 2 I ! A assumes the form:

f: array[I] of A

I has to be a finite scalar type (e.g., 0 ... 40). The function f can now be defined by associating values of type A

with the values of the domain I using the assignment operation:

f[i] :¼ a; where i 2 I and a 2 A

Application of f to a value j 2 I is expressed by f[j]. This expression has a value of type A and can be used

as such.

As with records, Pascal allows the naming of the function space I ! A by the definition:

type myFunctions ¼ array[I] of A

and the subsequent declaration of a specific function (array) by:

f: myFunctions

Functions of several arguments are represented by so-called multidimensional arrays:

f 2 I1 3 . . . 3 In ! A
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is defined by

f: array[I1,. . ., In] of A

Variant Records

Variant records model disjoint (also called tagged) unions. In contrast to an ordinary union C ¼ A ¨ B, a

disjoint union D ¼ A þ B is formed by tagging the elements of A and B before forming D such that

elements of D can be recognized as elements of A or of B. In programming, this amounts to creating

variables that can be used to house values of both type A and type B. A tag field, (usually) part of the

variable, is used to keep track of the type of the value currently stored in the variable. In Pascal, D ¼ A þ B

is expressed by:

type tagType ¼ (inA, inB) {an enumerated type};

D ¼ record

case kind: tagType of

inA: (aValue: A);

inB: (bValue:B);

end.

Variables of type D are now used as follows:

mix: D; {mix is declared to be of type D}

mix.kind :¼ inA;

mix.aValue :¼ a;.

. . .

if mix.kind ¼ inA

then {do something with mix.aValue, which is of type A}

else {do something with mix.bValue, which is of type B}

Conceptually, only one of the two fields, mix.aValue or mix.bValue, exists at any one time. The proper use of

the tag is policed in some languages (e.g., Ada) and left to the programmer in others (e.g., Pascal).

An Example of a User-Defined Abstract Data Type

Most carrier sets are assumed to contain a distinguished value: error. Error is not a proper computational

object: a function is considered to compute error if it does not return to the point of its invocation due to some

error condition. Functions are called strict if they compute the value error whenever one or more of their

arguments have the value error.

The following example models a cafeteria tray stack with the following operations:

1. Create a new stack with n trays.

2. Remove a tray from a stack.

3. Add a tray to the stack.

4. Check if the stack is empty.

Specification:

Cts (cafeteria tray stacks) is the carrier set of the type;

Boolean and Integer are auxiliary sets;

newStack, remove, add, isEmpty are the operations of the type

where

newStack 2 Integer ! Cts; {create a stack of n trays}

remove, add 2 Cts ! Cts;

isEmpty 2 Cts ! Boolean;
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Axioms (logical expressions that describe the semantics of the operations): All functions are strict and, for

all non-negative values of n,

1. remove (newStack(n)) ¼ if n ¼ 0 then error else newStack(n � 1);

2. add(newStack(n)) ¼ newStack(n þ 1);

3. isEmpty (newStack(n)) ¼ (n ¼ 0).

These axioms suffice to describe the desired behavior of Cts exactly; i.e., using these axioms, arbitrary

expressions built with the above operations can be reduced to error or newStack(m) for some m.

Implementation:

For the representation of Cts (i.e., its data structure) we will choose the type Integer.

type Cts ¼ integer;

function newStack(n: Integer):Integer;

begin if n , 0 then error (‘n must be .¼ 0’) else newStack:¼ n end;

function remove (s: Cts):Cts;

begin if s ¼ 0 then error (‘stack empty’) else remove:¼ s – 1 end;

function add (s: Cts):Cts; begin add:¼ s þ 1 end;

function isEmpty (s: Cts):Boolean; begin isEmpty:¼ (s ¼ 0) end;

Above, ‘‘error’’ is a function that prints an error message and stops the program.

Dynamic Types

The carrier sets of dynamic types contain objects of vastly different size. For these types, variables (memory

space) must be allocated dynamically; i.e., at run time, when the actual sizes of objects are known. Examples

for dynamic types are character strings, lists, tree structures, sets and graphs. A classical example of a dynamic

type is a special type of a list: a queue. As the name suggests, a queue object is a sequence of other objects

with the particular restrictive property that objects are inspected at and removed from its front and added to

its rear.

Specification of Queues

Carrier set: Queues

Auxiliary sets: Boolean, A (A contains the items to be queued)

Operations: newQueue, isEmpty, queue, pop, front

1. newQueue 2 Queues; {a new, empty queue}

2. isEmpty 2 Queues ! Boolean; {check if a queue is empty}

3. queue 2 A · Queues ! Queues; {add an object to the rear of a queue}

4. front 2 Queues ! A; {return front element for inspection}

5. pop 2 Queues ! Queues; {remove front element from a queue}

Axioms: All functions are strict and, for a 2 A and s 2 Queues,

isEmpty (newQueue); (i.e., isEmpty (newQueue) is true)

not isEmpty (queue(a, s)); (i.e., isEmpty (queue(a, s)) is false)

pop (newQueue) ¼ error;

pop (queue(a, s)) ¼ if s ¼ newQueue

then newQueue else queue(a, pop(s));

front(newQueue) ¼ error;

front(queue(a, s)) ¼ if s ¼ newQueue

then a else front(s).
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Implementation of Queues

The following implementation represents queues of the form queue(a, s) by the ordered pair (a, s) and a new,

empty queue by the null pair nil. For the moment we assume that a data type, Pairs, which provides pairs on

demand at run time, already exists and is defined as follows:

Specification of Pairs

Carrier Set: Pairs

Auxiliary sets: Boolean, A

Operations: nil, isNil, pair, first, scnd

1. nil 2 Pairs, {a distinguished pair, the null pair}

2. isNil 2 Pairs ! Boolean, {test for the null pair}

3. pair 2 A 3 Pairs ! Pairs, {combine an item and a pair to a new pair}

4. first 2 Pairs ! A, {the first component; i.e., the item}

5. scnd 2 Pairs ! Pairs, {the second component; i.e., the pair}

Axioms: All functions are strict and, for a 2 A and p 2 Pairs,

isNil(nil); (i.e. isNil(nil) is true)

not isNil(pair(a,p)); (i.e. isNil(pair(a,p)) is false)

first (nil) ¼ error;

first(pair(a,p)) ¼ a;

scnd (nil) ¼ error;

scnd(pair(a,p)) ¼ p;

With pairs, queues may now be implemented as follows:

type Queues ¼ Pairs;

function newQueue :Queues; begin newQueue :¼ nil end;

function isEmpty (s: Queues) :Boolean; begin isEmpty :¼ (s ¼ nil) end;

function queue (x: A; s: Queues) :Queues; begin queue :¼ pair(x, s) end;

function pop (s: Queues) : Queues;

begin

if isNil(s)

then error (‘cannot pop empty queue’)

else if scnd(s) ¼ nil

then pop :¼ nil

else pop :¼ pair (first(s), pop (scnd(s)))

end;

function front (s: Queues) : A;

begin

if isNil(s)

then error (‘an empty queue does not have a front’)

else if scnd(s) ¼ nil

then front :¼ first(s)

else front :¼ front(scnd(s))

end;

The logic of these programs echoes the axioms. Such implementations are sometimes not very efficient but

are useful for prototype programs, since the probability of their correctness is very high. The queues behave as

values; i.e., the functions queue(a,s) and pop(s) do not modify the queues s but compute new queues; after the

execution of, e.g., s1 :¼ pop(s) there are two independent queue values, s and s1. This is exactly the behavior

postulated by the axioms. However, practical applications frequently deal with mutable objects, objects that can

be modified. With mutable objects memory may often be used more efficiently, since it is easier to decide

when a memory cell, used, e.g., for storing an ordered pair, is no longer needed and thus may be recycled.

If queues are viewed as mutable objects, the operations queue and pop are implemented as procedures
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that modify a queue. In order to apply the style of axioms introduced above for the description of mutable

objects, these objects are best viewed as containers of values. The procedure queue(a, qobj), for example, takes

the queue value, e.g., s, out of the container qobj, applies the function queue(a, s) (described by the axioms),

and puts the result back into qobj.

If more than one place in a program needs to maintain a reference to such an object, the object must be

implemented using a head cell: a storage location that represents the object and that is not released.

The following implementation uses a head cell with two fields, one pointing to the front and one to the rear of

the queue. We assume that the type Pairs has two additional functions:

6. pairH 2 Pairs 3 Pairs ! Pairs; {create a pair with 2 pair fields}

7. firstH 2 Pairs ! Pairs; {retrieve the first field of such a 2-pair cell}

and three procedures:

8. setfirstH (p: Pairs; q: Pairs); {change the firstH field of q to p}

9. setscnd (p: Pairs; q: Pairs); {change the scnd field of q to p}

10. delete (s: Pairs) {free the storage space occupied by s}

type Queues ¼ Pairs;

procedure newQueue(var q : Queues); begin q :¼ pairH(nil, nil) end;

function isEmpty (s : Queues) : Boolean; begin isEmpty :¼ (firstH(s) ¼ nil) end;

procedure queue (x : A; s : Queues);

var temp: Pairs;

begin temp :¼ pair(x, nil);

if isNil(firstH(s)) then setfirstH(temp, s) else setscnd(temp, scnd(s));

setscnd (temp, s);

end;

function pop (s : Queues) : Queues;

var temp: Pairs;

begin

if isNil(firstH(s))

then error (‘cannot pop empty queue’)

else begin temp :¼ firstH(s); setfirstH(scnd(temp), s); delete(temp) end

end;

function front (s : Queues) : A;

begin

if isNil(firstH(s))

then error (‘an empty queue does not have a front’)

else front:¼ first(firstH(s))

end;

Compared to the value implementation given earlier, this implementation improves the performance of

front and pop from O(n) to O(1).

An algorithm has O( f(n)) (pronounced: order f(n) or proportional to f(n)) time performance if there exists

a constant c, such that, for arbitrary values of the input size n, the time that the algorithm needs for its

computation is t # c · f(n).

Most modern programming languages support the implementation of the type Pairs (n-tuples) whose

instances can be created dynamically. It requires two operations, called new and dispose in Pascal, that

dynamically allocate and deallocate variables, respectively. These operations depend on the concept of a

reference (or pointer), which serves as a name for a variable. References always occupy the same storage space

independently of the type of variable they refer to. The following implementation of Pairs explains the

concept.
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type CellKind ¼ (headCell, bodyCell);

Pairs ¼ ^PairCell; {Pairs are references to PairCells}

PairCell ¼ record tail: Pairs;

case kind: CellKind of

headCell: (frnt: Pairs);

bodyCell: (val: A)

end;

function pair(item: A; next:Pairs):Pairs;

var p: Pairs;

begin

new(p, bodyCell); {a new ‘‘bodyCell’’ is created and accessible through p}

p^.kind :¼ bodyCell; p^.val :¼ item; p^.tail :¼ next; pair :¼ p

end;

function first(p: Pairs):A;

begin

if p ¼ nil then error(‘. . .’)

else if p^.kind ¼ bodyCell then first:¼ p^.val else error(‘. . .’)

end;

procedure setfirstH(p, q:Pairs);

begin

if q ¼ nil then error(‘. . .’)

else if q^.kind ¼ headCell then q^.frnt:¼ p else error(‘. . .’)

end;

(Note: The Pascal constant nil denotes the null pointer, a reference to nothing.)

function isNil(p: Pairs): Boolean; begin isNil :¼ (p ¼ nil) end;

The reader should have no difficulty filling in the rest of the implementation of Pairs. Most of the algorithms on

dynamic data structures were developed in the 1960s; still, an excellent reference is Knuth [1973].

More Dynamic Data Types

Stacks and Lists with a Point of Interest

A queue is the type of (linear) list used to realize first-come-first-served behavior. In contrast, another linear

type, the stack, realizes last-come-first-served behavior. Sometimes it is necessary to scan a list object without

dismantling it. This is accomplished by giving the list a point of interest (see Figure 9.14). This requires four

additional operations:

restart(l: List); {moves point of interest to beginning of list l}

current(l:List):A; {returns object at point of interest}

advance(l:List); {advances point of interest by one toward end of list l}

endOfList(l: List): Boolean; {true, if end of list has been reached}

The type can be extended further by allowing insertions and deletions at the point of interest.

FIGURE 9.14 A list implementation with a point of interest and access to front and rear.
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N-ary, Binary, and General Trees

An n-ary tree is the smallest set containing the empty tree and all ordered nþ1-tuples t ¼ (a, t1,. . ., tn) where a

is member of some auxiliary set and the ti are n-ary trees. The element a is called the root element or simply the

root of t and the ti are called subtrees of t.

Note that in this sense, a list is a unary tree. Binary trees used as searchtrees access finite ordered sets.

A binary searchtree is a tree that accesses a set. A tree t accesses a set s if the root of t is some element a of s,

and s1, called the left subtree of t, accesses the subset {xj x 2 s and x , a} and s2, called the right subtree of t,

accesses the subset {xjx 2 s and x . a}.

If the left and right subtrees of the above definition are of similar size, then the time for finding an element

in the set is proportional to log(n) where n is the cardinality of the set.

Quaternary trees (usually called quad trees) and octonary trees (called oct trees) are used to access two-

dimensionally and three-dimensionally organized data, respectively. As with lists, the implementation of n-ary

trees is based on nþ1-tuples. A minimal set of operations for binary trees includes:

nilTree 2 Trees; {the empty tree, represented by nil}

isNil 2 Trees ! Boolean; {test if tree is empty}

tree 2 A 3 Trees 3 Trees ! Trees; {build tree from an item and subtrees}

root 2 Trees ! A; {retrieve root item of tree}

left 2 Trees ! Trees; {retrieve left subtree}

right 2 Trees ! Trees; {retrieve right subtree}

A general tree is the smallest set containing all order pairs t ¼ (a,s) where a is a member of some auxiliary

set and s is a possibly empty list of general trees. The element a is called the root element or simply the root of t

and the trees in s are called subtrees of t.

Note that there is no empty general tree; the simplest tree has a root and an empty list of subtrees. General

trees are useful for the representation of hierarchical organizations such as the table of contents of a book or

the organization of a corporation.

Functions, Sets, Relations, Graphs

Functions with reasonably small domains can be represented by arrays, as described earlier. Similarly, sets

formed from a reasonably small universal set, relations on small domains, and graphs with not too many

vertices can be represented by their characteristic functions implemented as bit arrays. In fact, Pascal provides

a type constructor for sets that are derived from small universal sets.

Frequently domains are far too large for this approach. For example, the symbol table that a compiler of a

programming language maintains is a function from the set of valid identifiers to some set of attributes. The

set of valid identifiers is infinite, or, if some length limitation is imposed, finite but exceedingly large (there are

nearly 300 billion identifiers of 8 characters or less). For most of its domain a symbol table returns the default

value new or not found. It is therefore economical to store the mapping only for those domain values that map

to a value different from the default value. A function of this sort is usually specified as follows:

Specification of Functions:

Carrier Set: Functions

Auxiliary sets: Dom, Cod (domain and codomain)

Operations: newFun, apply, update

1. newFun 2 Functions, (returns default everywhere)

2. apply 2 Functions 3 Dom ! Cod,

3. update 2 Functions 3 Dom 3 Cod ! Functions;

Axioms: All functions are strict and, for x,z 2 Dom, y 2 Cod and f 2 Functions,

apply(newFun, x) ¼ default;

apply (update(f,x,y), z) ¼ if x ¼ z then y else apply (f, z);
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An implementation based on these axioms amounts to representing a function as a list of those of its

individual mappings that differ from default and leads to an O(1) performance for update and an O(n)

performance of apply. Better is an implementation by binary searchtrees with a performance of O(log(n)) for

both apply and update.

Hashing

The fastest method for the implementation of functions is hash coding or hashing. By means of a hash function,

h 2 Dom! 0 .. k � 1, the domain of the function is partitioned into k sections and each section is associated

with an index. For each partition a simple list implementation is used and the lists are stored in an array A:

array[1 .. k – 1]. In order to compute apply(f,x) or update(f,x,y), the list at A[hash(x)] is searched or updated.

If the hash function has been properly chosen and if k and the number of function values different from default

are of similar size, then the individual lists can be expected to be very short and independent of the number of

nondefault entries of the function; thus performance for apply and update is O(1).

The above discussion applies also to sets, relations, and graphs, since these objects can be represented by

their characteristic functions.

Object-Oriented Programming

In languages that support object-oriented programming, classes (i.e., types) of objects are defined by specifying

(1) the variables that each object will own as instance variables and (2) operations, called methods, applicable

to the objects of the class. As a difference in style, these methods are not invoked like functions or procedures,

but are sent to an object as a message. The expression [window moveTo: x: y] is an example of a message in the

programming language Objective C, a dialect of C. Here the object window, which may represent a window on

the screen, is instructed to apply to itself the method moveTo using the parameters x and y.

New objects of a class are created—usually dynamically—by factory methods addressed to the class itself.

These methods allocate the equivalent of a record whose fields are the instance variables of the object and

return a reference to this record, which represents the new object. After its creation an object can receive

messages from other objects.

To data abstraction, object-oriented programming adds the concept of inheritance: from an existing class

new (sub)classes can be derived by adding additional instance variables and/or methods. Each subclass

inherits the instance variables and methods of its superclass. This encourages the use of existing code for

new purposes. As an example, consider a class of a list objects. Each object has two instance variables

pointing to the front and the rear of the list. In Objective C, the specification of the interface for this list

class, i.e., the declaration of the instance variables and headers (functionalities) of the methods, has the

following form:

@interface MyLists: Object /* Object is the universal (system) class from which

all classes are derived directly or indirectly */

{ /* declaration of the instance variables;

listRef front; listRef is the type of a pointer to a list assumed

listRef rear; to be defined elsewhere */

}

– initList; /* initializes instance variables with null pointers */

– (BOOL) isEmpty; /* test for empty list; note: parameter list is implied */

– add: (item) theThing; /* item is the type of things on the list */

– pop;

– (item) front;

@end
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As a companion of the interface file there is also an implementation file that contains the executable code

for the methods of the class. A list with a point of interest can be defined as a subclass of MyList as follows:

@interface ScanList : MyList /* ScanList is made a subclass of MyList */

{ listRef pointOfInterest; }

– restart;

– (BOOL)endOfList;

– advance;

– (Item)current;

@end

If we also need a list that can add and delete at the point of interest, we define:

@interface InsertionList : ScanList

{ } /* there are no new instance variables */

– insert: (item) theThing;

– shrink; /* removes item at the point of interest */

@end

If a subclass defines a method already defined in the superclass, the new definition overrides the old one.

Suppose we need a list where items are kept in ascending order:

@interface SortedList : MyList

{ }

– add : (item) theThing; /* this version of add inserts theThing at the proper

place to keep the list sorted */

@end

Defining Terms

Abstract data type: One or more sets of computational objects together with some basic operations on

those objects. One of these sets is defined by the type either by enumeration or by generating operations

and is called the carrier set of the type. Customarily it is given the same name as the type. All other sets

are called auxiliary sets of the type. In exceptional cases a type may have more than one carrier set.

Binary searchtree: A tree that accesses a set. A tree t accesses a set s if the root of t is some element a of s,

and s1, called the left subtree of t, accesses the subset {x j x 2 s and x , a}, and s2, called the right subtree

of t, accesses the subset {x j x E s and x . a}.

Functionality: With sets A and B, the expression A ! B denotes the set of all functions that have the

domain A and the codomain B. Functions f 2 A! B (traditionally denoted by f: A! B) are said to have

the functionality A ! B.

General tree: The smallest set containing all ordered pairs t ¼ (a, s) where a is member of some auxiliary

set and s is a possibly empty list of general trees. The element a is called the root element or simply the

root of t and the trees in s are called subtrees of t.

N-ary tree: The smallest set containing the empty tree and all ordered nþ1-tuples t ¼ (a, t1,. . ., tn) where a

is member of some auxiliary set and the ti are n-ary trees. The element a is called the root element or

simply the root of t and the ti are called subtrees of t.

O(f(n)) performance: An algorithm has O(f(n)) (pronounced: order f(n) or proportional to f(n)) time

performance if there exists a constant c, such that, for arbitrary values of the input size n, the time that

the algorithm needs for its computation is t # c · f(n).

Strictness: Most carrier sets are assumed to contain a distinguished value: error. Error is not a proper

computational object: a function is considered to compute error if it does not return to the point of its

invocation due to some error condition. Functions are called strict if they compute the value error

whenever one or more of their arguments have the value error.
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Further Information

There is a wealth of textbooks on data structures. Papers on special aspects of data types and their relation to

programming languages are found regularly in periodicals such as ACM Transactions on Programming

Languages and Systems, the Journal of the Association for Computing Machinery, IEEE Transactions on

Computers, IEEE Transactions on Software Engineering, or Acta Informatica.

9.4 The Use of Hardware Description Languages in Computer Design

Michael D. Ciletti

Introduction

Engineers use hardware description languages (HDLs) and electronic design automation (EDA) tools to design

the integrated circuits of high-performance computers, signal/image processors, and other complex digital

systems. Software tools execute major design steps while describing, analyzing, and managing a vast amount of

data. At the heart of the design flow for an integrated circuit is a computer language that lets the designer

model the circuit’s structure and functionality. Classical design methodology relied heavily on schematics as

the vehicle for describing a design, but today language-based descriptions dominate the design flow. Modern

design methodology has made possible designs of enormous size and complexity accompanied by significant

gains in the designer’s productivity and efficiency.

Productivity Gains

No engineer alone can correctly manage the details of state-of-the-art integrated circuits (ICs) containing

millions of transistors, but an EDA tool using a language-based description of the design easily handle the

complexity and size of their databases. Even small designs rely on HDL-based descriptions because designers

have to quickly produce correct designs targeted for an ever-shrinking market and window-of-opportunity for

new products. Language-based designs are portable and independent of technology, allowing design teams to

migrate designs to keep pace with improvements in technology. HDLs are a convenient medium for

integrating third-party intellectual property with a proprietary design.

Although these benefits are important, the most significant gain is had by using HDLs in a design paradigm

that relies on synthesis tools to automatically create a circuit realization from an HDL description of

functionality. Today designers build a software prototype/model of the design, verify its functionality, and then

use a synthesis tool to automatically optimize the circuit and create a netlist in a physical technology. HDLs

and synthesis tools let an engineer focus attention on functionality, rather than individual transistors or gates.

HDLs support the engineer by automatically synthesizing a circuit that will realize the desired functionality
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while meeting constraints. Moreover, alternative architectures can be generated from a single HDL model and

evaluated quickly to perform design tradeoffs.

A hardware description language can serve as a platform for several tools: design entry, design verification,

fault analysis/simulation, timing analysis/verification, and synthesis. This scope of use eliminates the need to

translate descriptions between languages used by different tools, or to translate databases.

Two hardware description languages are widely used and supported by several EDA tool vendors:

VerilogTM[1] and VHDL[2], the VHSIC hardware description language. Both languages are IEEE standards.

Analog design languages, such as Spice [3], are used in verifying critical timing paths of a design, but are

impractical when used to verify the functionality of a large scale circuit. Mixed analog and digital languages

are emerging from EDA vendors [4], and system-level design languages (e.g., SystemVerilog) are in

development [5]. This article will focus attention on the VerilogTM HDL [6] for computer design, and

introduce its important features.

Design Methodology

Before presenting some details of hardware description languages, we will consider where they fit in the design

process. A simplified version of a language-based design flow for an application specific integrated circuit (ASIC)

is shown in Figure 9.15. The functionality, timing requirements, operational considerations, and other relevant

attributes of a design must be specified first. The design’s speed, silicon area, power, and other constraints may be

part of the specification. After the features and performance of a computer have been specified, designers

partition the design along functional lines to create manageable design tasks then enter the design flow by

describing the design in a computer-based hardware description language, usually either Verilog or VHDL.

Hardware description languages provide the design team with a spectrum of design styles ranging from

explicit structural descriptions to implicit, abstract, or algorithmic descriptions. Structural descriptions

compose a design by interconnecting simple structural objects, such as gates, or more complex functional

units, e.g., a bit-slice microcontroller. Structural composition is similar to placing components on a schematic,

but the description is a readable text instead of a schematic. Abstract models are also written in a readable text

format, but without structural detail (examples will clarify these distinctions).

The functionality of a design is verified (step 4) either by simulation or by formal methods. The design flow

iterates back to step 3 until the design has been verified. The design is integrated and verified to meet overall

functional specifications (step 5) before being signed off for synthesis (step 6). Then the language-based

description is passed off to a synthesis tool, which optimizes the logic and maps the abstract circuit into

specific hardware, such as an FPGA or a cell library of gates and other parts (step 7). As an additional

precaution, the functionality of the synthesized circuit can be compared to that of the original behavioral

description to confirm their equivalence (step 8).

Simulation / Functional
Verification

Design Entry: Verilog
Behavioral Modeling

Design Integration and
Verification

Post-Synthesis
Design Validation

Post-Synthesis
Timing Verification

Design Partition
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13
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Sign-Off

6
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Production-Ready
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FIGURE 9.15 Design flow for an ASIC methodology.
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Although the synthesis process is intended to meet timing specifications, the synthesized circuit is checked

to verify that speeds are adequate on critical paths (step 9). Failure at this step requires that the design be

resynthesized until timing margins are met. This may lead to (1) transistor resizing, (2) architectural

modifications/substitutions, (3) consumption of more silicon area, and (4) consumption of more power. The

synthesized gate-level design is analyzed to confirm that it has no undetectable faults; test patterns are also

generated at this point in the flow (step 10). The issue of testability questions whether the chips that come off

the fabrication line can in fact be tested to verify that they operate correctly. Testing considers process-induced

faults, not design errors. The problem is daunting, for an ASIC chip might have millions of transistors, but

only a few hundred package pins that can be used to probe the internal circuits. Here the designer might

embed additional special circuits that guarantee that an ASIC can be tested, either alone or on a printed circuit

board. This step in the design flow determines the strategy that will be implemented to ensure testability.

In cell-based technology the individual cells are integrated to form a global mask set by a computer-based

tool that places and interconnects (routes) the individual gates on a template of the silicon chip (step 11).

Physical design rules are checked (step 12) to ensure that the geometrical constraints imposed by the

fabrication technology are satisfied. Rules governing electrical issues, such as crosstalk, are dealt with at this

step. Finally, parasitic capacitance induced by the layout are extracted by a software tool and then used to

produce a more accurate verification of the electrical characteristics and timing performance of the design

(step 13). Finally, sign-off is achieved (step 14) and approval is given to produce the production-ready mask

set. The shaded steps in the design flow in Figure 9.15 are supported by computer-based tools coupled with a

hardware description language. For steps 11 to 13 the description of the design consists of the geometric data

used in the photomasking steps of the fabrication process.

Design Entry

Design entry creates a language-based description of a digital circuit. The description may be structural,

behavioral, or a mixture of these basic styles. A structural description consists of interconnected functional

objects, such as gates. A behavioral description consists of an abstract representation of signal relationships

with little or no apparent correspondence to physical hardware.

Example 9.1. The Verilog-based description given below as Shift_Register_1 corresponds to the 4-bit shift

register shown in Figure 9.16. The flip-flops (Dflop) themselves are previously designed functional units, used

here as ‘‘instantiated’’ design objects.

module Shift_Register_1 (Data_out, Data_in, clock, reset);

input clock, reset;

input [3:0] Data_in;

output Data_out;

wire w1, w2, w3;

Dflop M3 (w3, Data_in, clock, reset);

Dflop M2 (w2, w3, clock, reset);

Dflop M1 (w1, w2, clock, reset);

Dflop M0 (Data_out, w1, clock, reset);

endmodule

clock

Data_in

Dflop

R

QD
Dflop

R

QD
Dflop

R

QD
Dflop

R

QD

reset

Data_outw3 w2 w1
M3 M2 M1 M0

FIGURE 9.16 Shift register example.
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Instantiation is analogous to placing and interconnecting components on a PC board. The instantiations in

Shift_Register_1 list four distinctly named and interconnected copies of Dflop to form the structure of a shift

register. Also note that each instance of Dflop bears a name, M0 ... M3.

The description of Shift_Register_1 in Example 9.1 is said to be structural because it consists of functional

objects and their structural connections, i.e., the individual flip-flops and the structural relationships between

their ports (terminals). (Note: the bold-faced items are reserved/keywords of the language). In the Verilog

HDL a description is encapsulated by the keyword pair module ... endmodule. The code entered between

these keywords consists of semicolon-terminated statements which, as a whole, describe the relationship

between signals entering and leaving the module. The description of Shift_Register_1 also reveals the language’s

ability to represent hierarchical decomposition of a design, for modules M0... M3 are considered to be ‘‘child’’

modules of a ‘‘parent’’ module, Shift_Register_1. Modules that are instantiated within other modules are said

to be ‘‘nested’’ in the parent module. The mechanism of nesting modules within other modules creates a

natural hierarchy of the design. Nesting can be done to any depth supported by a simulator.

It is important to note that the statements in a language description of a module do not specify a sequence

of execution like those of other programming languages, such as C. Instead, a Verilog mode describes a

relationship between signals. In this example the relationship is imposed by the declared structure of the

design. Verilog descriptions represent a circuit, and can be used with a simulator to reveal the signals that

would evolve under the influence of stimulus.

The interface between a module and its environment is called a port. The Verilog language supports three

port modes: input, output and inout (bi-directional). An input port is driven by its environment; the signal

value at the port is determined external to the module. The value of a signal at an output port is determined by

the module itself, and may be referenced by the environment. In Shift_Register_1 the ports for Data_out and

Data_in are declared as 4-bit vectors, and those of clock and reset are declared as (default) scalars.

The declaration of a module must identify the ports and their modes. In this example the order in which

signals are listed in the port determined how external signals are bound to the description within the module

(name association is an option too, but won’t be discussed here).

The variables used in a design can correspond to signals in a circuit; variables may have one of four logic

values: 0, 1 x, or z, where x is an ambiguous value (0 or 1) and z denotes high impedance (unconnected). Note

that the declaration in Shift_Register_1 includes wires (w1, w2, w3) used to connect the flip-flops. A complete

description of the design requires a declaration of Dflop.

Example 9.2. For illustration an abstract description of a D-type flip-flop having asynchronous reset is

given below.

module Dflop (q_out, data, clock, reset);

output q_out;

input data, clock, reset;

reg q_out;

always @ (posedge clock or negedge reset) begin

if (reset ¼¼ 0) q_out ,¼ 0; else q_out ,¼ data;

end

endmodule

The ports of Dflop are scalars, and the description consists of a cyclic behavior declared by the keyword

always and conditioned by the active edges of clock and reset. Edge semantics are built into the language for

rising (posedge) and falling (negedge) edges. Cyclic behaviors (e.g., always @ (...) begin ... end) execute when

their event control expression (e.g., posedge clock or negedge reset) changes. If clock has a rising edge or if

reset has a falling edge, the statement (if (reset ¼¼ 0)...) executes. If reset is low, then the output is set to 0;

otherwise, the operator (,¼) assigns to q_out the value of data.

The statements associated with a cyclic behavior execute in sequence. After they execute, the activity flow

(under simulation) returns to the event control expression and activity suspends until the expression has an

event (i.e., changes). Then the cycle repeats. This type of simulation activity is said to be ‘‘event-driven,’’
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because computations occur only when signals change. Event-driven simulation is relatively efficient and

capable of simulating circuits whose size precludes analog simulation with SPICE or similar tools.

Note that the style used here declares the functionality of a flip-flop but does not describe a gate-level

(structural) realization. In this style, variables that are assigned value by a cyclic behavior must be declared as a

‘‘register’’ variable. One type of a register variable is a reg. A register variable retains its value until it is reassigned a

value when a statement executes. They are required by a cyclic description because, in the absence of gate-level

models, variables that abstractly model signals must retain a logic value as time evolves in simulation.

Verilog contains a family of primitives having predefined functionally corresponding to common

combinational logic gates, pass transistors, pull-up/down loads, and transmission gates. The language also

supports user-defined combinational and sequential primitives in a truth-table format. Primitives can be

instantiated with or without propagation delay. In general, primitives can be used to build structural models

having a desired functionality.

Example 9.3. A structural model of a transparent latch formed by a cross-coupled pair of nand primitive gates

will be presented next. The gates, G1 and G2, are instantiated with unit propagation delay (#1), and the

corresponding schematic is shown in Figure 9.17.

module Nand_Latch (q_out, q_out_bar, preset_bar, clear_bar);

output q_out, q_out_bar;

input preset_bar, clear_bar;

nand #1 G1 (q_out, preset_bar, q_out_bar);

nand #1 G2 (q_out_bar, clear_bar, q_out);

endmodule

The Verilog HDL offers alternative behavioral descriptions of the same functionality. Designers using

synthesis tools rely primarily on (abstract) behavioral descriptions and let the tools determine the structure

and physical implementation that meets the performance specifications. One style of behavioral modeling of

combinational logic relies on language operators and ‘‘continuous assignment’’ statements.

Example 9.4. Consider a circuit that compares two 2-bit words, A and B, and asserts three signals indicating

whether A is less than B, equal to B, or greater than B. A designer could develop Boolean algebraic equations

describing the circuit, and then use language operators to write the corresponding Verilog description given

below, where ‘‘~’’ denotes bitwise complement, ‘‘j’’ denotes bitwise-or, and ‘‘&’’ denotes bitwise-and.

module Comparator_1 (A_lt_B, A_gt_B, A_eq_B, A1, A0, B1, B0);

output A_lt_B, A_gt_B, A_eq_B;

input A1, A0, B1, B0;

assign A_lt_B ¼ (~A1) & B1 j (~A1) & (~A0) & B0 j (~A0) & B1 & B0;

assign A_gt_B ¼ A1 & (~B1) j A0 & (~B1) & (~B0) j A1 & A0 & (~B0);

preset_bar

clear_bar

q_out1

1 q_out_bar

G1

G2

FIGURE 9.17 Schematic for a NAND latch.
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assign A_eq_B ¼ (~A1) & (~A0) & (~B1) & (~B0) j (~A1) & A0 & (~B1) & B0 j A1 & A0 & B1 &

B0 j A1 & (~A0) & B1 & (~B0);

endmodule

The model in Comparator_1 is equivalent to a gate-level description, and is referred to as ‘‘implicit

combinational logic.’’ Continuous assignments use abstract expressions to describe a relationship between the

value of a target variable, e.g., A_lt_B and other variables. A simulator will set up a monitoring mechanism so

that whenever the right-hand side expression of a continuous assignment changes during simulation, the left-

hand side is automatically updated.

Example 9.5. The continuous assignments in the previous example have an alternative and simpler form that

are more useful when the datapath is large. In Comparator_2 the expressions on the right-hand side of the

assignments are treated as Boolean values that are either true (1) or false (0). Note that, in contrast to the

description of Comparator_1, the size of the description of Comparator_2 is independent of the wordlength,

which is declared with the keyword parameter. The relational operators (,, ., ¼¼) are built into the

language and automatically accommodate arbitrary word size.

module Comparator_2 (A_lt_B, A_gt_B, A_eq_B, A, B);

parameter word_length ¼ 16;

output A_lt_B, A_gt_B, A_eq_B;

input [word_length-1:0] A, B;

assign A_lt_B ¼ (A , B);

assign A_gt_B ¼ (A . B);

assign A_eq_B ¼ (A ¼¼ B);

endmodule

An alternative description of the comparator consists of an algorithm written within an abstract cyclic

behavior. Comparator_3 has the same functionality as the previous examples.

module Comparator_3 (A_lt_B, A_gt_B, A_eq_B, A, B);

parameter word_length ¼ 16;

output A_lt_B, A_gt_B, A_eq_B;

input [word_length-1:0] A, B;

reg A_lt_B, A_gt_B, A_eq_B;

always @ (A, B) // Cyclic behavior

begin

A_lt_B ¼ 0;

A_gt_B ¼ 0;

A_eq_B ¼ 0;

if (A¼¼B) A_eq_B ¼ 1;

else if (A . B) A_gt_B ¼ 1;

else A_lt_B ¼ 1;

end

endmodule

The model in Comparator_3 does not have an obvious gate-level counterpart. However, the algorithm is

readable, and clearly expresses the functionality intended by the designer. A synthesis tool will create an

implementation that is identical or equivalent to that synthesized for Comparator_2.

Structural descriptions are useful in partitioning a large design. Continuous assignments are useful for

modeling combinational logic, but this style can be cumbersome when the logic involves many variables.

Consequently, the contemporary emphasis is on abstract behavioral descriptions of functionality or

algorithmic descriptions, using language operators and procedural constructs without structural details.
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Example 9.6. An alternative behavioral model of the shift register presented in Example 9.1 is given below to

illustrate the compact representation that is supported by a language description. If the shift register has a 32-

bit word length the model parameter, word_length, can be edited to accommodate a particular datapath. The

concatenation operator, {...}, forms a vector (bus) by aggregating objects. In this example the assignment to

Data_Reg clearly represents the register transfers that must occur at each clock cycle.

module Shift_Register_2 (Data_in, Data_out, clock, reset);

input Data_in, clock, reset;

output Data_out;

parameter word_length ¼ 32;

reg [word_length-1: 0] Data_reg;

assign Data_out ¼ Data_reg[0];

always @ (negedge reset or posedge clock)

begin

if (reset ¼¼ 0) Data_reg ,¼ 0;

else Data_reg ,¼ {Data_in, Data_reg[word_length-1:1]};

end

endmodule

Note: All of the above examples are written in a style that can be synthesized automatically by a synthesis tool

for a given word size.

Functional Verification

The functionality of an integrated circuit can be verified using simulators or formal verification tools, with the

latter being essential for large circuits. We will illustrate only simulation. One attractive feature of a hardware

description language is that the same language can be used to describe a design and to write a testbench that

verifies its functionality. A Verilog testbench is itself a module, and it contains an instantiation of the model

that is to be verified along with statements that stimulate the model under the control of a simulator.

Example 9.7. A Verilog model of a three-bit, up-down counter with controls to load data and disable the count

action is given below, along with a simple testbench. The results of simulating up_down_counter with this

testbench are shown in Figure 9.18.

module up_down_counter (Count, Data_in, count_up, load, counter_on, clock, reset);

input count_up, load, counter_on, clock, reset;

input [2: 0] Data_in;

output [2: 0] Count;

reg [2: 0] Count;

always @ (posedge reset or posedge clock)

if (reset ¼¼ 1) Count ,¼ 0; else

if (load ¼¼ 1) Count ,¼ Data_in; else

if (counter_on ¼¼ 1) begin

if (count_up ¼¼ 1) Count ,¼ Count þ1;

else Count ,¼ Count –1;

end

endmodule

module test_up_down_counter ();

wire [2:0] Count;

reg [2:0] Data_in;

reg count_up, load, counter_on, clock, reset;

up_down_counter M1 (Count, Data_in, count_up, load, counter_on, clock, reset);
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initial #200 $finish;

initial begin clock ¼ 0; forever #5 clock ¼ ~ clock; end

initial fork

begin Data_in ¼ 3; #100 Data_in ¼ 2; end

begin reset ¼ 0; #5 reset ¼ 1; #3 reset ¼ 0; end

begin #5 load ¼ 1; #30 load ¼ 0; # 120 load ¼ 1; #10 load ¼ 0; end

begin #10 count_up ¼ 1; #100 count_up ¼ 0; end

begin counter_on ¼ 0; #55 counter_on ¼ 1; end

join

endmodule

The testbench applies the prescribed input signals to up_down_counter, and selected output signals are

displayed by the Silos IIITM simulator [7]. The testbench demonstrates the action of the load, counter_on, and

count_up signals. An indefinite loop statement (forever) is used to describe a clock signal. The testbench

includes a single-pass behavior (keyword: initial) to describe the input waveforms. A single-pass behavior is

similar to a cyclic (always) behavior. Its statements execute in sequence, subject to timing controls (e.g., #5),

but the behavior executes only once. It expires after the last statement has executed. The Verilog fork ... join

construct describes parallel activity threads having a list of assignment statements, one for each input control

signal. In a given thread an assignment of value to a control signal has to wait until the previous statement in

the thread has executed. Thus, the delay shown with a statement is relative to the completion of the previous

statement. Because the behavior generating the clock signal is an indefinite loop, a built-in systems task,

$finish, is used to terminate the simulation after 200 time steps and return control to the operating system.

The testbench exercises only a few signal patterns. In general, testbenches require careful, systematic

development to provide a high level of confidence in the design.

Design Synthesis

Verilog descriptions of combinational logic, state machines, and other sequential circuits can be synthesized

routinely by synthesis tools offered by several vendors.

FIGURE 9.18 Simulation results for a Verilog model of an up-down counter.
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Example 9.8. The results of synthesizing up_down_counter are shown in Figure 9.19. The synthesis engine

(Synopsys Design CompilerTM[8]) used a target technology of a standard cell library. The particular flip-flop

selected by the tool consists of a gated D-type flip-flop with active low reset, and an internal datapath that

feeds the output back to the input if the gate input (G) is low. Otherwise, the flip-flop operates like an

ordinary flip-flop.

Design Example

RISC SPM. As a final comprehensive example, key portions of a reduced instruction set computer (RISC)

will be modeled with the Verilog HDL to illustrate how the language is used in computer design. We will

discuss the overall architecture of the machine shown in Figure 9.20, RISC_SPM, a RISC-architecture stored

program machine. We will describe the functional units, and then model the machine’s ALU and controller.

The machine’s architecture consists of a processor, a controller, and memory that stores instructions and

data. The machine operates by fetching, decoding, and executing instructions to: (1) control the arithmetic

and logic unit (ALU), (2) change the contents of storage registers, (3) change the contents of the program

counter (PC), instruction register (IR) and the address register (ADD_R), (4) change the contents of the

memory, (5) fetch data and instructions from memory, and (6) control the data busses. The instruction

register holds the instruction that is currently being executed; the program counter contains the address of the

next instruction to be executed; the address register holds the address of the memory location that will be

addressed next by a read or write operation.

RISC SPM

Processor. The processor consists of registers, datapaths, control lines, and an ALU that performs

arithmetic and logic operations on its operands, as specified by the opcode held in the instruction register.

A multiplexer, Mux_1, determines the source of data that is bound for Bus_1; another datapath mux, Mux_2,

determines the source of data bound for Bus_2. Four general-purpose registers (R0, R1, R2, R3) and the

program counter (PC) drive Mux_1. The contents of Bus_1 can be steered to the ALU, the memory, or to

Bus_2 (via Mux_2). Mux_2 is driven by the ALU, Mux_1, and the memory. Thus, an instruction can be fetched

from the memory, placed on Bus_2, and loaded into the instruction register. A word of data can be fetched

from memory and steered to a general-purpose register, or to the operand register (Reg_Y) prior to an

counter_on

load

reset

Data_in[2:0]

count_up

clk

Count[2:0]

mux2_a

mux2_a

mux2_a
dffrgpqb_a

dffrgpqb_a

dffrgpqb_a

inv_a

inv_a

inv_a

nor2_a

xor2_a

xor2_a

xor2_a

xor2_a

aoi22_a

FIGURE 9.19 Circuit synthesized from up_down_counter.
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operation of the ALU. The result of an ALU operation can be placed on Bus_2, loaded into a register, and

subsequently transferred to memory. The register (Reg_Z) holds a flag indicating that the result of an ALU

operation is zero.

ALU. The ALU has two operand datapaths, data_1 and data_2; its simple instruction set is shown below:

Instruction Action

ADD Form data_1 þ data_2

SUB Form data_1 – data_2

AND Form the bitwise-and: data_1 & data_2

NOT Form the bitwise Boolean complement of data_1

The code below describes the ALU of RISC_SPM. The description includes comments (single-line: //,

multiple line: /* ... */) for clarity.

R0

R1

R2

R3

PC

0 1  2  3 4
Mux_1

IR

Add_R

Memory
ALU

Reg_Y

Reg_Z

0     1    2
Mux_2

Bus_2

Bus_1

Controller

Load_Add_Reg

Load_PC

Inc_PC

Sel_Bus_1_Mux

Sel_Bus_2_Mux

Load_R0

Load_R1

Load_R2

Load_R3

Load_Reg_Y

Load_Reg_Z

opcode

Load_IR

write

Processor

RISC_SPM

ad
dr

es
s

alu_zero_flag

Zflagzero

instruction

mem_word

FIGURE 9.20 Architecture of a RISC stored-program machine.
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module Alu_RISC (alu_zero_flag, alu_out, data_1, data_2, sel);

parameter word_size ¼ 8;

parameter op_size ¼ 4;

// Opcodes

parameter NOP ¼ 0, ADD ¼ 1, SUB ¼ 2, AND ¼ 3;

parameter NOT ¼ 4, RD ¼ 5, WR ¼ 6, BR ¼ 7, BRZ ¼ 8;

output alu_zero_flag;

output [word_size-1: 0] alu_out;

input [word_size-1: 0] data_1, data_2;

input [op_size-1: 0] sel;

reg alu_out;

assign alu_zero_flag ¼ ~jalu_out;

always @ (sel, data_1, data_2)

case (sel)

NOP: alu_out ¼ 0;

ADD: alu_out ¼ data_1 þ data_2; // Reg_Y þ Bus_1

SUB: alu_out ¼ data_2 - data_1;

AND: alu_out ¼ data_1 & data_2;

NOT: alu_out ¼ ~ data_2; // Gets data from Bus_1

default: alu_out ¼ 0;

endcase

endmodule

The ALU is modeled as combinational logic described by a cyclic behavior (always block) that is activated

whenever the datapaths or the select bus change. Notice that parameters make the description more readable.

Controller. The machine’s timing and operations are governed by the controller. It must steer data to the

destination specified by the instruction being executed. The design of the controller is strongly dependent on

the specification of the machine’s ALU, datapath resources, and the clocking scheme. For simplicity a single

clock will be used here, and instruction commences on a single (rising) edge of the clock. The controller

generates control signals by monitoring the state of the processing unit (i.e., the zero flag of the ALU) and the

instruction register. The signals produced by the controller are listed below:

Control Signal Action

Load_Add_Reg Loads the address register

Load _PC Loads Bus_2 to the program counter

Load_IR Loads Bus_2 to the instruction register

Inc_PC Increments the program counter

Sel_Bus_1_Mux Selects among the Program_Counter, R0, R1, R2, and R3 to drive Bus_1

Sel_Bus_2_Mux Selects among Alu_out, Bus_1, and memory to drive Bus_2

Load_R0 Loads general-purpose register R0

Load_R1 Loads general-purpose register R1

Load_R2 Loads general-purpose register R2

Load_R3 Loads general-purpose register R3

Load_Reg_Y Loads Bus_2 to the register Reg_Y

Load_Reg_Z Stores output of ALU in register Reg_Z

write Loads Bus_1 into the SRAM memory at the location specified by the address register

The control unit must (1) determine when to load registers, (2) select the path of data through the

multiplexers, (3) determine when data should be written to memory and (4) control the three-state busses in

the architecture.
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The instructions that control the machine are stored in memory as a ‘‘machine language’’ program. The

design of the controller depends on the processor’s instruction set, i.e., the instructions that are available to a

program that is to be executed, and on the machine’s architecture. A machine-language program consists of a

stored sequence of 8-bit words (bytes). An instruction can have a short or a long format, depending on the

operation. Short instructions require one byte of memory and have the format shown in Figure 9.21(a). Each

short instruction has a 4-bit opcode, a 2-bit source register address, and a 2-bit destination register address.

Each long instruction requires 2 bytes of memory. The first word contains a 4-bit opcode, and its

remaining 4 bits can be used to specify a pair of 2-bit source and destination registers depending on the

instruction. The second word of a long instruction holds the address to the memory word that holds an

operand required by the instruction [Figure 9.21(b)]. The machine’s instruction mnemonics are described

below.

Single-Byte Instruction Action

NOP No operation is performed; all registers retain their values

The addresses of the source and destination register are don’t-cares.

They have no effect.

ADD Adds the contents of the source and destination registers

and loads the result into the destination register.

AND Forms the bitwise-and of the contents of the source and

destination registers and loads the result into the destination

register.

NOT Forms the bitwise complement of the content of the source

register and loads the result into the destination register.

SUB Subtracts the content of the source register from the

destination register and loads the result into the destination

register.

Two-Byte Instruction Action

RD Fetches a memory word from the location specified by the

second byte and loads the result into the destination register.

The source register bits are don’t-cares.

WR Writes the contents of the source register to the word in memory

specified by the address held in the second byte. The destination

register bits are don’t-cares.

opcode source destination

0 0 1 0 0 1 1 0

opcode source destination

address

0 1 1 0 1 0
don't
care

don't
care

0 0 0 1 1 1 0 1

(a)

(b)

FIGURE 9.21 Format of a (a) short instruction, and (b) a long instruction.
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BR Branches the activity flow by loading the program counter with the

word at the location (address) specified by the second byte of the

instruction. The source and destination bits are don’t-cares.

BRZ Branches the activity flow by loading the program counter with the

word at the location (address) specified by the second byte of the

instruction if the zero flag register is asserted.

The machine’s program counter holds the address of the next instruction to be executed. An assertion

of the external reset is asserted and loads the program counter with 0, indicating that the bottom of

memory holds the next instruction that will be fetched. For single-cycle instructions the instruction at the

address in the program counter is loaded into the instruction register, and the program counter is

incremented under the action of the clock. The output of the instruction decoder determines the resulting

action on the datapaths and the ALU. A long instruction requires an additional clock cycle during which

the second byte of the instruction is fetched from memory at the address held in the program counter to

complete the instruction. While two-cycle operations are being executed intermediate contents of the ALU

may be meaningless.

Controller Design

The controller of a digital computer is implemented as a finite state machine (FSM), and various tools and

tables can be used to describe their logic [9]. A synchronous state machine makes its state transitions between

states at the active edges of the clock. The machine’s inputs and its current state determine its outputs and its

next state. The machine’s states must be specified for a given architecture, instruction set, and clocking scheme

used in the design. The specification can be accomplished by identifying what steps must occur to effect the

results of the instruction. In this example we will use an algorithmic state machine (ASM) chart [8] to describe

the machine’s activity. ASM charts present a clear picture of how machines operate under the influence of their

instructions. ASM charts use square boxes to denote machine states, diamonds to denote decisions, i.e., input-

dependent activity flow, and boxes with rounded corners to denote mealy-type asserted output signals.

(Signals not explicitly asserted are considered to be deasserted.)

The RISC SPM has three phases of operation: fetch, decode, execute. Fetching gets an instruction from

memory; decoding decodes the instruction, manipulates datapaths, and loads registers; execution carries out

the instruction’s operation. The fetch phase requires two clock cycles: one to load the address register and one

to retrieve the addressed word from memory. The decode phase takes one cycle. Depending on the instruction,

the execution phase may require zero, one or two more cycles. A NOT instruction can execute in the same

cycle that the instruction is decoded. Single-byte instructions, such as ADD, take one cycle to execute during

which the results of the operation are loaded into the destination register. The source register can be loaded

during the decode phase. A two-byte instruction will take two cycles to execute. For example, in executing the

RD instruction, one cycle is used to load the address register with the second byte, and one to retrieve the word

from the memory location addressed by the second byte and load it into the destination register. The eleven

states of RISC_SPM are listed below with the control actions that must occur in each state.

S_idle State entered after reset is asserted. No action.

S_fet1 Load the address register with the content of the program counter (Note:

PC is initialized to the starting address by reset action). The state is entered at

the first active clock after reset is de-asserted, and is revisited after a NOP

instruction is decoded.

S_fet2 Load the instruction register with the word addressed by the address register, and

increment the program counter to point to the next location in memory, in

anticipation of the next instruction or data fetch.

S_dec Decode the instruction register and assert signals to control datapaths and register

transfers.
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S_ex1 Execute the ALU operation for a single-byte instruction, conditionally assert the

zero flag, and load the destination register.

S_rd1 Load the address register with the second byte of an RD instruction, and

increment the PC.

S_rd2 Load the destination register with the memory word addressed by the byte

loaded in S_rd1.

S_wr1 Load the address register with the second byte of a WR instruction, and

increment the PC.

S_wr2 Load the destination register with the memory word addressed by the byte

loaded in S_wr1.

S_br1 Load the address register with the second byte of a BR instruction,

and increment the PC.

S_br2 Load the program counter with the memory word addressed by

the byte loaded in S_br1.

S_halt Default state to trap failure to decode a valid instruction.

Figure 9.22 shows a portion of the overall ASM chart [10] for the NOP, ADD, SUB and AND instructions

(all single-byte instructions), and Figure 9.23 shows the ASM chart for the RD operation. Once the ASM chart

has been built, the designer can write the Verilog description of the controller to match the behavior implied

by the chart. This process unfolds in stages. First, the functional units are declared according to the partition of

the machine. Then their ports and variables are declared and checked for syntax. Then the individual units are

described and debugged. The last step is to integrate the design and verify that it has correct functionality.

The design of the control unit is straightforward. First, the model’s ports and variables are declared.

Then the datapath multiplexers are described with continuous assignments using the conditional (?...:)

operator. This conditional operator acts like a software switch to evaluate a right hand expression on the

basis of whether the expression immediately preceding the "?" symbol is true or false. If true, the first

expression after the "?" is evaluated; otherwise, the expression after the ":" is evaluated. In this example,

the conditional operator is nested repeatedly within the continuous assignment. The controller is modeled

by two cyclic behaviors. One governs the synchronous state transitions, and the other describes the

combinational logic for the "next state" and the outputs (the control signals generated by the controller).

The combinational logic is described by a case statement that parses the state of the machine, then assigns

the next state and outputs. States for which the next state and outputs depend on the opcode as well as

the state, are described by a second case statement evaluating the opcode. For illustration we show the

decoding of the NOP, ADD, SUB, and AND instructions. The reader is encouraged to compare the Verilog

description to the ASM chart in Figure 9.22, develop the remaining ASM charts, and complete the design

of the controller.

module Control_Unit (Load_R0, Load_R1, Load_R2, Load_R3, Load_PC, Inc_PC,

Sel_Bus_1_Mux, Load_IR, Load_Add_R, Load_Reg_Y, Load_Reg_Z, Sel_Bus_2_Mux,

write, instruction, zero, clk, rst);

parameter word_size ¼ 8, op_size ¼ 4, state_size ¼ 4;

parameter src_size ¼ 2, dest_size ¼ 2, Sel1_size ¼ 3, Sel2_size ¼ 2;

// State Codes

parameter S_idle ¼ 0, S_fet1 ¼ 1, S_fet2 ¼ 2, S_dec ¼ 3, S_ex1 ¼ 4, S_rd1 ¼ 5, S_rd2 ¼ 6;

parameter S_wr1 ¼ 7, S_wr2 ¼ 8, S_br1 ¼ 9, S_br2 ¼ 10, S_halt ¼ 11;

// Opcodes

parameter NOP ¼ 0, ADD ¼ 1, SUB ¼ 2, AND ¼ 3, NOT ¼ 4;

parameter RD ¼ 5, WR ¼ 6, BR ¼ 7, BRZ ¼ 8;

// Source and Destination Codes

parameter R0 ¼ 0, R1 ¼ 1, R2 ¼ 2, R3 ¼ 3;
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output Load_R0, Load_R1, Load_R2, Load_R3, Load_PC, Inc_PC;

output [Sel1_size-1: 0] Sel_Bus_1_Mux;

output Load_IR, Load_Add_R, Load_Reg_Y;

output Load_Reg_Z;

output [Sel2_size-1: 0] Sel_Bus_2_Mux;

output write;

input [word_size-1: 0] instruction;

input zero;

input clk, rst;

reg [state_size-1: 0] state, next_state;

reg Load_R0, Load_R1, Load_R2, Load_R3, Load_PC, Inc_PC;

reg Load_IR, Load_Add_R, Load_Reg_Y;

reg Sel_ALU, Sel_Bus_1, Sel_Mem;

reg Sel_R0, Sel_R1, Sel_R2, Sel_R3, Sel_PC;

rst

NOP

0

ADD

Sel_R0
Sel_Bus_1

Load_Reg_Y1

0

1

1

Sel_R1
Sel_Bus_ 1

Load_Reg_Y

Sel_R2
Sel_Bus_1

Load_Reg_Y
src = R2

0

1

Sel_R3
Sel_Bus_ 1

Load_Reg_Y

0

Sel_R0
Load_R0

0
1

1

 Sel_R1
Load_R1

Sel_R2
Load_R2

0

Sel_R3
Load_R3

0

SUB

AND

1

0

1

0

1

0

src = R0

src = R1

dest = R0

dest = R1

dest = R2

1

S_idle

S_dec

S_ex1 /
Sel_ALU

Load_Reg_Z

0

3

4

 S_fet2 /
Sel_Mem, Load_IR,

Inc_PC2

 S_fet1 / Sel_PC
Sel_Bus_1,
Load_Add_R1

Instruction Fetch

ExecuteInstruction Decode

FIGURE 9.22 ASM chart for the NOP, ADD, SUB and AND instructions.
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reg Load_Reg_Z, write;

reg err_flag;

wire [op_size-1: 0] opcode ¼ instruction [word_size-1: word_size - op_size];

wire [src_size-1: 0] src ¼ instruction [src_size þ dest_size -1: dest_size];

wire [dest_size-1: 0] dest ¼ instruction [dest_size -1: 0];

assign Sel_Bus_1_Mux[Sel1_size-1: 0] ¼ Sel_R0 ? 0:

Sel_R1 ? 1:

Sel_R2 ? 2:

Sel_R3 ? 3:

Sel_PC ? 4: 3’bx; // 3-bits, sized number

assign Sel_Bus_2_Mux[Sel2_size-1: 0] ¼ Sel_ALU ? 0:

Sel_Bus_1 ? 1:

Sel_Mem ? 2: 2’bx;

always @ (posedge clk or negedge rst) begin // State Transitions

if (rst ¼¼ 0) state ,¼ S_idle; else state ,¼ next_state; end

rst

NOP

0

Sel_PC
Sel_Bus_1

Load_Add_R
1

Sel_Mem
Load_R0

0
1

1

Sel_Mem
Load_R1

Sel_Mem
Load_R2

0

Sel_Mem
Load_R3

0

RD

0

1

0

dest = R0

dest = R1

dest = R2

1

S_idle

S_dec

S_rd1 / Sel_Mem
Load_Add_R

Inc_PC

0

3

5

S_rd2
/ Sel_Mem
6

S_fet2 /
Sel_Mem, Load_IR,

Inc_PC2

S_fet1 / Sel_PC
Sel_Bus_1,

Load_Add_R1

Instruction Fetch

Instruction Decode

Execute

FIGURE 9.23 ASM chart for the RD instruction.
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always @ (state or opcode or zero) begin // Next state and output logic

Sel_R0 ¼ 0;

Sel_R1 ¼ 0;

Sel_R2 ¼ 0;

Sel_R3 ¼ 0;

Sel_PC ¼ 0;

Load_R0 ¼ 0;

Load_R1 ¼ 0;

Load_R2 ¼ 0;

Load_R3 ¼ 0;

Load_PC ¼ 0;

Inc_PC ¼ 0;

Load_IR ¼ 0;

Load_Add_R ¼ 0;

Load_Reg_Y ¼ 0;

Load_Reg_Z ¼ 0;

Sel_Bus_1 ¼ 0;

Sel_ALU ¼ 0;

Sel_Mem ¼ 0;

write ¼ 0;

err_flag ¼ 0;

case (state)

S_idle: next_state ¼ S_fet1;

S_fet1: begin

next_state ¼ S_fet2;

Sel_PC ¼ 1;

Sel_Bus_1 ¼ 1;

Load_Add_R ¼ 1;

end

S_fet2: begin

next_state ¼ S_dec;

Sel_Mem ¼ 1;

Load_IR ¼ 1;

Inc_PC ¼ 1;

end

S_dec: case (opcode)

NOP: next_state ¼ S_fet1;

ADD, SUB, AND: begin

next_state ¼ S_ex1;

case (src)

R0: begin Sel_R0 ¼ 1; Sel_Bus_1 ¼ 1; Load_Reg_Y ¼ 1; end

R1: begin Sel_R1 ¼ 1; Sel_Bus_1 ¼ 1; Load_Reg_Y ¼ 1; end

R2: begin Sel_R2 ¼ 1; Sel_Bus_1 ¼ 1; Load_Reg_Y ¼ 1; end

R3: begin Sel_R3 ¼ 1; Sel_Bus_1 ¼ 1; Load_Reg_Y ¼ 1; end

default: err_flag ¼ 1;

endcase end

... // Decode additional opcodes.

.. // Decode additional states

endcase

end

endmodule
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Notice that the controller is described by two cyclic behaviors. The first makes state transitions at the rising

edge of the clock. The second describes the combinational next-state logic of the machine’s output signals and

next state as a function of the decoded present state and the instruction. This style is widely used by designers,

and readily synthesizes the controller.

Summary

The previous discussion and examples have presented some of the main constructs and features of the Verilog

HDL and demonstrated its use in computer design. The reader is advised to consult the references for an

in-depth treatment of additional language features and for the latest syntax [11].
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10
Input and Output

Solomon Sherr
Westland Electronics

10.1 Input Devices
Keyboards * Light Pen * Data Tablet (Graphics, Digitizer) *

Mouse * Trackball * Joystick * Touch Input * Scanners * Voice *

Summary * Advantages and Disadvantages

10.1 Input Devices*

Input devices are those portions of computer, data processing, and information systems that perform the

essential function of providing some means for entering commands and data into the system. Therefore, input

devices are found in all such systems, but are treated here as a separate equipment group, independent of

the total system configuration. However, the place of input devices in a representative computer system may

be clarified by reference to Figure 10.1, which shows the interface of the main input device categories in

relation to the portions of the generalized system that accept the inputs. The categories and the devices listed

in Table 10.1 are the subject of this section.

Keyboards

Keyboards are essentially electromechanical devices, and are still ubiquitous, in spite of the inroads of other

input devices. The primary type of keyboard in use as an input device is the alphanumeric (A/N) form, well

known in its typewriter application, but with various additions and expansions consisting of numeric and

special function keys. This type of keyboard is with a standard QWERTY format, so named because of the

layout of the top left alpha keys, for the A/N portion, a separate numeric set to the right, and a group of

function keys at the top. Other layouts for the A/N portion have been proposed and at least one (Dvorak)

accepted by the American National Standards Institute (ANSI), but it has not received much use in spite of its

advantages in increased efficiency. At present, the overwhelming majority of system keyboards still use the

QWERTY layout, and it is the only one considered here.

A keyboard consists of a number of keyswitches whose exact structure is of prime importance in keyboard

design. The relevant characteristics of keyswitch operation are life, actuation force, travel distance, and

feedback. Accepted values are shown in Table 10.2 for different keyswitch designs. The elastomer type is

preferred to a limited extent over the other two when the electronic audio feedback is included. This indicates

that some type of audio feedback is desirable. One form of keyswitch design using an elastomer or ‘‘molded

boot’’ is shown in Figure 10.2(a), in which the boot consists of two collapsible domes. In this design, the

internal movement of the keyswitch is completely silent so that some source of sound must be added to

achieve the desired audible feedback. The snap switch design shown in Figure 10.2(b) has built-in sound and

achieves a small reduction in insertion errors over the elastomer design with audio feedback.

*The material contained in this section is a shortened version of that which appears in Electronic Displays, 2nd ed., by Sol Sherr,

Chapter 6, Section 6.1, 1993, published by John Wiley & Sons, Inc., and is reprinted here by permission.
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The life requirement is estimated on the basis of workstation users operating at approximately half the

accepted rate of 20 million actuations per key used for electronic typewriters. The actual layout and content

of the keyboard may vary greatly, ranging from the standard typewriter arrangement, through different

combinations of alphanumerics and symbols, to the special-function keyboards that contain legends and

symbols specific to the particular application. However, the outputs of each type are the same in that they

must contain coded signals that relate the action to be performed by the information system to that defined

by the key being operated, in terms of the input code of the system. Thus, many of the keyboards output the

ASCII code, and the system is usually designed so that it can accept this type of standard code. Incidentally,

ASCII, the acronym for American Standard Code for Information Interchange, is the standard means for

encoding alphanumerics and a group of selected symbols for transmission to a display system, among others.

It is the standard code used in the United States and most other English-speaking countries and corresponds

to the ISO seven-bit code. The seven-bit ASCII is usually used, and it should be noted that for serial data

FIGURE 10.1 Generalized display-system block diagram. (Source: After S. Sherr, Electronic Displays, New York: John

Wiley & Sons, 1979. With permission.)

TABLE 10.1 List of Input Devices

Category Designation Operation Mode

Keyboard Alphanumeric Electromechanical

Keyboard Function Electromechanical

Pointing Light pen Screen pointing

Pointing Touchscreen Screen pointing

Pointing Pen tablet Tablet pointing

Coordinates Digitizer X-Y conversion

Coordinates Data tablet X-Y location

Cursor Mouse Movement

Cursor Trackball Movement

Cursor Joystick Movement

Image Scanner Conversion

Verbal Voice Conversion

TABLE 10.2 Keyboard Parameter Values

Parameter Snap Switch Elastomer Foam Pad

Key travel 3.8 mm 3.2 mm 3.8 mm

Force .60 gm .50 gm .30 gm

Life 10 million cycles 10 million cycles 10 million cycles

Feedback Audio mechanical Audio electric Tactile
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transmission an eighth bit is added for parity. Various keyboard arrangements are possible, and many

variants are found in particular applications. The means for coding the key operation may be through

magnetic reed relays, solid-state circuits, or more exotic devices such as Hall effect sensors. These device

characteristics are only incidental to the operation and beyond the scope of this chapter. Similarly, we do not

discuss the human-factors aspects of keyboard design, not because they are not important, but because, apart

from the visual considerations, the other factors have to do with tactile and physical features best left

to others.

Light Pen

The light pen initially was a very popular means for accomplishing manual input to the random deflection

information display systems, but fell out of favor when raster systems became more popular due to its being

somewhat difficult to use with raster systems. This device goes by a misleading name, as it does not emit

light and is not a pen other than being somewhat similar to one in its physical appearance. However, when

we consider its functional characteristics, the validity of the term becomes apparent, as it is used to cause

the electron beam to ‘‘write’’ patterns on the cathode ray tube (CRT) that are defined by the motion of the

light pen on the CRT faceplate.

The light pen operates by sensing the existence or nonexistence of a pulse of light at the point on the screen

of the CRT or surface of any other light-emitting device where the point of the pen is placed. This is

accomplished by means of the circuit shown in Figure 10.3, where the light pulse is collected and

transmitted through the fiber optics to a light-sensitive device that converts the light pulse into an electrical

pulse which is shaped by some form of electronics (of which a Schmitt trigger is one example). We need not

concern ourselves with the exact form of the electronics except to note that this pulse is then sent to the

FIGURE 10.2 (a) Elastomer-type keyswitch. (b) Snap switch. (Source: After H. Brunner et al., ‘‘Effects of key action design

on keyboard preference and throughput performance,’’ Micro Switch. With permission.)
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computer, as shown in Figure 10.4, and provides a complete, closed-loop system. As the electronic pulse

occurs at the time when the light pulse passes under the light pen, the computer is informed of the location at

which the designated operation is to be performed and may proceed accordingly. Thus, the light pen is a

pointing device that designates a point on the display screen and can be used as an input device. Various light

pen programs have been written to expand the capabilities of the original one, and it should be noted that the

light pen is coming back into favor as improvements in accuracy, ease of operation, and reliability occur.

There are two characteristics of light pen operation that affect the capabilities of this input device. The first

is the sensitivity, given by

S ¼ ELmpApAmmsmf tL ð10:1Þ

where EL ¼ illuminance at photodetector, mp ¼ photodetector sensitivity, Ap ¼ preamplifier gain, Am ¼ main

amplifier gain, ms ¼ Schmitt trigger sensitivity, mf ¼ flip-flop sensitivity, and tL ¼ optical loss.

Equation (10.1) may be used to calculate the light output required from the display surface, which may be a

CRT or other light-emitting device, but with the limitation that most of the flat panel units are matrix driven

and must track the drive sequence in order to know the location of the light pen from the drive pulse timing.

FIGURE 10.4 Block diagram of light pen computer system. (Source: S. Sherr, Electronic Displays, New York: John Wiley &

Sons, 1979, p. 389. With permission.)

FIGURE 10.3 Light pen schematic. (Source: After S. Sherr, Electronic Displays, New York: John Wiley & Sons, 1979, p. 388.

With permission.)
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When phosphors are involved as for the CRT, vacuum fluorescent displays (VFDs), thin-film

electroluminescent (TFEL) units, and color liquid crystal displays (LCDs), the phosphor delays must be

entered into the timing, and the total delay is given by

E0 ¼ Eið1 � e � t=tÞ ð10:2Þ

where E0 ¼ voltage at triggering element, Ei ¼ voltage

equivalent of phosphor light output, t ¼ time, and

t ¼ sum of all delays.

These delays set limits to the positional accuracy, as the

computer tracking the signal will be in error by this

amount. Other inaccuracies are due to the dimensions of

the optical pickup surface, all of which somewhat negate the simplicity of operation. The result is the

parameter values shown in Table 10.3.

Data Tablet (Graphics, Digitizer)

A very convenient means for data entry, retaining some of the ease of operation of the light pen but with much

better accuracy, are the various forms of data tablets available. These tablets differ from the light pen in

another significant way in that they do not require a moving spot of light to detect the location of the beam or

direct it to a new location. This need for a moving light spot made the light pen difficult to use with the data

tablets initially designed to overcome this limitation while still using a device with a pen-like input. The first

successful example was the Rand tablet, a digital device that used an X–Y assembly from which a wand placed

above some point on the X–Y wire matrix could pick up pulse generator output that fed X and Y electrical

pulses into the matrix. By determining the number of pulses in a time period, the location of the wand is

established. Another similar device used magnetostrictive rather than electrical signals to accomplish the same

result, and this location is converted into display coordinates used to position a cursor on the CRT screen. The

cursor may then be used as a visual feedback element so that the operator can correct the position of the wand

until the cursor is properly placed. At this time the information from the tablet may also be transferred to

either the host computer or the resident desktop or portable computer, as desired. Since the cursor is not used

to signal its position to a pickup device, as is the case with the light pen, it may be used with any type of

display system, including the non-light-emitting flat panel displays. Another advantage of the tablet is that it

may be used to position cursors in the blank areas of the display, where no light pulses are available unless they

are specially generated by the light pen.

There have been numerous improvements and new developments using a variety of technologies that

include magnetostrictive, electromagnetic, electrostatic or capacitive, scanned X–Y grid, resistive, and sonic.

Of these, electromagnetic tablets dominate the digitizer market, and sonic is of interest because it does not

require a tablet, but most of the other technologies are essentially restricted to touch input devices covered

later. As noted previously, electromagnetic is the most popular technology for high-performance digitizer

tablets. Operation is based on transformer principles, whereby a conductor carrying ac creates a magnetic field

around it that induces a current in a second conductor. The digitizer tablet uses the amplitude and phase of

the induced current to determine digitizing data. The tablet contains an X–Y pattern of conductors beneath its

surface, in a manner similar to the Rand Tablet, but instead of counting pulses in a time period a circular

conductor is used as the pick-up element for the induced current. This coil is placed on the tablet surface, and

its position is determined by measuring the phase and amplitude of the current in the coil. Its center is

interpolated by sweeping through the X–Y grid lines and demodulating the signal in the coil to determine the

phase reversal point, or by calculating this point using digitized data fed into a microprocessor. The X–Y

coordinates may be resolved to better than 0.025 mm using either of these two techniques.

Another digitizer technology is the one that uses the measurement of the time required for sound waves to

travel from a source to movable microphone pickups.This sonic technology has the advantage that no special

digitizing board is required, and either a stylus or a cursor can be used as the digitizer. Two sonic sources are

TABLE 10.3 Light Pen Data

Field of View Response Time Sensitivity

0.02–0.08 in. 120–150 ns 0.02–0.04 ft.L

# 2006 by Taylor & Francis Group, LLC



contained in an L frame so that both X and Y coordinates can be determined by calculating the time it takes

for the sound wave to reach the microphones contained in the pickup device. This calculation is made on

the basis of sound traveling at 345 m/s at 20–C, and the accuracy is dependent on stable ambient conditions.

This tends to limit the resolution to about 300 lpi, and the accuracy to ^0.1%. The device may also be

implemented with a single sonic source as the digitizing means and a pair of microphones located outside the

digitizing area. In this case the location of the transducer is calculated by triangulation and converted into

Cartesian coordinates.

Digitizers are used primarily for inputting accurate coordinate data from maps and engineering drawings.

Their high accuracy requirements have led to relatively high prices. Alternative means for inputting data are

the data and graphics tablets that meet most input requirements at a lower cost and accuracy. The main

technology is still electromagnetic, and the units are essentially the same as the digitizers, but with lower

accuracies. However, several of the other technologies have also been used to achieve lower costs. Most

successful among them are the capacitive and resistive versions, which may also be used as digitizers. The

capacitive units, also termed electrostatic, use capacitive coupling where the coupling between the tablet and

the cursor or stylus is determined by the capacitance made up of the tablet surface as one plate and the pickup

element as the other. In this case, the capacitance is given by

C ¼ f ðTMA=dÞ ð10:3Þ

where C ¼ capacitance, TM ¼ permittivity of dielectric, A ¼ relative area of two plates, d ¼ distance between

plates, and f ¼ proportionality factor.

A scanned grid approach is used to determine the location of the cursor. As in the electromagnetic tablet, an

X–Y grid of conductors is embedded in the tablet, with semiconductor switches on each line providing contact on

FIGURE 10.5 Capacitive technology. (Source: After T. E. Davies et al., ‘‘Digitizers and input tablets,’’ in Input Devices,

S. Sherr, Ed., New York: Academic Press, 1988, p. 186. With permission.)
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a scanned basis. The charge flowing from each capacitance is summed through a summing amplifier as shown in

Figure 10.5. The resultant voltage peaks twice, once for the X and once for the Y lines, as they are scanned.

The peak positions are digitized by means of a counter that starts at the beginning of the scan, and runs at some

multiple of the scan rate. The digital values represent the coordinates of the cursor location.

Mouse

The mouse has gone a long way from its original invention by Engelbart in 1965, through its redesign at Xerox

and introduction by Apple as a main input device, and its general acceptance by computer users as an

important addition to the group of input devices. It should be noted, in passing, that the mouse is essentially

an upside-down trackball, although the latter is now being referred to as an upside-down mouse. However, the

trackball came first and is described further in the next section.

Mice contain motion-sensing elements and are operated by moving mechanical or optical elements. One

form uses wheels and shafts to drive the sensing elements, as shown schematically in Figure 10.6. The angular

velocity (o) of the wheel and shaft is given by

o ¼ Vr=R rad=s ð10:4Þ

where Vr ¼ velocity of wheel and R ¼ wheel radius.

The rotation angle (y) is given by

ðyÞ ¼ X=R rad ð10:5Þ

where X ¼ distance moved.

This type of mouse has two sets of wheels and shafts, one for horizontal and the other for vertical motion.

A more popular type of mechanical mouse is the one that uses a ball for the motion sensing device, as

shown in Figure 10.7. Again, the velocity of the ball circumference equals the velocity of the mouse, and the

angular velocity is given by

o ¼ V=R1 rad=s ð10:6Þ

where R1 ¼ shaft radius.

The smaller the shaft the more rapid its rotation for a

given mouse velocity. Another form of the ball-and-shaft

mouse is the one that uses an optical interrupter, as shown

in Figure 10.8. In this form, the light from the light-emitting

diodes (LEDs) is interrupted by the coded disks that are

rotated by the shafts, and is then picked up by the

phototransistors and converted into the digital signal that

FIGURE 10.6 Wheel showing velocities and slip angle. (Source: After C. Goy, ‘‘Mice,’’ in Input Devices, S. Sherr, Ed., New

York: Academic Press, 1988, p. 225. With permission.)

FIGURE 10.7 Ball and shaft. (Source: C. Goy,

‘‘Mice’’, in Input Devices, S. Sherr, Ed., New York:

Academic Press, 1988. With permission.)
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represents the disk rotation. An optical interrupter is also used for the optomechanical mouse, and here the

interrupter contains a set of slots; as the interrupter rotates quadrature signals are created that correspond to

the shaft rotation.

In addition to the shaft and optomechanical mice, an early form of mouse used multiturn potentiometers

connected to the wheels, and the output voltage that represented the motion varied in direct proportion to the

mouse motion. The voltage was then converted by means of an analog-to-digital converter into digital form

for input to the computer.

Finally, there are the true optical mice that use a special surface that is printed with a set of geometric

shapes, usually a grid of lines or dots, that are illuminated and focused on a light detector. The most common

form uses a grid made up of orthogonal lines, with the vertical and horizontal lines printed in different colors.

These colors absorb light at different frequencies so that the optical detectors can differentiate between

horizontal and vertical movement of the mouse. If such a structure is used as the mouse, then the

photodetector will pick up a series of light-dark impulses consisting of the reflections from the mirror surface

and the grid lines and convert them into square waves. A second LED and photodetector that is mounted

orthogonally to the first is used to detect motion in the orthogonal direction, and the combination of the two

inks avoids confusion between the two directions of motion. The system then counts the number of impulses

created by the mouse motion and converts the result into motion information for the cursor. This type of

mouse has the advantage that no mechanical elements are required.

Trackball

As noted previously, the trackball uses technology similar to the mouse, but preceded it as an input device.

Thus, the comment that it is an upside-down mouse should be reversed. The movable element is housed in an

assembly, and the assembly remains stationary so that much less desk space is required than for the mouse. In

addition, the trackball may be mounted on a keyboard so that very little additional desk space is needed. The

movable element can be the same as used in the mouse, and the output can be a set of bits corresponding to

the coordinates to which the cursor should be driven, or where the command should be carried out. The

output format is essentially equivalent to that used for the mouse, and the same protocols are used.

The typical trackball has an X and Y optical encoder that generates a pulse for each 0.76 mm of incremental

motion of the ball. This means that the pulse train may range from 10 to 2500 pulses per second (pps),

depending on how fast the ball is rotated. This is much more rapid than required for satisfactory updates,

which need not be greater than about 100 times per second. This can easily be accomodated by the RS-232

protocol using an eight-bit word. Thus, the trackball is an excellent alternative for the mouse, and is rapidly

returning to a preferred position as an input device.

FIGURE 10.8 Optical interrupter. (Source: C. Goy, ‘‘Mice,’’ in Input Devices, S. Sherr, Ed., New York: Academic Press,

1988, p. 229. With permission.)
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Joystick

The joystick has not achieved much acceptance as an input device for electronic display systems, except for

video games, although it has been the preferred control for many types of aircraft. However, it can be used to

some extent in display systems other than those used in video games, and therefore warrants inclusion in this

section. There are two basic types of joysticks, termed ‘‘displacement’’ and ‘‘force-operated’’. A typical

displacement joystick may have two or three degrees of freedom. The activating means may vary from as

few as four switches mounted 90 degrees apart, to full potentiometers for analog output, and optical

encoders for digital output. A third axis may be added by allowing the handle to rotate and drive a third

potentiometer. Spring forces of 5 to 10 lbs. are usual for the other two axes, and displacements go from 6 to

30 degrees.

The force joystick operates by responding to pressure on the handle to generate the X–Y coordinates. It may

be either a two- or three-dimensional version, with the same types of handles as for the displacement joysticks.

However, it is difficult to use a rotating handle for the third dimension because some force is usually

transmitted to the other dimensions causing crosstalk. Therefore, a separate lever is preferred. The force is

detected by means of piezoelectric sensors that are bonded to the handle rod, and a voltage source is applied

across the network, as shown in Figure 10.9. The output is taken from the strain gauge and the analog voltage

will be proportional to the amount of force. The same type of protocol and output circuitry may be used as for

the displacement unit, and both can generate either position or rate data. An exponential curve with a dead

zone threshhold is preferred for pulse rates in order to avoid starting pulse rate uncertainties, with the first

pulse starting as soon as the threshhold is exceeded.

Touch Input

Touch input devices come in two basic forms, either placed directly on the display surface, or as a separate

panel attached to the computer system. In its second form it is essentially a data tablet differing mainly in that

it acts as another display unit with some form of a touch-sensitive surface. In this implementation it is the

same as the Touchscreen input device, and this discussion concentrates on the technologies used for Touch-

screens. There are five different technologies used for touch input devices, which are capacitive or resistive

overlays, piezoelectric, light beam interruption, and surface acoustic wave. The system may be divided into the

sensor unit, which senses the location of the pointing element, and the controller that interfaces with the

sensor and communicates the location information to the system computer. Since the controller is an

electronic device that does not use technology different from the computer it is not covered here. The main

differences among the different touch input devices are due to the choice of sensor technology, and the

discussion concentrates on these technologies.

FIGURE 10.9 Schematic connections in a force joystick. (Source: After D. Doran, ‘‘Trackballs and joysticks,’’ in Input

Devices, S. Sherr, Ed., New York: Academic Press, 1988, p. 260. With permission.)
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Capacitive. Capacitive overlay technology is illustrated in

Figure 10.10 where a transparent metallic coating is placed over

the display screen and the finger or stylus capacitance is sensed to

determine the touch location. The overlay may consist of a group

of separate sections etched into the surface with each separate

section connected to the controller, or a continuous surface

connected at the four corners. The first form is termed discrete

capacitive, and touch location is determined by having each section

sequentially connected to an oscillator circuit where the frequency

of oscillations is affected by the pointing device. The oscillation

frequency is measured and compared to a stored reference

frequency. If the frequency difference is large enough then it is

recognized as a touch at that location. It is a simple system, but

suffers from low resolution and slow response so that it is only

practical for menu selection.

The analog capacitive system uses the same metallic overlay, but

the metallic surface is continuous rather than etched. The

connections at the four ends are each connected to a separate

oscillator, and the frequency of each is measured and stored. Then

when the overlay is touched the change in capacitance will have a

different effect on the frequency of each oscillator. These are

measured and the differences are used to determine the coordinates

of the touch by means of an algorithm. This technique is capable of

much higher resolution (250 · 250) than the digital approach and

is preferred for graphics or other high-density displays.

Resistive. Resistive overlay technology requires a more complex assembly consisting of two layers, as

illustrated in Figure 10.11. The layers both contain transparent metallic surfaces and are separated by spacers

so that an air gap exists between the layers in the absence of any pressure on the touch panel. The metallic

layers face each other and when the outer panel is pressed the metallic layers make contact and form a

conductive path at the point of contact. When a voltage is applied between the top of the outer layer and the

bottom of the inner layer, the two layers act as a voltage divider, and the voltage at the point of contact may be

measured in the X and Y directions by applying the voltage in first one and then the other direction. The

measured voltages are then transmitted to the controller where they are converted into coordinates which are

then sent to the computer.

The panel may be discrete, in which the conductive coating on the top layer is etched in one direction and

that on the bottom layer in the other direction, or analog, where the conductive coatings in both layers are

continuous. In the discrete case, the panel then acts as an X–Y matrix, and the resolution is determined by the

FIGURE 10.10 Capacitive overlay tech-

nology. (Source: After A.B. Carrell and

J. Carstedt, ‘‘Touch input technology,’’ SID

Sem. Lecture Notes, p. 15.30, 1987. With

permission. Courtesy Society for Informa-

tion Display.)

FIGURE 10.11 Resistive overlay technology. (Source: After A.B. Carrell and J. Carstedt, ‘‘Touch input technology,’’ SID

Sem. Lecture Notes, p. 15.31, 1987. With permission. Courtesy Society for Information Display.)
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number of etched lines. The analog configuration requires the addition of linearization networks on each edge

of the panel so that a large-area resistor is created with a voltage drop in one direction. Other linearization

techniques are also possible, but only the four-element system is described here as shown in Figure 10.12. In this

arrangement, one of the layers acts as the large-area resistor and the other as a voltage probe where either can

function in either role. For the Y coordinate value the top layer is the voltage probe, and the voltage is applied by

the controller to the bottom layer. Similarly, the X coordinate is found by connecting the voltage to the top layer

and making the bottom layer into the voltage probe. In either type of system, the resolution can be very high,

but the transmissivity is reduced to under 80% due to the multiple layers.

Piezoelectric. The piezoelectric technology uses pressure-sensitive transducers as the means for determining

the location of the touch, as shown in Figure 10.13. The sensor is a glass plate with transducers connected

to the four corners. Pressure on the plate causes readings to occur at each of the transducers, which depend

on the location of the pressure. Thus, the controller can measure the readings and obtain the coordinates by

means of a proper algorithm. This technique allows a high-transmissivity plate to be used that can be curved

to follow the CRT face plate curvature, but it allows only a limited number of touch points to be used.

Light Beam Interruption. This is a fairly straightforward technology that requires a matrix of light sources

and detectors facing each other in the X and Y directions. When the beams from the X and Y light sources are

FIGURE 10.12 Four-wire analog resistive. (Source: A.B. Carrell and J. Carstedt, ‘‘Touch input technology,’’ SID Sem.

Lecture Notes, p. 15.32, 1987. With permission. Courtesy Society for Information Display.)

FIGURE 10.13 Piezoelectric technology. (Source: A.B. Carrell and J. Carstedt, ‘‘Touch input technology,’’ SID Sem. Lecture

Notes, p. 15.34, 1987. With permission. Courtesy Society for Information Display.)
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interrupted, this is sensed by the facing light detectors and the signals are sent to the controller. The light

beams are turned on sequentially by pulsing the LEDs and thus create a full matrix of light beams without

requiring each of them to be on continuously. This system does not reduce the screen transmissivity as there is

no obstruction of the screen output, but it is limited in resolution to the number of LED detector pairs that

can be placed on the periphery of the screen.

Another approach to light interruption is to use a rotating beam of light, which has the advantage that

only one light source and detector pair is required. This technology is depicted in Figure 10.14 and consists of

a LED and a light detector placed inside a rotating drum which has a slit that allows light to be transmitted

outside the drum. The light is swept across the surface and strikes the retroreflectors that sends it back

directly to the detector. The beam scan is sampled 256 times on each scan, and Figure 10.14 shows how two

angles of interruption are created, angle B by direct interruption, and angle C by mirror reflection

interruption. The result is that the location of the interruption can be calculated by comparing the two

angles. Again, there is no obstruction of the screen but a moving element must be added, and parallax errors

may occur.

Pen-Based Computing. This is an application for touch input devices that is growing at a rapid rate. The

input device comes in several forms, each of which can recognize hand printing with the special operating

system and software recognizing this type of input. The pen-based input device comes in several forms, of

which the one termed TouchPenTM can function both as a digitizer with a touch tablet, and as the touch input

device with a touch input pen-based computer system. A second one is that developed by Wacom, Inc.,

primarily for the GO Systems computer, but used by other pen-based systems as well. Finally, a third unit is

that made by Scriptel Corp. and used by Wang Laboratories in its system.

TouchPenTM was developed by Microtouch Systems, Inc., initially for use in GridPad made by the Grid

Systems Corp. It is essentially a high-resolution digitizer consisting of an all-glass tablet that can be used

with a number of stylus input operating systems to digitize handwriting. It is basically a touch input device

using resistive techniques to digitize the handwriting appearing on the display surface of pen-based

computer systems. The glass tablet is placed on the display surface and the system pen is used to transmit

the digitized data to the computer. As noted previously, the tablet may also be used as a standard touch

input device.

The second form of pen-based input device is one that uses electromagnetic technology and consists of a

grid of wires that transmit radio waves that are picked up by a tuned circuit in the stylus. This circuit resonates

at its own frequency and transmits that signal back to the wires at the grid location it is touching. The pen also

FIGURE 10.14 Rotating infrared beam technology. (Source: A.B. Carrell and J. Carstedt, ‘‘Touch input technology,’’ SID

Sem. Lecture Notes, p. 15.34, 1987. With permission. Courtesy Society for Information Display.)
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transmits its signal to the computer, which turns off the grid transmission, and locates the position of

the pen by determining which of the grid wires pick up the pen signal. The pen does not need to actually touch

the display surface and does not require any power, which is an advantage somewhat counteracted by the

higher cost.

Finally, the Scriptel unit is similar to that made by Microtouch, but differs in that it uses electrostatic

technology and is also similar to the capacitive touch panel.

Surface Acoustic Wave (SAW). This technology is more recent than the others and has not received wide

acceptance as yet. It is based on the transmission through the glass of SAWs generated by transducers

mounted on the glass overlay. These waves are detected by receivers also mounted on the glass, and the time

of arrival of the waves at the receivers is known because the wave velocity is known. The placing of a finger on

the glass weakens the signal and the location of the finger can be determined by the difference in its effect on

the SAW.

There are two types of SAW systems in use, namely those using reflective techniques and those using

attenuation as the source of position information. The reflective systems are similar to sonar where the

time from the source to the pointing finger and then from the finger to the receiver is measured to arrive

at finger location. The attenuation technology is illustrated in Figure 10.15 and consists of two

transducers, two receivers, and four reflector strips, all mounted on a glass substrate. One transducer-

receiver pair is used for X and the other for Y location. Figure 10.15 shows the X axis pair, and the

transducer transmits a burst of acoustic energy in a horizontal wave. The wave is partially reflected by the

top reflector strips and travels down to the bottom strip where the reflectors are at an angle such that it is

reflected to the lower left corner receiver. The wave now has a long rectangular shape, and each point in

time corresponds to a specific vertical path across the substrate. The Y axis is scanned in the same fashion

after the X wave dies out. Then, when the finger touches the substrate, its water content absorbs some of

the energy in the wave, and the wave is attenuated. The dip in the wave amplitude corresponds to the

amount of absorbed energy, and the time of the lowest point can be determined, allowing the location of

the finger to be calculated. Finally, in addition to the X and Y coordinates, a Z coordinate can be

determined, depending on how hard the user presses. This depends on surface contact, which affects the

amount of attenuation. The advantages of this system are high resolution, speed of transmission, and the

FIGURE 10.15 Attenuation SAW technology. (Source: A.B. Carrell and J. Carstedt, ‘‘Touch input technology,’’ SID Sem.

Lecture Notes, p. 15.35, 1987. With permission. Courtesy Society for Information Display.)
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availability of a Z axis component. Its main disadvantages are the variation in moisture content in fingers

and sensitivity to local moisture on the substrate. However, it is being used in developmental units and

should be considered as another input device technology.

Scanners

Scanners are a means for inputting text and/or images directly into the computer system, thus avoiding the

need for retyping and redrawing information contained in other sources. It is a relatively convenient way to

avoid repetition if the data to be entered already exist in readable form. This is done by special image-

recognition software that accompanies the scanning hardware, and can transfer an entire image containing

both text and illustrations, but without the capability to modify the image. However, the addition of optical

character recognition (OCR) software allows the entered text to be modified as if it were entered by typewriter.

This can greatly simplify entering and editing text from some preexistent source and has resulted in a

proliferation of devices that can perform this function.

These devices come in two main forms, hand-held and page scanners, with or without OCR software in

addition to the standard image-recognition software. A typical hand-held scanner consists of a light source, a

light-sensitive device such as a charge-coupled device (CCD) array, and the electronics to actuate the elements

of the array sequentially under software control. The scanner window is placed over the page, and is moved

down or across the page so that the window covers as much of the page as falls within the capability of the

software. The light source is reflected from the page to the CCD and the charge in the CCD is modified by the

reflectivity of the printed material.

The window area ranges from 4 to 5 in. in width by 0.5 in. in height and may be moved through 14 to 20 in.,

so that a fairly large area may be covered in a single manual scan. Images wider than the maximum window

may be scanned in two passes, and the OCR software can stitch the two scans together into a single image,

although this procedure requires considerable care in scanning so that the scans line up properly. Therefore,

when images wider than the window of the hand-held scanner are to be scanned, it is advisable to use a flatbed

scanner which can handle a full 8.5 in. by 11 in. page, or some of the larger scanners than can accept large

drawings and input them into the computer system. Resolutions of 400 dpi and higher, with up to 250 levels of

gray and 24 bits of color resolution are available. Thus, scanners offer a wide variety of choice and

performance capabilities, and are powerful input devices when prepared data in visual form is to be entered

into the computer system.

FIGURE 10.16 Block diagram of speech recognition and synthesis chip. (Source: After M. Leonard, ‘‘Speech poised to join

man-machine interface,’’ Electronic Design, pp. 43–48, September 26, 1991. With permission.)
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Voice

Voice input is an intriguing approach to data input, with particular attractiveness to managers who want a

simple and direct means for inputting data and commands. For many years, this technology tended to promise

more than it could achieve, but recent developments have brought it to the point where it can be considered as

TABLE 10.5 Representative Performance Parameters

Input Device Parameter Value

Light pen Response time 150–500 ns

Spectral response 4200–9500 A

Luminous sensitivity 0.03–0.7 nts

Field of view 0.02–0.1 in.

Ambient rejection 350 nts

Data tablet (digitizers) Resolution (l/in.) 100–2000

Accuracy (in.) 0.0005–0.02

Active area (in.) 12 · 12–60 · 120

Active height (in.) 0.02–2.5

Digitizing rate (pps) 100–350

Transducers Stylus, puck, cursor

Mouse Resolution 10–1000 dpi

Speed 1–20 in./s

Accuracy 25–1000 dpi

Trackball Resolution 100–1000 cpi

Speed 1200–9600 BPS

Accuracy 100–1000 dpi

Ball diameter 1.5–2.5 in.

Joystick Travel 25–30–

Accuracy 5–10%

Repeatability 1%

Touchscreen Resolution 256 · 256–4096 · 4096

Transmissivity 60–100%

Viewing area (in.) 3 · 4.5–15 · 20

Speed 80–200 touch pts./s

Scanner Resolution (dpi) 75–1600

Scan rate (in./s) 0.5–2.0

Scanning width (in.) 4.1–36 gray shades 32–256

Scan time (s/page) 1–30

Voice Active vocabulary 13–5000 words

TABLE 10.4 Input Device Functional Evaluation

Function

Input Device Control Data/Text Data/Graphics Total

Keyboard E E P 9

Light Pen G G E 10

Tablet E G E 11

Mouse E F E 11

Trackball E G E 11

Joystick F F G 5

Touchscreen G F G 8

Scanner F E G 9

Voice G F P 6

Total 29 23 28 80

E ¼ Excellent ¼ 5; G ¼ Good ¼ 4; F ¼ Fair ¼ 3; P ¼ Poor ¼ 2
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a viable input means. This has been due to new developments in software that make it possible to minimize

the amount of training required and increase the success rate to close to 100%.

One basic approach to speech recognition is represented by the block diagram shown in Figure 10.16.

This is a system that is built around a special chip developed by Texas Instruments. This system uses

templates and special algorithms for recognizing the input speech patterns. The system is speaker

dependent, with the capability of storing up to 32 word templates and user-defined phrases. The output

portion may be superfluous when the system is used only for inputting data and commands, but can be a

useful adjunct to the visual response. Other techniques such as speaker-independent and phoneme-

recognition systems are also available. Vocabularies range from 50 to 5000 active words, and both isolated

and connected words can be recognized, although the larger numbers tend to be associated with isolated

word systems. In general, it seems feasible that a combination of speech input and pen-based computing

may find a viable market.

Summary

The multiplicity of input devices that are available makes it difficult to determine which is most suitable for

any specific set of requirements. However, the limited functional comparison of the input devices covered in

TABLE 10.6 Input Devices— Advantages and Disadvantages

Device Advantages Disadvantages

Keyboard Simple operation Requires many keys

Well known Requires training

Standard interface No graphics

Light pen Eye-hand coordination Arm fatigue

Low cost models Limited resolution

No desk space required May block display

Graphic tablet Natural hand movements Eye-hand conflict

Screen not blocked Requires desk space

No parallax Breakable stylus

Good for graphics Poor for A/N entry

Mouse Small space needed Some space needed

Low cost Slow transmission

Screen viewing Low resolution

Any surface may be used Grid for optical

(Optical) noiseless Mechanical noise

Trackball High resolution Poor for A/N input

Fixed desk space Slow transmission

Screen viewing Mechanical noise

Tactile feedback 3-D difficult

Joystick Fixed desk space Low accuracy

Low fatigue Low resolution

Low cost No A/N input

Touchscreen Eye-hand coordination Arm fatigue

Minimal training May block display

Minimum input errors Varied resolution

User acceptance Parallax

No special commands Slow data entry

Scanner Full A/N page input Hand scanner width

Color scan input High cost for color

High resolution Slow input

OCR software Compatibility

Voice Ease of use Limited words

Minimal training Machine training

No special devices Graphics difficult
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this section shown in Table 10.4 may be of some use, and in any event is a starting point in this evaluation. It

should be noted that what appears best at one time may become unpopular or obsolete at a later time, as

occurred for light pens and trackballs, both of which have come back into favor.

In addition to the generalized evaluation shown in Table 10.4, it is also of interest to examine

representative performance parameters. These are shown in Table 10.5 and while representative do not

necessarily cover the range of performance parameters offered. More data may be obtained from the

vendors of these devices.

Advantages and Disadvantages

Input devices make up one of the functional groups of the display systems, and their technical

characteristics are covered in some detail at the beginning of this chapter, with performance information

provided in Table 10.5 containing characteristic parameter values for each type, as available. The following

material expands somewhat on that information by placing these devices in the context of a full graphics

display system and evaluating the functions that the various types of input devices perform in that type of

system in terms of their advantages and disadvantages. It is of some interest to compare the advantages

and disadvantages of each type at this point, as listed in Table 10.6. This is an imposing list and may be

used to aid in choosing the best input devices for specific applications. It also concludes this section on

input devices.

Defining Terms

Data tablet/digitizer: A device consisting of a surface, usually flat, and incorporating means for selecting a

specific location on the surface of the device and transmitting the coordinates of this location to a

computer or other data processing unit that can use this information for moving a cursor on the screen

of the display unit.

Joystick: An input device somewhat in the form of the navigation control device found in early aircraft and

operating in a somewhat similar manner by generating series of pulses whose frequency or number

depend on how far, with what force, and in what direction the control stick is moved from the central

position.

Keyboards: Electromechanical devices consisting of sets of keys labeled with alphanumeric, numeric, and

functional designations that enable the user to describe and define the operation to be performed.

Light pen: Neither a pen or a light source but rather an input device in the shape of a pen that operates by

sensing the existence or nonexistence of light pulses at specific locations on the surface of a display

device and uses this information to signal the computer as to the location of the pen.

Mouse: An input device based on a much older type known as a trackball and fancifully named because it

bears only a casual resemblance to a mouse. It consists of a roller ball that is moved on a flat surface and

causes orthogonal potentiometers or other types of X–Y-position signal generators to move and produce

electrical signals defining the desired coordinates of the cursor on the screen so that the cursor can be

moved to that position.

Scanners: Means for converting hard copy into electrical signals that can be entered into a computer or

data processing system. The usual means for accomplishing such conversion is to move a light beam

over the surface containing the data either by hand or automatically and using arrays of light-sensitive

devices to convert the reflected light into electrical pulses.

Touch input: A means for selecting a location on the surface of the display unit using a variety of technologies

that can respond to the placing of a finger or other pointing device on the surface. These are essentially data

panels placed either on the display surface or between the user and the display surface.

Trackball: The earliest version of an input device using a roller ball, differing from the mouse in that

the ball is contained in a unit that can remain in a fixed position while the ball is rotated. It is

sometimes referred to as an upside-down mouse, but the reverse is more appropriate as the trackball

came first.
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Voice: Means for enabling a computer or data processing system to recognize spoken commands and input

data and convert them into electrical signals that can be used to cause the system to carry out these

commands or accept the data. Various types of algorithms and stored templates are used to achieve this

recognition.
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Further Information

Electronic Displays, 2nd ed., by Sol Sherr and published by John Wiley & Sons, Inc., contains an extensive and

detailed discussion of other aspects of display systems and technology, as well as a somewhat expanded version

of this section. In addition, Input Devices, edited by Sol Sherr, and Output Hardcopy Devices, edited by Robert

C. Durbeck and Sol Sherr, both published by Academic Press, include extensive discussions of a wide variety of

devices.

The Society for Information Display (SID) sponsors a yearly symposium at which a large amount of

information on new developments in information display as well as tutorials and seminars on basic

information display topics are presented and made available in published form. In addition, it publishes two

journals, namely, Proceedings of the Society for Information Display and Information Display. Other relevant

meetings and publications are those sponsored by the Computer Society and Electron Devices groups of the

IEEE, the SIGGRAPH group of the Association for Computing Machines (ACM), and the National Computer

Graphics Association (NCGA).

# 2006 by Taylor & Francis Group, LLC



11
Secure Electronic

Commerce

Mostafa Hashem Sherif
AT&T

Electronic commerce is the set of totally dematerialized relations that economic agents establish with each

other. Partial or complete dematerialization of commercial transactions allows remote operation using a

telecommunications network. Payments can be made with several forms of electronic money such as the

monetary value stored in electronic purses within programmable integrated circuit (smart) cards, in wallets

residing on the user’s computer, or in a network account.

Security of commerce has leaped to the forefront because of changes in the business environment, in the

legal framework, and in the technology. The separation of functions that were once within the province of a

vertically integrated enterprise and the outsourcing of responsibilities have multiplied the number of

participants in the end-to-end information processing of a transaction, thus increasing the security risks.

Also, the use of the IP protocol in remote commercial applications, even though designers of that protocol

did not have security in mind, requires a careful analysis of the potential threats and ways to circumvent

them. Legislation has been promulgated to specify the controls and the audits for electronic monetary

transactions, and to specify the measures to protect the records collected. This is particularly needed in

countries, like Singapore, where three fourths of the volume of non-cash transactions are done with

electronic purses. Starting 2008, Singapore plans to accord the money stored in electronic purses the same

legal status as cash.

The degree of security offered in electronic commerce must be commensurate with the amount of the

transaction and the value of the goods and services being bought. For example, the protection afforded to

micropayments (payments less than $10) is not at the same level as that given to the transfer of large amounts

among financial institutions. Ways to reduce the cost of security include lighter cryptography, offline

authorization of payments, and the grouping of transactions before requesting financial compensation.

Depending on the nature of the economic agents, electronic commerce applications fall within one of four

main categories of business relations:

1. Business-to-business

2. Business-to-consumer

3. Point-of-sale (face-to-face) operations

4. Peer-to-peer commerce (without any payment intermediary)

For each category, the management of security has to find the appropriate method to secure the

telecommunication infrastructure, the exchanges associated with the purchasing transaction, the payment

and financial compensation, and the back office operations of the merchant including supply chain

management. This is includes the software used for the various applications.

The telecommunication network can be packet-switched (e.g., the Internet) or circuit-switched (traditional

telephone network) with wireline or wireless access. The large scale use of smart cards as a means for payment
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requires a new secure infrastructure. This infrastructure includes a network of secure terminals including

recharging points to add monetary value to the rechargeable cards, secure gateways to the financial networks,

and low-cost but secure card readers that are tamper-resistant and equipped with a security module to carry

out the necessary cryptographic functions. The availability and reliability of the telecommunication service

depend on the physical infrastructure and the network design, as well as on the operating procedures of the

network operator.

Once this generic requirement has been met, solutions specific to electronic commerce address the following

aspects:

1. Protection of the exchanges between the merchant and the buyer on the one side and the merchant and

its financial institution on the other. This includes protection of the various servers involved.

2. Protection of the payment and the associated financial messages.

3. In consumer applications, verification of the person’s credit worthiness, establishment of payment

threshold for a given person, and fraud detection and management. The latter requires surveillance of

activities at points of sale and observation of short-term events and long-term trends.

4. Protection of the merchandise, particularly merchandise in the virtual domain.

From a transactional viewpoint attacks can be either passive or active. Passive attacks rely on the

observation of the traffic to deduce some information on the exchange (e.g., bank account or the nature of

the purchase). Active attacks consist of intentional manipulations to effect some of the parameters of the

transaction (e.g., shipping address, account information, etc.). The granularity of the level of protection

determines at what layer of the open system interconnection (OSI) model the security services are

implemented. In general, the finer the granularity, the higher the layer.

The main security services in a generic electronic transaction are confidentiality, integrity, authentication,

access control and non-repudiation. Anonymity and nontraceability are two services is that are specific to

payment mechanisms. The basic principle of all these services is the use of mathematical functions to reshuffle

the original message into an unreadable form before transmission. After the message is received only the

authenticated recipient is allowed to restore the original text.

Confidentiality means that the exchanged messages are not divulged to an unauthorized third party. This is

achieved by cryptography, whether symmetric or asymmetric. Symmetric cryptography uses a shared key

between the sender and the receiver. It is speedier than asymmetric cryptography for the same amount of

protection provided that secure distribution channels are used to share the keys. Asymmetric or public key

cryptography obviates the need for a secure key distribution channel. In on-line systems, public key

cryptography can be combined with symmetric cryptography. In this way, public key encryption is used at the

beginning of an electronic commerce session to exchange the shared secret that will be used throughout the

session for symmetric encryption.

Integrity means that the message cannot be changed without leaving a trace. A one-way hash function is

used to produce a signature of the original message to be compared at the receiving end with the signature

computed upon arrival of the message. (A hash function has the property that it allows an easy computation

of the signature from the original message, but that the reverse computation is very difficult. In addition, the

probability that two different messages would produce the same signature is very low, while small differences

between two messages produce signatures that are widely apart). The integrity of the message is verified if both

signatures are identical. This means that the contents of the messages or of their sequence cannot be

manipulated without detection: this impedes the falsification of payment instructions or the generation of

spurious instructions. A blind signature is a special procedure for verifying the integrity of a message (e.g., a

purchase order) without disclosing its content.

Identification of the participants in a transaction is the verification of a pre-existing relation between an

entity and a characteristic such as a password, a cryptographic key, or some biometric property. One entity

may possess several distinct identifiers, one for each relationship.

Authentication of the participants is the corroboration of the identity that an entity claims with the

guarantee of a trusted third party. The authentication credentials may be an X.509 certificate, a Kerberos ticket,

or on an identity password pair. Authentication is necessary to ensure the service of nonrepudiation. Banking
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organizations are now issuing and distributing digital certificates to their members and their clients. The main

organizations are Identrus and the Global Trust Authority.

Access control is the process of ensuring that only the authorized entities whose identities have been

duly authenticated can gain access to the protected resources. There are two types of access control

mechanisms: identity-based and role-based. Identity-based access control uses the authenticated identity to

determine and enforce the access rights. For role-based access control, the access privileges depend on the

job function and its context such as the type of operation request or the time of day. Nonrepudiation is a

legal construct based on the accumulation and preservation of proofs that can be verified by a third party

(tax authority, judiciary, etc.).

The services that are more specific for payment transactions are anonymity and nontraceability. Anonymity

means that the identity of the payer is not used explicitly to settle the transaction. This feature contradicts the

aim of tailoring the service to individual preferences because such a personalization establishes some

relationship between the payer’s identity and the transaction. In the case of remote payments, anonymity of

the communication is a necessary condition for payment anonymity, because once the source has been

identified, it is more difficult to hide the identity of the originator. However, some degree of anonymity can be

established in ‘‘mix networks’’ with public key cryptography, as proposed by David Chaum. In point-of-sale

applications, a smart card with offline verification is a reasonable way to provide anonymity. Nontreaceability

means that, in addition to the payer being anonymous, two payments made by the same person could not be

linked to each other.

IPSec is a protocol suite used to secure the communications between two peers at the network layer. It offers

authentication, confidentiality, and encryption, as well as key management. It is used to secure virtual private

networks in one of two modes: the transport mode and the tunnel mode. The transport mode secures the

communication between two hosts, while the tunnel mode is useful when one or both ends of the connection

is a trusted entity such as a firewall. This trusted entity then provides the security services to the endpoint that

it is connected to. The tunnel mode is also employed when a router provides the security services to the traffic

that it is forwarding.

The secure sockets layer (SSL) and the transport layer security (TLS) are two protocols widely used to secure

the connection between a client and server. They supply a simple mechanism to protect the exchanges between

two points over transport control protocol (TCP); thus, they operate between the transport layer and the

application layer of the OSI reference model. Their modular architecture allows them to evolve without

disturbing the whole structure. TLS is derived from SSL and has been standardized by the Internet Engineering

Task Force (IETF). Wireless transport layer security (WTLS) is the result of a complete revision of TLS to meet

the constraints of wireless environment. It was designed to be part of the Wireless Access Protocol (WAP)

environment to provide mobile terminals with Internet access. However, WTLS and TLS are not compatible,

so that a gateway must ensure interoperability between TLS and WTLS, thereby raising additional security

concerns. This has prevented widespread use of WTLS.

The main computational load of SSL/TSL comes from the cryptographic operation during session

establishment. To alleviate this load a session can be resumed without a new cryptographic exchange. Another

way is to use an accelerator between the client and the server. The use of accelerators, however, opens the door

to additional security threats because there may be now two back-to-back SSL/TLS sessions given that SSL

cannot handle multiparty transactions.

There are several protocols for the centralized management of access control of a large number of clients or

users. The most common are the Remote Authentication Dial-in User Service (RADIUS) and the Terminal

Access Controller Access System (TACACS). Both require the establishment of secret keys between each network

element and the server controlling the access. Note that both server-to-client authentication and user-to-client

authentication are outside the scope of RADIUS. Commercial systems add one of two basic systems for end-

user authentication: one-time passwords or challenge-response identification. RADIUS does not include

provisions for congestion control so that, unless some protections are made, large networks may suffer

degraded performance and data loss when congestion happens.

Without adequate authentication and access control, electronic commerce sites are vulnerable to denial of

service attacks that can prevent normal access by legitimate users. These attacks overwhelm the resources
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(routers, servers, switches, etc.) with spurious or superfluous tasks. Nevertheless, these attacks are inevitably

associated with IP networks for two reasons: network control data and user data intermingle on the same

physical and logical bandwidth, and the IP has no policy for admission control because it is a connectionless

protocol.

Secure Electronic Transaction (SET) was designed with bank card security in mind. It operates at the

application layer independently of the lower layers, even though most of its intended use was over TCP/IP

networks. In SET each message exchange is encrypted and authenticated. SET allows multiparty transactions

through a mechanism called dual signature. This is a procedure to protect the integrity of message that carries

two distinct components that the cardholder sends, one to the merchant and the other to the payment

gateway. With this procedure the cardholder can send a purchase order to the merchant and a payment

instruction to the bank within the same message, each encrypted with a different algorithm and/or parameters.

The merchant then extracts the purchase order, reads it, and verifies the integrity of the payment instructions

without reading them. Once the merchant is satisfied, he forwards the whole message to the payment gateway

with an indication that he has accepted the order. In turn, the payment gateway can verify the integrity of the

merchant acceptance and read the totality of the payment data. In this way, the bank knows the financial

details of the transaction without knowing the subject of the transaction. This mechanism avoids unnecessary

exchanges because each recipient can read the part of the message that it has to receive and verify the integrity

of the other part without knowing its content. The price is the complexity of the implementation, a factor that

has impeded the commercial success of SET.

Hybrid SSL/SET architectures for payment protection combine the security advantages of SET with the

simplicity of SSL. The solution relies on a payment intermediary to act as a proxy for its client with respect to

the SET infrastructure. The intermediary acts a SET/SSL gateway and reduces the cryptographic load on both

the buyer and the merchant.

Another approach to secure the multiparty association for bank card transactions is the 3-D Secure

program used in the ‘‘Verified by Visa’’ program. 3-D Secure establishes four point-to-point SSL/TLS

connections to link the buyer, the merchant, and the payment gateway. However, management of four links for

each transaction poses salability problems.

Measures for logical security in card transactions include authentication of the holder, of the card, and of

the card reader, and securing all the communication channels with the host system. A new generation of

integrated circuit cards takes advantage of the microprocessor computational capabilities to add more

functions to the payment applications. Although the security of previous generations of bank cards was

proprietary, the Europay, MasterCard, Visa (EMV) specifications have standardized many aspects of security

management. Visa and American Express have selected the JavaCard architecture to share the resources in

multi-application cards among several applications. In addition, the security of the integration of smart cards

and local computers acting as access terminals has been addressed in several initiatives such as OpenCard for

Java and PC/SC for Windows#.

In summary, achieving security is complex and building scale to this security is extremely difficult. Because

electronic commerce is a scale business, the security of electronic commerce forces a complete revision of the

whole value chain. Some of the important issues that must be addressed relate to the protection of intellectual

property, civil rights, privacy rights, as well as taxation, fraud prevention, etc. These issues are not only

technological but challenge the fundamental assumptions of society.
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12.1 Tools and Techniques*

Carl A. Argila

The last decade has seen a revolution in software engineering tools and techniques. This revolution has been

fueled by the ever-increasing complexity of the software component of delivered systems. Although the

software component of delivered systems may not be the most expensive component, it is usually, however,

‘‘in series’’ with the hardware component; if the software doesn’t work, the hardware is useless.

Traditionally, software engineering has focused primarily on computer programming with ad hoc analysis

and design techniques. Each software system was a unique piece of intellectual work; little emphasis was placed

on architecture, interchangeability of parts, reusability, etc. These ad hoc software engineering methods

resulted in the production of software systems which did not meet user requirements, were usually delivered

over budget and beyond schedule, and were extraordinarily difficult to maintain and enhance.

In an attempt to find some solutions to the ‘‘software crisis,’’ large governmental and private organizations

motivated the development of so-called ‘‘waterfall’’ methods. These methods defined formal requirement

definition and analysis phases, which had to be completed before commencing a formal design stage, which in

turn had to be completed before beginning a formal implementation phase, etc. Although waterfall methods

were usually superior to ad hoc methods, large and complex software systems were still being delivered, over

budget and beyond schedule, which did not meet user requirements. There were several reasons for this. First,

waterfall methods focus on the generation of work products rather than ‘‘engineering.’’ Simply put, writing

documents is not the same as doing good engineering. Second, the waterfall methods do not support the

evolution of system requirements throughout the development life cycle. Also, the prose English specifications

produced within the waterfall methods are not well suited to describing the complex behaviors of software

systems.

The basic, underlying philosophy of how software systems should be developed changed dramatically in

1978 when Tom DeMarco published his truly seminal book, Structured Analysis and System Specification

[DeMarco, 1979]. DeMarco proposed that software systems should be developed like any large, complex

engineering systems — by first building scale models of proposed systems so as to investigate their behavior.

This model-based software engineering approach is analogous to that used by architects to specify and design

*The material in this article was originally published in The Electrical Engineering Handbook, Richard C. Dorf, Ed., Boca Raton,

FL: CRC Press, 1993.
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large complex buildings (see Figure 12.1). We build scale models of software systems for the same reason that

architects build scale models of houses, so that users can visualize living with the systems of the future. These

models serve as vehicles for communication and negotiation between users, developers, sponsors, builders, etc.

Model-based software engineering holds considerable promise for enabling large, complex software systems to

be developed on budget, within schedule, while meeting user requirements [see Harel, 1992].

As shown in Figure 12.2, a number of specific software development models may be built as part of the

software development process. These models may be built by different communities of users, developers,

customers, etc. Most importantly, however, these models are built in an iterative fashion. Although work

products (documents, milestone reviews, code releases, etc.) may be delivered chronologically, models are built

iteratively throughout the software system’s development life cycle.

In Figure 12.3 we illustrate the distinction between methodology, tool, and work product. A number of differing

software development methods have evolved, all based on the underlying model-based philosophy. Different

methods may in fact be used for the requirements and analysis phases of project development than for design

and implementation. These differing methods may or may not integrate well. Tools such as computer aided

software engineering (CASE) may support all, or only a part, of a given method. Work products, such as

document production or code generation, may be generated manually or by means of CASE tools.

This article will present a synopsis of various practical software engineering techniques which can be used to

construct software development models; these techniques are illustrated within the context of a simple case

study system.

Approach

One of the most widely accepted approaches in the software engineering industry is to build two software

development models. An essential model captures the behavior of a proposed software system, independent

of implementation specifics. An essential model of a software system is analogous to the scale model of a house

built by an architect; this model is used to negotiate the essential requirements of a system between customers

and developers. A second model, an implementation model, of a software system describes the technical

aspects of a proposed system within a particular implementation environment. This model is analogous to

the detailed blueprints created by an architect; it specifies the implementation aspects of a system to those who

will do the construction. These models [described in Argila, 1992] are shown in Figure 12.4. The essential and

implementation models of a proposed software system are built in an iterative fashion.

FIGURE 12.1 Model-based software engineering.
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Methods

The techniques used to build the essential and implementation models of a proposed software system are

illustrated by means of a simple case study. The radio button system (RBS) is a component of a fully

automated, digital automobile sound system. The RBS monitors a set of front-panel station selection buttons

and performs station selection functions.

FIGURE 12.2 Modeling life cycle.

FIGURE 12.3 Methods, tools and work products.
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When a station selection button is momentarily depressed, the RBS causes a new station to be selected. This

selection is made on the basis of station-setting information stored within the RBS. The RBS can ‘‘memorize’’

new station selections in the following manner: When a given station selection button is depressed longer than

momentarily (say, for more than 2 seconds), the currently selected station will be ‘‘memorized.’’ Future

momentary depressions of this button will result in this ‘‘memorized’’ station being selected.

The RBS also performs a muting function. While a station is being selected, the RBS will cause the audio

system to mute the audio output signal. The RBS will also cause the audio output signal to be muted until a

new station selection has been successfully memorized.

The RBS interfaces with the front-panel station selection buttons by ‘‘reading’’ a single-byte memory

location. Each bit position of this memory location is associated with a particular front-panel station selection

button. The value of 0 in a given bit position indicates that the corresponding button is not depressed. The

value of 1 in that bit position indicates that the corresponding button is depressed. (For example, 0000 0000

indicates no station selection buttons are currently depressed; 0000 0010 indicates that the second button is

currently depressed, etc.)

The RBS interfaces with the tuning system by means of a common memory location. This single-byte

memory location contains a non-negative integer value which represents a station selection. (For example,

0000 0000 might represent 87.9 MHz, 0000 0001 might represent 88.1 MHz, etc.) The RBS may ‘‘read’’ this

memory location to ‘‘memorize’’ a current station selection. The RBS may also ‘‘write’’ to this memory

location to cause the tuning system to select another station.

Finally, the RBS interfaces with the audio system by sending two signals. The RBS may send a MUTE-ON

signal to the audio system causing the audio system to disable the audio output. A MUTE-OFF signal would

cause the audio system to enable the audio output.

Information Modeling

The construction of an information model is fundamental to so-called object-oriented approaches. An infor-

mation model captures a ‘‘view’’ of an application domain within which a software system will be built.

FIGURE 12.4 Software engineering methods overview.
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Information models are based on entity-relationship diagrams and underlying textual information. A sample

information model for the RBS is shown in Figure 12.5. Entities (shown as rectangles) represent ‘‘things’’ or

objects in the application domain. Entities may be established by considering principal nouns or noun phrases

in the application domain. Entities have attributes associated with them which express the qualities of the

entity. Entities participate in relationships; these are shown as diamonds in the entity-relationship diagram.

Relationships may be determined by considering principal verbs or verb phrases in the application domain.

Relationships have cardinality associated with them and entities may participate conditionally in relationships.

Finally, there are special kinds of relationships which show hierarchical relationships between objects.

Essential Modeling

The essential model consists of a number of graphical components with integrated textual information.

Figure 12.6 shows the object collaboration model for the RBS. This model depicts how a collection of objects

FIGURE 12.6 RBS object collaboration model.

FIGURE 12.5 RBS information model.
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or entities can communicate (by exchanging messages) to perform the proposed system functions. An event

list is part of this model; it shows what responses must be produced for a given external stimulus.

For each object there is an object interface specification (as shown in Figure 12.7) which shows the public

and private interfaces to an object. An event list is also associated with this specification; it shows how the

object will respond to external stimuli. A hierarchy of transformation diagrams is associated with each object

specification (as shown in Figure 12.8 for the RBS). This diagram defines all of the functions or ‘‘methods’’

which the object performs. Some behavior may be expressed by means of a state transition diagram

(Figure 12.9).

Implementation Modeling

Two principal activities must be accomplished in transitioning from the essential to the implementation

model. First, all of the methods and data encapsulated by each object must be mapped to the implementation

environment. This process is illustrated in Figure 12.10. Second, all of the details which were ignored in the

essential model (such as user interfaces, communication protocols, hardware limitations, etc.) must now be

accounted for.

Each component of the essential model must be allocated to hardware processors. Within each hardware

processor, allocation must be continued to the task level. Within each task, the computer program controlling

that task must be described. This latter description is accomplished by means of a module structure chart.

As illustrated in Figure 12.11, for one component of the RBS, the module structure chart is a formal

description of each of the computer program units and their interfaces.

CASE Tools

The term computer-aided software engineering (CASE) is used to describe a collection of tools which automate

all or some of various of the software engineering life cycle phases. These tools may facilitate the capturing,

tracking and tracing of requirements, the construction and verification of essential and implementation

models and the automatic generation of computer programs. Most CASE tools have an underlying

FIGURE 12.7 RBS object interface specification.
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FIGURE 12.8 RBS transformation diagram.

FIGURE 12.9 RBS state transition diagram.
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project repository which stores project-related information, both textual and graphical, and uses this

information for producing reports and work products.

CASE tool features may include:

. Requirements for capture, tracing and tracking

. Maintenance of all project-related information

. Model verification

. Facilitation of model validation

. Document production

. Configuration management

. Collection and reporting of project management data

. CASE data exchange

FIGURE 12.10 Implementation modeling.

FIGURE 12.11 RBS module structure chart.
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Defining Terms

CASE: Computer-aided software engineering. A general term for tools which automate various of the

software engineering life cycle phases.

Essential model: A software engineering model which describes the behavior of a proposed software

system independent of implementation aspects.

Implementation model: A software engineering model which describes the technical aspects of a

proposed system within a particular implementation environment.

Information model: A software engineering model which describes an application domain as a collection

of objects and relationships between those objects.

Module structure chart: A component of the implementation model; it describes the architecture of a

single computer program.

Object: An ‘‘entity’’ or ‘‘thing’’ within the application domain of a proposed software system.

Object collaboration model: A component of the essential model; it describes how objects exchange

messages in order to perform the work specified for a proposed system.

Object interface specification: A component of the essential model; it describes all of the public and

private interfaces to an object.

State transition diagram: A component of the essential model; it describes event-response behaviors.

Transformation diagram: A component of the essential model; it describes system functions or

‘‘methods.’’
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Further Information

A video course presenting the software engineering techniques described here is available [see Argila, 1992].

The author may be contacted for additional information and comments at (800) 347–6903.

12.2 Software Testing

Paul C. Jorgensen

Introduction

From the 1960s through today, many attempts have been made to improve software development: they

include the use of higher-level languages, structured programming, an emphasis on design, requirements
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modeling, object-oriented programming, agile development and most recently, test-driven development.

Despite this 40-year history of improvements, the need for software testing persists. IEEE has defined a series

of useful terms for software testing. An error is a mistake made by a person. When an error is recorded in a

description of the eventual software (such as a requirements model, a design document or source code), the

error becomes a fault. A failure occurs when the code corresponding to a fault executes. When a failure is

recognized, it becomes an incident [IEEE, 1983]. In this context, the goal of software testing is to devise test

cases so that, when executed by the software being tested, an incident will reveal the presence of a fault. At a

minimum, a software test case contains:

. Preconditions describing the state of the software before executing the test case

. An interleaved sequence of inputs and expected outputs

. A place to record observed outputs

. A pass/fail assessment

When expected and observed outputs are consistent, the test case passes; otherwise, an incident has

occurred, demonstrating the presence of a fault. Software testing can never demonstrate the absence of faults.

Software testing has three distinct levels: unit, integration and system. Each has unique problems and goals.

Unit testing is restricted to a single procedural module (or an object-oriented class), and is concerned with

faults within the unit’s scope. Integration testing assumes that units have been rigorously tested and is

concerned with faults outside the scope of individual units. System testing is conducted at the level of eventual

customer use.

Fundamental Testing Approaches

When software executes a test case, an execution-time

behavior occurs. This makes test cases highly dynamic.

Given a particular program, imagine a universe of dis-

course of software behaviors and consider two particular

sets: specified behaviors, S, and implemented behaviors,

P (see Figure 12.12).

The goal of software testing at any level is to determine the

extent to which the specified and implemented behaviors

(the intersection of sets S and P in Figure 12.12) coincide. The

relative complements (S–P and P–S) are both problematic.

The former signifies specified behaviors that have not been implemented, and the latter denotes unspecified

behaviors that have been implemented. The set, T, of test cases completes the Venn diagram of software behaviors

and testing. The significance of the eight regions is summarized in Table 12.1.

A test method is a systematic way to identify test cases. There are two fundamental test methods:

specification-based (also called functional testing or black-box testing) and code-based (also called structural

S P

S P

T

1

2

3 4

56

7
8

FIGURE 12.12 Specified and implemented beha-

viors and test cases.

TABLE 12.1

Region Description

1 Specified and implemented behaviors with corresponding test cases.

2 Specified and implemented behaviors that are not tested.

3 Specified behaviors that are not implemented and are revealed by test cases.

4 Unspecified behaviors that are implemented and correspond

to test cases. Failure of these cannot be determined because they are not specified.

5 Implemented behaviors that are neither specified nor tested. Very problematic.

6 Specified behaviors that are neither implemented nor tested. Also very problematic.

7 Spurious test cases of no utility.

8 Behaviors of no interest.

# 2006 by Taylor & Francis Group, LLC



testing, or white- or clear-box testing). Specification-based testing pertains to regions 1, 2 and 3 in Figure

12.12, and code-based testing pertains to regions 1, 2 and 4. In this context, the goal of software testing is to

reduce regions 5 and 6. Test coverage metrics (discussed later) provide some answers for region 5. The main

hope for region 6 is to conduct effective software technical inspections, which are beyond the scope of this

chapter.

Specification-Based Test Methods

For ease of description, consider a program that is a function of

two input variables, x and y. (Extending this to more realistic

programs will be obvious.) The input space is the shaded region

shown in Figure 12.13. The simplest specification-based test

method focuses on the variables’ boundary values and makes

two important assumptions: faults occur near the extreme

values (recognized in practice) and are confined to a single

variable.

Boundary value testing identifies five values of interest: the

minimum, a value slightly greater than the minimum, a

nominal value, a value slightly less than the maximum, and

the maximum. Test cases are generated by holding all variables

at their nominal values except one, and that variable assumes

the other four values. This is repeated for each variable and is

illustrated in graph A of Figure 12.14. Robust boundary-value testing is a simple extension obtained by adding

invalid values of variables below the minimum and above the maximum (see graph B of Figure 12.14).

Murphy’s Law suggests that the single fault assumption may not be appropriate. If this is a concern, the

Cartesian product of the test cases is formed to identify worst-case boundary-value test cases (graph C) and

robust worst-case boundary-value test cases (graph D). These four forms are elementary, and commercially

available test support products can generate partial test cases for these methods (No product can generate the

expected output portion of the test cases). All forms of boundary-value testing are vulnerable to twin

deficiencies: gaps of untested functionality and redundant test cases. Worse, specification-based testing can

never recognize if these deficiencies occur [Jorgensen, 2002].
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FIGURE 12.13 Input space of a function of

two variables.
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FIGURE 12.14 Variations of boundary-value testing.
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The equivalence relation from discrete mathematics provides a response to the twin deficiencies of gaps and

redundancies in boundary-value testing. An equivalence relation defined on a set induces a partition of the set,

where a partition is a set of subsets of the original set such that the subsets are disjoint (have no redundancies)

and their union is in the original set (with no gaps). Program variables are in an equivalence class if the

program treats all class members similarly (the similar treatment assumption). Equivalence class testing

identifies useful equivalence relations on the input variable space and then selects one test case from each

equivalence class. The boundary value example is extended here for variables x and y:

Valid equivalence classes for x: [a, b), [b, c), [c, d), [d, e]

Valid equivalence classes for y: [m, n), [n, p), [p, q]

Invalid equivalence classes for x: x , a, x . e

Invalid equivalence classes for y: y , m, y . q

Equivalence class test methods are best used when the program being tested has input data that can be

separated into ‘‘similar treatment’’ classes. A good example is the calculation of automobile insurance

premiums in cases where driver age ranges are important. When the similar treatment assumption is

warranted, the weak normal equivalence class test method (WN) uses one input value from each equivalence

class of valid values. An early focus of equivalence class testing was on invalid data values. Traditional

programs frequently had 80% of their source code dedicated to detecting invalid data, a response to the

‘‘Garbage-In, Garbage-Out’’ mantra. As with boundary-value testing, the robust form adds invalid values.

Weak robust equivalence class test cases (a seemingly inconsistent name) are illustrated in Figure 12.15 as WR.

Note that weak normal test cases (WN) are a subset of weak robust test cases.

The adjective ‘‘weak’’ refers to the fact that each test case is a member of two equivalence classes. The WR

test case in the lower left of Figure 12.15 is in both the invalid x , a class and the invalid y , m class. The weak

forms make the single fault assumption. If this is unwarranted, the Cartesian product of the equivalence classes

results in strong normal equivalence class and strong robust equivalence class test cases, shown as SN and SR in

Figure 12.16.

The four forms of boundary-value testing and the four forms of equivalence class testing share the two

assumptions of validity and fault multiplicity summarized in Table 12.2. There is one remaining assumption

common to all forms of boundary-value and equivalence class testing summarized in Table 12.2: the

independent variable assumption. This assumption is inherent in the worst-case and strong methods. Any

time a Cartesian product is performed, it is assumed that the operands are truly independent. If there are

dependencies among the variables, elements of the Cartesian product can be infeasible or impossible. The final
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FIGURE 12.15 Weak normal and weak robust equivalence class test cases.
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refinement to specification-based testing is to use decision tables to sort dependencies among the variables.

Decision tables consist of conditions, actions and rules. In a limited entry decision table (LEDT), conditions are

binary, so an LEDT with n conditions will have rules of 2n. The action portion of a decision table indicates the

actions to be performed under each combination of condition values. Table 12.3 is a sample limited entry

decision table with three conditions, four actions and eight rules.

Decision tables can be manipulated algebraically, and analyzed to determine completeness, consistency and

redundancy. They also can be algebraically simplified. The sample in Table 12.3 is complete (three conditions

with eight unique rules) and there is no inconsistency. The ‘‘impossible’’ entry denotes impossible

combinations of conditions. In this example, C1 and C2 cannot both be true. Note that C3 is irrelevant, so

rules R1 and R2 could be combined. Similarly, rules R3 and R4 can be combined, as can rules R5 and R7. The

resulting simplified table is in Table 12.4. No additional simplifications are possible.
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SN SN

SN SN
SN SN

SN SN
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SR
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FIGURE 12.16 Strong normal and strong robust equivalence class test cases.

TABLE 12.3 A Sample Decision Table

R1 R2 R3 R4 R5 R6 R7 R8

C1 T T T T F F F F

C2 T T F F T T F F

C3 T F T F T F T F

A1 X X X X X

A2 X X X

A3 X X X X

A4 X X

Impossible X X

TABLE 12.2 Assumptions of Boundary Value and Equivalence Class Testing

Normal Values Robust Values

Single fault Boundary value testing Robust boundary value testing

Weak normal equivalence class Weak robust equivalence class

Multiple fault Worst case boundary value testing Robust worst case boundary value

Strong normal equivalence class testing

Strong robust equivalence class
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If there are dependent variables in a program to be tested, these should be identified with appropriate

conditions and use of the ‘‘impossible’’ action. Remaining rules will correspond to legitimate test cases, and

the algebraic simplification further reduces any (logical) redundancy.

Code-Based Test Methods

The starting point of most code-based test methods is

the program graph, a directed graph where nodes

correspond to source statement fragments and edges

indicate possible sequential execution. Figure 12.17

shows the program graph of a sample program

expressed in (language neutral) pseudo-code.

The precepts of structured programming require a

single entry and a single exit. Therefore, a program

graph of a structured program will have a single source

node and a single sink node. When a program executes

a test case, some path of nodes is traversed. Code-

based testing begins with the idea of path testing,

where sets of test cases correspond to different paths

through the program graph. Here, the meaning of the

‘‘similar treatment’’ assumption is absolutely clear: test

cases with ‘‘similar treatment’’ traverse the same path

in the program graph. The literature includes simplis-

tic objections to path-based testing. A notable,

persistent example is found in Schach [2005], which

presents a simple program graph with a loop that can

be executed up to 18 times. It yields 4.77 trillion

distinct execution paths. The author asserts that this

large number of program paths dooms the idea of path-based testing. Objections such as this miss the point of

code-based testing: using information derived from the program graph to provide insight into the utility of a

set of test cases.

The cyclomatic complexity of a strongly connected directed graph is shown by the formula

V(G)¼ e � nþ p, where e is the number of edges, n is the number of nodes and p is the number of

connected regions. Graphs of structured programs need an extra edge (the dotted edge in Figure 12.17) that

extends from the unique sink node back to the unique source node to be strongly connected and directed

graph. The cyclomatic complexity formula for graphs of structured programs simplifies to V(G)¼ e � nþ 2

because p is always equal to 1, and the added edge from sink to source node is ignored. Cyclomatic complexity

describes the number of linearly independent cycles in a strongly connected directed graph; this translates to

TABLE 12.4 The Simplified Decision Table

R1, R2 R3, R4 R5, R7 R6 R8

C1 T T F F F

C2 T F – T F

C3 – – T F F

A1 X X X

A2 X X

A3 X X X

A4 X

Impossible X

1

3

4 5

6

7

8

2

9

10

1.  Statement 1 
2.  While condition 1 
3.      If condition 2 
4.          Then Statement 2 
5.           Else Statement 3 
6.       EndIf 
7.   Statement 4 
8.   EndWhile 
9.   Statement 5 
10. End

FIGURE 12.17 Program graph of structured code.
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the number of linearly independent paths from the source to the sink

node in the graph of a structured program. The cyclomatic complexity

of the example in Figure 12.17 is V(G)¼ 12 � 10þ 2, leaving four

essentially distinct paths to be tested. (The cyclomatic complexity of

the 4.77 trillion example is just 6.)

A test coverage metric is a criterion that gives an indication of the

extent that a set of test cases exercises a program. Program graphs

support three obvious test-coverage metrics:

M1: every node

M2: every edge

M3: every path

Given a program, its program graph and a set of test cases, the test

cases satisfy the M1 coverage metric if, when they are executed, every

node corresponding to a statement fragment is traversed. M1 coverage

is minimal. Most experts prefer M2 coverage, and M3 is sensible only

for loop-free programs.

Just as specification-based test methods are vulnerable to gaps and redundancies, path-based testing has

its deficiency: infeasible paths. Logical dependencies among variables can cause paths that never can be

executed. In Figure 12.17, for example, suppose condition 2 is always true when condition 1 is true. In that

case, the edge from node 3 to node 5 can never be traversed, and any path containing this edge is

infeasible. Path-based testing is vulnerable because infeasible paths cannot be recognized from the program

graph. The only way to identify infeasible paths is to go back to the nodes’ meaning and analyze

dependencies in the source code. In the general case, this cannot be programmed and is equivalent to the

Halting Problem.

Closer examination of source codes yields coverage metrics

‘‘between’’ M2 and M3. Compound conditions require special

test considerations. If condition 2 in Figure 12.17 is a

compound condition comprised of three simple conditions,

the truth table of the simple conditions can identify additional

test cases. Loops present another coverage problem. Most

experts are satisfied with coverage that traverses both the

normal path of a loop and its exit from the loop. Loops

therefore require two test cases and nested loops multiply

accordingly. If these coverage metrics are denoted as Mcc and

Mloop, respectively, a lattice of test coverage metrics is created

(Figure 12.18) where the directed edge means ‘‘stronger than.’’

Test coverage metrics now include:

M1: every node

M2: every edge

Mcc: M2 plus truth table coverage of compound

conditions

Mloop: M2 plus normal and exit loop traversal

M3: every path

There are two useful refinements of path-based testing.

Dataflow testing [Rapps, 1985] annotates the nodes of a

program graph with the information about variables that

occur in the statement fragment corresponding to the node.

A node n is a defining node of variable V, written Def (V, n),

if the variable V receives a value at node n. Similarly, node n

Mloop

M1

M2

Mcc

M3

FIGURE 12.18 Lattice of test coverage

metrics.

M1

M2

M3

DF7

DF6

DF4DF3

DF2DF1

DF5

FIGURE 12.19 Combined lattice of test coverage

metrics.
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is a usage node of a variable V, written Use(V, n) if the value of V is used at node n. A define/use path for

variable V, written DU-Path, is a path in the program graph that begins with a defining node of V and ends

with a usage node. If there is only one defining node in a DU-Path, it is a definition-clear path (written DC-

Path). There are two types of usage nodes, predicate use (written P-use) and computation use (C-use).

Dataflow testing adds this information to the program graph and then defines several test coverage metrics:

DF1: All predicate uses

DF2: All Defs

DF3: All P-uses, some C-uses

DF4: All C-uses, some P-uses

DF5: All uses

DF6: All DC-Paths

DF7: All DU-Paths

Because the dataflow test coverage metrics are based on important characteristics of source code, they

provide a refined framework of test coverage that can be customized to individual programs.

The second refinement to path-based testing is the use of program slices. Given a program, P, and its

program graph, the slice on a variable V at statement fragment n, written [S (V, n)], is the set of all statement

fragments in P contributing to the value of V at statement fragment n. Program slices are distinct from DU-

Paths. Generally, slices form their own lattice, and a slice lattice does not conform well to the Rapps–Weyuker

lattice in Figure 12.19. Slices are close to the meaning of a program, and they replicate how developers think

when trying to isolate a fault [Gallagher, 1991].
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13.1 Introduction

Computer graphics is everywhere: on the web, in our homes (high-end appliances, computers, game consoles

and television — weather, news and broadcast sports), in our cars (GPS systems), in the movies and arcades

and on our persons (PDAs, mobile phones and wearable computers). The term computer graphics refers to

the generation, representation, manipulation, processing and visual display of data using a computer.

Computer-generated images may be two-dimensional (2D) or three-dimensional (3D); they may be animated

or still, and portray real scenes, imagined scenes, or things not normally visible such as forces. Image

processing is closely related to computer graphics but omits the initial generation phase and starts instead with

an image captured by some other device.

Image synthesis in computer graphics involves four steps that closely mimic photography. The first is

modeling, creating, and placing objects including light sources in the scene. The second is the modeling and

placement of a synthetic camera. This is often modeled as a simple pinhole camera, although much more

complex models have been used, such as the one discussed by Kolb [1995]. The third is rendering the scene,

which utilizes the material properties of the objects (their reflectivity, refraction, transmissiveness and

textures) as well as the properties of the light sources (spot, point, ambient, color, attenuation, etc.) to model

the transport of light in the scene and its projection onto the viewplane, which is analogous to film. Lastly,

tone reproduction may be used to take the results of the lighting calculation and produce an image suitable for

display on a particular device [Geigel, 2004].

Today’s computer graphics are produced using computer systems that have a graphics-processing unit

(GPU), one or more graphical display devices, and one or more input devices such as a keyboard, mouse,

digitizer or data glove. Graphical display devices include monitors, printers, plotters, video and film as well as

3D displays.

Computer graphics is an integral component of a wide variety of applications. It is used in cartography

and in the business world, where applications range from presentation graphics to desktop publishing.
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Highly interactive real-time systems are used in games and in flight simulators. In engineering, computer-aided

design/computer-aided manufacturing (CAD/CAM) systems allow users to create, store, manipulate and test

objects and designs. Fully integrated systems allow standard component parts libraries to be incorporated into a

product’s design. Product design and drafting information is fed directly into manufacturing operations.

Another engineering graphics application is very large scale integration (VLSI) design. Collaborative computer-

aided engineering systems enable engineering teams to work currently rather than serially [Kasik, 2000].

Graphics are useful for visualizing physical phenomena and data as well as the volume visualization of

complex datasets. An example of volume visualization is the medical modeling of anatomy using MRI data

[Kaufman, 1998]. Similarly, data visualization tools help people explore and explain data. Interacting with a

carefully designed visual representation of data can help an engineer form mental models that let him or her

perform specific tasks more effectively [Munzner, 2002]. It is often easier to formulate such mental models

while examining a visual representation of such data rather than examining the underlying numbers, especially

as there may be gigabytes of data. Figure 13.1 is an image from an animated visualization of how holographs

are created, while Figure 13.2 is an image from an educational tool used to teach optics.

In art and animation, computer graphics has taken the drudgery out of transforming and redrawing objects.

It has been used to enhance cell animation as well as to produce glitzy Hollywood special effects. Synthetic

actors have become so realistic that they are almost indistinguishable from live actors.

Virtual reality (VR) is one of the most spectacular uses of graphics. Its goal is to immerse users in effective,

real-time, synthesized, 3D environments [Feiner, 2000]. VR uses high-resolution graphics terminals, head-

mounted displays, CAVEs1� (projection-based VR systems that surround the viewer with four screens), and

Responsive Workbench-type [RWB, 2004] environments to provide the user with a stereo view of a virtual world

and the ability to navigate through it. These systems use tracking devices to determine the current position of the

user and input devices such as data gloves and head-mounted displays. VR applications abound and include

data and scientific visualization, simulation, games and architecture. Utilizing perception techniques and period

illumination enables the accurate reconstruction of VR archeological sites. VR is used in education and training

FIGURE 13.1 Image from an animated visualization about how holograms are created. Software: Maya; Hardware: PC.

Artists: Orde Stevanoski and Hardeep Kharbanda, MFA students at Rochester Institute of Technology.

�Registered trademark of the Electronic Visualization Laboratory at the University of Illinois at Chicago.
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along with less sophisticated graphics. Collaborative VR allows users in a variety of locations to participate in a

common virtual environment. Augmented reality, an emerging application area, takes virtual reality a step

further and fits somewhere between reality and virtual reality. At its simplest, it is the overlaying of computer-

generated imagery on top of the real world using see-through displays. At its best, it adds graphical objects as well

as sounds, haptics (touch), and smell into reality. Augmented reality has applications in many areas, including

medicine, games and the military. The most recent (November and December) issues of IEEE Computer Graphics

and Applications have contained summary reports about the current state of VR.

Computer graphics owes its ever-improving performance to continuing research in three interrelated areas:

hardware, software and algorithm development. Each of these areas is discussed below.

13.2 Graphics Hardware

Graphics Processing Units (GPUs)

GPUs are components in graphics systems that power all levels of graphics visualization systems. They use a

fast bus and act as coprocessors to the CPU. Today’s GPUs are very fast, faster often than their coprocessor

CPU. This speed is made possibly by parallelism as well as stream processing. GPUs treat computer graphics

primitives such as vertices and pixels as streams of data. Multiple programmable processing units act in

concert with data flowing between them. In a GPU, a vertex processor transforms and processes points, and a

fragment processor computes pixel color. As a stream processor, a GPU performs simple operations and

exploits parallelism by running the same program for each pixel. In recent years, users have been given the

ability to program GPUs directly, creating small programs, known as shaders, to perform real-time rendering

effects such as bump mapping or shadows using relatively low-level software such as Cg [Shader Tech, 2004] or

directX [Microsoft, 2004; Macedonia, 2003].

Graphical Output Devices

Computer graphics systems use a variety of output components for displaying computer-generated images.

These can be classified into two groups: hard copy technologies and display technologies.

FIGURE 13.2 Image from a tool for teaching optics. Software: Maya; Hardware: PC. Artists: Orde Stevanoski and

Hardeep Kharbanda, MFA students at Rochester Institute of Technology.

# 2006 by Taylor & Francis Group, LLC



Hard Copy Technologies

Hard copy technologies include printers, pen plotters, electrostatic plotters, laser printers, ink-jet plotters,

thermal transfer plotters, and film recorders [Foley, 1996]. These devices use either a raster or vector drawing

style. Raster drawing uses discrete dots whereas vector drawing uses a continuous drawing motion to create

the image. Raster display devices are compared to one another with respect to dot size and the number of dots

per inch, known as addressability: the closer the dots, the smoother the image; the smaller the dot, the finer the

detail. Resolution is related to dot size and is the number of distinguishable lines per inch. High-resolution

devices produce fine detail, smooth lines, and crisp images.

Color is achieved using a variety of methods. Some devices use multicolored ribbons with single print

heads, multiple print heads with different ribbons, or over-striking to combine colors. Other devices use color

pens, spray (e.g., ink jet), toner (e.g., laser printer and electrostatic plotters), or pigment from colored wax

paper (e.g., thermal transfer).

Hard copy devices vary in the number of colors and intensity levels, addressability, dot size, cost, image

quality and speed. The laser printer is perhaps the most common, high-quality output device in this category

[Foley, 1996].

One of the most interesting hard copy devices is the 3D printer or 3D rapid prototyper, which can use fused

deposition modeling (applying material in layers) to allow engineers to create a range of physical 3D models

and functional test parts directly from their CAD programs. These models can be made with a variety of

materials and treated to enhance strength and durability as well as temperature resistance.

Display Technologies

Displays are, for the most part, characterized by their responsiveness to a moving image. As with hard copy

technologies, display technologies vary in performance and cost. Comparisons are generally based on power

consumption, screen size, depth, weight, ruggedness, brightness, addressability, contrast, intensity levels or

number of colors possible per picture element (pixel), viewing angle and relative cost. It should be noted that

several of the technologies mentioned below are covered in more detail elsewhere in this handbook.

1. CRT: Perhaps the most common graphics display is the cathode ray tube (CRT), used in televisions.

A CRT is composed of five parts: (1) the electron gun, which when heated emits electrons at an

appropriate rate; (2) the control grid, which regulates the flow of electrons; (3) the focusing system,

which concentrates the beam into a fine point; (4) the deflection system, which directs the beam to the

appropriate location; and (5) the phosphor screen, which glows when bombarded with the electron

beam. The persistence of the phosphor is defined as the time from the removal of the excitation source

to when the phosphorescence has decayed to 10 percent of the initial light output [Foley, 1996]. The

persistence of the phosphor used determines how frequently the screen will need to be refreshed or

redrawn. Color is produced by laying triads of red-green-blue (RGB) phosphors on the screen and using

three electron guns, one for each color, to excite the phosphor for each pixel. The CRT scans the image,

one row at a time, from a matrix whose elements correspond to the individual pixels or points on the

screen. This matrix is referred to as the frame buffer and allows for a constant refresh rate, usually at least

60 times per second. Systems may also have more than one frame buffer (double buffering) to facilitate

faster image generation. CRT displays are generally high resolution (1024 · 1280), SVGA (768 ·1024),

NTSC (,350 · 480), and HDTV (720 · 1280 and 1080 · 1920) [Bailey, 2003].

2. Liquid crystal displays (LCDs) use two sheets of polarizing material sandwiching a liquid-crystal

solution. This type of display is refreshed one row at a time using matrix addressing. When an electric

current passes though the solution, crystals are polarized in such a way as to block out part of the

backlighting to form the desired image [Ortiz, 2004]. These devices are light in weight, rugged, and have

low power consumption and fair intensity.

3. Plasma panels consist of arrays of neon bulbs between glass plates. The displays may be monochrome

or color depending on whether there is a single bulb or three (red, green, and blue) bulbs for each pixel.

These devices excel in screen size, weight, ruggedness and brightness characteristics.

# 2006 by Taylor & Francis Group, LLC



4. Electroluminescent displays also use grid-like structures for addressing elements and consist of a thin

film of phosphorescent substance, a zinc sulfide doped with manganese, between two plates, one with

horizontal wires embedded in it and the other with vertical. The light-emitting material can be made to

glow at the intersections, creating a point of light. These displays are available in color and have

excellent brightness characteristics.

5. Head-mounted displays, stereoscopic displays, heads up displays, and all Workbench-type displays

are 3D displays often used in VR and augmented reality applications. The technology used is varied

but combine graphics from each eye’s viewpoint to provide a 3D image. Special glasses are required

in some cases to get the stereoscopic effect. For example, in a Responsive Workbench-type display,

mirrors and projectors are used to create computer-generated stereoscopic views on a horizontal

tabletop display surface. These images are viewed through shutter glasses to generate the 3D effect

and a six degrees-of-freedom tracking system tracks the user’s head to maintain the correct point of

view type [RWB, 2004].

Some current display technology research areas include the following:

1. Organic light-emitting Diode (OLED) displays use organic light-emitting polymers to eliminate the

need for the backlighting used in LCDs. The color of the emitted light is determined by the structure of

the polymers used [Ortiz, 2003].

2. Smart displays are portable, battery-operated monitors that have integrated wireless support to

communicate with a nearby base PC. These displays come with a stylus and onscreen keyboard for

input [Ortiz, 2003].

3. Flexible displays are built from thin plastic film or other material that bends, unlike than traditional

glass, which aids portability. They may be rolled up and carried in a pocket [Ortiz, 2003].

4. High dynamic range displays can display a wide luminance range, for example, from 0.1 cd/m2 to

10,000 cd/m2 [Seetzen, 2003].

5. Research continues in all types of 3D immersive displays, including holographic.

It should be noted that the field of color science is used in computer graphics and by hardware vendors to

produce predictable color results on individual output systems, and color fidelity when moving color images

between the ever-increasing variety of imaging devices and media.

13.3 Graphics Software

Graphics software has changed dramatically since its inception. In the 1970s and early 1980s, there were few

graphics software tools. The first available packages were CAD/CAM packages designed for engineering. Most

other engineering applications required users to develop their own programs to solve their graphics problems.

These programs were written using low-level graphical commands or calls to some standard or quasi-standard

graphical routines. Most of these systems were developed for mainframe computer environments. A trend,

begun in the late 1980s, resulted in a change in computing hardware environments as well as in software

approaches. Today, the predominant hardware platforms are personal computers and powerful UNIX

workstations. Customized, stand-alone software tools are often used to create graphics instead of writing

programs. Software development uses standard languages and graphical user interfaces. The technical

community relies on the ever-increasing power of computers to support new software packages to manipulate

and visually display complex data in real-time.

Engineering Software Packages

Many commercial scientific and engineering software packages have graphics functionality. Some of these

allow the engineer to extend the capabilities of the system by programming their own application specific
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add-on graphics modules. The IEEE Spectrum Focus Report: Software in November 1991 suggested that these

packages fall into the following categories:

1. Logic simulation systems for application-specific integrated circuits (ASICs) are used to design and

display schematics of multigate ASICs constructed from large functional building blocks. Each block

can represent a finite-state machine with several states and gates, specified in a relevant hardware

description language.

2. Electromagnetic design and simulation systems are used to simulate the electromagnetic fields of

operating printed-circuit boards. Multilayers of a board may be displayed, with colors indicating field

densities in lines.

3. Data acquisition, analysis, display and technical reporting systems have compute-intensive analysis

routines and enhanced data visualization capability. These packages might be used to produce plots and

graphs based on acquired data that are displayed in several windows at once; changes made in one window

result in the recalculation and update of the information displayed in all corresponding windows.

4. Packages that do mathematical calculations and graphics for visualization are used for operations such

as curve fitting, evaluation of integrals, statistical analysis, signal processing and numerical analysis.

5. Digital signal processors for embedded systems use customized graphics software to analyze, mani-

pulate and display the signals generated by the operating equipment.

There are other types of graphics systems used by engineers as well. For example, lighting engineers use

rendering and visualization tools such as Radiance [Radiance, 2004] or Lightscape [Lightscape, 2004] to

visualize their designs.

Other Graphics Software Packages

A similar plethora of graphics packages is available for most fields. For example, Windows Office users have

charting and drawing tools at their fingertips. Animators use packages that simplify the modeling, rendering

and animating of their scenes.

General Purpose Libraries and Packages

An engineer could, if need be, build his or her own graphics tools. Traditionally, graphical software systems are

programmed in high-level languages with interfaces to standard or quasi-standard software packages. These

packages often provide device independence by allowing systems to drive a wide variety of display devices, and

application portability by isolating the programmer from machine-specific graphics commands. Such

portability allows the programmer to move an application from one system to another without modifying

his or her code.

The first quasi-standard graphics library was ACM/SIGGRAPH’s Core system developed in 1977 and revised

in 1979. While it was not a formally recognized standard, it did fulfill a role as a baseline specification for

graphics libraries [Foley, 1996]. Two official standard libraries are GKS-3D (the 3D Graphical Kernel System),

and PHIGS/PHIGSþ (the Programmer’s Hierarchical Interactive Graphics System). Both libraries support

graphics primitives, such as lines, polygons and character strings, as well as their attributes. GKS allows

primitives to be grouped into segments. PHIGS/PHIGSþ allows segments to be nested and uses a database

structure that allows for selective editing and manipulation of the model. Both support geometric

transformations, i.e., scaling, translation, and rotation. These packages have influenced the shape of today’s

quasi-standard libraries which include the cross-platform OpenGL, a low-level graphics rendering and

imaging library that sends commands to the GPU [Shreiner, 2004], as well as packages that are used to

program GPUs directly such as Cg [Shader Tech, 2004] and DirectX [Microsoft, 2004].

Plotting and Page Description Languages

In most cases, it is unlikely that an engineer would have to work directly with plotting packages or

page description languages, but engineers should be aware that graphics can be programmed directly in either
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when necessary. Generally, plotting packages consist of graphics routines, much like those in the packages

mentioned above, that are callable from a high-level language program and handle both 2D and 3D images.

Page description languages are desktop publishing formats that produce graphical output on a printer,

display or other output devices. They are used in application programs such as composition systems and

illustrators where text, graphical shapes and sampled images are combined into a single document. The

dominant language in this category is PostScript, which is a simple interpretive programming language with

powerful graphics capabilities. PostScript communicates the description of a document to a printing system in

a high level, device-independent manner. It features the construction of arbitrary shapes, which may self-

intersect and which may be painted, transformed, cropped or rendered. Postscript commands are embedded

in a general purpose programming language. PostScript programs can be created, transmitted and interpreted

using an ASCII source, which allows for easy document interchange [Adobe, 1990].

Web Graphics

No current discussion of graphics software would be complete without mention of graphics support for the

web. On a high level, this comes in packages designed to facilitate web page development, i.e., ‘‘desktop

publishing’’ for the web. On a low level, engineers can utilize Web3D packages such as VRML, Java3D, and

X3D as well as Java and scripting languages such as JavaScript and Micromedia Flash’s ActionScript, to add

and manage graphics on web pages. Transmission speed of the graphics and scene descriptions for web pages

and applications is a major concern.

13.4 Graphics Algorithms

Software packages would not be possible without the continued development and improvement of graphics

algorithms. A brief overview of graphics algorithms and techniques is included as these have a tendency to

migrate from software to hardware, and as an engineer, it is possible to be involved with this migration.

The lowest level algorithms, scan conversion algorithms, are used to determine which pixels are involved

with the drawing and filling of graphics primitives, such as lines, triangles, circles and polygons. These are

often implemented in hardware.

Graphics Modeling

There is a wide variety of ways in which geometric data may be represented in computer graphics systems,

from vertices and vectors to precise canonical definitions (circle, sphere, cone) to general parametric forms

[Bezier, nonuniform rational b-splines (NURBS), multiresolutions] [Kasik, 2000].

In traditional graphics systems, image data are modeled and stored as Cartesian coordinates or as vectors.

These data are manipulated using geometric transformations, such as scaling, translation and rotation, in a

reference system known as the world coordinate system (WCS). The units of the WCS can be whatever the

user needs: inches, millimeters or miles. Each physical device has its own device coordinate system (DCS). A

viewing transformation is used to take the WCS image data to its corresponding device-specific coordinates:

A window, a portion of the world model, is selected to be shown in an area of the display known as the

viewport. Clipping is used to eliminate any data outside the selected area. These values are sometimes converted

to intermediate coordinates known as normalized device coordinates (NDC), in which all values range from

0 to 1. These are then easily adjusted to any DCS needed. In 3D, a view volume is used instead of a window to

limit what is displayed. Perspective or parallel projection is used to convert the model’s 3D coordinates to the

appropriate DCS. This view volume is dependent on the selection of the location of the viewpoint (eye) in

WCS, the 2D window, and the type of projection as well as selectable front and back clipping planes.

Other approaches to modeling use feature-based systems such as solid or geometric modeling. Solid

modeling systems use constructive solid geometry to build complicated objects. These systems have a

descriptive language that uses a database of 3-D primitive objects such as blocks, cylinders, spheres, wedges,
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cones and tori. These solid objects are combined to form other solids using operators such as union,

intersection and difference. The resultant object can then be named, saved and positioned anywhere in a

model. Attributes stored with the objects allow them to be displayed in wire-frame format or as a completely

rendered image [Teicholz, 1985].

Several procedural modeling techniques have been introduced to ease the difficulty of creating complex

scenes directly. In general, these enable the creation of complex objects with fairly small pieces of code.

Examples include fractals and particle systems. Fractals, geometrical self-similar objects with a fractional

dimension that were introduced by Mandelbrot [1982], form a powerful tool for generating objects

that resemble natural phenomena such as mountains, trees and coastlines. Prusinkiewicz and others use

grammar-based fractal techniques to generate realistic plants [Prusinkiewicz, 1990]. Reeves developed

particle systems to facilitate the creation of the Genesis scene in Star Trek’s Wrath of Khan [Reeves, 1983].

Particle systems have been used to generate a variety of natural phenomena such as fire, waterfalls, grass and

plants as well as fireworks. These systems consist of many small objects (particles) and use stochastic processes

to determine particle characteristics such as lifetime, color, size and motion. Physical forces such as gravity are

often incorporated to create realistic behavior. Figure 13.3 illustrates the creation of fog and three very different

balls using procedural modeling techniques. A good overview of such algorithms and their current

applications is available [Ebert, 2003].

Other algorithms model physical or psychological forces. For example, physically based techniques use the

laws of physics to create realistic movement of items such as hair, cloth, snow and rain, and to demonstrate

material characteristics such as elasticity, bouncing and breaking [Baraff, 2003]. Behavioral animation is used

to model the behavior of groups such as flocks of birds and schools of fish so that animators need not be

concerned with the behavior of each individual in the flock [Reynolds, 1999].

Volume visualization algorithms might be of greatest interest to the engineer. In these image-based

algorithms, the line between computer graphics and image processing is blurred. Here several 2D images, such

as a series of CAT scans or MRIs, are used to develop a 3D model. Generally, the same structures are identified

in successive images, 3D coordinates are assigned, and connections are made from one image to one another

to form a 3D model [Kaufman, 1998].

FIGURE 13.3 Image created using procedural modeling, noise and fog. Software: Renderman, Hardware: PC. Artist:

Michael J. Murdoch, M.S., computer science student at Rochester Institute of Technology.
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Other image-based techniques include modeling a 3D scene based on a series of photographs or video. This

technique presents interesting issues when trying to model areas that are occluded in the images and thus

never seen [Debevec, 2002].

Modeling research in graphics today has gone beyond solely visible representation to include acoustic and

haptic modeling.

Rendering

A long-term goal of computer graphics has been the production of photorealistic images, resulting in much

research devoted to the area of shading and illumination. These algorithms are used to model the transport of

light through the scene. Shading algorithms range from simple flat shading of individual polygons to the

successively more complex and more realistic Gouraud, Phong and Cook–Torrance models [Foley, 1996],

among others.

On the illumination end, there are local illumination models such as Phong as well as global illumination

algorithms, such as ray tracing, which does a good job with shiny and transparent objects, radiosity, which

does a good job with perfectly diffuse surfaces, and hybrid algorithms that combine the best of both techniques

[Foley, 1996]. Recent advances in the illumination area include photon mapping, which adds accurate

rendering of caustics [Jensen, 2001], and image-based lighting, which uses light values captured by

photographing a real scene and applies them to synthetic scenes [Debevec, 2002]. The latter often involves

high-dynamic range images where the range of illuminance values is much broader than most output devices

can handle. Tone reproduction algorithms [Devlin, 2002] can be used to map the image data into the

appropriate range for a particular device. Figure 13.4 illustrates image quality that may be created using ray

tracing augmented with photon mapping.

Rendering, or producing the finished image of a model, not only involves the application of shading and

illumination models but also includes algorithms for visible surface determination and texture or bump

mapping. Visible surface determination algorithms determine which surfaces are visible from the current

viewpoint and which are occluded. Z-buffering [Foley, 1996], a brute force visible surface determination

algorithm, is commonly implemented in hardware. Texture and bump mapping are algorithms used to add

detail to a model without adding geometry [Foley, 1996]. For example, texture mapping might be used to map

FIGURE 13.4 Ray traced ring with caustics done with self-programmed software using a PC. The checkerboard pattern is

produced using procedural texture mapping. Artist: Kevin Pazirandeh, software engineering student at Rochester Institute

of Technology.
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an image of wood grain or marble to a polygon in the model, or bump mapping might be used to create an

orange-peel-like surface on a sphere. The latter is accomplished by altering surface normals before applying

illumination algorithms. Image-based rendering is the high end of this type of algorithm, capturing texture

details from several photos to produce output image textures [Debevec, 2002]. Both Figure 13.4 and

Figure 13.5 were created utilizing texture mapping to enhance detail without adding geometry.

Computer graphics researchers are also studying acoustic and haptic rendering primarily to make VR

environments more immersive. The more immersive the environment, the stronger the measure of presence, a

term used in the study of perception to indicate how intensely the viewer feels that he or she is actually

immersed or present in the scene.

As mentioned previously, a long-term goal of computer graphics has been to produce photorealistic

graphics. As a sign of just how far computer graphics has come, researchers are now studying

nonphotorealistic rendering (NPR). There are a myriad of reasons why NPR might be desirable, such as

the production of images that look like oil or watercolor paintings, or when photorealism is so detailed that it

hides what is of importance [Finkelstein, 2003].

Interaction Algorithms

The ability to create applications that react appropriately and in a timely fashion to input commands or data is

one of the reasons that computer graphics is so powerful. Such interactions may involve selecting menu items

or choosing parts of an image displayed on the screen. The immediacy of the feedback provided to the user is

of utmost importance.

Graphics input devices include, among others, the mouse, special purpose keyboards using buttons or dials,

data gloves and other VR devices, touch panels and screens, light pens, graphics tablets, joysticks, 3D digitizers,

trackballs and voice systems. Each of these devices is capable of sending appropriate values to the graphics

program for action [Hearn, 2004]. Graphics algorithms respond to such input based on logical device

categories or by using callback functions.

FIGURE 13.5 The wood background in this image is created using texture mapping. Software: Modeling — Discreet 3DS

Max, Rendering — RenderMan; Hardware: PC. Artist: Kevin Pazirandeh, software engineering student at Rochester

Institute of Technology.
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The fields of human–computer interaction (HCI) and perception play a role in creating packages and

images that respond and behave in a reasonable fashion. Perception also plays a role in deciding when and

where to apply higher cost rendering algorithms.

Parallel Graphics

Many of the algorithms described above are computationally intensive. For example, it is possible for the

rendering of a single image of a complex model to take many hours. Parallel computing, applying multiple

CPUs to perform a single task, can play a role in improving the turnaround time for such images. For example,

this could be done by sending each cell to a different processor when producing an animated film, or by having

individual processors render different sets of pixels in a single image [Chalmers, 2002].

A more complete description of many of these algorithms and techniques can be found in most computer

graphics textbooks [Foley 1996; Hearn 2004].

13.5 The Future

Current algorithmic advances are available in the proceedings of conferences such as the Association for

Computing Machinery’s (ACM’s) SIGGRAPH, Eurographics, AFRIGRAPH, GRAPHITE, Nicograph, and the

International Game Developers Conference. Some of these organizations jointly sponsor workshops for

specialized graphics areas, such as the SIGGRAPH/Eurographics Workshop on Graphics Hardware.

In addition, two professional computing organizations publish periodicals that are specifically devoted to

advances in computer graphics: ACM Transactions on Graphics and IEEE Computer Graphics and Applications.

Continuing research into the many facets of computer graphics ensures its advancement. The Vision 2000

(January/February 2000) issue of IEEE Computer Graphics and Applications provides a particularly enticing

glimpse into what the future may hold for computer graphics.
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The coming of the information age has brought about unprecedented growth in telecommunications-based

services driven primarily by the Internet, the information superhighway. Within a short period of time, the

volume of data traffic transported across communications networks has grown rapidly and now exceeds the

volume of voice traffic. While voice networks, such the ubiquitous telephone network, have been in use for

over a century, computer data networks are a recent phenomenon.

A computer communications network is interconnection of different computing devices to enable them

communicate among themselves. As shown in Figure 14.1, computer networks are generally classified into

three groups on the basis of their geographical scope:

. Local area networks (LANs) spanning a building, a campus, or an enterprise with a total span of 2 km.

. Metropolitan area networks (MANs) spanning a city, with a total span of 100 km.

. Wide area networks (WANs) spanning a nation or globe.

These networks differ in geographic scope, types of organization using them, types of services provided and

transmission techniques. On the one hand, the local area network (LAN) is used in connecting equipments

owned by the same organization over relatively short distances. Its performance degrades as the area of

coverage becomes large. Thus LANs have limitations of geography, speed, traffic capacity and the number of

stations they are able to connect. On the other hand, the wide area network (WAN) provides long-haul

communication services to various points within a large geographical area, e.g., a nation or continent. With

some of the characteristics of LANs and some reflecting WANs, the metropolitan area network (MAN)

embraces the best features of both. MAN is designed to extend over a city or metro area, and it may be owned

by a private company or by the public.

We begin this chapter by looking at the Open Systems Interconnection (OSI) reference model, which is

commonly used to describe the functions involved in data communication networks. We then examine

different LANs, MANs and WANs including the Internet.

14.1 OSI Reference Model

There are at least two reasons for needing a standard protocol architecture such as the OSI reference model.

First, the uphill task of understanding, designing and constructing a computer network is made more
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manageable by dividing it into structured smaller subtasks. Second, the proliferation of computer systems has

created heterogeneous networks: different vendors, different models from the same vendor, different data

formats, different network management protocols, different operating systems. A way to resolve this

heterogeneity is for vendors to abide by the same set of rules. Attempts to formulate these rules have

preoccupied standards bodies such as the International Standards Organization (ISO), International

Telecommunication Union (ITU), Institute of Electrical and Electronics Engineers (IEEE), American

National Standards Institute (ANSI), British Standards Institution (BSI), and European Computer

Manufacturers Association (ECMA). Here we consider the more universal standard protocol architecture

developed by ISO.

The International Standards Organization (ISO) divides the task of networking computers into seven

layers so that manufacturers can develop their own applications and implementations within the guidelines

of each layer. In 1978 the ISO set up a committee to develop a seven-layer model of network architecture

(initially for WANs), known as the OSI. The model serves as a means of comparing different layers of

communication networks. Also, the open model is standard-based rather than proprietary-based; one

system can communicate with another system using interfaces and protocols that both systems understand.

Network users and vendors have ‘‘open systems’’ in which any standard computer device would be able to

interoperate with others.

The OSI reference model is a seven-layer hierarchy that groups the functional requirements for moving

information across a network. The seven layers of the OSI model are shown in Figure 14.2 and briefly

explained as follows. We begin with the application layer (layer 7) and work our way down.

Layer Layer
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FIGURE 14.2 The OSI reference model.

Local Area Network
(LAN)

Metropolitan Area Network
(MAN)

Wide Area Network
(WAN)

Computer  Networks

FIGURE 14.1 Classification of computer communication networks.
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. Application Layer: This layer (layer 7) allows transferring information between application processes.

It is implemented with host software. It is composed of specific application programs and its content

varies with individual users. By application we mean a set of information processing desired by the user.

Typical applications (or user programs) include login, password check, word processing, spreadsheet,

graphics program, document transfer, electronic mailing system, virtual terminal emulation, remote

database access, network management, bank balance, stock prices, credit check, inventory check and

airline reservation. Examples of application layer protocols are Telnet (remote terminal protocol), file

transfer protocol (FTP), simple mail transfer protocol (SMTP), remote login service (rlogin), and

remote copy protocol (RCP).
. Presentation Layer: This layer (layer 6) presents information in a way that is meaningful to the network

user. It performs functions such as translation of character sets, interpretation of graphic commands,

data compression/decompression, data reformating and data encryption/decryption. Popular character

sets include American Standard Code for Information Interchange (ASCII), Extended Binary Coded

Decimal Interchange Code (EBCDIC), and Alphabet 5.
. Session Layer: A session is a connection between users. The session layer (layer 5) establishes the

appropriate connection between users and manages dialog between them, i.e., controlling starting,

stopping and synchronization of the dialog. It decides the type of communication such as two-way

simultaneous (full duplex), two-way alternate (half-duplex), one-way, or broadcast. It is also

responsible for checking for user authenticity and providing billing. For example, login and logout are

the responsibility of this layer. IBM’s NetBIOS (Network Basic Input/Output System), NetWare’s SPX

(Sequenced Packet Exchange), Manufacturing Automation Protocol (MAP), and Technical and Office

Protocol (TOP) operate at this layer.
. Transport Layer: This layer (layer 4) uses the lower layers to establish reliable end-to-end transport

connections for the higher layers. Its other function is to provide the necessary functions and protocols

to satisfy a quality of service (QoS) (expressed in terms of time delay, throughput, priority, cost and

security) required by the session layer. It creates several logical connections over the same network by

multiplexing end-to-end user addresses on to the network. It fragments messages from the session layer

into smaller units (packets or frames) and reassembles the packets into messages at the receiving end. It

also controls the end-to-end flow of packets, performs error control and sequence checking,

acknowledges successful transmission of packets, and requests retransmission of corrupted packets. For

example, the Transmission Control Protocol (TCP) of TCP/IP and Internet Transport Protocol (ITP) of

Xerox operate at this level.
. Network Layer: This layer (layer 3) handles routing procedure and flow control. It establishes routes

(virtual circuits) for packets to travel and routes the packets from their source to destination and

controls congestion. (Routing is of greater importance on MANs and WANs than on LANs.) It carries

addressing information that identifies the source and ultimate destination. It also counts transmitted

bits for billing information. It ensures that packets arrive at their destination in a reasonable amount of

time. Examples of protocols designed for layer 3 are X.25 packet switching protocol and X.75 gateway

protocol, both by ITU. Also, the Internet protocol (IP) of TCP/IP and NetWare’s Internetwork Packet

Exchange (IPX) operate at this layer.
. Data Link Layer: This layer (layer 2) specifies how a device gains access to the medium specified in the

physical layer. It converts the bit pipe provided by the physical layer into a packet link, which is a facility

for transmitting packets. It deals with procedures and services related to the node-to-node data transfer.

A major difference between the data link layer and the transport layer is that the domain for the data

link layer is between adjacent nodes whereas that of the transport layer is end-to-end. In addition, the

data link layer ensures error-free delivery of data; hence it is concerned with error-detection, error

correction, and retransmission. The error control is usually implemented by performing checksums on

all bits of a packet after a cyclic redundancy check (CRC) process. This way any transmission errors can

be detected. The layer is implemented in hardware and is highly dependent of the physical medium.

Typical examples of data link protocols are Binary Synchronous Communications (BSC), Synchronous
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Data Link Control (SDLC), and High-level Data Link Control (HDLC). For LANs and MANs, the data

link layer is decomposed by IEEE into the media-access control (MAC) and the logical link control

(LLC) sublayers.
. Physical Layer: This layer (layer 1) consists of a set of rules that specifies the electrical and physical

connection between devices. It is implemented in hardware. It is responsible for converting raw bits

into electrical signals and physically transmitting them over a physical medium such as coaxial cable or

an optical fiber between adjacent nodes. It provides standards for electrical, mechanical and procedural

characteristics required to transmit the bit stream properly. It handles frequency specifications,

encoding the data, defining voltage or current levels, defining cable requirements, defining the

connector size, shapes, and pin number, etc. RS-232, RS-449, X.21, X.25, V.24, IEEE 802.3, IEEE 802.4

and IEEE 802.5 are examples of physical-layer standards.

A summary of the functions of the seven layers is presented in Table 14.1. The seven layers are often

subdivided into two. The first consists of the lower three layers (physical, data link and network layers) and is

known as the communications subnetwork. The upper three layers (session, presentation and application layers)

are termed the host process. The upper layers are usually implemented by networking software on the node.

The transport layer is the middle layer, separating the data-communication functions of the lower three layers

and the data-processing functions of the upper layers. It is sometimes grouped with the upper layers as part of

the host process or grouped with the lower layers as part of data transport.

14.2 Local Area Networks

A local area network (LAN) is a computer network that spans a geographically small area. It consists of two or

more computers that are connected together to share expensive resources such as printers, exchange files, or

allow electronic communications. Most LANs are confined to a single building or campus. They connect

workstations, personal computers, printers and other computer peripherals. Users connected to the LAN can

use it to communicate with each other. LANs are capable of transmitting data at very fast rates, much faster

than data can be transmitted over a telephone line, but the distances are limited. Also, since all the devices are

located within a single establishment, LANs are usually owned and maintained by an organization. A key

motivation for using LANs is to increase the productivity and efficiency of workers.

LANs differ from MANs and WANs by geographic coverage, data transmission and error rates, topology and

data routing techniques, ownership, and sometimes by the type of traffic. Unique characteristics that

differentiate LANs include:

. LANs generally operate within a few kilometers, spanning only a small geographical area.

. LANs usually have very high bit rates, ranging from 1 Mbps to 10 Gbps.

. LANs have a very low error rate, say 1:108.

. A LAN is often owned and maintained by a single private company, institution or organization using

the facility.

TABLE 14.1 Summary of the Functions of OSI Layers

Layer Name Function

7 Application Layer Transfers information between application

processes

6 Presentation Layer Syntax conversion, data compression and

encryption

5 Session Layer Establishes connection and manages a dialog

4 Transport Layer Provides end-to-end transfer of data

3 Network Layer End-to-end routing and flow control

2 Data Link Layer Medium access, framing and error control

1 Physical Layer Electrical/mechanical interface
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There are different kinds of LANs. The following features differentiate one LAN from another:

. Topology: The geometric arrangement of devices on the LAN. As shown in Figure 14.4, this can be bus,

ring, star, or tree.
. Protocols: These are procedures or rules that govern the transfer of information between devices

connected to a LAN. Protocols are to computer networks what languages are to humans.

OSI SNA

7      Applications
services

6     Presentation 6 Presentation
services

5 5      Data flow control

4 Transport 4      Transmission
control

3 Network 3     Path control

2 Data link 2      Data link control 

1 1      Physical control

7     Transaction

Session

Physical

FIGURE 14.3 A comparison of SNA and OSI models.

(a) Bus (b) Ring

(c) Star (d) Tree

FIGURE 14.4 Typical LAN topologies.
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. Media: The transmission medium connecting the devices can be twisted-pair wire, coaxial cables, or

fiber optic cables. Wireless LANs use radio waves as media. Of all these media, optic fiber is the fastest

but the most expensive.

Common LANs include Ethernet, token ring, token bus, and star LAN. For bus or tree LANs, the most

common transmission medium is coaxial cable. The two common transmission methods used on coaxial cable

are baseband and broadband. A baseband LAN is characterized by the use of digital technology; binary data

are inserted into the cable as a sequence of pulses using a Manchester or Differential encoding scheme.

A broadband LAN employs analog signaling and a modem. The frequency spectrum of the cable can be

divided into channels using frequency division multiplexing (FDM). One of the most well-known applications

of broadband transmission is the community antenna television (CATV). However, baseband LANs are more

prevalent.

The IEEE has established the following eight committees to provide standards for LANs:

. IEEE 802.1 — standard for LAN/MAN bridging and management

. IEEE 802.2 — standard for logical link control protocol

. IEEE 802.3 — standard for CSMA/CD protocol

. IEEE 802.4 — standard for token bus MAC protocol

. IEEE 802.5 — standard for token ring MAC protocol

. IEEE 802.7 — standard for broadband LAN

. IEEE 802.10 — standard for LAN/MAN security

. IEEE 802.11 — standard for wireless LAN

Token ring is a network architecture which uses token-passing technology and a ring-type network

structure. Although token ring is standardized in IEEE 802.5 standard, its use has faded to only a few

organizations. Ethernet [IEEE 802.3] is the most popular and the least expensive high-speed LAN.

Ethernet is a LAN architecture developed by the Xerox Corporation in cooperation with DEC and Intel in

1976. The IEEE 802.3 standard refined the Ethernet and made it globally accepted. Ethernet has since become

the most popular and most widely deployed LAN in the world.

Conventional Ethernet uses a bus or star topology and supports data transfer rates of 10 Mbps. It uses a

protocol known as carrier sense multiple access with collision detection (CSMA/CD) as an access method to

handle simultaneous demands. Each station or node attached to the Ethernet must sense the medium before

transmitting data to see if any other station is already transmitting. If the medium appears to be idle, then the

station can begin to send data. If two stations sense the medium idle and transmit at the same time, collision

may take place. When such a collision occurs, the two stations stop transmitting, wait, and try again later after

a randomly chosen delay period. The delay period is determined using binary exponential backoff.

Ethernet is one of the most widely implemented LAN standards. It has been estimated that there are

more than 600 million existing Ethernet nodes today. A newer version of Ethernet, called Fast Ethernet

(or 100Base-T) supports data transfer rates of 100 Mbps. Gigabit Ethernet (or 1000Base-T) delivers at 1 Gbps.

The 10 Gbps format of Ethernet has been available since 2002.

14.3 Metropolitan Area Networks

Metropolitan area networks are basically an outgrowth of LANs. As the demand for information increases,

first-generation network standards such as Ethernet and token ring cannot handle the enormous volume of

data. A variety of users and applications drive the requirements for metropolitan area networks (MANs).

These requirements include volume of traffic, cost, scalability, security, reliability, compatibility with existing

and future networks, and management issues. To meet these requirements, several proposals have been made

for MAN protocols and architectures. Of these proposed MANs, fiber distributed data interface (FDDI) and

distributed queue dual-bus (DQDB) have emerged as standards. Since FDDI is the only standard that has

survived the test of time, only FDDI will be considered here.
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The FDDI is a dual token ring that supports data rates of 100 Mbps and uses optical fiber media. The FDDI

specification recommends an optical fiber with a core diameter of 62.5 microns and a cladding diameter of 125

microns. The advantages of fiber optics over electrical media and the inherent advantages of a ring design

contribute to the widespread acceptance of FDDI as a standard.

FDDI is a collection of standards formed by the ANSI X3T9.5 task group and set by the American National

Standard Institute (ANSI) over a period of ten years. The standards produced by the task group cover physical

hardware, physical and data link protocol layers, and a conformance testing standard. The original standard,

known as FDDI-I, provides the basic data-only operation. An extended standard, FDDI-II, supports hybrid

data and real-time applications.

FDDI is a follow-on to IEEE 802.5 (token ring) in that FDDI is based on token-ring mechanics. Although

the FDDI MAC protocol is similar (but not identical) to token ring, there are some differences. Unlike in token

ring, FDDI performs all networking monitoring and control algorithms in a distributed way among active

stations and does not need an active monitor (hence the term ‘‘distributed’’ in FDDI.). Whenever any device is

down, other devices reorganize and continue to function including token initialization, fault recovery, clock

synchronization and topology control.

The key highlights of FDDI are summarized as follows:

. ANSI standard through the X3T9.5 committee

. Dual counter-rotating ring topology for fault tolerance

. Data rate of 100 Mbps

. Total ring loop of size 100 km

. Maximum of 500 directly attached stations or devices

. 2 km maximum distance between stations

. Variable packet size (4,500 bytes, maximum)

. 4B/5B data encoding scheme to ensure data integrity

. Shared medium using a timed-token protocol

. Variety of physical media, including fiber and twisted pair

. 62.5/125-mm multimode fiber-optic based network

. Low bit error rate of 10�9 (one in one billion)

. Compatibility with IEEE 802 LANs by use of IEEE 802.2 LLC

. Distributed clocking to support large number of stations

. Support for both synchronous and asynchronous services

FDDI has two types of nodes: stations and concentrators. The stations transmit information to other stations

on the ring and receive from them. Concentrators are nodes which provide additional ports for attachments of

stations to the network. A concentrator receives data from the ring and forwards it to each of the connected ports

sequentially at 100 Mbps. While a station may have one or more MAC, a concentrator may or may not have a

MAC. As shown in Figure 14.5, each FDDI station is connected to two rings, a primary and secondary,

simultaneously. Stations have active taps on the ring and operate as repeaters. This allows FDDI network to be

very large without signal degradation. The network uses its primary ring for data transmission, while the

secondary ring can be used either to ensure fault tolerance, or for data. When a station or link fails, the primary

and secondary rings form a single one-way ring, isolating the fault while maintaining a logical path among users.

Thus, FDDI’s dual-ring topology and connection management functions establish a fault-tolerance mechanism.

FDDI was developed to conform to the OSI reference model. FDDI divides the physical layer of the OSI

reference model into two sublayers: physical layer medium dependent (PMD) and physical layer (PHY), while

the data link layer is split into two sublayers: media access control (MAC) and IEEE 802.2 logical link control

(LLC). A comparison of FDDI architectural model to the lower two layers of the OSI model along with the

summary of the functions of the FDDI standards is illustrated in Figure 14.6. The FDDI MAC uses a timed-

token rotation (TTR) protocol for controlling access to the medium. With this protocol the MAC in each

station measures the time that has elapsed since the station last received a token. Each station on the FDDI ring

uses three timers to regulate its operation. During the network initialization process, all stations connected to

the ring negotiate for a target token rotation time (TTRT). The value of TTRT is determined small enough to
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satisfy the real-time constraints of synchronous traffic. This TTRT value (typically 8 ms) is set equal to the value

of the token-rotation time (TRT), which is used to monitor the amount of elapsed time between subsequent

arrivals of token at a station. Each station keeps track of the time it was last visited by a token.

The station management (SMT) controls the other three layers (PMD, PHY and MAC) and ensures proper

operation of the station. It handles such functions as initial FDDI ring initialization, station insertion and

removal, ring stability, activation, connection management, address administration, scheduling policies,

collection of statistics, bandwidth allocation, performance and reliability monitoring, bit error monitoring,

fault detection and isolation, and ring reconfiguration.

Primary ring 

FDDI
node

FDDI
node

FDDI
node

FDDI
node

Secondary ring

FIGURE 14.5 Dual self-healing counter-rotating rings of FDDI.
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Logical Link Control
IEEE 802.2 LLC

Media Access Control 
(MAC)

Addressing
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Token handling 

Physical Layer Protocol Station Management
(PHY) (SMT) 

Encoding/decoding Ring monitoring
Clocking Ring management
Symbol set Connection

management
Physical Layer Medium SMT frames
Dependent (PMD) 

Transmission parameters
Connectors and cabling 

FIGURE 14.6 Summary of the functions of the FDDI standards.
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14.4 Wide Area Networks

A WAN is an interconnected network of LANs and MANs. A WAN connects remote LANs and ties remote

computers together over long distances. Computers connected to a WAN are often connected through public

networks such as the telephone system. They can also be connected through leased lines or satellites. WANs

are, by default, heterogeneous networks that consist of a variety of computers, operating systems, topologies

and protocols. The largest WAN in existence is the Internet.

Because of the long distance involved, WANs are usually developed and maintained by a nation’s public

telecommunication companies (such as AT&T in the U.S.), which offer various communication services to the

people. Today’s WANs are designed in the most cost-effective way using optical fiber. Fiber-based WANs are

capable of transporting voice, video and data with no known restriction to bandwidth. Such WANs will remain

cutting edge for years to come. There is also the possibility of connecting networks using wireless technologies.

Circuit and Packet Switching

For a WAN communication is achieved by transmitting data from the source node to the destination node

through a network of intermediate switching nodes. Thus, unlike a LAN, a WAN is a switched network. There

are many types of switched networks, but the most common methods of communications are circuit switching

and packet switching. Circuit switching is a much older technology than packet switching. Circuit

switching systems are ideal for communications that require data to be transmitted in real time. Packet-

switching networks are more efficient if some amount of delay is acceptable.

Circuit switching is a communication method in which a dedicated path (channel or circuit) is established

for the duration of a transmission. This is a type of point-to-point network connection. A switched circuit is

maintained while the sender and recipient are communicating, as opposed to a dedicated circuit which is held

open regardless of whether data is being sent or not. The most common circuit-switching network is the

telephone system.

Packet switching is a technique whereby the network routes individual packets of data between different

destinations based on addressing within each packet. A packet is a segment of information sent over a

network. Any message exceeding a network-defined maximum length (a set size) is broken up into shorter

units, known as packets. Packet-switching is the process by which a carrier breaks up messages (or data) into

these segments, bundles, or packets by the source data terminal equipment (DTE) before they are sent. Each

packet is switched and transmitted individually through the network and can even follow different routes to its

destination and may arrive out of order. Most modern WAN protocols such as TCP/IP, X.25, and frame relay

are based on packet switching technologies. Besides data networks such as the Internet, wireless services like

Cellular Digital Packet Data (CDPD) employ packet switching.

X.25

For roughly 20 years X.25 was the dominant player in WAN packet switching technology until frame relay,

SMDS and ATM appeared. X.25 has been around since the mid 1970s and so is pretty well debugged and

stable. It was originally approved in 1976, and subsequently was revised in 1977, 1980, 1984, 1988, 1992 and

1996. It is currently one of the most widely used interfaces for data communication networks. There are

literally no data errors on modern X.25 networks.

X.25 is a communications packet switching protocol designed for the exchange of data over a WAN.

It represents a standard, a network, or an interface protocol. It is a popular standard for packet-switching

networks approved in 1976 by the International Telecommunication Union–Telecommunication Standardiza-

tion Sector (ITU-T) for WAN communications. It defines how connections between user devices and network

devices are established and maintained. X.25 utilizes a connection-oriented service that insures that packets are

transmitted in order. Through statistical multiplexing, X.25 enables multiple users to share bandwidth as it

becomes available, therefore ensuring flexible use of network resources among all users. X.25 is also an interface

protocol in that it spells the required interface protocols that enable a data terminal equipment (DTE) to
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communicate with data circuit-terminating equipment (DCE), which provides access to the network. The DTE-

DCE link provides full-duplex multiplexing, allowing a virtual circuit to transmit in either direction.

X.25 network devices fall into three general categories: data terminal equipment (DTE), data circuit-

terminating equipment (DCE), and packet switching exchange (PSE). DTE devices are user end systems that

communicate across the X.25 network. They are usually terminals, personal computers or network hosts, and are

located on the premises of individual subscribers. DCE devices are the carrier’s equipment such as modems and

packet switches that provide the interface between DTE devices and a PSE, and are generally located in the

carrier’s facilities. PSEs are switches that compose the bulk of the carrier’s network. They transfer data from one

DTE device to another. Figure 14.7 illustrates the relationships between the three types of X.25 network devices.

The packet assembler/disassembler (PAD) is a device commonly found in X.25 networks. PADs are used

when a DTE device is too simple to implement the full X.25 functionality. The PAD is located between a DTE

device and a DCE device, and it performs three primary functions: buffering, packet assembly and packet

disassembly. The PAD buffers data sent to or from the DTE device. It also assembles outgoing data into packets

and forwards them to the DCE device (this includes adding an X.25 header). Finally, the PAD disassembles

incoming packets before forwarding the data to the DTE (this includes removing the X.25 header).

A virtual circuit is a logical connection created to ensure reliable communication between two network

devices. Two types of X.25 virtual circuits exist:

. Switched virtual circuits (SVCs) — SVCs are very much like telephone lines; a connection is established,

data are transferred and then the connection is released. They are temporary connections used for

sporadic data transfers.
. Permanent virtual circuits (PVCs) — a PVC is similar to a leased line in that the connection is always

present. Permanent virtual circuits (PVCs) are permanently established connections used for frequent

and consistent data transfers. Therefore, data may always be sent without any call setup.

Maximum packet sizes vary from 64 bytes to 4096 bytes, with 128 bytes being a default on most networks.

X.25 users are typically large organizations with widely dispersed and communications-intensive operations

in sectors such as finance, insurance, transportation, utilities and retail. For example, X.25 is often chosen for

zero-error tolerance applications by banks involved in large-scale transfers of funds, or by government utilities

that manage electrical power networks.

Frame Relay

Frame relay is a simplified form of packet switching (similar in principle to X.25) in which synchronous

frames of data are routed to different destinations depending on header information. It is basically an interface

FIGURE 14.7 DTEs, DCEs and PSEs make up an X.25 network.
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used for wide-area networking. It is used to reduce the cost of connecting remote sites in any application that

would typically use expensive leased circuits.

Frame relay is an interface, a method of multiplexing traffic to be submitted to a WAN. Carriers build frame

relay networks using switches. The physical layout of a sample frame relay network is depicted in Figure 14.8.

The CSU/DSU is the channel service unit/data service unit. This unit provides a ‘‘translation’’ between the

telephone company’s equipment and the router. The router actually delivers information to the CSU/DSU

over a serial connection much like the computer uses a modem, only at a much higher speed.

All major carrier networks implement permanent virtual circuits (PVCs). These circuits are established via

contract with the carrier and typically are built on a flat-rate basis. Although switched virtual circuits (SVCs)

have standards support and are provided by the major frame relay backbone switch vendors, they have not

been widely implemented in customer equipment or carrier networks.

Two major frame relay devices are the FRAD and routers. Standalone frame relay access devices (FRADs)

typically connect small remote sites to a limited number of locations. FRAD is also known as frame relay

assembler/disassembler. Frame relay routers offer more sophisticated protocol handling than most FRADs. They

may be packaged specifically for frame relay use, or they may be general purpose routers with frame relay software.

Frame relay is the fastest growing WAN technology in the U.S. In North America it is fast taking on the role

that X.25 has had in Europe. It is used by large corporations, government agencies, small businesses, and even

Internet service providers (ISPs). The demand for frame relay services is exploding and for two very good

reasons — speed and economics. frame relay is consistently less expensive than equivalent leased services and

provides the bandwidth needed for other services like LAN routing, voice and fax.

14.5 ISDN and ATM Networks

ISDN stands for Integrated Services Digital Network. ISDN is a high speed communication network that

allows voice, data, text, graphics, music, video and other source material to be transmitted simultaneously

across the world using end-to-end digital connectivity. ‘‘Digital network’’ means that the user is given access to

a telecom network that ensures high quality transmission via digital circuits, while ‘‘integrated services’’ refers

to the simultaneous transmission of voice, video and data services over the same wires. This way, computers

can connect directly to the telephone network without first converting their signals to an analog form using

modems. This integration brings with it a host of new capabilities combining voice, data, fax and sophisticated

switching. Because ISDN uses the existing local telephone wiring, it is equally available to home and business

customers. ISDN was intended to eventually replace the traditional plain old telephone service (POTS) phone

lines with a digital network that would carry voice, data and video.

ISDN service is available today in most major metropolitan areas and probably will be completely deployed

throughout the U.S. very soon. Many ISPs now sell ISDN access. However, the idea of using existing copper

FIGURE 14.8 Physical layout of a typical frame relay network.
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wiring to provide this network decreased ISDN capabilities, in reality. When the digital video systems started

to develop in the 1980s, it was soon noticed that the maximum bandwidth (2.048 Mbps) of the ISDN was not

enough. That is why broadband ISDN (BISDN) was born.

BISDN is a digital network operating at data rates in excess of 2.048 Mbps (the maximum rate of standard

ISDN). BISDN is a second generation of ISDN. Broadband ISDN is not only an improved ISDN, but also a

complete redesign of the ‘‘old’’ ISDN, now called narrowband ISDN. It consists of ITU-T communication

standards designed to handle high-bandwidth applications such as video. The key characteristic of broadband

ISDN is that it provides transmission channels capable of supporting rates greater than the primary ISDN rate.

Broadband services are aimed at both business applications and residential subscribers.

BISDN’s foundation is cell switching, and the international standard supporting it is Asynchronous Transfer

Mode (ATM). Because BISDN is a blueprint for ubiquitous worldwide connectivity, standards are of the utmost

importance. Major strides have been made in this area by the ITU-T during the past decade. More recently the

ATM Forum has advanced that agenda.

ATM is a fast packet-oriented transfer mode based on asynchronous time division multiplexing. The words

transfer mode say that this technology is a specific way of transmitting and switching through the network. The

term asynchronous refers to the fact that the packets are transmitted using asynchronous techniques (e.g., on

demand), and the two end-points need not have synchronized clocks. ATM will support both circuit switched

and packet switched services. ATM can handle any kind of information (i.e., voice, data, image, text and video)

in an integrated manner.

An ATM network is made up of an ATM switch and ATM endpoints. An ATM switch is responsible for cell

transit through an ATM network. An ATM endpoint (or end system) contains an ATM network interface

adapter. Examples of ATM endpoints are workstations, routers, digital service units (DSUs), LAN switches,

and video coder/decoders (CODECs). An ATM network consists of a set of ATM switches interconnected by

point-to-point ATM links or interfaces. ATM switches support two primary types of interfaces: user–network

interface (UNI) and network–network interface (NNI). The UNI connects ATM end systems (such as hosts

and routers) to an ATM switch. The NNI connects two ATM switches.

In ATM the information to be transmitted is divided into short 53-byte packets or cells. There are reasons

for such a short cell length. First, ATM must deliver real time service at low bit rates. Thus, the size allows ATM

to carry multiple forms of traffic. Both time-sensitive traffic (voice) and time-insensitive traffic (data) can be

carried with the best possible balance between efficiency and minimal packetization delay. Second, using short,

fixed-length cells allows for time-efficient and cost-effective hardware such switches and multiplexers.

Each ATM cell consists of 48 bytes for the information field and 5 bytes for the header. The header is used to

identify cells belonging to the same virtual channel, and thus is used in appropriate routing. The ATM cell

structure is shown in Figure 14.9. The cell header comes in two forms: the UNI header and the NNI header.

The UNI is described as the point where the user enters the network. The NNI is the interface between

networks. The typical header therefore looks like that shown in Figure 14.10 for the UNI. The header is slightly

different for NNI, as shown in Figure 14.11.

ATM is connection-oriented and connections are identified by the virtual channel identifier (VCI). A virtual

channel (VC) represents a given path between the user and the destination. A virtual path (VP) is created

by multiple virtual channels heading to the same destination. The relationship between virtual channels and

virtual paths is illustrated in Figure 14.12. A virtual channel is established at connection time and torn

FIGURE 14.9 ATM cell structure.
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down at termination time. The establishment of the connections includes the allocation of a virtual channel

identifier (VCI) and/or virtual path identifier (VPI), and also includes the allocation of the required resources

on the user access and inside the network. These resources, expressed in terms of throughput and quality of

service (QoS), can be negotiated between user and network either before the call setup or during the call.

Having both virtual paths and channels make it easy for the switch to handle many connections with the same

origin and destination.

ATM can be used in existing twisted pair, fiber-optic, coaxial, hybrid fiber/coax (HFC), SONET/SDH, T1,

E1, T3, E3, E4, etc., for LAN and WAN communications. ATM is also compatible with wireless and satellite

communications.

FIGURE 14.10 ATM cell header for UNI.

FIGURE 14.11 ATM cell header for NNI.
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FIGURE 14.12 Relationship between virtual channel, virtual path and transmission path.
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Figure 14.13 depicts the architecture for the BISDN protocol. It is evident that the BISDN protocol uses a three-

plane approach. The user plane (U-plane) is responsible for user information transfer including flow control and

error control. The U-plane contains all of the ATM layers. The control plane (C-plane) manages the call-control

and connection-control functions. The C-plane shares the physical and ATM layers with the U-plane, and

contains ATM adaptation layer (AAL) functions dealing with signaling. The management plane (M-plane)

includes plane management and layer management. This plane provides the management functions and the

capability to transfer information between the C- and U-planes. The layer management performs layer-specific

management functions, while the plane management deals with the complete system. Figure 14.13 also shows

how ATM fits into BISDN. The ATM system is divided into three functional layers, namely the physical layer, the

ATM layer, and the ATM adaptation layer. The physical layer defines the transmission medium, encoding,

clocking and any necessary electrical-to-optical transformation. The ATM layer provides functions such as cell-

loss priority, cell construction, generic flow control, and connection assignment and removal. The AAL allows

various information transfer protocols that are not based on ATM.

BISDN access can be based on a single optical fiber per customer site. A variety of interactive and distribution

broadband services is contemplated for BISDN: high-speed data transmission, broadband video telephony,

corporate videoconferencing, video surveillance, high-speed file transfer, TV distribution (with existing TVand/

or high-definition television), video on demand, LAN interconnection and hi-fi audio distribution.

14.6 Internet

The Internet is a global network of computer networks (or WAN) that exchange information via telephone,

cable television, wireless networks and satellite communication technologies. It is used by an increasing

number of people worldwide. As a result, the Internet has been growing exponentially with the number of

machines connected to the network and the amount of network traffic virtually doubling each year. The

Internet today is fundamentally changing our social, political and economic structures, and in many ways

circumventing geographic boundaries.

Internet Protocol Suite

The Internet is a combination of networks, including the Arpanet, NSFnet, regional networks such as

NYsernet, local networks at a number of universities and research institutions, and a number of military

networks. Each network on the Internet contains anywhere from two to thousands of addressable devices or

nodes (computers) connected by communication channels. All computers do not speak the same language,

FIGURE 14.13 BISDN protocol reference model.
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but if they are going to be networked they must share a common set of rules known as protocols. That is where

the two most critical protocols, Transmission Control Protocol/Internetworking Protocol (TCP/IP), come in.

Perhaps the most accurate name for the set of protocols is the Internet protocol suite. (TCP and IP are two of

the protocols in this suite). TCP/IP is an agreed upon standard for computer communication over Internet.

The protocols are implemented in software that runs on each node.

The TCP/IP is a layered set of protocols developed to allow computers to share resources across a network.

Figure 14.14 shows the Internet protocol architecture. Figure 14.14 is by no means exhaustive, but shows the

major protocols and application components common to most commercial TCP/IP software packages and

their relationship.

As a layered set of protocols, Internet applications generally use four layers:

. Application Layer: This is where application programs that use the Internet reside. It is the layer with

which end users normally interact. Some application-level protocols in most TCP/IP implementations

include FTP, TELNET and SMTP. For example, FTP (File Transfer Protocol) allows a user to transfer

files to and from computers that are connected to the Internet.
. Transport Layer: Controls the movement of data between nodes. TCP (Transmission Control Protocol)

is a connection-based service that provides services need by many applications. UDP (User Datagram

Protocol) provides connectionless services.
. Internet Layer: Handles addressing and routing of the data. It is also responsible for breaking up large

messages and reassembling them at the destination. IP (Internet Protocol) provides the basic service of

getting datagrams to their destination. ARP (Address Resolution Protocol) figures out the unique

address of devices on the network from their IP addresses.
. Network Layer: Supervises addressing, routing and congestion control. Protocols at this layer are needed

to manage a specific physical medium such as Ethernet or a point-to-point line.

TCP/IP is built on connectionless technology. IP provides a connectionless, unreliable, best-effort packet

delivery service. Information is transferred as a sequence of datagrams. Those datagrams are treated by the

network as completely separate.

TCP sends datagrams to IP with the Internet address of the computer at the other end. The job of IP is

simply to find a route for the datagram and get it to the other end. In order to allow gateways or other

intermediate systems to forward the datagram, it adds its own header, as shown in Figure 14.15. The main

things in this header are the source and destination Internet address (32-bit addresses, like 128.6.4.194),

the protocol number, and another checksum. The source Internet address is simply the address of your

DNS, RIP, SNMP, etc.

UDP 

ARP

  Network Layer

Frame Relay, ATM, SONET/SDH, Wireless, xDSL, etc. 

 Application Layer
TELNET, FTP, Finger, HTTP,

Gopher, SMTP, etc.

Transport Layer TCP

Internet Layer IP

Ethernet, Token ring, X.25, FDDI, ISDN, SMDS, DWDM,

FIGURE 14.14 Abbreviated Internet protocol suite.
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machine. The destination Internet address is the address of the other machine. The protocol number tells IP at

the other end to send the datagram to TCP. Although most IP traffic uses TCP, there are other protocols that

can use IP, so one has to tell IP which protocol to send the datagram to. Finally, the checksum allows IP at the

other end to verify that the header was not damaged in transit. IP needs to be able to verify that the header did

not get damaged in transit, or it could send a message to the wrong place. After IP has tacked on its header, the

message looks like what is in Figure 14.15.

Addresses and Addressing Scheme

For IP to work every computer must have its own number to identify itself. This number is called the IP

address. You can think of an IP address as similar to your telephone number or postal address. All IP addresses

on a particular LAN must start with the same numbers. In addition, every host or router on the Internet has

an address that uniquely identifies it and also denotes the network on which it resides. No two machines can

have the same IP address. To avoid addressing conflicts, the network numbers have been assigned by the

InterNIC (formerly known simply as NIC).

Blocks of IP addresses are assigned to individuals or organizations. The network part of the address is

common for all machines on a local network. It similar to a postal zip code that is used by a post office to route

letters to a general area. The rest of the address on the letter (i.e., the street and house number) is relevant only

within that area. It is only used by the local post office to deliver the letter to its final destination. The host part

of the IP address performs this same function. There are five types of IP addresses:

. Class A format: 126 networks with 16 million hosts each; an IP address in this class starts with a number

between 0 and 127.
. Class B format: 16,382 networks with up to 64K hosts each; an IP address in this class starts with a

number between 128 and 191.
. Class C format: 2 million networks with 254 hosts each; an IP address in this class starts with a number

between 192 and 223.
. Class D format: Used for multicasting, in which a datagram is directed to multiple hosts.
. Class E format: Reserved for future use.

The IP address formats for classes A, B and C are shown in Figure 14.16.

IPv6

Most of today’s Internet uses Internet Protocol Version 4 (IPv4), which is now nearly 25 years old. Due to the

phenomenal growth of the Internet, the rapid increase in palmtop computers, and the profusion of smart

Bit 0 31

Version(4)  IHL(4)    Service type(8) Total length (16) 

Identification (16) Flags(3)          Fragment offset (13)

Time to live (8) Protocol (8)                           Header Checksum (16) 

Source  address (32)

Destination  address (32)

Options (variable)                                   Padding (variable)

FIGURE 14.15 IP header format (20 bytes).
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cellular phones and PDAs, the demand for IP addresses has outnumbered the limited supply provided by IPv4.

In response to the shortcomings of IPv4, the Internet Engineering Task Force (IETF) approved IPv6 in 1997.

IPv4 will be replaced by Internet Protocol Version 6 (IPv6), which is sometimes called the Next Generation

Internet Protocol (or IPng). IPv6 adds many improvements and fixes a number of problems in IPv4, such as

the limited number of available IPv4 addresses.

With only a 32-bit address field, IPv4 can assign only 232 different addresses, i.e., 4.29 billion IP addresses,

which are inadequate in view of the rapid proliferation of networks and the two-level structure of the IP

addresses (network number and host number). To solve the problem of severe IP address shortage, IPv6 uses

128-bit addresses instead of the 32-bit addresses of IPv4. That means, IPv6 can have as many as 2128 IP

addresses, which is roughly 3.4 x 1038 or about 340 billion billion billion billion unique addresses.

The IPv6 packet consists of the IPv6 header, the routing header, the fragment header, the authentication

header, the TCP header, and application data. The IPv6 packet header is of fixed length, whereas the IPv4

header is of variable length. The IPv6 header consists of 40 bytes as shown in Figure 14.17. It consists of the

following fields:

. Version (4 bits): This is the IP version number, which is 6.

. Priority (4 bits): This field enables a source to identify the priority of each packet relative to other

packets from the same source.
. Flow Label (24 bits): The source assigns the flow label to all packets that are part of the same flow. A

flow may be a single TCP connection or a multiple of TCP connections.
. Payload Length (16 bits): This field specifies the length of the remaining part of the packet following the

header.
. Next Header (8 bits): This identifies the type of header immediately following the header.
. Hop Limit (8 bits): This is to set some desired maximum value at the source and the field denotes the

remaining number of hops allowed for the packet. It is decremented by 1 at each node the packet

passes, and the packet is discarded when the hop limit becomes zero.
. Source Address (128): The address of the source of the packet.
. Destination Address (128 bits): The address of the recipient of the packet.

Version Flow label

Payload length Next header Hop limit

Source address (128 bits)

Destination address (128 bits)

0 4 12 16 24 31

Priority

FIGURE 14.17 IPv6 header format.

Host (24)

Host (16)

Host (8)Class C 110                            Network (21)

Class  B 10                Network (14)

Class  A 0      Network (7)

FIGURE 14.16 IP address formats.
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There are three types of IPv6 addresses:

1. Unicast is used to identify a single interface.

2. Anycast identifies a set of interfaces. A source may use an anycast address to contact any node from a

group of nodes.

3. Multicast identifies a set of interfaces. A packet with multicast address is delivered to all members of the

group.

IPv6 is expected to gradually replace IPv4, with the two coexisting for a number of years during a transition

period. IPv6 may be most widely deployed in mobile phones, PDAs and other wireless terminals in the future.
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15.1 Introduction

Fault tolerance is the ability of a system to continue correct performance of its tasks after the occurrence of

hardware or software faults. A fault is simply any physical defect, imperfection, or flaw that occurs in hardware

or software. Applications of fault-tolerant computing can be categorized broadly into four primary areas: long-

life, critical computations, maintenance postponement, and high availability. The most common examples of

long-life applications are unmanned space flight and satellites. Examples of critical-computation applications

include aircraft flight control systems, military systems, and certain types of industrial controllers.

Maintenance postponement applications appear most frequently when maintenance operations are extremely

costly, inconvenient, or difficult to perform. Remote processing stations and certain space applications are

good examples. Banking and other time-shared systems are good examples of high-availability applications.

Fault tolerance can be achieved in systems by incorporating various forms of redundancy, including hardware,

information, time, and software redundancy [Johnson, 1989].

15.2 Hardware Redundancy

The physical replication of hardware is perhaps the most common form of fault tolerance used in systems. As

semiconductor components have become smaller and less expensive, the concept of hardware redundancy has

become more common and more practical. There are three basic forms of hardware redundancy. First, passive

techniques use the concept of fault masking to hide the occurrence of faults and prevent the faults from

resulting in errors. Passive approaches are designed to achieve fault tolerance without requiring any action on

the part of the system or an operator. Passive techniques, in their most basic form, do not provide for the

detection of faults but simply mask the faults. An example of a passive approach is triple modular redundancy

(TMR), which is illustrated in Figure 15.1. In the TMR system three identical units perform identical

functions, and a majority vote is performed on the output.

The second form of hardware redundancy is the active approach, which is sometimes called the dynamic

method. Active methods achieve fault tolerance by detecting the existence of faults and performing some

action to remove the faulty hardware from the system. In other words, active techniques require that the

system perform reconfiguration to tolerate faults. Active hardware redundancy uses fault detection, fault

location, and fault recovery in an attempt to achieve fault tolerance. An example of an active approach
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to hardware redundancy is standby sparing, which is illustrated in Figure 15.2. In standby sparing one or more

units operate as spares and replace the primary unit when it fails.

The final form of hardware redundancy is the hybrid approach. Hybrid techniques combine the attractive

features of both the passive and active approaches. Fault masking is used in hybrid systems to prevent

erroneous results from being generated. Fault detection, fault location, and fault recovery are also used in the

hybrid approaches to improve fault tolerance by removing faulty hardware and replacing it with spares.

Providing spares is one form of providing redundancy in a system. Hybrid methods are most often used in the

critical-computation applications where fault masking is required to prevent momentary errors, and high

reliability must be achieved. The basic concept of the hybrid approach is illustrated in Figure 15.3.

15.3 Information Redundancy

Another approach to fault tolerance is to employ redundancy of information. Information redundancy is

simply the addition of redundant information to data to allow fault detection, fault masking, or possibly fault

tolerance. Good examples of information redundancy are error detecting and error correcting codes, formed

by the addition of redundant information to data words or by the mapping of data words into new

representations containing redundant information [Lin and Costello, 1983].

FIGURE 15.2 General concept of standby sparing.

FIGURE 15.1 Fault masking using triple modular redundancy (TMR). (Source: B.W. Johnson, Design and Analysis of

Fault-Tolerant Digital Systems, Reading, Mass.: Addison-Wesley, 1989, p. 52. With permission.)
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In general, a code is a means of representing information, or data, using a well-defined set of rules. A code

word is a collection of symbols, often called digits if the symbols are numbers, used to represent a particular

piece of data based upon a specified code. A binary code is one in which the symbols forming each code word

consist of only the digits 0 and 1. A code word is said to be valid if the code word adheres to all of the rules that

define the code; otherwise, the code word is said to be invalid.

The encoding operation is the process of determining the corresponding code word for a particular data

item. In other words, the encoding process takes an original data item and represents it as a code word using

the rules of the code. The decoding operation is the process of recovering the original data from the code word.

In other words, the decoding process takes a code word and determines the data that it represents.

It is possible to create a binary code for which the valid code words are a subset of the total number of possible

combinations of 1s and 0s. If the code words are formed correctly, errors introduced into a code word will force it

to lie in the range of illegal, or invalid, code words, and the error can be detected. This is the basic concept of the

error detecting codes. The basic concept of the error correcting code is that the code word is structured such that it

is possible to determine the correct code word from the corrupted, or erroneous, code word.

A fundamental concept in the characterization of codes is the Hamming distance [Hamming, 1950]. The

Hamming distance between any two binary words is the number of bit positions in which the two words differ.

For example, the binary words 0000 and 0001 differ in only one position and therefore have a Hamming

distance of 1. The binary words 0000 and 0101, however, differ in two positions; consequently, their Hamming

distance is 2. Clearly, if two words have a Hamming distance of 1, it is possible to change one word into the

other simply by modifying one bit in one of the words. If, however, two words differ in two bit positions, it is

impossible to transform one word into the other by changing one bit in one of the words.

The Hamming distance gives insight into the requirements of error detecting codes and error correcting codes.

We define the distance of a code as the minimum Hamming distance between any two valid code words. If a binary

code has a distance of two, then any single-bit error introduced into a code word will result in the erroneous word

FIGURE 15.3 Hybrid redundancy approach. (Source: B.W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems,

Reading, Mass.: Addison-Wesley, 1989, p. 70. With permission.)
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being an invalid code word because all valid code words differ in at least two bit positions. If a code has a distance

of 3, then any single-bit error or any double-bit error will result in the erroneous word being an invalid code word

because all valid code words differ in at least three positions. However, a code distance of 3 allows any single-bit

error to be corrected, if it is desired to do so, because the erroneous word with a single-bit error will be a Hamming

distance of 1 from the correct code word and at least a Hamming distance of 2 from all others. Consequently, the

correct code word can be identified from the corrupted code word.

In general, a binary code can correct up to c bit errors and detect an additional d bit errors if and only if

2c þ dþ 1 < Hd

where Hd is the distance of the code [Nelson and Carroll, 1986]. For example, a code with a distance of 2

cannot provide any error correction but can detect single-bit errors. Similarly, a code with a distance of 3 can

correct single-bit errors or detect a double-bit error.

A second fundamental concept of codes is separability. A separable code is one in which the original

information is appended with new information to form the code word, thus allowing the decoding process to

consist of simply removing the additional information and keeping the original data. In other words, the

original data is obtained from the code word by stripping away extra bits, called the code bits or check bits,

and retaining only those associated with the original information. A nonseparable code does not possess the

property of separability and, consequently, requires more complicated decoding procedures.

Perhaps the simplest form of a code is the parity code. The basic concept of parity is very straightforward,

but there are variations on the fundamental idea. Single-bit parity codes require the addition of an extra bit to

a binary word such that the resulting code word has either an even number of 1s or an odd number of 1s. If the

extra bit results in the total number of 1s in the code word being odd, the code is referred to as odd parity. If

the resulting number of 1s in the code word is even, the code is called even parity. If a code word with odd

parity experiences a change in one of its bits, the parity will become even. Likewise, if a code word with even

parity encounters a single-bit change, the parity will become odd. Consequently, a single-bit error can be

detected by checking the number of ls in the code words. The single-bit parity code (either odd or even) has a

distance of 2, therefore allowing any single-bit error to be detected but not corrected. Figure 15.4 illustrates the

use of parity coding in a simple memory application.

Arithmetic codes are very useful when it is desired to check arithmetic operations such as addition,

multiplication, and division [Avizienis, 1971]. The basic concept is the same as all coding techniques. The data

presented to the arithmetic operation is encoded before the operations are performed. After completing the

arithmetic operations, the resulting code words are checked to make sure that they are valid code words. If the

resulting code words are not valid, an error condition is signaled. An arithmetic code must be invariant to a set

of arithmetic operations. An arithmetic code, A, has the property that A(b*c) ¼ A(b)*A(c), where b and c are

operands, * is some arithmetic operation, and A(b) and A(c) are the arithmetic code words for the operands b

FIGURE 15.4 Use of parity coding in a memory application. (Source: B.W. Johnson, Design and Analysis of Fault-Tolerant

Digital Systems, Reading, Mass.: Addison-Wesley, 1989, p. 85. With permission.)
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and c, respectively. Stated verbally, the performance of the arithmetic operation on two arithmetic code words

will produce the arithmetic code word of the result of the arithmetic operation. To completely define an

arithmetic code, the method of encoding and the arithmetic operations for which the code is invariant must be

specified. The most common examples of arithmetic codes are the AN codes, residue codes, and the inverse

residue codes.

15.4 Time Redundancy

Time redundancy methods attempt to reduce the amount of extra hardware at the expense of using additional

time. In many applications, the time is of much less importance than the hardware because hardware is a

physical entity that impacts weight, size, power consumption, and cost. Time, on the other hand, may be

readily available in some applications. The basic concept of time redundancy is the repetition of computations

in ways that allow faults to be detected. Time redundancy can function in a system in several ways. The

fundamental concept is to perform the same computation two or more times and compare the results to

determine if a discrepancy exists. If an error is detected, the computations can be performed again to see if the

disagreement remains or disappears. Such approaches are often good for detecting errors resulting from

transient faults but cannot provide protection against errors resulting from permanent faults.

The main problem with many time redundancy techniques is assuring that the system has the same data to

manipulate each time it redundantly performs a computation. If a transient fault has occurred, a system’s data

may be completely corrupted, making it difficult to repeat a given computation. Time redundancy has been

used primarily to detect transients in systems. One of the biggest potentials of time redundancy, however, now

appears to be the ability to detect permanent faults while using a minimum of extra hardware. The

fundamental concept is illustrated in Figure 15.5. During the first computation or transmission, the operands

are used as presented and the results are stored in a register. Prior to the second computation or transmission,

the operands are encoded in some fashion using an encoding function. After the operations have been

performed on the encoded data, the results are then decoded and compared to those obtained during the first

operation. The selection of the encoding function is made so as to allow faults in the hardware to be detected.

Example encoding functions might include the complementation operator and an arithmetic shift.

15.5 Software Redundancy

Software faults are unusual entities. Software does not break as hardware does, but instead software faults are

the result of incorrect software designs or coding mistakes. Therefore, any technique that detects faults in

software must detect design flaws. A simple duplication and comparison procedure will not detect software

faults if the duplicated software modules are identical, because the design mistakes will appear in both

modules.

FIGURE 15.5 Time redundancy concept. (Source: B.W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems,

Reading, Mass.: Addison-Wesley, 1989, p. 137. With permission.)
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The concept of N self-checking programming is to first write N unique versions of the program and to

develop a set of acceptance tests for each version. The acceptance tests are essentially checks performed on the

results produced by the program and may be created using consistency checks and capability checks, for

example. Selection logic, which may be a program itself, chooses the results from one of the programs that

passes the acceptance tests. This approach is analogous to the hardware technique known as hot standby

sparing. Since each program is running simultaneously, the reconfiguration process can be very fast. Provided

that the software faults in each version of the program are independent and the faults are detected as they

occur by the acceptance tests, then this approach can tolerate N – 1 faults. It is important to note that the

assumptions of fault independence and perfect fault coverage are very big assumptions to make in almost all

applications.

The concept of N-version programming was developed to allow certain design flaws in software modules to

be tolerated [Chen and Avizienis, 1978]. The basic concept of N-version programming is to design and code

the software module N times and to vote on the N results produced by these modules. Each of the N modules

is designed and coded by a separate group of programmers. Each group designs the software from the same set

of specifications such that each of the N modules performs the same function. However, it is hoped that by

performing the N designs independently, the same mistakes will not be made by the different groups.

Therefore, when a fault occurs, the fault will either not occur in all modules or it will occur differently in each

module, so that the results generated by the modules will differ. Assuming that the faults are independent the

approach can tolerate (N – 1)/2 faults where N is odd.

The recovery block approach to software fault tolerance is analogous to the active approaches to hardware

fault tolerance, specifically the cold standby sparing approach. N versions of a program are provided, and a

single set of acceptance tests is used. One version of the program is designated as the primary version, and the

remaining N – 1 versions are designated as spares, or secondary versions. The primary version of the software

is always used unless it fails to pass the acceptance tests. If the acceptance tests are failed by the primary

version, then the first secondary version is tried. This process continues until one version passes the acceptance

tests or the system fails because none of the versions can pass the tests.

15.6 Dependability Evaluation

Dependability is defined as the quality of service provided by a system [Laprie, 1985]. Perhaps the most

important measures of dependability are reliability and availability. Fundamental to reliability calculations is

the concept of failure rate. Intuitively, the failure rate is the expected number of failures of a type of device or

system per a given time period [Shooman, 1968]. The failure rate is typically denoted as l when it is assumed

to have a constant value. To more clearly understand the mathematical basis for the concept of a failure rate,

first consider the definition of the reliability function. The reliability R(t) of a component, or a system, is the

conditional probability that the component operates correctly throughout the interval [t0, t] given that it was

operating correctly at the time t0.

There are a number of different ways in which the failure rate function can be expressed. For example, the

failure rate function z(t) can be written strictly in terms of the reliability function R(t) as

zðtÞ ¼
�dRðtÞ=dt

RðtÞ

� �

Similarly, z(t) can be written in terms of the unreliability Q(t) as

zðtÞ ¼ �
dRðtÞ=dt

RðtÞ
¼

dQðtÞ=dt

1 � QðtÞ

where Q(t) ¼ 1 – R(t). The derivative of the unreliability, dQ(t)/dt, is called the failure density function.

The failure rate function is clearly dependent upon time; however, experience has shown that the failure rate

function for electronic components does have a period where the value of z(t) is approximately constant.
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The commonly accepted relationship between the failure rate function and time for electronic components is

called the bathtub curve and is illustrated in Figure 15.6. The bathtub curve assumes that during the early life

of systems, failures occur frequently due to substandard or weak components. The decreasing part of the

bathtub curve is called the early-life or infant mortality region. At the opposite end of the curve is the wear-out

region where systems have been functional for a long period of time and are beginning to experience failures

due to the physical wearing of electronic or mechanical components. During the intermediate region, the

failure rate function is assumed to be a constant. The constant portion of the bathtub curve is called the

useful-life phase of the system, and the failure rate function is assumed to have a value of l during that period.

l is referred to as the failure rate and is normally expressed in units of failures per hour.

The reliability can be expressed in terms of the failure rate function as a differential equation of the form

dRðtÞ

dt
¼ �zðtÞRðtÞ

The general solution of this differential equation is given by

RðtÞ ¼ e�
R

zðtÞdt

If we assume that the system is in the useful-life stage where the failure rate function has a constant value of l,

the solution to the differential equation is an exponential function of the parameter l given by

RðtÞ ¼ e�lt

where l is the constant failure rate. The exponential relationship between the reliability and time is known as

the exponential failure law, which states that for a constant failure rate function, the reliability varies

exponentially as a function of time.

In addition to the failure rate, the mean time to failure (MTTF) is a useful parameter to specify the quality

of a system. The MTTF is the expected time that a system will operate before the first failure occurs. The

MTTF can be calculated by finding the expected value of the time of failure.

FIGURE 15.6 Bathtub curve relationship between the failure rate function and time. (Source: B.W. Johnson, Design and

Analysis of Fault-Tolerant Digital Systems, Reading, Mass.: Addison-Wesley, 1989, p. 173. With permission.)
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From probability theory, we know that the expected value of a random variable, 1X, is

E½X� ¼
Z

1

�1

xf ðxÞdx

where f(x) is the probability density function. In reliability analysis we are interested in the expected value of

the time of failure (MTTF), so

MTTF ¼
Z

1

0

tf ðtÞdt

where f(t) is the failure density function, and the integral runs from 0 to 1 because the failure density function

is undefined for times less than 0. We know, however, that the failure density function is

f ðtÞ ¼
dQðtÞ

dt

so, the MTTF can be written as

MTTF ¼
Z

1

0

t
dQðtÞ

dt
dt

Using integration by parts and the fact that dQ(t)/dt ¼ �dR(t)/dt we can show that

MTTF ¼
Z

1

0

t
dQðtÞ

dt
dt ¼ �

Z

1

0

t
dRðtÞ

dt
dt ¼ �tRðtÞ þ

Z

RðtÞdt

� ��

�

�

�

1

0
¼
Z

1

0

RðtÞdt

Consequently, the MTTF is defined in terms of the reliability function as

MTTF ¼
Z

1

0

RðtÞdt

which is valid for any reliability function that satisfies R(1) ¼ 0.

The mean time to repair (MTTR) is simply the average time required to repair a system. The MTTR is

extremely difficult to estimate and is often determined experimentally by injecting a set of faults, one at a time,

into a system and measuring the time required to repair the system in each case. The MTTR is normally

specified in terms of a repair rate, m, which is the average number of repairs that occur per time period. The

units of the repair rate are normally number of repairs per hour. The MTTR and the rate, m, are related by

MTTR ¼
1

m

It is very important to understand the difference between the MTTF and the mean time between failure (MTBF).

Unfortunately, these two terms are often used interchangeably. While the numerical difference is small in many

cases, the conceptual difference is very important. The MTTF is the average time until the first failure of a system,

while the MTBF is the average time between failures of a system. If we assume that all repairs to a system make

the system perfect once again just as it was when it was new, the relationship between the MTTF and the MTBF

can be determined easily. Once successfully placed into operation, a system will operate, on the average, a time
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corresponding to the MTTF before encountering the first failure. The system will then require some time,

MTTR, to repair the system and place it back into operation once again. The system will then be perfect once

again and will operate for a time corresponding to the MTTF before encountering its next failure. The time

between the two failures is the sum of the MTTF and the MTTR and is the MTBF. Thus, the difference between

the MTTF and the MTBF is the MTTR. Specifically, the MTBF is given by

MTBF ¼ MTTFþMTTR

In most practical applications the MTTR is a small fraction of the MTTF, so the approximation that the MTBF

and MTTF are equal is often quite good. Conceptually, however, it is crucial to understand the difference

between the MTBF and the MTTF.

An extremely important parameter in the design and analysis of fault-tolerant systems is fault coverage. The

fault coverage available in a system can have a tremendous impact on the reliability, safety, and other attributes

of the system. Fault coverage is mathematically defined as the conditional probability that, given the existence

of a fault, the system recovers [Bouricius et al., 1969]. The fundamental problem with fault coverage is that it is

extremely difficult to calculate. Probably the most common approach to estimating fault coverage is to develop

a list all of the faults that can occur in a system and to form, from that list, a list of faults from which the

system can recover. The fault coverage factor is then calculated appropriately.

Reliability is perhaps one of the most important attributes of systems. The reliability of a system is generally

derived in terms of the reliabilities of the individual components of the system. The two models of systems

that are most common in practice are the series and the parallel. In a series system, each element of the system

is required to operate correctly for the system to operate correctly. In a parallel system, on the other hand, only

one of several elements must be operational for the system to perform its functions correctly.

The series system is best thought of as a system that contains no redundancy; that is, each element of the

system is needed to make the system function correctly. In general, a system may contain N elements, and in a

series system each of the N elements is required for the system to function correctly. The reliability of the series

system can be calculated as the probability that none of the elements will fail. Another way to look at this is

that the reliability of the series system is the probability that all of the elements are working properly. The

reliability of a series system is given by

RseriesðtÞ ¼ R1ðtÞR2ðtÞ . . .RNðtÞ

or

RseriesðtÞ ¼
Y

N

i¼1

RiðtÞ

An interesting relationship exists in a series system if each individual component satisfies the exponential

failure law. Suppose that we have a series system made up of N components, and each component, i, has a

constant failure rate of li. Also assume that each component satisfies the exponential failure law. The reliability

of the series system is given by

RseriesðtÞ ¼ e�l1te�l2t . . . e�lN t

RseriesðtÞ ¼ e
� S

N

i¼1
lit

The distinguishing feature of the basic parallel system is that only one of N identical elements is required for

the system to function. The reliability of the parallel system can be written as
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RparallelðtÞ ¼ 1:0 � QparallelðtÞ ¼ 1:0 �
Y

N

i¼1

QiðtÞ ¼ 1:0 �
Y
N

i¼1

ð1:0 � RiðtÞÞ

It should be noted that the equations for the parallel system assume that the failures of the individual elements

that make up the parallel system are independent.

M-of-N systems are a generalization of the ideal parallel system. In the ideal parallel system, only one of N

modules is required to work for the system to work. In the M-of-N system, however, M of the total of N

identical modules are required to function for the system to function. A good example is the TMR

configuration where two of the three modules must work for the majority voting mechanism to function

properly. Therefore, the TMR system is a 2-of-3 system.

In general, if there are N identical modules and M of those are required for the system to function properly,

then the system can tolerate N – M module failures. The expression for the reliability of an M-of-N system can

be written as

RM-of-NðtÞ ¼
X

N�M

i¼0

N
i

� �

RN�iðtÞð1:0 � RðtÞÞi

where

N
i

� �

¼
N!

ðN � iÞ!i!

The availability, A(t), of a system is defined as the probability that a system will be available to perform its

tasks at the instant of time t. Intuitively, we can see that the availability can be approximated as the total time

that a system has been operational divided by the total time elapsed since the system was initially placed into

operation. In other words, the availability is the percentage of time that the system is available to perform its

expected tasks. Suppose that we place a system into operation at time t ¼ 0. As time moves along, the system

will perform its functions, perhaps fail, and hopefully be repaired. At some time t ¼ tcurrent, suppose that the

system has operated correctly for a total of top hours and has been in the process of repair or waiting for repair

to begin for a total of trepair hours. The time tcurrent is then the sum of top and trepair. The availability can be

determined as

AðtcurrentÞ ¼
top

top þ trepair

where A(tcurrent) is the availability at time tcurrent.

If the average system experiences N failures during its lifetime, the total time that the system will be

operational is N(MTTF) hours. Likewise, the total time that the system is down for repairs is N(MTTR) hours.

In other words, the operational time, top, is N(MTTF) hours and the downtime, trepair, is N(MTTR) hours.

The average, or steady-state, availability is

ASS ¼
NðMTTFÞ

NðMTTFÞ þ NðMTTRÞ

We know, however, that the MTTF and the MTTR are related to the failure rate and the repair rate,

respectively, for simplex systems, as

MTTF ¼
1

l
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MTTR ¼
1

m

Therefore, the steady-state availability is given by

ASS ¼
1=l

1=lþ 1=m
¼

1

1þ l=m

Defining Terms

Availability, A(t): The probability that a system is operating correctly and is available to perform its

functions at the instant of time t.

Dependability: The quality of service provided by a particular system.

Error: The occurrence of an incorrect value in some unit of information within a system.

Failure: A deviation in the expected performance of a system.

Fault: A physical defect, imperfection, or flaw that occurs in hardware or software.

Fault avoidance: A technique that attempts to prevent the occurrence of faults.

Fault tolerance: The ability to continue the correct performance of functions in the presence of faults.

Maintainability, M(t): The probability that an inoperable system will be restored to an operational state

within the time t.

Performability, P(L,t): The probability that a system is performing at or above some level of performance,

L, at the instant of time t.

Reliability, R(t): The conditional probability that a system has functioned correctly throughout an interval

of time, [t0,t], given that the system was performing correctly at time t0.

Safety, S(t): The probability that a system will either perform its functions correctly or will discontinue its

functions in a well-defined, safe manner.
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Further Information

The IEEE Transactions on Computers, IEEE Computer magazine, and the Proceedings of the IEEE have published

numerous special issues dealing exclusively with fault tolerance technology. Also, the IEEE International

Symposium on Fault-Tolerant Computing has been held each year since 1971. Finally, the following textbooks

are available, in addition to those referenced above:

P.K. Lala, Fault Tolerant and Fault Testable Hardware, Englewood Cliffs, N.J.: Prentice-Hall, 1985.

D.K. Pradhan, Fault-Tolerant Computing: Theory and Techniques, Englewood Cliffs, N.J.: Prentice-Hall, 1986.

D.P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable Systems Design, 2nd ed., Bedford, Mass.:

Digital Press, 1992.
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16.1 Databases

M. Abdelguerfi and R. Eskicioglu

In the past, file processing techniques were used to design information systems. These systems usually consist

of a set of files and a collection of application programs. Permanent records are stored in the files, and

application programs are used to update and query the files. The application programs were in general

developed individually to meet the needs of different groups of users. In many cases, this approach leads to a

duplication of data among the files of different users. Also, the lack of coordination between files belonging to

different users often leads to a lack of data consistency. In addition, changes to the underlying data

requirements usually necessitate major changes to existing application programs. Among other major

problems that arise with the use of file processing techniques are lack of data sharing, reduced programming

productivity, and increased program maintenance. Because of their inherent difficulties and lack of flexibility,

file processing techniques have lost a great deal of their popularity and are being replaced by database

management systems (DBMS).

A DBMS is designed to efficiently manage a shared pool of interrelated data (database). This includes the

existence of features such as a data definition language for the definition of the logical structure of the

database (database schema), a data manipulation language to query and update the database, a concurrency

control mechanism to keep the database consistent when shared by several users, a crash recovery strategy

to avoid any loss of information after a system crash, and safety mechanisms against any unauthorized

access.

Database Abstraction

A DBMS is expected to provide for data independence, i.e., user requests are made at a logical level without any

need for the knowledge of how the data is stored in actual files. This implies that the internal file structure

could be modified without any change to the user’s perception of the database. To achieve data independence,

the Standards Planning and Requirements Committee (SPARC) of the American National Standards Institute

(ANSI) in its 1977 report recommended three levels of database abstraction (see Figure 16.1). The lowest level

in the abstraction is the internal level. Here, the database is viewed as a collection of files organized according
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to one of several possible internal data organizations (e.g., Bþ-tree data

organization). In the conceptual level, the database is viewed at an abstract

level. The user at this level is shielded from the internal storage details. At the

external level, each group of users has their own perception or view of the

database. Each view is derived from the conceptual database and is designed

to meet the needs of a particular group of users. Such a group can only have

access to the data specified by its particular view. This, of course, ensures

both privacy and security.

The mapping between the three levels of abstraction is the task of the

DBMS. When changes to the internal level (such as a change in file orga-

nization) do not affect the conceptual and external levels, the system is said

to provide for physical data independence. Logical data independence pre-

vents changes to the conceptual level to affect users’ views. Both types of data

independence are desired features in a database system.

Data Models

A data model refers to an integrated set of tools used to describe the data and its structure, data relationships,

and data constraints. Some data models provide a set of operators that is used to update and query the

database. Data models can be classified in two main categories: record-based and object-based. Both classes are

used to describe the database at the conceptual and external levels. With object-based data models, constraints

on the data can be specified more explicitly.

There are three main record-based data models: the relational, network, and hierarchical models. In the

relational model, data at the conceptual level is represented as a collection of interrelated tables. These tables

are normalized so as to minimize data redundancy and update anomalies. In this model, data relationships are

implicit and are derived by matching columns in tables. In the hierarchical and network models, the data is

represented as a collection of records and data relationships are explicit and are represented by links. The

difference between the last two models is that in the hierarchical model, data is represented as a tree structure,

while it is represented as a generalized graph in the network model.

In hierarchical and network models, the existence of physical pointers (links) to link related records allows

an application program to retrieve a single record at a time by following the pointer’s chain. The process of

following the pointer’s chain and selecting one record at a time is referred to as navigation. In nonnavigational

models such as the relational model, records are not related through pointer’s chains, but relationships are

established by matching columns in different tables.

The hierarchical and network models require the application programmer to be aware of the internal

structure of the database. The relational model, on the other hand, allows for a high degree of physical and

logical data independence. Earlier DBMSs were for the most part navigational systems. Because of its

simplicity and strong theoretical foundations, the relational model has since received wide acceptance. Today,

most DBMSs are based on the relational model.

Other data models include a popular high level conceptual data model, known as the Entity-Relationship

(ER) model. The ER model is mainly used for the conceptual design of databases and their applications. The

ER model describes data as entities, attributes, and relationships.

An entity is an ‘‘object’’ in the real world with an independent existence. Each entity has a set of properties,

called attributes, that describes it. A relationship is an association between entities. For example, a professor

entity may be described by its name, age, and salary and can be associated with a department entity by the

relationship ‘‘works for’’.

With the advent of advanced database applications, the ER modeling concepts became insufficient. This has

led to the enhancement of the ER model with additional concepts, such as generalization, categories, and

inheritance, leading to the Enhanced-ER or EER model.

FIGURE 16.1 Data abstraction.
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Relational Databases

The relational model was introduced by E.F. Codd [1970]. Since the theoretical underpinnings of the relational

model have been well defined, it has become the focus of most commercial DBMSs.

In the relational model, the data is represented as a collection of relations. To a large extent, each relation

can be thought of as a table. The example of Figure 16.2 shows part of a university database composed of two

relations. FAC_INFO gives personal information (last name, social security, street and city of residence, and

department) of a faculty. DEP_CHAIR gives the last name of the chairman of each department. A faculty is

not allowed to belong to two departments. Each row in a relation is referred to as a tuple. A column name is

called an attribute name. The data type of each attribute name is known as its domain. A relation scheme is a set

of attribute names. For instance, the relation scheme (or scheme for short) of the relation FAC_INFO is

(lname, social_sec(, street, city, dept). A key is a set of attribute names whose composite value is distinct for all

tuples. In addition, no proper subset of the key is allowed to have this property. It is not unusual for a scheme

to have several possible keys. In FAC_INFO, both lname and social_sec( are possible keys. In this case, each

possible key is known as a candidate key, and the one selected to act as the relation’s key, say, lname, is referred

to as the primary key. A superkey is a key with the exception that there is no requirement for minimality. In a

relation, an attribute name (or a set of attribute names) is referred to as a foreign key, if it is the primary key of

another relation. In FAC_INFO, the attribute name dept is a foreign key, since the same attribute is a key in

DEP_CHAIR. Because of updates to the database, the content of a relation is dynamic. For this reason, the

data in a relation at a given time instant is called an instance of the relation.

There are three integrity constraints that are usually imposed on each instance of a relation: primary key

integrity, entity integrity, and referential integrity. The key integrity constraint requires that no two tuples of

a relation have the same key value. The entity integrity constraint specifies that the key value of each tuple

should have a known value (i.e., no null values are allowed for primary keys). The referential integrity

constraint specifies that if a relation r1 contains a foreign key that matches the primary key of a relation r2,

then each value of the foreign key in r1 must either match a value of the primary key in r2 or must be null.

For the database of Figure 16.2 to be consistent, each value of dept in FAC_INFO must match a value of

dept in DEP_CHAIR.

Relational Database Design

The relational database design [Maier, 1983] refers to the process of generating a set of relation schemes that

minimizes data redundancy and removes update anomalies. One of the most popular approaches is the use of

the normalization theory. The normalization theory is based on the notion of functional dependencies.

FIGURE 16.2 An example of two relations: FAC_INFO and DEP_CHAIR.
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Functional dependencies are constraints imposed on a database. The notion of superkey, introduced in the

previous section, can be formulated as follows: A subset of a relation scheme is a superkey if, in any instance of

the relation, no two distinct tuples have the same superkey value. If r(R) is used to denote a relation r on a

schema R, K # R a superkey, and t(k) the K-value of tuple t, then no two tuples t1 and t2 in r(R) are such that

t1(K) ¼ t2(K).

The notion of a functional dependency can be seen as a generalization of the notion of superkey. Let X and

Y be two subsets of R; the functional dependency X ! Y exists in r(R) if whenever two tuples in r(R) have the

same X-value, their Y-value is also the same. That is, if t1(X) ¼ t2(X), then t1(Y) ¼ t2(Y). Using functional

dependencies, one can define the notion of a key more precisely. A key k of a relation r(R) is such that k ! R

and no proper subset of k has this property. Note that if the schema R is composed of attribute names {A1, A2,

. . ., An}, then each attribute name Ai is functionally determined by the key k, i.e., k ! Ai, i ¼ 1, . . ., n.

An attribute name that is part of a key is referred to as a prime attribute. In the example of Figure 16.2, both

attribute names street and city are nonprime attributes.

The normalization process can be thought of as the process of decomposing a scheme with update

anomalies and data redundancy into smaller schemes in which these undesirable properties are to a large

extent eliminated. Depending on the severity of these undesirable properties, schemes are classified into

normal forms. Originally, Codd defined three normal forms: first normal form (1NF), second normal form

(2NF), and third normal form (3NF). Thereafter, a stronger version of the 3NF, known as Boyce-Codd normal

form (BCNF), was suggested. These four normal forms are based on the concept of functional dependencies.

The 1NF requires that attribute name values be atomic. That is, composite values for attribute names are not

allowed. A 2NF scheme is a 1NF scheme in which all nonprime attributes are fully dependent on the key.

Consider the relation of Figure 16.3. Each tuple in PRODUCT gives the name of a supplier, a product name, its

price, and the supplier’s location. The scheme (supplier_name, product_name, price, quantity) is in 1NF since

each attribute name is atomic. It is assumed that many products can be supplied by a single supplier, that a given

product can be supplied by more than one supplier, and that a supplier has only one location. So,

(supplier_name, product_name) is the relation’s key and the functional dependency supplier_name! location

should hold for any instance of PRODUCT.

The structure of the relation of Figure 16.3 does not allow a supplier to appear in the relation unless it offers

at least one product. Even the use of null values is not of much help in this case as product_name is part of a

key and therefore cannot be assigned a null value. Another anomaly can be encountered during the deletion

process. For instance, deleting the last tuple in the relation results in the loss of the information that Rudd is a

supplier located in Metairie. It is seen that the relation PRODUCT suffers from insertion and deletion

anomalies.

Modifications can also be a problem in the relation PRODUCT. Suppose that the location of the supplier

Martin is moved from Kenner to Slidell. In order not to violate the functional dependency supplier_name

location, the location attribute name of all tuples where the supplier is Martin needs to be changed from

Kenner to Slidell. This modification anomaly has a negative effect on performance.

In addition, the relation PRODUCT suffers from data redundancy. For example, although Martin has only

one location ‘‘Kenner’’, such a location appears in all three tuples where the supplier_name is Martin.

The update anomalies and data redundancy encountered in PRODUCT are all due to the functional

dependency supplier_name ! location. The right-hand side of this dependency ‘‘location’’ is a nonprime

attribute, and the left-hand side represents part of the key. Therefore, we have a nonprime attribute that is

FIGURE 16.3 Instance of PRODUCT (supplier_name, product_name, price, quantity).
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only partially dependent on the key (supplier_name, product_name). As a consequence, the schema

(supplier_name, product_name, price, location) is not in 2NF. The removal of the partial dependency

supplier_name ! location will eliminate all the above anomalies. The removal of the partial dependency is

achieved by decomposing the scheme (supplier_name, product_name, price, quantity) into two 2NF schemes:

(supplier_name, product_name, price), and (supplier_name, location). This decomposition results in relations

PRO_INFO and SUP_LOC shown in Figure 16.4. The keys of PRO_INFO and SUP_LOC are (supplier_name,

product_name), and supplier_name, respectively.

Normalizing schemes into 2NF removes all update anomalies due to nonprime attributes being partially

dependent on keys. Anomalies of a different nature, however, are still possible.

Update anomalies and data redundancy can originate from transitive dependencies. A nonprime attribute Ai

is said to be transitively dependent on a key k via attribute name Aj, if k ! Aj, Aj ! Ai, and Aj does not

functionally determine Ak. A 3NF is a 1NF where no nonprime attribute is transitively dependent on a key.

The relation of Figure 16.5, which is in 2NF, highlights update anomalies and data redundancy due to the

transitive dependency of a nonprime attribute on a key. The relation gives the name of a client (client_name),

the corresponding supplier (supplier_name), and the supplier’s location. Each client is assumed to have one

supplier. The relation’s key is client_name, and each supplier has only one location. A supplier and his location

cannot be inserted in SUPPLIES unless the supplier has at least one client. In addition, the relation has a

deletion anomaly since if Tillis is no longer a client of Rudd, the information about Rudd as a supplier and his

location is lost. A change to a supplier’s location may require updating the location attribute name of several

tuples in the relation. Also, although each supplier has only one location, such a location is sometimes

repeated several time unnecessarily, leading to data redundancy.

The relation exhibits the following transitive dependency: client_name ! supplier_name, supplier_name

! location (but not the inverse). The relation CLIENT is clearly in 2NF, but because of the transitive

dependency of the nonprime attribute location on the key, it is not in 3NF. This is the cause of the anomalies

mentioned above. Eliminating this transitive dependency by splitting the schema into two components

will remove these anomalies. Clearly, the resulting two relations SUP_CLI and SUP_LOC are in 3NF

(see Figure 16.6).

FIGURE 16.4 Decomposition of PRODUCT into PRO_INFO and SUP_LOC.

FIGURE 16.5 Instance of SUPPLIES.
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Each partial dependency of a nonprime attribute on a key can be expressed as a transitive dependency of a

nonprime attribute on a key. Therefore, a scheme in 3NF is also in 2NF.

BCNF is a stricter form of 3NF, where a relation r on a schema R is in BCNF if whenever a functional

dependency X ! Y exists in r(R), then X is a superkey of R. The condition of 3NF, which allows Y to be prime

if X is not a superkey, does not exist in BCNF. Thus, every scheme in BCNF is also in 3NF, but the opposite is

not always true.

A detailed discussion of higher level normalizations, such as 4NF and 5NF, which are based on other forms

of dependencies, can be found in Elmasri and Navathe [1994].

Data Definition and Manipulation in Relational Databases

Upon completion of the relational database design, a descriptive language, usually referred to as Data

Definition Language (DDL), is used to define the designed schemes and their relationships. The DDL can

be used to create new schemes or modify existing ones, but it cannot be used to query the database. Once

DDL statements are compiled, they are stored in the data dictionary. A data dictionary is a repository where

information about database schemas, such as attribute names, indexes, and integrity constraints are stored.

Data dictionaries also contain other information about databases, such as design decisions, usage standards,

application program descriptions, and user information. During the processing of a query, the DBMS

usually checks the data dictionary. The data dictionary can be seen as a relational database of its own. As a

result, data manipulation languages that are used to manipulate databases can also be used to query the

data dictionary.

An important function of a DBMS is to provide a Data Manipulation Language (DML) with which a user

can retrieve, change, insert, and delete data from the database. DMLs are classified into two types: procedural

and nonprocedural. The main difference between the two types is that in procedural DMLs, a user has to specify

the desired data and how to obtain it, while in nonprocedural DMLs, a user has only to describe the desired

data. Because they impose less burden on the user, nonprocedural DMLs are normally easier to learn and use.

The component of a DML that deals with data retrieval is referred to as query language. A query language

can be used interactively in a stand-alone manner, or it can be embedded in a general-purpose programming

language such as C and Cobol.

One of the most popular query languages is SQL (Structured Query Language). SQL is a query language

based to a large extent on Codd’s relational algebra. SQL has additional features for data definition and update.

Therefore, SQL is a comprehensive relational database language that includes both a DDL and DML.

SQL includes the following commands for data definition: CREATE TABLE, DROP TABLE, and ALTER

TABLE. The CREATE TABLE is used to create and describe a new relation. The two relations of Figure 16.4 can

be created in the following manner:

CREATE TABLE PRO_INFO (supplier_name VARCHAR(12) NOT NULL,

product_name VARCHAR(8) NOT NULL,

price DECIMAL(6,2));

CREATE TABLE SUP_LOC (supplier_name VARCHAR(12) NOT NULL,

location VARCHAR(10));

The CREATE TABLE command specifies all the attribute names of a relation and their data types

(e.g., INTEGER, DECIMAL, fixed length character ‘‘CHAR’’, variable length character ‘‘VARCHAR’’, DATE).

FIGURE 16.6 Decomposition of SUPPLIES into SUP_CLI and SUP_LOC.
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The constraint NOT NULL is usually specified for those attributes that cannot have null values. The primary

key of each relation in the database is usually required to have a nonnull value.

If a relation is created incorrectly, it can be deleted using the DROP TABLE command. The command is

DROP TABLE followed by the name of the relation to be deleted. A variation of DROP command, DROP

SCHEMA, is used if the whole schema is no longer needed.

The ALTER TABLE is used to add new attribute names to an existing relation, as follows:

ALTER TABLE SUP_LOC ADD zip_code CHAR(5);

The SUP_LOC relation now contains an extra attribute name, zip_code. In most DBMSs, the zip_code

value of existing tuples will automatically be assigned a null value. Other DBMSs allow for the assignment of

an initial value to a newly added attribute name. Also, definitions of attributes can be changed and new

constraints can be added, or current constraints can be dropped.

The DML component of SQL has one basic query statement, sometimes called a mapping, that has the

following structure:

SELECT ,attribute_name list.

FROM ,relation_list.

WHERE ,restriction.

In the above statement, the SELECT clause specifies the attribute names that are to be retrieved, FROM

gives the list of the relations involved, and WHERE is a Boolean predicate that completely specifies the tuples

to be retrieved.

Consider the database of Figure 16.4, and suppose that we want the name of all suppliers that supply either

beds or desks. In SQL, this query can be expressed as:

SELECT supplier_name

FROM PRO_INFO

WHERE product_name ¼ ‘‘bed’’ OR product_name ¼ ‘‘sofa’’

The result of an SQL command ’’may contain duplicate values and is therefore not always a true relation.

In fact, the result of the above query, shown below, has duplicate entries.

supplier_name

Martin

Martin

Rudd

The entry Martin appears twice in the result, because the supplier Martin supplies both beds and sofas.

Removal of duplicates is usually a computationally intensive operation. As a result, duplicate entries are

not automatically removed by SQL. To ensure uniqueness, the command DISTINCT should be used. In the

above query, if we want the supplier names to be listed only once, the above query should be modified as

follows:

SELECT DISTINCT supplier_name

FROM PRO_INFO

WHERE product_name ¼ ‘‘bed’’ OR product_name ¼ ‘‘sofa’’

In SQL, a query can involve more than one relation. Suppose that we want the list of all suppliers from

Metairie who supply beds. Such a query, shown below, involves both PRO_INFO and SUP_LOC.

SELECT supplier_name

FROM PRO_INFO, SUP_LOC

WHERE PRO_INFO.supplier_name ¼ SUP_LOC.supplier_name

AND product_name ¼ ‘‘bed’’
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When an SQL expression, such as the one above, involves more than one relation, it is sometimes necessary

to qualify attribute names, that is, to precede an attribute name by the relation (a period is placed between the

two) it belongs to. Such a qualification removes possible ambiguities.

In SQL, it is possible to have several levels of query nesting; this is done by including a SELECT query

statement within the WHERE clause.

The output data can be presented in sorted order by using the SQL ORDER BY clause followed by the

attribute name(s) according to which the output is to be sorted.

In database management applications it is often desirable to categorize the tuples of a relation by the values

of a set of attributes and extract an aggregated characteristic of each category. Such database management tasks

are referred to as aggregation functions. For instance, SQL includes the following built-in aggregation

functions: SUM, COUNT, AVERAGE, MIN, MAX. The attribute names used for the categorization are

referred to as GROUP BY columns. Consider the relation PROFESSOR of Figure 16.7. Each tuple of the above

relation gives the name of a faculty and his department and academic year salary.

Suppose that we want to know the number of faculty in each department and the result to be ordered by

department. This query requests for each department a count of the number of faculty. Faculty are therefore

categorized according to the attribute name department. As a result, department is referred to as a GROUP BY

attribute. In SQL, the above query is formulated as follows:

SELECT department, COUNT (faculty)

FROM PROFESSOR

GROUP BY department

ORDER BY department

The result of applying the COUNT aggregation function is a new relation with two attribute names. They are a

GROUP BY attribute (department in this case) and a new attribute called COUNT. The tuples are ordered

lexicographically in ascending order according to the ORDER BY attribute, which is department in this case:

department COUNT (faculty)

Computer Sc. 4

Electrical Eng. 3

Mechanical Eng. 2

The relations created through the CREATE TABLE command are known as base relations. A base

relation exists physically and is stored as a file by the DBMS. SQL can be used to create views using the

CREATE VIEW command. In contrast to base relations, the creation of a view results in a virtual relation,

that is, one that does not necessarily correspond to a physical file. Consider the database of Figure 16.4,

and suppose that we want to create a view giving the name of all suppliers located in Metairie, the

products each one provides, and the corresponding prices. Such a view, called METAIRIE_SUPPLIER, can

be created as follows:

CREATE VIEW METAIRIE_SUPPLIER

AS SELECT PRO_INFO.supplier_name, product_name, price

FIGURE 16.7 Instance of the relation PROFESSOR.
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FROM PRO_INFO, SUP_LOC

WHERE PRO_INFO.supplier_name ¼ SUP_LOC.supplier_name

AND location ¼ ‘‘Metairie’’

Because a view is a virtual relation that can be constructed from one or more relations, updating a view may

lead to ambiguities. As a result, when a view is generated from more than one relation, there are, in general,

restrictions on updating such a view.

Hierarchical Databases

The hierarchical data model [Elmasri and Navathe, 1994] uses a tree data structure to conceptualize

associations between different record types. In this model, record types are represented as nodes and

associations as links. Each record type, except the root, has only one parent; that is, only parent-child (or one-

to-many) relationships are allowed. This restriction gives hierarchical databases their simplicity. Since links are

only one way, from a parent to a child, the design of hierarchical database management systems is made

simpler, and only a small set of data manipulation commands are needed.

Because only parent-child relationships are allowed, the hierarchical model cannot efficiently represent two

main types of relationships: many-to-many relationships and the case where a record type is a child in more

than one hierarchical schema. These two restrictions can be handled by allowing redundant record instances.

However, such a duplication requires that all the copies of the same record should be kept consistent at all times.

The example of Figure 16.8 shows a hierarchical schema. The schema gives the relationship between a

DEPARTMENT, its employees (D_EMPLOYEE), the projects (D_PROJECT) handled by the different

departments, and how employees are assigned to these projects. It is assumed that an employee belongs to

only one department, a project is handled by only one department, and an employee can be assigned to

several projects. Notice that since a project has several employees assigned to it, and an employee can be

assigned to more than one project, the relationship between D_PROJECT and D_EMPLOYEE is many-to-

many. To model this relationship multiple instances of the same record type D-EMPLOYEE may appear

under different projects.

Such redundancies can be reduced to a large extent through the use of logical links. A logical link associates a

virtual record from a hierarchical schema with an actual record from either the same schema or another

schema. The redundant copy of the actual record is therefore replaced by a virtual record, which is nothing

more than a pointer to the actual one.

Hierarchical DLLs are used by a designer to declare the different hierarchical schemas, record types, and

logical links. Furthermore, a root node must be declared for each hierarchical schema, and each record type

declaration must also specify the parent record type.

Unlike relational DMLs, hierarchical DMLs such as DL/1 are record at-a-time languages. DL/1 is used by

IBM’s IMS hierarchical DBMS. In DL/1 a tree traversal is based on a preorder algorithm, and within each tree,

the last record accessed through a DL/1 command can be located through a currency indicator.

FIGURE 16.8 A hierarchical schema.
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Retrieval commands are of three types:

GET UNIQUE ,record type. WHERE ,restrictions.

Such a command retrieves the leftmost record that meets the imposed restrictions. The search always starts

at the root of the tree pointed to by the currency indicator.

GET NEXT [,record type. WHERE ,restrictions.]

Starting from the current position, this command uses the preodrer algorithm to retrieve the next record

that satisfies the restrictions. The clause enclosed between brackets is optional. GET NEXT is used to

retrieve the next (preorder) record from the current position.

GET NEXT WITHIN PARENT [,record type. WHERE ,restrictions.]

It retrieves all records that have the same parent and that satisfy the restrictions. The parent is assumed to

have been selected through a previous GET command.

Four commands are used for record updates:

INSERT

Stores a new record and links it to a parent. The parent has been already selected through a GET command.

REPLACE

The current record (selected through a previous GET command) is modified.

DELETE

The current record and all its descendants are deleted.

GET HOLD

Locks the current record while it is being modified.

The DL/1 commands are usually embedded in a general-purpose (host) language. In this case, a record

accessed through a DL/1 command is assigned to a program variable.

Network Databases

In the network model [Elmasri and Navathe, 1994] associations between record types are less restrictive than

with the hierarchy model. Here, associations among record types are represented as graphs.

One-to-one and one-to-many relationships are described using the notion of set type. Each set type has an

owner record type and a member record type. In the example of Figure 16.8, the relationship between

DEPARTMENT and employee (D_EMPLOYEE) is one-to-many. This relationship defines a set type where the

owner record type is DEPARTMENT and the member record type is D_EMPLOYEE. Each instance of an

owner record type along with all the corresponding member records represents a set instance of the underlying

set type. In practice, a set is commonly implemented using a circular-linked list which allows an owner record

to be linked to all its member records. The pointer associated with the owner record is known as the FIRST

pointer, and the one associated with a member record is known as a NEXT pointer.

In general, a record type cannot be both the owner and a member of the same set type. Also, a record cannot

exist in more than one instance of a specific set type. The latter requirement implies that many-to-many

relationships are not directly implemented in the network data model.

The relationship between D_PROJECT and D-EMPLOYEE is many-to-many. In the network model, this

relationship is represented by two set types and an intermediate record type. The new record type could be

named ASSIGNED_TO (see Figure 16.9). One set has D_EMPLOYEE as owner and ASSIGNED_TO as

member record type, and the other has D_PROJECT as owner and ASSIGNED_TO as member record

type.

Standards for the network model’s DDL and DML were originally proposed by the CODASYL

(Conference On Data SYstems Languages) committee in 1971. Several revisions to the original proposal

were made later.
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In a network DDL, such as that of the IDMS database management system, a set declaration specifies the

name of the set, its owner record type, and its member record type. The insertion mode for the set members

needs to be specified using combinations of the following four commands:

AUTOMATIC

An inserted record is automatically connected to the appropriate set instance.

MANUAL

In this case, records are inserted into the appropriate set instance by an application program.

OPTIONAL

A member record does not have to be a member of a set instance. The member record can be connected to

or disconnected from a set instance using DML commands.

MANDATORY

A member record needs to be connected to a set instance. A member record can be moved to another set

instance using the network’s DML.

FIXED

A member record needs to be connected to a set instance. A member record cannot be moved to another set

instance.

The network’s DDL allows member records to be ordered in several ways. Member records can be sorted in

ascending or descending order according to one or more fields. Alternatively, a new member record can be

inserted next (prior) to the current record (pointed to by the currency indicator) in the set instance. A newly

inserted member record can also be placed first (or last) in the set instance. This will lead to a chronological

(or reverse chronological) order among member records.

As with the hierarchy model, network DMLs are record-at-a-time languages, and currency indicators are

necessary for navigation through the network database. For example, the IDMS main data manipulation

commands can be summarized as follows:

CONNECT

Connects a member record to the specified set instance.

DISCONNECT

A member record is disconnected from a set instance (set membership must be manual in this case).

STORE, MODIFY, and DELETE

These commands are used for data storage, modification, and deletion.

FIND

Retrieval command based on set membership.

GET

Retrieval command based on key values.

FIGURE 16.9 Representing many-to-many relationships in the network model.
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Architecture of a DBMS

A DBMS is a complicated software structure that includes several components (see Figure 16.10). The DBMS

has to interact with the operating system for secondary storage access. The data manager is usually the

interface between the DBMS and the operating system. The DDL compiler converts schema definitions,

expressed using DDL statements, into a collection of metadata tables that are stored in the data dictionary. The

design of the schemas is the function of the database administrator (DBA). The DBA is also responsible for

specifying the data storage structure and access methodology and granting and revoking access authorizations.

The query processor converts high-level DML statements into low-level instructions that the database manager

can interpret. The DML preprocessor separates embedded DML statements from the rest of an application

program. The resulting DML commands are processed by a DML compiler, and the rest of the application

program is compiled by a host compiler. The object codes of the two components are then linked.

Data Integrity and Security

Data Integrity

In general, during the design of a database schema several integrity constraints are identified. These constraints

may include the uniqueness of a key value, restrictions on the domain of an attribute name, and the ability of

an attribute to have a null value. A DBMS includes mechanisms with which integrity constraints can be

specified. Constraints such as key uniqueness and the admissibility of null values can be specified during

schema definition. Also, more elaborate integrity constraints can be specified. For example, constraints can be

imposed on the domain of an attribute name, and any transaction that violates the imposed constraints is

aborted. In some cases, it is useful to specify that the system take some actions, rather than just have the

transaction responsible for the constraint violation being aborted. A mechanism called trigger can be used for

that purpose. A trigger specifies a condition and an action to be taken when the condition is met.

Transactions and Data Integrity

In a multiuser DBMS, the database is a shared resource that can be accessed concurrently by many users.

A transaction usually refers to the execution of a retrieval or an update program. A transaction performs a

single logical operation in a database application. Therefore, it is an atomic unit of processing. That is, a

FIGURE 16.10 Simplified architecture of a DBMS.
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transaction is either performed in its entirety or is not performed at all. Basically, a transaction may be in one

of the following states (Figure 16.11):

. active — where read and write operations are performed.

. partially committed — when the transaction ends and various checks are made to ensure that the

transaction did not interfere with other transactions.
. failed — when one of the checks failed or the transaction is aborted during the active state.
. committed — when the execution was successfully completed.
. terminated — when the transaction leaves the system.

Transactions originating from different users may be aimed at the same database records. This situation, if

not carefully monitored, may cause the database to become inconsistent. Starting from a database in a

consistent state, it is obvious that if all transactions are executed one after the other, then the database will

remain in a consistent state. In a multiuser DBMS, serial execution of transactions is wasteful of system

resources. In this case, the solution is to interleave the execution of the transactions. However, the interleaving

of transactions has to be performed in a way that prevents the database from becoming inconsistent. Suppose

that two transactions T1 and T2 proceed in the following way:

Time T1 T2
read account ðXÞ

read account ðXÞ X :¼ X � 20
X :¼ X � 10 write account ðXÞ
write account ðXÞ
read account ðYÞ
Y :¼ Yþ 10
write account ðYÞ

The first transaction transfers $10 from bank account X to bank account Y. The second transaction withdraws

$20 from bank account X. Assume that initially there was $200 in X and $100 in Y. When the two transactions

are performed serially, the final amounts in X and Y are $170 and $110, respectively. However, if the two

transactions are interleaved as shown, then after the completion of both transactions, there will be $190 in X

and $110 in Y. The database is now in an inconsistent state.

It is therefore important to ensure that the interleaving of the execution of transactions leaves the database

in a consistent state. One way of preserving data consistency is to ensure that the interleaved execution of

FIGURE 16.11 State transition diagram for transaction execution.
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transactions is equivalent to their serial execution. This is referred to as serializable execution. Therefore, an

interleaved execution of transactions is said to be serializable if it is equivalent to a serial execution.

Locking is one of the most popular approachs to achieving serializability. Locking is the process of ensuring

that some actions are not performed on a data item. Therefore, a transaction may request a lock on a data item

to prevent it from being either accessed or modified by other transactions. There are two basic types of locks.

A shared lock allows other transactions to read but not write to the data item. An exclusive lock allows only a

single transaction to read and write a data item. To achieve a high degree of concurrency, the locked data item

size must be as small as possible. A data item can range from the whole database to a particular field in a

record. Large data items limit concurrency, while small data items result in a large storage overhead and a

greater number of lock and unlock operations that the system will have to handle.

Transactions scheduling based on locking achieves serializability in two phases. This is known as two-phase

locking. During the first phase, the growing phase, a transaction can only lock new data items, but it cannot

release any locked ones. During the second phase, the shrinking phase, existing locks can be released, but no

new data item can be locked. The two-phase locking scheme guarantees the serializability of a schedule.

Because of its simplicity, the above scheduling method is very practical. However, it may lead to a deadlock.

A deadlock occurs when two transactions are waiting for each other to release locks and both cannot proceed.

A deadlock prevention (or detection) strategy is needed to handle the situation. For example, this can be

achieved by requiring that a transactions locks all data items it needs for its execution before it can proceed;

when the transaction finds that a needed data item is already locked, then it releases all locks.

If a transaction fails for whatever reason after (partially committed) or (active) while updating the database,

it may be necessary to bring the database to its previous (original) state by undoing the transaction. This

operation is called roll-back. A roll-back operation requires some information about the changes made on the

data items during a transaction. Such information is usually kept outside the database in a system log.

Generally, roll-back operations are part of the techniques used to recover from transaction failures.

Database Security

A database needs to be protected against unauthorized access. It is the responsibility of the DBA to create

account numbers and passwords for legitimate users. The DBA can also specify the type of privileges a

particular account has. In relational databases, this includes the privilege to create base relations, create views,

alter relations by adding or dropping a column, and delete relations. The DBA can also revoke privileges that

were granted previously. In SQL, the command GRANT is used to grant privileges and the REVOKE

command to revoke privileges that have been granted.

The concept of views can serve as a convenient security mechanism. Consider a relation EMPLOYEE that gives

the name of an employee, date of birth, the department worked for, address, phone number, and salary.

A database user who is not allowed to have access to the salary of employees from his own department can have

this portion of the database hidden from him. This can be achieved by limiting his access to a view obtained from

the relation EMPLOYEE by selecting only those tuples where the department attribute is different from his.

Database security can be enhanced by using data encryption. The idea here is to encrypt the data using some

coding technique. An unauthorized user will have difficulty deciphering the encrypted data. Only authorized

users are provided with keys to decipher the encoded data.

Emerging Trends

Object-Oriented Databases

Object-oriented database systems (OODBMSs) [Brown, 1991] are one of the latest trends in database

technology. The emergence of OODBMS is in response to the requirements of advanced applications. In

general, traditional commercial and administrative applications can be effectively modeled using one of the

three record-based data models. These applications are characterized by simple data types. Furthermore, for

such applications, access and relationships are based on data values. Advanced database applications such as

those found in engineering CAD/CAM require complex data structures. When these applications are modeled

using the relational model, they require an excessive number of relations. In addition, a large number of
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complex operations are usually needed to produce an answer. This leads, in most cases, to unacceptable

performance levels.

The notion of ‘‘object’’ is central to OODBMS. An object can be seen as being an entity consisting of its own

private memory and external interface (or protocol). The private memory is used to store the state of the object,

and the external interface consists of a set of operations that can be performed on the object. An object

communicates with other objects through messages sent to its external interface. When an object receives a

message, it responds by using its own procedures, known as methods. The methods are responsible for

processing the data in the object’s private memory and sending messages to other objects to perform specific

tasks and possibly send back appropriate results.

The object-oriented approach provides for a high level of abstraction. In addition, this model has constructs

that can be used to define new data types and specialized operators that can be applied to them. This feature is

known as encapsulation.

An object is usually a member of a class. The class specifies the internal structure and the external

interface of an object. New object classes can be defined as a specialization of existing ones. For example, in a

university environment, the object type ‘‘faculty’’ can be seen as a specialization of the object type

‘‘employee.’’ Since a faculty is a university employee, it has all the properties of a university employee plus

some of its own. For example, some of the general operations that can be performed on an employee could

be ‘‘raise_salary,’’ ‘‘fire_employee,’’ ‘‘transfer_employee.’’ For a faculty, specialized operations such as

‘‘faculty_tenure’’ could be defined. Faculty can be viewed as a subclass of employee. As a result, faculty (the

subclass) will respond to the same messages as employee (the superclass) in addition to those defined

specifically for faculty. This technique is known as inheritance. A subclass is said to inherit the behavior of

its superclass.

Opponents to the object-oriented paradigm point to the fact that while this model has greater modeling

capability, it lacks the simplicity and the strong theoretical foundations of the relational model. Also, the

reappearance of the navigational approach is seen by many as a step backward.

Supporters of the object-oriented approach believe that a navigational approach is a necessity in several

applications. They point to the rich modeling capability of the model, its high level of abstraction, and its

suitability for modular design.

Distributed Databases

A distributed database [Ozsu and Valdurez, 1991] is a collection of interrelated databases spread over the nodes

of a computer network. The management of the distributed database is the responsibility of a software system

usually known as distributed DBMS (DDBMS). One of the tasks of the DDBMS is to make the distributed

nature of the database transparent to the user. A distributed database usually reflects the distributed nature of

some applications. For example, a bank may have branches in different cities. A database used by such an

organization is usually distributed over all these sites. The different sites are connected by a computer network.

A user may access data stored locally or access data stored at other sites through the network.

Distributed databases have several advantages. In distributed databases, the effect of a site failure or data loss

at a particular node can be minimized through data replication. However, data replication reduces security

and makes the process of keeping the database consistent more complicated.

In distributed databases, data is decomposed into fragments that are allocated to the different sites.

A fragment is allocated to a site in a way that maximizes local use. This allocation scheme, which is known as

data localization, reduces the frequency of remote access. In addition, since each site deals with only a portion

of the database, local query processing is expected to exhibit increased performance.

A distributed database is inherently well suited for parallel processing at both interquery and intraquery

levels. Parallel processing at the interquery level is the ability to have multiple queries executed concurrently.

Parallelism at the intraquery level results from the possibility of a single query being simultaneously handled

by many sites, each site acting on a different portion of the database.

The data distribution increases the complexity of DDBMS over a centralized DBMS. In fact, in distributed

databases, several research issues in distributed query processing, distributed database design, and distributed
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transaction processing remain to be solved. It is only then that the potential of distributed databases can be

fully appreciated.

Parallel Database Systems

There has been a continuing increase in the amount of data handled by database management systems

(DBMSs) in recent years. Indeed, it is no longer unusual for a DBMS to manage databases ranging in sizes

from hundreds of gigabytes to terabytes. This massive increase in database sizes is coupled with a growing need

for DBMSs to exhibit more sophisticated functionality such as the support of object-oriented, deductive, and

multimedia applications. In many cases, these new requirements have rendered existing DBMSs unable to

provide the necessary system performance, especially given that many mainframe DBMSs already have

difficulty meeting the I/O and CPU performance requirements of traditional information systems that service

large numbers of concurrent users and/or handle massive amounts of data [DeWitt and Gray, 1992].

To achieve the required performance levels, database systems have been increasingly required to make use of

parallelism. Two approaches were suggested to provide parallelism in database systems [Abdelguerfi and

Lavington, 1995]. The first approach uses massively parallel general-purpose hardware platforms. Commercial

systems, such as Intel’s nCube and IBM’s SP2 follow this approach and support Oracle’s Parallel Server. The

second approach makes use of arrays of off-the-shelf components to form custom massively parallel systems.

Usually, these hardware systems are based on MIMD parallel architectures. The NCR 3700 and the Super

Database Computer II (SDC-II) are two such systems. The NCR 3700 now supports parallel version of Sybase

relational DBMS.

The number of general purpose or dedicated parallel database computers is increasing each year. It is not

unrealistic to envisage that most high performance database management systems in the year 2000 will

support parallel processing. The high potential of parallel databases in the future urges both the database

vendors and practitioners to understand the concept of parallel database system in depth.

It is noteworthy that in recent years, popularity of the client/server architecture has increased. This

architecture is practically a derivative of shared-nothing case. In this model, clients’ nodes access data through

one or more servers. This approach derives its strength from an attractive price/performance ratio, a high level

of scalability, and the ease with which additional remote hosts can be integrated into the system. Another

driving force of the client/server approach is the current trend toward corporate downsizing.

Multimedia

Yet another new generation database application is multimedia, where non-text forms of data, such as voice,

video, and image, are accessed via some form of a user interface. Hypermedia interfaces are becoming the

primary delivery system for the multimedia applications. These interfaces, such as Mosaic, allow users to

browse through an information base consisting of many different types of data. The basis of hypermedia is the

hypertext, where some text based information is accessed in a non-sequential manner. Hypermedia is an

extension of hypertext paradigm into multimedia.

Defining Terms

Database: A shared pool of interrelated data.

Database computer: A special hardware and software configuration aimed primarily at handling large

databases and answering complex queries.

Database management system (DBMS): A software system that allows for the definition, construction,

and manipulation of a database.

Data model: An integrated set of tools to describe the data and its structure, data relationships, and data

constraints.

Distributed database: A collection of multiple, logically interrelated databases distributed over a

computer network.
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16.2 Rule-Based Expert Systems

Jay Liebowitz

Expert systems is probably the most practical application of artificial intelligence (AI). Artificial intelligence,

as a field, has two major thrusts: (1) to supplement human brain power with intelligent computer power and

(2) to better understand how we think, learn, and reason. Expert systems are one application of AI, and they

are being developed and used throughout the world [Feigenbaum et al., 1988; Liebowitz, 1990]. Other major

applications of AI are robotics, speech understanding, natural-language understanding, computer vision, and

neural networks.

Expert systems are computer programs that emulate the behavior of a human expert in a well-bounded

domain of knowledge [Liebowitz, 1988]. They have been used in a number of tasks, ranging from sheep

reproduction management in Australia, hurricane damage assessment in the Caribbean, boiler plant operation

in Japan, computer configuration in the United States, to strategic management consulting in Europe

[Liebowitz, 1991b]. Expert systems technology has been around since the late 1950s, but it has been only since

1980–1981 that the commercialization of expert systems has emerged [Turban, 1992].

An expert system typically has three major components: the dialog structure, inference engine, and

knowledge base [Liebowitz and DeSalvo, 1989]. The dialog structure is the user interface that allows the user

to interact with the expert system. Most expert systems are able to explain their reasoning, in the same manner

that one would want human experts to explain their decisions. The inference engine is the control structure

within the expert system that houses the search strategies to allow the expert system to arrive at various

conclusions. The third component is the knowledge base, which is the set of facts and heuristics (rules of

thumb) about the specific domain task. The knowledge principle says that the power of the expert system lies

in its knowledge base. Expert system shells have been developed and are widely used on various platforms to

help one build an expert system and concentrate on the knowledge base construction. Most operational expert

systems are integrated with existing databases, spreadsheets, optimization modules, or information systems

[Mockler and Dologite, 1992].

The most successful type of expert system is the rule-based, or production, system. This type of expert

system is chiefly composed of IF-THEN (condition-action) rules. For example, the infamous MYCIN expert

system, developed at Stanford University for diagnosing bacterial infections in the blood (meningitis), is rule-

based, consisting of 450–500 rules. XCON, the expert system at Digital Equipment Corporation used for

configuring VAX computer systems, is probably the largest rule-based expert system, consisting of over 11,000

rules. There are other types of expert systems that represent knowledge in ways other than rules or in

conjunction with rules. Frames, scripts, and semantic networks are popular knowledge representation

methods that could be used in expert systems.
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The development of rule-based systems is typically called knowledge engineering. The knowledge engineer

is the individual involved in the development and deployment of the expert system. Knowledge engineering, in

rule-based systems, refers primarily to the construction of the knowledge base. As such, there are six major

steps in this process, namely (1) problem selection, (2) knowledge acquisition, (3) knowledge representation,

(4) knowledge encoding, (5) knowledge testing and evaluation, and (6) implementation and maintenance. The

knowledge engineering process typically uses a rapid prototyping approach (build a little, test a little). Each of

the six steps in the knowledge engineering process will be briefly discussed in turn.

Problem Selection

In selecting an appropriate application for expert systems technology, there are a few guidelines to follow:

. Pick a problem that is causing a large number of people a fair amount of grief.

. Select a ‘‘doable,’’ well-bounded problem (i.e., task takes a few minutes to a few hours to solve)—this is

especially important for the first expert system project for winning management’s support of the

technology.
. Select a task that is performed frequently.
. Choose an application where there is a consensus on the solution of the problem.
. Pick a task that utilizes primarily symbolic knowledge.
. Choose an application where an expert exists and is willing to cooperate in the expert systems devel-

opment.
. Make sure the expert is articulate and available and a backup expert exists.
. Have the financial and moral support from management.

The problem selection and scoping are critical to the success of the expert systems project. As with any

information systems project, the systems analysis stage is an essential and crucial part of the development

process. With expert systems technology, if the problem domain is not carefully selected, then difficulties will

ensue later in the development process.

Knowledge Acquisition

After the problem is carefully selected and scoped, the next step is knowledge acquisition. Knowledge

acquisition involves eliciting knowledge from an expert or multiple experts and also using available

documentation, regulations, manuals, and other written reports to facilitate the knowledge acquisition

process. The biggest bottleneck in expert systems development has, thus far, been in the ability to acquire

knowledge. Various automated knowledge acquisition tools, such as Boeing Computer Services’

AQUINAS, have been developed to assist in this process, but there are very few knowledge acquisition

tools on the market. The most commonly used approaches for acquiring/eliciting knowledge include:

interviewing (structured and unstructured), protocol analysis, questionnaires (structured and open-ended),

observation, learning by example/analogy, and other various techniques (Delphi technique, statistical

methods).

To aid the knowledge acquisition process, some helpful guidelines are:

. Before interviewing the expert, make sure that you (as the knowledge engineer) are familiar/

comfortable with the domain.
. The first session with the expert should be an introductory lecture on the task at hand.
. The knowledge engineer should have a systematic approach to acquiring knowledge.
. Incorporate the input and feedback from the expert (and users) into the system—get the expert and

users enthusiastic about the project.
. Pick up manuals and documentation on the subject material.
. Tape the knowledge acquisition sessions, if allowed.
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Knowledge Representation

After acquiring the knowledge, the next step is to represent the knowledge. In a rule-based expert system, the

IF-THEN (condition-action) rules are used. Rules are typically used to represent knowledge if the preexisting

knowledge can best be naturally represented as rules, if the knowledge is procedural, if the knowledge is mostly

context-independent, and if the knowledge is mostly categorical (‘‘yes-no’’ type of answers). Frames, scripts,

and semantic networks are used as knowledge representation schemes for more descriptive, declarative

knowledge. In selecting an appropriate knowledge representation scheme, try to use the representation

method which most closely resembles the way the expert is thinking and expressing his/her knowledge.

Knowledge Encoding

Once the knowledge is represented, the next step is to encode the knowledge. Many knowledge engineers use

expert system shells to help develop the expert system prototypes. Other developers may build the expert

system from scratch, using such languages as Lisp, Prolog, C, and others. The following general guidelines may

be useful in encoding the knowledge:

. Remember that for every shell there is a perfect task, but for every task there is NOT a perfect shell.

. Consider using an expert system shell for prototyping/proof-of-concept purposes—remember to first

determine the requirements of the task, instead of force-fitting a shell to a task.
. Try to develop the knowledge base in a modular format for ease of updating.
. Concentrate on the user interface and human factors features, as well as the knowledge base.
. Use an incremental, iterative approach.
. Consider whether uncertainty should play a part in the expert system.
. Consider if the expert reasons in a data-driven manner (forward chaining) or a goal-directed manner

(backward chaining), or both.

Knowledge Testing and Evaluation

Once the knowledge is encoded in the system, testing and evaluation need to be conducted. Verification and

validation refers to checking for the consistency of the knowledge/logic and checking the quality/accuracy of

advice reached by the expert system. Various approaches to testing can be used, such as: performing

‘‘backcasting’’ by running the expert system (using a representative set of test cases) against documented cases

and comparing the expert system-generated results with the historical results, using blind verification tests

(modified Turing test), having the expert and other experts test the system, using statistical methods for

testing, and others. In evaluating the expert system, the users should evaluate the design of the human factors

in the system (i.e., instructions, free-text comments, ease of updating, exiting capabilities, response time,

display and presentation of conclusions, ability to restart, ability for user to offer degree of certainty, graphics,

utility of the system, etc.).

Implementation and Maintenance

Once the system is ready to be deployed within the organization, the knowledge engineer must be cognizant of

various institutionalization factors [Liebowitz, 1991a; Turban and Liebowitz, 1992]. Institutionalization refers

to implementing and transitioning the expert system into the organization. Frequently, the technology is not

the limiting factor—the management of the technology is often the culprit. An expert system may be accurate

and a technical success, but without careful attention to management and institutionalization considerations,

the expert system may be a technology transfer failure. There are several useful guidelines for proper

institutionalization of expert systems:

. Know the corporate culture in which the expert system is deployed.

. Planning for the institutionalization process must be thought out well in advance, as early as the

requirements analysis stage.
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. Through user training, help desks, good documentation, hotlines, etc., the manager can provide mech-

anisms to reduce ‘‘resistance to change.’’
. Solicit and incorporate users’ comments during the analysis, design, development, and implementation

stages of the expert system.
. Make sure there is a team/individual empowered to maintain the expert system.
. Be cognizant of possible legal problems resulting from the use and misuse of the expert system.
. During the planning stages, determine how the expert system will be distributed.
. Keep the company’s awareness of expert systems at a high level throughout the system’s development

and implementation, and even after its institutionalization.

Defining Terms

Expert systems: A computer program that emulates a human expert in a well-bounded domain of

knowledge.

Knowledge base: The set of facts and rules of thumb (heuristics) on the domain task.

Knowledge engineering: The process of developing an expert system.
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IEEE Expert, Los Alamitos, Calif.: IEEE Computer Society Press.
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17.1 Parallel Processors

Tse-yun Feng and Miro Kraetzl

Introduction

A computer usually consists of four major components: the arithmetic-logic unit (ALU), the main memory

unit (MU), the input/output unit (I/O), and the control unit (CU). Such a computer is known as a

uniprocessor since the processing is achieved by operating on one word or word pair at a time. In order to

increase the computer performance, we may improve the device technology to reduce the switching (gate

delay) time. Indeed, for the past half century we have seen switching speeds improve from 200 to 300 ms for

relays to present-day subnanosecond very large scale integration (VLSI) circuits. As the switching speeds of

computer devices approach a limit, however, any further significant improvement in performance is more

likely to be in increasing the number of words or word pairs that can be processed simultaneously. For

example, we may use one ALU to compute N sets of additions N times in a uniprocessor, or we may design a

computer system with N ALUs to add all N sets once. Conceptually, such a computer system may still consist

of the four major components mentioned previously except that there are N ALUs. An organization with

multiple ALUs under the control of a single CU is called a parallel processor. To make a parallel processor

more efficient and cost-effective, a fifth major component, called the interconnection network, is usually

required to facilitate the interprocessor and processor-memory commu.nications. In addition, each ALU

requires not only its own registers but also network interfaces; the expanded ALU is then called a processing

element (PE). Figure 17.1 shows a block diagram of a parallel processor.

Classifications

Flynn has classified computer systems according to the multiplicity of instruction and data streams, where

computers are partitioned into four groups [Flynn, 1966]:
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1. Single instruction stream, single data stream (SISD): The conventional, word-sequential architecture

including pipelined computers (usually with parallel ALU).

2. Single instruction stream, multiple data stream (SIMD): The multiple ALU-type architectures

(e.g., parallel/array processor). The ALU may be either bit-serial or bit-parallel.

3. Multiple instruction stream, single data stream (MISD): Not as practical as the other classes.

4. Multiple instruction stream, multiple data stream (MIMD): The multiprocessor system.

As a general rule, one could conclude that SISD and SIMD machines are single CU systems, whereas MIMD

machines are multiple CU systems. Flynn’s classification does not address the interactions among the process-

ing modules and the methods by which processing modules in concurrent system are controlled. As a result,

one can classify both uniprocessors and pipelined computers as SISD machines, because both instructions and

data are provided sequentially.

We may also classify computer systems according to the number of bits or bit pairs a computer executes at

any instant [Feng, 1972]. For example, a computer may perform operations on one bit or bit pair at a time

through the use of a simple serial ALU. For an M-bit word or operand, the operation repeats M times (Point A

in Figure 17.2). To speed up the processing, a parallel ALU is usually used so that all bits of a word can be

operated on simultaneously. This is how a conventional word-sequential computer executes on its operands

(point B in Figure 17.2). In a parallel processor, it may execute either (a) all the ith bits of N operands or

operand pairs (i.e., bit slice or bis) or (b) all N M-bit operands or operand pairs simultaneously (points C and

d in Figure 17.2, respectively). Figure 17.2 also shows some of the systems in this classification. It is seen from

this classification that the performance of a computer is proportional to the total number of bits or bit pairs it

can execute simultaneously.

Feng’s classification [Hwang and Briggs, 1984] was originally intended for parallel processors, and as a

result, the number of CUs in a computer system was not specified. Händler extended Feng’s classification by

adding a third dimension, namely, the number of CUs. Pipelined systems are also included in this

classification through additional parameters [Händler, 1977].

Types of Parallel Processors

Ensemble Processors

An ensemble system is an extension of the conventional uniprocessor systems. It is a collection of N PEs (a PE

here consists of an ALU, a set of local registers, and limited local control capability) and N MUs, under the

control of a single CU. Thus, the organization of an ensemble processor is similar to that shown in Figure 17.1

except that there are no direct interprocessor and processor-memory communications, i.e., no interconnection

FIGURE 17.1 A basic parallel processor organization.
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networks. When the need for communication arises, it is done through the CU. This slows down the system

for applications requiring extensive interprocessor and processor-memory communications. For example, the

sum of two matrices A and B can be executed in one step, if R2 PEs are available in an ensemble processor,

where R is the rank of the matrices. On the other hand, the product of the same two matrices requires

extensive data alignment between the elements of A and B. As a result, it is ineffective for performing matrix

multiplications with an ensemble processor. Therefore, while the ensemble processors are capable of executing

up to N identical jobs simultaneously, they have very limited applications. Parallel element processing

ensemble (PEPE) [Evensen and Troy, 1973] is an example of such parallel processors.

Array Processors

Because of the need for interprocessor and processor-memory communication for most applications, a parallel

processor usually has one or more circuits (known as interconnection networks) to support various

applications for efficient processing. In general, an array processor may consist of N identical PEs under the

control of a single CU and a number of MUs. Within each PE there are circuits for network interface as well as

its own local memories. The PEs and MUs communicate with each other through an interconnection network.

A typical array processor organization is shown in Figure 17.3. Depending on the design, each PE may perform

serial-by-bit (as in MPP) or parallel-by-bit (as in ILLIAC IV) operations.

As can be seen from Figure 17.3, the interconnection networks play a very important role in parallel

processors. The network usually provides a uniform interconnection among PEs on one hand, and PEs and

FIGURE 17.2 Feng’s classification.
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MUs on the other. Different array processor organizations might use different interconnection networks

[Grammatikakis et al., 2001]. In general, the interconnection networks can be classified into two categories:

static and dynamic, as shown in Figure 17.4.

ILLIAC IV [Barnes et al., 1968] and MPP [Batcher, 1979] are examples of parallel processors using static

interconnections, while STARAN [Batcher, 1973] and BSP [Kuck and Stokes, 1982] are examples using

dynamic interconnections.

The CU usually has its own high-speed registers, local memory, and arithmetic unit. Thus, in many cases, it

is a conventional computer and the instructions are stored in a main memory, together with data. However, in

some machines such as ILLIAC IV, programs are distributed among the local memories of the PEs. Hence, the

instructions are fetched from the processors’ local memories into an instruction buffer in the CU.

Each instruction is either a local type instruction, where it is executed entirely within the CU, or it is a

parallel instruction and is executed in the processing array. The primary function of the CU is to examine each

instruction as it is to be executed and to determine where the execution should take place.

Associative Processor

Associative memories, also known as content-addressable memories, retrieve information on the basis of data

content rather than addresses. An associative memory performs comparison (i.e., exclusive-OR or

equivalence) operations at its bit level. The results of the comparison on a group of bits in a word for all

words in the memory are transmitted to a register called a response register or flag. In addition, there are

circuits such as multiple match resolver, enable/disable register, and a number of temporary registers, as well as

appropriate logic gates for resolving multiple responses and information retrieval. For associative processors,

arithmetic capabilities are added to this unit. The unit can be viewed as consisting of a number of bit-serial

PEs. Furthermore, the bit-level logic is moved out of the memory so that the memory part of the processor

consists of a number of random-access memories called word modules. A typical associative processor is

shown in Figure 17.5. STARAN and MPP (Figure 17.2) are representative of this bit-serial, word-parallel SIMD

organization. In Figure 17.5 the common register is where the common operand is stored and the mask

FIGURE 17.3 An array processor organization. I/O, input/output devices; LM, local memory; PE, processing element;

SM, shared memory.
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register defines the bit positions requiring operation. The enable/disable register provides local control of

individual PEs. Because of its simplicity in design the per-PE cost of an associative processor is much lower,

but the bit-serial operations slow down the system drastically. To compensate for this, these systems are useful

only for applications requiring a large number of PEs.

System Utilization

As discussed previously, for any computer there is a maximum number of bits or bit pairs that can be

processed concurrently, whether it is under single-instruction or multiple-instruction control [Feng, 1972,

1973]. This maximum degree of concurrency, or maximum concurrency (Cm), is an indication of the

FIGURE 17.4 Some examples of static (a) and dynamic (b) interconnection networks.
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computer-processing capability. The actual utilization of this capability is indicated by the average

concurrency defined to be

Ca ¼
SciDti

SDti

where ci is the concurrency at Dti. If Dti is set to one time unit, then the average concurrency over a period of T

time units is

Ca ¼

P
T

i¼ 1

ci

T

The average hardware utilization is then

m ¼
Ca

Cm

¼

P
T

i¼ 1

ci

TCm

¼
1

T

X
T

i¼ 1

si

where si is the hardware utilization at time i. Whereas Cm is determined by the hardware design, Ca or m is

highly dependent on the software and applications. A general-purpose computer should achieve a high m for as

many applications as possible, whereas a special-purpose computer would yield a high m for at least the

intended applications. In either case, maximizing the value of m for a computer design is important. This

equation can also be used to evaluate the relative effectiveness of machine designs.

FIGURE 17.5 An associative processor organization.
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For a parallel processor, the degree of concurrency is called the degree of parallelism. A similar discussion

can be used to define the average hardware utilization of a parallel processor. The maximum parallelism is then

Pm, and the average parallelism is

Pa ¼
SpiDti

SDti

or

Pa ¼

P
T

i¼ 1

pi

T

for T time units. The average hardware utilization becomes

u ¼
Pd

Pm

¼

P
T

i¼ 1

pi

TPm

¼
1

T

X
T

i¼ 1

ri

where ri is the hardware utilization for parallel processors at time i. With appropriate instrumentation, the

average hardware utilization of a system can be determined.

In practice, however, it is not always true that every bit or bit pair that is being processed would be

productive. Some of the bits produce only repetitious (superfluous) or even meaningless results. This happens

more often and more severely in a parallel processor than in a word-sequential processor. Consider,

for example, performing a maximum search operation in a mesh-connected parallel processor (such as

ILLIAC IV). For N operands, it takes (N/2)log2 N comparisons (N/2 comparisons for each of log2 N iterations)

instead of the usual N – 1 comparisons in word-sequential machines. Thus, in effect there are

N

2
log2 N

� �

� ðN � 1Þ ¼
N

2
ðlog2 N � 2Þ þ 1

comparisons that are nonproductive. If we let P̂Pa be the effective parallelism over a period of T time units and

ûu, p̂pi, and r̂ri be the corresponding effective values, the effective hardware utilization is then

ûu ¼
P̂Pa

Pm

¼

P
T

i¼ 1

p̂pi

TPm

¼
1

T

X
T

i¼ 1

r̂ri

A successful parallel processor design should yield a high ûu, as well as the required throughput for, at least,

the intended applications. This not only involves a proper hardware and software design but also the devel-

opment of efficient parallel algorithms for these applications.

Suppose Tu is the execution time of an application program using a conventional word-sequential machine,

and Tc is the execution time of the same program using a concurrent system; the speed-up ratio is then

defined as

S ¼
Tu

Tc
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Naturally, for a specific parallel organization, the speed-up ratio determines how well an application

program can utilize the hardware resources. Supporting software has a direct effect on the speed-up ratio.

Defining Terms

Array processor: A parallel processor consisting of a number of processing elements, memory modules,

and input/output devices as well as interconnection networks under a single control unit.

Associative processor: A parallel processor consisting of a number of processing elements, memory mod-

ules, and input/output devices under a single control unit. The capability of the processing elements is

usually limited to the bit-serial operations.

Ensemble processor: A parallel processor consisting of a number of processing elements, memory

modules, and input/output devices under a single control unit. It has no interconnection network to

provide interprocessor or processor-memory communications.

Interconnection network: A network of interconnections providing interprocessor and processor-

memory communications. It may be static or dynamic, distributed, or centralized.

Parallel processor: A computing system consisting of a number of processors, memory modules, input/

out-put devices, and other components under the control of a single control unit. It is known to be a

single-instruction-stream, multiple-data-stream (SIMD) machine.

Processing element: A basic processor consisting of an arithmetic-logic unit, a number of registers,

network interfaces, and some local control facilities.
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W. Händler, ‘‘The impact of classification schemes on computer architecture,’’ Proc. Int. Conf. on Parallel

Processing, pp. 7–15, 1977.

K. Hwang and F.A. Briggs, Computer Architecture and Parallel Processing, New York, NY: McGraw-Hill, 1984.

D.J. Kuck and R.A. Stokes, ‘‘The Borroughs Scientific Processor (BSP),’’ IEEE Trans. Comput., vol. C-31(5), pp.

363–376, 1982.

Further Information

Proceedings of International Conference on Parallel Processing: An annual conference held since 1972. Recent

proceedings published by CRC Press.

IEEE Transactions on Parallel and Distributed Systems: Started in 1990 as a quarterly, now a monthly, published

by the IEEE Computer Society.

Journal of Parallel and Distributed Computing: A monthly published by Academic Press.

The Journal of Interconnection Networks (JOIN): Published by World Scientific Publishing Co.

# 2006 by Taylor & Francis Group, LLC



17.2 Parallel Computing

Young Choon Lee and Albert Y. Zomaya

Introduction

In general a task processed by two people is completed faster than when it is processed by one person. The task

may get completed even faster if more than two people carry it out. Obviously, this performance gain is due to

processing certain parts of the task in parallel. More specifically, the task is partitioned into a series of sub-

tasks. These partitioned tasks may include sub-tasks that are not dependent on each other at certain points of

processing. Therefore, these independent sub-tasks can be handled by different people at the same time. This is

the notion of parallel computing, also called parallel processing.

It is clearly evident that serial computing has certain performance limits, in particular when large problems

with tight time constraints and/or a massive amount of computation are to be tackled. One of the most

challenging limits to overcome is the speed of a single processor because it is increasingly difficult and

expensive to make the processor faster within a limited size. In addition to the speed limit of single processors,

an architectural limitation is typically present in serial computers since most modern serial computers are

equipped with processors based on von Neumann architecture in which central processing unit, the CPU,

accesses memory for both instructions and data. The low data transfer rate between the CPU and memory,

known as the von Neumann bottleneck [1], and the speed disparity between them slow down processing

speed. Parallel computing is a widely accepted and well-studied solution to overcome many of these limits in

serial computing; moreover, it has gained great importance as an increasing number of problems become

nearly unsolvable in a reasonable amount of time using serial computing [2]. These challenging problems

include both computation and data-intensive problems such as human genome mapping, climate modeling,

data mining, and web search engines.

Note, however, that the speed of a parallel computer with n processors is rarely, if not never, n times faster

than that of a serial computer containing a single processor. The fact that the speedup proportional to the

number of processors is practically not possible to achieve is due to both software and hardware issues. These

include extracting parallelism from a task, scheduling parallelized tasks, and communication overheads

between sub tasks running on different processors.

Since the early days of modern computing history, many different architectures and techniques of parallel

computing have been studied, proposed, and developed while the parallel random access machine (PRAM)

model [3] has remained the most influential theoretical model of parallel computers [2]. These technologies

include pipelining, array processors, vector processors, multiprocessors, clustering, shared memory, and

distributed memory. Using these architectures and techniques, parallel computers are built in various forms

such as computer clusters, parallel supercomputers, massively parallel processor systems, and Grid

computing.

Classification of Parallel Computers

The architecture of a computer can be classified in different ways [4–7] according to various characteristics of

the computer. The taxonomy of computer architectures proposed by Flynn is the most well-known among the

schemes. Flynn’s taxonomy classifies computers based on two types of streams, instruction and data, and the

singularity or multiplicity of each; hence four classifications as shown in Figure 17.6. Note that computers

classified in SISD are serial computers. The majority of parallel computers have used either SIMD or MIMD

architectures, whereas no commercial parallel computers exist with MISD architecture.

SISD

Most single-processor computers such as personal computers and workstations fall into SISD architecture.

SISD machines do not support any real parallel computing. In other words, a SISD computer executes every

algorithm sequentially. One way to imitate parallel computing in these machines is multitasking with the

support of operating systems.
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SIMD

A SIMD computer consists of multiple processors under the control of a single central control unit. The

control unit feeds the same instruction to all of these processors at any given clock cycle. Each of these

processors executes this instruction on a different datum. That is, SIMD machines are designed and

operate based on the paradigm of synchronous data parallelism. The processors may need to communicate

with each other in order to exchange data. This inter-processor communication can be performed by

either accessing the same memory location in the shared-memory model or passing messages through

some form of interconnection network in the distributed-memory model. Array processors and pipelined

vector processors are two typical types of SIMD architecture. Problems with a high degree of regularity

and data parallelism, such as image processing and data mining, can be most effectively solved on

SIMD machines.
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FIGURE 17.6 Flynn’s taxonomy.
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SPMD

SPMD (single program, multiple data) is a software paradigm exploiting data parallelism. The processors of a

parallel computer execute the same program on different data asynchronously. Since SPMD is a software

model it is less architecture dependent [8]. Although SPMD does not belong to Flynn’s taxonomy it is often

referred to since many scientific and engineering applications can be classified into this category. Parameter

sweep applications, such as Monte Carlo simulations, are a typical example class of the SPMD paradigm.

MISD

MISD architecture is the least popular model used to build parallel computers in that the number of problems

that are best suited for MISD machines is quite limited. A MISD machine consists of n processor control unit

pairs and a common memory shared by the processors. A single datastream can either flow to the processors

to deliver the same datum as shown Figure 17.6(c), or pass through the processors such that each processor

may manipulate the datum before sending to the next processor.

MIMD

MIMD machines are capable of accommodating a broad range of parallel problems. Most contemporary

parallel computers are based on this architecture. A MIMD machine contains n processor control unit pairs

and either a single shared memory block, or a memory module for each processor. Each processor operates on

its own instruction and data streams. The processors can operate asynchronously or synchronously. MIMD

computers with shared memory, i.e., tightly-coupled machines, are further classified as multiprocessors. The

other type of MIMD machine is the multicomputer, the loosely coupled model of MIMD in which processors

have their own local memories. These two different models are shown in Figure 17.7. It can be easily noticed

that multicomputers have better scalability.
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FIGURE 17.7 MIMD models.
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Parallel Computer Models

Since the advent of parallel computing, various models of parallel computers have been developed. These

include vector processors, symmetric multiprocessing (SMP), massively parallel processing (MPP), cluster

computing, distributed computing, and grid computing. While early parallel computers were built using

custom designed components, many recent ones have tended to be developed with off-the-shelf processors or

commodity PCs. This implies that parallel computers have become affordable for more organizations, e.g.,

small and medium size companies, university research laboratories, etc.; hence the use of parallel machines is

no longer limited to special purposes.

Vector Processors

The vector processor was developed based on the SIMD paradigm, i.e., data parallelism. Unlike a scalar

processor that operates on individual elements, a vector processor handles vectors of elements at a time. More

specifically, a single instruction is executed on vectors concurrently. For example, an addition of two arrays of

numbers can be processed at a single clock cycle.

Typically vector processors use the pipelining technique for both instructions and data, meaning that tasks

involved in processing a single instruction and datum are handled by separate parts of the processor. These

tasks include decoding the address of the instruction or data, fetching the value and processing it. Pipelining,

therefore, improves performance.

Another technique used in vector processors to achieve better performance is the use of vector registers that

can be accessed much faster than memory. In vector machines built with this technique vector instructions

operate on vectors residing in these registers. Variants of this vector register architecture have been adopted in

many vector processors since the advent of the Cray-1 [9]. This architecture is a significant advance over the

vector memory–memory architecture in which vectors are accessed to and from main memory. The majority

of early vector machines such as the CDC STAR-100 [10] and the TI Advanced Scientific Computer [11] used

the vector memory–memory architecture.

Symmetric Multiprocessing (SMP)

An SMP system is a shared-memory multiprocessor in which the same memory is equally accessible by all

processors that are under the control of a single operating system. SMP architecture tends to be limited to

building parallel computers with a small number of processors due to the difficulty of coordinating memory

access between processors [12]. Nonuniform memory access (NUMA) is a memory model that can relieve this

memory and network contention by associating each processor with its own local memory; hence the name

nonuniform. The access time of nonlocal memory in NUMA architecture is slower than that of local memory.

A global view of memory in SMP systems makes information exchange between processors easy and fast.

This makes multithreading a popular choice of programming model in SMP machines. Some of the well-

known multithreading packages include the OpenMP application programming interface [13] and POSIX

pThreads [14]. By contrast to the efficiency of data exchange, the use of the global address space raises two data

integrity issues: synchronization and cache coherency, if local memory caches are used [15,16].

Massively Parallel Processing (MPP)

MPP has been a popular design choice to build high performance parallel computers in the past couple of

decades. The primary building block of MPP systems is referred to as a node, which typically has one or more

processors and its own local memory. Nodes in MPP machines are often powered by less expensive off-the-

shelf processors such as Intel Xeon and Itanium 2, AMD Opteron, and IBM PowerPC processors. As the name

implies MPP systems may consist of up to thousands of nodes with some form of interconnection network,

such as completely connected, n-dimensional mesh, and hypercube networks. An additional node to a MPP

system can be easily connected, in contrast to adding a processor to a SMP machine, hence the better

scalability.

The most common programming model in MPP machines is message-passing using either machine-

dependent libraries or message-passing interface standards such as the message passing interface (MPI) [17].
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Cluster Computing

A cluster is composed of a collection of nodes connected by an interconnection network such as Ethernet [18]

or Myrinet [19]. Each of these nodes is typically an inexpensive commodity computer, e.g., a PC or a

workstation that contains at least one processor, its own memory, and other local resources. SMP systems may

be used as nodes in order to achieve better performance. In most cases, clusters are built with homogenous

computers.

Cluster computing can be viewed from four different perspectives:

– High performance. Clusters as parallel computers provide suitable platforms for running parallel

applications.

– High availability. Clusters tend to be consistently functional tolerating exceptions such as node failure.

– High throughput. The effective management and efficient utilization of clusters, i.e., good resource

management systems, which enables large amounts of computing power to be delivered over long

periods of time. Some well-known examples of such resource management systems include Condor [20]

from the computer science department at the University of Wisconsin-Madison, and the Maui

scheduler [21].

– Affordability/Cost-effectiveness. Clusters built with inexpensive off-the-shelf components can outperform

more expensive supercomputers. A cluster is commonly constructed by either a group of individuals, or a

cluster vendor [22]. The former normally consists of the users, e.g., academics or researchers who will

actually use the cluster.

Distributed Computing/Internet Computing

A distributed computing system is a collection of heterogenous computers, typically PCs and workstations

owned by independent individuals. These machines are dispersed in geographically different locations, hence

the name distributed. The most typical medium used to connect them is the Internet. The rationale behind

distributed computing is to utilize these personally owned PCs and workstations to solve large computational

problems while they are not in use.

It is often the case that a distributed computing system with many thousands or even millions of desktop

PCs is solely used to tackle a single, large computation-intensive application. In this situation the application

is partitioned into a number of sub-tasks so that they can be distributed to the participating computers. Some

famous examples of such applications include the SETI@home project [23] and the Folding@home project

[24]. The number of applications is somewhat limited mainly due to the difficulties of efficiently orchestrating

the wide range of heterogeneous components, e.g., network bandwidths and computing capacities. However,

distributed computing is becoming an attractive computing model as the computing power of PCs and

workstations is constantly increasing.

Grid Computing

As the demand for more powerful computing resources keeps increasing, especially from scientists and

engineers, many organizations have built a myriad of supercomputers with various different architectures. In

addition to supercomputers, some other forms of high performance computing systems, such as computer

clusters, have been built by a number of institutions, e.g., universities, research laboratories, etc. In general, the

use of these specialist computing systems is confined to specific groups of people. Moreover, each of these

systems is generally restricted to independent use; that is, it is highly unlikely that a user of one system can

access other organizations’ systems. A solution to this is grid computing. A grid enables a virtual computing

system, interconnecting these geographically distributed, heterogeneous computing systems with a variety of

resources, to be constituted. Here, resources refer not only to physical computers, networks, and storage

systems, but to much broader entities such as databases, data transfer, and simulation [25]. The grid creates

the illusion that its users are accessing a single ultra powerful supercomputer. The user can transparently access

resources in the grid by a single login.

A vast number of researchers have been putting in a lot of effort to facilitate building and efficiently

utilizing grids. Some significant results for grid computing include the Globus toolkit [26], Legion [27], and
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GrADS [28]. These tools, especially the Globus toolkit, have been used to build many grids [29–32]. The

Globus toolkit is quite mature and is the de facto standard for grid computing.

In a grid it is unlikely that an application with a fine-grained parallel algorithm in which sub-tasks

communicate with each other frequently will run across multiple computing systems. Rather, a single

computing system with multiple processing units is allocated. Conversely, applications with coarse-grained

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <mpi.h> 

long ComputeFactorial(int start, int end); 

int main(int argc, char **argv) 
{ 
int myID; 
int numProcs; 
int num; 
int start, end; 
long myRes = 1, lRes, total = 1; 

MPI_Init(&argc, &argv); 
MPI_Comm_size(MPI_COMM_WORLD, &numProcs); 
MPI_Comm_rank(MPI_COMM_WORLD, &myID); 

if (myID == 0) 
{ 
/* the number should be 3 or greater 
since the number of threads is fixed to 3 */ 
printf("Enter a positive integer (>= 3): "); 
scanf("%d", &num); 
} 

MPI_Bcast(&num, 1, MPI_INT, 0, MPI_COMM_WORLD); 
if (myID != 0) 
{ 
start = (myID - 1) * (num / (numProcs - 1)); 
end = start + (num / (numProcs - 1)) - 1; 

/* the last thread takes whatever left */ 
if (myID == (numProcs - 1)) 
{ 
end += num % (numProcs - 1); 
} 
myRes = ComputeFactorial(start, end ); 
} 

MPI_Reduce(&myRes, &lRes, 1, MPI_INT, MPI_PROD, 0, MPI_COMM_WORLD); 

if (myID == 0) 
{ 
total *= lRes; 
printf("%d factorial is %d\n", num, total); 
} 

FIGURE 17.8 A C program for computing factorial using MPI.
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parallel algorithms and applications of the SPMD model may be processed by more than one computing

system often dispersed in multiple administrative domains.

Parallel Programming Paradigms

There is little benefit from running applications on a parallel computer unless the applications are developed

with parallel algorithms. In some parallel computing systems compilers may automatically detect parallelism

in applications and parallelize them [16]. However, exploiting parallelism from applications is generally left to

programmers. Programmers are often required to explicitly specify which parts of applications are

parallelizable and how those parallelized segments interact or communicate with each other. Although there

are various approaches to parallelizing programs they can be categorized into three general programming

models: (1) message-passing, (2) share-memory, and (3) data parallel. A language-centric classification of

parallel programming models can be found in Ref. [33].

Message-Passing

Programming parallel applications with the message-passing paradigm imposes on the programmer the

necessity to explicitly specify how data transfer takes place between processes, each of which contains its own

memory space. The processes can be created either before or during execution, i.e., static or dynamic process

creation. The data transfer is carried out by sending and receiving messages. A process may send a message to a

certain number or an arbitrary number of processes. When the message is to pass to one or more particular

processes, the sending process has to specify each receiving process identifier, which is unique.

One of the most common ways to implement message-passing programs is using message-passing libraries

in combination with standard high-level languages such as C or Fortran. Two well-known message-passing

libraries are MPI and the parallel virtual machine (PVM) [34]. Since they are architecture independent,

parallel applications written using these libraries are more portable compared to those programmed with

vendor-supplied programming facilities [8]. A noticeable difference between these two libraries is that they

each are used for the parallel computing model for which they are best suited. While applications in the SPMD

model are generally implemented using MPI, PVM is typically the choice for those in the multiple program

multiple data (MPMD) model in which different programs run on different data [35].

A typical type of application in the message-passing model is master-slave in which a master process

distributes a number of tasks to slave processes. Once the slave processes complete their tasks they send results

back to the master process. The master one may further process the received results before producing the final

result. An example of MPI code that computes factorial is shown in Figure 17.8.

MPI_Finalize(); 

return 0; 
} 

long ComputeFactorial(int start, int end) 
{ 
int i; 
long result = 1; 

for (i = start; i <= end; i++) 
result *= (i + 1); 

return result; 
} 

FIGURE 17.8 Continued.
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#include <stdio.h> 
#include <pthread.h> 

#define NB_THREADS3
#define NB_ARGS3

void *ComputeFactorial(void * args); 

int args[NB_THREADS][NB_ARGS]; 

int main (int argc, char *argv[]) 
{ 
pthread_t threads[NB_THREADS]; 
pthread_attr_t attr; 
int num, i, start, end, rc; 
long total = 1; 

/* the number should be 3 or greater 
since the number of threads is fixed to 3 */ 
printf("Enter a positive integer (>= 3): "); 
scanf("%d", &num); 

pthread_attr_init(&attr); 

for(i = 0; i < NB_THREADS; i++) 
{ 
start = i * (num / NB_THREADS); 
end = start + (num / NB_THREADS) - 1; 

/* the last thread takes whatever left */ 
if (i == (NB_THREADS - 1)) 
end += num % NB_THREADS; 

args[i][0] = start; 
args[i][1] = end; 
args[i][2] = 1; 

rc = pthread_create(&threads[i], &attr,  
         ComputeFactorial, args[i]); 

if (rc) 
{ 
fprintf(stderr, "ERROR[%d]:while creating thread\n", rc); 
exit(-1); 
} 
} 

/* free attribute and wait for the other threads */ 
pthread_attr_destroy(&attr); 

for(i = 0; i < NB_THREADS; i++) 
{ 
rc = pthread_join(threads[i], NULL); 
if (rc) 
{ 
fprintf(stderr, "ERROR[%d]: while joining thread\n", rc); 

Figure 17.9 A C program for computing factorial using pThreads.
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Shared Memory/Threads

Unlike the message-passing paradigm, no explicit interaction details between tasks need to be specified in the

shared-memory model. Rather, the tasks implicitly communicate with each other via the same shared memory

space. Since the tasks share the common memory area, synchronization of the access to this shared memory

must be handled. Synchronization is normally achieved by setting a critical section that only one task is

allowed to execute, and to access the resources associated with it at a time. Mutual exclusion is the scheme that

enables this process. There are different ways to perform mutual exclusion such as using locks or semaphores.

A detailed discussion on mutual exclusion can be found in Ref. [36].

The single most common approach in this model is programming using threads. A thread is a spawned

instance of part of the program that shares the program execution environment. Threads are typically used to

execute a certain number of separate program segments, such as C functions, simultaneously. It is said

that multithread programming is a more convenient way to parallelize tasks compared to the message-

passing model due to several significant strong points, e.g., portability, latency hiding, scheduling, and load

balancing [8].

There are a number of thread APIs that are mostly vendor-specific. It is very obvious that threaded

programs written using these APIs are less portable. The straightforward choice for increasing portability is

using a standardized thread implementation. Two such implementations that are commonly used are

pThreads and OpenMP. Both packages are widely available on various platforms. While pThreads requires the

programmer to explicitly handle the details of coordinating threads such as synchronization, OpenMP offers a

high-level API that hides most of these low-level works from him or her. A pThreads example of the same

factorial computing problem mentioned in the previous section is shown in Figure 17.9.

Data Parallel

The data parallel paradigm is the programming model equivalent to SIMD. It primarily exploits fine-grained

parallelism. In this model the same multiple tasks operate on partitioned data of the identical data structure

such as an array, a tree, and a set. For example, in Fortran 90 [37] a statement, c ¼ a * b, where a, b and c are

arrays of the same data type and the same size of ten, can be broken into ten identical scalar operations. There

are no data dependencies between these ten operations, hence they are parallelizable.

exit(-1); 
} 
total *= args[i][2]; 
} 

printf("%d factorial is %ld\n", num, total); 

return 0; 
} 

void *ComputeFactorial(void *args) 
{ 
int i, *_args = (int *) args; 

for (i = _args[0]; i <= _args[1]; i++) 
_args[2] *= (i + 1); 

pthread_exit(NULL); 
} 

FIGURE 17.9 Continued.
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Unlike the previous two parallel programming paradigms, the programmer is relatively free from handling

interactions between tasks when writing data parallel programs since a single instruction stream exists in each

of these programs and data parallel languages take care of architecture specifics [38]. In short, programming in

this model can be easier. In addition to the ease of programming, data parallelism inherently contains high

scalability.

Data parallel programs are generally written using data parallel languages such as Fortran 90, 95, and 2003,

High Performance Fortran (HPF) [39], Split C [40], HyperC [41], and pCþþ [42]. Data parallel language

compilers are capable of automatically detecting data parallelism, actually parallelizing tasks without much

effort by the programmer.

Parallel Programming Considerations

It is meaningless to develop parallel algorithms if they do not give any significant advantages over their

sequential counterparts. There are various aspects that should be taken into consideration when designing and

deploying parallel algorithms. Some crucial ones are speedup, efficiency, scalability, and portability. Speedup is

usually regarded as the most important factor that is used to measure the performance of parallel algorithms.

However, the others should also be seriously considered since they are closely related to the cost of running

parallel applications. For example, although a parallel algorithm is ten times faster than the fastest sequential

counterpart if the number of processors in the parallel computer used is 100, it is said that the parallel

algorithm is very poorly designed in terms of its cost-effectiveness. Some other points such as throughput and

responsiveness [16] may be taken into account for parallel programming, depending on characteristics of

parallel algorithms.

Speedup

The performance of a parallel algorithm is most commonly evaluated by speedup, which is defined as the ratio

of the running time of the parallel algorithm on a single processor to the running time of the parallel

algorithm on n processors. Theoretically, the most desirable speedup of a parallel algorithm running on n

processors is n. However, such speedup is never obtainable in practice for several reasons [16].

Two well-known definitions of the speedup that a parallel algorithm delivers have been proposed by Amdahl

[43] and Gustafson and Barsis [44]. Amdahl’s Law defines speedup based on the time taken on the

uniprocessor machine, while the Gustafson–Barsis Law claims speedup is based on the time taken on

the parallel computer. In other words, the former interprets the running time of the parallel algorithm on a

single processor as 1. Conversely, the running time of the algorithm on multiple processors is treated as 1 by

the latter. The speedup formulas of these two laws are

S ¼
1

f þ ð1 � f Þ=n
ð17:1Þ

and

S ¼ n � ð1 � nÞf ð17:2Þ

respectively, where f is portions of the parallel algorithm that must be run sequentially and n is the number of

processors. It may be noted that Amdahl’s perspective is relatively more pessimistic than that of Gustafson and

Barsis.

Efficiency

When a parallel algorithm is executed on a parallel computer with n processors, the proportion of the time

contributed by these processors solely to the computations of the algorithm compared to the running time of
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the algorithm is an important indication of how efficiently the processors are used. Efficiency is defined as

E ¼
S

n
ð17:3Þ

where n is the number of processors. As mentioned in the previous section, S cannot be the same as n.

Therefore, an efficiency of 100% is unattainable.

Scalability

In addition to speedup, scalability is another frequently used measure of how well the performance of a

parallel algorithm scales when problem size and parallel computing system size change. Another definition

proposed in [45] is: Scalability is a property which exhibits performance linearly proportional to the number of

processors employed. Note that the growth of a parallel computing system size, i.e., more processors does not

always produce a higher speedup of a parallel algorithm due to limits to the scalability of the parallel

computing system and/or the parallel algorithm. That is, the more processors, the higher the overheads and

the number of sub-tasks partitioned from the algorithm, which may not be as many as the number of

processors [46]. Therefore, the scalability analysis helps design parallel machines and parallel algorithms

effectively.

One scalability metric often used is isoefficiency [47] in which the primary focus is measuring the scalability

of parallel algorithms. The rationale behind the isoefficiency concept is that the scalability of a parallel

algorithm is measured based on efficiency. More specifically, the scalability of the algorithm is determined by

whether its efficiency can be maintained consistently when both the problem size and the number of

processors increase.

The reader can find a comprehensive study carried out on various scalability schemes in Kumar and

Gupta [48].

Portability

The development of parallel algorithms requires a lot of effort and resources. This factor consequently highlights

the importance of the portability of the algorithms. As an increasing number of standardized parallel

programming facilities such as MPI and pThreads emerge, the use of these facilities instead of vendor-specific

tools does much to alleviate portability problems with parallel programs. However, there is a trade-off between

portability and performance. That is, programming parallel programs with an architecture specific tool offers

typically better performance compared to parallel programs written with standard parallel APIs, for example.
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18.1 Introduction

An operating system is the set of programs that control a computer. Some operating systems you may have heard

of are Unix (including SCO Unix, Linux, Solaris, Irix, NetBSD, and FreeBSD), the Microsoft family (MS-DOS,

MS-Windows, Windows/NT, Windows 2000, Windows 2003, Windows XP), IBM operating systems (MVS, VM,

CP, OS/2), Macintosh operating systems (Mac OS), Mach, and VMS. Some of these (Mach and Unix) have been

implemented on a wide variety of computers, but most are specific to one or two particular architectures, such as

the Digital Equipment Corporation Vax (VMS), the Intel 8086 and successors (the Microsoft family, OS/2), the

Motorola 68000 and successors (Mac OS), and the IBM 360 and successors (MVS, VM, CP).

Controlling the computer involves software at several levels. We can distinguish kernel services, library

services, and application-level services, all of which are part of the operating system. These services can be

pictured as in Figure 18.1. Applications are programs linked to libraries of program units that perform

common services like formatting output or presenting information on a display. As these programs run, they

are called processes. The kernel supports processes by providing resources (such as computing time, access to

physical computer memory, and access to peripheral devices), security (preventing inter-process snooping or

interference), and enhancement (such as files and network communication protocols). The kernel becomes

active in response to system calls (requests for service) from processes and interrupts from devices.

This chapter discusses how operating systems have evolved, often in response to architectural advances.

It then examines the goals and organizing principles of current operating systems. Many books describe

operating systems concepts [3–5,19–20] and specific operating systems [1,2,9–11].

18.2 Historical Perspective

Operating systems have undergone enormous change over the years. The changes have been driven primarily

by hardware facilities and their cost and secondarily by the applications that users have wanted to run on the

computers.
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Open Shop Organization

The earliest computers were massive, expensive, and difficult to use. Users would sign up for blocks of time

during which they were allowed ‘‘hands-on’’ exclusive use of the computer. The user would repeatedly load a

program into the computer through a device such as a card reader, watch the results, and then decide what to

do next.

A typical session on the IBM 1620, a computer in use around 1960, involved several steps in order to

compile and execute a program. First, the user would load the first pass of the Fortran compiler. This

operation involved clearing memory by typing a cryptic instruction on the console typewriter; putting the

compiler, a 10-inch stack of punched cards, in the card reader; placing the program to be compiled after

the compiler in the card reader; and then pressing the ‘‘load’’ button on the reader. The output would be

a set of punched cards called ‘‘intermediate output.’’ If there were any compilation errors, a light would

flash on the console, and error messages would appear on the console typewriter. If everything had gone

well so far, the next step would be to load the second pass of the Fortran compiler just like the first pass,

putting the intermediate output in the card reader as well. If the second pass succeeded, the output was a

second set of punched cards called the ‘‘executable deck.’’ The third step was to shuffle the executable deck

slightly, load it along with a massive subroutine library (another 10 inches of cards), and observe the

program as it ran.

The facilities for observing the results were limited: console lights, output on a typewriter, punched cards,

and line-printer output. Frequently, the output was wrong. Debugging often took the form of peeking

directly into memory and even patching the executable program by using console switches. If there was not

enough time to finish, a frustrated user might get a line-printer dump of memory to puzzle over at leisure.

If the user finished before the end of the allotted time, the machine might sit idle until the next reserved

block of time.

The IBM 1620 was quite small, slow, and expensive by our standards. It came in three models, ranging from

20K to 60K digits of memory (each digit was represented by 4 bits). Memory was built from magnetic cores,

which required approximately 10 microseconds for a read or a write. The machine cost hundreds of thousands

of dollars and was physically fairly large, covering about 20 square feet.

Operator-Driven Shop Organization

The economics of massive mainframe computers made idle time very expensive. In an effort to avoid such

idleness, installation managers instituted several modifications to the open shop mechanism just outlined.

An operator was hired to perform the repetitive tasks of loading jobs, starting the computer, and collecting the

output. The operator was often much faster than ordinary users at such chores as mounting cards and

Interrupts

Devices

Kernel

Processes

System calls

Libraries

FIGURE 18.1 Operating system services.
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magnetic tapes, so the setup time between job steps was reduced. If the program failed, the operator could

have the computer produce a dump. It was no longer feasible for users to inspect memory or patch programs

directly. Instead users would submit their runs, and the operator would run them as soon as possible. Each

user was charged only for the amount of time the job required.

The operator often reduced setup time by batching similar job steps. For example, the operator could run

the first pass of the Fortran compiler for several jobs, save all the intermediate output, then load the second

pass and run it across all the intermediate output that had been collected. In addition, the operator could

run jobs out of order, perhaps charging more for giving some jobs priority over others. Jobs that were

known to require a long time could be delayed until night. The operator could always stop a job that was

taking too long.

The operator-driver shop organization prevented users from fiddling with console switches to debug and

patch their programs. This stage of operating system development introduced the long-lived tradition of the

users’ room, which had long tables often overflowing with oversized fan-fold paper and a quietly desperate

group of users debugging their programs until late at night.

Offline Loading

The next stage of development was to automate the mechanical aspects of the operator’s job. First, input to

jobs was collected offline by a separate computer (sometimes called a ‘‘satellite’’) whose only task was the

transfer from cards to tape. Once the tape was full, the operator mounted it on the main computer. Reading

jobs from tape is much faster than reading cards, so less time was occupied with input/output. When the

computer finished the jobs on one tape, the operator would mount the next one. Similarly, output was

generated on to tape, an activity that is much faster than punching cards. This output tape was converted to

line-printer listings offline.

A small resident monitor program, which remained in memory while jobs were executing, reset the

machine after each job was completed and loaded the next one. Conventions were established for control

cards to separate jobs and specify their requirements. These conventions were the beginnings of command

languages. For example, one convention was to place an asterisk in the first column of control cards, to

distinguish them from data cards. The compilation job we just described could be specified in cards that

looked like this:

*JOB SMITH The user’s name is Smith.

* PASS CHESTNUT Password so others can’t use Smith’s account

* OPTION TIME ¼ 60 Limit of 60 seconds

* OPTION DUMP ¼ YES Produce a dump if any step fails.

*STEP FORT1 Run the first pass of the Fortran compiler.

* OUTPUT TAPE1 Put the intermediate code on tape 1.

* INPUT FOLLOWS Input to the compiler comes on the next cards.

. . . Fortran program

*STEP FORT2 Run the second pass of the Fortran compiler.

* OUTPUT TAPE2 Put the executable deck on scratch tape 2.

* INPUT TAPE1 Input comes from scratch tape 1.

*STEP LINK Link the executable with the Fortran library.

* INPUT TAPE2 First input is the executable.

* INPUT TAPELIB Second input is a tape with the library.

* OUTPUT TAPE1 Put load image on scratch tape 1.

*STEP TAPE1 Run whatever is on scratch tape 1.

* OUTPUT TAPEOUT Put output on the standard output tape.

* INPUT FOLLOWS Input to the program comes on the next cards.

. . . Data
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The resident monitor had several duties:

. Interpret the command language.

. Perform rudimentary accounting.

. Provide device-independent input and output by substituting tapes for cards and line printers.

This last duty is an early example of information hiding and abstraction: programmers would direct output

to cards or line printers, but in fact, the output would go elsewhere. Programs called subroutines provided by

the resident monitor for input/output to both logical devices (cards, printers) and physical devices (actual tape

drives).

The early operating systems for the IBM 360 series of computer used this style of control. Large IBM 360

installations could cost millions of dollars, so it was important not to let the computer sit idle.

Spooling Systems

Computer architecture advanced throughout the 1960s. Input/output units were designed to run at the same

time the computer was computing. They generated an interrupt when they finished reading or writing a

record instead of requiring the resident monitor to track their progress. An interrupt causes the computer to

save some critical information (such as the current program counter) and to jump to a location specific to the

kind of interrupt. Device-service routines, known as device drivers, were added to the resident monitor to deal

with these interrupts.

Drums, and later, disks were introduced as a secondary storage medium. Now the computer could be

computing one job while reading another on to the drum and printing the results of a third from the drum.

Unlike a tape, a drum allows programs to be stored anywhere, so there was no need for the computer to

execute jobs in the same order in which they were entered. A primitive scheduler was added to the resident

monitor to sort jobs based on priority and amount of time needed, both specified on control cards.

The operator was retained to perform several tasks.

. Mount data tapes needed by jobs (specified on control cards, which caused request messages to appear

on the console typewriter).
. Decide which priority jobs to run and which to hold.
. Restart the resident monitor when it failed or was inadvertently destroyed by the running job.

This mode of running a computer was known as a spooling system, and its resident monitor was the start of

modern operating systems. (The word ‘‘spool’’ originally stood for ‘‘simultaneous peripheral operations

online,’’ but it is easier to picture a spool of thread, where new jobs are wound on the outside, and old ones are

extracted from the inside.) One of the first spooling systems was HASP (the Houston Automatic Spooling

Program), an add-on to OS/360 for the IBM 360 computer family.

Batch Multiprogramming

Spooling systems did not make efficient use of all of the hardware’s resources. The currently running job might

not need the entire memory. A job performing input/output causes the computer to wait until the input/

output finishes. The next software improvement, which occurred in the early 1960s, was the introduction of

multiprogramming, a scheme in which more than one job is active simultaneously.

Under multiprogramming, while one job waits for an input/output operation to complete, another can

compute. With luck, no time at all is wasted waiting for input/output. The more simultaneous jobs, the better.

However, a compute-bound job (one that performs little input/output but much computation) can easily

prevent input/output-bound jobs (those that perform mostly input/output) from making progress.

Multiprogramming also introduces competition for memory. The number of jobs that can be

accommodated at one time depends on the size of memory and the hardware available for subdividing

that space. In addition, jobs must be secured against inadvertent or malicious interference or inspection by

other jobs. It is more critical now that the resident monitor not be destroyed by errant programs, because not

one but many jobs suffer if it breaks.
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The form of multiprogramming we have been describing is often called batch multiprogramming because

jobs are grouped into batches: those that need small memory, those that need customized tape mounts, those

that need long execution, and so forth. Each batch might have different priorities and fee structures. Some

batches (such as large-memory long-execution jobs) can be scheduled for particular times (such as weekends

or late at night). Generally, one job from any batch can run at a time.

Each job is divided into discrete steps. Since job steps are independent, the resident monitor can separate them

and apply policy decisions to each step independently. Each step might have its own time, memory, and input/

output requirements. In fact, two separate steps of the same job can be performed at the same time if they don’t

depend on each other. The term process was introduced in the late 1960s to mean the entity that performs a single

job step. The operating system (as the resident monitor may now be called) represents each process by a data

structure sometimes called a process descriptor, process control block, or context block. The process control block

includes billing information (owner, time used), scheduling information, and the resources the job step needs.

While it is running, a process may request assistance from the kernel by submitting a system call across the process

interface. Executing programs are no longer allowed to control devices directly; otherwise, they could make

conflicting use of devices and prevent the kernel from doing its work. Instead, processes must use system calls to

access devices, and the kernel has complete control of the device interface.

Allocating resources to processes is not a trivial task. A process might require resources (like tape drives) at

various stages in its execution. If a resource is not available, the scheduler might block the process from

continuing until later. The scheduler must take care not to block any process forever.

Along with batch multiprogramming came new ideas for structuring the operating system. The kernel of the

operating system is composed of routines that manage memory, CPU time, devices, and other resources. It

responds both to requests from processes and to interrupts from devices. In fact, the kernel runs only when it

is invoked either from above, by a process, or below, by a device. If no process is ready to run and no device

needs attention, the computer sits idle.

Various activities within the kernel share data, but they must not be interrupted when the data are in an

inconsistent state. Mechanisms for concurrency control were developed to ensure that these activities do not

interfere with each other. The MVS operating system for the IBM 360 family was one of the first to use batch

multiprogramming.

Interactive Multiprogramming

The next step in the development of operating systems was the introduction of interactive multiprogramming, also

called timesharing. The principal user-oriented input/output device changed in the late 1960s from cards or tape

to an interactive terminal. Instead of packaging all the data that a program might need before it starts running, the

interactive user is able to supply input as the program wants it. The data can depend on what the program has

produced so far. Among the first terminals were teletypes, which produced output on paper at perhaps 10

characters per second. Later terminals were called ‘‘glass teletypes’’ because they displayed characters on a

television screen, substituting electronics for mechanical components. Like a regular teletype, they could not back

up to modify data sitting earlier on the screen. Shortly thereafter, terminals gained cursor addressability, which

meant that programs could show entire ‘‘pages’’ of information and change any character anywhere on a page.

Interactive computing caused a revolution in the way computers were used. Instead of being treated as

number crunchers, computers became information manipulators. Interactive text editors allowed users to

construct data files online. These files could represent programs, documents, or data. As terminals improved,

so did the text editors, changing from line- or character-oriented interfaces to full-screen interfaces.

Instead of representing a job as a series of steps, interactive multiprogramming identifies a session that lasts

from initial connection (‘‘login’’) to the point at which that connection is broken (‘‘logout’’). During login, the

user typically gives two forms of identification: a name and a password. The password is not echoed at the

terminal, or is at least blackened by overstriking garbage, to avoid disclosing it to onlookers. These data are

converted into a user identifier that is associated with all the processes that run on behalf of this user and all the

files they create. This identifier helps the kernel decide whom to bill for services and whether to permit various

actions such as modifying files.
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During a session, the user imagines that the resources of the entire computer are devoted to this terminal,

even though many sessions may be active simultaneously for many users. Typically, one process is created at

login time to serve the user. That first process, which is usually a command interpreter, may start others as

needed to accomplish individual steps.

Users need to save information from session to session. Magnetic tape is too unwieldy for this purpose. Disk

storage became the medium of choice for data storage, both short term (temporary files used to connect steps

in a computation), medium term (from session to session), and long-term (from year to year). Issues of disk

space allocation and backup strategies needed to be addressed to provide this facility.

Interactive computing was sometimes added into an existing batch multiprogramming environment. For

example, TSO (‘‘timesharing option’’) was an add-on to the OS/360 operating system. The EXEC-8 operating

system for Univac computers included an interactive component, too.

Later operating systems were designed from the outset to support interactive use, with batch facilities added

when necessary. TOPS-10 and Tenex (for the Digital PDP-10) and almost all operating systems developed

since 1975, including Unix (first on the Digital PDP-11), MS-DOS (Intel 8086), OS/2 (Intel 286 family [10]),

VMS (Digital VAX [9]), and all their descendents, are designed mainly for interactive use.

Graphical User Interfaces (GUIs)

As computers became less expensive, the time cost of switching from one process to another (which happens

frequently in interactive computing) became insignificant. Idle time also became unimportant. Instead, the

goal became helping users get their work done efficiently. This goal led to new software developments, enabled

by improved hardware.

Graphics terminals, first introduced in the mid-1970s, have led to the video monitors that are now

ubiquitous and inexpensive. These monitors allow individual control of multicolored pixels; a high-quality

monitor (along with its video controller) can display millions of pixels in an enormous range of colors.

Pointing devices, particularly the mouse, were developed in the late 1970s. Software links them to the display

so that a visible cursor reacts to physical movements of the pointing device.

The earliest GUIs were just rectangular regions of the display that contained, effectively, a cursor-addressable

glass teletype. These regions are called ‘‘windows.’’ The best-known windowing packages were those pioneered

by Mac OS [15] and the later ones introduced by MS-Windows, OS/2 [10], and X Windows (for Unix, VMS,

and other operating systems [12]). Each has developed from simple rectangular models of a terminal to

significantly more complex displays.

Programs interact with the hardware by invoking routines in libraries that know how to communicate with

the display manager, which itself knows how to place bits on the screen. The early libraries were fairly low-level

and hard to use; toolkits (in the X Windows environment), especially ones with a fairly small interpreted

language (such as Tcl/Tk [13] or Visual Basic) have eased the task of building good GUIs. Early operating

systems that supported graphical interfaces, such as Mac OS and MS-Windows, provided interactive

computing but not multiprogramming. Modern operating systems all provide multiprogramming as well as

interaction, allowing the user to start several activities and to switch attention to whichever one is currently

most interesting.

Distributed Computing

At the same time that displays were improving, networks of computers were being developed. A network

requires not only hardware to physically connect machines, but also protocols to use that hardware effectively,

operating system support to make those protocols available to processes, and applications that make use of

these protocols.

Computers can be connected together by a variety of devices. The spectrum ranges from tight coupling,

where several processing units share memory, to very loose coupling, where a number of computers belong to

the same international network and can send one another messages.
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The ability to send messages between computers opened new opportunities for operating systems.

Individual machines become part of a larger whole, and in some ways, the operating system begins to span

networks of machines. Cooperation between machines takes many forms.

. Each machine may offer network services to others, such as accepting mail, providing information on

who is currently logged in, telling what time it is (important in keeping clocks synchronized), allowing

users to access machines remotely, and transferring files.
. Machines within the same site (typically, those under a single administrative control) may share file

systems in order to reduce the amount of disk space needed and to allow users to have accounts on

multiple machines. Novell nets (MS-DOS), the Sun and Andrew network file systems (Unix), and the

Microsoft File-Sharing Protocol (Windows XP) are examples of such arrangements. Shared file systems

are an essential component of a networked operating system.
. Once users have accounts on several machines, they want to associate graphical windows with sessions

on different machines. The machine on which the display is located is called a thin client of the machine

on which the processes are running. Thin clients have been available from the outset for X Windows;

they are also available under Windows 2000 and successors.
. Users want to execute computationally intensive algorithms on many machines in parallel. Middleware,

usually implemented as a library to be linked into distributed applications, helps programmers build

such applications. PVM [6] and MPI [14] are examples of such middleware.

Standardized data formats and conversation rules, together called protocols, developed rapidly starting in

the 1970s. Low-level protocols such as internet protocol (IP) and transmission-control protocol (TCP)

define services for addressing data packets between machines and reliable, in-order routing and delivery of

message streams. Higher-level protocols typically use TCP and IP. The file-transfer protocol (FTP) service

was developed in the early 1970s as a way of transferring files between machines connected on a network.

The simple mail-transfer protocol (SMTP) originated at about the same time. In those days, electronic

mail was limited to academic institutions, and the protocol developers were not worried about malicious

misuse of the protocol. SMTP is still in use, and many e-mail attacks and spam dissemination methods

depend on its lack of source authentication. In the early 1990s, the gopher service was developed to create

a uniform interface for accessing information across the internet. Information is more general than just

files; it can be a request to run a program or to access a database. Each machine that wishes to can

provide a server that responds to connections from any site and communicate a menu of available

information. This service was superseded in 1995 by the World Wide Web which supports a GUI to

gopher, FTP, and HTTP, the hypertext transfer protocol (for retrieving documents with links internally

and to other documents, often at other sites, and including text, pictures, video, audio, and remote

execution of packaged commands).

All these forms of cooperation introduce security concerns. Each site has a responsibility to maintain

security if for no other reason than to prevent malicious users across the network from using the site as a

breeding ground for nasty activity, such as attacking other sites.

18.3 Goals of an Operating System

During the evolution of operating systems, their purposes have also evolved. The best-known operating

systems are intended for individual users or communities of users performing interactive work. Such

operating systems have four major goals.

. Hide details of hardware by creating abstractions that application programmers can use.

. Manage resources that processes need.

. Provide a pleasant and effective user interface.

. Provide a secure and reliable computing environment.
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Specialty operating systems have other goals as well:

. Combine the computing power of many computers, possibly geographically remote, into an integrated

whole. Such distributed operating systems must deal with issues such as synchronization, distributed file

systems, distributed shared memory, and process placement and migration. Distributed operating

systems, such as Mach [17], Locus [16], and MOSIX [7], are primarily research tools.
. Continue to function even if some components fail. Such fault-tolerant operating systems attempt to

continue to function even when hardware or software components fail. Fault-tolerant operating

systems are especially important in banking and online business applications. Fault tolerance is based

on redundancy, both to detect failure and to adjust to it. The RAID organization of disks, although

primarily a means to improve performance, is also fault tolerant. Checkpoints of programs and data are

a common form of redundancy; they allow computations to be restored if they are interrupted by

failures.
. Handle time-critical operations. Real-time operating systems schedule processes based on how

responsive they must be, typically by associating deadlines with processes, but also by using priority

and time-slice reservation schemes. Real-time operating systems are important for process control, such

as controlling chemical-manufacturing plants or the control surfaces of airplanes in flight.
. Control a specialized device. Embedded computers are used to control automobile engines, industrial

robots, network routers, video cassette recorders, and far more. Many peripheral devices attached to

ordinary computers, such as disk drives and video cards, have embedded computers. Although the

simplest controllers don’t need much of an operating system, many embedded computers run

operating systems such as Linux or QNX [8]. Operating systems for embedded computers often have

real-time aspects.

Abstracting Hardware

We can distinguish between the physical world of devices, instructions, memory, and time, and the virtual

world that is the result of abstractions built by the operating system. An abstraction is software (often

implemented as a subroutine or as a library of subroutines) that hides lower-level details and provides a set of

higher-level functions. Programs that use the abstraction can safely ignore the lower-level (physical) details;

they need only deal with the higher-level (virtual) structures.

Why is abstraction important in operating systems? First, the code needed to control peripheral devices is often

not standardized; it can vary from brand to brand, and it certainly varies between, say, IDE disks, SCSI tape drives,

and USB keyboards. Input/output devices are complex to program efficiently and correctly. Abstracting devices

with a uniform interface makes programs easier to write and to modify (for example, to use a different device).

Operating systems provide subroutines called device drivers that perform input/output operations on behalf of

programs. The operations are provided at a much higher level than the device itself provides. For example, a

program may wish to write a particular block on a disk. Low-level methods involve sending commands directly to

the disk to move the read-write head to the right block and then to undertake memory-to-disk data transfer.

When the transfer is complete, the disk interrupts the running program. A low-level program needs to know the

format of disk commands, which vary from manufacturer to manufacturer, and must deal with interrupts. In

contrast, a program using a high-level routine in the operating system might only need to specify the memory

location of the data block and where it belongs on the disk; all the rest of the machinery is hidden.

Second, the operating system introduces new functions as it abstracts the hardware. In particular, operating

systems introduce the ‘‘file’’ abstraction. Programs do not need to deal with disks at all; they can use high-level

routines to read and write disk files (instead of disk blocks) without needing to design storage layouts, worry

about disk geometry, or allocate free disk blocks. The ‘‘file’’ abstraction can then apply to other storage devices,

including tapes, compact disks, and network-accessible data. Programs usually don’t need to know what the

physical device is, only the fact that data can be accessed according to a standard set of routines.

Third, the operating system transforms the computer hardware into multiple virtual computers, each

belonging to a different process. Each process views the hardware through the lens of abstraction: memory,
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time, and other resources are all tailored to the needs of the process. Processes see only as much memory as

they need, and that memory does not contain the other processes (or the operating system) at all. They can

behave as if they have all the CPU cycles on the machine, although other processes and the operating system

itself are competing for those cycles. System calls allow processes to start other processes and to communicate

with other processes, either by sending messages or by sharing memory.

Fourth, the operating system can enforce security through abstraction. The operating system must secure

both itself and its processes against accidental or malicious interference. Certain instructions of the machine,

notably those that halt the machine and those that perform input and output, are moved out of the reach of

processes. Memory is partitioned so that processes cannot access each other’s memory. Time is partitioned so

that even a run-away process will not prevent others from making progress.

Managing Resources

An operating system is not only an abstractor of information, but also an allocator that controls how processes

(the active agents) may access resources (passive entities).

A resource is a commodity necessary to get work done. The computer’s hardware provides a number of low-

level resources. Working programs need to reside somewhere in memory, must execute instructions, and need

some way to accept data and present results. These needs are related to the fundamental resources of memory,

CPU time, and input/output. The operating system abstracts these resources to allow them to be shared.

In addition to these physical resources, the operating system creates virtual, abstract resources. For example,

files are able to store data. They abstract the details of disk storage. Pseudo-files (that is, objects that appear to

be data files on disk but are in fact stored elsewhere) can also represent devices, processes, communication

ports, and even data on other computers. Sockets are process-to-process communication channels that can

cross machine boundaries, allowing communication through networks like the Internet. Sockets abstract the

details of transmission media and network protocols.

Still higher-level resources can be built on top of abstractions. A database is a collection of information,

stored in one or more files with structure intended for easy access. A mailbox is a file with particular semantics.

A remote file, located on another machine but accessed as if it were on this machine, is built on both file and

network abstractions.

The resource needs of processes often interfere with each other. Resource managers in the operating system

include policies that try to be fair in giving resources to the processes and allow as much computation to

proceed as possible. These goals often conflict.

Each resource has its own manager, typically in the kernel.

The memory manager allocates regions of main memory for processes. Modern operating systems use

address translation hardware that maps between a process’s virtual addresses and the underlying physical

addresses. This hardware usually partitions address spaces into equal-sized pages, where a page is typically 4KB.

When a page in a process’s virtual address is in use, all its addresses are mapped to equivalent offsets within a

page of the computer’s physical memory. Only the currently active part of a process’s virtual space needs to be

physically resident; the memory manager keeps the rest on backing store (usually a disk) and brings it in as the

process needs to access it. Some operating systems also provide light-weight processes that share a single virtual

space. In addition, parts of virtual space used for programs (as opposed to data) are often shared among

processes that are using the same program or library routine. This sharing reduces the contention for main

memory and can also make it faster to start up new processes. The memory manager includes policies that

determine how much physical memory to grant to each process and which region of physical memory to swap

out to make room for other memory that must be swapped in.

The CPU-time manager is called the scheduler. Schedulers usually implement a preemptive policy that forces

processes to take turns running. Schedulers categorize processes according to whether they are currently

runnable (they may not be if they are waiting for other resources) and their priority.

The file manager mediates process requests such as creating, reading, and writing files. It validates access based

on the identity of the user running the process and the permissions associated with the file. The file manager also
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prevents conflicting accesses to the same file by multiple processes. It translates input/output requests into

device accesses, usually to a disk, but often to networks (for remote files) or other devices (for pseudo-files).

The device managers convert standard-format requests into the particular commands appropriate for

individual devices, which vary widely among device types and manufacturers. Device managers may also

maintain caches of data in memory to reduce the frequency of access to physical devices.

Although we usually treat processes as autonomous agents, it is often helpful to remember that they act on

behalf of a higher authority: the human users who are physically interacting with the computer. Each process is

usually ‘‘owned’’ by a particular user. Many users may be competing for resources on the same machine. Even

a single user can often make effective use of multiple processes.

Each user application is performed by a process. A word-processing application runs as a process that

receives keystrokes (either from the kernel or from a window-server process), converts them into changes in

the document, and displays the modified document (either by calls to the kernel or by communicating with a

window-server process). A mail application runs as a process that uses SMTP to send documents to mailboxes.

To service requests effectively, the operating system must satisfy two conflicting goals:

. To let each process have whatever resources it wants

. To be fair in distributing resources among the processes

If the active processes cannot all fit in memory, for example, it is impossible to satisfy the first goal without

violating the second. If there is more than one process, it is impossible on a single CPU to give all processes as

much time as they want; CPU time must be shared.

To satisfy the computer’s owner, the operating system must also satisfy a different set of goals:

. To make sure the resources are used as much as possible

. To complete as much work as possible

These latter goals were once more important than they are now, when computers were all expensive

mainframes, and it seemed wasteful to let any time pass without some process performing computations, to let

any memory sit unoccupied by a process, or to let a tape drive sit idle. The measure of success of an operating

system was how much work (measured in ‘‘jobs’’) could be finished and how heavily resources were used.

Computers are now far less expensive; responsiveness is a more important criterion than resource usage level.

User Interface

We have seen how operating systems are creators of abstractions and allocators of resources. Both these aspects

are centered on the needs of programmers and the processes that execute programs. But many users are not

programmers and are uninterested in the process abstraction and in the interplay between processes and the

operating system. They don’t care about system calls, interrupts, and devices. Instead, they are interested in

what might be termed the ‘‘look and feel’’ of the operating system.

The user interacts with the operating system through the user interface. Here we will only point out some

highlights.

The hardware for user interfaces has seen rapid change over the last 50 years, ranging over plugging wires

into a plug board (example: IBM 610, 1957), punching cards and reading printouts (IBM 1620, 1959), remote

teletype (DEC PDP-10, 1967), monochrome glass teletypes (around 1973), monochrome graphics terminals

with pointing devices (Xerox PARC’s Alto computer, around 1974), color video CRTs (around 1980), and LCD

monitors (late 1980s).

User-interface software has steadily changed as well. Interactive text editors (WYLBUR and TECO, around

1975) replaced punched paper cards. Interactive command languages replaced job-control languages.

Programming environments integrating editing, compiling, and debugging were introduced as early as 1980

(Smalltalk) and are still in heavy use (MetroWerks CodeWarrior; Microsoft Visual Studio). Data entry moved

from line-oriented to forms-based (by 1980) to web-based (1995). Many user interfaces are now navigated

without needing a keyboard at all; the user clicks a mouse to move to the next step in a process. Voice-

activated commands are also gaining in popularity.
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The look and feel of an operating system is influenced by many components of the user interface. Some of

the most important are the process launcher (a command interpreter, a menu-driven GUI, or clickable icons),

the file system (including remote files), online help, and application integration (such as ability to move

pictures from a photo editor into a word processor).

Security and Reliability

Security comprises four general aspects.

. Authentication and access control: Parties can be reliably identified (authentication) in order to decide

if they are authorized to access data (access control). In addition, it is sometimes important that the

party that creates or otherwise accesses data cannot deny that access (nonrepudiation).
. Secrecy (confidentiality): Sensitive information is not divulged to unauthorized parties.
. Protection (integrity): Sensitive information cannot be modified by unauthorized parties. In some

situations, such as network communication, it is only possible to guarantee that modifications are

detectable.
. Availability: Malicious or malfunctioning parties cannot interfere with proper functioning of the

computer.

These concerns pervade operating systems, both at the kernel and application levels. For example, secrecy

concerns suggest that we be able to prevent one process from looking at the virtual memory of another

process, one user from reading files written by another user, and one computer from interpreting

communication between other computers.

Security depends ultimately on hardware assistance. All modern computers provide several processor states.

Most architectures provide at least two states, called privileged state and nonprivileged state.

Processes always run in nonprivileged state. Instructions such as those that perform input/output and those

that change processor state cause traps when executed in nonprivileged state. Just like interrupts, traps save the

current execution context (perhaps on a stack), force the processor to jump to the kernel, and enter privileged

state. Once the operating system has finished servicing the trap or interrupt, it returns control to the same

process or perhaps to a different one, resetting the computer into nonprivileged state.

The kernel of the operating system runs in privileged state. All instructions have their usual, physical

meanings in this state. The kernel only runs when a process has caused a trap or when a peripheral device has

generated an interrupt. Traps do not necessarily represent errors; they can also be system calls or attempts to

address legitimate virtual memory that is currently swapped to backing store. Interrupts often indicate that a

device has finished servicing a request and is ready for more work. The clock interrupts at a regular rate in

order to let the kernel make scheduling decisions.

If the operating system makes use of this dichotomy of states, the abstractions that the operating system

provides are presented to processes as system calls, which are like new CPU instructions. (Each operating system

defines its own set of system calls. Unix variants typically provide about 200 different system calls; Microsoft

Windows, which includes both kernel and windowing components, has at least an order of magnitude more.)

The physical devices are completely hidden from process view. A program can perform high-level operations

(like reading a file) with a single system call. Executing the system call generates a trap, which causes a switch to

the privileged state of the kernel. The advantage of the service-call design over a procedure-call design is that it

allows access to kernel operations and data only through well-defined entry points.

Not all operating systems make use of non-privileged state. MS-DOS, for example, runs all applications in

privileged state. System calls are essentially subroutine calls. Although the operating system provides device and

file abstractions, processes may interact directly with disks and other devices. One advantage of this choice is that

device drivers can be loaded after the operating system starts; they do not need special privilege. One

disadvantage is that viruses can thrive because nothing prevents a program from placing data anywhere it wishes.

Because it runs in privileged state, the kernel must be programmed carefully to avoid taking actions on behalf

of a process that violate security. Otherwise, a malicious process might fool the kernel into modifying some

other process’s memory, scribbling bad data on a disk, or revealing the content of incoming network traffic.
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Each process is granted software privileges, usually based on the user on whose behalf it is running. For

example, a particular user’s processes generally have the privilege to read and write that user’s files. These

software privileges are distinct from the hardware privileged state, which processes never have. Instead,

software privileges are policed by the kernel, which decides whether or not to honor a service request from a

process based on the privileges of the requesting process and the nature of the request.

Most operating systems recognize specially privileged pseudo-users, such as ‘‘root’’ (Unix) and

‘‘Administrator’’ (Windows 2000). The kernel allows processes owned by these privileged pseudo-users a

wider set of abilities, such as accessing any file, creating raw (protocol-independent) network packets, and

shutting down the operating system. Instead of a single all-powerful pseudo-user, operating systems can

categorize the sorts of special privileges that a process might need and grant them individually to special

processes.

A user who logs into an operating system first interacts with a privileged login process, which authenticates

the user and then starts other processes owned by that user to accept further interaction. Authentication

typically is based on a user name and a password, although biometric devices and more complex challenge-

response protocols can increase the reliability of authentication. Cryptographic techniques allow the login

process to authenticate a user name and password without actually storing the passwords in a file. Such a file

would be a target of attacks attempting to break its secrecy.

It is quite common for computers to run background processes such as web and mail servers to provide

network-accessible functions. Such processes are usually called daemons. Daemons often need to run as

privileged processes in order to open sensitive network connections and to access arbitrary files. It is therefore

important that daemons be written with care to prevent them from being confused into misapplying their

privilege. The worst security holes allow a remote intruder access to a privileged process running a general-

purpose command interpreter on the attacked machine. Such an intruder can potentially subvert the

computer to do any action, possibly hiding this subversion from casual detection. Unfortunately, daemons

have historically been quite susceptible to such attacks, often because they rely on library packages that are

insufficiently careful with overflows (a programming error) or because the daemons are willing to treat

incoming data as a set of commands.

Computer administrators can take several steps to ensure daemon security: (1) stay tuned to news sources

announcing discovered daemon flaws, (2) upgrade daemons when a security flaw is announced, (3) only run

those daemons that are needed on a particular computer, (4) route all network traffic through firewalls, which

are configurable rule-based tools that only allow permissible network traffic through.

Even unprivileged, ordinary applications must be written with care. Web browsers and mail readers can be

configured to accept programs from the network and run them. The programs might be malicious, in which

case we call them malware. Even though the malware only runs with the user’s privilege, it can still misbehave,

modifying or divulging the user’s files, tracking the user’s actions, sending out unsolicited mass mail, or

participating in a distributed denial-of-service (overloading) attack against a target computer somewhere on

the network. Malware spreads primarily via e-mail; many mail readers allow users to accidentally run

incoming programs. Computer administrators often route incoming e-mail through scanning programs that

detect and remove potentially malicious attachments.

In addition to privilege control, applications often use cryptography to achieve security goals with respect to

data to be stored on computers and transmitted over the network.

. Authentication and nonrepudiation: Data can be marked in such a way that identifies the party that

generated the data.
. Secrecy: Data can be encrypted so only an authorized party can decrypt it; encrypted data carries no

information to unauthorized parties.
. Integrity: Data can be marked in such a way that any modification to the data is apparent and can cause

the data to be rejected. This technique can be used to assure a computer administrator that important

programs have not been replaced with counterfeits.

Cryptographic methods are often complex, involving multi-step protocols that experts must scrutinize for

susceptibility to attacks. There are currently no provably unbreakable encryption methods, so experts rely on a
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fundamental tenet: An encryption method is considered trustworthy in proportion to the amount of effort

that researchers with full knowledge of the inner workings of the method have spent trying, unsuccessfully, to

break it. The RSA and AES encryption methods, for instance, are considered very secure by this measure;

unpublished methods are not.

18.4 Implementing an Operating System

As mentioned earlier, the core of the operating system is the kernel, a control program that functions in

privileged state, reacting to interrupts from external devices and to service requests and traps from processes.

Generally, the kernel is a permanent resident of the computer. It creates and terminates processes and responds

to their requests for service.

Processes

Each process is represented in the kernel by a collection of data called the process descriptor. A process

descriptor includes such information as the following.

. Processor state: stored values of the program counter and registers, needed to resume execution of the

process.
. Scheduling statistics, needed to determine when to resume the process and how much time to let it run.
. Memory allocation, both in main memory and backing store (disk), needed to accomplish memory

management.
. Other resources held, such as locks or semaphores, needed to manage contention for such resources.
. Open files and pseudo-files (devices, communication ports), needed to interpret service requests for

input and output.
. Accounting statistics, needed to bill users and determine hardware usage levels.
. Privileges, needed to determine if activities such as opening files and executing potentially dangerous

system calls should be allowed.
. Scheduling state: running, ready, waiting for input/output or some other resource, such as memory.

The process descriptors are indexed by a unique identifier, usually called a process number. Some of the

information in the process descriptor can be bulky, such as the memory-management information, which

includes process-specific tables for converting virtual to physical addresses. Bulky information for idle

processes might be stored on disk in order to save space in main memory. Some information may be shared by

several processes, such as a case where one process opens a file and then starts a second process, which also

may access the open file.

Resuming a process, that is, switching control from the kernel back to the process, is a form of context

switching. It requires that the processor move from privileged to unprivileged state, that the registers and

program counter of the process be restored, and that the address-translation hardware be set up to accomplish

the correct mappings for this process. Switching back to the kernel is also a context switch; it can happen when

the process tries to execute a privileged instruction (including the system-call instruction) or when a device

generates an interrupt.

Hardware is designed to switch context rapidly. For example, the hardware may maintain two sets of registers

and address translation data, one for each privilege level. Context switches into the kernel just require moving to

the kernel’s set of registers. Resuming the most-recently running process is also fast. Resuming a different process

requires that the kernel load all the information for the new process into the second set of registers; this activity

takes longer. For that reason, a process switch is often more expensive than two context switches.

Components of the Kernel

Originally, operating systems were written as a single large program encompassing hundreds of thousands

of lines of assembly-language instructions. Two trends have made the job of implementing operating
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systems less difficult. First, high-level languages have made programming much easier. For instance, over

99% of Linux is written in the C language. Complex algorithms can be expressed in a structured, readable

fashion, code can be partitioned into modules that interact with each other in a well-defined manner, and

compile-time type checking can catch most programming errors. Only a few parts of the kernel, such as

those that switch context or modify execution priority, need to be written in assembly language.

Second, the discipline of structured programming has suggested a layered approach to designing the kernel.

Each layer provides abstractions needed by the layers above it. For example, the kernel can be organized as follows:

. Context-switch and process-switch services (lowest layer)

. Device drivers

. Resource managers for memory and time

. File-system support

. Service-call interpreter (highest layer)

For example, the MS-DOS operating system provides three levels: (1) device drivers (the BIOS section of the

kernel), (2) a file manager, and (3) an interactive command interpreter. It supports only one process and

provides no security, so there is no need for context-switch services. Because system calls do not need to cross

protection boundaries, they are implemented as subroutine calls.

The concept of layering allows the kernel to be small, since much of the work of the operating system need

not operate in a protected and hardware-privileged environment. When all the layers listed above are

privileged, the organization is called a macrokernel. Unix is often implemented as a macrokernel.

Even a macrokernel is structured internally into modules. Typical modules include:

. Interrupt and trap handling, including initialization to ensure that each kind of interrupt and trap is

directed to the right part of the kernel.
. Synchronization, protecting kernel data structures from access by one part of the kernel when another

part is still using them.
. Timing, both to maintain information about the current time and to set alarms for particular intervals

in the future.
. Memory, to dynamically allocate physical memory to the kernel, to devices, and to processes, including

decisions concerning swapping.
. Device handling, comprising drivers to control peripheral devices.
. Networking, including implementation of essential low-level protocols such as IP and TCP.
. Process handling, including routines for starting and scheduling processes.
. System-call handling, responding to requests from processes.
. File-system manipulation, possibly including multiple kinds of file types (like VFAT and NTFS) on the

same computer.

Because any particular computer typically has only a few of a wide variety of devices, it only needs those

drivers that deal with the devices that are actually present. Similarly, only it only needs file-system modules

that deal with the kinds of file systems for which this particular machine is configured. During initialization,

kernel modules register themselves, which means that they insert entries into kernel tables indicating their

presence and where their code resides. Some operating systems, such as Linux, allow modules to be added to

and subtracted from a running kernel. When a device is plugged into a USB port, a daemon identifies it and

then loads the appropriate module into the kernel. When the device is unplugged, the daemon unloads the

module. This dynamic choice of modules allows distributors of the operating system to provide a single, fairly

small kernel that runs on a wide variety of computers. In particular, a Linux kernel is typically only 2MB

before modules.

If the kernel only contains code for process creation, inter-process communication, the mechanisms for

memory management and scheduling, and the lowest level of device control, the result is a microkernel, also

called a ‘‘communication kernel.’’ Mechanisms are distinct from policies, which can be outside the kernel.

Policies decide which resources should be allocated in cases of conflict, whereas mechanisms carry out those

decisions. Mach [17] and QNX [8] follow the microkernel approach. In this organization, services such as the
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file system and policy modules for scheduling and memory are relegated to processes. These processes are

often referred to as servers; the ordinary processes that need those services are called their clients. The micro-

kernel itself acts as a client of the policy servers. Servers need to be trusted by their clients, and sometimes they

need to execute with some degree of hardware privilege (for example, if they access devices).

The microkernel approach has some distinct advantages.

. It imposes uniformity on the requests that a process might make. Processes need not distinguish

between kernel-level and process-level services, since all are provided via messages to servers.
. It allows easier addition of new services, even while the operating system is running, as well as multiple

services that cover the same set of needs, so that individual users (and their agent processes) can choose

whichever seems best. For example, different file organizations for diskettes are possible; instead of

having many file-level modules in the kernel, there can be many file-level servers accessible to processes.
. It allows an operating system to span many machines in a natural way. As long as inter-process

communication works across machines, it is generally immaterial to a client where its server is located.
. Services can be provided by teams of servers, any one of which can help any client. This organization

relieves the load on popular servers, although it often requires a degree of coordination among the

servers on the same team.

Microkernels also have some disadvantages. It is generally slower to build and send a message, accept and

decode the reply (taking about 10ms), than to make a single system call (taking about 0.1ms). However, other

aspects of service tend to dominate the cost, allowing microkernels to be similar in speed to macrokernels.

Keeping track of which server resides on which machine can be complex. This complexity may be reflected in

the user interface. The perceived complexity of an operating system has a large effect on its acceptance by the

user community.

The trend toward microkernels is apparent only in academia and embedded systems. Macrokernels are

likely to remain popular for the forseeable future.

18.5 Research Issues and Summary

Operating systems have developed enormously in the last 45 years. Modern operating systems generally have

three goals: To hide details of hardware by creating abstractions, to allocate resources to processes, and to

provide a effective user interface. Operating systems generally accomplish these goals by running processes in

low privilege and providing system calls that invoke the operating system kernel in high privilege state. The

recent trend has been toward increasingly integrated graphical user interfaces that encompass the activities of

multiple processes on networks of computers.

Current research issues revolve mostly around networked operating systems, including network protocols,

distributed shared memory, distributed file systems, mobile computing, and distributed application support.

There is also active research in kernel structuring, file systems, and virtual memory.

Defining Terms

The following terms may have more general definitions than shown here, and often have other narrow

technical definitions. This list indicates how the terms have been used in this chapter.

Abstraction: An interface that hides lower-level details and provides a set of higher-level functions.

Batch multiprogramming: Grouping jobs into batches based on characteristics such as memory

requirements.

Client: A process that requests services by sending messages to server processes.

Command interpreter: A program (usually not in the kernel) that interprets user requests and starts

computations to fulfill those requests.

Commands: Instructions in a job-control language.

Compute-bound: A process that performs little input/output but needs significant execution time.
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Concurrency control: Means to mediate conflicting needs of simultaneously executing threads.

Context block: Process descriptor.

Context switching: The action of directing the hardware to execute in a different context (kernel or

process) from the current context.

Daemon: A process, usually privileged, that provides a network-accessible service.

Database: A collection of files for storing related information.

Device driver: An operating-system module (usually in the kernel) that deals directly with a device.

Device interface: The means by which devices are controlled.

Distributed operating system: An operating system that integrates many computers, perhaps

geographically distributed, into a single whole.

Fault-tolerant operating system: An operating system that attempts to continue to function even when

hardware or software components fail.

File: A named, long-term repository for data.

Firewall: A configurable rule-based tool that only allows permissible network traffic through.

FTP: The file-transfer protocol service.

Gopher: A network service that connects information providers to their users.

Graphical user interface: Interactive program that makes use of a graphic display and a mouse.

HTTP: Hypertext transfer protocol.

Input/output: A resource: the ability to interact with peripheral devices.

Input/output-bound: A process that spends most of its time waiting for input/output.

Integrated application: An application that agrees on data formats with other applications so they can use

each other’s outputs.

Interactive multiprogramming: Multiprogramming in which each user deals interactively with the

computer.

Job-control language: A way of specifying the resource requirements of various steps in a job.

Job: A set of computational steps packaged to be run as a unit.

Kernel: The privileged core of an operating system, responding to system calls from processes and

interrupts from devices.

Light-weight process: A thread.

Macrokernel: A large operating-system core that provides a wide range of services.

Mailbox: A file for saving messages between users.

Malware: Malicious program that attempts to defeat security.

Memory: A resource: the ability to store programs and data.

Microkernel: A small privileged operating-system core that provides process scheduling, memory

management, and communication services.

Middleware: Program that provides high-level communication facilities to allow distributed computation.

Multiprogramming: Scheduling several competing processes to run at essentially the same time.

Nanokernel: A very small privileged operating-system core that provides simple process scheduling and

communication services.

Network services: Services available through the network, such as mail and file transfer.

Network service: A facility offered by one computer to other computers connected to it by a network.

Networked operating system: An operating system that uses a network for sharing files and other

resources.

Nonprivileged state: An execution context that does not allow sensitive hardware instructions to be

executed, such as the halt instruction and input/output instructions.

Offline: Handled on a different computer.

Operating system: A set of programs that control a computer.

Operator: An employee who performs the repetitive tasks of loading and unloading jobs.

Physical: The material upon which abstractions are built.

Physical address: A location in physical memory.

Pipeline: A facility that allows one process to send a stream of information to another process.
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Privileged state: An execution context that allows all hardware instructions to be executed.

Process: A program in execution.

Process control block: Process descriptor.

Process descriptor: A data structure in the kernel that represents a process.

Process interface: The set of system calls available to processes.

Process number: An identifier that represents a process by acting as an index into the array of process

descriptors.

Process switch: The action of directing the hardware to run a different process from the one that was

previously running.

Processor state: Privileged or nonprivileged state.

Process: A program being executed; an execution context that is allocated resources such as memory, time,

and files.

Protocol: A standardized data format and conversation rules for inter-computer communication on a

network.

Pseudo-file: An object that appears to be a file on the disk but is actually some other form of data.

Real-time operating system: An operating system that schedules processes based on how responsive they

must be.

Remote file: A file on another computer that appears to be on the user’s computer.

Resident monitor: A precursor to kernels; a program that remains in memory during the execution of a

job to handle simple requests and to start the next job.

Resource: A commodity necessary to get work done.

Scheduler: An operating system module that manages the time resource.

Server: A process that responds to requests from clients via messages.

System call: The means by which a process requests service from the kernel, usually implemented by a trap

instruction.

Session: The period during which a user interacts with a computer.

Shared file system: Files residing on one computer that can be accessed from other computers.

Site: The set of computers, usually networked, under a single administrative control.

SMTP: The simple mail-transfer protocol.

Socket: An abstraction for communication between two processes, not necessarily on the same machine.

Spooling system: Storing newly arrived jobs on disk until they can be run, and storing output of old jobs

on disk until it can be printed.

TCP: The transmission-control protocol.

Thin client: A program that runs on one computer that allows the user to interact with a session on a

second computer.

Thread: An execution context that is independently scheduled, but shares a single address space with other

threads.

Time: A resource: the ability to execute instructions.

Timesharing: Interactive multiprogramming.

User: A human being physically interacting with a computer.

User identifier: A number or string that is associated with a particular user.

User interface: The facilities provided to let the user interact with the computer.

Virtual: The result of abstraction; opposite of physical.

Virtual address: An address in memory as seen by a process, mapped by hardware to some physical

address.

Virtual machine: An abstraction produced by a virtualizing kernel, similar in every respect but

performance to the underlying hardware.

Virtualizing kernel: A kernel that abstracts the hardware to multiple copies that have the same behavior

(except for performance) of the underlying hardware.

World-wide web: A network service that allows users to share multimedia information.
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19.1 Introduction

Computer security is the protection of computing assets and computer network communication assets against

abuse, unauthorized use, and unavailability caused by intentional or unintentional actions, and protection

against undesired information disclosure, alteration, or misinformation. In today’s environment, the subject

encompasses computers ranging from supercomputers to microprocessor-based controllers and micro-

computers, personal digital assistants (PDAs), software, peripheral equipment (including terminals, printers),

communication media (e.g., cables, antennas, satellites), people who use computers or control computer

operations, and networks (some of global extent) that interconnect computers, terminals, and other

peripherals.

Widespread publicity about computer crimes (losses estimated at more than $500 billion per year), hacker

(cracker) penetrations, and viruses has given computer security a high profile in the public eye [Stallings,

1998]. The same sorts of technologies that have made computers and computer network communications

essential tools for information and control in almost all businesses and organizations have provided new

opportunities for adversaries as well as for accidents or natural occurrences to interfere with crucial functions.

Some of the important aspects are industrial/national espionage, terrorism attacks [Verton, 2003], loss of

functional integrity (e.g., in air traffic control, monetary transfer, and national defense systems), and violation

of society’s desires (e.g., compromise of privacy). The World Wide Web access to the Internet has created

financial transaction vulnerabilities, crypto system weaknesses, and privacy issues [Ning, 2004]. Infrastructure

networks for control of power grids and supervisory control and data acquisition (SCADA) water system

control have introduced another class of vulnerabilities.

Fortunately, technological developments also provide controls (proactive and follow-up) for computer

security. These include personal transaction devices (e.g., smart cards, and tokens), biometric verifiers,

port protection devices, encryption, authentication, and digital signature techniques using symmetrical
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(single-key) or asymmetrical (public-key) approaches, automated auditing, formal evaluation of security

features and security products, and decision support through comprehensive system analysis techniques.

Although the available technology is sophisticated and effective, no computer security protective measures are

perfect, so the goal of prevention (security assurance) is almost always accompanied by detection (early

discovery of security penetration), by layered approaches, and by penalties (denial of goal, e.g., information

destruction; or response, e.g., prosecution and punishment).

The information in this section is intended to survey the major contemporary computer security threats,

vulnerabilities, and controls. A general overview of the security environment is shown in Figure 19.1. The oval

in the figure contains an indication of some of the crucial concentrations of resources that exist in many

facilities, including digital representations of money; representations of information about operations, designs,

software, and people; hardware for carrying out (or peripheral to) computing and communications; people

involved in operating the facility; utility connections (e.g., power); and interconnection paths to outside

terminals and users, including hard-wired connections, modems for computer (and fax) communication over

telephone lines, and electromagnetic links (e.g., to satellite links, to ground antenna links, and to aircraft,

spacecraft, and missiles). Each of these points of termination is also likely to incorporate computer (or

controller) processing.

Other factors implied include profit-motivated or malicious adversaries, line taps or TEMPEST emanations

interception, probes through known or unknown dial-up connections, unauthorized physical entry,

unauthorized actions by authorized personnel, and delivery through ordinary channels (e.g., mail) of

information (possibly misinformation) and software (possibly containing embedded threat programs), and

the threats of fire, water damage, loss of climate control, electrical disturbances (e.g., due to lightning or power

loss). Also indicated is guidance for personnel about acceptable and unacceptable actions through policy and

regulations. The subject breadth can be surveyed by categorizing into physical security, cryptology techniques,

software security, hardware security, network security, and personnel security (including legal and ethical

issues). Because of the wide variety of threats, vulnerabilities, and assets, selections of controls and

performance assessment typically are guided by security-specific decision-support analyses, including risk

analysis and probabilistic risk assessment (PRA).

Right
Way

Wrong
Way

FIGURE 19.1 An overview of the computer and communications security environment.
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19.2 Physical Security

Physical access security ranges from facility access control (usually through personal identification or

authentication) to access (or antitheft) control for individual items (e.g., diskettes and personal computers).

Techniques used generally center around intrusion ‘‘prevention’’ (or invoking a significant time delay for

an adversary) and intrusion detection, which allows a response through security guard, legal or admini-

strative action, or automatic devaluation of the penetration goal (e.g., through information destruction)

[Cooper, 1989].

Physical environmental security protects against natural threats, such as power anomalies or failures, water

damage, fire, earthquake, and lightning damage, among others. Note that some of the ‘‘natural’’ threats (e.g.,

power failure) can also be caused by adversaries. Since there is potential (in spite of protection) for a loss,

contingency planning is essential. This includes provisions for software backup (usually off-site), hardware

backup (e.g., using reciprocal agreements, hot sites, or cold sites [Cooper, 1989]), and disaster recovery, guided

by a structured team that has prepared through tests (most typically simulated).

An example of power protection technology is the widely used uninterruptible power system (UPS). An

online UPS implementation is shown in Figure 19.2. Utility power is shown passed through a switch to a

rectifier and gated to an inverter. The inverter is connected to the critical load to be protected. In parallel,

continuous charge for a battery bank is provided. Upon loss of utility power, the battery bank continues to run

the inverter, thereby furnishing power until graceful shutdown or switching to an auxiliary engine generator

can be accomplished. The switch at the lower right protects the UPS by disconnecting it from the load in case

of a potentially catastrophic (e.g., short) condition.

19.3 Cryptology

Cryptology, literally translated, is the study of buried things; the ‘‘things’’ refer to writings — cipher systems.

Cryptography and cryptanalysis are its two branches: the making and breaking (respectively) of cryptographic

systems.

Cryptology has seen major advances in the last quarter century. Before 1976, its sole functions were privacy

and simple data authentication; its sole users, government organizations. With the rapid advance of

information technologies and the explosion of information in our society, cryptographic systems have become

vital in the private sector. The role of cryptology has expanded to include user authentication (signatures,

often with non-repudiation); copyright protection; electronic cash, key exchanges and voting — to name but

Utility power

Switch Engine generator

Rectifier

Battery charger Gate

Battery bank

Switch

Protected power

Inverter

FIGURE 19.2 Uninterruptible power system.
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a few. These new functions were made possible with the advent of public key cryptography [Diffie and

Hellman, 1976; Rivest, Shamir, and Adleman, 1978].

There are two major branches in modern cryptography: symmetric or private key cryptography

(Figure 19.3) and non-symmetric or public key cryptography (Figure 19.4). Symmetric (private key)

cryptography uses a single key and can be used for encryption or secure hash functions. This single key must

be kept secret. All cryptography before 1976 was symmetric, and it is still the most heavily relied on type of

algorithm for data encryption (privacy and secrecy). Public key cryptography uses different keys: one which

must be kept secret and one which may be made public. The two keys are related mathematically by a ‘‘one-

way’’ function. A one-way function is easy to compute in one direction but very hard (computationally

infeasible) to compute in the other direction. An example of a one-way function is multiplication versus

factorization. It is simple to multiply two large prime numbers, but very hard to factor the result.

There are two basic types of symmetric systems: block ciphers and stream ciphers. Stream ciphers encrypt

one character (generally one bit) at a time and are rarely used. Block ciphers encrypt a block of characters

(usually a fixed length) at a time and are the most commonly used form of symmetric cryptosystem. Many of

these block ciphers (such as DES — the Data Encryption Standard) are based on Feistel ciphers (see

Figure 19.5). A Feistel cipher splits the data to be encrypted into two blocks. Using a function and secret key

(Fk), random looking data would be obtained from one block half and added to the other. The data is then

shifted (the two blocks swapped) and the process repeated. Many iterations, or rounds, of this process are

done in a typical Feistel cipher: DES uses 16 rounds, enciphering 64-bits.
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FIGURE 19.5 Feistel cipher.
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DES has one major weakness: it does not use enough secret keys to protect it from the strength of modern

computing. There are only 256 possible keys for DES. The National Institute of Standards and Technology

(NIST) officially adopted the Rijndael algorithm as the new Advanced Encryption Standard (AES) in May

2002 [Advanced Encryption Standard, 2001]. It is not based on the Feistel structure, but instead uses layers of

mixing functions and allows for variable input block and key sizes: 128, 192 or 256 bits each, for 9 possible

block/key size combinations. Like Feistel systems, it repeats the mixing layers in rounds, adding ‘‘round key’’

(random data obtained by expanding the original secret key). The number of rounds specified varies from 10

to 14, depending on the block and key lengths. This cryptographic structure has not been studied as much as

the Feistel structure, but in the few years it has been studied (the call for a new standard came in 1997), no

great weakness has been found.

There are four basic operations done in an AES round: A permutation on individual state bytes (B), shifting

of the bytes in an individual row (R), a permutation of the data in each column (C), and finally the addition of

round key (Ki). Round key is also added before the start of the rounds, and a final round is done without the

column permutation step. Labeling the four individual functions as B, R, C, Ki, AES looks like Figure 19.6.

Besides the basic cryptographic algorithm, cryptosystems use a mode of operation dependant on feedback

(see Figure 19.7). In its simplest form, no feedback is used. Block ciphers with no feedback are said to be in

codebook mode. Other forms of feedback use past cipher text (cipher block chaining, cipher feedback, etc.),

plain text or intermediate states internal to the system for feedback. In Figure 19.7, Pi, Ci represent the plain

and cipher text at time i with the box ENC being the encryption box.

Public key cryptography uses asymmetric keys to perform functions not possible with symmetric

cryptography. Built on mathematically difficult problems, such as factoring1 and finding discrete

logarithms2, they are computationally expensive, but essential in information security today. Because of

the cost, public key cryptography is generally limited to the functions only it can do. It makes large-scale

encryption simpler by enabling electronic key exchanges and user authentication. Once a shared

symmetric key has been exchanged and the users’ authenticity has been verified, data are protected with a

symmetric system.

The two major uses of public key cryptography are electronic key exchanges and signatures; the best-known

algorithms for doing this are RSA and the Diffie–Hellman key exchange. RSA is based on the difficulty of

factoring while Diffie–Hellman is based on the discrete logarithm problem. RSA has broader functionality —

it allows for public encryption, signatures and key exchanges — but requires more keying material (individual

K0 B R C Ki B R Knr

Knr

i = 1, 2, …, nr − 1

Encipher procedure

K0R−1 B−1 C−1 B−1R−1Ki

i = nr − 1, …, 2, 1

Decipher procedure

FIGURE 19.6 AES cryptosystem.

1 Factoring techniques have broken 173 digit (576 bits) RSA moduli (December 2003, see http://www.rsa security.com/rsalabs/

challenges/factoring/rsa576.html).
2 Techniques using special approaches have found 120 digit (399 bit) discrete logarithms for prime moduli (see http://

www.medicis.polytechnique.fr/’’lecier/english/dlog.html).
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composite numbers, public and secret keys). Diffie–Hellman is strictly for electronic key exchanges, but has

much more flexibility in its design. Authenticated versions of Diffie–Hellman have been designed, allowing

both the key exchange and signature of the key (authentication) to be performed at the same time, improving

its efficiency. It has also been successfully adapted to work over elliptic curves, further reducing the

computational cost and transmission requirements.

Figure 19.8 depicts public encryption using RSA. Two large primes, P, Q are chosen and kept secret. Two

values, e, d are created such that ed�1 mod (P �1)(Q�1). The values N, e are released to the public. Anyone

who wishes to encrypt a message, m, raises m to the e power modulo N. Decryption is only possible if d is

known, as raising me to the d power modulo N cancels the e value, returning the original message.

Figure 19.9 depicts a simple key exchange with Diffie–Hellman. A group in which discrete logarithms are

difficult is chosen along with an element of large order, a. Both sides of the key exchange choose a random

secret value ri and exchange their computed values of ari. Computing ri from ari is the discrete logarithm

problem. The shared key will be ararb.

19.4 Software Security

A number of techniques that are commonly implemented in software can contribute to protection against

adversaries. These include password authentication; memory, file, and database access restrictions; restrictions

on processing actions; development and maintenance controls; and auditing.
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Passwords, which are intended to authenticate a computer user in a cost-effective way, are sometimes user-

selected (a technique resulting in a relatively small potential population), sometimes user-selected from

a computer-generated collection, sometimes randomly generated, and sometimes randomly generated from a

phonetic construction for pronounceability and memorization ease [Cooper, 1989].

Security control can be physical, temporal, logical, or procedural. Two important logical or procedural

control principles are part of fundamental multilevel security (multiple levels of sensitivity and multiple user

clearance levels on the same system), as described by part of the Bell–La Padula model. The simple security

principle restricts users of a particular clearance level from reading information that is of a more sensitive

(more highly classified) level. The star property prohibits information flow from the level at which its

sensitivity has been determined to any lower level (write-down). Analogous integrity protection is provided by

the Biba integrity model [Gasser, 1988].

Protection rules can be mandatory (used mainly by the government or military) or discretionary

(compartmented according to need-to-know regimes of trust typically determined by file owners). The

combination of security levels and protection rules at the same level can be associated with a lattice model. In

addition to matching the security controls, the lattice model facilitates mathematical verification of security

implementations.

A common logical protection rule specification gives the rights of subjects (action initiators) to act on

objects (action targets) at any particular time. One way to view these rules (although seldom implemented in

this manner) is to consider an access matrix (Table 19.1) containing rows for subject indicators and columns

for object indicators. The matrix entries are the rights of subjects to objects. Actual implementation may differ,

e.g., by using directories, or capability lists, or capability tokens (row designations for rights of subjects) or

access control lists (column designation for rights to objects).

These types of rules can be augmented by software (and/or hardware) memory protection through

techniques including fences, base/bounds registers, tagged registers, and paging [Gasser, 1988].

Database management system (DBMS) security and integrity protections include access controls but

generally require finer granularity and greater protection (especially for relational databases) against subtle

forms of information deduction such as inference and aggregation. Integrity protection mechanisms include

field checks, change logs, two-phase updates, error protection codes, range comparisons, and query controllers

[Pfleeger, 1989]. Secrecy depends on access control (e.g., file passwords), query controllers, and encryption.

Processing restrictions can, in addition to those implied by memory, file, and database controls, limit the

ability of users to, for example, try multiple passwords or multiple user IDs; make financial transactions;

change security parameters; move, rename, or output information; and deliver covert channel information

(signaling systematically using authorized actions to codify unauthorized data delivery).

Software development and maintenance controls include standards under which programs (including

security features) are designed to meet requirements, coded in structured or modular form, reviewed during

development, tested, and maintained. Configuration or change control is also important. Computer auditing

is intended to provide computer records about user actions for routine review (a productive application for

expert systems) and for detailed investigation of any incidents or suspicious circumstances. It is essential that

audit records be tamper-proof.

Software security features (including auditing) can be provided as part of the computer operating system or

they can be added to an operating system as an add-on product. A U.S. government multilevel trusted

TABLE 19.1 An Access Matrix

Subjects/Objects O1 O2 O3 O4 O5

S1 Own, read,

write

Own, read,

execute

Own, read,

delete

Read, write,

execute

Read

S2 Read Execute Read

S3 Write Read Read
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computing base development program through NSA’s National Computer Security Center (NCSC) resulted in

a well known security methodology and assessment scheme for these types of software (and hardware)

products [DOD, 1985]. A significant number of operating systems and software security packages have been

evaluated and given ratings by NCSC, in addition to hardware–software combinations, encryption devices,

and network security systems. The basic evaluation determines the degree of confidence that the system will be

resistant to external penetration and internal unauthorized actions. The most secure systems known are

classified A1 and utilize a reference monitor (checking every request for access to every resource), a security

kernel (concentration of all security-related functions into a module that facilitates protection and validation),

and protection against covert channels. Formal analysis is used to assure that the implementation correctly

corresponds to the intended security policy. There is an operational efficiency penalty associated with secure

multilevel operating systems. Other classes (in order of progressively fewer security features, which results in

decreasing security) are B3, B2, B1, C2, C1, and D (see Table 19.2, where security features generally

accumulate, reading up from the table bottom).

In addition to computer activity directly controlled by personnel, a family of software threats can execute

without direct human control. These techniques include the Trojan horse, the virus, the worm, the logic

bomb, and the time bomb. The virus and worm (because they copy themselves and spread) are both capable

of global-spanning attacks over relatively short time frames. Protection against these threats includes limiting

user threats through background screening, using expert system software scanners that search for adversarial

program characteristics, comparators, and authenticators or digital signatures that facilitate detection of

software tampering. Other software-intensive threats include trapdoors, superzapping, browsing, asynchro-

nous attacks, and the salami attack [Cooper, 1989]. These all usually involve unauthorized actions by

authorized people and are most effectively counteracted by insider personnel controls (see Section 19.7,

‘‘Personnel Security’’).

19.5 Hardware Security

In addition to personal authentication through something known (e.g., passwords or PINs), users can be

authenticated through something possessed or by something inherent about the user (or by combinations of

the three). Hardware devices that contribute to computer security using the approach of something possessed

include tokens and smart cards. Biometric verifiers authenticate by measuring human characteristics. Other

hardware security devices include encryptor/decryptor units and port protection devices (to make dial-up

attacks by hackers more difficult). A generic diagram depicting some of these applied to control of users is

shown in Figure 19.10. The controls can be used individually or in various combinations.

TABLE 19.2 NCSC Security Evaluation Ratings

Class Name Summary of Salient Features

Class A1 Formal top-level specification and verification of security features,

trusted software distribution, covert channel formal analysis

Class B3 Tamper-proof kernelized security reference monitor

(tamper-proof, analyzable, testable), structured implementation

Class B2 Formal security model design, covert channel identification and

tracing, mandatory controls for all resources

(including communication lines)

Class B1 Explicit security model, mandatory (Bell–La Padula) access control,

abels for internal files and exported files, code analysis and testing

Class C2 Single-level protection for important objects, log-in control, auditing

features, memory residue erasure

Class C1 Controlled discretionary isolation of users from data, authentication,

testing

Class D No significant security features identified
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Tokens are devices that can be hand-carried by authorized computer users and are intended to increase

password security by assuring that passwords are used only once, thereby reducing the vulnerability to

password compromise. The devices contain an internal algorithm, which either works in synchronization with

an identical algorithm in the host computer or transforms an input derived from a computer prompt into a

password that matches the computer-transformed result. In order to protect against loss most also require a

user password for token access.

Smart cards are credit-card-sized devices intended to facilitate secure transactions, such as credit card

purchases, purchases or cash withdrawals that result in bank account debits, or information interchanges. The

most common application uses a card reader/network that exchanges data with the smart card over a serial

data bus. User information and security information are stored in encrypted form in the card, and physical

access to the internal card circuitry is protected by tamper-proof (self-destructive) sealing. Use of the card is

controlled by password access.

Because of the vulnerability of passwords to compromise by disclosure or various forms of information

tapping, and because of the vulnerability of loss of carried items (e.g., ROM keys, magnetic stripe cards),

biometric devices have been developed to measure human characteristics in ways that are resistant to

counterfeiting. These devices include signature verifiers (for examining the velocity, acceleration, and pressure

characteristics imparted during signing as a function of time), fingerprint and palmprint readers (for

examining print pattern characteristics, for example, with the flesh applied to a glass platen), voice verifiers

(which evaluate speech characteristics, usually in response to system prompts), hand geometry (including

some three-dimensional aspects), eye retina vessel pattern examination (through infrared reflection), and

typing rhythm assessment (for user keyboard inputs).

Systematic cracker attacks on dial-up computer ports frequently include searches for modem tones followed

by attempts to guess passwords. In response, port protection devices (PPDs) enhance dial-up security. The

basic feature of many PPDs is that no modem tone is provided until an additional security barrier (or barriers)

is overcome. Most PPDs require a code before computer port connection. Some also identify the user by the

code entered, disconnect the call, and dial the number at which the user is expected to be (typically using a

separate line to avoid dial-in intercept of the outgoing call).

Personal computer (PC) security is of contemporary interest because these relatively new tools have

contributed to a set of security vulnerabilities that differs substantially from conventional computer security

concerns. For example, PC users may be more naive about security in general, PC hardware and software and

administrative controls are generally more primitive, the PC physical environment is generally less controlled,

and PCs are generally more easily misused (e.g., company PCs used for personal benefit).

An additional hardware security topic is associated with TEMPEST (a program to assess the potential for

data processing equipment to inadvertently generate ‘‘compromising emanations’’ that convey information to

a surreptitious remote sensor). Although originally of concern because of requirements to protect government

and military classified data, industrial espionage is now also a concern. Various forms of protection can be

used, such as electromagnetic shielding, physical separation of processing equipment from potential adversary
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FIGURE 19.10 Depiction of hardware controls.
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locations, fiber-optic communication, and encrypted data transmission. Some commercial equipment has

been certified by NSA to have low emanations.

19.6 Network Security

Many business, informational, and scientific interchanges take place nationally and internationally over

networks under computer control. Management of network security is exacerbated by physical dispersal and

security philosophy disparity. For example, network adversaries may be harder to identify and locate than local

computer adversaries. (For an interesting account of overcoming this problem, see Stoll [1989].) As another

example, a user at a location that would not allow some form of activity (e.g., copying information from one

level of security to a lower level) might find a network connection to a facility for which the activity was

accepted. The intended local restriction might thereby be circumvented by conducting the restricted activity at

the more permissive location. Opportunities for passive interception (tapping or emanations), or for active

spoofing (involving misinformation, replay, etc.), or for disruption (including jamming) are also generally

greater owing to network utilization and the potential for distributed attacks [De Decker, 2001]. The

emergence of wireless networks has introduced new classes of vulnerabilities [Lioy, 2003].

There are many network topologies, but they can be decomposed into four basic canonical types

(Figure 19.11). The star topology has been traditionally used in centrally controlled networks (e.g., the control

portion of the telephone system), and security is typically within the central control. Use of star topology in

local-area networks (LANs) is increasing. Mesh topology is not readily amenable to central control but is well

tailored to protect wide-area network integrity. Mesh topology accommodates variable-path routing schemes,

such as packet transmission. The bus topology is commonly used in complex physically constrained systems,

such as computing and communication processor interconnection, and missiles and aircraft. The ring and bus

topologies are frequently used in LANs. The shared communication media for LANs can jeopardize secrecy

unless communications are encrypted.

Network security considerations include secrecy, integrity, authenticity, and covert channels. Potential

controls include cryptosystems (for secrecy, integrity, and authentication); error-protection codes, check sums

(and other ‘‘signatures’’), and routing strategies (for integrity); protocols (for key distribution and

authentication); access control (for authentication); electronic ‘‘agents’’ to report on network activities [Ning,

2004], and administrative procedures (for integrity and covert channel mitigation). Where encryption is used,

network key distribution can be difficult if the physical dimensions of the network are large. Note that several

techniques described under hardware security (smart cards, tokens, biometrics, PPDs) are useful for network

authentication.
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node node
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FIGURE 19.11 Basic network topologies.
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Various network security approaches have been used; they can be basically classified into centralized security

and distributed security (although the use of combinations of the two is common). It is difficult to maintain

effective centralized administrative control in a network larger than a LAN, because of the logistics of

maintaining current security and authentication data. Network efficiency, reliability, and integrity are also

limited by the performance of the central security controller. The major weaknesses of distributed control are

associated with inconsistent security enforcement and the security-relevant communication burden.

Networks frequently comprise networks of networks (the Internet is a worldwide interconnection of

networks) and firewalls (filter between outside and internal networks), using bridges or routers for protocol

pass-through and filtering and gateways for protocol translation and buffering. Bridges, routers, gateways, and

firewalls may also have the role of distributed network security controllers.

Various security protocols (orderly coordinated sequences of steps) are used to authenticate network users

to each other. The basic purpose of security protocols is to assure all of the parties involved that the parties

with whom they are communicating are behaving as expected. Protocols can be arbitrated, adjudicated, or

self-enforcing [Pfleeger, 1989]. Analogously, cryptographic sealing and cryptographic time stamps (or other

sequence identifiers) can prevent message (or message segment) reuse. These approaches can authenticate the

message contents as well as the communicating party. Secure key distribution protocol (e.g., by a network key

server or key distribution center) is an important application for protocols.

Network communication involves several levels of nonsecurity protocol for the purpose of allowing users to

communicate with integrity. A number of network standards have been developed (e.g., TCP/IP, ISDN,

GOSIP, SNMP, SMTP, SSL, VPN, and http and https for the World Wide Web). An illustrative example is the

International Standards Organization Open Systems Interconnection model (OSI). The basic OSI structure is

shown in Figure 19.12 [Stallings, 1995].

The physical layer mediates access to the transmission medium. Network systems such as token ring, token

bus, and carrier sense multiple access with collision detection (CSMA/CD) work at this level. The data link

layer can be used to enhance transmission quality through framing, error correction, and check sums. Link

(point-to-point) encryption is typically implemented in hardware at this level. The network layer handles

network routing functions. This is the highest layer necessary for an intermediate node, as shown in the figure.

Correct routing (and protection for pass-through information from users at the intermediate node) is

important to security. The transport layer provides end-to-end (initial source to final destination) interprocess

communication facilities. End-to-end encryption can be implemented in software at this level. The session
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layer manages the overall network connection during a user activity. This connectivity is also important to

security. The presentation layer converts between user syntax and network syntax, and the application layer

provides user services such as electronic mail and data file transfers. Encryption can be implemented at either

of the latter two layers.

Link encryption requires exposure of information at intermediate nodes. While this is essential (at least for

routing data) if further routing is required, it may be required to protect information from exposure at

intermediate nodes. In addition to routing controls, this may require end-to-end encryption and separation of

routing information from protected information. End-to-end encryption is generally performed at the higher

levels (e.g., the transport layer). It is not unusual to use both link and end-to-end encryption.

Like isolated computers, networks can have multilevel security. However, implementation and verification

of security features are more difficult. For example, covert channel protection is currently quite problematic in

networks.

19.7 Personnel Security

Personnel security involves protecting personnel as assets and protecting against personnel because of the

threat potential. The basic aspects of the latter topic are motivations that cause various types of threats, the

approaches most likely to be used by adversaries, techniques for assessing the threat potential, and techniques

for protecting against adversaries.

One motivation for computer/communication attacks is financial gain. This motivation ranges from career

criminals who could view the volume of monetary transactions as tempting, and the potential detachment

from personnel confrontations as affording low risk of apprehension, to basically honest people who have

trouble resisting what they consider to be less serious temptations. Industrial espionage is one of many

examples of financial motivation that may result in attempts to evade computer security control.

Another important motivation is information gain or information modification, which could represent no

direct financial gain. Some people are curious about information to which they have no right. Some want to

modify information (e.g., grades, criminal records, medical records, personnel records) because it reflects an

image they want to change.

The motivation of causing personal or public outrage in order to advance a cause is a common motivation.

Terrorism is an example, and many acts of terrorism against computers have occurred [Cooper, 1989],

especially in Europe. Sometimes the cause is related to revenge, which may be manifested through vandalism.

Espionage activities can be motivated by financial gain, national or company loyalty, blackmail, or even

love. Hackers are frequently motivated by the challenge of overcoming security barriers. Usually, self-image

and image with peers (e.g., through electronic bulletin board proclamations of breakthroughs) is a strong

factor.

Personnel adversaries most commonly choose what they perceive to be the easiest and/or the safest avenue

to achieve the desired objective. This is analogous to looking for the weakest link to break a chain. Because

these avenues may be either inherent or unknown, security barrier uniformity is frequently sought through the

application of basic principles (e.g., separation of duties). Some adversaries are motivated enough and skilled

enough to use ingenious approaches, and these provide a warning about what unexpected approaches might

succeed. One of the most interesting and informative examples was the break by William Friedman of the

Vernam cipher used by the Germans in World War II [Cooper, 1989]. Another was the use of an unintended

electronic mail program feature that allowed an adversary to plant a Trojan horse in a privileged area of a

computer, which resulted in system privileges when the computer ran routine periodic housekeeping. This was

the genesis of the title of the book The Cuckoo’s Egg [Stoll, 1989]. The same adversary was one of several

known to have broken one-way transformed password encryption by downloading the transform and the

transformed outputs to his own computer and then exhaustively encrypting a dictionary of words and

potential passwords, noting where matches to transformed outputs were obtained.

Approaches used to assess the types of unexpected attacks that might be used are mainly to catalog past

approaches that have been used and to foresee new approaches through adversarial simulation. An example of
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this simulation is the ‘‘tiger team’’ approach, where a collection of personnel of various backgrounds

synergistically brainstorm approaches, at least some of which may be tested or actually carried out. Tiger

teams have a long history of finding unexpected approaches that can be successful, and thereby identifying

protection needs.

Protection against personnel attacks generally falls into two categories: protection against insiders (those

having some authorization to use resources) and against outsiders (those who gain access to resources in

unauthorized ways). Some protective measures are tailored to one or the other of these two groups; some are

applicable in either case.

Typical protections against unauthorized insider activities include preemployment screening and

background investigation, polygraph examinations (within legal limits), administrative controls (e.g., security

plans and access logs), routine examination and monitoring of activities through audit records, ethics and

motivational training, and the threat of legal or job-related punishment for improper activities. The ethics of

computer use varies from organization to organization because of society’s inexperience in weighing the moral

aspects of the topic.

Protection against outsiders includes physical and logical access control using the various forms of hardware

and software authentication discussed previously and the threat of legal prosecution for transgressions. This

threat depends in large measure on the available laws covering computer security violations. Computer

security laws and law enforcement have traditionally been weak relative to laws covering other types of

activities (largely because of new legal aspects associated with computing), but a large number of legal

approaches are now possible because of laws enacted during the past two decades.

Computer laws, laws that apply to computing, and applicable statutes include the Copyright Act (amended

in 1980 to allow software copyrights and help protect against software piracy), the Patent Act (adding

firmware and software coverage), ‘‘shrinkwrap licenses’’ (some legal protection, some deterrent), various U.S.

Crime Statutes (applicable to U.S. government computers), the Privacy Act (for U.S. government applications

and similar to privacy laws in a number of other countries), National Security Decision Directives (NSDD 145

was for NSA-enhanced protection of ‘‘sensitive unclassified’’ information, largely intended to prevent

technology drain to unfriendly countries), the Computer Security Act of 1987 (restoring NIST as the primary

agency responsible for sensitive unclassified security), the Right to Financial Privacy Act, the Freedom of

Information Act, the Electronic Funds Transfer Act, the Fair Credit Reporting Act, the Crime Control Act, the

Electronic Communications Privacy Act, the Computer Fraud and Abuse Act, and the Foreign Corrupt

Practices Act.

There is now considerable interest in international legal computer communication agreements, especially

among countries that interchange significant amounts of computer data. International forums have brought

many countries together with the intents of regulatory commonality and transborder data communication

control. The U.S. Digital Millennium Copyright Act of 1998 had an international flavor, following along with

the international WIPO Copyright Treaty of 1996.

Defining Terms

Biometric verifiers: Devices that help authenticate by measuring human characteristics.

Hacker: Person who explores computer and communication systems, usually for intellectual challenge,

commonly applied to those who try to circumvent security barriers (crackers).

Internet: An international connection of networks which can be navigated by the World Wide Web

protocols, and over which e-mail, information transfers, and credit card orders can transverse.

Logic bomb: Destructive action triggered by some logical outcome.

PDA: Small (pocket-sized) device for data (e.g., phone numbers, addresses, appointments, memos) and

some data processing.

Port protection device: Device in line with modem that intercepts computer communication attempts

and requires further authentication.

Public-key cryptosystem: System that uses a pair of keys, one public and one private, to simplify the key

distribution problem.
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Smart cards: Credit-card-sized devices containing a microcomputer, used for security-intensive functions

such as debit transactions.

Software piracy: Unauthorized copying of software for multiple uses, thereby depriving software vendor

of sales.

TEMPEST emanations: Electromagnetic, conductive, etc. leakage of information that can be recovered

remotely.

Time bomb: Destructive action triggered by computer calendar/clock reading.

Token: Device that generates or assists in generation of one-time security code/passwords.

Trojan horse: Implanted surreptitious code within an authorized program.

Virus: A propagating, self-replicating program that is inserted in and can make changes in application

programs or other executable routines.

Worm: Independent self-replicating code that, once initiated, propagates across networks, consuming

memory resources.
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20.1 Introduction

This chapter outlines the knowledge needed to estimate the reliability of any electronic system or subsystem

within a computer. The word estimate was used in the first sentence to emphasize that the following

calculations, even if carried out perfectly correctly, can provide no guarantee that a particular example of a

piece of electronic equipment will work for any length of time. However, they can provide a reasonable guide

to the probability that something will function as expected over a given time period. The first step in

estimating the reliability of a computer system is to determine the likelihood of failure of each of the

individual components such as resistors, capacitors, integrated circuits, and connectors, which make up the

system. This information can then be used in a full system analysis.

20.2 Definitions of Failure, Fault, and Error

A failure occurs when a system or component does not perform as expected. Examples of failures at the

component level could be a base-emitter short in a transistor somewhere within a large integrated circuit or a

solder joint going open-circuit because of vibrations. If a component experiences a failure, it may cause a fault

leading to an error, which may lead to a system failure.

A fault may be either the outward manifestation of a component failure or a design fault. Component

failure may be caused by internal physical phenomena or by external environmental effects such as

electromagnetic fields or power supply variations. Design faults may be divided into two classes. The first class

of design fault is caused by using components outside their rated specification. It should be possible to
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eliminate this class of faults by careful design checking. The second class, which is characteristic of large digital

circuits such as those found in computer systems, is caused by the designer not taking into account every

logical condition that could occur during system operation. All computer systems have a software component

as an integral part of their operation, and software is especially prone to this kind of design fault.

A fault may be permanent or transitory. Examples of permanent faults are short or open circuits within a

component caused by physical failures. Transitory faults can be subdivided further into two classes. The first,

usually called transient faults, are caused by such things as alpha-particle radiation or power supply variations.

Large random access memory circuits are particularly prone to this kind of fault. By definition a transient fault

is not caused by physical damage to the hardware. The second class are usually called intermittent faults. These

faults are temporary but reoccur in an unpredictable manner. They are caused by loose physical connections

between components or by components used at the limits of their specification. Intermittent faults often

become permanent faults after a period of time. A fault may be active or inactive. For example, if a fault causes

the output of a digital component to be stuck at logic 1, and the desired output is logic 1, then this would be

classed as an inactive fault. Once the desired output becomes logic 0, then the fault becomes active.

The consequence for the system operation of a fault is an error. As the error may be caused by a permanent

or by a transitory fault, it may be classed as a hard error or a soft error. An error in an individual subsystem may

be due to a fault in that subsystem or to the propagation of an error from another part of the overall system.

The terms fault and error are sometimes interchanged. The term failure is often used to mean anything

covered by these definitions. The definitions given here are those in most common usage.

Physical faults within a component can be characterized by their external electrical effects. These effects are

commonly classified into fault models. The intention of any fault model is to take into account every possible

failure mechanism, so that the effects on the system can be worked out. The manifestation of faults in a system

can be classified according to the likely effects, producing an error model. The purpose of error models is to try

to establish what kinds of corrective action need be taken in order to effect repairs.

20.3 Failure Rate and Reliability

An individual component may fail after a random time so it is impossible to predict any pattern of failure

from one example. It is possible, however, to estimate the rate at which members of a group of identical

components will fail. This rate can be determined by experimental means using accelerated life tests. In a

normal operating environment, the time for a statistically significant number of failures to have occurred in a

group of modern digital components could be tens or even hundreds of years. Consequently, the

manufacturers must make the environment for the tests extremely unfavorable in order to produce failures in

a few hours or days and then extrapolate back to produce the likely number of failures in a normal

environment. The failure rate is then defined as the number of failures per unit time, in a given environment,

compared with the number of surviving components. It is usually expressed as a number of failures per million

hours.

If f ðtÞ is the number of components that have failed up to time t, and sðtÞ is the number of components that

have survived, then zðtÞ, the failure rate or hazard rate, is defined as

zðtÞ ¼
1

sðtÞ

df ðtÞ

dt
ð20:1Þ

Most electronic components will exhibit a variation of failure rate with time. Many studies have shown that

this variation can often be approximated to the pattern shown in Figure 20.1. For obvious reasons this is

known as a bathtub curve. The first phase, where the failure rate starts high but is decreasing with time, is

where the components are suffering infant mortality; in other words, those that had manufacturing defects are

failing. This is often called the burn-in phase. The second part, where the failure rate is roughly constant, is the

useful life period of operation for the component. The final part, where the failure rate is increasing with time,

is where the components are starting to wear out.
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Using the same nomenclature as before, if

sðtÞ þ f ðtÞ ¼ N ð20:2Þ

i.e., N is the total number of components in the test, then the reliability r(t) is defined as

rðtÞ ¼
sðtÞ

N
ð20:3Þ

or in words, and using the definition from the IEEE Standard Dictionary of Electrical and Electronic Terms,

reliability is the probability that a device will function without failure over a specified time period or amount

of usage, under stated conditions.

20.4 Relationship between Reliability and Failure Rate

Using Equation (20.1), Equation (20.2), and Equation (20.3), then

zðtÞ ¼ �
N

sðtÞ
·

drðtÞ

dt
ð20:4Þ

l is commonly used as the symbol for the failure rate z(t) in the period where it is a constant, i.e., the useful

life of the component. Consequently, we may write Equation (20.4) as

l ¼ �
1

rðtÞ

drðtÞ

dt
ð20:5Þ

Rewriting, integrating, and using the limits of integration as rðtÞ ¼ 1 at t ¼ 0 and rðtÞ ¼ 0 at t ¼1 gives the

result

rðtÞ ¼ e�lt ð20:6Þ

This result is true only for the period of operation where the failure rate is a constant. For most common

components, real failure rates can be obtained from such handbooks as the U.S. military’s MIL-HDBK-217, as

explained in Section ‘‘Reliability Calculations for Real Systems’’.

FIGURE 20.1 Variation of failure rate with time.
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It must also be borne in mind that the calculated reliability is a probability function based on lifetime tests.

There can be no guarantee that any batch of components will exhibit the same failure rate and hence reliability

as those predicted because of variations in manufacturing conditions. Even if the components were made at

the same factory as those tested, the process used might have been slightly different and the equipment will be

older. Quality assurance standards are imposed on companies to try to guarantee that they meet minimum

manufacturing standards, but some cases in the United States have shown that even the largest plants can fall

short of these standards.

20.5 Mean Time to Failure

A figure that is commonly quoted because it gives a readier feel for the system performance is the mean time

to failure (MTTF). This is defined as

MTTF ¼
Z1

0
rðtÞdt ð20:7Þ

Hence, for the period where the failure rate is constant

MTTF ¼
1

l
ð20:8Þ

20.6 Mean Time to Repair

For many computer systems it is possible to define a mean time to repair (MTTR). This will be a function of a

number of things, including the time taken to detect the failure, the time taken to isolate and replace the faulty

component, and the time taken to verify that the system is operating correctly again. While the MTTF is a

function of the system design and the operating environment, the MTTR is often a function of unpredictable

human factors and, hence, is difficult to quantify. Figures used for MTTR for a given system in a fixed

situation could be predictions based on the experience of the reliability engineers, or could be simply the

maximum response time given in the maintenance contract for a computer. In either case, MTTR predictions

may be subject to some fluctuations. To take an extreme example, if the service engineer has a flat tire while on

the way to effect the repair, then the repair time may be many times the predicted MTTR. For some systems no

MTTR can be predicted as they are in situations that make repair impossible or uneconomic. Computers in

satellites are a good example. In these cases and all others where no errors in the output can be allowed, fault

tolerant approaches must be used in order to extend the MTTF beyond the desired system operational

lifetime.

20.7 Mean Time between Failures

For systems where repair is possible, a figure for the expected time between failures can be defined as

MTBF ¼ MTTFþMTTR ð20:9Þ

The definitions given for MTTF and MTBF are the most commonly accepted ones. In some texts, MTBF is

wrongly used as mean time before failure, confusing it with MTTF. In many real systems MTTF is very much

greater than MTTR so the values of MTTF and MTBF will be almost identical, in any case.
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20.8 Availability

Availability is defined as the probability that the system will be functioning at a given time during its normal

working period.

Av ¼
total working time

total time
ð20:10Þ

This can also be written as

Av ¼
MTTF

MTTFþMTTR
ð20:11Þ

Some systems are designed for extremely high availability. For example, the computers used by AT&T to

control its telephone exchanges are designed for an availability of 0.9999999, which corresponds to an

unplanned downtime of two minutes in 40 years. In order to achieve this level of availability, fault tolerant

techniques have to be used from the design stage accompanied by a high level of monitoring and

maintenance.

20.9 Calculation of Computer System Reliability

For systems that have not been designed to be fault tolerant it is common to assume that the failure of any

component implies the failure of the system. Thus, the system failure rate can be determined by the so-called

parts count method. If the system contains m types of component, each with a failure rate lm, then the system

failure rate ls can be defined as

ls ¼
X
m

1

Nmlm ð20:12Þ

where Nm is the number of each type of component.

The system reliability will be

rsðtÞ ¼
Y

m

1

Nmrm ð20:13Þ

If the system design is such that the failure of an individual component does not necessarily cause system

failure, then the calculations of MTTF and rs(t) become more complicated.

Consider two situations where a computer system is made up of several subsystems. These may be

individual components or groups of components, e.g., circuit boards. The first is where failure of an individual

subsystem implies system failure. This is known as the series model and is shown in Figure 20.2. This is the

same case as considered previously, and the parts count method, Equation (20.12) and Equation (20.13), can

be used. The second case is where failure of an individual subsystem does not imply system failure. This is

shown in Figure 20.3. Only the failure of

every subsystem means that the system has

failed, and the system reliability can be

evaluated by the following method. If r(t) is

the reliability (or probability of not failing) of

each subsystem, then q(t) ¼ 1 – r(t) is the

probability of an individual subsystem fail- FIGURE 20.2 Series model.
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ing. Hence, the probability of them all failing is

qsðtÞ ¼ ½1 � rðtÞ�n ð20:14Þ

for n subsystems.

Hence the system reliability will be

rsðtÞ ¼ 1 � ½1 � rðtÞ�n ð20:15Þ

In practice, systems will be made up of differing combinations of

parallel and series networks; the simplest examples are shown in

Figure 20.4 and Figure 20.5.

Parallel-Series System

Assuming that the reliability of each subsystem is identical, then the

overall reliability can be calculated thus. The reliability of one unit is r; hence the reliability of the series path

is rn. The probability of failure of each path is then q ¼ 1– rn. Hence, the probability of failure of all m paths

FIGURE 20.3 Parallel model.

FIGURE 20.5 Series-parallel model.

FIGURE 20.4 Parallel series model.
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is (1 � rn)m, and the reliability of the complete system is

rps ¼ 1 � ð1 � rnÞm ð20:16Þ

Series-Parallel System

Making similar assumptions, and using a similar method, the reliability can be written as

rsp ¼ ½1 � ð1 � rÞn�m ð20:17Þ

It is straightforward to extend these results to systems with subsystems having different reliabilities and in

different combinations. It can be seen that these simple models could be used as the basis for a fault tolerant

system, i.e., one that is able to carry on performing its designated function even while some of its parts have

failed.

Practical Systems Using Parallel Subsystems

A computer system that uses parallel subsystems to improve reliability must incorporate some kind of

arbitrator to determine which output to use at any given time. A common method of arbitration involves

adding a voter to a system with N parallel modules, where N is an odd number. For example, if N ¼ 3, a single

incorrect output can be masked by the two correct outputs outvoting it. Hence, the system output will be

correct even though an error has occurred in one of the subsystems. This system would be known as triple-

modular-redundant (TMR) (Figure 20.6).

The reliability of a TMR system is the probability that any two out of the three units will be working. This

can be expressed as

rtmr ¼ r1r2r3 þ r1r2ð1 � r3Þ þ r1ð1 � r2Þr3 þ ð1 � r1Þr2r3 ð20:18Þ

where rn (n ¼ 1, 2, 3) is the reliability of each subsystem. If r1 ¼ r2 ¼ r3 ¼ r this reduces to

rtmr ¼ 3r2 � 2r3 ð20:19Þ

FIGURE 20.6 Triple-modular-redundant system.

# 2006 by Taylor & Francis Group, LLC



The reliability of the voter must be included when calculating the overall reliability of such a system. As the

voter appears in every path from input to output, it can be included as a series element in a series-parallel

model. This leads to

rtmr ¼ rv½3r2 � 2r3� ð20:20Þ

where rv is the reliability of the voter.

More information on methods of using redundancy to improve system reliability can be found in the

appropriate chapter of this handbook.

20.10 Markov Modeling

Another approach to determining the probability of system failure is to use a Markov model of the system

rather than the combinatorial methods outlined previously. Markov models involve the defining of system

states and state transitions. The mathematics of Markov modeling are well beyond the scope of this brief

introduction, but most engineering mathematics textbooks will cover the technique.

To model the reliability of any system it is necessary to define the various fault-free and faulty states that

could exist. For example, a system consisting of two identical units (A and B), either of which has to work for

the system to work, would have four possible states. They would be (1) A and B working; (2) A working, B

failed; (3) B working, A failed; and (4) A and B failed. The system designer must assign to each state a series of

probabilities that determine whether it will remain in the same state or change to another after a given time

period. This is usually shown in a state diagram, as in Figure 20.7. This model does not allow for the possibility

of repair, but this could easily be added.

20.11 Software Reliability

One of the major components in any computer system is its software. Although software is unlikely to wear

out in a physical sense, it is still impossible to prove that anything other than the simplest of programs is

totally free from bugs. Hence, any piece of software will follow the first and second parts of the normal bathtub

curve (Figure 20.1). The burn-in phase for hardware corresponds to the early release of a complex program,

where bugs are commonly found and have to be fixed. The useful life phase for hardware corresponds to the

time when the software can be described as stable, even though bugs may still be found. In this phase, where

the failure rate can be characterized as constant (even if it is very low), the hardware performance criteria such

as MTTF and MTTR can be estimated. They must be included in any estimation of the overall availability for

FIGURE 20.7 State diagram for two-unit parallel system.
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the computer system as a whole. Just as with hardware techniques redundancy can be used to improve the

availability through fault tolerance.

20.12 Reliability Calculations for Real Systems

The most common source of basic reliability data for electronic components and circuits is the military

handbook Reliability Prediction of Electronic Equipment, published by the U.S. Department of Defense. It has

the designation MIL-HDBK-217 and is regularly updated. This handbook provides both the basic reliability

data and formulae to modify those data for the application of interest. For example, the formula for predicting

the failure rate, lp, of a bipolar or MOS microprocessor is given as

lp ¼ pQðC1pTpVþC2pEÞpL failures per 106 hours

where pQ is the part quality factor, with several categories, ranging from a full mil-spec part to a commercial

part; pT is the temperature acceleration factor, related to both the technology in use and the actual operating

temperature; pV is the voltage stress derating factor, which is higher for devices operating at higher voltages; pE

is the application environment factor (the handbook gives figures for many categories of environment, ranging

from laboratory conditions up to the conditions found in the nose cone of a missile in flight); pL is the device

learning factor, related to how mature the technology is and how long the production of the part has been

going on; C1 is the circuit complexity factor, dependent on the number of transistors on the chip; and C2 is the

package complexity, related to the number of pins and the type of package.

The following figures are given for a 16-bit microprocessor, operating on the ground in a laboratory

environment, with a junction temperature of 51–C. The device is assumed to be packaged in a plastic, 64-pin

dual in-line package and to have been manufactured using the same technology for several years.

pQ ¼ 20 pT ¼ 0:89 pv ¼ 1 pE ¼ 0:38
pL ¼ 1 C1 ¼ 0:06 C2 ¼ 0:033

Hence, the failure rate lp for this device operating in the specified environment, is estimated to be 1.32

failures per 106 hours. To calculate the predicted failure rate for a system based around this microprocessor

would involve similar calculations for all the parts, including the passive components, the PCB, and

connectors, and multiplying all the resultant failure rates together. The resulting figure could then be inverted

to give a predicted MTTF. This kind of calculation is repetitive, tedious, and therefore prone to errors, so many

companies now provide software to perform the calculations.

In any case, this way of calculating systems reliability has been largely discredited as it builds upon data of

dubious merit. Several standards bodies (for example the IEEE and the British Standards Institute) now

provide comprehensive guidelines for performing system reliability calculations and it is recommended that

their methods are followed.

Defining Terms

Availability: This figure gives a prediction for the proportion of time that a given part or system will be in

full working order. It can be calculated from

Av ¼
MTTF

MTTFþMTTR

Failure rate: The failure rate, l, is the (predicted or measured) number of failures per unit time for a

specified part or system operating in a given environment. It is usually assumed to be constant during

the working life of a component or system.
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Mean time to failure: This figure is used to give an expected working lifetime for a given part, in a given

environment. It is defined by the equation

MTTF ¼
Z1

0
rðtÞdt

If the failure rate l is constant, then

MTTF ¼
1

l

Mean time to repair: The MTTR figure gives a prediction for the amount of time taken to repair a given

part or system.

Reliability: Reliability r(t) is the probability that a component or system will function without failure over

a specified time period, under stated conditions.
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Further Information

The quarterly magazine IEEE Transactions on Reliability contains much of the latest research on reliability

estimation techniques.

The monthly magazine Microelectronics and Reliability covers the field of reliability estimation and also

includes papers on actual measured reliabilities.

Sometimes manufacturers make available measured failure rates for their devices.
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THE GREAT ACHIEVEMENTS in engineering deeply affect the lives of all of us and also serve to remind us of

the importance of mathematics. Interest in mathematics has grown steadily with these engineering

achievements and with concomitant advances in pure physical science. Whereas scholars in nonscientific

fields, and even in such fields as botany, medicine, geology, etc., can communicate most of the problems and

results in nonmathematical language, this is virtually impossible in present-day engineering and physics. Yet it

is interesting to note that until the beginning of the twentieth century, engineers regarded calculus as

something of a mystery. Modern students of engineering now study calculus, as well as differential equations,

complex variables, vector analysis, orthogonal functions, and a variety of other topics in applied analysis. The

study of systems has ushered in matrix algebra and, indeed, most engineering students now take linear algebra

as a core topic early in their mathematical education.
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This section contains concise summaries of relevant topics in applied engineering mathematics and certain

key formulas, that is, those formulas that are most often needed in the formulation and solution of

engineering problems. Whereas even inexpensive electronic calculators contain tabular material (e.g., tables of

trigonometric and logarithmic functions) that used to be needed in this kind of handbook, most calculators

do not give symbolic results. Hence, we have included formulas along with brief summaries that guide their

use. In many cases we have added numerical examples, as in the discussions of matrices, their inverses, and

their use in the solutions of linear systems. A table of derivatives is included, as well as key applications of the

derivative in the solution of problems in maxima and minima, related rates, analysis of curvature, and finding

approximate roots by numerical methods. A list of infinite series, along with the interval of convergence of

each, is also included.

Of the two branches of calculus, integral calculus is richer in its applications, as well as in its theoretical

content. Though the theory is not emphasized here, important applications such as finding areas, lengths,

volumes, centroids, and the work done by a nonconstant force are included. Both cylindrical and spherical

polar coordinates are discussed, and a table of integrals is included. Vector analysis is summarized in a separate

section and includes a summary of the algebraic formulas involving dot and cross multiplication, frequently

needed in the study of fields, as well as the important theorems of Stokes and Gauss. The part on special

functions includes the gamma function, hyperbolic functions, Fourier series, orthogonal functions, and both

Laplace and z-transforms. The Laplace transform provides a basis for the solution of differential equations and

is fundamental to all concepts and definitions underlying analytical tools for describing feedback control

systems. The z-transform, not discussed in most applied mathematics books, is most useful in the analysis of

discrete signals as, for example, when a computer receives data sampled at some prespecified time interval. The

Bessel functions, also called cylindrical functions, arise in many physical applications, such as the heat transfer

in a ‘‘long’’ cylinder, whereas the other orthogonal functions discussed—Legendre, Hermite, and Laguerre

polynomials—are needed in quantum mechanics and many other subjects (e.g., solid-state electronics) that

use concepts of modern physics.

The world of mathematics, even applied mathematics, is vast. Even the best mathematicians cannot keep up

with more than a small piece of this world. The topics included in this section, however, have withstood the

test of time and, thus, are truly core for the modern engineer.

This section also incorporates tables of physical constants and symbols widely used by engineers. While not

exhaustive, the constants, conversion factors, and symbols provided will enable the reader to accommodate a

majority of the needs that arise in design, test, and manufacturing functions.
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Mathematics,
Symbols, and

Physical Constants

Greek Alphabet

International System of Units (SI)

The International System of units (SI) was adopted by the 11th General Conference on Weights and Measures

(CGPM) in 1960. It is a coherent system of units built form seven SI base units, one for each of the seven

dimensionally independent base quantities: they are the meter, kilogram, second, ampere, kelvin, mole, and

candela, for the dimensions length, mass, time, electric current, thermodynamic temperature, amount of

substance, and luminous intensity, respectively. The definitions of the SI base units are given below. The SI

derived units are expressed as products of powers of the base units, analogous to the corresponding relations

between physical quantities but with numerical factors equal to unity.

In the International System there is only one SI unit for each physical quantity. This is either the appropriate

SI base unit itself or the appropriate SI derived unit. However, any of the approved decimal prefixes, called SI

prefixes, may be used to construct decimal multiples or submultiples of SI units.

It is recommended that only SI units be used in science and technology (with SI prefixes where

appropriate). Where there are special reasons for making an exception to this rule, it is recommended always

to define the units used in terms of SI units. This section is based on information supplied by IUPAC.

Definitions of SI Base Units

Meter: The meter is the length of path traveled by light in vacuum during a time interval of 1/299,792,458

of a second (17th CGPM, 1983).

Kilogram: The kilogram is the unit of mass; it is equal to the mass of the international prototype of the

kilogram (3rd CGPM, 1901).

Second: The second is the duration of 9,192,631,770 periods of the radiation corresponding to the

transition between the two hyperfine levels of the ground state of the cesium-133 atom (13th CGPM, 1967).

Greek

Letter

Greek

Name

English

Equivalent

Greek

Letter

Greek

Name

English

Equivalent

A a Alpha a N n Nu n

B b Beta b X j Xi x

G g Gamma g O o Omicron ŏ

D d Delta d Q p Pi P

E e Epsilon ĕ P r Rho r

Z z Zeta z S s Sigma s

H Z Eta ē T t Tau t

Y y q Theta th Y y Upsilon u

I i Iota i F f j Phi ph

K k Kappa k X w Chi ch

L l Lambda l C c Psi ps

M m Mu m O o Omega ō
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Ampere: The ampere is that constant current which, if maintained in two straight parallel conductors of

infinite length, of negligible circular cross-section, and placed 1 m apart in vacuum, would produce between

these conductors a force equal to 2 · 10�7 newton per meter of length (9th CGPM, 1948).

Kelvin: The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic

temperature of the triple point of water (13th CGPM, 1967).

Mole: The mole is the amount of substance of a system which contains as many elementary entities as there

are atoms in 0.012 kg of carbon-12. When the mole is used, the elementary entities must be specified and may

be atoms, molecules, ions, electrons, or other particles or specified groups of such particles (14th CGPM,

1971).

Examples of the use of the mole:

1 mol of H2 contains about 6.022 · 1023 H2 molecules, or 12.044 · 1023 H atoms.

1 mol of HgCl has a mass of 236.04 g.

1 mol of Hg2Cl2 has a mass of 472.08 g.

1 mol of Hg2
2þ has a mass of 401.18 g and a charge of 192.97 kC.

1 mol of Fe0.91S has a mass of 82.88 g.

1 mol of e� has a mass of 548.60 mg and a charge of �96.49 kC.

1 mol of photons whose frequency is 1014 Hz has energy of about 39.90 kJ.

Candela: The candela is the luminous intensity in a given direction of a source that emits monochromatic

radiation of frequency 540 · 1012 hertz and that has a radiant intensity in that direction of (1/683) watt per

steradian (16th CGPM, 1979).

Physical Quantity Name of SI Unit Symbol for SI Unit

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Names and Symbols for the SI Base Units

Physical Quantity

Name of

SI Unit

Symbol for

SI Unit

Expression in

Terms of SI Base Units

Frequency1 hertz Hz s�1

Force newton N m kg s�2

Pressure, stress pascal Pa N m�2 ¼ m�1 kg s�2

Energy, work, heat joule J N m ¼ m2 kg s�2

Power, radiant flux watt W J s�1 ¼ m2 kg s�3

Electric charge coulomb C A s

Electric potential,

electromotive force

volt V J C�1 ¼ m2 kg s�3 A�1

Electric resistance ohm O V A�1 ¼ m2 kg s�3 A�2

Electric conductance siemens S O�1 ¼ m�2 kg�1 s3 A2

Electric capacitance farad F C V�1 ¼ m�2 kg�1 s4 A2

Magnetic flux density tesla T V s m�2 ¼ kg s�2 A�1

Magnetic flux weber Wb V s ¼ m2 kg s�2 A�1

Inductance henry H V A�1 s ¼ m2 kg s�2 A�2

Celsius temperature2 degree Celsius –C K

(continued )

SI Derived Units with Special Names and Symbols
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Units in Use Together with the SI

These units are not part of the SI, but it is recognized that they will continue to be used in appropriate

contexts. SI prefixes may be attached to some of these units, such as milliliter, ml; millibar, mbar;

megaelectronvolt, MeV; kilotonne, ktonne.

SI Derived Units with Special Names and Symbols (continued)

Physical Quantity

Name of

SI Unit

Symbol for

SI Unit

Expression in

Terms of SI Base Units

Luminous flux lumen lm cd sr

Illuminance lux lx cd sr m�2

Activity (radioactive) becquerel Bq s�1

Absorbed dose (of radiation) gray Gy J kg�1 ¼ m2 s�2

Dose equivalent

(dose equivalent index)

sievert Sv J kg�1 ¼ m2 s�2

Plane angle radian rad 1 ¼ m m�1

Solid angle steradian sr 1 ¼ m2 m�2

1For radial (circular) frequency and for angular velocity the unit rad s�1, or simply s�1, should be used,
and this may not be simplified to Hz. The unit Hz should be used only for frequency in the sense of cycles
per second.

2The Celsius temperature y is defined by the equation:

y=–C ¼ T=K � 273:15

The SI unit of Celsius temperature interval is the degree Celsius, –C, which is equal to the kelvin, K. –C
should be treated as a single symbol, with no space between the – sign and the letter C. (The symbol –K and
the symbol – should no longer be used.)

Physical

Quantity Name of Unit

Symbol

for Unit Value in SI Units

Time minute min 60 s

Time hour h 3600 s

Time day d 86,400 s

Plane angle degree – (p/180) rad

Plane angle minute 0 (p/10,800) rad

Plane angle second 00 (p/648,000) rad

Length ångstrom1 Å 10�10 m

Area barn b 10�28 m2

Volume liter l, L dm3 ¼ 10�3 m3

Mass tonne t Mg ¼ 103 kg

Pressure bar1 bar 105 Pa ¼ 105 N m�2

Energy electronvolt2 eV (¼ e · V) <1.60218 · 10�19 J

Mass unified atomic mass unit2,3 u (¼ma(12C)/12) <1.66054 · 10�27 kg

1The ångstrom and the bar are approved by CIPM for ‘‘temporary use with SI units,’’ until CIPM
makes a further recommendation. However, they should not be introduced where they are not used
at present.

2The values of these units in terms of the corresponding SI units are not exact, since they depend
on the values of the physical constants e (for the electronvolt) and Na (for the unified atomic mass
unit), which are determined by experiment.

3The unified atomic mass unit is also sometimes called the dalton, with symbol Da, although the
name and symbol have not been approved by CGPM.
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Conversion Constants and Multipliers

Recommended Decimal Multiples and Submultiples

Conversion Factors—Metric to English

Conversion Factors—English to Metric*

*Boldface numbers are exact; others are given to ten significant figures where so indicated by the multiplier factor.

Multiples and

Submultiples Prefixes Symbols

Multiples and

Submultiples Prefixes Symbols

1018 exa E 10�1 deci d

1015 peta P 10�2 centi c

1012 tera T 10�3 milli m

109 giga G 10�6 micro m (Greek mu)

106 mega M 10�9 nano n

103 kilo k 10�12 pico p

102 hecto h 10�15 femto f

10 deca da 10�18 atto a

To Obtain Multiply By

Inches centimeters 0.3937007874

Feet meters 3.280839895

Yards meters 1.093613298

Miles kilometers 0.6213711922

Ounces grams 3.527396195 · 10�2

Pounds kilogram 2.204622622

Gallons (U.S. liquid) liters 0.2641720524

Fluid ounces milliliters (cc) 3.381402270 · 10�2

Square inches square centimeters 0.155003100

Square feet square meters 10.76391042

Square yards square meters 1.195990046

Cubic inches milliliters (cc) 6.102374409 · 10�2

Cubic feet cubic meters 35.31466672

Cubic yards cubic meters 1.307950619

To Obtain Multiply By

Microns mils 25.4

Centimeters inches 2.54

Meters feet 0.3048

Meters yards 0.9144

Kilometers miles 1.609344

Grams ounces 28.34952313

Kilograms pounds 0.45359237

Liters gallons (U.S. liquid) 3.785411784

Millimeters (cc) fluid ounces 29.57352956

Square centimeters square inches 6.4516

Square meters square feet 0.09290304

Square meters square yards 0.83612736

Milliliters (cc) cubic inches 16.387064

Cubic meters cubic feet 2.831684659 · 10�2

Cubic meters cubic yards 0.764554858
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Conversion Factors—General*

*Boldface numbers are exact; others are given to ten significant figures where so indicated by the multiplier factor.

Temperature Factors
–F ¼ 9/5 (–C) þ 32

Fahrenheit temperature ¼ 1.8 (temperature in kelvins) � 459.67
–C ¼ 5/9 [(–F) � 32)]

Celsius temperature ¼ temperature in kelvins � 273.15

Fahrenheit temperature ¼ 1.8 (Celsius temperature) þ 32

From To

–Celsius –Fahrenheit tF ¼ (tC · 1.8) þ 32

Kelvin TK ¼ tC þ 273.15
–Rankine TR ¼ (tC þ 273.15) · 18

–Fahrenheit –Celsius tC ¼
tF � 32

1:8

Kelvin Tk ¼
tF � 32

1:8
þ 273:15

–Rankine TR ¼ tF þ 459.67

Kelvin –Celsius tC ¼ TK � 273.15
–Rankine TR ¼ TK · 1.8

–Rankine Kelvin TK ¼
TR

1:8
–Fahrenheit tF ¼ TR � 459.67

Conversion of Temperatures

To Obtain Multiply By

Atmospheres feet of water @ 4–C 2.950 · 10�2

Atmospheres inches of mercury @ 0–C 3.342 · 10�2

Atmospheres pounds per square inch 6.804 · 10�2

BTU foot-pounds 1.285 · 10�3

BTU joules 9.480 · 10�4

Cubic feet cords 128

Degree (angle) radians 57.2958

Ergs foot-pounds 1.356 · 107

Feet miles 5280

Feet of water @ 4–C atmospheres 33.90

Foot-pounds horsepower-hours 1.98 · 106

Foot-pounds kilowatt-hours 2.655 · 106

Foot-pounds per min horsepower 3.3 · 104

Horsepower foot-pounds per sec 1.818 · 10�3

Inches of mercury @ 0–C pounds per square inch 2.036

Joules BTU 1054.8

Joules foot-pounds 1.35582

Kilowatts BTU per min 1.758 · 10�2

Kilowatts foot-pounds per min 2.26 · 10�5

Kilowatts horsepower 0.745712

Knots miles per hour 0.86897624

Miles feet 1.894 · 10�4

Nautical miles miles 0.86897624

Radians degrees 1.745 · 10�2

Square feet acres 43,560

Watts BTU per min 17.5796
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Physical Constants

General

Equatorial radius of the Earth ¼ 6378.388 km ¼ 3963.34 miles (statute)

Polar radius of the Earth, 6356.912 km ¼ 3949.99 miles (statute)

1 degree of latitude at 40– ¼ 69 miles

1 international nautical mile ¼ 1.15078 miles (statute) ¼ 1852 m ¼ 6076.115 ft

Mean density of the earth ¼ 5.522 g/cm3 ¼ 344.7 lb/ft3

Constant of gravitation (6.673 ^ 0.003) · 10�8 cm3 gm�1 s�2

Acceleration due to gravity at sea level, latitude 45– ¼ 980.6194 cm/s2 ¼ 32.1726 ft/s2

Length of seconds pendulum at sea level, latitude 45– ¼ 99.3575 cm ¼ 39.1171 in.

1 knot (international) ¼ 101.269 ft/min ¼ 1.6878 ft/s ¼ 1.1508 miles (statute)/h

1 micron ¼ 10�4 cm

1 ångstrom ¼ 10�8 cm

Mass of hydrogen atom ¼ (1.67339^0.0031) · 10�24 g

Density of mercury at 0–C ¼ 13.5955 g/ml

Density of water at 3.98–C ¼ 1.000000 g/ml

Density, maximum, of water, at 3.98–C ¼ 0.999973 g/cm3

Density of dry air at 0–C, 760 mm ¼ 1.2929 g/l

Velocity of sound in dry air at 0–C ¼ 331.36 m/s � 1087.1 ft/s

Velocity of light in vacuum ¼ (2.997925^0.000002) · 1010 cm/s

Heat of fusion of water 0–C ¼ 79.71 cal/g

Heat of vaporization of water 100–C ¼ 539.55 cal/g

Electrochemical equivalent of silver 0.001118 g/s international amp

Absolute wavelength of red cadmium light in air at 15–C, 760 mm pressure ¼ 6438.4696 Å

Wavelength of orange-red line of krypton 86 ¼ 6057.802 Å

p Constants

p ¼ 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37511

1/p ¼ 0.31830 98861 83790 67153 77675 26745 02872 40689 19291 48091

p2 ¼ 9.8690 44010 89358 61883 44909 99876 15113 53136 99407 24079

logep ¼ 1.14472 98858 49400 17414 34273 51353 05871 16472 94812 91531

log10p ¼ 0.49714 98726 94133 85435 12682 88290 89887 36516 78324 38044

log10

ffiffiffiffi

2p
p

¼ 0.39908 99341 79057 52478 25035 91507 69595 02099 34102 92128

Constants Involving e

e ¼ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69996

1/e ¼ 0.36787 94411 71442 32159 55237 70161 46086 74458 11131 03177

e2 ¼ 7.38905 60989 30650 22723 04274 60575 00781 31803 15570 55185

M ¼ log10e ¼ 0.43429 44819 03251 82765 11289 18916 60508 22943 97005 80367

1/M·¼ loge10 ¼ 2.30258 50929 94045 68401 79914 54684 36420 67011 01488 62877

log10M ¼ 9.63778 43113 00536 78912 29674 98645 –10

Numerical Constants
ffiffi

2
p
¼ 1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37695

3
ffiffi

2
p
¼ 1.25992 10498 94873 16476 72106 07278 22835 05702 51464 70151

loge2 ¼ 0.69314 71805 59945 30941 72321 21458 17656 80755 00134 36026

log102 ¼ 0.30102 99956 63981 19521 37388 94724 49302 67881 89881 46211
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ffiffi

3
p
¼ 1.73205 08075 68877 29352 74463 41505 87236 69428 05253 81039

3
ffiffi

3
p
¼ 1.44224 95703 07408 38232 16383 10780 10958 83918 69253 49935

loge3 ¼ 1.09861 22886 68109 69139 52452 36922 52570 46474 90557 82275

log103 ¼ 0.47712 12547 19662 43729 50279 03255 11530 92001 28864 19070

Symbols and Terminology for Physical and Chemical Quantities

Name Symbol Definition SI Unit

Classical Mechanics

Mass m kg

Reduced mass m m ¼ m1m2/(m1 þ m2) kg

Density, mass density r r ¼ M/V kg m�3

Relative density d d ¼ r/ry l

Surface density rA, rS rA ¼ m/A kg m�2

Momentum p p ¼ mv kg m s�1

Angular momentum, action L l ¼ r ¥ p J s

Moment of inertia I, J I ¼ Smir
2
i kg m2

Force F F ¼ dp/dt ¼ ma N

Torque, moment of a force T, (M) T ¼ r · F N m

Energy E J

Potential energy Ep, V, F Ep¼Fds J

Kinetic energy Ek, T, K ek ¼ (1/2)mv2 J

Work W, w w ¼ Fds J

Hamilton function H H(q, p) ¼ T(q, p) þ V(q) J

Lagrange function L Lðq; _qqÞTðq; _qqÞ � VðqÞ J

Pressure p, P p¼ F/A Pa, N m�2

Surface tension g, s g ¼ dW/dA N m�1, J m�2

Weight G, (W, P) G ¼ mg N

Gravitational constant G F¼ Gm1m2/r2 N m2 kg�2

Normal stress s s ¼ F/A Pa

Shear stress t t ¼ F/A Pa

Linear strain,

relative elongation

e, e e ¼ Dl/l l

Modulus of elasticity,

Young’s modulus

E E ¼ s/e Pa

Shear strain g g ¼ Dx/d l

Shear modulus G G ¼ t/g Pa

Volume strain, bulk strain y y ¼ DV/V0 l

Bulk modulus, K K ¼ �V0(dp/dV) Pa

compression modulus Z, m tx,z ¼ Z(dvx/dz) Pa s

Viscosity, dynamic viscosity

Fluidity f f ¼ 1/Z m kg�1 s

Kinematic viscosity n n ¼ Z/r m2 s�1

Friction coefficient m, (f) Ffrict ¼ mFnorm l

Power P P ¼ dW/dt W

Sound energy flux P, Pa P ¼ dE/dt W

Acoustic factors

Reflection factor r r ¼ Pt/P0 l

Acoustic absorption factor aa, (a) aa ¼ 1 � r l

Transmission factor t t ¼ Ptr/P0 l

Dissipation factor d d ¼ aa � t l

(continued )
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Symbols and Terminology for Physical and Chemical Quantities (continued)
Name Symbol Definition SI Unit

Electricity and Magnetism

Quantity of electricity,

electric charge

Q C

Charge density r r ¼ Q/V C m�3

Surface charge density s s ¼ Q/A C m�2

Electric potential V, f V ¼ dW/dQ V, J C�1

Electric potential difference U, DV, Df U ¼ V2 � V1 V

Electromotive force E E ¼ ðF=QÞds V

Electric field strength E E ¼ F/Q ¼ �grad V V m�1

Electric flux C C ¼ DdA C

Electric displacement D D ¼ eE C m�2

Capacitance C C ¼ Q/U F, C V�1

Permittivity e D ¼ eE F m�1

Permittivity of vacuum e0 e0 ¼ m0
�1 c0

�2 F m�1

Relative permittivity er er ¼ e/e0 l

Dielectric polarization P P ¼ D � e0E C m�2

(dipole moment per volume)

Electric susceptibility we we ¼ er � 1 l

Electric dipole moment p, m p ¼ Qr C m

Electric current I I ¼ dQ/dt A

Electric current density j, J I ¼ jdxA A m�2

Magnetic flux density,

magnetic induction

B F ¼ Qv · B T

Magnetic flux F F ¼ BdA Wb

Magnetic field strength H B ¼ mH A M�1

Permeability m B ¼ mH N A�2, H m�1

Permeability of vacuum m0 H m�1

Relative permeability mr mr ¼ m/m0 l

Magnetization (magnetic

dipole moment

per volume)

M M ¼ B/m0 � H A m�1

Magnetic susceptibility w, k, (wm) w ¼ mr � 1 l

Molar magnetic susceptibility wm wm ¼ Vmw m3 mol�1

Magnetic dipole moment m, m Ep ¼ �m · B A m2, J T�1

Electrical resistance R P = Y/I O
Conductance G G ¼ 1/R S

Loss angle d d ¼ (p/2) þ fI �fU 1, rad

Reactance X X ¼ (U/I)sin d O
Impedance (complex

impedance)

Z Z ¼ R þ i X O

Admittance (complex

admittance)

Y Y ¼ 1/Z S

Susceptance B Y ¼ G þ iB S

Resistivity r r ¼ E/j O m

Conductivity k, g, s k ¼ 1/r S m�1

Self-inductance L E ¼ �L(dI/dt) H

Mutual inductance M, L12 E1 ¼ L12(Di2/dt) H

Magnetic vector potential A B ¼ HHHHH · A Wb m�1

Poynting vector S S ¼ E · H W m�2

Electromagnetic Radiation

Wavelength l m

Speed of light m s�1

in vacuum c0

in a medium c c ¼ c0/n

(continued )
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Symbols and Terminology for Physical and Chemical Quantities (continued)
Name Symbol Definition SI Unit

Electromagnetic Radiation

Wavenumber in vacuum V V ¼ V=c0 ¼ 1=nl m�1

Wavenumber (in a medium) s s ¼ 1/l m�1

Frequency n n ¼ c/l Hz

Circular frequency,

pulsatance

o o ¼ 2pn s�1, rad s�1

Refractive index n n ¼ c0/c l

Planck constant h J s

Planck constant/2p " " ¼ h/2p J s

Radiant energy Q, W J

Radiant energy density r, w r ¼ Q/V J m�3

Spectral radiant energy

density

in terms of frequency rn, wn rn¼ dr/dn J m�3 Hz�1

in terms of wavenumber r�vv, w�vv r�vv ¼ dr=d�vv J m�2

in terms of wavelength rl, wl rl¼ dr/dl J m�4

Einstein transition

probabilities

Spontaneous emission Anm dNn/dt ¼ �AnmNn s�1

Stimulated emission Bnm dnn=dt ¼ �r�vvð �VV nmÞ · BnmNn s kg�1

Radiant power,

radiant energy per time

F, P F ¼ dQ/dt W

Radiant intensity I I ¼ dF/dO W sr�1

Radiant exitance

(emitted radiant flux)

M M ¼ dF/dAsource W m�2

Irradiance (radiant flux

received)

E, (I) E ¼ dF/dA W m�2

Emittance e e ¼ M/Mbb l

Stefan–Boltzmann constant s Mbb ¼ sT 4 W m�2 K�4

First radiation constant c1 c1 ¼ 2phc0
2 W m2

Second radiation constant c2 c2 ¼ hc0/k K m

Transmittance, transmission

factor

t, T t ¼ Ftr/F0 l

Absorptance, absorption

factor

a a ¼ fabs/f0 l

Reflectance, reflection factor r r ¼ frefl/F0 l

(Decadic) absorbance A A ¼ lg(1 � ai) l

Napierian absorbance B B ¼ ln(1 � ai) l

Absorption coefficient

(Linear) decadic a, K a ¼ A/l m�1

(Linear) napierian a a ¼ B/l m�1

Molar (decadic) e e ¼ a/c ¼ A/cl m2 mol�1

Molar napierian k k ¼ a/c ¼ B/cl m2 mol�1

Absorption index k k ¼ a=4p�vv l

Complex refractive index n̂n n̂n ¼ nþ ik l

Molar refraction R, Rm R ¼ ðn2�1Þ
ðn2þ2Þ

Vm m3 mol�1

Angle of optical rotation a l, rad

Solid State

Lattice vector R, R0 m

Fundamental translation

vectors for the crystal

lattice

a1; a2; a3, a; b; c R ¼ n1a1 þ n2a2 þ n3a3 m

(Circular) reciprocal lattice

vector

G G · R ¼ 2pm m�1

(continued )
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Symbols and Terminology for Physical and Chemical Quantities (continued)
Name Symbol Definition SI Unit

Solid State

(Circular) fundamental

translation vectors for

the reciprocal lattice

b1; b2; b3, a*; b*; c* ai · bk ¼ 2pdik m�1

Lattice plane spacing d m

Bragg angle y nl ¼ 2d sin y l, rad

Order of reflection n l

Order parameters

Short range s l

Long range s 1

Burgers vector b m

Particle position vector r, Rj m

Equilibrium position vector

of an ion

Ro m

Displacement vector of an ion u u ¼ R � R0 m

Debye–Waller factor B, D l

Debye circular wavenumber qD m�1

Debye circular frequency oD s�1

Grüneisen parameter g, G g ¼ aV/kCV l

Madelung constant a, M Ecoul ¼
aNAzþz�e2

4pe0R0
l

Density of states NE NE ¼ dN(E)/dE J�1 m�3

(Spectral) density of

vibrational modes

No, g No ¼ dN(o)/do s m�3

Resistivity tensor rik E ¼ r · j O m

Conductivity tensor sik s ¼ r�1 S m�1

Thermal conductivity tensor lik Jq ¼ �l · grad T W m�1 K�1

Residual resistivity rR O m

Relaxation time t t ¼ l/vF s

Lorenz coefficient L L ¼ l/sT V2 K�2

Hall coefficient AH, RH E ¼ r · j þ RH(B · j) m3 C�1

Thermoelectric force E V

Peltier coefficient Q V

Thomson coefficient m,(t) V K�1

Work function F F ¼ E1 � EF J

Number density, number

concentration

n, (p) m�3

Gap energy Eg J

Donor ionization energy Ed J

Acceptor ionization energy Ea J

Fermi energy EF, eF J

Circular wave vector, k, q k ¼ 2p/l m�1

propagation vector

Bloch function uk(r) c(r) ¼ uk(r) exp(ik · r) m�3/2

Charge density of electrons r r(r) ¼ �ec*(r) _cc (r) C m�3

Effective mass m* kg

Mobility m m ¼ ndrift/E m2 V�1 s�1

Mobility ratio b b ¼ mn/mp l

Diffusion coefficient D dN/dt ¼ �DA(dn/dx) m2 s�1

Diffusion length L L ¼
ffiffiffiffi

Dt
p

m

Characteristic (Weiss)

temperature

f, fW K

Curie temperature TC K

Néel temperature TN K
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Probability for Electrical and Computer Engineers

Charles W. Therrien

The Algebra of Events

The study of probability is based upon experiments that have uncertain outcomes. Collections of these

outcomes comprise events and the collection of all possible outcomes of the experiment comprise what is

called the sample space, denoted by S. Outcomes are members of the sample space and events of interest are

represented as sets of outcomes (see Figure III.1).

The algebra A that deals with representing events is the usual set algebra. If A is an event, then Ac (the

complement of A) represents the event that ‘‘A did not occur.’’ The complement of the sample space is the

null event, ; ¼ Sc. The event that both event A1 and event A2 have occurred is the intersection, written as

‘‘A1·A2’’ or ‘‘A1A2’’ while the event that either A1 or A2 or both have occurred is the union, written as

‘‘A1 þ A2.’’
1

Table III.1 lists the two postulates that define the algebra A, while Table III.2 lists seven axioms that

define properties of its operations. Together these tables can be used to show all of the properties of the

algebra of events. Table III.3 lists some additional useful relations that can be derived from the axioms

and the postulates.

Since the events ‘‘A1 þ A2’’ and ‘‘A1A2’’ are included in the algebra, it follows by induction that for any finite

number of events A1 þ A2 þ ��� þ AN and A1·A2 ��� � AN are also included in the algebra. Since

problems often involve the union or intersection of an infinite number of events, however, the algebra of events

must be defined to include these infinite intersections and unions. This extension to infinite unions and

intersections is known as a sigma algebra.

A set of events that satisfies the two conditions:

1. AiAj ¼ ; 6¼ for 6¼ i 6¼ j

2. A1 þ A2 þ A3 þ ��� ¼ S

is known as a partition and is important for the solution of problems in probability. The events of a

partition are said to be mutually exclusive and collectively exhaustive. The most fundamental

partition is the set outcomes defining the random experiment, which comprise the sample space by

definition.

Probability

Probability measures the likelihood of occurrence of events represented on a scale of 0 to 1. We often estimate

probability by measuring the relative frequency of an event, which is defined as

relative frequency ¼
number of occurrences of the event

number of repetitions of the experiment

(for a large number of repetitions). Probability can be defined formally by the following axioms:

(I) The probability of any event is nonnegative:

Pr½A�> 0 ðIII:1Þ

(II) The probability of the universal event (i.e., the entire sample space) is 1:

Pr½S� ¼ 1 ðIII:2Þ

1Some authors use ˙ and ¨ rather than · and þ, respectively.
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(III) If A1 and A2 are mutually exclusive, i.e., A1A2 ¼ ;, then

Pr½A1 þ A2� ¼ Pr½A1� þ Pr½A2� ðIII:3Þ

(IV) If fAig represent a countably infinite set of mutually exclusive events, then

Pr½A1 þ A2 þ A3 þ ���� ¼
X
1

i¼1

Pr½Ai� ð if AiAj ¼ ; i 6¼ jÞ ðIII:4Þ

Note that although the additivity of probability for any finite set of disjoint events follows from (III), the

property has to be stated explicitly for an infinite set in (IV). These axioms and the algebra of events can

be used to show a number of other important properties which are summarized in Table III.4. The last

item in the table is an especially important formula since it uses probabilistic information about

A2

A1

s

eventsS

FIGURE III.1 Abstract representation of the sample space S with outcome s and sets A1 and A2 representing events.

TABLE III.1 Postulates for an Algebra of Events

1. If A 2A then Ac 2A
2. If A1 2A and A2 2A then A1 þ A2 2A

TABLE III.2 Axioms of Operations on Events

A1Ac
1 ¼ ; Mutual exclusion

A1S ¼ A1 Inclusion

ðAc
1Þ

c ¼ A1 Double complement

A1 þ A2 ¼ A2 þ A1 Commutative law

A1 þ ðA2 þ A3Þ ¼ ðA1 þ A2Þ þ A3 Associative law

A1ðA2þA3Þ ¼ A1A2þA1A3 Distributive law

ðA1A2Þ
c ¼ Ac

1 þ Ac
2 DeMorgan’s law

TABLE III.3 Additional Identities in the Algebra of Events

Sc ¼ ;

A1 þ ; ¼ A1 Inclusion

A1A2 ¼ A2A1 Commutative law

A1ðA2A3Þ ¼ ðA1A2ÞA3 Associative law

A1 þ ðA2A3Þ ¼ ðA1 þ A2ÞðA1 þ A3Þ Distributive law

ðA1 þ A2Þ
c ¼ A1

c A2
c DeMorgan’s law
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individual events to compute the probability of the union of two events. The term Pr½A1A2� is referred to

as the joint probability of the two events. This last equation shows that the probabilities of two events add

as in Equation (III.3) only if their joint probability is 0. The joint probability is 0 when the two events

have no intersection (A1A2 ¼ ;).

Two events are said to be statistically independent if and only if

Pr½A1A2� ¼ Pr½A1�·Pr½A2� ðindependent eventsÞ ðIII:5Þ

This definition is not derived from the earlier properties of probability. An argument to give this definition

intuitive meaning can be found in Ref. [1]. Independence occurs in problems where two events are not

influenced by one another and Equation (III.5) simplifies such problems considerably.

A final important result deals with partitions. A partition is a finite or countably infinite set of

events A1;A2;A3; . . . that satisfy the two conditions:

AiAj ¼ ; for i 6¼ j

A1 þ A2 þ A3 þ ��� ¼ S

The events in a partition satisfy the relation:

X

i

Pr½Ai� ¼ 1 ðIII:6Þ

Further, if B is any other event, then

Pr½B� ¼
X

i

Pr½AiB� ðIII:7Þ

The latter result is referred to as the principle of total probability and is frequently used in solving

problems. The principle is illustrated by a Venn diagram in Figure III.2. The rectangle represents the

sample space and other events are defined therein. The event B is seen to be comprised of all of the pieces

TABLE III.4 Some Corollaries Derived from the Axioms

of Probability

Pr½Ac� ¼ 1 � Pr½A�

0 < Pr½A�< 1

If A1 ˝ A2 then Pr½A1�< Pr½A2�

Pr½;� ¼ 0

If A1A2 ¼ ; � then ¼ Pr½A1A2� ¼ 0

Pr½A1 þ A2� ¼ Pr½A1� þ Pr½A2� � Pr½A1A2�

A1

A2

An

B

A2B

S

FIGURE III.2 Venn diagram illustrating the principle of total probability.
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that represent intersections or overlap of event B with the events Ai. This is the graphical interpretation of

Equation (III.7).

An Example

Simon’s Surplus Warehouse has large barrels of mixed electronic components (parts) that you can buy by the

handful or by the pound. You are not allowed to select parts individually. Based on your previous experience,

you have determined that in one barrel, 29% of the parts are bad (faulted), 3% are bad resistors, 12% are good

resistors, 5% are bad capacitors, and 32% are diodes. You decide to assign probabilities based on these

percentages. Let us define the following events:

A Venn diagram representing this situation is shown below along with probabilities of various events as

given:

R

CD

G

B Pr[B] = 0.29
Pr[BR] = 0.03
Pr[GR] = 0.12
Pr[BC] = 0.05
Pr[D] = 0.32

Note that since any component must be a resistor, capacitor, or diode, the region labeled D in the diagram

represents everything in the sample space which is not included in R or C.

We can answer a number of questions.

1. What is the probability that a component is a resistor (either good or bad)?

Since the events B and G form a partition of the sample space, we can use the principle of total

probability Equation (III.7) to write:

Pr½R� ¼ Pr½GR� þ Pr½BR� ¼ 0:12þ 0:03 ¼ 0:15

2. Are bad parts and resistors independent?

We know that Pr½BR� ¼ 0:03 and we can compute:

Pr½B� · Pr½R� ¼ ð0:29Þð0:15Þ ¼ 0:0435

Since Pr½BR� 6¼ Pr½B� · Pr½R�, the events are not independent.

3. You have no use for either bad parts or resistors. What is the probability that a part is either bad and/or

a resistor?

Event Symbol

Bad (faulted) component B

Good component G

Resistor R

Capacitor C

Diode D
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Using the formula from Table III.4 and the previous result we can write:

Pr½Bþ R� ¼ Pr½B� þ Pr½R� � Pr½BR� ¼ 0:29þ 0:15 � 0:03 ¼ 0:41

4. What is the probability that a part is useful to you?

Let U represent the event that the part is useful. Then (see Table III.4):

Pr½U� ¼ 1 � Pr½Uc� ¼ 1 � 0:41 ¼ 0:59

5. What is the probability of a bad diode?

Observe that the events R, C, and D form a partition, since a component has to be one and only one

type of part. Then using Equation (III.7) we write:

Pr½B� ¼ Pr½BR� þ Pr½BC� þ Pr½BD�

Substituting the known numerical values and solving yields

0:29 ¼ 0:03þ 0:05þ Pr½BD� or Pr½BD� ¼ 0:21

Conditional Probability and Bayes’ Rule

The conditional probability of an event A1 given that an event A2 has occurred is defined by

Pr½A1jA2� ¼
Pr½A1A2�

Pr½A2�
ðIII:8Þ

(Pr½A1jA2� is read ‘‘probability of A1 given A2.’’) As an illustration, let us compute the probability that a

component in the previous example is bad given that it is a resistor:

Pr½BjR� ¼
Pr½BR�

Pr½R�
¼

0:03

0:15
¼ 0:2

(The value for Pr[R] was computed in question 1 of the example.) Frequently the statement of a

problem is in terms of conditional probability rather than joint probability, so Equation (III.8) is used

in the form:

Pr½A1A2� ¼ Pr½A1jA2� · Pr½A2� ¼ Pr½A2jA1� · Pr½A1� ðIII:9Þ

(The last expression follows because Pr½A1A2� and Pr½A2A1� are the same thing.) Using this result, the

principle of total probability Equation (III.7) can be rewritten as

Pr½B� ¼
X

j

Pr½BjAj� Pr½Aj� ðIII:10Þ

where B is any event and fAjg is a set of events that forms a partition.

Now, consider any one of the events Ai in the partition. It follows from Equation (III.9) that

Pr½AijB� ¼
Pr½BjAi� · Pr½Ai�

Pr½B�
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Then substituting in Equation (III.10) yields:

Pr½AijB� ¼
Pr½BjAi� · Pr½Ai�
P

j Pr½BjAj� Pr½Aj�
ðIII:11Þ

This result is known as Bayes’ theorem or Bayes’ rule. It is used in a number of problems that commonly arise

in electrical engineering. We illustrate and end this section with an example from the field of communications.

Communication Example

The transmission of bits over a binary communication channel is represented in the drawing below:

Pr[0R|0S] = 0.95
0S 0R

1R
Pr[1R|1S] = 0.90

Pr[1R| 0S] = 0.05

Pr[0R|1S] = 0.10

Pr[0S] = 0.5

Pr[1S] = 0.5

1S

Transmitter                                       Channel                                         Receiver

where we use notation like 0S, 0R . . . to denote events ‘‘0 sent,’’ ‘‘0 received,’’ etc. When a 0 is transmitted, it is

correctly received with probability 0.95 or incorrectly received with probability 0.05. That is, Pr½0Rj0S� ¼ 0:95

and Pr½1Rj0S� ¼ 0:05. When a 1 is transmitted, it is correctly received with probability 0.90 and incorrectly

received with probability 0.10. The probabilities of sending a 0 or a 1 are denoted by Pr½0S� and Pr½1S�. It is

desired to compute the probability of error for the system.

This is an application of the principle of total probability. The two events 0S and 1S are mutually exclusive

and collectively exhaustive and thus form a partition. Take the event B to be the event that an error occurs. It

follows from Equation (III.10) that

Pr[error] ¼ Pr[errorj0S� Pr½0S� þ Pr[errorj1S�Pr½1S�

¼ Pr½1Rj0S�Pr½0S� þ Pr½0Rj1S� Pr½1S�

¼ ð0:05Þ ð0:5Þ þ ð0:10Þ ð0:5Þ ¼ 0:075

Next, given that an error has occurred, let us compute the probability that a 1 was sent or a 0 was sent. This is

an application of Bayes’ rule. For a 1, Equation (III.11) becomes

Pr½1Sjerror� ¼
Pr½errorj1S� Pr½1S�

Pr½errorj1S�Pr½1S� þ Pr½errorj0S� Pr½0S�

Substituting the numerical values then yields:

Pr½1Sjerror� ¼
ð0:10Þð0:5Þ

ð0:10Þð0:5Þ þ ð0:05Þð0:5Þ
< 0:667
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For a 0, a similar analysis applies:

Pr½0Sjerror� ¼
Pr½errorj0S� Pr½0S�

Pr½errorj1S�Pr½1S� þ Pr½errorj0S�Pr½0S�

¼
ð0:05Þð0:5Þ

ð0:10Þð0:5Þ þ ð0:05Þð0:5Þ
< 0:333

The two resulting probabilities sum to 1 because 0S and 1S form a partition for the experiment.

Reference

1. C. W. Therrien and M. Tummala, Probability for Electrical and Computer Engineers. Boca Raton, FL:

CRC Press, 2004.
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2-29

Autonomous linear feedback shift

register, 7-6 to 7-7

Autonomous linear generator, 7-7

Autonomous operation, 3-39

Auxiliary storage, 2-13

Availability, 15-10 to 15-11, 20-5, 20-9

Avalanche injection, 2-8

B

Bar graph displays, 5-7

Batch multiprogramming, 18-4 to 18-5,

18-15

Beam shaping, 2-19 to 2-20

Beam splitter, 2-27

Bias beam, 1-31

Biased-weighted code, 8-5

Bidirectional control bus, 4-2

Bidirectional data bus, 4-2

Big-endian, 9-7

Binary, 8-1, 8-16

Binary adders

carry-lookahead, 3-48 to 3-50, 3-52,

8-22

definition of, 3-2, 8-20

full-adder, 8-20 to 8-21

n-bit, 8-20

ripple-carry adder, 8-22

Binary digits, 8-3

Binary numbers

addition of, 8-17 to 8-18

description of, 8-1 to 8-2

disadvantages of, 8-3 to 8-4

representation of, 8-17 to 8-18

signed, 8-11 to 8-14

unsigned, 8-3

Binary operations, 3-7

Binary searchtree, 9-44, 9-46

Binary variables

binary functions of, 3-1 to 3-3

switching functions of, 3-3 to 3-4

Binary-derived radices, 8-6

Biometric verifiers, 19-1, 19-8, 19-13

Bipolar inversion channel heterojunction

field-effect transistor, 1-35

Bipolar junction transistor, not pointing

in, 1-3

Bipolar transistor gates, 1-12 to 1-13

Bipolar transistors, 1-1

Bistable devices

description of, 1-23

flip-flops, See Flip-flops

inverter gates, 1-24

latches, See Latches

Bits, 9-1

Block carry-lookahead adders, 3-49 to

3-50, 3-52

Block ciphers, 19-4

Block read-only memory, 3-65

Boole, George, 3-16 to 3-17

Boolean algebra

definition of, 3-6, 3-17

fundamental theorem of, 3-14

Boolean connectives

NAND, 3-14 to 3-15

NOR, 3-14 to 3-15

XOR, 3-15 to 3-16

Boolean expressions

canonical form, 3-11 to 14

definition of, 3-5 to 3-6, 3-17

description of, 3-4

fundamental products, 3-11

minterms, 3-11 to 3-13

normal sum-of-products form of, 3-10

to 3-11

Boolean function

in canonical form, 3-14

definition of, 3-13, 3-17

Boolean variables, 9-3

Boundary scan, 7-18 to 7-19, 7-27

Boundary value testing, 12-11, 12-13

Broadband ISDN, 14-12

Built-in logic block observation, 7-24

Built-in self-test

definition of, 7-5 to 7-6, 7-8, 7-27

techniques, 7-21 to 7-24

Burn-in phase, 20-2, 20-8

Bus

bidirectional control, 4-2

bidirectional data, 4-2

definition of, 8-33, 8-37

Inter IC, 3-33

unidirectional memory-address, 4-2

BYPASS register, 7-19

C

C, 9-22, 9-26

mC chip

components of, 4-3

description of, 4-2

development support for, 4-4

mP chip vs., 4-4

software for, 4-3

trends in, 4-4 to 4-5

Cache memory, 8-34, 8-37

Cache replacement algorithms, 8-34

Called routine, 9-11

Callee’s frame, 9-12

Calling conventions, 9-11 to 9-14

Calling routine, 9-11

Canonical sum-of-products form, 3-11

to 3-14

Capacitance, 10-6

Capacitive overlay, 10-10

Capture registers, 4-7, 4-14

Carry generator, 8-22

Carry-lookahead adders, 3-48 to 3-50,

3-52, 8-22

Cathode ray tube, 10-3, 13-4

Cavity-based optical logic devices, 1-31

to 1-32

Central processing unit

description of, 4-11

emulation of, 8-42

Characteristic table, 1-28

Charge-coupled device, 10-14

Cholesteric crystals, 5-14, 5-16

Ciphers, 19-4

Circuit switching, 14-9
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Circuit under test, 7-10

CISC, See Complex instruction set

computers

Class

abstract, 9-32

definition of, 9-30, 9-35

Clients, 18-15

Clipping, 13-7

Clock, 4-2

Clock rate, 8-35 to 8-36

Clock-mode sequential logic circuits,

3-18, 3-23 to 3-25, 3-27

Cluster computing, 17-13

Code-based test methods, 12-14 to 12-16

Coercivity, 2-24

Collimation, 2-19 to 2-20

Collision detection, 14-6, 19-11

Color plasma displays

AC, 5-27

attributes of, 5-18 to 5-20

devices, 5-25 to 5-27

gas discharge, 5-18 to 5-20

grayscale technique used in, 5-20

input impedance characteristic of,

5-20

lifetime of, 5-19

liquid-crystal displays vs., 5-19

luminance of, 5-19

markets for, 5-18

operating principles of, 5-17 to 5-18

Combinational circuit, 7-11

Combinational logic, 3-17

Combinational logic circuits

block diagram model of, 3-19

definition of, 3-27

delay output blocks, 3-19

description of, 1-1, 3-18

gate-level, 3-19 to 3-21

Combinational networks, 3-4 to 3-5

Command interpreter, 18-15

Commands, 18-15

Common-mode rejection ratio, 6-5, 6-8

Communication interface

for data acquisition system, 6-6 to 6-7

definition of, 6-6

Communications subnetwork, 14-4

Compact disk, 2-14, 2-29

Compilers

C, 9-22

definition of, 9-1, 9-23, 9-26, 9-35

high-level language, 9-2

operations of, 9-16 to 9-20

optimization of, 9-16 to 9-20

principles of, 9-26

COMPLEMENT, 3-7

Complement, 8-5, 8-16

Complement notation, 8-5

Complementary metal-oxide

semiconductor

NAND gates, 1-5 to 1-6

static random-access memory cell, 2-4

Complementary metal-oxide

semiconductor logic

advanced high-speed, 1-21

description of, 1-1, 1-10 to 1-11

design considerations for, 1-22

diode-protected, 1-21

family of, 1-4 to 1-6

fan-out, 1-7, 1-10

high-speed, 1-21

inputs, 1-22

NAND gate, 1-20

n-channel metal-oxide semiconductor

vs., 1-20

p-channel metal-oxide semiconductor

vs., 1-20

power dissipation, 1-8

Complex instruction set computers, 4-2,

4-4, 9-3, 9-22

Complex programmable logic devices

architecture of, 3-55 to 3-56

definition of, 3-66

description of, 3-53

design example for, 3-58 to 3-63

Component failure, 20-1

Compute-bound, 18-15

Computer(s)

components of, 8-32, 17-1

connection among, 18-6 to 18-7

database, 16-16

embedded, 18-8

performance of, 8-34 to 8-36

Computer aided software engineering,

12-2, 12-6 to 12-9

Computer architecture

definition of, 8-32, 8-37

functional units, 8-32 to 8-33

operational concepts, 8-33 to 8-34

Computer graphics, See Graphics

Computer laws, 19-13

Computer networks, See also Networks

classification of, 14-1

International Standards Organization

classification of, 14-2

ISDN, 14-11 to 12

local area networks, 14-4 to 14-6

metropolitan area networks, 14-4,

14-6 to 14-8

open system interconnection, 11-2,

14-1 to 14-4

wide area networks, 14-4, 14-9 to

14-11

Computer security, See Security

Computer systems

classification of, 17-1 to 17-2

utilization of, 17-5 to 17-8

Computer viruses, 19-1, 19-8

Computer-aided design, 3-64

Computer-aided design/computer-aided

manufacturing, 13-3

Computing

cluster, 17-13

distributed, 17-13, 18-6 to 18-7

grid, 17-13 to 17-15

Internet, 17-13

microprocessor application in, 4-11 to

4-13

nanocomputing, 8-29

parallel, 17-9 to 17-19

pen-based, 10-12 to 10-13

stochastic, 8-27, 8-30

Computing arithmetic

arithmetic-logic units, 8-24

basics of, 8-17 to 8-20

binary adders, See Binary adders

binary numbers, See Binary numbers

binary-coded decimal numbers, 8-24

description of, 9-14

fixed-point numbers, 8-25

floating-point numbers, 8-25 to 8-26

low power, 8-26 to 8-27

multipliers, 8-23 to 8-24

of nanostructures, 8-29

residue number systems, 8-18 to 8-20

Concentrators, 14-7

Concurrency control, 18-16

Condition codes, 9-10, 9-23

Conditional expression, 9-37

Configurable logic block, 3-53, 3-56 to

3-57, 3-61 to 3-62, 3-66

Constant expressions, 9-18 to 9-20

Consumer electronics, 4-9

Context block, 18-16

Context switching, 18-13, 18-16

Control memory, 8-44

Control unit, 8-33, 8-37

Controller

description of, 9-57 to 9-58

design of, 9-59 to 9-64

Counters, 3-37 to 3-38

Coupling, 9-28, 9-35

Critical path-delay, 8-17

Critical paths, 7-25

Critical race, 1-28

CrossCheck technique, 7-20 to 7-21

Cryptography, 3-44 to 3-45, 11-2, 18-12

to 18-13, 19-3 to 19-6

Cryptology, 19-3

Current limiting, for plasma displays,

5-21 to 5-22, 5-24

Cut-off frequency, 6-5

Cyclic redundancy check, 14-3

D

D flip-flops, 1-26, 1-28, 3-24 to 3-25,

3-33

D latch, 1-24 to 1-26

Daemons, 18-12, 18-16

D-algorithms, 7-5

Data acquisition

analog–digital converters’ role in, 6-6

block diagram of, 6-2
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definition of, 6-1

systems

communication interface for, 6-6 to

6-7

recording methods, 6-8

software used with, 6-8

Data circuit-terminating equipment,

14-10

Data compaction, 7-5 to 7-8

Data control, 4-6 to 4-9

Data definition language, 16-1, 16-6

Data direction register, 3-37

Data encryption standard, 19-4 to 19-5

Data integrity, 16-12 to 16-14

Data link layer, of open system

interconnection model, 14-2 to

14-4

Data localization, 16-15

Data manipulation language, 16-6

Data model, 16-2, 16-16

Data parallel paradigm, 17-17 to 17-18

Data recording, 6-8

Data tablet, 10-5 to 10-7, 10-17

Data types

abstract, 9-35, 9-37, 9-39 to 9-40, 9-46

description of, 9-36

fundamental, 9-37

Database

definition of, 16-1, 16-16, 18-16

description of, 16-1

distributed, 16-15, 16-16

hierarchical, 16-9 to 16-10

network, 16-10 to 16-11

object-oriented, 16-14 to 16-15

parallel, 16-16

relational, 16-3 to 16-9

Database abstraction, 16-1 to 16-2

Database administrator, 16-12

Database computer, 16-16

Database management systems

architecture of, 16-12

definition of, 16-1, 16-16

security of, 19-7

Database security, 16-14

Deadlock, 16-14

Decision tables, 12-13

Declarative languages, 9-30

Declarative paradigm, 9-29, 9-35

Deep sub-micron effects, 3-43

Defect tolerance, 8-29

Delay fault, 7-3

Delayed binding, 9-26, 9-35

Dependability

definition of, 15-6, 15-6, 15-11

evaluation of, 15-6 to 15-11

Depletion mode, 2-8

Design entry, 9-49

Design fault, 20-1 to 20-2

Design for testability

ad-hoc techniques, 7-12 to 7-15

boundary scan, 7-18 to 7-19, 7-27

built-in self-test techniques, 7-21 to

7-24

circuit/system reset requirements, 7-12

clock control requirements, 7-12

CrossCheck technique, 7-20 to 7-21

definition of, 7-2, 7-9

future for, 7-27

level-sensitive scan design, 7-15 to

7-17

path-delay testing, 7-24 to 7-27

pseudo-random testing, 7-22

random-access scan, 7-17 to 7-18

scan path, 7-17, 7-22

structured techniques, 7-15 to 7-27

Detect/emit devices, 1-35 to 1-36

Detect/modulate devices, 1-32 to 1-33

Device drivers, 18-4, 18-8, 18-16

Device interface, 18-16

Device managers, 18-10

Diagonal microinstructions, 8-40

Differential detection, 2-27 to 2-28

Diffie–Hellman key exchange, 19-5 to

19-6

Diffraction theory, 2-21

Digital network, 14-11

Digital signal processing, 4-12 to 4-13

Digital systems

design of, 3-52

implementation of, 3-52 to 3-53

overview of, 3-1 to 3-2

taxonomy of, 3-53

Digital tachometer, 4-7 to 4-8

Digital-to-analog converter, 4-8, 4-14

Digitizer, 10-5 to 10-6

Diminished radix complement

representation, 8-14

Direct bandgap, 5-2 to 5-3

Direct memory access, 6-6, 6-8, 8-34

Direct-access storage device, 2-19

Disassembler, 9-2, 9-23

Discrete logic, 3-53

Disjoint unions, 9-39

Disk rotation speed, 2-18

Displacement joystick, 10-9

Displays

cathode ray tube, 10-3, 13-4

plasma, See Plasma displays

types of, 13-4 to 13-5

Distributed computing, 17-13, 18-6 to

18-7

Distributed database, 16-15, 16-16

Distributed operating systems, 18-8,

18-16

Distributed queue dual-bus, 14-6

Division, floating-point, 8-26

Domain, 3-3

Double buffering, 13-4

Double heterostructure optoelectronic

switch, 1-35

Double-rank pulse-mode asynchronous

logic circuit, 3-26

DRAM, See Dynamic random-access

memory

Drive factor, 1-12

Dual in-line packages, 4-3

Duality principle, 3-8 to 3-10

Duplex, 3-39

Dynamic interconnection network, 17-5

Dynamic random-access memory

description of, 2-1 to 2-2

design of, 2-2

integrated circuits, 2-2

in microprocessor, 2-2 to 2-3

static random-access memories vs.,

2-2

synchronous, 2-4

Dynamic types

binary searchtree, 9-44, 9-46

definition of, 9-40

functions, 9-44

general tree, 9-44, 9-46

hashing, 9-45

n-ary tree, 9-44, 9-46

queues, 9-40 to 9-43

stacks, 9-43

E

Edge-triggered flip-flops, 1-26 to 1-28,

3-24

EEPROM

definition of, 3-54, 3-66

description of, 2-5

Elastomer, 10-1, 10-3

Electrical nonlinearity, 5-19

Electrically erasable programmable read-

only memory, See EEPROM

Electrically programmable read-only

memory, See EPROM

Electroluminescent displays, 13-5

Electronic commerce, 11-1 to 11-4

Electronic design automation, 9-47

Embedded computers, 18-8

Embedded memory blocks, 7-15

Emitter coupled logic

description of, 1-1, 1-10 to 1-11, 1-18

to 1-19

family of, 1-6

power supply terminals, 1-18

quad two-input NOR gates, 1-19

switching speed of, 1-7

Emulation, 8-41 to 8-42

Emulator, 8-44

Encapsulation, 16-15

Encoder, 4-7, 4-14

Engineering software packages, 13-5 to

13-6

Enhancement mode, 2-8

Enhancement-mode metal oxide

semiconductor transistors, 1-1

Ensemble processor, 17-2 to 17-3, 17-8

Entity, 16-2
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Enumerated types, 9-37 to 9-38

EPROM

definition of, 3-54, 3-66

description of, 2-5

Equivalence class testing, 12-12 to 12-13

Error, 12-10, 15-1, 15-11, 20-2

Error correction coding, 2-17, 2-29

Espionage, 19-12

Essential model, of software engineering,

12-2, 12-5 to 12-6, 12-9

Etalon, 1-31

Ethernet, 14-6

Even parity, 15-4

Excess representations, 8-14

Exclusive lock, 16-14

Exclusive-OR, See XOR

Executable image, 9-23

EXOR gate, 7-7

Expert system shell, 9-30

Expert systems

definition of, 16-17, 16-20

institutionalization of, 16-19 to 16-20

rule-based, 16-17 to 16-20

Explicit addresses, 9-9

Extended mnemonics, 9-21

External quantum efficiency, 5-6, 5-10

F

Fabric, 3-56, 3-66

Fabry–Perot cavity, 1-31

Failure

component, 20-1

definition of, 15-6, 15-11, 20-1

mean time between failures, 15-8 to

15-9, 20-4

mean time to failure, 15-7 to 15-10,

20-4, 20-10

Failure rate

definition of, 20-9

description of, 20-2 to 20-3

reliability and, 20-2 to 20-4

FAN, 7-5

Fan-in, 3-6

Fan-out

definition of, 1-7, 1-10, 1-12, 3-6

multiple, 3-6

Fan-out requirement, 3-21, 3-27

Fast Fourier transform, 4-13

Fault

definition of, 7-3, 12-10, 15-1, 15-11,

20-1

design, 20-1 to 20-2

intermittent, 20-2

permanent, 7-3, 20-2

software, 15-5 to 15-6

transitory, 20-2

Fault avoidance, 15-11

Fault collapsing, 7-3

Fault coverage, 7-2, 7-8, 15-9

Fault effect, 7-3

Fault models, 20-2

Fault simulation, 7-8

Fault simulator, 7-11

Fault tolerance

applications of, 15-1

definition of, 8-29, 15-1, 15-11

dependability evaluation, 15-6 to

15-11

hardware redundancy, 15-1 to 15-2

information redundancy, 15-2 to 15-5

software redundancy, 15-5 to 15-6

time redundancy, 15-5

Fault-tolerant operating systems, 18-8,

18-16

Feedback multiplexer, 3-55

Feedback shift register, 3-33

Feedforward multilayer network, 8-30

Feistel cipher, 19-4 to 19-5

Feng’s classification, 17-2 to 17-3

Ferromagnetic material, 2-11, 2-13

Fetching, 9-59

Fiber distributed data interface, 14-6 to

14-7

Field-effect transistors

description of, 2-1

n-channel, 2-1

p-channel, 2-1

Field-programmable gate arrays, See also

Programmable logic devices

antifuse, 3-65

architecture of, 3-56 to 3-58

definition of, 3-66

description of, 3-37, 3-41

design example for, 3-58 to 3-63

fabric of, 3-56, 3-66

static read-only memory, 3-56

structure of, 3-42

video processing uses of, 3-45

Field-programmable logic, 3-43

File, 18-16

File manager, 18-9 to 18-10

Finite state machine, 9-59

Firewalls, 18-12, 18-16

Firmware, 8-41, 8-44

First property of multiplication, 8-19

Fixed-point number, 8-25

Flags, See also Flip-flops

definition of, 9-16

description of, 3-28

types of, 3-28

Flash cells, 3-66

Flash EEPROMs, 2-5 to 2-6

Flexible displays, 13-5

Flip-flops

asynchronous, 3-28

D, 1-26, 1-28, 3-24 to 3-25, 3-33

definition of, 3-53, 3-66

description of, 1-1, 1-23, 1-26 to 1-27,

3-28

edge-triggered, 1-26 to 1-28, 3-24

J-K, 1-27 to 1-28, 3-24

latches vs., 1-27

master-slave, 1-26

set-reset (S-R), 3-28, 3-30

Floating-point number systems, 8-12,

8-14 to 8-16, 8-25 to 8-26

Floppy disk, 2-14

Focus error detection, 2-22

Folded bit-line array, 2-3

Force joystick, 10-9

FORTRAN, 9-25 to 9-26, 9-28

4-LUT, 3-41

Fractions, conversion of, 8-9 to 8-11

Frame buffer, 13-4

Frame relay, 14-10 to 14-11

Frame relay access devices, 14-11

Frequency division multiplexing, 14-6

Fresnel loss, 5-6

FTP, 18-16

Full adder, 3-46 to 3-48, 3-52, 3-59 to

3-60, 8-20 to 8-21

Full-custom integrated circuits, 3-54,

3-66

Function queue, 9-42

Functional paradigm, 9-28, 9-35

Functional verification, 9-53 to 9-59

Functionalities, 9-37, 9-46

Functions, 9-44

Fundamental data types, 9-37

Fundamental mode, 1-28

Fundamental products, 3-11

Fundamental-mode asynchronous

sequential logic circuit, 3-26

Fuse, 3-66

Fused deposition modeling, 13-4

G

GaAs, 5-4

Galois fields, 8-30

Gas discharge

in color plasma displays, 5-18 to 5-20

I-V characteristic of, 5-22

physics of, 5-20 to 5-21

Gate

AND, See AND gate(s)

bipolar transistor, 1-12 to 1-13

EXOR, 7-7

logic, See Logic gates

majority, 8-28

NAND, See NAND gate

NOR, 1-30, 3-16 to 3-17

OR, 3-4, 3-17

threshold, 8-28 to 8-29

Gate arrays

definition of, 3-66

description of, 3-53

factory-programmed, 3-54

field-programmable, See Field-

programmable gate arrays

Gated registers, 3-28 to 3-30

General purpose libraries, 13-6
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General register machines, 9-6

General tree, 9-44, 9-46

Glitches, 3-25, 3-27

Glow discharge, in plasma displays, 5-21,

5-23

Gopher, 18-16

GPU, See Graphics-processing units

Graphical output devices, 13-3 to 13-5

Graphical user interfaces, 18-6, 18-16

Graphics

algorithms for, 13-7 to 13-11

applications of, 13-2 to 13-3

description of, 13-1 to 13-2

display technologies, 13-4 to 13-5

future of, 13-11

input devices for, See Input devices

interaction algorithms, 13-10 to 13-11

modeling of, 13-7 to 13-8

parallel, 13-11

rendering, 13-9 to 13-10

virtual reality uses of, 13-3 to 13-4

Graphics software

engineering packages, 13-5 to 13-6

history of, 13-5

Graphics-processing units, 13-1, 13-3

Grayscale, 5-28 to 5-29

Grid computing, 17-13 to 17-15

Grooved media of optical storage, 2-17,

2-29

Gustafson–Barsis law, 17-18

H

Hackers, 19-1, 19-13

Halfword, 9-5

Halstead’s metric, 9-27, 9-34

Hamming distance, 15-3 to 15-4

Hard error, 20-2

Hardware description languages

controller, 9-59 to 9-64

definition of, 3-66

description of, 9-47

design methodology for, 9-48 to 9-53

functional verification, 9-53 to 9-59

productivity gains, 9-47 to 9-48

programmable logic device design

flow using, 3-63 to 3-65

types of, 9-48

Hardware redundancy, 15-1 to 15-2

Hardware security, 19-8 to 19-10

Hardware utilization, 17-6 to 17-7

Hash function, 11-2

Hashing, 9-45

Hazard, 3-25, 3-27

Hazard rate, 20-2

Head cell, 9-42

Head-mounted displays, 13-5

Heisenberg Uncertainty Principle, 5-4

Hexadecimal

binary-coded, 8-4 to 8-6

definition of, 3-27, 8-4, 8-16

Hierarchical databases, 16-9 to 16-10

Hierarchical model, 16-2

Hierarchical structuring, 9-36

High definition television, 5-18

High dynamic range displays, 13-5

High performance Fortran, 17-18

Higher-order languages, See High-level

languages

High-level languages

abstractions expressed by, 9-24, 9-27

assembly language relations with, 9-20

to 9-22

compilers, 9-2

debuggers, 9-20

declarative languages, 9-30

definition of, 8-44, 9-1, 9-23 to 9-24,

9-26, 9-35

delayed binding of variables in, 9-26,

9-35

description of, 18-14

examples of, 9-1

features of, 9-25

functional, 9-29

future of, 9-34

history of, 9-24

interpreters, 9-26, 9-35

level of, 9-27, 9-34

for microprogramming, 8-41, 8-44

P operators, 9-27

paradigms and, 9-28 to 9-33

Q operands, 9-27

rules associated with, 9-24 to 9-27

semantics of, 9-24 to 9-25, 9-36

summary of, 9-33 to 9-34

variable allocation in, 9-16 to 9-17

HIGH-to-LOW propagation delay time,

1-11

HIGH-to-LOW transition time, 1-12

Horizontal microinstructions, 8-39, 8-44

HTTP, 18-16

Hybrid signed digit, 8-26, 8-30

Hypercube, 4-12

I

IBM 1620, 18-2

IC, See Integrated circuits

Idempotency, 3-7, 3-11

IEEE 1149.1 standard, 7-19

Illumination algorithms, 13-9

Implementation model, of software

engineering, 12-2, 12-6, 12-8

to 12-9

Implementation part, 9-31, 9-35

In-circuit emulator, 4-4

Indirect bandgap, 5-2

Indium–tin oxide, 5-14, 5-16

Information modeling, 12-4 to 12-6,

12-9

Information redundancy, 15-2 to 15-5

Inheritance, 9-30 to 9-31, 9-45, 16-15

Injection electroluminescence, 5-2, 5-10

Input devices

advantages of, 10-16 to 10-17

data tablet, 10-5 to 10-7, 10-17

description of, 10-1, 13-10

disadvantages of, 10-16 to 10-17

joystick, 10-9, 10-16 to 10-17

keyboard, 10-1 to 10-3, 10-16 to 10-17

light pen, 10-3 to 10-5, 10-16 to 10-17

list of, 10-2

mouse, 10-7 to 10-8, 10-16 to 10-17

scanners, 10-14, 10-16 to 10-17

summary of, 10-16 to 10-17

touch, 10-9 to 10-14, 10-16 to 10-17

trackball, 10-8, 10-16 to 10-17

voice, 10-15 to 10-16, 10-18

Input HIGH current, 1-12

Input LOW current, 1-12

Input/output, 18-16

Input/output ports

definition of, 3-39

description of, 3-35 to 3-36

Input/output software, 6-8

Input/output unit, 8-32, 8-37

Input/output-bound, 18-16

Instance variables, 9-31, 9-35, 9-45

Institutionalization, of expert systems,

16-19 to 16-20

Integers, conversion of, 8-7 to 8-8

Integrated application, 18-16

Integrated circuits

application-specific, See Application-

specific integrated circuits

arithmetic logic units, 3-51

definition of, 3-66

description of, 1-1, 3-52

dynamic random-access memory-

integrated, 2-2

full-custom, 3-54, 3-66

functional verification of, 9-53 to 9-59

medium scale integration, 1-1

power requirements, 1-7 to 1-8

schematic diagram of, 7-10

small scale integration, 1-1

testing of, See Testing

Integrated circuits logic

families of, 1-2

subfamilies of, 1-2

Integrated Services Digital Network, See

ISDN

Inter IC bus, 3-33

Interactive multiprogramming, 18-5 to

18-6, 18-16

Interconnection networks

definition of, 17-1, 17-8

description of, 17-3 to 17-4

dynamic, 17-5

static, 17-5

Interface specification, 9-31, 9-35

Intermittent faults, 20-2

Internal quantum efficiency, 5-6, 5-10
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International Standards Organization,

14-2

Internet

definition of, 19-13

description of, 14-14

protocol suite, 14-14 to 14-15

Internet computing, 17-13

Interpreter

command, 18-15

definition of, 9-26, 9-35

Interrupt(s)

definition of, 4-14, 6-6

programming support for, 8-42

Interrupt service routine, 8-33

IP, 14-15 to 14-16, 18-7

IPSec, 11-3

IPv6, 14-16 to 14-18

ISDN, 14-11 to 12

Isoefficiency, 17-19

J

J-K flip-flops, 1-27 to 1-28, 3-24

Job, 18-16

Job-control language, 18-16

Joystick, 10-9, 10-16 to 10-17

Jump subroutine, 9-12

K

Kernel

components of, 18-13 to 18-15

definition of, 18-1, 18-16

macrokernel, 18-14, 18-16

microkernel, 18-14 to 18-16

nanokernel, 18-16

in privileged state, 18-11

virtualizing, 18-17

Kerr effect, 2-26

Kerr rotation angle, 2-27

Keyboard, 10-1 to 10-3, 10-16 to 10-17

Knowledge

acquisition of, 16-18

encoding of, 16-19

representation of, 16-19

testing and evaluation of, 16-19

Knowledge base, 16-17, 16-20

Knowledge engineering, 16-18, 16-20

L

LANs, See Local area networks

Large-scale integration, 1-11

Laser power modulation, 2-24 to 2-25

Last-in-first-out structure, 9-6

Latches

D, 1-24 to 1-26

description of, 1-1, 1-23 to 1-24

flip-flops vs., 1-27

shift-register, 7-15

S-R, 1-23 to 1-24

S-R NAND, 1-24 to 1-25

transparent, 3-30 to 3-31

Least significant bit, 6-5, 6-8

Level-sensitive scan design, 7-15 to 7-17,

7-26

Light beam interruption, 10-11 to 10-12

Light pen, 10-3 to 10-5, 10-16 to 10-17

Light-amplifying optical switch, 1-37

Light-emitting diodes

description of, 5-1

dissipation of, 5-11

efficiency of, 5-5 to 5-6

interfacing, 5-7 to 5-10

matrix arrays, 5-7

organic, 5-4, 13-5

semiconductor used with, 5-1 to 5-5

Light-weight process, 18-16

Limited entry decision table, 12-13

Linear cellular automata registers, 7-5

Linear feedback shift register

autonomous, 7-6 to 7-7

definition of, 7-8

description of, 3-33, 3-40, 7-5

maximal-length, 7-22

Linker, 9-1, 9-23

Liquid-crystal displays

addressing, 5-15

cholesteric crystals, 5-14, 5-16

color plasma displays vs., 5-19

description of, 5-11, 13-4

features of, 5-11 to 5-12

interfacing of, 5-15 to 5-16

monochromatic, 5-4

operating principles of, 5-11 to

5-14

passive, 5-11

Liquid-crystal light valve, 1-37

LISP, 9-28 to 9-29

Little-endian, 9-7

Load factor, 1-12

Local area networks, 14-4 to 14-6, 19-10

Locking, 16-14

Logic

multi-valued, 8-30

threshold, 8-28, 8-30

Logic block, configurable, 3-53, 3-56 to

3-57, 3-61 to 3-62, 3-66

Logic bomb, 19-8, 19-13

Logic circuits

classification of, 1-1

combinational, See Combinational

logic circuits

description of, 3-18

propagation delay of, 3-19

sequential, See Sequential logic circuits

Logic cones, 7-14, 7-23

Logic families, See also specific logic

family

circuit parameters for, 1-6 to 1-9

interfacing between, 1-9

selection of, 1-22

Logic gates

definition of, 1-22

description of, 1-1, 1-10 to 1-11

driving capability of, 1-12

effective loading of, 1-12

functions of, 1-1

power consumption of, 1-12

specification parameters, 1-11 to 1-12

Logic level, 1-10

Logic partitioning, 7-14

Logic path, 7-24

Longword, 9-5

Look-up table, 3-56 to 3-57, 3-61

Loop detectors, 4-10

Low power computing arithmetic, 8-26

to 8-27

LOW-to-HIGH propagation delay time,

1-11

LOW-to-HIGH transition time, 1-11

74LS165A shift register, 3-30, 3-32

Luminous efficiency, 5-29

M

Machine language, 9-2

Macro, 9-2, 9-21, 9-23

Macroblock, 3-66

Macrocell, 3-55, 3-66

Macrokernel, 18-14, 18-16

Magnetic cartridge, 2-10

Magnetic cassette, 2-10 to 2-11

Magnetic field modulation, 2-25 to 2-26

Magnetic tape

blocks of data on, 2-12

consumer uses of, 2-14

definition of, 2-9, 2-13

description of, 2-10 to 2-12

format of, 2-11 to 2-13

history of, 2-9

non-return-to-zero mode recording

mode, 2-13

phase encoding recording mode, 2-13

read pulses on, 2-12

read/write head layout, 2-11

recording modes for, 2-13

storage uses of, 2-10

write pulses on, 2-12

Magneto-optical disk data storage

access time, 2-19

automatic focusing, 2-21 to 2-22, 2-29

automatic tracking, 2-22 to 2-24,

2-29

definitions associated with, 2-15 to

2-17

disk rotation speed, 2-18

laser power modulation, 2-24 to 2-25

magneto-optical readout, 2-26 to 2-28

materials of, 2-28 to 2-29

optical disks, 2-14 to 2-15

optical path, 2-19 to 2-21, 2-29

overview of, 2-14 to 2-15
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thermomagnetic recording process,

2-24 to 2-26, 2-30

tracks, 2-15, 2-17 to 2-18, 2-30

Magneto-optical Kerr effect, 2-26,

2-29

Mailbox, 18-16

Maintainability, 15-11

Majority gates, 8-28

Malware, 18-12, 18-16

Mantissa, 8-15 to 8-16, 8-25

Manufacturing, 4-9 to 4-10

Markov modeling, 20-8

Massively parallel processing, 17-12

Master-slave, 17-15

Master-slave flip-flops, 1-26

MATLAB, 3-44

Matrix addressing, 5-15

Matrix displays, 5-9

Maximal-length linear feedback shift

register, 7-22

Maximum concurrency, 17-5 to 17-6

Maxterm, 3-13

MC68000, 9-11 to 12

Mean time between failures, 15-8 to

15-9, 20-4

Mean time to failure, 15-7 to 15-10,

20-4, 20-9

Mean time to repair, 15-8 to 15-10, 20-4,

20-9

Medium-scale integration integrated

circuits, 1-1, 1-11, 3-21, 3-27

Member fields, 9-31, 9-35

Member functions, 9-31, 9-35

Memory

cache, 8-34, 8-37

control, 8-44

definition of, 5-29, 18-16

description of, 9-5

multiprogramming effects on, 18-4

primary, 8-32

random-access, See Random access

memory

read-only, See Read-only memory

secondary, 8-32

Memory blocks, embedded, 7-15

Memory cycle, 8-32

Memory element, 1-28

Memory hierarchy, 8-34 to 8-35, 8-37

Memory management, 8-35, 8-37

Memory management units, 2-9

Memory unit, 8-32, 8-37

Message-passing, 9-31, 17-12, 17-15 to

17-17

Metalanguage, 9-25, 9-35

Metal-oxide semiconductor

n-channel, 1-4, 1-20

p-channel, 1-4, 1-20

Metal-oxide semiconductor field-effect

transistor

description of, 1-4, 5-4

matrix addressing with, 5-15

n-channel, 1-4

p-channel, 1-4

Metastable atom, 5-29

Methods, 9-31, 9-35, 9-45

Metric

definition of, 9-27, 9-35

test coverage, 12-15

Metropolitan area networks, 14-4, 14-6

to 14-8

Microassemblers, 8-40 to 8-41

Microcommands, 8-38, 8-44

Microcomputers, 4-11 to 4-12

Microcontrollers

architecture of, 4-8 to 4-9

busses used by, 4-2

definition of, 4-7, 4-14

description of, 4-1

history of, 4-1

microprocessors vs., 4-8

types of, 4-2 to 4-5

See also mC chip

Microinstructions, 8-38 to 8-40, 8-44

Microkernel, 18-14 to 18-16

Microprocessors

applications of, 4-5 to 4-14

arithmetic logic unit of, See

Arithmetic logic units

clock rate, 8-35 to 8-36

clock used by, 4-2

computing application of, 4-11 to

4-13

consumer electronics application of,

4-9

control uses of, 4-8 to 4-11

costs of, 4-3

data control uses of, 4-6 to 4-9

definition of, 4-1, 8-32

digital tachometer use of, 4-7 to 4-8

dynamic random-access memory in,

2-2 to 2-3

manufacturing uses of, 4-9 to 4-10

microcontroller vs., 4-8

overview of, 4-5

packaging of, 4-3

point-of-sale terminal use of, 4-6 to

4-7

safety issues of, 4-11

software for, 4-3

speed of, 2-9

traffic control uses of, 4-10 to 4-11

transportation industry use of, 4-10

to 4-11

types of, 4-2 to 4-5

See also mP chip

Microprogramming

applications of, 8-42 to 8-43

definition of, 8-38

emulation, 8-41 to 8-42

firmware implementation for, 8-41,

8-44

high-level languages for, 8-41, 8-44

levels of, 8-38

microinstructions, 8-38 to 8-40,

8-44

microprograms, 8-40 to 8-41

operating system support uses of,

8-43

supporting software for, 8-41

Middleware, 18-16

MIMD, See Multiple instruction stream,

multiple data stream

Minimum high-level input voltage, 1-12

Minimum high-level output voltage,

1-12

Minimum low-level input voltage, 1-12

Minimum low-level output voltage, 1-12

Minterms, 3-11 to 3-13

MISD, See Multiple instruction stream,

single data stream

Model-based software engineering, 12-1

to 12-2

Modulation codes, 2-17

Module structure chart, 12-6, 12-9

Moduli, 8-18

Momentum, 5-3

Moore’s law, 4-2

MOSFET, See Metal-oxide

semiconductor field-effect

transistor

Mouse, 10-7 to 10-8, 10-16 to 10-17

MS-DOS, 18-11, 18-14

Multi-emitter cell, 2-4

Multifunction arithmetic logic units,

3-50 to 3-51

Multiple fan-out, 3-6

Multiple instruction stream, multiple

data stream, 17-2, 17-10 to

17-11

Multiple instruction stream, single data

stream, 17-2, 17-10 to 17-11

Multiple overlapping register set, 9-6

Multiple program multiple data model,

17-15

Multiple quantum well modulators, 1-32

to 1-33, 1-37

Multiple-input shift register, 7-8

Multiple-input signature register, 7-20,

7-23

Multiplexer, 3-55, 6-1, 6-3, 6-8

Multiplication

floating-point, 8-26

properties of, 8-19

Multipliers, 8-23 to 8-24

Multiprocessing, 4-12

Multiprocessors, 8-36 to 8-37

Multiprogramming

batch, 18-4 to 18-5, 18-15

definition of, 18-16

interactive, 18-5 to 18-6, 18-16

memory affected by, 18-4

Multi-valued logic, 8-30

Mutable objects, 9-41
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N

NAND, 3-14 to 3-15

NAND Flash, 2-6

NAND gate

circuit symbol of, 3-15, 3-17

CMOS, 1-5 to 1-6, 1-20

TTL, 1-4

Nanocomputing, 8-29

Nanokernel, 18-16

Nanostructures, 8-29

n-ary tree, 9-44, 9-46

National Computer Security Center, 19-8

Natural binary-coded decimal code, 8-4

to 8-5

Natural binary-coded decimal number

systems, 8-4 to 8-5

N-bit binary adders, 8-20

n-channel metal-oxide semiconductor

field-effect transistor, 1-4, 1-20

Nematic, 5-17

Nested inverse radix, 8-9

Nested radix, 8-7

Network(s)

combinational, 3-4 to 3-5

computer, See Computer networks

definition of, 3-4

description of, 14-1

expressions and, 3-5 to 3-6

feedforward multilayer, 8-30

gate inputs, 3-4

neural, 8-28

output expression of, 3-6

security of, 19-10 to 19-12

threshold, 8-28

topologies, 19-10

Network databases, 16-10 to 16-11

Network layer, of open system

interconnection model, 14-2 to

14-3

Network model, 16-2

Network services, 18-16

Networked operating systems, 18-7,

18-16

Neural networks, 8-28

Noise immunity, 1-7, 1-10

Noise margins, 1-12

Nonlinear Fabry–Perot, 1-29, 1-31, 1-37

Nonphotorealistic rendering, 13-10

Nonprivileged state, 18-11, 18-16

Non-return-to-zero mode, 2-13

Nonsaturated logic circuit, 1-12 to 1-13

Nonsaturated transistor-transistor logic,

1-14 to 1-17

Nontraceability, 11-3

Nonuniform memory access, 17-12

Nonuniform rational b-splines, 13-7

Nonvolatile memory

definition of, 2-9, 2-13

programmable, 2-5 to 2-6

NOR, 3-14 to 3-15

NOR gate

circuit symbol of, 3-16 to 3-17

description of, 1-30

Normal product-of-sums, 3-13

Normal sum-of-products form, 3-10 to

3-11

NOT gate, 3-17

Not pointing in bipolar junction

transistor, 1-3, 1-6

Number systems

binary, 8-1 to 8-4

binary-coded decimal format, 8-24

binary-coded hexadecimal, 8-4 to 8-6

binary-coded octal, 8-4 to 8-6, 8-16

characteristics of, 8-1 to 8-2

conversion between, 8-6 to 8-11

description of, 8-29 to 8-30

examples of, 8-1 to 8-2

fixed-point format, 8-25

fixed-point representation, 8-14

floating-point, 8-14 to 8-16

fraction conversion, 8-9 to 8-11

integer conversion, 8-7 to 8-8

natural binary-coded decimal, 8-4 to

8-5

polynomial representations, 8-2 to 8-3

positional representations, 8-2 to 8-3

residue, 8-18 to 8-20

signed binary numbers, 8-11 to 8-14

unsigned binary, 8-3

NumberCount(), 9-3 to 9-16

Numerical aperture, 2-20 to 2-21

NVRAM, 2-6

O

Object, 9-30, 9-35, 12-5, 12-9

Object code, 9-1, 9-23

Object collaboration model, 12-5 to

12-6, 12-9

Object interface specification, 12-6, 12-9

Object program, 9-26, 9-36

Objective lens, 2-20 to 2-21, 2-29

Object-orientation, 9-34

Object-oriented databases, 16-14 to

16-15

Object-oriented paradigm, 9-24, 9-30 to

9-31, 9-33, 9-35

Object-oriented programming, 9-30 to

9-31, 9-33 to 9-34, 9-45 to 9-46

Object-oriented thinking, 9-31 to 9-32

Octal number systems, binary-coded, 8-4

to 8-6, 8-16

Odd parity, 15-4

Offline, 18-16

Offline loading, 18-3 to 18-4

Offline testing, 7-2, 7-8

O(f(n)) performance, 9-46

On-board memory, 6-1

1’s complement representation, 8-17 to

8-18

Online testing, 7-2, 7-8

Open system interconnection, 11-2, 14-1

to 14-4

Operating systems

abstraction in, 18-8 to 18-9

batch multiprogramming, 18-4 to

18-5, 18-15

definition of, 18-1, 18-16

distributed, 18-8, 18-16

fault-tolerant, 18-8, 18-16

goals of, 18-7 to 18-13

graphical user interfaces, 18-6, 18-16

historical perspective of, 18-1 to 18-7

implementation of, 18-13 to 18-15

kernel of, 18-11

microprogramming support for, 8-43

MS-DOS, 18-11, 18-14

networked, 18-7, 18-16

offline loading, 18-3 to 18-4

open shop organization of, 18-2

operator-driven shop organization of,

18-2 to 18-3

processes involved in, 18-13

real-time, 18-8, 18-17

reliability of, 18-11 to 13

resource management, 18-9 to 18-10

security of, 18-11 to 18-13

spooling systems, 18-4, 18-17

types of, 18-1

user interface, 18-10 to 18-11

Operator, 18-16

Operator-driven shop organization, 18-2

to 18-3

Optical character recognition, 10-14

Optical disks

description of, 2-14 to 2-15

sectors on, 2-17

Optical interrupter, 10-8

Optical Kerr effect, 1-29

Optical logic devices

all-, 1-29 to 1-32

cavity-based, 1-31 to 1-32

classification of, 1-30

elaton-based, 1-31

overview of, 1-29

single-pass, 1-30 to 1-31

Optical logic etalon, 1-37

Optical path, 2-19 to 2-21, 2-29

Optoelectronic devices

description of, 1-29, 1-32

detect/emit devices, 1-35 to 1-36

detect/modulate devices, 1-32 to 1-33

limitations of, 1-36 to 1-37

output from, 1-29

OR gate

description of, 3-4

symbols for, 3-4, 3-17

Organic light-emitting diodes, 5-4, 13-5

Output HIGH current, 1-12

Output LOW current, 1-12

Output multiplexer, 3-55
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Output response analysis, 7-5 to 7-6

Output-enable multiplexer, 3-55

P

mP chip

mC chip vs., 4-4

connection pins on, 4-2

data-access means used by, 4-2

description of, 4-2

development support for, 4-4

8-bit, 4-2

programming of, 4-3 to 4-4

software for, 4-3

trends in, 4-4 to 4-5

P operators, 9-27

Packet switching, 14-9

Packet switching exchange, 14-10

Page description languages, 13-6 to 13-7

Paging, 8-43

PAL16RP4A, 3-25

Paradigms

declarative, 9-29, 9-35

definition of, 9-28, 9-36

functional, 9-28, 9-35

high-level languages and, 9-28 to 9-33

object-oriented, 9-24, 9-30, 9-35

procedural, 9-28, 9-36

Parallel computers

classification of, 17-9 to 17-11

cluster computing, 17-13

distributed computing, 17-13

grid computing, 17-13 to 17-15

massively parallel processing, 17-12

models of, 17-12 to 17-15

symmetric multiprocessing, 17-12

vector processors, 17-12

Parallel computing, 17-9 to 17-19

Parallel database systems, 16-16

Parallel element processing ensemble,

17-3

Parallel graphics, 13-11

Parallel operation of registers, 3-30, 3-40

Parallel processors

array processors, 17-3 to 17-4, 17-8

associative processor, 17-4 to 17-6,

17-8

block diagram of, 17-2

definition of, 17-1, 17-8

ensemble processor, 17-2 to 17-3, 17-8

types of, 17-2 to 17-5

Parallel programming

considerations for, 17-18 to 17-19

efficiency of, 17-18 to 17-19

isoefficiency, 17-19

paradigms for

data parallel, 17-17 to 17-18

description of, 17-15

message-passing, 17-15 to 17-17

shared memory, 17-17

portability, 17-19

scalability of, 17-19

speedup, 17-18

Parallel random access machine, 17-9

Parallel shift registers, 3-33

Parallel subsystems, 20-7 to 20-8

Parallel virtual machine, 17-15

Parallelism, 17-7

Parallel-series system, 20-6 to 20-7

Pascal, 9-26

Pass-by-pointer, 9-11

Pass-by-value, 9-11

Passwords, 19-7, 19-9

Path sensitization, 7-4

Path-delay testing, 7-24 to 7-27

p-channel metal-oxide semiconductor

field-effect transistor, 1-4, 1-20

PDA, 19-1, 19-13

Peep-hole optimization, 9-18

Pen-based computing, 10-12 to 10-13

Perfect induction, 3-8

Performability, 15-11

Permanent faults, 7-3, 20-2

Permanent virtual circuits, 14-10 to

14-11

Personal transaction devices, 19-1

Personnel security, 19-12 to 19-13

Phase encoding mode, 2-13

Physical, 18-16

Physical addresses, 18-9, 18-16

Physical layer, of open system

interconnection model, 14-4

Physical security, 19-3

Piezoelectric technology, 10-11

Pipeline, 18-16

Pipelining, 8-35, 8-37

Planck’s constant, 5-25, 8-15

Plasma, 5-29

Plasma displays

AC, 5-22 to 5-25, 5-29

color

AC, 5-27

attributes of, 5-18 to 5-20

devices, 5-25 to 5-27

gas discharge, 5-18 to 5-20

grayscale technique used in, 5-20

input impedance characteristic of,

5-20

lifetime of, 5-19

liquid-crystal displays vs., 5-19

luminance of, 5-19

markets for, 5-18

operating principles of, 5-17 to 5-18

current limiting for, 5-21 to 5-22, 5-24

DC, 5-29

description of, 13-4

glow discharge in, 5-21, 5-23

grayscale, 5-28 to 5-29

overview of, 5-17 to 5-18

Plotting packages, 13-6 to 13-7

PLZT/Si, 1-37

pnpn devices, 1-34 to 1-35

PODEM, 7-5

Point-of-sale terminal, 4-6 to 4-7

Polarizing beam splitter, 2-27 to

2-28

Polynomial representations, 8-2 to 8-3

Polysilicon, 2-8

Port protection devices, 19-1, 19-9,

19-13

Power supply unit, 6-1, 6-8

Preformat, 2-17, 2-30

Presence, 13-10

Presentation layer, of open system

interconnection model, 14-2 to

14-3

Price/performance ratio, 8-17

Priming, 5-29

Principle of duality, 3-8 to 3-10

Private key cryptography, 19-4

Privileged state, 18-11 to 12, 18-17

Probabilistic risk assessment, 19-2

Procedural paradigm, 9-28, 9-36

Procedural thinking, 9-31 to 9-32

Procedure queue, 9-42

Process, 18-17

Process control block, 18-17

Process descriptor, 18-13, 18-17

Process interface, 18-5, 18-17

Process number, 18-17

Process sensing elements, 6-3

Process switch, 18-17

Processing element, 17-1, 17-8
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complex, See Complex programmable
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PROLOG, 9-24, 9-29

Propagation delay time
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References, 9-42

Register(s)

arrays of, 3-30

BYPASS, 7-19

capture, 4-7, 4-14

definition of, 3-40

gated, 3-28 to 3-30

graphic symbols used with, 3-39

parallel operation of, 3-30, 3-40

serial operation of, 3-30, 3-40

shift, See Shift registers

variables assigned to, 9-17

vector, 17-12

Register set

definition of, 9-5

multiple overlapping, 9-6

Register transfer level notation, 3-34 to

3-37

Registered application-specific integrated

circuits, 3-37 to 3-39

Relational algebra, 16-6

Relational databases, 16-3 to 16-9

Relational model, 16-2

Reliability

calculation of, 20-5 to 20-8

definition of, 15-6, 20-1, 20-10

description of, 15-6, 15-9, 15-11

failure rate and, 20-2 to 20-4

Markov modeling to determine, 20-8

of operating systems, 18-11 to 18-13

overview of, 20-1

parallel-series system, 20-6 to 20-7

for real systems, 20-9

series-parallel system, 20-7

software, 20-8 to 20-9

of triple-modular-redundant system,

20-7

Reliability function, 15-6

Remote authentication dial-in user

service, 11-3

Rendering, 13-9 to 13-10

Resident monitor program, 18-3,

18-17

Residue number systems, 8-18 to

8-20

Resistive overlay, 10-10 to 10-11

Resistor-transistor logic, 1-13

Resource(s)

definition of, 18-9, 18-17

operating system management of,

18-9 to 18-10

Reuse, 9-31, 9-36

Ripple clock carry/borrow output signal,

3-37

Ripple-carry adders, 3-42, 3-46, 3-52,

3-58 to 3-59, 8-22

RISC, See Reduced instruction set

computer

Rivest–Shamir–Adleman public

encryption, 19-6

Robustness to errors, 8-29

ROS AND array, 2-7

RSA, 19-5 to 19-6

Rule-based expert systems, 16-17 to

16-20

Ruleoften, 7-1

S

Safety, 15-11

Sagnac logic gate, 1-37

Sample-and-hold amplifiers, 6-5 to 6-6,

6-8

Sampled tracking, 2-23 to 2-24

Sampled-servo, 2-18

Saturated logic circuit, 1-12 to 1-13

Scalability, 17-19

Scalar types, 9-38

Scan design, 7-27

Scan path, 7-17, 7-22

Scanners, 10-14, 10-16 to 10-17

Scan/set logic, 7-17

Scheduler, 18-9, 18-17

Schmitt trigger circuits, 6-4

Schottky diodes, 1-4, 1-13, 1-15

Second property of multiplication, 8-19

Sectors, 2-17, 2-30

Secure electronic transaction, 11-4

Secure sockets layer, 11-3

Security

abstraction effects on, 18-9

cryptography for, 18-12 to 18-13, 19-3

to 19-6

daemon, 18-12, 18-16

data encryption standard, 19-4 to 19-5

definition of, 19-1

in electronic commerce, 11-1 to 11-4

elements of, 18-11

hardware, 19-8 to 19-10

methods of, 11-2 to 11-3, 18-12

network, 19-10 to 19-12

overview of, 19-1 to 19-2

personnel, 19-12 to 19-13

physical, 19-3

software, 19-6 to 19-8

Security control, 19-7

SEED, See Self-electro-optic effect device

Self-electro-optic effect device, 1-32, 1-37

# 2006 by Taylor & Francis Group, LLC



Semantics, 9-24 to 9-25, 9-36

Semiconductor

light-emitting diode, 5-1 to 5-5

materials for, 5-2 to 5-5

Sensitized paths, 7-4

Separability, 15-4

Sequential logic circuits

asynchronous, 3-18, 3-26 to 3-27
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Test pattern, 7-9

Test points, 7-14

Testing, See also Design for testability

ad-hoc techniques, 7-12 to 7-15

built-in self-test, 7-5 to 7-6, 7-8,

7-27

definition of, 7-1 to 7-2

design for, 7-9 to 7-27

fault modes, 7-3

objective of, 7-9

offline, 7-2, 7-8

online, 7-2, 7-8

output response analysis, 7-5 to 7-6

path-delay, 7-24 to 7-27

pseudo-random testing, 7-22

structured techniques, 7-15 to

7-27

taxonomy for, 7-1 to 7-2

test-pattern generation, 7-3 to 7-5
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9-35
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VAX, 9-9
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Verification, 7-1 to 7-2

Verilog, 9-51
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3-43
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4-4
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17-1

VHDL, 3-63
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VIL(max), 1-7, 1-9

Virtual, 18-17

Virtual addresses, 18-9, 18-17

Virtual channel identifier, 14-12

Virtual circuits, 14-10 to 14-11
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Virtual reality, 13-3 to 13-4

Virtualizing kernel, 18-17

Viruses, 19-1, 19-8, 19-14
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WAP, See Wireless access protocol
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12-12

Web graphics, 13-7
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14-11
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