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Preface 
 
 
 

Calculation and design of electrical machines and drives remain challenging 
tasks. However, this becomes even more and more important as there are increas-
ing numbers of applications being equipped with electrical machines. Some recent 
examples well-known to the public are wind energy generators and electrical trac-
tion drives in the automotive industry. To realize optimal solutions for electrical 
drive systems it is necessary not only to know some basic equations for machine 
calculation, but also to deeply understand the principles and limitations of electri-
cal machines and drives. 

To foster the know-how in this technical field, this book Electrical Machines 
starts with some basic considerations to introduce the reader to electromagnetic 
circuit calculation. This is followed by the description of the steady-state operation 
of the most important machine topologies and afterwards by the dynamic opera-
tion and control methods. Continuously giving detailed mathematical deductions 
to all topics guarantees an optimal understanding of the underlying principles. 
Therefore, this book contributes to a comprehensive expert knowledge in electri-
cal machines and drives. Consequently, it will be very useful for academia as well 
as for industry by supporting senior students and engineers in conceiving and de-
signing electrical machines and drives. 

After introducing Maxwell’s equations and some principles of electromagnetic 
circuit calculation, the first part of the book is dedicated to the steady-state opera-
tion of electrical machines. The detailed description of the brushed DC-machine is 
followed by the rotating field theory, which in particular explains in detail the 
winding factors and harmonics of the magneto-motive force of distributed wind-
ings. On this basis, induction machines and synchronous machines are described. 
This first part of the book is completed by regarding permanent magnet machines, 
switched reluctance machines, and small machines for single-phase use. 

Dynamic operation and control of electrical machines are the topics of the sec-
ond part of this book, starting with some fundamental considerations. Next, the 
dynamic operation of brushed DC-machines and their control is described (in par-
ticular cascaded control using PI-controllers and their adjustment rules). A very 
important concept for calculating the dynamic operation of rotating field machines 
is the space vector theory; this is deduced and explained in detail in the following 
chapter. Then, the dynamic behavior of induction machines and synchronous ma-
chines follows, including the description of important control methods like field-
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oriented control (FOC) and direct torque control (DTC). The permanent magnet 
machine with surface mounted magnets (SPM) or interior magnets (IPM) is ex-
plained concerning the differences of both in torque control and concerning the 
maximum torque per ampere (MTPA) control method. The last chapter gives an 
overview of latest research results concerning concentrated windings. 

In spite of being a new contribution to a comprehensive understanding of elec-
trical machines and the respective actual developments the reader may find parts 
of the contents even in different literature, as this book explains the fundamentals 
of electrical machines (steady-state and dynamic operation as well as control). 
Concerning these fundamentals it is nearly impossible to list all relevant literature 
during the text layout. Therefore, the most important references are given at the 
end of each chapter. In addition, parts of the lectures of Prof. H. Bausch (Universi-
taet der Bundeswehr Munich, Germany) and Prof. G. Henneberger (RWTH Aa-
chen, Germany) were used as a basis. 

The author deeply wishes to express his grateful acknowledgment to all team 
members of his Chair of Electrical Drives and Actuators at the Universitaet der 
Bundeswehr Munich and of the spin-off company FEAAM GmbH for their most 
valuable discussions and support. In particular this holds for (in alphabetical or-
der) Dr.-Ing. Gurakuq Dajaku, Mrs. Lara Kauke, and most notably Dr.-Ing. Hans-
Joachim Koebler. Without their beneficial contributions this book would not have 
been possible in such a high quality.  

Last, but not least the author exceedingly thanks his wife and his daughters for 
their respectfulness and understanding not only concerning the effort being ac-
companied by writing this book, but even concerning the expenditure of time the 
author dedicates to professional activities. 

 
 
 

Munich, April 2014     Dieter Gerling 
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1 Fundamentals 

1.1 Maxwell’s Equations 

1.1.1 The Maxwell’s Equations in Differential Form 

The basis for all following considerations are the Maxwell’s equations. In differ-

ential form these are (the time-dependent variation of the displacement current D  

can always be neglected against the current density J  for all technical systems re-
garded here): 

 
1. Maxwell’s equation 

 
dD

rotH J J
dt

= + ≈  (1.1) 

2. Maxwell’s equation 

 
dB

rotE
dt

= −  (1.2) 

3. Maxwell’s equation 

 divB 0=  (1.3) 

4. Maxwell’s equation 

 divD = ρ  (1.4) 

The material equations are: 

 B H= μ  (1.5) 

 D E= ε  (1.6) 
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2      1 Fundamentals 

 J E= γ  (1.7) 

The used variables have the following meaning: 

H  the vector field of the magnetic field strength; 

J  the vector field of the electrical current density; 

D  the vector field of the displacement current; 

E  the vector field of the electric field strength; 

B  the vector field of the magnetic flux density; 
ρ  the scalar field of the charge density; 

μ  the scalar field of the permeability (in vacuum or air there is: 0μ = μ ); 

ε  the scalar field of the dielectric constant (in vacuum or air there is: 

0ε = ε ); 

γ  the scalar field of the electric conductivity. 

 
The expression “vector field” means that the vector quantity depends on all 

(usually three) geometric coordinates; the expression “scalar field” means that sca-
lar quantity depends on all geometric coordinates. 

In the case of homogeneous, isotropic materials the scalar fields μ , ε  and γ  

are reduced to space-independent material constants. 

1.1.2 The Maxwell’s Equations in Integral Form 

1.1.2.1 Ampere’s Law (First Maxwell’s Equation in Integral Form) 

The first Maxwell’s equation in integral form is 

 
A

Hd JdA=  (1.8) 

The line integral of the magnetic field strength H  on a closed geometric inte-

gration loop  (“magnetic circulation voltage“) is equal to the total electric cur-
rent flowing through the area A limited by this loop (“magneto-motive force“, 
“ampere-turns”), if the displacement current is neglected.  

For graphical explanation see Fig. 1.1. 
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Fig. 1.1. Explanation of Ampere’s Law. 

1.1.2.2 Faraday’s Law, Law of Induction (Second Maxwell’s Equation in 
Integral Form) 

The second Maxwell’s equation in integral form is 

 
A

d
Ed BdA

dt
= −  (1.9) 

with the magnetic flux being 

 
A

BdA = Φ  (1.10) 

The line integral of the electric field strength E  on a closed geometric integra-

tion loop  (“electric circulation voltage“) is equal to the negative time-dependent 
variation of the total magnetic flux, that penetrates the area A limited by this loop.  

For graphical explanation see Fig. 1.2. 
 
 
 
 
 
 
  
 

J  

d  
H  

dA  
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Fig. 1.2. Explanation of Faraday’s Law. 

1.1.2.3 Law of Direction 

The positive direction of the vectors d  and A  are defined according to a right-
handed screw. 

1.1.2.4 The Third Maxwell’s Equation in Integral Form 

The third Maxwell’s equation in integral form is 

 
A

BdA 0=  (1.11) 

The total magnetic flux penetrating a closed surface of any volume is zero, i.e. 
there are no single magnetic poles. 

1.1.2.5 The Fourth Maxwell’s Equation in Integral Form 

The fourth Maxwell’s equation in integral form is 

 
A V

DdA dV= ρ  (1.12) 

B

d  
E

dA  
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The reason for the total electric field penetrating a closed surface of any vol-
ume are the electric charges inside this volume. 

1.1.2.6 Examples for the Ampere’s Law (First Maxwell’s Equation in Integral 
Form) 

The Ampere’s Law is an integral law. It shows the dependency of the magneto-
motive force (ampere-turns) and the magnetic circulation voltage, but in general it 
cannot be used to calculate the magnetic field strength. For the calculation of the 

magnetic field strength H  at given magneto-motive force additional knowledge of 
the field is necessary (e.g. symmetry characteristics or simplifying assumptions). 

 
1. Example: 

 
 
 
 
 
 
 
 
 case a)     case b) 

Fig. 1.3. Example for explaining Ampere’s Law. 

• The magneto-motive force, the integration loop and the magnet-
ic circulation voltage are the same in both cases (Fig. 1.3). 

• But the distribution of the magnetic field strength on the integra-
tion loop is different (because of the additional current in case 
b)). 

• The calculation of the magnetic field strength is not possible in 
both cases without additional information. 

 
2. Example: 

Calculation of the magnetic field of a straight, current carrying con-
ductor (with the radius R) in air. 

Because of the symmetry the magnitude of the field strength is con-
stant at constant distance r from the center of the conductor. 

a) Solution outside the conductor:   

 
2

2
out out out

out

J R
Hd H 2 r J R H

2 r
= π = π =  (1.13) 

electric current into 
the sheet of paper 

loop 
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b) Solution inside the conductor (J is assumed being equally distrib-
uted across the conductor cross section): 

 2
in in in in in

J
Hd H 2 r J r H r

2
= π = π =  (1.14) 

3. Example: 
 

The following magnetic circuit is given (Fig. 1.4): 
 
 
 
 
 
 
 
 
 
 

Fig. 1.4. Example for explaining Ampere’s Law. 

 
The following is assumed: 

• The magnetic circuit may be separated in a finite number of parts 
( 1 6ν = ). 

• Hν  is constant in each part. 

• A closed loop may be described by using a mean field line length. 

• The leakage flux is negligible: const.νΦ = Φ =  

Now, the Ampere’s Law is: 

 
6

1

B
Hd H wi with H ; B

A
ν ν

ν ν ν ν
ν= ν ν

Φ
= = = =

μ
 (1.15) 

For Fe,νμ → ∞  it is further:  

 4 4Hd H wi= =  (1.16) 

It follows:  

1 

2 
3 

4 

5 
6 

wi  

iron yoke 

air-gap 

winding 
with w turns
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 4 0
4

wi
B

l
= μ  (1.17) 

and  

 4 4 4B AΦ = Φ =  (1.18) 

Therefore, the flux density in the different parts becomes:  

 4
4

A
B B

A
ν

ν

=  (1.19) 

1.1.2.7 Examples for the Faraday’s Law (Second Maxwell’s Equation in 
Integral Form) 

In a closed conductor loop (that is used as integration loop) there is an electrical 
circulation voltage (“magnetic loss”), if the magnetic flux linked with this conduc-
tor loop changes with time: 

 
A

d d
Ed BdA

dt dt
= − = − Φ  (1.20) 

Regarding a winding with w turns, the Faraday’s Law becomes: 

 
A

d d d
Ed w BdA w

dt dt dt
= − = − Φ = − Ψ  (1.21) 

The time-dependent variation of the flux may originate from: 

• time-dependent variation of the induction with stationary conductor loop; 
• movement of the conductor loop (totally or partly) relative to the stationary 

magnetic field. 

Obviously, the difference comes from the choice of the coordinate system. 
 
1. Example: stationary winding, time-dependent induction 
 

There is: 
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d di di

Ed L
dt i dt dt

∂Ψ
= − Ψ = − = −

∂
 (1.22) 

This voltage is called “transformer voltage”. 
 
2. Example: moved winding, induction constant in time 

 
The following movement of a conductor loop is regarded (Fig. 1.5): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.5. Example for explaining Faraday’s Law. 

From divB 0=  it follows:  

 
A A(t dt) A(t ) cylinder  wall

BdA BdA BdA BdA 0
+

= − + =  (1.23) 

The variation of the flux linked with the regarded winding is: 

 
A(t dt) A(t )

d BdA BdA
+

Ψ = −  (1.24) 

For the cylinder wall it is:  

( )dA t dt+  B

( )dA t  

vdt  

d  

( )dA cylinder wall  

position of the  
conductor loop: 
⋅ time instant t+dt 
⋅ time instant t
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 ( ) ( )dA vdt d dt v d= − × = − ×  (1.25) 

Therefore:  

 

( ) ( )

( )

cylinder  wall

BdA dt B v d dt B v d

dt v B d

= − × = − ×

= ×

 (1.26) 

and further:  

 ( ) ( )
d

d dt v B d 0 v B d
dt

Ψ
Ψ + × = − = ×  (1.27) 

In total this results in: 

 ( )
d

Ed v B d
dt

= − Ψ = ×  (1.28) 

This voltage is called “voltage of movement”. 
 

3. Example: short circuit of a conductor loop 

A conductor loop (cross section wireA , conductivity γ  and resistance 

R) is penetrated by a time-dependent magnetic field, see Fig. 1.6.  
 

 
 
 
 
 
 
 
 
 

Fig. 1.6. Example for explaining Faraday’s Law. 

From 
d

Ed
dt

= − Ψ  and J E= γ  it follows: 

d ,  J,  i  

dB  

B

dA  
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J d

 d
dt

= − Ψ
γ

 (1.29) 

Because on each point of the conductor the directions of d  und J  are 

identical, with 
wire

i
J

A
=  the following is true: 

 
wire

d d d
i iR 0 iR  

A dt dt
= = − Ψ = + Ψ

γ
 (1.30) 

If 
B

0
t

∂
>

∂
 is true, J E= γ  will flow against the direction of d . 

 
Lenz’s Law: The current caused by induction variation (induced current) 
always flows in that direction that its magnetic field opposes the generat-
ing induction variation.  

 
4. Example: conductor loop in open-circuit 

Opening the above conductor loop the situation shown in Fig. 1.7 is 
obtained.  

 
 
 
 
 
 
 
 
 
 

Fig. 1.7. Example for explaining Faraday’s Law. 

There is  

 
1 2

2 1

Ed Ed Ed= +  (1.31) 

where the direction of d  determines the execution of the integral. As on 
the path from “1“ to “2“ the conductivity γ  is limited, but the current 

iE, u  

1  
2  

d  

dB  

B

dA  
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(and therefore even the current density) is zero because of the open ter-

minals, from J E= γ  even E 0=  is obtained. It remains:1 

 
1

i
2

d
Ed Ed  u

dt
= = − Ψ = −  (1.32) 

Note: The negative sign is valid only for the positive directions shown in 
Fig. 1.7! 

 
5. Example: Electrical Circuit 

 
 
 
 
 
 
 
 

Fig. 1.8. Example for explaining Faraday’s Law. 

In Fig. 1.8 the voltage at the outside terminals should be fixed by a 
voltage source to a certain value u; the current i is flowing. It follows: 

 i

d
 u Ri u Ri

dt
= + = + Ψ  (1.33) 

Even here the signs are used according to the defined positive direc-
tions. 

 
6. Example: moved coil in a stationary magnetic field 

 
There is a flat rectangular coil with a single turn (the extension in x-

direction is τ , the extension in z-direction is z ; please refer to Fig. 1.9). 

This coil is moved in x-direction with the speed v, penetrating a station-
ary stepwise magnetic field being constant in time with  

                                                           
1 In the field theory often iEd u=  is defined; the definition of iu  used here turned out to be 

appropriate for electrical machines and therefore will be used further. Sometimes the induced 
voltage (also called “back electromotive force”, “back emf” or “counter emf”) is nominated with 

“e”. As it has the nature of a voltage, here the name “ iu ” is preferred. 

i

iu  u  

R

2  

1  
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 B(x) B(x )= − − τ  (1.34) 

The following holds true: 

 
( )i i

z

u E d v B d

2v B(x)

= − = − ×

=
 (1.35) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.9. Example for explaining Faraday’s Law. 

Even here the signs are valid regarding the positive directions of circu-
lation and voltage.  

For constant speed v the time-dependent characteristic of the induced 
voltage corresponds to the space-dependent characteristic of the induc-
tion. 

 
7. Example: stationary coil in a moved magnetic field: 

 
There is a flat, stationary, rectangular coil with w turns and a magnetic 

travelling field  

 ˆB(x, t) B cos t x , 2 f
π

= ω + ϕ − ω = π
τ

 (1.36) 

iu  

iE  

iE  

 ⊗  
d  

flux density distribution 

v 

( )B x  

( )B x − τ  

z  

τ  
coil 

B

B

x 
 

y 

z 

x 

z 

 y 
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with the angular frequency ω , the phase angle ϕ  and the pole pitch τ  

(half wave length). The extension of the coil in the direction of move-
ment of the travelling wave (x-direction) is s (effective width), the exten-

sion perpendicular to the direction of movement (z-direction) is z  (ef-

fective length), see Fig. 1.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.10. Example for explaining Faraday’s Law. 

The flux linked with the coil is: 

 ( )

( )

s
2

z
sA

2

s
2

z
s

2

ˆw B(x, t)dA wB cos t x dx

ˆwB cos t cos x

sin t sin x dx

−

−

π
Ψ = = ω + ϕ −

τ

π
= ω + ϕ −

τ

π
− ω + ϕ −

τ

 (1.37) 

This integral can be solved like follows: 

x 
y 

z 

/ 2τ = λ  

coil

iu  

z  

d  

dA  
 

v f= λ ⋅  
B̂

dΦ  

s  

dx  

x 

z 

y 
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( )

( )

( )

( )

( )

z

s
2

s
2

z

z

z

ˆ wB cos t sin x

sin t cos x

s sˆwB cos t sin sin
2 2

sˆwB cos t 2 sin
2

2 sˆw B cos t , sin
2

−

τ π
Ψ = ω + ϕ − −

π τ

τ π
− ω + ϕ − − −

π τ

τ π π
= ω + ϕ − − −

π τ τ

τ π
= ω + ϕ

π τ

π
= ξ τ ω + ϕ ξ =

π τ
1≤

 (1.38) 

This equation can be interpreted like follows: 

• 
2

B̂
π

 is the mean value of a half harmonic flux density wave. 

• z

2
B̂ τ

π
 is then the mean flux penetrating through the area zτ . 

• The factor ξ  is called “short-pitch factor” and it reduces this 

flux to that amount penetrating through the area zs . 

• The number of turns w  transforms the flux to the flux linkage. 
• The cos -term shows the time dependency and the phase shift. 

The induced voltage is (the positive directions of dA  and B  or dB  are 
identical): 

 ( )i z 
d 2ˆ ˆ ˆu sin t , w B
dt

= Ψ = −ωΨ ω + ϕ Ψ = ξ τ
π

 (1.39) 

1.2 Definition of Positive Directions 

For the unambiguous description of electrical circuits, directions have to be as-
signed to voltages, currents, and power. The definition of the direction may be 
chosen arbitrarily. In principle there are two different possibilities as it is shown in 
Fig. 1.11: 
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   energy consumption system      energy generation system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.11. Examples for the energy consumption system (left) and the energy generation system 
(right). 

Poynting’s vector describes the power density in the electromagnetic field, 
please refer to Fig. 1.12: 

  S E H= ×  (1.40) 

i

Ru  

i

Ru  

i

u  

iu  

i

u  

iu  

i

u  C  

i

u  C  

i

Lu  

i

Lu  

u iR 0

u iR

− =

=
 

u iR 0

u iR

+ =

= −
 

i

i

u u 0

d
u u

dt

di
L

dt

− =

Ψ
= =

=

 

i

i

u u 0

d
u u

dt

di
L

dt

− =

Ψ
= = −

= −

 

1
u idt

C
=  

1
u idt

C
= −  

di
u L

dt
=  

di
u L

dt
= −  

u  

i

P

i

u  P
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Fig. 1.12. Poynting’s vector for the energy consumption system (left) and the energy generation 
system (right). 

1.3 Energy, Force, Power 

The principle of electromechanical energy conversion will be explained using the 
example of a simple lifting magnet, see Fig. 1.13. The occurring energies can be 
calculated as follows.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.13. Electromagnetic system with movable armature. 

The different possible kinds of energy are electrical energy, electrical losses, 
magnetic energy, and mechanical energy: 

 el W uidt=  (1.41) 

 2

loss W i Rdt=  (1.42) 

i

u  E H
S  

i

u  E H
S  

H,  B  

u  

i

x

1x  
2x  

w turns 

movable armature (iron) 
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mag

V

 W HdB dV

id

=

= Ψ

 (1.43) 

 
mech,lin

mech,rot

 W Fdx

W Td

=

= α
 (1.44) 

The B-H-curve of the iron and the Ψ -i-curve of the magnetic circuit in general 
(i.e. considering magnetic saturation) have the characteristics shown in Fig. 1.14. 

 
 
 
 
 
 
 
 

 

Fig. 1.14. Principle B-H- and Ψ -i-characteristics. 

The energy density of the magnetic field in air is: 

  

2

mag
0

1 B
w HB

2 2
= =

μ
 (1.45) 

With 
2

Vs
B 0.5T 0.5

m
= =  (typical value) and 7

0

Vs
4 10

Am

−
μ = π ⋅  it follows: 

  

2 2

4
5 5

mag 3 2
7

V s
0.25

VAs Nmw 0.995 10 1 10
Vs m m

8 10
Am

−

= = ⋅ ≈ ⋅

π ⋅

 (1.46) 

The energy density of the electrical field in air is: 

 2
el 0

1 1
w ED E

2 2
= = ε  (1.47) 

i

Ψ

H

B
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With 
kV

E 3
mm

=  (breakdown field strength in air) and 12
0

As
8.854 10

Vm

−
ε = ⋅  it 

follows: 

 
2

12 6
el 3 2

1 As V VAs N
w 8.854 10 3 10 39.8 40

2 Vm m m m

−
= ⋅ ⋅ = ≈  (1.48) 

Because of the considerable lower energy density there are virtually no electro-
static machines, except for extremely small geometries (please refer to equations 
(1.46) and (1.48)). In the following, the energy stored in the electrical field will be 
neglected against the energy stored in the magnetic field. 

 
The energy balance of the lifting magnet is: 

 el loss mag mechdW dW dW dW= + +  (1.49) 

The electrical energy supplied via the terminals is equal to the sum of losses, 
change of magnetic energy and change of mechanical energy. 
 
Case 1: fixed armature ( x const.= , see Fig. 1.15): 

 

( )

( )

( )2

mech el loss mag

el loss mag

mag

i mag

mag

mag

dW 0 d W W dW

d W W dW

ui i R dt dW

u idt dW

d
idt dW

dt

dW id

= = − −

− =

− =

=

Ψ
=

= Ψ

 (1.50) 

 
 
 
 
 
 
 
 

Fig. 1.15. Ψ -i-characteristic for case 1. 

i

Ψ

idΨ  
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The total magnetic energy is:2 

 mag
0

W id
Ψ

= Ψ  (1.51) 

 
Case 2: movable armature, constant current: 

The armature is moved from 1x x=  to 2x x=  with 0i const.= . Do-

ing this the flux linkage changes from 1Ψ = Ψ  to 2Ψ = Ψ . 

 

( ) ( )2
el loss 0 0 i 0

0 0

d W W ui i R dt u i dt

d
i dt i d

dt

− = − =

Ψ
= = Ψ

 (1.52) 

This equals area  plus area  in Fig. 1.16. 

 
1 2

mag mag,1 mag,2
0 0

dW W W id id
Ψ Ψ

= − = Ψ − Ψ  (1.53) 

This equals area +  minus area + , being equivalent to area  mi-
nus area  (please refer to Fig. 1.16). Therefore: 

 ( )mech el loss magdW d W W dW= − −  (1.54) 

which equals area  plus area  (see Fig. 1.16). Consequently:  

 
( ) ( )

0 0i i

mech 1 2
0 0

mag

dW x di x di

dW

= Ψ − Ψ

′=

 (1.55) 

magW′  is called the magnetic co-energy. The force can be calculated like 

follows: 

                                                           
2 The tilde serves for the differentiation between integration limit and integration variable. 
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magmech

i const.

dWdW
F

dx dx
=

′
= =  (1.56) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.16. Ψ -i-characteristics for case 2. 

 
Case 3: movable armature, constant flux linkage: 

From 0 const.Ψ = Ψ =  it follows id 0Ψ =  and therefore 

( )el lossd W W 0− =  (the electrical input power is used only for covering 

the losses). Consequently: 

 mech magdW dW= −  (1.57) 

 ( ) ( )
0 0

mag mag,1 mag,2 1 2
0 0

dW W W id x id x
Ψ Ψ

= − = Ψ − Ψ  (1.58) 

This equals area  minus area + . This is equivalent to being equal to 

minus area . Therefore mechdW  equals area  and consequently (see 

Fig. 1.17): 

0i  

2Ψ  

1Ψ  

i

Ψ

dΨ  

1x  

2x  
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( ) ( )

( ) ( )

1 2 2

1

2 2

i i i

mech 1 0 2
0 i 0

i i

1 2 mag
0 0

dW x di  di x di

i di i di dW

= Ψ + Ψ − Ψ

′= Ψ − Ψ =

 (1.59) 

The force is calculated as follows: 

 
magmech

const.

dWdW
F

dx dx
Ψ=

′
= =  (1.60) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.17. Ψ -i-characteristics for case 3. 

Case 4: arbitrary case; movable armature, current and flux linkage are variable 
(see Fig. 1.18): 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.18. Ψ -i-characteristics for case 4. 

0Ψ  

i

Ψ

1x  

2x  

  

 

1i  2i  

2i  

2Ψ  

1Ψ  

i

Ψ
1x  

2x  

1i  
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The changes of energies calculated in the following for this case are 
based on the solutions of the above cases 1 and 2. 

 
 

Case 4.1 (see Fig. 1.19):  
a) firstly the armature is fixed, change of current and flux linkage 
b) secondly the current is constant, movable armature and change of 

flux linkage 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.19. Ψ -i-characteristics for case 4.1. 

a) 1x const.= ;   

i  is changed from 1i  to 2i ; Ψ  is changed from 1Ψ  to aΨ . 

 ( ) ( )

( )

a1

mech,1a

mag,1a 1 1
0 0

el,1a loss,1a mag,1a

dW 0

dW id i x d i x d

d W W dW

ΨΨ

=

= Ψ = Ψ − Ψ

− =

 (1.61) 

b) 2i const.= ;   

x  is changed from 1x  to 2x ; Ψ  is changed from aΨ  to 2Ψ . 

2i  

2Ψ  

1Ψ  

i

Ψ
1x  

2x  

1i  

aΨ  
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( ) ( )

( ) ( )

( ) ( )

2 2

a 2

i i

mech,1b mag,1b 1 2
0 0

mag,1b 1 2
0 0

el,1b loss,1b 2 2 a 2

dW dW x di x di

dW i x d i x d

d W W i d i

Ψ Ψ

′= = Ψ − Ψ

= Ψ − Ψ

− = Ψ = Ψ − Ψ

 (1.62) 

Case 4.2 (see Fig. 1.20):  
a) firstly the current is constant, movable armature and change of flux 

linkage 
b) secondly the armature is fixed, change of current and flux linkage 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.20. Ψ -i-characteristics for case 4.2. 

a) 1i const.= ;   

x  is changed from 1x  to 2x ; Ψ  is changed from 1Ψ  to bΨ . 

 

( ) ( )

( ) ( )

( ) ( )

1 1

b1

i i

mech,2a mag,2a 1 2
0 0

mag,2a 1 2
0 0

el,2a loss,2a 1 1 1 b

dW dW x di x di

dW i x d i x d

d W W i d i

ΨΨ

′= = Ψ − Ψ

= Ψ − Ψ

− = Ψ = Ψ − Ψ

 (1.63) 

b) 2x const.= ;   

i  is changed from 1i  to 2i ; Ψ  is changed from bΨ  to 2Ψ . 

2i  

2Ψ  

1Ψ  

i

Ψ
1x  

2x  

1i  

bΨ  
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 ( ) ( )

( )

b 2

mech,2b

mag,2b 2 2
0 0

el,2b loss,2b mag,2b

dW 0

dW id i x d i x d

d W W dW

Ψ Ψ

=

= Ψ = Ψ − Ψ

− =

 (1.64) 

Comparison of cases 4.1 and 4.2: 
 

a) change of mechanical energy mechdW  (Fig. 1.21) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.21. Ψ -i-characteristics: different change of mechanical energy in both cas-
es. 

 
 

b) change of magnetic energy magdW  (Fig. 1.22) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.22. Ψ -i-characteristics: equal change of magnetic energy in both cases. 

2i  

2Ψ  

1Ψ  

i

Ψ
1x  

2x  

1i  

bΨ  

2i  

2Ψ  

1Ψ  

i

Ψ
1x  

2x  

1i  

aΨ  

2i  

2Ψ  

1Ψ  

i

Ψ
1x  

2x  

1i  

aΨ  

2i  

2Ψ  

1Ψ  

i

Ψ
1x  

2x  

1i  

bΨ  
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c) change of difference: electrical energy and losses ( )el lossd W W−   

     (Fig. 1.23) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.23. Ψ -i-characteristics: different change of difference between electrical 
energy and losses in both cases. 

 

For linear materials mag magW W′=  holds true. This means that in this case (and 

only in this case!) the force may be calculated from the magnetic energy. 
 
The magnetic pulling force on the surface area of flux carrying iron parts can 

be calculated as follows (Fig. 1.24): 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.24. Explanation of the magnetic pulling force. 

Because of r,Feμ → ∞  and r,air 1μ =  the used materials are linear. Consequent-

ly the force may be calculated from the change of the magnetic energy.  

Because of FeH 0→  the iron paths may be neglected. Therefore, the force will 

be calculated from the change of magnetic energy in the air-gap. 

x

dx  

iron 

air-gap: 
H, B 

surface 
area A 

F

2i  

2Ψ  

1Ψ  

i

Ψ
1x  

2x  

1i  

aΨ  

2i  

2Ψ  

1Ψ  

i

Ψ
1x  

2x  

1i  

bΨ  
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2

mag mag

0

dW w Adx 1 B
F HB A A

dx dx 2 2
= = = =

μ
 (1.65) 

 
The specific force (force per cross section unit, “Maxwell’s attractive force“) 

is: 

 
2

0

F B
f

A 2
= =

μ
 (1.66) 

Calculating the force from the power balance 
A cylindrical coil shall have the Ohmic resistance R and an armature movable on-
ly in x-direction. The inductivity of that coil depends on the position of the arma-

ture: ( )L L x= . Saturation will be neglected: ( )L L i≠ (Fig. 1.25). 

 
 
 
 
 
 
 
 
 
 

Fig. 1.25. Explanation of calculating the force from the power balance. 

The voltage equation is: 

 
d

u iR , Li
dt

Ψ
= + Ψ =  (1.67) 

 
Case 1: armature is fixed at position x (then L is constant) 
 

From the voltage equation (1.67) the power balance follows by multi-
plication with the current i: 

 2 di
ui i R Li

dt
= +  (1.68) 

F

x

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗  

 

u  

i armature (iron) 
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From the magnetic energy 2
mag

1
W Li

2
=  it follows: 

 2 2
mag

d d 1 d 1 di
W Li L i Li

dt dt 2 dt 2 dt
= = =  (1.69) 

From equations (1.68) and (1.69) it follows further: 

 2 2d 1
ui i R Li

dt 2
= +  (1.70) 

Therefore, the electrical input power is equal to the sum of electrical 
losses and change of magnetic energy. 

 
Case 2: movable armature ( L L(x)= ) 

 
In this case the voltage equation becomes: 

 
di dL

u iR L i
dt dt

= + +  (1.71) 

and consequently the power balance: 

 2 2di dL
ui i R Li i

dt dt
= + +  (1.72) 

From the magnetic energy 2
mag

1
W Li

2
=  it follows: 

 2 2
mag

d d 1 di 1 dL
W Li Li i

dt dt 2 dt 2 dt
= = +  (1.73) 

From equations (1.71) and (1.72) it follows further: 

 2 2 2d 1 1 dL
ui i R Li i

dt 2 2 dt
= + +  (1.74) 

The additional term in the power balance compared with case 1 must 
be the mechanical power. Therefore the mechanical power is 
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 2 2dx 1 dL 1 L dx
F i i

dt 2 dt 2 x dt

∂
= =

∂
 (1.75) 

and the force can be calculated like follows: 

 21 L
F i

2 x

∂
=

∂
 (1.76) 

1.4 Complex Phasors 

Alternating voltages and currents with sinusoidal time dependency are described 
in the electrical power engineering as complex phasors of the rms values (Fig. 
1.26): 

 
{ }
{ }

j t

j t j0

u(t) 2U cos( t) Re 2Ue

Re 2Ue , U Ue

ω

ω

= ω =

= =
 (1.77) 

 
{ }
{ }

j t j

j t j

i(t) 2I cos( t ) Re 2Ie e

Re 2 I e , I I e

ω − ϕ

ω − ϕ

= ω − ϕ =

= =
 (1.78) 

The non time-dependent components U  and I  are called (complex) phasors. 

Phasors describe the amplitude of the respective variable with their length; the di-
rection of the phasor shows the position of the maximum of this variable. The in-
stantaneous value of the physical magnitude (voltage and current) results from the 
projection of the rotating phasors onto the real axis of the complex plane. The 
phasors rotate mathematically positive (anti-clockwise). 

The choice of the phase angle ϕ  is arbitrary as well, but usually the phase an-

gle of the voltage is chosen being zero. Defining the phase angle of the current 
like shown above, for resistive-inductive impedances (which are mostly relevant 
for electrical drives) positive values for the phase angle ϕ  are obtained. 

The orientation of the complex plane is arbitrary, but in the electrical power 
engineering usually the positive real axis is oriented vertically upright, the nega-
tive imaginary axis to the right. 

The complex impedance is: 
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j j

2 2

U U
Z e Ze Z cos( ) jZ sin( ) R jX

I I

X
Z R X tan( )

R

ϕ ϕ
= = = = ϕ + ϕ = +

= + ϕ =

 (1.79) 

The complex apparent power is the product of the complex rms-value of the 
voltage and the conjugate complex rms-value of the current: 

 jS U I UIe P jQ∗ ϕ
= = = +  (1.80) 

The different kinds of power are the 

• active power (real power) 

 { }P Re S UI cos( )= = ϕ  (1.81) 

• reactive power (wattless power) 

 { }Q Im S UI sin( )= = ϕ  (1.82) 

• and apparent power 

 2 2S S UI P Q= = = +  (1.83) 

 
 
 
 
 
 
 
 
 
 

Fig. 1.26. Phasor diagram. 
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1.5 Star and Delta Connection 

Regarding symmetric three-phase systems without neutral line there are the possi-
bilities illustrated in Fig. 1.27: 

 
        star connection            delta connection 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.27. Star and Delta connection. 

For the phase voltages phaseU  and currents phaseI  it holds: 

• for star connection: phaseI 0=   

• for delta connection: phaseU 0=   

The terminal voltages lineU  and terminal currents lineI  are: 

• for star connection: line phase line phaseU 3 U I I ;= =   

• for delta connection: line phase line phaseU U I 3 I;  = =   

The electrical power is: 

• for star connection: line
phase phase line

U
S 3U I 3 I

3
= =  

• for delta connection: line
phase phase line

I
S 3U I 3U

3
= =  

Therefore, it is always: 

lineU  

 lineI  

phase

 phase

U

I
 

u v w 

u 

v w 

lineU  

phaseU  

lineU  

 lineI  

phase

 phase

U

I
 

u v w 

u 

v w 

 lineI  

 phaseI  
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 line lineS 3 U I 3 U I  = =  (1.84) 

Usually the index “line” is omitted. The values on the name plate of electrical 
machines are always the terminal values! 

1.6 Symmetric Components 

A symmetric three-phase system may be operated asymmetrically, e.g. by: 

• supplying with asymmetric voltages or 
• single-phase load between two phases or between one phase and the neutral 

line. 

Describing these asymmetric (unknown) operating conditions by symmetric 
ones, a simplified calculation method is gained. The method of symmetric compo-
nents is qualified for this: An asymmetric three-phase-system is separated into 
three symmetric systems (positive, negative, and zero system), the circuit calculat-
ed and the results superposed.  

The preconditions are: 

• The three currents or voltages have the same frequency and they are sinusoidal-
ly in time (i.e. there is no harmonic content); phase shift and amplitude are ar-
bitrary. 

• Because of the superposition of the results the system must be linear. 

In the following the complex phasor 
2

j
3a e
π

=  will be used. There is: 

 
4 2

j j2 23 3a e e ; 1 a a 0
π π

−

= = + + =  (1.85) 

The following asymmetric current system  u   v   wI , I , I  (Fig. 1.28) will be rep-

resented by the components  p   n   0I , I , I  (Fig. 1.29). 

 
 
 
 
 
 
 
 

Fig. 1.28. Asymmetric current system. 

 uI  

 vI  

 wI  

Re  

Im−
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Fig. 1.29. Three symmetric current systems. 

The following holds true: 

 

 u   p   n   0   u   p
2 2

 v   p   n   0   v   n
2 2

 w   p   n   0   w   0

I I I I I 1 1 1 I

I a I a I I I a a 1 I

I a I a I I I a a 1 I

= + +

= + + ⇔ =

= + +

 (1.86) 

Solving this results in: 

 

2
 p   u

2
 n   v

  0   w

I 1 a a I
1

I 1 a a I
3

I 1 1 1 I

=  (1.87) 

Now, the asymmetric system  u   v   wI , I , I  can be separated into three symmet-

ric systems  p   n   0I , I , I  according to the above equation; these three systems can 

be calculated easily and the solution is gained by inverse transformation (superpo-
sition of the three single results).  

1.7 Mutual Inductivity 

There are two coils, each generating a magnetic field. Both magnetic fields shall 
penetrate both coils, see Fig. 1.30. As an example, one coil produces a homogene-
ous field, the other coil an inhomogeneous field. 

 
 
 
 
 

 pI  
 pa I  

2
 pa I  

u 

v 

w 

positive system 

(positive phase sequence) 

negative system 

(negative phase sequence) 

 nI  

 na I  2
 na I  

u 
v 

w 
 0I  

zero system 

(in phase) 

 0I  0I  

u v w 
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Fig. 1.30. Magnetic fields of a system made of two coils. 

Calculation of the magnetic energy (the tilde is introduced to distinguish be-
tween integration limit and integration variable) if supplying 

a) only coil 1: 

 
1 1i

2
1 1 1 1 1 1 1 1 1 1 1

0 0

1
dW i d W i d i L di L i

2

Ψ

= Ψ = Ψ = =  (1.88) 

b) only coil 2: 

 
2 2i

2
2 2 2 2 2 2 2 2 2 2 2

0 0

1
dW i d W i d i L di L i

2

Ψ

= Ψ = Ψ = =  (1.89) 

c) coils 1 and 2: 

 

( ) ( )

1 2 1 1 2 2

1 1 1 12 2 1 1 1 12 2

2 2 2 21 1 2 2 2 21 1

1 1 1 12 2 2 2 2 21 1

dW dW dW i d i d , with

L i L i , d L di L di

L i L i , d L di L di

dW i L di L di i L di L di

= + = Ψ + Ψ

Ψ = + Ψ = +

Ψ = + Ψ = +

= + + +

 (1.90) 

Assuming const.μ =  it follows: 

a) firstly increasing the current 1i  from 0 to 1i  

 
1i

2
2 2 1 1 1 1 1

0

1
i 0,  di 0 W i L di L i

2
= = = =  (1.91) 

   then increasing the current 2i  from 0 to 2i  

coil 1: generates a 
homogeneous field 

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

 

⊗  

 coil 2: generates an 
inhomogeneous field 
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2 2i i
2

1 1 1 1 1 1 12 2 2 2 2
0 0

2 2
1 1 12 1 2 2 2

1
i i ,  di 0     W L i i L di i L di

2

1 1
W L i L i i L i

2 2

= = = + +

= + +

 (1.92) 

b) firstly increasing the current 2i  from 0 to 2i  

 
2i

2
1 1 2 2 2 2 2

0

1
i 0,  di 0 W i L di L i

2
= = = =  (1.93) 

   then increasing the current 1i  from 0 to 1i  

 

1 1i i
2

2 2 2 2 2 1 1 1 2 21 1
0 0

2 2
2 2 1 1 21 2 1

1
i i ,  di 0 W L i i L di i L di

2

1 1
W L i L i L i i

2 2

= = = + +

= + +

 (1.94) 

Independent from the sequence of increasing the currents (switching on the 
coils) the magnetic energy must always have the same value. Therefore, the fol-
lowing is true: 

 12 21L L=  (1.95) 

1.8 Iron Losses 

In addition to the copper losses (caused by current flow in wires having a re-
sistance) iron losses are known in electrical machines. These iron losses mainly 
are composed of two parts: 

According to Lenz’s Law the flux change in the electrical conducting iron ma-
terial causes eddy currents that oppose their generating induction variation. The 
eddy current losses are proportional to the squared frequency, the squared flux 
density and the iron volume: 

 2 2
Fe,edd Fe

ˆf B VP   (1.96) 
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These eddy current losses can be reduced by using isolated lamination sheets and 
by using iron laminations with low electrical conductivity. 

Because of ever changing magnetizing direction inside the iron hysteresis loss-
es are generated that are proportional to the area of the hysteresis loop enclosed 
during each cycle; these losses are proportional to the frequency, the squared flux 
density and the iron volume: 

 2
Fe,hys Fe

ˆf  B VP  (1.97) 

The hysteresis losses can be reduced by using iron material with a narrow hystere-
sis loop. 

Mostly, the iron losses are calculated according to the following Steinmetz 
equation: 

 

22

Fe edd hys Fe Fe

ˆf f B
P a a V

50Hz 50Hz 1T
 ρ= +  (1.98) 

where Feρ  is the specific iron weight. The material specific loss factors (eddy cur-

rent loss factor edda  and hysteresis loss factor hysa , both in W kg ) are given by 

the iron material suppliers. 
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2 DC-Machines 

2.1 Principle Construction 

Figure 2.1 shows a photograph of an open cut DC-machine, where all relevant 
parts are described. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.1. Photograph of a DC-machine. 

The principle construction of a DC-machine is like follows: 
The stationary part (called “stator“) mostly is composed of massive iron (to 

lead the magnetic flux). A stationary magnetic field with changing polarity is gen-
erated, either by permanent magnets (see Fig. 2.1) or by salient poles having coils 
with DC-currents. 

The movable part (called “rotor“) - separated from the stator by an air-gap - is 
composed of an iron stack made from laminations, in whose slots coils made from 
copper are placed. These coils are connected with the clamps of the commutator 
segments. On the commutator the carbon brushes are sliding, so that the current is 
supplied from the stationary terminals to the rotating coils. 

By this commutator the supplied DC-current permanently changes direction in 
the rotor in such a way, that the current in the rotor coils below a permanent mag-
net pole of the stator always flows in the same direction (under the magnet pole 
with opposite polarity the current flows in opposite direction). By this changing of 
current flow direction in the rotor coils an alternating current arises. 

commutator

housing

rotor iron stack

bearing bracket

bearing

axis

windingmagnet

brush and 
brush holder
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2.2 Voltage and Torque Generation, Commutation 

In principle each electrical machine can be operated as motor or as generator. In 
generator operation usually voltage production constant in time is required, in mo-
tor operation usually torque production constant in time is asked for. 

In a rotating coil a voltage is induced according to the induction law, see Fig. 
2.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.2. Principle sketch of voltage induction in rotating representation. 

The induced voltage is: 

 

( )i i z

i

z

u E d v B d 2 B v

u Ri u

u Ri 2 B v

= − = − × =

= +

= +

 (2.1) 

For the signs the following is true: 

• i iu E d= −  is defined like this in Sect. 1.1, see Eq. 1.32; 

• iE  and d  (in the direction of the current i) are opposite to each other. 

Figure 2.3 shows the same situation in a “wound-off” representation. The in-
duced voltage for this situation can be calculated like follows: 

 
i

z
i z mech

d d
u w , w 1

dt dt

B dA B 2 vdt
u 2 B v, v r 2 nr

dt dt

 

Ψ Φ
= = =

= = = = ω = π

 (2.2) 
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v  iE  

z  S 

B

v  
iE  
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For the signs the following is true: 

• i

d
u

dt

Ψ
=  is deduced in Sect. 1.1; 

• d  (in the direction of the current i) and B  in the left part of Fig. 2.3 (increase 

of B ) are linked together like a right-handed screw. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.3. Principle sketch of voltage induction in “wound-off” representation. 

The spatial characteristic of the flux density and the time-dependent character-
istic of the voltage are like follows (Fig. 2.4): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.4. Flux density and induced voltage characteristics. 

Between the electrical angular frequency ω  and the mechanical angular fre-

quency mechω  the following relation is true ( p  being the number of pole pairs): 

vdt 

v  v  

u 
i 

z  

⊗   

B
B

x 

x 

B 
spatial characteristic 
of flux density B(x) 

0 
2π  2−π  π  

tω  

i
u  
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2π  2−π  π  

with 
commutator



40      2 DC-Machines 

 

mechp

2 f p 2 n

f pn

ω = ω

π = π

=

 (2.3) 

The commutator converts the AC-voltage in the coil into a DC-voltage (with 
harmonics) at the terminals. By series connection of several coils evenly distribut-
ed along the rotor circumference a higher DC-voltage with lower harmonic con-
tent is obtained. 

The procedure of commutation is explained in Fig. 2.5: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.5. Procedure of commutation. 

As a first approximation it may be assumed that the current in the coil changes 
linearly from its maximum to its minimum value (maximum absolute value, nega-

S N 
a b 

i 

n 

S N 
b a 

i 

n 

S N 
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b 

n 

1) 
The current flows via a carbon brush, a commutator 
section, through a coil and via the counterpart com-
mutator section and carbon brush. 
For motor operation a torque in the direction of mo-
tion occurs. 

 
 
 

2) 
Under each carbon brush both commutator sections 
are located; there is no current in the coil (begin and 
end of the coil are short-circuited via the brushes) 
and no torque is generated. 
The rotor of the DC-motor stays in rotational 
movement because of its inertia. 

 
 
 

3) 
Like in case 1) current is flowing in the coil, but the 
commutator (after 180° rotation of the rotor) has 
forced a change of current flow direction in the coil. 
Therefore, torque and current at the terminals have 
the same direction like in case 1). 
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tive sign). In the time period between two commutation events the current in the 
coil is (approximately) constant. 

The force onto a current conducting wire is: ( )F i B= × . From this speed di-

rection and torque of the DC-machine in motor operation follow. 
In generator operation the voltage u Ri 2B v= − +  is produced (here the ener-

gy generation system is assumed, see Fig. 2.6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.6. Motor operation (above) and generator operation (below). 

2.3 Number of Pole Pairs, Winding Design 

Up to now two-pole machines were presented. Nevertheless, DC-machines with 
even more poles are possible. For these constructions the arrangement is repeated 
p times along the circumference (e.g. for p 2=  there are 4 carbon brushes and 4 

magnets or excitation poles). 
The advantages of a high number of poles are: 
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• The total flux is divided into 2p part fluxes. By this the cross section of the 
yokes in stator and rotor can be chosen smaller (material savings). 

• A smaller pole pitch results in shorter end windings (with smaller resistance 
and lower losses). 

The disadvantages are: 

• By having smaller distances between the poles the leakage between the poles is 
increased. 

• The losses are increased by the higher rotor frequency. 

Therefore, the choice of the number of pole pairs is an optimization task. 
The pole pitch is calculated according to: 

 p

2 r

2p

π
τ =  (2.4) 

Between the mechanical angle α  and the electrical angle β  the following rela-

tion is true: 

 pβ = α  (2.5) 

The winding placed in the slots of the rotor stack often is realized as two-layer 
winding: The forward conductors are in the upper layer (i.e. towards the air-gap), 
the return conductors in the lower layer (i.e. towards the slot bottom). In Figs. 2.7 
to 2.9, showing the general situations “wound-off”, solid lines represent the for-
ward conductors (upper layer) and dashed lines the return conductors (lower lay-
er). For DC-machines each coil at the beginning and at the end is connected to a 
commutator section, i.e. the number of coils and the number of commutator sec-
tions are identical; in the following this will be named with the variable K . 

For DC-machines the following nominations are introduced: 
 K  number of commutator sections (equal to number of coils) 
 u  number of coils sides side-by-side in a single slot 
 N  number of rotor slots 

 Sw  number of turns per coil (number of conductors per coil side) 

 z  total number of conductors in all slots 
The distance between two carbon brushes (i.e. between the positive brush and 

the negative brush) is: 

 B

K
y

2p
=  (2.6) 

Moreover, the following relations are true: 
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S

K Nu

z 2w K

=

=
 (2.7) 

Mostly u 1>  is true, then the number of rotor slots is smaller than the number 
of commutator sections ( N K< ). 

Examples (lap winding): 

• In Fig. 2.7 the three upper sketches show the conductors in a rotor slot for dif-
ferent winding layout. 

• The lower sketches illustrate the according winding layout (in each sketch on 
the left side only the upper layer and on the right side only the lower layer is 
shown). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.7. Sketches of conductors in a slot (above) and the according winding layout (below). 

The coils can be connected to the commutator in two different ways: 
Having a lap winding (Fig. 2.8) the end of a coil is connected directly to the 

beginning of the next coil of the same pole pair at the commutator. Between two 
commutator sections only one coil is placed. All p pole pairs are connected in se-
ries by the carbon brushes; the number of parallel paths in the rotor is: 2a 2p= . 

The total rotor current is therefore divided into 2p  parallel conductor currents.  

Naming the coil width with 1y  (in numbers of rotor slots) and the connection step 

with 2y  (in numbers of rotor slots), then the commutator step y  for the lap wind-

ing is (see Fig. 2.8): 1 2y y y 1= − = . 

Having a wave (or series) winding (Fig. 2.9) the end of a coil is connected with 
the beginning of a corresponding coil of the next pole pair, so that - until reaching 
the neighboring commutator section - a path along the circumference of the rotor 
with p coils is completed. Between positive and negative carbon brush all p pole 
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u 1

w 1
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=
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pairs are connected in series; the number of parallel paths in the rotor is: 2a 2= . 
The total rotor current is therefore divided into 2  parallel conductor currents. 

Naming the coil width with 1y  (in numbers of rotor slots) and the connection 

step with 2y  (in numbers of rotor slots), then the commutator step y  for the wave 

winding is (see Fig. 2.9): 1 2

K 1
y y y

p

−
= + = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.8. Winding layout of a DC-machine with lap winding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.9. Winding layout of a DC-machine with wave winding. 
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For the wave winding an arbitrary number of pole pairs can be realized with 
just two carbon brushes, because all positive brushes and all negative brushes are 
connected in series, respectively. This is illustrated in Fig. 2.9 by hatching one 
positive brush and one negative brush. 

2.4 Main Equations of the DC-Machine 

A two-pole DC-machine is regarded in the following (please refer to Fig. 2.10). 

Here iα  is the pole arc in parts of the pole pitch ( iα  is a dimensionless number 

that gives the ratio between pole arc and pole pitch). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.10. Cross-sectional sketch of a two-pole DC-machine. 

The number of turns of the rotor winding (armature winding) is: 

 A

z 2 z
w

2a 4a
= =  (2.8) 

Under the 2p  poles i A2 wα  turns are effective. 

2.4.1 First Main Equation: Induced Voltage 

The induced voltage in a single rotor conductor is: iu B v= . For every rotor path 

there are 
z

2a
 conductors in series; in each element dα (see Fig. 2.11) there are 
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z d

2a 2 p

α

π
 conductors in series, if all z conductors are distributed evenly along the 

circumference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.11. Sketch of a two-pole DC-machine (above) and respective flux density distribution in 
“wound-off” representation (below). 

The induced voltage in the conductors of a circumference element dα becomes: 

 ( ) ( )i

z d
u d B v

2a 2 p

α
α = α

π
 (2.9) 

Because of the parallel connection of the paths the total voltage of a path is 
equal to the induced voltage. This voltage is gained by integration between the 
limits given by the carbon brush position (shifted brushes). For 2p  poles there is: 

 ( )

  
2

i

   
2

z d
u 2p B v

2a 2 p

π
+ β

π
− + β

α
= α

π
 (2.10) 

With v 2 rn= π  it follows: 
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dα  

n 

β  
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 ( )

  
2

i

   
2

p r
u z n B  d

a p

π
+ β

π
− + β

= α α  (2.11) 

Here the integral describes the flux Φ , which is enclosed by the brushes. With 

 A

p
k z 4pw

a
= =  (2.12) 

(the constant k is called motor constant or rotor constant) it follows:3 

 iu k n= Φ  (2.13) 

For 0β =  (i.e. no shift of the brushes, brushes in neutral position) and the air-gap 

flux density below the excitation poles Bδ  it follows: 

 
( )

i i

i i

2 2 2
p

   
2 2 2

i p

r 2 r
B  d B  d B  d

p 2 p

B

π π π
α α

δ δ
π π π

− − α − α

δ

τπ
Φ = α α = α = α

π π

= α τ

 (2.14) 

2.4.2 Second Main Equation: Torque 

The torque can be calculated from the force on current conducting wires (here for 
0β = ): 

 
i A

A
i p

T w i B 2  r

4pw
B i

2

 δ

δ

= α

= α τ
π

 (2.15) 

Therefore, it follows: 

                                                           
3 Sometimes the induced voltage (also called back electromotive force, back emf, counter emf) is 

nominated with “e”. As it has the nature of a voltage, here the name “ iu “ is preferred. 
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k

T i
2

= Φ
π

 (2.16) 

2.4.3 Third Main Equation: Terminal Voltage 

For the terminal voltage there is (in the energy consumption system), see Fig. 
2.12: 

 i

di
u u Ri L

dt
= + +  (2.17) 

 
 
 
 
 
 
 
 

Fig. 2.12. Equivalent circuit diagram of the DC-machine. 

For steady-state operation it follows: 

 iU U RI= +  (2.18) 

2.4.4 Power Balance 

By means of the voltage equation a power balance can be made (multiplication of 
the voltage equation with the current i): 

 2
i

di
ui u i i R Li

dt
= + +  (2.19) 

From this can be deduced: The electrical input power equals the internal power 
of the DC-machine plus the electrical losses plus the change of magnetic energy. 

u  

i R L

iu  
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Neglecting the iron and friction losses the internal power of the DC-machine 
equals the mechanical power. Therefore: 

 i i mech mechu i P P T 2 nT= = = ω = π  (2.20) 

Consequently: 

 iu i k ni k
T i

2 n 2 n 2

Φ
= = = Φ

π π π
 (2.21) 

2.4.5 Utilization Factor 

Decisive for the design of DC-machines is the internal power i iP u i= . This inter-

nal power is limited by the material characteristics of copper (losses) and iron 
(magnetic saturation). These limits can be described by the values B (flux density) 
and A (current loading). The “current loading“ is a theoretical concept, that sim-
plifies the winding placed in the slots: It is assumed that the conductors are dis-
tributed infinitely thin on the rotor surface (please refer to Sect. 3.2). The follow-
ing relationships are true: 

 
i i p

p
u k n z Bn

a

2a
i 2 r A

z

= Φ = α τ

= π

 (2.22) 

Consequently: 

 

i i i p

i

2 2
i

2 2
i

zp 2a
P u i Bn2 rA

a z

2 r
2p 2 r n AB

2p

4 r n AB

C4r n with C AB

= = α τ π

π
= α π

= α π

= = α π

 (2.23) 
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The value C is called utilization factor (Esson’s number); the internal power is 
now described by the geometry, the speed, and the utilization factor. 

 
Example: 

Some typical values are: i 0.65α = , A 500 A cm=  and B 0.8T= . From this 

the utilization factor 3C 4.28 kW min m=  can be obtained. Now a DC-machine 

with iP 100kW= , 1n 2000 min−
=  and p 2=  shall be designed. 

Choosing pτ = , it follows: 

 

2 2 2 3i i
p

i3

P P2 r
4r 4r 4r 2 r

Cn 2p Cn

P
r 0.123m

2 Cn

π
= = τ = = π

= ≈
π

 (2.24) 

and 

 3i
2 2

P1 1 1
2 r r 0.193m

4r Cn 4r 2
= = π = π =  (2.25) 

A transformation gives: 

 i
2 2 2 2 2 2

P2 2 2 2 nT T
C C

4r n 4r n r

π
′ = = = =

π π π π
 (2.26) 

Consequently, the utilization factor C is proportional to the torque divided by the 
bore volume. 

Further it follows: 

 
2 2

T Fr F
C 2 2f

r r 2 r
′ = = = =

π π π
 (2.27) 

The utilization factor C also is proportional to the (tangential) force divided by the 
bore surface area. 

With 2
iC AB= α π  it is true: 

 
i

i

C 2 AB

f AB

′ = α

= α
 (2.28) 
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2.5 Induced Voltage and Torque, Precise Consideration 

2.5.1 Induced Voltage 

Up to now the calculation of the induced voltage and the torque was performed as-
suming that the conductors of the rotor are lying in the air-gap field. But the con-
ductors of the rotor are placed in the rotor slots; the magnetic field is guided 
around the rotor winding by means of the surrounding iron (Fig. 2.13). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.13. Sketch of the DC-machine in rotatory presentation (above) and “wound-off” represen-
tation (below). 
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With 

 x r = α  (2.29) 

both coordinate systems (Cartesian and cylindrical) can be transformed to each 
other. 

For calculation of the induced voltage Ampere’s Law is used with a circulation 

path over one pole pitch (for the permeability of iron Feμ → ∞  is assumed; the ro-

tor current is zero; r is the rotor radius): 

 

( ) ( )

( )
( )

F p

0

Hd H x H x

B x
2 H x 2

= Θ = δ + − + τ δ

= δ = δ
μ

 (2.30) 

Because of the symmetry the field strength at two points, shifted by the pole 

pitch pτ , has the same absolute value, but different sign. Performing the circula-

tion path (which has the width of one pole pitch) not under the poles, but in the 
gap between the poles, the circulation integral gives the value zero. Therefore, the 
air-gap flux density becomes: 

 ( )
0

FB in the area of the poles          
B x 2

0 in the gap area between poles

δ

μ
± = ± Θ

= δ  (2.31) 

Now a conductor coil of width pτ  (pole pitch) and length  (axial length of the 

machine) is looked at. This conductor coil has placed its forward and return wires 
in the rotor slots. Moreover, the forward and return wires always shall be located 
in the areas of the stator poles. This last requirement is fulfilled for 

 ( ) ( )p p
i 0 i1 x 1

2 2

τ τ
− α ≤ ≤ + α  (2.32) 

if 0x  describes the beginning of the conductor coil. For the flux surrounded by 

this conductor coil it follows: 

 ( ) p p
0 p 0 0

p

2
x B x B 2 x

2 2
δ δ

τ τ
φ = − τ − = − −

τ
 (2.33) 



2.5 Induced Voltage and Torque, Precise Consideration      53 

Shifting now the conductor coil by the value xΔ  (i.e. rotating the rotor by 

x rΔα = Δ ), but this coil remains under the stator poles, the surrounded flux is: 

 ( ) ( )p
0 0x x B 2 x x

2
δ

τ
φ + Δ = − − + Δ  (2.34) 

The induced voltage equals the change of flux with respect to time (see Sect. 
2.2); therefore it follows: 

 

( ) ( )

( )
0 0

i

x x x

B 2 x

x
U B 2 B 2 v

t t

δ

δ δ

Δφ = φ + Δ − φ

= − −Δ

Δφ −Δ
= = − =

Δ Δ

 (2.35) 

The sign of the induced voltage depends on the direction of movement of the 
conductor coil (i.e. depending on the direction of movement of the rotor, because 
the conductor coil is placed inside the rotor slots). 

In total the following can be stated: The induced voltage of wires placed in 
slots can be calculated as if these wires would lie in the air-gap field. 

2.5.2 Torque 

In the preceding section the calculation of the induced voltage was performed us-
ing the “wound-off” representation, in this section the computation will be done 
using the original rotatory geometry (of course, both calculations can be per-
formed using the other alternative). 

A conductor coil placed inside the rotor slots is assumed having a rotor (arma-

ture) current AI 0>  (see Fig. 2.14). At time instant 1t t=  the rotor has the posi-

tion shown in the upper part of Fig. 2.14, at time instant 2t t=  the rotor has the 

position shown in the lower part of Fig. 2.14. For both cases the shown circulation 
path along one pole pitch (which is identical for both cases and which is illustrated 

by the black solid line) is evaluated. At time instant 1t t=  the circulation path in-

cludes the excitation magneto-motive force (of the stator) and the return wire of 

the current conducting rotor coil, at time instant 2t t=  the circulation path in-

cludes the excitation magneto-motive force and the forward wire of this coil. 
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Fig. 2.14. Sketch of the DC-machine in rotatory presentation for two different rotor positions at 
two different points in time: t1 (above) and t2 (below); these different rotor positions are noticea-
ble from the different locations of the current conducting rotor coil. 

By means of symmetry conditions it follows for time instant 1t t= , if 0α  de-

scribes the mid-point of a stator pole: 
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The same circulation path at time instant 2t t=  gives, because the forward 

wire of the conductor coil is included: 
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I H , t 2 2
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δ

α
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δ δ δ

 (2.37) 

Rotating the rotor by Δα  changes the magnetic energy in the volume element 
V 2 rΔ = δ Δα  like follows (the magnetic energy outside this volume element 

does not have to be regarded, because the magnetic field outside the space de-
scribed by the moved conductor coil does not change): 

 

( ) ( )

( ) ( )

0

mag mag 2 mag 1

2 2
2 0 1 0

0

A

A
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W W t t W t t

B t , B t ,
2 r

2
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2 I

2 2 r 2B I r
2

δ

δ

Δ = = − =

α − α
= δ Δα

μ

μ
δ= δ Δα = Δα
μ

 (2.38) 

The force onto a single conductor is calculated from the change of magnetic 
energy with respect to movement (please note that up to now two conductors, for-
ward and return conductor of the coil, were regarded): 

 
mag

A

W1
F I B

2 r
δ

Δ
= =

Δα
 (2.39) 

The sign of the force is – at constant stator field – depending on the direction of 
the current in the coil (i.e. depending on the direction of the voltage switched to 
the conductor coil). 

In total the following can be stated: The force onto wires placed in slots can be 
calculated as if these wires would lie in the air-gap field. 

The force does not act directly onto the wires, but it acts onto the iron teeth be-
cause of different flux densities. From the force calculation the torque generated 
by the machine can be deduced. Therefore, even the torque direction depends on 
the current direction in the rotor (i.e. depending on the direction of the DC-voltage 
switched to the rotor coils). 
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2.6 Separately Excited DC-Machines 

The excitation winding of a separately excited DC-machine is supplied by an addi-
tional voltage source, therefore this machine topology in the steady-state operation 
can be described by the following equivalent circuit diagram (Fig. 2.15): 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2.15. Equivalent circuit diagram of the separately excited DC-machine. 

The terminal voltage U  and the excitation voltage FU  are independently ad-

justable. By the variable series resistance SR  the total resistance in the rotor cir-

cuit S AR R R= +  can be increased. 

From the three main equations (here for steady-state operation) 

 iU k n= Φ  (2.40) 

 A

k
T I

2
= Φ

π
 (2.41) 

 i AU U RI= +  (2.42) 

the following speed characteristic is deduced: 

 i AU RIU
n

k k k
= = −

Φ Φ Φ
 (2.43) 

In no-load operation ( AI 0= ) there is: 

U  

AI  SR  AR  

iU  

FU  

FI  
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 0

U
n n

k
= =

Φ
 (2.44) 

At stand-still ( n 0= ) the so-called stall current (also called short-circuit cur-
rent) is: 

 A stall

U
I I

R
= =  (2.45) 

This stall current has to be limited by the series resistance SR . The stall torque 

amounts to: 

 stall stall

k
T I

2
= Φ

π
 (2.46) 

At operation with (positive) nominal voltage NU U= , nominal flux NΦ = Φ  

(at F F,NU U= ) and SR 0=  the fundamental characteristic of the separately ex-

cited DC-machine becomes (Fig. 2.16): 

 A A
0

N

R I
n n

k
= −

Φ
 (2.47) 

 N A

k
T I

2
= Φ

π
 (2.48) 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2.16. Torque and speed versus current of the separately excited DC-machine. 
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In the regarded energy consumption system motor operation is for  

n 0> , T 0> , AI 0>  (i.e. in the first quadrant for A stallI I< ); 

generator operation is for  

n 0> , T 0< , AI 0< . 

For A stallI I>  it is true: n 0< , T 0> , AI 0> . This is the braking operation of 

the machine. 
The power flow in such a DC-machine is depicted in Fig. 2.17, assuming the 

energy consumption system for the definition of positive directions. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.17. Equivalent circuit diagram of the general DC-machine with power flow. 

Generally, the following operational conditions are possible (assumed is the 
energy consumption system and a positive terminal voltage U 0> ) (Table 2.1): 

Table 2.1. Possible operational conditions (assuming positive terminal voltage and energy con-
sumption system) 

AI  n  T  elP  mechP   

0>  0>  0> 0>  0>  motor operation (@ positive speed) 
0>  0>  0< 0>  0<  braking operation (@ positive speed) 
0>  0<  0> 0>  0<  braking operation (@ negative speed)
0>  0<  0< 0>  0>  motor operation (@ negative speed)
0<  0>  0> 0<  0>  not possible 
0<  0>  0< 0<  0<  generator operation (@ positive speed) 
0<  0<  0> 0<  0<  generator operation (@ negative speed)
0<  0<  0< 0<  0>  not possible

 
Two operational conditions are not possible, because these would mean that the 

DC-machine delivers electrical power as well as mechanical power (having a per-
petuum mobile). For negative terminal voltage U 0<  an additional, similar table 
can be deduced. 

U  

AI  AR  

iU  

elP  
mechP  
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There are three general possibilities for speed control: 
 

1. Reduction of the terminal voltage: 

With setting the voltage NU U 1<  the following equations are true: 

 A A
0

N N

R IU
n n

U k
= −

Φ
 (2.49) 

 N A

k
T I

2
= Φ

π
 (2.50) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.18. Torque and speed versus current of the separately excited DC-machine for voltage var-
iation. 

Therefore, the no-load speed is decreased, but the slope of the speed character-
istic does not change. The relation between torque and rotor current remains un-
changed. The stall (short-circuit) current is decreased proportional to the terminal 
voltage; the direction of rotation can be changed by reversing the polarity of the 
terminal voltage (Fig 2.18). 

The speed control by changing the terminal voltage is lossless. Because of the 
small rotor time constant this alternative for speed control is highly dynamic. 

 
2. Reduction of the flux: 
Reducing the excitation flux (by reducing the excitation current) and neglecting 
the saturation, it follows: 

AI  

n, T  

0n  

T

n voltage smaller 
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 F

F,N N

I 1
1

I f

Φ
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Φ
 (2.51) 

 A A
0

N

R I
n fn f

k
= −

Φ
 (2.52) 

 N
A

k
T I

2 f

Φ
=

π
 (2.53) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.19. Torque and speed versus current of the separately excited DC-machine for flux varia-
tion. 

With increasing field weakening (field weakening factor f 1> ) the no-load 
speed is increased and the slope of the speed characteristic rises (i.e. loading the 
machine means an exceeded speed reduction). At constant rotor current the torque 
decreases with increasing field weakening (Fig. 2.19). 

The speed control by field weakening is lossless, but (because of the usually 
large time constant of the excitation winding) it is less dynamic compared with the 
speed control by changing the terminal voltage. 

 
 

3. Increasing the rotor resistance (series resistance): 

By inserting a series resistance SR  into the rotor circuit the total resistance is in-

creased. The following equations are obtained: 

AI  

n, T  

T

n

flux smaller 
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( )A S A

0
N

R R I
n n

k

+
= −

Φ
 (2.54) 

 N A

k
T I

2
= Φ

π
 (2.55) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.20. Torque and speed versus current of the separately excited DC-machine for series re-
sistance variation. 

The no-load speed 0n  remains unchanged, the same holds true for the relation 

between torque and rotor current. The slope of the speed characteristic increases, 
i.e. loading the machine means an exceeded speed reduction. The stall (short-
circuit) current is reduced by increasing the series resistance, therefore this alter-
native is used for starting the motor (Fig. 2.20). 

Because of the additional losses in the series resistance ( 2
S AR I ) this method is 

not lossless. 
 
The following general operational limits have to be obeyed: 

• In continuous operation the acceptable heating may not be exceeded: 

A A,NI I≤ . 

• Even in field weakening operation the machine may not be overloaded: 

N2 nT Pπ ≤ . 

• Because of the centrifugal forces onto the rotating parts the maximum accepta-

ble speed may not be exceeded: maxn n≤ . 

AI  

n, T  

T

n
series resistance larger 
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In literature the characteristics of DC-machines are often shown versus the ro-

tor current AI  (see Figs. 2.18 to 2.20). Describing rotating field machines, mainly 

the speed is used as horizontal axis. To make the comparison of the characteristics 
easier, Fig. 2.21 shows the torque of a separately excited DC-machine as a func-
tion of the speed (this is the same relation like in the preceding figures, it is just il-
lustrated in a different way). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.21. Torque versus speed of the separately excited DC-machine. 

2.7 Permanent Magnet Excited DC-Machines 

The permanent magnet excited DC-machine can be regarded as being a special 
case of the separately excited DC-machine. Even for this alternative the speed 
control can be performed by changing the terminal voltage and by introducing a 
series resistance. But field weakening is not possible (because the permanent 
magnets impress the magnetic flux). The advantages of the permanent magnet ex-
citation against the electrical excitation are (please refer to Fig. 2.22): 

• smaller outer diameter 
• smaller volume and weight 
• more simple construction (no stator winding, less terminal contacts) 
• higher efficiency (no excitation losses) 
• more cost-effective production 
• better dynamics (no field increase by excitation current increase) 

 
 
 

n 

T 

0n  
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Fig. 2.22. Separately excited DC-machines: electrical excitation (left) and magnetic excitation 
(right). 

The technical characteristics of a permanent magnet material is described by 
the hysteresis loop in the second quadrant (Fig 2.23): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.23. Permanent magnet characteristic. 

Flux density and field strength are linked by remanent flux density and perme-
ability: 
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The development of different magnet materials according to time is illustrated 
in principle in Fig. 2.24:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.24. Different magnet materials: maximum energy product versus time. 

A permanent magnet can only be operated in the linear section of this charac-
teristic, otherwise it will be (at least partly) demagnetized. If higher opposite field 

strength than limitH  is applied, an irreversible flux loss occurs. 

Naming the radial magnet height Mh  it follows from Ampere’s Law with “cir-

culation path 1“ (please refer to Fig. 2.25): 
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The flux densities can be calculated from the according cross sections: 
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Fig. 2.25. Permanent magnet DC-Machine with different circulation paths. 

The field strength in the magnet is:  
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μ μ
 (2.59) 

Consequently the flux density in the magnet is: 
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 (2.60) 

and the field strength in the magnet: 
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 (2.61) 

These calculated values for M,1B  and M,1H  are valid in the symmetry plane, 

and during no-load operation ( AI 0= ) for the entire magnet. 

Now the air-gap flux density at the run-on edge will be calculated (“circulation 
path 2“). It has to be considered that along the entire circumference of the rotor 

A2w  conductors are placed, the current loading is A A2w I
A

D
=

π
. The current un-

der one pole is: i pAα τ . 

 

i p

A A
i

i A A

1
Hd 0 A

2

2w I1 D

2 D 2p

1
w I I

2p

= − − α τ

π
= α

π

= α = Δ

 (2.62) 

Consequently: 
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and further 
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Further it follows: 

 

M,2 R 0 r M
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δ
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δ
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 (2.65) 

Under load the flux density in the magnet MB  at the run-on edge is higher than 

under no-load condition. 
For the run-off edge the flux density under load (“circulation path 3“, using an 

analogous deduction like above) becomes: 

 M,3 M,1 0 r MB B H= − μ μ Δ  (2.66) 

Therefore, under load the flux density in the magnet MB  at the run-off edge is 

smaller than under no-load condition. The danger of demagnetization occurs 
(please refer to “armature reaction“, Sect. 2.12)! 

Especially for applications with a wide temperature range the demagnetization 
must be checked in the entire temperature range as the magnet characteristic 
changes with temperature. 

Typical values of remanent flux density ( RB ) and coercive field strength ( CH ) 

and the respective temperature coefficients for different magnet materials are 
shown in Table 2.2. 

Table 2.2. Main characteristic values of important permanent magnet materials. 

 remanent flux density coercive field strength 
value @ 

20°C 
temperature 
coefficient 

value @ 
20°C 

temperature 
coefficient 

ferrite 0.4 T -0.190 %/K   170 kA/m +0.30 %/K 
NdFeB 1.2 T -0.090 %/K 1900 kA/m -0.60 %/K 
SmCo 1.1 T -0.032 %/K 1800 kA/m -0.19 %/K 
 
Figure 2.26 principally illustrates the influence of the temperature onto the lim-

iting field strength limitH  and the value MHΔ . 

As counter-measure against the danger of demagnetization the magnet height 

Mh  can be chosen larger. 

To illustrate the effect of different demagnetization danger at the run-on edge 
and the run-off edge, Fig. 2.27 shows the field lines of a 2-pole 12 slots DC-motor 
with ferrite magnets with and without rotor currents. 



2.8 Shunt-Wound DC-Machines      69 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.26. Field strength and limiting field strength versus temperature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.27. Field lines of a 2-pole 12 slots DC-motor with ferrite magnets without (left) and with 
(right) rotor currents. 

2.8 Shunt-Wound DC-Machines 

For the shunt-wound DC-machine the excitation winding is connected in parallel 
to the rotor circuit. This results in the equivalent circuit diagram shown in Fig. 

2.28. In this figure the resistance FR  is drawn with the symbol of an inductivity. 

This makes obvious that  
• in the excitation circuit an inductivity is present, but  
• in the steady-state operation regarded here only the resistance is effective. 
Similar depictions are even chosen in Figs. 2.30, 2.32, and 2.37. 
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Fig. 2.28. Equivalent circuit diagram of the shunt-wound DC-machine. 

Rotor and excitation circuit are switched to the line with constant voltage. In 
each circuit a series resistance may be introduced. 

Is this shunt-wound DC-machine switched to constant voltage, the speed char-

acteristic is equal to that of a separately excited DC-machine. For A,SR 0= , 

F,SR 0=  it follows: 

 NA A
0 0

N N

UR I
n n , n

k k
= − =

Φ Φ
 (2.67) 

 N
N A stall

A

Uk
T I , I

2 R
= Φ =

π
 (2.68) 

For speed control or change of speed direction the change of the terminal volt-
age is without effect, because the excitation current and the rotor current are 
changed or reversed simultaneously. The speed can only be changed by using the 
series resistances: 

• in the rotor circuit: lossy speed reduction 
• in the excitation circuit: nearly lossless speed increase 

The characteristics are analogously to those of the separately excited DC-
machine. 

 
Self-excitation (generator operation): 
Switching the excitation winding via a series resistance parallel to the rotor and 

driving the machine with constant speed, a remanent voltage RU  is induced by 

U  

AI  A,SR  AR  

iU  

FI  
FR  F,SR  
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the always present residual magnetism in every iron circuit. This voltage generates 

an excitation current RI , which strengthens the residual field and the induced 

voltage is increased. This happens as long as the induced voltage is equal to the 
voltage drop across the resistances in the excitation circuit. Then a stable operat-
ing point is reached. This is called “dynamo-electrical principle“ (Fig. 2.29) (Wer-
ner von Siemens, 1866). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.29. Voltage versus excitation current during self-excitation. 

Switching on the excitation winding in opposite direction, the excitation current 
demagnetizes the circuit and the self-excitation does not take place. 

The series resistance in the excitation circuit F,SR  has two effects: 

• the generator voltage can be set and 
• the time constant of the excitation winding can be reduced to speed-up the self-

excitation. 

This series resistance may not exceed a critical value, because otherwise the 
self-excitation does not take place. 

 
Loading the generator: 

For the separately excited DC-machine the load characteristic ( )U f I=  is a 

straight line: i A AU U R I= −  (energy generation system). 

For the shunt-wound DC-machine it follows in the energy generation system 
(Fig. 2.30): 

RU  

iU  

U  

FI  

( )F A F F,SI R R R+ +  
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( )

( )

( )( )

i A A F F

A F F F

A A F F

i A F F
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U R I R I

R I I R I

R I R R I

1
I U R R I

R

= +

= + +

= + +

= − +

 (2.69) 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2.30. Equivalent circuit diagram of the loaded shunt-wound DC-generator. 

By means of the no-load characteristic the load characteristic can be deduced 
(Fig. 2.31). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.31. Load characteristic of the shunt-wound DC-generator. 

The shunt-wound DC-generator only can be loaded until the current maxI , at 

further loading the voltage collapses. Then only the stall current stall,RI  flows, 

which is generated by the residual voltage. 
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2.9 Series-Wound DC-Machines 

For the series-wound DC-machine the excitation winding is switched in series to 
the rotor circuit, see Fig. 2.32. The series resistance in the rotor circuit and the re-
sistance parallel to the excitation winding can be used for speed control. As the 
excitation current of this alternative depends on the load, the speed characteristic 
of the series-wound DC-machine is principally different to the DC-machines dis-
cussed so far. 

 
 
 
 
 
 
 
 
 
 

Fig. 2.32. Equivalent circuit diagram of the series-wound DC-machine. 

Neglecting the saturation and for PR → ∞  it follows for steady-state opera-

tion: 

 

F m F m A

m A
A m A

F

w L I L I

L I
k 4pw L I

w

Φ = =

′Φ = =
 (2.70) 

For the speed and torque equation it follows: 
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2 2

+ +
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′
= Φ =

π π

 (2.71) 

Loading this machine the speed decreases drastically (“series characteristic”); 
the characteristics during motor operation are shown in Fig. 2.33. 

In no-load operation ( AI 0= ) it follows n → ∞ , the machine “runs away“. 

The speed is only limited by the friction torque (carbon brushes, bearings). The 
stall current ( n 0= ) is: 

U  

AI  A,SR  AR  

iU  
FI  FR  

PR  PI  
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 N
stall

A F

U
I

R R
=

+
 (2.72) 

This stall (short-circuit) current has to be limited by the series resistance A,SR  

during starting operation of the motor. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.33. Torque and speed versus current of the series-wound DC-machine. 

By reversing the polarity of the terminal voltage no speed reversal can be ob-
tained, because rotor current and excitation current are changed simultaneously. 

For speed control the following possibilities can be used (in Figs. 2.34 to 2.36 
always the motor operation is illustrated): 

 
1. Reduction of the terminal voltage: 
The speed and the short circuit current are reduced lossless, the relation between 
torque and rotor current remains unchanged: 

 A F
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 2m
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The respective characteristics are illustrated in Fig. 2.34. 
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Fig. 2.34. Torque and speed versus current of the series-wound DC-machine for voltage varia-
tion. 

 
2. Reduction of the flux: 
By switching a resistance parallel to the excitation winding the excitation can be 
reduced (Fig. 2.35). With 
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it follows: 
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where f  again is the field weakening factor. The characteristics are: 
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=

π
 (2.80) 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2.35. Torque and speed versus current of the series-wound DC-machine for flux variation. 

 
3. Increasing the resistance in the rotor circuit (series resistance): 
The speed reduction when loading the machine is increased, the stall current be-
comes smaller, see Fig. 2.36. The relation between torque and rotor current re-
mains unchanged: 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.36. Torque and speed versus current of the series-wound DC-machine for series resistance 
variation. 

These characteristics can be deduced from the following mathematical descrip-
tions: 
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2.10 Compound DC-Machines 

The compound (double shunt-wound) DC-machine contains two excitation wind-
ings (Fig. 2.37). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.37. Equivalent circuit diagram of the compound DC-machine. 

By dividing the excitation winding into a shunt-wound part and a series-wound 
part the compound DC-machine has shunt-wound characteristic near the no-load 
operation and series-wound characteristic when loading the machine. 

The torque-speed-characteristics of the three DC-machine alternatives are qual-
itatively shown in Fig. 2.38. 

The most relevant characteristics are: 

• series-wound DC-machine:  
o weak characteristic (high starting torque and relatively low nom-

inal torque) 
o danger of “run away “ at low load 

• shunt-wound DC-machine: 
o stiff characteristic (the speed depends only marginally on the 

load) 
o fixed no-load speed 
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• compound DC-machine:  
o weak characteristic (high starting torque and relatively low nom-

inal torque) 
o fixed no-load speed (no danger of “run away“ at low load) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.38. Torque versus speed of the series-wound, shunt-wound and compound DC-machine. 

2.11 Generation of a Variable Terminal Voltage 

A formerly frequently used method for generating a variable terminal voltage was 
the usage of the so-called “Leonard machine set“ (Fig. 2.39): 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2.39. Block diagram of the Leonard machine set. 

A rotating field machine (induction or synchronous machine) drives a DC-
generator with variable flux; this generator supplies the DC-motor with a variable 
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terminal voltage. With the Leonard-converter operation in all four quadrants is 
possible. 

Today most often the inverter supply is used to generate a variable terminal 
voltage. 

With a controlled three-phase bridge (see left-hand side in Fig. 2.40) an opera-
tion in two quadrants is possible (no energy recovery); switching two controlled 
three-phase bridges in parallel and opposite to each other (see right-hand side in 
Fig. 2.40) an operation in all four quadrants is possible.  

Principle circuit diagram, switching diagram, and the voltages of a controlled 
three-phase bridge are shown in Fig. 2.41. 

 
 
 
 
 
 
 
 

Fig. 2.40. Block diagram of inverter supply: controlled three-phase bridge (left) and two opposite 
three-phase bridges (right). 
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Fig. 2.41. Principle circuit diagram, switching diagram, and voltages of a controlled three-phase 
bridge. 

2.12 Armature Reaction 

Up to now it was assumed that the magnetic field in the air-gap of the DC-
machine is generated solely by the excitation winding. But this is only the case for 

no-load operation ( AI 0= ). Loading the machine (i.e. if AI 0≠  is true), the rotor 

current generates a magneto-motive force as well (Fig. 2.42); this is oriented per-
pendicular to the magneto-motive force of the excitation winding. By superposi-
tion of these magneto-motive forces the resulting field is generated (“armature re-
action“). 
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Fig. 2.42. Sketch of the DC-machine illustrating the armature reaction. 

Neglecting the saturation and the magnetic voltage drops in the iron, there is by 
means of Ampere’s Law (with α  being the angle on the circumference of the ro-
tor): 
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μ
 (2.84) 

The resulting air-gap field ,resBδ  qualitatively can be deduced from Fig. 2.43. 

The magnetic neutral zone is shifted against the geometric neutral zone depend-
ing on the load (for motor operation against the direction of rotation, for generator 
operation in the direction of rotation). If saturation occurs the peaks of the result-
ing field are rounded. With this even the mean value of the flux density decreases 
and consequently even the torque. 
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Fig. 2.43. Magneto-motive forces of stator and rotor current (above) and resulting air-gap flux 
density (below). 

By this field deformation even the voltage between two commutator segments 
no longer is distributed evenly along the circumference of the rotor. The voltage 
between two commutator segments can be locally increased by far (but the mean 
value remains unchanged, if saturation is neglected). 

In field weakening operation it may happen that the field under the run-off edge 
of the rotor (in motor operation) becomes negative, because the main field de-
creases and the armature reaction remains constant. 

To compensate the armature reaction and their negative effects a compensation 
winding may be introduced to the DC-machine. To realize this the main poles are 
equipped with slots; the conductors placed in these slots have to be supplied with 
the rotor current in opposite direction. The number of turns of this compensation 
winding has to be chosen in such a way that the magneto-motive force of the rotor 
under the poles is compensated. Then the field distribution under the poles is equal 
to that in no-load operation (as the compensation winding is supplied with the ro-
tor current, this is true for arbitrary operating conditions, i.e. independent from the 
load) (Fig. 2.44). 
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Fig. 2.44. Sketch of the DC-machine with compensation winding in the main poles. 

The magneto-motive force distribution and the resulting air-gap field is shown 
in Fig. 2.45. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.45. Magneto-motive forces of stator and rotor current and compensation winding (above) 
and resulting air-gap flux density (below). 
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The axis of the resulting field is now identical to the axis of the excitation field; 
the commutation takes place in the neutral zone. 

A compensation winding increases the costs of a DC-machine by far. There-
fore, this is realized only for large machines. 

2.13 Commutation Pole 

In Sect. 2.2 it was assumed that the rotor current is linear during commutation. 
This is the case if the inductivities can be neglected and mainly the resistances de-
termine the commutation behavior (Fig. 2.46).  

 
 
 
 
 
 
 
 
 
 

Fig. 2.46. Current characteristic during ideal commutation. 

Here CT  is the commutation time,  

 B
C

C

b
T

v
=  (2.85) 

with Bb  being the width of the carbon brush and C Cv D n= π  being the circum-

ferential speed of the commutator ( CD  is the diameter of the commutator). 

In reality there is a non-negligible inductivity because of the slot and end wind-
ing leakage. By current change in the coil which is short-circuited by the carbon 

brushes a voltage of self-induction is generated. With the coil inductivity coilL  

this voltage becomes: 
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Therefore, this voltage during current commutation is proportional to the rotor 
current and the speed. According to Lenz’s Law this voltage has such a direction 
that it acts against its generating reason (current change). This results in a delayed 
commutation, producing sparks at the run-off edges of the carbon brushes. This 
spark generation results in increased wear of the brushes and the commutator (Fig. 
2.47). 

 
 
 
 
 
 
 
 
 
 

Fig. 2.47. Current characteristic during non-ideal commutation. 

Compensating now this voltage coming from current commutation by a rotato-
ry induced voltage, a linear commutation is reached. To realize this so-called 
commutation poles are inserted in the area between the main poles (commutation 
zones). The windings of these commutation poles are switched in series with the 
rotor winding. The principle sketch (Fig. 2.48) shows the cross section of a DC-
machine with compensation windings and commutation poles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.48. Sketch (p=1) and photograph (p=2) of a DC-machine with compensation winding and 
commutation poles. 
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Applying Ampere’s Law for one pole pitch (having the integration path 
through the commutation poles) the following can be deduced: 

 ( )

( )( )

CP
CP A C CP

0

CP
CP A i CP

0

0
CP CP A i A

CP

B
2

B
1 2

B 1 I
2

   

Θ − Θ + Θ = δ
μ

Θ − Θ − α = δ
μ

μ
= Θ − Θ − α

δ

 (2.87) 

For the rotary induced voltage it follows: 

 ( )CP Au v B d   nI = ×  (2.88) 

Consequently, the voltage coming from current commutation can be compen-
sated. At overcompensation the current is commutating too fast, again resulting in 
spark generation (Fig. 2.49). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.49. Current characteristic during non-ideal commutation (over-compensation). 

As independent variable for adjusting the compensation the air-gap under the 

commutation pole CPδ  can be used. 

The principle field distributions in the air-gap of a DC-machine are summa-
rized in Fig. 2.50 (shown in “wound-off” representation, the fields in the gaps be-
tween two poles are neglected, the shape of the fields is illustrated to a large ex-
tend schematically). 
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Fig. 2.50. Principle field distribution in the air-gap of a DC-machine. 
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3 Rotating Field Theory 

3.1 Stator of a Rotating Field Machine 

Induction machines and synchronous machines are rotating field machines. The 
stator construction of these machine types are principally the same, they differ in 
the rotor design. The similarity of these machine types are discussed first, later a 
detailed consideration of induction machine and synchronous machine will follow.  

In the simplest alternative the stator is composed of a stack with electrically 
isolated laminations to reduce eddy currents. Windings are placed in the slots of 
the lamination stack. Usually there are m 3=  phases, shifted against each other 
by a spatial angle of  

 0

2 1 2

pm p 3

π π
α = =  (3.1) 

with p  being the number of pole pairs of the machine. These three phases are 

supplied by three sinusoidal currents with the same amplitude and frequency, 

shifted in time by an angle of 0 2 m 2 3β = π = π . Figure 3.1 schematically shows 

this assembly with p 1= ; the phases are named u (with return wires in slot x), v 

(with return wires in slot y) and w (with return wires in slot z): 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1. Schematic cross-section of a rotating field machine. 

Having a star connection of the phases it schematically looks like it is shown in 
Fig. 3.2 (“wound-off“ representation): 
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Fig. 3.2. Current system of a rotating field machine. 

The mechanical angle α  and the electrical angle pβ = α  are linked by the 
number of pole pairs. The pole pitch is:  

 p

D

2p

π
τ =  (3.2) 

Consequently, two pole pitches are ( p2τ ): 

• 2π  electrical or 

• 2 pπ  mechanical. 

The coils of a phase may be even placed in several slots side by side. The num-

ber of slots per pole per phase is (the total number of stator slots is 1N ): 

 1N
q

2pm
=  (3.3) 

3.2 Current Loading 

The magnetic field in the air-gap of an electrical machine shows decisive im-
portance on the characteristics of the machine, e.g. concerning torque generation. 
Therefore, the air-gap field has to be calculated precisely. 

The reason causing this air-gap field are the current containing conductors in 
the slots of the stator. Because of the complicated geometry (even the description 
in the last section is very simplified) this is not possible easily. Therefore, in the 
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following the air-gap field will be separated from the field in the slots by means of 
the idealized assumption of a homogeneous field in the slot openings, please refer 
to Fig. 3.3 (in other words: after separating both parts of the field – field in the air-
gap and field in the slots – not the entire field considering the complicated lamina-
tion contour has to be calculated, but both parts may be calculated separately). 

For this a single slot is regarded, whereupon the relative permeability of the 

surrounding iron is assumed being very large against that of air ( Feμ → ∞ ). Then, 

in the slot there will be a so-called slot leakage field, that can be easily deduced 

from Ampere’s Law ( Hd = Θ ). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.3. Detailed view of a stator slot. 

This slot leakage field joins to the air-gap field at the border between the slot 
opening and the air-gap. As the air-gap field is to be calculated the slot leakage 
field is a boundary condition for this calculation. The field in the slot opening 

( SOH ), which can be simplified being tangential concerning the machine geome-

try, can be computed easily from Ampere’s Law ( Feμ → ∞  is still assumed): 
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Θ
=  (3.4) 

This boundary condition for calculating the air-gap field can be generated even 

differently. It is assumed that the magneto-motive force of the slot SΘ  is distrib-

uted evenly in the area of the slot opening SOb  and infinitely thin onto the smooth 

iron surface (the light blue color in Fig. 3.4 means that the slot notionally is filled 
with iron). This conception can be described by using the current loading  
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 S
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A
b

Θ
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This idea is illustrated in Fig. 3.4.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.4. Alternative concept of a stator slot. 

Calculating Ampere’s Law using an integration loop around this current load-

ing, the tangential field strength tH  on the iron surface in the area of the current 

loading is obtained (because of Feμ → ∞  the integration path in the iron does not 

contribute to the integral). 
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This proves that the boundary condition for calculating the air-gap field is un-
changed, if the conductors in the stator slots are replaced by an according current 
loading on the smooth iron surface (in other words: the effect of the magneto-
motive force of the slot onto the air-gap field is represented with sufficient accura-
cy by a current loading distributed in the area of the slot opening). With this it is 
successfully accomplished to separate the air-gap field from the field in the slots. 

For the calculation of the air-gap field the field in the slots is not to be consid-
ered. In addition, a quite simple geometry can be regarded: The boundary contours 
of stator and rotor can be assumed being smooth. This results in a machine with 
constant air-gap and therefore even a constant magnetic air-gap reluctance. 

For calculating the magneto-motive force distribution an additional simplifica-
tion will be introduced in the next section: The current loading A will be assumed 
being concentrated in the center of the slot in tangential direction (and not distrib-
uted across the area of the slot opening). With this the entire magneto-motive 

air-gap 

current loading A on the 

     slot opening (width bSO) 

iron (stator) 

SOb  
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force of a slot SΘ  is concentrated in a single line on the smooth stator iron surface 

in axial direction4. 

3.3 Alternating and Rotating Magneto-Motive Force  

Supplying the winding (with w turns) of a single slot pair with the current i results 
in magneto-motive forces of these slots of wi+  and wi− .  

Now the space-dependent magneto-motive force ( )Θ α  shall be calculated. As 

the magneto-motive force is defined as an integral value ( HdΘ = ), the cal-

culation of ( )Θ α  only makes sense, if the integration loop is defined simultane-

ously. The circulation integral will be defined as follows: The air-gap always is 
crossed radially and the loop always is going through the middle of the slot „u“. 

The field intensity in the iron is neglected ( Feμ → ∞ ), so that the exact path of the 

integration loop in the iron is not relevant (see Fig. 3.5). 
Is the angle α  larger than zero, the integration loop includes half of the slot 

“u“ (direction of the loop and direction of the current are assigned positive); then 

( )Θ α  is equal to ½ wi. This is the case for 0 < α < π . At α = π  the magneto-

motive force steps by the amount of wi into the negative direction. Therefore, for 

2π < α < π  there is ( )Θ α = -½ wi (Fig. 3.5). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.5. Magneto-motive force distribution of a single slot pair and integral definition. 

For the magnetic flux density it holds:  

                                                           
4 In Sect. 3.5 the effect of different alternatives for the current loading distribution on the mag-
netic field characteristics will be discussed. 

X
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XXX
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 ( ) ( )
( )

0 0B H
Θ α

α = μ α = μ
δ

 (3.7) 

If the current i is an alternating current with 

 ( )i 2I cos t= ω  (3.8) 

the function for different points in time looks like it is shown in Fig. 3.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.6. Current versus angle for different points in time. 

The magneto-motive force becomes: 

 ( )
( )

( )

w
2I cos t 0

2
, t

w
2I cos t 2

2

+ ω < α < π

Θ α =

− ω π < α < π

 (3.9) 
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This magneto-motive force distribution is characterized by the facts that the ze-
ro crossings are constant in space and time. The amplitude changes in time propor-
tional to the current. This distribution is an alternating magneto-motive force. 

If the machine contains more than one pole pair the magneto-motive force 

( ), tΘ α  is repeated p-times on the circumference. Distributing the number of 

turns on the p pole pairs the alternating magneto-motive force (now characterized 
by the index “alt“) becomes: 

 ( )

( )

( )
alt

w
2I cos t 0

2p p
, t

w 2
2I cos t

2p p p

π
+ ω < α <

Θ α =
π π

− ω < α <

 (3.10) 

The function of the alternating magneto-motive force is shown in Fig. 3.7 (for 
p 1= , I 5A= , w 200= ): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.7. Magneto-motive force versus angle for different points in time. 
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In the following mathematical description of the spatial distribution of the al-
ternating magneto-motive force a Fourier analysis of the square-wave function 
will be applied ( g′  is an integer). With this, the distinction between cases can be 

replaced by a compact description. 

 ( ) ( )
( )( )

alt
g 1

sin 2g 1 pw 4
, t 2I cos t

2p 2g 1

∞

′=

′ − α
Θ α = ω

′π −
 (3.11) 

There are an infinite number of waves, each having an odd ordinal number. The 
fundamental wave is obtained for g 1′ = : 

 
( ) ( ) ( )

( ) ( )

alt,1

alt ,1

w 2
, t 2I cos t sin p

p

sin p cos t

Θ α = ω α
π

= Θ α ω

 (3.12) 

Convention: 
Electrical values (e.g. the current) are described as rms-values, magnetic values 
(e.g. magneto-motive force, flux density) are described as amplitudes. The differ-
entiation between a function and the amplitude will be done in that way, that for 
the function the dependencies are explicitly given. 

 
The amplitude of the fundamental wave is: 

 alt,1

w 2
2I

p
Θ =

π
 (3.13) 

The amplitudes of the harmonic waves are: 

 
alt ,1

alt,2g 1
2g 1

′−

Θ
Θ =

′ −
 (3.14) 

The amplitudes of the fundamental and all harmonic waves change proportion-
al to the amplitude of the current. Additionally, the amplitudes of the harmonic 
waves are inversely proportional to their ordinal number. The locations of maxima 
and zero crossings are constant in time. These are stationary waves. In Fig. 3.8 the 

fundamental wave ( )alt ,1 , tΘ α  and the first two harmonic waves ( )alt ,3 , tΘ α  and 

( )alt ,5 , tΘ α  are shown (for p 1= , I 5A= , w 200= ) in red, blue, and magenta, 

respectively. 
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Fig. 3.8. Fourier components of the magneto-motive force versus angle for different points in 
time (red: fundamental; blue: first harmonic; magenta: second harmonic). 

The harmonic waves are generated only from the spatial distribution of the 
winding, the current is purely sinusoidal (without any harmonic content)! 

 
Convention: 

• A wave is a space-dependent event. 
• An oscillation is a time-dependent event. 

As it is well-known, a stationary wave can be composed of two waves with half 
of the amplitude travelling with equal speed in opposite direction. Then the fun-
damental wave of the alternating magneto-motive force can be described as fol-
lows: 

 

( ) ( ) ( )

( ) ( )[ ]

( ) ( )

alt,1 alt ,1

alt ,1

alt ,1a alt ,1b

, t cos t sin p

sin p t sin p t
2

, t , t

Θ α = Θ ω α

Θ
= α − ω + α + ω

= Θ α + Θ α

 (3.15) 
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This decomposition of the fundamental wave of the alternating magneto-motive 

force (stationary wave) in two travelling waves is shown in Fig. 3.9. ( )alt ,1 , tΘ α , 

( )alt,1a , tΘ α , and ( )alt,1b , tΘ α  are shown in red, blue, and dashed magenta, re-

spectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.9. Alternating fundamental wave and decomposition into two travelling waves versus an-
gle for different points in time (red: fundamental; blue: right travelling wave; dashed magenta: 
left travelling wave). 

Consequently, the total alternating magneto-motive force can be described as 
sum of waves travelling in opposite directions: 

 

( ) ( )
( )( )

( )( )

( )( )

alt alt,1
g 1
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g 1

g 1

sin 2g 1 p
, t cos t

2g 1

sin 2g 1 p t

2 2g 1

sin 2g 1 p t

2g 1

∞

′=

∞

′=

∞

′=

′ − α
Θ α = Θ ω

′ −

′Θ − α − ω
= +

′ −

′ − α + ω

′ −

 (3.16) 
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The travelling magneto-motive force waves are called rotating magneto-motive 
forces, as these are spreading along the circumference of the machine.  

For a fixed point of the rotating magneto-motive force the following is true: 

 ( )2g 1 p t const.′ − α ω =  (3.17) 

Then the mechanical angular frequency of this rotating magneto-motive force 
wave is: 

 
( ) ( ) 2g 1

d d const. t

dt dt 2g 1 p 2g 1 p
′−

α ± ω ±ω
= = = ±Ω

′ ′− −
 (3.18) 

Consequently, the angular frequency of the fundamental wave is pω ; the an-

gular frequencies of the harmonic waves are proportional to that of the fundamen-
tal wave and inversely proportional to the ordinal number (i.e. with higher ordinal 
number the angular frequency decreases). 

After having analyzed the magneto-motive force distribution of the winding of 
a single slot pair, all three slot pairs of a three-phase machine will be looked at in 
Fig. 3.10.  

 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3.10. Schematic cross-section of a rotating field machine. 

The slot pairs of the different phases are shifted by 0 2 3pα = π  in space. The 

three phases contain w p  turns each and they are supplied by three alternating 

currents of the same amplitude and frequency shifted by 2 3π  in time.  

Each phase generates an alternating magneto-motive force which can be de-
scribed as follows: 
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( ) ( )
( )( )

( )( )

( )( )

alt,u alt ,1
g 1

alt,1

g 1

g 1

sin 2g 1 p
, t cos t

2g 1

sin 2g 1 p t

2 2g 1

sin 2g 1 p t

2g 1

∞

′=

∞

′=

∞

′=

′ − α
Θ α = Θ ω

′ −

′Θ − α − ω
= +

′ −

′ − α + ω

′ −

 (3.19) 

 

( )
( )

( ) ( )

( )

alt,v alt ,1
g 1

alt,1

g 1

g 1
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sin 2g 1 p

2 3p
, t cos t

3 2g 1
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sin 2g 1 p t 2g 2
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2
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∞
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∞
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π
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π
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π
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Θ
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′ −

π
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 (3.20) 
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π
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 (3.21) 
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The total magneto-motive force of all three phases can be obtained by summing 
up the three single magneto-motive forces (for this, linearity is necessary, i.e. satu-
ration is neglected): 

 ( ) ( ) ( ) ( )alt ,u alt,v alt ,w, t , t , t , tΣΘ α = Θ α + Θ α + Θ α  (3.22) 

Figure 3.11 shows (again for four different points in time) how the total magne-
to-motive force is composed of three evenly shifted alternating magneto-motive 
forces of equal amplitude and frequency (the zero crossings are constant in time, 

but the maximum values are time-dependent). ( ), tΣΘ α , ( )alt,u , tΘ α , 

( )alt,v , tΘ α , and ( )alt,w , tΘ α  are shown in red, blue, magenta, and light blue, 

respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.11. Total magneto-motive force and three evenly shifted alternating magneto-motive forc-
es versus angle for different points in time (red: total magneto-motive force; blue: alternating 
magneto-motive force of phase u; magenta: alternating magneto-motive force of phase v; light 
blue: alternating magneto-motive force of phase w). 
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( )

( )

2 4
sin x sin x n sin x n

3 3

0 if n is not divisible by 3

3sin x if n is divisible by 3

π π
+ − + −

=

 (3.23) 

Consequently, only those travelling waves in opposite direction exist, which fulfill 
the following condition, where g  is a natural number including zero: 

 2g 2 6g or 2g 6g′ ′− = =  (3.24) 

 2g 1 6g 1 or 2g 1 6g 1′ ′− = + − = −  (3.25) 

It follows for the total magneto-motive force: 

 

( )
( )( )

( )( )

alt ,1
g 0

g 1

sin 6g 1 p t3
, t

2 6g 1

sin 6g 1 p t

6g 1

∞

Σ
=

∞

=

+ α − ω
Θ α = Θ +

+

− α + ω

−

 (3.26) 

These two sums can be combined, if negative numbers g are allowed: 

 ( )
( )( )

alt ,1
g

sin 6g 1 p t3
, t

2 6g 1

∞

Σ
=−∞

+ α − ω
Θ α = Θ

+
 (3.27) 

This total magneto-motive force is a rotating wave (in the following rotating 
waves in the air-gap are labeled with an index “ δ ”): 

 ( ) ( ), t , tΣ δΘ α = Θ α  (3.28) 

with the ordinal numbers 

 6g 1 1, 5, 7, 11,13, 17,19, ...+ = − − −  (3.29) 

Decomposing the rotating magneto-motive force (red characteristic in Figs. 
3.11 and 3.12) into its Fourier components; the fundamental wave (rotating syn-
chronously with the total magneto-motive force, blue) and the harmonic waves 
with ordinal number -5 (rotating in opposite direction to the fundamental wave, 
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magenta) and 7 (rotating in the same direction as the fundamental wave, light 
blue) are shown in Fig. 3.12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.12. Rotating magneto-motive force and its first Fourier components versus angle for dif-
ferent points in time. 

The amplitude of the fundamental wave is: 
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3 3 2 w
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2 2 p
δΘ = Θ =

π
 (3.30) 

The amplitudes of the harmonic waves are: 

 
,1

,6g 1
6g 1

δ

δ +

Θ
Θ =

+
 (3.31) 

The rotating speed of the magneto-motive force wave is: 
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( ) ( ) 6g 1

d d const. t

dt dt 6g 1 p 6g 1 p
+

α + ω ω
= = = Ω

+ +
 (3.32) 

The angular frequency of the fundamental wave is equal to pω ; the angular 

frequency of the harmonic waves is proportional to that of the fundamental wave 
and inversely proportional to the ordinal number (i.e. with higher ordinal number 
the absolute value of the angular frequency decreases).  

3.4 Winding Factor 

As demonstrated in the last section the rotating magneto-motive force contains 
harmonic waves with amplitudes decreasing with the ordinal number. Generally, 
in rotating field machines only the fundamental wave produces a useful torque, all 
harmonic waves generate parasitic torques, that disturb the machine operation 
(e.g. no starting or sticking at low speed). 

Therefore, measures are necessary to damp the harmonic waves, but only mar-
ginally affect the fundamental wave. Mainly, the following two measures are 
used:  

• Distributing the winding per pole and per phase into several slots (distributed 
winding). 

• Distributing the forward and return conductors of a coil in such a way, that they 
are no longer shifted by an electrical angle of π  (i.e. mechanical angle of 

pπ ), but by an electrical angle less than π  (short-pitch winding). 

The effects of both measures will be calculated in the following by a common 
mathematical deduction. Firstly, the magneto-motive force of a single slot pair 
(known from the proceeding section) is required:  

 ( )
( )( )

g

sin 6g 1 p t3 w 2
, t 2I

2 p 6g 1

∞

=−∞

+ α − ω
Θ α =

π +
 (3.33) 

The w p  turns per pole and per phase will now be distributed into q equally 

spaced slots and two layers in radial direction, see Fig. 3.13.  

• All 1N 2pqm=  stator slots are equally spaced at the circumference of the ma-

chine. The mechanical angle between two slots is then:  
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1N
1

2 2

N 2pqm pqm

π π π
α = = = , the electrical angle between two slots is: 

1 1N Np
qm

π
β = α = . 

• The two layers have a phase shift of S
p

s
1

p

π
α = −

τ
 mechanically or 

S
p

s
1β = − π

τ
 electrically. This phase shift (it is called „short-pitch“) can 

only be realized in integer multiples of a slot pitch (Fig. 3.13).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.13. Explanation of distributed and short-pitched winding. 

The total magneto-motive force can now be described as follows: 

 

( )

( ) ( ) ( )( )
1

q 2
N S

g k 1 1

1

3 w 2
, t 2I

2 2pq

sin 6g 1 k 1 1 p t

6g 1

X

∞

=−∞ = =

Θ α = ⋅
π

+ α − − α − − α − ω

+

 (3.34) 

Now, the double sum 1X  will be investigated closely; it can be written as fol-

lows:  
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( ) ( )( ) ( )( )

( )
( )( ) ( )( )

N S1

N S1

q 2
j 6g 1 k 1 pj 6g 1 p j 6g 1 1 p j t

1
k 1 1

j 6g 1 p t q 2
j 6g 1 k 1 p j 6g 1 1 p

k 1 1

32 XX

1
X Im e e e e
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e
Im e e

6g 1

   
− + − α+ α − + − α − ω

= =

+ α −ω
− + − α − + − α

= =

=
+

=
+

 (3.35) 

The two sums 2X  and 3X  will be calculated separately in the following. For 

2X  it can be obtained: 

 

( )( )

( ) ( )

N1

q
j 6g 1 k 1 p

2 N
k 1

qj 6g 1 j 6g 1 k
qm qm

k 1

1
X e , p

qm

e e 

− + − α

=

π π
+ − +

=

π
= α =

=

 (3.36) 

This is a finite geometric series which generally can be solved as follows:  

 
( )n j n 1j 2

1

sin n
2

e e

sin
2

 
γ

+
μγ

μ=

γ

=
γ

 (3.37) 

Consequently: 
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+
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π

 (3.38) 

For 3X  it follows (even in this case there is a finite geometric series, in addi-

tion rules for trigonometric functions are used): 
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α

+

 (3.39) 

With ( ) ( ) ( )sin 2x 2sin x cos x=  there is further 
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 (3.40) 
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and with ( ) ( ) ( ) ( ) ( )cos x y cos x cos y sin x sin y− = +  it follows 

 

( ) ( )

( ) ( )
( )

( )
( )

( )

S

S

3
p

p
j 6g 1

2

p

p
j 6g 1

2
S,6g 1 S,6g 1

p

0

s
X 2 cos 6g 1  cos 6g 1

2 2

s
sin 6g 1  sin 6g 1  e

2 2

s
2sin 6g 1   e , sin 6g 1

2 2

α
− +

α
− +

+ +

=

π π
= + + +

τ

π π
+ +

τ

π π
= + ξ ξ = +

τ

 (3.41) 

In total it follows: 

 

( ) ( )

( ) ( )

( )

( )

( ) ( )

S

Z,6g 1 S,6g 1

g

p
j 6g 1 p q 1   t

2qm 2

Z,6g 1 S,6g 1

g

S 

j 6g 1
2

j 6g 1 q 1  
2pqm 2

2 q 3 w 2
, t 2I Im sin 6g 1

2 2pq 6g 1 2

e

sin 6g 1
3 w 2 2

2I Im
2 p 6g 1

 

e

e

∞
+ +

=−∞

απ
+ α − − − −ω

∞
+ +

=−∞
π+

απ π+ α− − − +

ξ ξ π
Θ α = + ⋅

π +

π
+

ξ ξ
=

π +
⋅

p t
2p

−ω

(3.42) 

With a coordinate transformation of 

 ( ) Sq 1
2pqm 2 2p

απ π
′α = α − − − +  (3.43) 

it follows further: 
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( )

( )

( )

( )

Z,6g 1 S,6g 1

g

j 6g 1 p t

j 6g 1
2

3 w 2
, t 2I

2 p 6g 1

sin 6g 1
2

Im  e

e

∞
+ +

=−∞

+ α −ω′

π+

ξ ξ
′Θ α =

π +

π
+

⋅

 (3.44) 

This coordinate transformation is explained in Fig. 3.14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.14. Explanation of the coordinate transformation. 

With 

    

( )

( )

( )

( ) ( )

j
2

j 6g 1
2

0

sin 6g 1 sin 6g 1
12 2

j e
j

cos 6g 1 jsin 6g 1e
2 2

π
−

π
+

=

π π
+ +

= = = − =
π π

+ + +

 (3.45) 

it follows 

 ( )
( )j 6g 1 p t

Z,6g 1 S,6g 1 2

g

3 w 2
, t 2I Im e

2 p 6g 1

π
∞ ′+ α −ω −

+ +

=−∞

ξ ξ
′Θ α =

π +
 (3.46) 

α

X
Φ

XXX
XXX XXX

u 

x 

XXX

XXX

XXX
XXX

XXX

( )
1

q 1
N

π
−  

S

2

α
 

2p

π
 

′α  
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A time transformation according to 

 
1

t t t t t , 2 f
2 2 4f

π π
′ ′ω + = ω = + = + ω = π

ω
 (3.47) 

delivers: 

 

( ) ( ){ }

( )[ ]

j 6g 1 p tZ,6g 1 S,6g 1

g

Z,6g 1 S,6g 1

g

3 w 2
, t 2I Im e

2 p 6g 1

3 w 2
2I sin 6g 1 p t

2 p 6g 1

∞
′ ′+ α −ω+ +

=−∞

∞
+ +

=−∞

ξ ξ
′ ′Θ α =

π +

ξ ξ
′ ′= + α − ω

π +

 (3.48) 

The resulting factors are called 

• distribution factor (zoning factor) 

 

( )

( )
Z,6g 1

sin q 6g 1
2qm

q sin 6g 1
2qm

+

π
+

ξ =
π

+

 (3.49) 

• short-pitch factor  

 ( )S,6g 1
p

s
sin 6g 1

2
+

π
ξ = +

τ
 (3.50) 

For three-phase windings ( m 3= ) it follows: 

 

( )

( )
Z,6g 1

sin 6g 1
6

q sin 6g 1
6q

+

π
+

ξ =
π

+

 (3.51) 

For a very large number of slots per pole and per phase ( q → ∞ ) there is: 
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( )

( )

( )

( )

( )

( )
( )

Z,6g 1q 0
6q

sin 6g 1 sin 6g 1
6 6

lim lim

q 6g 1q sin 6g 1
6q6q

sin 6g 1
6

si 6g 1
6

6g 1
6

+ π→∞
→

π π
+ +

ξ = =
ππ

++

π
+

π
= = +

π
+

 (3.52) 

The effect of the distributed winding is that the fundamental waves of the mag-
neto-motive forces of the single slots are added as much as possible undisturbed, 
but the harmonic waves are nearly compensated.  

 

Table 3.1 reveals this. 

Table 3.1. Distribution factor as a function of harmonic number and number of slots per pole and 
per phase. 

Z,6g 1+ξ  q =

g = 6g 1+ =  1 2 3 4 ∞  

 0   1 1,000   0,966   0,960   0,958   0,955
 1   7 1,000 -0,259 -0,177 -0,158 -0,136 
-1  -5 1,000   0,259   0,218   0,205   0,191
 2  13 1,000 -0,966   0,218   0,126   0,073
-2 -11 1,000 -0,966 -0,177 -0,126 -0,087 

 

The effect of the short-pitch winding is that by clever choice of ps τ  single 

harmonic waves of both shifted winding layers are completely (or at least partly) 
compensated. 

 
There is e.g.: 

S,1

p S,7

S, 5

0,951

s 4 5 0, 588

0, 000−

ξ =

τ = ξ =

ξ =

 

 

S,1

p S,7

S, 5

0, 975

s 6 7 0, 000

0, 434−

ξ =

τ = ξ =

ξ = −
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For equal damping of both first harmonic waves with a short-pitch winding, the 
following compromise often is chosen: 

S,1

p S,7

S, 5

0, 966

s 5 6 0, 259

0, 259 −

ξ =

τ = ξ =

ξ = −

 

The winding factor ξ  of a rotating field winding is the product of distribution 

factor and short-pitch factor: 

 6g 1 Z,6g 1 S,6g 1 + + +ξ = ξ ξ  (3.53) 

Without further deduction it shall be mentioned that even the slot opening has 
an influence onto the winding factor (the influence of the slot opening onto current 
loading and flux density is explained in the following Sect. 3.5): the total winding 
factor is then  

 6g 1 Z,6g 1 S,6g 1 SO,6g 1  + + + +ξ = ξ ξ ξ  (3.54) 

with the slot opening factor being  

 ( ) SO
SO,6g 1

p

b
si 6g 1

2
+

π
ξ = +

τ
 (3.55) 

and SOb  being the slot opening. 

For simplification of writing, the following renaming of the coordinates is 
used: 

′α → α  and 

t t′ →  

With this winding factor and renaming of the coordinates, the rotating magne-
to-motive force of a rotating field winding becomes: 

 ( ) ( )( )6g 1

g

3 w 2
, t 2I sin 6g 1 p t

2 p 6g 1

∞
+

δ
=−∞

ξ
Θ α = + α − ω

π +
 (3.56) 

For a better understanding of the winding factors, Figs. 3.15 and 3.16 illustrate 
the periodicity of distribution factor and short-pitch factor. 
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Fig. 3.15. Periodicity of the distribution factor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.16. Periodicity of the short-pitch factor. 
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3.5 Current Loading and Flux Density 

3.5.1. Fundamentals 

From Ampere’s Law it follows: 

 ( ) ( )
( )

0 0B H
Θ α

α = μ α = μ
δ

 (3.57) 

The relation between the magneto-motive force and the current loading be-
comes: 

 ( ) ( )A rdΘ α = α α  (3.58) 

with r being the bore radius of the machine. In total it can be obtained: 

 ( ) ( )B A dα α α  (3.59) 

Using this deduction, implicitly it is assumed that there is only a radial compo-
nent of the air-gap field (see Eq. 3.57). This simplification is allowed as far as the 
wave length of the regarded field wave is large against the air-gap width (i.e. the 
equations deduced in the following are not valid for waves with very large ordinal 
numbers; usually these waves are of minor interest). Furthermore it is assumed 
that the radial component of the magnetic flux density virtually is unchanged in 
radial direction inside the air-gap.  

By using the concept of electric loading the winding placed in the slots is sim-
plified theoretically. In the following different alternatives of this simplification 
are examined. 

3.5.2. Uniformly Distributed Current Loading in a Zone 

The most simple alternative is that all conductors are uniformly distributed infi-
nitely thin on the stator surface (i.e. q → ∞ ). Figure 3.17 illustrates such a current 

loading for a single phase: 
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Fig. 3.17. Current loading and flux density of alternative 1. 

3.5.3. Current Loading Concentrated in the Middle of Each Slot 

Another possibility is to locate the conductors of a slot (theoretically infinitely 
thin) in the middle of the corresponding slot opening. Analogously to Fig. 3.17 
this is shown in Fig. 3.18 for q 3=  (for the flux density distribution there is a step 
curve): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.18. Current loading and flux density of alternative 2. 
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3.5.4. Current Loading Distributed Across Each Slot Opening 

Finally it is possible to distribute the conductors of a slot (theoretically infinitely 
thin) in the area of the respective slot opening. Then the slope of the steps in the 
flux density characteristic will be less steep (Fig. 3.19). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.19. Current loading and flux density of alternative 3. 

Which alternative has to be chosen for a specific task inter alia depends on the 
task itself. For example, if the fundamental torque of the machine has to be calcu-
lated usually a relatively rough model is sufficient. Computing characteristics 
where harmonic waves have a significant influence (typically calculating acoustic 
noise), a much more precise alternative has to be chosen. 

3.5.5. Rotating Air-Gap Field 

The rotating air-gap field is deduced from the rotating magneto-motive force. In 
practice, an air-gap width is used which is enlarged against the geometric air-gap 
width because of: 

• field distortion because of the slotting: CK′δ → δ = δ  ( CK  being Carter’s 

factor) and 
• magnetic reluctance (saturation) of the iron: ′ ′′δ → δ . 

Neglecting this field distortion and the magnetic reluctance of the iron 

( Feμ → ∞ ), it can be obtained: 

α

α

B 

A 

p / mτ  p / mτ  schematic of the current 
loading of a single 
phase (zones of forward 
and return conductors) 

current loading (rectan-
gular pulses) and ac-
cording fundamental 
wave 

according flux density 
distribution (slope of 
steps less steep) with 
fundamental wave 
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( ) ( )

( )( )

0

6g 10

g

B , t , t

3 w 2
2I sin 6g 1 p t

2 p 6g 1

δ δ

∞
+

=−∞

μ
α = Θ α

δ

ξμ
= + α − ω

δ π +

 (3.60) 

The fundamental wave is: 

 ( ) ( ),1 ,1B , t B sin p tδ δα = α − ω  (3.61) 

with the amplitude 0 1

,1

w3 2
B 2I

2 p
δ

μ ξ
=

δ π
 and the angular frequency 1

p

ω
Ω = . 

The harmonic waves are: 

( ) ( )( ),6g 1 ,6g 1B , t B sin 6g 1 p tδ + δ +α = + α − ω  

with the amplitude 
( )

6g 1
,6g 1 ,1

1

B B
6g 1

+

δ + δ

ξ
=

ξ +
 and the angular frequency 

1
6g 1

6g 1
+

Ω
Ω =

+
. 

The total rotating field can be described as: 

 ( ) ( ),6g 1
g

B , t B , t
∞

δ δ +
=−∞

α = α  (3.62) 

Figure 3.20 shows this rotating field Bδ  (red characteristic) and the rotating 

current loading Aδ  (air-gap width 1mmδ = ; bore diameter D 0.1m= , blue func-

tion), together with the respective fundamental waves (dashed lines).  
Please consider: 

• the phase shift between magnetic field and current loading always is 90° (or 

2π ); 

• the magnetic field Bδ  changes the curve form with respect to time, but the am-

plitude of the fundamental wave ,1Bδ  remains unchanged at any point in time. 
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Fig. 3.20. Rotating magnetic field and current loading versus angle for different points in time 
(solid red: rotating field (Bδ in T); dashed red: according fundamental wave of rotating field (Bδ,1 
in T); solid blue: rotating current loading (Aδ in 100Am-1); dashed blue: according fundamental 
wave of rotating current loading (Aδ,1 in Am-1)). 

In Fig. 3.21 the field distribution is illustrated for two different instants in time, 
obtained by numerical calculation using the Finite Element Method (FEM). The 
stator contains 4 poles and 36 slots; the rotor is assumed being a cylindrical iron 
part. In addition, the phasors of the three currents, the current loading and the flux 
density are shown. The travelling rotating waves can be deduced clearly.  
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Fig. 3.21. Field distribution (magnetic field lines) and phasors of the three phase currents and the 
fundamental waves of current loading and air-gap flux density for different points in time. 
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3.6 Induced Voltage and Slip 

In the following the induced voltage will be calculated, which is generated in a ro-

tor coil (winding with 2w  turns) by a rotating field of the stator (winding with 

1w  turns). The relative position ( )tα  is arbitrary (see Fig. 3.22). For this, the 

flux linkage of the rotor coil has to be calculated firstly. This is done by integra-

tion of the air-gap flux density across one pole pitch pτ : 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3.22. Schematic cross-section of a rotating field machine with a single rotor coil. 

 ( ) ( ) ( ) ( )
pr

2 2
r

, t w , t w B , t  d r

α+τ

δ

α

ψ α = φ α = α α  (3.63) 

The variable  describes the effective magnetic length of the machine and r is the 
bore radius; the tilde is used to distinguish between integration limit and integra-
tion variable. It follows: 

X
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( ) ( )

( )( )

( )( )

( )

( )( )

( )

p

2

p

2 ,6g 1
g

p

2 ,6g 1
g

,6g 1
2

g

2 ,6g 1
g

, t w B , t rd

w r B sin 6g 1 p t d

cos 6g 1 p t
w r B

6g 1 p

B2 r
w cos 6g 1 p t

p 6g 1

w , t

π
α+

δ

α

π
α+

∞

δ +
=−∞α

π
α+

∞

δ +
=−∞ α

∞
δ +

=−∞

∞

δ +
=−∞

ψ α = α α

= + α − ω α

− + α − ω
=

+

= + α − ω
+

= φ α

 (3.64) 

The fundamental wave is: 

 ( ) ( ),1 ,1, t cos p tδ δφ α = φ α − ω  (3.65) 

with the amplitude 
0 2

p 1 1
,1 ,1 ,1 p ,1

w2 r 2 3 r 2
B 2 B B 2I

p p
δ δ δ δ

τ ξ
φ = = = τ = μ

π π δ π
 

and the angular frequency 1
p

ω
Ω = . 

The harmonic waves are: 

 ( ) ( )( ),6g 1 ,6g 1, t cos 6g 1 p tδ + δ +φ α = φ + α − ω  (3.66) 

with the amplitude 
,6g 1 p

,6g 1 ,6g 1

B2 r 2
B

p 6g 1 6g 1

δ +

δ + δ +

τ
φ = =

+ π +
 and the angular fre-

quency 1
6g 1

6g 1
+

Ω
Ω =

+
. 

The induced voltage will be calculated from the time-derivative of the magnetic 
flux linkage. The time dependency of the magnetic flux linkage may be caused by 
the time-dependent currents as well as by the time-dependent position of the rotor 
coil. 
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( )
( ) ( ) ( )

( )( )( ) ( )

( )( )
( )

i

,6g 1
2

g

2 ,6g 1
g

d , t , t , td
u , t

dt dt t

B2 r d
w sin 6g 1 p t 6g 1 p

p 6g 1 dt

d
2 r w B sin 6g 1 p t

6g 1 p dt

 

 

∞
δ +

=−∞

∞

δ +
=−∞

ψ α ∂ψ α ∂ψ αα
α = = +

∂α ∂

α
= − + α − ω + − ω

+

ω α
= + α − ω −

+

(3.67) 

Prior to calculating the induced voltage in detail, the “slip” shall be introduced 
here: 

 
The slip is the difference between the speed of the rotating field wave of the 

stator and the speed of the rotor (i.e. the mechanical speed), relative to the respec-
tive speed of the rotating field wave of the stator.  

With the angular frequency of the rotor 

 
d

2 n
dt

α
= Ω = π  (3.68) 

and the angular frequency of the harmonic field waves  

 
( )6g 1
6g 1 p

+

ω
Ω =

+
 (3.69) 

the slip s of such a field wave becomes: 

 
6g 1

6g 1
6g 1

s
+

+

+

Ω − Ω
=

Ω
 (3.70) 

The speed of the fundamental wave of the rotating stator field is called syn-
chronous speed. This will be indicated with the index “0“: 

 1
0

p 2 f p f
n

2 2 2 p

Ω ω π
= = = =

π π π
 (3.71) 

Then the slip of the fundamental wave is: 
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 01
1

1 0

n n
s

n

−Ω − Ω
= =

Ω
 (3.72) 

The following can be deduced easily: 

• at synchronous speed ( 0n n= ) there is: 1s 0= ; 

• at stand-still ( n 0= ) there is:  1s 1= . 

The relation between speed and slip is illustrated in Fig. 3.23. 
 
 
 
 
 
 
 
 

Fig. 3.23. Relation between speed and slip. 

The position of the rotor coil changes with the mechanical speed of the rotor. 
Therefore it follows 

 ( ) Rt tα = α + Ω  (3.73) 

Further: 

 

( ) ( ) ( )

( )
( )

( )
( )

( )

( )

R

R

R

R 6g 1

6g 1 p t 6g 1 p 6g 1 p t t

6g 1 p
6g 1 p t 1

6g 1 p
6g 1 p t

6g 1 p

6g 1 p s t+

+ α − ω = + α + + Ω − ω

+ Ω
= + α − ω −

ω

ω
− Ω

+
= + α − ω

ω

+

+ α − ω=

 (3.74) 

and 

n 

1s  

0 

0 

0n  

1 



124      3 Rotating Field Theory 

 
( )

( )

( )
( ) 6g 1 6g 1

6g 1 pd
s

6g 1 p dt 6g 1 p

6g 1 p

+ +

ω
− Ω

+ω α ω
− = = Ω

ω+ +

+

 (3.75) 

For the voltage induced into the rotor coil it follows (by inserting the last two 
equations into Eq. 3.67): 

 

( ) ( )( )

( )( )

( )

( )

i 2 ,6g 1 R 6g 1 6g 1 6g 1
g

2 ,6g 1 R 6g 1 6g 1 6g 1
g

2 ,6g 1 R 6g 1
g

i,6g 1 R
g

u , t 2 rw B sin 6g 1 p s t s

2w  B sin 6g 1 p s t s r

2w  B , t v

u , t

 
∞

δ + + + +
=−∞

∞

δ + + + +
=−∞

∞

δ + +
=−∞

∞

+
=−∞

α = + α − ω Ω

= + α − ω Ω

= α

= α

 (3.76) 

Here, 6g 1 6g 1 6g 1v s r+ + += Ω  is the relative speed between the rotor coil and the 

harmonic wave of the rotating field. 
The induced voltage is composed of an infinite number of separate oscillations 

( )i,6g 1 Ru , t+ α . For these oscillations the following holds true: 

   

( ) ( )( )

( )
( )( )

( )( )

i,6g 1 R 2 6g 1 6g 1 ,6g 1 R 6g 1

2 6g 1 ,6g 1 R 6g 1

2 ,6g 1 6g 1 R 6g 1

u , t 2w rs B sin 6g 1 p s t

2 r
w s B sin 6g 1 p s t

6g 1 p

w s sin 6g 1 p s t

+ + + δ + +

+ δ + +

δ + + +

α = Ω + α − ω

= ω + α − ω
+

= φ ω + α − ω

 (3.77) 

The voltages ( )i,6g 1 Ru , t+ α  induced by the rotating field waves offer the fol-

lowing characteristics: 

• The amplitudes of the induced voltages are proportional to the flux of the har-
monic wave, to the frequency of the supplying voltage, and to the slip.  

• The frequency of all induced voltages is equal to the slip frequency.  

• At stand-still of the rotor ( n 0= , i.e. 6g 1s 1+ = ) the frequency of all voltages 

induced by the harmonic waves is equal to the supply frequency. 
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• At synchronous speed ( 0n n= ) there is: 

( )

( )

( )6g 1

6g 1 p p
s 1 6g 1 6g

6g 1 p

+

ω ω
−

+
= = − + = −

ω

+

 

Consequently, no fundamental voltage ( g 0= ) is induced; but the harmonic 
waves induce harmonic voltage oscillations with different frequencies.  

• At other speeds the fundamental wave and each harmonic wave of the rotating 
stator field induce a voltage of different frequency into the rotor coil.  

• The phase shift of the induced voltages in the rotor coil only depends on the 

spatial position of the coil ( )R 6g 1 pα + . 

Incorporating a three-phase winding even to the rotor, the three phases will be 

shifted by an angle of 2 3pπ  as well. Having a rotor slot number per pole and per 

phase q 1> , a winding factor for the rotor (index “2“ for the rotor) has to be con-

sidered. The induced voltage of the kth ( k 1, 2, 3= ) rotor phase becomes 

( ( )R k 1 2 3pα = − π ): 

 

( )

( ) ( )

i,2,k 2 2,6g 1 ,6g 1 6g 1
g

6g 1

u t w s

2
sin 6g 1 k 1 s t

3

∞

+ δ + +
=−∞

+

= ξ φ ω

π
+ − − ω

⋅

 (3.78) 

The air-gap field will induce voltages even into the stator winding. If in the 

above equation 2 2,6g 1w +ξ  is substituted by 1 1,6g 1w +ξ , and considering that for the 

stator winding 6g 1s 1+ =  is true (because the stator is always in stand-still), the in-

duced voltage into the stator winding becomes: 

 ( ) ( ) ( )i,1,k 1 1,6g 1 ,6g 1
g

2
u t w sin 6g 1 k 1 t

3

∞

+ δ +
=−∞

π
= ξ φ ω + − − ω  (3.79) 

The ratio of induced stator voltages (maximum values) caused by a harmonic 
wave and the fundamental wave is: 
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( ) ( )

2

i,1,6g 1 1,6g 1 ,6g 1 1,6g 1 ,6g 1 1,6g 1

i,1,1 1,1 ,1 1,1 ,1 1,1

u B

u 6g 1 B 6g 1

+ + δ + + δ + +

δ δ

ξ φ ξ ξ
= = =

ξ φ ξ + ξ +
 (3.80) 

The ratio of induced stator and rotor voltages (maximum values) caused by the 
same air-gap field wave is: 

 
i,2,6g 1 2 2,6g 1

6g 1
i,1,6g 1 1 1,6g 1

u w
s

u w

+ +

+

+ +

ξ
=

ξ
 (3.81) 

The rms values of the induced stator and rotor voltages caused by the funda-
mental air-gap field wave are: 

 

,1
i,1,1 1 1,1

,1
i,2,1 2 2,1 1

U w
2

U w s
2

δ

δ

φ
= ξ ω

φ
= ξ ω

 (3.82) 

3.7 Torque and Power 

For the following considerations concerning torque and power only the fundamen-
tal waves will be regarded, the influence of the harmonic waves will be neglected.  

The stator winding generates a rotating magneto-motive force ,1δΘ  with the 

angular frequency 1 1pω : 

 ( ) ( ) ( )1 1
,1 1 1 1 ,1 1 1

1

w3 2
, t 2I sin p t sin p t

2 p
δ δ

ξ
Θ α = α − ω = Θ α − ω

π
 (3.83) 

Analogously, the rotor winding generates a rotating magneto-motive force 

,2δΘ  with the angular frequency 2 2p′ω  and shifted in space by a leading angle 

of ε . The angular frequency of the rotating magneto-motive force of the rotor is 
composed of the mechanical angular frequency of the rotor Ω  and the angular 

frequency of the rotor currents 2ω  ( 2 2
′ω = Ω + ω ): 
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( ) ( )

( )

2 2
,2 2 2 2 2

2

,2 2 2 2

w3 2
, t 2I sin p t p

2 p

sin p t p

δ

δ

ξ
′Θ α = α − ω − ε

π

′= Θ α − ω − ε

 (3.84) 

At this time the numbers of pole pairs, the angular frequencies and the phase 
shift between the stator and rotor rotating magneto-motive forces shall be arbi-
trary. Figure 3.24 schematically illustrates the spatial position of the magneto-
motive force distributions by means of phasors: the position of each phasor shows 
the position of the maximum of the magneto-motive force distribution, the length 
of the phasor is a quantity for the amplitude (please refer to Sect. 1.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.24. Cross-sectional view of a rotating field machine with winding distribution and illustra-
tion of magneto-motive forces by means of phasors. 

By means of Ampere’s Law the resulting air-gap field is obtained by superposi-
tion (this means that saturation is neglected here): 

 

( ) ( ) ( )

( ) ( ) ( )( )0

,1 ,2

,1 ,2

H , t , t , t

B , t , t , t

δ δ

δ δ

α δ = Θ α + Θ α

μ
α = Θ α + Θ α

δ

 (3.85) 

The magnetic energy in the air-gap is: 

 
( )2

mag
V 0

B , t
W dV, dV   r d

2
 

α
= = δ α

μ
 (3.86) 
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As saturation is neglected (linearity was assumed) the magnetic energy is equal 
to the magnetic co-energy. Then the torque may be calculated from the derivation 
of the magnetic energy with respect to the mechanical angle: 

 

( )

( )

22
mag

0 0

2
2

00

W B , t
T   r  d

2

r
B , t d

2

 

 

π

π

∂ α∂
= = δ α

∂ε ∂ε μ

δ ∂
= α α

μ ∂ε

 (3.87) 

With 

 

( ) ( )
( )

( ) ( )( )
( )

2

2
,20

,1 ,2

B , t
B , t 2B , t

, t
2 , t , t

δ

δ δ

∂ α∂
α = α

∂ε ∂ε

∂Θ αμ
= Θ α + Θ α

δ ∂ε

 (3.88) 

it follows in total: 

 

( ) ( )( )
( )

( ) ( )( )

( )[ ]

( ) ( )[

( )

2 2
,20

,1 ,2
00

2

0 ,1 1 1 ,2 2 2 2
0

,2 2 2 2 2

2

0 2 ,1 ,2 1 1 2 2 2
0

2
2 ,2 2 2 2 2 2

, tr
T 2 , t , t d

2

r
sin p t sin p t p

p cos p t p d

r
p sin p t cos p t p

p sin p t p cos p t

π
δ

δ δ

π

δ δ

δ

π

δ δ

δ

∂Θ αμδ
= Θ α + Θ α α

μ δ ∂ε

′= μ Θ α − ω + Θ α − ω − ε ⋅
δ

′Θ − α − ω − ε α

′= − μ Θ Θ α − ω α − ω − ε +
δ

′ ′Θ α − ω − ε α − ω −( )2p dε α

 (3.89) 

Considering ( ) ( )
2

0

sin x cos x dx 0
π

=  it can be obtained: 

 ( ) ( )
2

0 2 ,1 ,2 1 1 2 2 2
0

r
T p sin p t cos p t p d

π

δ δ
′= −μ Θ Θ α − ω α − ω − ε α

δ
 (3.90) 
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With ( ) ( ) ( ) ( )[ ]
1

sin x cos y sin x y sin x y
2

= + + −  it follows: 

 

( ) ( )( )

( ) ( )( )

2

0 2 ,1 ,2 1 2 1 2 2
0

2

1 2 1 2 2
0

r 1
T p sin p p t p d

2

 sin p p t p d

π

δ δ

π

′= −μ Θ Θ + α − ω + ω − ε α +
δ

′− α − ω − ω + ε α

 (3.91) 

Generally it is true: 

 ( )
( )

2

0

0 if n 0
sin nx dx

2 sin if n 0

π ≠
+ ϕ =

π ϕ =
 (3.92) 

As 1p  and 2p  are the numbers of pole pairs of stator and rotor, respectively, 

these are positive integers. Therefore, it follows:  

 ( ) ( )( )
2

1 2 1 2 2
0

sin p p t p d 0
π

′+ α − ω + ω − ε α =  (3.93) 

and 

 ( ) ( )( )
2

1 2 1 2 2 1 2
0

sin p p t p d 0 if p p p
π

′− α − ω − ω + ε α ≠ = =  (3.94) 

Consequently, torque is only generated if the numbers of pole pairs of stator 
and rotor are identical. Then it follows: 

 ( )( ),1 ,2
0 1 2

r
T p 2 sin t p

2

δ δΘ Θ
′= −μ π − ω − ω + ε

δ
 (3.95) 

From this equation can be deduced that the torque is sinusoidal in time with a 
mean value (according to time) of zero. It is a pure oscillating torque. 

Only if the angular frequencies of the rotating magneto-motive force waves are 

identical ( 1 2
′ω = ω = ω ) a torque constant in time is generated: 
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 ( )0 ,1 ,2

r
T p sin pδ δ

π
= μ Θ Θ −ε

δ
 (3.96) 

If both rotating magneto-motive force waves ( ),1 , tδΘ α  and ( ),2 , tδΘ α  are in 

phase, i.e. if 0ε =  is true, then the torque is equal to zero. The torque is maximum 

for p 2ε = π , i.e. if the rotating magneto-motive force waves have an electrically 

phase shift of 90° (or 2π ). 

The rotating magnetic field has been calculated as follows: 

 ( ) ( ) ( )( ) ( )0 0
,1 ,2 ,totB , t , t , t , tδ δ δ δ

μ μ
α = Θ α + Θ α = Θ α

δ δ
 (3.97) 

This shall be illustrated in Fig. 3.25 with the help of phasors in the complex 
plain. With their length phasors describe the amplitude of the respective rotating 
wave, the direction of the phasor shows the position of the maximum of the rotat-
ing wave. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.25. Phasor diagram of the magneto-motive forces. 

By means of the law of cosines the absolute value of the total rotating magneto-
motive force is obtained: 

,1δΘ  

,2δΘ  

,totδΘ  

,2δΘ  

-Im 

Re 

( )2 1π − ϕ − ϕ  

1ϕ  

2ϕ  

pε

−ω

−ω
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( )[ ]

( )

2 2
,tot ,1 ,2 ,1 ,2 2 1

2 2
,1 ,2 ,1 ,2 2 1

2 cos

2 cos

δ δ δ δ δ

δ δ δ δ

Θ = Θ + Θ − Θ Θ π − ϕ − ϕ

= Θ + Θ + Θ Θ ϕ − ϕ

 (3.98) 

The law of sines gives: 

 

( )( )

( ) ( ) ( ) ( )

( ) ( )

,2 ,tot

2 1
1

,2 ,tot ,tot ,tot

1 2 1

,2 ,tot 1

sin
sin

2

cos sin sin 2 p sin p

sin p cos

δ δ

δ δ δ δ

δ δ

Θ Θ
=

π π − ϕ − ϕ
− ϕ

Θ Θ Θ Θ
= = =

ϕ ϕ − ϕ π − ε − ε

Θ − ε = Θ ϕ

 (3.99) 

Therefore, it follows for the torque: 

 

( )

( )

( )

( )

( )

0 ,1 ,tot 1

0 ,1 1
0

,1 1

1 1
1 1

1 1 1 1

r
T p cos

r
p B cos

r p B cos

w3 2
r p 2I B cos

2 p

3 rw 2I B cos

δ δ

δ δ

δ δ

δ

δ

π
= μ Θ Θ ϕ

δ

π δ
= μ Θ ϕ

δ μ

= π Θ ϕ

ξ
= π ϕ

π

= ξ ϕ

 (3.100) 

With the rms-value of the induced voltage  

 i,1 1 1U w
2

δφ
= ξ ω  (3.101) 

and the magnetic flux 

 
2 r

B
p

δ δφ =  (3.102) 

the torque can be calculated like this: 
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 ( )
( ) ( )i,1 1 1 i,1 1 1

i,1 1 1
1 0

3U I cos 3U I cosp
T 3U I cos

2 n

ϕ ϕ
= ϕ = =

ω Ω π
 (3.103) 

Here, the expression 

 ( )i,1 1 1P 3U I cosδ = ϕ  (3.104) 

is the rotating air-gap field power. This rotating air-gap field power is equal to the 
power supplied from the mains minus the copper losses (Ohmic losses) of the sta-
tor: 

 2
1 1 1P P 3R Iδ = −  (3.105) 

The rotating air-gap field power is transferred via the air-gap: 

 ( )i,1 1 1 0P 3U I cos 2 n Tδ = ϕ = π  (3.106) 

The mechanical power at the shaft of the machine is: 

 ( ) ( )mech 0P 2 nT 2 n T 1 s 1 s Pδ= π = π − = −  (3.107) 

The difference between the rotating air-gap field power and the mechanical 
power at the axis is transformed to heating losses inside the rotor: 

 ( )loss,rotor mechP P P P 1 s P sPδ δ δ δ= − = − − =  (3.108) 

Having synchronous speed of the rotor ( 0n n= , i.e. s 0= ), the mechanical 

power at the shaft equals the rotating air-gap field power; the rotor losses are zero. 
The power flow inside an electrical machine is illustrated by the co-called Sankey-
diagram, see Fig. 3.26 (iron losses and friction is neglected). 

 
 
 
 
 
 
 

 
Fig. 3.26. Sankey-diagram. 

elP  
mechP  

2
loss,stator 1 1P 3R I=  loss,rotorP sPδ=  

1P  Pδ  ( )1 s Pδ−  

air-gap 
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To get a constant torque in time the condition 1 2
′ω = ω = ω  must be fulfilled. 

The angular frequency of the rotating magneto-motive force wave of the rotor 2
′ω  

can be described like: 

 

( )( )2 0 0 0

2

2

2 f 2 pn 2 p 1 s n sn

f
2 p n s 2 pn 2 sf 2 pn 2 f

p

′ω = ω = π = π = π − +

= π + = π + π = π + π

= Ω + ω

 (3.109) 

In this equation n is the mechanical speed of the rotor and 2f  is the frequency 

of the rotor currents. Alternative descriptions are: 

 
2 1 1

1 2

f sf sf f pn

f f
n

p

= = = −

−
=

 (3.110) 

If the rotor of the rotating field machine contains alternating currents ( 2f 0> ) 

there is: 

 1
0

f
n n

p
< =  (3.111) 

Consequently, the rotor rotates with a speed less than the synchronous speed 

0n . Such a machine is called asynchronous machine or induction machine. De-

pending on the frequency of the rotor currents the speed of the machine is 
achieved. 

Supplying the rotor of the rotating field machine with DC current ( 2f 0= ) 

there is: 

 1
0

f
n n

p
= =  (3.112) 

Consequently, the rotor rotates with synchronous speed. Such a machine is 
called synchronous machine. The speed of the machine solely depends on the fre-
quency of the stator currents. 
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4 Induction Machines 

4.1 Construction and Equivalent Circuit Diagram 

Stator and rotor of an induction machine - separated by an air-gap - contain each a 
symmetric winding in their slots.  

The stator with the number of phases 1m 3=  and the effective number of turns 

1 1w ξ  is supplied by a symmetric three-phase system with the frequency 1f . Con-

sequently, a rotating field is generated, that rotates with the synchronous speed 

0 1n f p= . To produce a constant torque, the number of pole pairs of stator and 

rotor are identical ( 1 2p p p= = ). 

The rotor winding can either be short-circuited directly or it can be passed out-
side the rotor via slip rings, and there be short-circuited directly or via series resis-

tors. In the 2m  phases of the closed rotor winding with the effective number of 

turns 2 2w ξ  currents are induced by the rotating field. These rotor currents togeth-

er with the rotating field of the stator generate the torque that rotates the rotor with 

the mechanical speed ( ) 0n 1 s n= − . 

During motor operation the rotor always rotates with a speed lower than the 

synchronous speed 0n  (i.e. asynchronous to the rotating field of the stator cur-

rents), because at synchronous speed no currents are induced into the rotor wind-
ing and therefore no torque is generated. This differential speed between rotating 

field of the stator and the rotor is 2 0n sn= ; in the rotor currents with the frequen-

cy 2 1f sf=  are induced. These currents generate a rotating field of the rotor that 

(relative to the rotor) rotates with the speed 2n . Relative to the stator this rotating 

field has the speed 2 0n n n+ = . Consequently, the frequency condition to obtain a 

constant torque (please refer to Sect. 3.7) is fulfilled. 
Figure 4.1 shows the zones and a symbolic representation of the induction ma-

chine windings: 
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Fig. 4.1. Symbolic representation of the induction machine windings (left: distribution of the 
three stator and rotor windings in zones with 2p=2; right: symbolic representation). 

To reach an easier mathematical description of this electrical machine firstly 
the system of coupled and movable coils shall be transformed to a system with sta-
tionary elements with the same numbers of phases and turns in stator and rotor. 

For this, in the following only the fundamental waves will be considered. For 
calculation of the steady-state operation the calculation with complex phasors will 
be applied. Because of symmetry reasons a single-phase treatment is sufficient.  

The windings of stator and rotor can be described with lumped parameters: re-
sistance, leakage and main inductivity. Then the equivalent circuit diagram looks 
like it is shown in Fig. 4.2 (both partial systems are represented as “energy con-
sumption system”): 

 
 
 
 
 
 
 
 
 
 

Fig. 4.2. Equivalent circuit diagram of the induction machine with magnetic coupling between 
stator and rotor. 

The voltage equations are (with the mutual inductivities 21L  and 12L ): 
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1 1   1 1 1   1 1 21   2

2 2   2 2 2   2 2 12   1

U R I j L I j L I

U R I j L I j L I

= + ω + ω

= + ω + ω
 (4.1) 

with ( 1mL  and 2mL  being the main or magnetizing inductivities of stator and ro-

tor): 

 
1 1 1m

2 2 2m

L L L

L L L

σ

σ

= +

= +
 (4.2) 

Now voltages and currents in the stationary stator winding are searched, that 
have the same effect like the actual voltages and currents in the rotating rotor 
winding. These transformed voltages and currents will be labeled by a prime. The 
following conditions must be fulfilled: 

 
1. Unchanged magneto-motive force: 

 

2 2 2 1 1 1
2 2

2 2 2
2 2

1 1 1

m w m w4 4
2I 2I

2 p 2 p

m w
I I

m w

!ξ ξ
′=

π π

ξ
′ =

ξ

 (4.3) 

2. Unchanged main flux: 

 

i,2 2 2 2 m

i,2 1 1 1 m

i,2
i,2 1 1 1

2 2 2

2U w

2U w

2U
2U w

w

!

= ω ξ φ

′ = ω ξ φ

′ = ω ξ
ω ξ

 (4.4) 

For 2 1ω = ω  it is true: i,2 2,0U U=  (induced voltage is equal to the no-

load voltage). Then it follows further: 

 1 1 1 1 1
i,2 i,2 2,0 2,0

2 2 2 2 2

w w1 1
U U U U

w s w s

ω ξ ξ
′ ′= = =

ω ξ ξ
 (4.5) 
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3. Unchanged Ohmic losses: 

 
( )

( )

2 2
2 2 2 1 2 2

2
1 1 1

2 2 2
2 2 2

m R I m R I

m w
R R

m w

!
′ ′=

ξ
′ =

ξ

 (4.6) 

4. Unchanged magnetic energy (here for the linear, i.e. unsaturated case): 

 

( )

( ) ( )

( )

1 2 1
1 1 2 2 1 1 2 2

2 21 2
1 1 21 1 2 2 2 12 1 2

2 21
1 1 1m 1 2 2 2

m m m
I I I I

2 2 2

m m
L I L I I L I L I I

2 2

m
L I 2L I I L I

2

!
′ ′Ψ + Ψ = Ψ + Ψ

+ + +

′ ′ ′= + +

 (4.7) 

Further: 

 

( )

( )

2
1 1 1

2 2 2
2 2 2

2 2 2
21 1m

1 1 1

2 2
12 1m

1 1

m w
L L

m w

m w
L L

m w

w
L L

w

ξ
′ =

ξ

ξ
=

ξ

ξ
=

ξ

 (4.8) 

Please note that the following is true: 

 2
21 12

1

m
L L

m
=  (4.9) 

Now the voltage equations (Eq. 4.1) can be transformed like follows: 
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( )

( )

( )

( )

1 1 1 2 2 2
1 1   1 1 1   1 1 21   2

2 2 2 1 1 1

2
1 1 11 1 1 1 2 2 2

2 2   22
2 2 2 2 1 1 12 2 2

2
1 1 1 1 2 2 2

2 2   22
2 1 1 12 2 2

1 1 1
2 12   1

2 2 2

m w m w
U R I j L I j L I

m w m w

ww m m w
U R I

w m m ww

w m m w
j L I

m m ww

w
j L I

w

ξ ξ
= + ω + ω

ξ ξ

ω ξω ξ ξ
=

ω ξ ξω ξ

ω ξ ξ
+ ω

ξω ξ

ω ξ
+ ω

ω ξ

 (4.10) 

Inserting the values transformed to the stator (“primed“ values) gives: 

 
1 1   1 1 1   1 1 1m   2

2 2
 2 1 2   2 1 1m   1

U R I j L I j L I

U R
I j L I j L I

s s

′= + ω + ω

′ ′
′ ′ ′= + ω + ω

 (4.11) 

With the main reactance, the total stator reactance, the total rotor reactance (trans-
formed to the stator) 

 

1m 1 1m

1 1 1m

2 2 1m

X L

X X X

X X X

σ

σ

= ω

= +

′ ′= +

 (4.12) 

and the no-load current  

  0   1   2I I I ′= +  (4.13) 

the following set of equations is obtained: 

 
1 1   1 1   1 1m   0

2 2
 2 2   2 1m   0

U R I jX I jX I

U R
I jX I jX I

s s

σ

σ

= + +

′ ′
′ ′ ′= + +

 (4.14) 

From this the following equivalent circuit diagram can be deduced (Fig. 4.3). It 
becomes obvious that in comparison to Fig. 4.2 a galvanic coupling is introduced 
that simplifies the calculation of induction machines. 
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Fig. 4.3. Equivalent circuit diagram of the induction machine with galvanic coupling. 

Please note that in this equivalent circuit diagram all values are transformed to 
stator frequency, phase number of the stator, and effective number of turns of the 
stator. For s 1=  (i.e. stationary rotor) the voltage ratio is equal to the ratio of the 
effective number of turns: 

 
i,1 1 1

u
i,2 2 2

U w
r

U w

ξ
= =

ξ
 (4.15) 

Operating the induction machine with constant stator flux linkage most often 
the following transformation ratio is used: 

 ( )1 1
u 1

2 2

w
r 1

w

ξ
= + σ

ξ
 (4.16) 

Then the leakage reactance of the stator vanishes in the equivalent circuit diagram 
(see Fig. 4.4). 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4.4. Equivalent circuit diagram of the induction machine without stator leakage reactance. 
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Operating the induction machine with constant rotor flux linkage most often the 
following transformation ratio is chosen: 

 1 1
u

2 2 2

w 1
r

w 1

ξ
=

ξ + σ
 (4.17) 

Then the leakage reactance of the rotor vanishes in the equivalent circuit diagram 
(see Fig. 4.5). 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4.5. Equivalent circuit diagram of the induction machine without rotor leakage reactance. 

4.2 Resistances and Inductivities 

4.2.1 Phase Resistance 

With the mean length of one turn m , the number of turns w of a phase, the cross 

section of the conductor wireA  and the specific resistance Cuρ  the phase re-

sistance becomes: 

 m
Cu

wire

w
R

A
= ρ  (4.18) 

The mean length of one turn can be calculated from the stack length of the ma-
chine and the length of a turn in the end winding region. 
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( ) 11 X− σ  
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4.2.2 Main Inductivity 

Supplying the stator with 1I  and 1f  at no-load operation (i.e. with no currents in 

the rotor), it follows: 

 1m i
1m

1 1 1

X U
L

I
= =

ω ω
 (4.19) 

According to the rotating field theory, the induced voltage is: 

 1 1
i 0 1 1 12

w3 r 4
2U w 2I

2 p

ξ
= μ ξ ω

δ π
 (4.20) 

Therefore, it follows in total for the main inductivity:5 

 

2

1 1
1m 0

w3 4 r
L

2 p

ξ
= μ

π δ
 (4.21) 

4.2.3 Leakage Inductivity 

The leakage is composed of harmonic leakage, leakage of the end windings, and 
the slot leakage. These three parts are calculated separately and then added up. 
The separate consideration of single field components is already explained in Sect. 
3.2 (for the slot and air-gap regions); even here such a separation of the field re-
gions is performed. The summation of the partial results (i.e. superposition) is al-
lowed because of the assumed linearity. 

4.2.3.1 Harmonic Leakage 

It has been shown in the rotating field theory that all harmonic waves induce volt-
ages of equal frequencies and phase shift in their generating winding. All these 
voltages may therefore be added. The sum of these voltages can be interpreted as 
voltage drop at a leakage reactance, because they do not produce a useful magnet-
ic field. 

                                                           
5 For the air-gap δ  please refer to the remarks in Sect. 3.5. 
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2 p 6g 1
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ω

ξξ
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π δ ξ +

 (4.22) 

with: 

 
( )

2
6g 1

harm
g 0 1 6g 1

+

≠

ξ
σ =

ξ +
 (4.23) 

4.2.3.2 Slot Leakage 

A single slot will be regarded in Fig. 4.6. 
 
 
 
 
 
 
 
 
 
 

Fig. 4.6. Field distribution in a single slot. 

In the slot region filled with conductors Ampere’s Law together with the as-

sumption Feμ → ∞  gives ( slotz : number of conductors in the slot, a: number of 

parallel paths): 

 

( )
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( )
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slot

slot 0

slot

max max 0
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B xz x
x 2I b

a h

z
2I

x aB x B , B
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Θ = =
μ

= = μ

 (4.24) 

In the region of the slot without conductors (slot opening) there is: 

maxB  B
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( )

( )

( )

slot
slot

0

max

B xz
x 2I b

a

B x B

Θ = =
μ

=

 (4.25) 

The slot leakage inductivity will be calculated by means of the magnetic ener-
gy. For a phase with 2pq  slots it is true: 

 ( )
22

mag ,slot
V0

1 1
W B dV L 2I

2 2
σ= =

μ
 (4.26) 

Therefore: 
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slot slot so
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2h h h
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2
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so
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2
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b ha2pq h
b 2 3
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μ μ
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 (4.27) 

Consequently: 

 
2

slot slot so
,slot 0

slot slot

z h h
L 2pq

a 3b b
σ = μ +  (4.28) 

With slotz w

a pq
=  it follows further: 

 
2

slot slot so
,slot 0 slot

slot slot

h hw
L 2 ,

p q 3b b
σ

λ
= μ λ = +  (4.29) 

Here slotλ  is called slot leakage permeance. 
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4.2.3.3 End Winding Leakage 

The end winding leakage is caused by the leakage field of the end winding. Be-
cause of the complicated geometry of the end winding a general calculation is not 
possible. Empirical values lead to the following result: 

 
2

,endw 0 endw endw

w
L 2 , 0.2 0.4

p
σ = μ λ λ ≈  (4.30) 

Here endwλ  is called end winding leakage permeance. For simple constructions 

of the end winding the leakage inductivity of the end winding can be calculated 
analytically, see the references list. 

4.3 Operating Characteristics 

4.3.1 Heyland-Diagram (Stator Phase Current Locus Diagram) 

For determination of the stator phase current locus the phase resistance will be ne-

glected in a first step: 1R 0= . This approximation, that generally is allowed for 

machines with high power and supplied by line frequency, will be omitted later. 

The equivalent circuit diagram with ( )1 1
u 1

2 2

w
r 1

w

ξ
= + σ

ξ
 is chosen; the rotor 

winding is short-circuited, either as squirrel cage rotor or as wound rotor via the 
slip rings and brushes. Then the equivalent circuit diagram is obtained (Fig. 4.7). 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4.7. Equivalent circuit diagram of the induction machine. 
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The following is true: 

 

( )

1 1   0

  2
  0   1

1

2  2 2
1 1 1

1

U jX I

I
I I

1

I R
U 1 jX 0

1 s 1

=

′
= +

+ σ

′ ′ σ
+ + σ + =

+ σ − σ

 (4.31) 

Defining the voltage 1U  being real, the phasor diagram is shown in Fig. 4.8: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.8. Phasor diagram of the induction motor. 

Calculating the stator phase current  1I  dependent on the slip s, it follows: 
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 (4.32) 
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Fig. 4.9. Complex impedance of the induction motor. 

The stator phase current locus (see Fig. 4.9) can be deduced like follows: 

• The complex resistance ( ) ( )22
1 1

R
Z s 1 jX

s 1

′ σ
= + σ +

− σ
 is a straight 

line in the complex plane. 

• According to the locus theory, the complex conductance ( ) ( )Y s 1 Z s=  

is a circle, that  
- reaches the origin of the complex plane for s 0= ,   
- has its midpoint on the negative imaginary axis, and   

- possesses the diameter 
1

1X
1

−
σ

− σ
. 

• By multiplication with 1 1U U≡  (the voltage has been defined being real) 

the locus of ( )  2
1

1

I
U Y s

1

′
− =

+ σ
 is deduced. 

• The locus of the stator phase current  1I  is calculated by adding the cur-

rent  0I : ( )  2 1
  1   0 1

1 1

I U
I I j U Y s

1 X

′
= − = − +

+ σ
. Therefore, the locus of 

( )1U Y s  is shifted by the absolute value 1 1U X  in the direction of the 

negative imaginary axis. 
 
The no-load current ( s 0= ) is 
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 1
  0

1

U
I j

X
= −  (4.33) 

The rotor current (transformed to the stator system) is 
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I U
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′ σ+ σ
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 (4.34) 

The stator current and the “diameter current” are, respectively 
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I
I I

1

′
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+ σ
 (4.35) 

 1
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U
I

X
1

=
σ

− σ

 (4.36) 

The locus of the stator phase current  1I  is a circle in the complex plane (this is 

also called “Heyland-diagram”, see Fig. 4.10). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.10. Heyland-diagram of the induction motor: complex currents. 

Location and size of this circle are determined only by the main reactance 1X  

and the total leakage coefficient σ  (if the stator resistance 1R  is neglected). 

Im−

Re  

 1I  

0I

 
s = ∞

s 0=  

 2

1

I

1

′−

+ σ
 

 0I  

s 0>  

s 0<  



4.3 Operating Characteristics      149 

For parameterization of this circle, the ratio of imaginary part to real part of the 

rotor current (transformed to the stator system)  2

1

I

1

′
−

+ σ
 is regarded (for explana-

tion please refer to Fig. 4.11): 

 ( ) { }

{ } ( )

1
  2

2
  2 2 1

X
Im I 1tan s
Re I R 1

∗

σ
−′ − σϕ = =

′ ′ + σ
 (4.37) 

As this function is linear in s, it can be used (most simply) for parameterization. 
The “slip line“ for parameterization can be each arbitrarily chosen parallel line to 
the Im− -axis: 

• The tangent to the circle (stator phase current locus) in the point   2I 0′ =  cuts 

the slip line at the point s 0= . 

• Each extension of the current  2

1

I

1

′

+ σ
 cuts the slip line at the respective slip s, 

because ( )tan s∗
ϕ  is true. To fix the parameterization, the slip of one circle 

point must be known (the slip of all other circle points then follows from the 
linear division of the slip line). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.11. Heyland-diagram of the induction motor: slip line. 
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The zenith of the Heyland-diagram is called pull-out point; the respective slip 
value is named pull-out slip. At this point the induction machine generates its 
maximum torque (pull-out torque). In this point real part and imaginary part of 

 2

1

I

1

′

+ σ
 are identical, i.e. ( )tan 1∗

ϕ =  is true. Then it follows: 

 
( )2

2 1
pull out

1

R 1
s

X
1

−

′ + σ
=

σ

− σ

 (4.38) 

Further it follows generally: 

 ( )
pull out

s
tan

s

∗

−

ϕ =  (4.39) 

At stand-still s 1=  is true; the stall current (also called short-circuit current) is 

then 1,stall 1,NI 5 8I≈ . Here, 1,NI  is the stator phase current in the nominal opera-

tion point. 
As proven previously, location and size of the Heyland-diagram are determined 

only by 1X  and σ  (if 1R  is neglected). From (Eq. 4.38) it can be deduced that 

the location of the slip points depends on 2R ′ . 

The following three operating areas can be distinguished: 

• Motor operation:   

For motor operation there is: 0 s 1< <  (i.e. 0n n 0> > ), therefore the arrow-

head of the stator current phasor is located in the left part of the upper circle 
half. The nominal operation point of an induction machine is in the region of: 

N pull out0 s s −< < . 

• Braking operation:   
For braking operation there is: s 1>  (i.e. n 0< ), therefore the arrow-head of 
the stator current phasor is located in the very right part of the upper circle half. 

• Generator operation:   

For generator operation there is: s 0<  (i.e. 0n n> ), therefore the arrow-head 

of the stator current phasor is located in the lower circle half. 

For small induction machines or when supplying the machine with small fre-

quencies (e.g. by means of an inverter) the resistance 1R  generally may not be 
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neglected. The Heyland-diagram then is changed concerning location, diameter, 
and parameterization. These changes are shown schematically in Fig. 4.12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.12. Heyland-diagram of the induction motor: influence of the stator resistance. 

For the angle α  there is:  

 ( ) 1

1

R
tan

X
α =  (4.40) 

4.3.2 Torque and Power 

Neglecting the stator resistance 1R  the active power of the induction machine 

supplied via the terminals is equal to the rotating air-gap field power: 

 ( )1 1 1 1 0P 3U I cos P 2 n Tδ= ϕ = = π  (4.41) 

With constant terminal voltage 1U  the rotating air-gap field power Pδ  and the 

torque T  are proportional to the real part of the stator current ( )1,real 1 1I I cos= ϕ . 
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Neglecting the stator resistance 1R , the real part of the stator current 1,realI  of 

an operating point can be deduced in the Heyland-diagram as projection of  1I  or 

 2

1

I

1

′

+ σ
 onto the real axis. 

By means of the notation in Fig. 4.13 there is: 

 1,realI C AP=  (4.42) 

where C  is a constant factor. Then, for the torque it follows: 

 1
0

1
T 3 U C AP

2 n
  =

π
 (4.43) 

The joining line between the points s 0P =  and sP =∞  ( s 0 sP P= =∞ ) is called 

“torque-line”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.13. Heyland-diagram of the induction motor: torque line and power line. 
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Therefore: 

 
AB

s
AP

=  (4.45) 

and consequently: 

 
BP

1 s
AP

= −  (4.46) 

Therefore, the distance AP  is divided by the so-called “power-line” s 0 s 1P P= =  

by the ratio s  to ( )1 s− . With this it can be deduced directly from the Heyland-

diagram how the rotating field power (this corresponds to the input power if the 

stator resistance 1R  is neglected) is divided into the different parts: 

• rotating air-gap field power:  

 1P 3 U C AP δ =  (4.47) 

• electrical power (rotor losses): 

 el 1P 3 U C AB =  (4.48) 

• mechanical power: 

 mech 1P 3 U C BP =  (4.49) 
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4.3.3 Torque as a Function of Slip 

The torque-slip-characteristic shall be deduced in the following by means of the 
Heyland-diagram (Fig. 4.14). The following relations are already known: 
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ϕ =  see Eq. (4.39) 
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 see Eq. (4.36) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.14. Heyland-diagram of the induction motor: relation of different angles. 

The torque in the operation point is: 

angle relations: 
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 1
1

3p
T U C AP  =

ω
 (4.50) 

The torque in the pull-out point is: 
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Therefore: 
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 (4.52) 

From this, directly Kloss’s Law is obtained: 

 
pull outpull out
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T 2

ssT

s s

−−

−

=

+

 (4.53) 

The pull-out torque can be calculated like follows: 
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 (4.54) 

Consequently, the pull-out torque is determined by the total leakage coefficient 
(high torque for small leakage). 

As approximation the graph of the torque-slip-characteristic can be separated 
into the following two regions: 

 pull out
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s s

T s
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Figure 4.15 illustrates the evaluation of Kloss’s Law and this approximation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.15. Torque-slip-characteristic of the induction motor. 
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Kloss’s Law and the pull-out torque are independent of the rotor resistance. 

Just the absolute value of the pull-out slip pull outs −  is determined by the rotor re-

sistance. The stable operating area of the induction motor is: pull out1 s s 1−− < < . 

In Fig. 4.16 pull outT T −  is shown as a function of 0n n  for pull outs 0.1− = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.16. Torque-speed-characteristic of the induction motor. 

4.3.4 Series Resistance in the Rotor Circuit 

Having machines equipped with slip rings on the rotor, series resistances can be 
added to the rotor circuit. Doing this the Heyland-diagram remains unchanged (it 
is independent from the rotor resistance, see above). But the parameterization is 
changed. 

Transforming even the series resistance SR  to the stator system it follows: 
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 (4.57) 

The identical point on the circle is described, if for the new parameterization 

with s∗  the following holds true: 
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 2 S S2
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R R RR
s s 1

s s R
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′
 (4.58) 

Analogously the pull-out slip is changed (see Fig. 4.17): 

 S
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R
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′
= +

′
 (4.59) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.17. Heyland-diagram of the induction motor: series resistance in the rotor circuit. 

When introducing series resistances to the rotor circuit the absolute value of the 
pull-out torque remains unchanged; but the starting point is shifted into the direc-
tion of the pull-out torque. It is even possible to start-up the machine with the pull-

out torque ( pull outs 1∗∗
− = ). Simultaneously, the phase current at stand-still is re-

duced. These advantages are opposed by higher rotor losses. 
Moreover, with the series resistances an open-loop speed control under load is 

possible, but this generates losses in the series resistances and therefore it is used 
only occasionally. 

In Fig. 4.18 pull outT T −  is shown as a function of 0n n  for 

pull outs 0.1;  0.2 and 1.0− = (torque-speed-characteristics): 
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Fig. 4.18. Torque-speed-characteristics of the induction motor for different values of the pull-out 
slip. 

4.3.5 Operation with Optimum Power Factor 

During no-load of the induction machine the stator phase current is a pure reactive 

current  0I . This corresponds to the magnetizing reactive (wattless) power re-

quired for the operation of the induction machine. This reactive power is supplied 
by the mains. There is: 
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 (4.60) 

To reduce the no-load current as far as possible, the air-gap should be as small 
as possible. But technical limits (bending of the axis, bearing tolerances) as well 
as economic limits (precision of the production) have to be considered. Usually it 
is reached 
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The maximum reachable torque (pull-out torque) of the induction machine is 
determined by the diameter of the Heyland-diagram. Therefore, the current 

0 0I I I∞ = +  should be as large as possible. The following is true: 

 

1 1

1
1

1
0 0 01

N N N N N

U U
UX

XI I II X 11

I I I I I
∞

+
σ

+ σ− σ= = = =
σ

 (4.62) 

Generally reachable values for the total leakage coefficient are: 0.03 0.1σ ≈ . 
From this the ratio of the currents becomes: 

 
N

I
5 7

I
∞ =  (4.63) 

The nominal operating point of the induction machine often is chosen to max-

imize the power factor ( )cos ϕ  (then the load to the supplying mains because of 

the reactive current is smallest). The operating point with maximum ( )cos ϕ  is 

called “optimum point”. It is obtained by a tangent of the stator current onto the 
Heyland-diagram (Fig. 4.19): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.19. Heyland-diagram of the induction motor: operation with optimum power factor. 

Having the nominal operation point identical with the optimum point, the fol-
lowing is true: 
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 opt opt2 ∗
ϕ = ϕ  (4.64) 
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 (4.65) 

Usually reachable in practice is: ( )optcos 0.8 0.9ϕ ≈ . 
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 (4.66) 

For the slip in the optimum point the following is true: 



162      4 Induction Machines 

 

( )

( )
( )

( ) ( )

( ) ( )

opt
opt

pull out

opt opt
opt pull out pull out

opt

pull out pull out

pull out

s
tan

s

1 cos
s s tan s

2 1 cos

1
1

1 11s s
1 1 1

1
1

s

∗

−

− −

− −

−

ϕ =

ϕ − ϕ
= =

+ ϕ

− σ
−

+ σ − − σ+ σ= =
− σ + σ + − σ

+
+ σ

= σ

 (4.67) 

In practice the pull-out slip is about pull outs 0.05 0.2− ≈  and the nominal slip 

is about Ns 0.01 0.05≈ . 

The torque ratio in the pull-out operating point and the optimum point is: 

 

pull out opt

pull out opt pull out

opt

s s 1

T s s 1

T 2 2 2

−

− −

+ + σ
+ σσ

= = =
σ

 (4.68) 

With the given values for the total leakage coefficient it follows for the over-

load capability: pull out optT T 1.7 3.0− ≈ . 

Up to now the stator copper losses, the iron losses, and the friction losses were 
neglected; only the rotor copper losses were considered. Then the efficiency is: 

 mech mech

1 rot

P P
1 s

P P
η = = = −  (4.69) 

For the optimum point it follows: 

 opt opt pull out1 s 1 s −η = − = − σ  (4.70) 

For s 0=  or s → ∞  the equivalent circuit diagrams (see Fig. 4.20) can be de-
duced: 
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Fig. 4.20. Equivalent circuit diagrams of the induction machine. 

Directly from Fig. 4.20 the stator currents for s 0=  and s → ∞  can be calcu-
lated: 
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U
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=  (4.71) 
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 (4.72) 

Further there is: 
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 (4.73) 

and therefore: 
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 1

1 2

U
I

X X
∞

σ σ

≈
′+

 (4.74) 

Remark: For the total leakage coefficient the following holds true: 

 
( )( )
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1 2 1 2 1 2

1 2
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1 1 1

  
1

σ + σ + σ σ
σ = − =
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+ σ + σ

 (4.75) 

Changes of the machine parameters have the following influences onto the 
Heyland-diagram and therefore onto the operational characteristics: 

• Increasing the air-gap the main reactance 1X  is decreased. This means that the 

magnetizing current 0I  is enlarged. 

• By decreasing the leakage reactance (e.g. decreasing 2X σ
′  by utilizing the skin-

effect) the current I∞  increases. By this the pull-out torque and the stand-still 

current are getting larger. 

• Increasing the rotor resistance 2R ′  (e.g. by utilizing the skin-effect) changes the 

parameterization of the slip line. It is possible to start-up the motor with higher 
torque and lower phase current, but this is opposed by higher rotor losses. 

4.3.6 Further Equations for Calculating the Torque 

In the following the equivalent circuit diagram with stator and rotor leakage reac-
tance is used (Fig. 4.21). 

 
 
 
 
 
 
 
 
 

Fig. 4.21. Equivalent circuit diagram of the induction machine. 
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The appropriate phasor diagram is shown in Fig. 4.22 (if 1R 0=  is true). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.22. Phasor diagram of the induction machine. 

From the rotating field theory it follows: 
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 (4.76) 

With 1j
  1 1Î 2 I e − ϕ

=  and 
j
2

1m 1m e
π

−

Ψ = Ψ  it follows: 
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and consequently: 
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• With 2 2   2 1m   1
ˆ ˆL I L I′ ′ ′Ψ = +  it follows: 2   1 2   2   1

ˆ ˆ ˆI L I I′ ′ ′Ψ × = ×  and therefore: 

( )1m
2   1

2

L3 ˆT p I
2 L

′= Ψ ×
′

 rotor flux and stator current 

• With 1 1   1 1m   2
ˆ ˆL I L I ′Ψ = +  it follows: 1   2 1   1   2

ˆ ˆ ˆI L I I′ ′Ψ × = ×  and therefore: 

( )1m
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2 L

′= − Ψ ×  stator flux and rotor current 

• With ( ) ( )( )1m   1   2 1m   1   2   2 1m   2
ˆ ˆ ˆ ˆ ˆ ˆL I I L I I I I′ ′ ′ ′× = + × = Ψ ×  it follows: 

( )1m   2

3 ˆT p I
2

′= − Ψ ×   main flux and rotor current 

• With 1m 2 2   2
ˆL Iσ

′ ′ ′Ψ = Ψ −  it follows: 1m   2 2   2
ˆ ˆI I′ ′ ′Ψ × = Ψ ×  and therefore: 

( )2   2

3 ˆT p I
2

′ ′= − Ψ ×   rotor flux and rotor current 

• With 2 2   2
ˆL I′ ′ ′Ψ =  it follows: 

( )1m
1 2

1 2

L3
T p

2 L L
′= − Ψ × Ψ

′
 stator flux and rotor flux 

With A B B A× = − ×  further equations can easily be deduced. 
The above equations are valid for supplying the machine with sinusoidal volt-

ages and currents (the capital letters symbolize rms-values or peak-values, de-
pending if electrical or magnetic variables are indicated). The torque calculation 
for arbitrary time dependencies of the supplying voltages and currents is per-
formed in Sect. 8.9. With arbitrary time dependencies even dynamic operation 
conditions can be calculated, generally the torque is then no longer constant but 
time-dependent (in contrast to the steady-state behavior regarded in this chapter). 

4.4 Squirrel Cage Rotor 

4.4.1 Fundamentals 

The squirrel cage rotor (cage rotor) of an induction machine in its simplest form is 
composed of stacked iron laminations; in the slots of this stack bars (made from 
copper or aluminum) are inserted and these bars are connected with rings (made 
from copper or aluminum) in both axial end regions. For machines with small 
power the slots are filled by aluminum die-cast and the end rings are realized in 
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the same production step. The induction machine with cage rotor is the most often 
used electrical machine. It is simple, robust, and cost-effective (see Fig. 4.23 for 
an example). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.23. Photograph of a squirrel cage induction machine. 

Having 2N  rotor slots the cage winding can be interpreted as a multi-phase 

winding with 2N  phases. Here, each phase is composed of a single bar (better: 

each two neighboring bars, one half each, together with the connecting end ring 
segments, are composing the winding of a phase). The number of turns is then: 

 2 N
2 N

2

N z 1
w , z 1, a 1

2m a 2
= = = =  (4.78) 

The fundamental wave has the winding factor: 

 2,1 1ξ =  (4.79) 

The number of pole pairs of the cage rotor is not determined by the winding, 
but because of the inductive effect the number of pole pairs of the stator is adopt-
ed. 

The fundamental wave of the rotor magneto-motive force is (analogously to the 
three-phase winding): 

housing 

stator iron 

stator winding 

stator fan 

bearing 

skewed rotor bars 

rotor end ring 

rotor fan 

terminal box
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 (4.80) 

Here 2 barI I=  is the current of a rotor bar. 

Now the relation between the bar current and the ring current shall be calculat-
ed. Figure 4.24 illustrates the notation: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.24. Rotor currents of a squirrel cage induction machine. 
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= +

+ − =
 (4.83) 

the phasor diagram can be deduced (Fig. 4.25): 
 
 
 
 
 
 
 
 
 
 

Fig. 4.25. Phasor diagram of the rotor currents of a squirrel cage induction machine. 

The phase shift between two neighboring bar currents is equal to the phase shift 
of two neighboring ring currents. It follows: 
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β π

 (4.84) 

Therefore, the cross section of the end rings have to be dimensioned according-
ly larger than the cross section of the bars (because usually equal current densities 
should be achieved). 

The voltage transformation ratio is (see Sect. 4.1): 

 2 1 1 1 1
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 (4.85) 

The current transformation ratio is (see Sect. 4.1): 
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The rotor resistance is composed of the bar resistance and the corresponding 
segmental ring resistance. The transformation of the rotor resistance onto the sta-
tor system is performed on the basis of equal losses: 
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Further it follows: 
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 (4.88) 

4.4.2 Skewed Rotor Slots 

Apart from the fundamental wave there are even harmonic waves of the flux den-
sity distribution in the air-gap of the machine, e.g. because of the winding distribu-
tion and the slotting effect. These harmonic waves can be regarded as “leakage 
fields” (air-gap leakage, harmonic leakage). However, having a cage rotor these 
field waves can induce voltages and corresponding currents like the fundamental 
wave and consequently generate (disturbing) torque components. By skewing the 
rotor bars the effect of the harmonic waves can be reduced, because the flux pene-
trating a cage mesh is different: 
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• for skewed and unskewed bars the flux of the fundamental wave is nearly the 
same, whereas 

• the flux of a higher harmonic wave is large for unskewed bars and it is reduced 
for skewed rotor bars. 

Figure 4.26 schematically illustrates a rotor with skewed rotor bars. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.26. Sketch of a squirrel cage rotor with skewed rotor slots. 

The ordinal numbers of the rotating field generated by a symmetric three-phase 
winding are (please refer to Chap. 3 “Rotating Field Theory”): 

 
12m g 1

6g 1, g 0, 1, 2,

ν = +

= + = ± ±
 (4.89) 

For g 0= , i.e. 1ν = , the fundamental wave is obtained. 

Regarding a skewed rotor mesh in a “wound-off” representation (x-coordinate: 
circumferential direction; y-coordinate: axial direction), Fig. 4.27 can be drawn. 

For the fundamental wave and the harmonic waves of the air-gap field the fol-
lowing is true (for better distinction here the amplitude of the magnetic flux densi-
ty is marked by “ ˆ “): 

 ( ), , 2
ˆB B cosδ ν δ ν= νγ  (4.90) 

Consequently, the flux in the (skewed) rotor mesh becomes: 

skewing angle skewα  

effective 
length  

cage mesh 

rotor radius r
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 (4.91) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.27. Sketch of a squirrel cage rotor with skewed rotor slots. 

Solving firstly the inner integral of Eq. (4.91), it follows: 
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and further: 
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Now the remaining integral is solved: 
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A transformation gives: 
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The flux of a harmonic wave in a single rotor mesh therefore is composed of 
the maximum value of the harmonic flux density wave, the air-gap area of a rotor 
mesh, the coupling factor  

 C,
2

p
si

N
ν

ν π
ξ =  (4.96) 

and the skewing factor  

 skew
skew,

p
si

2
ν

ν α
ξ =  (4.97) 

For the coupling factor it holds: 

 C, 1νξ →  for 2N → ∞  (4.98) 

The effect of skewing is that the harmonic waves are damped to a large extent, 
whereas the fundamental wave is hardly influenced. The skewing factor becomes 
zero for: 
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The skewing factor for the fundamental wave and the first four harmonic waves 
is shown in Fig. 4.28 as a function of the skewing angle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.28. Influence of skewed rotor slots onto the skewing factor for different harmonics. 

4.4.3 Skin Effect 

Because of the massive bars there is always a single-sided skin effect (towards the 
slot opening) with cage rotors: the slot leakage fields cross the bars and induce 
voltages, that are accompanied by eddy currents and consequently uneven current 
distribution. According to Lenz’s Law these induced voltages are directed in such 
a way, that the hereby generated eddy currents act against their reason; please re-

fer to Fig. 4.29 for the principle geometry, the current density distribution ( )J x  

and the flux density distribution ( )B x . 

The integral of the superposed eddy currents across the slot cross section is 
equal to zero, i.e. the total current is unchanged (only the current distribution is 
changed across the cross section). 

Generally, the skin effect is unwanted in electrical machines, because this gen-
erates additional losses in the bars and therefore is the reason for higher heating 
and lower efficiency. 
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Fig. 4.29. Current density and flux density distribution in massive rotor bars (above: DC current; 
below: AC current). 

For induction machines with cage rotor this skin effect however can be used to 
improve the starting behavior: Because of the skin effect the rotor resistance is 
higher at starting operation (i.e. at high frequency of the rotor currents) and there-
fore even the starting torque is higher. Simultaneously, the leakage reactance be-
comes smaller (the flux density in the rotor bar is smaller), which means an in-
crease of the diameter of the Heyland-diagram. 

With increasing speed of the motor the skin effect gets smaller (because the 
frequency of the rotor currents gets smaller), until it is hardly noticeable at nomi-

nal operation. The Heyland-diagram C can now be composed of a diagram stC  for 

starting and a diagram opC  for operation (the current 0I  is identical in both cas-

es, because 1X  is unchanged), see Fig. 4.30. 

It is: 

s 1= (i.e. 2 1f f= )  1X  unchanged; 2X σ
′  small, 2R ′  large 

s 0→ (i.e. 2f 0→ )  1X  unchanged; 2X σ
′  large, 2R ′  small 
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Fig. 4.30. Heyland-diagram of the induction motor: starting diagram and operating diagram. 

This effect specifically is utilized in so-called “skin effect rotors” (Fig. 4.31). 
 
 
 
 
 
 
 

Fig. 4.31. Different kinds of skin effect rotors; from left to right: round bar (small skin effect), 
rectangular bar, keyed bar, double bar. 

Changing the rotor resistance and the rotor leakage inductivity with frequency 
usually is described by the following factors: 
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 (4.101) 

For rectangular bar cages with the slot height h and the specific resistance ρ  

the following is true (here without deduction): 
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Figures 4.32 and 4.33 illustrate the factors ( )R 2K f  and ( )I 2K f  as function 

of ( )2fζ  for the rectangular bar cage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.32. Rotor resistance modifying factor for rectangular bars. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.33. Rotor leakage inductance modifying factor for rectangular bars. 
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4.5 Possibilities for Open-Loop Speed Control 

The main possibilities for open-loop speed control of induction motors can be de-
duced from the following equation: 

 ( )1fn 1 s
p

= −  (4.103) 

4.5.1 Changing (Increasing) the Slip 

Either by resistances in the rotor circuit of a slip ring rotor or by decreasing the 

terminal voltage ( 2
1T U ) the slip is increased. In both cases the additional slip 

power is transformed to heat and the efficiency is decreased: 

 1 sη = −  (4.104) 

The no-load speed does not change. 

4.5.2 Changing the Supply Frequency 

The power is taken from the 50Hz  three-phase mains, rectified and given to an 
inverter via an intermediate circuit (DC-current or DC-voltage) that supplies the 
induction machine with variable voltage (Fig. 4.34): 

 
 
 
 
 
 
 
 
 

Fig. 4.34. Induction motor with inverter supply. 

For the Heyland-diagram (stator current locus) it follows for variable frequen-
cy: 
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Therefore, the circle remains unchanged in its size, if the supplying voltage is 
changed proportional to the frequency. Then even the pull-out torque remains un-
changed: 
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But the parameterization of the Heyland-diagram is changed: 

 ( )
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′ + σ

 (4.108) 

With decreasing supply frequency the stand-still operating point (starting, short-
circuit) is shifted in the direction of the no-load operation point (Fig. 4.35). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.35. Heyland-diagram of the induction motor: different supply frequencies. 

The torque-speed-characteristics are illustrated in Fig. 4.36. 
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Fig. 4.36. Torque-speed-characteristics of the induction motor for different supply frequencies 
(with nominal supply frequency of 50Hz). 

If the supply frequency 1f  gets smaller, the stator resistance 1R  has to be con-

sidered, because then 1R  cannot be neglected any more against 1X . Considering 

1R , the Heyland-diagram gets smaller and the pull-out torque decreases (because 

of the voltage drop at 1R ). For compensating the voltage drop at 1R  at low fre-

quency the voltage is reduced less than proportional to the frequency (to reach a 
constant stator flux). 

If the further increase of the voltage with frequency is not possible (this point is 
called “nominal operation point”) the pull-out torque decreases inversely propor-

tional to the squared frequency, see the characteristic for 1f 60Hz=  in Fig. 4.36. 

This operating region is called “field weakening region”. 

4.5.3 Changing the Number of Pole Pairs 

As the cage rotor adopts itself to any number of pole pairs, the synchronous speed 

(no-load speed) 0 1n f p=  can be varied in discrete steps by changing the number 

of pole pairs p. For this the stator 

• can be equipped with several separated three-phase windings, placed in the 
same slots (high effort, small utilization) or 

• contains a single winding with switchable winding segments (see Fig. 4.37). 

The pole switching is used for example in the so-called “Dahlander circuit“. 
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Fig. 4.37. Pole switching winding (with zone plan and magneto-motive force characteristics). 

4.6 Star-Delta-Switching 

When switching the induction machine with zero rotor speed to the mains the en-
tire stall (short-circuit) current flows. This is a multiple of the nominal current. As 
this means a high load to the machine, the starting current has to be limited. 

A possibility for limitation of this current is the introduction of series resistanc-
es to the rotor circuit, if a slip ring rotor is present (please refer to Sect. 4.3). 

This is not possible with cage rotors. Here, the voltage is decreased by means 
of a starting transformer (at high power) or by means of star-delta-switching (low 
and medium power). 

If the motor phases are connected in star there is: 

 phase,Y line phase,Y line,Y

1
U U , I I

3
= =  (4.109) 

For delta connection it is true: 
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As the torque is proportional to the squared phase voltage it follows: 

 

2

phase,YY

phase,

UT 1

T U 3Δ Δ

= =  (4.111) 

For the mains current it follows: 

 
phase,Y phase,Yline,Y

line, phase, phase,Y

I II 1

I 33 I 3 3 I  Δ Δ

= = =  (4.112) 

Consequently, torque and mains current are decreased by a factor of 3 in start-
ing operation. The switching to the delta connection is realized near the nominal 
operating point. 

4.7 Doubly-Fed Induction Machine 

The slip-ring rotor of an induction machine can be supplied with voltages having 
slip frequency (formerly the slip power was supplied by another machine set-up, 
today generally this is done using an inverter) (Fig. 4.38). 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4.38. Doubly-fed induction machine. 

Via the inverter additional power can be fed to or drawn from the rotor. Feed-
ing the power an operation above synchronous speed is reached, drawing the pow-
er an operation below synchronous speed is realized (for motor operation). 

Apart from the inverter losses this kind of speed control (nearly) is lossless. 
The advantage of this alternative is that the inverter has to be dimensioned only 
for the slip power. A typical application of this kind of speed control e.g. is in 
wind power plants (generator operation). 
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To calculate the torque characteristic the equivalent circuit diagram in Fig. 4.39 
is regarded. 

 
 
 
 
 
 
 
 
 
 

Fig. 4.39. Equivalent circuit diagram of the doubly-fed induction machine. 
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It can be deduced that the rotor current is composed from the superposition of 

two parts: The first part comes from the terminal voltage of the stator 1U , the sec-

ond part comes from the rotor voltage 2U′  which is used as control variable. 

In no-load operation   2I 0′ =  is true. This is fulfilled for 
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The value 0s′  is called no-load slip. As the no-load slip has to be a real number, 

even 2 1U U′  has to be a real number, i.e. these two voltages have to have the 

same phase angle (or opposite phase angle). Therefore, the no-load speed 
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 ( ) ( )1
0 0 0 0n n n 1 s 1 s

2 p

ω
′ ′ ′= = − = −

π
 (4.115) 

can be adjusted by the voltage 2U′ ; e.g. it follows 

• for 00 s 0.5′< <  a no-load speed of 0 0 0n n 0.5n′> >  is obtained; 

• for 00.5 s 0′− < <  a no-load speed of 0 0 01.5n n n′> >  is obtained. 

The torque can be calculated from the power of the rotating field. With 
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it follows: 
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it follows further, if 1 1U U=  is chosen being real: 
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Now just the rotor voltages that are in phase with the stator voltage are consid-
ered (it has been shown above that only for those voltages no-load of the machine 
is possible), then it follows: 
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 (4.120) 

Setting this torque in relation to the pull-out torque at zero rotor voltage (see 
Sect. 4.3), the result is: 
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A further transformation finally gives: 
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Figure 4.40 exemplarily shows the torque (in relation to the torque at 2U 0′ = ) 

for a machine with pull outs 0.4− ≈  as a function of speed (in relation to the syn-

chronous speed). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.40. Torque-speed-characteristics of the doubly-fed induction machine. 

The advantage of this kind of speed control is that the inverter has to be dimen-
sioned only for the slip power. Therefore it is smaller than an inverter supplying 
the machine on the stator side. 

A disadvantage of this alternative of speed control is that only a limited speed 
variation can be reached (the larger the speed variation, the larger is the required 
power of the inverter) and that the machine has to be equipped with slip rings. 
This pays off only for large power machines (typically more than 500kW). 

Designing the machine-side converter as a pure rectifier, it is only possible to 
draw power from the machine. Consequently, only the speed area below synchro-
nous speed is reachable with the advantage that the power electronic complexity 
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and costs is reduced considerably. Such a layout is called sub-synchronous con-
verter cascade. 
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5 Synchronous Machines 

5.1 Equivalent Circuit and Phasor Diagram 

Like the induction machine the synchronous machine contains a stator with three-
phase winding (it is a rotating field machine), but the rotor winding is supplied 
with DC-current. In the following the voltage equations and the equivalent circuit 
of the synchronous machine will be derived from those of the induction machine. 

The three-phase winding of the stator is supplied from a three-phase mains with 

constant voltage 1U  and constant frequency 1f . The rotor shall have a three-phase 

winding of the same pole number as well, which is connected to slip rings. Be-

tween two of these slip rings a DC-current is fed (excitation or field current FI ). 

Therefore, the frequency of the rotor currents is 2f 0= . 

According to the rotating field theory the synchronous machine is only able to 
produce a torque that is constant in time and different from zero, if the frequency 
condition is fulfilled: 

 2 1f s f=  (5.1) 

With 2f 0=  and 1 linef f=  it follows: 

 1
0

f
s 0 n n

p
= = =  (5.2) 

Consequently, in stationary operating conditions the rotor always rotates with 

the synchronous speed 0n . At any different speed 0n n≠  an oscillating torque 

with a mean value according to time equal to zero is generated. 
In contrary to the induction machine, which does not generate a torque for 

0n n= , the synchronous machine generates a torque only at 0n n= . 

Now, coming from the general circuit diagram of the induction machine with 
slip ring rotor, the circuit diagram of the synchronous machine will be deduced. 
Here the “energy generation system” is applied, because synchronous machines 
mainly are used as generators (Fig. 5.1). 
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Fig. 5.1. Equivalent circuit diagram of the synchronous machine. 

The voltage equations are: 

 ( ) ( )

  

  2
1 1  1 1  1

1

22   2 2
1 1 1

1

  2
1 1

1

I
U R I jX I 0

1

U I R
1 1 jX

s 1 s 1

I
jX I

1

′
+ + + =

+ σ

′ ′ ′ σ
+ σ = + σ +

+ σ − σ

′
+ +

+ σ

 (5.3) 

Multiplying the voltage equation of the rotor with s and regarding that s 0=  
holds true, it follows: 
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 2I ′  is the excitation current FI  transformed to the stator side. A current  2I ′  in 

the stator winding having the mains frequency will generate the same rotating 

magneto-motive force (MMF) like the DC-current FI  flowing in the rotor having 

synchronous speed. The relation between  2I ′  and FI  is as follows: 

1. The number of turns of the excitation winding is: 
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2. The winding factor of the excitation (field) winding (nominated in the 
following with the index “F“) can be calculated by means of the rotating 
field theory from the distribution factor and the short-pitch factor. For the 
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fundamental wave and a distribution of the winding in a large number of 
slots ( q → ∞ ) it follows, please refer to Fig. 5.2: 
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Fig. 5.2. Explanation for calculating the winding factor. 

3. The fundamental waves of the MMF have to be the same in both cases: 
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4. The complex value can be obtained from the fact that the current  2I ′  in 

the stator winding having the mains frequency generates the same rotat-

ing magneto-motive force (MMF) in the air-gap like the DC-current FI  

flowing in the rotor having synchronous speed. Against the voltage 1U  

the current  2I ′  has a phase shift of angle 2ϕ  (see the phasor diagram in 

Fig. 5.4): 
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 2j
 2 2I I e − ϕ′ ′=  (5.8) 

The excitation current 2I′  transformed to the stator side induces a voltage at the 

main reactance 1mX . This voltage is called internal machine voltage (or open-

circuit voltage or no-load voltage):6 

 P 1m  2U jX I′= −  (5.9) 

The stator voltage equation of the synchronous machine becomes: 

 ( )1 1   1 1 1m   1 PU R I j X X I Uσ+ + + =  (5.10) 

From the voltage equation of the stator the circuit diagram of the synchronous 
machine can be deduced. The rotor part must not be considered separately, be-

cause the voltage PU  induced from the excitation field into the stator winding is 

already included and in stationary operating points there is no reaction from the 

stator to the rotor. In Fig. 5.3 the directions of 1U  and  1I  are reversed against the 

beginning of this chapter. Therefore, even here the “energy generation system” is 
used. 

 
 
 
 
 
 
 
 
 
 

Fig. 5.3. Equivalent circuit diagram of the synchronous machine. 

The internal machine voltage PU  can be measured directly at the terminals of 

the machine, if excitation with FI , driving with synchronous speed 0n  and no-

load operation ( 1I 0= ) is used. 

The entire phasor diagram of the synchronous machine in generator mode with 
resistive-inductive load is shown in Fig. 5.4. 

 
                                                           

6 This voltage sometimes is also called back emf (electromotive force) and nominated with “e”. 
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Fig. 5.4. Phasor diagram of the synchronous machine in generator mode. 

The induced voltage Uδ  coming from the resulting rotating air-gap field corre-

sponds to the magnetizing condition (saturation) of the machine: 

 1m   U jX Iδ μ= −  (5.11) 

The internal machine voltage PU  is: 

 P 1m  2U jX I′= −  (5.12) 

The armature reaction becomes: 

 1m   1jX I−  (5.13) 

The angle ϑ  is called rotor angle. It shows the phase shift of the internal ma-

chine voltage PU  against the voltage at the terminals 1U . In generator operation 

ϑ  is positive, in motor operation ϑ  is negative. In no-load operation (  1I 0= ) 

and operating the synchronous machine purely with reactive power ( 1 2ϕ = ± π  

and 1R 0= ) the rotor angle is equal to zero ( 0ϑ = ). 
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The angle 

 1Gδ = ϑ + ϕ  (5.14) 

is called load angle. In generator operation the excitation MMF is leading the ar-

mature MMF by G2

π
+ δ , in motor operation it is lagging by G2

π
− δ . 

Having large synchronous machines generally the phase resistance 1R  can be 

neglected against the phase reactance 1X . Moreover, for the description of the op-

erating performance only the stator voltage equation is required. Therefore, the in-
dices may be omitted. Then there is the following equation: 

 PU U jX I= +  (5.15) 

From this the equivalent circuit and phasor diagram (see Fig. 5.5) can be de-

duced (in the following the angle 2ϕ  is not needed any longer, therefore the phase 

angle 1ϕ  will be used without index: 1ϕ = ϕ ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.5. Equivalent circuit (above) and phasor diagram (below) of the synchronous machine. 
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5.2 Types of Construction 

5.2.1 Overview 

Synchronous machines have the same stator construction like induction machines: 
A three-phase winding is placed in the slots of the lamination stack. For the rotor 
there are two different types of construction, see Figs. 5.6 and 5.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.6. Cylindrical rotor (non-salient pole) synchronous machine (example: p=1). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7. Salient pole synchronous machine (example: p=2). 
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5.2.2 High-Speed Generator with Cylindrical Rotor 

If synchronous generators are driven by steam or gas turbines (thermal power sta-
tion) the speed is chosen as high as possible to reach an as good as possible tur-
bine efficiency. For a mains frequency of 50Hz  the maximum speed is 

13000 min−  (2-pole construction, i.e. p 1= ). The rotor diameter is limited by the 

accelerating forces. Because of the high mechanical stress the rotor construction is 
chosen being cylindrical. The volume required for the desired power is achieved 
by using a quite long rotor. 

5.2.3 Salient-Pole Generator 

The turbines of hydroelectric power stations rotate at very low speed 

( 1100 750 min− ). To adapt this speed to the mains frequency the number of pole 
pairs have to be chosen very large ( p 30 4= ). As the acceleration forces are 

low (because of the low speed) single poles with concentric excitation coils may 
be realized. The salient-pole synchronous generator has a large diameter and a 
short axial length. Using this construction type the air-gap is not constant at the 
circumference of the rotor, i.e. the magnetic reluctance varies at the circumfer-
ence. 

5.3 Operation at Fixed Mains Supply 

5.3.1 Switching to the Mains 

The synchronous machine may only be switched to the mains with constant volt-
age and frequency (Fig. 5.8), if the following conditions for synchronization are 
fulfilled: 

• The synchronous machine is rotated by a driving motor with synchronous 

speed: 0n n= . 

• The excitation current FI  of the synchronous machine is adjusted so that the 

generator voltage is equal to the mains voltage: gen lineU U= . 
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• The phase sequence of the terminal voltages of generator and mains have to be 
the same: abc – uvw. 

• The phase shift of the voltage systems of generator and mains must be identi-
cal, i.e. the voltage difference at the terminals that shall be connected must be 
zero: U 0Δ = . 

If these conditions for synchronization are not fulfilled, there are very high 
torque and current pulsations after switching the generator to the mains.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.8. Principle diagram of switching a synchronous machine to the mains 

The phase shift of the voltage systems of generator and mains is illustrated in 
Fig. 5.9. 

 
 
 
 
 
 
 
 

Fig. 5.9. Phase shift of the voltage systems of generator and mains. 
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5.3.2 Torque Generation 

The torque can be calculated from the rotating field power divided by the syn-

chronous angular frequency. Neglecting the stator losses ( 1R 0= ) the input active 

power equals this rotating field power: 
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p
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Ω ω

 (5.16) 

The phasor diagram of the synchronous machine is shown in Fig. 5.10: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.10. Phasor diagram of the synchronous machine. 

From this it can be deduced: 
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Therefore, the torque becomes: 
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This torque equation is true only for stationary operating points with 

FI const.=  and 0n n= . Generator operation is given for 0ϑ > , motor operation 

is given for 0ϑ < . A stable operation is possible only for 2 2− π < ϑ < π : In-

creasing the load slowly, the torque and the rotor angle ϑ  are increased as well, 

until the synchronous machines reaches the pull-out torque at 2ϑ = ± π  and the 

machine falls out of synchronism. As a motor the machine stops, as a generator it 
runs away. High oscillating torque components do occur, combined with high cur-
rents pulses. In this case the synchronous machine has to be disconnected from the 
mains immediately. 

These characteristics are illustrated in Fig. 5.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.11. Torque versus rotor angle characteristic of the synchronous machine. 

The overload capability of a synchronous machine is: 

 

( ) ( )

N P

pull out 1 P

N N N
N N N

1

U U3p

T X U

3pT XI cos
U I cos

− ω
= =

ϕ
ϕ

ω

 (5.19) 

In practice, often an overload margin of 
pull out

N

T
1, 6

T

−
>  is called for. A measure 

for the stability in stationary operation is the synchronizing torque (also see Fig. 
5.12): 

 ( )syn pull out

dT
T T cos 0

d
−= = ϑ >

ϑ
 (5.20) 

stable 

T 

ϑ  

Nϑ  

NT  

pull outT −  
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Fig. 5.12. Synchronizing torque of the synchronous machine. 

The larger dT dϑ , the larger is the restoring torque synT  after a load step. The 

smaller the absolute value of ϑ , the more stable is the operating point. 

5.3.3 Operating Areas 

There is: 

 
( ) ( )( )

( ) ( )( )

j
P P P

j

U U e U cos jsin

I Ie I cos jsin

ϑ

− ϕ

= = ϑ + ϑ

= = ϕ − ϕ
 (5.21) 

Consequently (if the terminal voltage U  is defined being in the real axis): 

 
( ) ( )( ) ( ) ( )( )P

PU U jX I

U cos jsin U jXI cos jsin

= +

ϑ + ϑ = + ϕ − ϕ
 (5.22) 

Separated into real and imaginary parts it follows: 

 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

P
P

P
P

U cos U
U cos U XI sin I sin

X

U
U sin XI cos I cos sin

X

ϑ −
ϑ = + ϕ ϕ =

ϑ = ϕ ϕ = ϑ

 (5.23) 

From this four operating areas can be deduced. In the “power generation mod-
el” they look like follows: 

 

T 

ϑ  

synT  

synT,  T  
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• ( )I cos 0ϕ >  ( 0ϑ > ):  production of active power   

     (generator) 
 

• ( )I cos 0ϕ <  ( 0ϑ < ):  consumption of active power   

     (motor) 
 

• ( )I sin 0ϕ >  ( ( )PU cos Uϑ > ): delivering reactive power   

     (over-excited)  
      machine operates as a capacitor  
 

• ( )I sin 0ϕ <  ( ( )PU cos Uϑ < ): consumption of reactive power  

     (under-excited)  
      machine operates as an inductor 

The characteristic phasor diagrams are illustrated in Fig. 5.14. 
The active power is determined only by the driving turbine (generator opera-

tion) or by the load torque (motor operation). 
The reactive power can be adjusted independently just by the excitation (deliv-

ering reactive power when being over-excited, consuming reactive power when 
being under-excited). This is illustrated in Fig. 5.13; the phasors belonging to dif-
ferent excitations are shown in different colors (the phasors of voltage and current 
are presented in the same color). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.13. Phasor diagram of the synchronous machine and different excitations. 
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Fig. 5.14. Operating areas of the synchronous machine. 

Sometimes synchronous machines are used as reactive power generators with-
out producing active power for phase shift operation. With this the inductive reac-
tive power of transformers or induction machines can be compensated and there-
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fore the load of the mains can be reduced. Then the internal machine voltage PU  

is in phase with the terminal voltage U ; the current I  is a pure reactive current 

(in phase shift operation the machine may be over-excited or under-excited). In 

no-load operation the current is I 0=  and PU  and U  are identical (same ampli-

tude and phase). 
 

5.3.4 Operating Limits 

From 

 PU U jX I= +  (5.24) 

and 

 j
P P N,phaseU U e , U Uϑ

= =  (5.25) 

it follows for the current: 

 

j
P N,phase N,phase j P

jj N,phase N,phase2 P2

N N N,phase N

U e U U U
I j je

jX X X

U UUI
e e

I I X U I X

ϑ

ϑ

ππ − +ϑ

−
= = −

= +

 (5.26) 

With P FU I  and ( )P F F,0 N,phaseU I I U= =  (no-load) it follows: 

 P F

N,phase F,0

U I

U I
=  (5.27) 

The reactance X related to the nominal impedance is: 

 N

N,phase N N,phase

I XX
x

U I U
= =  (5.28) 

Consequently the current becomes: 
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jj

2 F2

N F,0

II 1 1
e e

I x I x

ππ − +ϑ

= +  (5.29) 

From this equation the current diagram of the synchronous machine together 
with the operation limits can be deduced (Fig. 5.15). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.15. Operating limits of the synchronous machine. 
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5.4 Isolated Operation 

5.4.1 Load Characteristics 

Having a single synchronous machine as a generator connected with some loads, 
this is called “isolated operation”. Typically, such an operation is used where a 
connection to the grid would require very long distances and therefore would im-
ply unreasonable high costs. Frequently, synchronous machines in isolated opera-
tion are driven by wind or hydroelectric power stations. 

Contrary to the previous considerations, no stable grid can be assumed any 
more, but the voltage at the terminals of the generator changes with the load (even 
with constant excitation current). 

At first, the well-known phasor diagram of the synchronous machine (Fig. 
5.16) can be taken as a basis: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.16. Phasor diagram of the synchronous machine. 

From this phasor diagram it follows: 

 
( )( ) ( )( )

( ) ( )

2 2 2
P

22 2
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U XI sin XI cos U

U 2UXI sin XI U

+ ϕ + ϕ =

+ ϕ + =
 (5.30) 

For 0n n=  and F F,0I I=  there is: P N,phaseU U=  (this voltage can be meas-

ured at the terminals of the synchronous machine at no-load operation). Further: 
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( ) ( )

( )

( )

22 2
N,phase

2 2

N,phase N,phase N,phase N,phase

2 2

N,phase N,phase N N

U 2UXI sin XI U

U U XI XI
2 sin 1

U U U U

U U I I
2 x sin x 1

U U I I

+ ϕ + =

+ ϕ + =

+ ϕ + =

 (5.31) 

Herewith, the so-called load characteristics (terminal voltage U  of the genera-
tor depending on the load current I ) of the synchronous machine in isolated oper-
ation are given. Figure 5.17 shows the terminal voltage U  as a function of the 

load current I  for different loads ( )cos ϕ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.17. Load characteristics of the synchronous machine in isolated operation. 
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capacitive loads with phase angles less than 30 6° π  the voltage may even de-

crease, depending on the value of the load current). 

5.4.2 Control Characteristics 

Even in isolated operation the loads should be connected to a constant voltage 
source, independent from the load current. Therefore, the excitation current has to 
be controlled in dependency of the load (amplitude and phase shift of the load cur-
rent). From the phasor diagram (Fig. 5.16) it follows with the requirement 

N,phaseU U= : 

 ( ) ( )
22 2

N,phase N,phase PU 2U XI sin XI U+ ϕ + =  (5.32) 

With P F

N,phase F,0

U I

U I
=  it follows further: 

 

( )

( )

2

F

F,0 N,phase N,phase

2

N N

2XI sinI XI
1

I U U

I I
1 2x sin x

I I

ϕ
= + +

= + ϕ +

 (5.33) 

With this the so-called control characteristics (excitation current FI  of the 

generator in dependency of the load current I ) of the synchronous machine in iso-
lated operation are given, to fix the terminal voltage to the constant nominal volt-

age at synchronous speed 0n n= . Figure 5.18 shows the excitation current FI  as 

a function of the load current I  for different loads ( )cos ϕ . 

For resistive-inductive loads the excitation current has to be increased to fix the 
terminal voltage to the nominal voltage at increasing load; for purely capacitive 
loads the excitation current has to be decreased (for resistive-capacitive loads with 

phase angles less than 30 6° π  the excitation current maybe has to be in-

creased, depending on the value of the load current). 
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Fig. 5.18. Control characteristics of the synchronous machine in isolated operation. 

In Fig. 5.19 the main load and control characteristics are summarized. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.19. Main load (left) and control (right) characteristics of the synchronous machine in iso-
lated operation for zero (capacitive and inductive) and unity power factor in red, blue, and black, 
respectively. 
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5.5 Salient-Pole Synchronous Machines 

Because of the distinct single poles the air-gap on the circumference of the salient-
pole machine is not constant (contrary to the induction machine or the non salient-
pole synchronous machine). Therefore, a simple summation of the rotating magne-
to-motive forces of stator and rotor is not allowed to get the resulting air-gap field. 
In fact, the magneto-motive force of the stator has to be decomposed in two com-
ponents, one in parallel to the rotor pole axis (d-axis, direct axis), and the other 
perpendicular to the rotor pole axis (q-axis, quadrature axis): 

 
( )

( )
d

q

G

G

sin

cos

Θ = Θ δ

Θ = Θ δ
 (5.34) 

This is illustrated in Fig. 5.20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.20. Magneto-motive forces of the salient-pole synchronous machine. 

Similarly, the main reactance has to be decomposed according to the d- and q-
axis (because of the different air-gap widths in d- and q-axis): 
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 (5.35) 

Now, the phasor diagram (Fig. 5.21) can be drawn (the stator resistance 1R  

further is neglected). 
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Fig. 5.21. Phasor diagram of the salient-pole synchronous machine. 

By decomposing the magneto-motive force of the stator into the components, 
the armature reaction is determined separately for d- and q-direction and the result 
is superposed. 

Thus, from the original system with three stator phases a two-phase system is 
generated as a replacement, see Fig. 5.22. 
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Fig. 5.22. Sketch of the salient-pole synchronous machine: original system (above left), replace-
ment (above right) and two-phase replacement (below). 

The main reactances (synchronous reactances) dX  and qX  can be measured: 

For this the stator winding is energized and the rotor – with open excitation wind-
ing – is driven with nearly synchronous speed. Because of the small slip between 
rotating field of the stator and the rotor the respective axes are alternately coinci-
dent or perpendicular. From the ratio of the oscillographically measured phase 
voltage and phase current the reactance can be calculated; this reactance is oscil-

lating between the extreme values dX  and qX . 

Performing this measurement with a single phase at stand-still, the result will 
be falsified because of the short-circuited damper winding and the eddy currents in 
the massive iron parts. The measured values will be too small. 
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Decomposing the voltage U  into the components in d- and q-direction, there is 

(please refer to the phasor diagram in Fig. 5.21): 

 
( )

( )

j
P d   d

j
q   q

U cos e U jX I

jU sin e jX I

ϑ

ϑ

ϑ = −

ϑ =
 (5.36) 

From this it follows for the stator current: 
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 (5.37) 

With ( ) ( )je cos j sinϑ
= ϑ + ⋅ ϑ  it follows further: 
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 (5.38) 

With ( ) ( ) ( )
1

cos x sin x sin 2x
2

=  the following is true: 
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q

1 1
I jU cos U sin 2 jU

X 2

1 1
U sin 2 jU sin

X 2
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 (5.39) 

and further 
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1 1 1
I U sin 2

2 X X

1 1 1
j U cos U sin U

X X X

= ϑ −
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 (5.40) 

An additional transformation with ( ) ( )( )2 1
sin x 1 cos 2x

2
= −  and 

( ) ( )( )2 1
cos x 1 cos 2x

2
= +  leads to: 
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 (5.41) 

Choosing the terminal voltage as real value ( U U= , please refer to the phasor 

diagram in Fig. 5.21), it follows with ( ) ( )P P PU U cos jU sin= ϑ + ϑ  and 

( ) ( )[ ]jI Ie I cos jsin− ϕ
= = ϕ − ϕ : 
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q d q d

P
d

Im I I sin

1 1 1 1 1 1
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2 X X 2 X X

1
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X

= − ϕ

= + − ϑ −

− ϑ

 (5.42) 

and 
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{ } ( )

( ) ( )P
q d d

Re I I cos

1 1 1 1
U sin 2 U sin

2 X X X

= ϕ

= ϑ − + ϑ
 (5.43) 

Neglecting the losses the torque can be calculated from the power of the rotat-
ing field: 
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3UI cosP P
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2 n p p

UU3p U 1 1
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X 2 X X

δ ϕ
= = =

π ω ω

= ϑ + − ϑ
ω

 (5.44) 

The first summand corresponds to the torque of the non salient-pole synchro-
nous machine which is excitation-dependent, the second summand is the so-called 
reaction torque which is excitation-independent (caused by the difference of the 
magnetic reluctances in d- and q-axis). Because of this reaction torque the pull-out 
torque of the salient-pole synchronous machine is reached at smaller rotor angles 

than 2π , please refer to Fig. 5.23. Moreover, it can be deduced from that figure, 

that the salient-pole machine – because of the additional reaction torque – delivers 
a higher pull-out torque than the non salient-pole machine, compared at the same 

excitation current (assuming d,salient pole non  salient poleX X− −= ). Additionally, it be-

comes obvious that for the assumed ratio d qX 2X=  the pull-out torque without 

excitation (i.e. the reaction pull-out torque) is only half of the pull-out torque of 
the non salient-pole synchronous machine. 

From the equations for the real part and the imaginary part of the stator current 
the ratio of reactive power to active power (as a function of rotor angle and excita-
tion) can be deduced: 
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U1 1 1
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X X U X

ϕ
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ϕ

− + + ϑ − + ϑ
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 (5.45) 
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From active and reactive power the power factor can be calculated like follows: 

 ( )
2 2

P
cos

P Q
ϕ =

+
 (5.46) 

In Figs. 5.23 to 5.25 the characteristics are presented as a function of the rotor 

angle ϑ  and for different excitations PU U .  

• ratioT : the torque of the salient-pole machine relative to the pull-out torque of 

the non salient-pole machine with nominal excitation ( PU U 1.0= ) and 

comparable machine data ( d,salient pole non  salient poleX X− −= ) is shown in Fig. 

5.23, 

• ratioP : the ratio of reactive power to active power is presented in Fig. 5.24, 

• ( )cos ϕ : Figure 5.25 depicts the power factor. 

Especially for non-excited rotors (i.e. synchronous reluctance machines, red 

characteristic in Figs. 5.23 to 5.25) it is decisive to realize a high ratio of d qX / X  

to improve the torque capability as well as the power factor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.23. Torque versus rotor angle with the parameter excitation. 
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Fig. 5.24. Ratio of reactive power to active power with the parameter excitation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.25. Power factor versus rotor angle with the parameter excitation. 
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6 Permanent Magnet Excited Rotating Field 
Machines 

6.1 Rotor Construction 

Having a synchronous machine and substituting the DC excitation current (which 
generates a constant magnetic field according to time) by an excitation with per-
manent magnets, the following is saved 

• voltage source for the excitation current, 
• excitation winding and 
• excitation current supply via slip rings and brushes. 

However, the excitation field is no longer controllable. Figure 6.1 illustrates 
different alternatives for the positioning of the permanent magnets (surface 
mounted permanent magnet machines, also called SPM or SMPM machines and 
interior permanent magnet machines, also called IPM machines, which carry the 
permanent magnets inside the rotor iron). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.1. Different alternatives of positioning the permanent magnets in the rotor: a) surface 
magnets; b) inset magnets; c) to f) buried magnets; the main magnetic axes are described with d 
and q. 
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6.2 Linestart-Motor 

Incorporating a starting cage into such a permanent magnet synchronous machine, 
it is called “linestart-motor“: The motor is supplied directly from the line voltage, 
the speed-up is realized as an induction motor. Near to the synchronous speed the 
rotor is synchronized to the rotating field. Then the machine operates as synchro-
nous motor at the line. 

The advantages of self-starting, good power factor, and high efficiency during 
operation are opposed by a small utilization (because of the combination of two 
different machine types in the rotor). In addition, during starting operation the 
permanent magnets produce considerable torque pulsations as the frequencies of 
the magneto-motive force waves are not identical (please refer to Sect. 3.7). Ap-
plications for such linestart-motors are drives with very long operation duration 
and small power (e.g. small pumps and blowers, etc.). 

6.3 Electronically Commutated Rotating Field Machine with 
Surface Mounted Magnets 

6.3.1 Fundamentals 

Again, the synchronous machine contains permanent magnets to generate the exci-
tation field, but now no starting cage is present. The machine is supplied by an in-
verter which realizes a sinusoidal three-phase current system. 

For explaining the operational behavior it is recommended to start with the 
simplified equivalent circuit of the synchronous machine (Sect. 5.1), but with the 
following changes: 

• The “energy consumption system” is applied, because mostly this machine type 
is used as a motor. 

• The stator resistance R will be considered, because neglecting (e.g. for motors 
with small power or operation at low frequency) often is not allowed. 

• In this chapter rotors with surface mounted magnets are regarded (so-called 
surface-mounted permanent magnet machines, SPM or SMPM machines). This 
means that the magnetically effective air-gap length is constant along the cir-
cumference, as permanent magnets have a relative permeability near to 1 (i.e. 
near to the value of air). Therefore, the inductivities in d- and q-direction are 
the same and they do not have to be distinguished. 
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The equivalent circuit diagram is shown in Fig. 6.2.7 
 
 
 
 
 
 
 
 

Fig. 6.2. Equivalent circuit diagram of the permanent magnet excited rotating field machine. 

The fundamental frequency of the supplying three-phase system determines the 
frequency of the rotating magneto-motive force and therefore even the rotor speed. 
The rotating magneto-motive force together with the field of the permanent mag-
net rotor generates the torque. Mostly, this torque shall be as smooth as possible. 
The rotation of the rotating stator field is realized depending on the rotor position 
by means of the inverter in such a way, that the electrical angle between rotating 

magneto-motive force of the stator and the rotor field is 2π  (i.e. ϑ = −ϕ ). With 

this the load angle in the “energy consumption system” becomes 

M G 0δ = −δ = −ϑ − ϕ =  (please compare to the load angle Gδ  in the “energy 

generation system” in Sect. 5.1). The rotor position can be measured by using sen-
sors or it can be deduced from the terminal voltages and/or terminal currents. The 
explained operation is described by the phasor diagram (see Fig. 6.3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.3. Phasor diagram of the permanent magnet excited rotating field machine. 

                                                           
7 The internal machine voltage (open-circuit voltage, no-load voltage) PU  sometimes is also 

called “back emf” (electromotive force) and nominated with “e”. 
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As this machine type mostly is used as a motor, the relations are given here for 
the “energy consumption system“. 

An operation is obtained that does no longer correspond to the synchronous 
machine, but to the DC-machine: 

• DC-machine: magneto-motive force of the armature and excitation field build 

an electrical angle of 2π ; this adjustment is realized mechanically by means 

of the commutator. 
• Synchronous machine: the rotor angle ϑ  and the phase angle ϕ  are adjusted 

depending on the operation point; there is no active influence on the phase shift 
between magneto-motive force of the stator and excitation field. 

• Electronically commutated permanent magnet excited rotating field machine: 
magneto-motive force of the stator and rotor field build an electrical angle of 

2π ; this adjustment is realized electronically by means of the inverter. 

This machine topology shows very good dynamics and the control is quite sim-
ple. The brushless technology is wear-resistant and maintenance-free. This kind of 
motor often is used for machine tool drives and for robot drives. 

From the phasor diagram there is: 

 PU U R I jX I= + +  (6.1) 

The input active power is: 

 ( )2
1 P loss,1P 3 U I RI P Pδ= + = +  (6.2) 

Now, the torque can be calculated from the rotating field power: 

 P
1 1

P 3p
T U I

p
δ= =

ω ω
 (6.3) 

To achieve good operational characteristics as a motor (generally the torque 
should be as smooth as possible), the permanent magnet field, the stator winding 
and the motor supply have to be adjusted to each other very carefully. Some ex-
amples are given in the next sections. 

6.3.2 Brushless DC-Motor 

Firstly, a motor without short-pitch winding (i.e. a motor with diameter winding) 
and a two-pole ( p 1= ), radially magnetized permanent magnet ring is regarded. 
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The three phases of the motor (usually in star connection) are supplied from a 
three-phase inverter (illustrated by the six switches in Fig. 6.4). The electrical 

power is drawn from the DC-voltage DCU . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.4. Two-pole permanent magnet excited rotating field machine (left) and power electronic 
supply (right). 

In the following the torque will be calculated from the change of the flux link-
age with respect to the rotational angle (in the linear case it follows for a single 

phase of the motor magT W
∂

=
∂α

 and mag
0

1
W id i

2

Ψ

= Ψ = Ψ ): 

 
m m

k
k k

k 1 k 1

d1
T T i

2 d= =

Ψ
= =

α
 (6.4) 

Here pα = β  is the mechanical angle ( β  is the electrical angle) and m is the 

number of phases. In this special case there is α = β  (because of p 1= ). 

The characteristics of flux linkage, change of flux linkage, current, and torque 
are shown in Fig. 6.5. It can be deduced that the chosen current characteristics 
lead to an ideally smooth torque characteristic.  

Because of the kind of operation, which is similar to the operation of a DC-
motor, and because of the sectional DC-characteristic of the currents (which is the 
same as for DC-motors), the names of this kind of motor (together with the kind of 
operation) are derived: 

• electronically commutated DC-motor (sometimes referred to as EC-motor); 
• brushless DC-motor, BLDC-motor (which is most common). 

 

DCU  

u

x

v

y z

w



224      6 Permanent Magnet Excited Rotating Field Machines 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.5. Flux linkage, its derivative, phase current and torque versus electrical angle. 
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It can be deduced that for square-wave currents only two phases are energized 
at the same time. This current waveform is optimally adapted to the radial magnet-
ization of the permanent magnets to achieve the smoothest possible torque charac-
teristic (when neglecting the slotting effect). 

It has to be emphasized here that the Eqs. (6.1) to (6.3) and the phasor diagram 
(Fig. 6.3) are only valid for sinusoidal voltages and currents. Nevertheless, the 
torque calculation according to Eq. (6.4) is valid for any time-dependency, please 
refer to Chap. 1. Therefore the shown characteristics in Fig. 6.5 are valid. 

However, to achieve a torque characteristic as smooth as possible the flux per 
phase characteristics of the brushless DC-motor may be different from the above 
shown functions outside of the power-on time of the respective phase currents. 
From this additional degree of freedom the possibility to choose the magnetization 
or the winding layout differently arises. 

For example the torque contribution of each phase and the entire torque remain 
unchanged, if the value of the derivative of the flux linkage of each phase is 

changed at the discontinuity of the flux linkage characteristic in a range of 6± π  

(e.g. because of a gap between two poles or because of magnetic leakage between 
two poles). Therefore, trapezoidal flux linkage characteristics because of leakage 
together with ideal square-wave currents generate a constant torque, as long as the 
constant part of this trapezoidal characteristic is not less than the critical power-on 

time period of 2 3π . 

However, the practical realization of steep current slopes (square-wave cur-
rents) require especially in the middle and upper speed region with high induced 
back emf voltages a high voltage reserve of the inverter. This means an overdi-
mensioning of the inverter and consequently high costs. In addition, high acoustic 
noise is generated, which is not acceptable for many applications. Therefore, in 
many cases a deviation from the idealized square-wave current is accepted, which 
is accompanied by a higher torque oscillation, but even lower costs and lower 
acoustic noise. 

Another often used winding topology can be deduced from the above described 
diameter winding by incorporating an extreme short-pitch: the winding of a phase 
is concentrated onto one stator tooth; please refer to Fig. 6.6 for a four-pole motor. 

This winding topology contains two main advantages: 

• The conductor length in the end winding is extremely short; this means a low 
stator resistance as well as low copper weight. Consequently, cost and losses 
are reduced. 

• With a respective geometry of the lamination (e.g. stator teeth with parallel 
shoulders or separated lamination) the coils can be wound before and then 
mounted to the teeth. This reduces the manufacturing costs. 
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Fig. 6.6. Four-pole permanent magnet excited rotating field machine. 

Generally, using this concentrated winding means that the width of a rotor pole 
is larger than the width of a stator tooth. Therefore, the flux linkage characteristic 

is trapezoidal: for a part of the rotor rotation, always parts of 2 2 2 3 3π − π = π  

electrical degrees, the flux in the stator coil is unchanged; this is different to the 
above example of the two-pole machine with diameter winding. 

In practice this extreme short-pitch winding is characterized by torque dips, be-

cause the parts with constant d dΨ α  are shortened and the magnetic leakage at 

the pole edges (transition between north and south pole) becomes more prominent. 
Flux linkage, change of flux linkage, current, and torque for this case are 

shown in Fig. 6.7 for idealized assumptions: 
To achieve a torque as smooth as possible even in practice the following means 

can be implemented:  

• skewing of the stator slots or the rotor poles (disadvantages: high costs, flux 
leakage); 

• distributed, short-pitch two-layer winding (disadvantage: high costs); 
• choosing a fractional number for the ratio of stator slots and rotor poles (disad-

vantage: for non-symmetric winding topologies there are radial forces onto the 
rotor); 

• sinusoidal flux linkage combined with sinusoidal currents (disadvantage: com-
plex current shaping). 
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Fig. 6.7. Flux linkage, its derivative, phase current and torque versus electrical angle. 
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6.3.3 Electronically Commutated Permanent Magnet Excited 
Synchronous Machine 

Operating the supplying inverter appropriately with high switching frequency (at 
low power the switching frequency for the voltage waveform generally is above 
the human threshold of hearing of about 20kHz ), the phase currents of the motor 
can be nearly sinusoidal because of the low-pass effect of the phase impedances. 
With this an artificial three-phase system with variable voltage and variable fre-
quency is realized. The permanent magnet excited synchronous machine supplied 
by such a frequency variable sinusoidal current system in literature often is re-
ferred to as “permanent magnet synchronous machine (PMSM)” or “brushless AC 
operation”. 

A motor construction that is adapted concerning winding topology and magnet 
design to this sinusoidal operation (to reach a smooth torque) is illustrated in Fig. 
6.8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.8. Two-pole (diametrically magnetized) permanent magnet excited rotating field machine. 

The two-pole rotor is magnetized diametrically and it generates a sinusoidal 
air-gap field. The stator contains a diameter winding. 

The idealized characteristics of flux linkage, change of flux linkage, currents, 
and torque are shown in Fig. 6.9. 
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Fig. 6.9. Flux linkage, its derivative, phase current and torque versus electrical angle. 
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From 

 
m

k
k

k 1

d1
T i ,

2 d p
 

=

Ψ β
= α =

α
 (6.5) 

it follows: 

 
m

k
k

k 1

dp
T i

2 d=

Ψ
=

β
 (6.6) 

However, considering the magnetic leakage at the pole edges (transition be-
tween north and south poles with not perfectly shaped poles) the torque is not in-
creasing linearly with the number of pole pairs. With increasing number of pole 
pairs the leakage percentage (depending on the geometry) gets increasing rele-
vance and consequently there is an optimum at moderate numbers of pole pairs. 

6.4 Calculation of the Operational Characteristics; Permanent 
Magnet Excited Machines with Buried Magnets 

To calculate the operation conditions of the above described machines, it is possi-
ble using the “Rotating Field Theory” (Chap. 3) for the permanent magnet excited 
synchronous machine (PMSM), because this machine shows sinusoidal voltages 
and currents. However, this is not possible for the brushless DC-machine (BLDC), 
because this kind of operation makes step-by-step DC-currents necessary. As the 
machine topology of both alternatives can be described with the same equations 
(just the supply is different), the calculation of the operational characteristics shall 
be done using a theory where arbitrary current waveforms can be used. This theo-
ry is the “Space Vector Theory” dealt with in Chap. 11. Therefore, the operational 
characteristics of PMSM and BLDC will be described in the later Chap. 14. In this 
chapter even the possibility of buried magnets (see Sect. 6.1) is described. 

6.5 References for Chapter 6 

Dajaku G (2006) Electromagnetic and Thermal Modeling of Highly Utilized PM Machines. 
Shaker-Verlag, Aachen  

Gieras JF, Wing M (2002) Permanent Magnet Motor Technology. Marcel Dekker, New York 
Krishnan R (2010) Permanent magnet synchronous and brushless DC motor drives. CRC Press, 

Boca Raton 



7 Reluctance Machines 

7.1 Synchronous Reluctance Machines 

The torque of the salient-pole synchronous machine is composed of two parts; the 
first one is generated by the excitation current and the second one by the different 
reluctance in d- and q-axis: 

 ( ) ( )
2

P

1 d q d

UU3p U 1 1
T sin sin 2

X 2 X X
= ϑ + − ϑ

ω
 (7.1) 

Omitting the excitation winding, the slip rings, and the brushes the torque be-
cause of the different reluctance is remaining: 

 ( )
2

1 q d

3p U 1 1
T sin 2

2 X X
= − ϑ

ω
 (7.2) 

The advantages of such a machine are: 

• simple construction (no excitation winding, no slip rings, no brushes); 
• no (excitation) losses in the rotor. 

A challenge is the fact that the reachable torque is depending on the reactances 

in d- and q-axis: E.g. for d qX 2X=  it had been calculated for the salient-pole 

synchronous machine (Sect. 5.5) that the reluctance torque was just half of the 
torque generated by the nominal excitation current. Another disadvantage is the 

poor power factor ( )cos ϕ  (see Sect. 5.5), so that an inverter with large power rat-

ing has to be used. 
Because of this synchronous reluctance machines have only relevance, if the 

difference of the reactances in d- and q-axis can be increased considerably (e.g. by 
proper rotor design with multiple flux barriers). 
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7.2 Switched Reluctance Machines 

7.2.1 Construction and Operation 

The construction of the switched reluctance machine (SR-machine, SRM) is sim-
ple, robust and cost-effective. The stator is composed of teeth (poles) with concen-
trated coils. Generally, opposite coils are representing a winding phase. The rotor 
contains teeth without windings, the number of rotor teeth is lower than the num-
ber of stator teeth. Figure 7.1 illustrates a switched reluctance motor with six sta-
tor poles (stator teeth) and four rotor teeth (6/4-motor). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.1. Principle construction of a 6/4 switched reluctance machine. 

The shown SRM has three phases. To rotate the rotor the stator phases have to 
be switched on and off cyclically depending on the actual rotor position. 

For moving the rotor clockwise (relative to the mechanical angle α  in negative 
direction), the phase with coils w-z has to be switched on next at the above pre-
sented motor. If in the following the rotor teeth are aligned to the stator teeth of 
this phase („aligned position“), it is not possible to generate further torque (in the 
desired direction) with this phase. It has to be switched off and the phase with 
coils u-x will be switched on. After accordant rotation of the rotor, this phase will 
be switched off and the phase with coils v-y will be switched on. Then the rotor 
moves further until it reaches the above presented position; here this phase will be 
switched off again and the phase with coils w-z will be switched on. 

For knowing the actual rotor position it must be measured: directly via sensors 
or indirectly via the terminal values (current and voltage). 
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From the described operation of the SRM it becomes obvious that the rotor 
moves in opposite direction to the rotating field (energizing the stator phases in 
anti-clockwise direction a clockwise movement of the rotor is created). 

Having m stator phases and 2p  stator poles per phase, the number of stator 

teeth is: 

 SN 2pm=  (7.3) 

With every impulse the stator field rotates by the angle: 

 S
S

2 2

N 2pm

π π
α = =  (7.4) 

The number of rotor teeth is:  

 ( )R SN 2p m 1 N= − <  (7.5) 

With every impulse the rotor field rotates by the angle: 

 R
R

2

N m

π
α =  (7.6) 

Therefore, the rotor moves by the factor 8 

 R

S R

2p
a

N

α
= =

α
 (7.7) 

slowlier than the rotating stator field. Therefore, depending on the application a 
speed reduction gear-set can be omitted because of the motor design. However, 
the switching frequency has to be accordingly larger, if the speed of the SRM 
should be as high as for a motor rotating in synchronism with the rotating field. 

                                                           
8 There are even SRM alternatives with ( )

R SN 2p m 1 N= + > . For this number of rotor teeth 

the rotor moves in the same direction like the rotating stator field. Generally, such variants are 
not used, because the mechanical construction is less robust and the frequency is higher for a cer-
tain speed. Therefore, in the following these alternatives are not regarded further. 
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7.2.2 Torque 

The voltage equation for a single phase is: 

 

( )

( ) ( )

d i,
u Ri

dt

i, i,di d
Ri

i dt dt

ψ α
= +

∂ψ α ∂ψ α α
= + +

∂ ∂α

 (7.8) 

The sum on the right-hand side is composed of three parts: 

• voltage drop at the Ohmic resistance; 
• induced voltage because of current change (transformer effect); 
• induced voltage because of rotational movement of the rotor. 

The torque can be calculated from a power balance (please compare the force 
calculation of the lifting magnet in Chap. 1). Multiplying Eq. (7.8) with the phase 
current, it follows: 

 

( ) ( )

( ) ( )

2

2

i, i,di d
ui Ri i i

i dt dt

i, i,
uidt Ri dt i di i d

i

∂ψ α ∂ψ α α
= + +

∂ ∂α

∂ψ α ∂ψ α
= + + α

∂ ∂α

 (7.9) 

The electrical input energy at the terminals is: 

 elW uidt=  (7.10) 

The electrical losses are: 

 2
lossW i Rdt=  (7.11) 

The magnetic energy is: 

 magW id= ψ  (7.12) 

The magnetic co-energy is: 

 magW di′ = ψ  (7.13) 
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The mechanical energy is: 

 mechW Td= α  (7.14) 

As the change of electrical energy at the terminals has to cover the change of 
electrical losses, the change of magnetic energy and the change of mechanical en-
ergy, it follows: 

 
el loss mag mech

2
mag mech

dW dW dW dW

uidt Ri dt dW dW

= + +

= + +
 (7.15) 

By comparing with the above equation it is: 

 
( ) ( )

mag mech

i, i,
dW dW i di i d

i

∂ψ α ∂ψ α
+ = + α

∂ ∂α
 (7.16) 

In an intermediate step the change of magnetic energy will be calculated: 
As the magnetic energy is dependent on the phase current as well as on 
the rotor position, it follows: 

 
mag mag

mag

W W
dW di d

i

∂ ∂
= + α

∂ ∂α
 (7.17) 

For a fixed rotor position angle α  there is (the tilde is introduced to dif-
ferentiate between integration limit and integration variable) (see Fig. 
7.2): 

 
i

mag mag
0 0

W id i W i di
ψ

′= ψ = ψ − = ψ − ψ  (7.18) 

 
 
 
 
 
 
 
 

Fig. 7.2. Flux linkage versus current diagram of the switched reluctance machine. 
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Further it follows: 

 
i

mag

0

W
i di i

i i i i

∂ ∂ψ ∂ψ ∂ψ
= ψ + − =

∂ ∂ ∂ ∂
 (7.19) 

and: 

 
( )mag mag magW W Wi

i
′ ′∂ ∂ ∂∂ ψ ∂ψ

= − = −
∂α ∂α ∂α ∂α ∂α

 (7.20) 

In total it follows from this intermediate step: 

 
mag

mag

W
dW i di i d

i

′∂∂ψ ∂ψ
= + − α

∂ ∂α ∂α
 (7.21) 

Inserting the result from this intermediate step (Eq. (7.21)) into Eq. (7.16), 
there is: 

 

( ) ( )
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W
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∂ψ α ∂ψ α
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′∂∂ψ ∂ψ
+ − α +

∂ ∂α ∂α

∂ψ α ∂ψ α
= + α

∂ ∂α

′∂
= α

∂α

′∂
α = α

∂α

′∂
=

∂α

 (7.22) 

Consequently, the torque of a single phase is obtained from the partial differen-
tiation of the magnetic co-energy of the regarded phase with respect to the rotor 
position angle. The torque of the entire machine is calculated by summation of all 
phase torques. 

The magnetic co-energy has a very important relevance: 
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magW

i

′∂
ψ =

∂
 (7.23) 

 
magW

T
′∂

=
∂α

 (7.24) 

Consequently it follows: 

 
T

i

∂ψ ∂
=

∂α ∂
 (7.25) 

Torque and flux linkage of the switched reluctance machine are directly linked 
to each other via the rotor position and the phase current. 

If there is no saturation during machine operation, the following is true: 

( ) ( )i, L iψ α = α . Then it follows: 

 

( ) ( )

( )
( )

i i
mag

0 0

2 2

W
T i, di L idi

L1 1
L i i

2 2
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= = ψ α = α

∂α ∂α ∂α

∂ α∂
= α =

∂α ∂α

 (7.26) 

Because in the linear case (i.e. if there is no saturation) mag magW W′=  and 

2
mag

1
W Li

2
=  are true, the same solution for the torque even with a calculation by 

means of the magnetic energy is obtained. From the equation for the linear opera-
tion  

 
( )2 L1

T i
2

∂ α
=

∂α
 (7.27) 

the following can be deduced: 

• The torque is proportional to the squared current. This means that the current 
direction (sign “+“ or “-“) has no influence on the direction of the torque (this 
corresponds to the general experience: an iron object is attracted from an (elec-
tro-) magnet independent from the polarity of the magnet). 
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• The torque increases the higher the difference in inductivity between “aligned 
position” and “unaligned position” is (i.e. dependent on the rotor position). 

Therefore, the switched reluctance machine in contrary to induction machines, 
synchronous machines or brushless DC-machines can be operated with unipolar 
currents. 

The torque as change of the magnetic co-energy with respect to the rotational 
angle can be deduced from the iψ − − diagram. Because of the different inductivi-

ties in the “aligned position“ and the “unaligned position“ different characteristics 
are obtained (Fig. 7.3). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.3 Torque of the switched reluctance machine without saturation. 

Operating the machine in the unsaturated region a torque per switch-on period 
of a single stator tooth is generated that corresponds to the shaded co-energy area 
in Fig. 7.3. 

In contrast, operating the machine far in saturation (in the “aligned position“), a 
far higher torque is achievable (this can be deduced from the considerably larger 
co-energy area per switch-on period, see Fig. 7.4): 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.4 Torque of the switched reluctance machine with saturation. 
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In this idealized presentation the co-energy area is limited on the right by a ver-
tical line, because generally the phase current is limited (either thermally or by the 
supplying inverter). 

Only in the operation mode with high saturation the switched reluctance motor 
is comparable to the induction motor in terms of torque density. For the exact cal-
culation of the torque numerical methods (e.g. finite element method, FEM) are 
required because of the non-linearity coming from high saturation. 

7.2.3 Modes of Operation 

The torque-speed-plane of the switched reluctance machine can be separated into 
two main areas: pulsed operation and block-mode operation. 

• During pulsed operation a speed-independent maximum torque can be generat-
ed; this area corresponds to the armature control range (base speed range) of 
the induction machine. Here the inverter has to be pulsed with high frequency, 
so that the phase current remains within its limits. Because of this active con-
trol an as far as possible square-wave current will be adjusted. 

• In block-mode operation the phase current will only be switched on and off 
once per period; the phase current is not adjusted actively. With this the maxi-
mum possible torque is about proportional to 1 / n . Increasing the speed further 
– and therefore it is necessary to switch off the respective phase during current 

increase – the maximum possible torque decreases about 21 / n . 

Figure 7.5 illustrates these operation modes schematically; especially the tran-
sition from pulsed operation to block-mode operation is not at a certain point, but 
it is variable and depends on many parameters (e.g. torque level, resistance, volt-
age source, etc.). 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7.5 Torque versus speed of the switched reluctance machine. 
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The pulsed operation will be explained in the following by means of a single 
phase. Each phase of the machine is connected via two power transistors (shown 
as simple switches in Fig. 7.6) and two power diodes as a half bridge. The differ-
ent switching states are illustrated in Fig. 7.6, where the machine phase is symbol-
ized as an inductivity. 

 
 
 
 
 
 
 
 
 
 
 
a)         b)          c) 
 

Fig. 7.6 Different switching states of a half bridge of the switched reluctance machine inverter. 

Neglecting the voltage drops across the transistors and diodes, in case a) of Fig. 

7.6 the voltage DCU  supplies the phase winding; the current increases in the 

shown direction. 

If the phase current exceeds the desired current HiI  by a specific amount, both 

transistors T1 and T2 are opened and the voltage DCU  supplies the phase winding 

in opposite direction to case a): In this case b) of Fig. 7.6 the current decreases un-
til a certain value below the desired current is reached. At this point in time it is 
switched back to case a). 

The current and voltage characteristics (Fig. 7.7) show these time-dependent 
functions (so-called “hard chopping“) including the magnetizing and demagnetiz-
ing of the phase. 

If the current does not reach the desired value, the voltage will be switched on 

at the rotor position angle onα  (case a)) and switched off at the rotor position an-

gle offα  (case b)). Then block-mode operation is active. At the rotor position an-

gle endα  the phase current is zero again. The time function of the phase current is 

shown in Fig. 7.8. 
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Fig. 7.7 Current and voltage during hard chopping operation. 

 
 
 
 
 
 
 
 
 

Fig. 7.8 Current during block-mode operation. 

During the pulsed operation there are high switching losses because of the high 
switching frequencies of the power transistors. To avoid this, per switching period 
only one of both power transistors is switched and for the following switching pe-
riod the other power transistor is switched (in Fig. 7.6 in case c) the switching of 
the power transistor T1 is shown as an example). The current and voltage charac-
teristics for this so-called “soft chopping“ look like it is shown in Fig. 7.9. 
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Fig. 7.9 Current and voltage during soft chopping operation. 

7.2.4 Alternative Power Electronic Circuits 

The inverter already shown in Fig. 7.6 for one phase is called 2n inverter, because 
it contains 2n switchable power electronic devices, if the number of phases is 
called n (see Fig. 7.10 for a four-phase machine). 

This configuration has the advantage of being most flexible concerning current 
waveforms, but there is even the disadvantage of a large number of power elec-
tronic devices, resulting in high costs. 

 
 
 
 
 
 
 
 
 
 

Fig. 7.10 Four-phase switched reluctance machine with 2n inverter. 
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This circuit can be simplified by far, if the so-called n+1 inverter is used. This 
inverter (see Fig. 7.11) is characterized by one low-side power electronic switch 
that may switch at low frequency and just selects the phase of the machine that 
shall be energized. In addition, there is one single high-side switch for all phases 
together, being responsible for high-frequency PWM switching. This alternative 
reduces the effort concerning number of power electronic switches and their ac-
companied driving circuit and concerning the quality of most of the switches (just 
one power electronic device has to be capable to switch at high PWM frequency). 

On the other hand, this circuit has the disadvantage that the phases cannot be 
switched independently, which decreases the degree of freedom for machine con-
trol. 

 
 
 
 
 
 
 
 
 
 

Fig. 7.11 Four-phase switched reluctance machine with n+1 inverter. 

A compromise between low effort and high degree of freedom is the so-called 
n+2 inverter. Here, the phases of the machine are organized in two groups, so that 
two phases may be energized simultaneously, see Fig. 7.12. 

 
 
 
 
 
 
 
 
 
 

Fig. 7.12 Four-phase switched reluctance machine with n+2 inverter. 
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7.2.5 Main Characteristics 

The main positive characteristics of switched reluctance machines are: 

• The construction is simple, robust, and cost-effective. 
• Heating because of Ohmic losses only does occur in the stator (and there good 

possibilities for cooling exist). 
• Short-term overload is no problem for the SRM. 
• The rotor has low inertia and it is robust; therefore it is qualified for high-speed 

applications. 
• The torque is independent from the current direction; consequently simple elec-

tronic circuits for the inverter may be used. 

The main disadvantages are: 

• The actually energized coil has to be switched off at high phase current and 
maximum stored energy: Therefore, the inverter usage is relatively low. 

• To achieve a high difference in inductivity between the “aligned position“ and 
the “unaligned position“ the air-gap width in the “aligned position“ has to be 
very small. This increases the costs and it makes the SRM sensitive to produc-
tion tolerances. 

• The torque is pulsating. To smooth it, e.g. the number of phases can be in-
creased or the teeth (reasonably the rotor teeth, as these do not carry windings) 
can be skewed. Both measures increase the costs and decrease the utilization. 

• Because of the high difference in inductivity between the “aligned position“ 
and the “unaligned position“ high pulsating radial forces occur. These forces 
are the reason for serious acoustic noise. 

• By influencing the current waveform the torque and/or the acoustic noise can 
be influenced. To do so, generally a voltage reserve is necessary and the utiliza-
tion is reduced. 

• In analogy to induction machines, a reactive current component is necessary for 
the magnetization of the machine. With this reactive current component the ap-
parent power of the inverter is increased. 
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8 Small Machines for Single-Phase Operation 

8.1 Fundamentals 

The generation of electrical energy, its distribution and its industrial application 
for high-power drives is done by means of three-phase systems with high voltage. 
For this, three-phase machines are used that produce a torque that is constant in 
time. 

At the low-voltage level for low power in households mostly there is just a sin-
gle-phase system available. For such applications, single-phase machines have to 
be used. The construction of such single-phase machines often deviates signifi-
cantly from high-power machines, because: 

• inherent to their functional principle they are non-symmetric, 
• often they have to be integrated into the application and  
• concessions to manufacturing needs of the (usually existing) high-volume pro-

duction have to be made. 

There is a steadily growing market for these kinds of machines and their eco-
nomic relevance is increasing. Main importance for the direct connection to the 
single-phase mains have the universal motor and the single-phase induction ma-
chine. 

In addition, more and more BLDC-machines with inverter supply are used with 
the single-phase mains. Because of the electronic supply these machine are able to 
draw a constant power from the mains and to deliver a constant power (torque) to 
the application. 

8.2 Universal Motor 

Fundamentally, the construction of the universal motor is like the DC-motor, but it 
has a laminated stator. It can be operated by DC currents and AC currents, hence 
the name comes from. For operation with AC currents of the frequency f  the 
main equations of the DC-machine in their time-dependent formulation are valid. 

Induced voltage: 

 ( ) ( ) ( ) ( )iU t k t n, t sin t= φ φ = φ ω  (8.1) 

Torque: 
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 ( ) ( ) ( ) ( ) ( )
k

T t I t t , I t 2 I sin t
2

 = φ = ω − ρ
π

 (8.2) 

It follows: 

 

( ) ( ) ( )

( ) ( )( )

( ) ( )( )

k
T t 2I sin t sin t

2

k 1
2I cos cos 2 t

2 2

k I
cos cos 2 t

2 2

= φ ω − ρ ω
π

= φ −ρ − ω − ρ
π

φ
= ρ − ω − ρ

π

 (8.3) 

Consequently, the torque is composed of two components (see Fig. 8.1): 

• a constant component, which is proportional to the cosine of the angle ρ  (the 

phase shift between flux and current) and 
• an alternating component, that oscillates with the double mains frequency. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.1. Torque-time characteristic of a universal motor. 

To maximize the constant component, it follows: 

 ( )cos 1 0ρ → ρ →  (8.4) 

This means that flux and armature current have to be in phase. Figure 8.2 com-
pares shunt-wound and series-wound motors with respect to the requirements of 
Eq. (8.4). 
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Fig. 8.2. Equivalent circuit diagrams of shunt-wound and series-wound motors. 

The requirement mentioned above ( ( ), I 0φ = ) is fulfilled only for the series-

wound machine. The ripple torque is damped by the inertias of the rotor and the 
load, so that in steady-state operation there are only minimal speed variations. The 
useful torque is the mean value of the torque (constant component). 

Compared to the DC-motor the universal motor delivers a lower torque when 
operated by AC voltage (if the DC voltage is equal to the rms-value of the AC 
voltage), because there is an additional voltage drop at the reactance X L= ω  (see 
the qualitative speed-torque-characteristics in Fig. 8.3). 

 
 
 
 
 
 
 
 
 

Fig. 8.3. Speed-torque-characteristics of the universal motor (for different supply). 
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For the sake of completeness Fig. 8.4 shows the same qualitative fact as torque-
speed-characteristics: 

 
 
 
 
 
 
 
 
 

Fig. 8.4. Torque-speed-characteristic of the universal motor (for different supply). 

8.3 Single-Phase Induction Machine 

8.3.1 Single-Phase Operation of Three-Phase Induction Machine 

Disconnecting one phase of the three-phase induction machine from the symmet-
ric three-phase mains, a single-phase supply at two phases of the machine is ob-
tained. The stator MMF produces an alternating air-gap field, which – according 
to the “Rotating Field Theory” (Chap. 3) – can be regarded as being composed of 
two rotating fields travelling in opposite direction and having half the amplitude. 

That field component travelling in the same direction like the rotor (defined as 
positive direction, index “p”) induces voltages into the rotor windings, that pro-

duce the currents 2,pI  with the frequency 2,p p 1f s f= . Here, ps s=  is the same 

slip like for the three-phase machine. 
The slip of the rotor relative to the field component rotating in negative direc-

tion (index “n”) is: 

 0 0 0 0
n

0 0 0 0 0 0

n n n n n nn n
s 1 1 2 2 s

n n n n n n

− − −
= = + = + − − = − = −

−
 (8.5) 

Therefore, additional rotor currents 2,nI  occur, having the frequency 2,n n 1f s f= . 

Both rotating components of the stator field together with both rotor currents 
produce some torque, i.e. there are four torque components. The torque compo-
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nent coming from the positive rotating stator field together with the negative rotat-
ing rotor MMF and the torque component coming from the negative rotating stator 
field together with the positive rotating rotor MMF are oscillating torques with the 
mean value equal to zero. They do not deliver any useful torque. In addition there 
are the torque components of the positive and negative rotating stator fields, pro-
duced with their “own” (i.e. the self-induced) rotor currents. These two compo-
nents deliver a mean torque different from zero. 

At stand-still the rotor has the slip s 1=  to the positive rotating stator field as 
well as to the negative rotating stator field. The torque components from both ro-
tating fields have the same amplitude, but opposite direction. The motor does not 
accelerate. 

If the rotor rotates in one direction, there are different slip values for ps  and 

ns . Consequently, the reaction of the squirrel-cage rotor onto both rotating stator 

MMFs is different. The negative rotating field is strongly damped at ns 2≈ , the 

positive rotating field at ps 0≈  is exposed only to a small reaction. Therefore, an 

elliptical rotating air-gap field is generated, which results in producing a useful 
torque in the direction of rotor rotation. Consequently, this means: The three-
phase induction machine rotates further, if one phase is disconnected from the 
mains and the load torque is not too high (but the slip will increase and therefore 
the efficiency will decrease, see the torque-speed-characteristics in Fig. 8.5). By 
mechanical starting the rotor from zero speed, the motor can accelerate further. 

A detailed calculation can be performed by means of the symmetric compo-
nents (see Sect. 1.6). The resulting torque-speed-characteristic is identical to that 
of two three-phase induction motors connected in series, which rotors are mechan-

ically coupled and which stators are supplied with opposite phase sequence at 3  
times the phase voltage. The qualitative torque-speed-characteristics look like it is 
shown in Fig. 8.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.5. Torque-speed-characteristics: single-phase operation of a three-phase induction motor. 
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8.3.2 Single-Phase Induction Motor with Auxiliary Phase 

If the induction motor in single-phase operation shall deliver a torque even at zero 
speed, at least an elliptical rotating air-gap field has to be present at stand-still. 
This can be realized by means of an auxiliary winding “a”, that is shifted against 
the main winding “m” by a spatial angle ε  and that is supplied by a current with a 
phase shift by an (electrical) angle ϕ . 

If p 0ε = ϕ =  holds true, a purely oscillating air-gap field is obtained. If 

p 2ε = ϕ = π  holds, the amplitude of the negative rotating field is minimal and 

the amplitude of the positive rotating field is maximal. The phase shift between 

the current mI  of the main winding and the current aI  of the auxiliary winding is 

realized by an additional impedance in the auxiliary winding, like it is shown in 
the equivalent circuit diagram in Fig. 8.6. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 8.6. Equivalent circuit diagram of the single-phase induction motor with auxiliary phase. 

There are three possibilities for this impedance in the auxiliary winding: 

• Resistance: A resistance is very cost-effective, but only a small starting torque 
is generated; because of the losses it has to be switched off after starting the 
motor.  

• Inductivity: An inductivity delivers only a small starting torque (a pure induc-
tivity produces no phase shift of the current; only because of the unavoidable 
resistance there is a generally small phase shift); in addition the inductivity is 
costly and heavy. 

• Capacity: Starting capacity (switching off by centrifugal switch) or operating 
capacity (improvement of power factor and efficiency); the use of a capacity 
results in a high starting torque, from technical point of view this is the best so-
lution. 
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8.3.3 Shaded-Pole (Split-Pole) Motor 

The shaded-pole motor is a special case of the single-phase induction motor with 
auxiliary winding: The main winding is located on two salient poles and contains 
concentrated coils. It is supplied from the single-phase mains. The auxiliary wind-
ing is realized as a short-circuited ring that encloses only a part of the salient pole. 
It is supplied by means of induction from the main winding. The rotor is a squir-
rel-cage rotor. A principle sketch is shown in Fig. 8.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.7. Principle sketch of a shaded-pole motor. 

Only by means of the resistance aR  of the auxiliary winding the phase shift of 

the currents of main and auxiliary winding is realized. As there is even a spatial 
shift of the windings, an elliptical rotating air-gap field is generated. Therefore, 
this motor can start from stand-still. As the field of the main winding is preceding 
the field of the auxiliary winding (the short-circuited ring delays the change of the 
field) the rotor always moves from the main pole to the auxiliary pole. 

In many cases the short-circuited ring is made from bronze and not from copper 

to increase the resistance aR . 

Because of the losses in the short-circuited ring and because of the opposite ro-
tating field, shaded-pole machines have a quite low efficiency of about 20 to 40%. 
The starting torque is lower and the starting current is higher compared to the mo-
tor with capacity in the auxiliary phase. Therefore, in spite of being simple and 
very cost-effective the shaded-pole motor is used only for small power applica-
tions up to about 100W. 
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9 Fundamentals of Dynamic Operation 

9.1 Fundamental Dynamic Law, Equation of Motion 

9.1.1 Translatory Motion 

A mass m  with the velocity v  has the impulse mv  (kinetic quantity). The sum 
of all from outside acting forces leads to a time-dependent change of the kinetic 
quantity. 

 a

d d d
F F (mv) m (v) v (m)

dt dt dt
ν

ν

= = = +  (9.1) 

For m const.=  it follows (Newton’s equation of motion): 

 a

dv
F m ma

dt
= =  (9.2) 

If all outside forces can be described by a driving force F  and a load force 

loadF , where both are acting in the same direction (x-axis), it follows: 

 
2

load a 2

dv d x
F F F ma m m

dt dt
− = = = =  (9.3) 

9.1.2 Translatory / Rotatory Motion 

In the following a combined motion of two bodies will be regarded, translatory 
(body 1) and rotatory (body 2) – see Fig. 9.1. The bodies are closely coupled to 
each other. The following forces F  and torques T  exist (the rotating body has the 
mass m 0= , ω  is the angular frequency of this rotating body): 
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Fig. 9.1. Principle of combined translatory and rotatory motion. 

It follows: 

 

load

load

2
load

dv
F F m

dt

d(r )
r(F F ) rm

dt

d d
T T mr

dt dt

∗

− =

ω
− =

ω ω
− = = Θ

 (9.4) 

The inertia of the rotating body Θ  is zero, because the mass was assumed be-

ing zero. 2mr∗
Θ =  is the translatory moved mass, transformed to the rotatory 

movement. 

9.1.3 Rotatory Motion 

A rotating mass Θ  with the angular frequency ω  has the rotating impulse Θω  
(kinetic quantity). The sum of all from outside acting torques leads to a time-
dependent change of the kinetic quantity. 

 a

d d d
T T ( ) ( ) ( )

dt dt dt
ν

ν

= = Θω = Θ ω + ω Θ  (9.5) 

For const.Θ =  and loadT  as sum of all load torques it follows: 

 
2

load a 2

d d
T T T

dt dt

ω γ
− = = Θ = Θ  (9.6) 

v
mF  

loadF  

T, ω  
loadT  v r= ω
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9.1.4 Stability 

From the equation of motion 

 load

d dn
T T 2

dt dt

ω
− = Θ = πΘ  (9.7) 

it follows (see Fig. 9.2): 
dn

0
dt

>  if loadT T>  acceleration, starting 

dn
0

dt
<  if loadT T<  deceleration, braking 

dn
0

dt
=  if loadT T=  constant speed, static 

balance (stable or unstable) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.2. Static stability (above) and static instability (below). 
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9.2 Mass Moment of Inertia 

9.2.1 Inertia of an Arbitrary Body 

An arbitrarily sized, inelastic body shall rotate around an arbitrary axis (see Fig. 
9.3). The equation of motion for a mass element dm  is: 

 2
a a

dv d
dT r dF r dm r dm

dt dt
 

ω
= = =  (9.8) 

The total acceleration torque is:9 

 
aT m

2
a a

0 0

d d
T dT r dm

dt dt

ω ω
= = = Θ  (9.9) 

with the inertia: 

 
m

2

0

r dmΘ =  (9.10) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.3. Calculating the inertia of an arbitrary body. 

                                                           
9 The tilde is introduced to distinguish between integration limit and integration variable. 
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9.2.2 Inertia of a Hollow Cylinder 

From Sect. 9.2.1 it follows for a hollow cylinder (see Fig. 9.4): 

 

( )

a a

i i

4

m V
2 2

0 0

r r
2 3

r r

4
a i

   r dm r dV

r 2 rdr 2 r dr

r r
2

Θ = = ρ

= ρ π = πρ

π
= ρ −

 (9.11) 

Here ρ  is the specific weight and  is the axial length. 

Introducing the mass ( )2 2
a im r r= ρπ −  the following is obtained: 

 
2 2

2a ir r
m mr

2

∗+
Θ = =  (9.12) 

The quadratic mean value of the radii 
2 2
a ir r

r
2

∗ +
=  is called “inertia radius”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.4. Calculating the inertia of a hollow cylinder. 
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9.3 Simple Gear-Sets 

9.3.1 Assumptions 

The transmission (gear-set) is assumed being lossless and form-fit: Then there is 
no slip, no backlash, no hysteresis and no elasticity. 

9.3.2 Rotation / Rotation (e.g. Gear Transmission) 

In Fig. 9.5 the principle rotation / rotation gear set is shown: 
 
 
 
 
 
 
 
 
 

Fig. 9.5. Rotation / rotation gear-set. 

Defining 1

2

r 1

r u
= , the condition of identical displacement at the point of transmis-

sion delivers: 

 1
1 1 2 2

2

r r u
γ

γ = γ =
γ

 (9.13) 

From identical speed ( v r= ω ) at the point of transmission it follows: 

 1

2

u
ω

=
ω

 (9.14) 

From “actio = reactio“ at the point of transmission the following can be de-
duced: 

1r  

1 1 1 1, , , Tγ Θ ω  2 2 2 2, , , Tγ Θ ω  

2r  
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 1 2 1

1 2 2

T T T 1

r r T u
= =  (9.15) 

The acceleration torque of the rotating bodies is (if they are regarded as single, 
independent bodies): 

 a ,n n n

d
T , n 1, 2

dt
= Θ ω =  (9.16) 

Because of the inelastic coupling of these bodies, body 2 has to be accelerated 
as well, if body 1 is accelerated. Then it follows from the law “actio = reactio“: 

 

1
a ,1 1 1 2 2

2

1
1 1 2

1 2 12

rd d
T

dt r dt

d 1 d

dt u dt u

1 d

u dt

= Θ ω + Θ ω

ω
= Θ ω + Θ

= Θ + Θ ω

 (9.17) 

Consequently, the transformation of inertia 2Θ  onto axis 1 gives: 

 1,tot 1 22

1

u
Θ = Θ + Θ  (9.18) 

9.3.3 Rotation / Translation (e.g. Lift Application) 

In Fig. 9.6 the principle rotation / translation gear set is shown. 
 
 
 
 
 
 
 
 

 



262      9 Fundamentals of Dynamic Operation 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9.6. Rotation / translation gear-set. 

The acceleration torque is: 

 

( )

( )

2

2

d d d d
  T r m v r m r

dt dt dt dt

d d
r m

dt dt

d
r m

dt

= Θ ω + = Θ ω + ω

= Θ ω + ω

= Θ + ω

 (9.19) 

Consequently, the transformation of the mass m  onto the rotational axis is: 

 2
tot r mΘ = Θ +  (9.20) 

9.4 Power and Energy 

From the equation of motion 

 load

d
T T

dt

ω
− = Θ  (9.21) 

the power balance is obtained after multiplication with ω : 

 load

d
T T

dt

ω
ω = ω + Θω  (9.22) 

r

m, v

,Θ ω  
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This equation means: The input power ( Tω ) is equal to the sum of power of 

the load ( loadT ω ) and change of kinetic energy (
d

dt

ω
Θω ). 

The energy balance can be calculated as follows: In the time period 

2 1t t tΔ = − , in which the speed of the drive is changed as 2 1Δω = ω − ω , the 

work 

 
2 2 2

1 1 1

t t t

load
t t t

d
T dt T dt dt

dt

ω
ω = ω + Θω  (9.23) 

is supplied. The increase of kinetic energy of the rotating masses is: 

 ( )
2 2

1 1

t
2 2
2 1

t

d 1
dt d

dt 2

ω

ω

ω
Θω = Θω ω = Θ ω − ω  (9.24) 

After an acceleration from 1 0ω =  to 2 0ω = ω  the kinetic energy of  

 2
kin 0

1
E

2
= Θω  (9.25) 

is stored in the rotating masses of the drive. 
If there is a complex drive with different speeds of the different rotating mass-

es, their effect can be concentrated virtually into a single rotating body. In most 
cases the rotating mass is calculated relative to the motor axis (motor speed). Dur-
ing transformation the kinetic energy is unchanged. Therefore, the following holds 
true (transformed values are marked with “ ′  “): 

 

2 2

2 2

1 1

2 2

n

n

′ ′Θ ω = Θω

ω
′Θ = Θ = Θ

′ ′ω

 (9.26) 
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9.5 Slow Speed Change 

9.5.1 Fundamentals 

From the equation of motion (Eq. (9.21)) the mechanical transient operation of a 
drive can be calculated, if the torque characteristics as function of time or angular 
frequency are known. 

The torque of the electric machine can be calculated by means of the system 
equations of the electromagnetic circuits. The phase currents of the machine are 
determined even by the equation of motion. Therefore, generally there is a cou-
pling between the electrical and mechanical transient behavior (dynamic opera-
tion).  

This coupling can be neglected, if the operation is a quasi steady-state one. 
Such an operation is characterized by slow speed changes (compared to the elec-

trical time constants). Then the steady-state characteristics ( )T ω  and ( )loadT ω  

can be used. 

9.5.2 First Example 

A constant acceleration torque aT const.=  is assumed (i.e. the electrical machine 

always produces a torque that is constantly higher than the load torque). It follows: 

 aTd

dt

ω
=

Θ
 (9.27) 

For the acceleration the following holds true: 

 aT
tω =

Θ
 (9.28) 

Consequently, there is a linear speed increase with time. Dividing this equation 

by the final angular frequency 0ω  it follows: 

 0

0 a

t
,

T

ω Θω
= τ =

ω τ
 (9.29) 
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If the acceleration torque is equal to the nominal torque ( a NT T= ) and the final 

angular frequency is equal to its nominal value ( 0 0,Nω = ω ), the mechanical time 

constant becomes: 

 
0,N

mech
NT

ω Θ
τ =  (9.30) 

9.5.3 Second Example 

If the acceleration torque decreases linearly with increasing speed 

0
a a,0

0

T T
ω − ω

=
ω

 (i.e. the difference between torque of the electrical machine and 

load torque gets smaller and smaller with increasing speed), it follows: 

 ( )a ,0
0

0

Td

dt

ω
= ω − ω

ω Θ
 (9.31) 

Consequently: 

 
a ,0 0

mech
mech a,0

Td 1
with

dt T

ω Θω
′+ ω = τ =

′τ Θ
 (9.32) 

For the run-up characteristic it follows (Fig. 9.7): 

 mech

t
 

0

1 e
−

′τω
= −

ω
 (9.33) 
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Fig. 9.7. Run-up characteristic. 

Often the acceleration torque aT  is not known explicitly as a function, but as a 

characteristic ( )aT ω  that is complex to describe analytically. In these cases a 

numerical integration is strongly recommended. The differential equation is then 
substituted by an equation of differences 

 aT
t

Δω
= Θ

Δ
 (9.34) 

The acceleration torque aT  is approximated by a constant value in every time 

interval (but generally different for separate time intervals). Then for every time 

interval 1t t tν ν+ νΔ = −  the change of angular frequency is calculated as 

 
a ,T

t
ν

ν νΔω = Δ
Θ

 (9.35) 

and added to the value of the preceding time interval: 

 ( ) ( )1t tν+ ν νω = ω + Δω  (9.36) 

0ω  

ω

t  
mech
′τ  
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9.6 Losses during Starting and Braking 

9.6.1 Operation without Load Torque 

The mechanical energy during acceleration or braking of drives follows from the 
fundamental equation of dynamic operation: 

 
2 2 2

1 1 1

t t

mech load
t t

E T dt T dt d
ω

ω

= ω = ω + Θ ω ω  (9.37) 

For the operation without load torque ( loadT 0= ) it follows: 

 
2 2

1 1

t

mech
t

E T dt d
ω

ω

= ω = Θ ω ω  (9.38) 

As an example a three-phase induction machine will be regarded in the follow-
ing. The inertia Θ  is the inertia of the rotor and that of the coupled rotating mass-

es ( rotor loadΘ = Θ + Θ ). The schematic energy distribution is shown in Fig. 9.8. 

The angular frequency of an induction machine is (with s  being the slip): 

 

( )0

0

0

1 s

d ds

dt dt

d ds

ω = ω −

ω
= − ω

ω = − ω

 (9.39) 
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Fig. 9.8. Schematic energy distribution. 

By introducing Eq. (9.39) into Eq. (9.38) it follows: 

 

( ) ( )( )

( ) ( )

( ) ( )

2 2

1 1

2 2

1 1

2 2

1 1

2

1

t

mech
t

t s

mech 0 0 0
t s

t s
2

mech 0
t s

s
2 2

mech 0
s

2 2 2
mech kin 1 2 1 2 kin 0

E T dt d

E T 1 s dt 1 s ds

E P 1 s dt 1 s ds

1
E s s

2

1 1
E 2E s s s s with E

2 2

ω

ω

δ

= ω = Θ ω ω

= ω − = Θ ω − −ω

= − = −Θω −

= −Θω −

= − − − = Θω

 (9.40) 

In this equation Pδ  is the air-gap power and kinE  the kinetic energy stored in 

the drive at synchronous speed. For the run-up from zero speed to (nearly) syn-

chronous speed ( 1s 1= , 2s 0≈ ) it follows: 

 mech kinE E=  (9.41) 

The rotor heat losses occurring during this run-up are (with 0P Tδ = ω ): 

elE  

rotorΘ  

loadΘ  

T, ω  

loss,1E  

loss,2E  mechE  

Eδ  
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( )

2 2 2

1 1 1

2

1

t t s
2

loss,2 0 0
t t s

s2 2 2 2
0 kin 1 2s

E sP dt s Tdt s ds

1
s E s s

2

δ= = ω = − Θω

= −Θω = −

 (9.42) 

With 1s 1= , 2s 0≈  (run-up from zero speed) it can be further deduced: 

 loss,2 kinE E=  (9.43) 

Consequently, the rotor heat losses during run-up are identical to the kinetic 
energy stored in the rotating masses after this run-up. 

 
The heat losses in the stator will be calculated by using a quite simple approx-

imation: Neglecting the magnetizing current means 1 2I I′≈ . Then the heat values 

in stator and rotor are proportional to the respective Ohmic resistances: 

 
loss,1 1

loss,2 2

E R
1

E R
≈ ≈

′
 (9.44) 

Consequently during this run-up there is: 

 loss,1 kinE E=  (9.45) 

From the mains the following energy has to be delivered for this run-up (ne-
glecting the iron losses and friction losses): 

 
el loss,1 loss,2 mech

kin

E E E E

3E

= + +

=
 (9.46) 

For electrical braking ( 1s 2= , 2s 1= ) the energy values become: 

 mech kinE E= −  (9.47) 

 loss,2 kinE 3E=  (9.48) 
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 loss,1 kinE 3E=  (9.49) 

 
el loss,1 loss,2 mech

kin

E E E E

5E

= + +

=
 (9.50) 

Starting the motor by changing the number of poles (from p′  to p′′ ) the fol-

lowing rotor losses are obtained: 

 ( ) ( )2 2 2 2
loss,2 kin 1 2 kin 1 2E E s s E s s′ ′ ′ ′′ ′′ ′′= − + −  (9.51) 

Selecting p 2′ =  and p 1′′ = , it follows: 

 

0 0 0

1 2 1 2

kin kin kin

1 1

2 2

s 1, s 0, s 0.5, s 0

1 1
E E E

4 4

′ ′′ω = ω = ω

′ ′ ′′ ′′= = = =

′ ′′= =

 (9.52) 

Consequently: 

 

( ) ( )2 2 2 2
loss,2 kin kin

kin

1
E E 1 0 E 0.5 0

4

1
 E

2

= − + −

=

 (9.53) 

Having the same final kinetic energy like for the run-up without changing the 
number of poles (because the final speed is not changed), there are only half the 
losses in the rotor (and therefore there is considerably reduced rotor heating). 

9.6.2 Operation with Load Torque 

From 
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 load
load

d T d
T T T

dt T T dt

ω ω
− = Θ Θ =

−
 (9.54) 

it follows: 

 ( )

2 2 2

1 1 1

2 2

1 1

2

1

t t t

loss,2 0 0
t t t load

s s
2

0 0 0
s sload load

s

kin
s load

T d
E sP dt s Tdt s dt

T T dt

T 1 T
s ds 2 sds

T T 2 T T

T
2E sds

T T

δ

ω
= = ω = ω Θ

−

= ω Θ −ω = − Θω
− −

= −
−

 (9.55) 

The factor 
load

T
1

T T
>

−
 (usually depending on ω  or s ) increases the losses 

(heating) during speed change against the case without load torque ( loadT 0= ). 

For example this is important for Y − Δ − starting: in Y -connection the torque 

is reduced to 1 3 , but the load torque remains unchanged (this means ( )loadT T−  

may become very small). The mains loading is reduced by smaller phase currents, 

but the driving machine has to withstand increased heating for loadT 0> . The 

same holds true for the run-up with reduced terminal voltage. 

For the special case a loadT T T 0= − =  (no acceleration torque, e.g. locked ro-

tor) the loss energy loss,2E  increases to infinity. 

Only for the case loadT 0=  the loss energy loss,2E  is independent from the kind 

of run-up. 
The loss energy (heating) calculated above is present if the machine is operated 

at mains supply (constant voltage and constant frequency). With inverter supply at 
changing voltage and frequency the losses are much lower. 
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10 Dynamic Operation and Control of DC-
Machines 

10.1 Set of Equations for Dynamic Operation 

In comparison to the steady-state operation of the DC-machine the energy storage 

elements (inductivities AL , FL  and inertia Θ ) have to be considered additionally 

for the dynamic operation. 
For a detailed analysis it is even necessary to consider the voltage drop across 

the brushes BUΔ , the frictional torque fricTΔ  and the nonlinearity of the magnetic 

circuit because of saturation of the iron. In total the following set of equations and 
equivalent circuit diagram (Fig. 10.1) can be deduced for the dynamic operation: 

 

A
A A A A i B

i A

F F F F

i load fric

i A

dI
U I R L U U

dt

k 1
U c , c 4pw , 2 n

2 2

d
U I R w

dt

d
T T T

dt

T c I

= + + + Δ

= Ωφ = = Ω = π
π π

φ
= +

Ω
− − Δ = Θ

= φ

 (10.1) 

 
 
 
 
 
 
 
 
 
 
 

Fig. 10.1. Equivalent circuit diagram of the DC-machine for dynamic operation. 

AU  

AI  AR  AL  

iU  

FU  

FI  

=
BUΔ  

FR  FL  Θ  load fricT , TΔ  
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The nonlinear dependency of flux and exciting current (field current) is shown 
in Fig. 10.2 (nominal values are denoted with the index “N“ in the following). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.2. Nonlinear characteristics of the DC-machine: flux versus exciting current (above) and 
field winding inductivity versus exciting current (below). 

The inductivity of the field winding depends on the current: ( ) F
F F

F

w
L I

I

φ
= . 

At nominal operation the field exciting circuit usually is saturated: 

F N
F,N

F,N

w
L

I

φ
= . 

From the above relations a system of three coupled differential equations fol-
lows. With this system (armature circuit equation, field circuit equation, torque 
equation) all operational conditions of the DC-machine can be described: 

 A
A B A A A A

dI
U U U I R L c

dt
′− Δ = = + + Ωφ  (10.2) 

Nφ  

φ  

FI  F,NI  

FIφ  
( )Ff Iφ =  

( )F F,NL I  

FL  

FI  F,NI  

F,0L  
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 ( )F F F F F

d
U I R w , f I

dt

φ
= + φ =  (10.3) 

 ( )A load fric load

d d
c I T T T

dt dt

Ω Ω
′φ = Θ + + Δ = Θ +  (10.4) 

The differential equations of the armature circuit and the torque are coupled by 

the speed 2 nΩ = π  and the armature current AI . 

The inductivity of the field winding is assumed being dependent on the current, 
whereas the inductivity of the armature winding is assumed being constant. This 
assumption of constant armature inductivity is valid, because the armature circuit 
proceeds perpendicular to the main pole axis and here either a large air-gap is 
dominating or just a small leakage inductivity is present if commutation poles 
and / or compensation windings are used. 

To get a universally valid solution a normalization to the nominal values is ad-
vantageous: 

 

A A,NA A
A A A

N A,N N

F F,NF F
F F F

N F,N N

load
load

N 0 N

F N
F,N N N 0 N N A,N

F,N

R IU I
U , I , R

U I U

R IU I
U , I , R

U I U

T
, n , T

T

w
L , U c , T c I

I

⊗ ⊗ ⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

′
= = =

= = =

φ Ω
φ = = =

φ Ω

φ
= = φ Ω = φ

 (10.5) 

In addition the armature time constant, the field time constant, and the nominal-
starting time constant, respectively, are introduced as follows: 

 
F,N 0A

A F
A F N

LL
, ,

R R T
Θ

ΘΩ
τ = τ = τ =  (10.6) 

By means of transformations and substitutions the following set of equations is 
deduced: 
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( )A
A A A

A

F
F F

F

A g

dI 1
U n I

dt R

Ud
I

dt R

dn
I T

dt

⊗
⊗ ⊗ ⊗ ⊗

⊗

⊗⊗
⊗

⊗

⊗
⊗ ⊗ ⊗

Θ

τ = − φ −

φ
τ = −

τ = φ −

 (10.7) 

These equations lead to the block diagram that usually is used in control engi-
neering (Fig. 10.3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.3. Block diagram of the DC-machine in dynamic operation. 

The input values are AU⊗ , FU⊗  and loadT⊗ . The system composed of three differ-

ential equations is nonlinear because of the multiplications n⊗ ⊗
φ  and AI⊗ ⊗

φ  

and because of the magnetizing characteristic ( )Ff I⊗ ⊗
φ = . The coupling of these 

differential equations is performed via n⊗  and AI⊗ . 

This coupled, nonlinear set of differential equations can be solved completely 
only by means of numerical methods. In the following some typical applications 
are discussed, which can be calculated analytically because of simplifications. 

AU⊗  +

−

AI⊗  
iT⊗  

+

−

loadT⊗  

n⊗

FU⊗  +

−

FI⊗  

⊗
φ  

in U⊗ ⊗ ⊗
φ =  

A1 R⊗  

F1 R⊗  

Θτ  Aτ  

Fτ  

×

×
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10.2 Separately Excited DC-Machines 

10.2.1 General Structure 

Speed-variable DC-machines are often operated with constant excitation (constant 
field e.g. by means of permanent magnets). Then torque and speed are adjusted by 

varying the armature voltage. In this case N const.φ = φ =  is valid and the block 

diagram (Fig. 10.4) gets quite simple by 1⊗
φ = . 

 
 
 
 
 
 
 
 
 

Fig. 10.4. Block diagram of the separately excited DC-machine in dynamic operation with 

N const.φ = φ = . 

By means of the Laplace transformation the representation as block diagram 
usually used in control engineering is deduced (Fig. 10.5). 

 
 
 
 
 
 
 
 
 
 
 

Fig. 10.5. Block diagram of the separately excited DC-machine in Laplace notation with 

N const.φ = φ = . 

Output value is the speed of the DC-machine, which is controlled by the set-
point (armature voltage). The disturbance quantity is the load torque. 

AU⊗  +

−

A iI T⊗ ⊗
=  

+

−

loadT⊗  

n⊗

in U⊗ ⊗
=  

A1 R⊗  
Θτ  Aτ  

1

s Θτ
 

( ) ( )AW s U s⊗
=  

+ −

( )iT s⊗  

+

−

( ) ( )loadZ s T s⊗
=  

( ) ( )Y s N s⊗
=  

A

A

1 R

1 s

⊗

+ τ
 

( )1G s  ( )2G s  
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The following relations are valid: 

 
( )
( )

2 i

i 1

Y G T Z

T G W Y

⊗

⊗

= −

= −
 (10.8) 

By substitutions and transformations it is obtained: 

 1 2 2

1 2 1 2

G G G
Y W Z

1 G G 1 G G
= −

+ +
 (10.9) 

10.2.2 Response to Setpoint Changes 

“Response to setpoint changes” is called the change of the output value because of 
a variation of the input (setpoint), when the disturbance is equal to zero. 

Therefore, the response to setpoint changes of the DC-machine is the speed 

change when changing the armature voltage for ( ) ( )loadZ s T s 0⊗
= = . This situa-

tion is described with the block diagram in Fig. 10.6.  
 
 
 
 
 
 
 
 

Fig. 10.6. Block diagram of the separately excited DC-machine in Laplace notation for the op-
eration “response to setpoint changes”. 

For the mathematical description the following is obtained (the additional index 
“S“ at speed and armature current indicates the characteristic functions for re-
sponse to setpoint changes in the following): 

 

( )S 1 2 A S

1 2
S A

1 2

N G G U N

G G
N U

1 G G

⊗ ⊗ ⊗

⊗ ⊗

= −

=
+

 (10.10) 

1

s Θτ
 

( )AU s⊗  

+ −

( )SN s⊗  
A

A

1 R

1 s

⊗

+ τ
 

( )1G s  ( )2G s  
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With 

 
( )

( )

( )

( )

( ) ( )

( ) ( )

A

S 1 2 A

AA 1 2

A

1 R 1

Y s N s G s G s 1 s s

1 R 1W s U s 1 G s G s
1

1 s s

⊗

⊗
Θ

⊗⊗

Θ

+ τ τ
= = =

+
+

+ τ τ

 (10.11) 

it follows further 

 
( )

( ) ( )A A

Y s 1

W s s R 1 s 1⊗
Θ

=
τ + τ +

 (10.12) 

Introducing the mechanical time constant 

 
A A,N0 0 0 0

mech A
N stallN N stall

N N
A A,N A,N

R I
R

U I1T U T
T T

R I I

⊗
Θ

ΘΩ ΘΩ ΘΩ ΘΩ
τ = τ = = = =  (10.13) 

it follows: 

 
( )

( ) ( )
S

2A A mech
mech A

A mech A

N s 1 1

U s 1 1 s s s 1
s

⊗

⊗
= =

+ + τ τ
τ τ + +

τ τ τ

 (10.14) 

Now at time t 0=  a step function of the setpoint shall happen, e.g. switching 
the nominal voltage to the DC-machine at zero speed. Consequently: 

 ( )A

1
U s

s

⊗
=  (10.15) 

and therefore: 

 ( )S
2

mech A
A mech A

1 1
N s

s s 1
s

⊗
=

τ τ + +
τ τ τ

 (10.16) 
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The time-dependent speed variation is obtained by reverse Laplace transfor-
mation: 

 ( )
2

1 0
S 2 2

0 0

1
n t L

s s 2sD

⊗ − ω
=

+ ω + ω
 (10.17) 

with 

 

2
0 0

mech A A

mech

A

1 1
, 2D

D
4

ω = ω =
τ τ τ

τ
=

τ

 (10.18) 

The solution is (taken from literature concerning Laplace transformation): 

 ( ) ( )( )
0D t

2 2
S 02

e
n t 1 sin 1 D t arcsin 1 D

1 D

− ω
⊗

= − ω − + −
−

 (10.19) 

For D 1=  the time-dependent speed is obtained by considering small x-values: 

( )sin x x≈ , ( )arcsin x x≈ . It follows: 

 
( ) ( )

( )

0

0

D t
2 2

S 02

D t
0

e
n t, D 1 1 1 D t 1 D

1 D

 1 e t 1

− ω
⊗

− ω

= = − ω − + −
−

= − ω +

 (10.20) 

Figure 10.7 shows the results of these equations for different values of 

mech Aτ τ . 
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Fig. 10.7. Normalized speed versus time of the separately excited DC-machine for the operation 
“response to setpoint changes”. 

From 

 ( ) ( ) ( )S 2 A,SN s G s I s⊗ ⊗
=  (10.21) 

the armature current becomes: 

 ( ) ( )A,S SI s s N s⊗ ⊗
Θ= τ  (10.22) 

This means a differentiation for the reverse Laplace transformation: 

 ( ) ( ){ }1 S S
A,S S mech

A

dn dn1
I t L s N s

dt R dt

⊗ ⊗
⊗ − ⊗

Θ Θ ⊗
= τ = τ = τ  (10.23) 

In total it follows: 
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 (10.24) 

Even here the result for D 1=  is obtained by considering small arguments: 
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 (10.25) 

Further: 

 

( ) ( ) ( )[ ]

( )[ ]

0

0

D tmech
A,S 0 0
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D tmech
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⊗
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⊗

τ
= ω ω + −

τ
= ω ω + −

 (10.26) 

These functions are shown in Fig. 10.8. 
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Fig. 10.8. Normalized armature current versus time of the separately excited DC-machine for the 
operation “response to setpoint changes”. 

10.2.3 Response to Disturbance Changes 

“Response to disturbance changes” is called the change of the output value be-
cause of a variation of the disturbance, when the input (setpoint) is equal to zero. 

Therefore, the response to disturbance changes of the DC-machine is the speed 

change when changing the load torque for ( ) ( )AW s U s 0⊗
= = . The resulting 

block diagram is shown in Fig. 10.9 (the additional index “D“ at the speed indi-
cates the characteristic functions for response to disturbance changes in the fol-
lowing). 
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Fig. 10.9. Block diagram of the separately excited DC-machine in Laplace notation for the op-
eration “response to disturbance changes”. 

Therefore: 

 

( ) ( ) ( ) ( ) ( )( )

( )
( )

( ) ( )
( )

D 2 load 1 D

2
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1 2
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G s
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−
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 (10.27) 

and further: 
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( )
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+ τ τ

− + τ
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 (10.28) 

Switching on the nominal torque ( )loadT s 1 s⊗
= , the speed change is: 
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( ) ( ){ }
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 (10.29) 

( )loadT s⊗  −

−

( )DN s⊗
Δ  

( )2G s  

1

s Θτ
 

( )1G s  

A

A

1 R

1 s

⊗

+ τ
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With the solution of the preceding section it follows: 

 

( ) ( )
( )

( ) ( )

( ) ( ) ( )

S
D A S A

A
A S A A,S

mech

2 A
A S A A,S

mech

dn t
n t R n t
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R n t I t

R n t R I t
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⊗
⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗

Δ = − + τ

= − + τ
τ

τ
= − −

τ

 (10.30) 

Now, the speed-time-characteristic shall be calculated, when just before the 

load change the DC-machine is in no-load operation ( n 1⊗
= , AI 0⊗

= ) at nominal 

excitation ( 1⊗
φ = , see Sect. 10.1). Then it follows: 

 ( ) ( )D Dn t 1 n t⊗ ⊗
= + Δ  (10.31) 

For different values of the parameter mech

A

τ

τ
 the speed change is shown in Fig. 

10.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.10. Normalized speed versus time of the separately excited DC-machine for the operation 
“response to disturbance changes”. 
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The separately excited DC-machine with its energy storages AL  and Θ  is an 

oscillatory system for mech

A

D 1
4

τ
= <

τ
. 

For mech

A

D 1
4

τ
= >

τ
 aperiodic characteristics are obtained when changing the 

armature voltage or the load torque. The case D 1=  is called “critical damping”. 

10.3 Shunt-Wound DC-Machines 

For DC-machines with variable exciting flux φ  the investigation of dynamic op-

eration has to be performed by numerical calculation, because the set of differen-
tial equations is nonlinear and cannot be solved analytically. Such a case is present 
e.g. for starting the shunt-wound DC-machine. 

At the time t 0=  the machine at standstill shall be switched to the mains. Dur-

ing the entire run-up the machine is unloaded ( loadT 0= ). The time-dependent 

characteristics of armature current, speed, torque, and field exciting current are 
calculated in the following by means of normalized quantities. 

With A FU U 1⊗ ⊗
= =  it follows: 

 

( )

( )

A
A A

A

F F F
F

A

dI 1
1 n I

dt R

d 1
I , f I

dt R

dn
I

dt

⊗
⊗ ⊗ ⊗

⊗

⊗
⊗ ⊗ ⊗

⊗

⊗
⊗ ⊗

Θ

τ = − φ −

φ
τ = − φ =

τ = φ

 (10.32) 

The iron saturation is considered by using the function ( )Ff I⊗ ⊗
φ = . 

This set of equations will be solved step by step by numerical integration using 

a digital computer. The values at time k 1t +  are calculated from the values at time 

kt  and the respective changes in the time interval k 1 kt t t+Δ = − . This is done by 

transforming the differential equations into equations of differences: 



10.3 Shunt-Wound DC-Machines      287 

 

( )

( )

A,k 1 A,k
A k k A,k

A

k 1 k
F F,k k F,k

F

k 1 k
k A,k

I I 1
1 n I

t R

1
I , f I

t R

n n
I

t

⊗ ⊗
+ ⊗ ⊗ ⊗

⊗

⊗ ⊗
⊗ ⊗ ⊗+

⊗

⊗ ⊗
⊗ ⊗+

Θ

−
τ = − φ −

Δ

φ − φ
τ = − φ =

Δ

−
τ = φ

Δ

 (10.33) 

An additional transformation of the equations gives: 

 ( )

k k
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Δ
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Δ
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τ

 (10.34) 

An evaluation of this set of equations during run-up of the DC-machine is 
shown in Fig. 10.11 for typical time constants and typical normalized resistances 
(all quantities are shown as normalized values; armature current in red, speed in 
blue, torque in black, and field exciting current in magenta). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.11. Normalized characteristics of the shunt-wound DC-machine in dynamic operation. 
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The steep increase of the armature current and the slow increase of the field ex-
citing current lead to a reduced torque during acceleration. Because of 

mech

A

D 1
4

τ
= >

τ
 (see Sect. 10.2, “separately excited DC-machine“) aperiodic 

characteristics would be expected initially, but the speed and the armature current 
show overshooting characteristics. The reason for this difference between the sep-
arately excited DC-machine and the shunt-wound DC-machine is: 

• For the separately excited DC-machine the flux always is constant at its nomi-

nal value, i.e. for all times 1 const.⊗
φ = =  

• The field of the shunt-wound DC-machine is increased during starting, i.e. the 
nominal value is reached delayed. 

10.4 Cascaded Control of DC-Machines 

For control purposes in the electrical drive engineering often PI- (proportional-
integral-) controllers are used. In addition to a simple structure they have the ad-
vantage of stationary preciseness (i.e. after disturbances the initial value is reached 
again, after change of setpoint the new value is reached, both without any station-
ary difference). 

Block diagram and transfer function of a PI-controller are shown in Fig. 10.12: 
 
 
 
 
 
 
 

Fig. 10.12. Block diagram and transfer function of a PI-controller. 

Figure 10.13 shows a commonly used control circuit composed of permanent 
magnet excited DC-machine, power electronic converter, and cascaded control. 
The cascaded control consists of a speed control circuit (realized by a PI-

controller: ( )C,nG s ) and a subordinate current control circuit (realized by a PI-

controller as well: ( )C,IG s ). In addition, a limitation for the armature current is 

introduced. 
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Fig. 10.13. Block diagram of the cascaded control circuit of DC-machines. 

For the step by step solution of the set of differential equations numerical 
methods are used. Therefore, the PI-controllers have to be discretized. There is: 
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 (10.35) 

In the time domain this gives: 
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C C C
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K x
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 (10.36) 

In discretized description this equation is: 
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i 1C
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−

=

= Δ +
τ

 (10.37) 

For the following calculation of the dynamic operation the dead time (time 
constant) of the power electronic converter will be neglected, i.e. there is 

A A,setU U⊗ ⊗
≡ . For the permanent magnet excited DC-machine ( 1⊗

φ = ) the equa-

tions in normalized form are: 

 

( )A
A A A

A

A load

dI 1
U n I

dt R

dn
I T

dt

⊗
⊗ ⊗ ⊗

⊗

⊗
⊗ ⊗

Θ

τ = − −

τ = −

 (10.38) 

Figure 10.14 shows the time-dependent characteristics of speed (solid blue line) 
and armature current (solid red line) together with their respective set values (dot-
ted lines) for a step function of the speed set value from 0 to 1 and later to -1 
(starting and reversing) without any load. In this case the armature current is lim-
ited to the double nominal value. Because of the constant excitation the armature 
current (in normalized representation) is identical to the torque. From the over-
shootings and oscillations can be deduced that the parameters of the controllers are 
not adjusted optimally (concerning oscillations, speed adjustment, and precise-
ness). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.14. Characteristics of the separately excited DC-machine in cascaded control operation. 
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10.5 Adjusting Rules for PI-Controllers 

10.5.1 Overview 

In electrical drive engineering controlled systems with PI-controllers often can be 
reduced (at least approximately) to the fundamental structure depicted in Fig. 
10.15. 

 
 
 
 
 
 
 
 

Fig. 10.15. General block diagram of a controlled system. 

The transfer functions of the PI-controller and the controlled system in the La-
place domain are: 

 ( ) C
C C

C

1 s
G s K

s

+ τ
=

τ
 (10.39) 

 ( ) ( )S S 1
S 1

1 1
G s K , G s

1 s 1 s
= =

+ τ + τ
 (10.40) 

The parameters are: 

• CK : the gain of the PI-controller 

• Cτ : the time constant of the PI-controller 

• SK : the entire gain of the controlled system 

• Sτ : the sum of all small time constants of the controlled system 

• 1τ : the large time constant of the controlled system 

A practical rule means that the distinction between “sum of all small time con-
stants” and “large time constant” is valid, if  

( )W s  

+
− +

−

( )Z s  

( )Y s  

( )CG s  ( )SG s  ( )1G s  
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 1 S4τ ≥ τ  (10.41) 

is true. Without detailed derivation adjusting rules for the parameters of the PI-
controller will be given for two special cases. 

10.5.2 Adjusting to Optimal Response to Setpoint Changes (Rule 
“Optimum of Magnitude“) 

For the optimum of magnitude the controller parameters have to be chosen as fol-
lows; the results are illustrated in Fig. 10.16. 

 1
C 1 C

S S

1 1
K

2 K

τ
τ = τ =

τ
 (10.42) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.16. Rule “optimum of magnitude”: relative output amplitude versus time for response to 
setpoint changes (above) and response to disturbances (below). 
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10.5.3 Adjusting to Optimal Response to Disturbances (Rule 
“Symmetrical Optimum“) 

For the symmetrical optimum the controller parameters have to be chosen as fol-
lows: 

 1
C S C

S S

1 1
4 K

2 K

τ
τ = τ =

τ
 (10.43) 

Testing by means of step functions (of the setpoint or the disturbance) the charac-
teristics shown in Fig. 10.17 are obtained.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.17. Rule “symmetrical optimum”: relative output amplitude versus time for response to 
setpoint changes (above) and response to disturbances (below). 
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10.5.4 Application of the Adjusting Rules to the Cascaded Control 
of DC-Machines 

Applying the rules of optimal response to setpoint changes (“optimum of magni-
tude”) to the current controller and to the speed controller of the cascaded control 
(see Sect. 10.4) the following results are obtained (Fig. 10.18). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.18. Characteristics of the separately excited DC-machine in cascaded control operation 
when applying the rules of optimal response to setpoint changes. 

In this case, the “optimum of magnitude” is applied to both controllers, because 
speed and current are exposed to changing setpoints. For the current controller this 
is the usual case, for the speed controller sometimes even the “symmetrical opti-
mum” rule is applied. This is the case if not changing setpoints, but changing load 
torques have to be controlled. 

From Fig. 10.18 it can be deduced that the armature current follows its set val-
ue quite precisely, i.e. the adjusting rule “optimum of magnitude” works very 
good. Between the speed and its set value there is quite a large deviation. This 
comes from the fact, that the structure analyzed for the adjusting rules is just an 
approximation to the speed control loop. Nevertheless, compared to the results 
shown in Fig. 10.14, the control behavior is improved by far.  

By varying the control parameters even a better performance will be achieva-
ble.  
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11 Space Vector Theory 

11.1 Methods for Field Calculation 

For the description and calculation of electro-magnetic fields in electrical ma-
chines mainly the following four methods are used: 

1. The wave-description of the electro-magnetic fields (see Sects. 3.3 to 3.5) has 
proven its value if stationary characteristics are to be calculated. This method 
may be used for the fundamental-wave characteristics of electrical machines, 
but it may be even used if additionally to the fundamental wave higher harmon-
ics are to be considered. E.g. this is the case if harmonic torque components 
(torque oscillations) or acoustic noise shall be computed. 

2. The symmetric components (please refer to Sect. 1.6) are mainly used for the 
examination of asymmetric events with constant frequency (this may be even 
transient reactions). 

3. The usage of complex space vectors is advantageous if the transient characteris-
tics of (controlled or uncontrolled) electrical drives are regarded. This method 
will be explained in the following sections. 

4. When using the Finite Element Method (FEM) the electrical machine is divided 
in many small parts (“finite elements”) and the electro-magnetic behavior of 
the machine is calculated numerically for each of these elements and for each 
operating point: The Maxwell’s equations are solved in each element and the 
solutions are adapted to each other at the element borders. The disadvantages of 
this method are on the one hand a quite high computation time, on the other 
hand it is more suited for the analysis of a known machine than for the design 
of a new one (the relevance of different influencing factors on the machine 
characteristics cannot be directly observed). The main advantage of this method 
is that virtually all relevant attributes can be considered simultaneously, where-
as for the other three mentioned (analytical) methods always limiting con-
straints have to be regarded. 

As can be seen from the above description of the different methods the choice 
of the suitable alternative depends on the task that has to be solved. 
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11.2 Requirements for the Application of the Space Vector 
Theory 

For the following considerations some limiting assumptions are made: 

1. Each phase winding of stator and rotor produce a sinusoidal magneto-motive 
force in space, all of the same wave length. This means a limitation to the fun-
damental wave of the magneto-motive forces (and therefore even a limitation to 
the fundamental waves of current loading and air-gap flux density); the wind-
ing factors of all harmonic waves are assumed being zero. Each single wave 
can be represented by a vector; the location of the vector shows the instantane-
ous position of the maximum of the wave, the length of the vector represents 
this maximum value. 

2. Magnetically the machine is completely symmetric (i.e. constant air-gap along 
the circumference) and the influence of the slots is neglected. Within one ma-
chine part (stator or rotor) the self- and mutual-inductivities are independent 
from the rotor position. 

3. Partly, these requirements can be disclaimed: If stator or rotor contains two 
magnetically or electrically perpendicular preferred orientations, the space vec-
tor theory still can be applied if the coordinate system is fixed to the asymmet-
ric machine part. 

4. Saturation is neglected, i.e. the magnetic permeances are independent from the 
magneto-motive forces, and the magnetic voltage drop in iron is neglected 

(
Fe

μ → ∞ ); linear relationships do exist. Now (as a main advantage of the rep-

resentation of the waves by vectors) the common effect of the single waves can 
be calculated by vector addition.10 

It is important for understanding the space vector theory, that there is no limit-
ing requirement for the time-dependency of the single currents: The currents may 
have arbitrary time-dependency which even may be asymmetric (this is crucial for 
the calculation of transient characteristics). In spite of the arbitrary time-
dependency of the currents the magneto-motive force, the current loading, and the 
air-gap flux density generated by each single current are sinusoidal in space at 
every moment;11 this is realized by a clever winding distribution in the slots of the 
machine. 

In the following only the very important three-phase system is regarded. Never-
theless, the method of the complex space vector is applicable for arbitrary number 
of phases. 

                                                           
10 This requirement can be attenuated: It is sufficient, that there is a constant saturation condition 
inside the machine. By linearizing at the operation point the vector addition is still applicable. 
11 This gives a hint for the origin of the name “space vector theory”: main importance have the 
spatially sinusoidal waves inside the machine, there are no requirements to special time-
dependencies. 
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11.3 Definition of the Complex Space Vector 

The representation of the waves by means of vectors will now be transformed to a 
representation by means of complex numbers. For this, a complex plain is defined, 
where the real axis and the axis of the phase “u“ enclose a (time-dependent) angle 

( )tα , please refer to Fig. 11.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.1. Machine axes in a complex plain (left) and definition of the complex operator a (right). 

Now a complex number (called “space vector” in the following) is defined as 
follows (here shown for the example of the phase currents of a three-phase sys-
tem):12 

 ( ) ( ) ( ) ( )( ) ( )j t2
u v w

2
i t i t a  i t a i t e

3
 − α

= + +  (11.1) 

                                                           
12 In the following complex space vectors, for distinguishing them from other complex numbers, 
are identified by arrows under the variable. The calculation rules for complex numbers are valid 
even here; the arrows under the variable just label the special definition of these complex num-
bers. In literature even a simple underscore can be found to label complex space vectors. For sys-

tems with m  phases the space vector is: ( ) ( )
m

k 1 j
k

k 1

2
i t i t e

m
 − − α

=

= , with 

2j
me

π

= . 

By means of this definition even the rotor of a squirrel cage induction machine can be described 
with space vectors. 
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The multiplication with the operator 
2

j
3a e
π

=  means a rotation by 120° in pos-

itive direction. The factor 2 3  secures a scaling of the absolute value of the space 

vector in a way, that this absolute value is equal to the amplitude of a phase cur-
rent when having symmetric supply of all phases. To simplify the notation, in the 
following the explicit statement of the time-dependency of the angle α  is omitted. 

The projection of the complex space vector onto the respective phase axis gives 
the instantaneous value of the phase current. 

Regarding a symmetric three-phase current system at the time t 0= , at which 

the current ( )ui t  shall be maximum (i.e. the real axis coincides with the axis of 

the phase “u“, this means 0α = ), it follows in normalized description (please re-
fer to Fig. 11.2): 

 

( )

( ) ( )

u

v w

i t 0 1

1
i t 0 i t 0

2

= =

= = = = −
 (11.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.2. Symmetric three-phase current system in a complex plain (left) and definition of the x-
y-coordinate system (right). 

Separating the complex space vector into real and imaginary part, there is: 
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From 

 ( ) ( ) ( ) ( )( ) ( ) ( )2 j
u v w x y

2
i t i t a  i t a i t e i t j i t

3
  − α

= + + = −  (11.4) 

both components of the space vector can be computed: 
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2 2
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π
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 (11.5) 

and 
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w
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w

2 2
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3

π
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π
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π
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π
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 (11.6) 

Together with the equation for the zero component of the current ( )0i t :13 

 ( ) ( ) ( ) ( )u v w 0i t i t i t 3 i t+ + =  (11.7) 

the following matrix equation can be set-up:  

                                                           
13 The factor 3 in the equation for the zero component of the current is chosen arbitrarily. 
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Likewise, the inversion can be easily calculated: 
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 (11.9) 

If, as a special condition, the zero component of the current is (time-
independent) always equal to zero, as it is the case for star-connected three-phase 
systems without neutral line, the above equations can be simplified to: 

 ( ) ( ) ( ) ( )0 w u vi t 0 i t i t i t= = − −  (11.10) 
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2 3
T
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sin sin
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=

π
α α −

=
π
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1
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T
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cos sin

T 2 2
cos sin

3 3

−

−

=

α α

= π π
α − α −

 (11.12) 

In the same way like the space vector of the current at the beginning of this sec-
tion, even the space vectors of voltage and flux linkage are defined: 

 ( ) ( ) ( ) ( )( )2 j
u v w

2
u t u t a  u t a u t e

3
 − α

= + +  (11.13) 

 ( ) ( ) ( ) ( )( )2 j
u v w

2
t t a  t a t e

3
 − α

ψ = ψ + ψ + ψ  (11.14) 

11.4 Voltage Equation in Space Vector Notation 

In the following, the space vector theory will be developed in the energy con-
sumption system, which becomes obvious from the signs in the used voltage equa-
tions (please refer to Sect. 1.2).  

Firstly, the three voltage equations of the (symmetric) system  
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( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

u
u u

v
v v

w
w w

d t
u t R i t ,

dt

d t
u t R i t ,

dt

d t
u t R  i t

dt

ψ
= +

ψ
= +

ψ
= +

 (11.15) 

are multiplied with j2
e

3

− α , j2
a  e

3

− α  and 2 j2
a e

3

− α , respectively. Afterwards 

these equations are summed up. By means of the relation for the differential of the 
flux linkage with respect to time 

 

( )
( ) ( ) ( )

( ) ( ) ( )( )( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )
( )

2 j
u v w

2 j
u v w

2 j
u v w

2 j
u v w

d t 2 d d d
t a t a t e

dt 3 dt dt dt

2 d
t a  t a t j e

3 dt

2 d d d
t a t a t e

3 dt dt dt

d
j t

dt

2 d d d
t a t a t e

3 dt dt dt

d t d
j t

dt dt

 

− α

− α

− α

− α

ψ
= ψ + ψ + ψ +

α
ψ + ψ + ψ −

= ψ + ψ + ψ

α
− ψ

ψ + ψ + ψ

ψ α
= + ψ

 (11.16) 

the voltage equation in space vector notation is found:14 

 ( ) ( )
( )

( )
d t d

u t R i t j t
dt dt

ψ α
= + + ψ  (11.17) 

                                                           
14 For the special case ( )t const.α =  (i.e. the real axis of the coordinate system has a time-

independent angle to the axis of the phase “u”) it is true: ( ) ( )
( )d t

u t R  i t
dt

ψ
= + . This is 

even the case, if the real axis coincides with the axis of the phase “u”, i.e. for ( )t 0α = . 
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For this derivation it is important that the linear combination of the three gener-
ally valid voltage equations requires no limitation concerning the spatial distribu-
tion of the fields or concerning the time-dependent functions of the currents. 

11.5 Interpretation of the Space Vector Description 

Like shown in the preceding sections, the space vector can be calculated from the 
values of the three phases or from the sum of real and imaginary part. With other 
words this means that the three-phase system can be transformed into a two-phase 
system, like it is schematically shown in Fig. 11.3. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.3. Interpretation of the space vector description: three-phase system (left), two-phase sys-
tem (right). 

Additionally, by means of an arbitrary angle α  a transformation into a coordi-
nate system rotating with arbitrary angular frequency is successful: The time-
dependency of the angle α  is not limited. 

As the currents (and the voltages and flux linkages) of an arbitrary m -phase 
system can be described in two (perpendicular) coordinates, the space vector theo-
ry is applicable to arbitrary phase numbers. The phase numbers of stator and rotor 
may be even different (an example for this is the squirrel-cage induction machine). 

By applying the space vector defined in Sect. 11.3 in total the following trans-
formation is achieved: 

• from the m-phase system in stationary coordinates  
• into a two-phase system in (arbitrarily) rotating coordinates. 

ui  
u

wv

vi  wi  

x

yi  

xi  

y

α
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11.6 Coupled Systems 

Regarding three-phase systems of stator (index “1“ and “I“) and rotor (index “2“ 
and “II“), respectively, the spatial position of the rotor system against the stator 

system has to be considered by the time-dependent angle ( )tγ . It is assumed here 

that the rotor values are already transformed to the stator system (a special nota-
tion for this is omitted to simplify the description). 

The coupling of both systems is realized via the flux linkages. As it is obvious 
from Fig. 11.4 (example for 0α = ), the coupling via the flux linkages is depend-

ent on the rotor position because of the time-dependent angle ( )tγ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.4. Coupling between stator and rotor system. 

Introducing an additional rotation with je γ  for the space vectors of the rotor 
(Fig. 11.5), both systems are transformed to a commonly rotating coordinate sys-
tem. 

 
 
 
 
 
 

stator 

rotor 

I, x  

I,yi  

I,xi  

I, y

II, x  

II,yi  

II,xi  

II, y  

( )tγ  

coupling is dependent 
on the rotor position 
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Fig. 11.5. Transforming three-phase systems (left) to two-phase systems (right); stator: above, 
rotor: below. 

Then the space vectors of the rotor system are: 

 ( ) ( ) ( ) ( )( ) ( )j2
 II 2,u 2,v 2,w

2
i t i t a  i t a i t e

3
 − α−γ

= + +  (11.18) 

 ( ) ( ) ( ) ( )( ) ( )j2
II 2,u 2,v 2,w

2
u t u t a  u t a u t e

3
 − α−γ

= + +  (11.19) 

 ( ) ( ) ( ) ( )( ) ( )j2
II 2,u 2,v 2,w

2
t t a  t a t e

3
 − α−γ

ψ = ψ + ψ + ψ  (11.20) 

I, x  

I,yi  

I,xi  

I, y

α

II, x  

II,yi  

II,xi  

II, y  

α

1,ui  
1, u  

1, w  1, v  

1,vi  1,wi  

2,ui  

2, u  

2, w  

2, v  

2,vi  

2,wi  

γ
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whereas the space vectors of the stator system against the definition in Sect. 11.3 
simply get the respective indices: 

 ( ) ( ) ( ) ( )( )2 j
 I 1,u 1,v 1,w

2
i t i t a  i t a i t e

3
 − α

= + +  (11.21) 

 ( ) ( ) ( ) ( )( )2 j
I 1,u 1,v 1,w

2
u t u t a  u t a u t e

3
 − α

= + +  (11.22) 

 ( ) ( ) ( ) ( )( )2 j
I 1,u 1,v 1,w

2
t t a  t a t e

3
 − α

ψ = ψ + ψ + ψ  (11.23) 

By means of the deduction from Sect. 11.4 the voltage equations of stator and 
rotor are in space vector notation: 

 ( ) ( )
( )

( )I
I I  I I

d t d
u t R i t j t

dt dt
 

ψ α
= + + ψ  (11.24) 

and 

 ( ) ( )
( ) ( )

( )II
II II  II II

d t d
u t R i t j t

dt dt
 

ψ α − γ
= + + ψ  (11.25) 

With the angular frequency of the coordinate system CS d dtω = α  and the me-

chanical angular frequency of the rotor mech d dtω = γ  the voltage equations of 

stator and rotor become in space vector notation:15 

 ( ) ( )
( )

( )I
I I  I CS I

d t
u t R i t j t

dt
  

ψ
= + + ω ψ  (11.26) 

                                                           
15 It has to be considered that the angle γ  describes the relative movement between stator and 
rotor in electrical degrees (relative movement of the magnetic fluxes). The relation between the 
mechanical angular frequency and the rotor speed is obtained by means of the number of pole 

pairs p : mech p 2 pnω = Ω = π , with n  being the mechanical speed. 
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 ( ) ( )
( )

( ) ( )II
II II  II CS mech II

d t
u t R i t j t

dt
 

ψ
= + + ω − ω ψ  (11.27) 

It is to emphasize here that there are no limitations concerning the time-

dependent angles ( )tα  and ( )tγ . Therefore, even the angular frequencies CSω  

and mechω  may have arbitrary time-dependencies. This is crucial for the calcula-

tion of dynamic or transient operation conditions. In the following the explicit de-
scription of the time-dependency of the angular frequencies (analogously to the 
angles α  and γ ) will be omitted to simplify the writing. 

11.7 Power in Space Vector Notation 

The instantaneous electrical power of the machine can be calculated from the sum 
of the instantaneous power of all three phases: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1,u 1,u 1,v 1,v 1,w 1,w

2,u 2,u 2,v 2,v 2,w 2,w

  p t u t i t u t i t u t i t

 u t i t u t i t u t i t

= + + +

+ +
 (11.28) 

The following is true: 
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2
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2
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2
1,w
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2
Re u t a  u t a u t e

3

2
   i t a  i t a i t e

3

2
Re u t i t u t i t u t i t

3

u t a i t a i t

u t a  i t a a i t

u t a

 

 

 

∗

− α

∗
− α

∗∗

∗

= + + ⋅

+ +

= + + +

+ +

+ +

( ) ( )2
1,u 1,vi t a a i t

 
   

 
∗

+

 (11.29) 
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With 

 { } { } { } ( ){ }
2

j 2 23 1
Re a Re e Re a Re a Re a

2

π
∗∗

= = = = = −  (11.30) 

it follows further 

     

( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

I  I

2

1,u 1,u 1,v 1,v 1,w 1,w

1,u 1,v 1,w

1,v 1,u 1,w

1,w 1,u 1,v

Re u t i t

2
u t i t u t i t u t i t

3

1
u t i t i t

2

1
u t i t i t

2

1
u t i t i t

2

∗

= + + +

− + +

− + +

− +

 (11.31) 

If the zero component of the current ( )0i t 0=  holds, there is further16 

 

( ) ( ){ }

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

I  I

2

1,u 1,u 1,v 1,v

1,w 1,w 1,u 1,u

1,v 1,v 1,w 1,w

1,u 1,u 1,v 1,v 1,w 1,w

Re u t i t

2
u t i t u t i t

3

1
u t i t u t i t

2

u t i t u t i t

2
u t i t u t i t u t i t

3

∗

= + +

+ +

+

= + +

 (11.32) 

                                                           
16 It can be shown that the following deduction is true even for the general case ( )0i t 0≠ . Be-

cause of simplification the general derivation is omitted here. As a hint may be taken that the ze-
ro component of the current does not contribute to the space vector because of 

2
0 0 0i a  i a i 0 + + = . 
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Performing an analogous calculation for the rotor values and comparing this to 
Eq. (11.28) the electrical power in space vector notation becomes: 

 ( ) ( ) ( ) ( ) ( ){ }I  I II  II

3
p t Re u t i t u t i t

2

∗ ∗
= +  (11.33) 

Now the voltage equations Eq. (11.26) and Eq. (11.27) are introduced to this equa-
tion: 

( ) ( )
( )

( ) ( )

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )

( )
( )
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∗

∗
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∗ ∗

∗

ψ
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ψ
+ + ω − ω ψ
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ψ ψ
+ +

ω ψ + ψ ( ) ( )

( ) ( )

II  II

mech II  II

t i t

j t i t

∗

∗

−

ω ψ

 (11.34) 

Writing the flux linkages by means of self- and mutual inductivities (with 

I,II II,IL L= ) it follows 
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+
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∗∗

+

 (11.35) 
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Consequently, this expression always is real. It follows 

 ( ) ( ) ( ) ( ){ }CS I  I II  IIRe j t i t t i t 0∗ ∗
ω ψ + ψ =  (11.36) 

The power in space vector notation is therefore simplified to  
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∗ ∗
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∗
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ψ ψ
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ω ψ

 (11.37) 

In this equation three parts of the power can be separated: 

1. The losses (in the resistances of stator and rotor) 

 ( ) ( ) ( ) ( ) ( ){ }loss I  I  I II  II  II

3
p t Re R i t i t R i t i t

2
  ∗ ∗

= +  (11.38) 

2. The change of the stored magnetic energy 

 ( )
( )

( )
( )

( )I II
 I  II

d t d t3
p t Re i t i t

2 dt dt

∗ ∗
μ

ψ ψ
= +  (11.39) 

 
3. The mechanical power 

 ( ) ( ) ( ){ }mech mech II  II

3
p t Re j t i t

2
 ∗

= − ω ψ  (11.40) 
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11.8 Elements of the Equivalent Circuit 

11.8.1 Resistances 

For the Ohmic losses the following is true: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ){ }

2 2 2
loss 1 1,u 1 1,v 1 1,w

2 2 2
2 2,u 2 2,v 2 2,w

I  I  I II  II  II

p t R i t R i t R i t

R i t R i t R i t

3
Re R i t i t R i t i t

2

   

   

  ∗ ∗

= + + +

′ ′ ′+ +

= +

 (11.41) 

Considering the part of the stator losses it follows: 

 ( ) ( ) ( ) ( ) ( ){ }2 2 2
1 1,u 1,v 1,w I  I  I

3
R i t i t i t Re R i t i t

2
 ∗

+ + =  (11.42) 

Inserting the stator current space vector leads to: 
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( ) ( ) ( ) }

2 2 2
1 1,u 1,v 1,w

2 j
I 1,u 1,v 1,w
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2 3

2
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− α

∗ α

+ +
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+ +

 (11.43) 

With an analogous calculation like in Sect. 11.7 it follows: 

 ( ) ( ) ( ) ( ) ( ){ }2 2 2
1 1,u 1,v 1,w I  I  I

3
R i t i t i t Re R i t i t

2
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+ + =  (11.44) 

By comparison of the coefficients it follows finally  

 1 IR R=  (11.45) 
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By means of an analogous calculation it is obvious17 

 2 IIR R=  (11.46) 

This calculation shows that the transformation in space vector notation is re-
sistance-invariant and concerning the Ohmic losses it is power-invariant. 

11.8.2 Inductivities 

Considering firstly only the flux linkage of phase “1,u“ (please refer to Fig. 11.5), 

it follows with 11L  as self-inductivity of the stator and 1L σ  as leakage inductivity 

of the stator:18 
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1,u 11 1 1,u
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π π
+ +

π
+ +

π

 (11.47) 

This expression can be transformed like follows: 
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 σ

γ
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− − +

− −

 (11.48) 

                                                           
17 Like usually done the rotor parameters of the machine are transformed to the stator system (the 
representation with primed variables is omitted here to achieve a more simple writing). This 
transformation is described e.g. in Sect. 4.1 for the induction machine. 
18 The transformation of the rotor values to the stator system will be done analogously to Sect. 
4.1; this transformation is assumed here (please see the beginning of Sect. 11.6). The difference 
to the deduction in Sect. 4.1. is that here not the stationary operation condition is calculated by 
means of the single-phase complex phasors, but all time-dependencies in all phases of stator and 
rotor are considered explicitly. 
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With an analogous derivation for the flux linkages of the other phases and the 
definition of the flux linkage space vector (see Eq. (11.23)) it follows: 
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 − α γ
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 (11.49) 

Inserting the stator and rotor current space vectors (see Eq. (11.21) and Eq. 
(11.18)) gives: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
I 1  I 11  I  I  I

2
11  II  II  II

1 1
t L i t L i t a i t a  i t

2 2

1 1
L i t a i t a  i t

2 2

  

 

σψ = + − − +

− −

 (11.50) 

With 2a a 1+ = −  and the stator main inductivity 1m 11

3
L L

2
=  it follows fur-

ther:19 

                                                           
19 For calculation of the stator main inductivity, which is also called rotating field inductivity, 
please refer to Sect. 4.1. 
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( ) ( ) ( ) ( )

( ) ( ) ( )

I 1  I 11  I 11  II

1  I 1m  I 1m  II

3 3
t L i t L i t L i t

2 2

L i t L i t L i t

   

   

σ

σ

ψ = + +

= + +

 (11.51) 

Introducing the stator inductivity 1 1m 1L L L σ= +  it follows: 

 ( ) ( ) ( )I 1  I 1m  IIt L i t L i t  ψ = +  (11.52) 

Analogously it follows for the space vector of the rotor flux linkage (after 

transformation of the rotor values to the stator system and with 2 1m 2L L L σ= + ): 

 ( ) ( ) ( )II 2  II 1m  It L i t L i t  ψ = +  (11.53) 

11.8.3 Summary of Results 

The transformation of the machine parameters from the existing (three-phase) ma-
chine to the space vector notation is done like explained in Table 11.1. Conse-
quently, the components of the machine in space vector notation are identical to 
the components, which are already deduced for the stationary operation of the ma-
chine. Therefore, the transformation is resistance- and inductivity-invariant. 

Table 11.1. Parameters of existing machines and in space vector notation. 

parameter existing machine 
(rotor values transformed

to the stator system) 

space vector notation 
(rotor values transformed

to the stator system) 
stator resistance 

1R  I 1R R=  

stator leakage inductivity 
1L σ  1L σ  

stator main inductivity 
1mL  1mL  

stator inductivity 
1 1m 1L L L σ= +  1 1m 1L L L σ= +  

rotor resistance 
2R  II 2R R=  

rotor leakage inductivity 
2L σ  2L σ  

rotor inductivity 
2 1m 2L L L σ= +  2 1m 2L L L σ= +  
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11.9 Torque in Space Vector Notation 

11.9.1 General Torque Calculation 

For a machine having an arbitrary number of pole pairs p the mechanical power 
can be calculated from torque and mechanical angular frequency like follows: 

 
( ) ( ) ( ) ( )

( ) ( )

mech
mech

d dt
p t T t T t T t

p p

t 2  n t

ω γ
= Ω = =

Ω = π

 (11.54) 

Together with Eq. (11.38) for the mechanical power the torque in space vector 
notation becomes: 

 ( ) ( ) ( ){ }II  II

3
T t p Re j t i t

2

∗
= − ψ  (11.55) 

This equation will be slightly transformed to calculate the torque from stator 
values. With 

 ( ) ( ) ( ) ( )II 2  II 1m  II 1m  It L i t L i t L i t   σψ = + +  (11.56) 

and 

 ( ) ( ){ } II  IIRe j i t i t 0∗
=  (11.57) 

it follows 

 ( ) ( ) ( ){ }1m  I  II

3
T t p Re j L i t i t

2
 ∗

= −  (11.58) 

Because ( ) ( ) I  Ii t i t∗  always is real, it follows further 



318      11 Space Vector Theory 

   

( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( ){ }

( ) ( ){ }

 1m I  II 1m 1  I  I

1m  II 1m 1  I  I

 I  I

 I  I

3
T t p Re j L i t i t j L L i t i t

2

3
p Re j L i t L L i t i t

2

3
p Re j i t t

2

3
p Im i t t

2

 

 

∗ ∗
σ

∗ ∗
σ

∗

∗

= − + +

= − + +

= − ψ

= ψ

 (11.59) 

11.9.2 Torque Calculation by Means of Cross Product from Stator 
Flux Linkage and Stator Current 

The torque can be calculated even as cross product from flux linkage and current. 
This will be shown in the following. The space vectors of current and flux linkage 
can be written as ( ϕ  and ξ  are the phase angles of current and flux linkage, re-

spectively): 

 
( ) ( ) ( )

( ) ( ) ( )

j t
 I  I

j t
I I

i t i t e

t t e

− ϕ

− ξ

=

ψ = ψ
 (11.60) 

where all amplitudes and phase angles may have arbitrary time-dependencies.  
 
Then: 

 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( )

j t j t
 I I

j t t
 I I

 I I

 I  I

3
T t p Im i t e t e

2

3
p i t t Im e

2

3
p i t t sin t t

2

3
p t i t

2

∗− ϕ − ξ

− ϕ −ξ

= ψ

= ψ

= ψ ξ − ϕ

= ψ ×

 (11.61) 
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11.9.3 Torque Calculation by Means of Cross Product from Stator 
and Rotor Current 

The above equation 

 ( ) ( ) ( ){ }1m  I  II

3
T t p Re j L i t i t

2
 ∗

= −  (see Eq. (11.58)) 

can be transformed to  

 

( ) ( ) ( ){ }

( ) ( ){ }

1m  I  II

1m  I  II

3
T t p Im L i t i t

2

3
p L Im i t i t

2

 ∗

∗

=

=

 (11.62) 

Analogously to the above calculation it follows: 

 ( ) ( ) ( )1m  II  I

3
T t p L i t i t

2
 = ×  (11.63) 

11.9.4 Torque Calculation by Means of Cross Product from Rotor 
Flux Linkage and Rotor Current 

According to Sect. 11.9.1 it is true: 

 ( ) ( ) ( ){ }II  II

3
T t p Re j t i t

2

∗
= − ψ  (see Eq. (11.55)) 

Analogously to the above calculation it follows: 

 

( ) ( ) ( ){ }

( ) ( )

II  II

 II II

3
T t p Im t i t

2

3
p i t t

2

∗
= ψ

= × ψ

 (11.64) 
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11.9.5 Torque Calculation by Means of Cross Product from Stator 
and Rotor Flux Linkage 

From the torque equation in Sect. 11.9.1 

 ( ) ( ) ( ){ } I  I

3
T t p Im i t t

2

∗
= ψ  (see Eq. (11.59)) 

and 

 

( )

( )

( )( )

I 1  I 1m  II

2
1  I 1m  II

2

1m 1m
2  II 1m  I 1  I 1m  I

2 2

1m
II 1 1m  I

2 2

1m
II 1  I

2 2 1

1m
II 1  I

2

L i L i

L
L i L i

L

L L
L i L i L i L i

L L

L 1
1 L i

L 1

L 1
1 L i

L 1 1

L
 L i

L

  

 

   

 

 

ψ = +

= +

= + + −

= ψ + + σ −
+ σ

= ψ + −
+ σ + σ

= ψ + σ

 (11.65) 

it follows 

 1m
I II I

1 2

L3 p
T Im

2 L L

∗
= ψ − ψ ψ

σ
 (11.66) 

With 

 { }I IIm 0 ∗
ψ ψ =  (11.67) 

it follows further 

 { }1m
II I

1 2

L3 p
T Im

2 L L

∗
= − ψ ψ

σ
 (11.68) 
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Together with 

 

( ) ( )

( )( )

( )

1m 1m

1 2 1 1m 2 1m

1m 1 2

1m

L L

L L 1 L 1 L

1 1

L 1 1

1
1

L

=
+ σ + σ

=
+ σ + σ

= − σ

 (11.69) 

it follows 

 { }II I
1m

3 1
T p Im

2 L

∗− σ
= − ψ ψ

σ
 (11.70) 

Analogously to the above calculation this results in: 

 

I II
1m

II I
1m

3 1
T p

2 L

3 1
p

2 L

− σ
= − ψ × ψ

σ

− σ
= ψ × ψ

σ

 (11.71) 

11.10 Special Coordinate Systems 

For rotating field machines it is often necessary to perform the calculations in dif-
ferent coordinate systems. Examples are: 

• Realizing constant mutual inductivities for salient-pole synchronous machines 
→ here the calculation in coordinate system fixed to the rotor is advantageous; 

• Field-oriented control of induction machines  
→ here the usage of a field-oriented coordinate system is advantageous. 

Because of this reason the general transformation to a coordinate system rotat-

ing with arbitrary angular frequency CS

d

dt

α
ω =  is very beneficial. The set of 



322      11 Space Vector Theory 

equations is generally applicable and depending on the machine topology or use-

fulness the angle ( )tα  can be chosen arbitrarily, e.g.: 

• ( )t 0α =   stationary coordinate system (fixed to the stator), in  

    literature the axes “ x “ and “ y “ of the coordinate  

    system are often called in this case “ α “ and “ β “; 

• CS mech

d

dt

γ
ω = = ω  coordinate system rotating with the rotor speed (fixed to  

    the rotor), in literature the axes “ x “ and “ y “ of the  

    coordinate system are then often called “ q “ and “ d “; 

• CS 1ω = ω   coordinate system rotating with the synchronous speed; 

• CS μω = ω   coordinate system rotating with the air-gap flux, even  

    for this coordinate system in literature the axes “ x “ 
    and “ y “are often called “q-axis “ and “d-axis “. 

11.11 Relation between Space Vector Theory and Two-Axis-
Theory 

In addition to the space vector theory described in the preceding sections even the 
two-axis-theory is known to calculate dynamic operating conditions in electrical 
machines. 

Both theories are strongly linked to each other, especially both theories require 
the same assumptions that have to be fulfilled for their application (please refer to 
Sect. 11.2). 

The main difference can be found in the definition of the vectors. In the two-
axis-theory the vectors are defined as follows (here exemplarily shown for the cur-
rents): 

 ( ) ( ) ( ) ( )( ) ( )j t2
u v w

2
i t i t a  i t a i t e

3
 − α

= + +  (11.72) 

Similar definitions hold true even for the voltages and the flux linkages. As a 
result for the torque of the machine it is obtained: 

 ( ) ( ) ( ){ } I  IT t p Im i t t∗
= ψ  (11.73) 



11.12 Relation between Space Vectors and Phasors      323 

Apart from the factor 3 2  this equation is identical to the torque equation in 

space vector notation. 
Therefore, the space vector notation has the advantage that voltages and cur-

rents can be interpreted quite clearly: Having a stationary, symmetric operation the 
amplitudes of current, voltage, and flux linkage space vectors are identical to the 
amplitudes of the phase values. But this transformation is not power-invariant, 

which can be deduced from the factor 3 2  in the torque equation. 

In contrary, it can be shown that the two-axis-theory is power-invariant. How-
ever, the interpretation of the voltages and currents are not so clear (i.e. for calcu-
lation of the really flowing currents a respective factor has to be introduced). 

11.12 Relation between Space Vectors and Phasors 

Between the space vectors (e.g. Sect. 11.3) and the phasors (e.g. Sect. 1.6) there is 
a formal similarity. Regarding the current phasor of the positive system when hav-
ing symmetric components (see Sect. 1.6), the following is true: 

 ( )2
 p   u   v   w

1
I I a  I a I

3
= + +  (11.74) 

Here  pI  is the current phasor of the positive system and  uI ,  vI  and  wI  are 

the current phasors of the three phase currents. 
A main requirement for the application of the symmetric components was that 

the three phase currents are sinusoidal with the same frequency (then it can be cal-
culated with rms-values, which is indicated by the capital letters in the above 
equation). With other words: Steady-state (but asymmetric) operation conditions 
can be calculated smartly by means of complex phasors. 

The space vectors were defined in the preceding Sect. 11.3. For the currents 
and the special case 0α =  there is: 

 ( ) ( ) ( ) ( )( )2
u v w

2
i t i t a  i t a i t

3
 = + +  (11.75) 
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When introducing the space vectors it was explicitly emphasized that there are 
no restrictions for the time-dependency of the currents.20 This is the main differ-
ence with regards to content to the phasors, and only because of this difference 
dynamic operation conditions are able to be calculated by space vectors, but not 
by phasors. 
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20 Reminder: When introducing the space vectors it was required that magneto-motive force, cur-
rent loading, and air-gap flux density are spatially sinusoidal for every point in time and that 
there is the same wavelength for all phases. This is realized by a clever winding distribution in 
the machine and a limitation to the fundamental waves (which, looked at precisely, is an approx-
imation). 



12 Dynamic Operation and Control of Induction 
Machines 

12.1 Steady-State Operation of Induction Machines in Space 
Vector Notation at No-Load 

12.1.1 Set of Equations 

For the calculation of the dynamic operation of the induction machine the general 
set of equations for rotating field machines (space vector theory, please refer to 
Chap. 11) can be used. Because of the constant air-gap when neglecting the slot-

ting effect any choice of ( )tα  is possible. 

Initially, an arbitrary coordinate system is chosen, the angular frequency CSω  

and the initial value 0α  will be chosen later: 

 ( ) CS 0t tα = ω + α  (12.1) 

The mechanical speed is (please refer to the footnote in Sect. 11.6): 

 mech

d
p 2 pn

dt

γ
= ω = Ω = π  (12.2) 

The angular synchronous speed is: 

 1 12 fω = π  (12.3) 

After transforming the rotor quantities to the stator winding, the voltage equa-
tions of the induction machine with short-circuited rotor winding are (see Sect. 
11.6): 

 ( ) ( )
( )

( )I
I 1  I CS I

d t
u t R i t j t

dt
  

ψ
= + + ω ψ  (12.4) 
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 ( )
( )

( ) ( )II
2  II CS mech II

d t
0 R i t j t

dt
 

ψ
= + + ω − ω ψ  (12.5) 

with the flux linkages (see Sect. 11.8): 

 ( ) ( ) ( )I 1  I 1m  IIt L i t L i t  ψ = +  (12.6) 

 ( ) ( ) ( )II 2  II 1m  It L i t L i t  ψ = +  (12.7) 

and the torque equation (see Sect. 11.9): 

 ( ) ( ) ( ){ } I  I

3
T t p Im i t t

2

∗
= ψ  (12.8) 

12.1.2 Steady-State Operation at No-Load 

Now the stationary operation at no-load is to be regarded. It is: 

 ( ) II

d
const., 0, i t 0

dt

ψ
ω = = =  (12.9) 

If in addition the stator resistance is neglected ( 1R 0= ), the set of equations 

becomes: 

 

( ) ( )

( ) ( )

( ) ( ) ( ){ }

I CS 1  I

CS mech 1m  I

1  I  I

u t j L i t

0 j L i t

3
T t p L Im i t i t

2

  

 

∗

= ω

= ω − ω

=

 (12.10) 

These three equations will now be regarded closely. From the defining equation 
of the stator voltage space vector 

 ( ) ( ) ( ) ( )( )2 j
I 1,u 1,v 1,w

2
u t u t a  u t a u t e

3
 − α

= + +  (12.11) 
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and supplying the machine with a symmetrical voltage system 

      

( ) ( )

( )

( )

1 1

1 1

1 1

j t j t
1,u 1 1 1

j t j t2
1,v 1 1 1

j t j t2
1,w 1 1 1

1
u t 2 U cos t 2 U e e

2

2 1
u t 2 U cos t 2 U a e a  e

3 2

4 1
u t 2 U cos t 2 U a  e a e

3 2

  

   

   

ω − ω

ω − ω

ω − ω

= ω = +

π
= ω − = +

π
= ω − = +

 (12.12) 

the stator voltage equation becomes: 

 

( ) ( )

( )

1

1

1

j t2 2
I 1

j t2 2 j

j t j
1

2 1
u t 2 U 1 a  a a a e

3 2

1 a  a a a e e

2 U e e

  

 

   

ω

− ω − α

ω − α

= + + +

+ +

=

 (12.13) 

Thus the stator voltage space vector is performing a circular movement (in 

space) with the angular frequency 1ω . 

Now a coordinate system is chosen that rotates in synchronism with the rotat-

ing stator field ( CS 1ω = ω ). In addition the initial value is set to 0 0α = . Conse-

quently there is 

 ( ) CS 0 1t t tα = ω + α = ω  (12.14) 

and further 

 ( ) 1 1j t j t
I 1 1u t 2 U e e 2 U   ω − ω

= =  (12.15) 

The real component of the stator voltage space vector is identical to the peak 
value of the phase voltage, the imaginary component is zero. As the coordinate 

system rotates in synchronism with the stator frequency ( CS 1ω = ω  had been cho-

sen), this is valid for any point in time. With other words: In stationary operation 

and having this choice of CSω  all stator quantities become DC values (for the sta-

tor voltages this is shown in the last equation: right of the equal sign there is no 
time-dependency any more). 

Further evaluating the stator voltage equation gives: 
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 ( )1 CS 1  I2 U j L i t   = ω  (12.16) 

and therefore 

 ( ) 1
 I

CS 1

2 U
i t j

L
= −

ω
 (12.17) 

This expression is totally imaginary; it is the no-load current of the induction 
machine in stationary operation. This no-load current has a phase shift of 90° 
against the stator voltage, which is already known from Chap. 4. 

The rotor voltage equation is 

 ( ) ( )CS mech 1m  I0 j L i t = ω − ω  (12.18) 

and can be fulfilled only for CS mechω = ω . As the coordinate system rotates in 

synchronism with the rotating stator field (please refer to the choice of ( )tα  

above), it follows that 1 mechω = ω  is true. With other words the machine rotates 

with synchronous speed. As it is well-known, this characterizes the no-load opera-
tion (when losses are neglected). 

The torque equation gives: 

 
( ) ( ) ( ){ }I  I  I

3
T t p L Im i t i t

2

0

∗
=

=

 (12.19) 

because the multiplication of a complex number with its conjugate-complex value 
always gives a real number. Even this result is in accordance to the well-known 
torque of the induction machine in stationary operation at no-load. 

12.2 Fast Acceleration and Sudden Load Change 

In the following the fast acceleration of the induction machine will be calculated, 
if at the time t 0=  the machine at zero speed is switched to the nominal voltage. 

It is assumed that the supplying mains is fixed (concerning the rms-value 1U  and 

the angular frequency of the voltage 1 12 fω = π ) and that the machine is loaded 
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just by its inertia. After reaching a (nearly) steady-state condition the machine ab-
ruptly is loaded by its nominal torque. 

As angular frequency and initial value the following is chosen  

 ( ) 1t tα = ω  (12.20) 

For numerical solution the set of equations is transformed into the following 

shape (here Θ  is the inertia and loadT  is the load torque; the equation of torque 

balance is: load

d
T T

dt

Ω
Θ = − ): 
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( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ){ }

I
I 1  I CS I

II
2  II CS mech II

mech
 I  I load

d t
u t R i t j t

dt

d t
R i t j t

dt

d p 3
p Im i t t T

dt 2

  

 

∗

ψ
= − − ω ψ

ψ
= − − ω − ω ψ

ω
= ψ −

Θ

 (12.21) 

From the equations of the flux linkages (see Sect. 12.1) it follows 

 

( )

( )

( )

( )

( )

( )

1
I I 1 1m

II II 1m 2

I2

II11m

ti t L L

ti t L L

t1 11

t1 1L

−
ψ

=
ψ

ψ+ σ −− σ
=

ψ− + σσ

 (12.22) 

with  

 
( ) ( )1 2

1
1

1 1
σ = −

+ σ + σ
 (12.23) 

The initial conditions for t 0=  are that all currents and voltages in this set of 
equations as well as the angular frequency and the load torque are zero. For t 0>  
the excitation is: 

 ( )I 1 loadu t 2 U , T 0 = =  (12.24) 
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After finishing the fast acceleration of the unloaded induction machine the fol-
lowing values are reached (please refer to the preceding section): 

 
( )

( )

1
 I

1 1

 II

2 U
i t j

L

i t 0

= −
ω

=

 (12.25) 

At the time 1t t=  the induction machine suddenly is loaded with its nominal 

torque load NT T= . The excitation quantities are then: 

 ( )I 1 load Nu t 2 U , T T = =  (12.26) 

In both cases (fast acceleration of the unloaded induction machine at fixed 
mains and sudden load change) there are transient responses. The data of the simu-
lated machine are: 

• stator resistance: 1R 1= Ω , 

• rotor resistance: 2R 1′ = Ω  

• stator main inductivity: 1mL 260mH=  

• stator leakage coefficient: 1 0.1σ =  

• rotor leakage coefficient: 2 0.1σ =  

• number of pole pairs: p 2=  

• inertia: 3 25 10 kgm−
Θ = ⋅  

The machine is supplied with 1U 230V=  and 1f 50Hz= . With this supply the 

induction machine generates a pull-out torque of pull outT 26.8Nm− ≈  at a pull-out 

slip of pull outs 0.058− ≈ . The nominal torque is NT 15.0Nm= , therefore the over-

load capability is pull out NT T 1.8− ≈ . 

The time-dependent characteristics of such an induction motor operation are 
shown in Figs. 12.1 to 12.4. 

 
 
 
 
 
 



12.2 Fast Acceleration and Sudden Load Change      331 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.1. Time dependent current in phase u. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.2. Time dependent currents in phase u (red), phase v (blue), and phase w (black). 
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Fig. 12.3. Time dependent torque. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.4. Time dependent speed. 
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Figure 12.5 shows the torque-speed-characteristics of the regarded induction 
machine. In blue color the steady-state characteristic is shown, in red color the dy-
namic characteristic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.5. Torque-speed-characteristics of the induction machine: steady-state (blue) and dynam-
ic (red). 

Switching the induction machine at zero speed to the mains at first there are 
high oscillating torque components (because of the DC current components) ac-
companied by high short-circuit AC currents. After decaying of these oscillating 
torque components the machine accelerates depending on the size of the coupled 
masses and it swings into the no-load operation (again with some oscillations). 

The sudden load change initially decelerates the machine, until the electromag-
netic torque is generated. Then an additional transient operation into the next 
steady-state operation point occurs. The steady-state speed is a little less than the 
synchronous speed. 

The deviations from the steady-state characteristic are remarkable, see the 
comparison in Fig. 12.5. After decaying of all transient effects all operation points 
calculated by means of the equations for the dynamic operation are lying on the 
steady-state characteristic. 

Figure 12.6 shows the stator current space vector for these transient operations 
in the complex plane (red characteristic). In addition, the blue characteristic illus-
trates the steady-state current circle diagram of the induction machine (circle dia-
gram of the current amplitude, not the circle diagram of the current rms-value). 

Even from these characteristics features of transient operations become obvi-
ous. High oscillating currents with large deviation from the steady-state character-
istic do occur. For fast acceleration as well as for sudden load change the final 

0               500              1000             1500 

T / Nm

n / min-1 

30 
 
 

20 
 
 

10 
 
 

0 
 
 

-10 
 
 

-20 



334      12 Dynamic Operation and Control of Induction Machines 

steady-state values are lying on the circle diagram calculated for pure steady-state 
operation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.6. Circle diagram of the induction machine: steady-state (blue, current amplitude) and 
dynamic (red, current space vector). 

The effects of transient operation can be avoided if a slow acceleration accord-

ing to the steady-state 1 1U f− − characteristic is realized; then the acceleration 

practically is quasi steady-state (acceleration on the steady-state characteristic). 
In both cases (dynamic acceleration with oscillations or quasi steady-state ac-

celeration) the induction machine is not suitable being used as a dynamic control 
unit in a drive system. However, in the following a solution will be developed how 
to employ the induction machine as such a dynamic control unit (similar to the 
DC-machine). 
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The armature quadrature-axis field is assumed being completely compensated 
by the commutation poles and the compensation windings (in Fig. 12.7 this is not 
shown for the sake of clarity); because of this the exciting flux is not influenced 
by the armature current (the armature flux linkage in the quadrature-axis is zero: 

A,q 0Ψ = ). This means that the armature flux linkage in the direct-axis just de-

pends on the field excitation current ( A,d FIΨ ); the torque is then produced by: 

A FT I Φ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.7. Field excitation, armature MMF, and d-q-coordinate system of a DC-machine. 

These features of the DC-machine can be transmitted even to the induction ma-
chine, if a coordinate system oriented to the rotor flux is chosen that rotates with 
the angular frequency of the rotor flux: 

 ( ) 0t tμα = ω + α  (12.27) 

The instantaneous value of the angular frequency of the rotor flux  

 mech Rμω = ω + ω  (12.28) 

must not necessarily be identical to the steady-state value 1ω  of the angular fre-

quency of the rotating stator field (with mech d dt pω = γ = Ω  and Rω  being the 

angular frequency of the rotor currents). 
To better show this analogy to the DC-machine, in the following the space vec-

tors are decomposed into their components and these components are allocated to 
the respective axes. Firstly, the common set of equations follows from Eqs. 
(11.26), (11.27), (11.45), (11.46), (11.52), (11.53), and (11.55): 
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 ( ) ( )
( )

( )I
I 1  I CS I

d t
u t R i t j t

dt
  

ψ
= + + ω ψ  (12.29) 

 ( ) ( )
( )

( ) ( )II
II 2  II CS mech II

d t
u t R i t j t

dt
 

ψ
= + + ω − ω ψ  (12.30) 

 ( ) ( ) ( )I 1  I 1m  IIt L i t L i t  ψ = +  (12.31) 

 ( ) ( ) ( )II 2  II 1m  It L i t L i t  ψ = +  (12.32) 

 ( ) ( ) ( ){ }II  II

3
T t p Re j t i t

2

∗
= − ψ  (12.33) 

The separation into real components and imaginary components is already in-
troduced for the general space vector in Sect. 11.3: 

 
( ) ( ){ } ( ){ }

( ) ( )x y

i t Re i t j Im i t

i t j i t

= +

= −
 (see Eq. (11.3)) 

Using this separation of the components the following equations are obtained 
from the initial voltage and flux linkage equations: 

 

( ) ( )
( )

( )

( ) ( )
( )

( )

I,x
I,x 1  I,x CS I,y

I,y
I,y 1  I,y CS I,x

d t
u t R i t t

dt

d t
u t R i t t

dt

  

  

ψ
= + + ω ψ

ψ
= + − ω ψ

 (12.34) 

 

( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )

II,x
II,x 2  II,x CS mech II,y

II,y
II,y  II,y CS mech II,x2

d t
u t R i t t

dt

d t
u t R i t t

dt

 

 

ψ
= + + ω − ω ψ

ψ
= + − ω − ω ψ

 (12.35) 
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( ) ( ) ( )

( ) ( ) ( )

I,x 1  I,x 1m  II,x

I,y 1  I,y 1m  II,y

t L i t L i t

t L i t L i t

  

  

ψ = +

ψ = +
 (12.36) 

 
( ) ( ) ( )

( ) ( ) ( )

II,x 2  II,x 1m  I,x

II,y 2  II,y 1m  I,y

t L i t L i t

t L i t L i t

  

  

ψ = +

ψ = +
 (12.37) 

The torque equation is transformed like follows: 

     

( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){

( ) ( ) ( ) ( ) }

( ) ( ) ( ) ( )

II  II

II,x II,y  II,x  II,y

II,x  II,x II,y  II,y

II,x  II,y II,y  II,x

II,x  II,y II,y  II,x

3
T t p Re j t i t

2

3
p Re j t j t i t j i t

2

3
p Re j t i t t i t

2

t i t t i t

3
p t i t t i t

2

∗
= − ψ

= − ψ − ψ +

= − ψ + ψ −

ψ − ψ

= ψ − ψ

 (12.38) 

As the coordinate system rotates with the angular frequency of the rotor flux 

(please refer to the choice of ( )tα  in Eq. (12.1)), the above given description in 

components is representing the stator and rotor MMF decomposition in direct axis 
(d-axis, y -component) and quadrature axis (q-axis, x -component) with respect to 

the rotor flux. As this is a flux-oriented coordinate system, the y - and x -

components are named in the following d-component (direct component) and q-
component (quadrature component).21 

This decomposition into d- and q-components leads to a clear decoupling and 
by clever control enables the impression of suitable phase currents that the follow-
ing aims are achievable: 

• the rotor flux linkage in the quadrature axis is zero ( II,q 0ψ = ) 

• the rotor flux linkage in the direct axis only depends on the magnetizing current 

( II,d ,diμψ ) 

                                                           
21 The identification with “d“ and “q“ is just a different naming of the components, that usually 
is introduced for flux-oriented coordinate systems. 
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• the torque is then only generated by the perpendicular components of rotor flux 

and stator current: II,d I,qT iψ . 

The described operation is called “field-oriented”. An observer, stationary to 

the system rotating with ( )tα , sees the same field distribution and torque genera-

tion like for the DC-machine. Simple relations for the control variables rotor flux 
and active stator current are obtained, that can be adjusted independently from 
each other like for the DC-machine. 

In the following it will be described, how to reach the above mentioned aims 
(for the sake of clarity the explicit description of the time dependencies is avoided 
in the following equations). For the rotor flux linkages it is required in direct axis 
and in quadrature axis, respectively: 

 
II,d 2 II,d 1m I,d

1m ,d

   L i L i

!
L iμ

ψ = +

=

 (12.39) 

 
II,q 2 II,q 1m I,q   L i L i

!
0

ψ = +

=

 (12.40) 

Here ,diμ  is a magnetizing current defined being proportional to the rotor flux 

linkage. From the requirement to the rotor flux linkages it follows for the rotor 
currents: 

 

( )

( )

1m
II,d ,d I,d

2

1m
II,q I,q

2

L
i i i

L

L
i i

L

μ= −

= −

 (12.41) 

and for the angular frequencies: 

 
( )

mech CS mech R

R

d d
p ,

dt dt

d

dt

μ

γ α
= ω = Ω = ω = ω = ω + ω

α − γ
= ω

 (12.42) 
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As the rotor windings are short-circuited (e.g. for the squirrel-cage rotor) the re-
spective voltage equations are: 

 

( )

( )

II,q
2 II,q II,d

II,d
2 II,d II,q

d d
0 R i

dt dt

d d
0 R i

dt dt

ψ α − γ
= + + ψ

ψ α − γ
= + − ψ

 (12.43) 

Introducing the above equations for the currents, flux linkages, and angular fre-
quencies this leads to: 

 

( )

( )

1m
2 I,q R 1m ,d

2

,d1m
2 ,d I,d 1m

2

L
0 R i 0 L i

L

diL
0 R i i L 0

L dt

μ

μ

μ

= − + + ω

= − + −

 (12.44) 

With the rotor time constant 2
2

2

L

R
τ =  the rotor voltage equations in field-oriented 

coordinates are obtained: 

 

I,q
R mech

2 ,d

,d
2 ,d I,d

i

i

di
i i

dt

 μ

μ

μ

μ

ω = = ω − ω
τ

τ + =

 (12.45) 

The torque equation in field-oriented coordinates is: 

 

( ) ( )1m
II,q II,d II,d II,q II,d I,q

2

2
1m 1m

1h ,d I,q ,d I,q
2 2

1m
,d I,q

2

L3 3
T p i i p i

2 2 L

L L3 3
  pL i i p i i

2 L 2 L

L3
  p i i

2 1

 

 

μ μ

μ

= ψ − ψ = − ψ −

= =

=
+ σ

 (12.46) 
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For the stator flux linkages, after introducing the rotor currents, the following is 
true: 

 ( )

I,d 1 I,d 1m II,d

1m
1 I,d 1m ,d I,d

2

2 2
1m 1m

,d 1 I,d
2 2

     L i L i

L
L i L i i

L

L L
i L i

L L

μ

μ

ψ = +

= + −

= + −

 (12.47) 

 ( )

I,q 1 I,q 1m II,q

1m
1 I,q 1m I,q

2

2
1m

1 I,q
2

     L i L i

L
L i L i

L

L
L i

L

ψ = +

= + −

= −

 (12.48) 

Now the stator voltage equations can be transformed: 

    

I,q
I,q 1 I,q I,d

2 2 2
1m 1m 1m

1 I,q 1 I,q ,d 1 I,d
2 2 2

2 2 2
I,q1m 1m 1m

1 I,q 1 ,d 1 I,d
2 2 2

d
u R i

dt

L L Ld
R i L i i L i

dt L L L

diL L L
R i L i L i

L dt L L

 

 

 

μ

μ μ

μ μ μ

ψ
= + + ω ψ
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= + − + ω + ω −

(12.49) 

 

I,d
I,d 1 I,d I,q
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2 2 2

2 2 2
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L L Ld
R i i L i L i
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di diL L L
R i L L i
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μ

μ μ

μ

μ

ψ
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= + + − − ω −

= + + − − ω −

 (12.50) 
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With the stator time constant 1
1

1

L

R
τ =  and the total leakage coefficient (please re-

fer to Eq. (4.75))  

 
( )( ) ( ) ( )

2
1m

1 2 1 1m 2 1m

2
1m

1 2

L1
1 1

1 1 1 L 1 L

L
1

L L 

σ = − = −
+ σ + σ + σ + σ

= −

 (12.51) 

the stator voltage equations in field-oriented coordinates are obtained: 

 ( )I,q I,q
1 I,q 1 I,d 1 ,d

1

di u
i i 1 i

dt R
μ μ μστ + = − ω στ − − σ τ ω  (12.52) 

 ( ) ,dI,d I,d
1 I,d 1 I,q 1

1

didi u
i i 1

dt R dt

μ

μστ + = + ω στ − − σ τ  (12.53) 

By means of these equations the block diagram of the induction machine in 
field-oriented coordinates can be deduced (Fig. 12.8). For the sake of clarity the 
five equations (two stator voltage equations, two rotor voltage equations, and the 
torque equation) are highlighted in grey. The coordinate transformation and the 
torque balance can be described by the block diagrams shown in Fig. 12.9. 
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Fig. 12.8. Block diagram of the induction machine in field-oriented coordinates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.9. Block diagrams of coordinate transformation and torque balance. 
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The equation 

 
,d

2 ,d I,d

di
i i

dt

μ

μτ + =  (12.54) 

shows that the direct component of the stator current ( I,di ) determines the magni-

tude of the rotor flux (that is proportional to ,diμ , see above). Like for the field 

winding of the DC-machine a large time constant (the rotor time constant 2τ ) is 

relevant. Therefore, the magnitude of the rotor flux is not suitable for realizing fast 
control actions. 

The equation 

 
I,q

R mech
2 ,d

i

i μ

μ

ω = = ω − ω
τ

 (12.55) 

shows that the angular frequency of the slip (angular frequency of the rotor cur-

rents Rω ) is determined by the quadrature component of the stator current ( I,qi ) 

and the magnitude of the rotor flux ( ,diμ ). The angular frequency of the rotor 

flux is calculated from the angular frequency of the slip and the mechanical angu-
lar frequency of the rotor. 

The equation 

 
2
1m

,d I,q
2

L3
T p i i

2 L
μ=  (12.56) 

describes the torque generation. Analogously to the DC-machine the torque is 

produced by the direct axis flux ( ,diμ ) and the quadrature component of the sta-

tor current ( I,qi ). If (like required) II,d 1m ,dL i const.μψ = =  is true, then the torque 

T  and the angular frequency of the slip Rω  are directly proportional to the quad-

rature component of the stator current I,qi . 

The equations 

 ( )I,q I,q
1 I,q 1 I,d 1 ,d

1

di u
i i 1 i

dt R
μ μ μστ + = − ω στ − − σ τ ω  (12.57) 
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 ( ) ,dI,d I,d
1 I,d 1 I,q 1

1

didi u
i i 1

dt R dt

μ

μστ + = + ω στ − − σ τ  (12.58) 

are completing the machine model concerning the interaction of stator voltages 
and stator currents. Regarding the stator current components the induction ma-
chine acts like a first-order delay element (PT1 element) with the time constant 

1στ  and the gain 11 R . The stator current components are coupled by the right-

hand terms in the above equations. The expressions 1 I,qiμω στ  and 1 I,diμω στ  are 

the rotatory induced voltages, that are caused by the currents of the respective dif-

ferent axis. ( ) ,d
1

di
1

dt

μ
− σ τ  is the transformatory induced voltage that occurs by 

changing the magnetizing current. ( ) 1 ,d1 iμ μ− σ τ ω  is the rotatory induced voltage 

of the main field. 
These equations and the deduced block diagram (see Fig. 12.8) describe the in-

duction machine equivalently to the equations in Sects. 12.1 and 12.2. Switching 
the mains voltage suddenly to the machine at zero speed the same acceleration 
characteristics (and the same transient characteristics when suddenly loading the 
machine) like in Sect. 12.2 are obtained! 

The advantage of the field-oriented description for the dynamic operation of the 
induction machine will become clear in the following Sect. 12.4. 

12.4 Field-Oriented Control of Induction Machines with 
Impressed Stator Currents 

The advantage of the description shown in the last section is that now the same 
control strategy like for the separately excited DC-machine can be applied to the 
induction machine, by which the induction machine is qualified to be applied as a 
highly dynamic drive: The magnetizing current and consequently the rotor flux 
shall be hold constantly at their nominal values, the torque shall be adjusted only 
by means of the quadrature component of the stator current.22 To reach this the 
transformed stator currents must be independently controllable in direct and quad-
rature axis. This kind of control (field-oriented control, FOC) has been developed 
end of the 1960s, begin of the 1970s by Karl Hasse and Felix Blaschke inde-
pendently from each other. 

The above described controllability is enabled by  

                                                           
22 Here it is to be regarded that the stator flux increases with the load, therefore saturation may 
occur in the stator. 
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• power electronic devices with high switching frequency (for small power about 
20kHz ) and 

• short sampling intervals for the control (for small power some 100 sμ  for the 

current control, for the speed control some ms ). 

If these conditions are valid, it can be assumed that the stator currents are im-
pressed. Then the equations of the relations between stator voltages and stator cur-
rents can be omitted because these are handled intrinsically in the power electronic 
converter. The respective block diagram is shown in Fig. 12.10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.10. Block diagram of the induction machine in field-oriented coordinates with impressed 
stator currents. 

The block diagram of the induction machine in field-oriented coordinates with 
impressed stator currents corresponds to the block diagram of the separately excit-
ed DC-machine with neglected armature time constant (please refer to Sect. 10.1). 
This means that the torque production at constant rotor flux follows the quadrature 

component of the stator current I,qi  without any delay and the rotor flux is con-

trollable only by the direct component of the stator current. 
Consequently, the aim of a highly dynamic drive system is reached in principle. 

But if the induction machine shall be controlled in field-oriented coordinates, it is 
necessary to know the instantaneous amplitude and phase of the rotor flux. Having 
a squirrel-cage rotor the rotor currents and voltages cannot be measured and the 
measurement of the air-gap flux, which is just an approximation, is very costly 
and susceptible to faults. 
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However, amplitude and phase of the rotor flux can be calculated from meas-
ured values of the stator currents and the speed, by evaluating the rotor voltage 
equations of the induction machine. This is called “flux model“: 

 

,d
2 ,d I,d

I,q
mech

2 ,d

di
i i

dt

i d

i dt 

μ

μ

μ

μ

τ + =

α
+ ω = ω =

τ

 (12.59) 

Then there is the block diagram shown in Fig. 12.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.11. Block diagram of the flux model. 

It is obvious that the rotor time constant 2τ  is decisive for the quality of the 

flux model. Particularly, there is the challenge to precisely know the rotor re-

sistance 2R  depending on the actual temperature during operation. 

Once the rotor time constant 2τ  is known, the induction machine can be con-

trolled highly dynamic. For a drive system with speed controller, torque controller, 
and flux controller the block diagram in Fig. 12.12 is obtained. 
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Fig. 12.12. Block diagram of the field-oriented controlled induction machine with impressed cur-
rents. 
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The time-dependent characteristics shown in Fig. 12.13 are obtained assuming 

that 2 Θτ τ  is true. Because of the control this drive does not show any over-

shoot or oscillation; the drive is highly dynamic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.13. Time-dependent characteristics during acceleration. 

In the following the torque that is usable during run-up is calculated: The no-

load flux linkage shall be maintained. Then for 1R 0≈  (please refer to Sect. 12.1) 

it follows: 
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 (12.60) 

This magnetizing current increases with the time constant 2τ : 

 2

t
 

,d I,di i 1 e
−

τ
μ = −  (12.61) 

In steady-state operation the maximum torque is obtained at the pull-out operation 
point: 
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(12.62) 

For the quadrature current (i.e. the torque producing current) it follows (at 

field-oriented control and R 21ω = στ ): 

 I,q R 2 ,d 0

1
i i 2 Iμ= ω τ =

σ
 (12.63) 

The usable torque is then: 

 

1m 1m
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2 1
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−
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+ σ + σ σ

− σ
= = =

σω σ ω

− σ

 (12.64) 

During the acceleration with field-oriented control at R 21ω = στ the double 

torque (against the steady-state operation at symmetric, fixed mains) is obtained. 
Having the same machine data as for the example in Sect. 12.2 (fast accelera-

tion and sudden load change at fixed mains), the time-dependent characteristics 
shown in Fig. 12.14 are obtained (just the acceleration is shown; therefore the time 
is limited to an interval from 0s to 0.12s). 

The flux generating current ,diμ  (shown in red in Fig. 12.14) is increased quite 

slowly in this example because of the relatively large time constant 2τ . However, 

the torque generating current I,qi  (shown in blue in Fig. 12.14) is switched from 

its nominal value to zero after about 0.097s, because the run-up period is already 
finished. 

Figures 12.15 and 12.16 show the torque and the speed during this acceleration 
period (the scale of the vertical axes are the same like in Sect. 12.2). The torque is 

increased analogously to the magnetizing current ,diμ  as long as I,qi 0>  is true. 

The acceleration time is considerably shorter (compared to the operation at fixed 
mains) and there are no oscillations. 
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Fig. 12.14. Flux generating current (red) and torque generating current (blue) during acceleration 
of the field-oriented controlled induction machine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.15. Time-dependent torque during acceleration of the field-oriented controlled induction 
machine. 
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Fig. 12.16. Time-dependent speed during acceleration of the field-oriented controlled induction 
machine. 

Figure 12.17 shows the time-dependent characteristics of speed, torque produc-

ing quadrature current I,qi  and field producing magnetizing current ,diμ . 

• The acceleration period, finished after 0.097s, is characterized by I,q I,q,maxi i=  

and a very steep speed increase (the magnetizing current is increased quite 

slowly because of the large time constant 2τ ; this is true even for the further 

simulation time). 
• After finishing the acceleration and until switching on the load at the time 0.6s 

the quadrature current is set to I,qi 0= , then the speed is constant. 

• After switching on the load the influence of the control can be recognized 
clearly: small speed changes provoked by the control of the torque producing 

quadrature current component I,qi  are noticeable. 

For a better comparison the speed-time-characteristics for acceleration at fixed 
mains (red line) and for acceleration with field-oriented control (blue line) are pre-
sented once again in Fig. 12.18. The entire acceleration period is shown from 0s to 
0.6s. The improvement of the dynamic behavior against the operation at fixed 
mains (please refer to Sect. 12.2) is impressive. The additional effort to realize this 
operational behavior mainly is a powerful controller and the power electronic 
converter. 
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Fig. 12.17. Time-dependent characteristics during acceleration of the field-oriented controlled 
induction machine: speed (red), torque generating current (blue), flux generating current (black). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.18. Speed versus time characteristics of the induction machine: operation at fixed mains 
supply (red) and operation with field-oriented control (blue). 
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The time-dependent characteristics of the three phase currents are obtained 

from the currents I,di  and I,qi  by means of reverse transformation. With the de-

duction presented above it follows: 

 ( )

I,d 0

0
I,q

1
0

1

i 2 I const.

1
2 I , for 0s t 0.097s

i t

0,   for 0.097s t 0.6s

U
I

X

 

 

= =

≤ ≤
= σ

≤ ≤

=

 (12.65) 

Further there is (please refer to Sect. 11.3): 

 

( ) ( )1,u I,q I,d

1,v I,q I,d

1,w 1,u 1,v

i i cos i sin

2 2
i i cos i sin

3 3

i i i

= α + α

π π
= α − + α −

= − −

 (12.66) 

with the time-dependent angle 

 
( ) ( ) ( ) ( )

t

mech R
0

R 2

t t dt with t t

1

μ μα = ω ω = ω + ω

ω = στ

 (12.67) 

Inserting these equations, the solution for the first 0.097s of the acceleration peri-
od is: 

 

( ) ( )1,u 0

1,v 0

1,w 1,u 1,v

1
i 2 I cos sin

1 2 2
i 2 I cos sin

3 3

i i i

 

 

= α + α
σ

π π
= α − + α −

σ

= − −

 (12.68) 
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These equations are valid as long as I,di  and I,qi  are maintained constantly on-

to their respective maximum values ( 02 I  and 02 I / σ ). As soon as the de-

sired speed is reached the current component I,qi  is switched to zero (see Fig. 

12.17), and therefore even the acceleration torque gets zero (the magnetizing con-

dition of the machine remains unchanged, i.e. I,d 0i 2 I const. = = , the magnet-

izing current ,diμ  is increased with the time constant 2τ ). To get the phase cur-

rents by means of reverse transformation for the entire simulation time, the time-

dependent current component ( )I,q I,qi i t=  has to be considered. It follows: 

 

( ) ( ) ( )

( )

1,u I,q I,d

1,v I,q I,d

1,w 1,u 1,v

i i t cos i sin

2 2
i i t cos i sin

3 3

i i i

= α + α

π π
= α − + α −

= − −

 (12.69) 

The time-dependent characteristics of the three phase currents, calculated by 
these equations, are illustrated in Fig. 12.19 for the starting period (the scale of the 
vertical axis is the same like in Sect. 12.2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.19. Time-dependent currents in phase u (red), phase v (blue), and phase w (black) during 
acceleration of the field-oriented controlled induction machine. 
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In contrast to the acceleration at fixed mains (see Fig. 12.2) the amplitudes of 
the three phase currents are identical and (during acceleration and during steady-
state operation) constant in time. In addition, the maximum phase current is lower 
than for the uncontrolled acceleration. 

The change of frequency of the phase currents is characteristic for the influence 
of the power electronic converter, this would not be possible at fixed mains (con-
stant voltage concerning amplitude and frequency). 

When finishing the acceleration period (at about 0.097s) the current component 

I,qi  is set to zero. This is noticeable in the characteristics of the phase currents by 

the simultaneous change of amplitude and phase; then the frequency is not 
changed any longer. During the entire operation the slip is maintained at the pull-

out slip of the steady-state operation ( R 21ω = στ ); the torque is adjusted by the 

current (more precisely: the current component I,qi ). 

Figure 12.20 shows the stator current space vector at field-oriented control (in 
red) and the circle diagram of the current amplitude in steady-state operation (blue 
curve). Even with this graph the differences to the dynamic operation at fixed 
mains supply (please refer to Fig. 12.6) become obvious. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.20. Circle diagram of the induction machine: steady-state operation (blue, current ampli-
tude) and during dynamic acceleration with field-oriented control (red, current space vector). 
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12.5 Field-Oriented Control of Induction Machines with 
Impressed Stator Voltages 

Up to now the field-oriented control (FOC) of induction machines has been re-
garded assuming that current injecting electronic power converters with high 
switching frequency and sufficient voltage reserve are available as well as fast mi-
crocontrollers for calculating the control algorithms. Regarding electrical drives 
with a power of up to some kW this is given (servo drives with transistorized in-
verters and switching frequencies up to about 20 kHz). For larger drives often 
pulse-width modulated inverters with intermediate DC-voltage and switching fre-
quencies of a few kHz are used. Then the above mentioned conditions are no 
longer fulfilled. This means that the stator voltage equations have to be regarded 

in addition ( 1 1 1L Rτ = ): 

 ( ) ,dI,d
1 I,d I,d 1 I,q 1

1

didi 1
i u L i 1 L

dt R dt

μ

μστ + = + ω σ − − σ  (12.70) 

 ( )( )I,q
1 I,q I,q 1 I,d 1 ,d

1

di 1
i u L i 1 L i

dt R
μ μ μστ + = − ω σ − − σ ω  (12.71) 

Both control paths are coupled via the stator currents, therefore they are not in-
dependent from each other. However, a decoupling is required so that the current 
controllers can be adjusted independently. This can be achieved if negative com-

pensation voltages are added to the output voltages of the controllers ( C,du  and 

C,qu ) in such a way that the coupling voltages are zero. Now the controllers see 

decoupled paths. For the compensation usually it is assumed that the rotor flux 

linkage is constant, i.e. ,ddi dt 0μ = . Then it follows: 

 
( )

C,d 1 I,q I,d

C,q 1 I,d 1 ,d I,q

u L i u

u L i 1 L i u

μ

μ μ μ

− ω σ =

+ ω σ + − σ ω =
 (12.72) 

Further: 
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I,d
1 I,d C,d

1

I,q
1 I,q C,q

1

di 1
i u

dt R

di 1
i u

dt R

στ + =

στ + =

 (12.73) 

The block diagram of this decoupling network is shown in Fig. 12.21. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.21. Block diagram of the decoupling network. 

Figure 12.22 shows the entire diagram of a field-oriented controlled induction 
machine with impressed voltages realized by a power electronic converter 
(“PWM“). For the currents in direct axis and quadrature axis a cascaded control is 
applied respectively; the control parameters can be adjusted independently by 
means of the decoupling network. The instantaneous values of rotor flux ampli-
tude and phase, which are required for the control, are calculated by means of the 
flux model. 
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Fig. 12.22. Block diagram of the field-oriented controlled induction machine with impressed 
voltages. 

12.6 Field-Oriented Control of Induction Machines without 
Mechanical Sensor (Speed or Position Sensor) 

The mechanical speed has to be known for the field-oriented control (FOC) of in-
duction machines: This value is necessary for the speed control as well as for the 

machine 
model

T

,diμ  

2τ  

mechω  

Rω  +  

+  
μω  

α

I,qi  

I,di  

α

xy0T  1m

2

L3
p

2 1+σ
 

1
÷  

×  

2τ  

control 

T

mechω  

setω  −  

+  
setT  −  

+  

,d,setiμ  −  

+  
I,d,seti  

I,q,seti  
α

speed 
controller

torque 
controller

flux 
controller

field 
weakening 1

xy0T
−

 

1,uu  1,wu  

−  

+  

I,qi  

current 
controller

+  
C,qu  I,qu  

+  

−  

+  

I,di  

current 
controller

+  
C,du  

I,du  −

PWM  

decoupling 
network

I,di  I,qi  ,diμ  μω  

M

3
 

Θ  

T

1,wi  

1,vi  

1,ui  



12.6 Field-Oriented Control of Induction Machines without Mechanical Sensor (Speed or 
Position Sensor)      359 

coordinate transformation (the angle α  is calculated by means of the mechanical 
speed). 

However, mechanical speed sensors have some disadvantages that preferably 
should be avoided: 

• vulnerability against outside impacts (forces, torques, temperatures, dirt) 
• costs 
• space consumption 
• necessity of a free shaft extension  

Therefore it is desirable to compute the speed from the measured terminal val-
ues of the machine (often this method is denominated as “sensorless” speed con-
trol). The method can be explained by means of the block diagram of the induc-
tion machine shown in Fig. 12.23. 

 
 
 
 
 
 
 
 
 
 

Fig. 12.23. Block diagram of the induction machine. 

The stator flux linkage is: 

 ( )1  1 1   1 1,0u R i dtψ = − + ψ  (12.74) 

and the rotor flux linkage is: 

 2 1 1   1L iψ = ψ − σ  (12.75) 

Consequently the amplitude and phase of the rotor flux linkage are known: 

• The phase is the angle α , which is necessary for the coordinate transformation. 

By differentiating the angular frequency μω  is obtained; together with the val-

ue for Rω  this is used for the speed control. 

• The amplitude of the rotor flux linkage is already known from Sect. 12.4 (flux 
model) and is therefore not necessary at this moment. 
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• The above equations for calculating the phase of the rotor flux linkage are 
evaluated for a two-phase system, after measuring the three-phase values 
(phase currents and voltages) and subsequent coordinate transformation. 

• The evaluation of the integral is difficult for small voltages or small frequen-
cies (preciseness and size of the time interval); i.e. for very small speed this 
method is quite incorrect. The method is reliable from about 5% of the nominal 
speed onwards. 

The flux model from Sect. 12.4 (that solely is based on current measurement) 
showed the disadvantage of temperature dependency (dependency of the rotor 

time constant 
2

τ ); the model presented in this section possesses the disadvantage 

of inaccuracy at small speed. By clever combination the area of reliable operation 
without mechanical speed sensor can be considerably increased. 

12.7 Direct Torque Control 

The direct torque control (DTC) has been developed independently, nearly simul-
taneously and in similar form at the beginning of the 1980s in Germany (Manfred 
Depenbrock) and in Japan (Isao Takahashi and Toshihiko Noguchi) for induction 
machines. In the meantime this method also is applied to different rotating field 
machines. The principle of DTC is that by choosing the phase voltages the flux 
and the torque are directly influenced. 

To explain this, a simple switch-model for the power electronic converter and a 
machine with Y-connected phases is regarded. The diagram is shown in Fig. 
12.24. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.24. Diagram of the inverter-fed induction machine. 
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The three switches with two different switching positions each (“0“ and “1“) 

define eight voltages that are illustrated in Fig. 12.25; the voltages 0u (000)  and 

7u (111)  are called zero-vectors and they are drawn in the origin of the coordinate 

system: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.25. Possible voltage vectors of the inverter-fed induction machine. 

If only these positions of the power electronic switches are allowed, there is – 
for any point in time (except for the positions “000“ und “111“) – a series connec-
tion of one machine phase with the parallel connection of the other two phases 
(like it is shown in Fig. 12.26). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.26. Connection of phases of the inverter-fed induction machine at any point in time. 
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With the phase impedance Z  and the total current I  it follows: 

 

DC 1 2

1

U U U

Z Z 1
Z I I 1 Z I

Z Z 2

3
U

2

= +

= + = +
+

=

 (12.76) 

Consequently there is always one phase with a voltage drop of 2/3 of the inter-

mediate voltage DCU , and the voltage drop across the parallel connected phases is 

1/3 of the intermediate voltage. Then the voltage space vector 1u  becomes (see 

the definition of the complex voltage space vector in Sect. 11.3): 

 

( ) ( ) ( )( ) ( )

( )

j t2
1 u v w

2 j0
DC DC

DC DC

DC

2
u u t a  u t a u t e

3

2 2 1
U U a a e

3 3 3

2 2 1
U U

3 3 3

2
U

3

 − α
= + +

= − +

= +

=

 (12.77) 

The other voltage space vectors can be calculated analogously. Summarizing, 
the phase voltages of the machine can be described by space vectors like follows: 

 

( )j 1
3

DC

2
U e if 1, , 6

u 3

0 if 0, 7    

 
π

ν−

ν

ν =
=

ν =

 (12.78) 

By choosing a stationary coordinate system ( ( )t const.α = , here as a special 

case ( )t 0α = ) it follows for the stator flux linkage from the stator voltage equa-

tion in space vector notation (see Sect. 11.6): 

 ( )I I  I I I I I  I

d
u R i u R i  dt

dt
  = + ψ ψ = −  (12.79) 
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If the stator resistance IR  can be neglected, the stator voltage space vectors 1u  

to 6u  are causing a continuous motion of the stator flux space vector, whereas the 

stator voltage space vectors 0u  and 7u  are stopping the stator flux space vector. 

If the stator voltage space vectors 1u  to 6u  are switched just once per period 

(which is called “block-mode operation”), the stator flux space vector moves on a 
hexagon. Consequently the first task (adjusting the flux of the machine) is fulfilled 
(see Fig. 12.27). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.27. Possible locations of the stator flux space vector. 

The torque can be calculated like it is shown in Sect. 11.9: 

 { }I I

3
T p Im i

2

∗
= ψ  (12.80) 

With 

 ( )
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2  II 1m  I 1  I 1m  I
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ψ = + = +
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and further 

 
( )( )

1m
I II 1  I

2 2 1

1m
II 1  I

2

L 1
1 L i

L 1 1

L
 L i

L
 

ψ = ψ + −
+ σ + σ

= ψ + σ

 (12.82) 

it follows  

 1m
I II I

1 2

L3 p
T Im

2 L L

∗
= ψ − ψ ψ

σ
 (12.83) 

With 

 { }I IIm 0 ∗
ψ ψ =  (12.84) 

it can be deduced finally 

 

{ }

{ }

1m
II I

1 2

II I
1m

L3 p
T Im

2 L L

3 1
p Im

2 L

∗

∗

= − ψ ψ
σ

− σ
= − ψ ψ

σ

 (12.85) 

Consequently, the torque generation is determined by the amplitudes of the sta-
tor flux linkage, the rotor flux linkage, and the relative phase shift of both. 

In the following it is assumed that the speed and the amplitude of the rotor flux 
linkage is constant during one switching condition of the stator voltage space vec-
tor. Then the stator flux linkage and the torque are adjusted directly by the choice 
of the stator voltage space vector. For this choice of the stator voltage space vector 
– required in the actual operating condition of the machine – the following steps 
have to be performed: 

• division of the α - β -plane into sectors; 

• calculation, in which sector the actual stator flux linkage is located; 
• evaluation, if the stator flux linkage and the torque have to be increased or de-

creased; 
• adjusting the resulting stator voltage space vector. 
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The sectors in the α - β -plane can be chosen e.g. like it is shown in Fig. 12.28. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.28. Definition of the sectors in the α-β-plane. 

By means of a machine model the instantaneous location and amplitude of the 
stator flux linkage and the value of the torque can be calculated at any time. By 
comparison with the respective set values differences are obtained that are fed to a 
hysteresis controller each. From the instantaneous location of the stator flux link-
age and the necessity to increase or decrease the stator flux linkage and the torque 
(outputs of the hysteresis controllers “1” or “-1”), the next stator voltage space 

vector is obtained by means of a table. Respective switching signals us , vs  and 

ws  activate the power electronic switches of the converter. The corresponding 

block diagram is given in Fig. 12.29. 
 
The according table for choosing the stator voltage space vector is shown in 

Table 12.1. 

Table 12.1. Switching table for the direct torque control. 

φ  τ  sector 1 sector 2 sector 3 sector 4 sector 5 sector 6 

1 1 2u  3u  4u  5u  6u  1u  

1 -1 6u  1u  2u  3u  4u  5u  

-1 1 3u  4u  5u  6u  1u  2u  

-1 -1 5u  6u  1u  2u  3u  4u  

 

sector 1 

sector 2 

sector 3 sector 4 

sector 5 

sector 6 

α

β  

possible location of Iψ  



366      12 Dynamic Operation and Control of Induction Machines 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.29. Block diagram of the inverter-fed induction machine with direct torque control. 

The main advantages of the direct torque control against the field-oriented con-
trol are: 

• The calculation load in the microcontroller is much lower, because no coordi-
nate transformation is required. 

• Flux and torque are adjusted by means of simple hysteresis controllers; there is 
no need for current controllers or for pulse width modulation. Consequently the 
switching frequency of the power electronic switches is quite low. 

• There is only low sensitivity against varying rotor parameters, because only 
flux and torque calculation is needed. 

• For torque and flux control no knowledge of the speed is required; having the 
field-oriented control this was necessary to calculate the angle α . 

• Depending on the preciseness of the machine model even for the speed control 
the speed sensor can be omitted. 

• Generally, the torque control using DTC is faster than using the field-oriented 
control. 
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However, disadvantages of the DTC are: 

• Because of the missing current controllers there is no possibility of active form-
ing of the current waveform. This results in considerable deviations from the 
ideal sinusoidal function and therefore leads to increased losses of the induction 
machine. 

• Having non-sinusoidal currents the preciseness of the flux and torque calcula-
tion strongly depends on the sampling interval and preciseness of the current 
measurement as well as on the cycle period of the controller. 

• The torque ripple depends on the current waveform and the chosen widths of 
the hysteresis controllers; usually this torque ripple is larger than for the field-
oriented control. This results in mechanical load and acoustic noise. 

• The switching frequency of the power electronic devices is not fixed and it 
changes with the speed of the machine. Consequently, even the switching loss-
es of the power electronic devices are speed-dependent. 

Generally the DTC is characterized by simplicity, robustness, low switching 
losses, and fast torque control. These features are especially interesting for varia-
ble-speed drives with high power. 

 
The DTC described until now can be extended, e.g. by  

• consideration of the measured intermediate voltage when calculating the stator 
voltage space vector; 

• high-frequent switching (e.g. PWM) and utilization of all voltage vectors 0u  to 

7u  (by this and with increasing frequency the motion of the flux space vector 

can be approximated more and more to a circle); 
• increasing the number of sectors; 
• hysteresis controller with three steps (additional step “0“, i.e. no change of flux 

or torque). 

By these means the technical features (e.g. current waveform and torque ripple) 
are improved, but the effort is increased. 
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13 Dynamic Operation of Synchronous 
Machines 

13.1 Oscillations of Synchronous Machines, Damper Winding 

In this section the behavior of the synchronous machine will be regarded, if the ro-
tor angle ϑ  is changed by small values Δϑ  from the operation point (index “0”). 
As only small changes are considered, the description of the synchronous machine 
in steady-state operation (Chap. 5) will be used. There is: 

 0ϑ = ϑ + Δϑ  (13.1) 

In steady-state operation the external driving torque of the turbine is equal to 
the torque of the synchronous machine in every operating point: 

 ( ) N,phase P
ext pull out 0 pull out

1

U U3p
T T sin , T

X
− −= ϑ =

ω
 (13.2) 

The torque of the synchronous generator and the acceleration torque are: 

 ( )gen pull outT T sin−= ϑ  (13.3) 

 a

d
T

dt

Ω
= Θ  (13.4) 

with Θ  being the inertia of all rotating masses and 02 nΩ ≠ π  being the speed of 

the synchronous machine: 23 

 0

d p
2 n

dt

ϑ
Ω = π +  (13.5) 

                                                           
23 In the following it will be assumed that the stator current angular frequency 1ω  always is 

adapted to the speed of the machine. Otherwise the frequency condition for generating a constant 
torque (see Chap. 3 “Rotating Field Theory”) would not be fulfilled and a pure oscillating torque 
would occur. The influence of this frequency change on other data (e.g. the pull-out torque) is 
neglected because just small changes are regarded; in addition the friction is neglected. 
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The torque balance 

 ext gen aT T T− =  (13.6) 

leads to the following differential equation: 

 ( ) ( )
2

pull out 0 pull out 2

d d
T sin T sin

dt p dt
− −

Ω Θ ϑ
ϑ − ϑ = Θ =  (13.7) 

This differential equation will be linearized by a Taylor expansion and truncation 
after the first term: 

 
( ) ( )

( )

( ) ( ) ( ) ( )0 0 0

f x
f x x f x x

1!

sin sin sin cos

′
+ Δ = + Δ +

ϑ = ϑ + Δϑ ≈ ϑ + Δϑ ϑ

 (13.8) 

Moreover there is: 

 
( )22 2

0
2 2 2

dd d

dt dt dt

ϑ + Δϑϑ Δϑ
= =  (13.9) 

Then the differential equation becomes: 

 

( ) ( ) ( )( )

( )

2

pull out 0 pull out 0 0 2

2

pull out 02

d
T sin T sin cos

p dt

d
T cos 0

p dt

− −

−

Θ Δϑ
ϑ − ϑ + Δϑ ϑ =

Θ Δϑ
+ Δϑ ϑ =

 (13.10) 

With the synchronizing torque in the operating point ( )syn,0 pull out 0T T cos−= ϑ  it 

can be deduced: 

 
2

syn,0

2

Td
0

dt p

Δϑ
+ Δϑ =

Θ
 (13.11) 

The solution of this differential equation is an undamped harmonic oscillation: 
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 ( )e,0sin tΔϑ = Ω  (13.12) 

with the mechanical resonance frequency (eigenfrequency)24 

 
syn,0

e,0 e,0

T
2 f

p
Ω = π =

Θ
 (13.13) 

Most often the frequency of this mechanical oscillation of the synchronous ma-

chine is in the range of e,0f 1 2Hz= . 

During operation of the synchronous machine oscillations can be evoked by 
electrical or mechanical load changes, which are accompanied by current oscilla-
tions. Especially for drives with a non-constant torque (e.g. diesel engine or piston 
compressor) these oscillations may reach critically high values, if the excitation is 
near to the eigenfrequency. It is also possible that different generators may excite 
each other until they fall out of synchronism. 

For damping of these oscillations all synchronous machines are equipped with 
a damper winding. The effect of such a damper winding is comparable with the 
squirrel-cage of an induction machine. 

For high-speed generators with cylindrical rotor damper bars are inserted into 
the slots of the rotor in addition to the excitation winding; these damper bars are 
short-circuited at their axial ends (even electrically conductive slot wedges may be 
used as damper bars). Solid rotors have a damping effect as well, because eddy 
currents may develop. For salient-pole synchronous machines there are additional 
slots with bars in the poles; then again the bars are short-circuited at their axial 
ends. 

The calculation of the damper winding can be started from the equations of the 
induction machine (the torque is negative as it decelerates the machine): 

 

( )

2
D 1

pull out ,IM
pull outpull out,IM 1

1

pull out

2
2 1

pull out

1

T U2 3p
, T

ssT
2X

1s s

R 1
s

X
1

−
−−

−

−

−
= =

σω
+

− σ

′ + σ
=

σ

− σ

 (13.14) 

Near to the synchronous speed (just small changes Δϑ  are regarded) there is: 

                                                           
24 In the mechanical analogon the synchronizing torque corresponds to the spring stiffness, the 
inertia divided by the number of pole pairs corresponds to the mass. 
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pull out

pull out

ss

s s

−

−

 (13.15) 

Consequently it follows: 

 D pull out,IM
pull out

2s
T T

s
−

−

≈ −  (13.16) 

The slip can be described as: 

 
0 0

0

0 0 0 0

d p

1 d 1 ddt
s

p dt p dt

ϑ
Ω − Ω +

Ω − Ω ϑ Δϑ
= = = − = −

Ω Ω Ω Ω
 (13.17) 

Therefore the damping torque becomes: 

 
pull out,IM

D
pull out 0

2T d d
T D

s p dt dt

−

−

Δϑ Δϑ
= =

Ω
 (13.18) 

Introducing this damping torque into the differential equation it follows: 

 
2

syn,0

2

Td D d
0

dt p dt p

Δϑ Δϑ
+ + Δϑ =

Θ Θ
 (13.19) 

The solution of this differential equation is a damped oscillation of the following 
kind: 

 ( )D

t
 

ee sin t
−

τ
Δϑ = Ω  (13.20) 

with the mechanical resonance frequency 

 2
2
D

e e,0
1

Ω = Ω −
τ

 (13.21) 

the damping 
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( ) ( )

( )

2
1

2
1 11

pull out ,IM 1
2 2

pull out 0 2 1 2 1 0
0

1

2
1

22
1 2 1

U3p
2 3p

U2X2T 1  D
s p R 1 R 1 p

p

X
1

U3p

R 1

−

−

σω
ω− σ= = =

′ ′Ω + σ + σ Ω
Ω

σ

− σ

=
′ω + σ

 (13.22) 

and the time constant 

 D

2

pD

Θ
τ =  (13.23) 

For maximizing the effect of the damper winding (and therefore damping the 

oscillations caused by load changes most quickly) the time constant Dτ  must be 

small or the damping D must be large. This means that the resistance 2R ′  must be 

small. Consequently there is high copper mass and costs needed for the damper 
cage. 

Besides the damping of oscillations the damper winding has two additional 
tasks: 

• From asymmetric loading an opposite rotating field with harmonic oscillations 
in stator voltage and stator current is generated, which causes additional iron 
losses and copper losses. In the damper winding currents are evoked that (ac-
cording to Lenz’ Law) act against their cause. Therefore, these harmonic oscil-
lations and the additional losses are strongly reduced. 

• With sufficient heat capacity of the damper winding the synchronous machine 
may be started with the damper cage like an induction machine. Because of the 
large slip during run-up the rotating field of the stator would induce high volt-
ages in the not-connected excitation winding; therefore the excitation winding 
is short-circuited at first. Reaching the no-load speed the excitation voltage is 
switched on and the machine synchronizes suddenly. This is accompanied by 
current pulses and oscillating torque components, so that this kind of run-up 
can be applied only for small power machines. 
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13.2 Steady-State Operation of Non Salient-Pole Synchronous 
Machines in Space Vector Notation 

Starting with the equations in space vector notation (which are also valid for the 
dynamic operation of electrical machines) the steady-state operation of the sym-
metric synchronous machine with non salient-pole (cylindrical) rotor shall be cal-
culated in this section. 

The air-gap is assumed being constant; the rotor shall be symmetric, i.e. there 
are two identical windings shifted electrically by 90°. The excitation winding is 
supplied with DC current via slip rings, the damper winding is short-circuited. 

 
According to Sects. 11.6 and 11.9 it follows in space vector notation: 

 ( ) ( )
( )

( )I
I I  I I

d t d
u t R i t j t

dt dt
 

ψ α
= + + ψ  (13.24) 

 ( ) ( )
( ) ( )

( )II
II II  II II

d t d
u t R i t j t

dt dt
 

ψ α − γ
= + + ψ  (13.25) 

 ( ) ( ) ( ){ } I  I

3
T t p Im i t t

2

∗
= ψ  (13.26) 

In the following a coordinate system is chosen that rotates in synchronism with 

the rotor: CS mechd dt d dtω = α = γ = ω . This coordinate system is rotor flux ori-

ented, consequently the axes are nominated with “d“ and “q“ (instead of “y“ and 
“x“). The stator systems are then called I, d  and I, q , the rotor systems II, d  and 

II, q . The splitting up of the above shown complex equations into their compo-

nents gives (analogously to Sect. 12.3): 

 

( ) ( )
( )

( )

( ) ( )
( )

( )

I,q
I,q 1  I,q CS I,d

I,d
I,d 1  I,d CS I,q

d t
u t R i t t

dt

d t
u t R i t t

dt

  

  

ψ
= + + ω ψ

ψ
= + − ω ψ

 (13.27) 
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( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )

II,q
II,q 2  II,q CS mech II,d

II,d
II,d 2  II,d CS mech II,q

d t
u t R i t t

dt

d t
u t R i t t

dt

 

 

ψ
′= + + ω − ω ψ

ψ
′= + − ω − ω ψ

 (13.28) 

 

( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

 I  I

I,q I,d I,q I,d

I,d I,q I,q I,d

3
T t p Im i t t

2

3
p Im i t j i t t j t

2

3
p t i t t i t

2

∗
= ψ

= − ψ + ψ

= ψ − ψ

 (13.29) 

During steady-state operation there are no changes of the flux linkages 

( d dt 0ψ = ) and the speed is constant ( mech d dt const.ω = γ = ). Now the excita-

tion winding is laid into the II, d -axis and the (short-circuited) damper winding 
into the II, q -axis. For most synchronous machines (in particular for large genera-

tors) the Ohmic resistance of the stator winding can be neglected. This is done in 
the following. 

Then the above set of equations becomes ( 1 CS d dt const.ω = ω = α = ): 

 
( ) ( )

( ) ( )

I,q 1 I,d

I,d 1 I,q

u t t

u t t

 

 

= ω ψ

= −ω ψ
 (13.30) 

 
( )

( ) ( )

2  II,q

II,d 2  II,d

0 R i t

u t R i t

 

 

′=

′=
 (13.31) 

 ( ) ( ) ( ) ( ) ( )I,d I,q I,q I,d

3
T t p t i t t i t

2
= ψ − ψ  (13.32) 

As the space vector theory has been developed in the energy consumption sys-
tem, this is the set of equations for the synchronous machine in the energy con-
sumption system. Usually the synchronous machine is described in the energy 
generation system (because generally this machine type is used as a generator, see 
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Chap. 5), therefore in the following the synchronous machine shall be described in 

terms of the energy generation system. To reach this the voltages I,du  and I,qu  

are changed in sign. Even the torque equation has to be attached with a negative 
sign, see below. The two stator voltage equations become: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

I ,d

I,q 1 I,d

1 1 I,d 1 1m II,d

1 I,q

1 1 I,q 1 1m II,q

u t t

L i t L i t

u t t

L i t L i t

 

    

 

    

= −ω ψ

= − ω − ω

= ω ψ

= ω + ω

 (13.33) 

The initial value of the rotating coordinate system shall be: 

 ( ) 1 0t tα = ω + α  (13.34) 

The reverse transformation of the stator voltage equations  

 

( )

( )

( )

( )

( ) ( )

11,u I,q
xy

1,v I,d

1

xy

u t u t
T ,

u t u t

cos sin

T 2 2
cos sin

3 3

−

−

=

α α

= π π
α − α −

 (13.35) 

then gives: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,u I,q I,d

I,q 1 I,d 1

u t u t cos u t sin

u t cos t u t sin t

= α + α

= ω + ϑ + ω + ϑ
 (13.36) 

Considering 

 

( ) { }
( ) { }
( ) { } { }

1

1

1 1

j t
1,u 1

j t j
1

j t j tj j
1

u t Re 2U e

cos t Re e e

sin t Im e e Re je e

ω

ω ϑ

ω ωϑ ϑ

=

ω + ϑ =

ω + ϑ = = −

 (13.37) 

it follows: 
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 { } { } { }1 1 1j t j t j tj j
1 I,q 1,dRe 2U e u Re e e u Re je eω ω ωϑ ϑ

= + −  (13.38) 

As there are no currents induced into the damper winding in steady-state opera-

tion, there is II,qi 0= . Consequently: 

 

{ } { } { }

( ) { }

{ }

1 1 1

1

1

j t j t j tj j
1 1 I,d 1 1,q

j t j
1 1 I,d 1m II,d

j t j
1 1 I,q

Re 2U e Re e e Re je e

L i L i Re e e

L i Re je e

ω ω ωϑ ϑ

ω ϑ

ω ϑ

= −ω ψ + ω ψ −

= −ω +

+ ω −

 (13.39) 

The left side of this equation describes a harmonic oscillation of a single fre-
quency. This has to be true even for the right side of the equation. Then the equali-
ty of both sides is unchanged if on both sides the respective imaginary compo-
nents are added. It follows: 

 

( ){ } { }

( ) ( )

1 1 1j t j t j tj j
1 1 1 I,d 1m II,d 1 1 I,q

j j
1 1 1 I,d I,q 1 1m II,d

2U e L i L i e e L i je e

1
U j L j i i e j L j i e

2

ω ω ωϑ ϑ

ϑ ϑ

= −ω + + ω −

= ω − + ω
 (13.40) 

Now the following currents are defined: 

 
I,q j

  1,q

i
I e

2

ϑ
=  (13.41) 

 
I,d j

  1,d

i
I j e

2

ϑ
= −  (13.42) 

 
II,d j

  2

i
I j e

2

ϑ′ = −  (13.43) 

Then the above voltage equation becomes: 

 ( )1 1 1   1,d   1,q 1 1m   2U j L I I j L I ′= ω − − − ω  (13.44) 
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With 

  1   1,q   1,dI I I= +  (13.45) 

and 

 P 1 1m   2U j L I ′= − ω  (13.46) 

it follows further: 

 P 1 1 1   1U U j L I= + ω  (13.47) 

This is the well-known voltage equation of the synchronous machine with cylin-
drical rotor (please refer to Sect. 5.1). Choosing the terminal voltage being real  

 1 1U U=  (13.48) 

the phasor diagram in the well-known form (see Sect. 5.1 and Fig. 13.1) can be 
drawn: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.1. Phasor diagram of the synchronous machine in steady-state operation. 

Splitting the stator current into d-axis component and q-axis component leads 
to the flux generating and torque generating parts. This becomes obvious by trans-
forming the torque equation: 

 1I  

1 1U U=  

1 1  1j L Iω  

PU  

ϕ

ϑ  

 1,dI  

 1,qI  

 2I ′  

d  

q

Im−

Re  
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( ) ( ) ( ) ( )
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( ) ( ) ( )
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1 1

P 1
1

P 1 G
1

e 2 I e

p p
j 3 X I I e 3 U I e

p p
3 U e I e e 3 U I

p
3 U I cos

p
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− ϑ − ϑ

− ϑ − ϑ

ϑ ϑ − ϑ

′= − =
ω ω

= =
ω ω

= ϑ + ϕ
ω

= δ
ω

 (13.49) 

The angle Gδ  is called load angle (angle between stator current and internal 

voltage of the machine, please refer to Sect. 5.1). 
With the relations 

 ( ) ( )P 1U cos U cosϑ + ϕ = ϕ  (13.50) 

and 

 ( ) ( )P 1 1U sin X I cosϑ = ϕ  (13.51) 
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it follows further: 

 

( )

( )

1 1
1

P 1

1 1

p
T 3 U I cos

U Up
3 sin

X

 

 

= ϕ
ω

= ϑ
ω

 (13.52) 

The equations obtained for calculating the torque of the synchronous machine 
with cylindrical rotor are already known from Chap. 5: 

• Torque from internal voltage, phase voltage and rotor angle  

 ( )P 1

1 1

U Up
T 3 sin

X

 
= ϑ

ω
 (13.53) 

• Torque from phase voltage, phase current and phase angle  

 ( )1 1
1

p
T 3 U I cos = ϕ

ω
 (13.54) 

• Torque from internal voltage, phase current and load angle  

 ( )P 1 G
1

p
T 3 U I cos = δ

ω
 (13.55) 
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13.3 Sudden Short-Circuit of Non Salient-Pole Synchronous 
Machines 

13.3.1 Fundamentals 

As an example for the dynamic operation of the synchronous machine the sudden 
three-phase short-circuit of a non salient-pole synchronous generator at no-load 
and nominal excitation will be calculated (no-load means: open terminals and ro-
tor mechanically driven at synchronous speed). Sudden short-circuit is the transi-
ent process that is occurring directly after short-circuiting of the stator terminals 
(in contrast to the permanent short-circuit that is present when all transient pro-
cesses are subsided); i.e. it is the transient phase between steady-state no-load op-
eration to steady-state short-circuit operation. 

For the sake of simplification the following approximations are introduced: 

• The speed of the rotor shall remain constant at synchronous speed during the 
transient operation (the generator further shall be driven mechanically with 
synchronous speed). 

• The non salient-pole machine shall be symmetric with two identical rotor wind-
ings shifted electrically by 90°. The excitation winding is supplied with DC 
current via two slip rings; the damper winding, lying in the quadrature axis, is 
short-circuited. 

• A rotating coordinate system with CS 1 mechd dt d dtα = ω = ω = ω = γ  (like in 

Sect. 13.2) is chosen. The stator is composed of systems I, d  and I, q , the ro-

tor shows the systems II, d  (excitation winding) and II, q  (damper winding). 

• The initial condition is defined by the switching moment: ( ) 1t tα = ω + ε . 

Here ε  is an (at this time) arbitrary phase angle. 

13.3.2 Initial Conditions for t = 0 

The original state before the sudden short-circuit is the no-load operation at nomi-
nal excitation. In this steady-state operation the Ohmic resistances of the stator 

winding generally can be neglected: 1R 0=  (this assumption will be abolished 

later). 
In the following the values just before the moment of switching get the addi-

tional index “0”. For the initial conditions it follows: 
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• The stator currents are zero, because the terminals are not connected; the 
damper current is zero, because there is a steady-state operation at synchronous 
speed. 

 

I,d,0 I,q,0 II,q,0

II,d,0
II,d,0

2

i i i 0

u
i

R

= = =

=
′

 (13.56) 

• For the flux linkages the following is true: 

 
I,d,0 1 I,d,0 1m II,d,0 1m II,d,0

I,q,0 1 I,q,0 1m II,q,0

L i L i L i

L i L i 0

   

  

ψ = + =

ψ = + =
 (13.57) 

 
II,d,0 2 II,d,0 1m I,d,0 2 II,d,0

II,q,0 2 II,q,0 1m I,q,0

L i L i L i

L i L i 0

   

  

′ ′ψ = + =

′ψ = + =
 (13.58) 

• The stator voltages are (calculation in the energy generation system): 

 

I,q,0
I,q,0 1  I,q,0 1 I,d,0 1 I,d,0

I,d,0
I,d,0 1  I,d,0 1 I,q,0 1 I,q,0

d
u R i

dt

d
u R i

dt

   

   

ψ
− = + + ω ψ = ω ψ

ψ
− = + − ω ψ = −ω ψ

 (13.59) 

Introducing the flux linkages into the stator voltage equations gives: 

 
I,q,0 1 1m II,d,0

I,d,0

u L i

u 0

  = −ω

=
 (13.60) 

and further: 
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II,d,0
I,q,0 1 1m

P,0 1,N 1 1m F,0

i
u L 2

2

2 U 2 U 2 L I

 

    

= −ω

= = = ω

 (13.61) 

From this last equation it follows: 

 
1,N

II,d,0
1 1m

U 2
i

L

−
=

ω
 (13.62) 

Now the voltage of phase u will be calculated by reverse transformation. As 
there is a symmetric operation before the moment of switching, the other two 
phase voltages are symmetrical to the first one; therefore it is not necessary to cal-
culate them separately. 

 

( ) ( )

( )

( )

1,u,0 I,q,0 I,d,0

1,N

1,N 1

u u cos u sin

2 U cos 0

2 U cos t

 

 

= α + α

= α +

= ω + ε

 (13.63) 

From this equation it can be deduced that the phase angle ε  introduced before 
characterizes the moment of switching: 

• For 0ε =  and time t 0=  the flux linkage in phase u is zero, i.e. the peak value 
of the voltage is induced. 

• For 2ε = π  and time t 0=  the flux linkage in phase u is maximum, i.e. the 

induced voltage is zero. 

13.3.3 Set of Equations for t > 0 

Now the above introduced approximation of neglecting the Ohmic resistances of 

the stator winding is abolished ( 1R 0≠ ), because these resistances are responsible 

for the subsiding of the stator currents (damping characteristic). 
The stator voltage equations are now in matrix notation (because of the short-

circuit of the terminals this is identical for the energy consumption system and the 
energy generation system): 
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I,d  I,d I,d I,q

1 1
I,q  I,q I,q I,d

u i0 d
R

u i0 dt

ψ −ψ
= = + + ω

ψ ψ
 (13.64) 

The rotor voltage equations become (as the excitation does not change with 

time, and it is further true CS 1 mechd dt d dtα = ω = ω = ω = γ ): 

 

1,N
II,d 2 II,d,0 2

1 1m
II,q

II,d II,d
2

II,q II,q

U 2
u R i R

L
u 0

0

i d
R

i dt

′ ′−
= = ω

ψ
′= +

ψ

 (13.65) 

According to the space vector theory the torque is calculated like (here in the 
energy consumption system): 

 I,d I,q I,q I,d

3
T p i i

2
 = ψ − ψ  (13.66) 

The flux linkages are: 

 
I,d I,d II,d

1 1m
I,q I,q II,q

i i
L L

i i

ψ
= +

ψ
 (13.67) 

and 

 
II,d II,d I,d

2 1m
II,q II,q I,q

i i
L L

i i

ψ
′= +

ψ
 (13.68) 

or summarized: 
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[ ]

I,d I,d1

I,q I,q1
1m

II,d II,d2

II,q II,q2

i1 0 1 0

i0 1 0 1
L

i1 0 1 0

i0 1 0 1

L

ψ + σ

ψ + σ
=

ψ + σ

ψ + σ

 (13.69) 

The currents are calculated by means of the inverted matrix [ ] 1
L

−
: 

 

[ ]

I,d I,d2

I,q I,q2

II,d II,d11m

II,q II,q1

1

i 1 0 1 0

i 0 1 0 11

i 1 0 1 0L

i 0 1 0 1

L
−

ψ+ σ −

ψ+ σ −− σ
=

ψ− + σσ

ψ− + σ

 (13.70) 

This set of equations together with the torque equation and the flux equations 
can be solved numerically. For easier programming the flux equations are trans-
formed like follows: 

 

I,d 1 I,d 1 I,q

I,q 1 I,q 1 I,d

1,N
II,d 2 2 II,d

1 1m

II,q 2 II,q

d
R i

dt

d
R i

dt

U 2d
R R i

dt L

d
R i

dt

  

  

 

ψ = − + ω ψ

ψ = − − ω ψ

′ ′ψ = − −
ω

′ψ = −

 (13.71) 

The currents are obtained by means of reverse transformation. According to the 
requirements the excitation current is located in the II, d -axis and the damper cur-
rent in the II, q -axis; therefore the rotor currents transformed to the stator winding 

are: 
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II,dF

II,qD

ii

ii
=  (13.72) 

The stator phase currents are calculated like follows (please refer to Sect. 11.3): 

 

( ) ( )

11,u I,q
xy

1,v I,d

1

xy

1,w 1,u 1,v

i i
T ,

i i

cos sin

T 2 2
cos sin

3 3

i i i

−

−

=

α α

= π π
α − α −
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 (13.73) 

With ( ) 1t tα = ω + ε  it follows further: 

 

( ) ( )1,u I,q 1 I,d 1

1,v I,q 1 I,d 1

1,w 1,u 1,v

i i cos t i sin t

2 2
i i cos t i sin t

3 3

i i i

= ω + ε + ω + ε

π π
= ω + ε − + ω + ε −

= − −

 (13.74) 

Using some approximation (which generally are fulfilled) the set of equations 
can be solved even analytically. The main advantage is that even qualitative pre-
dictions are possible and the influence of the different parameters can be investi-
gated on principle. In the following, this analytical solution is not shown in detail, 
just the results are given. 

The envelopes of the different time-dependent characteristics are: 

• current in phase u 
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ε
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• permanent short-circuit current (i.e. short-circuit current after subsiding of the 
transient processes) in phase u  

 

1
1,u,min,perm

1

1
1,u,max,perm

1

1,u,min,perm 1,u,perm 1,u,max,perm

2 U
i

X

2 U
i

X

i i i

 

 

= −

=

≤ ≤

 (13.76) 

• for t → ∞  there is: 

 ( ) ( )1,u,min 1,u,min,perm 1,u,max 1,u,max,permi t i ; i t i→ ∞ → → ∞ →  (13.77) 

• for t 0=  there is: 
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( ) ( )[ ]

( ) ( )[ ]

1
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1,stall

1
1,u,max
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2 U
i t 0 1 sin

X

2 U
i t 0 1 sin

X

 

 

= = − + ε

= = − − + ε

 (13.78) 

• excitation current 
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( ) ( ) ( )

F,stall 1,stall
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 (13.79) 

• damper current 

 
( ) ( )

( ) ( ) ( )

1,stall 1,stall

t t
  

D,min F,0 D,max F,0

D,min D D,max

1 1
i t i e ; i t i e

i t i t i t

− −
τ τ− σ − σ

= − =
σ σ

≤ ≤

 (13.80) 

• torque 

 

( )

( )

( ) ( ) ( )

F,stall 1,stall

F,stall 1,stall

t t2   
1

min
1 1

t t2   
1

max
1 1

min max

U3p
T t e e

X

U3p
T t e e

X

T t T t T t

 

 

− −
τ τ

− −
τ τ

= −
ω σ

=
ω σ

≤ ≤

 (13.81) 

In these equations the time constants and the reactances are: 

• no-load time constant of the rotor winding 
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( )2 1m

F
2

1 L

R

+ σ
τ =

′
 (13.82) 

• short-circuit (stall) time constant of the rotor winding 

 F,stall Fτ = στ  (13.83) 

• short-circuit (stall) time constant of the stator winding 

 1
1,stall

1

L

R
τ = σ  (13.84) 

• synchronous reactance 

 1 1 1X L= ω  (13.85) 

• short-circuit (stall) reactance 

 1,stall 1X X= σ  (13.86) 

It is obvious from the above equations that the short-circuit values F,stallτ , 

1,stallτ  and 1,stallX  determine the transient change between sudden short-circuit 

and permanent short-circuit. 
 
For high-speed generators the following orders of magnitude are quite usual: 

 

1
1,stall 1

N N

F,stall

1,stall

X
x x 0.15 0.25

U I

0.5 2s

60 250ms

= σ = σ =

τ =

τ =

 (13.87) 
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Now the time-dependent characteristics of stator current (in phase U), excita-
tion current, damper current, and torque shall be illustrated. For this a high-speed 
generator with the following data is calculated: 

 

1,N 1,N N

1 F,stall 1,stall

N

U 11kV,    I 758A,   P 20MW

X 21.77 , 0.2s, 104ms

T 127kNm

= = =

= Ω τ = τ =

=

 (13.88) 

13.3.4 Maximum Voltage Switching 

As it can be deduced from the above equations for the enveloping characteristics, 
the moment of switching (for maximum voltage switching there is 0ε = ) has no 
influence onto the maximum values of torque, excitation current, and damper cur-
rent. However, there is an influence onto the phase current. In the following Figs. 
13.2 to 13.6 all currents are given in kA, the torque is given in kNm and the time 
in s. 

Figure 13.2 shows the characteristic of the stator current in phase u (red) to-
gether with its medium value (magenta), the envelopes of the sudden short-circuit 
current (black dotted) and the envelopes of the permanent short-circuit current 
(blue dotted). The maximum value of the permanent short-circuit current is 

 1
1,u,max,perm

1

2 U
i

X
=  (13.89) 

and this is for the considered machine 715A (at a nominal value of 758A). The 
current for sudden short-circuit is  

 ( ) ( )[ ]1
1,u,max

1,stall

2 U
i t 0 1 sin

X

 
= = − − + ε  (13.90) 

and this is for the considered machine for maximum voltage switching ( 0ε = ) 

4764A (a factor of 1 σ  larger than the permanent short-circuit current). Conse-

quently the sudden short-circuit current is several times larger than the nominal 
current. The mean value of the current for maximum voltage switching is zero. 
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Fig. 13.2. Stator current in phase u (red) together with its medium value (magenta), the enve-
lopes of the sudden short-circuit current (black dotted) and the envelopes of the permanent short-
circuit current (blue dotted). 

The time dependent characteristics of torque, excitation current, and damper 
current are shown in Figs. 13.3 to 13.6 (in red each); the respective enveloping 
functions are shown as dotted black characteristics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.3. Torque (red) together with the envelopes of the sudden short-circuit torque (black dot-
ted). 
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A torque is generated that oscillates with the mains frequency and that subsides 
with time. The maximum value is  

 ( )
2
1

max
1 1

U3p
T t 0

X
= =

ω σ
 (13.91) 

and for the regarded generator amounts to 707.7kNm (at a nominal torque of 
127kNm; i.e. about a factor of 5.6 higher than the nominal torque). When con-
structing synchronous machines this high mechanical load has to be considered. 

The permanent short-circuit stator currents generate losses in the stator re-
sistances. These losses have to be covered by the driving torque (the power loss 
has to be equalized by the input power). As the speed has been assumed being 
constant, the acceleration torque is zero. Therefore, the torque balance gives 

 extT T= −  (13.92) 

As the external torque has to cover the losses, it follows 

 
( )

2

1 1,u ,max,permloss
ext

3R iP
T

2 n 2 n
= =

π π
 (13.93) 

and consequently (inserting the numbers from above) 

 
( )

2

1 1,u,max,perm3R i
T 488Nm

2 n
= − ≈ −

π
 (13.94) 

This low torque cannot be recognized in the above Fig. 13.3. But evaluating the 
same simulation like before with a different scale of the vertical axis results in Fig. 
13.4, which supports the above calculation. 

The currents I,di , I,qi , II,di , II,qi  are independent from the moment of switch-

ing ε . Therefore, even the time-dependent characteristics of the torque (Figs. 13.3 
and 13.4) and the time-dependent characteristics of the rotor currents (excitation 
current in Fig. 13.5 and damper current in Fig. 13.6) are independent from the 
moment of switching. The excitation current as well as the damper current reach 
multiples of their nominal values during sudden short-circuit (similar to the phase 
current). 
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Fig. 13.4. Torque (red) together with the envelopes of the sudden short-circuit torque (black dot-
ted); zoomed view compared to Fig. 13.3 concerning amplitude and time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.5. Excitation current (red) together with the envelopes of the sudden short-circuit excita-
tion current (black dotted). 
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Fig. 13.6. Damper current (red) together with the envelopes of the sudden short-circuit damper 
current (black dotted). 

13.3.5 Zero Voltage Switching 

In contrast to the rotor currents and the torque the stator phase current depends on 
the moment of switching ε . Switching at a time instant where the voltage is zero 

( 2ε = π ), the minimal and maximal values of the sudden short-circuit current are  

 

( ) ( )[ ]

( ) ( )[ ]

1 1
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1
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2 U 2 U
i t 0 1 sin 2

X X

2 U
i t 0 1 sin 0

X

 

 

= = − + ε = −

= = − − + ε =

 (13.95) 

Comparing the amplitudes of the extreme values of the stator phase current for 

t 0= , it is true that for 2ε = π  the double is reached than for the case 0ε = : 

9528A (factor 2 σ  higher than the permanent short-circuit current). In this case 

the sudden short-circuit current for 2ε = π  excesses the nominal value (758A) 

by more than a factor of 12. 
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The mean value of the phase current for t 0=  is 1

1,stall

2 U

X

−
 and subsides to ze-

ro with the short-circuit time constant of the stator winding 1,stallτ  (see Fig. 13.7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.7. Stator current in phase u (red) together with its medium value (magenta), the enve-
lopes of the sudden short-circuit current (black dotted) and the envelopes of the permanent short-
circuit current (blue dotted). 

13.3.6 Sudden Short-Circuit with Changing Speed and Rough 
Synchronization 

So far the sudden short-circuit of the non salient-pole machine has been calculated 
assuming that the speed is constant. This assumption shall be retracted now. For 
the following calculation it is assumed that: 

• At the time t 0s=  the machine operates with synchronous speed. 
• At the time t 0s=  the machine will be short-circuited, zero voltage switching 

for phase u ( 2ε = π ) is assumed (please refer to the preceding section). 

• The external driving torque extT  shall be zero for the entire regarded time peri-

od. 
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• The speed decreases after switching on the short-circuit, because the short-
circuit currents generate losses in the Ohmic resistances. 

• The slope of the speed decrease depends on the inertia; this is assumed being 
3 22.5 10 kgmΘ = ⋅ . 

• At the time t 0.2s=  the machine is switched to the mains again (still with 

extT 0= ). As generally not all synchronizing conditions (please refer to Sect. 

5.3) are fulfilled, a rough synchronization happens. 

The stator terminal voltages in d-q-representation after the rough synchroniza-
tion are time-dependent, because there is a time-dependent instantaneous angle ς  

between the q -axis (rotating with mech d dtω = γ ) and the location of the voltage 

1U  (which rotates with 1ω ): 1 mechd dtς = ω − ω (see Fig. 13.8). 

 
 
 
 
 
 
 
 
 
 
 

Fig. 13.8. Terminal voltages in d-q-representation after rough synchronization. 
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 (13.96) 

It follows: 

 
( )

( )
I,d I,d I,q

1 mech 1,N
I,q I,q I,d

i sind
R U 2

i cosdt

ψ ψ ς + ε
= − + ω +
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 (13.97) 
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Figures 13.9 to 13.13 on the one hand show the influence of the now time-
dependent speed, on the other hand the impact of the rough synchronization at the 
time t 0.2s=  is illustrated (like before the currents are represented in kA, the 
torque in kNm; the scale of the speed axis is in min-1). 

Figure 13.9 shows the time-dependent characteristic of the phase current. The 
small deviations compared to the respective figure in Sect. 13.3.5 (Fig. 13.7) in the 
first 0.2s , provoked by the slightly decreasing speed (time-dependent characteris-
tic of the speed see Fig. 13.13), are only noticeable by detailed analysis. The rough 
synchronization again evokes a transient operation with remarkable current oscil-
lations. As the machine is supplied by the mains voltage after this rough synchro-
nization, the final steady-state value of the phase current is no longer the perma-
nent short-circuit current, but it is equal to zero (because for these calculations the 
machine was assumed being unloaded). 

Even for the torque there is a transient in the time-dependent characteristic at 
time t 0.2s=  coming from the rough synchronization, see Fig. 13.10. It is obvi-
ous that the torque is negative directly after the short-circuit ( t 0s= ), directly af-
ter the rough synchronization ( t 0.2s= ) it is positive. Of course this depends on 
the relative position between the rotating stator field and the rotor at the time in-
stant of rough synchronization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.9. Stator current in phase u (red) together with its medium value (magenta), the enve-
lopes of the sudden short-circuit current (black dotted) and the envelopes of the permanent short-
circuit current (blue dotted). 
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Fig. 13.10. Torque (red) together with the envelopes of the sudden short-circuit torque (black 
dotted). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.11. Excitation current (red) together with the envelopes of the sudden short-circuit exci-
tation current (black dotted). 
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Fig. 13.12. Damper current (red) together with the envelopes of the sudden short-circuit damper 
current (black dotted). 

Even the excitation current (Fig. 13.11) shows the transient effect after rough 
synchronization, the final steady-state value is the respective nominal value. The 
maximum value of the excitation current after the rough synchronization has about 
the same value like after the short-circuit.  

The amplitude of the damper current after rough synchronization is even a fac-
tor of 1.5 larger than after the short-circuit; the final steady-state value is zero for 
each transient operation, see Fig. 13.12. 

Finally the speed-time-characteristic is shown in Fig. 13.13 (the synchronous 
speed for this machine is 1,500min-1). This speed-time-characteristic correlates 
with the torque-time-characteristic shown in Fig. 13.10: after the short-circuit the 
torque acts decelerating, after the rough synchronization it accelerates the rotor. 

During short-circuit ( 0s  to 0.2s ) the mean value of the speed in decreased, be-
cause the phase currents generate losses in the Ohmic resistances; this energy is 
taken from the reduction of rotational kinetic energy of the rotor (friction was ne-
glected). After the rough synchronization the machine is accelerated again and the 
speed oscillates transiently to the synchronous speed; this is done by means of the 
damper cage analogously to the operation of an induction machine. As in this sim-
ulation the entire load torque was assumed being zero (and therefore friction was 
neglected), the machine reaches the synchronous speed. 
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In reality the synchronous speed has to be adjusted by increasing the external 
driving torque (compensation of friction and other load torques) and stabilized by 
control (avoiding the overshoot). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.13. Speed-time-characteristic. 

13.3.7 Physical Explanation of the Sudden Short-Circuit 

In this section the physical conditions during sudden short-circuit of a synchro-
nous machine will be explained in principle. 

• During no-load operation the excited and rotating rotor generates a rotating  
flux distribution and consequently sinusoidal terminal voltages 

( ( )1,uu 2 U sin t = ω ); this is illustrated in Fig. 13.14. 
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Fig. 13.14. Principle situation just after the sudden short-circuit. 

• If the terminals of the machine are short-circuited, u 0≡  is true. Neglecting the 

Ohmic resistances ( 1R 0= ) the stator flux linkage becomes: d dt 0ψ = , there-

fore const.ψ =  

• The stator flux linkage remains constant because of the short-circuited termi-
nals, therefore the situation shown in Fig. 13.15 is valid after half a period: 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.15. Principle situation half a period after the sudden short-circuit. 
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and rotor again and no longer along the leakage paths, i.e. 1L  is relevant and 

no longer 1Lσ ). 

13.4 Steady-State Operation of Salient-Pole Synchronous 
Machines in Space Vector Notation 

In contrast to the synchronous machine with cylindrical rotor the salient-pole syn-
chronous machine is not constructed symmetrically, but the magnetic permeance 

is different in direct axis and quadrature axis ( d qX X> ). Therefore, the transfor-

mation may not be done arbitrarily, but it has to be oriented to the asymmetric part 
(rotor): only then constant mutual inductivities are obtained. 

Figure 13.16 is taken from Sect. 5.5. Here the replaced winding system of the 
salient-pole synchronous machine is designed in such a way that all windings are 
located in the d-axis (direct axis, axis of the excitation current) or perpendicular to 
this (q-axis, quadrature axis). Voltages and currents are shown here for the energy 
consumption system. 

Additionally it shall now be considered that a damper winding is present in the 

rotor having a direct component with the current Di  and a quadrature component 

with the current Qi . 

Analogously to Sect. 13.2 the following set of equations (here in the energy 

generation system) is obtained with CS mechω = ω : 

 

( ) ( )
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( )

( ) ( )
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I,q 1  I,q CS I,d

I,d
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d t
u t R i t t
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ψ
− = + + ω ψ
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− = + − ω ψ

 (13.98) 
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 (13.99) 
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 ( ) ( ) ( ) ( ) ( )I,d I,q I,q I,d

3
T t p t i t t i t

2
= − ψ − ψ  (13.100) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.16. Sketch of the salient-pole synchronous machine: original system (above left), re-
placement (above right) and two-phase replacement (below). 

Setting up the equations for the flux linkages the correct consideration of the 
sign is important. In the direct axis the stator winding and the excitation winding 
are magnetizing in the same direction, if they conduct positive current. However 
the damper winding magnetizes in opposite direction. In the quadrature axis the 
stator winding and the damper winding are magnetizing in opposite direction. 
There is no magnetic coupling between the direct axis and the quadrature axis. 
The following matrix equation is obtained for the flux linkages: 
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 (13.101) 

The external driving torque extT  has to overcome the electrodynamic torque T  

of the machine and the acceleration torque accT : 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

ext acc

2

I,d I,q I,q I,d 2

T t T t T t

3 d
p t i t t i t

2 p dt

= +

Θ γ
= − ψ − ψ +

 (13.102) 

With the equations for the flux linkages, the stator voltage equations, and the 
torque equation the salient-pole synchronous machine is described completely in a 
coordinate system rotating in synchronism with the rotor. 

Starting from these equations in space vector notation (for the calculation of the 
dynamic behavior) firstly as a special case the steady-state operation of the salient-
pole synchronous machine is regarded. In steady-state operation there is no time-

dependent change of the flux linkages ( d dt 0ψ = ) and the speed is constant 

( mechd dt const.γ = ω = ). In addition, in the following the stator resistance will be 

neglected ( 1R 0= ). Then the set of equations becomes: 

 
( ) ( )

( ) ( )

I,q CS I,d

I,d CS I,q

u t t

u t t

 

 

= −ω ψ

= ω ψ
 (13.103) 
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( )

( )

( ) ( )

D

Q

F F F

0 i t

0 i t

u t R i t 

=

=

= −

 (13.104) 

 ( ) ( ) ( ) ( ) ( ) ( )ext I,d I,q I,q I,d

3
T t T t p t i t t i t

2
= = − ψ − ψ  (13.105) 

 
( ) ( ) ( )

( ) ( )

I,d d I,d dF F

I,q q I,q

t L i t L i t

t L i t

  

 

ψ = +

ψ =
 (13.106) 

All currents and voltages are now DC values; therefore in the following an ex-
plicit time-dependency is to be omitted. The other flux linkages are not interesting 

any longer. Inserting the flux linkages gives (with CS mechω = ω ): 

 

( )

( )

I,d mech q I,q

I,q mech d I,d dF F

F F F

I,d I,d I,q I,q
mech

u L i

u L i L i

u i R

3 p
T i u i u

2

  

 

 

  

= ω

= −ω +

= −

= +
ω

 (13.107) 

Using an analogous calculation like in Sect. 13.2 the reverse transformation is per-

formed; for the rotating coordinate system the angle ( )tα  is chosen as: 

 ( ) 1 0 0t t ,α = ω + α α = ϑ  (13.108) 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,u I,q I,d

I,q 1 I,d 1

u t u t cos u t sin

u t cos t u t sin t

= α + α

= ω + ϑ + ω + ϑ
 (13.109) 

and further (analogous to the calculation in Sect. 13.2): 
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 ( ) ( )j j
1 1 d I,d q I,q 1 dF F

1
U j j L i L i e j L j i e

2
   ϑ ϑ

= ω − + ω  (13.110) 

With the definitions from Sect. 13.2 

 
I,q j

  1,q

i
I e

2

ϑ
=  (13.111) 

 
I,d j

  1,d

i
I j e

2

ϑ
= −  (13.112) 

 

jF
P 1 dF

jF
1 dF

i
U j L j e

2

i
L e

2

ϑ

ϑ

= − ω −

= − ω

 (13.113) 

the stator voltage equation becomes 

 1 1 d   1,d 1 q   1,q PU j L I j L I U    = − ω − ω +  (13.114) 

Omitting the index “1“, it follows further with the direct axis reactance d dX L= ω  

and the quadrature axis reactance q qX L= ω : 

 q   q d   d PU jX I jX I U+ + =  (13.115) 

With this the phasor diagram of the salient-pole synchronous machine can be 
drawn (please compare to Sect. 5.5), see Fig. 13.17. A transformation of the volt-
age equation delivers: 

 

 
( )

q   q d   d P   d   q

q d q   d P

U jX I jX I U , I I I

U jX I j X X I U

+ + = = +

+ + − =
 (13.116) 

This leads to the next phasor diagram (Fig. 13.18) that often is used in practice. 
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Fig. 13.17. Phasor diagram of salient-pole synchronous machines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.18. Alternative phasor diagram of salient-pole synchronous machines. 
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This phasor diagram can be developed from the machine data like follows: 

• Given are U , I , and ϕ , e.g. as measurement values. 

• The voltage U U=  is chosen being real. 

• The current I  is drawn considering the phase angle ϕ .  

• Perpendicular to this phasor I  the phasor qjX I  is drawn with its base at the 

top of the phasor U U= .  

• The direction of the internal voltage PU  is defined by the origin of the coordi-

nate system and the tip of the phasor qjX I . With this even the angle ϑ  and 

the direction of the q-axis are fixed.  
• Perpendicular to the q-axis the d-axis is located. Now the current I  can be di-

vided into the components  dI  and  qI .  

• At the tip of the phasor qjX I  the base of the phasor ( )d q   dj X X I−  is locat-

ed; by this the value of the internal voltage PU  is known (base of PU  in the 

origin, tip of PU  identical with the tip of the phasor ( )d q   dj X X I− ). 

The salient-pole synchronous machine differs from the synchronous machine 
with cylindrical rotor by the different reactances in d- and q-axis. For 

d qX X X= =  the above given equations and phasor diagrams deliver the respec-

tive description of the synchronous machine with cylindrical rotor. 
For the torque the equation 

 ( )d d q q

3 p
T i u i u

2
 = +

ω
 (13.117) 

holds true. Inserting the rms-values dI , dU , qI , qU  instead of the DC values, it 

follows: 

 ( )d d q q

3p
T I U I U = +

ω
 (13.118) 

Consequently, the active power of direct axis and quadrature axis are added. 

From the above phasor diagram the following relations can be deduced ( dU  

and qU  come from the segmentation of U  according to d- and q-axis): 
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( )

( )P
d d

d

U U cos
I , U U sin

X

− ϑ
= = ϑ  (13.119) 

 
( )

( )q q
q

U sin
I , U U cos

X

ϑ
= = ϑ  (13.120) 

Inserting this, the torque becomes: 

 

( )

( )
( )

( )
( )

( ) ( ) ( )

( ) ( )

d d q q

P

d q

2P

d q d

2
P

d q d

3p
T I U I U

U U cos U sin3p
U sin U cos

X X

U U3p 1 1
sin U cos sin

X X X

UU3p U 1 1
sin sin 2

X 2 X X

  = +
ω

− ϑ ϑ
= ϑ + ϑ

ω

= ϑ + − ϑ ϑ
ω

= ϑ + − ϑ
ω

 (13.121) 

This result is already known from Chap. 5: the first summand corresponds to 
the torque of the non salient-pole synchronous machine and it depends on the ex-
citation, the second summand is the so-called reaction torque (reluctance torque) 
and it is not dependent on the excitation (it is merely generated by the difference 
in the magnetic permeance in d- and q-axis). Because of this reluctance torque the 

pull-out torque is reached at a rotor angle less than 2π , see Fig. 13.19 (and Fig. 

5.23). This figure shows the ratio of torque and pull-out torque 

( ratio pull outT T T −= ) versus the rotor angle ϑ  for different excitations PU U : 

• red:  PU U 0=  

• blue:  PU U 0.5=  

• green: PU U 1.0=  

• magenta: PU U 2.0=  

• black: torque of the non-salient-pole synchronous machine for  

   PU U 1.0=  (for comparison reasons) 
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In addition to the shift of the pull-out torque to smaller rotor angles it can be 
deduced that the salient-pole synchronous machine delivers a higher pull-out 
torque for the same excitation current, because of the additional reluctance torque 

component (assumed is d,salient pole non salient poleX X− − −= ). In addition it becomes 

obvious that for the assumed relation d qX 2X=  the pull-out torque without exci-

tation (i.e. the reluctance pull-out) is just half of the pull-out torque of the non-
salient-pole machine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.19. Ratio of torque and pull-out torque versus rotor angle for different excitations. 

13.5 Sudden Short-Circuit of Salient-Pole Synchronous 
Machines 

13.5.1 Initial Conditions for t = 0 

With some approximations the sudden short-circuit of the salient-pole synchro-
nous machine can be calculated analytically. As there is a considerable calculation 
effort, in the following only the numerical solution is regarded. 

Firstly the initial conditions have to be determined. The situation before the 
sudden short-circuit shall be the no-load operation with nominal excitation (this 
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means that the excitation winding is supplied by its nominal voltage and the rotor 
rotates with synchronous speed). The values before the switching moment are 
nominated in the following with the additional index “0”. The initial conditions 
then are: 

• The stator currents are zero, because the terminals are not connected; the 
damper current is zero, because there is a steady-state operation at synchronous 
speed. 

 d,0 q,0 D,0 Q,0i i i i 0= = = =  (13.122) 

• The stator voltages are (calculation in the energy generation system): 

 
( )

d,0 q,0 q q,0

q,0 d,0 d d,0 dF F,0 dF F,0 1,N

u L i 0

u L i L i L i 2  U

= ωψ = ω =

= −ωψ = −ω + = −ω =
 (13.123) 

• From the last equation it follows: 

 
1,N

F,0
dF

2  U
i

L
= −

ω
 (13.124) 

• In addition it is true: 

 
( )

F,0 F F,0

ext,0 d,0 d,0 q,0 q,0
mech

u R i

3 p
T i u i u 0

2

 

  

=

= + =
ω

 (13.125) 

Similar to the calculation of the non salient-pole machine the angle 

( ) 1t tα = ω + ε  is chosen. Then it follows by means of reverse transformation: 

( ) ( )

( )

( )

1,u,0 I,q,0 I,d,0

1,N

1,N 1

u u cos u sin

2 U cos 0

2 U cos t

 

 

= α + α

= α +

= ω + ε
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The angle ε  therefore characterizes the moment of switching (like for the cal-
culation of the non salient-pole machine): 

• For 0ε =  and time t 0=  the flux linkage in phase u is zero, i.e. the peak value 
of the voltage is induced. 

• For 2ε = π  and time t 0=  the flux linkage in phase u is maximum, i.e. the 

induced voltage is zero. 

13.5.2 Set of Equations for t > 0 

Transforming the set of equations of the salient-pole synchronous machine (see 
Sect. 13.4) into the description in state space, it can be solved with numerical 
methods on a digital computer. The set of equations in the energy generation sys-

tem and for CS mechω = ω  is (the explicit time-dependency and the index “I“ are 

omitted for the sake of simplicity): 

 

( )

d
d d 1 q

q
q q 1 d

F
F F F

D
D D

Q
Q Q

ext d q q d

d
u i R  

dt

d
u i R  

dt

d
u i R

dt

d
i R

dt

d
i R

dt

d p 3
T p i i

dt 2

 

 

 

 

 

ψ
= − − + ω ψ

ψ
= − − − ω ψ

ψ
= − −

ψ
= −

ψ
= −

ω
= − ψ − ψ

Θ

 (13.126) 

The relation between the currents and the flux linkages is given by the inductiv-

ity matrix [ ]L . 
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 [ ]

d d

F F
 1

D D

q q

Q Q

i

i

i L

i

i

−

ψ

ψ

ψ=

ψ

ψ

 (13.127) 

with 

 [ ]

d dF dD

dF F DF

dD DF D

q qQ

qQ Q

L L L 0 0

L L L 0 0

L L L 0 0L

0 0 0 L L

0 0 0 L L

−

−

− −=

−

−

 (13.128) 

For calculation of the sudden short-circuit the stator voltages for t 0>  are set to 
zero: 

 d qu u 0= =  (13.129) 

The block diagram shown in Fig. 13.20 illustrates the above set of equations. 
 
Performing a respective simulation for calculating the sudden short-circuit of 

the salient-pole synchronous machine (for this the machine data have to be 
known), time-dependent characteristics are obtained that are similar (but not iden-
tical) to those obtained for the sudden short-circuit of the synchronous machine 
with cylindrical rotor: 

• In the case of sudden short-circuit the stator current reaches a very high value, 
which subsides to the permanent short-circuit current. 

• The excitation current increases to a very high value as well; subsequently it 
decreases analogously to the stator current. 

• The transformed stator currents di  and qi  are DC currents in steady-state op-

eration; di  is the reactive component (magnetizing), qi  is the active compo-

nent (torque). 
• The damper currents (for the regarded salient-pole synchronous machine these 

are Di  and Qi ) are only relevant during a small time interval directly after the 

switching, otherwise they are zero. 
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Fig. 13.20. Block diagram of the salient-pole synchronous machine. 
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Having a constant driving torque extT  instead of a constant speed, the speed 

decreases after the short-circuit (analogously to the behavior of the non salient-
pole machine), because the short-circuit currents generate losses in the Ohmic re-
sistances. These losses are supplied by a reduction of the kinetic energy of the sys-
tem. 

The calculation of the salient-pole synchronous machine is more complex than 
the calculation of the synchronous machine with cylindrical rotor, because there is 
an additional differential equation for the damper winding. 

13.6 Transient Operation of Salient-Pole Synchronous Machines 

The dynamic operation can be calculated similar to the steady-state operation if 
some simplifying requirements are assumed. The integration of a nonlinear set of 
equations is avoided, but it has to be checked always, if the assumptions are valid 
for the regarded operation: 

• The speed of the salient-pole synchronous machine is assumed being constant. 
The larger the inertia of the rotating masses, the better this assumption is ful-
filled. 

• The effect of the damper winding is not considered: Either the transient process 
of the damper currents subsides very quickly (considerably faster than the tran-
sient process of the stator phase currents), or there does not exist a damper 
winding. 

• The transformatorily induced voltage components can be neglected compared 

to the rotatorily induced voltage components (e.g. d
q

d
 

dt

ψ
ωψ ). 

• The excitation flux linkage Fψ  is constant during the entire transient period. 

This is valid, e.g. if the machine is equipped with a voltage controller that com-
pensates the Ohmic voltage drop at the resistance in the excitation circuit if the 

current changes: F
F F F

d
u R i 0

dt

ψ
− − = = . 

If these conditions are fulfilled it is called the “transient operation” of the syn-
chronous machine (compared to the “dynamic operation” regarded in the preced-
ing section). From the general set of equations for the salient-pole synchronous 
machine the following set of equations for this transient operation can be deduced: 
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( )

d d 1 q

q q 1 d

F F F

D D

Q Q

ext d q q d

0 u i R  

0 u i R  

0 u i R

0 i R

0 i R

p 3
0 T p i i

2

 

 

 

 

 

= − − + ω ψ

= − − − ω ψ

= − −

= −

= −

= − ψ − ψ
Θ

 (13.130) 

Neglecting the Ohmic voltage drop at the stator resistance it follows: 

 

( )

d q

q d

F F F

D

Q

ext d q q d

u

u

u i R

i 0

i 0

3
T T p i i

2

= +ωψ

= −ωψ

= −

=

=

= = ψ − ψ

 (13.131) 

The flux linkages are: 

 [ ]

d d

F F

D D

q q

Q Q

i

i

iL

i

i

ψ

ψ

ψ =

ψ

ψ

 (13.132) 

with 
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 [ ]

d dF dD

dF F DF

dD DF D

q qQ

qQ Q

L L L 0 0

L L L 0 0

L L L 0 0L

0 0 0 L L

0 0 0 L L

−

−

− −=

−

−

 (13.133) 

Consequently (with D Qi i 0= = ) there is: 

 

F F F dF d

d d d dF F

q q q

L i L i

L i L i

L i

 

 

 

ψ = +

ψ = +

ψ =

 (13.134) 

The set of equations for this transient operation has the same form like the set of 
equations for the steady-state operation, but there is one main difference: 

• steady-state operation:   excitation current Fi const.=  

• transient operation:   excitation flux F const.ψ =  

Because of the constant excitation flux it follows (the index “0“ characterizes the 
steady-state situation before the switching): 

 

( )

F F F dF d

F,0 F F,0 dF d,0

dF dF
F d F,0 d,0

F F

dF
F F,0 d,0 d

F

L i L i

L i L i

L L
i i i i

L L

L
i i i i

L

  

  

ψ = +

= ψ = +

+ = +

= + −

 (13.135) 

Therefore the excitation current Fi  changes with the stator current di . For the in-

ternal voltage there is: 

 P FdFu L i= −ω  (13.136) 

With this an additional difference between steady-state and transient operation 
becomes obvious: 
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• steady-state operation:  internal voltage Pu const.=  

• transient operation: internal voltage Pu const.≠  

Further: 

 

( )

( )

( )

P dF F

dF
dF F,0 d,0 d

F

dF
dF F,0 dF d,0 d

F

dF
P,0 dF d d,0

F

u  L i

L
 L i i i

L

L
L i  L i i

L

L
u  L i i

L

 

 

= −ω

= −ω + −

= −ω − ω −

= + ω −

 (13.137) 

With 

 
2
dF

dF
d F

L
1

L L
σ = −  (13.138) 

it follows: 

 
( )

( ) ( )

dF
P P,0 dF d d,0

F

P,0 dF d d d,0

L
u u  L i i

L

u 1  L i i

= + ω −

= + − σ ω −

 (13.139) 

The flux linkage in the d-axis becomes: 

 

( )

( )

d d d dF F

dF
d d dF F,0 d,0 d

F

2 2
dF dF

dF F,0 d d d d,0
d F d F

dF F,0 dF d d dF d d,0

L i L i

L
L i L i i i

L

L L
L i L i 1 L i

L L L L

L i L i 1 L i

  

 

  
  

    

ψ = +

= + + −

= + − +

= + σ + − σ

 (13.140) 

Consequently the voltage equation of the quadrature axis becomes: 
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 ( )[ ]
( )

q d

dF F,0 dF d d dF d d,0

dF F,0 dF d d dF d d,0

u  

L i L i 1 L i

L i  L i 1 L i

    

   

= −ω ψ

= −ω + σ + − σ

= −ω − ω σ − ω − σ

 (13.141) 

With the internal voltage before the switching moment P,0 F,0dFu  L i= −ω  and the 

transient reactance d dF dX  L ′ = σ ω  the voltage in the quadrature axis is: 

 
( )

( )

q dF F,0 dF d d dF d d,0

P,0 d d dF d d,0 d d

u  L i  L i 1 L i

u X i 1 X i with X L

    

  

= −ω − ω σ − ω − σ

′= − − − σ = ω
 (13.142) 

A transformation (all constant values before the switching moment are written on 
the left side) gives: 

 ( )P,0 dF d d,0 q d d Pu 1 X i u X i u  ′ ′− − σ = + =  (13.143) 

The value P q d du u X i′ ′= +  therefore is a constant during the transient operation 

(analogously to the value P q d du u X i= + , which is constant for steady-state op-

eration). 
For the internal voltage it holds: 

 
( ) ( )

( )
P P,0 dF d d d,0

P dF d d

u u 1  L i i

u 1 X i 

= + − σ ω −

′= + − σ
 (13.144) 

The voltage in the direct axis is unchanged: 

 d q q qu  X i= +ω ψ =  (13.145) 

Now the description can be changed from space vectors to rms-values by using 
the respective equations of the preceding sections. The voltage equations for the 
transient operation then are: 
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( )

( )

P P,0 dF d d,0

q d d

P P dF d d

d q q

U U 1 X I

U X I const.

U U 1 X I

U X I

 

 

 

′ = − − σ

′= + =

′= + − σ

=

 (13.146) 

For the rms-values (and for the phasor diagram developed from the above equa-

tions, see Fig. 13.21) it holds: During transient operation no longer PU  is constant 

(like in steady-state operation), but PU′  is constant. The value of PU′  can be cal-

culated from the conditions just before the switching moment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.21. Phasor diagram of the salient-pole synchronous machine in transient operation. 

For the torque it holds during the transient operation: 

 ( )d d q q

3p
T I U I U= +

ω
 (13.147) 

From the phasor diagram the following relations can be deduced: 

 

( ) ( )

P q d
d q

d q

d q

U U U
I I

X X

U U sin U U cos
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′
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By insertion it follows: 

 

( )
( )

( )
( )

( ) ( ) ( )

( ) ( )

P

d q

2P

d q d

2
P

d q d

U U cos U sin3p
   T U sin U cos

X X

U U3p 1 1
sin U sin cos

X X X

U U3p 1 1 U
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X X X 2

 

 

′ − ϑ ϑ
= ϑ + ϑ

′ω

′
= ϑ + − ϑ ϑ

′ ′ω

′
= ϑ + − ϑ

′ ′ω

 (13.149) 

With the nominal torque of the synchronous machine (please refer to Chap. 5) 

 
( )N N N

N

3U I cos
T

p

ϕ
=

ω
 (13.150) 

the ratio of the torque during transient operation to the nominal torque of the syn-
chronous machine becomes: 

 

( ) ( )
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( ) ( )

( )

2
P

d q d
N

N N NN
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d q d

N N

U U3p 1 1 U
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X X X 2T
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3U I cosT

p
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= =

ϕ
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′
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ϕ

 (13.151) 

With 

 

N P
N P

N N

qd
d q

N N

U U
X u

I U

XX
x x

X X

′
′= =

′
′= =

 (13.152) 

it follows in normalized description: 
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( )

( ) ( )P
ratio

N N d q d

uT 1 1 1 1
T sin sin 2

T cos x x x 2

′
= = ϑ + − ϑ

′ ′ϕ
 (13.153) 

Relating the torque to the pull-out torque of a respective non-salient-pole syn-
chronous machine, Fig. 13.22 is obtained (this figure can be compared directly to 

the figures shown in Sects. 13.4 and 13.5; PU U 0.5=  has been chosen). It be-

comes obvious that during transient operation a considerably higher pull-out 
torque is achieved than during steady-state operation. Moreover the pull-out 

torque is reached for a rotor angle 2ϑ > π , whereas for the steady-state operation 

the pull-out torque is reached for 2ϑ < π . This effect comes from the fact that 

during transient operation the excitation flux is kept constant by increasing the ex-
citation current (and therefore even the torque) to a considerably higher value. Af-
ter subsiding of the time-dependent characteristics the new steady-state operation 
is obtained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.22. Torque (normalized to the pull-out torque) versus rotor angle characteristic of the sa-
lient-pole synchronous machine in steady-state and transient operation. 

Having the synchronous machine supplied from the mains the transient opera-
tion can be evoked by two different load changes: 
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• Electrical load change: A switching action in the supplying mains suddenly 

changes mains voltage and mains reactance. For calculating PU′  the values of 

the steady-state operation just before the switching moment have to be taken. 
For the time period after the switching moment the new values of mains volt-

age and mains reactance have to be considered. Because of PU′  being constant 

the currents dI  und qI  change nearly according to a step-function. Therefore 

the machine generates a different torque than before the switching moment. 
Because of the inertia the rotor moves with synchronous speed; consequently a 

torque difference occurs resulting in a movement ( )tϑ  of the rotor angle. 

• Mechanical load change: When the driving torque is changed suddenly, mains 
voltage and mains reactance remain unchanged. Directly after this disturbance 
the same currents like before are flowing, consequently the torque generated by 
the synchronous machine is unchanged. Because of the change of the driving 

torque there is a torque difference resulting in a movement ( )tϑ  of the rotor 

angle. Subsequently even the currents and the torque of the synchronous ma-
chine are changed. 
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14 Dynamic Operation and Control of 
Permanent Magnet Excited Rotating Field 
Machines 

14.1 Principle Operation 

As already described in Chap. 6, the principle operation of the permanent magnet 
excited rotating field machine is like follows: 

The synchronous machine contains permanent magnets to generate the excita-
tion field, but there is no starting cage present. The three-phase machine is sup-
plied by an inverter which realizes a three-phase current system. As a main differ-
ence to what is described in Chap. 6, here no limiting assumptions concerning the 
time-dependency of the currents is made (especially there is no need for sinusoidal 
currents). 

The fundamental frequency of the supplying three-phase system determines the 
frequency of the rotating magneto-motive force and therefore even the rotor speed. 
The rotating magneto-motive force together with the field of the permanent mag-
net rotor generates the torque. Mostly, this torque shall be as smooth as possible. 
The rotation of the rotating stator field is realized depending on the rotor position 
by means of the inverter in such a way, that the electrical angle between rotating 

magneto-motive force of the stator and the rotor field is 2π  (i.e. ϑ = −ϕ ). With 

this the load angle in the energy consumption system already defined in Sect. 6.3 

becomes M G 0δ = −δ = −ϑ − ϕ = . 

The rotor position can be measured by using sensors or it can be deduced from 
the terminal voltages and/or terminal currents. 

An operation is obtained that does no longer correspond to the synchronous 
machine, but to the DC-machine: 

• DC-machine: magneto-motive force of the armature and excitation field build 

an electrical angle of 2π ; this adjustment is performed mechanically by 

means of the commutator. 
• Synchronous machine: the rotor angle ϑ  and the phase angle ϕ  are adjusted 

depending on the operation point; there is no active influence on the phase shift 
between magneto-motive force of the stator and excitation field. 

• Electronically commutated permanent magnet excited rotating field machine: 
magneto-motive force of the stator and rotor field build an electrical angle of 

2π ; this adjustment is performed electronically by means of the inverter. 
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14.2 Set of Equations for the Dynamic Operation 

In Fig. 14.1 a two-poles machine is shown; the ratio of pole arc per pole pitch is 

i 1α < . Moreover a magnetic asymmetry with d qL L≠  is present. This is caused 

by the fact that the geometric air-gap along the circumference is constant whereas 
the magnetic effective air-gap is not constant (magnet materials have a relative 

permeability of about r,PM 1μ ≈ ; compared to this iron shows a very high relative 

permeability: r,Fe 1μ ). The special case that the magnets are placed onto the 

surface of a cylindrical iron rotor is included in the following description, if 

d qL L L= =  is used. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14.1. Sketch of a two-poles permanent magnet excited rotating field machine. 

Assuming that there is no damper winding also means that the rotor is manu-
factured from iron sheets (solid iron is electrically conductive and therefore would 
have a damping effect) and that rare-earth magnets (SmCo or NdFeB) have to be 
made of several isolated parts, because even these materials are electrically con-
ductive (this is not the case for the much cheaper ferrite magnets). 

For such a permanent magnet excited rotating field machine just a system of 
three windings has to be considered (as the coordinate system is oriented to the ro-
tor flux, the axes are nominated with “d“ and “q“): 

• I, d : stator direct axis (reactive current, flux generating) 
• I, q : stator quadrature axis (active current, torque generating) 

• II, d :  rotor direct axis (permanent magnets) 
• II, q :  rotor quadrature axis (no winding) 
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As the permanent magnets are magnetizing in the direct axis, i.e. in the direct axis 

there is the large iron-iron-distance between stator and rotor, it follows: d qL L< . 

The electrical angular frequency of the rotor is: 

 mech

d
2 pn

dt

γ
ω = = π  (14.1) 

The following coordinate system is chosen: 

 CS mech

d d

dt dt

α γ
ω = = = ω = ω  (14.2) 

Analogously to Chap. 6 the energy consumption system is used here, because 
this machine topology mainly is used as a motor. 

By means of the space vector theory for rotating field machines the following 
set of equations is obtained (for the permanent magnets there does not exist a volt-
age equation; the constant rotor flux evoked from the permanent magnets is con-

sidered by the constant substitutive excitation current II,d,0i  in the equation of the 

stator flux linkage):25 

 ( )

( )

( )

I,d
I,d 1 I,d I,q

I,q
I,q 1 I,q I,d

I,d 1 md I,d md II,d,0

I,q 1 mq I,q

I,q I,d I,d I,q load

d
u R i

dt

d
u R i

dt

1 L i L i

1 L i

3 d
T p i i T

2 p dt

ψ
= + − ωψ

ψ
= + + ωψ

ψ = + σ +

ψ = + σ

Θ ω
= ψ − ψ = +

 (14.3) 

                                                           
25 This set of equations is very similar to that of the salient-pole synchronous machine (see Sect. 
13.5), but with two main differences: firstly, here the energy consumption system is used, and 

secondly for the permanent magnet excited machine d qL L<  is true, whereas for the salient-

pole synchronous machine d qL L>  is true. This comes from the fact that the magnetically ef-

fective air-gap (the iron-iron distance between stator and rotor) for the salient-pole synchronous 
machine is smaller in the d-axis than in the q-axis; for the permanent magnet excited machine 
however it is vice versa. 
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No-load operation with nominal voltage and nominal frequency is character-
ized by: 

 I,d I,qi i 0= =  (14.4) 

Then it follows for the flux linkages 

 
I,d md II,d,0

I,q

L i

0

ψ =

ψ =
 (14.5) 

and for the voltages 

 
I,d

I,q I,d md II,d,0

u 0

u L i

=

= ωψ = ω
 (14.6) 

If sinusoidal time-dependencies can be assumed, it follows with 

 
I,q

1,N

u
U

2
=  (14.7) 

for the substitutive excitation current 

 

I,q 1,N md II,d,0

1,N
II,d,0

md

u 2  U L i

2  U
i

L

= = ω

=
ω

 (14.8) 

The substitutive internal voltage is 

 P md II,d,0u L i= ω  (14.9) 

Now the flux linkages are inserted into the voltage equations and the torque 
equation. It follows: 
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( )[ ] ( )

( ) ( )[ ]

( )[ ] ( )( )

I,d 1 I,d 1 md I,d md II,d,0 1 mq I,q

I,q 1 I,q 1 mq I,q 1 md I,d md II,d,0

I,q 1 md I,d md II,d,0 I,d 1 mq I,q

load

d
u R i 1 L i L i 1 L i

dt

d
u R i 1 L i 1 L i L i

dt

3
T p i 1 L i L i i 1 L i

2

d
  T

p dt

= + + σ + − ω + σ

= + + σ + ω + σ +

= + σ + − + σ

Θ ω
= +

 (14.10) 

Further 

 

( ) ( )

( ) ( )[ ]

( ) ( )( )

I,d 1 I,d 1 md I,d 1 mq I,q

I,q 1 I,q 1 mq I,q 1 md I,d md II,d,0

I,q 1 md 1 mq I,d md II,d,0

load

d
u R i 1 L i 1 L i

dt

d
u R i 1 L i 1 L i L i

dt

3
T p i 1 L 1 L i L i

2

d
  T

p dt

= + + σ − ω + σ

= + + σ + ω + σ +

= + σ − + σ +

Θ ω
= +

 (14.11) 

With 

 ( ) ( )d 1 md q 1 mqL 1 L , L 1 L= + σ = + σ  (14.12) 

it follows: 

 [ ]

( )

I,d 1 I,d d I,d q I,q

I,q 1 I,q q I,q d I,d md II,d,0

I,q md II,d,0 q d I,d load

d
u R i L i L i

dt

d
u R i L i L i L i

dt

3 d
T p i L i L L i T

2 p dt

= + − ω

= + + ω +

Θ ω
= − − = +

 (14.13) 

Introducing the time constants 
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qd

d q
1 1

LL
,

R R
τ = τ =  (14.14) 

the following differential equations are obtained: 

 

I,d
d I,d I,d q I,q

1

I,q II,d,0
q I,q I,q d I,d

1 1

qII,d,0
d I,d I,q load

1 d

ud
i i i

dt R

u id
i i i

dt R 1

Lid 3
pL 1 i i T

p dt 2 1 L

τ + = + ωτ

τ + = − ωτ +
+ σ

Θ ω
= − − −

+ σ

 (14.15) 

where rotor position and speed are linked by: 

 
d d

2 pn
dt dt

γ α
= = ω = π  (14.16) 

With this set of differential equations the permanent magnet excited rotating 
field machine is described completely. 

In the base speed region the machine is operated in such a way that stator MMF 

and rotor field (excitation field, md II,d,0L i ) are perpendicular to each other. Then 

the stator current component in the direct axis has to be zero ( I,di 0= ); the stator 

current component in the quadrature axis I,qi  is the torque generating component. 

The voltages in the direct axis and in the quadrature axis can be deduced from the 
above equations. 

However, if a control method with I,d I,d,i i 0∞= ≠  is used (e.g. with I,di 0<  

for field weakening), stator MMF and rotor field are no longer perpendicular to 
each other (this operation mode will be explained in detail in the next Sect. 14.3). 
For the direct axis voltage equation in steady-state operation (i.e. no more change 

of the currents I,di  and I,qi ) there is: 

 
I,d

I,d, q I,q
1

u
i i

R
∞ = + ωτ  (14.17) 

Then for the dynamic operation it follows: 
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 d I,d I,d I,d,

d
i i i

dt
∞τ + =  (14.18) 

The solution of this differential equation is well-known, the current characteristic 
is: 

 d

t
 

I,d I,d,i i 1 e
−

τ

∞= −  (14.19) 

The block diagram of the controlled permanent magnet excited rotating field ma-
chine can be deduced from the above equations; it is shown in Fig. 14.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14.2. Block diagram of the controlled permanent magnet excited rotating field machine. 
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14.3 Steady-State Operation 

14.3.1 Fundamentals 

In the following the steady-state operation of permanent magnet excited rotating 
field machines will be calculated. As in principle they show the same motor con-
struction, permanent magnet synchronous machines (with sinusoidal currents) and 
brushless DC-motors (with step-by-step constant currents) will be regarded simul-
taneously. Because not always sinusoidal currents are used, the space vector theo-
ry has to be used even for the steady-state operation. In addition, the general case 
of machines with buried magnets will be considered by having different inductivi-

ties in d-axis and q-axis as d qL L<  (surface mounted magnets are covered as a 

special case for d qL L L= = ). 

In steady-state operation the time derivatives of currents and speed are zero. 
Consequently the set of equations can be simplified to: 

 [ ]

( )

I,d 1 I,d q I,q

I,q 1 I,q d I,d md II,d,0

I,q md II,d,0 q d I,d

u R i L i

u R i L i L i

3
T p i L i L L i

2

= − ω

= + ω +

= − −

 (14.20) 

With P md II,d,0u L i= ω  it follows further: 

 

( )

I,d 1 I,d q I,q

I,q 1 I,q d I,d P

I,q P q d I,d

u R i L i

u R i L i u

3 p
T i u L L i

2

= − ω

= + ω +

= − ω − ω
ω

 (14.21) 

14.3.2 Base Speed Operation 

For the permanent magnet excited rotating field machine (BLDC-motor as well as 
PMSM) the positive q-direction is defined in the real axis and the positive d-
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direction in the negative imaginary axis (please note that this d-q coordinate sys-
tem has the positive horizontal axis opposite to the positive horizontal axis of the 
complex plane). 

During base speed operation the angle between the magneto-motive force of 
the stator and the rotor field is 90° electrically. The rotor field is drawn in the di-
rect axis (negative imaginary axis), see also Sect. 14.2; the magneto-motive force 

of the stator merely is composed of the current I I,q I,Ni i i= =  (quadrature axis, 

real axis), the current in the direct axis is I,di 0= . Then the load angle becomes: 

M 0δ = −ϑ − ϕ = . The described operation condition usually is reached with a 

power factor of about cos 0.8ϕ ≈  and without magnetic asymmetry 

( d qL L L= = ). The set of equations then becomes  

 

I,d I,q

I,q 1 I,q P

I,q P

u Li

u R i u

3 p
T i u

2

= −ω

= +

=
ω

 (14.22) 

The equations of the machine are illustrated in the vector diagram of Fig. 14.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14.3. Vector diagram of the permanent magnet excited rotating field machine in base speed 
operation. 
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In this vector diagram26 the voltage space vector is (please refer to Sect. 11.3) 

 

{ } { }

( )

I I I

I,q I,d

1 I,q P I,q

1 I,q P I,q

u Re u j Im u

u j u

R i u j Li

R i u j Li

= +

= −

= + − −ω

= + + ω

 (14.23) 

14.3.3 Operation with Leading Load Angle and without Magnetic 
Asymmetry 

During operation with leading load angle Mδ  and without magnetic asymmetry it 

is still true: d qL L L= = . But now, in addition to the torque producing current 

I,qi  (quadrature axis), a negative current component I,di 0<  is supplied to the di-

rect axis. As this negative d-axis current is opposite to the rotor field (in the nega-
tive imaginary axis), it has a demagnetizing effect (therefore, this is called “field 

weakening“). Consequently, I,qi  has to be decreased, so that the total current Ii  is 

not exceeding the nominal value (to avoid overheating). Therefore: 

 I,d I,q I,N I I,Ni 0, i i , i i< ≤ =  (14.24) 

The set of equations becomes 

 

I,d 1 I,d I,q

I,q 1 I,q I,d P

I,q P

u R i Li

u R i Li u

3 p
T i u

2
 

= − ω

= + ω +

=
ω

 (14.25) 

                                                           
26 Please note that complex phasors were introduced as the non time-dependent components of 
the complex description of sinusoidally time-dependent variables (please refer to Sect. 1.6). In 
this chapter, explicitly non-sinusoidal time-dependencies of the variables are permissible. There-
fore, the respective illustration is called vector diagram and not phasor diagram. 
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Because of this additional current in the negative d-axis I,di  the angle between 

the magneto-motive force of the stator ( Ii ) and the rotor field (in the negative im-

aginary axis) is enlarged to more than 90° electrically. Consequently, the angle ϕ  

between voltage and current decreases, i.e. the power factor is changed into the di-

rection cos 1ϕ → . Moreover, for I,di 0≠  even for the load angle holds true 

M 0δ ≠ . These characteristics are illustrated in the vector diagram shown in Fig. 

14.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14.4. Vector diagram of the permanent magnet excited rotating field machine with leading 
load angle and without magnetic asymmetry. 

Neglecting the Ohmic voltage drop in the voltage equations, the current in the 

negative d-axis I,di  has the following consequences: 

• The current I,qi  decreases, because the total current is limited. 

• Consequently the absolute value of the voltage I,d I,qu Li= −ω  decreases as 

well. 

• Then the voltage I,q I,d Pu Li u= ω +  may increase because of 

( ) ( )
2 2

I I,q I,d I,Nu u u u= + ≤ . As furthermore I,dLiω  and Pu  are oppo-
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Re  
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site to each other, the voltage Pu  increases. Because the magnetization is con-

stant, this can only be realized by increasing the speed. 

• From the torque equation I,q P

3 p
T i u

2
=

ω
 it is obvious that the torque decreas-

es: Pu

ω
 describes the magnetization and this is constant; the lower current I,qi  

leads to a lower torque. 

Therefore, a typical field weakening operation is obtained (lower torque at 
higher speed; please compare e.g. with the field weakening operation of the induc-
tion machine). 

If the lowering of the torque shall be omitted, an additional torque component 
has to be generated to compensate for this effect. This is reached by an additional 
reluctance torque component by introducing a magnetic asymmetry. 

14.3.4 Operation with Leading Load Angle and Magnetic 
Asymmetry 

During operation with leading load angle Mδ  and with magnetic asymmetry it is 

now d qL L< . Like in the preceding section the following holds: 

• In addition to the torque generation current I,qi  (quadrature axis) a current in 

the negative d-axis I,di 0<  is applied; for the load angle M 0δ ≠  holds true. 

• This current in the negative d-axis has a demagnetizing effect. 

• The torque generation current I,qi  has to be decreased, so that the total current 

Ii  is not exceeding the nominal value (to avoid overheating). 

The according vector diagram is shown in Fig. 14.5. 
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Fig. 14.5. Vector diagram of the permanent magnet excited rotating field machine with leading 
load angle and with magnetic asymmetry. 

The torque can be calculated from: 

 ( )I,q P q d I,d

3 p
T i u L L i

2
= − ω − ω

ω
 (14.26) 

At constant speed the torque can be increased to the initial value by means of 

the positive reluctance torque component ( )q d I,d I,q

3 p
L L i i

2
− ω − ω

ω
. Depending 

on the design of the electromagnetic circuit the torque may be even higher than in-
itially. This can be used in two different ways: 

• increase of the speed; 
• reduction of the current. 

By suitable electromagnetic design of the machine the current can be reduced 
and simultaneously the power factor cos ϕ  can be improved. This leads to lower 

losses in the machine and the supplying inverter (because of the lower current lev-
el) as well as to a lower apparent power of the inverter (because of the improved 
power factor). 
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14.3.5 Torque Calculation from Current Loading and Flux 
Density 

With P Pu  = ω Ψ  the torque equation becomes 

 

( )

( ) ( ) ( ){ }

( ) ( ) ( )( )

I,q P q d I,d

I M P q d I M

2
I M P I M M q d

3 p
T i L L i

2

3
p i cos L L i sin

2

3 3
p i cos p i cos sin L L

2 2

= ωΨ − ω − ω
ω

= δ − − − δ

= δ + δ δ −

Ψ

Ψ

 (14.27) 

With ( ) ( ) ( )M M M

1
cos sin sin 2

2
δ δ = δ  it follows further 

 ( ) ( )( )2
I M P I M q d

3 3
T p i cos p i sin 2 L L

2 4
= δ + δ −Ψ  (14.28) 

The flux linkage of the permanent magnet field can be calculated from the flux 
density amplitude of the working wave and the effective number of turns 

( effw w = ξ ; the factor 2 π  is the result of integrating the assumed sinusoidal 

flux waveform over the pole area, i.e. over a half period): 

 

P eff

eff

2 r 2
w B

2p

2r
w B

p

π
=

π

=

Ψ

 (14.29) 

The amplitude of the current loading of the working wave can be calculated by 

means of the amplitude of the current Ii  (the factor 2 in the following equation 

comes from the fact that each turn is composed of forward and return conductor): 

 eff
I

m 2w
A i

2 r
=

π
 (14.30) 

With the number of phases m 3=  it follows: 
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 I
eff

r
i A

3w

π
=  (14.31) 

In total, for the torque this results in: 

 

( )

( )( )

( )

( ) ( )

M eff
eff

2

M q d
eff

2
M

2

q d M
eff

3 r 2r
T p A cos w B

2 3w p

3 r
p A sin 2 L L

4 3w

r  A B cos

3 r
p A L L sin 2

4 3w

 
π

= δ +

π
δ −

= π δ +

π
− δ

 (14.32) 

Applying the calculation of the inductivity from Sect. 4.2 to the calculation of 

dL  and qL  results in 

 

( )

( )

2

eff
d 1 0

d

2

eff
q 1 0

q

w3 4 r
L 1

2 p

w3 4 r
L 1

2 p

= + σ μ
π δ

= + σ μ
π δ

 (14.33) 

where dδ  and qδ  are the magnetically effective air-gaps in d-axis and q-axis, re-

spectively. Inserting this to the above torque equation gives 

  

( )

( ) ( )

( ) ( ) ( )

2

2
M

eff

2

eff
1 0 M

q d

2 2 2 0
M 1 M

q d

3 r
T r  A B cos p A

4 3w

w3 4 1 1
1 r sin 2

2 p

1 1
 r  A B cos r  A 1 r sin 2

2p

π
= π δ +

+ σ μ − δ
π δ δ

μ
= π δ + π + σ − δ

δ δ

⋅

 (14.34) 
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As this has been deduced on the basis of the space vector theory, this result is 
valid for every moment in time, even for supplying the machine with non-
sinusoidal currents. The torque is made of two components, the permanent magnet 
excited torque and the reluctance torque. These components are: 

 ( )2
PM MT r  A B cos= π δ  (14.35) 

 ( ) ( )2 2 0
Rel 1 M

q d

1 1
T r  A 1 r sin 2

2p

μ
= π + σ − δ

δ δ
 (14.36) 

The permanent magnet excited torque is proportional to the bore volume 

( 2rπ ), to the current loading ( A ), to the flux density ( B ), and to the cosine of 

the load angle Mδ . For M 0δ =  the maximum permanent magnet excited torque 

is reached, which is the usual operating condition in the base speed region (except 
for the so-called MTPA control, see Sect. 14.4.2). 

The reluctance torque as well is proportional to the bore volume ( 2rπ ). In 

addition, main influencing factors are the squared current loading ( 2A ), the dif-

ference of the inverse values of q-axis and d-axis air-gaps 
q d

1 1
−

δ δ
, and the si-

ne of the double load angle. For machines without magnetic asymmetry (i.e. ma-

chines with surface mounted magnets where d qL L= is true) or without field 

weakening ( I,di 0= , i.e. load angle M 0δ = ) this torque component is zero. 

14.4 Limiting Characteristics and Torque Control 

14.4.1 Limiting Characteristics 

From the two stator voltage equations 

 
I,d 1 I,d q I,q

I,q 1 I,q d I,d P

u R i L i

u R i L i u

= − ω

= + ω +
 (14.37) 
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it follows by neglecting the Ohmic resistance ( 1R 0= ) and with P Pu = ωΨ  

 
I,d q I,q

I,q d I,d P

u L i

u L i

= −ω

= ω + ωΨ
 (14.38) 

Now, the current and voltage limits, depending on the perpendicular current com-

ponents I,di  and I,qi , will be computed. The current limit is a circular function  

 2 2 2 2
max I,d I,qi i i i≥ = +  (14.39) 

and for the voltage limit there is an elliptic function 
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( ) ( )

( ) ( )

2 2 2 2
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2 2
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2 22
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2
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u u u u

L i L i

L i L i

u
L i L i

≥ = +

= ω + ω + ωΨ

= ω + + Ψ

≥ + + Ψ
ω

 (14.40) 

Figure 14.6 illustrates these limits in the I,di - I,qi -plane. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14.6. Voltage and current limits. 
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The characteristics of these operation limits are: 

• The voltage limit changes to circles (instead of ellipses) shifted to the left from 

the origin, if surface mounted magnets ( d qL L= ) are used. 

• The voltage limit is speed dependent: with increasing speed the possible area of 
operation is narrowing increasingly. 

• The current limit is independent from machine topology and speed. 

14.4.2 Torque Control 

The torque equation can be transformed like follows: 

 

( )

( )

( )

I,q P q d I,d

I,q P q d I,d

I,q P q d I,d

3 p
T i u L L i

2

3 p
i L L i

2

3
p i L L i

2

= − ω − ω
ω

= ωΨ − ω − ω
ω

= Ψ − −

 (14.41) 

From this equation Fig. 14.7 with characteristics of equal torque value (iso-torque 

characteristics) in the I,di - I,qi -plane is deduced for machines with surface mount-

ed magnets and machines with buried magnets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14.7. Torque characteristics for machines with surface mounted magnets (left) and machines 
with buried magnets (right). 
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From Fig. 14.7 it is obvious that torque control is much easier for machines 

with surface mounted magnets ( d qL L= , here a linear relation exists between the 

current I,qi  and the torque) than for machines with buried magnets ( d qL L< , for 

these machines I,di  and I,qi  have to be controlled simultaneously, in addition the 

relation is non-linear). 
Now, the question shall be answered how to choose the current components 

I,di  and I,qi  to reach the required torque with minimum total current (minimum 

losses, maximum efficiency).27 In literature, this is often referred to as “MTPA - 
maximum torque per ampere” control. However, more precisely it should be 
called “MTPC - maximum torque per current” control. For this, three cases are 
distinguished: 

 
1. Low speed, i.e. voltage limit is not relevant  

For a certain torque the total current is then minimal if the current vector and 

the vector ( )grad T  have the same direction. In Fig. 14.8 this is given on the 

dark blue curve. Therefore, this curve gives the optimum operating points of 
the machine.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14.8. Optimum torque characteristic at low speed. 

                                                           
27 Minimum total current leads to minimum losses and maximum efficiency, if the iron losses 
and permanent magnet losses are neglected. This approximation is valid for low speed (i.e. low 
frequency), at high speed iron and permanent magnet losses may even become dominant. 
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2. Medium speed (low field weakening); i.e. voltage limit is relevant  

Because of the voltage limitation the maximum torque is lower than in the 
case above; moreover, the optimum curve for reaching the required torque 
(dark blue curve) partly proceeds along the voltage limit curve, see Fig. 14.9.
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14.9. Optimum torque characteristic at medium speed.  
 
 

3. High speed (strong field weakening); i.e. current limit is not relevant  
At strong field weakening only the voltage limit is relevant; the limit of the 
maximum total current is not longer reachable.  
The additional black characteristic in Fig. 14.10 features that limitation, for 
which the torque is decreasing again if the current is further increased and the 
voltage is hold on its limit. With other words: the black characteristic shows 
those operating points, where the required torque is reached with minimum 
flux (as can be deduced from the ellipse equation for the voltage limit, the el-
lipses are the operating points with constant flux). As this lower torque can be 
reached even with lower current, such an operation is not suitable. Therefore, 
this operating area is excluded.  
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Fig. 14.10. Optimum torque characteristic at high speed. 

4. Summary 
The suitable operation area of the machine according to the above discussion 
is marked in grey in Fig. 14.11.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 14.11. Optimum torque characteristic for the entire speed range. 
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14.5 Control without Mechanical Sensor 

The mechanical speed has to be known for the speed controlled permanent magnet 
excited machine, see Sect. 14.2. However, as already mentioned in Sect. 12.6, me-
chanical speed sensors have some disadvantages that preferably should be avoid-
ed: 

• vulnerability against outside impacts (forces, torques, temperatures, dirt) 
• costs 
• space consumption 
• necessity of a free shaft extension  

Therefore, even for the permanent magnet excited machine it is desirable to 
calculate the speed from the measured terminal values of the machine (often this 
method is referred to as “sensorless” speed control). 

In the following just a short overview of different possibilities will be given for 
the sake of completeness, a detailed description of the alternatives would be far 
beyond the scope of this book. 

A first group of methods deals with direct electrical measurement (DC-voltage, 
DC-current, phase voltages, and / or phase currents) and a calculation of the re-
quired values by means of a nonadaptive machine model (similar to what is de-
scribed in Sect. 12.6 for the induction machine). 

These calculations can be improved by adaptive methods. Among these “Model 
Reference Adaptive Systems (MRAS)”, observer based estimators (e.g. Luen-
berger observer, sliding mode observer), and Kalman filters are the most im-
portant ones. 

A third group makes use of machine saliency and / or signal injection (with ro-
tating or alternating carrier). In many AC machines, the position dependence is a 
feature of the rotor. In the case of the interior PMSM there is a measurable spatial 
variation of inductances or resistances (saliencies) in the d- and q-axis due to ge-
ometrical and saturation effects, which can be used for the estimation of rotor po-
sition (e.g. used for the INFORM-method). Another method to estimate the rotor 
position is to add a high frequency stator voltage or current component and evalu-
ate the effects of the machine anisotropy on the amplitude of the corresponding 
stator voltage or current component. 

Finally there is a group of methods making use of artificial intelligence. Most 
prominent are neural networks, fuzzy logic based systems and fuzzy neural net-
works. 
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15 Concentrated Windings 

15.1 Conventional Concentrated Windings 

Electrical machines with non-overlapping concentrated windings have become an 
increasingly popular alternative to machines with distributed windings for certain 
applications. Concentrated winding machines (characterized by the fact that each 
coil is wound around a single tooth) have potentially more compact designs com-
pared to the conventional machine designs with distributed windings, due to short-
er and less complex end-windings. With such windings, the volume of copper 
used in the end-windings can be reduced in significant proportions, in particular if 
the axial length of the machine is small. Consequently, lower costs and lower 
losses can be expected. Even the process of manufacturing the coils is simplified, 
resulting in a very cost-effective solution. In addition such a winding design is bet-
ter qualified for safety critical applications, because phase-to-phase short-circuits 
become very unlikely. The photographs (Fig. 15.1) illustrate these differences ex-
emplarily. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.1. Photographs of different winding topologies (left: concentrated winding, right: distrib-
uted winding). 

There is a large variety of possibilities to realize an electrical machine with 
concentrated windings, e.g. 

• coils wound around every tooth (often referred to as “two-layer winding”) or 
coils wound around every other tooth (“single-layer winding”); 

• different number of teeth side by side with coils of the same phase; 
• torque producing rotating field wave (in the following called “working wave”) 

being the fundamental or a higher harmonic. 
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Some of these windings can be calculated according to Sect. 3.4, considering 
the concentrated winding as a special case of a distributed winding with an ex-
treme short-pitch factor. 

In the following, the concentrated winding will be analyzed analogously to 
Sect. 3.3 (supplying the machine with a symmetric current system and calculating 
the time-dependent MMF distribution). Afterwards, for this MMF distribution a 
Fourier analysis will be performed, which gives the harmonics of the MMF distri-
bution. 

Because of the large variety of possibilities, this will be done in the following 
by looking at the example of a double-layer three-phase machine with twelve sta-
tor slots, having two teeth side by side with coils of the same phase. This winding 
layout is shown in Fig. 15.2. 

 
 
 
 

 
 

Fig. 15.2. Winding layout of a machine with concentrated coils (“wound-off” representation of 
the stator lamination); red: phase u, yellow: phase v, blue: phase w. 

The MMF distribution for t 0ω =  and t 2ω = π  is illustrated in Fig. 15.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.3. MMF distribution of the winding shown in Fig. 15.2 versus circumference coordinate, 

functions normalized to a maximum value of 1; t 0ω =  (left), t 2ω = π  (right). 

The harmonic analysis, which results in a time-independent characteristic for 
the given example, is presented in Fig. 15.4. A large number of MMF harmonics 
with high amplitude becomes obvious. The presence of these harmonics is the 
main disadvantage of concentrated windings, as they cause a variety of problems 
(mainly additional losses and acoustic noise). 
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Fig. 15.4. Harmonic analysis of the MMF distribution (normalized amplitude versus harmonic 
number) of the winding shown in Fig. 15.2. 

For calculating the torque of an electrical machine, not the amplitude of the 
MMF working wave is essential, but the amplitude of the current loading working 
wave (please refer to Sect. 14.3.5). From Sect. 3.5 it can be deduced that the cur-
rent loading waves can be calculated from the spatial derivative of the MMF 
waves. Having a Fourier analysis of the MMF distribution means that all MMF 
waves are harmonic ones. Therefore, the respective spatial derivative means that 
the current loading waves are harmonic as well (with a phase shift of 90° electri-
cally) and the amplitudes are proportional to the amplitudes of the MMF waves 
multiplied by the respective harmonic number. The result of the harmonic analysis 
of the current loading distribution is shown in Fig. 15.5.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 15.5. Harmonic analysis of the current loading distribution (normalized amplitude versus 
harmonic number) of the winding shown in Fig. 15.2. 
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It is obvious that the waves with the harmonic numbers 5 and 7 may be used 
for torque production. Usually, higher harmonics are not used because the slot 
opening effect (that was not regarded in these calculations) increasingly reduces 
the amplitude with rising harmonic number. Using the waves with harmonic num-
ber 5 or 7 as working wave means that 10 or 14 poles are generated (e.g. a wave 
with harmonic number 5 contains 5 complete sinusoidal waves per circumference, 
which means that there are 5 north poles and 5 south poles). 

Using a permanent magnet machine, the number of magnet poles in the rotor 
determines the working wave (please refer to Sect. 3.7: the number of poles of sta-
tor and rotor must be identical to generate a time-independent torque). Using this 
kind of winding with an induction motor (e.g. with a squirrel-cage rotor) torque 
generation will be very problematic, because the rotor adapts itself to any pole 
number of the stator. As the stator generates several pole numbers this will result 
in a very poor torque output. 

If the 5th harmonic is used as working wave, the number of slots per phase per 
pole is according to Eq. (3.3) 

 1N 12
q 0.4

2pm 10 3
= = =

⋅
 (15.1) 

If the 7th harmonic is used as working wave, the number of slots per phase per 
pole is 

 1N 12
q 0.29

2pm 14 3
= = ≈

⋅
 (15.2) 

Therefore, these kinds of windings are called “fractional slot winding”. 
 
The existence of a large number of MMF harmonics with high amplitudes has 

some severe disadvantages: 

• harmonics with similar, but not identical ordinal number and high amplitudes 
cause radial force waves with high amplitudes and low ordinal number, result-
ing in annoying acoustic noise; 

• for permanent magnet machines the harmonics (and especially the sub-
harmonics with respect to the working wave) cause additional losses, namely 
iron core losses and eddy current losses in electrically conductive permanent 
magnets (like NdFeB or SmCo); 

• for induction machines it will be hardly possible to generate a useful torque, as 
the squirrel-cage rotor adapts to any pole number of the stator. 
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15.2 Improved Concentrated Windings 

15.2.1 Increased Number of Stator Slots from 12 to 24 

Because of the severe disadvantages it is necessary to reduce the unwanted har-
monics by far (at least to an amount where their disturbing effect is nearly negligi-
ble). This will be explained exemplarily using the winding described in Sect. 15.1 
and a rotor with 10 poles. Therefore, all low-order harmonics except for the 5th 
one have to be reduced to achieve an acceptable machine behavior. 

The stator MMF distribution can be calculated by the following equation: 
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where ν
Θ  is the amplitude of the ν th MMF space harmonic, w

ν
ξ  is the winding 

factor, î  is the phase current amplitude, Mδ  is the load angle, ω  is the angular 

frequency, and N is the number of turns per coil. Splitting this winding system in-

to two identical winding systems, shifted against each other by an angle wα , the 

resulting MMF distribution for the combined winding system becomes: 
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where Z
ν

ξ  is called distribution factor. 

Figure 15.6 shows this distribution factor Z
ν

ξ  for the first three relevant MMF 

harmonics ( 1,5, 7ν = ) as a function of the shifting angle wα . This shifting angle 



454      15 Concentrated Windings 

wα  is given in number of stator slots, because only these discrete values are pos-

sible for shifting the two winding systems against each other. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.6. Winding factors of the first three relevant MMF harmonics as a function of the shifting 
angle (measured in number of stator slots). 

It can be deduced from Fig. 15.6 that reducing the 7th harmonic and maintain-
ing the 5th harmonic results in a shift of the two winding systems of about 2.5 sta-
tor slots.28 As mentioned before, it is only possible to shift the two winding system 
by an integer number of stator slots. To realize the desired shift, the number of sta-
tor slots will be doubled, resulting in a shift of five stator slots. This is illustrated 
in Fig. 15.7. 

The combination of both winding systems is shown in Fig. 15.8. Of course it 
becomes obvious that the resulting winding is no longer purely concentrated, but 
partly overlapping. Nevertheless, this winding has the great advantages that the 
unwanted 7th harmonic is reduced by far and the end winding in circumferential 
direction is maintained as short as for the purely concentrated winding. Even if the 
end winding in total gets a little bit larger compared to the purely concentrated 
winding (because of the partly overlapping design), the end winding Ohmic losses 
are reduced by far compared to a conventional overlapping winding. 

                                                           
28 For a machine with 14 rotor poles the 7th harmonic has to be maintained and the 5th harmonic 
has to be reduced. This results in a shift of the two winding systems of about 3.5 stator slots. 
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Fig. 15.7. Winding layout of a machine with two identical winding systems shifted against each 
other (“wound-off” representation of the stator lamination, please refer to Fig. 15.2); red: phase 
u, yellow: phase v, blue: phase w. 

 
 
 
 
 
 

Fig. 15.8. Combination of both winding systems shown in Fig. 15.7 (“wound-off” representation 
of the stator lamination); red: phase u, yellow: phase v, blue: phase w. 

The MMF harmonics of the winding layout of Fig. 15.8 is presented in Fig. 
15.9. It becomes obvious that the 7th harmonic is reduced by far. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.9. Harmonic analysis of the MMF distribution (normalized amplitude versus harmonic 
number) of the winding shown in Fig. 15.8. 
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1. Slightly different tooth widths are used to shift both winding systems a little bit 
more than the 2.5 slots shown in Fig. 15.6, please refer to Fig. 15.10 for a prin-
ciple sketch. This results in completely reducing the 7th harmonic.29 

2. The fundamental wave can be reduced by using different turns per coil for the 
neighbouring phase coils, which is also illustrated in Fig. 15.10.30 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.10. Principle winding and lamination layout for reduction of the fundamental and 7th 
harmonic (“wound-off” representation of stator and rotor; only one phase shown for the sake of 
clarity; n1 and n2 denote different number of turns per coil). 

With suitable design and optimization concerning the reduction of the funda-
mental harmonic and the 7th harmonic, an MMF distribution with a very low num-
ber of harmonics can be achieved. Such a design is illustrated in Fig. 15.11, show-
ing the spectrum of the stator MMF distribution. The main advantages of such a 
winding design are: 

• Low Ohmic stator losses because of short end windings. 
• Low eddy current rotor losses because of low harmonic content in the MMF 

spectrum (especially low fundamental MMF harmonic). 
• Low radial forces (as a reason for acoustic noises) because of low harmonic 

MMF waves near to the harmonic number of the working wave. 
• Low torque ripple (please refer to Fig. 15.12). 
• Low production costs because of short end windings and nearly concentrated 

coils. 
 

                                                           
29 Of course, this additional feature can even be used differently. Possible alternatives are the 
maximizing of the 5th harmonic (which is the working wave) or the additional reduction of fur-
ther harmonics that are not shown in Fig. 15.6. 
30 An alternative to reduce the fundamental wave is using coil windings with different turns per 
coil side; this implies that a single coil has to be connected from both axial ends of a radial flux 
machine (however, the phase winding may be still connected from one side). 

stator 

rotor 
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Fig. 15.11. Harmonic analysis of the MMF distribution (normalized amplitude versus harmonic 
number) of the optimized winding shown principally in Fig. 15.10 for one phase. 

This kind of winding can be characterized by: 

 1N 24
q 0.8

2pm 10 3
= = =

⋅
 (15.5) 

If the 7th harmonic is used as the working wave, the following is obtained: 

 1N 24
q 0.57

2pm 14 3
= =

⋅
≈  (15.6) 

The main advantages of this kind of winding are illustrated in Figs. 15.12 to 
15.15, presenting a comparison with a conventional distributed wound permanent 
magnet machine (8 poles, 48 stator slots, q 2= , short-pitch of one stator slot) for 

the application of an automotive traction drive. 
In Fig. 15.12 the comparison of the torque ripple at low speed is shown, if no 

skewing is used. It is obvious that for many applications the large torque ripple of 
distributed wound machines is not acceptable, therefore e.g. rotor magnet skewing 
has to be introduced (accompanied by the severe disadvantages of lower mean 
torque and higher costs). 

The reduced Ohmic losses in the stator and the reduced eddy current losses in 
the rotor lead to different efficiencies in the torque-speed-plane, see Figs. 15.13 
and 15.14. These results are compared by means of calculating the efficiency dif-
ference in all operating points, shown in Fig. 15.15. It becomes obvious that for 
nearly the entire operating area the new 24 slots / 10 poles winding is advanta-
geous compared to a conventional distributed wound machine. Applications that 
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are mostly used in low-load operating points (like e.g. automotive traction drives, 
industrial pumps and fans) benefit best from this development. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 15.12. Torque versus rotor position: Comparison of torque characteristics of a 24 slots / 10 
poles permanent magnet machine and a conventional distributed wound permanent magnet ma-
chine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 15.13. Efficiency of the conventional distributed wound permanent magnet machine in the 
torque-speed-plane. 
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Fig. 15.14. Efficiency of the new 24 slots / 10 poles permanent magnet machine in the torque-
speed-plane. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.15. Efficiency difference of the machines in Figs. 15.13 and 15.14 in the torque-speed-
plane (positive values mean an advantage for the new 24 slots / 10 poles machine). 
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15.2.2 Increased Number of Stator Slots from 12 to 18 

Another possibility to improve the MMF spectrum of the winding shown in Sect. 
15.1 is to increase the number of stator slots from 12 to 18 in such a way, that 
within two neighboring stator teeth of the same phase an additional (unwound) 
stator tooth is placed, see Fig. 15.16.  
 
 
 
 

Fig. 15.16. Winding layout of a machine according to Fig. 15.2 with additional teeth (“wound-
off” representation of the stator lamination); red: phase u, yellow: phase v, blue: phase w. 

Afterwards, a similar approach like described in Sect. 15.2.1 is used: The initial 
winding is separated into two identical winding parts, shifted against each other by 
four stator slots. In addition, coils with different turns per coil side are used to re-
duce the fundamental wave.31 The resulting winding layout is illustrated in Fig. 
15.17. 

 
 
 
 
 
 
 

Fig. 15.17. Winding layout of a machine according to Fig. 15.12 with two identical winding sys-
tems shifted against each other (“wound-off” representation of the stator lamination); red: phase 
u, yellow: phase v, blue: phase w. 

The main advantage of this solution against the alternative presented in the pre-
ceding section is that here all coils are concentrated ones wound around a single 
stator tooth. A disadvantage is the higher number of single coils, which increases 
the effort for manufacturing the connections. However, this can be realized fully 
automated. In addition, a new harmonic wave with ordinal number 13 occurs, but 
this will not be an issue if the rotor magnetization is selected suitably. The result-
ing spectrum of the MMF distribution of such a winding is illustrated in the fol-
lowing Fig. 15.18: 

 
 
 

 

                                                           
31 Even coils with different number of turns may be used like described in the preceding section. 

wα  
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Fig. 15.18. Harmonic analysis of the MMF distribution (normalized amplitude versus harmonic 
number) of the optimized winding with concentrated coils (18 stator slots with purely concen-
trated coils). 

15.2.3 Main Characteristics of the Improved Concentrated 
Windings 

Purely concentrated windings generally are characterized by a large number of 
MMF harmonics with high amplitude. As considerable rotor losses and radial 
forces (resulting in acoustic noise) are generated by these harmonics, this kind of 
winding topology is unsuitable for many applications like e.g. in the automotive 
industry (traction, steering, and others), even if the production process of purely 
concentrated windings is beneficial.  

For such applications alternatives are required that are advantageous compared 
to the well-known distributed windings (please refer to Chap. 3) which can be re-
garded as benchmark. The improved concentrated windings described in this 
chapter substantially maintain the advantages of concentrated windings like low 
production effort and short end windings (resulting in compact design and low 
Ohmic stator losses), whereas the disadvantages (high number of harmonics with 
large amplitude) to a large extend are eliminated. Especially the efficiency in part-
load operation conditions can be improved considerably by these winding topolo-
gies, which is important for many industrial applications like pumps, blowers, 
traction drives, etc. Summarizing, these winding topologies are advantageous in 
production and operation of such electrical machines. 

The positive effects of the improved concentrated winding designs were shown 
in this chapter using the example of permanent magnet rotors (synchronous ma-
chines as well as brushless DC machines). However, this kind of winding design 
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is of course even applicable to electrically excited synchronous machines and in-
duction machines. 
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16 Lists of Symbols, Indices and Acronyms 

16.1 List of Symbols 

Table 16.1. List of Symbols. 

symbol meaning 
latin letters 

A area 
A current loading 
a complex operator 
a number of parallel paths 
a loss factor 
a factor 

a, b, c labeling of mains (line) phases 
B magnetic flux density 
b width 
C capacity 
C Esson’s number 
c constant 
D displacement current 
D diameter 
D damping constant 
d differential operator 
d d-axis 

div divergence operator 
E electric field strength 
E energy 
e back electromotive force 
e Euler’s number 
F force 
f force per surface area 
f frequency 
f field weakening factor 
f function 
G transfer function 
g numbering 
H magnetic field strength 
h height 

I, i current 
Im imaginary operator 
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J electrical current density 
j imaginary unit 
K number of commutator sections 
K factor 
K gain of a PI-controller 

CK  Carter’s factor 

k motor constant 
k numbering of slots 
L inductivity 
L Laplace operator 

length 
numbering of layers 
complex operator 

m number of phases 
m mass 
N number of slots 
N speed in the Laplace domain 
n speed 
n numbering 

n1, n2 number of turns per coil side 
P, p active (real) power 

p, n, 0 positive, negative, zero component 
p number of pole pairs 
Q reactive (wattless) power 
q number of slots per pole per phase 
q q-axis 
R resistance 

R, r radius 
r ratio 

Re real operator 
rot rotation operator 
S apparent power 
s distance 
s slip 
s Laplace variable 
s switching signal for power electronic device 
T torque 

T, t time 
U, u voltage 

PU  internal machine voltage (open circuit voltage) 

u, v, w labeling of machine phases 
u number of coils side-by-side in a single slot 
u transmission ratio 
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v velocity 
V volume 

W,  W′  energy, co-energy 
W input quantity 
w energy density 
w number of turns 
X reactance 
x circumference direction (x-direction) 

x, y, z return wires of phases u, v, w 
Y conductance 
Y output quantity 
y radial direction (y-direction) 

By  distance between brushes 

Z impedance 
Z disturbance quantity 
z axial direction (z-direction) 
z total number of conductors in all slots 
  

greek letters 
α mechanical angle 

iα  pole arc as a fraction of pole pitch 

β  electrical angle 
γ electric conductivity 
γ angle 
Δ difference 
∂  partial differential operator 
δ  air-gap width 
δ  load angle 

0,ε ε  dielectric constant, dielectric constant of vacuum 

ε angle 
,  Φ φ  magnetic flux 
φ  output of flux hysteresis controller 
ϕ phase angle 
,  Ψ ψ  flux linkage 
ξ  winding factor 
ζ  parameter 
λ  wave length 

0,μ μ  permeability, permeability of vacuum 
μ numbering 
ν harmonic number (order) 
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η efficiency 
ρ electric charge 
ρ specific resistance 
ρ specific weight 
ρ angle 
σ leakage coefficient 
τ  dimension in circumference direction (x- or α -direction) 
τ time constant 
τ output of torque hysteresis controller 

pτ  pole pitch 

ϑ  rotor angle 
Θ  magneto-motive force 
Θ  inertia 
Ω mechanical angular frequency 
ω angular frequency 
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16.2 List of Indices 

Table 16.2. List of Indices. 

index meaning 
0 zero component 
0 steady-state 

0, 1, 2… numbering 
1, 2 stator, rotor 
I, II stator, rotor 
A armature 
a auxiliary 
a acceleration 

a, b, c… numbering 
air air 
alt alternating 
B brush 

bar rotor bar 
C coercive force 
C commutation, commutator 
C compensation winding 
C constant factor 
C coupling 
C characteristic in the Heyland-diagram 
C controller 

CP commutation pole 
CS coordinate system 
Cu copper 
coil coil 
D disturbance changes 
D damping 
d d-axis 

DC direct current (intermediate circuit) 
e eigen 

edd eddy current 
eff effective 
el electric 

end end 
endw end winding 

F field (exciting) winding 
Fe iron 
fric friction 
G generator 
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gen generator 

harm harmonic 
Hi high 
hys hysteresis 

I inductivity 
I current 
i induced 
i current 
i internal 

IM induction motor 
in inside 
k numbering 

kin kinetic 
limit limit 
lin linear (straight) 
line line, mains 
load load 
loss losses 
m main 
m mean 
M magnet 
M motor 

mag magnetic 
max maximum 
mech mechanical 
min minimum 
N nominal 
n speed 

non salient-pole non salient-pole 
off off 
on on 
op operation 
opt optimum 
out outside 
p parallel 

perm permanent 
phase phase 
PM permanent magnet 

pull-out pull-out 
q q-axis 
R remanence 
R rotor 
R resistance 
r relative 
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ratio ratio 
real real part of a complex number 
Rel reluctance 
res resultant 
ring rotor ring 
rot rotational 

rotor rotor 
S short-pitch 
S stator 
S setpoint changes 
S small 
s series 

salient-pole salient-pole 
set set value 

skew skewing 
slot slot 
SO slot opening 
st starting 

stall stand-still, short-circuit 
stator stator 
syn synchronizing 
tot total 
u voltage 

u, v, w labeling of phases 
w winding 

wire wire 
x circumference direction (x-direction) 
x x-direction of a two-phase-system 
Y star connection 
y radial direction (y-direction) 
y y-direction of a two-phase-system 
Z distribution (zoning) 
z axial direction (z-direction) 
α  α -direction of a two-phase-system 
β  β -direction of a two-phase-system 

Δ delta connection 
δ  air-gap 
μ magnetic 
ν numbering index 
Θ  nominal starting 
Σ sum 
σ leakage 

0  diameter 
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∞ operating point with (ideally) infinite slip 
∞ infinite time 

16.3 List of Acronyms 

Table 16.3. List of Acronyms. 

acronym meaning 
AC alternating current 

BLDC brushless DC 
DC direct current 

DTC direct torque control 
EC electronically commutated 

FEM finite element method 
FOC field-oriented control 

INFORM indirect flux estimation by online reactance measurement 
IPM interior permanent magnet machine 

MMF magneto-motive force 
MRAS model reference adaptive system 
MTPA maximum torque per ampere 
MTPC maximum torque per current 

PI proportional-integral 
PMSM permanent magnet synchronous machine 
PWM pulse width modulation 

SMPM surface mounted permanent magnet 
SPM surface permanent magnet 
SR switched reluctance 

SRM switched reluctance motor 



 

Index 
 

 
 
 
 

 
 

air-gap  37, 90, 102, 116, 127, 135, 159, 
191, 196, 220, 244, 298, 426 

air-gap field  125, 151, 171, 193, 228, 250 
Ampere’s Law  2, 5 
armature reaction  80, 193 
armature winding  45 
asynchronous  135 
auxiliary winding  252 

block-mode operation  239, 363 
brushes  37, 46 
brushless DC-motor  223, 432 

Carter’s factor  116 
cascaded control  288 
coarse synchronization  396 
co-energy  19, 234, 236, 238 
commutation  40, 84 
commutation poles  85 
commutator  37 
commutator segments  37, 82 
compensation winding  82 
complex plane  28, 147 
concentrated winding  226, 449 
coupling factor  174 
critical damping  286 
current control  288 
current loading  49, 91, 114, 298, 438, 451 

damper winding  371 
d-axis  209, 322, 337, 378, 432 
DC-machine  37, 273 
demagnetization  68 
direct torque control  360 
distributed winding  104 
distribution factor  110 
disturbance changes  283 
dynamo-electrical principle  71 

efficiency  62, 162, 443 
electrical angle  42, 90 

electrical braking  269 
energy  16, 48, 128, 144, 234, 263, 267, 

273, 312, 399, 415 
Esson’s number  50 

Faraday’s Law  3, 7 
field calculation  297 
field weakening  181, 434 
field-oriented control  344 
finite element method  297 
flux density  7, 14, 39, 49, 65, 93, 114, 

175, 298, 438 
flux linkage  14, 120, 140, 223, 237, 303, 

318, 438 
flux model  346 
fractional slot winding  452 

generator  38, 41, 58, 71, 150, 183, 189, 
369 

harmonic  96, 102, 142, 170, 298, 449 
Heyland-diagram  148 
hysteresis controller  365 

induced voltage  11, 45, 51, 120 
induction machine  135, 325 
inductivity  142 
inertia  258 
interior permanent magnet machines  219 
internal machine voltage  192 
inverter  79, 179, 183, 220, 223, 239, 356, 

425 
iron losses  34 
isolated operation  205 

Kloss’s Law  155 

Laplace transformation  277 
leakage  142 
Lenz’s Law  10 
Leonard-converter  79 
load angle  194, 433, 434, 436 
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losses  16, 42, 48, 132, 153, 234, 267, 312, 
392, 399, 437, 443, 449 

magnetic circuit  6, 17 
magnetic field  5, 17, 32, 37, 80, 90, 117 
magnetizing current  164, 337, 344 
magneto-motive force  5, 93, 114 
maximum torque per ampere  443 
maximum voltage switching  390 
Maxwell’s equations  1 
mutual inductivity  32 

non salient-pole  209, 214, 374 
non-linearity  239 

operation limits  204 
optimum of magnitude  292 

permanent magnet  63 
permanent magnet excited rotating field 

machine  425 
permanent magnet synchronous machine  

228, 432 
permeability  2, 52, 63, 220, 426 
phase angle  28, 194 
phasor  28, 136, 192, 225, 323, 408 
PI-controller  288 
pole pairs  42, 89 
pole pitch  42 
power  29 

active power  29 
apparent power  29 
reactive power  29 

power factor  160 
Poynting’s vector  15 
pull-out torque  150, 199 
pulse width modulation  366 
pulsed operation  239 

q-axis  209, 322, 337, 378, 432 
quasi steady-state  264 

reluctance  92, 116, 196, 214, 231, 409, 
436, 440 

resistance  141 
rotating wave  102 
rotor angle  193 

salient-pole  196, 209, 402 
Sankey-diagram  132 
saturation  17, 101, 238, 298 

sector  364 
sensorless speed control  359 
setpoint changes  278 
shaded-pole motor  253 
short-circuit current  57 
short-pitch factor  14, 110 
short-pitch winding  104 
single-layer winding  449 
Single-Phase Induction Machine  250 
single-phase machines  247 
skewing  170 
skewing factor  174 
skin effect  175 
slip  122 
slot opening factor  112 
space vector  299 
speed control  59, 74, 179, 187, 288 
squirrel cage rotor  166 
Stability  257 
stall current  57 
star-delta-switching  182 
Steinmetz equation  35 
surface mounted permanent magnet 

machines  219 
switched reluctance machine  232 
symmetrical optimum  293 
synchronization  197 
synchronizing torque  199 
synchronous machine  189, 369 
synchronous reluctance machine  231 
synchronous speed  133, 135, 189, 196 

three-phase  30, 31, 99, 135, 189, 220, 247 
torque  47, 55, 128, 152, 198, 222, 234, 

248, 317, 438 
torque ripple  457 
torque-speed-characteristic  158, 333 
transformer voltage  8 
two-layer winding  42, 449 

unipolar  238 
universal motor  247 
utilization factor  50 

voltage of movement  9 

wind power plant  183 
working wave  449 

Zero voltage switching  394 
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