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They are all plain to him that un
derstandeth and right to them to 
find knowledge. Receive my instruc
tion and not silver and knowledge 
rather than choice gold. For wisdom 
is better than rubies, and all the 
things that may be desired are not 
to be compared to it. I wisdom dwell 
with prudence, and find out knowl
edge of witty inventions. 

Proverbs 8:9-12 

Read: In the name of thy Lord Who 
Createth, Createth man from a clot. 
Read: And thy Lord is the Most 
Bounteous, Who teacheth by the 
pen, Teacheth man which he knew 
not. 

Coran 96: 1-5 
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Preface 

This book is intended to provide an introduction to a number of 
important topics in engineering. The book's audience consists mainly of 
post-secondary electrical engineering students as well as practicing en
gineers interested in learning the fundamental concepts of power systems 
analysis and related designs. Background requirements include a basic 
electric circuit course and some mathematical notions from algebra and 
calculus. 

The text material is arranged in a format which is aimed at furthering 
the readers' understanding by providing ample practical examples within 
the text to illustrate the concepts discussed. In addition, each chapter 
contains a section that offers additional solved problems that serve to 
illustrate the interrelation between the concepts discussed in the chapter 
from a system's point of view. 

The text treats first models of the major components of modern day 
electric power systems. Thus, chapters three through five provide detailed 
discussions of synchronous machines, transmission lines, transformers and 
the induction motor which is a major system load component. 

Chapter six deals with analysis of interconnected systems with major 
emphasis on load flow analysis. Chapter seven is intended to present-in a 
reasonable amount of detail-elements of high voltage, direct current 
transmission which are becoming increasingly important. 

Chapter eight details analysis problems in systems with fault condi
tions. This is followed in Chapter nine by a treatment of system protection. 

Chapter ten is devoted to transient stability problems at an introduc
tory level. The final chapter on optimal economic operation of power 
systems provides a comprehensive yet simple introduction to that im
portant area. Each of the chapters is concluded by a section of problems for 
drill purposes. It is assumed that the reader has access to a modest 
computing facility such as a programmable calculator. 

I am indebted to my many students who have contributed immensely 
to the development of this text, in particular students at Memorial Univer
sity of Newfoundland and the Technical University of Nova Scotia, who 
took great interest in this project. To my colleagues and friends from 

xi 
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electric utilities and the academe alike, my sincere appreciation for their 
contributions. 

The drafting of the manuscript involved the patient and able typing 

work done by many at Memorial University and lately at the Technical 
University of Nova Scotia. Many thanks to Mrs. Minnie Ewing, 
Ms. Marilyn Tiller, Ms. Brenda Young, Mrs. Ethil Pitt, and Ms. Valerie 
Blundell of Memorial and Frances Julian of the Technical University of 

Nova Scotia. Margaret McNeily of Kennett Square, Pennsylvania, skillfully 
copyedited the original manuscript. I gratefully appreciate her help. Also, 
my thanks to Dan McCauley of Reston Publishing Company for his work 
on this book. Finally, the patience and understanding of my wife Ferial, and 
children are appreciated. 

Halifax, Nova Scotia 
February, 1982 

M. E. El-Hawary 



CHAPTER) 

Introduction 

The purpose of this chapter is twofold. We first provide a brief 
perspective on the development of electric power systems. This is not 
intended to be a detailed historical review, but rather it uses historical 

landmarks as a background to highlight the features and structure of the 
modem power systems. Following this we offer an outline of the text 
material. 

1.1 THE DEVELOPMENT OF 

ELECTRIC POWER SYSTEMS 

Electric power is one major industry that has shaped and contributed 
to the progress and technological advances of mankind over the past 
century. It is not surprising then that the growth of electric energy 
consumption in the world has been nothing but phenomenal. In the United 
States, for example, electric energy sales have grown to well over 400 times 
in the period between the tum of the century and the early 1970s. This 
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2 Introduction 

growth rate was 50 times as much as the growth rate in all other energy forms 
used during the same period. 

Edison Electric Illuminating Company of New York pioneered the 
central station electric power generation by the opening of the Pearl Street 
station in 1881. This station had a capacity of four 250-hp boilers supplying 
steam to six engine-dynamo sets. Edison's system used a 1l0-V dc under
ground distribution network with copper conductors insulated with a jute 

wrapping. The low voltage of the circuit limited the service area of a central 
station, and consequently central stations proliferated throughout metro
politan areas. 

The invention of the transformer, then known as the "inductorium," 
made ac systems possible. The first practical ac distribution system in the 
United States was installed by W. Stanley at Great Barrington, Massachu
setts, in 1866 for Westinghouse, who acquired the American rights to the 
transformer from its British inventors Gaulard and Gibbs. Early ac distri
bution utilized 1000-V overhead lines. 

By 1895, Philadelphia had about twenty electric companies with 
distribution systems operating at 100-V and 500-V two-wire dc and 220-V 
three-wire dc; single-phase, two-phase, and three-phase ac; with frequencies 
of 60, 66, 125, and 133 cycles per second; and feeders at 1000-1200 V and 
2000-2400 V. 

The consolidation of electric companies enabled the realization of 
economies of scale in generating facilities, the introduction of a certain 
degree of equipment standardization, and the utilization of the load diver
sity between areas. Generating unit sizes of up to 1300 MW are in service, 
an era that was started by the 1973 Cumberland Station of the Tennessee 
Valley Authority. A major generating station is shown in Figure 1-1, with 
the turbine-generator hall shown in Figure 1-2. 

Underground distribution at voltages up to 5 kV was made possible by 
the development of rubber-base insulated cables and paper-inSUlated, lead
covered cables in the early 1900s. Since that time higher distribution 
voltages have been necessitated by load growth that would otherwise 
overload low-voltage circuits and by the requirement to transmit large 
blocks of power over great distances. Common distribution voltages in 
today's system are in 5-, 15-, 25-, 35-, and 69-kV voltage classes. 

The growth in size of power plants and in the higher voltage equip
ment was accompanied by interconnections of the generating facilities. 
These interconnections decreased the probability of service interruptions, 
made the utilization of the most economical units possible, and decreased 
the total reserve capacity required to meet equipment-forced outages. This 
growth was also accompanied by the use of sophisticated analysis tools such 
as the network analyzer shown in Figure 1-3. Central control of the 
interconnected systems was introduced for reasons of economy and safety. 
Figure 1-4 shows the control room in a system control center. The advent of 
the load dispatcher heralded the dawn of power systems engineering, whose 
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1.2 Outline of the Text 7 

objective is to provide the best system to meet the load demand reliably, 
safely, and economically, utilizing state-of-the-art computer facilities. 

Extra high voltage (EHV) has become the dominant factor in the 
transmission of electric power over great distances. By 1896, an ll-kV 
three-phase line was transmitting 10 MW from Niagara Falls to Buffalo 
over a distance of 20 miles. Today, transmission voltages of 230 kV (see 
Figure 1-5), 287 kV, 345 kV, 500 kV, 735 kV, and 765 kV are commonplace, 
with the first llOO-kV line scheduled for energization in the early 1990s. A 

prototype 1200-kV transmission tower is shown in Figure 1-6. The trend is 
motivated by the economy of scale due to the higher transmission capacities 
possible, more efficient use of right-of-way, lower transmission losses, and 
reduced environmental impact. 

The preference for ac was first challenged in 1954 when the Swedish 
State Power Board energized the GO-mile, 100-kV dc submarine cable 
utilizing U. Lamm's Mercury Arc valves at the sending and receiving ends 
of the world's first high-voltage direct current (HVDC) link connecting the 
Baltic island of Gotland and the Swedish mainland. Today numerous 
installations with voltages up to BOO-kV dc have become operational around 
the globe. Solid-state technology advances have also enabled the use of the 
silicon-controlled rectifiers (SCR) or thyristor for HVDC applications since 
the late 19608. Whenever cable transmission is required (underwater or in a 
metropolitan area), HVDC is more economically attractive than ac. 

Protecting isolated systems has been a relatively simple task, which is 
carried out using overcurrent directional relays with selectivity being ob
tained by time grading. High-speed relays have been developed to meet the 
increased short-circuit currents due to the larger size units and the complex 
interconnections. 

1.2 OUTLINE OF THE TEXT 

Chapter 2 lays the foundations for the development in the rest of the 
book. The intention of the discussion offered here is to provide a brief 
review of fundamentals including electric circuit analysis and some 
mathematical background, to make the treatment self-contained. A student 
with an introductory electric circuit background may safely omit this 
chapter. 

Chapters 3, 4, and 5 are sequentially structured to follow the flow of 
electric energy from conversion to utilization. Thus Chapter 3 treats the 
synchronous machine from an operational modeling point of view. Empha
sis here is on performance characteristics of importance to the electric 
power specialist. Chapter 4 provides a comprehensive treatment of EHV 
transmission lines starting from parameter evaluation for different circuit 
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Figure 1-5. Transmission Towers for a 230-kV Line. 

(Courtesy Ontario Hydro) 



Figure 1-6. A Prototype 1200-kV Transmission Line Tower. 

(Courtesy u.s. Department of Energy. Bonneville Power Administration) 
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10 Introduction 

and conductor configurations. Various transmission line performance model
ing approaches are covered along with a unique section on the errors 
involved when using simplified models over the more elaborate ones. Chapter 
5 is entitled" The System Load" and deals with the power transformer as 
well as control and instrument transformers in addition to induction motor 
models as the latter is a major load component. A brief discussion of load 
modeling philosophy is given at the end of the chapter. 

Chapter 6 treats interconnected system analysis and covers aspects of 
network reduction, per unit systems, and the load flow problem. A com
prehensive treatment of high-voltage direct-current transmission is given in 
Chapter 7. Here again emphasis is placed on analysis and control aspects 
that should be of interest to the electric power systems specialist. 

Faults on electric energy systems are considered in Chapter 8. Here we 
start with the transient phenomenon of a symmetrical short circuit, fol
lowed by a treatment of unbalanced and balanced faults. Realizing the 
crucial part that system protection plays in maintaining service integrity is 
the basis for Chapter 9. Here an introduction to this important area is 
given. The transient stability problem is treated in Chapter 10 from an 
introductory point of view. Chapter 11 introduces the subject of economic 
dispatch under the title "Optimal Operation of Electric Power Systems." 
The treatment covers thermal systems where losses are neglected, followed 
by a case including losses. The chapter is concluded by an introduction to 
hydrothermal dispatch. 

The text of each chapter includes a number of examples that illustrate 
the concepts discussed. Following each chapter there is a set of solved 
problems that involves, in many instances, increased sophistication, and it 
helps to bring together the overall thrust of the concepts and techniques 
treated. The student should have, then, no difficulty in dealing with the 
drill problems included at the end of each chapter. 



CHAPTER I) 

Some Basic Principles 

2.1 INTRODUCTION 

The intention of this chapter is to lay the groundwork for the study 
of electric energy systems. This is done by developing some basic tools 
involving concepts, definitions, and some procedures fundamental to electric 
energy systems. The chapter can be considered as simply a review of topics 
that will be utilized throughout this work. We start by introducing the 
principal electrical quantities that we will deal with. 

2.2 POWER CONCEPTS 

The electric power systems specialist is in many instances more 
concerned with electric power in the circuit rather than the currents. As the 
power into an element is basically the product of voltage across and current 
through it, it seems reasonable to swap the current for power without losing 
any information in describing the phenomenon. In treating sinusoidal 
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12 Some Basic Principles 

steady-state behavior of circuits, some further definitions are necessary. To 
illustrate the concepts, we will use a cosine representation of the wavefonns. 

Consider impedance element Z = Z L!. For a sinusoidal voltage, v( t) is 
given by 

v ( t) = Vmcos wt 

The instantaneous current in the circuit is 

i( t) = I,,,,cos( wt - if» 
where 

The instantaneous power is thus given by 

p(t) =v(t)i(t) = VmIm [cos( wt)cos(wt - if» ] 

Using the trigonometric identity 

cos a cos f3 = ! [ cos( a - f3) + cos( a + f3)] 

we can write the instantaneous power as 

p( t) = 
V;Im [cos if> + cos(2wt - if»] 

The average power Pay is seen to be 

VmIm 
Pay = -2- cos if> (2.1) 

Since the average of cos(2 wt - if» is zero, through 1 cycle, this term 
therefore contributes nothing to the average of p. 

It is more convenient to use the effective (rms) values of voltage 
and current than the maximum values. Substituting Vm = 12 (Vnns)' and 
1m = 12 (lrms)' we get 

(2.2) 

Thus the power entering any network is the product of the effective values 
of terminal voltage and current and the cosine of the phase angle if> which is 
called the power factor (PF). This applies to sinusoidal voltages and 
currents only. For a purely resistive load, cos if> = 1, and the current in the 
circuit is fully engaged in conveying power from the source to the load 
resistance. When reactance as well as resistance are present, a component of 
the current in the circuit is engaged in conveying the energy that is 
periodically stored in and discharged from the reactance. This stored 
energy, being shuttled to and from the magnetic field of an inductance or 
the electric field of a capacitance, adds to the current in the circuit but does 
not add to the average power. 
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The average power in a circuit is called active power, and the power 
that supplies the stored energy in reactive elements is called reactive power. 
Active power is P, and the reactive power, designated Q, are thus* 

P= VI cosq, 

Q = VI sinq, 

(2.3) 
(2.4) 

In both equations, V and I are rms values of terminal voltage and current, 
and q, is the phase angle by which the current lags the voltage. 

Both P and Q are of the same dimension, that is in watts. However, to 
emphasize the fact that the Q represents the nonactive power, it is mea
sured in reactive voltampere units (var). Larger and more practical units are 
kilovars and megavars, related to the basic unit by 

1 Mvar = 103 kvar = 106 var 

Figure 2-1 shows the time variation of the various variables discussed 
in this treatment. 

Assume that V, Vcosq" and Vsinq" all shown in Figure 2-2, are each 
multiplied by I, the rms value of current. When the components of voltage 
V cos q, and V sin q, are multiplied by current, they become P and Q respec
tively. Similarly, if I, I cosq" and I sinq, are each multiplied by V, they 
become VI, P, and Q respectively. This defines a power triangle. 

We define a quantity called the complex or apparent power, desig
nated S, of which P and Q are components. By definition, 

S=P+jQ 
= VI cos q, + jVI sin q, 

= VI( cosq, + jsinq,) 

Using Euler's identity, we thus have 

S= VIe}</> 
or 

S= VIil 
If we introduce the conjugate current defined by the asterisk (*) 

1* =/I/il 

*If we write the instantaneous power as 

p( t) = Vnnslnns[ cos cj)(l + cos2wt)] + Vrms1nnssin </lsin2wt 

then it is seen that 

p( t) = P(l + cos2wt) + Qsin2wt 

Thus P and Q are the average power and the amplitude of the pulsating power respectively. 
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I -
I 
I 
I 
I 
I 
I 

Total 

,,- , 
I \ I \ I \ I I \ I --,'-f-\--

I VI cos 4> \ 
" \ 

(A) 

-I 
I 

p= VI cos 4> 

-y--

(8) 

Figure 2-1_ Voltage, Current and Power in a Single-Phase Circuit. 

t 

it becomes immediately obvious that an equivalent definition of complex or 
apparent power is 

s =  VI* (2_5) 

We can write the complex power in two alternative forms by using the 
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��----� V ....... �---.,r---- V I 
/ 

I . 
/ V Sin cp 

/ 

I 

Figure 2·2. Phasor Diagrams Leading to Power Triangles. 

relationships 
V=ZI and I=YV 

This leads to 
S = ZI[* = ZI II2 

or 

I 
I 
Ilsincp 
I 

I 

(2.6) 

S= VY*V· = Y*I VI2 (2.7) 

Consider the series circuit shown in Figure 2-3. Here the applied 
voltage is equal to the sum of the voltage drops: 

V= J(ZI + Z2 + ... +Zn) 

Multiplying both sides of this relation by 1* results in 
S= V[* = 11*(Zl + Z2 + ... +Zn) 

or 
n 

S= }: Si 
i= 1 

with 

(2.8) 

(2.9) 
being the individual element's complex power. Equation (2.8) is known as 
the summation rule for complex powers. The summation rule also applies to 
parallel circuits. The use of the summation rule and concepts of complex 
power may prove advantageous in solving problems of power system analy-
sis. 

The phasor diagrams shown in Figure 2-2 can be converted into 
complex power diagrams by simply following the definitions relating com
plex power to voltage and current. Consider the situation with an inductive 
circuit in which the current lags the voltage by the angle cpo The conjugate 
of the current will be in the first quadrant in the complex plane as shown in 
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Z, Z2 Zn 

i�--l 
- -. . 

Figure 2-3. Series Circuit. 

Figure 2-4(a). MUltiplying the phasors by V, we obtain the complex power 
diagram shown in Figure 2-4(b). Inspection of the diagram as well as the 
previous development leads to a relation for the power factor of the circuit: 

Example 2.1 

p 
cos</> = WI 

Consider the circuit composed of a series R-L branch in parallel with 
capacitance with the following parameters: 

Assume 

R=0.5 ohms 
XL =0.8 ohms 
Be = 0.6 siemens 

V = lOOLQ V 

Calculate the input current and the active, reactive, and apparent power 
into the circuit. 

Solution 

The current into the R-L branch is given by 

Iz= 0.5
��0

.8 = 106.00/-57.99° A 
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18 Some Basic Principles 

The power factor (PF) of the R-L branch is 
PFz = cos cpz = cos 57 .990 

=0.53 
The current into the capacitance is 

The input current It is 

Ie = j(0.6)(100) = 60/900 A 

It= Ie + Iz 
= 106.00 /- 57 .990 + 60/900 
= 63.64/-28.010 

The power factor (PF) of the overall circuit is 
PFt = cos CPt = cos 28.01 0 = 0.88 

Note that the magnitude of It is less than that of Iz, and that cos cP is higher 
than cos CPz. This is the effect of th� capacitor, and its action is called power 
factor correction in power system terminology. 

The apparent power into the circuit is 
St= VI: 

= (100�)(63.64)/28.01 0 
= 6364.00 /28.01 0 VA 

In rectangular coordinates we get 
St = 5617.98 + j2988.76 

Thus the active and reactive powers are: 
�=5617.98 W 

Qt = 2988.76 var 

2.3 THREE-PHASE SYSTEMS 

The major portion of all the electric power presently used is generated, 
transmitted, and distributed using balanced three-phase voltage systems. 
The single-phase voltage sources referred to in the preceding section originate 
in many instances as part of a three-phase system. Three-phase operation is 
preferable to single-phase because a three-phase winding makes more effi
cient use of generator copper and iron. Power flow in single-phase circuits 
was shown in the previous section to be pulsating. This drawback is not 
present in a three-phase system as will be shown later. Also three-phase 
motors start more conveniently and, having constant torque, run more 
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c 

a 

b 

(a) 

}---t---..- Reference Line 

(b) 

Figure 2-5. A V-Connected Three-Phase System and the Corresponding Phasor 
Diagram. 

satisfactorily than single-phase motors. However, the complications of addi
tional phases are not compensated for by the slight increase of operating 
efficiency when polyphase systems other than three-phase are used. 

A balanced three-phase voltage system is composed of three single
phase voltages having the same magnitude and frequency but time-displaced 
from one another by 120°. Figure 2-5(a) shows a schematic representation 
where the three single-phase voltage sources appear in a Y connection; a .:l 
configuration is also possible. A phasor diagram showing each of the phase 
voltages is also given in Figure 2-5(b). As the phasors revolve at the angular 
frequency iN with respect to the reference line in the counterclockwise 
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(positive) direction, the positive maximum value first occurs for phase a and 
then in succession for phases band c. Stated in a different way, to an 
observer in the phasor space, the voltage of phase a arrives first followed by 
that of b and then that of c. For this reason the three-phase voltage of 
Figure 2-5 is said to have the phase sequence abc ( order or phase sequence 
or rotation are all synonymous terms). This is important for certain applica

tions. For example, in three-phase induction motors, the phase sequence 

determines whether the motor turns clockwise or counterclockwise. 

With very few exceptions, synchronous generators (commonly referred 

to as alternators) are three-phase machines. For the production of a set of 

three voltages phase-displaced by 120 electrical degrees in time, it follows 

that a minimum of three coils phase-displaced 120 electrical degrees in space 

must be used. An elementary three-phase two-pole machine with one coil 
per phase is shown in Figure 2-6. 

We find it convenient for clarity of the presentation to consider 
representing each coil as a separate generator. An immediate extension of 

the single-phase circuits discussed above would be to carry the power from 

-c 

0---------, 

-o---------J 
-c---------, 

c -b -------, 

b ----' 

c -------------� 

Figure 2-6. An Elementary Three-Phase Two-Pole Machine. 
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the three generators along six wires. However, for the sake of economy, 
instead of having a return wire from each load to each generator, a single 
wire is used for the return of all three. The current in the return wire will be 
Ia + Ib + Ie; and for a balanced load, these will cancel out as may be seen by 
inspecting the phasor diagram in Figure 2-7. If the load is unbalanced, the 
return current will still be small compared to either la' IiJ, or Ie. Thus the 
return wire could be made smaller than the other three. This connection is 
known as a four-wire three-phase system. It is desirable for safety and 
system protection to have a connection from the electrical system to 
ground. A logical point for grounding is the generator neutral point, the 
junction of the Y. 

Current and Voltage Relations 

Balanced three-phase systems can be studied using techniques devel
oped for single-phase circuits. The arrangement of the three single-phase 
voltages into a Yor a Ll configuration requires some modification in dealing 
with the overall system. 

Y Connection 

With reference to Figure 2-8, the common terminal n is called the 
neutral or star ( Y) po int. The voltages appearing between any two of the 
line terminals a, b, and c have different relationships in magnitude and 
phase to the voltages appearing between any one line terminal and the 
neutral point n. The set of voltages Vab, Vbc' and Vca are called the l ine 
voltages, and the set of voltages Van' ViJn, and Y::n are referred to as the 
phase voltages. Analysis of phasor diagrams provide.'l the required rela
tionships. 

The effective values of the phase voltages are shown in Figure 2-8 as 
Van' ViJn, and Y::n. Each has the same magnitude, and each is displaced 1200 
from the other two phasors. To obtain the magnitude and phase angle of 
the line voltage from a to b (i.e., Vab), we apply Kirchhoff's voltage law: 

Vab = Van + Vnb (2.10) 

This equation states that the voltage existing from a to b is equal to the 
voltage from a to n (i.e., Van) plus the voltage from n to b. Thus Eq. (2.10) 
can be rewritten as 

(2.11) 

Since for a balanced system, each phase voltage has the same magnitude, let 
us set 

(2.12) 
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Figure 2-8. illustrating the Phase and Magnitude Relations Between the Phase 
and Line Voltage of a Y Connection. 

where � denotes the effective magnitude of the phase voltage. Accordingly 
we may write 

Van=�� 
Vbn = l-j,/ -1200 
V = V/-2400 = V/120° en p_ p 

Substituting Eqs. (2.13) and (2.14) in Eq. (2.11) yields 

Similarly we obtain 

Vab= �(1-1/-1200) 
= 13�/30° 

Vbe = 13 �/ -900 
Y.:a = 13 �/150° 

(2.13) 
(2.14) 
(2.15) 

(2.16) 

(2.17) 
(2.18) 

The expressions obtained above for the line voltages show that they 
constitute a balanced three-phase voltage system whose magnitudes are 13 
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times the phase voltages. Thus we write 
VL={a-� (2.19) 

A current flowing out of a line tenninal a (or b or c) is the same as 
that flowing through the phase source voltage appearing between tenninals 
n and a (or n and b, or n and c). We can thus conclude that for a 
Y-connected three-phase source, the line current equals the phase current. 
Thus 

(2.20) 

In the above equation, IL denotes the effective value of the line current and 
Ip denotes the effective value for the phase current. 

4 Connection 

We consider now the case when the three single-phase sources are 
rearranged to fonn a three-phase 1.1 connection as shown in Figure 2-9. It is 
clear from inspection of the circuit shown that the line and phase voltages 
have the same magnitude: 

a 

b 

Figure 2-9. A A·Connected Three-Phase Source. 

, a 

b' 

Icc' c' 

(2.21) 



2.3 Three-Phase Systems 25 

The phase and line currents, however, are not identical, and the relationship 
between them can be obtained using Kirchhoff's current law at one of the 
line terminals. 

In a manner similar to that adopted for the Y-connected source, let us 
consider the phasor diagram shown in Figure 2-10. Assume the phase 
currents to be 

lab = lpl..!!.. 
Ibe = lpj -1200 
lea = Ipj120° 

The current that flows in the line joining a to a' is denoted laa' and is 
given by 

As a result, we have 

which simplifies to 

Similarly, 
1M' = {3lpj30° 
Icc' = {3lpj - 90° 

'---�JI'--L..--------V ob 

Figure 2-10. illustrating Relation Between Phase and Line Currents in a � 
Connection. 
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Note that a set of balanced three phase currents yields a correspond
ing set of balanced line currents that are 13 times the phase values: 

IL = fa Ip (2.22) 

where I L denotes the magnitude of any of the three line currents. 

Power Relationships 

Assume that the three-phase generator is supplying a balanced load 
with the three sinusoidal phase voltages: 

va( t) = (2 \.j,sin wt 

vb(t) = (2\.j,sin(wt-1200) 

vc( t) = (2 \.j,sin( wt + 120°) 

With the currents given by 

ia( t) = (2 Ipsin( wt- <1» 

ib( t) = 12 Ipsin( wt -120° - <1» 

ic( t) = 12 Ipsin( wt + 120° - <1» 

where <I> is the phase angle between the current and voltage in each phase. 
The total power in the load is 

P3</>(t) =va(t)ia(t) + vb(t)ib(t) +vc(t)ic(t) 
This turns out to be 

P3</>(t) = 2\.j,Ip[sin( wt)sin( wt- <1» 

+ sin( wt - 120)sin( wt - 120 - <1» 

+ sin( wt + 120 )sin( wt + 120 - cp )] 
Using a trigonometric identity, we get 

P3</>(t) = \.j,Ip{3 cos <I> - [cos(2wt-<1» + cos(2wt- 240 - cp) 
+cos(2wt+ 240 - cp)]} 

Note that the last three tenns in the above equation are the reactive power 
tenns and they add up to zero. Thus we obtain 

P3</>( t) = 3\.j,Ip cos cp (2.23) 

When referring to the voltage level of a three-phase system, one 
invariably understands the line voltages. From the above discussion the 
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relationship between the line and phase voltages in a Y-connected system is 
/VL/= {a/VI 

The power equation thus reads in terms of line quantities: 
P34> = {a/ VLI I IL/cos</> (2.24) 

We note that the total instantaneous power is constant, having a 
magnitude of three times the real power per phase. We may be tempted to 
assume that the reactive power is of no importance in a three-phase system 
since the Q terms cancel out. However, this situation is analogous to the 
summation of balanced three-phase currents and voltages that also cancel 
out. Although the sum cancels out, these quantities are still very much in 
evidence in each phase. We thus extend the concept of complex or apparent 
power (8) to three-phase systems by defining 

Ba4> =3�,I; 
where the active power and reactive power are obtained from 

Ba4> = P34> + jQ34> 
as 

P34> = 3/ �I I Iplcos</> 
Q34> = 3 1 �IlIplsin</> 

In terms of line values, we can assert that 

and 
834> = {aVLII 

P34> = Val VLIIILlcos</> 
Q34> = /3/ VLI I IL/sin</> 

(2.25) 

(2.26) 
(2.27) 

(2.28) 

(2.29) 

(2.30) 
In specifying rated values for power system apparatus and equipment 

such as generators, transformers, circuit breakers, etc., we use the magni
tude of the apparent power 834> as well as line voltage for specification 
values. In specifying three-phase motor loads, we use the horsepower output 
rating and voltage. To convert from horsepower to watts, recall that 

1 hp =746 W 
Since the horsepower is a mechanical output, the electrical input will be 
somewhat higher due to the losses in the energy conversion process (more 
on this in Chapter 5). The efficiency of a process ." is defined by 

p 
.,,=� 

l';.n 
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The value of efficiency should be used when converting a mechanical load to 
an equivalent electrical representation. 

Example 2.2 

A Y-connected, balanced three-phase load consisting of three imped
ances of 10/300 ohms each as shown in Figure 2-11 is supplied with the 
balanced line-to-neutral voltages: 

Van=220�V 

Vbn = 220/2400 V 

Y.,n = 220/1200 V 

A. Calculate the phasor currents in each line. 
B. Calculate the line-to-line phasor voltages. 
C. Calculate the total active and reactive power supplied to the load. 

a --T-----------------� 

220& z = 10 /300 ohms 

� 

c--------------� 

b --------------------------� 

Figure 2-11. Load Connection for Example 2.2. 
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Solution 

A. The phase currents are obtained as 

I = 220 = 22/-300 A an 10/30 
220/240 

I = = 22/2100 A bn 10/30 
220/120 

I = = 22/900 A en 10/30 

B. The line-to-line voltages are obtained as 

= 220 �- 220/2400 
= 220[3 /300 

Vbc = 220[3 /30 -120= 220[3 / -900 
Y.:a = 220[3 / -2100 

C. The apparent power into phase a is given by 

= (220)(22)/300 
= 4840/300 VA 

The total apparent power is three times the phase value: 

Thus 

Example 2.3 

St = 4840 X 3/300= 14520.00/300 VA 
= 12574.69 + j7260.00 

Pe= 12574.69 W 

Qt = 7260.00 var 

Repeat Example 2.2 as if the same three impedances were connected 
in a A connection. 
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Solution 

From Example 2.2 we have 

Vab = 220/3 /300 

Vbc = 220/3 / - 900 

v"a = 220/3 / -2100 

The currents in each of the impedances are 

220/3 /300 
I b= =22/3� a lO/30 

lbe = 22[3 / -1200 

lea = 22[3 /1200 

The line currents are obtained with reference to Figure 2-12 as 

la = lab - lea 
= 22/3 �- 22[3 / -1200 

=66/300 
lb = lbe - lab 

=66/-900 
le = lea - lbe 

= 66/-2lO° 

The apparent power in the impedance between a and b is 

Sab= Vabl:b 
= (220[3 /300 ) (22[3 �) 
= 14520/300 

The total three-phase power is then 

As a result, 

St = 43560/300 
= 37724.04 + j21780.00 

Pe=37724.04 W 
Qt = 21780.00 var 
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c<F------� � _____ �b 
z 

Figure 2-12. Load Connection for Example 2.3. 

2.4 POWER SYSTEM 
REPRESENTATION 

A major portion of the modem power system utilizes three-phase ac 
circuits and devices. It is clear that a detailed representation of each of the 
three phases in the system is cumbersome and can also obscure infonnation 
about the system. A balanced three-phase system is solved as a single-phase 
circuit made of one line and the neutral return; thus a simpler representa
tion would involve retaining one line to represent the three phases and 
omitting the neutral. Standard symbols are used to indicate the various 
components. A transmission line is represented by a single line between two 
ends. The simplified diagram is called the single-line diagram. 

The one-line diagram summarizes the relevant infonnation about the 
system for the particular problem studied. For example, relays and circuit 
breakers are not important when dealing with a nonnal state problem. 
However, when fault conditions are considered, the location of relays and 
circuit breakers is important and is thus included in the single-line diagram. 

The International Electrotechnical Commission (IEC), the American 
National Standards Institute (ANSI), and the Institute of Electrical and 
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Basic 

lEe 0 
Generator II (general) 

lEe 0 
OR 

8 
Generator, direct - current 

lEe (i) 
Generator, alternating - current 

lEe (i) 
Generator, synchronous 

Motor fl (general l 

lEe 0 
OR 

9 
Motor, direct-current 

lEe G) 
Motor, alternating - current 

lEe G) 
Motor, synchronous 

lEe @ 
CAl 

1- phase 

o 
2 - phase 

3 - phase wye (ungrounded) 

3-phase wye (grounded) 

3-phase delta 

6-phase diametrical 

6 -phase double -delta 

(8) 

Figure 2-13. Symbols for Rotating Machines (A) and Their Winding Connec
tions (B). 



lEe 

IEC �OO§OR� 
1- phase, 3 - winding transformer 

1�t- J)[ 
OR OR 

1 t
,EC lEG] [ r-- [ 

OR 

c$b 00 
lEe lEe 

(A) 

With taps,1- phase 

-1f �[ 
Autotransformer,1- phase 

-l 
OR 

c) IEC 

lEe :[ 
IEcQ 

Adjustable 

-r- £ 
OR 

� IEC IEC� 

(B) 

Figure 2-14. (A) Transformer Symbols. (8) Symbols for Single-Phase Trans
formers. 

33 
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OR 

Application: 3 - phose bonk of 
1- phose, 2- winding transformers 
with wye - delta connections 

OR 

_$IEC 

IEC - t> 

Three phose tr ansformer with 4 
tops with wye - wye connections 

OR 

�4 \:::fJ lEe 

Polyphase transfor mer -1 t lEe 

� � � � 
lEe -1 � 1t 

� � � � 

Figure 2-15. Symbols for Three-Phase Transformers. 
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Electronics Engineers (IEEE) have published a set of standard symbols for 
electrical diagrams. A basic symbol for a rotating machine is a circle. Figure 
2-13(a) shows rotating machine symbols. If the winding connection is 
desired, the connection symbols may be shown in the basic circle using the 
representations given in Figure 2-13(b). The symbols commonly used for 
transfonner representation are given in Figure 2-14(a). The two-circle 
symbol is the symbol to be used on schematics for equipment having 
international usage according to lEe. Figure 2-14(b) shows symbols for a 
number of single-phase transfonners, and Figure 2-15 shows both single-line 
symbols and three-line symbols for three-phase transfonners. 

SOME SOLVED PROBLEMS 

Problem 2-A-1 

In the circuit shown in Figure 2-16, the source phasor voltage is V= 
30/150• Detennine the phasor currents 12 and 13 and the impedance Z2' 
Assume that 1\ is equal to five A. 

Solution 

The voltage V2 is given by 

The current 13 is thus 

a 

+ 
V -

1'u 

V; = V - (1)1\ 
= 30/150- 5LQ 
= 25.20 /17.940 

V-13 = l� = 2.52/17.940 

b 

11 �+ 

V2 12� 13� Zz 

�-
Figure 2-16. Circuit for Problem 2-A-1. 

R3 = IO'u 
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The current 12 is obtained using KeL. Thus 

12 = II - 13 

= 2.72/-16.61 ° 
Finally we have 

Z2 = i = 9.28/34.56°= 7.64 + j5.26 ohms 
2 

Problem 2-A-2 

For the circuit of Problem 2-A-l, calculate the apparent power pro
duced by the source and the individual apparent powers consumed by the 
I-ohm resistor, the impedance Z2' and the resistance R3• Show that con
servation of power holds true. 

Solution 

The apparent power produced by the source is 

8s= VI: = (30/15°)(5LQ) 
= 150/15° VA 
= 144.89 + j38.82 VA 

The apparent power taken by the I-ohm resistor is 

81 = Vab1: = l(Il)(Ii) 
=1/11

2 =25 W 

The apparent power taken by the impedance Z2 is 

�= "21: = (25.20/17.94)(2.72/16.61°) 
= 68.44/34.56° 
= 56.37 + j38.82 VA 

The apparent power taken by the resistor R a is 

8a= V21; = (25.20/17.94)(2.52/-17.94) 
= 63.52 W 

The total power consumed is 

8t=81 + � +83 = 144.89 + j38.82 VA 

This is equal to the source apparent power, which proves the principle of 
conservation of power. 
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Problem 2·A·3 

A three-phase transmission link is rated 100 kVA at 2300 V. When 
operating at rated load, the total resistive and reactive voltage drops in the 
link are, respectively, 2.4 and 3.6 percent of the rated voltage. Determine 
the input power and power factor when the link delivers 60 kW at 0.8 PF 
lagging at 2300 V. 

Solution 

The active voltage drop per phase is 

The reactive drop is 

But the rated current is 

As a result, 

AV: = IR = 0.024(2300) 
r Va 

AV: = IX= 0.036(2300) 
x 13 

1= 100 X 103 
230013 

25.1 A 

R=I.27 ohms 
X=I.90 ohms 

For a load of 60 kW at 0.8 PF lagging, the phase current is 

I, = 
60 X 103 

= 18.83 A ( 2300Va ) ( 0.8) 
The active and reactive powers consumed by the link are thus 

P'k = 3IlR = 1350.43 W 

Q'k = 3Il X = 2020.32 Var 

As a result, the apparent power consumed by the link is 

8'k = 1350.43 + j2020.32 
The apparent load power is 

_ 60X 103 -1 S,- 0.8 Icos 0.8 
= 60,000 + j45,000 VA 

Thus the total apparent power is now obtained as 

St = 61350.43 + j47020.32 
= 77296.74/37.470 
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As a result 

Problem 2-A-4 

COS tPt = cos 37 .47° 
= 0 .79 lagging 

P, = 61.35043 kW 

A 6O-hp, three-phase, 440-V induction motor operates at 0.8 PF lagging. 

A. Find the active, reactive, and apparent power consumed per phase. 

B. Suppose the motor is supplied from a 440-V source through a 
feeder whose impedance is 0.5 + jO.3 ohm per phase. Calculate the 
voltage at the motor side, the source power factor, and the ef
ficiency of transmission. 

Solution 

The active power is 

Pr = 60 x 746 = 44,760.00 W 

cos ifJr = 0.8 

Sr = 
Pr

", L!P.:: = 55950 /36.87° 
COS'l'r 

Qr = Sr sin ifJr = 33570 Var 

Observe that we are given the sending end voltage � in magnitude value. 
Referring to a phasor diagram with I as reference, we can write for phase 
values, 

A few manipulations yield 

1�12=1v,.12+2(P,.4>R+Qr4>X)+IZI2 ( v:P,.4> ) 2 rCOS tPr 
Thus substituting the given values, we get 

( 7: r = 1 \,;1' + 2 [ ( 44�60 ) (0.5) + ( 33
.
5�0.OO ) (0.3) 1 

[ 44,760 ]2 +0.34 
3(0.8)1 v,. 1 



or 

1 Y,.14 - 42899.331 Y,.12 + 1.1826 X lOB = 0 
Solving the quadratic, we obtain 

or 

1 Y,.12 = 39938.27 

1 Y,. I = 199.85 V 

We can now calculate the line current: 

1= 44,760 = 93.32 A 
13 (346.14) (0.8) 

The active and reactive power absorbed by the link is 

Sl= 3{ 12R + jI 2X ) 
= 13062.93 + j7837 .76 VA 

The sending end apparent power is thus 

= 57822.87 + j41407 .87 

= 71.12028 X 103/35.610 

Ps = 57.82287 X 103 W 

cos CPs = 0.81 

The efficiency is thus obtained as 

p .,, = ; = 0.7741 s 

PROBLEMS 
Problem 2-8-1 

Problems 39 

Find the phase currents lA' IB, and Ie as well as the neutral current In 
for the three-phase network with an unbalanced load as shown in Figure 

2-17. Assume 
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Ven = 100/120° 

Problem 2-8-2 

Calculate the apparent power consumed by the load of Problem 2-B-1. 

A 
-------

IA 

N 
-

In 

c 

B 
--

Ie 

Figure 2·17. Three-Phase Load for Problem 2·8·1. 

,n 

j3n 



Figure 2-18. Circuit Model for Problem 2-8-3. 

Problem 2-8-3 

Problems 41 

A 60-hp, three-phase, 440-V induction motor operates at 0.75 PF 
lagging. Find the active, reactive, and apparent power consumed per phase. 
Find the values of R andjX if the motor is modeled as shown in Figure 2-18. 

Problem 2-8-4 

Repeat Problem 2-B-3 if the motor's efficiency is 85%. 

Problem 2-8-5 

Repeat Problem 2-B-4 if the PF is 0.7 lagging. 



CHAPTER III 

Power Generation and the 
Synchronous Machine 

3.1 INTRODUCTION 

O n O ctober 28, 1831, M ichael Faraday experimented with a revolving 
copper plate mounted on a horizontal brass axle and placed in the short gap 
between the pole pieces of a power ful magnet. Two contacts to a galvanom
eter were made- the firs t one on the periphery and the second one on the 
axle. P owerful currents were produced and lasted as long as the plate 
revolved. The news of Faraday' s achievements quickly led to a large number 
of inventions. Notable among these was Benj amin G. L amme' s  invention of 
the synchronous converter and the rotar y  condenser. L amme also provided 
the electrica l  desi gn of the 5000-hp generator, whi ch i naugurated the 
hydroelectric power development at N iagara Falls i n  1895. Thi s signaled the 
dawn of the age of maj or electric power systems. 

The daily functi ons of today' s  civi lizati on depend on electric power, 
the bulk of which is produced by electric utility systems. The backbone of 

43 
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such a system is a number of generating stations operating in parallel. At 
each station there may be several synchronous generators operating in 
parallel. Synchronous machines represent the largest single-unit electric 
machine in production. Generators with power ratings of several hundred to 
over a thousand megavoltamperes (MVA) are fairly common in many 
utility systems. A synchronous machine provides a reliable and efficient 
means for energy conversion. 

The operation of a synchronous generator is (like all other electro
mechanical energy conversion devices) based on Faraday's law of electro
magnetic induction. The term synchronous refers to the fact that this type 
of machine operates at constant speed and frequency under steady-state 
conditions. Synchronous machines are equally capable of operating as 
motors, in which case the electric energy supplied at the armature terminals 
of the unit is converted into mechanical form. 

For a meaningful study of electric power systems, we start by discuss
ing the synchronous machine. Our attention will be limited to the 
fundamental models of the machine describing its steady-state balanced 
three-phase sinusoidal operational behavior. Analytical methods of ex
amining the performance of polyphase synchronous machines will also be 
developed in this chapter. 

3.2 THE SYNCHRONOUS MACHINE: 

PRELIMINARIES 

The armature winding of a synchronous machine is on the stator, and 
the field winding is on the rotor as shown in Figure 3-1. The field is excited 
by the direct current that is conducted through carbon brushes bearing on 
slip (or collector) rings. The dc source is called the exciter and is often 
mounted on the same shaft as the synchronous machine. Various excitation 
systems with ac exciters and solid-state rectifiers are used with large turbine 
generators. The main advantages of these systems include the elimination of 
cooling and maintenance problems associated with slip rings, commutators, 
and brushes. The pole faces are shaped such that the radial distribution of 
the air-gap flux density B is approximately sinusoidal as shown in Figure 
3 -2. 

The armature winding will include many coils. One coil is shown in 
Figure 3 -1 and has two coil sides (a and -a) placed in diametrically 
opposite slots on the inner periphery of the stator with conductors parallel 
to the shaft of the machine. The rotor is turned at a constant speed by a 
mechanical power source connected to its shaft. As a result, the flux 
waveform sweeps by the coil sides a and -a. The induced voltage in the 
coil is a sinusoidal time function. It is evident that for each revolution of the 
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----- ...... 

Windings 

Figure 3-1. Simplified Sketch of a Synchronous Machine. 

Flux Density 
(Bl 

f-::---+----e 217' 

Figure 3-2. Space Distribution of Flux Density in a Synchronous Generator. 

two poles, the coil voltage passes through a c omplete cycle of values. T he 
freq uency of the voltage in cycles per second (hertz) is the same as the rotor 
speed in revolutions per second. T hus a two-pole synchronous machine must 
revolve at 3600 rj min to produce a 6 0-H z  voltage. 

P-Pole Machines 
M any synchronous machines have more than two poles. A P- pole 

machine is one w ith P poles. A s  an example we consider an elementary 
single-phase four-pole generator show n  in Figure 3-3. There are two com
plete cycles in the flux distribution around the periphery as shown in Figure 
3-4. The armature wi nding in this case consists of two coils (aI' - aI' and 
a2, -a2) connected in seri es. The generated voltage goes through two 
comp lete cycles per revolution of the rotor, and thus the frequency f in 
hertz is twice the speed in revolutions per second. I n  general, the coil 
voltage of a machine with P -poles passes through a complete cycle every 
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Figure 3-3. Four-Pole Synchronous Machine. 

time a pair of poles sweeps by, or P /2 times for each revolution. The 
frequency f is therefore given by 

f=;L��) (3.1) 
where n is the shaft speed in revolutions per minute (r/min). 

In treating P-pole synchronous machines, it is more convenient to 
express angles in electrical degrees rather than in the more familiar me
chanical units. Here we conceptually concentrate on a single pair of poles 
and recognize that the conditions associated with any other pair are simply 
repetitions of those of the pair under consideration. A full cycle of generated 

Flux 
Density 

Anole in 
211" Mechanical Radians �--�r---��---1-----T�� 411" Anole in 

Electrical Radians 

Figure 3-4. Space Distribution of Flux Density in a Four-Pole Synchronous 
Machine. 
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voltage will be described when the rotor of a four-pole machine has turned 
180 mechanical degrees. This cycle represents 360 electrical degrees in the 
voltage wave. Extension of this argument to a P-pole machine leads to the 
conclusion that 

where 8e and 8m denote angles in electrical and mechanical degrees respec
tively. 

Cylindrical VS. Salient-Pole Construction 
Machines like the ones illustrated in Figures 3-1 and 3-3 have rotors 

with salient poles. There is another type of rotor, which is shown in 
Figure 3-5. The machine with such a rotor is called a cylindrical rotor or 
nonsalient-pole machine. The choice between the two designs (salient or 
nonsalient) for a specific application depends on the proposed prime mover. 
For hydroelectric generation, a salient-pole construction is employed. This 
is because hydraulic turbines run at relatively low speeds, and in this case a 
large number of poles is required to produce the desired frequency as 
indicated by Eq. (3.1). On the other hand, steam and gas turbines perform 
better at relatively high speeds, and two- or four-pole cylindrical rotor 
turboalternators are used in this case. This will avoid the use of protruding 
parts on the rotor, which at high speeds will give rise to dangerous 
mechanical stresses. 

Figure 3-5. A Cylindrical Rotor Two-Pole Machine. 
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3.3 FIELDS IN A SYNCHRONOUS MACHINE 

An understanding of the nature of the magnetic field produced by a 
polyphase winding is necessary for the analysis of polyphase ac machines. 
We will consider a two-pole, three-phase machine. The windings of the 
individual phases are displaced by 120 electrical degrees in space. This is 
shown in Figure 3-6. The magnetomotive forces developed in the air gap due 
to currents in the windings will also be displaced 120 electrical degrees in 
space. Assuming sinusoidal, balanced three-phase operation, the phase cur
rents are displaced by 120 electrical degrees in time. The instantaneous 
values of the currents are 

ia = Imcoswt 

ib = Imcos( wt - 120° ) 

ic = Imcos( wt - 240°) 

(3 .2) 

(3 .3) 

(3.4) 

where 1m is the maximum value of the current, and the time origin is 
arbitrarily taken as the instant when the phase a current is a positive 
maximum. The phase sequence is assumed to be abc. The instantaneous 
currents are shown in Figure 3-7. 

The magnetomotive force (MMF) of each phase is proportional to the 
corresponding current. Accordingly, for the maximum current 1m, the time 
maximum of the MMF is 

Fmax = KIm 

where K is a constant of proportionality that depends on the winding 

/ 
1 Axis of 

phose c 

Figure 3-6. Simplified Two-Pole, Three-Phase Stator Winding. 
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o � 2". 3 3 

Figure 3-7. Instantaneous Three-Phase Currents. 

distribution and the number of series turns in the winding per phase. We 
thus have 

Aa(p) = Fmaxcos wt 

Ab(p) = Fmaxcos( wt -120°) 

AC(p) = Fmaxcos( wt -240°) 

(3.5) 

(3.6) 

(3.7) 

where Aa(p) is the amplitude of the MMF component wave at time t. 
At time t, all three phases contribute to the air-gap MMF at a point P 

(whose spatial angle is 0). We thus have the resultant MMF given by 

Ap = Aa(p)cos 0 + Ab(p)COS( (} -120°) + A c(p)cos( (} - 240°) (3.8) 

Using Eqs. (3.5) to (3.7), we have 

Ap = FmaJcosOcoswt+ eos( (} -1200)cos( wt-1200) 
+cos(O-2400)cos(wt-2400)] (3.9) 

Equation (3.9) can be simplified using the following trigonometric 
identity: 

cos a cos,B = H cos( a - ,B) + cos( a + ,B)] 

As a result, we have 

Ap =! [cos( (} - wt) + cos( 0 + wt) 

+cos( 0 -wt) + eos( 0 + wt -240°) 
+cos( (} -wt) + cos( (} + wt - 480°)] Fmax 

The three cosine terms involving (0 + wt), «(} + wt - 240°), and (0 + wt-
480°) are three equal sinusoidal waves displaced in phase by 120° with a 
zero sum. Therefore 

(3.10) 
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The wave of Eq. (3.10) depends on the spatial position () as well as 
time. The angle wt provides rotation of the entire wave around the air gap 

at the constant angular velocity w. At time tJt the wave is a sinusoid with 

its positive peak displaced wt) from the point P (at ()); at a later instant 

(t2), the wave has its positive peak displaced wt2 from the same point. We 

thus see that a polyphase winding excited by balanced polyphase currents 

produces the same effect as a permanent magnet rotating within the stator. 
The MMF wave created by the three-phase armature current in a 

synchronous machine is commonly called armature-reaction MMF. This 

MMF wave rotates at synchronous speed and is directly opposite to phase a 

at the instant when phase a has its maximum current (t = 0). The dc field 

winding produces a sinusoid F with an axis 90° ahead of the axis of phase a 
in accordance with Faraday's law. 

The resultant magnetic field in the machine is the sum of the two 
contributions from the field and armature reaction. Figure 3-8 shows a 
sketch of the armature and field windings of a cylindrical rotor generator. 

The space MMF produced by the field winding is shown by the sinusoid F. 
This is shown for the specific instant when the electromotive force (EMF) 
of phase a due to excitation has its maximum value. The time rate of 
change of flux linkages with phase a is a maximum under these conditions, 

and thus the axis of the field is 90° ahead of phase a. The armature-reaction 
wave is shown as the sinusoid A in the figure. This is drawn opposite phase 
a because at this instant both 1a and the EMF of the field E, (also caIJed 
excitation voltage) have their maximum value. The resultant magnetic field 

in the machine is denoted R and is obtained by graphically adding the F 
and A waves. 

Figure 3-8. Spatial MMF Waves in a Cylindrical Rotor Synchronous Generator. 
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Axis of 

A .par phase a 

Figure 3-9. A Space Phasor Diagram for Armature Current In Phase with 
Excitation Voltage. 

S in usoid s can c onven ien tly be hand led usin g phasor method s. We c an 
thu s per form the add iti on of the A and F w aves u sing phasor notation. 

Figure 3-9 sh ow s a space phasor d iagr am w here the fluxes .pf (d ue to 
the field), .par (d ue to arm ature reac tion) , and .pr (the r esultant f lux) ar e 
represented. I t  is c lear that under the assumption of a un if or m air gap and 
n o  satur ation, these are pr opor tional to the M M F  w aves F, A, and R 

w 

Axis of 

field 

Axis of 

Ef phose a 

Figure 3-10. A Space Phasor Diagram for Armature Current Lagging the 
Excitation Voltage. 
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respectively. The figure is drawn for the case when the annature current is 
in phase with the excitation voltage. The situation for the case when the 
annature current lags the excitation voltage E, is shown in Figure 3-10. 

3.4 A SIMPLE EQUIVALENT 

CIRCUIT 

The operation of a synchronous machine with cylindrical rotor can be 
conveniently analyzed if the effect of the annature-reaction flux is repre
sented by an inductive reactance. The basis for this is shown in Figure 3-11, 
where the phasor diagram of component fluxes and corresponding voltages 
is given. The field flux CP, is added to the annature-reaction flux CPar to yield 
the resultant air-gap flux CPr' The annature-reaction flux CPar is in phase with 
the annature current la' The excitation voltage E, is generated by the field 
flux, and E, lags CP, by 90° .  Similarly, Ear and Er are generated by CPar and CPr 
respectively, with each of the voltages lagging the flux causing it by 90° .  

If we introduce the constant of proportionality x.p that relates the nns 
values of Ear and la' we can write 

Ear= -jx.pla 
where the -j underscores the 90° lagging effect. We therefore have 

Er = E, -jX.pla 

(3.12) 

(3.13) 
An equivalent circuit based on Eq. (3.13) is given in Figure 3-1 2. We thus 
conclude that the inductive reactance x.p accounts for the annature-reaction 
effects. This reactance is known as the magnetizing reactance of the 
machine. 

The tenninal voltage of the machine denoted by V; is obtained as the 
difference between the air-gap voltage Er and the voltage drops in the 

Figure 3-11. Phasor Diagram for Fluxes and Resulting Voltages in a Synchro
nous Machine. 
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r r 
Vt 

L 
Vt 

L �----��----� '-------------0 

Figure 3-12. Two Equivalent Circuits for the Synchronous Machine. 

armature resistance ra, and the leakage-reactance Xl' H ere Xl accounts for 
the eff ects of le akage fl ux as well as space harmonic field effects n ot 
accounted for by x.p' A simple impedance commonly known as the synchro
nous impedance Zs results from combining x.p' Xl' and ra according to 

Zs= ra + jXs 
T he sync hronou s r eac tan ce Xs is c lear ly giv en by 

Xs=XI+X.p 

(3.14) 

(3.15) 

I t  is emphasized here that the above model applies to an unsaturated 
cylindrical rotor machine supplying balanced polyphase curren ts to its load. 
O ur voltage relati onship is now given by 

(3.16) 

Example 3-1 
A 5-kV A ,  220-V , 6 0-H z, six-pole, Y -connected synchronous generator 

has a leakage reactance per phase of 0.7 8  ohms and negligi ble armature 
resistance. The armature-reaction EMF for this machine is related to the 
armature current by 

A ssume that the generated EMF is related to field current by 

E,= 251, 

A .  C ompute the field current r equired to establish r ated voltage 
acr oss the terminals of a unity power factor load that draws rated 
generator armature cur rent. 

B. D etermine the field current needed to prov ide ra ted terminal 
v oltage to a load tha t draws 125 percent of r ated cur rent at 0.8 PF 
laggi ng. 
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Solution 

The rated curr en t is gi ven by 

Ia = 
5 X 10

3 
= 13.12 A !3 X 220 

The phase value of tenni nal vol tage i s  

�= 7: = 127.02 V 

With reference to the equi valen t  ci rcui t of Fi gure 3-12, we have 

A. Er= �+jlaxl 
= 127.02LQ+ (13.12LQ)(0.78L��t) 

= 127.43/4.61 ° 

Ear = -j(16.88) (13.12) = 221.47/-900 
The required fi eld exci tati on vol tage Ef is therefore, 

Ef= Er-Ear 
= 127.43/4.61 ° - 221 .47/ -90° 

= 264.24/61.270 V 
Conseq uently, usin g the gi ven fi eld voltage vers us current rel ation, 

If === :t = 1O.5696A 
B. With conditi ons giv en, we have 

Ia = 13.12 X 1 .25 = 16.40 A 

Er= 127.02LQ+ (16.4/-36.87°)(0.78�0) 

= 135.08/4.340 V 

Ear = -j(16.88)(16.40/ -36.87°) 

= 276.83/ -126.87° V 

Ef=Er-Ear 
= 135 .08/4.340 -276.83/ -126.87° 

= 379.69/37.61 ° V 

We therefore calculate the requ ired fi eld cu rren t  as 

If = 
37:569 

= 15.19 A 
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AND SHORT-CIRCUIT CHARACTERISTICS 

O pen-circuit and short-circuit test results on synchronous generators 
are of importance to appropriately account for saturation effects as well as 
for the determination of machine constants. T he open-circuit characteristic 
is a curv e of the armature terminal voltage on open circuit as a function of 
the field excitation with the machine running at synchronous speed. A n  
experimental setup for the test is show n  in Figure 3- 13. 

As the test name implies, in a short-circuit test the armature terminals 
of the synchronous machine are short-circuited through amm eters, and the 
field current is gradually increased until a maxi mum safe value is reached. 
T his is shown in Figure 3 -14. A n  open-circuit characteristic and a short-cir
cuit characteristic are shown in Figure 3 -15. T he short- circuit armature 
current is directly proportional to the field current up to alm ost 150 percent 
of rated armature current. 

Determination of Synchronous Reactance 
T he synchronous reactance Xs can be determined on the basis of E q. 

(3 .16) provi ded that terminal voltage �, generated voltage E" and the 
corresponding current phasor are available. We thus have the synchronous 

V Voltmeter 

D-C Source 

Figure 3-13. Experimental Setup for the Open-Circuit Characteristic of a Syn
chronous Machine. 
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Figure 3-14. Experimental Setup for Determining the Short-Circuit Characteris
tics of a Synchronous Machine. 
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Figure 3-15. Typical Open-Circuit and Short-Circuit Characteristics of a Syn
chronous Machine. 
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imp edance: 

(3.17) 

The imagi nary pa rt of Zs is the required synchronous reactance. 
A conveniently fast altern ate method mak es use of the short-circuit 

and open-circ uit c haracteristics of th e machine. To understand this, recall 
that for a short-circuit condition, 

Ve=o 
C onsequently, E q. (3.17) yields, for this c ondition, 

E, 
Zs=[ 

as< 

I f  we assume, as is usual, that the armature resistanc e is negligible, then we 
assert that 

(3.18) 

The un satur ated v alue of the synchr on ous reac tance c an be ob tained 
usin g E, fr om the air- gap l ine in Figure 3-15-c orrespond in g  to la,,: For 
oper ation near r ated termin al v oltage, we assume that the mac hine is 
eq uiv alen t to an unsa tur ated one wi th a str aight- line magnetization c urve 
thr ough the origin and the r ated v oltage poin t on the open-c irc uit char
ac teristic as shown b y  the das hed line in Fig ure 3- 16. Acc ord ingly, 

Q) 01 g 
� 
-
:> 0 ... 

U 
c: Q) 0. 0 

Ve Xs=y 
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Rated Vt oce 
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Figure 3-16. Defining the Synchronous Reactance. 
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1 
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Figure 3-17. Geometry of Characteristics for Example 3-2. 

Example 3-2 
The short- circuit characteri stic of a synchr onous generator i s  such 

th at ra ted armatu re cu rrent is obtai ne d by 0.6 pe r- uni t'" (p.u.) e xci tation. 
R ated v oltage on the air-gap line is obtain ed by 1.2 per-unit exci tation. Find 
th e va lue of th e unsatur ated sy nchronous reacta nce. 

Solution 

Th e geometry of the problem i s  sh own i n  Fi gure 3-17. From si milarity 
of tria ngles, we ded uce th at 

C onsequently, 

From which we calculate 

E, 1 � --0.6 1 .2 

E,,,, = 0.5 p .u .  

Xs = ;'" = 0�5 = 0.5 p.u. 
a 

'The numerical per-unit (p.u.) value of a quantity is its ratio to a chosen base quantity 
of the same dimension. This topic will be discussed in detail in Chapter 6. 
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3.6 PRINCIPAL STEADY-STATE 

CHARACTERISTICS 

W e  now di scuss some operati ng performance characteri sti cs of i mpor
tance i n  practi cal appli cati ons of the synchronous machi ne. These descri be 
th e i nterr elations among termi nal volta ge, fi eld current, armature current, 
an d power factor. 

W e  begi n  by considering a synchronous generator deli veri ng power to 
a constant power factor load at a constant frequency. A compounding curve 
sh ows th e vari ati on of the fi eld current requi red to mai ntai n rated termi nal 
voltage wi th the load. Typi cal compoundi ng curves for various power 
factor s are sh own i n  F igure 3- 1B . Th e computati on of poi nts on the curve 
follows easi ly as a consequence of applyi ng E q. (3. 16). Fi gure 3- 19 shows 
phasor di agram representati ons for th ree di fferent power factors. The 
followi ng example i llustrates the i deas in volved. 

Example 3--3 

A 9 375-kV A, three- phase, Y -connected, 13,B OO-V (li ne- to- line), tw o
pole, 60-H z turbi ne generator ha s an armature resi stance of 0. 064 ohms per 
phase and a synchronous reactance of 1 .79 ohms per phase. Fi nd the full 
load generated voltage per phase at: 

A. U ni ty power factor. 

B. A power factor of O.B laggin g. 
C. A power factor of 0.8 leadi ng. 

� -;:;> I 0.8 pf LOQ 
Z� 

Q:-
�� L.-::::::;..-� '., c 

I 1.0 pf 
�--_�0.8 pf Lead .�·2 I 

u c I 
W '0 i Rated load 
�� I 
� �--------�-------
� Load I KVA or Armature Current 

Figure 3-18. Synchronous-Machine Compounding Curves. 
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(a) 

(c) 
(b) 

Figure 3-19. Phasor Diagrams for a Synchronous Machine Operating at Differ
ent Power Factors are: a) Unity PF Loads, b) Lagging PF Loads, c) Leading PF 
Loads. 

Solution 

The m agni tud e of fu ll load current i s  obtained as 

Ia = 9375 X 103 = 392.22 A 13 X 13,800 

The tenninal v ol tage per phase i s  tak en as reference 

Ve= 13;00 = 7967.43� V 
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The sy nchr onous i mpeda nc e i s  obtai ned a s  

Zs= ra+jXs 

= 0.064 + j1.79 
= 1.7911/87.950 ohms per pha se 

The genera ted volta ge per pha se i s  obtai ned usi ng E q. (3.16) a s  
follows: 

A. For the uni ty power fa ctor: q, = o. 
Ia = 392.22LQ A 
E, = 7967.43 + (392.22LQ)( 1.7911/87 .950) 

= 8023.31/5.020 V 

B. For a power fa ctor of 0.8 la ggi ng: q, = -36.87°. 

Ia = 392.22/ -36.87° A 
E, = 7967.43 + (392.22/ -36.87°)( 1.7911/87 .950) 

= 8426.51/3.720 V 

c. For a power fa ctor of 0.8 lea di ng: q, = + 36.87°. 

Ia = 392.22/36.870 A 
E, = 7967.43 + (392.22/36.87°) (1.7911/87.950) 

= 7588.22/4.36° V 

I n  Fi gure 3-20 we show the va ria ti on of the machi ne termi na l  voltage 
wi th a rma ture curr ent for di ff erent po wer fa ctors a nd fixed fi eld curr ent. 
Ea ch of the curv es i s  gi ven for a fi eld current correspondi ng to produci ng 
full loa d  (ra ted) arma ture current a t  rated termi nal voltage. 

I mporta nt chara cteri sti cs of the syn chronous machi ne are gi ven by the 
reacti ve-capa bi li ty curves. These gi ve the maxi mum reacti ve p ower loadi ngs 
corr espondi ng to vari ous acti ve p ower l oadi ngs f or rated v ol tage operati on. 
A rma ture heati ng constrai nts govern the machi ne f or p ower factors from 
ra ted to uni ty. Fi eld hea ti ng represents the constrai nts for lower p ower 
fa ctors . Fi gure 3-21 shows a typ ica l set of curves for a large turbi ne 
genera tor. 
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Figure 3-20. Constant Field Current Voltampere Characteristic of Synchronous 
Machine. 
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Figure 3-21. Generator Reactive-Capability Curves. 
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3.7 POWER-ANGLE CHARACTERISTICS 

AND THE INFINITE BUS CONCEPT 

C onsider the simple circuit show n  in Fi gure 3-22. The impedance Z 
connects the sendi ng end, w hose voltage i s  E and receiving end, w ith voltage 
V. L et us assume that in polar form we have 

E=E� 
V=VLQ 
Z=Zd 

W e  therefore conclude that the current I is given by 

I=E-V 
Z 

Thi s reduces to 

The com plex p ower S1 at th e sendi ng end i s  gi ven by 
S: = E*I 

Si milarly, the complex pow er � at the recei ving end i s  

S; = V*I 
U si ng E q. (3.19), w e  thus have 

E2 EV S: =Z-/-t/l-Z /-t/l-� 

EV V2 
S; =Z /�-t/l-Z-/-t/I 

R jX 
+�+ 

E v 
-I 1_ o 0 

E 

Figure 3-22. Equivalent Circuit and Phasor Diagram for a Simple Link. 

(3.19) 

(3.20) 

(3.21) 
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Recall that 
S* =P-jQ 

We thus have the power equations: 
E2 EV PI = Zcos( -I/;) - Zcos( I/; +�) 

QI = �
2 sine I/; ) - � sine I/; + �) 

EV V2 P2 = Z cos( � -I/; ) - z cos I/; 

Q2 = � sine I/; -�) - �2 sin I/; 
An important case is when the resistance is negligible; then 

I/; = 90° 
Z==X 

Here we have Eqs. (3.22)-(3.25) reducing to 

PI = P2 = � sin � 

Q == E2 - EVcos� 
I X 

Q2 = 
EVco

� 
- V2 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 
(3.27) 

(3.28) 

(3.29) 

(3.30) 

In large-scale power systems, a three-phase synchronous machine is 
paralleled through an equivalent system reactance (Xe) to the network 
which has a high generating capacity relative to any single unit. We often 
refer to the network or system as an infinite bus when a change in input 
mechanical power or in field excitation to the unit does not cause an 
appreciable change in system frequency or terminal voltage. Figure 3-23 
shows such a situation, where V is the infinite bus voltage. 

The foregoing analysis shows that in the present case we have for 
power transfer, 

with 

and 

P= Pmaxsin� (3.31) 

EV (3.32) Pmax=y 
t 

Xt = X" + Xe (3.33) 
It is clear that if an attempt were made to advance � further than 90° 

(corresponding to maximum power transfer) by increasing the mechanical 
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1 ELL 
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I 

Figure 3-23. A Synchronous Machine Connected to an Infinite Bus. 

power input, the electrical power output would decrease from the Pmax 
point. Therefore the angle 8 increases further as the machine accelerates. 
This drives the machine and system apart electrically. The value P max is 
called the steady-state stability limit or pull-out power. We will consider the 
following example, which illustrates the utility of the above. 

Example 3-4 
A synchronous generator with a synchronous reactance of 1.3 p.u. is 

connected to an infinite bus whose voltage is one p.u. through an equivalent 
reactance of 0.2 p.u. The maximum permissible output is 1.2 p.u. 

A. Compute the excitation voltage E. 

B. The power output is gradually reduced to 0.7 p.u. with fixed field 
excitation. Find the new current and power angle 8. 

Solution 

A. The total reactance is 

Xt= 1.3 + 0.2 = 1.5 

Thus we have 

Therefore, 

B. We have for any angle 8, 

1.2=� 
t 

_ (E)(l) 
- 1.5 

E= 1.8 p.u. 

P=Pmaxsin8 
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Therefore, 

This results in 

The current is 

0.7 = 1.2 sin 8 

8 = 35.69° 

E - V  1= -jXt 
Substituting the given values, we obtain 

_1.8�0-1.0 
1- j 1 .5 

= 0.7648/ - 23 .75 ° A 

Reactive Power Generation 
Inspection of Eq. (3.30) reveals that the generator produces reactive 

power (Q2 > 0) if 
Ecos8> V 

In this case the generator appears to the network as a capacitor. This 
condition applies for high magnitude E, and the machine is said to be 
overexcited. On the other hand, the machine is underexcited if it consumes 
reactive power (Q2 < 0). Here we have 

Ecos8< V 
Figure 3-24 shows phasor diagrams for both cases. The overexcited synchro
nous machine is normally employed to provide synchronous condenser 
action, where usually no real load is carried by the machine ( 8 = 0). In this 
case we have 

(3.34) 

Control of reactive power generation is carried out by simply changing E, 
by varying the dc excitation. An example will help underline the use of 
these concepts. 

Example 3-5 

Compute the reactive power generated by the machine of Example 3-4 
under the conditions in part (b). If the machine is required to generate a 
reactive power of 0.4 p.u. while supplying the same active power by 
changing the field excitation, find the new excitation voltage and power 
angle 8. 
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0<8 < 900 
0<4><900 
Overexcited generator 
PG> 0 
0G> 0 

0<8 <900 
-900<4> <0 
Underexcited generator 
PG > 0 
0G> 0 

Figure 3-24. Phasor Diagrams for Overexcited and Underexcited Synchronous 
Machines. 

Solution 

The reactive power generated is obtained according to Eq. (3.30) as 

Q2 = 1(1.8CO;�;. 69 - 1) = 0.308 

With a new excitation voltage an d  stated active and reactive powers, we 
have using Eq. (3.28) and (3.30) 

We thus obtain 

From the above we get 

0.7 = (E)(1) sin8 
(1.5) 

O 
4 = 1(Ecos8 -1) . 1.5 

tan 8 = (1.5)(0.7) 
(1. 6 ) 

8 = 33.27° 

E= (1.5)(0.7) 
= 191 

sin(33.27) . 
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3.8 STATIC STABILITY LIMIT 
CURVES 

L et us consi der a machi ne wi th sync hro noul? reac tanc e X s conn ec ted to 
an i nfini te bus of voltage V thr ough the r eac tanc e Xe as shown in Fi gure 
3 -25. We wi sh to determi ne the r elati on ship betw een P, Q, �, and l> as V 
and E are allowed to vary . The acti ve pow er P and reac tiv e pow er Q are 
obtain ed on the basi s  of Eq s. (3 .28) and (3.30): 

P = E� sin( l> -B) 
(3 .3 5) 

Xs 

Q = E� co s( l> -B) - � 2 

Xs 
(3.36) 

In order to eli mi nate E from the abo ve relation ship s, w e  no te th at tw o 
addi ti onal expressi ons for P can be o btai ned si nce ac tive p ow er lo sses are 
not p resent. The fi rst i s  based on the tr ansfer from node 1 to nod e 3 acro ss 
the total reactance Xt. The second i s  based on the transfer betw een no des 2 
and 3 across the reactance Xe' We th erefo re h ave 

w here 

T hus w e  con clud e th at 

CD 

E � 

I 

p_ EVsi nl> _ �Vsi nB 
(3.37) - Xt 

- Xe 

(3.38) 

Figure 3-25. Equivalent Circuit for a Synchronous Machine Connected through 
an External Network to an Infinite Bus. 
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U si ng Eq. (3.38) i n  Eq s. (3.3 5) and (3.36), we get 

P= X i2X:t 
� [si nO si n( � -0)] s eSln 

Ve2 Ve2Xt [. ( )] Q+-X = X X . � S100COS �-O s s eSln 

(3.39) 

(3.40) 

To eli mi nate 0 we wi ll recall the followi ng two tri gon ometric i den ti -
ti es: 

si n a sin fJ = t [cos( a -fJ) -cos( a + fJ)] 
sin a cos fJ = t [si n( a + p) + si n( a -fJ)] 

A pplyi ng Eq. (3.41) to E q. (3.3 9), we obtai n  

Ve2Xt [( ) ] P= 2X X . � cos �-20 -cos� 
8 eSln 

M oreover, Eq. (3.42) appli ed to E q. (3.40) gi ves 

Q Ve2 Ve2 Xt [. l' • ( 1' 0)] +-X = 2X X . l' SlOu-SlO u-2 
8 8 eSln u 

R earrangi ng we get 

Ve2Xt Ve2Xt ( ) P+ 2XsXetan� 2XsXesin� cos � -20 

Q_ Ve2(Xs-Xe) = -Ve2�t sin(�-20) 2XsXe 2XsXeSlO� 

(3.41) 
(3.42) 

(3.43) 

(3.44) 

Sq uari ng both si des of E qs. (3.43) and (3.44), an d addi ng, we obtain 
the desi red result: ( P+ Ve2Xt ) 2 + [Q _ Ve2( Xs -Xe) ] 2 

2XsXetan � 2XsXe ( v.2X ) 2 
= 2X8�e8�n� (3.45) 

E qua ti on ( 3.45) in di cates that the locus of P an d Q deliv ered by the 
machi ne i s  a ci rcle wi th cen ter at (Po, Q o) an d ra di us R, wh ere 

_V.2X 
Po = t t (3.46) 2XsXetan� 

(3.47) 

(3.48) 



70 Power Generation and the Synchronous Machine 

of 
v2 I I o =�(---) 

c 2 Xe Xs 

Vt2 I I R=-(-+-) 2 Xs Xe 

Y.J.2 MEL Curve /' 
P 

j. .......... Xd Pullout Curve 

Figure 3-26. Static Stability Limit Curve for a Synchronous Machine. 

The stati c  stabi li ty li mi t  curv e  for the machin e i s  obtain ed from E q. 
(3 .45) by setti ng 8 to 90° .  H ence w e  h av e  [ v:2 ( 1 1 ) ]  2 [V:2 ( 1 1 ) ] 2 

p2 + Q - T Xe - X. = T Xs + Xe (3. 49) 

T he stati c  stabi li ty li mi t curv e is common ly r ef err ed t o  as the pull-out curve 
of P and Q and wi l l  d etermin e th e mini mum p ermis si ble outp ut v ar f or 
ou tp ut watts and termi nal v ol tage sp eci fi cati on s. Figu re 3 .26 show s  such a 
curve. 

Example 3-6 

Giv en a generator and a sy stem wi th r eactan ce s  of Xs = 1.2 and 
Xe = 0.2, both on a 100- MV A  base. A ssume a generat or termi nal vol tage of 
0. 95 p .u. I nfinite bus v oltage i s  unk now n. Fin d the mi ni mu m p ermi ssi ble 
ou tp ut v ar for the p.u. outp ut w atts v aryi ng from z ero to on e in step s  of 
0. 25. 

Solution 

The giv en p arameters sp eci fy the stati c  stabi li ty li mi t  curv e  eq uati on 
as p2 + ( Q _ 1 .88) 2 = 6.93 

F or P = 0, we hav e  

Q= - 0 .7 52 



Si mi larly , we get 

F or P= 0.25, 
F or P= 0.5, 
F or P= 0.75, 
For P= 1 .00, 

Q=  -0.740 
Q=  -0.704 
Q=  -0.643 
Q=  -0.555 
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3.9 ACCOUNTING FOR SALIENCY 

The presence of protrudi ng fi eld poles i n  a salient-p ole machi ne 
i ntroduces nonuni formi ty of the magneti c  reluctance of the ai r gap. The 
reluctance along the polar axi s  i s  appreci ably less than that along the 
i nterpolar axi s. We often refer to the polar axis as the direct axis and 
the interpolar as the quadrature axis. Thi s effect can be taken i nto account 
by resolvi ng the armature current Ia i nto two components, one i n  ti me 
phase and the other i n  ti me quadrature wi th the exci tati on voltage as 
shown i n  Fi gure 3-27. The component Id of the armature current i s  along 
the di rect axis (the axi s  of the fi eld poles), and the component Iq i s  along 
the quadrature axi s. 

L et us consider the effect of the direct-axi s  component alone. Wi th Id 
laggi ng the exci tati on E M F  E, by 90°, the resulti ng armature-reacti on flux 
q,ad is directly opposite the fi eld poles as shown i n  Fi gure 3-28. The effect of 
the quadrature-axi s  component i s  to p roduce an armature-reacti on flux q,aq' 

�f 

IQ 
�==============�------+Ef 

Figure 3-27. Resolution of Armature Current in Two Components. 
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Axis of 
Field Pole 

1>f 

Axis of 
Field Pole 

lq 

Figure 3-28. Direct-Axis and Quadrature-Axis Air-Gap Fluxes in a Salient-Pole 
Synchronous Machine. 

w hi ch i s  i n  th e qu ad ratu re- axi s  di recti on as show n in Figu re 3-28. The 
p hasor di ag ram wi th both comp on ents pr esen t  i s  sh own in Figur e 3-29. 

We recall that i n  the cyli nd ri cal rotor machin e case, w e  empl oy ed t he 
sy nchr onou s  reactance Xs t o  accou nt f or the armatur e-r eacti on EM F i n  an 
equi val ent ci rcui t. Th e same argu men t can be extend ed to the sali en t-p ole 
case. Wi th each of the comp onents cu rrents Id and Iq, w e  a ssoci ate comp o
nent sy nchronou s- reactance v ol tag e  dr op s,jldxd andjlqxq r esp ectiv ely. T he 
di rect- axi s  sy nchr onou s  reactance Xd and the qu ad ratur e-axi s sy nchronou s 

<#If 

lq E �� ________ .. � ____ -+ f 

1>od -- 1>or 
Id ----------- 10 

Figure 3-29. Phasor Diagram for a Salient-Pole Synchronous Machine. 



reac tanc e  Xq are giv en by 
Xd=XI+X</>d 
Xq = Xl + x</>q 
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where Xl i s  the annature leak ag e reac tanc e and i s  assumed to be the 
same for di rec t- axi s and quadrature-axi s  c urrents. The di rec t-axi s  and 
quadrature-axi s  magn eti zi ng reac tanc es X</>d and x</>q acc ount for the i nduc
tiv e  effec ts of the respec tiv e annature-reac ti on flux. Fig ure 3-30 shows a 
phasor di ag ram i mplementi ng the result. 

(3.50) 
I n  many i nstanc es, the power fac tor ang le CP at the mac hine tenni nals 

i s  explici tly k nown rather than the i ntern al power fac tor ang le (cp + �), 
whic h i s  requi red for the resoluti on of Ia i nto i ts di rec t- axi s  and 
quadrature-axis c omponents. We c an ci rc umvent thi s di ffic ulty by rec alli ng 
that i n  phasor notati on, 

Ia = Iq + Id (3.51) 
Substi tuti on of E q. (3.51) i nto E q. (3.50) for Iq and rearrangi ng , we 

obtai n  

(3.52) 
L et us define 

(3.53) 
E; as defi ned i s  i n  the same di rec ti on as E, si nc e jId i s  also along the same 
di rec ti on. O ur proc edure then i s  to obtai n  E; as giv en by E q. (3.53) and then 
obtai n  the c omponent Id based on the phase ang le of E;. Fi nally , we fi nd E, 
as a result of 

(3.54) 
T hi s  i s  shown i n  Fig ure 3-31. A n  exampl e i s  tak en up at thi s poi nt to 
i llustrate the proc edure. 

Figure 3-30. Phasor Diagram for a Synchronous Machine. 
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O �-.L-L __ -.l 

Figure 3-31. A Modified Phasor Diagram for a Salient-Pole Synchronous Ma
chine. 

Example 3-7 

A 5-kVA, 220-V, Y -connec ted, thr ee-phase, sali ent- pol e synchronous 
generator i s  used to supply pow er to a uni ty P F  load. T he di rect-a xis 
synchronou s  reactance i s  12 ohms and the quadrature-axi s  synchron ous 
reactance is 7 ohms. A ssume th at rat ed current i s  deli vered to the l oa d  a t  
rated vol tage and that annature resi stance i s  negligib le. C ompute the 
excitati on voltage and th e pow er angle. 

Solution 

We calculate 

M oreover, 

'-'t= 127.02 V 

I = 5 X 10
3 

= 13.12 A. a 220{3 

E/= '-'t+jlaxq 
= 127.02 + j(13.12) (7) = 156.75/35.87° 

Id = Ia si n 35.87 = 7.69 A 
IE,I=IEfi +IIAxd-xq)1 
= 156.75 + 7 .69( 12 - 7) = 195.20 V 

l) = 35.87° 
F igu re 3.32 pertai ns to thi s  exampl e. 
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Figure 3-32. Phasor Diagram for Example 3-7. 

TABLE 3-1 
Typicalper-Unit Values of Machine Reactances 

2-Pole Turbine 4-Pole Turbine Salient-Pole Condensers 
Generators Generators Generators ( air-cooled) 

xd 0.85- 1 .45 1 .00- 1 .45 0.6- 1 .5 1 .25-2.20 
Xq 0.92 - 1 .42 0.92 - 1 .42 0.4-0.8 0.95- 1 .3 

Note: Machine kVA rating as base. 
Table 3-1 gives typical ranges for values of Xd and Xq for synchronous 

machines. Note that Xq is less than xd because of the greater reluctance of 
the air gap in the quadrature axis. 

3.1 0 SALIENT-POLE MACHINE 
POWER ANGLE CHARACTERISTICS 

The power angle characteristics for a salient-pole machine connected 
to an infinite bus of voltage V through a series reactance of xe can be 
arrived at by considering the phasor diagram shown in Figure 3-33. The 
active power delivered to the bus is 

p =  Udsin 8 + Iqcos 8 ) V (3.55) 
Similarly, the delivered reactive power Q is 

Q = ( Idcos 8 - Iqsin 8 ) V (3.56) 
To eliminate Id and Iq , we need the following identities obtained from 
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I Q  r 'q 'q 
'at'----+' 

j l d x d  

Figure 3-33. A Salient-Pole Machine Connected to an Infinite Bus through an 
External Impedance. 

inspection of the phasor diagram: 

where 

Et - Vcos <5 
Id= --'---Xd 
I = Vsin <5 
q X q 

Xd= Xd+Xe 
Xq = xq +xe 

(3.57) 

(3.58) 

(3 .59) 
(3 .60) 

Substitution of Eqs. (3.57) and (3.58) into Eqs. (3.55) and (3.56) yields 

P = - sm <5 + - - - - sm 2 <5 
VEt . V2 ( 1 1 ) . 
Xd 2 Xq Xd 

Q 
_ VE, t' 

V2 
( COS2<5 Sin2<5 ) 

- - cos u - -- +--Xd Xd Xq 

(3 .61 ) 

(3.62) 

Equations (3.61) and (3.62) contain six quantities-the two variables 
P and <5 and the four parameters E" V, Xd, and Xq-and can be written in 
many different ways. The following form illustrates the effect of saliency. 
Define Pd and Q d as 

(3.63) 

and 

(3.64) 

The above equations give the active and reactive power generated by a 
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p 

� ____ �� ____ � ____ �� ____ �_ 8 
- 1 8 00 0 180 0 

V2o<d - Xq) 
2XdXq 

Figure 3-34. Power Angle Characteristics of a Salient-Pole Synchronous Ma
chine. 

round rotor machine with synchronous reactance Xd• We thus have 

p= p + V2 (� - � ) sin 2s  d 
2 Xq Xd 

Q =  Qd - V2 (� - � ) sin2S Xq Xd 

(3 .65) 

(3 .66) 

The second tenn in the above two equations introduces the effect of salient 
poles, and in the power equation the tenn corresponds to reluctance torque. 
Note that if Xd = Xq , as in a unifonn air-gap machine, the second tenns in 
both equations are zero. Figure 3-34 shows the power angle characteristics 
of a typical salient-pole machine. 

The pull-out power and power angle S for the salient-pole machine can 
be obtained by solving equation (3.67) requiring the partial derivative of P 
with respect to S to be equal to zero. 

ap = 0 as (3.67) 

The actual value of pull-out power can be shown to be higher than that 
obtained assuming nonsaliency. 

Example 3-8 
A salient-pole synchronous machine is connected to an infinite bus 

through a link with reactance of 0.2 p.u. The direct-axis and quadrature-axis 
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reactances of the machine are 0.9 and 0.65 p.u. respectively. The excitation 
voltage is 1 .3 p.u., and the voltage of the infinite bus is maintained at 1 p.u. 
For a power angle of 30° ,  compute the active and reactive power supplied to 
the bus. 

Solution 

The active power formula is given by Eq. (3.61 ). Our data are used to 
calculate Xd and Xq as 

Therefore, 

Xd = xd + xe = 0 .9 + 0 .2 = 1 . 1 
Xq = Xq + xe = 0 .65 + 0 .2 = 0 .85 

p = ( 1 .3) ( 1 ) . 300 + ! ( _1 
_ _ _  

1 ) . 600 
1 . 1 sm . 2 0 .85 1 . 1 sm 

= 0 .7067 p.u. 
Similarly, the reactive power is obtained using Eq. (3.62) as: 

Example 3-9 

Q = ( 1 .3) ( 1 ) 300 _ ( COS230° + sin230° ) 
1 .1 cos 1 . 1 0 .85 

= 0 .0475 p.u. 

A synchr onous machine is supplied from a constant-voltage source. At 
no-load, the motor armature current is found to be negligible when the 
excitation is 1 .0 per unit. The per-unit motor constants are Xd = 1 .0 and 
Xq = 0.6. 

A. If the machine loses synchronism when the angle between the 
quadrature axis and the terminal voltage phasor direction is 60 
electrical degrees, what is the per-unit excitation at pull-out? 

B. What is the load on the machine at pull-out? Assume the same 
excitations as in part (a). 

Solution 

VEt . V2 • p = X sm S + 2X X ( Xd - Xq )sm 2S d d q 
Et ( l )  . 1 . = -1 - sm S + 2 X 0 .6 ( 1 - 0 .6)sm 2S 

= Et sin S + � sin 2 S 



For pull-out power we have 

The pull-out angle is 

Hence we obtain 

ap 2 a5 = E, cos S + "3  cos 2� = 0 

2 E' = "3  p .u .  

Consequently the pull-out load is  found to  be 

p = � sin 600 + � sin 1200 = 0.866 p .u .  

SOME SOLVED PROBLEMS 

Problem 3-A-1 
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A 180-kVA, 440-V, 300 r/min, 60-Hz, three-phase, Y-connected cylin
drical rotor synchronous generator has the following particulars: ra = 0 and 
x/ = 0.296 ohms. The air-gap line is described by E = 171" expressed per 
phase. The short-circuit characteristic is described by Isc = 10.751,. 

A. Find the value of the unsaturated synchronous reactance. 

B. Find the value of the armature reaction reactance. 

C. Find the value of the field current needed to yield rated terminal 
voltage at rated current for a 0.8 lagging PF load. 

Solution 

A. Using the air-gap line and short-circuit characteristics given, we 
obtain 

E,sc 17I, 
Xs = I = 10 751 = 1.58 ohms a sc . , 

B. The armature reaction reactance is obtained as 

X</> = Xs - X/ = 1.58 -0.296 
= 1.285 ohms 

C. 

E, = Ye + jlaXs 
= �O + (236.19/ -36.87) (  1.58/900 ) = 563.8/320 V 
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Therefore, 

Problem 3-A-2 

I, = 
5��.8 

= 33 .17 A 

A 40,000-kVA, 14,000-V, Y-connected alternator has negligible anna-
ture resistance. Some pertinent data are as follows: 

• Short-circuit characteristic: Ia = 71, 

• Air-gap line, volts per phase: E = 331, 

• Open-circuit characteristic volts per phase: 

21 ,3001, 
E = 430 + 1, 

Find both the unsaturated and saturated synchronous reactances for this 
machine. 

Solution 

The unsaturated synchronous reactance is obtained as 
33 Xs = 7 = 4 .71  ohms per phase 

To calculate the saturated synchronous reactance we need the field current 
corresponding to rated tenninal voltage from the open-circuit characteris
tics. This is obtained as the solution to 

The result is 

14,000 

13 
21 ,3001, 

430 + I, 

I, = 262 .966 A 

From the short-circuit characteristic, 

Ia", 
= 71, = 1840.763 A 

We thus conclude that 

14,000 

13 Xs = 
1840 .763 

= 4 .39 ohms per phase 
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Problem 3-A-3 

For the machine of Problem 3-A-1 it is required to compute the field 
current needed to provide rated voltage when rated current is delivered to 
the load at: 

A. A PF of 0.8 leading. 

B. A PF of 0.8 lagging. 

Assume Ear at rated current corresponds to 305 equivalent field volts. 

Solution 

1 80 X 1 03 
Irated = . ro = 236.19 A 

v 3  x 440 

A. For a load with 0.8 PF leading, we have 

Er = V; + Ia( jXt ) = �o + (236.19/36.870 ) ( 0.296/900 ) 

= 219.34/14.770 

Ear lags Ia by 90° . Therefore, 

Ear = 305/ -53 . 13° 
Ef = Er - Ear 

= 219.34/14.77 °- 305/ -53.1 3° 

= 301 .33/84.46° V 

If = 30:.;33 = 17 .73 A 

B. For a load with 0.8 PF lagging, we have 

Er = 7a + (236.19/- 36.87° ) ( 0.296�0) 

= 301 .22/10.700 

Ear = 305/ -126.87° 
Ef = Er - Ear 

= 301 .22/10.70° -305 / -126.87° = 565. 14/32.050 

If = 56:./4 = 33 .24 A 
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Problem 3-A-4 

The synchronous reactance of a cylindrical rotor machine is 1 .2 p.u. 
The machine is connected to an infinite bus whose voltage is 1 p.u. through 
an equivalent reactance of 0.3 p.u. For a power output of 0.7 p.u., the power 
angle is found to be 30° .  

A .  Find the excitation voltage E, and the pull-out power. 
B. For the same power output the power angle is to be reduced to 25° .  

Solution 

A. 

Find the value of the reduced equivalent reactance connecting the 
machine to the bus to achieve this. What would be the new 
pull-out power? 

Hence 

Xt =  1 .5 p .u .  
P = Pmaxsin «5 

0.7 = Pmaxsin(300 )  

Pmax = 1 .4 p.u .  
Thus 

B. 

Problem 3-A-5 

0 .7 = Pmax sin(25° )  
Pmax = 1 .66 

1 .66 = 
E, V 

= ( 2 . 1) ( 1 ) 
Xnew Xnew 

Xnew = 1�:6 = 1 .27 p .u .  

x e  = 1 .27 - 1 .2 = 0 .07 p.u .  

A cylindrical rotor machine is  supplying a load of 0.8 PF lagging at an 
infinite bus. The ratio of the excitation voltage to the infinite bus voltage is 
found to be 1 .25. Compute the power angle «5. 
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Solution 

For a power factor of 0.8 we have � = tan <I> = 0 .75 

Using the active and reactive power formulae, (3.28) and (3.30) we have 

V 
cos 8 - -

Cross-multiplying we have 

Using 

We get 

Q _ E 
P sin 8 

0 .75 = 
cos � - 0.8 

sm 8 

0 .8 + 0 .75 sin 8 = cos 8 

[ (0 .75)2 + 1 ] sin28 + (2) (O .8) (O .75)sin 8 + [(0 .8)2 - 1 ] = 0 

Consequently, 

Problem 3-A-6 

sin 8 = 0 .23 
8 =  13 .34° 

The apparent power delivered by a cylindrical rotor synchronous 
machine to an infinite bus is 1 .2 p.u. The excitation voltage is 1 .3 p.u. and 
the power angle is 20° . Compute the synchronous reactance of the machine, 
given that the infinite bus voltage is 1 p.u. 

Solution 

We have that the apparent power 8 is given by 

82 = p2 + Q2 

Using the formulae of active and reactive power (Eq. 3.28 and 3.30) we have 
by squaring and adding, 

82 = ( ;: ) ( E 2 + V2 - 2 EVcos 8 ) 

( 1 .2)2 
= ( �2 ) [1 .69 + 1 - (2) ( 1 .3) ( l)cos 200] 

From which 

x = 0.414 p .u .  
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Problem 3-A-7 

The synchronous reactance of a cylindrical rotor machine is 0.9 p.u. 
The machine is connected to an infinite bus through two parallel identical 
transmission links with reactance of 0.6 p.u. each. The excitation voltage is 
1 .5 p.u., and the machine is supplying a load of 0.8 p.u. 

A. Compute the power angle � for the given conditions. 

B. If one link is opened with the excitation voltage maintained at 1 .5 
p.u., find the new power angle to supply the same load as in part 
(a). 

Solution 

A. The reactance of the two lines in parallel is 

_ (0.6) (0.6) _ Xe, - 0.6 + 0.6 
- 0.3 p

.
u .  

The total reactance between the source and bus is thus 

Xt, = Xs + Xe, = 0 .9 + 0 .3 = 1 .2 p .u .  

The power angle is found from 

E,V . 
P = X sm �1 

t, 

O 8
' - ( 1 .5) ( 1 ) . � 

. 
-

1 .2 
sm Ut  

� l  = 39.79° 

B. With only one line in service, 

Xe2 = 0 .6 

Xt2 = Xs + Xe2 = 0 .9 + 0 .6 = 1.5 p .u .  

The new power angle is found from 

O 8 -
( 1 .5) ( 1 ) . � 

. -
1 .5 

sm u2 

62 = 53 .13° 

We note that the power angle is increased with the opening of one 
line. 

Problem 3-A-8 

A salient pole machine supplies a load of 1 .2 p.u. at unity power factor 
to an infinite bus whose voltage is maintained at 1 .05 p.u. The machine 
excitation voltage is computed to be 1 .4 p.u. when the power angle is 25° .  
Evaluate the direct-axis and quadrature-axis synchronous reactances. 
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Solution 

The active and reactive power equations for the salient-pole machine 
are given by Eq. (3.61) and (3.62). Using the given data we obtain 

2= (1 .4) (1.05) . 250 + (1 .05) 2 (� _  � ) . 500 1 . X sm 2 X X sm d q d 
0= (1 .4�1 .05) cos250 _ (1 .05)2 ( CO�25° + Si�25 ) d d q 

These reduce to 

0.19897 ( �d ) + 0.4223 ( �q ) = 1.2 

0.4267 ( �d ) -0.1969 ( �q ) = 0 

Solving the above two equations we obtain 

1 
}(=1.077 and d 1 

}(=2.334 q 
The required reactances are thus obtained as 

Xd = 0.9284 and Xq = 0.4284 

PROBLEMS 

Problem 3-8-1 

A 10 MV A ,  13.8 kV , 60 Hz, two-pole, Y connected three phase 
alternator has an armature winding resistance of 0.07 ohms per phase and a 
leakage reactance of 1.9 ohms per phase. The armature reaction EMF for 
the machine is related to the armature current by 

Ear = -j19.91la 
Assume that the generated EMF is related to the field current by 

E,=60I, 

A .  Compute the field current required to establish rated voltage 
across the terminals of a load when rated armature current is 
delivered at 0.8 P F  lagging. 

B. Compute the field current needed to provide rated terminal voltage 
to a load that draws 100 per cent of rated current at 0.85 P F  
lagging. 
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Problem 3-8-2 

A 5 k VA, 220-V, 60 Hz, six pole, Y connected synchronous generator 
has a leakage reactance per phase of 0.8 ohms and negligible armature 
resistance. The air-gap line is described by E = 181, and the short circuit 
characteristic is described by Ise = 61, . 

A. Find the value of the unsaturated synchronous reactance. 

B. Find the value of armature reaction reactance. 

C. Find the value of the field current needed to yield rated terminal 
voltage at rated current for a unity PF load. 

Problem 3-8-3 

A 9375 kVA, 13.800 kV, 60 Hz, two pole, Y-connected synchronous 
generator is delivering rated current at rated voltage and unity PF. Find the 
armature resistance and synchronous reactance given that the field excita
tion voltage is 1 1935.44 V and leads the terminal voltage by an angle 47 .960 • 

Problem 3-8-4 

The magnitude of the field excitation voltage for the generator of 
Problem (3-B-3) is maintained constant at the value specified above. Find 
the terminal voltage when the generator is delivering rated current at 0.8 
PF lagging. 

Problem 3-8-5 

A 1 ,250 kVA, three-phase, Y-connected, 4160 V, ten-pole, 60 Hz 
synchronous generator has an armature resistance of 0.126 ohms per phase 
and a synchronous reactance of 3 ohms per phase. Find the full load 
generated voltage per phase at 0.8 PF lagging. 

Problem 3-8-6 

A 180 kVA, three-phase, Y-connected, 440 V, 60 Hz synchronous 
generator has a synchronous reactance of 1 .6 ohms and a negligible arma
ture resistance. Find the full load generated voltage per phase at 0.8 PF 
lagging. 

Problem 3-8-7 

For the generator of (3-B-2); find the maximum power output if the 
terminal voltage and field excitation voltage are kept constant at the values 
defined in Problem 3-B-2. If the power output is gradually reduced to 3 kW 
with fixed field excitation find the new current and power angle 8. 
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Problem 3-8-8 

Repeat Problem 3 -B-7 for the generator of Problem 3 -B-6 with power 
output reduced to 150 kW. 

Problem 3-8-9 

For the generator of Problems 3 -B-7 compute the reactive power 
generated by the machine. If the machine is required to generate a reactive 
power of 600 Var while supplying the same active power by changing the 
field excitation, find the new excitation voltage and power angle. 

Problem 3-8-1 0 

Repeat Problem 3 -B-9 for the generator operating under the condi
tions of Problem 3 -B-8 .  Assume the new reactive power to be 90 kVar. 

Problem 3-8-1 1 

The synchronous reactance of a cylindrical rotor synchronous genera
tor is 0.9 p.u. If the machine is delivering active power of 1 p.u. to an 
infinite bus whose voltage is 1 p.u. at unity PF, calculate the excitation 
voltage and the power angle. 

Problem 3-8-1 2 

A cylindrical rotor machine is delivering active power of 0.8 p.u. and 
reactive power of 0.6 p.u. at a terminal voltage of 1 p.u. If the power angle is 
20° ,  compute the excitation voltage and the machine's synchronous reac
tance. 

Problem 3-8-1 3 

A cylindrical rotor machine is delivering active power of 0.8 p.u. and 
reactive power of 0.6 p.u. when the excitation voltage is 1 .2 p.u. and the 
pwer angle is 25° .  Find the terminal voltage and synchronous reactance of 
the machine. 

Problem 3-8-1 4 

The synchronous reactance of a cylindrical rotor machine is 0.8 p.u. 
The machine is connected to an infinite bus through two parallel identical 
transmission links with reactance of 0.4 p.u. each. The excitation voltage is 
1 .4 p.u. and the machine is supplying a load of 0.8 p.u. 

A. Compute the power angle 8 for the outlined conditions. 

B. If one link is opened with the excitation voltage maintained at 1 .4 
p.u. Find the new power angle to supply the same load as in "a". 
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Problem 3-8-1 5 

The synchronous reactance of a cylindrical rotor generator is 1 p.u. 
and its terminal voltage is 1 p.u. when connected to an infinite bus through 
a reactance 0.4 p.u. Find the minimum permissible output vars for zero 
output active power and unity output active power. 

Problem 3-8-1 6 

The reactances Xd and Xq of a salient-pole synchronous generator are 
0.95 and 0.7 per unit, respectively. The armature resistance is negligible. 
The generator delivers rated kVA at unity PF and rated terminal voltage. 
Calculate the excitation voltage. 

Problem 3-8-1 7 

The machine of problem (3-B- 16) is connected to an infinite bus 
through a link with reactance of 0.2 p.u. The excitation voltage is 1 .3 p.u. 
and the infinite bus voltage is maintained at 1 p.u. For a power angle of 25° ,  
compute the active and reactive power supplied to the bus. 

Problem 3-8-1 8 

The reactances Xd and Xq of a salient-pole synchronous generator are 
1 .00 and 0.6 per unit respectively. The excitation voltage is 1 .77 p.u. and the 
infinite bus voltage is maintained at 1 p.u. For a power angle of 19.4 0 ,  
compute the active and reactive power supplied to the bus. 

Problem 3-8-1 9 

For the machine of Problem 3-B-18, assume that the active power 
supplied to the bus is 0.8 p.u. compute the power angle and the reactive 
power supplied to the bus. (Hint: assume cos 8 � 1 for an approximation) 

Problem 3-8-20 

For the machine of Problem 3-B-18, assume that the reactive power 
supplied to the bus is 0.6 p.u. Compute the power angle and the active 
power supplied to the bus. 

Problem 3-8-21 

A salient pole machine supplies a load of 1 .2 p.u. at unity PF to an 
infinite bus. The direct axis and quadrature axis synchronous reactances are 

Xd = 0 .9283 Xq = 0 .4284 

The power angle 8 is 250 •  Evaluate the excitation and terminal voltages. 
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Problem 3-8-22 

The condition for pull-out for a salient-pole machine is given by Eq. 
(3 -67 ), with P as given in Eq. (3 -65) . Show that the angle 8 at which 
pull-out occurs satisfies 

cos28 + A cos 8 - 0.5 = 0 
with 

A = E/ Xq/2v( Xd - Xq] 

Show also that if � < 1 ,  then approximately we have 
A 

and that 

Problem 3-8-23 

v(x - X ] 
cos 8 � 

d q 
m E/ Xq 

( YE/ ) ( Y3 ) ( 1 ) ( Xd ) 2 
Pmax = Xd + E/ Xd Xq - 1 

For the machine of Problem (3 -B-18), find the exact pull-out angle and 
power. Can we apply the approximate formulae of Problem 3 -B-22 to this 
machine? 

Problem 3-8-24 

A salient-pole machine has the following particulars 

Xd = 1 .1 Xq = 0 .9 
E/ = 1 .2 Y= 1 

Calculate the exact value of the pull-out angle and compare with the 
approximate result using the expression of Problem 3 -B-22. 



CHAPTER IV 

The Transmission Subsystem 

4.1 INTRODUCTION 

The electric energy produced at generating stations is transported 
over high-voltage transmission lines to utilization points. In the early days 
(until 1917), electric systems were operated as isolated systems with only 
point-to-point transmission at voltages that are considered low by today's 
standards. Operating voltages increased rapidly from the 3300-V level used 
in the Willamette-Portland line (1890) to the ll-kV level used to transmit 
nearly 10 MW from Niagara Falls to Buffalo, N.Y., 20 miles away, in 1896. 
Two 287-kV circuits were completed in 1936 to transmit a block of 240 MW 
over a distance of 266 miles from the Hoover Dam across the desert to the 
outskirts of Los Angeles. The first 345-kV line grew out of a test program 
by the American Electric Power (AEP) system that started in 1946. This 
line was completed in 1953, and it ushered in the beginning of a 345-kV 
system that AEP placed to overlay its extensive 138-kV transmission. 
During the same period the Swedish State Power Board established a 
400-kV system between its northern hydroplants and its southern load 
centers, which was placed in operation in 1952. 

91 
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The 345-kV system established the principle of the use of bundle 
conductors, the V-configuration of insulator strings (to restrain swings), and 
the use of aluminum in line structures. 

The first 500-kV line was energized in 1964 to tie a minemouth station 
in West Virginia to load centers in the eastern part of the state. One reason 
for the preference of this voltage level over the 345-kV level was that 
upgrading from 230-kV to 345-kV represented a gain of only 140 percent 
compared to a 400 percent gain when using the 500-kV level. Hydro Quebec 
inaugurated its 735-kV, 375-mile line in the same year. A line voltage of 765 
kV was introduced into service by AEP in 1969. The 1980s witnessed the in
troduction of higher voltage levels in the Bonneville Power Administration's 
(BPA) 1l00-kV transmission system. 

The trend toward higher voltages is mainly motivated by the resulting 
increased line capacity while reducing line losses per unit of power trans
mitted. The reduction in losses is significant and is an important aspect of 
energy conservation. Better use of land is a benefit of the larger capacity. 
This can be illustrated by a comparison of the right-of-way width of 56 m 
required for an llOO-kV line with a capacity of 10,000 MW, to 76 m required 
for two double-circuit 500-kV lines to transmit the same capacity of 10,000 
MW. 

The purpose of this chapter is to develop a fundamental understand
ing of transmission line modeling and performance analysis. This is done for 
the major configurations in service. We begin by discussing the parameters 
of a transmission line. 

4.2 ELECTRIC TRAN SM I SSION 
LI N E  PARAMETERS 

An electric transmission line is modeled using four parameters that 
affect its performance characteristics. The four parameters are the series 
resistance, series inductance, shunt capacitance, and shunt conductance. 
The line resistance and inductive reactance are of importance in many 
problems of interest. For some studies it is possible to omit the shunt 
capacitance and conductance and thus simplify the equivalent circuit con
siderably. 

We deal here with aspects of determining these parameters on the 
basis of line length, type of conductor used, and the spacing of the 
conductors as they are mounted on the supporting structure. We will start 
by a discussion of the nature of conductors and introduce some common 
terminology. 

A wire or combination of wires not insulated from one another is 
called a conductor. A stranded conductor is composed of a group of wires, 
usually twisted or braided together. 



4.2 Electric Transmission Line Parameters 93 

TABLE 4-1 

American Wire Gage versus Diameters in Mils 

AWG 4/0 3/0 2/0 1/0 1 2 3 4 Diameter, mils 460 409.6 364.8 324.9 289.3 257.6 229.4 204.3 

AWG 7 8 9 10 20 30 40 50 Diameter, mils 144.3 128.5 114.4 101.9 32.0 10.0 3.1 1.0 

Wire sizes have been indicated commercially in terms of gage numbers 
for many years. Present practice calls for specifying wire sizes in terms of 
their diameters in mils (unit of length, 1/IOOOth of an inch). The cross
sectional area is given in circular mils. A circular mil is the area of a circle of 
I mil in diameter. This circle has an area of (71'/4)(1) miP or 0.7854 mil2• 
The American wire gage, usually abbreviated A WG, is based on a simple 
geometric progression. The diameter of No. 0000 is defined as 0.46 in., and 
of No. 36 as 0.005 in. There are 38 sizes between these two; thus the ratio of 
any diameter to the diameter of the next greater number is ( 0.46 )1/39 

nA = 
0.005 

= 1.1229322 

Observing that n� = 2.005 leads us to conclude that the diameter is doubled 
for a difference of six gage numbers. Table 4-1 gives a selection of A WG 
versus conductor diameters in mils for reference purposes. For conductors of 
sizes larger than 4/0, circular mils are used in North American practice. 

In a concentrically stranded conductor, each successive layer contains 
six more wires than the preceding one. There are two basic constructions: 
the one-wire core and the three-wire core. The total number of wires (N) in 
a conductor with n layers over the core is given by 

N=3n(n+I)+1 
N=3n(n+2) +3 

for I-wire core 
for 3-wire core 

The wire size d in a stranded conductor with total conductor area 
A 

circular 
mils and N wires is (A )1/2 . 

d= 
N 

mIls 

Types of Conductors and Conductor Materials 

Phase conductors in EHV-UHV transmission systems employ 
aluminum conductors and aluminum or steel conductors for overhead ground 

5 6 
181.9 162.0 
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wires. Many types of cables are available. These include: 

A. Aluminum Conductors 
There are five designs in common use: 
1 .  Homogeneous designs: These are denoted as AU

Aluminum-Conductors1 (AAC) or All-Aluminum-Alloy Conduc
tors (AAAC). 

2. Composite designs: These are essentially aluminum-conductor
steel-reinforced conductors (ACSR) with steel core material. 

3. Expanded ACSR: These use solid aluminum strand with a steel 
core. Expansion is by open helices of aluminum wire, flexible 
concentric tubes, or combinations of aluminum wires and fibrous 
ropes. 

4. Aluminum-clad conductor (Alumoweld). 
5. Aluminum-coated conductors. 

B. Steel Conductors 
Galvanized steel conductors with various thicknesses of zinc 
coatings are used. 

Line Resistance 

The resistance of the conductor is the most important cause of power 
loss in a power line. Direct-current resistance is given by the familiar 
formula: 

where 

pi Rdc= A ohms 

p = resistivity of conductor 
i= length 

A = cross-sectional area 
Any consistent set of units may be used in the calculation of resis

tance. In the SI system of units, p is expressed in ohm-meters, length in 
meters, and area in square meters. A system commonly used by power 
systems engineers expresses resistivity in ohms circular mils per foot, length 
in feet, and area in circular mils. 

Table 4-2 gives the value of p for several materials used in power 
systems networks. The resistance of the conductor is obtained at 20°C when 
p given in the table is used. The resistance of a conductor at any other 
temperature may be obtained from 

R2 = R1[1 + a(T2 - T1)] 
Here R2 is the resistance at temperature T2• and Rl is the resistance at 
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TABLE 4-2 

Resistivity and Temperature Coefficient of Conductor Materials 

Material 
Resistivity (p) at 20°C 

Micro-ohm em Ohms circular mils per It 
Temperature Coefficient (a) 

at 20°C 

Aluminum 
Brass 
Bronze 
Copper 

2.83 
6.4-8.4 
13-18 

17.0 
38-51 
78-108 

0.0039 
0.002 
0.0005 

Hard drawn 
Annealed 

Iron 

1.77 
1.72 

10 
1.59 
4.3 

12-88 

10.62 
10.37 
60 

0.00382 
0.00393 
0.0050 
0.0038 
0.0044 

Silver 9.6 
Sodium 26 

72-530 Steel 0.001-0.005 

temperature T1• The variations of resistance with temperature are usually 
unimportant (for example, 17 percent increase in copper resistance for a 
temperature change from O°C to 40°C). 

There are certain limitations in the use of this equation for calculating 
the resistance of transmission line conductors: 

1. A slight error is introduced when the conductor is stranded rather 
than solid. This is because the individual strands are slightly longer 
than the length of the cable itself. 

2. When ac flows in a conductor, the current is not distributed 
uniformly over the conductor cross-sectional area. This is called 
skin effect and is a result of the nonuniform flux distribution in the 
conductor. This increases the resistance of the conductor by reduc
ing the effective cross section of the conductor through which the 
current flows. Manufacturer-supplied conductor tables give the 
resistance at commercial frequencies of 25, 50, and 60 Hz. 

3. The resistance of magnetic conductors varies with current magni
tude. The flux and therefore the magnetic losses inside the 
conductor depend on the current magnitude. Tables on magnetic 
conductors such as ACSR (Aluminum Cable, Steel Reinforced) 
include resistance tabulations at two current-carrying levels to 
show this effect. 

4. In a transmission line there is a nonuniformity of current distribu
tion in addition to that caused by skin effect. In a two-wire line, 
fewer lines of flux link the elements nearest each other on opposite 
sides of the line than link the elements farther apart. Thus the near 
sides will have lower inductance than elements in the far sides. The 
result is a higher current density in the elements of adjacent 
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conductors nearest each other than in the elements farther apart. 
The effective resistance is increased by the nonuniformity of cur
rent distribution. The phenomenon is known as proximity effect. It 
is present for three-phase as well as single-phase circuits. For the 
usual spacing of overhead lines at 60 Hz, the proximity effect is 
neglected. 

4.3 L INE I N DUCTANCE 

For normal line designs, the inductive reactance is by far the most 
dominating impedance element. To develop expressions for the inductance 
of three-phase transmission lines, it is first necessary to develop a few 
concepts that greatly simplify the problem. We choose the following ap
proach. 

The internal inductance of a cylindrical conductor is derived first in 
Appendix 4-A. This is followed by a derivation of the flux linkages between 
two points outside the conductor in Appendix 4-B. With these two expres
sions at hand, the single-phase two-wire line case is considered. The gener
alization to a multiconductor configuration is obtained as an immediate 
consequence of these results. 

The calculation of the inductances of balanced three-phase single-cir
cuit lines is shown using the method of inductive voltage drops. The 
necessity of line transposition becomes evident from this discussion, and 
hence the case of transposed lines is treated. Bundle-conductor line induc
tances are considered, and some advantages of their use are treated. 

Inductance of a Single-Phase Two-Wire Line 

The inductance of a simple two-wire line consisting of two solid 
cylindrical conductors of radii rl and rz shown in Figure 4-1 can be obtained 
using a step-by-step approach. The inductance of the circuit due to the 
current in conductor 1 is the sum of contributions from flux linkages 
internal and external to the conductor. In Appendix 4-A we conclude that 
the inductance due to internal flux is 

Li = Hl0-7) henries/meter (4.1) 

The inductance due to external flux linkages is shown in Appendix 4-B to be 

LPl,pz = (2 X 1 O-7)ln ( �� ) (4.2) 

Substituting Dz = D and DI = rl, we get for the external contribution: 

LJ ext = (2 X 10-7) In ( �) (4.3) 
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o -----� 

Figure 4-1. Single-Phase Two-Wire Line Configuration. 

The total inductance of the circuit due to the current in conductor 1 only is 
therefore 

Ll = (2 X 10-7)[ � + In ( �) ] henries/meter (4.4) 

Similarly, the inductance due to current in conductor 2 is 

L2 = (2 X 10-7) [ � + In( �)] henries/meter (4.5) 

Thus Ll and L2 are the phase inductances. For the complete circuit we have 

Thus 

Lt=L1 + L2 (4.6) 

(4.7) 

A more concise form of the inductance expression may be obtained if 
we observe that 

so that 

where 

1 lnel/4 =-4 

Ll = (2 X 10-7) In ( �) 
L2 = (2 X 10-7) In ( �) 
Lt=(4X1O-7)ln ( �) 

Vr;r� 

r;' = rie-1/4 
= O.7788ri 

(4.8) 

(4.9) 

( 4.10) 

(4.11) 
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Basically, we have omitted the internal flux term while compensating for it 
by using an adjusted value for the radius of the conductor. The quantity r' 
is commonly referred to as the solid conductor's geometric mean radius 
(GMR). 

We can employ the inductive voltage drop equations to arrive at the 
same conclusions as follows: 

VI = iw( Lll II + L12I2) 
�= iw(LI 2I1 +L22/2) 

(4 .12) 
( 4 .13) 

where VI and � are the voltage drops per unit length along conductors 1 
and 2 respectively. The self-inductances L11 and L22 correspond to conduc
tor geometries: 

L1 1 = (2 X 10-7) In ( :; ) 
L22 = (2 X 10-7) In ( :� ) 

(4 .14) 

(4 .15) 
The mutual inductance LI 2 corresponds to the conductor separation D. 
Thus 

Now we have 

12 = -II 
The complete circuit's voltage drop is 

In terms of the geometric configuration, we have 
V= VI - � 

Thus 

where 

V= iW(2X10-7) [ ln ( :; ) +In (�) -21n ( � )] /1 
= iW(4X1O-7) ln ( .� ) V r;r� 

Lt= (4X1O-7) ln ( � ) V r{r� 

(4 .16) 

(4 .17) 

(4 .18) 
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We recognize this as the inductance of two series-connected magnetically 
coupled coils, each with self-inductance Lll and L22 respectively, and having 
a mutual inductance L12• 

The phase inductance expressions given in Eqs. (4.8) and (4.9) can be 
obtained from the voltage drop equations as follows: 

But 

Thus 

In terms of phase inductance we have 

Thus for phase one, 

Ll = (2 X 10-7) ln( �) henries/meter (4.19) 

Similarly, for phase two, 

L2 = (2 X 10-7) In( �) henries/meter (4.20) 

Nonnally we have identical line conductors. 
In practice, we deal with the inductive reactance of the line per phase 

per mile and use the logarithm to the base 10. Performing this conversion, 
we obtain 

where 

x = k log � ohms per conductor per mile r 

k = 4.657 X 10-31 
= 0.2794 at 60 Hz 

assuming identical line conductors. 
Expanding the logarithm in the expression of Eq. (4.21), we get 

1 X = k log D + k log -; r 

(4.21) 

(4.22) 

(4.23) 
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The first term is called Xd and the second is Xa' Thus 

Xd = k log D inductive reactance spacing factor 
in ohms per mile 

Xa = k log 1, inductive reactance at I-ft 
r 

( 4 .24) 

spacing in ohms per mile (4 .25) 
Factors Xa and Xd may be obtained from tables available in many 
handbooks. 

Example 4·1 

Find the inductive reactance per mile per phase for a single-phase line 
with phase separation of 20 ft and, conductor radius of 0.06677 ft. 

Solution 

We first find r', as follows: 

We therefore calculate 

r' = re-1/4 
= (0.06677) (0.7788) 
= 0.052 ft 

1 Xa = 0.2794 log 0.052 
= 0.35875 

Xd = 0.2794 log 20 
= 0.36351 

X = Xa + Xd = 0 .72226 ohms per mile 

Bundle Conductors 

At voltages above 230 kV (extra high voltage) and with circuits with 
only one conductor per phase, the corona effect becomes more excessive. 
Associated with this phenomenon is a power loss as well as interference with 
communication links. Corona is the direct result of high-voltage gradient at 
the conductor surface. The gradient can be reduced considerably by using 
more than one conductor per phase. The conductors are in close proximity 
compared with the spacing between phases. A line such as this is called a 
bundle-conductor line. The bundle consists of two or more conductors 
(subconductors) arranged on the perimeter of a circle called the bundle 
circle as shown in Figure 4-2. Another important advantage of bundling is 
the attendant reduction in line reactances, both series and shunt. The 
analysis of bundle-conductor lines is a specific case of the general multicon
ductor configuration problem that we treat next. 
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Figure 4-2. Bundle Conductor. 

General Multiconductor Configurations 

The complex problem of finding the inductances in a multiconductor 
configuration is of fundamental importance. The results of such considera
tion prove useful in the cases of stranded conductors, multicircuit lines, and 
bundle-conductor lines. 

Let us consider a group of n conductors as shown in Figure 4-3 where 
the sum of all currents in the conductors is zero. The voltage drops per unit 
length for the conductors are given by the generalization of the expression 
in Eqs. (4.12) and (4.13) as 

VI =jw(Llll1 +LI212+ ... +Lln1n) 
Vz = jw( LI211 + L2212 + ... + L2n1n) ( 4.26) 

The apparent self- and mutual inductances Ljj and Ljk are given by 

Ljj= (2 X 10-7) In( � ) henries/meter ( 4 .27) 
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Figure 4-3. A Multlconductor Configuration. 

Lkj= (2 X 10-7) In ( �kj) henries/meter ( 4 .28) 

The above expressions form the basis for the evaluation of line inductances 
in practice. 

Inductance of a Multiconductor Single-Phase line 

As an example of the application of Eq. (4.26), let us consider a 
single-phase line composed of two bundle conductors as shown in Figure 4-4. 
Each conductor forming one side of the line is shown as an arbitrary 
arrangement of a number of conductors. We require that these conductors 
share the current equally. Conductor A is composed of NI identical subcon
ductors, each of which carries the current (l/NI). Conductor B, the return 
circuit, is composed of N2 identical filaments, each of which carries the 
current ( - 1/ N2). We write the expression of voltage drop per unit length of conductor 1 
as [ ( I ) N, ( 1 ) (I) N, + N2 ( 1 ) 1 VI = iw {2 X 10-7) N .� In 

D 
- N. . � In 

D 1 J=1 I} 2 J=N, +1 I} 

(4.29) 



\ CONDUCTOR A 

CONDUCTOR B 
Figure 4-4. Single-Phase Bundle-Conductor Line. 

But 

So that 
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(4 .30) 

Here Du = r{ is used to make the expressions more compact and the symbol 
n denotes the product operation. 
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Let us define Dm and Ds by I I 

( 4 .31 ) 
( 4.32) 

The first expression is the N2th root of the product of N2 tenns made of all 
the distances between subconductor 1 and all other subconductors in phase 
B. The second is the N}th root of the product of N} tenns made of all the 
distances between subconductor 1 and all other subconductors in phase A. 
According to these definitions, we have 

V} =jw(2X 1O-7)Iln ( �:,,) 
We can now generalize to the case of the ith subconductor in phase A 

to obtain 

where [ N,+N2 ]1/N2 
D = II (D) mt f,] j=N,+l [ N, ]I/N' 
DSi = n (DiJ 

J=1 

( 4.33) 

( 4.34) 

( 4.35) 

The inductance Li for the ith subconductor is obtained using the relation 

V;=jw(LJJ ( 4.36) 
Thus we have 

( 4.37) 

The N} subconductors on conductor A are connected in parallel. Hence 
its equivalent inductance can be obtained as the parallel combination of the 
N} inductances Li• Thus 1 N, ( 1 ) -=� -LA i=1 Li ( 4.38) 
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Using Eq. (4.38) to evaluate LA directly may be tedious. A good approxima
tion results from a simple averaging calculation as shown below. ( 1 ) N[ Lav= !Ii .� (LJ J t= 1 

( 4 .39) 

Thus the equivalent inductance LA of the parallel combination of Nl 
subconductors of inductance Lav each is 

( 4 .40) 

Thus the line inductance for phase A is 

(4 .41 ) 

We can now define 

( 4 .42) 

(4 .43) 

or in an expanded form, 

( 4.44) 

( 4.45) 

Let us note that Dm is the NJ N2th root of the Nl N2 terms, which are the product of the distances from the NJ subconductors of conductor A to 
all the N2 subconductors of conductor B. This is called the mutual geometric 
mean distance (GMD). 

DSA as defined is the NJ2 th root of N1
2 terms, which are the product of 

the distances between all subconductors of conductor A. This is called the 
self geometric mean distance. Thus we rewrite Eq. (4.41) as 

LA = (2 X 10-7) In ( �:) henries/meter ( 4.46) 
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and 

LB = (2 X 10-7) In ( �:) henries/meter ( 4 .47) 

The self geometric mean distance Ds is commonly referred to as the GMR. 
In common practice we refer to Ds as the bundle conductor's GMR. 

Assuming that the two conductors are identical, then 
LA =LB=L 

with 

L = (2 X 10-7) ln ( g��) henries/meter (4 .48) 

where 

( 4 .49) 

(4 .50) 

The concepts of the geometric mean distance and geometric mean 
radius enable us to deal with multiconductor configurations in much the 
same manner as those with solid conductor systems. In fact, we can state 
that our inductance expression is a generalization of the one obtained for 
the single-phase solid conductor case for which the inductance expression is 
given by Eq. (4.48). 

Example 4-2 

Consider a 375-kV, single-phase line with bundle conductors as shown 
in Figure 4-5. The phase separation Dl is 12.19 m, and the subconductor 
spacing is S = 45.72 cm. The subconductor diameter is 4.577 cm. Calculate 
the line inductance by applying Eq. (4.48). 

Solution 

We have four subconductors; thus 
Nl = N2= 2  

The geometric mean distance is therefore 



Figure 4-5. A 375-kV Single-Phase Bundle-Conductor Line. 

Expanding the products, we have 

Dm = [igl (Di3Di4) ]'
/4 

(D D D D )'/4 = 13 14 23 24 

From the geometry of Figure 4-5, 

We thus have 

D13 = D24 = Dl = 12.19 m 
D14 = D, + S = 12.19 + 0.4572 = 12.6472 m 
D23 = D, - S = 12.19 - 0.4572 = 11.7328 m 

Dm = [(12.19)2(12.6472) (11.7328) r/4 

= 12.1857 m 
The geometric mean radius is 

4.3 Line Inductance 101 
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Observe that 

Also 

Therefore, 

Dll = D22 = r{ = 0.7788rl 

= (0.7788) ( 4.�77 
X 1O�2 ) 

= 1.7823 X 10- 2 m 

D12 = D21 = S = 0.4572 m 

Ds = [( 1.7824 X 1O� 2 )\0.4572)2r/4 
= 9.027 X 10- 2 m 

As a result of the above, we obtain the following result using Eq. (4.48): 

L= (2X1O-7 ) in ( 12.1857 ) 
9.027 X 10 - 2 

= 0.981 X 10-6 henries/meter 

Inductance of a Single-Phase 
Symmetrical Bundle-Conductor Line 

Consider a symmetrical bundle with N subconductors arranged in a 
circle of radius A. The angle between two subconductors is 27T/N. The 
arrangement is shown in Figure 4-6. Considering subconductor 1, the dis
tances D12, DI3, • • •  ,Din are easily seen to be given by 

DI2 = 2A sin ( � ) 
DI3 = 2A sin ( � ) 
D =2A' [

(N-1)7T ] 
IN sm N 

( 4 .51 ) 

The current in each of the subconductors is (l/ N) for phase A and ( - 1/ N) 
for phase B. 

The voltage drop per unit length of subconductor 1 is . ( �7 ) { I [l 1 1 1 1 ] VI = JW 2 X 10 - n � + in - + in - + ... + in-N r1 DI2 DI3 DIN 

-- in +in + ... +in --I [1 1 1 ]} 
N DI(N+I) DI(N+2) D1(2N) 
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-� -"0-20" D ...--..:.:N:.-+2 __ � , �0d-------- IIN+21 
I 0 ( I@ 

\ 
, 

-1-_:::1_1#-, _____ DI(N+11 _N_+_I -----i .. �� A *- I 

" / / 
.;' 

�.I '-D 

.;' .-

Figure 4-6. Single-Phase Symmetrical Bundle-Conductor Circuit. 

As a result, 

We have 

DI2 DI3 ... DIN = ( A) N -I { [2 sin ( � ) ] [2 sin ( � ) ] 
. . . [2 sin ( (N � 1 ) 1T ) ]} 

= N(A)N-l 

where we utilize the trigonometric identity: 

We define the geometric mean distance (GMD) by 

GMD = {[ DI(N+I)] [DI(N+2)] ... [DI(2N)]} IjN 

VI=JW(2XlO-7) (l. ) ln [ (GMD): 1 (4 .52) N Nr{(A)N I 
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which reduces to 

As a result, we obtain 

L = (2 X 10-7) In { GMD } henries/meter [ Nr{(A)N-T1N ( 4 .53) 

Let us observe that practically the distances D1(N+l» D1(N+2)' • • •  ' are all 
almost equal in value to the distance D between the bundle centers. As a 
result, 

GMD � D ( 4.54) 

We also note that the geometric mean radius in this case is 

( 4 .55) 

We thus have the same form as derived before for the solid conductor case: 

_( -7) (GMD) L - 2 X 10 In 
GMR ( 4.56) 

In many instances, the subconductor spacing S in the bundle circle is 
given. It is easy to find the radius A using the formula 

S=2Asin ( �) (4.57) 

which is a consequence of the geometry of the bundle as shown in Figure 
4-7 . 

Example 4-3 

Let us apply the formulae just derived to the bundle conductor line of 
Example 4-2. Here we have the approximation 

GMD=12.19 m 
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3 

.. I�--- A ·1 
Figure 4-7. Conductor Geometry. 

Clearly the subconductor spacing S is the same as twice the bundle radius 
A; thus 

A = 0 .4:72 = 0 .2286 
The subconductor radius is 

0 .04577 
r= 2 
r' = (e-1/4 ) r 
=0.0178 m 

The GMR is therefore given by 

As a result, 

GMR = [2(O .0178) (0 .2286)T/2 
= 0.0903 m 

L= (2 X 1O-7 )1 ( 12 .19 ) n 0 .0903 
= 0.981 1 X 10-6 henries/meter 

which is just about identical to the result obtained earlier. 
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Figure 4-8. 1 000-kV Single-Phase Bundle-Conductor Line. 

Example 4-4 

Figure 4-8 shows a WOO-kV, single-phase, bundle-conductor line with 
eight subconductors per phase. The phase spacing is DI = 16.76 m, and the 
subconductor spacing is S = 45.72 cm. Each subconductor has a diameter of 
4.572 cm. Calculate the line inductance. 

Solution 

We first evaluate the bundle radius A. Thus 

0.4572 = 2A sin ( i ) 
Therefore 

A =0.5974 m 
Assume that the following practical approximation holds: 

GMD = DI = 16.76 m 

The subconductor's geometric mean radius is 

r{ = 0.7788 ( 4.�72 X 10-2 ) 
= 1.7803 X 10-2 m 



Thus we have 

L = (2 X 10 -7) In { G MD } 
[ Nr{(A)N-T1N 
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=(2 X IO-7) ln { 16.76 } 
[(8)(1.7803 X 1O-2)(0.5974f],/8 

The result of the above calculation is 

L = 7.027 X 10 -7 henries/meter 

Inductance of a Balanced Three-Phase Single-Circuit Line 

We consider a three-phase line whose phase conductors have the 
general arrangement shown in Figure 4-9. We use the voltage drop per unit 
length concept. This is a consequence of Faraday's law. In engineering 
practice we have a preference for this method. In our three-phase system, 
we can write 

VI = jw( L1111 + L1212 + L1313) 
� = jw( L1211 + L2 212 + L2 313) 
Va = jw( L1311 + L2312 + L3313) 

Figure 4-9. A Balanced Three-Phase Line. 
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Here we generalize the expressions of Eqs. (4. 14) and (4.16) to give 

Lii = (2 X 10-7) in ( �, ) 
Lkj = (2 X 10-7) in (D�j) 

(4 .58) 

(4 .59) 

We now substitute for the inductances in the voltage drops equations 
to obtain the following: 

Here 

V{ = II in ( 1,) + 12 in (� ) + 13 in (� ) rl 12 13 

� = II in ( �lJ + 12 in ( � ) + 13 in ( �2J 
va = II in ( D�3 ) + 12 in ( �23 ) + 13 in ( :� ) 

v V: = t 
t jw{2 X 10-7) 

We next use the condition of balanced operation to eliminate one 
current from each equation. Thus 

The result is 

v: = I in ( D13 ) + I in ( DI3 ) 3 2 D 3 r,' 23 3 
( 4 .60) 

We note that for this general case, the voltage drop in phase one, for 
example, depends on the current in phase two in addition to its dependence 
on II" Thus the voltage drops will not be a balanced system. This situation 
is undesirable. 
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Consider the case of equilaterally spaced conductors generally referred 
to as the delta configuration; that is 

Recall that 

DI2 = DJ3 = D2 3 = D 
r { = ri = r3 = r' 

lnl =0 
It is clear that the voltage drops will thus be given by 

V{ = IJln (�) 
Vi = 12 In (�) 
V3 = 13 In (�) 

and in this case the voltage drops will fonn a balanced system. 

( 4.61) 

Consider the so often called H-type configuration. The conductors are 
in one horizontal plane as shown in Figure 4-10. The distances between 
conductors are thus 

DI2 = D2 3 = D 
DJ3=2D 

and the voltage drops are given by 

V{ = II in ( 2r� ) + 12 in 2 

Vi = 12 In (�) 
V3 = 12 in 2 + 13 in ( 2r� ) ( 4.62) 

We note that only conductor two has a voltage drop proportional to its 
current. 

I 2 
• • �D��I·-

Figure 4-10. H-Type Line. 

:3 
• D� 
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Transposition of Line Conductors 

The equilateral triangular spacing configuration is not the only config
uration commonly used in practice. Thus the need exists for equalizing the 
mutual inductances. One means for doing this is to construct transpositions 
or rotations of overhead line wires. A transposition is a physical rotation of 
the conductors, arranged so that each conductor is moved to occupy the 
next physical position in a regular. sequence such as a-b-c, b-c-a, c-a-b, etc. 
Such a transposition arrangement is shown in Figure 4-1 1 .  If a section of 
line is divided into three segments of equal length separated by rotations, 
we say that the line is "completely transposed." 

c b a ------"" 

b-----_. a c 

C _______ J b a 
...... f--- I ---i.� ...... ..--- Il---I·� ........ f--- m --... ·� 

Figure 4-1 1 .  Transposed Line. 
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Consider a completely transposed three-phase line. In segment I, the 
voltage drops are 

v: = I In ( D13 ) + I In ( D13 ) al a r' b D 12 
v: =1 In (D2 3 ) + 1 In (D2 3 ) 

bl a D b r' 12 
V: = I In ( D13 ) + I In ( D13 ) ci b n C r ' 2 3 

( 4 .63) 

This is a direct application of Eq. (4.60) for equal conductor diameters. In 
segment II, phase a occupies physical position 2, phase b occupies physical 
position 3, and phase c occupies physical position 1 .  Therefore, 

V: =1  In (D2 3 ) + 1 In (D2 3 ) 
all C D12 a r' 

V: = I In ( D13 ) + I In ( D13 ) 
bll a n b r' 2 3 

V: = I In ( D13 ) + I In ( D13 ) 
Cll C r' a D12 

(4.64) 

Similarly, for segment III, we obtain 

V: = I In ( D13 ) + I In ( D13 ) 
am C D2 3 a r' 

V: = I In ( D13 ) + I In ( D13 ) 
bm b r' C D 12 

V: =1  In (D2 3 ) + 1 In (D2 3 ) 
Cm b D12 C r' ( 4.65) 

The total drop for a completely transposed unit length of the line is given 
by 

These yield 

V:=l( V: + V' + V: ) a 3 al all alll 
V:=l( V: + V: + V: ) 

b 3 bl bll bm 
V:=l( V: + V: + V: ) C 3 cl Cll Clll 

(D D n )1/3 
V: = I In 12 13 2 3 

a a r' 
(D D n )1/3 

V: = I In 12 13 2 3 
b b r' 

(D D n )1/3 
V:=I In 12 13 2 3 

C C r' (4.66) 
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Thus by completely transposing a line, the mutual inductance terms disap
pear, and the voltage drops are proportional to the current in each phase. 

I t is evidently clear that the phase inductance L in the present case is 
given by 

(D D D //3 
L = (2 X 10-7) In 1 2 13

, 
23 henries/meter 

r ( 4.67) 

This again is of the same form as the expression for the inductance in the 
case of a single-phase two-wire system. Defining the geometric mean dis
tance GMD as 

GMD= (D1 2D13D23)
1/3 

and the geometric mean radius GMR as 

GMR=r' 

we attain 

L = (2 X 10-7) in ( g�� ) henries/meter 

(4.68) 

( 4.69) 

(4.70) 

Again, we can obtain the inductive reactance per conductor per mile as 
the sum 

where 
1 

Xa=klog 
GMR 

Xd=klogGMD 

with k = 0.2794 at 60 Hz, as before. 

Example 4-5 

(4.71) 

(4.72) 
(4.73) 

Calculate the inductance per phase of the 345-kV three-phase solid 
conductor line shown in Figure 4-12. Assume that the conductor diameter is 
4.475 cm and the phase separation Dl is 7.92 m. Assume that the line is 
transposed. 

Solution 

The geometric mean distance is given by 

GMD = [D1D1(2D1)f/3 
= 1.2599D1 
= 9.9786 m 



• 

Figure 4-1 2. A 34S-kV Three-Phase Line. 

The geometric mean radius is 

Therefore 

r' = (e-1/4) 4.475; 10-2 

=0.0174 m 

L = (2 X 10- 7 ) l ( 9.9786 ) 
n 

0.0174 

= 1.27 X 10-6 henries/meter 
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Inductance of Multlconductor Three-Phase Systems 

Let us consider a single-circuit, three-phase system with multiconduc
tor-configured phase conductors as shown in Figure 4-13. Let us assume 
equal current distribution in the phase subconductors and complete trans
position. We can combine the concepts developed earlier to arrive at the 
phase inductance for the system. The result is the following inductance 
expression: 

L = (2 X 10- 7 ) In (g��) (4.74) 
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In this case the geometric mean distance is given by 
( ) 1/3 GMD = DABDBCDCA 
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(4 .75) 
where DAB' DBC' and DCA are the distances between phase centers. The 
geometric mean radius (GMR) is obtained using the same expression as that 
for the single-phase system. Thus 

(4 .76) 

For the case of symmetrical bundle conductors, we have 

( 4 .77) 
It is clear that the inductive reactance per mile per phase XL in the 

case of a three-phase, bundle-conductor line can be obtained using 
XL = Xa + Xd (4 .78) 

where as before for 60 Hz operation, 
1 Xa = 0 .2794 log GMR 

Xd= 0 .2794 1ogGMD 
The GMD and GMR are defined by Eqs. (4.75) and (4.77). 
Example 4·6 

(4 .79) 
( 4 .80) 

An nOO-kV, three-phase line has an eight subconductor-bundle delta 
arrangement with a 42 in. diameter. The subconductors are ACSR 84/19 
(Chukar) with r' = 0.0534 ft. The horizontal phase separation is 72 ft, and 
the vertical separation is 60 ft. Calculate the inductive reactance of the line 
in ohms per mile per phase. 

Solution 

Thus 

From the geometry of the phase arrangement, we have 
36 tan 8 = 60 

8 = 30.96° 
D - 60 

'AB 
- cos30.960 
= 69 .97 ft 

GMD = [(69 .97) (69 .97) (72)]1/3 = 70.64 ft 
For Chukar we have r' = 0.0534 ft. The bundle particulars are N = 8 and 
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A = (42/2) in. Therefore, 

GMR= [S(0.0534) ( �� rf/8 
Thus 

As a result, 

= 1.4672 ft 

1 Xa = 0.2794 log 
1.4672 

= -0.0465 
Xd = 0.2794 log 70.64 

= 0.5166 

XL = Xu + Xd = .0.4701 ohms per mile 

Inductance of Three-Phase, Double-Circuit Lines 

A three-phase, double-circuit line is essentially two three-phase cir
cuits connected in parallel. Normal practice calls for identical construction 
for the two circuits. If the two circuits are widely separated, then we can 

2'_ 8' 

Figure 4-1 4. Double-Circuit Conductors' Relative Positions in Segment I of 
Transposition. 
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obtain the line reactance as simply half that of one single-circuit line. For 
the situation where the two circuits are on the same tower, the above 
approach may not produce results of sufficient accuracy. The error intro
duced is mainly due to neglecting the effect of mutual inductance between 
the two circuits. We derive here a simple but more accurate expression for 
calculating the reactance of double-circuit lines. 

Consider a three-phase, double-circuit line with full line transposition 
such that in segment I, the relative phase positions are as shown in Figure 
4-14. The relative phase positions for segments II and III are shown in 
Figures 4-15 and 4-16. 

The phase inductance in this case can be obtained using the voltage 
drops concept. For phase A in segment I, we have 

+-/n - +-/n - +-In -
IA ( 1 ) IB ( 1 ) Ie ( 1 )] 
2 Dll, 2 D12, 2 D13, 

( 4 .81 ) 

3'ee' 

2'eA' 

Figure 4-1 5. Double-Circuit Conductors' Relative Positions In Segment II of 
Transposition. 



124 The Transmission Subsystem 

2'eC' 

Figure 4-1 6. Double-Circuit Conductors' Relative Positions in Segment III of 
Transposition. 

For phase A' we have for segment I, 

In segment II, we have 

, _ I [IA ( 1 ) IB ( 1 ) Ie ( 1 ) 
�11-3 2"ln ? +2"ln D32, 

+2"ln D12, 

+-In - +-In -- +-In --
IA ( 1 ) IB ( 1 ) Ie ( 1 )] 
2 D22, 2 D2'3' 2 D1'2' 

In segment III, we have 
1 [ IA (1 ) IB ( 1 )  Ie ( 1 ) V� =- -In --, +-In - +-In -III 3 2 r 2 D31 2 D23 

+-In - +-In - +-In -
IA ( 1 )  IB ( 1) Ie ( 1 )] 
2 D33, 2 D3J' 2 D32, 

(4 .82) 

( 4.83) 

(4 .84) 

( 4 .85) 
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, _ l [ IA (1) IB ( 1 ) Ie ( 1 ) VA11I- "3 2"ln r' + 2"ln D13, + 2" In D23, 

+-In - +-In - +-In --IA ( 1) IB ( 1 ) Ie ( 1 )] 
2 D33, 2 D3'1' 2 D2'3' 

(4 .86) 

The total voltage drops along phases A and A' are therefore obtained 
using 

and 

V:=V: +V: +V: A AI All .Am 

VA', = VA' ,  + VA', + VA', I II III 
Since phase A' and A are in parallel, we take the average voltage drop; 

thus 

We also utilize the balanced three-phase condition: 

After some algebra, we get 

LIA [ (DI2D1'2,DI2,Dl'2)( DI3Dl'3,DI3,D1'3)( D23D2'3,D2'3D23' ) 1 VA = 12 In 
( I)6(D2 n2 n2 ) r 11' 22' 33' 

( 4.87) 
From the above expression we conclude that the inductance per phase 

per unit length is given by 

L = (2 X 1O-7)ln( g��) 
where the double-circuit geometric mean distance is given by 

GMD = (DAB DBC DAc )
1/3 

eq eq eq 

with mean distances defined by 

DAB = (DI2Dl'2,DI2,Dl'2) 1/4 eq 

(4 .88) 

(4 .89) 

(4 .90) 
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where subscript eq. refers to equivalent spacing. The GMR is 
GMR = [(GMRA)(GMRB)(GMRJf/3 

(4 .91 ) 
with phase GMR's defined by 

GMRA = [r'(Dll,)]1/2 
GMRB=[r'(D22,)f/2 (4 .92) 
GMRc= [r'(D33,)f/2 

We see from the above development that the same methodology 
adopted for the single-circuit case can be utilized for the double-circuit case. 

Example 4-7 

Calculate the inductance per phase for the 345-kV, three-phase, 
double-circuit line whose phase conductors have a GMR of 0.0588 ft, with 
the horizontal conductor configuration as shown in Figure 4-17. 

Solution 

We use Eq. (4.90) : 

As a result, 

DAB = [ (25) (25) (50) ( 100)P/4 eq 
= 42 .04 ft 

DBC = [ (25) (25) (50) (100) ] 1 /4 eq 
= 42 .04 ft 

DAC = [ (50) (50) ( 125) (25)P/4 eq 
= 52 .87 ft 

GMD = [ (42 .04) (42 .04) (52 .87)f/3 
= 45 .381 ft 

The equivalent GMR is obtained using Eq. (4.92) as 

req = [(0.0588)3(75)3f/6 = 2 . 1 ft 
As a result, 

L = (2 X 1O- 7)ln ( 45��181 ) 
= 0.61463 X 10-6 henries/meter 

Let us calculate the inductance of one circuit. Here we have 
Deq = [ (25) (25) (50) ] 1/3 

= 31 .5 ft 
r' = 0 .0588 
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A B c B' c' 
2 3 " 2' 3' 

• • • • • • � 25ft---+- 25ft. ---+- 25 ft.---+- 25ft.--+- 25 ft.� 
Figure 4-17. Configuration for Example 4-7. 

Consequently, 

_( -7)1 ( 31 .5 ) Ls - 2 X 10 n 0 .0588 
= 1 .257 X 10-6 henries/meter 

The inductance of the double-circuit is obtained as 

L=
Ls 
2 

= 0 .62835 X 10- 6 henries/meter 
Note that the relative error involved in this case is just below 3 percent. 
The relative error is computed as 

0 .61463 - 0.62835 = -0 0223 0 .61463 . 

Double-Circuit, Bundle-Conductor Lines 

A double-circuit line may use bundle conductors. In this case, the same 
method indicated for the case of double-circuit, single-conductor lines is 
used with r' replaced by the bundle's GMR in the calculation of the overall 
GMR. The following example illustrates the procedure. 

Example 4-8 

Find the inductance of the 345-kV, double-circuit line shown in Figure 
4-18. Assume that the GMR for each subconductor is 0.0587 ft. Bundle 
spacing is 18 in. 
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e ee' 

16 ft. 

1611. 

20 ft. 
Figure 4-1 8. 345-kV, Double-Circuit Line. 

Solution 

We have 

Thus 

As a result: 

N=2. 
S= 18 in. 

A = 9 in. = 0.75 ft 

GMRc = 0 .0587 ft 

GMRb = [ (2) (0.0587) (0 .75) ] 1/2 
= 0.29673 ft 

rA = [ (GMRb) /(20)2 + (32)2 f/2 
= 3 .3463 ft 

rB= [ (GMRb) (20)f/2 
= 2 .4361 ft 

rc = rA = 3 .3463 ft 



Hence, 
GMR =( r'r'r,)1/3 p A B c  

= 3 .0103 ft 

DABeq = [16/(16)2 + (20)2 r/2 

= 20.24 ft 

DBCeq = [16/(16)2 + (20)2 r/2 
= 20. 24 ft 

DAC = [(20) (32)f/2 eq 
= 25 .30 ft 

GMD = [(20.24) (20 .24 ) (25 .30)]1/3 

= 2 1.80 ft 
The inductance is thus given by 

_( -7 ) ( 21 .8 ) 
L - 2 X 10 ln 3 .0103 

= 3 .9602 X 10 - 7 henries/meter 

4.4 LINE CAPACITANCE 
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We have discussed in the previous sections two line parameters that 
constitute the series impedance of the transmission line. The line inductance 
normally dominates the series resistance and determines the power trans
mission capacity of the line. There are two other line-parameters whose 
effects can be appreciable for high transmission voltages and line length. 
The line's shunt admittance consists of the first parameter represented by 
the conductance (g) and the second parameter represented by the capaci
tive susceptance ( b). The conductance of a line is usually not a major factor 
since it is dominated by the capacitive susceptance b = we. The line 
capacitance is a leakage (or charging) path for the ac line currents. 

The capacitance of a transmission line is the consequence of the 
potential differences between the conductors themselves as well as potential 
differences between the conductors and ground. Charges on conductors 
arise, and the capacitance is the charge per unit potential difference. Since 
we are dealing with alternating voltages, we would expect that the charges 
on the conductors are also alternating (Le. , time varying). The time varia
tion of the charges results in currents called the line-charging currents. In 
this section it is our intent to study the evaluation of line capacitance for a 
number of conductor configurations. The format of this section is similar to 
the previous one. 
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Capacitance of Single-Phase Line 

Consider a single-phase, two-wire line of infinite length with conductor 
radii of r1 and r2 and separation D as shown in Figure 4-19. In Appendix 4-C 
we show that the potential at an arbitrary point P at distances ra and rb 
from A and B respectively is given by 

( 4 .93) 

where q is the charge density in coulombs per unit length. 
The potential VA on the conductor A of radius r1 is therefore obtained 

by setting ra = r 1 and rb = D to yield 

Likewise for conductor B of radius r2 , we have 

v: = -q-ln ( r2 ) B 2'17'eo D 

The potential difference between the two conductors is therefore 

(4 .94) 

( 4 .95) 

(4 .96) 

The capacitance between the two conductors is defined as the charge 
on one conductor per unit of potential difference between the two conduc
tors. As a result, 

q 'I7'eo C = -- = farads per meter 
:AB �B In (� ) 

vr1 r 2 

Figure 4-1 9. Single-Phase, Two-Wire Line. 

( 4 .97) 



If r1 = r2 = r, we have 

7TfO CAB = ( D )  In -
r 
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( 4 .98) 

Converting to microfarads ( /LF) per mile and changing the base of the 
logarithmic term, we have 

C 
- 0 .0388 

F 
'1 AB - ]) /L per ml e 

2 10g
( 

r ) (4 .99) 

Equation (4.99) gives the line-to-line capacitance between the conduc
tors. The capacitance to neutral for conductor A is defined as 

q 27TfO CAN = VA 
= ( D )  In -

r1 

Likewise, observing that the charge on conductor B is - q, we have 

For r1 = r2 , we have 

Observe that 

_ - q _ 27TfO CBN - VB - ( D )  In -
r2 

( 4 .100) 

(4 . 101) 

(4 .102) 

( 4 .103) 

This is consistent with the perception depicted in Figure 4-20 of the 
capacitance between the two lines CAB as a series combination of CAN and 
CBN• 

In terms of /L F  per mile, we have 

C = 0.0388 " F  per mile to neutral 'AN D r-
log -

r 

(4 .104) 
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A CAB B 
e------II t-( ----Ie-

A CAN CBN B 
·e'-�I �(--+.--�I t-(--�e· N 

Figure 4-20. Capacitance between Lines as Series Combination of Capaci
tances to Neutral. 

The capacitive reactance Xc is given by 

where 

X _ I - k ' l D hm ' l 1 c - 27TfC - og r 0 s ·  ml e to neutra 

k ' = 4.1 X 106 
f 

Expanding the logarithm, we have 

1 X = k ' log D + k ' log -c r 

( 4. 105) 

( 4.106) 

( 4.107) 

The first term is called Xd" the capacitive reactance spacing factor, and the 
second is called Xa" the capacitive reactance at I-ft spacing. 

Xd, = k ' log D 
1 X , = k ' log -a r 

Xc =Xd, + Xa, 

( 4.108) 

(4.109) 
( 4.1 10) 

The last relationships are very similar to those for the inductance case. One 
difference that should be noted is that the conductor radius for the 
capacitance formula is the actual outside radius of the conductor and not 
the modified value r'. 
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Example 4-9 

Find the capacitive reactance in ohms · mile per phase for a single-phase 
line with phase separation of 20 ft and conductor radius of 0.06677 ft for 
60-Hz operation. 

Solution 

Note that this line is the same as that of Example 4-1 . We have for 
/ = 60 Hz: 

We calculate 

As a result, 

k ' = 4 . 1 � 106 = 0 .06833 X 106 

Xd, = k ' log 20 
= 88.904 X 103 

Xa, = k ' log 0 .0�677 
= 80.32 X 103 

Xc = Xd, + Xa, 
Xc = 169 .224 X 103 ohms · mile to neutral 

Including the Effect of Earth 

The effect of the presence of ground should be accounted for if the 
conductors are not high enough above the ground. This can be done using 
the theory of image charges. These are imaginary charges of the same 
magnitude as the physical charges but of opposite sign and are situated 
below the ground at a distance equal to that between the physical charge 
and ground. The situation is shown in Figure 4-21. Observe that the 
potential at ground due to the charge and its image is zero, which is 
consistent with the usual assumption that ground is a plane of zero 
potential. 
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---rt --- e q Phys ica l  charge 
H 

I 
H 

--L� ___ e -q Image charge 

Figure 4·21. Image Charge Concept. 

General Multiconductor Configurations 

///// 

As we have seen in the case of problems of calculating inductances, the 
case of multiconductors is of fundamental importance. The basis for results 
presented here is the formula for potential derived in Appendix 4-C. This is 
given by 

v: = -- In - + -- In -q ( 1 ) -q ( 1 ) 
p 2'ITEO ra 2 'IT EO rb (4 .1 1 1 ) 

Considering a system of n parallel and very long conductors with charges 
ql ' q2 ' ' ' '  , qn respectively, we can state that the potential at point P having 
distances rl , r2 , . . .  , rn to the conductor as shown in Figure 4-22 is given by 

ql ( 1 ) q2 ( 1 ) qn ( 1 ) Vp = -- ln - + -- In - + . . .  + -- In -
2'IT� � 2'IT� � 2'IT� � 

This is a simple extension of the two-conductor case. 

( 4 . 112) 

If we consider the same n parallel long conductors and wish to account 
for the presence of ground, we make use of the theory of images. As a result, 
we will have n images charges -ql '  -q2 " ' " -qn situated below the ground 
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p 

Figure 4-22. A Multlconductor Configuration. 

at distance r1 , r2
- , . . .  , r;; from P. This is shown In Figure 4-23. The 

potential at P is therefore 

ql ( 1 ) q2 ( 1 ) qn ( 1 ) Vp = --ln - + -- In - + . . .  + -- In -2w� � 2w� � 2w� � 

The above reduces to 

( 4 .113) 

The use of this relationship in finding the capacitance for many systems will 
be treated next. 
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Figure 4-23. A Multiconductor Configuration Accounting for Ground Effect. 

Capacitance of a Single-Phase Line Considering the Effect 
of Ground 

Consider a single-phase line with conductors A and B as before. To 
account for ground effects, we introduce the image conductors A' and B'. 
The situation is shown in Figure 4-24. 

The voltage of phase A is given according to Eq. (4. 1 14) by 

V =-q-In ( H ) + -q In ( HAB' ) A 2 ?TEO r 2?TEo D ( 4 . 1 15) 



�I -q o 
a 

H/2 

af 

Figure 4-24. Single-Phase Line and Its I mage. 

The above reduces to 

q ( H D ) VA = -- ln - . --2'11"£0 r HAB, 

The voltage of phase B is 

which reduces to 

q ( BAB, ) - q ( B ) VB = -- ln -- + -- In -2'11"£0 D 2'11"£0 r 

v; = -q- ln ( HAB, . .!... ) B 2'11"£0 D H 

The voltage difference is thus 

�B = � - VB 

= '1I"�0 
In ( � .  H�B' ) 
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(4 . 1 16) 

( 4.117) 

(4 .118) 

(4 .1 19) 
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The capacitance between the two conductors is thus 

or 

C -
'Ir eo 

:AB - (D B ) In - . -

r BAB, 

The capacitance to neutral is obtained using 

C - q 
:AN - 

VA 

In (D . � ) 
r BAB, 

farads per meter 

Observe that again 

C 
_ CAN 

AB - 2 

( 4 .120) 

(4 .121 ) 

( 4 .122) 

Let us examine the effect of including ground on the capacitance for a 
single-phase line in the following example. 

Example 4-1 0  

Find the capacitance to neutral for a single-phase line with phase 
separation of 20 ft and conductor radius of 0.06677 ft. Assume the height of 
the conductor above ground is 80 ft. 

Solution 

We have 
D = 20 ft 
r = 0.06677 ft 
B = 160 ft 

As a result, 

BAB, = J( I00) 2 + (20)2 = 161 .2452 ft 
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Therefore we have 

CANI = ( 20 160 ) in 0 .06677 ' 161 .2452 
_ 2'7TEO 
5 .6945 farads per meter 

If we neglect earth effect, we have 
2'7TEO 

CAN2 = ( 20 ) in 0 .06677 
2'7TEo 

= 5 .7022 farads per meter 

The relative error involved if we neglect earth effect is: 
C - C 'ANI 'AN2 = 0 .00136 CAN I 

which is clearly less than 1 percent. 

Capacitance of a Single-Circuit, Three-Phase Line 

We consider the case of a three-phase line with conductors not 
equilaterally spaced. We assume that the line is transposed and as a result 
can assume that the capacitance to neutral in each phase is equal to the 
average value. This approach provides us with results of sufficient accuracy 
for our purposes. This configuration is shown in Figure 4-25. 

The potential of conductor A in the first segment is 

V = [�ln ( .!. ) + ..!!.!!....- in (-1 ) +�in (-I ) ] (4 . 123) AI 2'7TEO r 2'7TEO D1 2 2'7TEO D13 
In segment II, conductor A is in position 2, conductor B is in position 

3, and conductor C is in position 1. Thus, 

VAil = 2�EO [qa1n ( � )  + qb1n ( �23 ) + qc1n ( �1 2 ) ] (4 .124) 

Similarly, in segment III, 

VAlli = 2�EO [qain ( � )  + qb1n ( ;13 ) + qc1n ( �3 ) ] ( 4 .125) 

The average potential is 
( 4 .126) 
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2 
8 

Figure 4-25. Three-Phase Line with General Spacing. 

This combined with the three-phase balanced condition 

will result in 

The capacitance to neutral is therefore given by 

where 

( 4 . 1 27) 

( 4 . 1 28) 

( 4 .129) 

Observe that Deq is the same as the geometric mean distance obtained in the 
case of inductance. Moreover, we have the same expression for the capaci-
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tance as that for the single-phase line. Thus 

CAN =  ( GMD ) 
In -

r 

farad per meter (4 .130) 

If we account for the influence of earth, we come up with a slightly 
modified expression for the capacitance. Consider the same three-phase line 
with the attendant image line shown in Figure 4-26. The line is assumed to 
be transposed. Ap, a result, the average phase A voltage will be given by 

VA = 3(2�eo ) ([ qaln ( �l ) + qbln ( �;: )  + qcln ( �;: ) ] 
+ [qaln ( �2 ) + qbln ( �:: ) + qc1n ( �;: ) ]  
+ [qaln ( �3 )  + qbln ( �;: ) + qcln ( �:: ) ] } (4 .131) 

Each of the above square brackets corresponds to a segment of the line. 
With our usual assumption of a balanced three-phase operation 

we get 

From the above, 

or 

We define the mean distances 

qa + qb + qc = O  

( 4 .132) 

( 4 .133) 

( 4 .134) 
( 4 .135) 



...... � 

B 

° 12 °23 

A A. 0 13 1')0 c 

H2 

�� I ' 

HI2 H2 3 

3'�C' 

Figure 4-26. Three-Phase Line with Ground Effect I ncluded .  
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Then our capacitance expression reduces to 
2'IT£0 CAN = ----....;;...---

In ( �q ) - In ( �: )  ( 4 .136) 

We can thus conclude that including the effect of ground will give a higher 
value for the capacitance than that obtained by neglecting the ground 
effect. 

Example 4-1 1 

Find the capacitance to neutral for the single-circuit, three-phase, 
345-kV line with conductors having an outside diameter of 1 .063 in. with 
phase configuration as shown in Figure 4-27 . 

Solution 

Example 4-1 2 

GMD = [ (23 .5) (23 .5) (47) ] 1/3 
= 29 .61 ft 

1 .063 
r = 

(2) ( 12) = 0 .0443 ft 

2'IT£0 CAN = ( GMD ) 
In -

r 

= 8 .5404 X 10- 12 farads per meter 

Calculate the capacitance to neutral for the line of Example 4-11 ,  
including the effect of earth, assuming the height of the conductors is 50 ft. 

I-- 23 ft 6 1n+ 23 ft 6 in --j 
Figure 4-27. Conductor Layout for Example 4-1 1 .  
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Solution 

We have from Figure 4-28: 

HI = H2 = H3 = 2 X 50 = 100 ft 

HI2 = H23 = V(23 .5)2 + ( 100)2 = 102 .72 

HI3 = V( 47)2 + ( 100)2 = 1 10 .49 

In ( Hs ) - In[ ( 100) ( 100) ( 100) ] 1/3 
Hm - ( 102 .72) ( 102 .72) ( 1 10.49) 

= -0.0512 

1 2 3 

, - - -
50 ft 1.-..- 23.5 ft + 23.5 ft ---.I 

50 ft 

2 ' 
• 

Figure 4·28. Configuration for Example 4-1 2. 

3'  
• 

///// 



Thus 

c -
1 

'AN - ( 18 X 109 ) (6 .505 - 0 .0512) 
= 8 .6082 X 10- 12 farads per meter 

Capacitance of Double-Circuit Lines 

4.4 Line Capacitance 145 

It should be evident by now that the calculation of capacitance of a 
double-circuit line can be quite involved if rigorous analysis is followed. In 
practice, however, sufficient accuracy is obtained if we assume that the 
charges are uniformly distributed and that the charge q a is divided equally 
between the two phase A conductors. We further assume that the line is 
transposed. As a result, capacitance formulae similar in nature to those for 
the single-circuit line emerge. 

Consider a double-circuit line with phases A, B, C, A', B', and C' 

placed in positions 1 , 2, 3, I', 2', and 3' respectively in segment I of the 
transposition cycle. The situation is shown in Figure 4-29. In segment II, 
the phase conductors are rotated such that they occupy the positions shown 
in Figure 4-30. For segment III, we have Figure 4-31 . Clearly, six terms will 
be present in each potential relation. As before we deal with phase A only. 

The voltage of phase A in segment I is given by 

2' .8' 

Figure 4-29. Double-Circuit Line Conductor Configuration In Cycle Segment I 
of Transposition. 
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VA, = 2(2�EO ) [qa1n ( � ) + qb1n ( �1 2 ) + qc1n ( �13 ) 
+ qa 1n ( D: 1 , ) + qb1n ( D:2, ) + qc1n ( D:3 .  ) ]  

In segment II, we have 

In segment III, we have 

3' . 8' 

Figure 4-30. Double-Circuit Line Configuration for Segment II. 

( 4 . 137) 

( 4 .138) 

(4 . 139) 
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The voltage on phase A' in segment I is given by 

VA, =  ( 1 ) [qa1n ( ! ) + qb1n (-D1 ) + qc1n ( D1 ) 1 2 21T£0 r 1'2 1'3 

In segment II, we have 

In segment III, we have 

2' . C' 

Figure 4-31 . Double-Circuit Line Configuration for Segment III. 

(4 . 140) 

(4 . 141 ) 

( 4 .142) 
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As we have done in the inductance case, we calculate the average 
voltage and use the balance condition 

qa + qb + qc = O  
to obtain 

- qa l [ (  D12Dl'2 ,D12 ,D1'2 ) (  D23D2 '3,D2'3D23' ) (  D13D1'3,D13,D1'3 ) 1 
VA - ( )

n 6 (  2 2 2 ) 12 277£0 ( r ) Dl l  ,D22 ,D33, 

As a result, 

CAN = ( GMD ) in GMR 
Where as before for the inductance case, we define 

The GMR is given by 
with 

( )
1/3 GMD = DAB DBC DAC eq eq eq 

( )
1/2 

rB = rD22 '  

( )
1/2 

rc =  rD33' 

( 4 .143) 

(4 .144) 

( 4 .145) 

( 4 .146) 

( 4 .147) 

( 4 .148) 

(4 .149) 

( 4 .150) 

( 4 . 151) 

(4 .152) 

If we wish to include the effect of the earth in the calculation, a simple 
extension of the above analysis will do the job. For the three-phase, 
double-circuit line as shown in Figure 4-32, we have 

( 4 .153) 



A 3' C' 

8 2 
H3  H I C 

(1 r H I I ' 

8 2 

A I 

Figure 4-32. Double-Circuit Line with Ground Effect. 

3' C' 

2' 8 ' 

2' 8' 

149 
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( 4.154) 

(4 .155) 

( 4 .156) 

(4 .157) 

(4 .158) 

As a result, the average phase A and A' voltage is 

= q a {In[ (D12Dl'2 ,D12,Dl'2 ) ( D23D2'3,D2 '3D23' ) ( D13D1'3,D1'3D13' ) 1 
� 12(2'ITEo ) ( ( r6 ) ( D;1,Di2 ,Di3' ) )  

(4 .159) 
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The above expression bears striking similarities to that obtained for 
the single-circuit, three-phase line. We can thus write 

2'7T£0 CAN = ( GMD ) 
in GMR + a  

(4 . 160) 

where GMD and GMR are as given by Eqs. (4.145) and (4.149). Also we 
defined 

with 

and 

a = in ( :: )  
( ) 1/3 Hs = HS1Hs2Hs3 

( 2 f/4 HSI = HI H1,Hu' 
HS2 = ( H2H2,H:2, )  

1/4 

( 2 ) 1/4 Hsa = H3H3,H33, 

H = (H  H H f/3 m m l2 m 13 m 23 

( ) 1/4 Hm 12 = H12H1'2 ,HI2,H1'2 
( ) 1/4 Hm l3 = H13H1'3,H13,Hl'3 
( ) 1/4 Hm 23 = H23H2'3,H23,H2'3 

Capacitance of Bundle-Conductor Lines 

(4 .161) 

( 4 .162) 

( 4 .163) 

( 4.164) 

( 4 .165) 

( 4 .166) 
(4 .167) 
( 4 .168) 
( 4 .169) 

It should be evident by now that it is sufficient to consider a single
phase line to reach conclusions that can be readily extended to the 
three-phase case. We use this in the present discussion pertaining to 
bundle-conductor lines. 

Consider a single-phase line with bundle conductor having N sub
conductors on a circle of radius A . Each subconductor has a radius of r. 
Phase A will have a charge q a uniformly distributed among the N sub
conductors. 

Although the charge on phase B will be distributed, it is practical to 
concentrate the charge - qa on phase B in the phase center situated a 
distance D from the center of phase A . The voltages on each of the 
subconductors of phase A are assumed equal to VA. Thus we may take 
subconductor 1 to derive our desired relationship. 
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In accordance with the foregoing discussion, we state that 

VA =_1 [ qa 1n ( .!. ) + qa 1n (_1 ) + . . .  + qa 1n (_1 ) - qa1n (.!. ) ] 
2 'IT 100 N r N DI2 N DIN D 

This reduces to 

V = �ln [ D 1 A 2 'IT 100 ( rD D . . .  D ) I /N 12 1 3  I N 
(4 .170) 

From Figure 4-7 as we have seen before, and using Eq. (4.51) , we conclude 
that 

As a result, we obtain 
2 'IT 100 

CAN = farads per meter In{ [ rN( A�N- ' lVN } 
(4 . 171) 

( 4 .172) 

The extension of the above result to the three-phase case is clearly 
obtained by replacing D by the GMD. Thus 

(4 . 173) 

with 
(4 .174) 

The capacitive reactance in megaohms calculated from Eqs. (4.171) 
and (4.172) for 60 Hz and 1 mile of line using the base 10 logarithm would 
be as follows: 

Xc = 0.0683 log { GMD } 
[ rN(A ) N- ir/N 

(4 . 175) 

Xc = X� + Xd ( 4 .176) 
This capacitive reactance can be divided into two parts 

X� = 0.0683 log { 1 } 
[ rN( A ) N-T/N 

(4 . 177) 

and 
Xd= 0 .0683 Iog(GMD) ( 4 .178) 
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If the bundle spacing S is specified rather than the radius A of tl-:e 
circle on which the conductors lie, then as before, 

Example 4-1 3 

A = S for N> 1 (4 . 179) 
2 sin ( � ) 

Find the capacitance to neutral for the three-phase, 735-kV, bundle
conductor line shown in Figure 4-33 with subconductor outside diameter of 
1 .16 in. and subconductor spacing of 18 in. 

Solution 

The GMD is obtained as 

with 

Thus 

As a result, 

GMD = [(50) (50) ( 100)f/3 = 62 .996 ft 

1 .16 0 8 r = (2) ( 12) = .04 3 
N = 4 
S = 2A sin ( � )  
18 = 2A sin 45° 
A = 1 .0607 ft 

GMR = [ rN( A ) N- 1] l/N 
= [(0 .0483) (  4) ( 1 .0607) 3YI4 
= 0.693 ft 

1 CAN = --------
( 18 X 109 ) l ( 62 .996 ) n 0 .693 

= 12 .319 X 10- 12 farads per meter 
The capacitive reactance is obtained as 

Xd, = (0.06833 X 106) log(62 .996) = 1 .2295 X 105 
Xa, = (0 .06833 X 106 ) IOg ( 0 .�93 ) = 1 .0883 X 104 
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Thus 
Xc = Xd, + Xa' 

= 1 .3383 X 105 ohms . mile to neutral 
4.5 TWO-PORT NETWORKS 
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A network can have two terminals or more, but many of the networks 
of importance in electric energy system studies are those with four termi
nals arranged in two pairs. The box in Figure 4-34 indicates a two-terminal 
pair network, which might contain a transmission line model or a trans
former model, to name a few in our power system applications. The box is 
sometimes called a coupling network, or four-pole, or a two-terminal pair. 
The term two-port network is in common use. It is a common mistake to 
call it a four-terminal network. In fact, the two-port network is a restricted 
four-terminal network since we require that the current at one terminal of a 
pair must be equal and opposite to the current at the other terminal of that 
pair. An obvious example of a nonrestricted four-terminal network is a 
three-phase load with its neutral connection brought out to a fourth 
terminal. 

Useful examples of two-port network configurations are shown in 
Figure 4-35. These are: the 71'-network, the V-network, and the T-network. 
Note that these three networks are completely interchangeable. By this we 
mean that the T-network, for example, can be replaced by an equivalent 71', 
using the Y -A conversion. 

Two important problems arise in the application of two-port network 
theory to electric energy systems. These are: 

1 . The transfer problem: It is required to find the currents in terms of 
both voltages, or to find the voltages in terms of both currents. 

2. The transmission problem: It is required to find voltage and cur
rent at one pair of terminals in terms of quantities at the other pair. 

The transfer problem is easily handled as follows. The node equations for 
the two-port network yield [ IS ]  

= 
[ Yss Ysr ] [ V: ] 

-1r Yrs Yrr v,. 

Is + ------1 I r ....... -�-- + 
- -

Figure 4-34. A Two-Terminal Pair or Two-Port Network. 

(4 .180) 
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I I 
I I -

r-'- r- -

Vso Vro 

( 0 ) n - network 

( b )  V - network 

( c )  T - network 

Figure 4-35. Examples of Two-Port Networks: (a) The 7T-Network; (b) The 
V-Network; (e) The T-Network. 
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In a bilateral network, Ysr = Yrs ' The physical meaning of the admittance 
parameters is as follows: 

I 
Yss = V for v,. = 0 

s 
I 

Ysr = V for � = 0 
r 

-I 
Yrs = V 

r for v,. = 0 
s 

- I 
Yrr = V r for � = 0 

r 
Of course, � = 0 means that the s terminals are short-circuited. Thus the 
y 's are seen to be ratios of easily measured currents and voltages. The 
parameters Yss and Yrr are called driving-point admittances, and Ysr and Yrs 
are the transfer admittances. Sometimes the term short-circuit is added to 
these notations. 

The loop equations yield [ � 1 = [Zss Zsr 1 [ �s l 
v,. Zrs Zrr Ir 

( 4 .181 ) 

Here the physical interpretation of the driving and transfer impedances 
follows in a manner similar to the above treatment. 

The transmission problem is handled by assuming a pair of equations 
of the form 

� = A  v,. + BIr 
Is = Cv,. + DIr 

to represent the two-port network. In matrix form, we thus have 

( 4 .182) 
( 4 .183) 

The values of the A, B, C, and D parameters are given in terms of the 
driving point and transfer admittances by: 

A = -Yrr 
Yrs 
- 1 B =
Yrs 

C - - Yss Yrr - Ysr y, rs 
D = -Yss 

Yrs 

( 4 .184) 

( 4 .185) 

( 4.186) 

( 4 .187) 
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We also have the following relations between the driving-point and transfer 
impedances and the ABCD parameters: 

B = Zs sZrr _ z  
Zr.. s r 

( 4 .188) 

(4 . 189) 

(4 . 190) 

(4 .191) 

For bilateral networks (and this includes all ordinary passive electrical 
networks), the transfer parameters are equal (that is, Ysr = Yr .• in one form, 
and Zsr = Zrs in the other). Thus there are only three independent short
circuit admittances and only three independent open-circuit impedances. 
This suggests that A ,  B, C, and D may not all be independent. Indeed, a 
quick calculation verifies that 

AD - BC = Ysr = 1 
Yrs 

if one uses the admittance values and a similar expression using the 
impedance values. Thus there are but three independent parameters in the 
ABCD set also. 

Symmetry of a two-port network reduces the number of independent 
parameters to two. The network is symmetrical if it can be turned end for 
end in a system without altering the behavior of the rest of the system. An 
example is the transmission line, as will be seen later on. To satisfy this 
definition, a symmetrical network must have 

Ys s = Yrr and 

Introducing the first of these, it is seen that for a symmetrical two-port 
network, 

A = D 

It is instructive at this point to show how the A ,  B, C, and D 
parameters may be obtained for certain special two-port networks. Let us 
consider the symmetrical T-network shown in Figure 4-36. Our approach 
here will utilize Kirchhoff's voltage and current laws. Let the potential of 
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Z/2 VM + 

1 
� 

I s 

Vs y 

Figure 4-36. A Symmetrical T -Network. 

the middle point of the T be VM; then we obtain 

� = 18 ( � )  + VM 

18 = VMY+ lr 

VM = � + lr ( � ) 
From these equations, we can write 

Z /2 

� 
I r 

� = ( 1 + �Y ) � + z( 1 + �Y ) Ir 
Is = � + ( 1 + �Y ) Ir 

1 
Vr 

Comparing the above expressions with Eqs. (4.182) and (4.183), we conclude 
that 

A = l +
ZY 
2 ( 4 . 192) 

B = Z( 1 + �Y ) ( 4 .193) 

C = Y (4 . 194) 

D = l +
ZY 
2 (4 .195) 

We remark here that alternative approaches may be applied to de
termine the T-network's A, B, C, and D parameters. We will illustrate some 
of these in considering other networks. 

We now tum our attention to another important two-port network 

+ 
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that plays a fundamental role in power system analysis-this is the sym
metrical 'IT-network. Figure 4-37 shows a symmetrical 'IT-network. We will 
use the short-circuit admittance parameters to obtain the ABCD parame
ters. The admittance looking into either end with the other short-circuited 
IS 

1 1 
Yss = Yrr = Z + "2 y 

If one end, short-circuited, is carrying current I, the applied voltage be
tween tenninals at the other end must be Zl. The ratio is the short-circuit 
transfer admittance; thus 

- 1  
Ysr = Yrs =z 

These short-circuit admittances are now substituted to find the ABCD 
values of the symmetrical 'IT-network as shown below: 

A = ( 1 + �Y ) ( 4 . 196) 
B = Z  (4 .197) 

C =  Y( 1 + �Y ) 
D = A  

( 4 .198) 
( 4.199) 

Our final special network is the L-network shown in Figure 4-38. Here 
we will use the physical interpretation of the ABCD parameters to our 
advantage as follows. With the receiving end open-circuit, i.e., Ir = 0, we 
have 

and 

from which 
A = 1  
C= Y 

With the receiving end short-circuited, i.e., v,. = 0, we have 
1 

or 

Ir Y 
Is 
= 
Z + 1 Y 

(4 .200) 
( 4 .201 ) 
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+ o-----��--� �----_o + 
r � L..--..-..---I � 

Figure 4-38. An L-Network. 

and 

Thus 

y 

D= l + ZY 
B = Z  

( 4 .202) 
(4 .203) 

One of the most valued aspects of the ABeD parameters is that they 
are readily combined to find overall parameters when networks are con
nected in cascade. Figure 4-39 shows two cascaded two-port networks. 
We can write 

From which, eliminating ( VM'  1M ), we obtain 



v S v M 
I s A .  B . 1M A2 

c. D. Cz 
Figure 4-39. A Cascade of Two two-Port Networks. 

B2 
D2 

Thus the equivalent ABCD parameters of the cascade are 

A = A1A2 + B1C2 
B = Al B2 + BI D2 
C = C1A2 + D1C2 
D = C1B2 + DID2 
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v r 
Ir 

(4 .204) 

( 4 .205) 
(4 .206) 

(4 .207) 

If three networks or more are cascaded, the equivalent ABCD parameters 
can be obtained most easily by matrix mUltiplications as was done above. 

The idea of cascaded networks can be used to full value in deriving the 
ABCD parameters of networks based on manipulating elementary circuits 
such as a series impedance and a shunt admittance. The following are 
obvious relations: 

Az = 1 
Bz = Z  
Cz = O  
Dz = l (4.208) 

for a two-port network made up of only a series impedance Z. On the other 
hand, 

A = 1 y B = 0 y C = ¥ y D = 1 y (4.209) 

for a network made up of a shunt admittance. These two networks are 
shown in Figure 4-40. 

Let us derive the ABCD parameters of the symmetrical 7T-network of 
Figure 4-37 using this concept as the matrix product: 



164 The Transmission Subsystem 

z 
O---i 1----0 

0----------------0 

Figure 4-40. Two Elementary Networks. 

y 

You are invited to try this for the symmetrical T-network as an exercise. 

4.6 TRANSMISSION L I N E  M ODELS 

The line parameters discussed in the preceding sections were obtained 
on a per-phase, per unit length basis. We are interested in the performance 
of lines with arbitrary length, say t. To be exact, one must take an infinite 
number of incremental lines, each with a differential length. Figure 4-41 
shows the line with details of one incremental portion ( dx) at a distance (x )  
from the receiving end. 

The assumptions used in subsequent analyses are: 

1 .  The line is operating under sinusoidal, balanced, steady-state condi
tions. 

2. The line is transposed. 

With these assumptions, we analyze the line on a per phase basis. Applica
tion of Kirchhoff's voltage and current relations yields 

[V( x ) + �V] - V( x ) = [ I( x )  + �I] z �x 
[ I( x )  + � I] - I(x )  = V(x ) y�x 

( 4 .21 1 ) 
( 4 .212) 
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These reduce to 
L.\V= l{ x )z L.\x 
L.\ l =  V{x ) yL.\x 

or in the limit, as L.\x � 0, we have 
dV{ x )  = zl{ x ) dx 
dl{ x )  =yV{ x )  dx 

( 4 .213) 

(4 .214) 

A separation of variables can be performed by differentiating the 
above equations and substituting to obtain 

d2V(x )  --'---'-= zy V( x ) 
dx2 

d 21( x )  --'--'-= zyl( x ) 
dx2 

Let us introduce the propagation constant v defined as 
v = {zY 

where the series impedance per-unit length is 
z = R +jwL 

and the shunt admittance per-unit length is 
y = G +jwC 

( 4 .215) 

( 4 .216) 

(4 .217) 

( 4 .218) 

(4 .219) 
R and L are series resistance and inductance per unit length, and G and C 
are shunt conductance and capacitance to neutral per unit length. 

We can now write the differential Eqs. (4.215) and (4.216) as: 

d2V = V2V 
dx 2 
d21 = v 21 
dx 2 

(4 .220) 

(4 .221) 

Equation (4.220) can be solved as an ordinary differential equation in 
V. The solution turns out to be 

( 4 .222) 
Now taking the derivative of V with respect to x, and using Eq. (4.213), we 
obtain lex )  as 

(4 .223) 
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Here we introduce 
Z = � c V y ( 4 .224) 

Zc is the characteristic (wave) impedance of the line. 
The constants Al and A2 may be evaluated in terms of the initial 

conditions at x = 0 (the receiving end). Thus we have 
V(O) = A1 + A2 

ZJ(O) = AI - A2 
from which we can write 
V(x ) = � { [V(O) + ZJ(O) ] exp( vx ) + [V(O) - ZJ(O) ] exp( - vx ) } (4 .225) 

I(X ) = � { [I(O) +  Vi�) ] exp( vx ) + [1(0) - Vi�) ] exp( - vx )} (4 .226) 

Equations (4.225) and (4.226) can be used for calculating the voltage 
and current at any distance x from the receiving end along the line. A more 
convenient form of these equations is found by using hyperbolic functions. 

We recall that 
. hO exp( 0 ) - exp( - 0 ) SIn = --=-'--'--------''----'---"--

2 
cosh 0 = exp( 0 ) + exp( - 0 ) 

2 
By rearranging Eqs. (4.225) and (4.226) and substituting the hyperbolic 
function for the exponential terms, a new set of equations is found. These 
are 

Vex ) = V(O) cosh vx + ZJ(O) sinh vx 
and 

lex )  = I(O)cosh vx + V�O) sinh vx 
c 

We define the following ABCD parameters : 

As a result we have 

A(x ) = cosh vx 
B(  x ) = Zcsinh vx 

C(x ) = � sinh vx 
c 

D( x ) = cosh vx 

Vex ) = A(x ) V(O) + B(x ) I(O) 
l( x )  = C(x ) V(O) + D(x ) 1(0) 

(4 .227) 

( 4 .228) 

( 4 .229) 
( 4 .230) 

(4 .231) 

( 4 .232) 
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I t is easy to verify that 
A( x )D(x ) - B( x )C(x ) = 1 

For evaluation of the voltage and current at the sending end x = I, it is 
common to write 

Thus we have 

� =  V( l ) 
Is = I( I ) 
v,. = V(O) 
Ir = 1(0) 

� = A  v,. + BIr 
Is = Cv,. + DIr 

( 4 .233) 
(4 .234) 

The subscripts s and r stand for sending and receiving values respectively. 
We have from above: 

A = A( l ) = cosh vi 
B = B ( l ) = Zcsinh vi 

C = C( l ) = � sinh vi c 
D = D( l )  = cosh vi 

( 4 .235) 
(4 .236) 

( 4 .237) 

(4 .238) 

It is practical to introduce the complex variable 0 in the definition of 
the ABCD parameters. We define 

AI?, a result, 
0 = vi = IiY (4 .239) 

A = cosh O 
B = ZcsinhO 

C =  � sinh O 
c 

D = A  

(4 .240) 
( 4 .241 ) 

(4 .242) 

( 4 .243) 

Observe that the total line series impedance and admittance are given by 
Z = zl (4 .244) 
Y = yl (4 .245) 

Evaluating ABeD Parameters 

Two methods can be employed to calculate the ABCD parameters of a 
transmission line exactly. Both assume that 0 is calculated in the rectangu
lar form 
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The first method proceeds by expanding the hyperbolic functions as fol
lows: 

e(J + e-(J A = 2 

= % ( e(J'8+ e-(J'I -02) 

eO - e-(J sinh 0 = 2 
= % ( e (J '8- e-(J 'I-02) ' 

B =  fl sinh 0 
C =  II sinhO 

Note that O2 is in radians to start with in the decomposition of O. 

( 4 .246) 

(4 .247) 

( 4 .248) 

The second method uses two well-known identities to arrive at the 
parameter of interest. 

A = cosh( OJ + j02 ) 
cosh 0 = cosh OJcos 02 + jsinh OJsin 02 ( 4 .249) 

Also we have 
sinh 0 = sinh OJcos O2 + jcosh OJsin O2 ( 4 .250) 

Example 4-1 4  

Find the exact ABCD parameters for a 235.92-mile long, 735-kV, 
bundle-conductor line with four subconductors per phase with subconductor 
resistance of 0.1004 ohms per mile. Assume that the series inductive reac
tance per phase is 0.5541 ohms per mile and shunt capacitive susceptance of 
7.4722 X 10-6 siemens per mile to neutral. Neglect shunt conductance. 

Solution 

The resistance per phase is 

r = 0.�04 = 0 .0251 ohms/mile 

Thus the series impedance in ohms per mile is 
z = 0 .0251 + jO .5541 ohms/mile 

The shunt admittance is 
y = j7 .4722 X 10-6 siemens/mile 
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For the line length, 
Z = zl = (0.0251 + jO .5541 ) ( 235 .92) = 130.86/87 .41 0 
¥= yl = j{7 .4722 X 10� 6 ) (235 .92) = 1 .7628 X 1O�3/90° 

We calculate () as 

Thus, 

() = {iY 
= [( 130.86/87 .41 0 ) (  1 .7628 X 1O� 3�0 r/2 
= 0 .0109 + j0.4802 

()j = 0.0109 
()2 = 0.4802 

We change ()2 to degrees. Therefore, 
()2 = (0.4802) ( 1!0 ) = 27 .51170 

Using Eq. (4.246), we then get 
cosh () = � ( eO .0109 /27 .51170 + e�O.Ol09 / -27 .51 170 ) 

= 0 .8870/0 .32420 
From the above, 

D=A = 0.8870/0 .32420 
We now calculate sinh () as 

We have 

As a result, 

sinh () = � ( e O.OlO9 /27 .5117° - e �O.Ol09 / -27 .5117° ) 
= 0.4621/88.8033° 

Z = 
{Z = ( 130 .86/87 .41 ° ) 1/2 c V y 1 .7628 X 1O�3/900 

= (74234 .17/- 2 .59f/2 

= 272 .46/ - 1 .295° 

B = Zcsinh () 
= 125 .904/87 .508° 
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Also 

c =  � sinh O 
c 

= 1 .696 X 10- 3/90 .0980 
Let us employ the second method to evaluate the parameters. We find 

the hyperbolic functions: 
cosh01 = cosh(0 .0109) 

e O.0109 + e -O .OI09 
2 

= 1 .000059 
• e O.OI09 _ e - O.0109 
smh 01 = 2 

= 1 .09002 X 10- 2 
(If your calculator has built-in hyperbolic functions, you can skip the 
intermediate steps.) We also have 

Therefore we have 

cos O2 = cos [ (0.4802) ( 1!0 ) ] 
= 0.8869 

sin O2 = sin [ (0 .4802) ( 1!0 ) ]  
= 0 .4619566 

cosh 0 = cosh 01cos 02 + jsinh 01sin 02 
= ( 1 .000059) (0 .8869) + j( 1 .09002 X 10- 2 ) (0 .4619566) 
= 0 .8869695/0.325270 

sinh 0 = sinh 01cos O2 + jcosh 01sin O2 
= ( 1 .09002 X 10- 2 ) (0 .8869) + j( 1 .000059) (0 .4619566) 
= 0 .4620851/88 .801 0 

These results agree with the ones obtained using the first method. 

Example 4-1 5 

Find the voltage, current, and power at the sending end of the line of 
Example 4-14 and the transmission efficiency given that the receiving-end 
load is 1500 MVA at 700 kV with 0.95 PF lagging. 
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Solution 

We have the apparent power given by 
Sr = 1500 X 106 VA 

The voltage to neutral is 

Therefore, 

v.: = 700 X 103 V r 
(3 

1500 X 106 - 1  I, = 

3
( 700 fa to' ) L - cos 0 .95 

= 1237 .18/ - 18. 19° A 
From Example 4-14 we have the values of the A, B, and C parameters. Thus 
the sending-end voltage (to neutral) is obtained as 

� = Av;. + BIr 

= (0.8870 /0.3253" ) ( 700 fa JO' ) 
+ ( 125 .904/87 .508° ) ( 1237 .18/ - 18.19° ) 

= 439.0938 /19 .66° kV 

The line-to-line value is obtained by mUltiplying the above value by 
.[3, giving 

Vs = 760.533 kV 
L 

The sending-end current is obtained as 
Is = Cv;. + DIr 

= ( 1 .696 X 10 'L90 .098° ) ( 700 fa to' ) 
+ (0.887 /0.32530 )( 1237 .18/ - 18.19° ) 

= 1 100.05 / 18.490 

The sending-end power factor is 
cos � = cos( 19.66 - 18.49) 

= cos( 1 . 17) = 0.99979 
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As a result, the sending-end power is 

The efficiency is 

Ps = 3(439.0938 X 103) (1 100.05) (0 .99979) 
= 1448.77 X 106 MW 

P,. 1/ = Ps 
1500 X 106 X 0 .95 
1448.77 X 106 

= 0.9836 

Lumped Parameter Transmission Line Models 

Lumped parameter representations of transmission lines are needed 
for further analysis of interconnected electric power systems. Their use 
enables the development of simpler algorithms for the solution of complex 
networks that involve transmission lines. 

Here we are interested in obtaining values of the circuit elements of a 
'IT circuit, to represent accurately the terminal characteristics of the line 
given by 

� = A v,. + BIr 
Is = Cv,. + DIr 

It is easy to verify that the elements of the equivalent circuit are given in 
terms of the ABCD parameters of the line by 

Z,, = B ( 4 .251 ) 
and 

(4 .252) 

The circuit is shown in Figure 4-42. 

Example 4-1 6 

Find the equivalent 'IT-circuit elements for the line of Example 4-14. 

Solution 

From Example 4-14, we have 
A = 0.8870 /0.32420 

B = 125 .904/87 .5080 
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As a result, we have 

Z'II = 125 .904/87 .508° ohms 
0
_

.
_
88

_
7
_
°.=/°=.3=2=4=2°'---

_
1 

y == 

7T 125.904 /87.508° 

== 8.985 1 X 10-4/89.94 10 siemens 

Approximations to the ABeD Parameters of 
Transmission Lines 

Consider the series expansion of the hyperbolic functions defining the 
A, B, C, and D parameters given by 

() 2 () 4 () 6  
A = 1 + 2 + 24 + 720 + . . .  ( () 2 () 4  ()6  ) 
B = Z  1 + 6 +  120 + 5040 + . . .  ( () 2 () 4  ()6  ) 
C = Y 1 + 6 + 120 + 5040 + . . .  
D=A  

( 4 .253) 

(4 .254) 

( 4 .255) 

The number of terms taken into consideration when applying the 
above expressions will depend on the required accuracy. Usually no more 
than three terms are required. For overhead lines less than 500 km in 
length, the following approximate expressions are satisfactory: 

( 4 .256) 

( 4 .257) 

(4 .258) 
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+ o------+----� �----._----� + 

1 I7 '-------J � 1  Y/2 Y/2 

Figure 4-43. Nominal 7T Model of a Medium Transmission Line. 

If only the first term of the expansions is used, then 
B = Z  

A - I  Y 
B 2 

( 4 .259) 

( 4 .260) 

In this case, the equivalent 7T circuit reduces to the nominal 7T, which is used 
generally for lines classified as medium lines (up to 250 km). Figure 4-43 
shows the nominal 7T model of a medium transmission line. The result we 
obtained analytically could have been obtained easily by the intuitive 
assumption that the line's series impedance is lumped together and the 
shunt admittance Y is divided equally with each half placed at each end of 
the line. 

A final model is the short-line (up to 80 km) model, and in this case 
the shunt admittance is neglected altogether. The line is thus represented 
only by its series impedance as shown in Figure 4-44. Let us take an 
example to illustrate the approximations involved. 

Example 4-1 7 

Find the nominal 7T and short-line representations for the line of 
Example 4-14. Calculate the sending-end voltage and current of the trans
mission line using the two representations under the conditions of Example 
4-15. 

Solution 

For this line we have 
Z =  130 .86/87 .41 0 
Y =  1 .7628 X 10- 3/900 



4.6 Transmission Line Models 1 77 

z 
+ 0--. -L_--II----o+ t I s  � i 

v, 

O�------------__ o 

Figure 4-44. Short-Line Model. 

As a result, we have the representations shown in Figure 4-43. 
From Example 4-15, we have 

v = 700 X 103 V r fa 
Ir = 1237 .18/ - 18.19° A 

For the short-line representation we have 

� = v,. + IrZ 

For the nominal ." we have 

Thus, 

IL = Ir + v,. ( ; ) 
= 1237 .18/ - 18 .19' + ( 700 ra 10' ) (0.8814 X 1O-',{90' ) 
= 1175.74 /- 1.46 19° A 
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= 70}aX 103+ (1 175.74 /- 1 .4619°) (130.86 /87.4 1°) 

= 442.484 X 103 /20.2943° V 

Referring back to the exact values calculated in Example 4- 15 , we find 
that the short-line approximation results in an error in the voltage magni
tude of t:.V = 439.0938 - 485.7682 

439.0938 
= -0. 1 1  

For the nominal '1T we have the error of 
t:. V 

= 
439.0938 - 442.484 

439.0938 
= -0.00772 

which is less than 1 percent. 

The sending-end current with the nominal '1T model is 

Is = IL + V. ( ; )  
= 1 1 75 .74 /- 1 .46190 

+ (442.484 X 103 /20.2943°) (0 .88 14 X 10 - 3/90°) 
= 1092.95 /17.89° A 

Transmission Line Model Approximation Errors 
We have seen that a number of models are available for the analysis of 

transmission line performance. The complexity of the analysis process is 
least for the short-line model. A slightly more complex process is required 
for the nominal '1T model. Both models are approximations of the long-line 
models using the hyperbolic functions whether in the ABeD form or the 
equivalent '1T model. A trade-off must be made between accuracy and model 
complexity. 

Let us consider the error in performance calculation when using the 
short-line model consisting of just the line's series impedance Z in compari
son with the more accurate results obtained using the nominal '1T model. Let 
us assume that v,. and Ir are given and consider the values of sending-end 
voltage, current, and power. We denote quantities calculated using the 
short-line approximation by suffix 1, whereas those for the nominal '1T are 
denoted by suffix 2. The situation is shown in Figure 4-45. 



The voltages and currents calculated are 

t:, = v.- + ZIr 
Is = Ir , 

�2 = ( 1 + 
Z
2
Y ) v.- + ZIr 
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IS2 = Y( 1 + �Y ) v.- + ( 1 + �Y ) Ir 
The errors are defined by 

at: = t:2 - t:, 

als = IS2 - Is, 

or 
at: = ( Z2Y ) v.-
als = Y( 1 + 

Zt )  v.- + ( �Y ) Ir 

z 
0 , - 0 t - i I s ,  I , 

Vs , v, 

I 
0 0 

z 

I T.;'"  -I , 

VS2 Y/2 Y/2 I 
V, 

(4 .261 )  

( 4 .262) 

( 4 .263) 

( 4 .264) 

Figure 4.45. Variables Defined for Comparison of Short-Line and Nominal '1T 
Models. 
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For the sending-end complex power we have the error defined by 
�Ss = SS2 - Ss, 

= V J* - V J* 
82 •li 2 SI S J  

This reduces to 

�SS = ( �, + �� ) (  r:, + � I: )  - �/:, 
= ( �� ) ( I:. ) + ( �, ) ( �I; ) + ( �� ) ( �I: ) 

Expanding the right-hand side of the above, we obtain 
�s.. = aSr + bS: + cY,? + dl lr l 2 

with 

where as usual, 

B2 ( R2 + X 2 )  a = - BX + 4 
b = B [ X - � ( R2 + X 2 ) ] -iBR 

c = B2R + jB [ 3BX _ B2 ( R2 + X 2 ) - 1] 4 4 8 
d = _ iB ( R2 + X2 ) 2 

Z = R +iX 
Y =jB 

(4 .265) 

( 4 .266) 

( 4 .267) 

(4 .268) 

(4 .269) 

Separating real and imaginary parts In the complex power error 
equation, we obtain 

�P,, = BR ( B;? - Qr ) ( 4 .270) 

�Q8 = ( B I Z I2 _ 2 X )Q - RP B 2 r r 

+ ( 3�X _ �2 1 Z 1 2 - 1 ) \1;2 - I  � 1 2 1 Ir l2 (4 .271 ) 

It is clear that the errors increase with the square of the voltage and the 
line's shunt admittance. 

The fonnulae obtained above are not very practical to implement. It is 
desirable to obtain expressions giving only upper bounds on the expected 
errors. These expressions tum out to be much simpler. Consider first the 
voltage error 

�V =
ZY ( V ) = iB( R +jX )  V s 2 r 2 r 
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Since normally 

we have 

Thus 

R - < 1 X 

Define the maximum value of error (or upper bound) by 
BX Ay:' = 70 ( � ) u y 2 

Thus 

( 4 .272) 

( 4 .273) 
Consider next the error in calculating the sending-end active power 

APs given by 

For lagging Qr' Qr > 0, and with 

we have 

Thus, 

Q 
B�2 

< -r 4 

where AP is the maximum value of the error Su 

In terms of A y:. , we have u 

B2RV.2 
APsu = 4 r 

APs = �2 ( Ay:' )
2 

u 2X u 

( 4 .274) 

( 4 .275) 

( 4 .276) 
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for the condition 

For lagging Qr and with 

we have 

BV? 
Q < __ r 

r 4 

Q 
BV,? >-r 4 

-t::.P = BR ( Qr - BV;? ) 
s 4 

( 4 .277) 

( 4 .278) 

Note t::.� is negative, indicating that the value of sending-end power 
calculated using the short-line approximation is higher than that using the 
nominal 'TI'. In this case, 

or 

Example 4-1 8 

For the system of Example 4-14, we have 
B = 1 .7628 X 10- 3 
X = 130 .72 

We calculate 

The actual error is 

V = 700 X 103 
r /3 

BX 
t::.� =-rn (Y,.) u V2  
I1Vsu = 65.85 1 X 103 V 

11 Vs = 485. 7682 x 103 - 442.484 X 103 = 43 .28 X 103 V 
For the power, we have 

R = 5.92 ohms 
Qr = 156 .12 Mvar per phase B;' = ( 1 .76284X 10-3 ) ( 700; 103 ) ' 

= 7 1.98 1  X 106 

(4 .279) 



Thus 

We calculate 

Q 
> BY,? 

r 4 

l aPs. l = BRQr 
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= ( 1 .7628 X 10- 3 ) (5 .92) ( 156 .12) 
= 1 .63 MW per phase 

For three phases, we have 

l a� 1 = 4 .89 MW 
u 

The actual values are obtained as follows for the short-line approximation : 
q,s = 36 .35° 

cos q,s = 0 .805411 
� = 3(485 .7682 X 103 ) ( 1237 .18) (0.80541 1 ) 

= 1452 . 11 X 106 W 

For the medium line, we have 
q,s = 20.293 - 17 .89 

= 2 .4044° 
cos q,s = 0 .99912 

The actual error is 

� = 3(442 .495 X 103 ) ( 1092 .93 ) (0 .99912) 
= 1449 .56 X 106 W 

aps = 1449 .56 - 1452 . 1 1 
= -2 .55486 MW 

which is within the predicted range. 

SOME SOLVED PROBLEMS 

Problem 4-A-1 

A 500-kV, double-circuit line has bundle conductors with three sub
conductors at 21-in. spacing. The GMR of each subconductor is 0.0485 ft. 
The circuit configuration is as shown in Figure 4-46. Calculate the inductive 



: 

1 36 ft. 
L .  

i.30 ft. J . . . . , , I, A 3 ,  C 

• 
2 , 8 

• • 

• • 3, C • • 
• • • I ', A' 

I-- 30 ft. .1.. 30 ft. - I- 30 f t. 

• • 2' , B ' • � 
Figu re 4-46. Double-Circuit Configuration for Problem 4-A- 1 with Alternative 1 
Phase Placement. 
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TABLE 4-3 

Phase Placements for Line of Problem 4-A-I 
Physical Position 

Alternative 1 2 3 l '  2' 3' 
Phase 1 A B C A' B '  C' 
place- 2 A B B'  C C' A' 
ment 3 C A B B' A' C' 

reactance of the line in ohms per mile per phase for the alternatives of phase 
placement shown in the Table 4-3. 

Solution 

We find first the bundle's GMR as follows: 
N= 3  
s = 21 inches 

S 21 A = 2 . 600 = --;;; = 1 .0104 ft sm v3 242 
GMRc = 0.0485 ft 

GMRb = [3(0 .0485) ( 1 .0104)2r/3 

= 0 .52959 ft 
For alternative I, we have 

rA = [(GMRb ) (DAA, ) ] 1/2 

= (0 .52959/(30)2 + (36)2 ) 1/2 
= 4 .9817 ft 

rB = [(GMRb ) ( DBB, ) ] 1/2 

= [0 .52959(90)r/2 

= 6.9038 ft 
rc =  [(GMRb ) (Dcc, )f/2 

= [0.52959/(30)2 + (36)2 r/2 
= 4 .9817 ft 
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Thus the overall GMR is obtained as 
GMRp = ( rArnrc ) I/3 

= 5 .5541 ft 
We next calculate the equivalent distances: 

DABeq = { [ V(30)2 + (36)2 ]  [V(60)2 + (36)2 ] [ (60) (30) ] } 1/4 

= 49.29 ft 

DBCeq = { (30) [ V(60)2 + (36t] (60) [ V(30)2 + (36) 2 ] } 1/4 

= 49 .29 ft 

DAC = [(36) (30) (36) (30)f/4 eq 

= 32 .86 ft 

As a result, we obtain 

GMD = [(49 .29) (49 .29) (32 .86)f/3 
= 43 .06 ft 

From the above we conclude that 

X 9 I 43 .06 L = 0 .27 4 og 5 .5541 
= 0.2485 ohms/mile 

For alternative 2, shown in Figure 4-47 we have the phase GMR 
calculated as 

Thus, 

rA = [0.52959(30) ] 1/2 

= 3 .99 ft 

rn = [0 .52959(30) ] 1/2 
= 3 .99 ft 

rc = [0 .52959(30)] 1/2 

= 3 .99 ft 

GMRp = [(3 .99) (3 .99) (3 .99)r/3 

= 3 .99 ft 
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The equivalent distances are obtained as 

Thus 

From which, 

DABeq = [ ( (36) 2 + (30) 2) (36) ( /(60)2 + (36) 2 ) r/4 
= 48 .5 ft 

DBC = [(60) (90) ( 30) (60) ] 1/4 eq 

= 55 .84 ft 

DACeq = [ (  ( 30) 2 + (36)2) ( /(36) 2 + (60) 2 ) (36) r/4 
= 48 .5 ft 

GMD = [(48.5) ( 48.5) (55 .84) ] 1 /3 
= 50 .83 ft 

50 .83 XL = 0.2794 log 3 .99 
= 0 .3088 ohms/mile 

For alternative 3, shown in Figure 4-48 we have 

From which, 

rA = [(0.52959) (90)P/2 
= 6 .9038 ft 

rB = [ (0 .52959) (30)r/2 
= 3 .99 ft 

rc = [ (0 .52959) (30)P/2 

= 3 .99 ft 

GMRp = [(6 .9038) (3 .99) (3 .99)P/3 

= 4 .79 ft 
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'-30" 1 • • • • 1 , -.f----------
I, C 3 ,  C 

I 
• •  

16 ft. 

L. • 2, A 
• \.--30ft. 

. . . . , , . .  , , 3, 8 I , B 2 , A 
• • • . 1 .. 30 ft. -....., .. �li"'I .. l---- 30 ft. ----.I 

Figure 4·48. Alternative 3. 

The equivalent distances are 

Thus, 

Consequently, 

DAB = [(30)(60)(30)(60)P/4 eq 

= 42 .43 ft 
DBCeq = [ (36) ( (30)2 + (36)2)(36) r/4 

= 41 .07 ft 
DACeq = [( (30)2 + (36)2)( (60)2 + (36)2) f/4 

= 57 .26 ft 

GMD = [(42 .43)(41 .07)(57 .26) ]1/3 
= 46 .38 ft 

46 .38 XL = 0.2794 log 4 .79 
= 0.27557 ohms/mile 

Note that alternative 1 gives the lowest inductive reactance. 
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Problem 4-A-2 
An important class of problems in electric power systems engineering 

is that of determining system parameters in terms of operating conditions 
rather than geometric and physical properties. One such a problem involves 
finding the ABCD parameters of a device such as a transmission line. 

Show that the parameters A and B are given by 

Solution 

We have 

Hence 

But 

Hence 

As a result, 

And we have 

VJs = A v,. Is + BIr( Cv,. + AIr ) 

V:Is + v,.Ir = A v,. Is + ( BC + 1 ) Irv,. + BAI; 

v: Is + v,.Ir = A  v,. Is + A2Irv,. + BAI; 

= A( v,.Is + V:1r ) 

V: - A v,. B = -'::---:---'-
Ir 

Using the relation just derived for A, we get 

B = v: _ v,. ( v: Is + v,.Ir ) 
Ir Ir v,.Is + V:Ir 

v:v,.Is + V:2Ir - v,.V:Is - v,.2Ir 
Ir( v,.Is + V:1r ) 
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Thus, 

Problem 4-A-3 

Suppose we are interested in detennining the transmission line circuit 
impedance and admittance from the A and B parameters. As a first step we 
substitute 

X = e-8 
where as usual, 0 = .fZY. We further substitute 

X = Xt +jX2 
A = At +jA2 

Show that Xl and X2 satisfy the following two equations 

Xf - Xi - 2( AtXI - A2X2 ) + 1 = 0 
XtX2 - ( A2Xt + AtX2 ) = 0 

Solution 

We have 

We put X = e-8• Then 

or 

Substitute 

Hence 

l. + X 
A = ..;;;X.;::;.-._ 

2 

X2 - 2AX + l = 0 

X = Xt +jX2 
A = AI +jA2 

Xt2 - xi + 2jXIX2 - 2 [AIXt - A2X2 + j( A2Xt + AtX2 ) ] + 1 = 0 

Separating real and imaginary parts, 

Xt2 - xi - 2( AtXt - A2X2 ) + 1 = 0 
XtX2 - ( A2 Xt + AtX2 ) = 0 
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APPEN DIX 4-A 

Inductance of a Conductor Due to Internal Flux 

We will consider a cylindrical conductor with a far return path for the 
current. With this assumption, the return path current does not affect the 
magnetic field of the conductor. Hence, the lines of flux are concentric with 
the conductor. We will assume uniform current density in the conductor. 
The current enclosed by a path of radius x is thus 

2 
1( X ) = 1TX ( / ) 

1Tr 2 
Here 1 is the total current in the conductor and r is the radius of the 
conductor. 

The magnetic field intensity H( x )  at any point on the circular path of 
radius x is obtained from 

H(x )  = -2 1 l(x )  1TX 
This is the result of applying Ampere's circuital relationship 

1 =  jH.ds. 
With the uniform current density assumption, we have 

x H(x )  = --21 Atjm 21Tr  
Assuming a constant permeability p. for the conductor's material, the 

flux density x meters from the center is 
B(x ) = �1 21Tr 2 

The flux dcp in a tubular element of thickness dx per unit length is 

dcp = �ldx Whjm 21Tr2 
We note here that the internal flux dcp links only l(x ), which is a fraction of 
the total current. Thus the flux linkages per meter of length are: 

x 2 p.lx 3 
d'A = - dcp = -- dx Whtjm r 2 21Tr4 

Integrating between the limits x = 0 to x = r, we obtain the total flux 
linkages as 



The inductance is thus obtained using the basic relation 

L = d"A 
dI 
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For unity relative permeability, f.L = 4'1T X 10- 7 henries per meter and hence, 
L; = t X  ( 10- 7 ) henriesjm 

Note that the inductance due to internal flux L; is independent of the wire 
size. 

APPENDIX 4-8 

Flux Linkages Outside a Conductor 

Consider a cylindrical conductor that carries a current I. Consider a 
tubular element x meters from the center of the conductor with thickness 
dx. With the element outside the conductor (i.e., x > r), the magnetic field 
intensity at the element is 

I H(x ) =-2 -'1TX 
The flux dq, in the element is thus 

dq, = 2f.LI ( dx )  Whjm '1TX 
Now, the flux external to the conductor links all the current m the 
conductor. Thus the flux linkages d"A per meter are 

d"A = dq, 
The total flux linkages between two points PI and P2 at distances Dl and D2 
from the center are obtained as 

"A =f�d"A = f.LI In ( D2 ) Whtjm 12 DI 2'1T Dl 
The inductance between Pi and P2 is thus 

L�P2 = :'1T ln ( �: )  
APPENDIX 4-C 

Potential Due to Single-Phase Line 

We deal here with the case in which the radius of each conductor is 
zero. Let us consider two parallel infinitely long wires A and B situated 



194 The Transmission Subsystem 

along the lines x = D /2, y = 0, and x = -D /2, y = 0 re.c;pectively, as shown 
in Figure 4-49. Let us assume that a linear charge density q coulombs per 
meter is distributed along wire A and - q coulombs per meter along wire B. 
The scalar potential v can be obtained from 

v = � 
477'for 

f = _l_ x 10- 9 o 
3677' 

Here Q is the charge and r is the distance of the observation point to the 
location of the charge. 

The potential at point P is made up of contributions dvp from 
infinitesimal charges qdz' on A and - qdz' on B. That is 

qdz' qdz' dvp = --- - ---
477'fOrJ 477'for

2 

From the geometry of Figure 4-49, we have 

A 

dz '  

x 

q cb/m 

r2 = r2 + Z ,2 1 a 

rl = r; + Z ,2 

B 

dz '  
\ 

'-
\ 

\ 
\ 

\ 
'-

\ 

- q cb/m 

Figure 4-49. Two Infinitely long, Parallel Filaments. 
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Thus, 

The potential at P is the integral of dvp over the length of the wires. 
To evaluate the integral we will need the following for the first tenn: 

Thus, 

Z' = rasinh O 

dz' = racosh O dO 

· /r-r2-+-z'-2 = r cosh 0 V a a 

For the second tenn we use 

Thus, 

As a result, 

dz' = rbcosh q, dq, 

,;r-rb-2-+-Z-'-2 = rbcosh q, 

dVp = -
4

Q ( dO - dq, )  '/TEO 
Assuming the wires extend from z' = - L to z' = + L, we thus have 

_ Q ( ) Z ' = + L  vp - -
4 - O - q,  z ' = - L  '/TEO 

The variable 0 can be expressed using the following 

or 

6 -6 
. h O  

e - e 
SIn = --:--2 

e 26 - 2 ( ; J e6 - 1 = O 

Solving this second-order equation in e6, we get 

z' + VZ,2 + r2 
e6 = 

a 
ra 

or 
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Similarly, 

As a result, 

z ' + /Z ,2 + r; 
<P = in ----

rb 

The above can be expressed as 

v - -q- in p -
411'£0 

l + /l + ( i r 
1 + /1 + ( 2 r 

For very long wires L» ra , rb ' we get 

+ in 

VP = -4
Q in 11'£0 

- l + /l + ( i r 
- l + /l + ( i r 

Using the expansion 

- l + /l + ( i r 
- l + /l + ( i r 

( 1 + X ) 1/2 = 1 + U)x + . . .  

we get 
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PROBLEMS 

Problem 4-B-1 

Determine the inductive reactance in ohms/mile/phase for a 345-kV, 
single-circuit line with ACSR 45/7 conductor for which the geometric mean 
radius is 0.0352 ft. Assume a horizontal phase configuration with 23.5-ft 
phase separation. 

Problem 4-B-2 

Determine the inductive reactance in ohms/mile/phase for a 345-kV, 
single-circuit line with ACSR 84/19 conductor for which the geometric 
mean radius is 0.0588 ft. Assume a horizontal phase configuration with 26-ft 
phase separation. 

Problem 4-B-3 

Calculate the inductance in henries per meter phase for the 345-kV, 
bundle-conductor line shown in Figure 4-50. Assume phase spacing DI = 8.31 
m, bundle separation S = 45.72 cm, and conductor diameter is 3.038 cm. 

o 0 

Figure 4-50. Line for Problem 4-8-3. 
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0 1 0 0 

0 o l:1T h,  

r--- D, ---j I' I 
Figure 4-51 . Line for Problem 4-8-4. 

Problem 4-8-4 

Calculate the inductance in henries per meter per phase for the 
500-kV, bundle-conductor line shown in Figure 4-51 . Assume phase spacing 
Dl = 12.19 m, bundle separation S = 45.72 cm, and conductor diameter is 
4.069 cm. Take hi = 22.32 m and h2 = 13.94 m. 

Problem 4-8-5 

Calculate the inductive reactance in ohms/mile/phase for a 500-kV, 
single-circuit, two-subconductor bundle line with ACSR 84/19 subconduc
tor for which the GMR is 0.0534 ft. Assume horizontal phase configuration 
with 33.5-ft phase separation. Assume bundle separation is 18 in. 

Problem 4-8-6 

Repeat Problem 4-B-5 for a phase separation of 36 ft. 

Problem 4-8-7 

Repeat Problem 4-B-5 for a phase separation of 35 ft. 



T 
o 0 

27. 5' 

lO �40 ___ : I O 
Figure 4-52. Phase Configuration for Problem 4-8-8. 

Problem 4-8-8 
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Repeat Problem 4-B-5 with a triangular phase configuration as shown 
in Figure 4-52. 

Problem 4-8-9 

Repeat Problem 4-B-7 with an ACSR 76/19 subconductor for which 
the GMR is 0.0595 ft. 

Problem 4-8-1 0 

Find the inductive reactance in ohms/mile/phase for a 500-kV, 
single-circuit, two-subcenductor bundle line with ACSR 84/19 conductor 
for which the GMR is 0.0588 ft. Assume horizontal phase configuration with 
separation of 32 ft. Bundle spacing is 18 in. 

Problem 4-8-1 1 

Calculate the inductance in henries per meter per phase for the 
500-kV, bundle-conductor line shown in FigUre 4-53. Assume phase spacing 
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o 0 
o 

Figure 4-53. Line for Problem 4-8-1 1 .  

o 0 0 0 

O�D1-r T h,  

� 

DI = 12.19 m, bundle separation S = 45.72 cm, and conductor diameter is 
2.959 cm. 

Problem 4-8-12  

Calculate the inductance in henries per meter per phase for the 
765-kV, bundle-conductor line shown in Figure 4-54. Assume phase spacing 

DI = 13.72 m, bundle separation S = 45.72 cm, and conductor diameter is 
2.959 cm. 

Problem 4-8-1 3 

Find the inductive reactance in ohms/mile/phase for the 765-kV, 
single-circuit, bundle-conductor line with four subconductors per bundle at 
a spacing of 18 in., given that the subconductor GMR is 0.0385 ft. Assume 
horizontal phase configuration with 44.5-ft phase separation. 

Problem 4-8-1 4 

Repeat Problem 4-B-13 for bundle spacing of 24 in. and subconductor 
GMR of 0.0515 ft. Assume phase separation is 45 ft. 



o 0 

o 0 

o 0 0 0 

O�D1-:rT 
� 

Figure 4-54. Line for Problem 4-8-1 2. 

Problem 4-8-1 5 
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Repeat Problem 4-B-13 for a subconductor GMR of 0.0459 ft and 50-ft 
phase separation. 

Problem 4-8-1 6 

Calculate the inductance in henries per meter per phase for the 
lloo-kV, bundle-conductor line shown in Figure 4-55. Assume phase spacing 
Dl = 15.24 m, bundle separation S = 45.72 cm, and conductor diameter is 
3.556 cm. 

Problem 4-8-1 7 

Calculate the inductance in henries per meter per phase for the 
2000-kV, bundle-conductor line shown in Figure 4-56. Assume phase spacing 
Dl = 35 m, bundle separation S = 45.72 cm, and conductor diameter is 3.81 
cm. 

Problem 4-8-1 8 

Calculate the inductive reactance in ohms per mile for the 500-kV, 
double-circuit, bundle-conductor line with three subconductors of 0.0431-ft 
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Figure 4-55. Line for Problem 4-8-1 6. 

Figure 4-56. Line for Problem 4-8-1 7. 

J: 
T 0 
25' 

10 0 o 0 0 0 
f--2 5 ' - I -

Figure 4-57. Line for Problem 4-8-1 8. 

5 3 . 667 ' ;1 0  0 
o 0 o 0 0 0 

28.667' - I - 25' -1 
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GMR and with 18-in. bundle separation. Assume conductor configurations 
as shown in Figure 4-57. 

Problem 4-8-1 9 

Calculate the inductive reactance in ohms per mile for the 345-kV, 
double-circuit, bundle-conductor line with two subconductors per bundle at 
18-in. bundle spacing. Assume subconductor's GMR is 0.0497 ft, and con
ductor configuration is as shown in Figure 4-58. 

Figure 4-58. Line for Problem 4-8-19. 
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Figure 4-59. Line for Problem 4-8-20. 

Problem 4-8-20 

• 
Ie 2 5  >i 

Calculate the inductive reactance in ohms per mile for the 345-kV, 
double-circuit, bundle-conductor line with two subconductors per bundle at 
18-in. bundle spacing. Assume subconductor's GMR is 0.0373 ft, and con
ductor configuration is as shown in Figure 4-59. 

Problem 4-8-21 

Calculate the inductive reactance in ohms per mile for the 345-kV, 
double-circuit, bundle-conductor line with two subconductors per bundle at 



Figure 4-60. Line for Problem 4-8-21 . 
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I8-in. bundle spacing. Assume subconductor's GMR is 0.0404 ft, and con
ductor configuration is as shown in Figure 4-60. 

Problem 4-8-22 

Calculate the inductive reactance in ohms per mile for the 345-kV 
double-circuit, bundle-conductor line with two subconductors per bundle at 
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I8-in. bundle spacing. Assume subconductor's GMR is 0.0497 ft, and con
ductor configuration is as shown in Figure 4-61 .  

Problem 4-8-23 

Determine the capacitive reactance in ohm miles for the line of 
Problem 4-B-1 .  Assume the conductor's outside diameter is 1 .063 in. Repeat 
by including earth effects given that the ground clearance is 51.5 ft. 

• •  
• 

.. . 

Figure 4-61 . Line for Problem 4-8-22. 

.. . 

I ..... • • 
.. 1_ J . 

~ 
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Problem 4-8-24 

Detennine the capacitive reactance in ohm miles for the line of 
Problem 4-B-2. Assume the conductor's outside diameter is 1 .76 in. Repeat 
by including earth effects given that the ground clearance is 45 ft. 

Problem 4-8-25 

Calculate the capacitance in farads per meter per phase neglecting 
earth effects for the 345-kV, bundle-conductor line of Problem 4-B-3. 
Assume the conductor's diameter is 3.038 cm. Repeat including earth effects 
with h = 13.61 m. 

Problem 4-8-26 

Calculate the capacitance in farads per meter per phase neglecting 
earth effects for the 500-kV, bundle conductor line of Problem 4-B-4. 
Assume the conductor's diameter is 4.069 cm. Repeat including earth effects 
with hI = 22.32 m and h2 = 13.94 m. 

Problem 4-8-27 

Detennine the capacitive reactance in ohm miles for the line of 
Problem 4-B-5. Assume the conductor's outside diameter is 1 .602 in. Repeat 
by including earth effects given that the ground clearance is 82 ft. 

Problem 4-8-28 

Detennine the capacitive reactance in ohm miles for the line of 
Problem 4-B-6. Assume the conductor's outside diameter is 1 .823 in. Repeat 
by including earth effects given that the ground clearance is 80 ft. 

Problem 4-8-29 

Detennine the capacitive reactance in ohm miles for the line of 
Problem 4-B-7. Assume the conductor's outside diameter is 1 .602 in. Repeat 
by including earth effects given that the ground clearance is 136 ft. 

Problem 4-8-30 

Detennine the capacitive reactance in ohm miles for the line of 
Problem 4-B-8. Assume the conductor's outside diameter is 1 .602 in. Neglect 
earth effects. 
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Problem 4-8-31 

Detennine the capacitive reactance in ohm miles for the line of 
Problem 4-B-9. Assume the conductor's outside diameter is 1 .7 in . Neglect 
earth effects. 

Problem 4-8-32 

Detennine the capacitive reactance in ohm miles for the line of 
Problem 4-B-1O. Assume the conductor's outside diameter is 1 .762 in. 
Repeat by including earth effects given that the ground clearance is 63 ft. 

Problem 4-8-33 

Calculate the capacitance in farads per meter per phase neglecting 
earth effects for the 500-kV, bundle-conductor line of Problem 4-B- 1 1 .  
Assume the conductor's diameter is 2.959 cm. Repeat including earth effects 
with hi = 14.43 m. 

Problem 4-8-34 

Calculate the capacitance in farads per meter per phase neglecting 
earth effects for the 765-kV, bundle-conductor line of Problem 4-B-12. 
Assume the conductor's diameter is 2.959 cm. Repeat including earth effects 
with hi = 20.83 m. 

Problem 4-8-35 

Detennine the capacitive reactance in ohm miles for the line of 
Problem 4-B-13. Assume the conductor's outside diameter is 1 . 165 in. 

Problem 4-8-36 

Detennine the capacitive reactance in ohm · miles for the line of 
Problem 4-B-14. Assume the conductor's outside diameter is 1 .6 in. Repeat 
by including earth effects given that the ground clearance is 90 ft. 

Problem 4-8-37 

Calculate the capacitance in farads per meter per phase neglecting 
earth effect for the UOO-kV, bundle-conductor line of Problem 4-B-16. 



Problems 209 

Assume the conductor diameter is 3.556 cm. Repeat including earth effects 
with hI = 21 .34 m. 

Problem 4-8-38 

Calculate the capacitance in farads per meter per phase neglecting 
earth effects for the 2000-kV, bundle-conductor line of Problem 4-B-17.  
Assume the conductor diameter is 3 .81 cm. Repeat including earth effects 
with hI = 45.00 m. 

Problem 4-8-39 

Determine the capacitive reactance in ohm . mile for the line of Prob
lem 4-B-18. Assume the conductor's outside diameter is 1 .302 in. Neglect 
earth effect. 

Problem 4-8-40 

Determine the capacitive reactance in ohm miles for the line of 
Example 4.8. Assume the conductor's outside diameter is 1 .76 in. Repeat by 
including earth effects given that the ground clearance is 90 ft. 

Problem 4-8-41 

Determine the capacitive reactance in ohm . mile for the line of Prob
lem 4-B-19. Assume the conductor's outside diameter is 1 .502 in. Neglect 
earth effects. 

Problem 4-8-42 

Determine the capacitive reactance in ohm · mile for the line of Prob
lem 4-B-20. Assume the conductor's outside diameter is 1 . 165 in. 

Problem 4-8-43 

Determine the capacitive reactance in ohm . mile for the line of Prob
lem 4-B-21 .  Assume the conductor's outside diameter is 1 . 196 in. Neglect 
earth effects. 

Problem 4-8-44 

Determine the capacitive reactance in ohm . mile for the line of Prob
lem 4-B-22. Assume the conductor's outside diameter is 1 .302 in. 
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hit 

Problem 4-8-45 

Calculate the inductance per phase in henries per meter and the 
capacitance to neutral in farads per meter with and without earth effect for 
the 345-kV line shown in Figure 4-62. Assume the following: 

0 

0 

h I = 26.31 m DI = 12 .24 m h 2  = 18.85 m D2 = 16.81 m h3 = 12.29 m D3 = 12.85 m h 4  = 33.93 m D4 = 7 .32 m 
Conductor diameter = 3.165 em 
Bundle separation = 35.72 em 

o 

�-
0 0 

J.. 0, -J 
0 0 

0 

� O2 � 
J� 10 0 

h3 

Figure 4-62. Line for Problem 4-8-45. 
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Problem 4·8·46 

Assume that the 345-kV line of Problems 4-B-1 and 4-B-23 is 230 miles 
long and that the subconductor's resistance is 0.1 197 ohms/mile. 

A. Calculate the exact ABeD parameters for the line. 

B. Find the circuit elements of the equivalent ." model for the line. 
Neglect earth effects. 

Problem 4·8·47 

Assume that the 345-kV line of Problems 4-B-2 and 4-B-24 is 14 miles 
long and that the conductor's resistance is 0.0466 ohms/mile. 

A. Calculate the exact ABeD parameters for the line. 

B. Find the circuit elements of the equivalent ." model for the line. 
Neglect earth effects. 

Problem 4·8·48 

Assume that the 345-kV line of Problems 4-B-3 and 4-B-25 is 200 km 
long and that the subconductor's resistance is 0.0620 ohms/km. 

A. Calculate the exact ABeD parameters for the line. 

B. Find the circuit elements of the equivalent ." model for the line. 
Neglect earth effects. 

Problem 4·8·49 

Assume that the 5OO-kV line of Problems 4-B-4 and 4-B-26 is 300 km 
long and that the subconductor's resistance is 0.0341 ohms/km. 

A. Calculate the exact ABeD parameters of the line. 

B. Find the circuit elements of the equivalent ." model for the line. 
Neglect earth effects. 

Problem 4·8·50 

Assume that the 500-kV line of Problems 4-B- 1 1  and 4-B-33 is 250 km 
long and that the subconductor's resistance is 0.0656 ohms/km. 

A. Calculate the exact ABeD parameters for the line. 

B. Find the circuit elements of the equivalent ." model for the line. 
Neglect earth effects. 

Problem 4·8·51 

Assume that the 765-kV line of Problems 4-B-12 and 4-B-34 is 300 km 
long and that the subconductor's resistance is 0.0656 ohms/km. 
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A. Calculate the exact ABeD parameters of the line. 

B. Find the circuit elements for the equivalent 'IT model for the line. 
Neglect earth effects. 

Problem 4-8-52 

Assume that the l 100-kV line of Problems 4-B- 16 and 4-B-37 is 400 
km long and that the subconductor's resistance is 0.0435 ohms/km. 

A. Calculate the exact ABeD parameters of the line. 

B. Find the circuit elements of the equivalent 'IT model for the line. 
Neglect earth effects. 

Problem 4-8-53 

Assume that the 2000-kV line of Problems 4-B-17 and 4-B-38 is 500 
km long and that the subconductor's resistance is 0.0386 ohms/km. 

A. Calculate the exact ABeD parameters of the line. 

B. Find the circuit elements of the equivalent 'IT model for the line. 
Neglect earth effects. 

Problem 4-8-54 

Assume that the 345-kV line of Problem 4-B-45 is 200 km long and 
that the subconductor's resistance is 0.0574 ohms/km. 

A. Calculate the exact ABeD parameters of the line. 

B .  Find the circuit elements of the equivalent 'IT model for the line. 
Neglect earth effects. 

Problem 4-8-55 

The following information is available for a single-circuit, three-phase, 
345-kV, 360 mega volt amperes (MVA) transmission line: 

Line length = 413 miles. 

Number of conductors per phase = 2.  

Bundle spacing = 18 in .  

Outside conductor diameter = 1 . 165 in. 

Conductor's GMR = 0.0374 ft. 

Conductor's resistance = 0.1062 ohms/mile. 

Phase separation = 30 ft. 



Phase configuration is equilateral triangle. 

Minimum ground clearance = 80 ft. 
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A. Calculate the line's inductive reactance in ohms per mile per phase. 

B. Calculate the capacitive reactance including earth effects in ohm 
miles per phase. 

C. Calculate the exact A and B parameters of the line. 

D. Find the voltage at the sending end of the line if normal rating 
power at 0.9 PF is delivered at 345-kV at the receiving end. Use the 
exact fOi'mulation. 

E. Repeat (d) using the short-line approximation. Find the error 
involved in computing the magnitude of the sending-end voltage 
between this method and the exact one. 

Problem 4·8·56 

For the transmission line of Problem 4-B-48, calculate the sending-end 
voltage, sending-end current, power, and power factor when the line is 
delivering 350 MV A at 0.9 PF lagging at rated voltage, using the following: 

A. Exact formulation. 

B. Nominal 'TT approximation. 

C. Short-line approximation. 

Problem 4·8·57 

For the transmission line of Problem 4-B-49, calculate the sending-end 
voltage, sending-end current, power, and power factor when the line is 
delivering 750 MVA at 0.9 PF lagging at rated voltage, using the following: 

A. Exact formulation. 

B. Nominal 'TT approximation. 

C. Short-line approximation. 

Problem 4·8·58 

For the transmission line of Problem 4-B-50, calculate the sending-end 
voltage, sending-end current, power, and power factor when the line is 
delivering 750 MVA at 0.9 PF lagging at rated voltage, using the following: 

A. Exact formulation. 

B. Nominal 'TT approximation. 

C. Short-line approximation. 
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Problem 4-8-59 

For the transmission line of Problem 4-B-51 ,  calculate the sending-end 
voltage, sending-end current, power, and power factor when the line is 
delivering 1800 MV A at 0.9 PF lagging at rated voltage, using the following: 

A. Exact formulation. 
B. Nominal 'IT approximation. 
C. Short-line approximation. 

Problem 4-8-60 

For the transmission line of Problem 4-B-52, calculate the sending-end 
voltage, sending-end current, power, and power factor when the line is 
delivering 4500 MVA at 0.9 PF lagging at rated voltage, using the following: 

A. Exact formulation. 
B. Nominal 'IT approximation. 
C. Short-line approximation. 

Problem 4-8-61 

For the transmission line of Problem 4-B-53, calculate the sending-end 
voltage, sending-end current, power, and power factor when the line is 
delivering 15,200 MV A at 0.9 PF lagging at rated voltage, using the 
following: 

A. Exact formulation. 
B. Nominal 'IT approximation. 
C. Short-line approximation. 

Problem 4-8-62 

For the transmission line of Problem 4-B-54, calculate the sending-end 
voltage, sending-end current, power, and power factor when the line is 
delivering 750 MVA at 0.9 PF lagging at rated voltage, using the following: 

A. Exact formulation. 
B. Nominal 'IT approximation. 
C. Short-line approximation. 

Problem 4-8-63 

For the conditions of Problem 4-B-58, evaluate the upper bounds on 
the errors in evaluating the sending-end voltage and power using the 
short-line approximation with the nominal 'IT model. 
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Problem 4-8-64 

Repeat Problem 4-B-63 for the conditions of Problem 4-B-59. 

Problem 4-8-65 

Repeat Problem 4-B-63 for the conditions of Problem 4-B-56. 

Problem 4-8-66 

Repeat Problem 4-B-63 for the conditions of Problem 4-B-57. 

Problem 4-8-67 

Repeat Problem 4-B-63 for the conditions of Problem 4-B-60. 

Problem 4-8-68 

Repeat Problem 4-B-63 for the conditions of Problem 4-B-61.  

Problem 4-8-69 

Repeat Problem 4-B-63 for the conditions of Problem 4-B-62. 



CHAPTER V 

The Load Subsystem 

5.1 INTRODUCTION 

The previous two chapters treated the synchronous machine, which is 
the major generating source in present-day electric energy systems, and the 
transmission lines that are used to transport the generated energy to major 
load centers and utilization points. The present chapter is intended to cover 
two major components of the system. The first is the power transformer, 
which is used in many parts of the system on the generating and distribu
tion sides. The second is the induction motor, which is the workhorse in 
industrial and commercial electric energy utilization. Due to the similarities 
in the models for both components, it seems appropriate to study them 
under one heading. 

217 
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5.2 GENERAL THEORY OF 

TRANSFORMER OPERATION 

One of the most valuable apparatus in electric power systems is the 
transformer, for it enables us to uti lize different voltage levels across the 
system for the most economical value. Generation of power at the synchro
nous machine level is normally at a relatively low voltage, which is most 
desirable economically. Stepping up of this generated voltage to high 
voltage, extra-high voltage, or even to ultra-high voltage is done through 
power transformers to suit the power transmission requirement to minimize 
losses and increase the transmission capacity of the lines. This transmission 
voltage level is then stepped down in many stages for distribution and 
utilization purposes. 

A transformer contains two or more windings that are linked by a 
mutual field. The primary winding is connected to an alternating voltage 
source, which results in an alternating flux whose magnitude depends on the 
voltage and number of turns of the primary winding. The alternating flux 
links the secondary winding and induces a voltage in it with a value that 
depends on the number of turns of the secondary winding. If the primary 
voltage is VI' the core flux <p is established such that the counter EMF e 
equals the impressed voltage (neglecting winding resistance). Thus, 

(5.1) 

Here NI denotes the number of turns of the primary winding. The EMF e2 
is induced in the secondary by the alternating core flux <p: 

V2 = e2 = N2 ( ��) (5.2) 

Taking the ratio of Eqs. (5.1) to (5 .2), we see that 

VI _ NI 
v2 N2 

(5.3) 

Neglecting losses, the instantaneous power is equal on both sides of the 
transformer, as shown below: 

Combining Eqs. (5.3) and (5.4), we get 

il _ 
N2 

i2 Nj 

(5.4) 

(5.5) 

Thus the current ratio is the inverse of the voltage ratio. We can conclude 
that almost any desired voltage ratio, or ratio of transformation, can be 
obtained by adjusting the number of turns. 
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Core 

� -- ¢ --, 

IIIII : J J 
\'- _____ ...,1 

Windinqs 
(A) 

Core 

(8) 
Figure 5-1. (a) Core-Type and (b) Shell-Type Transformer Construction. 

Transfonner action requires the existence of the flux that links the 
two windings. This will be obtained more effectively if an iron core is used 
because an iron core confines the flux to a definite path linking both 
windings. A magnetic material such as iron undergoes a loss of energy due 
to the application of alternating voltage to its B-B loop. The losses are 
composed of two parts. The first is called the eddy-current loss, and the 
second is the hysteresis loss. Eddy-current loss is basically an [2 R loss due 
to the induced currents in the magnetic material. To reduce these losses, the 
magnetic circuit is usually made of a stack of thin laminations. Hysteresis 
loss is caused by the energy used in orienting the magnetic domains of the 
material along the field. The loss depends on the material used. 

Two types of construction are used, as shown in Figure 5-1. The first is 
denoted the core type, which is a single ring encircled by one or more groups 
of windings. The mean length of the magnetic circuit for this type is long, 
whereas the mean length of windings is short. The reverse is true for the 
shell type, where the magnetic circuit encloses the windings. 
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+ 

e, 

Figure 5-2. Transformer on No-Load. 

........ _---
I 

J 

Due to the nonlinearity of the B-H curve of the magnetic material, the 
primary current on no-load (for illustration purposes) will not be a sinusoid 
but rather a certain distorted version, which is still periodic. For analysis 
purposes, a Fourier analysis shows that the fundamental component is out 
of phase with the applied voltage. This fundamental primary current is 
basically made of two components. The first is in phase with the voltage 
and is attributed to the power taken by eddy-current and hysteresis losses 
and is called the core-loss component Ie of the exciting current [<p. The 
component that lags e by 90° is called the magnetizing current 1m. Higher 
hannonics are neglected. Figure 5-2 shows the no-load phasor diagram for a 
single-phase transfonner. 

Consider an ideal transfonner (with negligible winding resistances and 
reactances and no exciting losses) connected to a load as shown in Figure 
5-3. Clearly Eqs. (5.1 )-(5.5) apply. The dot markings indicate tenninals of 
corresponding polarity in the sense that both windings encircle the core in 
the same direction if we begin at the dots. Thus comparing the voltages of 
the two windings shows that the voltages from a dot-marked terminal to an 
unmarked tenninal will be of the same polarity for the primary and 
secondary windings (i.e., VI and v2 are in phase). From Eqs. (5.3) and (5.5), 
we can write for sinusoidal steady state operation 

VI _ ( NI )2 Vz 
I;- N2 12 



But the load impedance Z2 is 

Thus, 
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VI = (N1 ) 2 

Z2 II N2 

The result is that as far as its effect is concerned, Z2 can be replaced by an 
equivalent impedance Z� in the primary circuit. Thus, 

Z�= (Z� fZ2 (5 .6) 

The equivalence is shown in Figure 5-3. 
More realistic representations of the transfonner must account for 

winding parameters as well as the exciting current. The equivalent circuit of 
the transfonner can be visualized by following the chain of events as we 
proceed from the primary winding to the secondary winding in Figure 5-4. 
First the impressed voltage VI will be reduced by a drop II R1 due to the 
primary winding resistance as well as a drop jI1 Xl due to the primary 
leakage represented by the inductive reactance Xl' The resulting voltage is 
denoted E1. The current II will supply the exciting current I</> as well as the 
current I�, which will be transfonned through to the secondary winding. 
Thus, 

II = I</> + 12 

Since I</> has two components (Ie in phase with El and 1m lagging E1 by 90°), 
we can model its effect by the parallel combination Ge and Bm as shown in 
the circuit. Next E1 and II are transfonned by an ideal transfonner with 
turns ratio N1/N2. As a result, E2 and 12 emerge on the secondary side. E2 
undergoes drops I2R2 andjI2X2 in the secondary winding to result in the 
tenninal voltage V;. 

Figure 5-4(b) shows the transfonner's equivalent circuit in tenns of 
primary variables. This circuit is called "circuit referred to the primary 
side." Note that 

�= 
N1 (V;) 
N2 

(5 .7) 

12 = 
N2 (/2) N1 

(5 .8) 

R;=R2 ( Z� r (5 .9) 

X2=X2 ( Z� r (5 . 1 0) 
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-
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Figure 5-3. Ideal Transformer and Load and Three Equivalent Representations. 

Although the equivalent circuit illustrated above is simply a T
network, it is customary to use approximate circuits such as shown in 
Figure 5-5. In the first two circuits we move the shunt branch either to the 
secondary or primary sides to form inverted L-circuits. Further simplifica
tions are shown where the shunt branch is neglected in Figure 5-5(c) and 
finally with the resistances neglected in Figure 5 -5 (d). These last two 
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R, jX, 12' 
N, N2 
• -+-

I, 
+ + 
V1 Gc 8m E, 

(a) 

R, X, X� 
-
I, 

+ 
V, 8m 

(b) 

Figure 5-4. Equivalent Circuits of Transformer. 
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-
12' 

jX2 R2 
,."....."... 1\ · vv 

-
12 

+ 
E2 

R� 

+ 
V2 

circuits are of sufficient accuracy in most power system applications. In 
Figure 5-5 note that 

Req=R1 +R; 
Xeq=Xl +X2 

An example will illustrate the principles and orders of approximations 
involved. 

+ 
V2 
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Example 5-1 

A 50-k VA, 400/2000 V, single-phase transfonner has the following 
parameters : 

RI = 0.02 ohm 

Xl = 0.06 ohm 

Gc = 2mS 

R2 = 0.5 ohm 

X2 = 1.5 ohm 
Bm = -6mS 

Note that Gc and Bm are given in tenns of primary reference. The trans
fonner supplies a load of 40 k VA at 2000 V and 0.8 PF lagging. Calculate 
the primary voltage and current using the equivalent circuits shown in 
Figure 5-5 and that of Figure 5-4. 

Solution 

Let us refer all the data to the primary (400 V) side: 

Thus, 

RI =0.02 ohm 

R2 = 0.5(2�)2 

= 0.02 ohm 

Req = RJ +R; 
= 0.04 ohm 

Xl =0.06 ohm 

( 400 )2 X2 = 1.5 2000 
= 0.06 ohm 

Xeq=Xl +X� 
= 0.12 ohm 

The voltage � = 2000 V; thus 

V� = 2000( 2�: ) = 400 V 

The current 12 is thus 

The power factor of 0.8 lagging implies that 

1� = 100/ - 36 .87° A 

For ease of computation, we start with the simplest circuit of Figure 
5-5(d) . Let us denote the primary voltage calculated through this circuit by 
Vv It is clear then that 

V1d = V� + j12( Xeq) 
= 400LQ+ j( 100/ - 36 .87° ) (0.12) 
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Req 
---I� 

+ 
V, Gc 8m 

(A) 

Req Xeq 
+ �+ , 2 V' V, 2 -� l-
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Xeq 

+ 
V� 

Req Xeq 
-

I, 
+ 
V, Gc 

(8) 

Xeq 
'VY'V" 

.. +t I, = 12 v, 

-i 
(0) 

Figure 5-5. Approximate Equivalent Circuits for the Transformer. 

Thus, 

Vld = 407.31/1.350 V 

lId = 100/- 36 .870 A 

Comparing circuits (c) and (d) in Figure 5-5, we deduce that 

VIc = V� + l�( Req + jXeq) = Vld + l�( Req) 

I I 
-4 

+ 
8m V� 

t+ 
Vz 
1-
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Thus, 

Vle = 407.31/1.35° +  (100/-36.87)(0.04) 
= 410.46/1.00° V 

Ile = 12 = 100/-36.87° A 

Let us consider circuit (a) in Figure 5-5. We can see that 

But 

11 = I� + ( Gc +jBm)Vl 
a a 

= 100/-36.87° + (2 X 10-3 -j6 X 10-3) (41O.46L1.oo) 
= 102.17L-37.68° A 

Circuit (b) is a bit different since we start with V2 impressed on the 
shunt branch. Thus 

Now 

Ilb = I� + ( Gc + jBm)V2 

= 100/-36.87° + (2 X 10--3 -j6 X 10-3)( 4OO�) 
= 102.09/-37.680 A 

Vlb = V; + Ilb( Req + jXeq) 
= 400�+ (102.09/-37.68°)(0.04 + jO.12) 
= 410.78/1.000 

The exact equivalent circuit is now considered as shown in Figure 
5-4(b). We first calculate El: 

El = V; + I�( R2 + jX�) 

= 400�+ (100/-36.87° )(0.02 + jO.06) 
= 405.22LO.51 ° 

Now 

11 = I�+El( Gc+jBm) 
= 100/-36.87°+ (405.22/0.51)(2 X 10-3 -j6 X 10-3) 
= 102.13/-37.68° A 



Thus, 

VI = EI + II(RI + jx l )  
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= 405 .22/0.51 + ( 102 . 13/ - 37 .68 ) (0 .02 + jO .06) 

= 410 .63/1 .01 0 V 

The values of VI and II calculated using each of the five circuits are 
tabulated in Table 5-1 with the angle of VI denoted by °1 and the angle of II 
denoted by 1/11. The largest error in percent is 0.8085 percent in calculating 

I VII using circuit (d) as opposed to the exact circuit. This confirms our 
earlier statements about common practice in taking equivalent circuits for 
power transformers. 

Transformer Performance Measures 

Two important performance measures are of interest when choosing 
transformers. These are the voltage regulation and efficiency of the trans
former. The voltage regulation is a measure of the variation in the sec
ondary voltage when the load is varied from zero to rated value at a 
constant power factor. The percentage voltage regulation (P.V.R.) is thus 
given by 

P.V.R.  = 100 I V;(noload) I - 1 V; rated I I V; rated I (5 .13) 

If we neglect the exciting current and refer the equivalent circuit to the 
secondary side, we have by inspection of Figure 5-6, 

I�I-IV;I P.V.R.  = 100 I V;I 
TABLE 5-1 

Values of VI and II as Calculated 
Using Different Approximate Circuits for Example 5-1 

Exact (a) ( b) ( c) (d) 
VI 410.63 410.46 410.78 410.46 407.31 

91 1.01 1.00 1.00 1.00 1.35 
11 102.13 102.17 102.09 100 100 
1fI -37.68 -37.68 -37.68 -37.87 -36.87 
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Figure 5-6. Transformer Approximate Equivalent Circuit and Associated Phasor 
Diagrams for Voltage Regulation Derivation. 
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where a is the transformer ratio. Thus N a=_1 N2 
From the phasor diagram we have 

We use the following approximation: 

I :11=A( 1 + 2�2 + ... ) �A + :� 
Hence the percentage voltage regulation is 

In terms of transformer constants, we get 

(5 .14) 

The efficiency of the transformer is the ratio of output (secondary) 
power to the input (primary) power. Formally the efficiency is 1/: 

1/ = P2 (5 . 15) PI 
If we deal with the transformer as referred to the secondary side, we have 

where IL is the load current. The input power PI is the sum of the output 
power and power loss in the transformer. Thus PI =P2+� 
The power loss in the transformer is made of two parts: the 12 R loss and 
the core loss Pc' Thus 



230 The Load Subsystem 

As a result, the efficiency is given by 

1 l'zl/ILI cos <h 
1/ = ---...!.......:"-'-'-�-�---1 l'z /IlL 1 COS if>L + Pc + 11[.12 (Req) (5.16) 

The following example utilizes results of Example 5-1 to illustrate the 
computations involved. 

Example 5-2 

Find the P.V.R. and efficiency for the transformer of Example 5-1. 

Solution 

5-1: 
Let us apply the basic formula of Eq. (5.1 4). We have from Example 

l'z = 2000 V 
lL2 = 20 A 

(2000 ) 2 Req2 = 0.0 4 400 = 1 ohm 

(2000 ) 2 Xeq2 = 0.12 400 = 3 ohms 

Thus substituting in Eq. (5.14), we get 

P.V.R. = 100{ 20[l(O.�� 3(0.6)] + i [20[3(O.�� 1(0.6)] r} 
= 2.600 percent 

Let us compare this with the result of applying Eq. (5.13) with no 
approximations. Using the results of circuit (c) for Example 5-1, we have for 
load conditions, 

Vl = 410.46 V 
V�=400 V 

Referred to secondary, we have 

V{ = 410.46 ( 24: ) = 2052.30 V 

This is l'z on no-load. Thus, 

P.V.R. = 100( 2052.:� 2000) 
= 2.62 percent 
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To calculate the efficiency we need only to apply the basic definition. 
Take the results of the exact circuit. The input power is 

Thus, 

PI = VJI COS</>I 

= (410.63)( 102 .13)(cos 38 .69) 
= 32733 .99 W 

P2 = It; 12 cos </>2 
= (400)( 100)(0 .8 ) 
= 32 , O OO W 

." = 32 ,000 
0 .97758 

32 ,733 .99 

The efficiency of a transformer varies with the load current IL• It 
attains a maximum when 

Using Eq. (5.15) the derivative is ( ap2 ) ( aPI ) 
a." 

PI ajIJ - P2 ajIJ 
aIL p 2 

I 
Thus the condition for maximum power is 

aPI 
PI _ a/IL/ 

Using Eq. (5.16) we get 

This reduces to 

P2 aP2 
alILI 

PI _ 1lt;l coS</>L + 2IIL/Req 
P2 1l':J I cos </>L 

PI =P2+2IIL/2(Req) 

Thus for maximum efficiency we have 

�=Pc+/IL/2(Req) 

As a result, the maximum efficiency occurs for 

Pc = /IL/2 (Req) (5 . 17) 
That is, when the 12 R losses equal the core losses, maximum efficiency is 
attained. 
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Example 5-3 

Find the maximum efficiency of the transfonner of Example 5-1 under 
the same power factor and voltage conditions. 

Solution 

We need first the core losses. These are obtained from the exact 
equivalent circuit as 

For maximum efficiency, 

Pc = IEI12 ( GJ 
= (405.22)2(2 X 10-3) 
=328.41 W 

Pc = Il{Req) 
Referred to the primary, we thus have 

328.41 = 11(0.04) 
Thus for maximum efficiency, 

IL =90.61 A 
_ V�IIL l coscpL 

'I1max - l1,'II Icos"" + 2P 2 L ' 'f'L c 

( 400)(90.61)(0.8) 
(400) (90.61) (0.8) + 2(328.41) 

= 0.97785 

5.3 TRANSFORMER CONNECTIONS 

Single-phase transfonners can be connected in a variety of ways. To 
start with, consider two single-phase transfonners A and B. They can be 
connected in four different combinations provided that the polarities are 
observed. Figure 5-7 illustrates a series-series connection where the primaries 
of the two transfonners are connected in series whereas the secondaries are 
connected in series. Figure 5-8 illustrates the series-parallel connection and 
the parallel-series connection. Note that when windings are connected in 
parallel, those having the same voltage and polarity are paralleled. When 
connected in series, windings of opposite polarity are joined in one junction. 
Coils of unequal voltage ratings may be series-connected either aiding or 
opposing. 

Figure 5-9 shows two transfonners A and B connected in parallel with 
their approximate equivalent circuit indicated as well. Assume that ZA is 
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Transformer A 

T 
v, 

1 
Transformer 8 

(A) 

Trans former A 

t 
V, 

I 
V2 

T 

Transformer 8 

(8) 

Figure 5-8. Series-Parallel and Parallel-Series Connections for Single-Phase 
Transformers. 

the ohmic equivalent impedance of transfonner A referred to its secondary 
side. Similarly, ZB is the ohmic equivalent impedance of transformer B 
referred to its secondary side. ZL is the load impedance. VI is the primary 
voltage on both transfonners. Let the primary to secondary turns ratios be 

NIA aA=--
N2A 
NIB aB=

--
N2B 

The two ratios should be identical for the parallel connection to make sense. 
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The current delivered by transfonner A is fA" Thus 

Similarly, 

Thus the load current f L is 

or 

But 

Thus, 

or 

(5 . 18) 

Three-Winding Transformers 

The three-winding transfonner is used in many parts of the power 
system for the economy achieved when using three windings on the one 
core. Figure 5-10 shows a three-winding transfonner with a practical equiva
lent circuit. The impedances Zl' Z2' and Z3 are calculated from the three 
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Figure 5-10. Three-Winding Transformer and Its Practical Equivalent Circuit. 

impedances obtained by considering each pair of windings separately with 

(5.19) 

(5.20) 

(5.21 ) 

The J2 R or load loss for a three-winding transformer can be obtained from 
analysis of the equivalent circuit shown. 

Example 5-4 

Consider a three-winding transformer with the particulars shown in 
the equivalent circuit referred to the primary side given in Figure 5-11. 
Assuming VI is the reference, calculate the following: 

A. The secondary and tertiary voltages referred to the primary side. 

B. The apparent powers and power factors at the primary, secondary, 
and tertiary terminals. 

C. The transformer efficiency. 

Assume that 

Solution 

The primary current is 

12 = 50/ -300 

13 = 50/ -350 

II = 12 + 13 
= 99.9048/-32.50 

2 

3 
V2 
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Now the voltage at point 0 is 

Vo= VI -IIZI 
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= 400 - (99 .9048 ) (; - 32 .5° ) (0 .02 + jO .06) 

= 395 . 1 14/ - 0.577 ° V 

The secondary voltage is obtained referred to the primary as 

� = Vo - l2Z2 
= 395 .1 14/ - 0 .577° - (50/ - 30° ) (0 .02 + jO .06) 

= 392 .775/ - 0.887° 

The tertiary voltage is obtained referred to the primary as 

Va = Vo - l3Z3 
= 395 .1 14/ - 0.577° - (50/ - 35° ) (0 .02 + jO .06) 
= 392 .598/ - 0.856° 

The apparent power into the load connected to the secondary winding 
is thus 

�= �l; 
= 19638 .75/29 .1 13° 

As a result, 

PF2 = cos(29 . 1 13° ) = 0 .87366 

Similarly for the tertiary winding, we get 

Sa = Val; 
= 19629 .9/34 .1440 

As a result 

PF3 = cos(34 .14 4° ) = 0 .82763 

The apparent power at the primary side is 

As a result, 

The active powers are 

81 = VIIi 
= 39961. 92/32 .5° 

PF1 = cos( 32 .5 0 ) = 0 .84339 

P2 = 19638 .75 cos 29 .1 13° 
= 17157 .627 W 
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P.1 = 19 629.9 cos 34.144° 
= 1 6246 .285 W 

PI = 399 61 .92 cos 32.5° 

= 33703 .5415 W 
The efficiency is therefore 

The Autotransformer 

The basic idea of the autotransformer is permitting the interconnec
tion of the windings electrically. Figure 5-12 shows a two-winding trans
former connected in an autotransformer step-up configuration. We will 
assume the same voltage per turn; i .e. , 

VI_ "z 
NI N2 

The rating of the transformer when connected in a two-winding configura
tion is 

Srated = VI II = "z12 

In the configuration chosen, the apparent power into the load is 

So = (VI + "z) 12 
= "zI2 ( 1 + Z� ) 

The input apparent power is 

Si = VI(II + 12) 
= VI II ( 1 + Z� ) 

(5 .22) 

(5 .23) 

Thus the rating of the autotransformer is higher than the original rating of 
the two-winding configuration. Note that each winding passes the same 
current in both configurations, and as a result the losses remain the same. 
Due to the increased power rating, the efficiency is thus improved. 

Autotransformers are generally used when the ratio is 3: lor less. Two 
disadvantages are the lack of electric isolation between primary and sec
ondary and the increased short-circuit current over that for the correspond
ing two-winding configuration. 
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Example 5-5 

A 30-kVA, 2.4jO.6-kV transformer is connected as a step-up autotrans
former from a 2.4-kV supply. Calculate the currents in each part of the 
transformer and the load rating. Neglect losses. 

Solution 
With reference to Figure 5. 12, the primary winding rated current is 

30 II = 2.4 = 12.5 A 

The secondary rated current is 

Thus the load current is 

The load voltage is 

30 I2 =-=50A 0.6 

VL = VI + � = 3 kV 
As a result, the load rating is 

Note that 

Thus, 

Sf, = VLIL = 150 kVA 

Ii = II + 12 
= 62.5 A 

Vi = VI = 2.4 kV 

Si = (2.4)(62.5) = 150 kVA 

Three-Phase Transformer Connections 

For three-phase system applications it is possible to install three-phase 
transformer units or banks made of three single-phase transformers con
nected in the desired three-phase configurations. The latter arrangement is 
advantageous from a reliability standpoint since it is then possible to install 
a single standby single-phase transformer instead of a three-phase unit. 
This provides a considerable cost saving. We have seen that there are two 
possible three-phase connections; the Y-connection and the �-connection. 
We thus see that three-phase transformers can be connected in four differ
ent ways. In the Y jY connection, both primary and secondary windings are 
connected in Y. In addition, we have flj fl, Y j fl, or �jY connections. The 
Y -connected windings may or may not be grounded. 
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Figure 5-13. Three-Phase Transformer Connections. 

The Y /.:l configuration is used for stepping down from a high voltage 
to a medium or low voltage. This provides a grounding neutral on the 
high-voltage side. Conversely, the .:l/Y configuration is used in stepping up 
to a high voltage. The .:l/.:l connection enables one to remove one trans
former for maintenance while the other two continue to function as a 
three-phase bank (with reduced rating) in an open-delta or V-connection. 
The difficulties arising from the harmonic contents of the exciting current 
associated with the Y /Y connection make it seldom used. 

In Figure 5-13, the four common three-phase transformer connections 
are shown along with the voltage and current relations associated with the 
transformation. It is important to realize that the line-to-ground voltages 
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on the a side lead the corresponding Y-side values by 30° and that the line 
currents on the a side also lead the currents on the Y side by 30°. The proof 
of this statement is given now. 

Consider the Y / a three-phase transformer shown in Figure 5-14. The 
secondary voltage Es is given in terms of the line-to-ground voltage� by 

Es = Van - �n 
Assuming phase sequence a-b-c, taking Van as the reference, we have 

Vcn = Van/ 120° 
As a result, 

or 

Es = fa Van/ -30° 

This last result can be verified either analytically or by reference to 
the phasor diagram in Figure 5-14. Assuming that each winding of the 
primary has NI turns and that each secondary winding has a number of 
turns N2, we have 

or 

But the line-to-ground voltage on the Y side is 

VAn = Ep 
Thus we have 

We can conclude that the a-side line-to-ground secondary voltage Van leads 
the Y-side line-to-ground primary voltage VAn by 30°. 

Turning our attention now to the current relations, we start by 



Figure 5-14. A V-A Transformer and a Phasor Diagram. 
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But 

Ia = Ix - Iy 

= 
N

J (IA) ( 1 -1 / -120° ) 
Nz L-__ 

This reduces to 

Thus the secondary line current leads the primary current by 30°. 

Example 5-6 

A three-phase bank of three single-phase transfonners steps up the 
three-phase generator voltage of 13.8 kV (line-to-line) to a transmission 
voltage of 138 kV (line-to-line). The generator rating is 41.5 MVA. Specify 
the voltage, current, and k V A ratings of each transfonner for the following 
connections: 

A. Low-voltage windings �, high-voltage windings Y. 

B. Low-voltage windings Y, high-voltage windings �. 

C. Low-voltage windings Y, high-voltage windings Y. 

D. Low-voltage windings �, high-voltage windings �. 

Solution 
The low voltage is given by 

VI = 13.8 kV (line-to-line) 

The high voltage is given by 

Vz = 138 kV (Iine-to-line) 

The apparent power is 

ISI= 41.5 MVA 

A. Consider the situation with the low-voltage windings connected in 
�, as shown in Figure 5-15. Each winding is subject to the full 
line-to-line voltage. Thus 

Ep= 13.8 kV 

The power per winding is ISI/3; thus the current in each winding 
is 

I = 41.5 X 106 
= 1002.42 A p (3)(13.8 X 10.3) 
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173.62A t 
�kV ./3 
I 

Figure 5-15. (a) Li-V Transformer with Variables Indicated. (b) Single Trans
former Loading. 

With the secondary connected in Y, the voltage on each winding is 
the line-to-ground value 

Es = �8 = 79 .67 kV 

The current in each winding is obtained as 

I = 
41 .5 X 106 

= 173 .62 A s (3)(79 .67 X 103) 

The kVA rating of each transfonner is  thus 

t 
138 kV 

I 
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13.8 kV 

7.97 kV 
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100.24 Aj 

t 1736.23 A 

7.97 kV 

I 

(A) 

(8) 

.--... 

--+-
100.24 A t 

138 kV 

I 

Figure 5-16. (a) v-a Transformer with Variables Indicated for Example 5-6. (b) 
Single Transformer Loading. 

B. When the low-voltage windings are connected in Y, the voltage on 
each winding is the line-to-ground value 

The current is 

I = 41.5 X 106 = 1736.23 A 
P (3) (7 .97) ( 103 ) 

With the secondary windings connected in �, the voltage on 
each winding is 

Es= 138 kV 



1 
13.8 kV 
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The current is calculated as 

I = 41 .5 X 106 = 100 .24 A s 3( 138 X 103 ) 
The k VA rating of each transformer is therefore 

The arrangement is shown in Figure 5- 16. 
C. With low-voltage windings connected in Y, from the solution to 

part (b) we have 

1736.23 A -

1736.23 -
t 

7.9 1 kV 

I 

Ep = 7 .97 kV 

Ip = 1736 .23 A 

(A) 

173.62 A --
t 

173.62 A -

79.67 kV 

I 

79.67 kV 

I 
(8) 

138 kV 

Figure 5-17. (a) V-V Transformer with Variables Indicated for Example 5-6. (b) 
Single Transformer Loading. 
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) ) 
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100.24 � 
138 
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t 1002.42 A 
13.8 kV 

I 

(A) 

(8) 

I0024A t 
138 kV 

I 
Figure 5-18. (a) 4-4 Transformer with Variables Indicated for Example 5-6. (b) 
Single Transformer Loading. 

With high-voltage windings connected in Y, from the solution to 
part (a) we have 

Es = 79 .67 kV 
Is = 173 .62 A 

This arrangement is shown in Figure 5-17 .  

TABLE 5-2 
Comparison of Single Transformer Ratings 

for Different Three-Phase Connections 

�-y y-� y-y 
Ep (kV) 13.8 7.97 7.97 

Ip (A) 1002.42 1736.23 1736.23 
E. (kV) 79.67 138 79.67 

Is (A) 173.62 100.24 173.62 

�-� 
13.8 

1002.42 

138 

100.24 

I 
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D. With low-voltage windings connected in �, from the solution to 
part (a) we get 

Ep= 13 .8 kV 

Ip = 1002.42 A 

With high-voltage windings connected in �, from the solution to 
part (b) we get 

Es = 138 kV 
Is = 100.24 A 

The situation is shown in Figure 5-18. Table 5-2 summarizes the 
voltage and current ratings for the single-phase transformers asso
ciated with each transformer connection. 

Three-phase autotransformers are usually Y-Y connected with the neutral 
grounded. A third (tertiary) �-connected set of windings is included to carry 
the third harmonic component of the exciting current. A schematic diagram 
of a three-phase autotransformer with a �-tertiary is shown in Figure 5-19. 

Control Transformers 

Transformers are used not only to step up or step down bulk power 
voltages but also as a means for controlling the operations of the power 
system. Two examples of control transformer applications involve (1) tap 
changing under load (TCUL) transformers, and (2) the regulating trans
former. 

Load Tap Changing 

The intended use of the TCUL transformer is to maintain a constant 
voltage at a point in the system by changing the transformation ratio by 
increasing or decreasing the number of active turns in one winding with 
respect to another winding. This is performed while not interfering with the 
load. In practice, a voltage measuring device actuates the motor that drives 
the tap changer. If the actual voltage is higher than a desired upper limit, 
the motor will change to the next lower tap voltage; similarly, a voltage 
lower than the desired will cause a change to the next higher up. 

The Regulating Transformer 

The main purpose of the regulating transformer is to change (by a 
small amount) the voltage magnitude and phase angle at a certain point in 
the system. Figure 5-20 shows the arrangement of a regulating transformer. 
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For analysis purposes let us assume that 

Van = V� 
Vbn = V / -120° 
�n = V/ + 1200 

The primary windings of the transformers A, B, and C are connected 
in �. The secondary windings 1, 3, and 5 are connected in Y with their 
voltages adjustable. Recalling the phase-shift property in �-Y transformers, 
we have 

v. = Vm /300 ko {a 

V. = Vm/ _ 900 Lo {a'----
V V =� /150° mo {a 

The magnitude of Vm can be controlled in a small range and is utilized for 
adjusting the magnitude of the three-phase voltage set Va., Vb" and �,. The 
tertiary windings 2, 4, and 6 have voltages 

v;.L = V.p/30° 
�m = V.p/-90° 
V;k = V.p/150° 

(5 .24) 

(5 .25) 

(5 .26) 

The magnitude � is adjustable and is used for control of the phase angle of 
the voltages Ya" Vb" and �,. 

We can derive the voltages Vkm, Vik' VmL from Vko' Vio' Vmo as 

Vkm=Vm� 
Vik = Vm/ -120° 
VmL = Vm/ + 120° 

Note that Vkm, Vik' and VmL are in phase with the system voltages Van' Vbn, 
and �n. The voltages v;." �m' and V;k are 90° out of phase with the same 
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voltages. The incremental voltages ava• avb• and av:. are given by 

aVa = Vks 

or 

aVb = vtt 
av:.= Vmr 

aVa = Vkm - Y:m = VmLQ- Yq,/ -90° 
a Vb = vtk - Yek = Vm/ -120° - Yq,/150° 
a v:. = Vml - v,.l = Vm/ + 120° - Vt/>/30° 

The a V values are added in series in each phase to give 

Va'n = Van + aVa 
Vb'n = Vbn + aVb 
v:.'n = v:.n + a v:. 

(5.27) 
(5.28) 
(5.29) 

(5.30) 
(5.31) 
(5.32) 

A phasor diagram of the voltages in the system is shown in Figure 5-21. 

Figure 5-21. Output Voltages of Regulating Transformer. 
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5.4 THREE-PHASE 

INDUCTION MOTORS 

A major proportion of industrial and commercial motor requirements 
is served by the induction motor due to its simplicity, reliability, and low 
cost, combined with reasonable overload capacity, minimal service require
ments, and good efficiency. An induction motor utilizes aiternating current 
supplied to the stator directly. The rotor receives power by induction 
effects. The stator windings of an induction motor are similar to those of 
the synchronous machine. The rotor may be one of two types. In the wound 
rotor motor, windings similar to those of the stator are employed with 
terminals connected to insulated slip rings mounted on the shaft. The rotor 
terminals are made available through carbon brushes bearing on the slip 
rings. The second type is called the squirrel-cage rotor, where the windings 
are simply conducting bars embedded in the rotor and short-circuited at 
each end by conducting end rings. 

When the stator is supplied by a balanced three-phase source, it will 
produce a magnetic field that rotates at synchronous speed as determined 
by the number of poles and applied frequency I. •. Thus 

n = 

120f
. rjmin • p (5 .33) 

The rotor runs at a steady speed nr r jmin in the same direction as the 
rotating stator field. The speed nr is very close to ns when the motor is 
running light, and is lower as the mechanical load is increased. The 
difference (ns - nr) is termed the slip and is commonly defined as a per 
unit value s. Thus 

(5 .34) 

As a result of the relative motion between stator and rotor, induced voltages 
will appear in the rotor with a frequency fr called the slip frequency. Thus 

fr = sfs (5 .35) 

From the above we can conclude that the induction motor is simply a 
transformer with a secondary frequency fro 

An equivalent circuit of the three-phase induction motor can be 
developed on the basis of the above considerations and transformer models 
treated in Section 5.2. Looking into the stator terminals, we find that the 
applied voltage v,. will supply the resistive drop I..Rl as well as the 
inductive voltage jlsXl and the counter EMF El where Is is the stator 
current and Rl and Xl are the stator effective resistance and induCtive 
reactance respectively. In a manner similar to that employed for the 
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analysis of the transformer, we model the magnetizing circuit by the shunt 
conductance Gc and inductive susceptance -jBm' 

The rotor's induced voltage E2s is related to the stator EMF El by 

E2s = SEl (5.36) 
This is due simply to the relative motion between stator and rotor. The 
rotor current Irs is equal to the current Ir in the stator circuit. The induced 
EMF E28 supplies the resistive voltage component IrR2 and inductive 
componentjIr (sX2). R2 is the rotor resistance, and X2 is the rotor inductive 
reactance on the basis of the stator frequency. Thus 

E2s = IrR2 + jIr( sX2) 
or 

SEl = IrR2 + jIr( sX2) 
From the above we conclude that 

El = R2 + jX Ir S 2 

(5.37) 

The complete equivalent circuit of the induction motor is shown in Figure 
5-22. 

If we consider the active power flow into the induction machine, we 
find that the input power p" supplies the stator 12 R losses as well as the 
core losses. The remaining power denoted by the air-gap power Pg is that 
transferred to the rotor circuit. Part of the air-gap power is expended as 
rotor I2R losses with the remainder being the mechanical power delivered 
to the motor shaft. We can express the air-gap power as 

,AI. 

1 
-----+-

Is 

v 1 

P = 312 ( R2 ) (5.38) g r 
S 

jX, � lcp� t -
Ir 

� 

> Gc .t -jBm E, 

Figure 5-22. Equivalent Circuit for a Three-Phase Induction Motor. 
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The rotor I2R losses are given by 

�r = 3I;R2 (5 .39) 

As a result, the mechanical power output (neglecting mechanical losses) is 

Pr = Pg - P1r 

= 312 (1 - s ) 
R r S 2 (5 .40) 

The last formula suggests a splitting of R2/s into the sum of R2 represent
ing the rotor resistance and a resistance 

l - s ( R ) s 2 
which is the equivalent resistance ,of the mechanical load. As a result, it is 
customary to modify the equivalent circuit to the form shown in Figure 
5-23. 

The torque T developed by the motor is related to P,. by 
T=  P,. Wr 

with Wr being the angular speed of the rotor. Thus 

wr = ws( 1 - s )  
The angular synchronous speed Ws is given by 

2 'ITns ws = -OO 
As a result, the torque is given by 

(5 .41 ) 

(5 .42) 

(5 .43) 

(5 .44) 

The torque is slip-dependent. It is customary to utilize a simplified equiva
lent circuit for the induction motor in which the shunt branch is moved to 
the voltage source side. This situation is shown in Figure 5-24. The stator 
resistance and shunt branch can be neglected in many instances. 

On the basis of the approximate equivalent circuit, we can find the 
rotor current as 

Vl Ir = R 
Rl + _2 +jXT S 

(5 .45) 

At starting, we have Wr = 0; thus s = 1. The rotor starting current is hence 
given by 
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Figure 5-23. Modified Equivalent Circuit of the Induction Motor. 
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It is clear that the motor starting current is much higher than the normal 
(or full-load) current. Depending on the motor type, the starting current 
can be as high as six to seven timeS the normal current. We consider now an 
example. 

Example 5-7 
A 15-hp, 220-V, three-phase, 60-Hz, six-pole, Y-connected induction 

motor has the following parameters per phase: 

Rl = 0.128 ohm 

R 2 = 0.0935 ohm 
XT = 0.496 ohm 

Gc = 5.4645 X 10- 3  

Bm = 0.125 S 

The rotational losses are equal to the stator hysteresis and eddy-current 
losses. For a slip of 3 percent, find the following: 

A. The line current and power factor. 

B. The horsepower output. 

C. The starting torque. 

Solution 

A. The voltage specified is line-to-line value as usual. Utilizing the 
approximate equivalent circuit of Figure 5-24, the rotor current can 
be seen to be given by 

220 

13 
I = ---------r (0.128 + 00�;5 ) + j0 .496 

= 38 .7/ - 8.69° A 

The no-load current I</> is obtained as 

I</> = j; (5 .4645 X 10- 3 -jO.125) 

= 0 .69 -jI5 .88 A 

As a result, the line current (stator current) is 

Is = lr + I</> 

= 44 .6/ - 29 .15° 
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Since VI is taken as reference, we conclude that 

CPs = 29 . 150 
cos CPs = 0 .873 

B. The air-gap power is given by 

P = 312 ( R2 ) = 3(38 7)2 ( 0 .0935 ) = 14000 W g r S • 0.03 

The mechanical power to the shaft is 

Pm = ( 1 - s ) Pg = 13580 W 

The core losses are 

P = 3E 2 (G )  = 264 W c I c 

The rotational losses are thus 

P,.l = 264 W 

As a result, the net output mechanical power is 

Pout = Pm - Prl 
= 13316 W 

Therefore, in terms of horsepower, we get 

13316 
hPout = 746 = 17 .85 hp 

C. At starting s = 1 : 
220 
13 

1 1 1 = = 234 A r (0 . 128 + 0 .0935) + j0.496 

Pg = 3(234) 2(0 .0935) = 15 ,336 W 

w = 2'IT(60) = 40 'IT s 3 

T= :: = 1:�!6 = 122 .0 N.m. 

The torque developed by the motor can be derived in terms of 
the motor parameters and slip using the expressions given before. 

R2 
T= 3 1 VI 1 2 s 

Ws ( R + R2 ) 2 + X2 I S T 
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Neglecting stator resistance, we have 

R2 

The maximum torque occurs for 

aT -�- = O 
a ( �2 ) 

The result is 

This gives the slip at which maximum torque occurs as 

R2 smaxT = XT 
The value of maximum torque is 

T = 3 1Vl l2 max 2WsXT 

T 

--------------------T--------------L--� s 
o 

Figure 5-25. Torque-Slip Characteristics for Induction Motor. 
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The torque-slip variations are shown in Figure 5-25. We now take our 
next example. 

Example 5-8 

The rotor resistance and reactance of a squirrel-cage induction motor 
rotor at standstill are 0.1 ohm per phase and 0.8 ohm per phase respectively. 
Assuming a transformer ratio of unity, from the eight-pole stator having a 
phase voltage of 120 V at 60 Hz to the rotor secondary, calculate the 
following: 

A. Rotor starting current per phase. 

B. The value of slip producing maximum torque. 

Solution 

A. At starting s = 1 :  

B. 

120 Ir = 0 . 1  + jO .8 
= 148 .84/ -82 .87 A 

Rr 0. 1  
SmaxT = Xr = 0.8 = 0 .125 

Classification of Induction Motors 

Integral-horsepower, three-phase squirrel-cage motors are available 
from manufacturers' stock in a range of standard ratings up to 200 hp at 
standard frequencies, voltages, and speeds. (Larger motors are regarded as 
special-purpose.) Several standard designs are available to meet various 
starting and running requirements. Representative torque-speed character
istics of four designs are shown in Figure 5-26. These curves are typical of 
1 ,800 r /min (synchronous-speed) motors in ratings from 7 .5 to 200 hp. 

The induction motor meets the requirements of substantially con
stant-speed drives. Many motor applications, however, require several speeds 
or a continuously adjustable range of speeds. The synchronous speed of an 
induction motor can be changed by (1) changing the number of poles or (2) 
varying the line frequency. The slip can be changed by ( 1 )  varying the line 
voltage, (2) varying the rotor resistance, or (3) inserting voltages of the 
appropriate frequency in the rotor circuits. A discussion of the details of 
speed control mechanisms is beyond the scope of this work. A common 
classification of induction motors is as follows. 
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Figure 5-26. Typical Torque-Speed Curves for 1,800 r Imin General-Purpose 
Induction Motors. 

Class A 

Nonnal starting torque, nonnal starting current, low slip. This design 
has a low-resistance, single-cage rotor. It provides good running perfor
mance at the expense of starting. The full-load slip is low and the full-load 
efficiency is high. The maximum torque usually is over 200 percent of 
full-load torque and occurs at a small slip (less than 20 percent). The 
starting torque at full voltage varies from about 200 percent of full-load 
torque in small motors to about 100 percent in large motors. The high 
starting current (500 to 800 percent of full-load current when started at 
rated voltage) is the disadvantage of this design. 

Class B 

Nonnal starting torque, low starting current, low slip. This design has 
approximately the same starting torque as the Class A with only 75 percent 
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of the starting current. The full- load slip and efficiency are good (about the 
same as for the Class A). However, it has a slightly decreased power factor 
and a lower maximum torque (usually only slightly over 200 percent of 
full-load torque being obtainable). This is the commonest design in the 7.5 
to 200-hp range of sizes used for constant-speed drives where starting-torque 
requirements are not severe. 

Class C 

High starting torque, low starting current. This design has a higher 
starting torque with low starting current but somewhat lower running 
efficiency and higher slip than the Class A and Class B designs. 

Class 0 

High starting torque, high slip. This design produces very high start
ing torque at low starting current and high maximum torque at 50 to 
100-percent slip, but runs at a high slip at full load (7 to 11 percent) and 
consequently has low running efficiency. 

SOME SOLVED PROBLEMS 

Problem 5-A-1 

The equivalent impedance referred to the primary of a 2300/230-V, 
5OO-kVA, single-phase transformer is 

Z = 0.2 + jO.6 ohm 

Calculate the percentage voltage regulation (P.V.R.) when the transformer 
delivers rated capacity at 0.8 power factor lagging at rated secondary 
voltage. Find the efficiency of the transformer at this condition given that 
core losses at rated voltage are 2 kW. 

Solution 
The secondary current referred to the primary side is 

I� = 
5��03 

= 217 .39/ - 36 .87 ° 

Thus the primary voltage at rated load is 

Vi = � + I�Z 

= 23OOLQ+ (217 .39/ - 36.87 ) (0 .2 + jO.6) 
= 2414 .31/ 1 .86° V 
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As a result, we calculate 

P .V.R. = 100 ( VI � � ) = 100 ( 2414.:�� 23(0 ) = 5% 

The efficiency is calculated as 

(500 X 103 ) (0.8) 
." = 

-----"'--------'--'--7'------

(500 X 103 X 0.8) + (217 .39)2(0.2) + 2 X 103 
= 0.9722 

Problem 5-A-2 

A 500/100 V, two-winding transfonner is rated at 5 kVA. The follow
ing infonnation is available: 

A. The maximum efficiency of the transfonner occurs when the out
put of the transfonner is 3 k V A. 

B. The transfonner draws a current of 3 A, and the power is 100 W 
when a 100-V supply is impressed on the low-voltage winding with 
the high-voltage winding open-circuit. 

Find the rated efficiency of the transfonner at 0.8 PF lagging. 

Solution 

The core losses are 100 W from the specifications of part (b). From 
part (a), the [2R loss at 3-kVA load is thus 100 W. For a 5-kVA load, the 
[2R loss is 

The efficiency is 

Problem 5-A-3 

5 X 103 X 0.8 + 277 .78 + 100 
= 0.9137 

The no-load input power to a 50-k VA, 2300/230-V, single-phase trans
fonner is 200 VA at 0.15 PF at rated voltage. The voltage drops due to 
resistance and leakage reactance are 0.012 and 0.018 times rated voltage 
when the transfonner operates at rated load. Calculate the input power and 
power factor when the load is 30 kW at 0.8 PF lagging at rated voltage. 
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Solution 

The rated load current is 

50 X 103 
Ir = 

230 
= 217 .39 A 

The no-load current from the specifications of the problem is 

1 - 200
/ 

- I  
0 -

230 
- cos 0 .15 

= 0 .B7 / - B1 .37° 

We will assume that the equivalent circuit of Figure 5-5(a) applies and that 
variables are referred to the secondary side. The resistive voltage drop is 

Thus, 

(217 .39) Req = 2 .76 

As a result 

Req = 0 .0127 ohm 

Similarly, we obtain 

Xeq = 0 .0190 ohm 

The primary voltage referred to the secondary is 

V; = l':! + IZeq 

For 30 kW at a O.B PF, we have 

Thus we calculate 

30 X 103 
- I  1 = 

230 X O .B / - cOS O .B 

v; = 233 .52/0.30 

The primary current referred to the secondary is 

I{ = 1 + 10 
= 163 .67/ - 37 .0Bo 

Consequently, the phase angle at the primary side is 

q,1 = 0 .3 + 37 .08 = 37 .3Bo 
cos q,1 = 0 .7946 



The input power is 

Problem 5-A-4 

PI = V{I{cos </>1  
= 30 .3708 kW 
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To identify the equivalent circuit parameters of a 100-kVA, 4-kV jl-kV 
transformer, a short-circuit test is performed with the power input of 2.5 
kW at 

VI = 224 V and 

Determine the parameters R eq and Xeq of the transformer referred to the 
primary. 

Solution 

With a short-circuit on the secondary winding, we have with reference 
to Figure 5-27 

This yields 

Req = 4  ohms 

-

Figure 5-27. Equivalent Circuit for Problem 5-A-4. 
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We also have 

But 

PSC = VJ1COS CPl 
2500 = (224) (25)coS CPl 

CPI = - 63 .49° 

Xeq 
tan - CPl = R eq 

Xeq = 4 tan 63 .49° 

= 8  ohms 

Problem 5-A-5 

Determine the number of poles, the slip, and the frequency of the 
rotor currents at rated load for thnle-phase, 5-hp induction motors rated at: 

A. 220 V, 50 Hz, 1440 r/min. 

B. 120 V, 400 Hz, 3800 r Imin. 

Solution 

We use P =  120 f/n, to obtain P , using nr, the rotor speed given. 

A. 

B. 

P = 
120 X 50 

= 4 17 
1440 

. 

But P should be an even number. Therefore, take P = 4. Hence 

n = 
120 f 

= 
120 X 50 

= 1500 r/min S P 4 

The slip is thus given by 

= 
ns  - nr = 

1500 - 1440 
= 0 04 s 

ns 1500 
. 

The rotor frequency is 

Take P =  12. 

fr = sfs = 0 .04 X 50 = 2 Hz 

P = 
12��00 

= 12 .63 

120 X 400 . 
n s  = 

12 
= 4000 r/mm 

= 
4000 - 3800 = 0 05 s 

4000 
. 

fr = 0 .05 X 400 = 20 Hz 
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Problem 5-A-6 

The full-load slip of a squirrel-cage induction motor is 0.05, and the 
starting current is five times the full-load current. Neglecting the stator 
core and copper losses as well as the rotational losses, obtain : 

A. The ratio of starting torque (st) to the full-load torque (fld). 

B. The ratio of maximum (max) to full-load torque and the corre
sponding slip. 

Solution 

This gives 

A. 

B. 

R 
Smax = X2 = 0 .25 T T 
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Thus 

Problem 5·A· 7 

Tmal< = 2 .6 1fld 

Speed control of induction motors of the wound-rotor type can be 
achieved by inserting additional rotor resistance ( R a ) ' In addition to this, 
torque control at a given speed can be achieved using this method . Let 

3y2 
K = -Ws 

R 
a = _2 

1 5 1 
R2 + Ra a2 = 

82 
T2 a = -
Tl 

Where suffix 1 refers to operating conditions without additional rotor 
resistance, whereas suffix 2 refers to conditions with the additional rotor 
resistance. Neglect stator resistance. 

A. Show that the torque ratio is given by 

a2 ( ar + xf ) a = - ( 2 2 ) al a2 + XT 

B. For equal torque Tl = T2 or a = 1 ,  show that the additional rotor 
resistance needed is 

R = R ( 82 - 1 ) a 2 51 

C. Show that the rotor currents are the same for conditions of part 
(b). 

Solution 

We have 

3y2 R2 
T=  ___ ---:;..5 

__ 

Ws [ { �2 r + Xf] 



or 

T= K a 
a2 + XT 
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Introducing a resistance in the rotor winding will change a. Let the original 
torque be T1 • Thus 

Tl = K ( 2 
a1 

2 ) al + XT 
Let the new torque with additional resistance be T2 • Thus 

A. For 

we have 

_ ( ar + Xi ) a2 Q - -

( a� + Xi ) a1 

B. For Q = 1 , i.e., equal torque, we have 

a2 ( ar + X:j. ) = a1 (  a� + X:j. ) 
or 

( a2 - a1 ) { X:j. - a1a2 ) = 0 
Thus for T1 = T2 , we get a1 = a2 or 

R2 _ R2 + Ra 

or 

81 82 

R = R ( 82 - 1 ) a 2 81 
C. The current in the rotor circuit is 

V Ir = -;:=�=::::-( �2 r + X:j. 

V 

( 1 ) 2 2 2 r. a2 + XT 
T = 2 2 = 1 for T1 = T2 

r2 al + XT 
Thus for equal torque, equal current flows into the rotor circuit. 
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Problem 5-A-8 

The rotor resistance and reactance of a wound-rotor induction motor 
at standstill are 0.1 ohm per phase and 0.8 ohm per phase, respectively. 
Assuming a transformer ratio of unity, from the eight-pole stator having a 
phase voltage of 120 V at 60 Hz to the rotor secondary, find the additional 
rotor resistance required to produce maximum torque at: 

A. Starting 8 = 1 .  

B. A speed o f  450 r/min. 

Use results of Problem 5-A-7 and neglect stator parameters. 

Solution 

Given that 
R2 = 0.l ohms 
X2 = 0.8 ohms 

We get for maximum torque operation 

A. 

B. 

Thus using 

we get 

R 
81 = 8maxT = 

X: = 0 .125 

R = R ( 8 2 - 1 ) a 2 81 

Ra = (0 .1 ) [ (0 .125) - 1 - 1] 
= 0.7 ohms 

1201 n s =
p 

= 
( 120) (60) 

= 900 rlmin 
8 

For nr = 450 r Imin, 

=
900 - 450

= 0 5 82 900 
. 

Ra = (0 . 1 ) ( 0�i�5 -
1 ) 

= 0.3 ohms 
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Problem 5-A-9 

A. Derive the approximate equivalent circuit for a three-phase 
wound-rotor induction motor with balanced three-phase capacitors 
inserted in the rotor circuit. 

B. Show that for the motor described in part (a) the rotor current is 
given by 

where Xc is the capacitive reactance inserted per phase in the rotor 
circuit. 

C. Show that the internal torque developed is 

D. Show that for maximum power factor, the rotor current is given by 

Solution 

Inserting a capacitor bank in the rotor circuit of a wound-rotor 
induction motor leads to an equivalent circuit representation as shown in 
Figure 5-28. Evidently all expressions for the performance of the motor can 
be obtained by replacing xT by 

Thus 

The mechanical power is thus 

p = 
(3 I Irn R2( 1 - s ) 

m s 
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Figure 5·28. Development of Equivalent Circuit for Problem 5·A·9. 

and the torque is 

The maximum power factor (neglecting the magnetizing circuit) occurs 



when 

In this case, 

V 
I = ---

rmax R PF R + _2 
I S 

V 
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Obviously for a given speed, there is an x c that yields the maximum power 
factor. 

PROBLEMS 

Problem 5-8-1 

A lOO-kVA, 400/2000 V, single-phase transformer has the following 
parameters 

RI = 0.01 ohm 
XI = 0.03 ohm 
Gc = 2.2 mS 

R2 = 0.25 ohm 
X2 = 0.75 ohms 
Bm = 6.7 mS 

Note that Gc and Bm are given in terms of primary reference. The trans
former supplies a load of 90 k V A at 2000 V and 0.8 PF lagging. Calculate 

the primary voltage and current using the equivalent circuits shown in 
Figure 5-5. 

Problem 5-8-2 

Find the P.V.R. and efficiency for the transformer of Problem 5-B-1 .  

Problem 5-8-3 

Find the maximum efficiency of the transformer of Problem 5-B-l ,  
under the same conditions. 

Problem 5-8-4 

Repeat Example (5-4) for 

12 = 40/ - 300 

I:1 = 40/ - 350 
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Problem 5-8-5 

A 50-kVA, 2 .4/0.6 kV transformer is connected as a step-up autotrans
former from a 2.4-kV supply. Calculate the currents in each part of the 
transformer and the load rating. Neglect losses. 

Problem 5-8-6 

A three-phase bank of three single-phase transformers steps up the 
three-phase generator voltage of 13.8 kV (line-to-line) to a transmission 
voltage of 138 kV (line-to-line). The generator rating is 83 MV A. Specify the 
voltage, current, and kVA ratings of each transformer for the following 
connections: 

A. Low-voltage windings fl ,  high-voltage windings Y 

B. Low-voltage windings Y, high-voltage windings fl 
C. Low-voltage windings Y, high-voltage windings Y 

D. Low-voltage windings fl ,  high-voltage windings fl 

Problem 5-8-7 

The equivalent impedance referred to the secondary of a 13.8/138 kV, 
83 MV A, three-phase, fl / Y connected transformer is 

Z = 2 + j 13 .86 ohms 

Calculate the percentage voltage regulation when the transformer delivers 
rated capacity at 0.8 PF lagging at rated secondary voltage. Find the 
efficiency of the transformer at this condition given that core losses at rated 
voltage are 76.5 kW. 

Problem 5-8-8 

A two winding transformer is rated at 50 kVA. The maximum ef
ficiency of the transformer occurs when the output of the transformer is 35 
kVA. Find the rated efficiency of the transformer at 0.8 PF lagging given 
that the no load losses are 200 W. 

Problem 5-8-9 

The no-load input to a 5 kVA, 500/100-V, single-phase transformer is 
100 W at 0.15 PF at rated voltage. The voltage drops due to resistance and 
leakage reactance are 0.01 and 0.02 times the rated voltage when the 
transformer operates at rated load. Calculate the input power and power 
factor when the load is 3 kW at 0.8 PF lagging at rated voltage. 
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Problem 5·8·1 0 

To identify the equivalent circuit parameters of a 30 kVA, 24ooj240-V 
transformer, a short-circuit test is performed with the power input of 1050 
W at V} = 70 V and I} = 18.8 A. Determine the parameters Req and Xeq of 
the transformer referred to the primary. 

Problem 5·8·1 1 

Consider the three-winding transformer of Example (5-4). This time 
assume that the loads on the secondary and tertiary are specified by 

1 � 1 = I S3 1 = 20 kVA 

The secondary winding's load has a power factor of 0.9 lagging. The tertiary 
windings load has a power factor of 0.8 lagging at a voltage of 400 V 
referred to the primary. Calculate the primary voltage and current for this 
loading condition as well as the voltage at the secondary terminals referred 
to the primary side. 

Problem 5·8·1 2 

A multiple-loaded high-voltage line is shown in Figure 5-29. The 
transformers are modeled by nominal T-networks, whereas the transmission 
lines are modeled by their nominal 'IT-networks. The voltage at E is 1 10 kV 
and the load is 12 MV A at 0.9 PF lagging. The load at C is 18 MV A at 0.95 
PF lagging. The circuit parameters are: 

RT2 = 6.8 0 
XT2 =j106 0 

A B 

--+I�n I 
c 

� 

RTl = 1.45 0 
XT, =j26.6 0 

D E 

I �� 
Figure 5·29. System Configuration for Problem 5-8-1 2. 
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R mT2 = 504 k O  
XmT2 = j46.1 k O  
RCD = 6.55 0 
XCD =j22 0 
YCD = jO.15896 X 10 - 3  siemens 

RmTI  = 186 k U  
XmT!  = 17.3 k O  

R BC == 3.57 0  
XBc ==j12 0 
YBC == jO.0862069 X 10 - 3  siemens 

A. Draw the equivalent circuit of the line. 

B. Use KVL and KCL to obtain the voltages, currents, and power 
factors at points D, C, B, and A .  What is the efficiency of 
transmission? 

Problem 5-8- 1 3  

Repeat Problem (5-B-12) using the ABCD parameters approach. 

Problem 5-8-14 

For the system o f  Problems (5-B-12) and (5-B- 13) obtain the voltage 
regulation at E with load at C on, at C with load E on, and at C and E with 
no loading at either of the points. 

Problem 5-8-1 5 

Determine the number of poles, the slip, and the frequency of the 
rotor currents at rated load for three-phase, induction motors rated at: 

A. 2200V, 60 Hz, 588 r Imin. 

B. 120 V, 600 Hz, 873 r Imin. 

Problem 5-8-1 6 

A 50-HP, 440-V, three-phase, OO-Hz, six-pole, Y-connected induction 
motor has the following parameters per phase: 

R2 = 0.12 ohm 

Rl = 0.1 ohm 

Gc = 6.2 X 10-3 siemens 

Xr = 0.75 ohm 

Bm = 0.07 siemens 

The rotational losses are equal to the stator hysteresis and eddy-current 
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losses. For a slip of 3 percent, find the following 

A. The line current and power factor. 

B. The horsepower output. 

C. The starting torque. 

Problem 5-8-1 7 

The rotor resistance and reactance of a squirrel-cage induction motor 
rotor at standstill are 0.12 ohm per phase and 0.7 ohm per phase respec
tively. Assuming a transformer ratio of unity, from the eight-pole stator 
having a phase voltage of 254 at 60 Hz to the rotor secondary, calculate the 
following 

A. Rotor starting current per phase 

B. The value of slip producing maximum torque. 

Problem 5-8-1 8 

The full-load slip of a squirrel-cage induction motor is 0.05, and the 
starting current is four times the full-load current. Neglecting the stator 
core and copper losses as well as the rotational losses, obtain : 

A. The ratio of starting torque to the full-load torque. 

B. The ratio of maximum to full-load torque and the corresponding 
slip. 

Problem 5-8-1 9 

The rotor resistance and reactance of a wound-rotor induction motor 
at standstill are 0.12 ohm per phase and 0.7 ohm per phase, respectively. 
Assuming a transformer ratio of unity, from the eight-pole stator having a 
phase voltage of 254 V at 60 Hz to the rotor secondary, find the additional 
rotor resistance required to produce maximum torque at: 

A. Starting s = 1 

B. A speed of 450 r Imin. 

Use results of problem (5-A-7) and neglect stator parameters. 

Problem 5-8-20 

A 400-V, four-pole, three-phase, 50-Hz, wound-rotor induction motor 
has the following parameters: 

Rl = 10 ohms/phase 
R 2 = 10 ohms/phase 

Xl = 24 ohms/phase 
X2 = 24 ohms phase 



282 The Load Subsystem 

A three-phase Y-connected capacitor bank with 20 ohms capacitive 
reactance per phase is inserted in the rotor circuit. It is required to: 

A. Find the starting current and torque 

B. Find the current and torque at a slip of 0.05. 

Neglect magnetizing and core effects. 



CHAPTER VI 

Analysis of Interconnected Systems 

6.1 INTRODUCTION 

The previous three chapters treated aspects of modeling the major 
components of an electric power system for analysis and design purposes. It 
is the intent of the present chapter to discuss a number of aspects when 
these components form parts of an interconnected power system. The goal 
here is to obtain an overall model for an interconnected system. 

We start by considering the problem of reducing parts of the intercon
nected systems to produce equivalent representation of smaller size but 
maintaining the electrical performance characteristics unchanged. The 
reader will find a certain degree of overlap between this part and the 
treatment of Chapter 4. It is common practice in utility systems to use 
the per unit system for specifying system parameters and variables, and this 
is discussed in Section 6.3. 

The formulation of the network equations in the nodal admittance 
form is the basis for proven techniques used in the analysis of intercon
nected power systems and is detailed in Section 6.4. The nature of the 
system dictates that the solution to the network equations cannot be 
obtained in a closed form. This is the load-flow problem formulated in 
Sections 6.5 and 6.6. Here we emphasize the nonlinear nature of the 

283 
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problem and motivate the use of iterative techniques for obtaining a 
solution. As will become evident, good initial estimates of the solution are 
important, and a technique for getting started is treated in Section 6.7. 
There are many excellent numerical solution methods for solving the 
load-flow problem. We choose here to introduce the Newton-Raphson 
method in Section 6.8 and its application in Section 6.9. The presentation is 
given in a format suitable for small-computer (and even programmable 
calculator) implementation. 

6.2 REDUCTION OF 
INTERCONNECTED SYSTEMS 

In the analysis of interconnected systems, certain tools can prove 
useful in reducing parts of the system to single equivalents. These tools are 
quite simply based on network reduction techniques. To illustrate the point, 
let us consider the system shown in Figure 6-1. This is part of a much larger 
system; however, it serves our present purposes. 

It is clear that lines 1, 2, and 3 are in parallel between buses C and 
MO. Similarly, lines 4, 5, and 6 are in parallel between buses MO and A. A 
reduction in subsequent computational effort would result if we were able to 
represent the network between C and A by a single equivalent line. It is also 
evident that lines 8 and 9 are in parallel and can be replaced by a single 
equivalent line. We illustrate the procedure using the following data: 

Zl = Z2 = 3.339 + j77.314 ohms 
Y1 = Y2 = j1.106095 X 10-3 siemens 
Z3 = 3.346 + j77 .299 ohms 
'fa = j1. 1 06065 X 10-3 siemens 
Z4 = 3.202 + j73.964 ohms 
Y4 = j1.058342 X 10-3 siemens 
Z5 = Zs = 3.194 + j73.962 ohms 
Ys = Ya = j1.058139 X 10-3 siemens 
Z7 = 2.655 + j61.384 ohms 
Y7 = jO.878286 X 10-3 siemens 
Zs = 2.452 + j56.738 ohms 
Ys = jO.81 1774 X 10-3 siemens 
Z9 = 2.451 + j56.742 ohms 
¥g = jO.81 1781 X 10-3 siemens 

ZlO = 0.676 + j20.483 ohms 
YlO = jO.286090 X 10-3 siemens 



� 

A 4 MO 1 c 
5 2 
6 :3 

MA 

Figure 6-1 . Part of a Network to Illustrate Concepts in Network Reduction. 
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Figure 6-2. Diagram Showing n Parallel Lines. 
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Given the series impedance Z and shunt admittance Y for a line, we 
can easily calculate the A, B, C, and D parameters of each of the lines. 
Having done so, we proceed to obtain the parallel combinations for the lines 
by first representing the lines using the equivalent '1T circuit and then 
combining the circuits in parallel. Figure 6-2 shows n parallel lines each 
with series impedance Zn and shunt admittance Yn . The equivalent single 
line has elements Zn and Yn , given by 

, 
eq eq 

1 1 1 1 

--=-+-+ ... +
Zneq Zn, Znz Znn 
Yn = Yn + Yn + ... + Yn eq 1 2 n 

(6 . 1 )  

(6.2) 

The above formulae provide the basis for the expressions of the 
equivalent A and B parameters of the parallel lines. We have shown in 
Chapter 4 that 

Zn=B 

Thus Eq. (6.1 )  tells us that 

Moreover we have 

1 1 1 1 -=-+-+ ... +Beq B1 B2 Bn 

A - I Yn= � 
Thus, using Eq. (6.5) in Eq. (6.2) gives 

A -1 A - 1 A - 1  A -1 eq = _1_+_2 _ + ... +_n __ 

Beq B1 B2 Bn 

(6.3) 

(6.4) 

(6 .5) 



6.2 Reduction of Interconnected Systems 28'1 

As a result of Eq. (6.4), we get 

(6.6) 

Equations (6.4) and (6.6) are the desired expressions for the equivalent 
representation of parallel lines. 

Referring back to our example system, we see that by applying the 
results of the above discussion we can reduce the network between C and 
MO to one equivalent line, that between MO and A to one equivalent line, 
and that between A and MA to one equivalent line. It can further be seen 
that the network between C and A can further be reduced to a single 
equivalent representation. To do this, we need to discuss the equivalents of 
cascaded lines or in general cascaded two-port networks. 

Probably the most intuitively obvious means is again network reduc
tion. Here we obtain the equivalent 7T representations of the two cascaded 
lines, and then with the help of series and parallel combinations as well as 
the Y-I:::J. transformations, we obtain the desired single equivalent. We can 
also use a simple formula that can be derived by considering the cascade 
shown in Figure 6-3. We have 

But the receiving end for line 1 is the sending end of line 2. Thus 

and 

As a result, using Eqs. (6.8) and (6.9) in Eq. (6.7), we have 

v.! = (A1A2 + BP2)y"2 + (A1B2 + B1D2)Ir2 

For the equivalent line, we have 

Comparing the above two equations, we conclude that 

Aeq = A1A2 + BP2 
Beq = A1B2 + B1D2 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

We will now proceed with a numerical example using network reduc
tion techniques. Application of the A, B equivalent formulae is easy and 
should give the same results. 
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1 --- A, t 
VS1 � C, 

5, 
--+-

B1 

0, 

1 Z --- Az t 
Vrl ; VS2 

C2 

r2 
Aeq Beq 

---
+ � VS1 Vr2 t f Ceq Oeq 

Figure 6-3. Two Cascaded Lines and Their Equivalent. 

Example 6-1 
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B2 

---
+ 

Vr2 
O2 t' 

Let us consider lines 1 and 2 of Figure 6-1. The series impedance and 
shunt admittance for each of the lines are given below: 

ZI = Z z = 3.339 + j77 .314 ohms 

YI = Yz = jl. 1 06095 X 10-3 siemens 

The A and B parameters for each of the two lines are calculated as 

Al = A2 = 0.957243 /°.1105290 

Bl = B2 = 77.3861 /87.52710 

As a result, the equivalent." representation is calculated as 

Znl = Zn2 = 77.3861/87.52710 

Ynl = Yn2 = 5.53048 X 10-4 /900 

For line 3, we have 

Z
3 = 3.346 + j77 .299 ohms 

� = j1.106065 X 10-3 siemens 

The A and B parameters of the line are calculated as 

A3 = 0.957253 /°.1107570 

B3 = 77.3714 /87.52140 

As a result, the equivalent ." repres�ntation is 

Zn3 = 77.3713 /87.52140 ohms 
Yn3 = 5.53033 X 10-4 /900 siemens 
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The equivalent of the three parallel lines from C to MO is therefore 
obtained as the equivalent II representation with series elements as shown 
below: 

The result is 

_
1 _=_1_ + _1_ + _1_ Z Z Z Z nCMO nl n2 na 

ZnCMO = 25.7937/87.52520 ohms 

For the shunt admittance we have 

The result is 

Y:n = Y:n + Y:n + Y:n CMO I 2 3 

YnCMO = 1.65913/900 siemens 

Line 4 has circuit parameters of 

Z4 = 3 .202 + j73 .964 ohms 

Y4 = j1 .058342 X 10 - 3 siemens 

The A and B parameters for the line are calculated as 

A4= 0.960861/0.1010370 

B4 = 74.0333 /87.521r 

AI; a result, the equivalent'lT representation is 

Zn4 = 73.0712/87.55370 ohms 
Yn4 = 5.2917 X 10-4 /900 siemens 

Lines 5 and 6 have the following series impedance and shunt admit
tance each: 

Z5 = Zs = 3.194 + j73 .962 ohms 

Ys = Ys = j1.058139 X 10 -
3 siemens 

The A and B parameters are calculated as 

A5 = As = 0.960870 /0.1007640 

B5 = Bs = 74.0309 /87.52730 

Thus, the equivalent '1T representation is 

Zn5 = Zns = 74.0309 /87.52720 ohms 
Yn5 = Yn6 = 5.29069 X 10-4 /900 siemens 
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The equivalent of the three parallel lines from MO to A is therefore 
obtained using 

The result is 

1 1 1 1  --=- + -+-Z Z Z Z nMOA n. ns n6 

ZUMOA == 24.6772/87.52520 ohms 
For the shunt admittance, we have 

The result is 

¥n = ¥n + YIT + Y,n MOA • 5 6 

YUMOA == 1.5873 X 10--3/900 siemens 

We are now in a position to consider the reduction of the circuit to one 
single equivalent from C to A. The equivalent circuit is shown in Figure 6-4. 
The simplest means is to employ a Y-d transformation. We first replace the 
two parallel admittances Y,n and Y,n by the equivalent MOA CMO 

Y, = Y, + y MO nMOA ITCMO 

This turns out to be 

YUMO == 3 .24644 /900 siemens 
The resulting circuit is shown in Figure 6-5. 

The elements of the d are obtained now. For the element between C 
and A, we obtain the impedance value using the formula 

ZCA = ZnMOA + ZnCMO + YMOZuCMOZnMOA 

The result is 

ZCA == 48.40656/87.63080 ohms 

The element from C to neutral has the impedance 

The result is 

Its admittance is 

Zco = Z + _
1_ + ZnCMO 

nCMO Y.MO Y. Z MO nMOA 

ZCO == 604.227/-89.89440 ohms 

YCO = 1.6550 X 10-3 /-89.89440 siemens 



!! 

A c 

Y7rMOA Y7rMOA Y7rCMO Y7rCMO 

Figure 6-4. Equivalent Circuit with Buses A, MO, and C. 
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A c 

Figure 6-6. Result of Y -� Transformation for Network between C and A. 

The element from A to neutral has the impedance 

The result is 

Its admittance is 

+ _1_+ 
ZOMOA ZAO=ZO Y. Y. Z MOA MO MO 0CMO 

ZAO = 578.07 /-89.8940 ohms 

�O = 1. 7299 x 10-3/89.8940 siemens 

The resulting circuit is shown in Figure 6-6. 
The final step is to combine Yeo and YOCMO in the parallel combination 

denoted Ye, and YAO and YOMOA in the parallel combination denoted YA• 
Thus, 

The numerical value is 

Yc = 3.31413 X 10-3/89.94730 siemens 

Also 

with numerical value 

YA = 3.31719 X 10-3/89.94490 siemens 

The resulting circuit is shown in Figure 6-7. 
The following example uses line 8 and 9 to illustrate the use of the A 

and B formulae to obtain parallel combination equivalents. 



� 

A Zo. = 48.40656 /87.6308° 

VA = 3.33172 X 10-3 
/89.9449° 

c 

Vc = 3.33141 X 10-3 
!89.94r 

Figure 6-7. Final Reduced Circuit between Buses C and A. 
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MI�----------------� 

MA A 

Y'TTAMA 

Figure 6-8. Final Reduced Network for System of Example 6.2. 

Example 6-2 

The series impedance and shunt admittances for lines 8 and 9 result in 
the following A and B parameters: 

The Beq is obtained as 

The result is 

As = 0.97697 /0.58367° 

B8 = 56.7909/87.5254° 

A9 = 0.97697 /0.58343° 

B9 = 56.7949/87.5266° 

BAMA = 28.39647 /87.52603° 

Yc 
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The result is 

AAMA = .9769704 /0.0583550 

The equivalent 7T representation of the lines between buses A and MA 
are thus obtained as 

Zn = 28.396467L87.52603° ohms AMA 

¥:n = 8.11778 X 10-4 L90° siemens AMA 

As a result of the process carried out above, we can now produce the 
reduced network of our example system. This is shown in Figure 6-8. 

6.3 THE PER UNIT SYSTEM 

The per unit (p.u.) value representation of electrical variables in power 
system problems is favored by the electric power systems engineer. The 
numerical per unit value of any quantity is its ratio to a chosen base 
quantity of the same dimension. Thus a per unit quantity is a normalized 
quantity with respect to the chosen base value. The per unit value 
of a quantity is thus defined as 

I -
Actual value 

p.u. va ue 
- R f b i f h d· 

. 
e erence or ase va ue 0 t e same ImenSlOn (6 .12) 

In an electrical network, five quantities are usually involved in the 
calculations. These are the current I, the voltage V, the complex power S, 
the impedance Z, and the phase angles. The angles are dimensionless; the 
other four quantities are completely described by knowledge of only two of 
them. It is thus clear that an arbitrary choice of two base quantities will fix 
the other base quantities. Let lIb I and I Vb I represent the base current and 
base voltage expressed in kiloamperes and kilovolts, respectively. The prod
uct of the two gives the base complex power in megavoltamperes (MV A) 

ISbl=iVbllIbl MVA 

The base impedance will also be given by 

IZbl = iVbl = I Vbl
2 

ohms 
IIbl ISbl 

(6 .13) 

(6 .14) 

The base admittance will naturally be the inverse of the base impedance. 
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(6 .15) 

The nominal voltage of lines and equipment is almost always known 
as well as the apparent (complex) power in megavoltamperes, so these two 
quantities are usually chosen for base value calculation. The same megavolt
ampere base is used in all parts of a given system. One base voltage is 
chosen; all other base voltages must then be related to the one chosen by 
the turns ratios of the connecting transformers. 

From the definition of per unit impedance, we can express the ohmic 
impedance Zg in the per unit value Zp.u. as 

Thus 

Z -5. Zg 
p.u. IZbl 

_ ZglIbl 
IVbl 

As for admittances, we have 

� 1 _ 1 Vbl2 _ 1 Vbl2 Yp.u. - Z-z--IS 1- Y
S-1S 1 

p .u . 
p.u. g b b 

(6 . 16) 

(6 .17) 

It is interesting to note that Zp.u. can be interpreted as the ratio of the 
voltage drop across Z with base current injected to the base voltage. This 
can be verified by inspection of the expression 

An example will illustrate the procedure. 

Example 6-3 

Consider line 3 of Example 6-1 and assume 

Sb= 100 MVA 

Vb= 735 kV 
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We thus have 

z =Z .�=Z.� p.u. U 
I Vbl2 

U 
(735)2 

= 1.85108 X 1O-4(Zu) 
For R = 3.346 ohms, we obtain 

Rp.u. = (3.346)(1.85108 X 10-4) = 6.19372 X 10-4 

For X = 77 .299 ohms, we obtain 

Xp.u. = (77.299)(1.85108 X 10-4) = 1.430867 X 10-2 
For the admittance we have 

Y = y. .1 Vbl2 
p.u. S Sb 

= 
Y. (735)2 

S 100 = 5.40225 X 103(l�) 
For y= 1.106065 X 10-3 siemens, we obtain 

Yp.u. = (5.40225 X 103)(1.106065 X 10--3) 
= 5.97524 

Given an impedance in per unit on a given base Sbo and Vbo' it is 
sometimes required to obtain the per unit value referred to a new base set 
Sb and Vb . The conversion expression is obtained as follows: . . 

Z -z ( IVbl ) u- p.U·o ISbol 

Also the same impedance Zu in ohms is given referred to the new base by 

Z -z ( IVbJ ) 
u - p.u.. ISb.1 

Thus equating the above two expressions, we get 

Z = Z  ISb", .IVbl 
p.u.. p.u·o ISb,,1 I VbJ 

(6.18) 

which is our required conversion formula. The admittance case simply 
follows the inverse rule. Thus, 

y = y ISbol.IVbJ 
p.u.. p .U ·o I Sb. I I Vbo 12 (6.19) 
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Convert the impedance and admittance values of Example 6-3 to the 
new base of 200 MVA and 345 kV. 

Solution 

We have 

Zp.U.o = 6.19372 X 10-4 + j1.430867 X 10-2 

for a l00-MVA, 735-kV base. With a new base of 200 MVA and 345 kV, we 
have, using the impedance conversion formula, 

Thus 

Z - Z 
( 200 ) ( 735 )2 

P'U'n - p.U·o 100 . 345 
= 9.0775 Zp,u.o 

ZP,U'n = 5.6224 X 10-3 + j1.2989 X 10-1 p .u .  

As a check, we use the fundamental formula for conversion from ohmic 
values to per unit for the new base. We do this only for the resistance. Thus, 

Rp.u.=(3.346) [ 200
2
] 

(345) 
= 5.6224 X 10-3 p .u .  

which agrees with our result. 

Thus 

For the admittance we have 

y _ y ( 100 ) ( 345 )2 
P'U'n p.U·o 200 735 

= 0.11016Yp.u.o 

YP,U'n = (5.97524)(0.11016) 
= 0.65825 p .u .  

6.4 NETWORK NODAL 
ADMITTANCE FORMULATION 

Consider the reduced power system network of Section 6.2 with bus 
MI relabeled as I, MA as 2, A as 3, and C as 4. The system is reproduced in 
Figure 6-9 with generating capabilities as well as loads indicated. Buses I, 2, 
and 3 are buses having generation capabilities as well as loads. Bus 3 is a 
load bus with no real generation. Bus 4 is a net generation bus. 
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MI 

MA 

Figure 6-9. Single-Line Diagram to Illustrate Nodal Matrix Formulation. 

Using the 'fT equivalent representation for each of the lines, we obtain 
the network shown in Figure 6-10. Note that this is the same network as 
that of Figure 6-8 except for the labeling of buses. Let us examine this 
network in which we exclude the generator and load branches. We can write 
the current equations as 

11 = VIYIO + (VI - V; )YL,. + (VI - Va) YLJ3 
12 = V;Yzo + (Vz - VI) YD,. + (Vz - V3) YL•3 
13 = VaYao + (V3 - VI) YD'3 + (Va - �) YD34 + (Va - V;) YL•3 
14 = �Y40 + (�- Va)YD34 

We introduce the following admittances: 
YII = YIO + YL,. + YL'3 
Y22 = Y20 + �J" + YDn 
Ya3 = �10 + YD". + YL•3 + YL" 
�4 = Y40 + YL" 
YI2 = Y21 = - YL,. 
Y1 3 = Y31 = - YDJ3 
Y23 = �12 = - YD., 
�14 = Y43 = - YL,14 

Thus the current equations reduce to 

11= Yl1 VI + Y12V; + Y1 3V:1 + O� 
12 = Y21 VI + Yz2Vz + Y23 Va + O� 
13 = YI3 VI + Y23 V; + Ya3 Va + Ya4 V4 
14 = OVI + OV; + Y4:JV3 + Y44 V4 

Note that YI4 = Y41 = 0, since buses 1 and 4 are not connected; also Yz4 = 
�2 = 0 since buses 2 and 4 are not connected. 

The above set of equations can be written in the nodal-matrix current 
equation form: 

I bus = Y busY bus (6 . 20) 
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Figure 6-10. Equivalent Circuit for System of Figure 6-9. 
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where the current vector is defined as 

The voltage vector is defined as 

The admittance matrix is defined as [ YU Y12 �3 Y" I Y12 �2 �3 Y24 Ybus = y: Y23 1'; 3 1';4 13 

�4 Y24 Y34 Y44 

We note that the bus admittance matrix Ybus is symmetric. The following 
example illustrates the numerical procedure for calculating the bus admit
tance matrix for our system. 

Example 6-5 

From Examples 6-1 and 6-2, we have the shunt admittances : 

Yn7 = 4.3914 X 10-3 /90° siemens 

YnlO = 1.4304 X 10-4 /90° siemens 
YnAMA = 8. 1177 X 10-4 /90° siemens 

YA = 3.3 171 X 10-3 /89.945° siemens 

Yc = 3.3 14 1 X 10-3 /89.9470 siemens 

We also have the series impedances: 

ZU7 = 6 1.44 14 /87.5340 ohms 

ZUIO = 20.494 1 /87. 109° ohms 
ZnAMA = 28.3965 /87.526° ohms 

ZCA = 48.4066 /87.6310 ohms 
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With our bus renumbering, we thus have 
YIO = YniO + Yn, 

= 1.4304 X 10-4 /900 + 4.3914 x 10-3 /900 

= 5.8218 x 10-4 /900 siemens 
Y,20= Yn + Yn 10 AMA 

= 1.4304 X 10-4 /900 + 8.1177 x 10-4 /900 

= 9.5482 x 10-4 /900 siemens 

¥ao = YnAMA + YA + YI17 
= 8.1177 X 10-4 /900 + 3.3171 x 10-3 /89.9450 

+ 4.3914 x 10-3 /900 

= 4.5681 X 10-3 /89.960 siemens 
Y40= Yc 

= 3.3141 X 10-3 /89.9470 siemens 
1 . YL = -

Z =4.8794 X 10-2 /-88.1090 SIemens 12 nlO 
YL = Z1 

= 1.6275 X 10-2 / -87.5230 siemens 13 n, 
1 . YL23 = -Z--= 3.5216 X 10-2 / -87.5260 SIemens nAMA 

YL34 = Z 
1 

= 2.0658 X 10-2 /-87.6310 siemens 
CA 

With the above data available, we proceed to calculate the elements of 
the bus admittance matrix. The self-admittance elements are calculated 
first as the sum of all admittances connected to the bus considered. As a 
result, 

Yu = YIO + YL12 + YLI3 
= 5.8218 X 10-4 /900 + 4.8794 X 10-2 / -88.1090 

+ 1.6276 X 10-2 / -87.5230 

= 6.4487 X 10-2 / -87.94470 siemens 
Y22 = lio + YLI2 + YL23 

= 9.5482 X 10-4 /900 + 4.8794 X 10-2 / -88.1090 

+ 3.5215 X 10-2 / -87.5260 

= 8.3055 X 10-2 / -87.8410 siemens 
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= 4.5681 X 10-3 /89.96° + 1.62 76 x 10-2 / -87.523° 

+ 3.5216 X 10 --2 / -87. 526°+ 2.0658 X 10-2 L -87.631° 

= 6.7586 X 10-2 / -87.3876° 

Y44 = Y40 + YL3• 
=3.3143 X 10-3 L89.947° + 2.0658 X 10-2 L-87.631° 

= 1.7347 X 10-2 /-87.1683° 

The mutual admittance elements are simply the admittances of the lines 
connecting the two buses considered with a sign change. Thus, 

Y12 = -�"12 = 4.8794 X 10-2 L91.890° 

Y13 = -YLI3 = 1.6276 X 10-2 L92.477° 

Y14 = 0 

Y23 = -YL23 = 3.5216 X 10-2 /92.474° 

1';4 = 0 

y: = - y; = 2.0658 X 10- 2 /92.369° 34 /'34 _ 

This completely defines our bus admittance matrix elements. 

6.5 THE GENERAL FORM OF THE 

LOAD-FLOW EQUATIONS 

The above example can be generalized to the case of n buses. In this 
case, each of vectors Ibus and Vbus are n X 1 vectors. The bus admittance 
matrix becomes an n X n matrix with elements 

Y·= ¥= -Y;L tJ Jl ij n 
Yii =� YL;; 

;=0 ' 

(6 .21) 
(6 .22) 

where the summation is over the set of all buses connected to bus i 
including the ground (node 0). 

We recall that bus powers Si rather than the bus currents Ii are, in 
practice, specified. We thus use 

1* = Si I V; 



6.5 The General Form of the Load-Flow Equations 305 
As a result, we have 

�-jQi= � (Yv) V* � 'J J , j=1 
(i=l, . . .  ,n ) (6.23) 

These are the static load-flow equations. Each equation is complex, and 
therefore we have 2 n real equations. 

The nodal admittance matrix current equation can be written in the 
power form: 

n 

� -jQi = (Vi) � (1';}j) (6.24) 
j=1 

The bus voltages on the right-hand side can be substituted for using 
either the rectangular form: 

or the polar form: 

Rectangular Form 

�= I�le j6i 
= I �I� 

If we choose the rectangular form, then we have by substitution, 

� = ei L�1 (Gijej-Bij/J ) +fi Lt (Gijfj+ BijeJ ) (6 .25) 

Qi= fi( .� (Gijej-Bijfj) )-ei( .� (Gijfj+Bijej) ) (6 .26) 
J=l J=l 

where the admittance is expressed in the rectangular form: 

Polar Form 

On the other hand, if we choose the polar form, then we have 
n 

�= I �I � l1';jIlVjlcos(fJi-fJj-l/Iij) 
j=1 

n 

Qi= I ViI � I 1';jll Vjlsin(fJi-fJj-l/Iij) 
j=1 

where the admittance is expressed in the polar form: 

1';j = 1 1';j l jl/lij 

(6 .27) 

(6 .28) 

(6.29) 

(6 .30) 
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Hybrid Form 
An alternative form of the load-flow equations is the hybrid form, 

which is essentially the polar form with the admittances expressed in 
rectangular form. Expanding the trigonometric functions, we have 

n 

� = I Vii � I ¥ijllljl[cos( OJ - OJ ) cos tf'ij + sin( 0i - OJ )sin tf'iJ ( 6.31 )  
j=l 

n 

Qj =1 Vii � I ¥ijll"1l [sin( OJ - OJCOStf'ij- cos( 0i - OJsin tf'iJ (6.32) 
j=l 

Now we use 
y; . = I Y ·1 (cos .1 •. . +J' sin .1 ... ) IJ 'J "t'IJ "t'1} 

= Gij+ jBij 
Separating the real and imaginary parts, we obtain 

Gij = 1 ¥ijl cos tf'ij 
B· ·=1 Y · lsin ·I •. . IJ IJ "t'IJ 

so that the power-flow equations reduce to 
n 

� = I Vii � 1"11 [Gjjcos( OJ - OJ) + Bjjsin( OJ - OJ] 
j=l 

n 

Qj = I V; I � 1 \.jl [Gjjsin{ OJ - OJ - Bjjcos( OJ - OJ] 
j=l 

A simple example will illustrate the procedure. 

Example 6-6 

( 6.33) 

( 6.34) 
( 6.35) 

(6 .36) 

(6.37 )  

For the network shown in Figure 6-1 1 ,  it i s  required to write down the 
load-flow equations: 

A. In polar form. 
B. In hybrid form. 
C. In rectangular form. 

Solution 

The nodal admittances are given below: 
Yll = 4 -j5 Y22 = 4 -jlO Ya3 = 8 -jl5 

1';.3 = - 4 + j5 Y23 = - 4 + jlO 
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o 
Y=4 -jI0 >---+----..:..- -1'i\-

3 --'1 I 
Y = 4 - jS 

P2 = 1.70 \::V f IV2' = 1.1249 P3 = - 2 
03 =- 1 

Figure 6-11. Single-Line Diagram for System of Example 6-6. 

We also have 

IV1 1= 1 
P2 = 1 .7 
P3= -2 

(}l = 0 
I �I= 1 .1249 
Q3= -1 

The load-flow equations are obtained utilizing the fonnula 

P; -iQj = Vi*�J::lj 

A. We have in polar fonn, 

Yl l  = 6 .4031 /  -51 .34° 
Y12=0 
Y1 3 = 6 .4031 /128.660 
1';2 = 10.77 / -68. 199° 
1';3 = 10.77 /111 .80° 

Ya3 = 17 .00/ -61 .928° 

Vl=l� 
�= 1 .12498 

l'a=IV3 18 
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For bus 1, we have 
PI -jQI = V;"(YlIVI + �2V2 + YI 3Va ) 

Thus, 
PI -jQI = 6.4031/ -51.34°+ 6.40311 Va 1/128.66 + 03 

For bus 2, we have 
P2 -jQ2 = V;(YI2V1 + Y;2V; + Y23Va) 

i 
Thus we have 

1.7 -jQ2 = 1.1249/ -02[ (10.77 / -68.199°)( 1.12498) 
+ (10.77 /111.80°)(1 Va/8)] 

This reduces to 
1.7 -jQ2 = 13.628/ -68.199°+ 12.115/ V31!111.80 + 03 - O2 

For bus 3, we have 
Pa -jQa = V;(YlaVI + Y;aV; + ¥:JaVa) 

Thus, 
-2 + j1 = / Val! -03[ (6.4031/128.660) + (10.77 /111.80)( 1.12498) 

+ (17/-61.928).(/VaI8)] 
This reduces to 

-2 + j1 = 6.40311 �11!128.66 -03+ 12.1151 �11/1l1.80 + O2 - 03 
+ 17.00/ Va 12/ -61.928° 

Separating the real and imaginary parts, we obtain for bus 1, 
PI = 4 + 6.40311 V3Icos(128.66 + Oa) (6.38) 

- QI = -5 + 6.40311 Valsin{128.66 + (3) (6.39) 
For bus 2 we get 

1.7 = 5.0612 + 12.1151 Valcos{111.8 + Oa -(2) (6.40) 
-Q2 = -12.653 + 12.1151 Va I sin(11 1.8 + 03 -(2) (6.41) 

For bus 3 we have 
-2 = 6.40311 V3Icos(I28.66 - (3) 

+12.1151 Va I cos(111.8 + O2 -Oa) + 81 Val2 (6.42) 
1 = 6.40311 Valsin{128.66 -(3) 

+ 12.1151 Va I sin{111.8 + O2 -(3) -151 V312 (6,43) 
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The above six equations define the load-flow problem in polar 
form. 

B. The hybrid form is obtained by simply expanding the trigo-
nometric functions in the above six equations. Thus for bus 1 we 
write 

PI = 4 - 41 Valcos Oa - 5 1 Valsin Oa (6 .44) 

-QI = -5 + 5 1 Val cos 0a - 41 Valsin Oa (6 .45) 

For bus 2 we write 

1 .7 = 5 .0612 -4 .5 1 Valcos( 0a -02) 
- 1 1 .25 1 Valsin( Oa -02)  (6 .46) 

- Q2 = -12 .654 + 1 1 .25 1 Valcos( 0a -02) 
- 4 .5 1 Valsin( Oa -02) (6 .47) 

For bus 3 we write 
- 2 = -41 Val cos 0a + 5 1 ValsinOa -4 .5 1 Va I cos( 02 - Oa) 

-11 .25 1 Va I sin( 02 - Oa ) + 81 Val
2 (6 .48) 

1 = 5 1 Va I cos 0a + 4 1 Va I sin Oa + 1 1 .25 1 Va I cos( 02 -0a )  
-4 .5 1 Valsin( 02 - Oa )  - 15 1 Va l 2 (6 .49) 

C. To obtain the rectangular form, we have for bus 1 ,  

PI -iQI = ( 1 + iO) [(4 -i5) ( 1 + iO) + ( -4 + i5) (  ea + ila ) ] 
This yields 

For bus 2 we have 

PI = 4 - 4 ea -5/a 
- QI = - 5 + 5 ea - 4 /a 

(6 .50 ) 
(6 .51 ) 

1 .7 -iQ2 = ( e2 -iI2) [(4 -ilO) ( e2 + i12) + ( -4 + il0) ( ea + ila ) ] 
This reduces to 

1 .7 -iQ2 = (4 -il0) ( e: + Il) + ( e2 -i12) (  -4 + il0) (  ea + ila ) 
Using 

we obtain 
1 .7 -iQ2 = 5 .0616 -iI2 .654 + ( - 4 + il0) 

[( e2ea + 12 fa ) + i( 'a e2 -'2ea ) ] 
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Separating real and imaginary parts, we get 
1.7 = 5.0616 - 4( e2e3 + f2 f3) -10( f.1e2 - f2e3) 

- Q2 = -12.654 + 10( e2e3 + f2 f3) -4( f3e2 - f2e3) 
We should include 

For bus 3 we have 
-2 + j 1 = (ea -j/.1)[( -4 + j5) + ( -4 + j1O)( e2 + jf2) 

+ (8 -j15)( ea + jfa) ] 
Separating real and imaginary parts, we get 

(6.52) 
(6.53) 

(6.54) 

-2 = -4e3 + 5f3 -ei4e2 + 10/2 ) + f3(10e2 - 4f2) + 8( e; + 132) 
(6.55) 

+ 1 = 5e3 + 4f3 + ei10ez - 4f2) + f3(4e2 + 1Of2 ) -15( e; + f32) 
(6.56) 

The seven equations (6.50) through (6.56) form the required load 
flow set. 

6.6 THE LOAD-FLOW PROBLEM 

The load-flow (or power-flow) problem is concerned with the solution 
for the static operating condition of an electric power transmission system. 
Load-flow calculations are performed in power system planning, operational 
planning, and operation control. The static operating state of the system is 
defined by the constraints on power and/or voltage at the network buses. 

Normally buses are categorized as follows: 
1. A load bus (P-Q bus) is one at which Si = 1>; + jQi is specified. In 

Example 6-6, bus 3 is a load bus. 
2. A generator bus (P-V bus) is a bus with specified injected active 

power and a fixed voltage magnitude. In our example, bus 2 is a 
generator bus. 

3 . A system reference or slack (swing) bus is one at which both the 
magnitude and phase angle of the voltage are specified. It is 
customary to choose one of the available P-V buses as slack and to 
regard its active power as the unknown. In the previous example, 
bus 1 is the reference bus. 

As we have seen before, each bus is modeled by two equations. In all 
we have 2N equations in 2N unknowns. These are I VI and () at the load 
buses, Q and () at the generator buses, and the P and Q at the slack bus. 
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Let us emphasize here that due to the bus classifications, it is not 
necessary for us to solve the 2N equations simultaneously. A reduction in 
the required number of equations can be effected. Returning to our example 
system, we note that although the number of unknowns is six, namely Pi' 
Ql > Q2 ' I Val, (J2 ' and (J3 ' the first three can be computed as a result of the 
last three. Indeed we need to solve the following equations in I Va I, (J2 ' 
and (J3 : 

1 .7 = 5 .0612 - 4 .5 1 Va I cos( (J3 -(J2 ) - 1 1 .25 1 Va I sin( (J3 - 82 ) 
- 2 = - 41 Valcos(J3 + 5 1 Valsin(J3 - 4 .5 1 Valcos( 82 - 83 ) 

- 1 1 .25 1 Va I sin( 82 -(J3 ) + 8 1 Val2 

1 = 5 1 Val cos (J3 + 4 1 Va I sin (J3 + 11 .25 1 Va I cos( (J2 - (J3 ) 
- 4 .5 1 Valsin( 82 - 83 ) - 15 1 Val2 

With the solution at hand it is only a matter of substitution to get Pi' Ql ' and Q2 using 
Pi = 4 - 41 Val cos (J3 - 5 1 Va I sin (J3 

- Ql = - 5 + 5 1 Va I cos 83 - 41 Va I sin (J3 
- Q2 = - 12 .653 + 1 1 .25 1 Valcos( (J3 - (J2 ) - 4 .5 1 Va I sin( 83 -(J2 ) 

The foregoing discussion leads us to specifying the necessary equations 
for a full solution : 

1 .  At load buses, two equations for active and reactive powers are 
needed. 

2. At generator buses, with Il-jl specified, only the active power 
equation is needed. 

Solution for the primary unknowns I Vi I and (Ji at load buses and 8i at 
generator buses is thus possible. This is followed by evaluating the sec
ondary unknowns 1'; and Qi at the slack bus and Qi at the generator buses 
using the active and reactive equations for the slack bus and the reactive 
power equations for the generator buses. 

Before we get into the discussion of the solution to the load-flow 
equations, let us first consider some of their characteristics using some 
simple examples. 

Nonlinearity of the Load-Flow Problem 

Consider the two bus system shown in Figure 6-1 2. Assume that the 
load at bus 2 is specified and bus 1 is the reference bus with unity voltage 
magnitude and zero phase angle. We can show that the load-flow problem 
reduces to solving 

( 6.57) 
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Figure 6-12. Example Network to Illustrate the Nonlinearity of the Load
Flow Problem. 

This follows since we have for bus 2 the following two equations on the 
basis of Eq. (6.28) and (6.29) : 

p:p = 1 VzII Yl2lcos( O2 -01 -1/;12) + 1V2121 Ydcos( 1/;22) 
Q�P = 1 VzII Ydsin( 02 - 01 -1/;12) - I Vzl21 Ydsin( 1/;22) 

Since this is a load bus, we have 

where superscript (sp) signifies a specified quantity. 
The two power equations yield: 

Note that we use 
G22 = 11221 cos 1/;22 
B22 = 1 Y221 sin 1/;22 

Squaring and adding, we obtain 
1 Y12121 Vz 12 = (S�p) 2 

+ 1 Y22121 V214 + 2 1 Vz 12 (B22Q�P -G22 P;P) 

where 
(6.58) 
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Let us define 

a =1 l';212 
p = 2{ B22Q�P - G22P:P) - I Y1212 
y = (stP)2 

Our unknown is 1 � 1 , which is replaced by x. Thus we have 
ax4 + px2 + y = 0 

where 
x=I�1 

(6.59) 

(6.60) 

(6.61) 

The solution to the quartic equation is straightforward since we can 
solve first for x2 as 

(6.62) 

Since x2 cannot be imaginary, we have a first condition requiring that 
p2 - 4ay�0 

From the definitions of a, p, and y, we can show that 

p2 - 4ay =1 Y1214 -41 Y1212(B22Q�P - G22P:P) - 4(B22P:P + G22Q�p)2 

Thus for a meaningful solution to exist, we need to satisfy the condition 

1 Y1214 � 4[ (B22P:P + G22Q�p)2 
+ 1 Y1212 (B22Q�P - G22P2SP)] (6.63) 

A second condition can be obtained if we observe that x cannot be 
imaginary, requiring that x2 be positive. Observing that a and y are positive 
by their definition leads us to conclude that 

For x2 to be positive, we need 

or 
2( B22Q�P - G22P:P) - I Y1212 0;;; 0 

Let us consider the following numerical example. 

Example 6·7 

The bus admittance matrix elements of interest are 
Y12 = - 1 .1757 + j10.516 

l';2 = 1 .1757 -j10 .272 

(6 .64) 
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We calculate 
a =11;212 = 106.9 
P = 2( -1O.272Q�P - 1. 1757P:P ) - 111.97 

_ nsp2 + QSp2 
I' - -'2 2 

Let US consider first the case with 
p:p = -0.8 
Q�P = -0.6 

Here we have 

Thus, 

As a result, 

or 

1'=1 
P =:: -97.76 

97.76 ± V(97.76)2 - 4 X 106.9 
x2 = 

(2)(106.9) 
= 0.90415 

x =0.95087 

1 �I = 0.95087 p.u. 
Next, consider the case with 

P:P= -4 
Q�P= -3 

As a result, we have 

The solution is 

y=:: 25 
/3= -40.93 

40.93 ± /(40.93)2 -(4) (25)(106.9) 
x2= 2 X 106.9 

= 0.19144 ±j0.44409 

Clearly no practical solution exists. From the value of P we see that the 
second condition is satisfied. However, the first condition is violated. 

Let us pause here and underline the conclusions to be drawn from 
consideration of the foregoing system. First it is evidently clear that there 
may be some specified operating conditions for which no solution exists. 
The second point is that more than one solution can exist. The choice can 
be narrowed down to a practical answer using further considerations. 
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It is now evident that except for very simple networks, the load-flow 
problem results in a set of simultaneous algebraic equations that cannot be 
solved in closed form. It is thus necessary to employ numerical iterative 
techniques that start by assuming a set of values for the unknowns and 
then repeatedly improve on their values in an organized fashion until 
(hopefully) a solution satisfying the load flow equations is reached. The 
next section considers the question of getting estimates (initial guess) for 
the unknowns. 

6.7 GETTING STARTED 

It is important to have a good approximation to the load-flow solu
tion, which is then used as a starting estimate (or initial guess) in the 
iterative procedure. A fairly simple process can be used to evaluate a good 
approximation to the unknown voltages and phase angles. The process is 
implemented in two stages: the first calculates the approximate angles, and 
the second calculates the approximate voltage magnitudes. 

Busbar Voltage Angles Approximation 

In this stage we make the following assumptions: 
1 .  All angles are small, so that sin 0 � 0, cos 0 � 1 .  
2. All voltage magnitudes are 1 p.u. 
Applying these assumptions to the active power equations for the 

generator buses and load buses in hybrid form, we obtain 
N 

� =  � (GiJ +Bij(Oi-OJ 
j=l 

This is a system of N - 1 simultaneous linear equations in Oi' which is then 
solved to obtain the busbar voltage angle approximations. 

Example 6-8 

For the system of Example 6-6, bus 2 is a generator bus and bus 3 is a 
load bus. The equations for evaluating the angles approximately are ob
tained as 

P2 = 1 .7 = 4 -4 + 1O( (J2 - 03) 
P3 = - 2 = - 4 + 5( 03 -0) -4 + 1O( 03 - O2) + 8 
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As a result, we have 
1.7 = 1O( ()2 - ()3 ) 
- 2 = 10( ()3 - ()2 ) + 5()3 

The approximate values of ()2 and ()3 are thus obtained as 
()2 = 0.11 radians 
()3 = -0.06 radians 

Expressed in degrees, we have 
()2 = 6 .30 ()3 = -3.440 

Busbar Voltage Magnitude Approximation 

The calculation of voltage magnitudes employs the angles provided by 
the above procedure. The calculation is needed only for load buses. We use a 
current formula derived from the original power form: 

�+jQi � �l'J* � 
The left-hand-side can be expanded to the following: 

1 
�I (�+ jQJ(COS ()i -j sin ()J = 71l'J1 (Gij-jBiJ 

The imaginary part of this equation is 
Qicos �i

�I
�Sin ()i = _ �I \jIAij 

J 

where 
A. . = B· ·cos () . + G· ·sin () . IJ IJ J IJ J 

Let us represent each unknown voltage magnitude as 

We also assume that 

Thus we have 

1�1=I+A� 

1 
I+AV�l-A� 

I 

(QiCOSOi -�sinOi)(l -A�) 

Aii(l + A�) + � Aij(I + A\j) + 
(other 
load 

buses) 

� Aijl\jl 
(all generator 

buses) 
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The first summation in the above equation is over all other load buses and 
the second summation is over all generator buses. Grouping all knowns onto 
the left-hand-side and the unknowns onto the right-hand-side, we get 
QiCOS 8i -p;sin 8i + Aii + � Aijll'J1 + � Aij 

(slack & (other generator load buses) buses) 
= (QiCOS 8i -p;sin 8i - Aii)( a Vi ) - � Aij( a l'J) 

(other 
load buses) 

Writing the above equation for all load bus bars gives a linear system of 
simultaneous equations in the unknowns a Vi, 

Example 6-9 

For the system of Example 6-6, only bus 3 needs to be treated. The 
above formula is applied using the following numerical values : 

Thus, 

81 = 0° 
8 2 = 6.3° 
83 = -3.44° 

B13= 5 
B23 = 10 
B33 = - 15 
Q3= - 1 

A31 = 5 cos(0) - 4 sin(0) = 5 

G13= -4  
G23 = -4 
G33= 8 
P3= -2 

A32 = 1O cos(6.3°) - 4 sin(6 .3 °) = 9 .5007 
A33 = -15 cos( - 3 .44°) + 8 sin( -3 .44°) = - 15 .453 

Our formula is thus 

( - I)cos( - 3 .44°) + 2 sin( -3 .44°) - 15 .453 + 5 + (9 .5007) ( 1 .1249) 
= [( - 1)cos( -3 .44°) + 2 sin( - 3 .44°) + 15 .453] aVa 

This provides us with 

aVa = -0.061659 

As a result, the approximate value of the voltage magnitude at bus bar 3 is 

I Va l = 0.93834 
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Let us examine how close are the derived approximate values to 
satisfying the load flow equations. These are given by 

P2 = 5.0612 - 4.5 1 V; I cos{ (}3 - (}2 ) - 11.25 1 v:� I sin{ (}3 - (}2 ) 
P3 = -4 1 V; I cos (}a + 5 1 V; I sin (}3 -4.5 1 V; I cos( (}2 - (}3 ) 

-11.25 1 V; I sin{ (}2 - (}3 ) + 8 1 V;12 

- Q3 = 5 1 V;lcos (}a + 4 1 V;lsin (}3 + 11.25 1 V;lcos( (}2 - (}3 ) 
-4.5 1 V:1 I sin( (}2 - (}3 ) - 151 V; 12 

Substituting we obtain 
P2 = 2.6854 
P3 = -2.9318 
Qa = -0.94059 

Note that the specified values are 
P2 = 1.7 
Pa = - 2  
Q3 = -1 

The accuracies of the calculated angles and voltage magnitudes com
pared with a full ac load-flow solution vary from problem to problem. It is 
noted, however, that the results are much more reliable than the commonly 
used flat-start process where all voltages are assumed to be 1 L!!.. 

6.8 NEWTON-RAPHSON METHOD 

The Newton-Raphson (NR) method is widely used for solving nonlin
ear equations. It transforms the original nonlinear problem into a sequence 
of linear problems whose solutions approach the solution of the original 
problem. The method can be applied to one equation in one unknown or to 
a system of simultaneous equations with as many unknowns as equations. 

One-Dimensional Case 

Let F( x) be a nonlinear equation. Any value of x that satisfies 
F( x) = 0 is a root of F( x). To find a particular root, an initial guess for x in 
the vicinity of the root is needed. Let this initial guess be xo' Thus 

F(xo) = AFo 

where AFo is the error since Xo is not a root. The situation can be shown 
graphically as in Figure 6-13. A tangent is drawn at the point on the curve 



F (x) 

Figure 6-13. illustrating the Newlon-Raphson Method. 
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I 
I 
I 
I 
I 

corresponding to xo' and is projected until it intercepts the x-axis to 
detennine a second estimate of the root. Again the derivative is evaluated, 
and a tangent line is fonned to proceed to the third estimate of x. The line 
generated in this process is given by 

(6.65) 

which, when y( x) = 0, gives the recursion fonnula for iterative estimates of 
the root: 

(6.66) 

A numerical example will illustrate the process. 

Example 6-10 

Compute the cube root of 64, which is 4, using the Newton-Raphson 
method. 
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Solution 

We have 

Let the initial guess be 

F'{x ) = 3X 2 

xo = 5 

Our iterations proceed according to 

Xn+I = Xn - dXn 
F{ xn) dXn = F'{xn} 
x3 -64 _ n 

3X2 n 
For the first iteration we have 

125 - 64 dXI = 75 = 0 .8133 

Thus 

Xl = 5 - 0.8133 = 4.1867 

For the second iteration we have 

(4.1867) 3 - 64 
dx = -----::--2 

l 3(4.1867)2 

= 0 .1785 
x2 = 4 .1867 - 0 .1785 

=4.0082 
The process is continued until the desired accuracy has been achieved. 

N-Dimensional Case 

The single dimensional concept of the Newton-Raphson method can 
be extended to N dimensions. All that is needed is an N-dimensional analog 
of the first derivative. This is provided by the Jacobian matrix. Each of the 
N rows of the Jacobian matrix is composed of the partial derivatives of one 
of the equations of the system with respect to each of the N variables. 

An understanding of the general case can be gained from the specific 
example N = 2. Assume that we are given the two nonlinear equations 
FI, F;. Thus, 

(6.67) 
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The Jacobian matrix for this 2 X 2 system is 

(6.68) 

If the Jacobian matrix is numerically evaluated at some point (xik), x�\ 
the following linear relationship is established for small displacements 
(Axl, Ax2): 

[d>F�) d>Fik)1 [aX(k+I)] [a>F(k)] axl dX2 I I 
.J;1(k)J;1(k) -

dr 2 dr 2 (k+l) (k) 
dXI dX2 aX2 a>F 2 

(6.69) 

A recursive algorithm can be developed for computing the vector 
displacements (�XI' �X2)' Each displacement is a solution to the related 
linear problem. With a good initial guess and other favorable conditions, the 
algorithm will converge to a solution of the nonlinear problem. We let 
(x1°), x�O» be the initial guess. Then the errors are 

�FI(O)= -FI[x1°),x�0)], �F?)= -l;[x1°),x&0)] (6.70) 

The Jacobian matrix is then evaluated at the trial solution point [x1°),x�0)]. 
Each element of the Jacobian matrix is computed from an algebraic formula 
for the appropriate partial derivative using x 1°) , x�O). Thus, 

aF(O) aF(O) I I axp) �FI(O) aXl aX2 
aF,(O) aF,(O) (6.71) 
_ 2_ _2 _ �X(l) �R(O) aXI aX2 2 2 

This system of linear equations is then solved directly for the first correc
tion. The correction is then added to the initial guess to complete the first 
iteration: [X1

1
)] = [XfO)] + [�XP

)] (6.72) X�l) X &0) �X�l) 
Equations (6.71) and (6.72) are rewritten using matrix symbols and a 
general superscript h for the iteration count: 

[Jh-I][�Xh] = [�Fh-l] (6.73) 
Xh =Xh-l + �Xh (6.74) 
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The algorithm is repeated until I1Fh satisfies some tolerance. In most 
solvable problems, it can be made practically zero. A numerical example will 
illustrate the procedure. 

Example 6·1 1 

Use the Newton-Raphson method to solve the following equations: 

FI = x� + x� - 5xI = 0 

F2 = x� - x� + 1.5x2 = 0 

Solution 

The partial derivatives are 

aF _I = 2x - 5  aXI 
I 

aR -2 = 2x aXI I 

aF -I = 2x 
aX2 

2 

aF., � = - 2x2 + 1.5 uX2 

Let us take as initial guess 

X�O) = 3 

As a result, 

FlO = (3)
2 + (3) 2 - 5 X 3 = 3 

F;0 = (3)2 - (3)2 + 1.5 X 3 = 4.5 

The Jacobian elements are 

Thus, 

aF(O) 
_I = (2) (3) - 5 = 1  aXI 
aR(O) 
_2_ = (2) (3) = 6 aXI 

aF(O) 
_I = (2) (3) = 6 aX2 
aR(O) 
-!-- = ( -2) (3) + 1.5 = - 4.5 uX2 

[ 1 6 ] [ I1X(I ) ] [ -3 ] 
6 - 4 .5 dX ;' ) = 

-4.5 

The solution is 

I1xP) = - 1  

I1x�O) = - 0.333 
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Thus the first estimate is 

XP) = xiO) + dxP) = 3 - 1 = 2 
X�l) = x�O) + dX�l) = 3 - 0.333 = 2 .667 

We now repeat the above procedure: 

Fl(l) = (2)
2 + (2 .667)2 - 5(2) = 1 .1 129 

F;(l) = (2)2 - (2 .667)2 + 1 .5(2 .667) = 0.8876 

The Jacobian elements are as follows: 

Thus, 

i}F(l) _1 = (2) (2) - 5 = - 1 aXl 
aF(l) � = (2) (2 .667) = 5.334 uX2 

aR(l) _2_ = (2) (2) = 4 aXl 
aR(l) � = ( -2) (2 .667) + 1 .5 = -3 .834 uX2 

5 .334 ] [ dX12) ] 
= 
[ - 1 .1 129 ] 

-3 .834 dX�2) -0.8876 

The solution is 

Thus the second estimate is 

dx12) = -0.5143 
dX�2) = - 0.3051 

X�2) = xP) + dX�2) = 2 - 0.5143 = 1 .4857 
X�2) = X�l) + dX�2) = 2.667 - 0.3051 = 2.3619 

Repeating the above procedure, the following sequence of estimates is 
obtained: 

Iteration Xl X2 
3 1 .2239 2.1738 
4 1 .0935 2.0733 
5 1 .0316 2.0248 
6 1 .0065 2.0051 
7 1 .0004 2.0003 
8 1 .00000189 2.000001 49 

It is clear that the sequence is converging in on the solution point: 

Xl = 1 .00 and x2 = 2 .00 
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To emphasize the importance of the initial guess to the process, we 
observe that the above problem has four solutions that can be obtained 
using different initial guesses. The first at Xl = 1 .00 and x2 = 2.00 was 
obtained with xiO) = 3 and x�O} = 3 above. If we start with xiO} = 10 and 
x�O} = 10, the following sequence is

' 
obtained : 

Iteration Xl X2 
0 10 1 0  

1 5.46 5.9 

2 3 .1961 3.8748 

3 2.0688 2.8839 

4 1 .5099 2.4097 

5 1 .2336 2 . 1 848 

6 1 .0979 2.077 

7 1 .0336 2.0264 

8 1 .0072 2.0056 

9 1 .0005 2 .0004 

1 0  1 .0000027 2 .000002 12 

This is the same solution point. 
If we start at x�O} = - 10 and x�O} = - 10, we obtain the second solution 

Xl = 0 and X 2 = O. The sequence of iterates then is as follows: 

Iteration Xl X2 
0 - 10 - 10 

1 - 4 .58 - 4 266 

2 - 1 .895 - 1 .451 

3 - 0.591 - 0. 1 7 1  

4 - 0.069 - 0. 1 30 

5 - 0.005 - 0.01 

6 - 2.56 X 1 0 - 5  - 5.5973 X 1 0 - 5  

7 - 7.5790 X 1 0 - 10 - 1 .6507 X 1 0 - 9  

8 - 8  X lO - 19 
- 1 X lO - 1 8 

9 - 2 X lO - 28 
- 2 X lO - 28 

10 0 0 
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The third solution at X l = 0.91028 and X2 = 1 .9294 can be obtained 
starting at x �O) = - 10 and x�O) = 10. The sequence of iterates is as follows: 

Iteration X l X2 
0 - 10 10 

1 - 4.2898 4.637 

2 - 1 .5204 2.077 

3 - 0.27275 1 .067 

4 0.3209 1 .4023 

5 0.65022 1 .7483 

6 0.79677 1 .8381 

7 0.86984 1 .8978 

8 0.90068 1 .92 19 

9 0.90943 1 .9288 

10 0.91027 1 .9294 

1 1  0.91028 1 .9294 

The fourth solution is at X l = 3.08972 and x2 = -2.42945, which is 
obtained starting with x �O) = 10 and x�O) = -20 with the attendant sequence 
of iterates given below: 

Iteration Xl X2 
0 10 - 20 

1 6. 1 5 1 1  - 10.1933 

2 4.2748 - 5.421 4  

3 3.4266 - 3.2743 

4 3.1353 - 2.5429 

5 3.0908 - 2.432 1 

6 3.0897 - 2.4295 

7 3.0897 - 2.42945 

8 3.08972 - 2.42945 

Figure 6-14 shows the four solution points as the intersection of the 
two locii FI and F; in the two-dimensional representation. To illustrate how 
the converged solution depends on the initial guess, Table 6-1 lists iteration 
values for a few initial guesses. 
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TABLE 6-1 

Guess X l x 2 

0.5 0.5 

1 - 0.08 0.17 

- 0.Q1 - 0.02 

- 0.00 - 0.00 

0.5 2 

0.729 1 .7917 
0.83716 1 .871 6  

2 0.8876 1 .9 1 1 7  

0.9065 1 .9265 
0.91013 1 .9293 
0.91028 1 .9294 

1 .5  4 
0.784 2.4773 

3 0.98768 2.0469 

0.99057 1 .9936 

1 .0013 2.0010 

1 .000 2.000 

2.5 - 1  

3.5875 - 3.625 

4 3.1757 - 2.635 

3.0933 - 2.438 

3.0897 - 2.4295 
3.0897 - 2.4295 

- 1  - 1  
- 0.245 - 0.140 
- 0.0155 0.0185 

5 - 1 . 1669 X 1 0 - 4  - 7.2626 X 1 0 - 5  
- 3.7784 X 1 0 - 9  5.5609 X 1 0 - 9  
- 8 X 10 - 18 - 1 . 1  X 10- 17 
- 2  X 10 - 27 0 

- 0.5 1 
0.175 1 . 1 5  
0.648 1 .8983 
0.79379 1 .8342 

6 0.86865 1 .8969 
0.90024 1 .9216 
0.90936 1 .9287 
0.91027 1 .9294 
0.91028 1 .9294 

2.5 - 5  
3.4375 - 3.125 
3.1318 - 2.5136 

7 3.0905 - 2.4310 
3.0897 - 2.4295 
3.0897 - 2.4294 

327 
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6.9 THE NEWTON-RAPHSON 

METHOD FOR LOAD-FLOW SOLUTION 

There are several distinctly different ways of applying the Newton
Raphson method to solving the load-flow equations. We illustrate a popular 
version employing the polar form. As we have seen for each generator bus 
(except for the slack bus), we have the active power equation and the 
corresponding unknown phase angle OJ . We write this equation in the form 

ll P = psch _ p = O  " , 

For each load bus we have the active and reactive equations and the 
unknowns I V; I  and OJ . We write the two equations in the form 

llP = psch _ p = o  " , 

llQj = QTch - Q; = O  

In the above equations, the superscript "sch" denotes the scheduled or 
specified bus active or reactive powers. Using the polar form, we have 

n 

P; = I V;I � I ¥;jl ll-j !cos( OJ - OJ - 1/Ij) 
j= l 

n 

Qj = I V;I � ! ¥;j l l l'J lsin ( OJ - OJ - 1/Iij )  
j== 1 

Before we proceed with the formulation, let us illustrate the above 
concepts for the system of Example 6-6. 

Example 6·1 2  

Recalling that in Example 6-6, bus 2 is a generator bus and bus 3 i s  a 
load bus, we can write three equations in the unknowns O2 , 0a , and I Va l . 
Thus, 

llP2 = 1 .7 - [5 .0612 - 4 .5 1 Valcos( Oa - O2 ) 
- 1 1 .25 1 Valsin( Oa - O2 ) ] = 0 

llPa = - 2  - [ -4 1 Val cos 03 + 5 1 Val sin 03 - 4 .5 / V3I cos( O2 - (3 ) 
- 11 .25 I Valsin( 02 - 03 ) + 8 1  Va 1 2] = 0 

llQa = 1 - [5 1 Valcos Oa + 41 ValsinOa + 1 1 .25 1 Va I cos ( O2 - Oa )  
- 4 .5 1 Va lsin( O2 - (3 ) - 15 I VaI 2] = 0 

We now proceed to show the application of the Newton-Raphson 
method to solve the load-flow problem. The incremental corrections to 
estimates of the unknowns are obtained as the solution to the linear system 
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of equations. Thus, 

ap2 ap2
) 

aP2 I 1 _ 
a02 ( £\02 ) + a03 ( £\03 + a l V;/� Va - aP2 

aP3 aP3 aP3 I 1 _ a02 ( a02 ) + aDa ( £\03 ) + a l Va l  
a Va - aP3 

aQ3 aQ3 aQ3 
I I a02 ( a02 ) + a03 ( £\03 ) + a l VaI 

a Va = aQ3 

To simplify the calculation as will be seen later, the third term in each 
of the equations is modified so that we solve for ( a l  Va ll i  Va D. We thus 
write 

In matrix notation we have 

aP2 aP2 ( I V I 
apz ) 

a02 a03 3 a l VaI 
aP3 aPa ( I V I 

aP3 ) 
aoz a03 3 a l VaI 
aQ3 aQ3 ( I V  I 

aQ3 ) a02 a03 3 a I Va l  

£\oz apz 

a03 = aP3 

a I V31 aQ3 
I Vai 

Solving for £\oz , £\03 ' and ( a l V3 11 1  V3 !), we thus obtain the new estimates at 

the ( n  + l)th iteration: 

0J n+ l) = OJn) + £\OZ 
o�n+ 1) = o� n) + a03 

I VaI ( n+ l) = 1 V3 1 ( n ) + aI V3 1 
In order to simplify notation in describing the programming, 

ap 
H - I ij- an. 

1 

aQ . 
J - I ij - ao · 1 

ap Nij = -1 -1 , l li' a li 
aQ . Lij = -, -I, ' li' a li 



� 

TABLE 6-2 
Generalized Linear Equation Set- Up for Newton Raphson Method for Load Flow Solution 

� 

H22 H23 
H32 H33 

Hm2 Hm3 

· · · H2m  
· · · H3m 
. .  . 
. . . 
. .  . 
· · · Hmm 

H( m + l )2 H( m+ l )3 ' "  H( m + l )m 

Hn2 Hn3 . 

<'< m +  1 )2 

Jn2 

'-

. . .  
" . 
. .  . 
. . . 
· · · Hnm 

. . •  <'<m+ l )m 

. . .  

. .  . 

. . . 

· · · Jnm 

H2(m + l )  
H3( m + l ) 

Hm( m + l) 

· · · H2n 
• •  · H3n . . .  
. . . 
. . . 
· · · Hmn 

H( m + l )( m + l ) ' " H(m+ l )( n )  

Hn( m+ 1 )  

. . .  

. . .  

. . .  

" . 
. • · Hnn 

<'< m+ l )( m + 1 )  . • .  <'<m+ 1)n 

In( m + 1 ) 

. . .  

. . . 

. . .  

. . · Jnn 

N2( m + l ) 
N3( m+ l ) 

Nm(m + l) 

Nc m + 1 )( m + 1 ) 

Nn( m+ 1) 

. . . 

. . .  

. ,  . 

. . .  

. . . 

. .
. 

. . .  

. . .  

. . . 

. . . 

L(m+ 1 )( m + 1 ) " . 

Ln( m + l ) 

. . .  

. . .  
" . 

. . .  

-

N2n  
N3n 

Nmn 

Ncm+ l )n 

Nnn 

L(m + 1 )n  

Lnn 

-

1:l.82 
6.83 

1:l.8m 

1:l.8m+ 1  1:l.8m+ 2  

1:l.8n 

I:l. l Vm+ 1 1  
I Vm + 1 1  

I:l. I Vn l  
I Vnl 

I:l. P2 
I:l. P3 

I:l. Pm 

I:l. Pm + 1 
I:l. Pm+ 2 

I:l. Pn 

I:l.Qm + 1  

I:l.Qn 
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Assuming that bus 1 is the slack bus, that buses ·2, . . .  , m are generator 
buses, and that buses m + 1 , m + 2, . . .  , n are load buses, the general form for 
a system of arbitrary size is as shown in Table 6-2. 

In condensed form, we have 

Evaluation of the Derivatives 

We have seen that the partial derivatives are needed. The power 
iQuations in polar form are given by Eqs. (6.28) and (6.29) as 

n 
� = 1 �I � l lijl l  �Icos( (Ji - (Jj - l/IiJ 

j=l 
n 

Qi = 1 �I � l lijl l  �Isin ( (Ji - (Jj - l/IiJ 
j=l 

We find the derivatives of � with respect to (Ji as 

(}P n 

(}(J: 
= - I �I � l lijl l  �Isin ( (Ji - (Jj - l/IiJ , j=l 

j# i  

Using Eq. (6.29), we can see that 

�i = - [Qi - I l ,t l lii lsin( -1/1;; ) ]  
, 

Thus we have 

The derivatives of � with respect to (Jj' j =1= i are given by 

( j * i) 

To avoid trigonometric functions we expand and use the rectangular form 
to obtain, after some algebra, 

( j * i)  
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with 

aij = Gijej - Bij Ij 
bij = Gij Ij + Bijej 

The partial derivatives of Qj with respect to 0i are 

aQ . n 
ao.

' = I �I � I \-jl I lijlcos( OJ - OJ - \fIjj ) 
I j= 1 

j"k i 
Using Eq. (6.28), we can see that 

Thus, 

aQ . ( 2 ) ao.
' = � - I �I I lii l coS\flii , 

The partial derivatives of Qi with respect to OJ , J '1= i are 

��� = - 1 � 1 1 l-Jl l lij lcos( 0i - OJ - \fIij ) ( J 'I= i ) 
) 

Again to avoid trigonometric expansions, we use the rectangular form to 
obtain 

The derivatives with respect to I � I are obtained as follows: 

ap n 

-1 -
'
1 = 2 1 �l l lijl coS \flii + � I l-J i l lij lcos( OJ - OJ - \fIij ) a � j=1 

j"k i 

To simplify the calculation, we multiply both sides by I � I to obtain 

ap 2 n I I ( ) I Vii I V�I = I Vii l li i lcos \fIi i  + .� I � I l-J cos 0i - OJ - \fIjj a , )=1 

This reduces to 

We next have 

U 'I= i ) 



6.9 The Newton-Raphson Method for Load-Flow Solution 333 

Again we multiply by I � I to obtain 

, �, a,�, = I ViI ' �" �j' cos( 0; - OJ - tf;j )  
a � 

This reduces to 

For the reactive power we have 

Again multiplying by I Vi I , we obtain 

aQ · 2 
I Vii a l�1 = Q; - I ViI B;; 

Finally we have a,Q;, = I Vi" �j'sin( 0; - OJ - tf;j )  
a � 

This reduces to 

To summarize, in terms of the Van Ness variables, we have 

Here we use 

H;j = L;j = a;j I; - b;je; 
N;j = -J;j = aije; + b;j I; 
H;; = - Q; - BuVi2 
L;; = Q; - B;;Vi2 
N;; = � + G;;Vi2 
J;; = � - GUVi2 

( i ¥= j off diagonals) 

a;j = G;jej - B;j lj 
b;j = G;j lj + Bijej 

From the standpoint of computation, we use the rectangular form of the 
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power equations : 
n n 

p. = ( e . ) � ( G . . e . - B . . f · )  + ( f · ) � ( G . . f · + H e . )  I I � IJ J IJ J I � IJ J IJ J 
j= l j= l 

n n 
Q .  = ( t· )  � ( G . . e . - H · f · )  - e · � ( G . . f + B . .  e . ) I I � IJ J IJ J I � IJ J IJ J 

j= l  j= l  

In terms of the aij and bij variables, we have 

Example 6-1 3 

n n 

� = { eJ � a ij + ( tJ � bij 
j= l  j= l 

n n 
Qi = ( tJ � a ij - ( eJ � bij 

j= l j= l 

Recall the following data for Example 6-6: 

G l l = 4 
G 12 = 0 
G I3 = - 4  
G22 = 4  
G23 = - 4 
G33 = 8 

BI I  = - 5  
B12 = 0  
B13 = 5 
B22 = - 10 
B23 = 10 
Baa = - 15 

The Specified Voltages are 

The Specified Powers are 

I VI I = 1 .00 
I � I = 1 .1249 
01 = 0  

p;ch = 1 .7 
p;Ch = - 2 

Q3"h = - 1  

From Examples 6-8 and 6-9, the following starting estimates were 
obtained: 

0JO) = 6 .30 
0JO) = - 3 .440 

I 'V3 1 (O) = 0 .93834 
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We will now illustrate the calculation of the Newton-Raphson correc
tion tenns. The a and b variables are first calculated. The relevant fonnulae 
are given by 

a23 = G23e3 - B23 /3 
b23 = G23 /3 + B23e3 
a32 = G32e2 - B32 12 
b32 = G32 12 + B32e2 

With the given admittances, we have 

a23 = - 4e3 - 10/3 
b23 = - 413 + 10e3 
a32 = - 4e2 - 10/2 
b32 = - 412 + lOe2 

The calculation of the Jacobian's off-diagonal tenns is perfonned first, 
using the following: 

H23 = a23 /2 - b23e2 
H32 = a32 13 - b32e3 
N23 = a2ae2 + b23 /2 
J32 = 

- ( a32e3 + b32 la )  
The active and reactive powers are then calculated using the specified 
values in rectangular fonn: 

Q2 = 12 .654 + 12 a23 - e2 b2a 
Qa = - 5e3 - 4/a + 13a32 - e3 b32 + 15 1vt 
Pa = e3(  a32 - 4) + fa( b32 + 5) + 8 1  "31

2 

Using H23 , H32 , and J32 , we can write 

Q2 = 12 .654 + H2a 
Q3 = - 5e3 - 4/3 + H32 + 15 1 vt 
P3 = - 4ea + 5/3 - Ja2 + 8 1 "31

2 

The remaining Jacobian elements can be calculated as follows: 

H22 = - Q2 - B22 1 �1
2 

H33 = - Q3 - Baa l "31
2 

N33 = Pa + G33 1 Va l
2 

L3a = Qa - B3a l "31
2 

Jaa = Pa - Gaa l "31
2 
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Using the specified values, we have 

H22 = - Q2 + 10( 1 . 1249) 2 = - Q2 + 12 .654 
H33 = - Q3 + 15 1 vt 
N33 = P3 + 81 Val

2 

L33 = Q3 + 15 1 vi 

J33 = P3 - 81 vi  
We now proceed to calculate the elements of the first iteration. With 

the initial guess voltage magnitude and phase angles, we have 

e&O) = 1 . 1 181 
MOl = 0 .12344 
e�O) = 0 .93665 
13(0) = - 0 .0563 

The Q 'S and b 's are thus 

Q 23 = - 4(0 .93665) - 1O( - 0 .0563) = - 3 .1836 
b23 = - 4( - 0 .0563) . + 10(0 .93665) = 9 .5917 
Q 32 = - 4( 1 . 1 181 )  - 10(0 . 12344) = - 5 .7068 
b32 = - 4(0.12344) + 10( 1 . 1 181 )  = 10 .6873 

The off-diagonal Jacobian elements are 

H23 = ( - 3 .1836) (0 .12344) - (9 .5917) ( 1 .1 181 ) = - 1 1 .1 175 
H32 = ( - 5 .7068) (  - 0.0563) - ( 10 .6873) (0 .93665) = - 9 .6889 
N23 = ( - 3 .1836) ( 1 . 1 181 ) + (9 .5917 ) (0 .12344) = - 2 .3756 
J32 = - [ (  - 5 .7068) (0 .93665) + ( 10 .6873) (  - 0 .0563) ] = 5 .9470 

The powers are now computed as 

Q2 = 12 .654 + ( - 1 1 .1 175) = 1 .5365 
Q3 = - 5(0 .93665) - 4 (  - 0 .0563) + ( - 9 .6889) + 15 (0 .93834) 2 

= -0.9397 
P3 = - 4(0 .93665) + 5( - 0 .0563) - (5 .9470) + 8(0 .93834) 2 

= - 2 .9313 
The remaining Jacobian elements are 

H22 = - 1 .5365 + 12 .654 = 1 1 . 1 175 
H33 = + 0.9397 + 15(0 .93834) 2 = 14 . 1470 
N33 = - 2 .9313 + 8(0.93834) 2 = 4 . 1 126 
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L33 = - 0.9397 + 15(0 .93834)
2 

= 12 .2675 

J33 = - 2 .9313 - 8(0 .93834)
2 

= - 9 .9751 

The error increments are 

�Q3 = Q3'h - Q3 = - 1  + 0 .9397 = - 0.0603 

�P3 = Pfh - P3 = - 2 + 2 .9313 = 0 .9313 

To find �P2 we still have to find P2 . This is given by 

P2 = 5 .0616 + N23 = 2 .6860 

Thus, 

�P2 = p2sch - P2 = 1 .7 - 2 .6860 = - 0.9860 

As a result of the above calculations, we have 

H22 H23 N23 �02 � P2 

H32 H33 N33 aD3 � P3 

J32 J33 L33 � I VaI 
�Q3 

I Va i 
Numerically we have to solve the following equation in the incre

ments: 

1 1 . 1 175 - 1 1 .1 175 
- 9 .6889 14 .147 

5 .9470 - 9 .9751 

The solution is 

4 . 1 126 �3
VaI 

= 
0 .9313 

- 2 .3756

1
I aD2 

1 

1
- 0.9860

1 
12 .2675 

I Va i 
- 0 .0603 

�02 = - 0.08100864 
aD3 = 0 .00029175 

�� I 
= 0 .03459649 

Note that the angles obtained are in radians. 
The new estimates of the unknowns are 

OJ1) = 6 .3 + ( - 0 .081 )  ( 1!0 ) = 1 .6858546° 

I VaI (I ) = 0.93834( 1  + 0 .0345965) = 0 .97080327 

OJ 1) = - 3 .44 + (0 .00029175) ( 1: )  = - 3 .4233189° 

The procedure is repeated to obtain further new estimates. 
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The following table gives the results of a few further iterations. 

Iteration 0 °  2 1 v:1 1  0 °  3 

1 1 .658546 0.970803 - 3.4233 189 

2 1 .39951 6  0.96655 - 3.719 

3 1 .3962 1 5  0.96652 - 3.7224 

4 1 .3962 1 47 0.96652 - 3.7224 1 5  

In order to appreciate the effect of starting estimates on the progress 
of the iterations, we try the flat start: 

84°) = 0 

I � I (O) = 1 .00 

8£°) = 0 

The following table gives the results of the iterative process: 

Iteration O2 1 v:1 1  03 

1 1 .96 0.9724 - 3.2025 

2 1 .404 0.9666 - 3.7 1 58 

3 1 .3962 0.96652 - 3.72241 4  

4 1 .3962 1 48 0.96652 - 3.7224 

Comparing the two processes we note that the first process is better on the 
second iteration. However, both can be declared successful in reaching the 
solution after the fourth iteration. 

The question of which is the most efficient iterative technique to solve 
the load-flow problem has resulted in a tremendous number of proposed 
techniques. It is beyond the scope of this text to outline many of the 
proposed variations. The Newton-Raphson method has gained a wide 
acceptability in industry circles, and as a result there are a number of 
available computer packages that are based on this powerful method and 
sparsity-directed programming. 

SOME SOLVED PROBLEMS 

Problem 6-A-1 

Consider the simple electric power system shown in Figure 6-15. The 
load-flow solution for this system can be obtained in a systematic manner 
without resorting to iterative techniques. It is required to carry out the 



Y = 2 - j 4 

Y = 3 - j6 

P3 = - 2  p .u .  
03 = + 1 0.u .  

Figure 6-15. System for Problem 6-A-1. 

following calculations: 
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P2 = 1 .6 p .u .  
1 V2 1 = 1 . 1  p.u .  

A. Write down the elements of the bus admittance matrix Y. 
B. Using the active power equation at bus 2 (generator bus), calculate 

the phase angel (J2 ' (Using polar form leads to a simple calculation; 
note that ()2 will be in the first quadrant.) 

C. Using both the active and reactive power equations at bus 3 (load 
bus), calculate I Va I and hence (Ja ' « ()a should be in the fourth 
quadrant.) 

D. Calculate the active real power generated at bus 1 .  
E .  Find the total active power losses i n  this system. 

Solution 

We have 

Yll = 5 -jlO 
= 1 1 .18/-63.430 

Y12 = - 2 + j4 
= 4.47/116.570 

�2 = 2 -j4 Y33 = 3 -j6 
= 4.47/ -63.430 = 6.71/- 63.430 

Y1a = - 3 + j6 �a = O 
= 6.71/116.57 
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At bus 2, 

Thus, 

P2 = 1 V; I [ l Y12 1 1 V1 I cos( 82 - 81 - '1'12 ) + I 1';21 I V; l cos( 82 - 82 - '1'22 ) 
+ I 1';3 1 1  Valcos( 82 - 83 - '1'23 ) ]  

1 .6 = 1 . 1 [ (4 .47) ( 1 ) cos( 82 - 1 16 .57) + (4 .47 ) ( 1 . 1 ) cos( - 63 .43 ) ]  
As a result, 

Take 

cos( 82 - 1 16 .57) = - 0 .16669 
82 - 1 16.57 = ± 99 .59535 

82 = 216 . 16 or 16 .97465° 

For bus 3, we have 
P3 = I VaI [ I Yal l l � l cos( 83 - 81 - '1'31 ) + I Ya3 1 1 Va I cos ( - '1'33 ) ]  

Substituting, we get 

Thus 
- 2 = I Val [ (6 .71 ) ( 1 ) cos( 83 - 1 16 .57) + (6 .7 1 )  Jv:1 I cos(63 .43) ]  

-2  2 
6 .7 1  = I Va i cos(63 .43) + I Val cos( 83 - 1 16 .57) (A) 

Also we have 
Q3 = I Val [ I  Yal l l Vl l sin( 83 - 81 - '1'31 ) + I Y33 1 Jv:1Isin( - '1'33 ) ] 

1 = I Val [6 .71 sin( 83 - 1 16 .57) + (6 .7 1 ) 1 Valsin(63 .43° ) ]  

6 .�1 = I Vlsin(63 .43) + I Valsin( 83 - 116 .57) (B) 

Equations (A) and (B) are combined to give 

or 

[ 2 2 ] 2 [ 1 2 . ] 2 2 
6 .71 + I Va I cos(63 .43) + 6 .71 - I Vai sm(63 .43) = I Va I 

1 V3 1 4 + 6
4
71 I Vl[coS(63 .43) - 0 .5 sin(63 .43) ] +  5 2 I Val 2 . (6 .71 ) 

This gives 
4 2 1 I Vai - I Vai + 9 = 0  

The solution is 



Take the positive sign : 

The solution for I Va I is 
I Val 2 = 0 .8727 

I Val = 0 .9342 
As a result, substituting in Eq. (A), 
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- 2  
6.71 = 0.8727 cos ( 63 .43) + 0 .9342 cos( ()a - 116 .57) 

Thus, 
cos«(Ja - 1 16.57) = -0.7369014307 

or 
(Ja - 1 16.57 = ± 137.468 

As a result 
(Ja = -20.898 

We now obtain PI as 
PI = I VI I [ I Yll I I VIJCOS( - 'I'll ) + I YI2 1 1 V; l cos( ()1 - ()2 - '1'12 ) 

+ I Y1a l l  Valcos( ()1 - ()3 - '1'13 ) 
= 0.9937 

Problem 6-A-2 

Use the Newton-Raphson method to find the roots of the equation 
F( x ) = x3 - 6x2 + 1 1x - 6 

Assume the following initial guesses: 
(1) x = 0 
(2) x = 0.5 
(3) x = 1 .5 
(4) x = 2.5 
(5) x = 4 

Solution 

Thus 

The increments are 
F' = 3x2 - 12x + 1 1  

-F -x3 + 6x 2 - 1 1x + 6 11 = - = -------F' 3x2 - 12x + 1 1  
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The new estimates are given by 

(1) x(O) = 0 
X(l) = 0.545 
X(2) = 0.84895 
X(3) = 0.97467 
X(4) = 0.99909 
X(5) = 1 .000 

(2) x (O) = 0.5 
X( l) = 0.826 
X (2) = 0.96769 
X(3) = 0.99854 
X(4) = 1 .000 

(3) x(O) = 1 .5 
X(l) = 3.00 

(4) x(O) = 2.5 
X(l) = 1 .00 

(5) x (O) = 4 
X(l) = 3.45 
X(2) = 3.15 
X(3) = 3.03 
X(4) = 3.0009 
X(5) = 3.0000 

xn+ l = xn + � 

Note that the equation has roots at x = 1 ,  2, and 3. We have converged 
in on the first and third roots, depending on the starting estimate. 

Problem 6-A-3 

It is required to solve the following two equations in Xl and X2 using 
the Newton-Raphson method : 

FI = x; + x: - 4xI = 0  
F2 = xi + x: - 8xI + 12 = 0  

A. Find the expressions for the elements of the Jacobian matrix and 
find the correction increments �XI and �X2 .  

B. Calculate the first five iterations to find estimates of the solution 
using the following initial guesses. 
(i) Xl = 2, x2 = 4 

(ii) Xl = - 5, x2 = - 5 
(iii) Xl = -0.1 , x2 = 1 



Solution 

A. The Jacobian elements are as follows: 

As a result, we have [ 2XI - 4 

2xl - 8  

aFI = (2x - 4) aXI I 
aF2 = (2x - 8) aXI I 

The solution for the increments is 

AXI = 3 -Xl 
A X� -X� - 6xI + 12 
QX2 = 2 x2 

Some Solved Problems 343 

As a result, the new estimates of the solution are given by 

xin+ l) = x1n) + (3 - xin» )  = 3 

Thus no matter what the starting point is, the estimate of Xl is 3. 

x2(n) - x2(n) - 6x(n) + 12 x(n+ l) = x(n) + I 2 I 
2 2 2 (n) x2 

x2(n) + x2(n) - 6x(n) + 12 _ I 2 I 

B. With x1n) = 3, we have 

2x�n) 

2(n) + 3 x(n+ l) _ _  
X=-2 __ 2 - 2x(n) 2 

Iteration X l  

0 2 
1 3 
2 3 
3 3 
4 3 
5 3 

X 2  

4 
2.5 
1 .85 
1 .74 
1 .7321 
1 .73205 
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Problem 6-A-4 

Iteration 

o 
1 

2 

3 

4 

5 

6 

7 

Iteration 
o 
1 

2 

3 

4 

5 

6 

X l  

- 5  

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

X l  

- 0.1  

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

X2 

- 5  

- 9.2 

- 4.763 

- 2.6964 

- 1 .9045 

- 1 .7399 

- 1 .7321 

- 1 .73205 

X 2  

+ 1  

6.805 

3.623 

2.225 

1 .787 

1 .7329 

1 .73205 

Apply the Newton-Raphson method to solve the load-flow equations 
for the system of Example 6-6 with initial guess as shown below: 

Solution 

(J4°) = 0 

1 "3 1 (0) = 0 .9 

(JJO) = 0 

The following are the iteration results: 

Iteration 82 I Vai 

0 0 0.9 

1 2 .6873 0.9794 

2 1 .4376 0.9668 

3 1 .3962 0.96652 

o 
- 3.2276 

- 3.698 

- 3.7224 
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Note that this guess results in less iterations (one to be precise) than with 
the flat start. 

PROBLEMS 

Problem 6-8-1 

For the network shown in Figure 6-16 find the equivalent load imped
ance ZE in ohms, given that 

PE = 88 .47 MW 
QE = 29.22 MVAR 

The voltage magnitude at bus E is 

I VEI = 1 .031 X 230 kV 

Problem 6-8-2 

Assume that a per unit system is used for the network of problem 
(6-B-1) such that 

Vb = 230 kV 
Pb = 100 MW 

Convert the load impedance ZE of problem (6-B-1) to this system and hence 
reduce the network by eliminating bus E. The line data in per unit are 

-...... -- F 

Figure 6-1 6. Network for Problem (6-B-1 ). 
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given by 
Zm: = (0 .725 ,+ j4 .045) 10- 2  p .U .  
YDE = jO .28233 p .u .  

Each of the lines connecting buses E and F have parameters 

Z = 0 .0096 + jO .0953 p.u . 
Y = jO.18409 p .u .  

Assume that lines are represented by a nominal-'IT circuit. 

Problem 6-8-3 

For the two bus system shown in Fig. 6-17 with the operating condi
tions indicated, it is required to find the equivalent load impedance ZA' 
Assume the voltage is given in per unit on a 230 kV basis. Power base is 100 
MW. 

Problem 6-8-4 

Find the Thevenin's equivalent at bus B of the two bus system shown 
in Fig. 6-18. Assume that the transmission line is repre.c;ented by its 
nominal -'IT model and that impedance and admittance values are given in 
per unit on 230 kV and 100 MVA base. Assume ZA as obtained in Problem 
(6-B-3). 

Problem 6-8-5 

For the three bus system shown in Fig. 6-19 it is required to perform a 
network reduction such that bus C is eliminated while retaining the neutral 

0 ................ VA = 1 . 0 0 1  /- 13 . 9° 

PA = 66 . 8 5 MW 
QA = 39 . 8 1 MVA R  

Figure 6-1 7. Network for Problem (6-8-3). 

..,..-- ® 
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t 

35. 53 
( 1 7. 39) 

1 . 3 
(0 . 42 ) 

o ° C �i��� Vc = 1 .0 1 1 /- 1 2 . 8  I I z = 0 . 0 1 76 + j O.0828 

Z = 0.0096 + j O . 0 5 3 5  
Y = j O.09 4 1 6  

Y =  j O. 142 3 3  Vo = 1 .028 /- 10. 4° 

Z = 0.0186 + j O. 127  
Y =jO.2359 

..,.."'-r- VB = 1 . 0 0 7  /- 1 3. 4
° 

1 8. 9  
( 3 . 95) 

Figure 6-1 9. Network for Problem (6-8-5). 
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bus. All loads shown are in MW (MV AR), while voltages and impedances 
are given in per unit to 230 kV and 100 MVA base. 

Problem 6-8-6 

For the network shown in Figure 6-20, eliminate buses G and H while 
retaining ground. Assume same voltage and power bases as in Problem 
(6-B-5). 

Problem 6-8-7 

Eliminate buses I, L , and M from the network of Figure 6-21 ,  assum
ing the same voltage and power base as in Problem (6-B-5) 

Problem 6-8-8 

Consider the problem of finding the roots of the following function 

f { x ) = X4  - 81 = 0 

VG = 1 .023 

90. 66 MW 
1 3 . 6 4  MVAR Z 0 0093 ' 0 0 2 = + )  4 4 p. u .  

y = jO. 07652 p. u .  

VH = 1 . 0 2 2  

G H 
I Z = 0 . 0 0 1 4 + j O. 0079 I I Z = 0. 0075 + j O. 0 4 1 6 / 

y =  j O.0 14 y = jO.07405 

1 . 95 MW 
0. 9 M VAR 

Double C irc u i t ,  w i t h  
Z = 0. 0 1 9 5  + j o. I 3 3 6  p. U .  
y =  jO. 2 4 38 7 p.u . , eac h .  

F 

Figure 6-20. Network for Problem (6-B-6). 

J 



� 

I V1 = 1 .008 , '
Z = 0. 002 + jO. OI4 

y =  jO.0255 

1 23 . 94 MW 
52 . 52 MVA R  

V L  = 1 .022 

J 
Z = 0 . 0 1 06 + jO.0726 p. u .  
y =  jO. 1 325 1  p. u .  

Z = 0. 0 14 + j O. 0 7 7 7  
y =  jO. 1 3836 

L 
-

Z = 0.0014 + j 0.0035 

Y = j O.0 1902 

26. 34 MW 
- 2 . 44 M VAR 

Figure 6-21 . Network for Problem (6-8-7) . 

K 

Z =  0. 0052 + j O .035 1  
Y= jO.0657 

M 

40. 3 1  MW 
1 0. 87 M VAR 
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Apply Newton-Raphson method to find the roots using x(O) = - 10 and 
x(O) = + 10. 

Problem 6-8-9 

Repeat problem (6-B-8) for the function 

f { x ) = 2x3 - 9x
2 + 27 = 0  

with initial guess of x(O) = - 4 and x(O) = 4. 

Problem 6-8-10 

Consider the function f( x) given by 

f ( x ) = X4 + 5x3 - 12x
2 

- 36x = 0 

There are 4 roots to this function, namely 

x* = -6 ,  - 2 , 0 ,  and 3 .  
The purpose of this problem i s  to investigate the behavior of Newton
Raphson algorithm as the initial guess of the solution is varied. It may be 
helpful here to start by an approximate plot of the function. With the aid of 
a program for Newton-Raphson method verify that 
a-with an initial guess of x (O) = - 8, the iterates converge to x*  = - 6  
b-with an initial guess of x(O) = - 4, the iterates converge to x *  = - 2  
c-with an initial guess of x(O) = - 1 , the iterates converge to x *  = 3 
d-with an initial guess of x(O) = + 1, the iterates converge to x* = 0 
e-with an initial guess of x(O) = + 6, the iterates converge to x* = 3 

Problem 6-8-1 1 

Consider the same function of problem (6-B-1O), to illustrate the 
sensitivity of the converged solution to initial guess, verify that with an 
initial guess of x (O) = - 4.63, the iterates converge to x* = - 6, while for 
x(O) = - 4.62, the iterates converge to x* = 3. 

Problem 6-8-1 2 

Consider the system of nonlinear equations given by 

f} {x) = x� + 9x� - 54x2 + 45 = 0 

f2 {x) = 9x� + x� - 36 = 0  

With the aid of a Newton-Raphson iterative algorithm find solutions 
to the system using the following initial guess values: 

a-x1(0) = - 10, 
b-x}(O) = - 10, 
c-x1(0) = 10, 
d-x}(O) = 10, 

x2(0) = - 10 
x2(0) = 10 
x2(0) = 10 
x2(0) = - 10 
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Problem 6-8-1 3 

Consider the system of nonlinear equations 

fl ( X l > X2 ) = x� + 9x� - 54x2 + 45 = 0  
f2 ( x l > x2 ) = 9x� + x� - 1 = 0 

with the aid of a Newton-Raphson algorithm find solutions to the system 
using the following initial guess values: 

Problem 6-8-1 4 

a-x(O) = 3 
b-x(O) = 4 
c-x (O) = "':' 4 I 
d-x(O) = - 3  

x�O) = 3 
x�O) = 4 
x�O) = 4 
x�O) = 3 

Consider the system of nonlinear equations given by 

fl ( Xl > X2 ) = 9x� + x� - 36 = 0 
f2 ( XI ' x2 ) = x� + 9x� + 36x1X2 - 36 = 0 

with the aid of a Newton-Raphson algorithm find solutions to the system 
using the following initial guess values: 

Problem 6-8-1 5 

a-x�O) = 3 
b-x\O) = - 1  
c-x(O) = -6  I . 
d-x�O) = 1 

x�O) = - 2 
x�O) = 3 
xkO) = 3 
xkO) = - 2 

For the system of example (6-6) with I V2 1 = 1 . 1 ,  verify that the load 
flow solution is 

Problem 6-8-1 6 

(}2 = 2.6436° 
I 'Z1 1 = 0.950134 

For the system of example (6-6) with I Vz 1 = 1 .5, verify that the load 
flow solution is 

(}2 = - 18.28° 
I V:1 1 = 1 .18471 

Comment on the value of the calculated Q2 ' 
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Problem 6-8-1 7 

Apply Newton-Raphson method to find the operating conditions for 
the system of example (6-6) with all data unchanged except for the voltage 
at bus 2 which is now I � I =  1 .  

Problem 6-8-1 8 

Repeat problem (6-B-17) for I � I = 1 .2 

Problem 6-8-1 9 

Repeat problem (6-B-17) for I � I = 1 .3 

Problem 6-8-20 

Repeat problem (6-B-17) for I � I = 1 .4 

Problem 6-8-21 

For the system of example (6-6) with P2 = 1 ,  verify that the load flow 
solution is 

Problem 6-8-22 

()2 = - 11 .3346° 

I Va I = 0.942846 

()3 = - 12.3082° 

For the system of example (6-6), with P2 = 2, verify that the load flow 
solution is 

Problem 6-8-23 

()2 = 6.20277° 

I Val = 0.971874 

()3 = - 0.527812° 

For the system of example (6-6), with P2 = 2.4 verify that the load flow 
solution is 

Problem 6-8-24 

()2 = 12.2594° 

I Va l = 0.975816 

()3 = 3.46851 ° 

Apply Newton-Raphson method to find the operating conditions for 
the system of example (6-6) with all data unchanged except for the power 
generated at bus 2 which is now P2 = 1 .2 .  
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Problem 6-8-25 

Repeat problem (6-B-24) for P2 = 1 .4 

Problem 6-8-26 

Repeat problem (6-B-24) for P2 = 1 .6 

Problem 6-8-27 

Repeat problem (6-B-24) for P2 = 1 .8 

Problem 6-8-28 

Repeat problem (6-B-24) for P2 = 2.2 

Problem 6-8-29 

Apply Newton-Raphson method to find the operating conditions for 
the system of example (6-6) with all data unchanged except that for the 
load at bus 3 which is now P3 = - 3 

Problem 6-8-30 

Repeat problem (6-B-29) for P3 = - 1 

Problem 6-8-31 

Apply Newton-Raphson method to find the operating conditions for 
the system of example (6-6) with P3 = - 3 and Q3 = 1 

Problem 6-8-32 

For the system of example (6-6), assume that 

I Val = 0 .894994 
P3 = - 3 
Q3 = - 1  



CHAPTER VII 

High-Voltage Direct-Current 
Transmission 

7.1 INTRODUCTION 

In 1954, transmission of electric power using high-voltage direct 
current (HVDC) became a commercial reality with the commissioning of a 
20-MW, OO-km link between the Swedish mainland and Gotland Island. 
Over twenty additional HYDC schemes have become operational throughout 
the world since that time. In less than 30 years, a typical system's power 
rating had increased to 1800 MW. Transmission voltages and currents had 
increased over the same time span from 100 kV to ±533 kV and from 200 to 
2000 amperes respectively. 

The use of ac for the Swedish underwater link was not possible 
because the intermediate reactive compensation required for cable transmis
sion was not feasible. The availability of a type of mercury-arc valve 
invented by U. Lamm in Sweden during World War II made this first major 
de underwater link possible. Its reliable and economic operation justified 



& TABLE 7-1 

Major HVDe Systems in Operation (1980)* 
Six-Pulse 

System and Year Capacity, DC Voltage, Length of Bridge Rating 
Operational MW kV Route, km Value Type kV kA 

Moscow-Kashira U.S.S.R. 30 200 113 (overhead) Mercury arc 200 0.15 
(experimental), 1950 

Gotland, Sweden, 1954 20 (1954) 100 98 (cable) Mercury arc 50 0.2 
30 (1970) 150 and thyristor 

Cross-Channel, 160 ±100 65 (cable) Mercury arc 100 0.8 
England-France, 1961 

Volgograd-Donbass, 750 ±400 472 (overhead) Mercury arc 100 0.9 
U .S.S.R., 1962 

Konti-skan 250 ±250 95 (overhead) Mercury arc 125 1.0 
Denmark-Sweden, 1965 85 (cable) 

Sakuma I,Japan, 1965 300 2X 125 0 Mercury arc 125 1.2 
New Zealand, 1965 600 ±250 567 (overhead) Mercury arc 125 1.2 

38 (cable) 
Sardinia-Italy, 1967 200 200 290 (overhead) Mercury arc 100 1.0 

120 (cable) 
Vancouver Stage III, 312 +260 41 (overhead) Mercury arc 130 1.2 

Canada, 1968/69 32 (cable) 
Pacific Intertie 1440 ±400 1354 (overhead) Mercury arc 133 1.8 

Stage I, U.S., 1970 
Eel Ftiver, Canada, 1972 320 2 XBO 0 Thyristor, 40 2.0 

air-cooled and 
insulated 

Nelson River Bipole I, 810 (1973) +150 890 (overhead) Mercury arc 150 1.8 
Canada, 1973/75 -300 

1080 (1975) ±300 
Kingsnorth, 640 ±266 82 (cable, Mercury arc 133 1.2 

England, 1975 3 substations) 
Cabora-Bassa, 960 :!:266 1410 (overhead) Thyristor, 133 1.8 

Mozambique- oil-cooled and 
South Africa, 1975 insulated 

Nelson Ftiver Bipole I, 1620 ±450 890 (overhead) Mercury arc 150 1.8 



Canada, 1975/76 +260 
Vancouver Stages IV and V, 552 (1976) -140 41 (overhead) Thyristor, air- 140 1.72 

Canada, 1976/78 +260 32 (cable) cooled and 
insulated (winter) 

792 (1978) -280 
(winter) 

Tn-States, 100 50 0 Thyristor, air- 25 2.0 
U.S. 1976 cooled and 

insulated 
Cabora-Bassa 1440 (1977) +266 1410 (overhead) Thyristor, oil- 133 1.8 

-533 cooled and 
insulated 

Mozambique-
South Africa, 1977/79 1920 (1979) ±533 

Square Butte, 500 ±250 745 (overhead) Thyristor, air- 125 1.0 
U.S., 1977 cooled and 

insulated 
Skagerrak, 500 ±250 100 (overhead) Thyristor, air- 125 1.0 

Norway-Denmark, 1976/77 130 (cable) cooled and 
insulated 

EPRI Compact Substation, 100 100(400 0.6 (cable) Thyristor, freon- 50 1.0 
U.S., 1978 kV to ground) cooled and 

SFs insulated 
CU, U.S., 1978 1000 ±400 656 (overhead) Thyristor, air- 200 1.25 

cooled and 
insulated 

Inga-Shaba, Zaire, 560 ±500 1700 (overhead) Thyristor, air- 250 0.56 
Stage I, 1976 cooled and 

insulated 
Nelson River Bipole 2, 900 (1978) ±250 920 (overhead) Thyristor, water- 125 1.8 

Canada, 1978/81 1800 (1981) ±500 cooled and air-
insulated 

Shin-Shinano, Japan, 150 125 0 Thyristor, oil-
1978 cooled and 

insulated 
Hokkaido-Honshu, 150 ±250 124 (overhead) Thyristor, air-

Japan, 1979 44 (cable) cooled and 
insulated 

� .... *Source: EPRI Journal 
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later connections between Sweden and Denmark, between England and 
France, between the main islands of New Zealand, and between the island 
of Sardinia and Italy. HVDC has since been used in overland connections in 
the United States, Canada, England, Japan, U.S.S.R., Zaire, and between 
Mozambique and South Africa. Table 7-1 shows a listing of major dc 
projects in operation today. Our purpose in this chapter is to offer an 
introduction to elements of HVDC transmission. 

7.2 MAIN APPLICATIONS OF HVDC 

HVDC transmission is advantageous in the following areas of applica
tion: 

1. For long underwater cable crossings (wider than 32 km). In six of 
the first seven commercial schemes, submarine cables are the 
medium of power transfer. The success of the Gotland scheme 
justified later underwater connections as mentioned earlier. A 25-km 
submarine cable between �ew Brunswick and Prince Edward Is
land was completed in 1977. The initial operation was at 138 kV ac. 
The design is such that the forecast increase in transmission capac
ity will be met by HVDC operation at 1200 kV. 

2. For long-distance, bulk-power transmission by overhead lines, when 
the savings in cost of a dc line would more than compensate for the 
cost of converter stations. For the same power capability, the cost 
per unit length of a dc line is lower than that of an ac line. In 
Figure 7-1, we show the comparative costs of ac and dc overhead 
lines versus distance of transmission. The break-even distance is the 
abscissa of the intersection of the dc transmission cost with the ac 
transmission cost. If the transmission distance is longer than the 
break-even distance, then dc is cheaper than ac. The break-even 
distance varies with the power transmitted, the transmission volt
age, the type of terrain, the cost of equipment, and other factors. 
This particular aspect will be treated later on in the chapter. Thus 
dc transmission plays a significant role in situations where it is 
more economical to generate power at the minemouth, hydrosite, or 
gaswell and to transmit it electrically to the load center. 

3. The dc systems have an inherent short-time overload capacity that 
can be used for damping system oscillations. Two systems when 
interconnected by ac lines sustain instability. A dc link intercon
necting the two would overcome this difficulty. The Eel River tie, 
Canada, has operated in this mode for the past several years. The 
Stegall project in Nebraska was constructed to connect east-west 
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Figure 7-1 . Comparative Costs of ae and de Overhead Lines for Various 
Distances. 

systems in the United States at a point along what might be 
tenned the "electric continental divide." 

4. A requirement to provide an intertie between two systems without 
raising the short-circuit level appreciably can be met by using a 
HVDe link. 

5. Two systems having different frequencies may be tied together 
through a dc interconnection. 

6. For transmission in underground metropolitan cable systems where 
long distances are involved. 

Some limitations of HYDe Transmission 

The lack of HVDe circuit breakers is regarded as a limitation to 
HVDC transmission. In ac circuits, circuit breakers take advantage of the 
current zeros occurring twice per cycle. The arc does not restrike between 
contacts because the design is such that the breakdown strength of the arc 
path between contacts is increased so rapidly as to enable extinction. Grid 
control in converter valves on radial lines is used to block the dc tempor
arily. The realization of multitenninal systems requires the use of HVDe 
circuit breakers. A number of breaker concepts have been described, and 
several laboratory prototypes have been developed. With the availability of 
these commercially, utility planners can proceed with serious consideration 
of multitenninal HVDe systems. 
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The reliability and maintenance of converters have been a major 
problem for dc systems with mercury-arc converters. This difficulty has 
been resolved in projects using thyristor valves. These valves have little 
overload capacity, which can present a problem when one bipolar line is 
involved. In this case it is not possible to meet the requirement of 100 
percent half-hour overload capability to take care of a pole outage. 

The production of harmonics due to converter operation leads to audio 
frequency telephone line interference. Filters on both sides of the dc system 
are required to suppress these harmonics. 

7.3 HVDC CONVERTERS 

A HVDe converter is simply a controlled switch suitable for HVDe 
transmission purposes. The converter can conduct in either direction de
pending on the controlled times of closing and opening as well as on the 

A-IIM�r ""d C-C"I"odr D- Vo"�r.r d·.·der E -fwClIJI.on eleclrode G-!:on"ol rfln I-Ir.n"ron rlcctr,.,ric 
P-Anoue porcelam R-Grad.ng eleclrodes 
T -Tank 

T 

Figure 7-2. A Single-Anode Mercury-Arc Valve. 
(Source: IEEE Spectrum, August 1 966, p. 77.) 
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circuit's EMF. In general, unidirectional conduction is desired, and devices 
with this property are called valves. The vacuum and vapor or gas-filled 
tubes with thennionic cathodes, mercury-arc tubes with mercury-pool 
cathode, and solid-state devices (thyristors) give typical valve characteris
tics. 

The mercury-arc rectifier is a steel vessel that is evacuated (see Figure 
7 -2). A mercury pool at the bottom serves as the cathode. One or more 
anodes are also present in the vessel. A small area on the mercury surface is 
raised to incandescence when an arc is drawn from the surface by some 
auxiliary means. The spot will emit electrons that will be attracted to the 
positive anode. The action maintains itself provided that the current 
flowing to the cathode is maintained above a critical value. The action of 
the mercury-arc rectifier requires the cathode spot to be produced first by 
some auxiliary device before the arc can be established. This is done by 
using a small auxiliary anode. The process is called ignition. The use of 
mercury is advantageous since it is a liquid metal that can easily vaporize 
and condense, returning by gravity to the cathode without loss of material. 
Mercury is a good electrical conductor and is easily ionized with a low arc 
drop. 

Voltage drops at the anode and cathode surfaces and in the arc 
contribute to the loss in the rectifier chamber. The cathode drop produces a 
loss of 8 watts per ampere of arc current. At the anode, the drop is less than 
10 volts. In the arc there is a drop of roughly 10 V 1m of arc path. This 
depends on the conditions of load, temperature, and vacuum. The total 
anode-cathode voltage is usually called the arc drop. 

To avoid the concentration of voltage close to the anode during tne 
inverse period, a succession of intennediate or "grading" electrodes is used 
in the path between the anode and cathode. These are connected to a 
voltage divider between the anode and cathode. The symbol for a controlled 
mercury-arc valve is shown in Figure 7-3. Symbols for a controlled valve of 
any type (mercury-arc or solid-state) are shown in Figure 7-4. 

+ 
Anode 

voltage 

Current 

,+ Grid 

�altage 

-

Envelope 

Anode 

Control grid 

Cathode 

Figure 7-3. Symbol for Controlled Mercury-Arc Valve. 
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Control 
Vol toge �/(grid or gale) 

Currenl -____ ��---
Anode Cathode 

Figure 7-4. Symbol for Controlled Valve. 

The top part of the ac half-wave is cut out and transposed without 
grid control. The dc voltage thus attains a maximum, which, in zero-load 
condition, is only 5 percent lower than the peak of the phase-to-phase ac 
voltage wave. Delaying the commutation through grid control displaces the 
transposed one-third part of the ac voltage wave to yield a section with a 
lower mean value; thus the dc voltage will be lower. At 90 (electrical phase) 
degrees delay, the dc voltage will be zero, and at greater delays, the dc 
voltage polarity will reverse. Since the current must retain the same 
direction, the power flow also reverses, and the convertor functions as an 
inverter. This is the principle of inverter operation conversion of direct 
current into alternating current. 

The use of solid-state devices known as silicon-controlled rectifiers, or 
thyristors, showed great potential for the production of valves with the 
required high-current, high-voltage ratings. The thyristor is a special type 
of diode that in order to start conduction must have not only a positive 
anode-cathode voltage but also a high enough positive pulse applied to a 
third electrode called the gate. Once conduction starts, the voltage across 
the thyristor drops to a low value, and the current rises to a value limited 
by the external circuit only. 

The anode-to-cathode resistance of a thyristor in the conducting state 
is very low; nevertheless, it is not zero and passage of the large anode 
current produces heat. Cooling is therefore necessary for nonnal operation. 
Air, oil, or water-cooling systems are in current use in conjunction with 
thyristor valves. 

To achieve the voltage ratings desired for a valve, thyristors may be 
strung together in series; increases in the ratings of thyristors reduce the 
number needed and result in higher efficiency and lower cost. Thyristors 77 
mm in diameter and rated as high as 3800 V are available for HVDC 
converters, and larger thyristors rated at 5000 V or higher are being 
developed. The refinement of thyristors and thyristor valve design has 
increased the reliability of converter valves dramatically. 
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The problem of arc-back has plagued mercury-arc rectifier applica
tions. This is essentially the failure of rectifying action, which results in the 
flow of the electron stream in the reverse direction due to the formation of a 
cathode spot on an anode. A bypass valve around the bridge circuit was 
introduced to short-circuit the bridge and permit the current to flow around 
the problem section. This valve is not necessary in the case of solid-state 
valves. 

With thyristor valves it is possible to tap into any point of the 
thyristor chain. Consequently it is possible to adopt the 12-pulse bridge 
configuration. This has a higher rms value of the rectified waveform and a 
higher harmonic range. In the 6-pulse bridge circuit used with mercury-arc 
converters, the significant harmonic components are the 5th, 7th, 11th, and 
13th, in contrast with only 11th and 13th in the case of the 12-pulse bridge. 
Thus there is significant saving in cost of filters to reduce these harmonics 
when thyristor valves are used. 

The availability of high-current thyristor devices makes it possible to 
replace the series-parallel configurations that were necessary to obtain the 
required current ratings in earlier converter designs. A standard single-bridge 
converter with several high-voltage devices coupled in parallel is used. This 
eliminates the need to control series valves. Moreover, there is no need to 
install the parallel converters at the same site. With a reliable system of 
communications between sites, it is possible to site each branch of the 
circuit on its own. Thus an increased system reliability is achieved since the 
loss of one site does not result in the loss of the whole. 

Fiber-optic devices are used for simultaneous triggering of the devices 
as well as for monitoring purposes. A fiber-optic guide bundle carries the 
image of a light source at ground potential up to photo detectors that 
operate the triggering circuit of each thyristor. 

7.4 CLASSIFICATION OF DIRECT· 

CURRENT LINKS 

Direct-current links are classified according to the number of conduc
tors used. The mono polar link has one conductor (usually of negative 
polarity) and uses ground or sea return. A monopolar link is shown in 
Figure 7-5. Two conductors, one positive, the other negative, are used in a 
bipolar link. The neutral points given by the junctions between the con
verters are grounded at one or both ends. Each terminal of a bipolar link 
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Figure 7-5. A Monopolar link. 

Figure 7-6. A Bipolar link. 

+ 

�---II' -- --...... ---- 'II---� 

Figure 7-7. A Homopolar Link. 

has two converters of equal-rated voltage in series on the dc side. Figure 7-6 
shows a bipolar link. The homo polar link has two or more conductors, all 
having the same polarity (usually negative), and always operates with 
ground return. This is advantageous since on fault the entire converter can 
be connected to the remaining nonfaulted conductor or conductors. The 
homopolar link is shown in Figure 7-7. 
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7.5 SOME ADVANTAGES OF 

HVDe TRANSMISSION 

The primary economy in dc transmission is that only two conductors 
per circuit are needed rather than the three required for ac. Consequently, 
dc transmission towers carry less conductor dead weight, and they can be 
smaller, less costly to fabricate, and easier to erect. 

For the same amount of power transmitted over the same size conduc
tors, line losses are smaller with dc than with ac. Neglecting ac skin effect, 
ac line losses are 33 percent greater than dc line losses. The basis for this 
comparison is given in the following example. 

Example 7-1 
Show that the ratio of ac line loss to the corresponding dc loss is 1.33 

assuming equal power transfer and equal peak voltages for both options. 

Solution 

Assume three-phase ac is compared with bipolar dc. The ac power is 
Pac = 3�hIL 

and the dc power is 
Pdc = 2Vd1d 

Now the rms voltage to neutral �h in ac is related to the maximum or peak 
value through 

For dc, we have 

1 
V:ph = In Vmax y2 nac 

Therefore, for equal power transfer, 
Pac = Pdc 

we have 

Thus assuming 
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we conclude that 

3 Id= In IL 
2V2 

= 1.06IL 
The power loss in each case is given by 

Thus, 

PL•c = 3IiRL 
PLdC = 2l�RL 

PL•c _ � ( _1_ ) 2 
PLdc - 2 1.06 

= 1.33 
Note that even though the power transfer is the same, the dc line is simpler 
and cheaper, with two conductors as opposed to three. This leads to 
requiring two-thirds of the insulators that would be required for the ac line. 

The next example illustrates that if the lines are designed such that 
the line losses are equal, the voltage level in the dc case will be less than the 
corresponding ac voltage. 

Example 7-2 
A new dc transmission system is compared with a three-phase ac 

system transmitting the same power and having the same losses and size of 
conductor. Assume that the direct voltage for breakdown of an insulator 
string is equal to the peak value of the alternating voltage to cause 
breakdown. Show that the dc line will not only have two conductors instead 
of three for the ac line, but in addition the insulation level will only be 87 
percent of that of the ac line. 

Solution 

The ac power transmitted is given by 

Pac = 3"j,h I L 
where we assumed unity power factor. The dc power transmitted is 

Pdc = 2Vd1d 
The corresponding power losses are 

PL•c = 3IiR 
PL = 2IJR de 
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For equal line losses, we get 

For equal transmitted power, we get 
3\-j,hIL = 2Vd1d 

Combining the above two results, we conclude that 

Vd= If \-j,h 

Assuming that the direct voltage for breakdown of an insulator is equal to 
the peak value of the alternating voltage to cause breakdown, the insulating 
level of ac line = 12 \-j,h( kI)' and insulation level of dc line = Vdk2 where ki 
and k2 are multiplying factors. We can assume for simplicity: 

Hence 
ki = k2 

Direct-current insulation level _ Vd 
Alternating-current insulation level - '2 v: V� ph 

[3 = 2 = 0 .87 
Thus the dc line will not only have two conductors instead of three (of the 
same size) for the ac line, but in addition the insulation level will only be 87 
percent of that of the ac line. 

The previous two examples clearly deal with two extreme cases. In the 
first, savings in the line loss are achieved while maintaining equal insulation 
level. The reverse is the case treated in the second example. The following 
example gives a basis for weighing loss reduction versus insulation level 
reduction. 

Example 7-3 
Assume that a design choice calls for a ratio y of the losses in the dc 

case to losses in the ac alternative. Thus, 
p Ldc - =y p Lac 

(7.1) 

This choice leads to a specific ratio of dc voltage to peak ac voltage. Show 
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that in this case 

Insulation level dc = 0 5 II 
Insulation level ac 

. V y 
Assume equal power transfer in both cases. 

Solution 

The loss ratio gives 

2IJRdc =y 3I1Rac 
Assuming equal resistance, we have from Eq. (7.2): 

Id = / 3Y 
IL 2 

(7.2) 

(7 .3) 

However, since the power transmitted using ac is the same as for the dc, we 
have for unity power factor 

3�hlac= 2 IdVd 
Combining Eqs. (7.3) and (7.4), we thus have 

From which, 

Insulation level dc = � = 0.87 
Insulation level ac 12 �h Ii 

(7.4) 

(7 .5) 

This result is shown graphically in Figure 7-8. The reader is reminded that 
we are discussing the advantages of HVDC, which is the focus of our 
attention. 

In the event of a single-line fault on a dc line, the remaining conduc
tors will still be functional through the use of ground return. This enables 
the repair of faulty sections without considerable reduction in service level. 
The fact that each conductor can act as an independent circuit is a 
contributing factor to the better reliability of dc transmission lines. 

Switching surges on dc lines are lower than those on ac lines. In ac 
overhead lines, attempts are made to limit them to peak values of two or 
three times the normal maximum voltage value as opposed to 1.7 times in 
the dc case. Radio interference and corona losses during foul weather are 
lower in the dc case than in the ac case. 

The ac resistance of a conductor is commonly known to be higher than 
its dc resistance, due to skin effect. 
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Figure 7-8. Variation of Insulation Ratio with Loss Ratio for Equal Power 
Transfer. 

A dc transmission link has no stability problem. This is contrasted to 
the ac case where a steady stability limit exists. Operating beyond this limit 
will mean loss of synchronism as discussed earlier. 

Interconnecting systems by a dc link will not increase short-circuit 
currents of the ac systems nearly as much as interconnection via ac links. 
This can save on synchronous condenser requirements in the system. 

The transient reactance of some hydro plants is abnormally low (to 
raise the stability limit), necessitating a higher generator cost. This would 
not be required if dc transmission is used. 

One of the most important economies achieved can be appreciated if 
we observe that using dc transmission, the prime-mover speed need not be 
confined to correspond to 50 or 60 Hz, but could rather be chosen for best 
economy. 

The reactive power produced by the cable's shunt capacitance greatly 
exceeds that consumed by the series inductance. This is due to loading 
below surge impedance level to avoid overheating. In a 6O-Hz cable 40-80 
km long, the charging current alone equals the rated current. Shunt com
pensation could theoretically rectify this problem. However, this is difficult 
to implement in submarine cable applications. Direct-current cables have no 
such limitations. 



370 High-Voltage Direct-Current Transmission 

5 "0 0) 
.... :::: 0)"-�E 4 o u) a.@ 0)'::: 3 > .... 

:+::0) o� roo �a. 2 -0 0 .... 
0"0 :+::0) ro= a: a. a. ::J U) .,. 0 0 200 400 

-- --

600 
Length of line (mi) 

800 1000 

Figure 7-9. Reactive Power Requirements of Long Overhead ac and dc Lines 
at Full Load as a Function of the Length of Line. 

A dc line itself does not require reactive power. The converters at both 
ends of the line draw reactive power from the ac system connected. This is 
independent of the line length, in contrast with ac where reactive power 
consumption varies almost linearly with distance, as shown in Figure 7 -9. 

The voltage at an open end of a long line is considerably higher than 
rated. This phenomenon is called the Ferranti effect and is a limiting factor 
for ac lines. The voltage at an open end of a long line presents a special 
problem when the line is put in service by first connecting it to the main ac 
system. It is not feasible to close both ends at exactly the same instant. 
Clearly this difficulty is avoided in dc lines. 

7.6 SOME ECONOMIC 

CONSIDERATIONS 

The result of Example 7-3 indicates that a saving (reduction) in line 
losses results in an increase in the required voltage (insulation level). This is 
clear by inspection of Figure 7-8 showing the variation of dc insulation level 
with the losses, assuming PL and the ac insulation levels as the reference. 
A compromise choice can be 

a�ade based on the economic trade-offs. 
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The annual variable cost of operating a dc line can be assumed to be 
the sum of two parts. The first is cost of power lost in transmission, and the 
second is the annual amortized capital cost of line and terminal stations 
(converters). The cost of dc losses can be expressed in terms of y (the loss 
ratio) as 

Cost of dc losses = By (7.6) 
where we define B as the annual cost of losses in the ac case. The line and 
terminal costs vary directly with the required insulation level, which in tum 
is voltage-dependent. In terms of the loss ratio y, we thus write in the light 
of Eq. (7.5), 

Voltage dependent 
dc capital costs 
amortized annually 

The constant A is expressed as 
A= qA 

0.87A 
IY (7.7) 

Here we take the voltage-dependent ac capital cost as the basis for compari
son: 

A = Voltage-dependent ac equipment capital 
cost amortized annually 

The factor q is introduced to account for the cost of terminal stations in 
relation to line costs. As a result of the foregoing assumptions, the total 
annual costs of operating the dc line are 

c = 0.87A +B de IY Y (7.8) 

The variation of the costs Cdc with loss ratio y is shown in Figure 7-10. The 
corresponding ac costs are 

Cac =A+B (7.9) 
The following example gives the basis for economic choice of y, the loss 

ratio. 

Example 7-4 
Show that for minimum total annual cost of the dc line, 

Cost of losses = 0.5( cost of voltage-dependent equipment) 
Solution 

For minimum cost, 
acdc -=0 ay 
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Figure 7-10. Variation of de Costs with Loss Ratio y. 

This requires, in view of Eq. (7.8), 

or 

B- 0.87..4 = 0 
2( y)3/2 

which implies that at the optimum 

y 

(7.10) 

Cost of losses = 0.5( cost of voltage-dependent equipment) (7.11) 
To get a feeling for the numerical implications of the above, we have 

the following example. 
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Example 7·5 

The annual cost of losses for a dc line is $4 X 106• Assuming that the 
design is optimal, find the corresponding capital cost of voltage-dependent 
equipment amortized annually. Calculate the ratio of losses in the dc case to 
that of the equivalent ac option. Assume that annual cost of the latter is 
$5 X 106• 

Solution 

From the previous example, we have by Eq. (7.11), 
Annual capital cost of voltage-dependent equipment = 2By 

But 
By=4 X 106 

Thus the required cost = 2 X 4 X 106 = 8 X 106 dollars per year. 
We are also given 

Thus the required ratio is 

B=5X 106 
y(5 X 106) = 4 X 106 

y=0.8 

Breakeven Between ae and de 

From Example 7-4, at the optimum we have by Eq. (7.10): 

By' � Ho.s/ :. ) .4 

Thus the minimum cost of the dc line in operation is according to Eq. (7.8), 

Gmin = By* + 0.5.4 V :* 
=3By* 

But we have from Eq. (7.10), 
3 3.42 

(y*) = 16B2 
Thus Eq. (7.12) is rewritten as 

= . ( 3.42 
)
1/3 

Gmin 3B 2 16B 
= 1.72{.42B)I/3 

(7.12) 

(7.13) 
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The capital cost of the ac transmission option is given according to 
Example 7-4's definition of Eq. (7.9) as 

Cac=A +B (7.14) 
In order to compare the two options available, we take the difference in 
costs as the measure. We thus define the savings S as 

(7.15) 
This reduces on using Eqs. (7.13) and (7.14) to 

S = A + B - 1.72B1/3A2/
3 (7.16) 

Defining the constants, 

P=1.72 ( i )2/3 (7.17) 

z= (� r/3 (7.18) 
Then Eq. (7.16) can be written as 

S = B(I-pz2 + Z3) (7.19) 
Clearly S can take on negative values, indicating a cutoff value where the dc 
option is no longer more economic than the corresponding ac alternative. 

For illustration purposes it is more convenient to deal with the ratio 
(SIB), denoted here by 8: 

- S S=B (7.20) 
This has a minimum with respect to the variable z, obtained by setting the 
derivative equal to zero. Thus 

This occurs at a value of zm: 

as -= -2pz+3z2 az 
=0 

(7.21) 
Here the minimum is given by substituting Eq. (7.21) into Eq. (7.20). Thus, -

_ 4 3 Smin -1- 2'tP (7.22) 
The variation of &run with the ratio (AlA) is obtained by substituting in 
Eq. (7.22) from Eq. (7.17): 

(7.23) 
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Figure 7·1 1 .  Variation of S with z for Different A/A Ratios. 
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TABLE 7-2 

Relevant Points on the S versus z Characteristics 
A/A P Zl Z2 Zm 8m 
1.2 1.942 1.072 1.495 1.295 -0.114 
1.4 2.153 0.8810 1.865 1.435 -0.478 
1.6 2.353 0.8033 2.133 1.569 -0.930 
1.8 2.545 0.7454 2.367 1.697 -1.442 
2.0 2.730 0.7021 2.580 1.820 -2.015 

Inspection of Eqs. (7.22) and (7.23) shows that for positive values of p: 
- A 

Smin ;;;;. 0 ,  for po;;;; 1 .8899 or A 0;;;; 1 .1547 (7 .24) 

- A �n < 0 for p > 1 .8899 or A > 1 . 1547 (7 .25) 

The implication of Eq. (7.24) is that S (and consequently S) is positive for 
all values of Z as long as (A/A) is less than 1 .1547. From Eq. (7. 15), we can 
conclude that Cae> Cdc for all values of z defined by Eq. (7.18) if A/A < 
1 .1547. 

For values of A/A> 1 . 1547, Smin and hence a range of S are negative. 
The value of S will be zero for two values of z denoted by Zl and Z2 and will 
be a minimum at zm' Table 7-2 lists a few values of the ratio (A/A) and the 
corresponding values of Zl' Z2 , Zm. and Smin' The general shape of the S 
versus Z variation is shown in Figure 7-1 1 .  

7.7 CONVERTER CIRCUITS: 

CONFIGURATIONS AND PROPERTIES 

Groups of valves can be connected in various ways to form a converter. 
In this section we examine some possible configurations of converter circuits 
and study the basic properties that are useful in the design of HYDe 
converter circuits. It is instructive to begin with a study of the case of a 
single-phase ac power supply. The full-wave rectifier circuit is studied first. 

Single-Phase FUll-Wave Rectifier 

A single-phase, full-wave rectifier circuit is shown in Figure 7-12. A 
transformer with a center-tapped secondary winding and two valves 1 and 2 
are used. The cathodes of the valves are connected through a large smooth
ing reactor to the dc load. 
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Figure 7-1 2. Single-Phase, Full-Wave Rectifier Circuit. 

The anode voltages to neutral el and ez have 180°-phase displacement, 
and can be expressed as 

The waveforms are shown in Figure 7-13, starting at wt = - .". The 
cathodes of the two valves have a common voltage Vd( t). When a valve is 
conducting, the voltage difference between its anode and cathode (denoted 
valve voltage) is zero. Thus vd( t) is always equal to the anode voltage of the 
conducting valve that has a higher anode voltage than the other valve. 
Thus vd( t) is made of the positive half-waves of el and ez. For the first 
period we have 

vit) = el(t) 

= ez( t) 

(O";;;;wt,,;;;;.,,) 

(.",,;;;; wt,,;;;; 2.,,) 

The reactor L is assumed to filter the ripple in vd( t); i.e., the voltage 
Vd on the load side is assumed to be maintained at a constant value due to 
the reactor action. This is essentially an averaging operation, and thus 

1 1'" 
= - vit)d(wt) 

." 0 
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Figure 7-1 3. Waveforms for Single-Phase, FUll-Wave Rectifier. 

The direct voltage is thus given by 

The inverse relation is 

Vd= !l"EmSin wtd( wt )  
'IT 0 

= 
Em ( - cos wt)� 

'IT 
2Em 

Vd= - = O .6366Em 
'IT 

Peak Inverse Voltage (PIV) 

(7.26) 

(7.27) 

Kirchhoff's voltage law applied to the loop, including the two valves 
and the transfonner secondary, leads to the following relation : 

VI - V2 = el - e2 
Ideal valve characteristics are assumed so that when valve 1 is conducting, 
VI = O. Thus e2 - el appears across valve 2. Similarly, el - e2 appears across 
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valve 1 when valve 2 is conducting. The voltage VI is shown in Figure 
7-13(c); its peak is 2Em as evident from the figure. This value is important 
in identifying the voltampere rating of the valve and is commonly referred 
to as the peak inverse voltage (PlY). Thus for a single-phase full-wave 
rectifier, we have 

Peak-to-Peak Ripple (PPR) 

PIV = 2Em = 'lTVd 
= 3.1416Vd (7.28) 

The voltage vI( t) varies from 0 to Em as evident from inspection of the 
voltage waveform. We thus have the peak-to-peak ripple (PPR) defined as 
the difference between the highest and lowest values of the output waveform 
given for this circuit by 

PPR=Em 

In terms of the dc voltage, this is then 

PPR = 1.5708Vd (7.29) 

The PPR is a useful measure of the quality of the dc voltage. 

Value Current Relationships 

Each valve conducts during the one-half cycle when the associated 
anode voltage is the higher of the two anode voltages. The valve current 
wave is a rectangular pulse of height Id and duration 'IT. Thus 

The average valve current is 

il(t)=Id 
=0 

12\( t)d( "'t) 
1 - 0  av - --O.---2 -'lT--[T Idd( "'t) 

o 

Id Iav= 2" 
The effective valve current is 

2 'IT 

2 'IT 

(0 EO; ",tEO; 'IT ) 
( 'IT EO; ",t EO; 2 'IT ) 

(7.30) 
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Thus 

Transformer Current Relationships 

(7 .31 )  

The transformer secondary currents are the same as the valve cur
rents. The MMF of the secondary winding is proportional to i1 - i2 and has 
an average of zero; thus no dc component of the MMF exists. Hence there is 
no tendency to saturate the core. If the turns ratio of the transformer is T, 
then the primary MMF is Tip = i1 - i 2• The primary current ip is thus 

. ( )  Id ( ) lp t = T O"';;; wt",;;; 7T 

-[ 
___ d 

T 
The effective value of this wave is 

VA Rating of Valve 

[ [ = --E. Pelf T (7.32) 

The voltampere rating of a valve is defined as the product of its 
average current and its peak inverse voltage (PIV). In our case, the average 
current is (ld/2), and the PIV is given by Eq. (7.28). Thus, 

VA" = 7T Vd ( �) 
7T = 2(Pd ) (7 .33) 

where the dc power delivered is 

(7.34) 

VA Rating of  Transformer 

The voltampere rating of a transformer winding is the product of its 
rms voltage and rms current. For each half of the secondary winding this is 
obtained from 

and 

e1,m8 = O .707Em 

= (O.707)(1.5708Vd ) = 1.1 107Vd 

(7 .35) 

(7 .36) 
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Observe that the nns value is the same as the effective value. The voltampere 
rating of the whole winding is thus given by 

VAt = (2) (O.707Id) (1.1107Vd) . 
VAt. = 1.5708Pd 

For the primary winding we have 

and 

eprms = 0.707TEm 
= 1.1107TVd 

. Id l =Prms T 
Thus the voltampere rating for the primary winding is obtained as 

VAtp = (1.1107TVd) ( �) 
or 

Pulse Number p 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

The number of cycles of ripple (pulsations) of direct voltage for every 
cycle of alternating voltage is called the pulse number. For the single-phase, 
full-wave rectifier we have 

p= 2 
as can be verified from inspection of Figure 7-13. 

Three-Phase Converters 

In major bulk-power applications, three-phase circuits are preferred to 
single-phase ones. From the HYDe application point of view, we prefer 
three-phase arrangements since the ripple of the direct voltage is smaller in 
magnitude and higher in frequency than the corresponding values for the 
single-phase case, as will be seen in the following analysis. 

Three-Phase One-Way Circuit 

The one-way circuit is the simplest three-phase converter circuit and 
serves as a step in illustrating other connections. The arrangement is shown 
in Figure 7-14. 

The voltages ea, eb, and ec are balanced, and the anode voltages with 
respect to N are equal to the corresponding transfonner secondary voltages. 
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Figure 7-1 4. Three-Phase One-Way Circuit Configu ration. 

We thus have 

ea( t) = Emcos( wt) 

eb( t) = Emcos( wt - 120° ) 
ec( t) = Emcos( wt + 120° ) 

L 

De 
Vd 

N 

The cathodes of the three valves have a common voltage to neutral 
vi t). As in the previous rectifier circuit, vd(t) will take on the value of the 
highest of the anode voltages ea, eb' and ec' Inspection of the waveforms in 
Figure 7-14 reveals that ea(t) is higher in value than eb(t) and ec(t) for the 
range 

and therefore vd(t) = ea(t) over that range. Similarly, we conclude that 
vd(t) = eb(t) over the range 

and Vd(t) = ec<t) over the range 
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Thus vd(t) is the upper envelope of the voltages ea, eb, and ec(t). 
The direct voltage is the average of vd(t), and we thus have 

This reduces to 

3Em (2 . .,, ) =-- sm-
2." 3 

3(3 =-E 2." m 

with the inverse relation 

Peak Inverse Voltage 

(7.41) 

(7.42) 

As an example, consider the voltage across valve 1. In the range 

the valve is conducting and hence v1( t) = 0 in this range. Beyond that for 
the range C� �wt�.,, ) 
valve 2 conducts and the voltage across valve 1 is 

v1(t) =ea(t) -eb(t) 

The situation in the range 

is such that valve 3 conducts and 

The voltage waveform v1( t) is shown in Figure 7-15(b). 
For the range 
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Figure 7-15. Waveforms for Three-Phase One-Way Circuit. 

we have 
Vl( t ) = Em[cos( wt) - cos( wt-1200) ] 

= (3 Emcos( wt + 30° ) 

wt 

_ uJt 

_ wt 

• wt 

• wt 

L. wt 

Clearly the absolute value of the minimum of v1( t) is v'3 Em' Thus we 
conclude that the peak inverse voltage is given by 

PIV = {3Em 
In terms of the dc voltage, 

PIV = ((3 ) ( 1 .2092) Vd 
or 

PIV = 2 .0944Vd (7 .43) 
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Peak-to-Peak Ripple 

With reference to Figure 7 -15(b), the PPR is the difference between 
the voltages at t = 0 and t = 'IT /3",. Thus, 

PPR = ea(O) - ea ( i ) 
= Em -Emcos( i ) 
= 0.5Em 

In terms of the dc voltage, this is given by 
PPR = 0.5( 1 .2092) Vd 

or 
PPR = 0.6046Vd (7 .44) 

This is clearly lower in value than the PPR for a single-phase circuit as is 
evident by inspection of Eq. (7.29). 

Valve Current Relationships 

Each valve conducts during the one-third cycle when the associated 
anode voltage is the highest. The wave of valve current is a rectangular 
pulse of height Id and duration 2 'IT /3. For example, 

=0 
The average valve current is thus 

Thus 

(7 .45) 
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The effective valve current is obtained as follows: 

f5"'/3i�( t)d( wt) 
[2 _ -",/3 e 1/ - ---'----=-2-.,,---

1"'/3 [Jd( wt) -",/3 2." 

Thus, 

Transformer Current Relationships 

(7 .46) 

The transformer secondary winding current is the same as the valve's. 
The primary side does not contain a dc component. Therefore, the average 
of the primary current is zero. The expression for the primary current to 
satisfy this requirement is 

This is further given by 
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The effective value is given by 

/1T/3 ( 21d ) 2 d( wt) + J51T/3 ( Id ) 2 d( wt) -1T/3 3T 1T/3 3T 
12 = --�------------�------------

p a." 217" 
41J ( 217" ) + -.!L ( 417" ) 
9T2 3 9T2 3 

217" 
212 

_ _  d 
9T2 

Thus the effective value of the transfonner primary current is 

VA Rating of Valve 

/2ld 
I = -pa," 3T 

_ 0.4714Id 
T (7.47) 

The voltampere rating of the valve is obtained using the definition 

VAv = lav (PIV) 

Thus substituting for lav and the peak inverse voltage in tenns of the 
direct-current quantities, we get 

VAv = ( �d ) (2.0944)Vd 

= ( 2.0:44 ) Pd 

where as before 

VA Rating of Transformer 

The transfonner secondary voltage has an effective value of 

Em Eefl• = 
/2 

_ 1.2092Vd 
/2 

= 0.855Vd 

(7.48) 

(7.49) 
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The effective value of the transfonner's secondary winding's current is 

I = � e lf, fa 
Thus the voltampere rating of the secondary is 

VAl, 
= (3) (0 .855Vd ) ( � ) 
= 1 .481Vdld 
= 1 .481Pd 

The primary voltage has an effective value of 

Ee/lp = 0 .855TVd 

The effective value of the primary current is 

I 
= 0.4714Id 

pa.f( T 
Therefore we have for the VA rating of the transfonner's primary, ( 0.4714Id ) VAtp = (3) (O .855TVd )  T 
As a result, 

VAtp = 1 .2091Pd 

Pulse Number 

(7 .50) 

(7 .51 ) 

( 7 .52) 

The pulse number is the number of cycles of ripple of Vd per cycle of 
the alternating voltage. This is given by 3 in the three-phase one-way 
circuit. 

Three-Phase, Two-Way (Graetz) Circuit 

The three-phase, two-way circuit arrangement is shown in Figure 7- 16. 
The transfonner's secondary windings feed groups of three valves each. 
Each group may feed a separate dc load. If the two loads are balanced, the 
neutral (shown dashed) may be omitted. 

The cathodes of the upper group of valves ( 1 , 3 , 5) are connected to the 
anodes of the lower group. The common potential of the cathodes of these 
valves, vdu( t ), is equal to the most positive anode voltage. 

The common potential of the anodes of the lower group of valves 
(2, 4, 6), vd1( t ), is equal to the most negative cathode voltage. 
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Figure 7-1 6. Three-Phase, Two-Way (Graetz) Circuit Configuration. 
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Assuming that the secondary transformer voltages are given by a 
balanced set, then 

For the range 

ea( t) = Emcos wt 
e b( t ) = Emcos( wt - 120° ) 
e c( t ) = Emcos( wt + 120° ) 

( - i � wt� i ) 
ea is the most positive voltage, and hence valve 1 conducts. Therefore, 

For the range 

(O � wt � 23
'IT
) 

ec is the most negative, and hence valve 2, conducts. Therefore, 
Vdl( t) = ec( t) = Emcos( wt + 120°) (0 � wt� 23'IT ) 

The output voltage is 

For the range 

we have 

vA t) = Vdu( t ) - Vdl(t) 

O � wt � :: 3 

Vd( t) = Em[ cos wt - cos( wt + 120° ) ] 
= (3 Emcos( wt - 30°) 

The direct voltage Vd is therefore given by 
1 111/3 r;; Vd = -;;; v3 Emcos( (J - 30° ) d(J 

_ 0 3 
3 '3  

= _V i)  ( E ) 
'IT m (7 .53) 

Note that the direct voltage here is double that for the single-way circuit. 
The inverse relation is 

(7 .54) 
The wavefonns are shown in Figure 7-17. The transformer secondary 

line-to-neutral voltages are shown in Figure 7-17(a). These are also the 
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voltages of the anodes of the lower group of valves and of the cathodes of 
the upper group, all with respect to neutral point N. The difference in 
ordinates between the upper and lower envelopes is the instantaneous direct 
voltage on the valve side of the smoothing reactor. This is replotted in 
Figure 7-17(b) as the envelope of the line-to-line voltages. The voltage 
across valve 1 is also shown in Figure 7-17(c). 

On the basis of the above information we can now proceed to the 
evaluation of the design parameters of interest. We will evaluate the peak 
inverse voltage, peak-to-peak ripple, and valve and transformer ratings. In 
all cases it will become evident that the Graetz circuit is more efficient than 
the two previous circuits. 

Peak Inverse Voltage 

An analysis similar to that for the one-way circuit can be carried out. 
This gives 

PIV = (aEm 
In terms of the direct voltage, this is 

7T 
PIV = 3" Vd 

= 1 .047Vd (7 .55) 
This is the same as for the one-way circuit. 

Peak-to-Peak Ripple 

Inspection of Figure 7-17(b) reveals that the PPR is given by 

PPR = Vd ( i ) - vA 0) 
= (a Em(cosO - cos 30° ) 

As a result, 

PPR = 0 .2321Em 
In terms of the direct voltage, we obtain 

PPR = (0 .232 1 ) (0 .6046) Vd 
or 

PPR == 0.1403Vd (7 .56) 
We observe here that the peak-to-peak ripple of this circuit is considerably 
less than that for the one-way circuit. 
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Valve Current Relationships 

The load current is always carried by two valves in series, one from 
the upper half bridge and one from the lower. Each valve conducts for 
one-third cycle, as in the one-way circuit. Commutation in one group, 
however, is staggered with respect to commutation in the other group. 
Considering both groups, commutation occurs every one-sixth cycle (60°). 
In Figure 7-16, as well as in the diagrams of other converter circuits, the 
valves are numbered in the order in which they fire (begin to conduct). 
Commutation occurs from valve 1 to valve 3, then from 2 to 4, 3 to 5, 4 to 6, 
5 to 1, and 6 to 2. The current waveforms are shown in Figure 7-17(d). 

As before for the one-way circuit, we conclude that the average valve 
current is 

(7 .57) 

The effective value is 

(7 .58) 

Transformer Current Relationships 

The current in each phase of the Y-connected secondary windings is 
the difference of the currents of two valves, the numbers of which differ by 
3; for example, i a = i1 - i4-see Figure 7-17(e). 

= 0 

The effective value is given by 

As a result, 

I = r%.I a." V '3  d 

= 0.8165Id (7.59) 
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VA Rating of Valve 

The voltampere rating of the valve is 
VAv = laJPIV) 

= ( � ) ( 1 .047Vd )  

Thus, 

VA Rating of Transformer 

The effective line-to-neutral secondary voltage is 
E = Em eft, 12 

= 0.4275Vd 

The effective value of the phase secondary current from Eq. (7.59) is 
left = O.81651d 

Thus the voltampere rating of the secondary is 
VAts = (3) (0 .4275Vd ) (0 .8165Id ) 

This reduces to 

(7.60) 

(7.61) 

(7.62) 

The rating of the primary winding is the same as that for the secondary. 

Pulse Number 

The number of pulsations of Vd ripple for one alternating voltage cycle 
is clearly six, which is the pulse number for this circuit. This is double that 
for the one-way, three-phase circuit. 

Other Converter Circuits 

Additional converter circuit configurations result from rearranging 
valve groups. The Graetz circuit can be considered as a series combination 
of two one-way circuits where one group of valves has a common anode 
connection and the other group has a common cathode connection. Another 
circuit referred to as the cascade circuit is obtained by having both groups 
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with a common cathode connection each. The transfonner secondary wind
ings are connected in a double Y with 180° phase shift between the two Y 
connections. This circuit is analyzed in Problem 7-A-6. 

A third alternative is to connect the two groups in parallel on the dc 
side. Since the pulse ripple of the two groups is staggered, an indirect 
parallel connection is used. Here the two similar poles of the groups are 
connected in common to the corresponding pole of the dc line. The opposite 
poles are connected through an autotransfonner (interphase transfonner), 
whose center tap is connected to the other pole of the dc line. This circuit is 
analyzed in Problem 7-A-7. The interphase transfonner may be omitted to 
result in the six-phase diametrical circuit treated in Problem 7-A-8. Instead 
of using two three-phase circuits, a cascade of three single-phase rectifiers 
may be considered. This alternative is discussed in connection with Problem 
7-A-9. 

All of the circuits discussed above utilize a three-phase supply with six 
valves and have a pulse number of six. Table 7-3 lists the pertinent 
properties of these circuits. The table shows that the most advantageous 
circuit is the Graetz configuration. It is characterized by a low peak inverse 
voltage, a low transfonner voltampere rating for both the primary and 
secondary sides, and a low valve voltampere rating. It should also be noted 
that the transfonner connection is the simplest in the case of the Graetz 
circuit. Due to all of the above advantages, this circuit is commonly referred 
to as the three-phase bridge converter circuit and is the most commonly 
used one for HVDe applications. 

TABLE 7-3 

Comparison of Converter Circuits 
Cascade Six-Phase 

Graetz 0/ 2-3 y- y In- Diam-
Circuit Phases terphase metrical 

DC ripple voltage O. 140 Vd O.140 Vd O.140Vd O.140 Vd 
Peak inverse voltage 1 .047Vd 1 .047 Vd 2.094Vd 2.094Vd 
Transformer secondary O.428Vd OA28Vd O.855Vd O.740Vd 

rms voltage 
Peak valve current l .000Id l .000Id O.500Id l .000Id 
Average valve current O.333Id O.333Id O.167Id O.167Id 
Transformer secondary O.816Id O.577Id O.289Id OA08lld 

rms current 
All valves VA 2.094Pd 2.094Pd 2.094Pd 2.094Pd 
Tranformer primary VA 1 .047Pd 1 .047Pd 1 .047Pd 1 .283Pd 
Transformer 1 .047Pd 

secondary VA 
1 .481Pd 1 .481Pd 1 .814Pd 

Cascade 0/ 
3 Single-
Phases 

O.l40Vd 
1 .047 Vd 
O.370 Vd 

l .000Id 
O.500Id 
O.707Id 

3.142 Pd 
1 . 1 1 1 Pd 
1 .571 Pd 
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7 .8 ANALYSIS OF THE THREE

PHASE BRI DGE CONVERTER 

Having established that the Graetz circuit is the most useful for 
HVDC application, we now analyze the performance of the circuit that we 
will refer to as the three-phase bridge converter. A number of assumptions 
are made here. The first is the familiar balanced steady-state sinusoidal 
operation of the three-phase ac side. The direct current is assumed constant 
and ripple-free. Ideal valves are assumed so that the forward resistance is 
I!:ero and the backward (inverse) resistance is infinite. The last assumption 
stipUlates that the valves ignite at equal intervals of one-sixth of the ac 
cycle. 

We assume the following variation of the source voltages with time: 

ea(t) = Emcos( wt+ 60°) 
eb( t) = Emcos( wt - 60°) 
ec( t) = Emcos( wt - 180°) 

Consequently, the line-to-line voltages are 

eac(t) = (aEmcos( wt+ 300) 

eba(t) = (aEmcos( wt - 900) 

ecb( t) = (a Emcos( wt - 210° ) 

These six voltage waves are shown in Figure 7-18. 
Let us consider the case of two valves conducting, as shown in Figure 

7- 19 with the nonconducting valves omitted. The instantaneous direct 
voltage Vd across the bridge on the valve side of the dc reactor consists of 
60° arcs of the alternating line-to-line voltages, shown by the shaded area 
Ao in Figure 7-18 for the period in which valves 1 and 3 conduct. The 
average direct voltage Vdo is found by integrating the instantaneous volt
ages over any 600 period. For wt replaced by 0, we have 

Thus performing the integration required, we get 

(7 .63) 

where Em is the maximum value of the ac phase voltage. Since we normally 



Figure 7-1 8. Voltage Waveforms Associated with Three-Phase Bridge Con
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work with rms line voltages on the ac side, we substitute 

As a result, 

12 (VL) 
Em = {3 

where VL is the transformer's secondary line voltage (rms). 

Delay Angle 

(7 .64) 

An uncontrolled valve begins to conduct (ignites) as soon as the 
voltage across it becomes positive. If valves 1 and 2 have been conducting, 
valve 3 ignites as soon as eb becomes greater than ea , that is, at point R, as 
shown in Figure 7-18. This instant is taken as wt = o. At the same instant, 
under the present assumptions, valve 1 is extinguished (ceases to conduct). 
Valves having control grids can be made to delay ignition but not to 
advance it. The delay angle is denoted by a and corresponds to a time delay 
of a/w sec. If delayed this long, valve 3 ignites when w t = a; valve 4 when 
wt = a + 60° ; valve 5 when wt = a + 120° ;  and so on. The delay a cannot 
exceed 180° . The ignition delay affects the direct voltage as shown in the 
following analysis. 

Instantaneous direct voltages for various values of a are shown in 
Figure 7-20. The direct voltage is obtained as before except for an increase 
in the two integration limits by a. Thus, 

Vd = � fa eac dO = � fa {3 Emcos( 0 + 30° ) dO 
'TT a - 71/3 'TT a - 71/3 
3{3 

= -- Emcos a 
'TT 

In terms of Vdo (average direct voltage with no delay angle), we have 

Vd = Vdocos a (7 .65) 
We thus see that the average direct voltage is reduced by cos a, which is 
referred to as the delay factor. 

Inversion 

The delay angle a can range from 0 to almost 180° ;  thus cos a can 
range from 1 to - 1. It follows that Vd can range from Vdo to - Vdo. Now Id 
cannot reverse; hence a negative Vd implies a reversed power flow. This is 
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essentially a process of conversion of dc into ac, and is called inversion in 
contrast with rectification. It is obvious that grid control is needed for 
mverSIOn. 

Current and Phase Relations with Delay Only 
The alternating line current wave consists of rectangular pulses of 

amplitude Id and width (2 7T /3) rad, as shown in Figure 7-21 .  The root
mean-square value of the secondary current (the full wave) is given by 

As a result 

I!,s = ! J'fT/2 i 2 d'l' 7T -'fT/2 
= ! J'fT/3 IJ d'l' 7T -'fT/3 

12 
= 2 � 3 

(7 .66) 

Using Fourier analysis, this periodic wave is resolved into the sum of 
sinusoidal waves of different harmonics. The peak value of the fundamental 
frequency component is obtained as 

I2ILl = � j'fT/3 Idcos 'l'd'l' 
7T -,,/3 
2[3 =-Id 7T 

The rms value of the fundamental component of the current is thus given 
by 

(6 ILl =- ( Id) = O.780 Id 7T (7 .67) 

The power on the ac side is given by 
Pac = [3 VLIL1cos cP (7 .68) 

where cos cp is the fundamental frequency's power factor. We recall from Eq. 
(7.64) that 

As a result, we can express the ac power of Eq. (7.68) in terms of the dc 



7.8 Analysis of the Three-Phase Bridge Converter 401 

( 0 )  a = 0  

(e ) a = 600 

(d ) a = 900  

(e) a = 1200 

Figure 7·21 . Relation between Ignition Delay and Phase Displacement. 

voltage and current using Eqs. (7.64) and (7.67). Thus, 

The dc power is given by 

or using Eq. (7.65), 

(7 .69) 

(7 .70) 

(7 .71 ) 
For negligible converter losses, the ac power must equal the dc power. We 
thus conclude by equating Eqs. (7.69) and (7 .71) that 
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cos cp = cos a (7 .72) 

This means that the power factor angle cp (angle by which the fundamental 
line current lags the source phase voltage) is equal to the delay factor cos a. 

We conclude from the above discussion that with no ignition delay, 
the fundamental component of the line current is in phase with the source 
voltage. Ignition delay a shifts the current wave and its fundamental 
component by angle cp = a as shown in Figure 7-21 . Thus the converter 
draws reactive power from the ac system in the presence of ignition delay. 

Overlap Angle 

Due to the presence of inductance in the ac source transformers, the 
transfer of currents between phases can only occur at a finite rate. The time 
required is called the overlap or commutation time. The overlap angle is 
denoted p., and consequently the overlap time is p./ w seconds. In normal 
operation, p. is less than 60° .  

Figure 7-22 shows the effects of overlap angle on the number of valves 
conducting simultaneously. During commutation, three valves conduct 
simultaneously, but between commutations only two valves conduct. A new 
commutation begins every 60° and lasts for an angle p.. Thus the angular 
interval when two valves conduct is (60° - p,). 

Analysis of Operation with Overlap 

The interval in which valves 1 and 2 conduct ends at wt = a; at this 
time valve 3 ignites. In the next interval, the effective circuit is that shown 
in Figure 7-23 with valves 1 ,  2, and 3 conducting. During this interval the 
direct current is transferred from valve 1 to valve 3. The end of the interval 
is at wt = 8, where 8 is called the extinction angle and is given by 

8 = a + p.  (7 .73) 

The boundary conditions on the currents for the beginning of commutation 
at t = a/w is 

(7 .74) 

At the end of commutation t = 8/ w, 

(7 .75) 
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Figure 7-22. Effect of Overlap Angle p. on the Number of Valves Conducting 
Simultaneously. 

For the loop containing phase a, valve 1, valve 3, and phase b, we 
write KVL as 

(7 .76) 

where Lc is the transfonner secondary inductance. Now we have 

(7 .77) 
Recall that Id is assumed ripple-free. Thus differentiating both sides of Eq. 
(7.77), we obtain 

(7 .78) 

Also we have from our basic assumptions for the secondary voltages: 

(7 .79) 
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Figure 7-23. Bridge Converter with Valves 1 ,  2, and 3 Conducting. 

p 

n 

We are thus led to conclude that the current ii t) satisfies Eq. (7 .80) 
obtained by combining Eqs. (7.76), (7.77), (7.78), and (7.79). Therefore, 

Let us define 

[3 ( E 
) 

I - - --.!!! s2 - 2w  Lc 

As a result, Eq. (7.80) is rewritten as 

Integrating Eq. (7 .82) we get 

(7 .80) 

(7 .81) 

(7 .82) 

(7 .83) 
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Arcs of Offset Sinusoidal Waves of Llne-to-Llne Short-Circuit of Amplitude 1.2 , 
with 13 Lagging 90° Behind the Commutation Voltage ebll• 

The constant of integration Ie is obtained from the boundary condi
tion at t = a/w. The result is 

(7 .84) 

We can thus conclude that i3, the current of the incoming valve during 
commutation, consists of a de (constant) term and a sinusoidal term. The 
latter lags the commutating voltage by 900,  which is the characteristic of a 
purely inductive circuit and has a peak value Is2 equal to the current in a 
line-to-line short circuit on the ac source. The constant term, which makes 
i3 = 0 at the beginning of commutation, will depend on a; and for a = 0, it 
shifts the sine wave upward by its peak value. The current i1 of the 
outgoing valve has a sine term of the same amplitude as that of i3 but of 
opposite phase, and its constant term makes i1 = Id at the beginning. The 
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last observations are based on the KCL relation given in Eq. (7.77). Thus, 

i l ( t )  = Id - ii t )  
The currents il and i 3  are shown in  Figure 7-24. 

The value of the dc current Id can be obtained by noting that 
according to Eq. (7.75), 

Thus we have from Eq. (7.84), 
Id = Is2 (cos a - cos eS )  (7 .85) 

This gives the value of the de current in terms of delay and overlap angles. 

Voltage Drop Due to Overlap 

The effect of the overlap on the voltage is to subtract an area A from 
the area Ao of Figure 7-18 every sixth of a cycle ( 'IT /3 rad) as shown in 
Figure 7-25. As a result we have 

A = t( eb - ea ; eb ) dO = t ( eb; ea )  ( dO ) = 13:m j6
sin O dO 

a a a 

Figure 7-25. Details for the Derivation of Voltage Drop Caused by Overlap. 
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{iEm A = -2- (cos a - cos <5 )  (7 .86) 
Now the average voltage drop is obtained by dividing A by the duration 
( '1T /3) to give 

or 

V 
�Vd = ;0 (cos a - cos <5 )  

Thus the direct voltage accounting for the overlap is given by 

Vd = Vdo(cos a)  - �Vd 
Hence 

(7 .87) 

(7 .88) 
With no overlap, <5 = a; thus Vd = Vdo cos a, which is the same as before. 
Recall from Eq. (7.73) that 

<5 = a + JL  
We thus have the expression for the dc voltage with overlap taken into 
account given by 

V 
Vd = ;0 [cos a + cos( a + JL ) ]  (7 .89) 

Example 7-6 

The transformer secondary line voltage to a three-phase, bridge-con
nected rectifier is 34.5 kV. Calculate the direct-voltage output when the 
overlap (commutation) angle is 15° and the delay angle is: 

A. O° 
B. 15° 
C. 30° 
D. 45° 

Solution 

Given that JL = 15° and VL = 34.5 kV, then we have by Eq. (7 .64), 
3/2 

Vdo = - ( VL ) = 46 .59 kV 
'1T 
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Using Eq. (7.89), 
V Vd = ;0 [cos 0: + cos( 0: + P. ) ] 

= 23 .296[cos 0: + cos( 0: + 15°) ] 
A. For 0: = 0° , 

Vd = 23 .296( 1 + cos 15°) = 45 .80 kV 

Vd = 23 .296(cos I5° + cos 30° ) = 42 .68 kV 

c. For 0: = 30° , 
Vd = 23 .296(cos 30° + cos 45° ) = 36 .65 kV 

D. For 0: = 45° 
Vd = 23 .296( cos 45° + cos 60° ) = 28 .12 kV 

Alternating-Current Relations I ncluding Overlap 

Assuming that the power on the ac side is equal to that on the dc side, 
we can write 

Eliminating the voltages from the above equation using Eqs. (7 .64) and 
(7.89) to show the relation between Vd and Vv we conclude that 

I cos = 16 ( I ) cos o: + cos 8 
L, tp 'IT d 2 

Let us assume that the following approximation is true: 

(7 .90) 

(7 .91) 

This assumes that only the first harmonic appears on the ac side, and thus 
the rms value of the ac line current is equal to the rms of the first harmonic 
as given in Eq. (7.67). 

With this assumption we find that the power factor is 
cos o: + cos 8 cos tp � 2 (7 .92) 

Recalling that 8 = 0: + p., we can thus conclude that the dc current and 
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voltage given by Eqs. (7.85), (7 .81), (7 .89), and (7.64) can be written as 
V; Id = rc/ [cos o: - cos( 0: + 1' ) ] ( 7 .93) 

V2 Xc 
3!2 VL 

Vd = � [cos 0: + cos( 0: + 1') ]  (7 .94) 
where 

Xc = wLc (7 .95) 
The magnitude of the ac line current is related to the dc current by Eq. 
(7.91), which is substituted in Eq. (7.93) to conclude that 

(3 vL IL =-X [cos o: - cos( o: + 1' ) ]  (7 .96) 1 7T c 
Expanding the cosine terms we get 

2{3 VL • ( 20: + 1' ) . ( I' ) ILl =--;y-sm -2- sm "2 c (7 .97) 

The active power component of the ac line current is denoted by Ip and is 
given on the basis of equal power on the ac and dc sides by 

Note that 

I = VdId 
p 

(3 VL 

Using Eqs. (7.92) and (7.96), we obtain 
{3 vL Ip = 47TXc ( cos 20: - cos[2( 0: + I' ) ] } 

or in terms of the expanded cosines, 
(3 vL Ip = 27TXc sin I'sin(20: 

+ "' ) 

To derive the reactive component of the ac line current, put 

(7 .98) 

(7 .99) 

(7 .100) 

(7 .101 ) 

(7 .102) 
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and 
0 =  2a + /L 

2 ' '1' = 1':  2 
As a result, Eqs. (7 .97) and (7 .101) can be written as 

IL = 4A sin o sin 'I' , 
Ip = A sin 20 sin 2'1' 

The power factor according to Eq. (7 .99) is given by 
Ip cos <j> =[ L, 

(7 . 103) 

(7 . 104) 
(7 .105) 

(7 . 106) 

As a result, substituting for Ip from Eq. (7.105) and ILl from Eq. (7 .104) in 
Eq. (7.106), we obtain 

cos <j> = cos 0 cos 'I' 
Using the identity sin2<j> = 1 - cos2<j>, we get from Eq. (7 .107), 

or 
sin <j> = VI - coS20 cos2'1' 

sin <j> = cos 'I' /-1
_2 - - cos20 cos 'I' 

We make the approximation 

Consequently, 
sin <j> = sin 0 cos 'I' 

(7 .107) 

(7 .108) 
We can now write an alternate form of the reactive component of the 

ac line current Ir given by 
Ir = ILlsin <j> 

using the expressions of Eqs. (7.104) and (7.108). As a result, 
Ir = A(sin 21/; ) ( 1  - cos 20 )  

In terms of a and /L ,  we use Eq. (7. 103) to get 
Ir = A [ sin /L - sin /L cos( 2 a + /L ) ] 

A reasonable approximation is made on the first sine term: 
sin /L � /L 

(7 .109) 

(7 . 1 10) 

(7 . 1 1 1) 

(7 . 1 12) 
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Thus Eq. (7.1 1 1) can be written as 
Ir =A [I' - sin I' cos(2a + 1' ) ]  

Substituting for A, from Eq. (7.102) we get 
(aVL Ir = 2'7TXc [I' - sin I' cos(2a + 1' ) ]  

The reactive power on the ac side given by 
Q = {a VLlr 

(7 . 1 13) 

(7 . 1 14) 

(7 . 1 15) 
can be calculated using Eq. (7 . 1 14). Clearly the active power is calculated 
from Eq. (7.101) using 

p= (aVLlp 

Equivalent Circuit of the Bridge Rectifier 

( 7 . 1 16) 

It is possible to eliminate reference to the overlap angle using the 
following argument. The dc output voltage Vd has been shown to be given 
by Eq. (7.88) : 

Vd = Vdo(cos a ) - IlVd (7 . 1 17 ) 
where the voltage drop due to overlap is given by Eq. (7.87): 

Y llVd= ;O (cos a - cos 8 ) (7 . 1 18) 
We would like to relate llVd to the dc current Id. Recall Eq. (7 .85) : 

Id = 182 (cos a - cos 8 ) (7 . 1 19) 
Thus substituting Eq. (7. 1 19) into Eq. (7 .1 18), we obtain 

llY = Vdo . Id (7 .120) d 2 182 
Now by the definition of Eq. (7.81), we have 

where Xc = wLc• Since 

(aEm 182 = � 
(7 . 121 ) c 

3{aEm Vd =

--° '7T 
we conclude that Eq. (7.121) can be rewritten as 

1 = Vdo . 1 
82 2 ( 3:c ) (7 .122) 
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Let us define the equivalent commutation resistance R c by 
R c = ( � ) Xc (7 . 123) 

Thus Eq. (7.122) reduces to 
[ = VdO . �  (7 .124) 82 2 Rc 

As a result, Eq. (7.120) is rewritten with the help of Eq. (7. 124) as 
aVd = RJd (7 . 125) 

The voltage drop due to commutation is thus proportional to [d' 
An equivalent circuit of the bridge rectifier, operating at constant 

alternating voltage and constant ignition angle based on the above analysis, 
is given in Figure 7-26. The direct voltages and current in this circuit are the 
average without ripple. Note that the overlap angle has been eliminated and 
in its place we have R c' The output voltage is thus obtained from Eqs. 
(7 .117) and (7 .125) as 

( 7 . 126) 

Example 7-7 

Calculate the necessary secondary line voltage of the transformer for a 
three-phase bridge rectifier to provide a direct voltage of 120 kV. Assume 
0: = 30° and p. = 15° . Calculate the effective reactance Xc if the rectifier is 
delivering 800 amperes dc. 

Solution 

We use 

Thus 

Hence, 

But 

V Vd = ;0 [cos 0: + cos( 0: + P. ) ] 

Vdo = 152 .56 kV 

3/2 Vdo = - ( VL ) 7T 

Hence the required transformer voltage is 
VL = 112 .97 kV 

We have, 



7.9 Inversion in Three-Phase Bridge Converter 413 

Rc=6 fL c I d  --"-<> 

vi 

-=-

-=-

-=- VdO cos a 

Figure 7-26. Equivalent Circuit of Bridge Rectifier. 

Thus, 

As a result, 
Rc  = 15.151 ohms 

But 

Thus the required transfonner reactance is given by 
Xc = 15 .8661 ohms 

7.9 INVERSION IN THREE-PHASE 

BRIDGE CONVERTER 

j Vd 

The direct voltage of a converter has been seen to be given by Eq. 
(7.89) as 

V Vd = ;0 [cos a + cos( a + p. ) ]  ( 7 .127) 
This voltage is positive when the converter is operating as a rectifier. With 
no overlap, this occurs for 0 < a < 90° . Increasing a results in decreasing the 
output voltage. The dc voltage becomes negative for 90° < a < 180° , with no 
overlap. The valve current cannot be reversed since conduction occurs in 
only one direction. Thus reversal of the direct voltage Vd implies a reversal 
of power. In this case, the converter is said to be in the inversion mode. 
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With overlap, inversion starts at a delay angle at at which the direct 
voltage is zero. This takes place for 

cos at + cos( at + p. ) = 0 
or 

2at + p. =  'IT 

Thus the delay angle corresponding to start of inversion is 
_ 'IT - p.  

at - -2-

This is less than 900 • 
(7 . 128) 

For operation as a rectifier, the angles of ignition a and extinction 8 
are measured by the delay from the instant at which the commutating 
voltage is zero and increasing ( wt = 0). Angles defined in the same way and 
having values between 900 and 1800 could be used for inverter operation. 
Common practice, however, is to define the ignition angle {3 and the 
extinction angle r by their advance with respect to the instant when the 
commutation voltage is zero and decreasing ( wt = 1800 for ignition of valve 
3 and extinction of valve 1). 

Figure 7-27 shows the relations between the various angles defined. 
From the figure we have 

{3 = 'IT - ai 

r = 'IT - 8i 

p. = 8 - at 
P. i  = {3 - y 

(7 . 129) 
(7 . 130) 
(7 .131) 
(7 . 132) 
(7 .133) 

The general converter equations are given by Eq. (7.1 19) and Eq. 
(7.89) as 

Id = Is2 (cos a - cod ) 
Vd =  �o (cos a + cos 8 )  

(7 .134) 
(7 . 135) 

To obtain the equations for inverter operation, we change the sign of 
Vd and put cos a = -cos p and cos 8 = - cos y. Thus Eqs, (7.134) and (7 .135) 
become 

Id = Is2( cos y - cos {3 )  
Vdo(cos y + cosp ) Vd = 2 

(7 . 136) 
(7 .137) 

Note that inverter voltage, considered negative in the general converter 
equations, is usually taken as positive when written specifically for an 
inverter. In the case of operation with constant ignition advance angle p, 
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-f-----+----,i---+--'!-- w t 

Figure 7-27. Angles Defined for Converter Operation. 

Eq. (7 .126) becomes 
(7 . 138) 

For the more commonly used mode of constant extinction angle y, elimina
tion of cos f3 from Eqs. (7.136) and (7 .137) yields 

(7 . 139) 
The above two equations result in two possible equivalent circuits for 

inverter operation as shown in Figure 7 -28. 

l d -""C> Rc 
I d -=--

0 v.v. + 0 
-=-

vd v_o ' .. .. 1 'f VdO Vd 

l -
0 ( 0 )  0 

Figure 7-28. Equivalent Circuits of Inverter. 

- R c H, - + v+ 
-..=:" 

v_O '" r 1 
J 

VdO 
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7.1 0 HVDC L I N K  AN D CONVERTER 

CONTROL CHARACTERISTICS 

A high-voltage dc link is an ac/dc/ac interconnection where ac power 
is converted to dc using a three-phase bridge rectifier. The dc power is fed 
through a cable or a long transmission line. At the end of the link there is a 
three-phase bridge inverter where dc power is converted to ac, which is then 
fed to the ac system. The equivalent circuit of Figure 7-29 represents the dc 
circuit. Subscripts r and i refer to rectifier and inverter respectively. 

The dc current flowing from rectifier to inverter is given by Ohm's law 
as either 

(7 .140) 

for constant extinction angle y, or 

{7 .141} 

for constant ignition angle {3. 
The direct voltage and current can be controlled by either of two 

different methods: (1) grid control ( a  and {3 ) or (2) control of alternating 
voltage (and hence Vdor and Vdo). The latter is done through transformer 
tap changing, which is slower (in the neighborhood of 5 seconds per step) in 

cos o 

n Vdor 
-

Vdor vo. Vd, Vdoi 
cos a cos y 

cos y 

I--- Rectif ier -+Linef--Inver ter---
Figure 7-29. Equivalent Circuit of HVDC Link. 
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comparison with grid control ( 1 to 10 ms). Both means are applied with grid 
control initially for fast action and are followed by tap changing. 

The operation of the converters follows selected characteristics in 
order to meet the requirements of control and protection. This is termed 
"compounding the converter." The rectifier's most desirable mode of control 
is constant current control (abbreviated to C.C. control), which requires a 
control action that adjusts the angle of ignition so that the current is 
maintained at a set value. If the control functions ideally, the rectifier 
characteristic is a vertical line. In practice it has a high negative slope and is 
limited by a direct voltage ceiling corresponding to point B in Figure 7 -30. 

Suppose that the ac voltage decreased at the rectifier. If a stayed 
constant, then the direct voltage would decrease. The C.C. control raises the 
direct voltage either to its initial value or until the minimum a limit is 
reached. When the latter happens, the rectifier operates on the constant 
ignition angle (C.I.A.) characteristic corresponding to the minimum ignition 
angle. The voltage in this case is given by 

This is shown as line AB in Figure 7 -30. Thus the rectifier characteristics 
consist of two line segments. 

When the converter operates as an inverter, commutation must be 
completed prior to reversal of the commutating voltage (at y = 0) to avoid 

A 

Figure 7-30. Rectifier Characteristics. 
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commutation failure. The minimum angle 'Yo corresponds to the time re

quired for deionization of the arc ( 1  to 8°). This means that the angle of 

advance ( f3  = y + p.) should be made large. But on the other hand, if f3 is too 
large, then the power factor becomes poor. Thus we should keep f3 and 
hence y to a minimum. This leads to the requirement of a fast-acting control 
that maintains the extinction angle y to a definite minimum. Such a control 
is referred to as the "constant extinction angle control" (abbreviated to 
C.E.A. control). Thus the Vd1d characteristic will be repre..<;ented by the line 
FD in Figure 7-31.  In addition, a C.C. control that advances the angle f3 
more than that required for the C.E.A. control is required to ensure that 
current does not decrease below a set value. This gives rise to the segment 
GF in Figure 7-31 .  

The actual characteristics of the converter in both modes of operation 
are now seen to be as shown in Figure 7-32. Note that the difference 
between the current setting for operation as an inverter from that for 
operation as a rectifier is denoted by t:dd (in the neighborhood of 15 percent 
of rated current). The control scheme for a HVDC link is shown in Figure 
7-33. 

Consider a system of two converters as shown in Figure 7-33. If the 
C.C. control setting of converter 1 is higher than the setting of converter 2 
by a margin I:::.Id, the operating characteristic is given by Figure 7-34. The 
current in the dc line is given by the point of intersection PI of the 
characteristics of the two converters. Converter 1 operates as a rectifier, and 
converter 2 as an inverter. If the C.I .A. characteristic of converter 2 is as 
shown, then converter 1 operates on C.C. control and converter 2 on C.E.A. 

F 

o 

Figure 7-31 . Inverter Characteristics. 
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t Rect i f ier 
t I nverter 

Figure 7-32. Complete Control of a Converter, from Inversion to Rectification. 

Converter A Converter B 
3 phose 

Control for converter A Cont rol for converter B 

Figure 7-33. Schematic Diagram of Control of a HVDC System: C.E.A. = 

constant extinction angle; and C.C. = constant current. 
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Converter 2 
C E. lI  

C C  

O r-------+---�----------

C .E A 
Conver ter 1 

Conver ter 2 

Figure 7-34. Control Characteristic with Converter 1 Operating as a Rectifier 
and Converter 2 as an Inverter. 

control at point PI in Figure 7-34. If the C.I .A. characteristic of 1 falls below 
the C.E.A. characteristic of converter 2, as shown by the broken line in 
Figure 7-34, converter 1 will operate on C.E.A. control, and converter 2 will 
be on C.C. control as shown by point P2 in Figure 7 -34. Converter 1 remains 
to operate as a rectifier and converter 2 as an inverter. 

By reversing the "margin setting," i.e., making the setting of converter 
2 to exceed that of converter 1 , the flow of power can be automatically 
reversed. Converter 2 will now operate as a rectifier, and converter 2 will be 
the inverter. The operation point is now P3 as shown in Figure 7-35. The 
reversal of power is a result of the reversal of polarity. 

7.1 1 ANALYSIS OF HVDC LI NK 

PERFORMANCE 

Consider the basic model of a dc link shown schematically in Figure 
7-36. Its equivalent circuit is shown in Figure 7-37 . On the ac side, the link is 
represe?ted by two nodes i and j, whose voltages are Vl!! and "i� 
respectively. The ac currents at the rectifier and inverter terminals are 
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denoted by Ii� and Ijf!!!. respectively. The tap-changing transfonners 
have tap ratios ai and aj• We have already at our disposal all the relations 
necessary to model the link for perfonnance analysis purposes. 

The line voltage on the secondary side of the rectifier transfonner is 
aiY: , and the line current is Ii/ai . The direct voltage at the rectifier 
tenninal Vd is gi"\len according to Eq. (7. 126) as modified by Eqs. (7.123) 
and (7 .64) : . 

3/2 3 Vd . =- ( a V )cos a . - - ( X Id ) 
I 7T 1 l I 'IT Cl (7 . 142) 

The direct current Id is related to the secondary ac line current by Eq. 
(7.91). Thus 

Converter 1 
I 
I I \ r , I 
, 

C .c . t 
I " I '  

(conver ter 2 

CE A. 

, : O �------�r-��----------� � I d 
I, t:.1d , " , C c. � : 
t :  C .E A . _ " r 

P3 '------ Converter 1 Converter 2 

Figure 7-35. Control Characteristic with Converter 1 Operating as an Inverter 
and Converter 2 as a Rectifier. 
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where 

( 7 . 143) 

Here (Xi is the rectifier's delay angle, and Xc. is its commutating reactance. 
The application of KVL in the dc link gives • 

(7 . 144) 

where Vd . is the direct voltage at the inverter tenninals, and R dc is the , link's resistance. The inverter voltage equation is given by Eq. (7 .139) as 

3/2 3 
Vd . = - ( a V)cos y . - - ( X  Id ) , 7T J J J 7T c, 

(7 . 145) 

Here Yj is the inverter's extinction angle, and XC} is its commutating 
reactance. 

The power relations are given by 

The ac line current on the inverter side is 

/6 /. = a ·- ( Id )  J J 7T 

(7 .146) 

(7 .147) 

(7 .148) 

Problems 7-A-15, 7-A-16, and 7-A-17 illustrate the use of the analysis 
equations. 

A Per Unit System 

There are a number of per unit (p.u.) systems in use in connection 
with HVDC systems. We illustrate one such a system. The system is chosen 
such that the same base MV A and voltage are used on the ac and dc sides. 
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Thus, 

The base ac current can thus be calculated as 

The base dc current is 

As a result, we conclude that 

P I = -.!!.. bde V b 

The base dc current is fJ times the base ac current. 

(7 . 149) 

( 7 . 150) 

(7 . 151 ) 

( 7 . 152) 

( 7 . 153) 

This system enables us to write the condition that power on the ac 
side is equal to the power on the dc side in a computationally simple way. 
In terms of volts and amperes, we have 

In terms of per unit quantities, the above equation is 

or 

As a result, 

I3lb Va I = __ ae ( v I ) cos '!" p.u. dp.u. Ib acp,u. acp.u. "f' de 

Va la = Vac lac cos q, p.u. p.u. p.u. p.u. 
The relation between ac and dc currents in amperes is given by 

( 7 . 154) 

( 7 . 155) 

(7 .156) 
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In tenns of per unit quantities we have 

1Lp .Jbac = � ( ldp.JbJ 
Thus, 

I '6 
I _ � _Vo ( I ) L - d p... 1b 'IT p .• . ae 

This gives the per unit relationship: 

Define the constant K} by 

3/2 
1L = - ( Id ) p.u . 'IT p.u. 

3/2 
K = -} 'IT 

We thus have from Eqs. (7.157) and (7.158), 
1L = K}ld p.u. p.u. 

Analysis In Terms of Per Unit Quantities 

( 7 . 157) 

(7 .158) 

(7 .159) 

Proceeding from the primary side of the rectifier's transfonner we can 
write the approximate relation: 

1p . = aJ • .  , , (7 .160) 
This simply states that the fundamental current magnitudes on both sides 
of the lossless transfonner are related by the off-nominal tap ratio. 

The fundamental current magnitude on the converter side is related to 
the direct current by Eq. (7 .159). Thus, 

(7 .161) 
The direct voltage (in tenns of the commutating reactance and the 

voltage on the system side of the rectifier's transfonner) is according to Eq. 
(7 .142), 

Let 

Then 

3/2 3 Yd . = - ( a .v )cos a .  - - ( ldX )  , 'IT l l l 'IT C, (7 .162) 

(7 .163) 

(7 .164) 
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where Xc is the commutating reactance of the rectifier's ac source. The 
active po�er balance between the ac and dc sides gives 

Vd/d, = VJp,cos q,i ( 7 .165) 
Using Eqs. (7.160) and (7.161) in Eq. (7.165), we get 

Vd - K1a .v:cos q, . = 0 i " , ( 7 .166) 
The rectifier voltage and inverter voltage on the dc part of the system 

are related by 
Vd - Vd . = RdJd 

• J (7 .167) 
The model of the inverter is similar to that of the rectifier. Thus the 
following equations apply: 

Vd - KIa .v:cos .l. · = 0 j } }  y} 

(7 .168) 
(7 .169) 

The model developed so far consists of five independent equations-Eqs. 
(7.162), (7.166), (7.167), (7.168), and (7.169)-in terms of the following nine 
variables: 

Vd" Vdj , ai ' aj , cos ai '  cos Yj ' q,i ' q,j '  and Id 
To solve for nine variables, four equations giving the control specifications 
are needed. Thus, 

VJ',P - Vd, = 0 
cos a1P - cos ai = 0 
cos yjP - cos Yj = 0 

Vd .Id - PdP = 0 J J 

Problem 7-A-18 illustrates the per unit system and provides an analy
sis of a system in its terms. 

SOME SOLVED PROBLEMS 

Problem 7·A·1 

Consider an existing three-phase, double-circuit, ac line in relation to 
its conversion to dc with three circuits. Assume the same insulation level. 
Show that the ratio of power transmitted by dc to that by ac is given by 

Power by dc = 12 Power by ac 
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Show also that the percentage loss ratio is 
Percentage losses by dc = _1_ = 0 707 Percentage losses by ac [2 

. 

Solution 

Power transmitted by ac = (2)(3) v"hIL ' The ac line is converted to 
three dc circuits, each having two conductors at plus and minus ( Vd/2) to 
ground. 

Power transmitted by dc = 6Vd1d 
For 
with the same insulation level of 

Vd = [2 v"h '  
The first required ratio is 

We also have 

Power by dc _ 6Vd1d 
Power by ac - 6v"hIL 

_ Vd 
v"h 

= [2 

Percentage losses by dc Losses by dc Power by ac 
---�--,,----"-- - . -Percentage losses by ac Power by dc Losses by ac 

Problem 7-A-2 

_ Power by ac Losses by dc 
Power by dc . Losses by ac 

1 = [2 = 0.707 

Assume a particular design criterion specifies that the ratio of insula
tion level for a dc bipolar line to the insulation level for the equivalent ac 
three-phase line (equal power transfer) is x. Show that the corresponding 
losses are related by 

Assume that the insulation level varies directly with the peak value of the 
voltage. 



Solution 

The insulation level ratio assumed is 
V X = __ 

d-
l2 �h 

For equal power transfer, 

Therefore, 
3�hIL = 2Vd1d 
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Eliminating the voltages from both sides using the insulation ratio, we get 

The loss ratio is 

Problem 7 -A-3 
The losses for a proposed ac line are 60 MW. Find the corresponding 

losses if a dc line is designed such that the ratio of insulation level for the dc 
line to that for the equivalent ac three-phase line is 0.87. 
Solution 

We have from Problem 7-A-2, 
x = 0 .87 

It has been shown earlier that 

Thus, 

3 (60) 4(0.87) 2 
= 59 .45 MW 
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Problem 7 -A-4 
The annual savings to the utility due to insulation and loss reduction 

by using the dc option over the ac option depend on the choice of the ratio x 
defined in Problem 7-A-2. 

Sketch the variation of the total annual savings with x. Obtain the 
optimum value of x for maximum total annual savings. 

Solution 

The total savings are given by the sum of the reduction in annual cost 
of losses and the reduction in the capital cost of insulation calculated on a 
yearly basis . 

• Cost of the ac insulation-related equipment = A . 
• Cost of the dc insulation-related equipment = xA where A is as 
defined in text. 

Thus, 
Savings in insulation cost = A - xA 

Annual savings in loss cost = B (1 _ �LdC ) Lac 
= B ( - � ) 

4x2 

Thus we have the total annual savings given by 
S = A - Ax + B ( l - � ) 

4x2 

A sketch of the annual savings is shown in Figure 7-38. To maximize the 
savings, 

Thus, 

as 
= 0  

ax 

-A - - B  - = 0 
- 3 ( - 2 ) 

4 x3 

The optimum value of x is thus 

x· = ( :�  r/3 

The maximum savings are thus 

S = A + B _ ( 3B + 4Ax3 ) 
mo 

4x2 

= A + B - 1.72Bl/3A2/3 



S a v ings  

Figure 7-38. Annual Savings Variation with x. 

Problem 7 -A-5 
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High-voltage dc is used for the transmission of BOO-MW power from a 
remote generating site to the load center. Assume that transmission losses 
are 4 percent of total using the ac alternative and that this loss costs 35 
mils/kWh. A loss load factor of 0.56 is commonly assumed. The line design 
is such that the losses using dc are 80 percent of their ac counterpart. 
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Assuming that this ratio is the optimal choice such that total annual cost of 
losses and insulation are a minimum, calculate: 

A. The annual cost of the losses using the ac alternative. 
B. The annual cost of the losses using dc. 
C. The annual cost of insulation amortized annually. 

Hint: 

Solution 

Loss 1 d f t average power loss oa ac or = ----"'-..:..--peak power loss 

A. For the ac alternative, we calculate as follows: 
Peak power loss = (0.04) (800) = 32 MW 

Average power loss = (0 .56) (32) = 17 .92 MW 
Annual energy loss = ( 17 .92) (8760) ( 103 ) 

= 1 .569792 X 108 kWh 
Annual cost of losses = ( 1 .569792 X 108 ) (35 X 10-3 ) 

= 5 .49427 X 106 $/year 
B. For the cost of losses we have 

Thus, 

p pLdC = 0.8 
Lac 

Annual cost of dc loss = (0.8) (5 .49427 X 106 ) 
= 4 .39542 X 106 $/year 

C. For optimal design we have from example 7-4 that 

Problem 7 -A-6 

Cost of dc insulation = 2 (annual cost of dc loss) 
amortized annually 

= 2(4.39542 X 106 ) 
= 8 .79084 X 106 $/year 

Consider the cascade of two three-phase, one-way rectifiers shown in 
Figure 7-39. Show that 

A. Average valve current is 0.333Id• 
B. Peak inverse voltage on a valve is 1 .047Vd• 
C. Direct-current voltage ripple, peak to peak, is 0.14Vd• 



Some Solved Problems 433 

2 

Figure 7-39. Cascade of Two Three-Phase, One-Way Rectifiers. 

Solution 

+ 

We assume the secondary voltages to vary according to the following: 

e1( t ) = Emcos wt 
e2( t ) = Emcos( wt - i )  
e3( t ) = EmCOS ( wt - 2

3'IT ) 
e4( t ) = Emcos( wt - 'lT )  
es ( t) = EmCoS( wt - 4; )  
e6( t ) = Emcos ( wt - 5; )  

The first group of valves (1 , 3, 5) produces an unfiltered voltage Vd1( t), and 
the second group (2, 4, 6) produces vd2( t). Each of the secondaries in the 
second group is phase-displaced from the corresponding first by 'IT /3 electri
cal radians. 

Each valve in the group conducts for one-third of the cycle. The 
current wavefonns are shown in Figure 7-40. The pulse height is [d' The 
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Figure 7-40. Waveforms for the Cascade of Two Three-Phase, One-Way Recti
fiers. 



average current is thus 
Id Iav = a 

= 0.333Id 
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The unfiltered voltage Vd( t) is the sum of the voltages due to the two 
groups; that is, 

vA t ) = Vdl ( t ) + VdZ( t ) 
Since the two groups are similar, the average (dc voltage) is given by 

Vd = Vd1 + VdZ 
= 2Vd1 

We have for a three-phase, one-way circuit, 
Vd1 = 0 .827Em 

Thus, 

The inverse relation is thus 

The rms secondary voltage is 
E =

Em nus /2 
Thus in terms of the dc voltage, we have 

Enus = 0 .42752Vd 
The peak inverse voltage for a three-phase, one-way circuit is 

PIV = I3Em 
In terms of the dc voltage, we get 

PIV = (13 )  (0 .6046Vd ) 
= 1 .0472Vd 

The total voltage waveform vd( t ) is obtained using Figure 7-40 in 
analytic form as: 

vA t) = Em [cos{ wt} + cos( wt - i ) ]  

= I3Emcos( wt - i )  (O � wt�i ) 

vA t ) = Em [ cos ( wt - 2
3'1f ) + cos( wt - i ) ] 
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vA t )  = Em [COs ( wt - 2
3
17 ) + cos( w t - 17 ) ] 

= fa EmcOS ( wt  _ 5; ) 
vA t )  = Em [cos ( wt - 4

3
17 ) + cOS( w t - 17 ) ] 

= fa EmcoS ( wt _ 7; ) 
vA t )  = Em [ COS ( wt -

4
3
17 ) + cos ( wt -

5; ) J 
- ( 317 ) = V3 Emcos wt - 2 

Vd (  t )  = Em [cos( wt )  + cos ( wt -
5
3
17 ) J 

= /3 Emcos ( wt  _ 

1�17 ) 
The peak-to-peak ripple is obtained as 

PPR = vd ( i ) - Vd (O) 

= fa Em - fa Emcos i 
= fa Em { 1 - cos i )  
= O.2321Em 

In tenns of the direct voltage, we have 

Problem 7-A-7 

PPR = (O .2321 ) ( O .6046Vd ) 
= O.1 403Vd 

( 5317 0;;; wt o;;; 211"  ) 

Consider the Y-Y interphase rectifier circuit shown in Figure 7-41 .  
Show that 

A. Average valve current is O.167Id • 
B. Peak inverse voltage on a valve is 2 .094Vd• 
C. Direct-current voltage ripple, peak to peak, is O.14Vd• 

Solution 

The rectifier circuit is redrawn in Figure 7-42 with each group com
posed of a three-phase secondary with the three valves replaced by a single 
block. This clearly shows the voltages in the circuit. Each valve conducts for 
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Figure 7-41 . YaY Interphase Rectifier Circuit. 
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Figure 7-42. Equivalent of YaY Interphase Rectifier Circuit. 

+ 
= Dc 

431 



438 High-Voltage Direct-Current Transmission 

one-sixth of a cycle. Hence 
Id Iav = s 

= 0. 167Id 
The voltage across the interphase transformer is � .  Thus, 

� = Vd1 ( t ) - Vd2( t ) 
The output voltage vd( t) is obtained as 

Vd ( t ) = Vd2( t ) + ( % ) 
_ Vd1( t ) + Vd2( t ) 

2 
Thus the output (unfiltered) voltage vd( t) is the average of the two 
three-phase, one-way circuits' voltages. For the first circuit we have 

The second circuit lags the first by 60° ;  thus, 

We then have 
Vd2 ( t ) = EmcOS ( wt - i )  

Vd ( t ) = 0.5Em [ cos( wt ) + cos{ wt - i ) ]  
= 0.867Emcos ( wt - i ) 

The average output voltage is 
0.867Em 1'11'/3 ( 7T ) Vd = 7T cos () - "6 d() 

_ 0 3 
= 0 .827Em(2 sin 30° ) 
= 0.827Em 

With the inverse relation, 
Em = 1 .2092Vd 

The inverse voltage is obtained as 

Its peak is 

v I ( t ) = ea( t) - eb( t ) 
= Va Emcos ( wt + i ) 
PIV = VaEm 

= 2 .0944Vd 



The peak-to-peak ripple is 

PPR = Vd ( i ) - Vd ( i ) 
= 0.867Em [ 1 - cos( i ) ] 
= 0.1 16Em 

Thus in tenns of the dc voltage, we have 

Problem 7 -A-8 

PPR = (0.1 16) ( 1 .2092) Vd 

= 0.1403Vd 
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Consider the six-phase diametrical converter circuit shown in Figure 
7 -43. Show that 

A. Average current in a valve is 0.167Id• 
B. Peak inverse voltage on a valve is 2.094Vd• 
C. Direct-current ripple, peak to peak, is 0.14Vd• 

3
� 

Figure 7-43. Six-Phase Diametrical Converter. 

2 

3 

4 
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Solution 

The secondary transfonner voltages are assumed to vary as shown 
below: 

el ( t ) = Emcos wt 

e2( t )  = Emcos ( wt - i )  
e3( t) = EmCOS ( wt -

2
3'IT ) 

e4( t )  = Emcos( wt - 'IT ) = - el ( t ) 

e5 ( t ) = EmCOS ( wt - �'IT ) = - e2( t )  

e6( t ) = EmCOS ( wt -
5
3'IT ) = - e3( t ) 

These voltages are shown in Figur� 7-44. Since the cathodes of all valves are 
connected to a common node, the common voltage vd( t) is the most positive 
voltage. This is shown in the heavy line. For example, el( t) is the most 
positive in the range 

( - i � wt �i ) 
and in this case, valve 1 conducts. For the next range 

( i� w �i )  
valve 2 conducts, and so on. Thus, 

= 0  
The average valve current is 

I 
lav = ; = 0.1671d 

The direct voltage Vd( t) has the value 
Vd ( t ) = el ( t )  = Emcos wt 

The average or dc value of the voltage is thus 
Vd =  ! J'IT/6 ( Em )cos 8 d8 

_ - "./6 3 
Em ( ) 3E 

= - 2 sin 300 =---!!!. 'IT 'IT 3 
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Figure 7-44. Waveforms for the Six-Phase Diametrical Converter. 
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Thus, 
1T Em = "3 (Vd ) = 1 .0472Vd 

E Erms = i = 0.7405Vd 

The peak inverse voltage is obtained by considering v1( t), the voltage 
on valve 1. When valve 2 conducts, 

V1 ( t )  = v2( t) = e1 ( t )  - e2( t )  

= Emcos wt - Emcos( wt - 60° ) 

= Emcos( wt + 60° ) 
This is not the severest case, since when valve 4 conducts, 

Thus the PIV is 2Em . 

V 1 ( t ) = vi t )  = e1 ( t ) - eA t ) 

= 2e 1 ( t ) 

= 2 Emcos( wt )  

PIV = 2Em 
= 2 .0944Vd 

The dc voltage ripple, peak-to-peak, is obtained as 

Problem 7 -A-9 

PPR = Em - ea ( i )  
= Em( 1 - COS 30° ) 
= 0.134Em 
= 0.1403Vd 

Consider the cascade of three single-phase, full-wave rectifiers shown 
in Figure 7-45. Show that 

A. Average valve current is 0.5Id• 
B. Peak inverse voltage on a valve is 1 .047Vd• 
C. Direct-current voltage ripple, peak to peak, is 0.14Vd• 
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4 

6 

5 

Figure 7-45. Cascade of Three Single-Phase, Full-Wave Rectifiers. 

Solution 

The transformer secondary voltages are assumed to be given by 

e1( t )  = Emcos wt 
e2( t ) = Emcos( wt - 1200 ) 
ei t )  = Emcos( wt - 240°) 
ei t )  = Emcos( wt - 180°) 

= - e1( t )  
e5 ( t )  = Emcos( wt - 300°) 

= -e2( t )  
e6 ( t )  = Emcos( wt - 60°) 

= -e3( t ) 
Valves 1 and 4 operate as a single-phase, full-wave rectifier with each valve 
conducting for one-half a cycle of the ac voltage. The output vd.( t) is the 
positive values of e1( t) and ei t). Valves 2 and 5 operate similarly, but the 
output is displaced from that of the first set by 271"/3 electrical radians. 
The output is denoted Vd2( t). Valves 3 and 6 operate similarly, with a 
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further 2'1T /3 electrical radians displacement. Thus the voltage components are 

Vd2( t ) = EmCOS ( wt _ 
2; ) 

= -EmCos ( wt -

2
3
'1T ) 

VdJ t )  = EmCOS ( wt -

4
3
'1T ) 

= -EmCOS ( wt - 4; )  
The output voltage is clearly 

vA t ) = vdt( t ) + VdJ t ) + VdJ t ) 
The filtered output Vd is 

Vd = 2
1
'1T 102",[ Vd,( t ) + Vd2( t ) + VdJ t ) ] dwt 

Thus, 

where 

Therefore, 

with the inverse relation 
Em = O .5236Vd 

The valve current is a pulse of height Id and duration of one-half cycle. Thus, 
Id 18v = "2 

The peak inverse voltage (PIV) from the full-wave rectifier discussion 
IS 

PIV = 2Em 
= l .0472Vd 
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The unfiltered output voltage expression Vd( t) is obtained as follows: 
Vd ( t ) = Em [ cos wt - cos ( wt - 2

3'1T ) - cos ( wt _ �'1T ) ] 
= 2Emcos wt ( - i � wt �i ) 

Vd( t ) = Em [COS wt + Cos { wt - 2
3'1T ) - Cos { wt - 4

3'1T ) ]  
= 2 Emcos( wt - i ) ( i � wt � i ) 

vA t) = Em [ - cos wt + cos ( wt - 2
3'1T ) - cos ( wt - 4

3'1T ) ]  
= 2 EmCOS { wt - 2

3'1T ) ( i � wt � 5; ) 
vA t) = Em [ - cos wt +  cos{ wt - 2

3'1T ) + cos ( wt - �'1T ) ]  
= 2Emcos( wt - '1T ) ( 5; � wt � 7; ) 

vA t) = Em [ - cos wt - COS ( wt - 2
3'1T ) + cos { wt - 4

3'1T ) ]  
= 2 Emcos ( wt - 4

3'1T ) ( 7; � wt � 32'1T ) 
Vd( t ) = Em [cos wt - cos( wt - 2; ) + cos { wt - 4

3'1T ) ]  
= 2Emcos ( wt - 5; ) ( 32'1T � wt � 1�'1T ) 

The output voltage is shown in Figure 7-46. The peak-to-peak ripple is 
therefore obtained as 

PPR = VAO) + Vd ( i ) 

= 2Em [ 1 - cos( i ) ] = 0 .2679Em 
In tenus of the dc voltage, we get 

PPR = (0 .2679) (0 .5236) Vd = 0.1403Vd 
Problem 7 ·A·1 0 

Consider the cascade of two three-phase bridge rectifers shown in 
Figure 7-47. Show that 

A. Average valve current is 0.33Id. 
B. Peak inverse voltage on a valve is 0.524 Yd. 
C. Direct-current voltage ripple, peak to peak, is 0.035Vd. 
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Figure 7-46. Waveforms for Cascade of Three Single-Phase, Full-Wave Recti
fiers. 
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Figure 7-47. Cascade of Two Three-Phase Bridge Rectifiers. 

Solution 

The ac voltage of the lower bridge lags that of the upper by 30° 
electrical. For the top bridge, we have 

vd\( t )  = /3 Emcos( wt - i ) (0 � wt �i )  
With the 30° shift, the bottom bridge's output unfiltered voltage is 

vdJ t) = /3Emcos( wt - i ) ( i � wt ��: ) 
The output voltage of the combination is thus 

vA t )  = /3 Em[ cos( wt - i ) + cos( wt - i ) ] 
= 1 .9319/3 Emcos ( wt - � ) ( i � wt � i ) 

The dc voltage Vd is thus 
Vd =  1 .9319/3Em{[£�3 cos ( O - � ) dO]/i} 

_ (6) ( 1 .9319/3 )Em 
. ( !!..- ) _  -

7T 
2 sm 12 - 3.3042Em 
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This can also be obtained from the dc value of one bridge Vd, as 

[ 3,j3 1 Vd = 2Vd, = 2 ----;- ( Em ) 

The transfonuer secondary voltage is given by the inverse relation 
1 Em = 3 .3042 Vd 

or 
Em = 0.3026Vd 

The peak inverse voltage and average current in a valve are given by 
the same expressions as for a single bridge : 

Thus, 

Id Iav = 3 = 0 .333Id 
PIV = i ( Vd, ) 

= i (  �d ) 
PIV = 0 .5236Vd 

The peak-to-peak ripple is 
PPR = Vd ( � ) - Vd ( i ) 

= 1 .9319,j3 Em { 1 - cos ;; ) 
= 0. 1 14Em 

In tenus of the dc voltage, we thus have 
PPR = (0.1 14) (0 .3026Vd ) 

or 
PPR = 0.0345Vd 

Problem 7 -A-11 
It is required to obtain a direct voltage of 40 k V from a bridge

connected rectifier operating with a = 30° and /l = 15° . Calculate the neces
sary secondary voltage of the rectifier transfonuer, which is nominally rated 
at 230 kV /34.5 kV; and calculate the tap ratio required. 
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Solution 

Vd 
Vd = T [cos( a) + cos( a + /L ) ]  

Vd 
40 = T (cos 30° + cos 45° ) 

Thus, 
Vdo = 50.85 kV 

but 

Thus, 
VL = 37 .66 kV 

T . 37 .66 ap ratIO = 34 .5 = 1 .091 

Problem 7-A-1 2 

Assume for a three-phase bridge rectifier that the transformer sec
ondary leakage reactance per phase is 0.4 ohm, and the secondary line 
voltage is 400 V. If the output current is 200 A, find the angle of overlap 
and the dc output voltage. Assume a delay angle of 15° . 

Solution 

We have 

But 

3/2 3/2 
VdO = - ( VL ) = - (400) = 540 .19 V 

'IT 'IT 

R = 3Xe = (3)(0 .4) = 0 .382 ohm e 'IT 'IT 

182 = �O ( �J = 707 .107 A 

Id = Is2(cos a - cos (3 )  
200 = 707 .107( cos 15° - cos (3 )  

C3 = 46.915° 

C3 = a + JL  
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Thus the overlap angle is obtained as 
p, = 31 .915° 

The dc output voltage is now calculated as 
Vd = VdO(cos a + cos 8 ) 

540.19 = -2-(cos 15° + cos 46.915°) 
= 445 .389 V 

Problem 7 -A-1 3 
A three-phase bridge inverter has a commutating reactance of 150 

ohms. The current and voltage at the dc side are 1053 A and 285 kV 
respectively. The ac line voltage is 345 kV. Calculate the extinction angle y 
and the overlap angle. 

Solution 

Utilizing 

we have 

Thus 

from which 

3[2 VdO = -;- ( �J 
= 465 .91 kV 

285 = 465 .91 cos y - � ( 1053) ( 150) ( 10-3 )  7T 

y = 20.70° 
Now to find the overlap angle, 

V Vd = ;0 [cos y + cos( y + p, ) ] 
465 .91 285 = -2 - [cos(20 .7) + cos(20 .7 + p, ) ] 

As a result, we obtain the overlap angle 
p, = 52 .56° 

Problem 7 -A-1 4 

The ac line voltage of a three-phase bridge inverter is 160 kV when the 
extinction angle is 20° with an overlap of 20.342° .  Calculate the dc voltage 
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at the inverter. Calculate the necessary extinction angle to maintain the ac 
line voltage at 160 kV when the dc voltage drops to 180 kV. Assume the 
overlap angle to remain unchanged. 

Solution 

Now, 
VdO [ Vd = T cos y + cos( y + p. )] 
216 .08 = -2-(cos 20° + cos 40.342° ) 

= 183 .87 kV 
which is the dc voltage required. 

To maintain VL constant, VdO will also be constant; thus 
216 .08 180 = -2- [cos y + cos( y + 20.342° ) ]  

Thus, 
cos y + cos( y + 20 .342) = 1 .67 

Expanding the cosine term, 

Let 

Thus 

Then 

1 .94 cos y - 0.35 sin y = 1 .67 

cos O = 1 .94 
J( 1 .94)2 + (0 .35)2 

0 = 10.17° 

cos 0 cos y - sin 0 sin y = 0 .85 
As a result, 

cos( (J + y )  = 0 .85 
This gives 

(J + y = 32 .19 
from which we calculate 

y = 22 .01 ° 
This is the new extinction angle required. 
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Problem 7 -A-1 5 

A HVDC link has the following parameters: 
Xcr = 58 ohms 
Rdc = 3 ohms 
Xci = 57 ohms 

The ac line voltage to the rectifier terminals is 320 k V when delivering 500 
MW at 335 kV dc. The inverter operates with an extinction angle of 21 .50 • 
Calculate: 

A. The delay angle of the rectifier. 
B. The ac line current and power factor at the rectifier terminals. 
C. The ac line current, voltage, and power factor at the inverter 

terminals. 

Solution 

A. The dc current Id is obtained as 
500 X 103 

Id = 335 = 1492 .54 A 

The rectifier equation is applied. Thus, 

335 =  (
3
� ) (320)Cos a - � (1492 .54) (58) ( 1O- 3 ) 

As a result, the delay angle is 
a = 14 .880 

B. The ac line current is related to the dc current by 

16 
lL = - { Id } '1T 

Thus, 
ll-r = 1163 .73 A 

The ac power at the rectifier satisfies 
Pacr = {3 ( VL/LJCOS 4>r 

500 X 106 = {3 (320) ( 103 ) ( 1 163 .73}cos 4>r 
cos 4>r = 0.775 

C. The voltage equation of the dc line is 
Vdr - Vdi = IdRdc 



Thus, 
Vdi = 335 - ( 1492 .54) (3) ( 10- 3 ) 

= 330 .522 kV 
The inverter equation is applied. Thus, 

3/2 3 Vd =-(VL )cos y - - ( IdXc ) I 'IT ' 'IT t 
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3/2 3 330.522 = -(VL )cos(21 .5) - - ( 1492 .54) (57 ) ( 10-3 ) 
11' I 11' 

The ac line voltage at the inverter is given by 
VL; = 327 .705 kV 

The ac line current is the same as that for the rectifier. The power 
at the inverter is given by 

Pd = Vd Id 
I , 

= (330.522) ( 1492 .54) ( 10-3 ) 
= 493 .139 MW 

For a loss-free inverter, the ac line power is 
Pac; = 493 .139 MW 

The power factor at the inverter ac terminals is obtained as 
493 .139 X 106 cos </> · = ----------

I (va ) (327 .705) (103 ) ( 1163 .73) 
= 0.747 

Problem 7 -A-1 6 
The output power of the dc link of Problem 7-A-15 is maintained at 

500 MW at an ac line voltage of 330 kV and a power factor of 0.78. 
Calculate the necessary ac line voltage, current, and power factor at the 
rectifier terminals when operating with a 15° delay angle. 
Solution 

From the data at the inverter we have 

Thus 

IL = 500 X 106 
= 1121 .50 A , (va ) (330) ( 103 ) (0 .78) 
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The dc voltage at the inverter terminals is calculated using 
Pd = Vd 1d I I 

500 X 106 = Vd ( 1438 .38) I 

As a result, 
Vd• = 347 .61 kV 

The rectifier voltage is now obtained using 
Vdr = Vd + IdRdc I 

= 347 .61 + ( 1438 .38) (3) ( 10- 3 )  
= 351 .93 kV 

The rectifier voltage equation is 
3{2 3 

Vdr = ----;- ( VLr ) cos a: - -; ( Xc/d ) 

351 .93 = 
3{2 ( VL ) (cos 15°) - � (58) ( 1438 .38) ( 1O- 3 ) 

'1r r '1r 

As a result, 
VL = 330 .86 kV 

r 

This is the required line voltage at the rectifier's ac terminals. 
The power input to the rectifier is obtained from 

Pdcr = Vd/d 

= (351 .93) (1438 .38) (10- 3 )  
= 506 .21 MW 

The line current at the rectifier is the same as that at the inverter: 
IL = 1121 .50 A 

r 

For a loss-free rectifier, 

506 .21 X 106 = {a (330 .86 X 103 ) ( 1 121 .50)cos c/>r 
cos c/>r = 0 .7876 

Problem 7 -A-1 7  

Figure 7-48 shows a single-line diagram of a three-terminal dc system. 
Calculate the ac line voltage, current, and power factor at the inverter 
terminals labeled 3. 



Vd 1 

Id l3t R ' 3 = I O n 

Vd 3
--i-

Figure 7-48. A Three-Terminal de System for Problem 7-A-1 7. 

Solution 

Some Solved Problems 455 

We start at the rectifier labeled 2. The dc current is related to the 
voltage by 

Vd Id = 500 X 106 o 0 

As a result, the rectifier's voltage equation is written as 

500 
I
X 103 

= 
3/2 (300) ( 1 .04)cos 14 .3° - i! { Id ) (25) ( 10- 3 ) 

do 'IT 'IT 0 

Solving the quadratic equation, we get 

Ido = 1327 .68 A 

from which 

500 X 103 Vdo = 
1327 .68 = 376 .6 kV 
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The current Id is the same as Id . As a result, � 2 
Vd, = Vd2 - Id2,R1 2  

= 376 .6 - ( 1327 .68) (20) ( 1O- 3 ) 
= 350.04 kV 

The current Id, is obtained from 
Pd, = Vd,Id, 

400 X 103 = (350 .04)Id, 
Thus, 

The current Id is ,a 
Id = Id + Id 1 3  I 2 1  

= 1 142 .72 + 1327 .68 
= 2470.40 A 

The dc voltage at the inverter terminal is 
Vd = Vd - Id R 13 3 1 1 3  

= 350 .04 - (2470.40) ( 10) ( 10- 3 ) 
= 325 .34 kV 

The current through the inverter is Id . Thus the power to the inverter is ,a 
Pd = Vd Id 3 ;) 13  

= 803 .71 MW 

The inverter's ac line voltage is obtained from 
3/2 3 Vd =-( a3VL )cos a - - ( Id Xc ) a 'IT 3 'IT 3 a 
3(2 3 325 .34 = - ( 1 .03) ( VL )cos 21 ° - - (2470.4) (25) ( 10- 3 ) 'IT a 'IT 

As a result, we obtain 
VL = 295 .95 kV 3 

The line ac current ILa, is related to Ida by 

I - VB ( I ) La' - 'IT da 
Thus the line current on the bus 3 side is given by 

ILa = a3ILa , 
ILa = 1983 .94 A 
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The power factor is now calculated from 
Pda = {a { VL/LJCOS </>3 

803 .71 X 103 = {a (295 .95) ( 1983 .94)cos </>3 
from which 

cos </>3 = 0.7903 

Problem 7-A-1 8 

Assume that a per unit system is adopted for the three-terminal dc 
system of Problem 7-A-17. The following base values are given: 

Pb = 500 MW 
Vb = 300 kV 

Convert the data of the problem into the new per unit system and repeat 
the solution procedure. 

Solution 

The base dc current is 
[ = Pb = 500 X 103 

= 1666 .67 A bde Vb 300 
The base resistance on the dc side is 

The base ac current is 

V, Zb = -[ b = 180 ohms de bde 
[ 

[ =�= 962 .25 A bae {a 
In the per unit (p.u.) system, the given data are as follows: 

PI 400 PI = -p = 500 = 0 .8 p .u .  p . . . b 
500 P2 = 500 = 1 p .u . p. " .  

300 VL = VL =-= l p.u . lp . . .  2p . . . 300 
20 Xc = 180 = 0 .1 1 1  Ip . u .  

25 XC2 = Xc = 180 = 0.1389 p . u ,  3p . u .  

20 
RI 2p . • .  

= 180 = 0 . 11 1 1 p .u . 
10 

RI3p . • . = 180 = 0 .0556 p .u . 
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The solution procedure in per unit values is as follows. (We drop the 
subscript pu for simplicity.) 

1 3/2 3 -
I =-(1) ( 1 .04)oos 14 .3° - - { Id ) (0 .1389) d2 'TT 'TT 2 

The solution for Id2 is 
Id2 = 0.7966 p.u . 

From this we get 
1 

Vd2 = 0.7966 = 1 .2553 p.u. 
Now the rectifier terminal voltage is 

Vd, = 1 .2553 - (0 .7966) (0 .1 1 1 ) 
= 1 .1668 p.u. 

The current in rectifier 1 is obtained from the power and voltages as 

I 0 .8 d
, 
= 1 .1668 = 0 .6856 p .u .  

The current Id is the sum of Id and Id . Thus, 13 2 I 
Id'3 = 0.6856 + 0 .7966 

= 1 .4822 p .u .  
The inverter's de voltage is obtained from the voltage drop equation : 

Vd• = 1 .1668 - ( 1 .4822) (0 .0556) 
= 1 .0844 p .u .  

The de power to the inverter is now given by 
Pda = ( 1 .0844) ( 1 .4822) 

= 1 .6073 p .u .  
The inverter's ae line voltage i s obtained using 

3/2 3 
Vd = - ( aaVL )cos y - - ( Id Xc ) a 'TT 3 'TT 3 3 

3/2 1 3 1 .0844 =-(1 .03) (VL )cos 21° - - ( 1 .4822) (0 .1389) 'TT 3 'TT 
VLa = 0.986 p.u. 
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The ac current in this per unit system is related to the dc current. 
Thus, 

PROBLEMS 

Problem 7 -B-1 

3/2 
lL3. = -;- ( ldJ = 2 .00 p .u .  
1La = aa1La. = 2 .06 
Pda = ValLfoS <Pa 

1 .6073 = (0.986) (2 .06)cos <Pa 
cos <Pa = 0 .7903 

A 400-kV, direct-current transmission option is compared with a 
760-kV, three-phase alternating current option for equal power transmis
sion. Calculate the ratio of insulation levels and hence the ratio of transmis
sion losses. 

Problem 7 -B-2 

A direct-current transmission option is desired such that the dc power 
loss is 150 percent of the power losses when ac of 345 kV is used to transmit 
the same power. Calculate the required dc voltage and the ratio of insu
lation level. 

Problem 7 -B-3 

The losses for a proposed ac line are 120 MW. Find the corresponding 
losses if a dc line is designed such that the ratio of insulation level for the dc 
line to that for the equivalent ac three-phase line is 0.87. Assuming that the 
dc line resistance is 40 ohms, find the ac and dc line currents. 

Problem 7 -B-4 

Repeat Problem 7-B-2 if the ac voltage is 760 kV. 

Problem 7 -B-5 

Repeat Problem 7-B-3 if the ac line losses are 100 MW. 
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Problem 7-8-6 
A. Assume that a design choice calls for a ratio y of the losses in the 

bipolar dc case to losses in the three-phase ac alternative. Thus, 

PLdc 
-- = y PLac 

Assume that the power transfer for each alternative is not equal, 
with the ratio of dc power transmitted to that of the ac by 

PdC = /1 
Pac 

Further, we account for skin effects by assuming that the line 
resistance in the ac operation is related to the dc line resistance by 

Rae - = y 
Rdc 

Show that under these conditions the ratio of insulation levels is 
given by 

Insulation level for dc 
_ 0 .87/1 cos cp 

Insulation level for ac ffY 
where cos cp is the power factor in the ac option. 

B. Assume that for a certain conductor type, 

Rac = 1 . 1Rdc 
Find the ratio of ac line losses to the corresponding dc losses if the 
dc option is designed to carry 120 percent of the corresponding ac 
power while maintaining the same insulation levels. Assume 
cos cp = 0.85 for ac operation. 

Problem 7-8-7 
A. Assume that for a certain conductor type, 

Rac = 1 . 1Rdc 
Find the ratio of ac line losses to the corre..<;ponding dc losses if the 
dc option is designed to carry 150 percent of the corresponding ac 
power while maintaining the same insulation levels. Assume ac 
power factor of unity. (Use results given in Problem 7-B-6.) 

B. For the conductors of part (a) and the same power-carrying capac
ity indicated, find the ratio of insulation levels for equal transmis
sion losses in both ac and dc options. (Use results given in Problem 
7-B-6.) 
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Problem 7-8-8 

Show that for the minimum cost of operating the HVDC option under 
the conditions outlined in Problem 7-B-6, the minimization procedure gives 

By = 0.87,8A cos q, 
2fYIY 

where B and A are as defined in text. 

Problem 7-8-9 

The ratio ( A/B) is 1 .6 for a contemplated HVDC option. Assume that 
the ac alternative to transmit the same power operates at a power factor of 
0.8 and that the ac line resistance is 1 10 percent of the dc resistance. Find 
the ratio of dc power losses to that of the alternative ac option. 

Problem 7-8-1 0 

A three-phase, two-way bridge converter (Graetz circuit) delivers 2000 
A when the dc voltage is 40 kV. Calculate: 

A. The peak inverse voltage. 
B. Peak-to-peak ripple. 
C. Valve rating. 
D. Transformer secondary voltampere rating. 

Assume ideal rectifier characteristics. 
Problem 7-8-1 1 

Repeat Problem 7-B- 1O for 

Problem 7-8-12  

Vd = 250 kV 
Ide = 1000 A 

Repeat Problem 7-B-1O for 

Problem 7-8-1 3 

Vd = 390 kV 
Ide = 1000 A 

Repeat Problem 7-B-IO for 
Vd = 250 kV 
Pde = 140 MW 
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Problem 7-8-1 4 
Repeat Problem 7-B- 1O if a three-phase, one-way converter circuit is 

used. Compare the results. 

Problem 7-8-1 5 
Assume that the line-to-line-secondary transformer voltage in a 

three-phase, two-way bridge converter is 34.5 kV while delivering dc power 
of 80 MW. Assume ideal rectifier characteristics, and calculate: 

A. The dc voltage. 

B. The peak inverse voltage. 

C. Peak-to-peak ripple. 

D. Valve rating. 

E. Transformer secondary voltampere rating. 

Problem 7-8-1 6 
A three-phase bridge converter operates as a rectifier with a delay 

angle of 8° when the line voltage on the transformer secondary is 170 kV. 
Assuming that the dc power delivered is 200 MW, calculate the direct 
voltage and current at the rectifier terminals. (Neglect overlap.) 

Problem 7-8-1 7 
A three-phase bridge rectifier operates with zero delay angle to deliver 

dc power and current Pd, and Id, respectively. If the delay angle is a 2 ' the dc 
power and current are Pd2 and Id2 respectively. Find a2 , given that 

(Neglect overlap.) 

Problem 7-8-1 8 

P I ;' = 1 .2 and /' = 1 . 1 d2 d2 

The transformer secondary line voltage to a three-phase bridge recti
fier is 180 kV. Calculate the dc voltage output for a delay angle of 15° and 
an overlap angle of 20° .  

Problem 7-8-1 9 
Calculate the delay angle a for a three-phase bridge rectifier if the 

transformer secondary line voltage is 175 kV when the dc output voltage is 
200 kV for an overlap angle of 21 0 .  
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Problem 7 -B-20 

The transfonner secondary line voltage to a three-phase rectifier is 
169.46 kV when the dc tenninal voltage is 195 kV at a delay angle of 19° . 
Calculate the angle of overlap. 

Problem 7 -B-21 

A three-phase bridge rectifier operates with a delay angle of 18.97 ° 
when delivering a dc current of 1025.5 A at a dc voltage of 195 kV. 
Assuming the commutating reactance to be 21 .8 ohms, find the necessary ac 
line voltage. 

Problem 7 -B-22 

Calculate the delay angle for a three-phase bridge rectifier supplying a 
load of 160 MW when the dc output voltage is 200 kV for an ac line voltage 
of 180 kV. Assume commutating reactance of 20 ohms. 

Problem 7 -B-23 

The ac line voltage to a three-phase bridge rectifier is 170 kV when 
delivering dc power of 200 MW. Assuming that the delay angle is 20° and 
that the commutating reactance is 20 ohms, calculate the dc current. 

Problem 7 -B-24 

The dc voltage and current at the tenninals of a three-phase bridge 
converter operating as an inverter are 170 kV and 900 A respectively. 
Assuming that the commutating reactance of the inverter is 20 ohms and 
that the extinction angle is 20° , find the line voltage at the ac tenninals of 
the inverter. 

Problem 7 -B-25 

The line voltage at the ac tenninals of a three-phase bridge inverter is 
158.5 kV when receiving dc current of 1025 A at 183.36 kV dc. Assume that 
the commutating reactance is 20.643 ohms. Calculate the extinction angle y. 

Problem 7 -B-26 

The dc power into a three-phase bridge inverter is 200 MW when the 
output ac line voltage is 160 k V at an extinction angle of 18° . Assuming that 
the commutating reactance is 20 ohms, find the dc current into the inverter. 
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Problem 7-8-27 

A HVDC link is operating with an ac line voltage to the rectifier of 
175 kV. When the dc current is 1100 A, the rectifier delay angle is 10° and 
the inverter's extinction angle is 20° . The resistance of the line is 23 ohms, 
commutating reactance of the rectifier is 22 ohms and the commutating 
reactance of the inverter is 21 ohms. Calculate the dc voltages at the 
rectifier and inverter terminals as well as the ac line voltage at the inverter. 

Problem 7-8-28 

Assume that the link of Problem 7-B-27 is delivering 1000 A dc with 
the ac line voltage to the rectifier being 180 kV, and that of the inverter is 
165 kV. Assume that the delay angle is now 15° . Calculate the dc voltages 
at the rectifier and inverter terminals as well as the inverter's extinction 
angle. 

Problem 7-8-29 

The link of Problem 7-B-27 is operating with a delay angle of 15° and 
extinction angle of 18° . If the output ac line voltage is 170 kV and the dc 
current is 1000 A, calculate the dc voltages at both ends and the ac line 
voltage at the rectifier terminals. 
Problem 7-8-30 

The link of Problem 7-B-27 is delivering a dc current of 1050 A when 
the ac line voltage at the rectifier is 190 kV and that at the inverter is 175 
kV. Assume the inverter's extinction angle is 18° . Calculate the dc voltages 
and the rectifier's delay angle. 
Problem 7-8-31 

The link of Problem 7-B-27 is operating with a delay angle of 15° and 
an extinction angle of 20° when the ac line voltages at the rectifier and 
inverter are 185 kV and 170 kV respectively. Find the dc current delivered. 
Problem 7-8-32 

The link of Problem 7-B-27 is operating with a delay angle of 20° and 
an extinction angle of 18° when the dc voltage at the rectifier is 200 kV and 
that of the inverter is 180 kV. Calculate the dc current and the ac line 
voltages. 

Problem 7-8-33 

Repeat Problem 7-B-27 if the dc power is specified as 200 MW instead 
of the dc current specified in that problem. 
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Problem 7-8-34 

Repeat Problem 7-B-28 for the dc power specified as 200 MW instead 
of the dc current specification. 

Problem 7-8-35 

Repeat Problem 7-B-29 for 200 MW dc power replacing the current 
specification. 

Problem 7-8-36 

Repeat Problem 7-B-30 for 200 MW dc power replacing the current 
specification. 

Problem 7-8-37 

Consider the conversion of Problem 7-B-27 to a per unit representa
tion. Assume the power base to be 

Pb = 200 MW 
and voltage base to be 

for both ac and dc sides. 
A. Find the base current and resistance on the dc side as well as on 

the ac side. 
B. Repeat the solution to the problem in the given per unit system. 

Problem 7-8-38 

Repeat Problem 7-B-37 assuming the power base is 
Pb = loo MW 

and voltage base is 

Problem 7-8-39 

Consider the dc link shown in Figure 7-49. Assume that the ac voltage 
at transformer primary is given by 

I Vi i = 1 .02 p .u .  
The rectifier's commutating reactance i s 0.10 p.u. and that of the inverter is 
0.08 p.u. The tap ratio of the rectifier transformer is 1 .05 and that for the 
inverter transformer is 1 .03. The dc link's line resistance is 0.004 p.u. 
Assume that the rectifier's dc voltage output is 1 .280 p.u. when delivering dc 
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current of 0.500 p.u. Calculate: 
A. The delay angle of the rectifier. 
B. The power factor on the primary side of the rectifier's transformer. 
C. The dc voltage at the inverter terminals. 
D. The inverter's extinction angle if ac voltage is maintained at 1 .00 

p.u. 
E. The power factor at the receiving end. 

Problem 7-8-40 

Consider the dc link shown in Figure 7-49. Assume that the dc voltage 
at the transformer primary is given by 

I Vd = 1 .03 p.u. 
The rectifier's commutating reactance is 0.126 p.u. and that of the inverter 
is 0.07275 p.u. The rectifier is operating with a 9° delay angle, and the 
inverter is operating with a 10° extinction angle. The dc link's line resis
tance is 0.00334 p.u. Assume that the rectifier's dc voltage output is 1 .286 
p.u. when delivering dc current of 0.456 p.u. Calculate: 

A. The tap ratio of the rectifier's transformer. 
B. The power factor on the primary side of the rectifier's transformer. 
C. The dc voltage at the inverter terminals. 
D. The input active power to the link, dc line loss, and output active 

power. 
E. The inverter's transformer tap ratio if the ac voltage is maintained 

at 1 .06 p.u. 
F. The power factor at the receiving end. 



CHAPTER VIII 

Faults on Electric Energy Systems 

8.1 INTRODUCTION 

A fault occurs when two or more conductors that normally operate 
with a potential difference come in contact with each other. The contact 
may be a physical metallic one, or it may occur through an arc. In the 
metal-to-metal contact case, the voltage between the two parts is reduced to 
zero. On the other hand, the voltage through an arc will be of a very small 
value. Faults in three-phase systems are classified as: 

1 .  Balanced or symmetrical three-phase faults. 
2. Single line-to-ground faults. 
3. Line-to-line faults. 
4. Double line-to-ground faults. 

Generators may fail due to insulation breakdown between turns in the 
same slot or between the winding and the steel structure of the machine. 
The same is true for transformers. The breakdown is the result of insulation 
deterioration combined with switching and/or lightning overvoltages. Over
head lines are constructed of bare conductors. Wind, sleet, trees, cranes, 
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kites, airplanes, birds, or damage to supporting structure are causes for 
accidental faults on overhead lines. Contamination of insulators and light
ning overvoltages will in general result in faults. Deterioration of insulation 
in underground cables results in short circuits. This is mainly attributed to 
aging combined with overloading. About 75 percent of the energy system's 
faults are due to the second category and result from insulator flashover 
during electrical storms. Only one in twenty faults is due to the balanced 
category. 

As a result of a fault, currents of high value will flow through the 
network to the faulted point. The amount of current will be much greater 
than the designed thermal ability of the conductors in the power lines or 
machines feeding the fault. As a result, temperature rise may cause damage 
by annealing of conductors and insulation charring. In addition to this, the 
low voltage in the neighborhood of the fault will render the equipment 
inoperative. 

Fault or short-circuit studies are obviously an essential tool for the 
electric energy systems engineer. The task here is to be able to calculate the 
fault conditions and to provide protective equipment designed to isolate 
the faulted zone from the remainder of the system in the appropriate time. 
The least complex category computationally is the balanced fault. This 
tempts the engineer to base his decisions on its results. The balanced fault 
could (in some locations) result in currents smaller than that due to any 
other type of fault. However, the interrupting capacity of breakers should 
be chosen to accommodate the largest of fault currents. 

8.2 TRANSIENTS DURING A 

BALANCED FAULT 

The dependence of the value of the short-circuit current in the electric 
power system on the instant in the cycle at which the short circuit occurs 
can be verified using a very simple model. The model is a generator with 
series resistance R and inductance L as shown in Figure 8-1. The voltage of 
the generator is assumed to vary as 

e(t) = Emsin(wt+a} (8.1) 
With a balanced fault placed on the generator terminals at t = 0, we can 
show that a dc term will in general exist. Its initial magnitude may be equal 
to the magnitUde of the steady-state current term. 

The transient current i( t) is given by 

i(t) = ( i" ) [sin(wt+ a - 9) - sin( a - 9)e-RT/L] (8.2) 
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where 

Z= (R2 + w2L2)1/2 

e = tan-1 ( w: ) 
The worst possible case occurs for the value of a given by 

R tana= -wL 
In this case, the current magnitude will approach twice the steady-state 
maximum value immediately after the short circuit. The transient current is 
given by 

For small t, 

i( t) = Em ( - cos wt + e-Rt/L ) 
Z 

--
t 

( a ) 

--
t 

(b) 

Figure 8-2. (8) Short-Circuit Current Wave Shape for tan a == - (R/ wL ). 
(b) Short-Circuit Current Wave Shape for tan a == (wL/R). 

(8.3) 



Thus, 

It is clear that 

8.2 Transients During a Balanced Fault 473 

. E 
l ( t) = ZM ( l- cos wt) (S.4) 

This wavefonn is shown in Figure S-2(a). 

i(t) 

V2I" 

"f2I' 

�I 

Subtransient Transient Steady State 

Figure 8·3. Symmetrical Short·Clrcult Current and Reactances for a Synchro
nous Machine. 
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For the case 

we have 

w L  tana=]f 

i(t) = i" sinwt 

This wavefonn is shown in Figure 8-2(b). 

(8 .5) 

It is clear from inspection of either tire expression for the short-circuit 
current given by Eq. (8.2) or the response wavefonn given in Figure 8-3 that 
the reactance of the machine appears to be time-varying. This is so if we 
assume a fixed voltage source E. For our power system purposes, we let the 
reactance vary in a stepwise fashion X:;, Xd, and Xd as shown in Figure 8-3. 

The current history i( t) can be approximated in three time zones by 
three different expressions. In the first, denoted the subtransient interval 
and lasting up to two cycles, the current is 1". This defines the direct-axis 
subtransient reactance: 

(8 .6) 

The second, denoted the transient interval, gives rise to 

X, _ E 
d- I' (8 .7) 

where I' is the transient current and Xd is direct-axis transient reactance. 
The transient interval lasts for about 30 cycles. 

The steady-state condition gives the direct-axis synchronous reac
tance: 

(8 .8) 

Table 8-1 lists typical values of the reactances defined in Eqs. (8.6), 
(8.7), and (8.8). Note that the subtransient reactance can be as low as 7 
percent of the synchronous reactance. 

8.3 THE METHOD OF 

SYMMETRICAL COMPONENTS 

The method of symmetrical components is used to transfonn an 
unbalanced three-phase system into three sets of balanced three-phase 
phasors. The basic idea of the transfonnation is simple. Given three voltage 
phasors l'A. VB' and Ve. it is possible to express each as the sum of three 



TABLE 8-1 
Typical Sequence Reactance Values for Synchronous Machines 

Two-Pole Turbine Four-Pole Turbine Salient-Pole Machine Salient-Pole Genera- Synchronous 
Generator Generator with Dampers tor without Dampers Condensers 

Low Avg. High Low Avg. High Low Avg. High Low Avg. High Low Avg. High 

Xd 0.95 1.2 1.45 1.00 1.2 1.45 0.6 1.25 1.50 0.6 1.25 1.5 1.25 2.2 2.65 
X' d 0.12 0.15 0.21 0.20 0.23 0.28 0.20 0.30 0.50 0.20 0.30 0.50 0.30 0.48 0.60 
Xd 0.07 0.09 0.14 0.12 0.14 0.17 0.13 0.2 0.32 0.20 0.30 0.50 0.19 0.32 0.36 
X_ 0.07 0.09 0.14 0.12 0.14 0.17 0.13 0.2 0.32 0.35 0.48 0.65 0.18 0.31 0.48 
Xo 0.Q1 0.03 0.08 0.015 0.08 0.14 0.03 0.18 0.23 0.03 0.19 0.24 0.025 0.14 0.18 

�-'-----� � L-_____ � 

... 

Cil 
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Figure 8-4. An Unbalanced Set of Voltage Phasors and a Possible Decomposi
tion. 

phasors as follows: 

VA = VA + + VA - + VAO 
VB = VB+ + VB- + VBO 
Vc= Vc+ + Vc- + VCO 

(8.9) 
(8.10) 
(8.11 ) 

Figure 8-4 shows the phasors VA' VB' and Vc as well as a particular possible 
choice of the decompositions. 

Obviously the possible decompositions are many. We require that the 
sequence voltages VA+, VB+, and Vc+ fonn a balanced positively rotating 
system. Thus the phasor magnitudes are equal, and the phasors are 1200 
apart in a sequenceA-B-C, as shown in Figure 8-5(a). As a result, we have 

TT _ --jI200V Y B+ -e A+ 

Vc+ = ej1200VA + 

Similarly, we require that the sequence voltages VA-, VB-, and Vc-
fonn a balanced negatively rotating· system. This differs from the first 



(0 ) 

(b) 
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(c) 

Figure 8-5. (a) Positive Sequence Voltage Phasors. 
(b) Negative Sequence Voltage Phasors. 
(c) Zero Sequence Voltage Phasors. 

requirement in that the sequence is C-B -A, as shown in Figure 8-5(b). 
Thus, 

VB- = ei120VA _ 
Vc- = e-j120VA_ 

The sequence voltages VA o' VBo' VCo are required to be equal in magni
tude and phase. Thus, 

VBO = VA O 
Vco = VA O 
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For notational simplicity, we introduce the complex operator a defined 
by 

a = ej120• 

We can thus rewrite our requirements as 

VB+ =a2VA+ 
VC+ =aVA+ 
VB.!.. = aVA_ 
VC-=a2VA_ 
VBO= VAO 
VCO= �O 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

The original phasor voltages VA ' VB' and Vc are expressed in terms of the 
sequence voltages as 

VA = VA+ + VA- + VAO 
VB=a2�+ +a�_ + VAO 
Vc= aVA+ +a2�_ + �o 

(8.19) 

(8.20) 

(8.21) 

The inverse relation giving the positive sequence voltage VA +, the 
negative sequence voltage VA _, and the zero sequence voltage VAO is 
obtained by solving the above three simultaneous equations to give 

_ 1 ( 2 ) �+ -a VA +aVB +a Vc 

VA- = � (VA + a2VB+ aVe) 
1 VAO=a (VA + VB+  Ve) 

Some of the properties of the operator a are as follows: 

a2=a-1 
a3=1 
1 + a+a2=0 
a*=a2 
(a2)*=a 
1 + a* + (a*)2 = 0 

where as usual the asterisk ( * ) denotes complex conjugation. 

(8.22) 

(8.23) 

(8.24) 
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The first property is obtained. as follows: 

a2 = ( ejI20 ) 2 

= ej240 
= e-jI20' 
= ( ejl20' ) -1 
=a-1 

The second property follows by multiplying both sides of the first by a. 
For clarity, we will drop the suffix A from the sequence voltage 

symbols. Thus, 

Our relations are thus 

and 

V+=VA+ 
V_= VA-
Yo= VAO 

VA=V++V-+Yo 
VB=a2V+ +aV_ + Yo 
Vc= aV+ +a2V_ + Yo 

V+ =�(Y..t +aVB+a2Vc) 

V_ =�(VA +a2VB+aVC) 
1 

l'o=a(VA + VB + Vc) 

We have the following two examples: 

Example 8·1 
Given the system of unbalanced. voltages: 

Y..t=1�=1 

VB = 1/- 120°= a2 
Vc=O 

find the positive, negative, and zero sequence voltages. 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

(8.29) 

(8.30) 

(8.31) 

(8.32) 

(8.33) 
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Solution 

We can obtain the sequence voltages using Eq. (8.31), (8.32), and (8.33) 
as follows: 

1 2 V =-(1 +a3) =-
+ 3 3 

V =.!(I+a4)=I+a 
- 3 3 

---

3 

_ (ejl80)( ej240) 
3 

3 
1 a 

Yo = 3" ( 1  + a2) = - 3" 

---

3 

---

3 

The decomposition of l'A is as shown in Figure 8-6. 

Figure 8-6. Decomposition of � for Example 8-1. 
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Given that 
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Yo = 100 
V+ = 200 -jl00 
V_ = -100 

find the phase voltages �, VB' and Ve' 

Solution 

VA=V++V-+Yo 

= 100 + 200 -jl00 - 100 = 200 -jl00 
VB= a2V+ +aV_ + Yo 

= (1/240°) (223 .61/-26.57°) + ( 1/1200)( -100) + 100 

= 212 .98/ -99 .9° 
Ve= aV+ +a2V_ + Yo 

= (1/120°)(223 .61/- 26.57°) + (1/2400)(100/1800) + 100 

= 338.59 /66.21 ° 

Just to emphasize that the method of symmetrical components applies 
to currents, as well as voltages we give the following example: 

Example 8-3 

The following currents were recorded under fault conditions in a 
three-phase system: 

IA = 150/45°A 

IB = 250/150° A 

Ie = 100/300° A 

Calculate the values of the positive, negative, and zero phase sequence 
components for each line. 



482 Faults on Electric Energy Systems 

Solution 

1 
10=

a(IA +IB +lc) 

= � (106.07 + j106.07 + j106.07 - 216.51 + J125.00 + 50 -j86.6) 

_ ( -60.44 + j144.46) 

3 

= 52.2/112.7° 

1+ = �(IA + alB + a21c) =� (150/45°+ 250/270°+ 100/1800 ) 
= 48.02/-87.60 

L =� {IA + a21B + alc} 

= 163.21/40.450 

Power in Symmetrical Components 

The total power in a three-phase network is given by 

S= VAl': + VBIB + Vclc 

where the asterisk denotes complex conjugation. 

by 
Each of the terms using the symmetrical component notation is given 

VAl': = (V+ +V_ + Ya)(I+ +L +10)* 

VBIB = (a2V+ +aV_ + Ya)( a21+ +aL + 10)* 

Vclc = (aV+ +a2V_ + Ya)( al+ +a2L + lo}* 

Performing the conjugation operation, we obtain the following: 

VAl': = (V+ + V_ + Ya)(I! +l� +l�) 

VBIB = (a2V+ +aV_ + Ya)( al! +a21� + It) 

Vclc = (aV+ +a2V_ + Ya)( a21! +al� + l�) 

Use has been made of the properties 

(a2)* = a 

(a)* = a2 

a3= 1 
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Expanding each of the powers gives 

V 1* = V 1* + V (/* + l*) + V 1* AA + +  + - 0 - -
+ V _ (I! + 16) + YoI; + Yo{I! + I�) 

VBI'; = V+/t + V+ (a/� +a2/;) + V_/� 

+ V _ (a2/t +al;) + YoI; + Yo( al! +a2/�) 

Vclt = V+/! + V+ (a2/� +(16) + V_/� + V_ (alt +a2/;) 

+ YoI; + Yo( a2 I! + a/� ) 

To obtain the total power, we add the above expressions. Note that all 
even tenns in the expressions add to zero since 

As a result, we have 
a2+a+ 1 = 0 

S = 3( V l* + V l* + Vr l*) + +  - - 00 (8.34) 

We conclude that the total power is three times the sum of powers in 
individual sequence networks. 

8.4 SEQUENCE NETWORKS 

Positive Sequence Networks 

The positive sequence network for a given power system shows all the 
paths for the flow of positive sequence currents in the system. The one-line 
diagram of the system is converted to an impedance diagram that shows the 
equivalent circuit of each component under balanced operating conditions. 

Each generator in the system is represented by a generated voltage in 
series with the appropriate reactance and resistance. Current-limiting im
pedances between the generator's neutral and ground pass no positive 
sequence current and hence are not included in the positive sequence 
network. 

To simplify the calculations, all resistance and the magnetizing cur
rent for each transfonner are neglected. For transmission lines, the line's 
shunt capacitance is neglected, and in many instances, so is the resistance. 

Motor loads, whether synchronous or induction, are included in the 
network as generated EMF's in series with the appropriate reactance. Static 
loads are mostly neglected in fault studies. 
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Negative Sequence Networks 

Having obtained the positive sequence network, the process of finding 
the negative sequence network follows easily. Three-phase generators and 
motors have only positive sequence-generated voltages. Thus the negative 
sequence network model will not contain EMF sources associated with 
rotating machinery. Note that the negative sequence impedance for this 
type of device will in general be different from the positive sequence values. 
For static devices such as transmission lines and transformers, the negative 
sequence impedances have the same values as the corresponding positive 
sequence impedances. 

The current-limiting impedances between the generator's neutral and 
ground will not appear in the negative sequence network. This arises simply 
because negative sequence currents are balanced. 

Zero Sequence Networks 

The zero sequence network of a system depends on the nature of the 
connections of the three-phase windings for each of the system's compo
nents. 

IBe=O 
-

--

leA=O leo 

Figure 8-7. Delta-Connected Winding and Zero Sequence Currents. 
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Delta-Connected Winding 

Zero sequence currents can exist in the phase windings of the delta 
connection. However, since we have the requirement 

lAO = IBO = leo = 10 
we conclude that the line currents are zero. For example, 

lAB = lAO -I BO = 0 

This situation is shown in Figure 8-7. 
The single-phase equivalent zero sequence network for a delta-con

nected load with zero sequence impedance Zo is shown in Figure 8-8. 

Wye-Connected Winding 

In the presence of a neutral return wire, zero sequence currents will 
exist both in the phase windings as well as on the lines. The neutral current 
IN will be 

IN=IAO+ IBo +leo 
=310 

This is shown in Figure 8-9(a). 
In the case of a system with no neutral return, IN = 0 shows that no 

zero sequence currents can exist. This is shown in Figure 8-9(b). Zero 
sequence equivalents are shown in Figure 8-10. 

PA 
No No Zo I ,Po 

Pa Pc 
Figure 8-8. Zero Sequence Equivalent of a Delta-Connected Load. 
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lAo -

( a ) 

IN =0 

( b) 

Figure 8-9. Wye-Connected Winding with and without Neutral Return. 

Transformer's Zero Sequence Equivalents 

There are various possible combinations of the primary and secondary 
connections for three-phase transformers. These alter the corresponding 
zero sequence network. 

Delta-delta Bank 

Since for a delta circuit no return path for zero sequence current 
exists, no zero sequence current can flow into a delta-delta bank, although it 
can circulate within the delta windings. The equivalent circuit connections 
are shown in Figure 8-1 1 .  

Wye-delta Bank, Ungrounded Wye 

For an ungrounded wye connection, no path exists for zero sequence 
current to the neutral. The equivalent circuit is shown in Figure 8-12. 

Wye-delta Bank, Grounded wye 

Zero sequence currents will pass through the wye winding to ground. 
As a result, secondary zero sequence currents will circulate through the 



.--------. PA 

�----------------� 

Pc 

PA 
I 

3Zn 

Pc 

-------4-
No 

I 

Zo : o------c=J----t 
Po 

No 

Po 

Figure 8-10. Zero Sequence Networks for Y -Connected Loads. 
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No 

P 
0--

t:. t:. 
(a) 

(b) 

LJ 

Q 

Q 
----<> 

Figure 8-11. Zero Sequence Equivalent Circuits for a Three-Phase Trans
former Bank Connected in delta-delta. 

P 

No 

Po Zo 
�o------------�c==J�-------------

(c) 

Q 

(b) 

Figure 8-12. Zero Sequence Equivalent Circuits for a Three-Phase Trans
former Bank Connected In Wye-delta. 



( b ) 
No 

Zo 

(e) 

Figure 8-13. Zero Sequence Equivalent Circuit for a Three-Phase Transformer 
Bank Connected In Wye-Delta Bank with Grounded Y. 

P 

-P -� 

tr' Y 
( a ) 

(b) 

No
------------------------------

Zo 
Po 

o----------i (e) 

-oQ o 

Q 

Figure 8-14. Zero Sequence Equivalent Circuit for a Three-Phase Transformer 
Bank Connected In Wye-Wye with One Grounded Neutral. 489 



490 Faults on Electric Energy Systems 

P 

(( 
( 0 ) 

( b ) 

No

-----------------------------

Zo 
Po (>-0 -------lC]I------------<o 00 

( c ) 

Q 

Figure 8-15. Zero Sequence Equivalent Circuit for a Three-Phase Transformer 
Bank Connected in Wye-Wye with Neutrals Grounded. 

delta winding. No zero sequence current will exist on the lines of the 
secondary. The equivalent circuit is shown in Figure 8-13. 

Wye-wye Bank, One Neutral Grounded 

With an ungrounded wye, no zero sequence current can flow. The 
nonpresence of the current in one winding means that no current exists in 
the other. Figure 8-14 illustrates the situation. 

Wye-wye Bank, Both Neutrals Grounded 

With both wyes grounded, zero sequence current can flow. The pres
ence of the current in one winding means that secondary current exists in 
the other. Figure 8-15 illustrates the situation. 

A hypothetical system is shown in Figure 8-16(a) to illustrate the 
construction of the zero sequence network with different transformer con
nections. Figure 8-16(b) shows the zero sequence network connections using 
the principles illustrated in this section. 

Sequence Impedances for Synchronous Machines 

For a synchronous machine, sequence impedances are essentially reac
tive. The positive, negative, and zero sequence impedances have in general 
different values. 
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Positive Sequence Impedance 

Depending on the time interval of interest, one of three reactances 
may be used: 

1 .  For the subtransient interval, we use the subtransient reactance: 

r T 

x 

Z+ =jX'd 

y u 

wy 
y 

Figure 8-16a. Example System for Zero Sequence Network illustration. 
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Figure 8-16b. 
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2. For the transient interval, use is made of the corresponding reac
tance: 

3. In the steady state, we have 

Z+=JXd 

Negative Sequence Impedance 

The MMF produced by negative sequence armature current rotates in 
a direction opposite to the rotor and hence opposite to the dc field winding. 
As a result, the reactance of the machine will be different from that for the 
positively rotating sequence. The negative sequence reactance for a synchro
nous machine is often defined as 

Z - ' d q ( X" + XII ) 
--J 2 

Zero Sequence Impedance 

The zero sequence impedance of a synchronous machine is quite 
variable and depends on the nature of the stator windings. In general, these 
will be much smaller than the corresponding positive and negative sequence 
reactances. Table 8-1 shows typical values for synchronous machine se
quence reactances. 

Sequence Impedances for a Transmission Link 

Consider a three-phase transmission link of impedance ZL per phase as 
shown in Figure 8-17. The return (or neutral) impedance is ZN' If the 
system voltages are unbalanced, we have a neutral current IN' Thus, 

IN=IA + IB+ Ie 
The voltage drops 11""A, I1VB, and I1Ve across the link are as shown below: 

I1VA = lAZL + INZN 
I1VB= IBZL +INZN 
I1Vc=leZL +INZN 

In terms of sequence voltages and currents, we thus have 

I1V+ +I1V_ +11\'0=[(1+ +L +lo)ZL] + 310ZN 
a211V+ +aI1V_ +11"0 = [( a21+ +aL + lo)Zd + 310ZN 
al1V+ +a2I1V_ +11"0 = [( al+ +a2L + lo)Zd + 310ZN 
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I-
All 

IA 
-

I-
811 

18 
-

I· 
CI I 

/II/ 

t:NA 

c=J 
ZL 

l:!:.Ve 

CJ ZL 

l:!:.Vc 

CJ 
ZL 

Figure 8·17. Three·Phase Transmission Link. 

The above equations give 

aV+=I+ZL 
av_ =LZL 
aYo=Io(ZL + 3ZN) 

We identify the following sequence impedances: 

� 

I 
A2 

·1 

182 

� 

I C2 



Z-=ZL 
Z+=ZL 
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It is thus clear that the impedance of the neutral path will enter into the 
zero sequence impedance in addition to the link's impedance ZL' However, 
for the positive and negative sequence impedances, only the link's imped
ance appears. 

Example 8-4 

Obtain the sequence networks for the system shown in Figure 8-18 in 
the case of a fault at F. Assume the following data in pu on the same base 
are given: 

Generator G1: 

Generator G2: 

Transfonner T1: 
Transfonner T2: 
Transfonner T3: 
Transfonner T4: 
Line L1: 

Solution 

X +  = 0.2 p.u. 
X _ = 0.12 p.u. 
X o = 0.06 p.u. 

X + = 0.33 p.u. 
X _ = 0.22 p.u. 
X o = 0.066 p.u. 

X + = X _ = X o = 0.2 p.u. 
X +  =X _ =X o=0.225 p.u. 
X +  = X _  =X o = 0.27 p.u. 
X + = X _ = X o = 0.16 p.u. 
X + = X _ = 0.14 p.u. 

X o = 0.3 p.u. 
X +  = X _  = 0.35 p.u. 
X o=0.6 p.u. 

The positive sequence network and steps in its reduction to a single 
source impedance by Thevenin's equivalent are shown in Figure 8-19. The 
negative sequence network and its reduction are given in Figure 8-20. The 
zero sequence network is treated similarly in Figure 8-21 .  The reader is 
invited to examine Problem 8-A-1O, which involves essentially the same 
system as that of this example except for the existence of a load. We will 
find in that problem that the use of Thevenin's theorem is a prerequisite. 
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jO.2 jOl4 j0225 

I/.Q jO.2672 jO.59 I/.Q.. 

Figure 8-19. Positive Sequence Network and Steps In Its Reduction for Exam
ple 8-4. 
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jO.59 

I/Q 

N+ 

jO.1839 jO.o738 
F+ 

I/.Q. 

N+ 

jO.26 
F+ 

I/.Q 
N+ 

Figure 8-19 (Cont.) 
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jO.2 jO.14 jO.225 
jO.12 T1 L1 T2 jO.22 

G1 jO.16 jO.35 jO.27 G2 

jO.565 
jO.12 jO.22 

jO.16 jO.62 

jO.12 jO.0672 jO.26 jO .22 

N-

jO.1872 jO .48 

N-

Figure 8·20. Negative Sequence Network and Its Reduction for Example 8·4. 
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'---------------0 N_ 

jO.1347 jO.0738 

L-------------------o N_ 
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L----------o N_ 

Figure 8-20 (Cont.) 
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jO.2 j03 jO.225 

jO.16 jO.6 j027 

j0.725 

jO.l6 jO.87 

jO.87 Fo 
No 

jO.14 

c=:J :F' No 
Figure 8-21. Reduction of the Zero Sequence Network for Example 8-4. 

8.5 LINE-TO-GROUND FAULT 

Assume that phase A is shorted to ground at the fault point F as 
shown in Figure 8-22. The phase B and C currents are assumed negligible, 
and we can thus write I B = 0, Ie = O. The sequence currents are obtained as 
follows: 

For the positive sequence value we have 

_ 1 ( 2 ) 1+ -'3 IA + aIB + a  Ie 
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A 

Figure 8-22. Line-to-Ground Fault Schematic. 

This gives 

I I =� + 3 
For the negative sequence current, we have 

This gives 

L = � ( I A + a2 I B + ale) 

I I =� - 3 
Likewise for the zero sequence current, we get 

1 - IA 0- 3 
We conclude then that in the case of a single line-to-ground fault, the 
sequence currents are equal, and we write 

I 
I =/ =10=� 

+ , - 3 (8.35) 
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With the generators nonnally producing balanced three-phase voltages, 
which are positive sequence only, we can write 

E+ = EA 
E_ = O  

(8 .36) 
(8 .37) 
(8 .38) 

Let us assume that the sequence impedances to the fault are given by 
Z+ , Z_ , ZOo We can write the following expressions for sequence voltages at 
the fault: 

V+ = E+ -1+ Z+ 
V_ = O - LZ_ 
Yo = O-loZo 

The fact that phase A is shorted to the ground is used. Thus 
�= O 

we also recall that 

Our conclusion is 

or 
E+ 

10 Z +Z + z  + - 0 
The resulting equivalent circuit is shown in Figure 8-23. 

We can now state the solution in terms of phase currents: 

For phase voltages we have 
�= O 

3E+ 
1A = Z +Z + z  + - 0 
1B = 0  
1c= 0  

VB = 
EB (I - a ) [ Zo + (I + a )Z_l 

Zo + Z_ + Z+ 

Vc= 
Edl- a ) [( 1  + a ) Zo + Z-l 

Zo + Z_ + Z + 

(8 .39) 
(8 .40) 
(8 .41) 

(8 .42) 

(8 .43) 

(8 .44) 

The last two expressions can be derived easily from the basic relations. For 
phase B, we have 
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----- -------.., 

l Neutral � _ bus(n) 
/ EA 

V+ ... � Positive -sequence 

l+
! Z... network 

f 
'n 

�!� Negative-sequence 
�?r network 

'n 
�

!
� Zero-sequence �q; network 

____________ J 

Figure 8-23. Equivalent Circuit for Single Llne-to-Ground Fault. 

Using Eqs. (8.39), (8.40), and (8.41), we have 

Inserting Eq. (8.35), we thus have 

which reduces to 

Remembering that 



we obtain 

EB(1-a)[Zo + (1 + a)Z_l 
VB= [Z +Z +Z ] o - + 
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Similarly, we get the result for phase C. 

Example 8-5 
For the system of Example 8-4 find the voltages and currents at the 

fault point for a single line-to-ground fault. 

Solution 

The sequence networks are connected in series for a single line-to
ground fault. This is shown in Figure 8-24. 

The sequence currents are given by 

Therefore, 

1 = 1 = 1 = ---:-____ 
1 

___ ---:-+ - 0 j(0.2577 + 0.2085 + 0.14) 
= 1.65/ -90° p.u . 

1A = 31+ = 4.95/ -90° p.u. 
1B=1c=0 

The sequence voltages are as follows: 

V+ =E+ -1+Z+ 
= 1LQ-(1.65/-90° )(0.269/900) 
=0.57 p .u .  

V_ = -LZ_ 
= - ( 1.65 / -90° ) ( 0 .2085/90° ) 
= -0 .3 4 p.u. 

Yo= -1oZo 
= -(1.65/-90°)(0.14/90°) 
= -0.23 p .u .  
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The phase voltages are thus 
VA = V+ +V_ +\'0=0 

VB= a2V+ +aV_ + \'0 
= (1/2400 )(0.57) + (1/1200 )( -0.34) + ( -0.23) 

=0.86/-113.64° p.u. 
Ve=aV+ +a2V_ + \'0 

= (1/1200 )(0.57) + (1/2400 )( -0.34) + (-0.23) 

=0.86/113.640 p.u. 

8.6 DOUBLE LINE· TO·GROUND FAULT 

We will consider a general fault condition. In this case we assume that 
phase B has fault impedance of Z,; phase C has a fault impedance of Z,; 

and the common line-to-ground fault impedance is Zg. This is shown in 
Figure 8-25. 

The boundary conditions are as follows: 
lA=O 

VBn =IB(Z,+Zg) + leZg 

Ven =IBZg+ (Z,+Zg)le 

The potential difference between phases Band C is thus 
VBn - Ven = IBZ, -leZ, 

Substituting in tenns of sequence currents and voltages, we have 
(a2 -a)(V+ -V_) = (a2 -a)(I+ -l_)Z, 

As a result, we get 
V+ -l+Z,= V_ -LZ, 

The sum of phase voltages is 
VBn + Ven= (IB+ le )(Z, + 2Zg) 

In tenns of sequence quantities this gives 
2\'0 - V+ -V_ = (210 -1+ -l_)(Z,+ 2Zg) 

Recall that, since lA = 0, we have 
1++L +10=0 

We can thus assert that 
2\'0 -V + -V _ = 310( Z, + 2Zg) 

(8.45) 

(8.46) 
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A 

B 

c 

f 
/,laf =0 

Figure 8-25. Circuit with Double Line-to-Ground fault. 

Substituting for V_from Eq. (8.45), we get 

2Yo - 2V+ + I+Z, + (/+ + Io)Z, = 3Io(Z, + 2Zg) 

The above reduces to 

Now we have 

Consequently, 

V+ =E+ -I+Z+ 
V_ = -LZ_ 
Yo = -IoZo 

E + - 1+ ( Z + + Z, ) = - L ( Z - + Z, ) 
= -Io( Zo + Z, + 3Zg) ( 8.47) 
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Figure 8-26. Sequence Network for Double Llne-to-Ground Fault. 

The equivalent circuit is shown in Figure 8-26. It is clear from Eq. (8.47) 
that the sequence networks are connected in parallel. 

From the equivalent circuit we obtain the positive sequence current 

E+ 
4 = �� [ (Z_ +Z, )(Zo + Z, + 3Zg) I Z+ +Z,+ 

Z_ +Zo + 2Z, +3Zg 

The negative sequence current is 

Finally, 

( Zo + Z, + 3Zg 

) 
L = -1+ Z + Z + 2Z + 3Z - 0 , g 

(8.49) 

(8.50) 
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Example 8-6 

For the system of Example 8-4 find the voltages and currents at the 
fault point for a double line-to-ground fault. Assume 

Z, = jO.05 p.u. 

Zg = jO.033 p.u. 

Solution 

The sequence network connection is as shown in Figure 8-27 . Steps of 
the network reduction are also shown. From the figure, sequence currents 
are as follows: 

1� 1+ = 2 .24/- 90° 
0.45/90° 

1_ = - 1+ ( 0 .29 ��2585 ) 
= - 1 .18/ - 90° 

10 = - 1 .06/- 900 
The sequence voltages are calculated as follows. 

V+ = E+ -I+Z+ 

= 1�- (2 .24/- 90°)(0 .26/90°) 
= 0.42 

V_ = -LZ_ 
= + ( 1 .18)(0.2085) = 0 .25 

\'0 = - loZo = ( 1 .06)(0 .14) = 0.15 
The phase currents are obtained as 

IA = 0  
IB = a2I+ +aL + 10 

= (1/240)( 2 .24/-90°) + (1/120)( - 1 .18/-90°) 

+ ( - 1.06/ -90°) 

= 3 .36/151 .77 ° 
Ic= aI+ +a2L + 10 

= ( 1/1200)(2 .24/ - 90°) + ( 1/2400)( - 1 .18/ - 90°) 
+ ( -1 .06/ - 90°) 

= 3 .36/28 .23° 



1& 

)---[_ :::J--L:J------, 
jO.26 jO.05 

1+ 
jO.2085 jO.05 

-

1_ 
jO.14 jO.05 

L----[=r-� 
-

10 

jO.31 

jO.2585 

jO.29 

-

10 

I/Q. jO.31 

j O.14 

I/.Q. jO.45 

Figure 8-27. Sequence Network for Example 8-6. 

jO.1 

611 
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Phase voltages are 

VA = V+ + V_ + Vo 
= 0.42 + 0.25 + 0.15 
=0.82 

VB=a2V+ +aV_ +"0 
= ( 1/240° ) (0 .42) + ( 1/120° ) (0.25) +(0 .15) 
= 0 .24/- 141 .49° 

Vc=aV+ +a2V_ +Vo 
= ( 1/120° ) (0 .42) + ( 1/240° ) (0 .25) + 0 .15 
= 0.24/141 .490 

8.7 LlNE-TO-LINE FAULT 

Let phase A be the un faulted phase. Figure 8-28 shows a three-phase 
system with a line-to-line short circuit between phases B and C. The 

c f 
I 

VIcf 
I 

b 

Zf 
a 

(Ilof= 0 

Vnfo 
!-

Figure 8-28. Example of a Line-to-Llne Fault. 



+ 

Figure 8-29. Line-to-Line Equivalent Circuit. 

boundary conditions in this case are 
IA = 0  
IB = - Ie 

VB - Ve = IBZ, 

The first two conditions yield 
10 = 0 

1 I+ = -L = 3(a -a2)IB 

The voltage conditions give 
( a2 -a)( V + - V _ ) = Z, ( a2 -a) 1 + 

which reduces to 

8.7 Line-to-Line Fault 513 

(8.51) 

The equivalent circuit will take on the form shown in Figure 8-29. 
Note that the zero sequence network is not included since 10 = O. 

Example 8-7 

For the system of Example 8-4, find the voltages and currents at the 
fault point for a line-to-line fault through an impedance Z, = jO.05 p.u. 
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Solution 

The sequence network connection is as shown in Figure 8-30. From the 
diagram, 

1+ = -L =  1� 
0.5185/900 

= 1.93/-900 p .u .  
10 = 0  

The phase currents are thus 

lA = O  
IB = -Ie 

= ( a2 -a)l+ 
= (1/2400-1/120°)( 1.93/-900) 
= 3.34/-1800 p .u .  

j 0.26 '- 1 jO.2085 

jO.05 

Figure 8-30. Sequence Network Connection for Example 8-7. 
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The sequence voltages are 

V+=E+-I+Z+ 

= 1�-(1.93/-90°)(0.26/90°) 

=0.5p.u. 

V_=-LZ_ 

= -(-1.93/-90°)(0.2085/90°) 

=0.4p.u. 

Yo= -IoZo 

=0 

The phase voltages are obtained as shown below: 

VA=V++V-+Yo 

=0.9p.u. 

VB= a2V+ +aV_ + Yo 

= (1/2400 )(0.5) + (1/1200 )(0.4) 

= 0.46/ -169.11 ° 

Vc=aV+ +a2V_ + Yo 

= (1/1200 )(0.5) + (1/2400 )(0.4) 

= 0.46/169.11 ° 

As a check we calculate 

Hence, 

VB-Vc=O.17/-90° 

I BZt = (3.34/-180°) (0.05/90° ) 

=0.17/-90° 

8.8 THE BALANCED THREE-PHASE FAULT 

Let us now consider the situation with a balanced three-phase fault on 
phases A, B, and C, all through the same fault impedance Zt. This fault 
condition is shown in Figure 8-31. It is clear from inspection of Figure 8-31 
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z, z, z, 

Figure 8·31. A Balanced Three-Phase Fault. 

that the phase voltages at the fault are given by 

VA = IAZ, 

VB = IBZ, 

VC = ICZ, 

The positive sequence voltages are obtained using the following 

V+ = � ( VA +aVB+a2Vc ) 

Using Eqs. (8.52), (8.53), and (8.54), we thus conclude 

V + = � ( IA + alB + a2/C )Z, 

However, in view of Eq. (8.31) for currents, we get 

V+ = I+Z, 

The negative sequence voltage is similarly given by 

V_ = L Z, 

(8.52) 

(8.53) 

(8.54) 

(8.55) 

(8 .56) 



jO.26 
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z,=jO.05 

Figure 8-32. Positive Sequence Network for Example 8-8. 

The zero sequence voltage is also 

For a balanced source we have 

Combining Eqs. (8.55) and (8.58), we conclude that 

As a result, 

Combining Eqs. (8.56) and (8.59) gives 

L = O  

Finally Eqs. (8.57) and (8.60) give 

10 = 0  

(8 .57) 

(8 .58) 

(8 .59) 

(8 .60) 

(8.61) 

(8 .62) 

(8 .63) 

(8 .64)  
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The implications of Eqs. (8.63) and (8.64) are obvious. No zero se
quence nor negative sequence components of the current exist. Instead, only 
positive sequence quantities are obtained in the case of a balanced 
three-phase fault. 

Example 8-8 

For the system of Example 8-4, find the short-circuit currents at the 
fault point for a balanced three-phase fault through three impedances of 
value Z, = jO.05 p.u., each. 

Solution 

We need only to recall the reduced positive sequence network of 
Figure 8-19 given again in Figure 8-32. From Figure 8-32 we assert that 

110 
I = 1 = c.. = 3.23/ -900 Asc + j(0.26 + 0 .05) '----

SOME SOLVED PROBLEMS 

Problem 8-A-1 

The zero and positive sequence components of an unbalanced set of 
voltages are 

V+ = 2  

Vo = 0.5 -jO.866 

The phase A voltage is 

Obtain the negative sequence component and the B and C phase voltages. 



Solution 

We have 
VA = V+ +V_ +"0 
3 = 2 + V_ + (0.5 -}0.866) 

Thus, 

V _ = 0 .5 + }0 .866 = 1/600 

In polar form, we have 

"0 = 0 .5 -}0.866 = 1/ -600 

Now for phase B, we have 

r 

VB = a2V + + aV _ + Vo 
= 2/2400+ 1/1800+ 1/ - 600 

=3/- 1200 

Figure 8-33. System for Problem 8-A-2. 

Some Solved Problems 519 

y 
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For phase C, we have 

Problem 8-A-2 

Vc= aV+ +a2V_ + Vo 
= 2/1200+ 1/3000+ 1/ -600 
=0 

Draw the zero sequence network for the system shown in Figure 8-33. 
Solution 

The zero sequence network is shown in Figure 8-34. 

M N 

Q w 

Figure 8-34. Zero Sequence Network for Problem 8-A-2. 

z 
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Problem 8·A·3 

Suppose that an unsymmetrical fault condition gives the following 
data at the fault point. 

E=1 .0 
I+ Z+ =0.2 
LZ_ =0.2 

IoZo=0.6 

A. Find the phase and line-to-line voltages at the fault. 
B. Identify the type of fault. 

Solution 

A. From the given information, we have 
V+ =E+ -I+Z+ 

= 1 .0 - 0.2 = 0.8 
V_= -LZ_ 

= - 0.2 
Yo= - IoZo 

= - 0.6 
The phase voltages are thus obtained as 

l'A=V+ + V- + Yo  
= 0.8 - 0 .2 - 0.6=0 

VB=a2V+ + aV_ + Yo 
= 0.8/240° - 0.2/120° - 0 .6 

= 1 .25/- 136.10 
Ve=aV+ + a2V_ + Yo 

= 0.8/120° - 0.2/240° - 0 .6 

= 1 .25/136.1 ° 

The line-to-line voltages are 
l'AB = l'A - VB = 0 - 125/ - 136.1°= 1 .25/43 .9° 

VBe = VB - Ve = 1 .25/ - 136.10 - 1 .25/136.1 ° 

= 1 .73/ - 90° 

VeA = Ve - VA = 1 .25/136.1°-0= 1 .25/136.10 

B. From part (a), VA = 0, indicating that this condition is a single 
line-to-ground fault on phase A. 
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Problem 8-A-4 

The following sequence impedances exist between the source and the 
point of fault on a radial transmission system: 

Z+ = 0.3 + jO.6 p.u. 
Z_ = 0.3 + j.055 p.u . 
Zo = 1 + jO.78 p.u . 

The fault path to earth on a single line-to-ground fault has a resistance of 
0.66 p.u. Determine the fault current and the voltage at the point of fault. 

Solution 

We have with reference to Figure 8-35, 

Thus, 

Problem 8-A-5 

Zt = 3 .6 + j1 .93 = 4.08/28.20 
E 

1+ = L = 10 = Z = 0 .24/ - 28 .2° 
t 

IA = 31 + = 0.73/ -28 .2° 

V, = 3Z,lo = 0 .48/ - 28 .2° 
= 0 .43 -'-jO.23 

For the radial transmission system of Problem 8-A-4, calculate the 
three-phase fault current. Compare with the single line-to-ground fault 
current assuming the fault path to ground has a negligible impedance. 

Figure 8-35. Network for Problem 8-A-4. 



Solution 

The three-phase fault current is 

E 1 13 = - = --;------,.-Z+ (0.3 + jO.6) 

= 1 .49/ - 63 .435° 

The single line-to-ground fault current is 

I - 3E 
s- Z+ +Z_ +Zo 

3 
1 .6 + j1 .435 

= 1 .40/ - 41 .89° 

Problem a-A-6 

Some Solved Problems 523 

A turbine generator has the following sequence reactances: 

X + = 0 .1 
X_ = 0.13 
X o = O.04 

Compare the fault currents for a three-phase fault and a single line-to-ground 
fault. Find the value of an inductive reactance to be inserted in the neutral 
connection to limit the current for a single line-to-ground fault to that for a 
three-phase fault. 

Solution 

1 13 = -=10 0.1 

1 =  3 
s 0.1  + 0.13 + 0.04 
= 1 1 .11  

The single line-to-ground fault current is higher than that for a three-phase 
fault. 

With a neutral reactance Xn, we have 

For Is = 10, we get 

1 = 3 
s 0.1 + 0.13 + 0 .04 + 3Xn 
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F 

Figure 8-36. Fault for Problem 8-A-7. 

Problem 8-A-7 

Obtain the sequence network connection for a simultaneous single 
line-to-ground fault on phase A and line-to-line fault between phases B and 
C as shown in Figure 8-36. 

Solution 

The boundary conditions are 

VA=O 
VB=VC 

IB+lc=O 

The sequence currents are thus 

We conclude that 

1+ =�[IA + (a-a2)IB] 

L=�(IA+(a2-a)IB] 
1 

10 = 3"IA 

This necessitates the connection shown in Figure 8-37. 



Some Solved Problems 625 

10 
- -

__ I_-
_

_ �1 1 L.-_1_0 __ _ 

Figure 8-37. Sequence Network Connection to Satisfy Current Relation for 
Problem 8-A-7. 

The sequence voltages are obtained as follows: 

Thus, 

V + = � [ ( a + (2) VB] = -� VB 

_ 1 [ (  2) ] _ 1 V - - 3" a + a VB - - 3" VB 
1 l'o =  3" (2VB) 

V+ = V_ 
V+ + V_ + l'o =O 

Consequently we have the sequence network connection shown in Figure 
8-38. 

Problem 8-A-8 

A simultaneous fault occurs at the load end of a radial line. The fault 
consists of a line-to-ground fault on phase A and a line-to-line fault on 
phases B and C. The current in phase A is -j5 p.u., whereas that in phase 
B is IB = - 3.46 p.u. Given that E = 1� and Z+ = jO.25, find Z_ and ZO o 

Solution 

Noting that Ie = -IB, we have the following sequence currents: 

1+ = � [IA + (a - (2)IB] 

= � [ -j5 + ( 1 .732/900 ) ( - 3 .46) ]  
- jll _ .3 67 - - T - -} . 

L = � [ IA + (a2-a)IB] 

= � [ -j5 + ( 1 .732/ - 90° ) ( - 3 .46)] 
=jO.333 

10 = � = -j1 .667 
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The positive sequence voltage is thus 
V+ = E - I+ Z+ 

= 1LQ+ ( j3 .67) ( j0 .25) = 0.0825 

The negative sequence voltage is obtained as 

However, since 

we conclude that 

Thus, 

Now, since we have 

we obtain 

As a result we have 

Problem 8-A-9 

V_ = V+ = 0.0825 . 

0 .0825 = -jO.333Z_ . 

Z_ = jO .2475 . 

Yo =  - 2V+ = - 0.165 
= - IoZo · 

Z 0 .165 . 099 0 = -]1 .667 =]0. pu 

Some Solved Problems Sri 

Obtain the sequence networks for the system shown in Figure 8-39. 
Assume the following data in p.u. on the same base. 

Generator G} :  X + = 0.2 p.u. 

Transformer T} : 
T2: 
Ta: 
T4: 

Line L} :  

X _ = 0.12 p.u. 
X o = 0.06 p.u. 

X + = 0.33 p.u. 
X _ = 0.22 p.u. 
X o = 0.066 p.u. 

X +  = X _  = X o = 0.2 p.u. 
X +  = X _  = X o = 0.225 p.u. 
X +  = X _  = X o = 0.27 p.u. 
X +  = X_ = X o = 0.16 p.u. 
X +  = X_ = 0.14 p.u. 

X o = 0.3 p.u. 
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� 

1 LQ.  j 0.2 

1LQ . j O. 2  

� 

j O. 2  j O. 1 4 j 0. 2 2 5  

j O. 16 j O.27  

( A )  

j O. 5 6 5  

-cJ ---:-=-=-

j O . 1 6I;: � 
J O . 2  j 0.4 2 

( B ) 

j 0. 33 1 LQ.  

j O.33 1LQ 

---

h 

� 

Figure 8-40. Positive Sequence Network for Problem 8-A-9. 
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j O . 2  

j 0 33 

Step  1 

j 0 565 

j 0 084 

j O . 1 8 

Step 2 

j 0 649 

j 0 2 
-, 

j O . 1 6  : j 0 . 4291  

jO. 1 8  

Step 3 

j0 2 j O . 0839 j 0 2249 

j O l 8  

Step 4 

Figure 8-41. Steps In Positive Sequence Impedance Reduction. 



j O . 2839 

) 0 . 2 8 39 

j 0 . 4049 

Step 5 

jOA049 

Step 6 

j O . 0555 

jO O l669 
N +  

Step 7 

Step 8 

Figure 8-41 (Cont.) 
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0 . 8 2 975 

j O  2224 

Figure 8-42. Positive Sequence Network Equivalent for Problem 8-A-9. 

Line L2 : x+ = X_ = 0.20 p.u. 

Xo = 0.4 p.u. 

Line L3: X+ = X_ = 0.15 p.u. 

Xo = 0.2 p.u. 

Load : x + = X _ = 0.9 p.u. 

Xo = 1 .2 p.u. 

Assume an unbalanced fault occurs at F. Find the equivalent sequence 
networks for this condition. 

Solution 

The positive sequence network is as shown in Figure 8-40(a). One step 
in the reduction can be made, the result of which is shown in Figure 8-40(b). 
To avoid tedious work we utilize Thevenin's theorem to obtain the positive 
sequence network in reduced form. We assign currents Ip 12 , and 13 as 
shown in Figure 8-40(b) and proceed to solve for the open-circuit voltage 
between F + and N + . 



j O . 1 4  j O. 2 2 5  

jO. 1 2  j O . 2 2  

j O  1 2  

j O . 1 2  

)0 16 jO . 2 jO . 1 5  j O . 2 7  

j O . 5 6 5  

j O . 1 6  j 0 2 j O . 42 

j O . 5 6 5  

j O  1 6  j O . 2 j O . 2 455 

N 

j0 6 2 5  

j O . 2 2  

j O . 06 

j O . 1 2 86 

j O . 1 2 B6 

Figure 8-43. Steps In Reduction of the Negative Sequence Network for Prob
lem 8-A-9. 
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jO . 20 1 3 

N 

j O .0579 
j O . 3549 

N 

jO . 3549 

j O .0579 

j O. 1 2 8 4 

F 

g:� 1 86 4 

Figure 8-43 ( Cont.) 



Consider loop A .  We can write 

For loop B, we have 

For loop C, we have 

The above three equations are rearranged to give 

1�= j( 1 .4611 + 0 .912 - 0.3613 )  
0 =  0.3611 - 0 .4212 - 1 .34513 

1�= j(0 .911 + 1 .6512 + 0.4213 )  

� I C L  I 
rr �'" �"" 
miOl6 �iO.4 i 0 3377 No 

i O l 6DJO jO. 7377 No 
�o � i 0 1 3 1 5 
No 
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Figure 8-44. Steps In Reducing the Zero Sequence Network for Problem 8-A-9. 
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Solving, we obtain 

As a result, we get 

I) = -j0 .4839 

12 = -jO .3357 

1,3 =  -jO .0247 

VF+ N+ = VTH = 1 -jO.2 1) -jO. 16( II - 13 )  

= 1 - (0 .2) (0 .4839) - (0.16) (0 .4839 - 0 .0247) 

= 0 .82975 

We now turn our attention to the Thevenin's equivalent impedance, 
which is obtained by shorting out the sources and using network reduction. 
The steps are shown in Figure 8-41 .  As a result, we get 

Z+ =jO.224 

The positive sequence equivalent is shown in Figure 8-42. 

The negative sequence and zero sequence impedance networks and 
steps in their reduction are shown in Figure 8-43 and Figure 8-44. As a 
result, we get 

PROBLEMS 
Problem 8-8-1 

Z_ =jO . 1 864 

Zo = jO.1315 

Consider the case of an open-line fault on phase A of a three-phase 
system, such that 

IA = 0  

IB = a2I 

Ic = aI 

Find the sequence currents 1+ , 1_ , and 10 , 

Problem 8-8-2 

Consider the case of a three-phase system supplied by a two-phase 
source such that 

VA = V 

VB = -jV 

Vc = O  

Find the sequence voltages V+ , V_ , and Yo. 
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Problem 8-8-3 

Calculate the phase currents and voltages for an unbalanced system 
with the following sequence values: 

Problem 8-8-4 

1 + = L = 10 = -}1 .2737 
V+ = 0.597 
V_ = -0.343 
Vo =  - 0 .254 

Calculate the apparent power consumed in the system of Problem 
B-B-3 using sequence quantities and phase quantities. 

Problem 8-8-5 

Assume an unbalanced fault occurs on the line bus of transformer T3 in 
the system of Example B-4. Find the equivalent sequence networks for this 
condition. 

Problem 8-8-6 

Repeat Problem B-B-5 for a fault on the generator bus of G
2

• 

Problem 8-8-7 

Repeat Problem B-B-5 for the fault in the middle of the line L l •  

Problem 8-8-8 

Calculate the fault current for a single line-to-ground fault on phase A 
for a fault location as in Problem B-B-5. 

Problem 8-8-9 

Repeat Problem 8-B-B for a fault location as in Problem B-B-5. 

Problem 8-8-1 0 

Repeat Problem B-B-B for a fault location as in Problem B-B-7 . 

Problem 8-8-1 1 

Calculate the fault current in phase B for a double line-to-ground fault 
for a fault location as in Problem B-B-5. 

Problem 8-8-1 2 

Repeat Problem B-B-l l  for a fault location as in Problem 8-B-6. 
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Problem 8-8-1 3 

Repeat Problem 8-B-ll for a fault location as in Problem 8-B-7 . 

Problem 8-8-14 

Calculate the fault current in phase B for a line-to-line fault for a fault 
location as in Problem 8-B-5. 

Problem 8-8-1 5 

Repeat Problem 8-B-14 for a fault location as in Problem 8-B-6. 

Problem 8-8-1 6 

Repeat Problem 8-B-14 for a fault location as in Problem 8-B-7 . 

Problem 8-8-1 7 

Calculate the fault current for a single line-to-ground fault on phase A 
for a fault location as in Problem 8-A-9. 

Problem 8-8-1 8 

Calculate the fault current in phase B for a double line-to-ground fault 
for a fault location at F, as in Problem 8-A-9. 

Problem 8-8-1 9 

Calculate the fault current in phase B for a line-to-line fault for a fault 
at F, as in Problem 8-A-9. 

Problem 8-8-20 

Repeat Problem 8-A-9 with the transformer T4 connected in wyejde
Ita, with the wye grounded. 

Problem 8-8-21 

Repeat Problem 8-B-17 for the conditions of Problem 8-B-20. 

Problem 8-8-22 

Repeat Problem 8-B-18 for the conditions of Problem 8-B-20. 

Problem 8-8-23 

Repeat Problem 8-B-19 for the conditions of Problem 8-B-20. 
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Problem 8-8-24 

The following sequence voltages were recorded on an unbalanced fault: 
V+ = 0 .5 p.u .  
V_ = - 0.4 p .u .  
Yo = - 0.1 p .u .  

Given that the positive sequence fault current is -J1, calculate the sequence 
impedances. Assume E = 1 .  

Problem 8-8-25 

The following sequence currents were recorded on an unbalanced fault 
condition: 

1+ = -j1 .653 p.u. 
1_ = jO.5 p .u .  
10 = j1 .153 p.u. 

Identify the type of fault. Assuming that E = 1 p.u. and V + = 0.175 p.u., 
find the sequence impedances for the system under these conditions. 

Problem 8-8-26 

The positive sequence current for a double line-to-ground fault in a 
system is -j1 p.u., and the corresponding negative sequence current is 
jO.333 p.u. Given that the positive sequence impedance is 0.8 p.u., find the 
negative and zero sequence impedances. 

Problem 8-8-27 

The zero sequence current in a system on a certain fault is zero. The 
positive sequence voltage is 0.45 p.u., and the positive sequence current is 
-j1 p.u. Calculate the positive and negative sequence impedances. 

Problem 8-8-28 

The positive sequence current on a single line-to-ground fault on phase 
A at the load end of a radial transmission system is -j2 p.u. For a double 
line-to-ground fault on phases B and C, the positive sequence current is 
-j3.57 p.u., and for a double-line fault between phases B and C, its value is 
-j2.67. Assuming the sending-end voltage E = 1 .2, find the sequence imped-
ances for this system. 

Problem 8-8-29 

A single line-to-ground fault on phase A at the load end of a radial line 
results in a short-circuit current of -j5 p.u. A line-to-line fault on phases B 
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and C results in a current In = - 3.46 p.u. Given that E = lLQ and Z+ = jO.3, 
find Z_ and ZO o 

Problem 8-8-30 

The equivalent zero sequence impedance in a system is Zo = jO.05 p.u. 
The positive sequence current for a double line-to-ground fault is -j2.26 
p.u., and for a single line-to-ground its value is -j1 .33 p.u. Calculate the 
positive and negative sequence impedances of the system and hence predict 
the positive sequence current for a line-to-line fault. 

Problem 8-8-31 

The positive sequence voltage and current are 0.5 p.ll. and -j1 .25 p.u. 
respectively, for a double-line fault. The positive sequence current is -jI 
p.u. for a single line-to-ground fault. Find the sequence impedances. Assume 
E=l.  



CHAPTER IX 

System Protection 

9.1 INTRODUCTION 

The previous chapter treated the problems of system analysis under 
fault conditions that range from the balanced three-phase short circuit to 
the various unbalanced faults that may occur on the system. The result of 
the analysis provides a basis to determine the conditions that exist in the 
system under fault conditions. It is important to take the necessary action 
to prevent the faults, and if they do occur, to minimize possible damage or 
possible power disruption. A protection system continuously monitors the 
power system to ensure maximum continuity of electrical supply with 
minimum damage to life, equipment, and property. 

The consequences of faults are diverse and include the following: 

1. Abnormally large currents are caused to flow in parts of the system 
with the associated overheating of components. 

2. System voltages will be off their normal acceptable levels, reSUlting 
in possible equipment damage. 

641 
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3. Parts of the system will be caused to operate as unbalanced 
three-phase systems, which will mean improper operation of the 
equipment. 

In view of the possible consequences, a number of important require
ments for protective systems provide the basis for design criteria. These 
include: 

1. Reliability: A reliable system should provide both dependability 
(guaranteed correct operation in response to faults) and security 
(avoiding unnecessary operation). Reliability requires that relay 
systems perform correctly under adverse system and environmental 
conditions. 

2. Speed: Relays should respond to abnormal conditions in the least 
possible time. This usually means that the operating time should 
not exceed three cycles on a 60-Hz base. 

3. Selectivity: A relay system should provide maximum possible service 
continuity with minimum system disconnection. 

4. Simplicity and economy: The requirements of simplicity and econ
omy are common in any engineering design, and relay systems are 
no exception. 

A protective system is based on detecting fault conditions by continu
ously monitoring the power system variables such as current, voltage, 
power, frequency, and impedance. Measuring currents and voltages is per
formed by instrument transformers of the potential type (P.T.) or current 
type (C.T.). Instrument transformers feed the measured variables to the 
relay system, which in tum, upon detecting a fault, commands a circuit
interrupting device known as the circuit breaker (C.B.) to disconnect the 
faulted section of the system. 

An electric power system is divided into protective zones for 

Generators. 

Transformers. 

Bus bars. 

Transmission and distribution circuits. 

Motors. 

The division is such that zones are given adequate protection while keeping 
service interruption to a minimum. A single-line diagram of a part of a 
power system with its zones of protection is given in Figure 9-1. It is to be 
noted that each zone is overlapped to avoid unprotected (blind) areas. The 
connections of current transformers achieve the overlapping. Figure 9-2 
shows two possible arrangements. Note that a fault in the area of the two 
current transformers will trip all the breakers in both zones. 
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Figure 9-1. Typical Zones of Protection In Part of an Electric Power System. 
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Zone 1 

CT for 
Zone 1 

Zone 1 

I � 

C.T for 
Zone 1 

Circuit 
Breaker 

Circuit 
Breaker I 

Figure 9-2. Overlapping around a Circuit Breaker. 

9.2 PROTECTIVE RELAYS 

I 

I 

CT for 
Zone 2 

Zone 2 

Zone 2 

C, T for 
Zone 2 

A relay is a device that opens and closes electrical contacts to cause 
the operation of other devices under electric control. The action of a relay is 
essentially to detect intolerable or undesirable conditions within an assigned 
area. The relay acts to disconnect the area affected to prevent damage to 
personnel and property, by operating the appropriate circuit breakers. 

One way for classifying relays is according to their function, that is, as 
measuring or on-off relays. The latter class is also known as all-or-nothing 
and includes relays such as time-lag relays, auxiliary relays, and tripping 
relays. The common feature in this class is that the relay does not have a 
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specified setting and is energized by a quantity that is either higher than 
that at which it operates or lower than that at which it resets. 

The class of measuring relays includes a number of types with the 
common feature that they operate at a predetermined setting. Examples are 
as follows: 

• Current relays: Operate at a predetermined value of current. These 
include overcurrent and undercurrent relays. 

• Voltage relays: Operate at a predetermined value of voltage. These 
include overvoltage and undervoltage relays. 

• Power relays: Operate at a predetermined value of power. These 
include overpower and underpower relays. 

• Directional relays: 

(i) Alternating current: Operate according to the phase relation
ship between alternating quantities. 

(ii) Direct current: Operate according to the direction of the current 
and are usually of the permanent-magnetic, moving-coil pattern. 

• Frequency relays: Operate at a predetermined frequency. These 
include overfrequency and underfrequency relays. 

• Temperature relays: Operate at a predetermined temperature in 
the protected component. 

• Differential relays: Operate according to the scalar or vectorial 
difference between two quantities such as current, voltage, etc. 

• Distance relays: Operate according to the "distance" between the 
relay's current transformer and the fault. The "distance" is mea
sured in terms of resistance, reactance, or impedance. 

Relays are made up of one or more fault-detecting units along with 
the necessary auxiliary units. Basic units for relay systems can be classified 
as being electromechanical units, sequence networks, or solid-state units. 
The electromechanical types include those based on magnetic attraction, 
magnetic induction, D'Arsonval, and thermal principles. Static networks 
with three-phase inputs can provide a single-phase output proportional to 
positive, negative, or zero sequence quantities. These are used as fault 
sensors and are known as sequence filters. Solid-state relays use low power 
components, which are designed into logic units used in many relays. 

Electromechanical Relays 

We consider first the magnetic attraction type, which can be classified 
into three categories: the plunger unit, the clapper unit, and the polar unit. 

The plunger type has cylindrical coils with an external magnetic 
structure and a center plunger as shown in Figure 9-3. The plunger moves 
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Figure 9-3. Plunger-Type Relay Unit. 

upward to operate a set of contacts when the current or voltage applied to 
the coil exceeds a certain value. The moving force is proportional to the 
square of the current in the coil. These units are instantaneous since no 
delay is intentionally introduced. Typical operating times are 5 to 50 ms, 
with the longer times occurring near the threshold values of pickup. The 
unit shown in Figure 9-3 is used as a high dropout instantaneous overcur
rent unit. The steel plunger floats in an air gap provided by a nonmagnetic 
ring in the center of the magnetic core. When the coil is energized, the 
plunger assembly moves upward, carrying a silver disc that bridges three 
stationary contacts (only two are shown). A helical spring absorbs the ac 
plunger's vibrations, producing good contact action. 

Clapper units such as shown in Figure 9-4 have a V-shaped magnetic 
frame with a movable armature across the open end. The armature is 
hinged at one side and spring-restrained at the other. When the electrical 
coil is energized, the armature moves toward the magnetic core, opening or 
closing a set of contacts with a torque proportional to the square of the coil 
current. Clapper units are less accurate than plunger units and are primarily 
applied as auxiliary or "go/no go" units. 

Magnetic 
Frame 
Coil 

Core 

_-!�lt�=�==Lag Loop 
Target Armature 

Lo, LO""� 
Figure 9-4. Clapper-Type Relay Unit. 

Moving 
Contact 
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Polar units use direct current applied to a coil wound around the 
hinged annature in the center of the magnetic structure. A permanent 
magnet across the structure polarizes the annature-gap poles. Two nonmag
netic spacers, located at the rear of the magnetic frame, are bridged by two 
adjustable magnetic shunts. This arrangement enables the magnetic flux 
paths to be adjusted for pickup and contact action. With balanced air gaps 
the annature will float in the center with the coil deenergized. With the 
gaps unbalanced, polarization holds the armature against one pole with the 
coil deenergized. The coil is arranged so that its magnetic axis is in line with 
the annature and at a right angle to the permanent magnet axis. Current in 
the coil magnetizes the annature either north or south, increasing or 
decreasing any prior polarization of the annature. If, as shown in Figure 9-5, 
the magnetic shunt adjustment normally makes the armature a north pole, 
it will move to the right. Direct current in the operating coil, which tends to 
make the contact end a south pole, will overcome this tendency, and the 
armature will move to the left to close the contacts. 

Induction disc units are based on the watthour meter design and use 
the same operating principles. They operate by torque resulting from the 
interaction of fluxes produced by an electromagnet with those from induced 
currents in the plane of a rotatable aluminum disc. The unit shown in 
Figure 9-6 has three poles on one side of the disc and a common magnetic 
keeper on the opposite side. The main coil is on the center leg. Current (I) 
in the main coil produces flux (cp), which passes through the air gap and 
disc to the keeper. The flux cP is divided into CPL through the left-hand leg 
and CPR through the right-hand leg. A short-circuited lagging coil on the left 
leg causes CPL to lag both CPR and cP, producing a split-phase motor action. 
The flux CPL induces a voltage �, and current Is flows, in phase, in the 
shorted lag coil. The flux CPT is the total flux produced by the main coil 
current (1). The three fluxes cross the disc air gap and produce eddy 
currents in the disc. As a result, the eddy currents set up counterfluxes, and 

Magnetic Spaces 
Shunt 

--- Moving Contact 
N 

Balanced Air Gaps Unbalanced Air Gaps 

(A) (B) 

Figure 9-5. Polar-Type relay Unit. (a) Balanced Air Gaps. (b) Unbalanced Air 
Gaps. 
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Figure 9-6. Induction Disc-Type Relay Unit. 

.... ---- Electromagnet 

the interaction of the two sets of fluxes produces the torque that rotates the 
disc. 

A spiral spring on the disc shaft conducts current to the moving 
contact. This spring, together with the shape of the disc and the design of 
the electromagnet, provides a constant minimum operating current over the 
contact's travel range. A permanent magnet with adjustable keeper (shunt) 
damps the disc, and the magnetic plugs in the electromagnet control the 
degree of saturation. The spring tension, the damping magnet, and the 
magnetic plugs allow separate and relatively independent adjustment of 
the unit's inverse time overcurrent characteristics. 

The operation of a cylinder unit is similar to that of an induction 
motor with salient poles for the stator windings. This unit has an inner steel 
core at the center of the square electromagnet with a thin-walled aluminum 
cylinder rotating in the air gap as shown in Figure 9-7. Cylinder travel is 
limited to a few degrees by the contact and the associated stops, and a 
spiral spring provides reset torque. Operating torque is a function of the 
product of the two operating quantities and the cosine of the angle between 
them. Different combinations of input quantities can be used for different 
applications, system voltages or currents, or network voltages. 

A magnetic structure and an inner permanent magnet form a two-pole 
cylindrical core in the D'Arsonval unit, shown in Figure 9-8. A moving coil 
loop in the air gap is energized by direct current, which reacts with the air 
gap flux to create rotational torque. The D'Arsonval unit operates on very 
low energy input, available from dc shunts, bridge network, or rectified ac. 

The balanced-beam relay operates on the balance principle by compar
ing two quantities, e.g., two currents, or one current and one voltage. The 
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Laminations 

Cylinder 
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Figure 9-7. Cylinder-Type Relay Unit. 

general fonn of the relay, comparing, for example, two currents, is il
lustrated in Figure 9-9. The beam is given a slight mechanical bias to the 
contact open position; this is achieved by spring or weight adjustment. 
Assuming that the two coils have an equal number of turns, operation is 
obtained when I; is equal to I; + K, where Ia is the current in the operating 
coil, Ib the current in the restraining coil, and K is a constant. The 
electromagnets may be provided with more than one coil, and some of the 
coils may be interconnected depending on the quantities to be measured. 

�"'--'r--'I - -- - -- - �..--,..--,- - Mounting Surface 

----...,� • ..----___\:-- Air Gop 

I--+-------".---\----t-- Bross Spacers and 

-1---'-:--� 

Figure 9-8. D'Arsonval-Type Unit. 
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Figure 9-9. A Balanced-Beam Relay. 

Sequence Filters 

Static networks with three-phase current or voltage inputs can be 
arranged to provide a single-phase output proportional to positive, negative, 
or zero sequence quantities. The simplest sequence filter is the zero sequence 
current variety, which is composed of the secondaries of three current 
transformers connected in parallel 'to provide 3/0 from la' Ib' and Ie' 

A basic circuit that provides many variations of sequence filters is 
shown in Figure 9-10. The open-circuit voltage VF is seen to be 

with 
VF = InR O + laR ] + jXm(Ie -lb} (9.1) 

In =: Ia + Ib + Ie (9.2) 

The open-circuit voltage in terms of sequence quantities is given by 

VF= (RJ -13 Xm)I+ + (R 1 + 13 Xm)L + (R1 + 3R o}Io (9.3) 

It can be seen that different weights are given to each sequence current. 
If we interchange Ib and Ie in the circuit, we get 

VF= (R J + 13 Xm)I+ + (R J -13 Xm)L + (R1 + 3Ro}/o (9.4) 

If Rr is chosen such that Xm = R1/.fS, we get 

VF= 2R J+ + (R 1 + 3R o}Io (9 .5) 

and the relay connected to the output terminals will respond to positive and 
zero sequence quantities. 
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-" 

V F 

-" + 

Another type of circuit shown in Figure 9-11 provides the ability to 

respond to either positive or negative sequence quantities. Here we have 

VF= Ia( 2:1 ) + (Ie -Ib)(jXm) - (Ib + Ie)( �1 ) (9.6) 
Again this reduces to 

VF= (Rl -/3 Xm)I+ + (Rl + /3 Xm)L 
Now with the choice Xm = Rl/ 13, we get 

VF=2RIL 

(9.7) 

(9.8) 
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Figure 9-11. Positive or Negative Sequence Filter. 
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which gives the negative sequence filter characteristic. Interchanging Ib and 
Ie' we get 

VF = ( R \ + 13 X m ) 1+ + ( R \ - 13 X m ) 1_ (9 .9) 

which gives the positive sequence characteristic for the choice Xm = R)/ 13: 
VF= 2R\I+ (9 .10) 

Example 9-1 

A. Consider the sequence filter for protective relaying of Figure 9-1 1 .  
The open-circuit voltage VF is given in tenus of the three-phase 
currents by Eq. (9.6) 

VF= (2:1 )Ia+iXmUc-Ib) 

- (�l )Ub+IJ 
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In this case VF is considered as the Thevenin's equivalent voltage. 
By short-circuiting the terminals 1 and 2, we can calculate the 
Thevenin's equivalent impedance ZTH using 

Show that for this circuit 

Z - VTH TH- Isc 

ZTH=Ro+R. +Zs 
B. Assume now that the sequence filter described above is connected 

at terminals 1 and 2 to a relay of resistance R L' Assume that 

R. = {3xm 
Show that the current in the relay is 

I -
2R.L 

L-Ro+R. +ZS+RL 
C. Given that Ro = 0.1 0, R L = 0.1 n, and Zs = 0.08 n, it is required to 

adjust the sequence filter parameters so that for 1_ = 10 A, the 
relay current IL = 5 A. Find the values of R. and Xm• 

Solution 

A. Refer to Figure 9-12 showing the conditions with terminals 1 and 2 
shorted. It is clear that KVL results in the following relation : 

(Ro+R. +Zs)Isc+ [ Ia ( 2:. ) + (Ic-1b)jXm 

-(Ib + IJ ( �. ) ] = 0 

Substituting for the relation for VF, we get 

{Ro+R. +Zs)Isc+ VF=O 
Thus, 

ZTH=Ro+R. +Zs 
B. Put Xm = R.f 13. Thus we get 

VF=2R.L 
From the Thevenin's equivalent representation, 

I - VF L-RTH+RL 
2R. I RTH+RL -

2Rl I Ro+Rl +ZS+RL -
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Figure 9-12. To Illustrate Steps In Solving Example 9-1. 
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C. With the following data: 

we obtain 

The result is 

L = 10A, 

IL = 5A 

RL = O.l Q 
Ro = O.l Q 
Zs = 0.08 Q 

2R1(10) 
5 = ---.....:...;'----'----:-0.1 + 0 .08 + 0.1 + Rl 

1.4 Rl Rl = 15 = 0.0933 n,xm = ...f3 = 0.0539 

Solid-State Units 

9.3 The X-R Diagram 656 

Solid-state, linear, and digital-integrated circuit logic units are com
bined in a variety of ways to provide modules for relays and relay systems. 
Three major categories of circuits can be identified: (1) fault-sensing and 
data-processing logic units, (2) amplification logic units, and (3) auxiliary 
logic units. 

Logic circuits in the fault-sensing and data-processing category em
ploy comparison units to perform conventional fault-detection duties. Mag
nitude comparison logic units are used for overcurrent detection both of 
instantaneous and time overcurrent categories. For instantaneous overcur
rent protection, a dc level detector, or a fixed reference magnitude compara
tor, is used. A variable reference magnitude comparator circuit is used for 
ground-distance protection. Phase-angle comparison logic circuits produce 
an output when the phase angle between two quantities is in the critical 
range. These circuits are useful for phase, distance, and directional relays. 

9.3 THE X-R DIAGRAM 

Consider a transmission line with series impedance ZL and negligible 
shunt admittance. At the receiving end, a load of impedance ZR is assumed. 
The schematic of the system is shown in Figure 9-13. The phasor diagram 
shown in Figure 9-14 is constructed with I taken as the reference. For our 
purpose the phasor diagram represents the relation 

Vg =  IZL + v,. (9 .11)  

giving rise to the heavy-lined diagram rather than the usual one shown by 
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the dashed line. On the diagram, 8 is the torque angle, which is the angle 
between v:. and v,.. 

If the phasor diagram, Eq. (9.1 1), is divided by the current I, we 
obtain the impedance equation 

where 

Z=v:. 
S I 

Z=v,. r I 

(9 . 12) 

An impedance diagram is shown in Figure 9-15. This is called the X-R 
diagram since the real axis represents a resistive component (R), and the 
imaginary axis corresponds to a reactive component (X). The angle 8 
appears on the impedance diagram as that between Zs and Zr' 

The evaluation of Zr from complex power SR and voltage v,. is 
straightforward. Here we utilize the following relationship valid for a series 
representation Zr = R r + jXr: 

R = I v,.12Pr r 
ISrl2 

(9 . 13) 

X = I v,.12Qr 
r 

ISrl2 
(9.14) 

x 

R 

Figure 9-15. Impedance Diagram. 
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Example 9-2 

Find Zr' given that 

I v,. I = 1 p .u .  

Sr = 2 + jO.8 p.u.  

Construct the impedance diagram for 

ZL = 0.1 + jO. 3 p.u. 

Find Zs for this condition, as well as the angle 8.  

Solution 

x 

j 0.4724 

j 0.3 

Rr = 
(1)2(2) 

= 0.431 p .u . (2.154)2 

X = (1)2(0.8) = 01724 r 
2 · p .u .  

(2.154) 

0.1 0.531 

Figure 9-16. Construction of X-R Details for Example 9-2. 

R 
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From the diagram, Zs can be obtained graphically, or analytically. Thus 

= 0.7107 /41.6576° = 26.54° 
e. = 41.6576° 

Figure 9-16 illustrates the construction. 

9.4 RELAY COMPARATORS 

Relay comparators can have any number of input signals. However, 
we focus our attention here on the two-input comparator shown schemati
cally in Figure 9-17. The input to the two transformer circuits 1 and 2 
includes the line voltage VL and current 1L• The output of transformer 1 is 
VI' and that of transformer 2 is �. Both VI and � are input to the 
comparator, which produces a trip (operate) signal whenever 1�1>IVll in 
an amplitude comparison mode. 

We will start the analysis by assuming that the line voltage VL is the 
reference phasor and that the line current lags VL by an angle CPL' Thus, 

VL =IVLILQ 

1L =11LI/-CPL 

Transformer V, 
1 

Transformer V2 
'-- 2 

Figure 9-17. Schematic of Relay Comparator Circuit. 

Comparator 
Trip 
signal 
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The impedance ZL is thus 

The transformers' output voltages VI and Vz are assumed to be linear 
combinations of the input quantities 

VI = k1VL + ZJL 
Vz=k2VL +Z2IL 

The impedances Zl and Z2 are expressed in the polar form: 

Zl =IZII[t 

Z2 =IZ21/1/;2 

The comparator input voltages VI and Vz are thus given by 

VI =IILI (kIIZLI +IZII/1/;I-<I>£ ) 
Vz = IILI (k2IZLI + IZ21/1/;2 -<1>£) 

Amplitude Comparison 

The trip signal is produced for an amplitude comparator when 

(9.15) 
(9.16) 

(9.17 ) 

(9.18) 

(9.19) 

The operation threshold condition I Vz I = I VII is of interest and occurs when 

Ik1lZLI + IZll/1/;1 - <1>£ 1
2 

= Ik21ZLI + IZ21/1/;2 -<1>£ 1
2 

(9.20) 

Both sides of the above equation are of the following form: 

IA + B� 1
2 

= IA + Bcos{3 + jBsin {312 

= (A + Bcos{3)2 
+ (Bsin {3)2 

= A2 + B2 + 2ABcos{3 
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Thus the operation condition (9.20) is obtained as 

(k� -kn /ZL/2 + 2/ZL/[ kl/Zl/ COS( �I -q,L) -k2/Z2/ COS( �2 -q,L)] 
+(/ZI/2_/Z2/2).,.;;0 (9 .21)  

This is the general equation for an amplitude comparison relay. The choices 
of kl, k2, ZI' and Z2 provide different relay characteristics. 

Ohm Relay 

The following parameter choice is made: 

kl =k k2=-k 

As a result, the general equation (9.21 )  reduces to 

/ZL/ (COS�COSq,L + sin �sinq,L ) "';; �� (9 .22) 

The relay characteristic can be shown in the X-R plane by setting the 
line impedance in the rectangular form 

ZL=RL +jXL 
Thus, 

RL=/ZL/COsq,L 
XL =/ZL/sinq,L 

Thus the relay threshold equation (9.22) becomes 

R X ·  /Z/ LCOS�+ Lsm�=2k (9 .23) 

This is a straight line in the XL -RL plane as shown in Figure 9-18.  The 
shaded area is the restrain area; an operate signal is produced in the 
nonshaded area. 

Mho Relay 

The mho relay characteristic is obtained with the choice 

kl =-k 
ZI =Z2=Z 

�I =�2=� 
As a result, the general equation (9.21) reduces to 

k 2/ZL/2 - 2k/ZLII Z/ cos( � -q,L)"';; 0 (9 .24) 
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IZI r-- 2K COS '" 

Figure 9-18. Ohm Relay Characteristic. 

In tenns of R L and XL> we thus have the characteristic 

or 

(9 .25) 

The threshold condition with equality sign is a circle as shown in Figure 
9-19. 

Impedance Relay 

Here we set 

ki =-k 
Zi i=Z2 

As a result, the relay characteristic is given by 



Figure 9-1 9. Mho Relay Character/sUc. 

IZI 
- cos Ijr K 
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(9.27) 

The threshold condition is a circle with center at IZd/kil and radius 
IZ21/k as shown in Figure 9-20. 

Phase Comparison 

Let us now consider the comparator operating in the phase compari
son mode. Assume that 

Then the phasor ratio is 

VI =IVII� 
� =1�18 

VI = IVII/O -0 � I�I_I 2 

Let the phase difference be defined as 

0 =  0I - O2 
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Figure 9-20. Impedance Relay Characteristic. 

A criterion for operation of the ± 90° phase comparator such as 

is chosen. This implies that 

-'11 '11 - �()�-2 2 

cos();;;' 0 

For our manipulation purposes, we rewrite this condition as 

Expanding the right-hand side, we obtain 

I Vllll'z1 cos( () _ () ) = Re(VJRe(l'z) + Im(V1)Im(l'z) 
IILI2 

I 2 
IILI2 

(9.28) 

(9.29) 
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Recall that 
Re(V1) 

IILI =klIZLI+IZ1Icos("'I-CI>L) 

Im(V1) • ( ) 
IILI =IZdsm "'1 -tpL 

Re(V2 ) 
IILI = k2 1ZLI + IZ2 1 COS( "'2 -tpL) 

Im(�) 
. ( ) IILI =IZ2 1sm "'2 -tpL 

As a result, we have 

k2k2 1ZLI2 + IZLI[ kllZ2 1 COS( "'2 -tpL) + k2 1Zd COS( "'I -tpL)] 

+IZII1Z2 1 COS( "'1 -"'2 ) � 0 (9 .30) 

This is the general equation for the ±90° phase comparator. By assigning 
values to the parameters k1, k2, ZI' and Z2 ' different relay characteristics 
are obtained. 

Ohm Relay 

The following choice results in an ohm-relay characteristic: 

kl = -k k2 =0 

ZI =Z2 =Z 

"'I ="'2 ='" 

These are exactly the values associated with the mho relay using the 
amplitude comparison mode. Substitution of these parameters results in 

or 

(9.31)  

In the (XL - R d plane the result is the straight line and is shown in Figure 
9-21 .  
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Figure 9-21 . Ohm-Relay Characteristic Using Phase Comparison. 

Figure 9-22. Mho-Relay Characteristic Using Phase Comparison. 
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Mho Relay 

In this case we choose the circuit that would produce the ohm-relay 
characteristic in the amplitude comparison case: 

As a result, we have 

or 
-k21 ZL12 + kl ZLIIZl cos( 1/1-cf>L) � O 

[ IZI cos 1/1 ]2 [ IZI sin 1/1 ]2 IZI2 
RL - 2k + XL - 2k E;;; 4k2 

(9.32) 

Again this is the equation of a circle with radius IZI/2k, i.e., half of the 
radius of the amplitude comparator mho circle, and with its center at 
(IZI/2k)ji as shown in Figure 9-22. 

9.5 GENERATOR PROTECTION 

There are a number of abnormal conditions that may occur with 
rotating equipment, including: 

1 .  Faults in the windings. 
2. Loss of excitation. 
3. Motoring of generators. 
4. Overload. 
5. Overheating. 
6. Overspeed. 
7. Unbalanced operation. 
8. Out-of-step operation. 

Several of these conditions can be corrected while the unit is in service and 
should be detected and signaled by alarms. Faults, however, require prompt 
tripping and are the result of insulation breakdown or flashovers that occur 
across the insulation at some point. The result of a fault is a conducting 
path between points that are normally of different potential. If the path has 
a high resistance, the fault is accompanied by a noticeable voltage change in 
the affected area. If, on the other hand, the path resistance is low, a large 
current results, which may cause serious damage. 
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Figure 9-23 shows the various types of faults that may occur in the 
insulation system of a generator's windings. The faults shown are identified 
as: 

1 .  Interphase short circuit. 
2. Intertum fault. 
3. Stator earth fault. 
4. Rotor earth fault. 
5. Intertum fault in rotor. 

Note that A denotes the insulation of individual windings and B denotes 
'the stator core. 

A short circuit between parts of different phases of the winding, such 
as faults 1 and 2 above, results in a sever fault current within the machine. 
A consequence of this is a distinct difference between the currents at the 

A 

+ 

Figure 9-23. Various Types of Faults That May Occur in the Insulation System 
of the Generator Windings. 
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Figure 9-24. Basic Differential Connection. 
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� � J_L 
i - i m2 

i - i m2 ---

neutral and tenninal ends of the particular winding, which is detected by a 
differential protection system. Here the currents on each side of the pro
tected apparatus for each phase are compared in a differential circuit. Any 
difference current will operate a relay. Figure 9-24 shows the relay circuit 
for one phase only. On nonnal operation, only the difference between the 
current transfonner magnetizing currents im1 and im2 passes through the 
relay. This is due to the fact that with no faults within the protected 
apparatus, the currents entering and leaving are equal to I. If a fault occurs 
between the two sets of current transfonners, one or more of the currents 
(in a three-phase system) on the left-hand side will suddenly increase, while 
that on the right-hand side may decrease or increase with a direction 
reversal. In both instances, the total fault current will flow through the 
relay, causing it to operate. In units where the neutral ends are inaccessible, 
differential relays are not used. In this case, reverse power relays are 
employed instead. 

Current leakage can take place between turns of the same phase of a 
winding or between parallel coils of the same phase. This is referred to as an 
intertum fault. In generators with one winding per phase, a voltage trans
fonner is connected between each phase tenninal and the neutral of the 
winding. The secondary tenninals are connected in an open delta to a 
polarized voltage relay as shown in Figure 9-25. In the event of an interturn 
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Figure 9-25. Interturn Fault Protection Scheme. 

fault, a voltage appears at the tenninals of the open delta and causes the 
relay to trip. In the phasor diagram of Figure 9-26, 3"0 is the resulting 
voltage at the tenninals of the open delta. Thus. 

Note that "0 is essentially a zero sequence voltage. 
To protect against stator earth faults, the neutral point of the genera

tor is connected to ground through a high resistance. With an earth fault, 
current will flow through the resistance, producing a potential difference 
across the resistance between the neutral point and ground. This potential 
difference is picked up by a voltage transfonner connected to a polarized 
voltage relay, which trips the generator circuit breakers as shown in Figure 
9-27 . This protection system is designed for a fault current exceeding 10 A. 

If more than one ground fault in the rotor (field) circuit occurs, 
magnetic unbalances and hence machine vibrations take place. This makes 

+ 
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(a) 

(b) 

Figure 9-26. Phasor Diagrams for Normal and Fault Voltages in Interturn Fault 
Protection. (a) Normal Conditions. (b) Fault on Phase A. 

the detection of earth faults on the rotor circuit of fundamental importance. 
A scheme utilizing dc such as that shown in Figure 9-28 is used. The voltage 
divider principle is used with Rl and R2 being fixed resistance (typically 
Rl = 5 k� and R2 = 23 k� for an exciter with 250-V rating). Note RN is a 
resistance that varies with the voltage applied to it (typically 45 k� at 60 V 
and 4.7 k� at 150 V). When the field becomes grounded, a voltage (whose 

Groundi ng 
resistance 

Generator 

nVo ltOge 
urelay 

PT 

Figure 9-27. Schematic for Ground Fault Protection for a Machine Grounded 
Through a High Resistance. 
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Field winding 
r-----------��----------� Field + 1 1 Field 

breaker breaker R, M R2 

Relay VmO 

) 

Exciter 

Figure 9-28. Field Ground Protection Scheme. 

magnitude depends on the exciter voltage and the point of fault on the 
field) will appear between the point M and the ground. This voltage VMO 
will be a maximum if the fault is at either end of the field. A point on the 
field where VMO = 0 is called the nuU point. If R 2 = Rl + R N' then the null 
point is at the middle of the field winding. A dc instrument-type relay 
detects abnormal values of VMO and hence rotor faults. 

The protection mechanisms discussed above are shown in Figure 9-29 
and are designed to react to faults that occur on the generator. Preventive 
measures taken include lightning arresters connected between the input 
phases and the star point of the winding and ground. This limits the 
stresses induced in the windings by atmospheric surges. In the event of 
turbine overspeeding, overvoltage protection should act to suppress the 
field. This is also necessary for regulator and exciter system faults. In hydro 
units, overvoltage time-lag relays with high-speed stage are used; whereas 
for turbogenerators, an instantaneous overvoltage relay is adequate. 

Thermal relays are used as protection against overloads that cause 
inadmissibly high temperatures. These intervene when the protected wind
ing has almost reached the designed temperature limits. The relay possesses 
a thermal replica whose time-constant is matched with that of the genera
tor. The relay is capable of being overloaded for a short period so that the 
generator can be loaded to advantage up to its maximum thermal capacity. 

Thermal overcurrent time-relays with modest time-constants are pro
vided in the output circuits of the voltage regulator. For sustained positive 
or negative maximum excitation due to a fault in the regulator, the 
generator is switched over to manual regulation. 
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Stator protection 

Overvoltage protection 

Overcurrent protection 

Overload protection 
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L..---i Prot. against loss of excita
tion (asynchronous running ) 

Figure 9-29. Allocation of Protective Devices for the Stator, Rotor, and Prime 
Mover. 

Negative sequence relays are used to indicate whether the pennissible 
single-phase loading of a three-phase generator has been exceeded. The 
relay affords a thennal protection of the rotor because, in the event of an 
unsyrnmetrical loading of the machine, out-of-phase currents with double 
the frequency are generated in the rotor, resulting in harmful overheating of 
the core. 

Capacitive minimum-reactance relays are used for generators where a 
corresponding risk is present. This relay is combined with an undelayed 
overvoltage relay in such a way that when self-excitation commences, both 
relays pick up and trip the generator breaker immediately. Through a 
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second output, a time-lag relay is switched on, which, on expiry of its time 
lag, causes hydrogenerators to be switched off or turbogenerators to have 
the field suppressed and a sustained signal of asynchronous running to be 
given. This relay also detects interruptions or short circuits in the excitation 
circuit. For such faults, the generator is either switched off immediately, or 
it remains in the network while resynchronization into the network is 
attempted. Figure 9-30 shows the X-R diagram for a capacitive minimum
reactance relay where 

Xd = Synchronous reactance of the generator 
Xd' = Transient reactance of the generator 

a, b = Adjustment factors 

Reverse-power relays are used to switch off the generator when it runs 
at full speed as a motor due to turbine failure when the generator remains 
connected to the network. In some systems, instead of the reverse-power 
relay, a very sensitive power directional relay with low setting is employed. 

To eliminate currents in the bearings, at least one bearing and its 
auxiliary piping must be insulated from earth. A possible fault in this 
insulation or inadvertent short-circuiting by a conducting object is detected 
by the bearing current protection, which determines the current flowing in 
the bearing directly. It is normally provided as a two-stage facility. 

Figure 9-31 shows the various protection functions their location and 
the faults covered for generator protection. 

-R +x +R 

�_d __ ---::::::--I __ 

-x 

Figure 9-30. Tripping Locus of the Capacitive Minimum-Reactance Relay In 
the Negative Reactance Zone of the R-X Diagram. 
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Figure 9-31 . A General Protection Scheme for Generators. 
(Courtesy Brown-Bover; Co.) 

9.6 TRANSFORMER PROTECTION 

A number of fault conditions can arise within a power transformer. 
These include: 

1. Earth faults: A fault on a transformer winding will result in 
currents that depend on the source, neutral grounding impedance, 
leakage reactance of the transformer, and the position of the fault 
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in the windings. The winding connections also influence the magni
tude of fault current. In the case of a Y-connected winding with 
neutral point connected to ground through an impedance Zg, the 
fault current depends on Zg and is proportional to the distance of 
the fault from the neutral point. If Zg = 0, i.e., the neutral is solidly 
grounded, the fault current is controlled by the leakage reactance. 
It is clear that the leakage reactance is dependent on the fault 
location. The reactance decreases as the fault becomes closer to the 
neutral point. As a result, the fault current is highest for a fault 
close to the neutral point. Figure 9-32 compares the general varia
tion of fault current with the location of the fault in the winding for 
Y-connected winding. In the case of a fault in a d-connected 
winding, the range of fault current is less than that for a Y -con
nected winding, with the actual value being controlled by the 
method of grounding used in the system. Phase fault currents may 
be low for a d-connected winding due to the high impedance to 
fault of the d winding. This factor should be considered in desig
ning the protection scheme for such a winding. 

2. Core faults due to insulation breakdown can pennit sufficient 
eddy-current to flow to cause overheating, which may reach a 
magnitude sufficient to damage the winding. 

3. Interturn faults occur due to winding flashovers caused by line 
surges. A short circuit of a few turns of the winding will give rise to 
high currents in the short-circuited loops, but the tenninal currents 
will be low. 

Fault 
current 

Sol i d l y  grounded Y 

Y wi th  neutral 
ground through 
i m peda nce 

Distance of 
fau l t  from 
neut ral 

Figure 9-32. Earth Fault Current Variation with Location of Fault. 
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4. Phase-to-phase faults are rare in occurrence but will result in 
substantial currents of magnitudes similar to earth faults'. 

5. Tank faults resulting in loss of oil reduce winding insulation as well 
as producing abnormal temperature rises. 

In addition to fault conditions within the transformer, abnormal 
conditions due to external factors result in stresses on the transformer. 
These conditions include: 

1 . Overloading, which results in increased /2
R losses and an associ

ated temperature rise. 

2. System faults produce effects similar to but sometimes more severe 
than those due to overloading. 

3. Overooltages due to either transient surges or power frequency 
voltage increases produce insulation stresses and increased flux. 

4. Underfrequency operation of the system results in an increased 
flux, causing increased core losses and a corresponding temperature 
rise. 

When a transformer is switched in at any point of the supply voltage 
wave, the peak values of the core flux wave will depend on the residual flux 
as well as on the time of switching. The peak value of the flux will be higher 
than the corresponding steady-state value and will be limited by core 
saturation. The magnetizing current necessary to produce the core flux can 
have a peak of eight to ten times the normal full-load peak and has no 
equivalent on the secondary side. This phenomenon is called magnetizing 
inrush current and appears as an internal fault. Maximum inrush occurs if 
the transformer is switched in when the supply voltage is zero. Realizing 
this, is important for the design of differential relays for transfonner 
protection so that no tripping takes place due to the magnetizing inrush 
current. A number of schemes based on the harmonic properties of the 
inrush current are used to prevent tripping due to large inrush currents. 

Overheating protection is provided for transfonners by placing a 
thennal-sensing element in the transfonner tank. Overcurrent relays are 
used as a backup protection with time delay higher than that for the main 
protection. Restricted earth fault protection is utilized for Y -connected 
windings. This scheme is shown in Figure 9-33. The sum of the phase 
currents is balanced against the neutral current, and hence the relay will 
not respond to faults outside the winding. 

Differential protection is the main scheme used for transformers. A 
number of considerations should be dealt with, including: 

1. Transformer ratio: The current transformers should have ratings to 
match the rated currents of the transfonner winding to which they 
are applied. 
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High i mpedance 
re lay 

Figure 9-33. Restricted Ground Fault Protection for a Y Winding. 

2. Due to the 30°-phase change between Y- and A-connected windings 
and the fact that zero sequence quantities on the Y side do not 
appear on the tenninals of the A side, the current transfonners 
should be connected in Y for a A winding and in A for a Y winding. 
Figure 9-34 shows the differential protection scheme applied to a 
A/Y transfonner, and Figure 9-35 provides details for a three-wind
ing Y I A/Y transfonner differential protection scheme. When cur
rent transfonners are connected in A ,  their secondary ratings must 
be reduced to (1/ 13) times the secondary rating of Y-connected 
transfonners. 

3. Allowance should be made for tap changing by providing restrain
ing coils (bias). The bias should exceed the effect of the maximum 
ratio deviation. 

Example 9-3 

Consider a A/Y-connected, 15-MVA, 33/11-kV transfonner with dif
ferential protection applied, for the current transfonner ratios shown in 
Figure 9-36. Calculate the relay currents on full load. Find the minimum 
relay current setting to allow 125 percent overload. 

Solution 

The primary line current is give� by 

I = 
15 X 106 

= 262 .43 A 
P ( 13 ) (33 X 103 ) 
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Figure 9-34. Differential Protection of a fl/Y Transformer. 

The secondary line current is 

The C.T. current on the primary side is thus 

A 

B 

c 
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Figure 9-35. Transformer Differential Relay for a Three-Winding Transformer. 

The C.T. current in the secondary side is 

is = 787 .30 ( 2� ) 13 = 3 .41 A 

Note that we multiply by 13 to obtain the values on the line side of the 
�-connected C.T.'s. The relay current on normal load is therefore 

ir = ip - is = 4 .37 - 3 .41 = 0 .9648 A 
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Figure 9-36. Transformer for Example 9-3. 

With 1 .25 overload ratio, the relay setting should be 

Ir = ( 1 .25) (0 .9648) = 1 .206 A 

Buchholz Protection 

In addition to the above-mentioned protection schemes, it is common 
practice in transformer protection to employ gas-actuated relays for alarm 
and tripping. One such a relay is the Buchholz relay. 

Faults within a transformer will result in heating and decomposing of 
the oil in the transformer tank. The decomposition produces gases such as 
hydrogen, carbon monoxide, and light hydrocarbons, which are released 
slowly for minor faults and rapidly for severe arcing faults. In the gas
activated relay named after its inventor, this phenomenon is utilized. With 
reference to Figure 9-37, the relay is connected into the pipe leading to the 
conservator tank. As the gas accumulates, the oil level falls and a float F is 
lowered and operates a mercury switch to sound an alarm. Sampling the gas 
and performing a chemical analysis provide a means for classifying the type 
of fault. In the case of a winding fault, the arc generates gas at a high 
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T r a n s f o r m e r  
t o n k  

Figure 9-37. Principle of the Buchholz Relay. 

T r i p  

release rate that moves the vane V to cause tripping through contacts 
attached to the vane. 

Buchholz protection provides an alarm for a number of fault condi-
tions including: 

1 .  Interturn faults or winding faults involving only lower power levels. 
2. Core hot spots due to short circuits on the lamination insulation. 
3. Faulty joints. 
4. Core bolt insulation failure. 

Major faults resulting in tripping include severe earth or interphase winding 
faults and loss of oil through leakage. 

9.7 BUS BAR PROTECTION 

Bus bars are an essential link in the electric power system, and short 
circuits in their zone have to be interrupted in the shortest possible time. In 
distribution systems (6-20 kV) with supply through transformers, overcur
rent time-relays provide an easy protection mechanism. The relays inter
rupt the supply to the bus bars if one or more supplies (but not feeders) are 
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Figure 9-39. Linear Coupler Scheme for Bus Bar Protection. 

R e l a y  
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conducting a fault current, as shown in Figure 9-38. Power direction relays 
are used in the transfonner supply side to respond to a fault at the bus bars. 

Differential protection is the most reliable method of protection for 
bus bars. Since a large number of circuits are involved, different current 
levels are encountered. The C.T.'s current on a faulted feeder must balance 
out the sum of C.T. currents on the nonfaulty feeders. This operates the 
C.T. at a high saturation level and may lead to false tripping. A number of 
techniques are used to overcome this. One such technique is to use linear 
couplers, which are simply iron less current transfonners. The secondary 
voltage of the coupler is given by 

where Z is the mutual impedance (typically 0.05 ohms). Figure 9-39 shows 
a linear �oupler system, which is essentially a voltage differential scheme. 
The voltage on the relay is Er and is given by 

n 

Er= � ( Zmij - Eo )  
j= ! 

Note that in the circuit shown with nonnal load or with fault outside the 
bus bar, 

n 

io =: � ( iJ 
j= ! 
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and thus Er = O. For a fault on the bus bar, this balance will be upset. The 
relay current is 

Ir =  �r 

Zr + � ( ZcJ 
j= O 

where the Zc's are the coupler self-impedances and Zr is the relay imped-
J 

ance. 
Conventional current transformers are used in the multirestraint dif

ferential system for bus bar protection. In this system the inaccuracies 
resulting from current transformer saturation on heavy faults is com
pensated for by using a variable percentage differential relay. This relay 
consists of three induction-type restraint units and one induction-type 
operating unit. Two of the units operate on a common disc. The two discs 

Bus 
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t--+--fX""'T----- 3 

t---+--�cq... ....... - 4 

R = paired restraint  coils 
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S a t u ra t i ng 
a u to tr a n sforme r 

-i 
Mul t - contact  

r----t---ir--
a u xi I i a  ry OP t r i p p i n g  
re la y 

+ R 

+ R 

+ R  

+ R 

+ R  

+ R  

Figure 9-40. Schematic Connections of Multlrestralnt Differential Relay per 
Phase to Protect a Bus with Four Circuits. Connections for Only One Phase Are 
Shown. 
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have a common shaft with the moving contacts. Current flows through the 
windings of the four units, causing contact-opening torque for the restraint 
unit or contact-closing torque for the operating unit. The two windings on 
the restraint units are such that currents in the same direction provide 
restraint proportional to the sum, while currents in the opposite direction 
provide restraint proportional to the difference. When the currents in the 
two windings are equal and opposite, no restraining torque results. This 
relay is called the variable percentage differential relay. 

At light fault currents, the C.T.'s performance is adequate, and the 
percentage is small for maximum sensitivity. For heavy external faults 
where the C.T.'s performance is likely to be poor, a large percentage is 
available. This characteristic is obtained by energizing the operating unit 
through a saturating autotransformer. Figure 9-40 shows a schematic con
nection of one phase for a multi-restraint differential system applied to a 
bus with four circuits. 

Another scheme for bus bar protection is the high-impedance voltage 
differential system, which utilizes conventional current transformers. The 
current transformers are loaded with a high impedance relay unit to nullify 
the unequal current transformer performance problem. Bushing-type cur
rent transformers are used because they have a low secondary impedance. 
The relay unit shown in Figure 9-41 is an instantaneous voltage-plunger 
unit operated through a full-wave rectifier. The capacitance and inductance 
tune the circuit to fundamental frequency to reduce response to all harmon
ics. The impedance of this branch is around 3000 ohms, which means that 
C.T. secondaries and relay are subject to high voltages on a bus fault. A 
thyrite voltage-limiting unit is connected in parallel with the relay to limit 
the voltage. An instantaneous overcurrent unit is connected in series with 

Bus 

O vercurre l  
u n i t  

Figure 9-41 . Schematic of the High-Impedance Voltage Differential System. 
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this combination and is set to operate at very high internal fault magni
tudes. It must be set high to avoid operation on external faults. On internal 
faults, the voltage applied to the relay is high approaching the open-circuit 
voltage of the C.T. secondaries. On external faults the voltage will be as low 
as zero unless the C.T. 's saturate. 

9.8 TRANSMISSION LINE 

OVERCURRENT PROTECTION 

The earliest protective schemes evolved around the excessive currents 
resulting from a fault, which is the basis of overcurrent protection schemes. 
For transmission line protection in interconnected systems, it is necessary to 
provide the desired selectivity such that relay operation results in the least 
service interruption while isolating the fault. This is referred to as relay 
coordination. There are various possible methods to achieve the desired 
selectivity. Time/current gradings are involved in three basic methods 
discussed below for radial or loop circuits where there are several line 
sections in series. 

Three Methods of Relay Grading 

Time Gradi ng 

The purpose of time grading is to ensure that the breaker nearest to 
the fault opens first, by choosing an appropriate time setting for each of the 
relays. The time settings increase as the relay gets closer to the source. A 
simple radial system shown in Figure 9-42 will illustrate the point. 

At each of the points 2, 3, 4, and 5, a protection unit comprising a 
definite time-delay overcurrent relay is placed. The time-delay of the relay 
provides the means for selectivity. The relay at circuit breaker 2 is set at 
the shortest possible time necessary for the breaker to operate (typically 
0.25 second). The relay setting at 3 is chosen here as 0.5 second, that of the 
relay at 4 at 1 second, and so on. In the event of a fault at F in Figure 9-42, 
the relay at 2 will operate and the fault will be isolated before the relays at 
3, 4, and 5 have sufficient time to operate. The shortcoming of the method 
is that the longest fault-clearing time is associated with the sections closest 
to the source where the faults are most severe. 

Current Grading 

The fact that fault currents are higher the closer the fault is to the 
source is utilized in the current-grading method. Relays are set to operate at 
a suitably graded current setting that decreases as the distance from the 
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source is increased. Figure 9-43 shows an example of a radial system with 
current grading. The advantages and disadvantages of current grading are 
best illustrated by way of examples. 

Example 9·4 

Consider the radial system shown in Figure 9-44. Calculate the fault 
currents for faults FA' FB, Fe, FD, and FE' Propose relay settings on the 
basis of current grading, assuming a 30 percent relay error margin. 

Solution 

The system voltage is 11 kV; hence the fault current is given by 

where X, is the reactance from the source to the fault point. 
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Figure 9-43. Current Grading for a Radial System. 
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For fault FA we have 
XFA = 0 .5 + 0.25 + 0 .05 + 2 .1 = 2 .9 Q 

Thus the fault current is 

For fault FB we have 

I = 
1 1 ,0

00 
= 2189 .95 A FA 2 .9[3 

XFB 
= 0 .5 + 0 .25 + 0 .05 = 0.8 Q 

Thus the fault current is 

For a fault at C we have 

Thus the fault current is 

IF = 
1 1 ,

000 = 7938 .57 A 
B 0 .8[3 

XFc = 0 .5 + 0 .25 = 0 .75 

IF. = 1 1 ,000 = 8467 .8 A c 
0.75[3 

Since FD is very close to Fe, we conclude that 
IFD = IFc = 8467 .8 A 

For a fault at E we have 

Thus, 

IF = 1 1 ,000 
= 12701 .71 A 

E 0 .5[3 

The relay at 1 should respond to faults FB and Fe and should be set at 
130 percent of fault current at FA. Thus, 

Is, = 1 .3lFA = 2846 .93 A 

The relay at 2 should respond to faults FE and FD and should be set at 
IS2 = 1 .3IFc = 1 1008 .14 A 

Note that relay 2 will not respond to FA' FB , and Fe. 
In practice, there would be variations in the source fault level that 

result typically in a reduction of source apparent power by 50 percent. The 
apparent power reduction can be considered as an increase in source 
impedance (doubling of Xs ). As a result, lower fault currents arise. The 
consequences of this are illustrated in the following example. 



Example 9-5 
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Suppose that for the system of the above example, source level 
variations result in changing Xs from 0.5 0 to 1 O. Find the resulting fault 
currents and study their effects on relay response. 

Solution 

The following are the revised currents: 
11,000 

[FA = 3.4/3 = 1867.90 A 

I = 
1 1 ,000 = 4885 .27 A FB 1 .3{3 

IF. = IF = 1 1 ,000 = 5080 .68 A C D 1 .25{3 
IF = 1 1 ,000 = 6350.85 A 

E 1{3 

Relay 1 will still respond to faults FB and Fe. Relay 2 will not respond to 
any fault including FE' Note the presence of the transformer with X = 2.1 is 
the main reason for relay 1 to operate properly. 

Current grading is therefore not a practical proposition to protect the 
circuit between breakers 2 and 1 .  However, when there is a significant 
impedance between the breakers, the scheme is practical. 

I nverse-Time Overcurrent Relaying 

Each of the two methods considered so far has a disadvantage. 
Therefore the inverse-time overcurrent relay method has evolved because of 
the limitations imposed by the use of either current or time alone. With this 
third method, the time of operation is inversely proportional to the fault 
current level, and the actual characteristics are a function of both time and 
current settings. Figure 9-45 shows some typical inverse-time relay char
acteristics. Relay type CO-7 is in common use. Figure 9-46 shows a radial 
system with time-graded inverse relays applied at breakers 1 ,  2, and 3. 

For faults close to the relaying points, the inverse-time overcurrent 
method can achieve appreciable reductions in fault-clearance times. 

The operating time of the time-overcurrent relay varies with the 
current magnitude. There are two settings for this type of relay: 

1 .  Pickup current is determined by adjusted current coil taps or 
current tap settings (C.T.S.). The pickup current is the current that 
causes the relay to operate and close the contacts. 
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2. Time dial refers to the reset position of the moving contact, and it 
varies the time of operation at a given tap setting and current 
magnitude. 

The time characteristics are plotted in terms of time versus multiples 
of current tap (pickup) settings, for a given time dial position. There are 
five different curve shapes referred to by the manufacturer: 

CO-ll  
CO-9 
CO-8 
CO-7 
CO-6 

Extreme inverse 
Very inverse 
Inverse 
Moderately inverse 
Definite minimum 

These shapes are given in Figure 9-45. Figures 9-48 and 9-49 show detailed 
characteristics of two relay types. 

Example 9-6 

Consider the ll-kV radial system shown in Figure 9-47. Assume that 
all loads have the same power factor. Determine relay settings to protect 
the system assuming relay type CO-7 (with characteristics shown in Figure 
9-48) is used. 

C. T. R = 400/ 5 C . T . R =  2 00/5 

Figure 9-47. An Example Radial System. 

C .T . R  = 2 00/ 5 

L 1  = 4 M VA 
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Figure 9-48. CO-7 Time-Delay Overcurrent Relay Characteristics. 

Solution 

The load currents are calculated as follows: 

11 = 4 X 106 
= 209 .95 A {3 ( 1 1  X 103 ) 

2 .5 X 106 
= 131 .22 A {3 ( 1 1  X 103 ) 

I = 6 .75 X 106 
= 354 .28 A 3 {3 (1 1  X 103 ) 
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The nonnal currents through the sections are calculated as 

121 = 11 = 209 .95 A 

132 = 121 + 12 = 341 .16 A 
Is = 132 + 13 = 695 .44 A 

With the current transformer ratios given, the nonnal relay currents are 

. 209 .95 l 21 = """200 = 5 .25 A 

5 
. 341 .16 l32 = """200 = 8 .53 A 

5 

. = 695 .44 
= 8 69 A lS 400 

. 

5 
We can now obtain the current tap settings (C.T.S.) or pickup current 

in such a manner that the relay does not trip under normal currents. For 
this type of relay, the current tap settings available are 4, 5, 6, 7 , 8, 10, and 
12 amperes. For position 1 ,  the normal current in the relay is 5.25 A; we 
thus choose 

(C .T,S . ) 1  = 6 A 
For position 2, the nonnal relay current is 8.53 A, and we choose 

(C .T.S .h = 10 A 
Similarly for position 3, 

(C .T.S ')3 = 10 A 
Observe that we have chosen the nearest setting higher than the normal 
current. 

The next task is to select the intentional delay indicated by the time 
dial setting (T.D.S). We utilize the short-circuit currents calculated to 
coordinate the relays. The current in the relay at 1 on a short circuit at 1 is 

isc, ; (;) ; 62 .5 A 

Expressed as a multiple of the pickup or C.T.S. value, we have 

iSCI 
= 

62 .5 
= 10.42 

(C .T,S .) 1 6 

We choose the lowest T.D.S for this relay for fastest action. Thus 
1 

(T.O ,S ·) 1 = "2 
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By reference to the relay characteristic, we get the operating time for relay 1 for a fault at 1 as 
TI l = 0.15 s 

To set the relay at 2 responding to a fault at 1 ,  we allow 0.1 second for 
breaker operation and an error margin of 0.3 second in addition to TIl '  
Thus, 

7:2 = TI + 0.1 + 0.3 = 0 .55 s I I 

The short circuit for a fault at 1 as a mUltiple of the C.T.S. at 2 is 

iSCI 62 .5 
(C .T.S .h 

= 10 = 6.25 

From the characteristics for 0.55-second operating time and 6.25 ratio, we 
get 

The final steps involve setting the relay at 3. For a fault at bus 2, the 
short-circuit current is 3000 A, for which relay 2 responds in a time T22 
obtained as follows: 

isc2 = 
3000 

= 7 5 
(C .T,S · )2  ( 2� ) 1O . 

For the (T.D.S.h = 2, we get from the relay's characteristic, 
T22 = 0 .50 s 

Thus allowing the same margin for relay 3 to respond to a fault at 2, as for 
relay 2 responding to a fault at 1 ,  we have 

T32 = T22 + 0 .1  + 0.3 
= O.90 s  

The current in the relay expressed as a multiple of pickup is 

isc2 = 
3000 

= 3 .75 
(C .T,S ·)3 ( 4� ) 1O 

Thus for Ta = 0.90, and the above ratio, we get from the relay's characteris
tic, 

(T .D.8 .>a � 2 .5 

We note here that our calculations did not account for load starting 
currents that can be as high as five to seven times rated values. In practice, 
this should be accounted for. Problem 9-A-3 treats the question of finding 
the time of response of the relays to various faults as set in this example. 
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9.9 PI LOT-WIRE FEEDER 

PROTECTION 

The application of graded overcurrent systems to feeder protection 
has two disadvantages. The first is that the grading settings may lead to 
tripping times that are too long to prevent damage and service interruption. 
The second is that satisfactory grading for complex networks is quite 
difficult to attain. This led to the concept of " unit protection" involving the 
measurement of fault currents at each end of a limited zone of the feeder 
and the transmission of information between the equipment at zone 
boundaries. The principle utilized here is the differential (often referred to 
as Merz-price) protection scheme. For short feeders, pilot-wire schemes are 
used to transmit the information. Pilot-wire differential systems of feeder 
protection are classified into three types: (1) the circulating-current sys
tems, (2) the balanced-voltage systems, and (3) the phase-comparison 
(Casson-Last) system. All depend on the fact that, capacitance current 
neglected, the instantaneous value of the current flowing into a healthy 
conductor at one end of the circuit is equal to the instantaneous current 
flowing out of the conductor at the other end, so that the net instantaneous 
current flowing into or out of the conductor is zero if the conductor is 
healthy. If, on the other hand, the conductor is short-circuited to earth or 
to another conductor at some point, then the net current flowing into or out 
of the conductor is equal to the instantaneous value of the current flowing 
out of or into the conductor at the point of fault. 

Circulating-Current Systems. 

The basic principle of operation of a circulating-current system is 
shown in Figure 9-50, which illustrates its application to a single-phase 
feeder. The two equal-ratio current transformers, one at each end of the 
protective circuit, have their secondary windings connected in series so that 
under load or external fault conditions their induced secondary voltages add 
together to produce a circulating current in the pilot-wire circuit. The relay 
R,  shown connected at the midpoint of the pilot-circuit, carries the dif
ference between the two C.T. secondary currents. This difference current is 
zero since the secondary currents of the two C.T.'s are identical . Under an 
internal short-circuit condition, however, this equality is no longer valid, 
and there is a resultant current in the relay that operates to trip the faulted 
feeder from the system. The simple system just described is not practical 
since it requires that tripping be initiated from a relay situated at the 
middle of the protective circuit. 



A 
C .T. 

Figure 9-50. Circulating Current System. 
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Figure 9-51 . Self-Compensating Version of Figure 9-50. 
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To provide for the requirement that tripping be initiated from relays 
situated at the ends, the self-compensating circulating-current pilot-wire 
system evolved. In this system, two relays (one at each end of the protected 
circuit) are connected in series via a third pilot-wire as shown in Figure 9-51 .  
The pilot wire and its two relays carry the difference current of  the two 
summation transformer outputs. Shunts, r, in the pilot circuit and com
pensating potential transformers keep the third pilot at the mid potential of 
the two outer pilot cores under all through-current conditions. The pilot 
capacitance currents in the relays are thus kept to a tolerable value. 

Balance-Voltages Systems. 

The principle of operation of balance-voltage systems of differential 
feeder protection is illustrated in Figure 9-52 for a single-phase circuit. In 
this system, the two C.T. 's at the ends of the protected circuit have their 
secondary windings connected in series opposition around the pilot loop, so 
that under load or external fault conditions, there is no current in the relay 
that is connected in series with the pilot wires. Under internal fault 
conditions, however, the C.T. secondary voltages are no longer equal and 
opposite, so that the resultant voltage produces a current in the pilot wires 
and relay. Operation of the relay disconnects the faulted circuit from the 
system. Principles of the third type, phase comparison are discussed in 
Section 9-1 1 . 

A C .T. 

Re lay  

Figure 9-52. Principle of Balanced-Voltage System. 

C.T B 

Re lay  
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9.1 0 DISTANCE PROTECTION 

Protection of lines and feeders based on comparison of the current 
values at both ends of the line can become uneconomical. Distance protec
tion utilizes the current and voltage at the beginning of the line in a 
comparison scheme that essentially determines the fault position. Imped
ance measurement is performed using relay comparators whose theory was 
discussed in Section 9.4. A simple distance relay is offered by the balanced
beam relay shown in Figure 9-9, with one coil supplied by a current 
proportional to the fault current and the other supplied by a current 
proportional to the fault loop voltage. Under normal conditions, the pull 
developed by the voltage electromagnet exceeds that developed by the 
current electromagnet, and the contacts are open. For a short circuit within 
reach of the relay, the current in the current coil increases, while that in the 
voltage coil decreases, and thus the relay operates to trip the circuit 
breaker. 

The relay as described is a plain impedance relay and has a character
istic such as that shown in Figure 9-20. It will thus respond to faults behind 
it (third quadrant) in the X-R p.iagram as well as in front of it. One way to 
prevent this is to add a separate directional relay that will restrain tripping 
for faults behind the protected zone. The reactance or mho relay with 
characteristics as shown in Figure 9-19 combines the distance-measuring 
ability and the directional property. The term mho is given to the relay 
where the circumference of the circle passes through the origin, and the 
term was originally derived from the fact that the mho characteristic ( ohm 
spelled backward) is a straight line in the admittance plane. 

Early applications of distance protection utilized relay operating times 
that were a function of the impedance for the fault. The nearer the fault, 
the shorter the operating time. This is shown in Figure 9-53. This has the 
same disadvantages as overcurrent protection discussed earlier. Present 
practice is to set the relay to operate simultaneously for faults that occur in 
the first 80 percent of the feeder length (known as the first zone). Faults 
beyond this point and up to a point midway along the next feeder are 
cleared by arranging for the zone setting of the relay to he extended from 
the first zone value to the second zone value after a time delay of about 0.5 
to 1 second. The second zone for the first relay should never be less than 20 
percent of the first feeder length. The zone setting extension is done by 
increasing the impedance in series with the relay voltage coil current. A 
third zone is provided (using a starting relay) extending from the middle of 
the second feeder into the third feeder up to 25 percent of the length with a 
further delay of 1 or 2 seconds. This provides backup protection as well. The 
time-distance characteristics for a three-feeder system are shown in Figure 
9-54. 
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Distance relaying schemes employ several relay units that are arranged 
to give response characteristics such as that shown in Figure 9-55. A typical 
system comprises: 

1. Two offset mho units (with three elements each). The first operates 
as earth-fault starting and third zone measuring relay, and the 
second operates as phase-fault starting and third zone measuring 
relay. 

Figure 9-55. Characteristics of a Three-Zone onset Mho-Relaying Scheme. 

R 
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2. Two polarized mho unit.<; (with three elements each). The first unit 
acts as first and second zone earth-fault measuring relay, and the 
second unit acts as first and second zone phase-fault measuring 
relay. 

3. Two time-delay relays for second and third zone time measurement. 

The main difference between earth-fault and phase-fault relays is in 
the potential transformer (P.T.) and C.T. connections, which are designed 
to cause the relay to respond to the type of fault concerned. 

9.1 1 POWER L I N E  CARRIER 

PROTECTION 

Carrier-current protection systems utilize overhead transmission lines 
as pilot circuits. A carrier-frequency signal (30-200 kHz) is carried by two 
of the line conductors to provide communication means between ends of the 
line. The carrier signal is applied to the conductors via carrier coupling into 
units comprising inductance/capacitor circuits tuned to the carrier signal 
frequency to perform a number of functions. The carrier signals thus travel 
mainly into the power line and not into undesired parts of the system such 
as the bus bars. The communication equipment that operates at impedance 
levels of the order of 50-150 � is to be matched to the power line that 
typically has a characteristic impedance in the range of 240-500 �.  

Figure 9-56 shows a typical arrangement of  a power line carrier 
coupling system. The line trap L l  and C1 is tuned to the middle of the 
carrier band required and thus has a low impedance at power frequency and 
a high impedance to the carrier signals. Thus the carrier frequencies are 
prevented from entering the bus bars. The series tuning circuit L2 , C2 , and 
C3 is tuned to the carrier midband and is the converse of the line trap in 
that it offers low impedance to the carrier signals but high impedance to the 
power frequency waves. Tl is an isolating transformer that also serves as a 
grounding coil for C3 so that the capacitor will have ground potential at 
power frequency. T2 is also an isolating and impedance-matching trans
former. C4 is used to tune the shunt reactance of Tl and Tz at carrier 
midband frequency to minimize the losses. Modern line trap design 
for multichannel operation includes a series RLC (resistance-inductance
capacitance) network across the trap so that the trap presents an almost 
constant resistance over a wide band of frequencies to offset the effect of 
bus bar reactance. Typical values for Cz and C:J are 2000 pF, and for L I ' 200 
fLH corresponding to 150 kHz carrier frequency. 

Power line carrier systems are used for two purposes. The first 
involves measurements, and the second conveys signals from one end of the 
line to the other with the measurement being done at each end by relays. 
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Figure 9-56. Power Line Carrier Coupling System. 
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When the carrier channel is used for measurement, it is not practical to 
transmit amplitude measurements from one end to the other since signal 
attenuation beyond the control of the system takes place. As a result, the 
only feasible measurement carrier system compares the phase angle of a 
derived current at each end of the system in a manner similar to differential 
protection as discussed below. 

Phase-Comparison Protection 

The principle of phase-comparison protection is illustrated in Figure 
9-57 for an internal fault. The scheme is such that if the current at a 
relaying point is of sufficient magnitude, a carrier signal is transmitted to 

A 

B 

c 
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Figure 9-57. Principle of Phase Comparison with an Internal Fault. 
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Figure 9-58. Principle of Phase Comparison with an External Fault. 
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the relaying systems at both ends of the line A and B. The carrier signal is 
transmitted only during the positive half-cycle of the current wave. Con
sider an internal fault at F; the current i A flowing into line AB measured at 
A is assumed to be sinusoidal as shown in graph (1) .  The carrier signal 
generated at A and transmitted to relaying equipment at A and B is 
denoted by leA and is shown is graph (3). The current iB flowing into line 
AB measured at B will have a magnitude different than that of i A but will 
be almost in phase with i A as shown in graph (2). The corresponding carrier 
signal generated at B and transmitted to both A and B is len and is shown 
in graph (4). The detector at A sums leA and len and rectifies the result to 
produce ID shown in graph (5). When the signal fDA is zero for a specified 
time, the relaying equipment at A activates to trip breaker A .  

I n  Figure 9-58, the situation with an external fault at G is i l lustrated. 
Observe now that iB is in a direction opposite to that for an internal fault. 
The sequence of graphs is self-explanatory. Note fDA does not assume a zero 
value, and relaying equipment does not trip the breaker at A .  

Radio and microwave links are now being applied in power systems to 
provide communication channels for teleprotection as well as for super
visory control and data acquisition. 

9.1 2 COM PUTER RELAYING 

The electric power industry has been one o f  the earliest users o f  the 
digital computer as a fundamental aid in the various design and analysis 
aspects of its activity. Computer-based systems have evolved to perform 
such complex tasks as generation control, economic dispatch (treated in 
Chapter 1 1) ,  and load-flow analysis for planning and operation, to name 
just a few application areas. Research efforts directed at the prospect of 
using digital computers to perform the tasks involved in power system 
protection date back to the mid-sixties and were motivated by the emer
gence of process-control computers. A great deal of research is going on in 
this field, which is now referred to as computer relaying. Up to the early 
1980s there had been no commercially available protection systems offering 

digital computer-based relays. However, the availability of microprocessor 

technology has provided an impetus to computer relaying. Microprocessors 
used as a replacement for electromechanical and solid-state relays can 
provide a number of advantages while meeting the basic protection philoso
phy requirement of decentralization. 

There are many perceived benefits of a digital relaying system: 

1 .  Economics: With the steady decrease in cost of digital hardware, 
coupled with the increase in cost of conventional relaying, it seems 
reasonable to assume that computer relaying is an attractive alter-
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native. Software development cost can be expected to be evened out 
by utilizing economies of scale in producing microprocessors dedi
cated to basic relaying tasks. 

2. Reliability: A digital system is continuously active providing a high 
level of self-diagnosis to detect accidental failures within the digital 
relaying system. 

3. Flexibility: Revisions or modifications made necessary by changing 
operational conditions can be accommodated by utilizing the pro
grammability features of a digital system. This would lead to 
reduced inventories of parts for repair and maintenance purposes. 

4. System interaction: The availability of digital hardware that moni
tors continuously the system performance at remote substations 
can enhance the level of information available to the control center. 
Postfault analysis of transient data can be performed on the basis 
of system variables monitored by the digital relay and recorded by 
the peripherals. 

The main elements of a digital computer-based relay are indicated in 
Figure 9-59. The input signals to the relay are analog (continuous) and 
digital power system variables. The digital inputs are of the order of five to 
ten and include status changes (on-off) of contacts and changes in voltage 
levels in a circuit. The analog signals are the 60-Hz currents and voltages. 
The number of analog signals needed depends on the relay function but is in 
the range of 3 to 30 in all cases. The analog signals are scaled down 
(attenuated) to acceptable computer input levels ( ±  10 volts maximum) and 
then converted to digital (discrete) form through analog/digital converters 
(ADC). These functions are performed in the block labeled "Analog Input 
Subsystem." 

The digital output of the relay is available through the computer's 
parallel output port. Five-to-ten digital outputs are sufficient for most 
applications. 

The analog signals are sampled at a rate between 240 Hz to about 
2000 Hz. The sampled signals are entered into the scratch pad [random 
access memory (RAM)] and are stored in a secondary data file for historical 
recording. A digital filter removes noise effects from the sampled signals. 
The relay logic program determines the functional operations of the relay 
and uses the filtered sampled signals to arrive at a trip or no trip decision, 
which is then communicated to the system. 

The heart of the relay logic program is a relaying algorithm that is 
designed to perform the intended relay function such as overcurrent detec
tion, differential protection, or distance protection, etc. It is not our inten
tion in this introductory text to pursue this interesting topic in detail. 
However, to give the reader a feel for what is involved in a relaying 
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Figure 9-59. Functional Block Diagram of a Digital Relay. 
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algorithm, we discuss next one idea for peak current detection that is the 
function of a digital overcurrent relay. 

Consider a pure sinusoidal current signal described by 

i ( t )  = Imsin( wt + cp) 

The rate of change of i( t) with respect to time is 

i '( t ) = wlmcos( wt + cp ) 

Thus, 

i ( t ) = sin( wt + cp ) 1m 
. ,( t ) _t _ = cos( wt + cp ) w1m 

Squaring and adding, we get 

We can also conclude that 

i ( t )  

I! = i 2 ( t) + [ i '�) r 
wi( t) tan( wt + cp ) = -i '( t ) 

1.6 � I .. 6 �  1 
K - l  K K + 1  

Time 

Figure 9-60. Approximating the Current Derivative for Digital Overcurrent Pro
tection. 
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It is clear that all we need to detect the peak of the sinusoid is to 
know the value of the current and its derivative at one instant of time. In 
digital fonn, we need at least three sample points to define the current and 
its derivative. To see this, assume that the current is sampled every Ll 
seconds. With the three samples at K - 1, K, and K + 1 ,  we conclude by 
reference to Figure 9-60 that 

., _ iK+ l - iK- 1 ZK - 2 Ll  

Thus we get an estimate of 1m based o n  the three samples as the square root 
of 

/2 _ ' 2  1 ( .  . ) 2 
m - ZK + � lK+ I - lK - l 

4 w  � 
Clearly this enables the detection of any sudden increase in lm ' Actual 
implementation should take into account transient conditions and noise 
effects. 

SOM E  SOLVED PROBLEM S  

Problem 9-A-1 

A three-phase, 15-MVA, 12-kV generator is provided with negative 
sequence protection employing a I-A overcurrent relay and a negative 
sequence filter such as that discussed in Example 9-1 .  Assume that the 
maximum allowable negative sequence current is 10 percent of rated genera
tor current. Find the most acceptable current transfonner ratio from the 
given listing of C.T. ratios. Assume relay current to be related to filter's 
input current by 

Standard C.T. ratios: 

50/5 , 100/5, 200/5, 400/5 , 600/5 , 800/5 , 1200/5 

Solution 

The rated current is 

lr = 
15 X 103 

= 721 .69 A fa x  12 

The relay should respond to negative sequence current, which is 10 percent 
of rated. Thus, 

1_ = 72 .169 A 

The corresponding relay current is 1 A. Thus, the negative sequence current 
to the filter is given by 

L = 2 A  
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The current transfonner ratio (C.T.R.) is therefore 

C .T.R. = 
72�69 

= 36 .08 

The closest C.T.R. in the listing is 200/5, which is the desired answer. 

p'roblem 9-A-2 
The line of Example 9-2 is to be provided with 80 percent distance 

protection using either a resistance or a reactance ohm relay. Find the relay 
design parameters in each case, assuming that magnitude comparison is 
used. 

Solution 

The line impedance is 
ZL = 0.1  + jO.3 pu 

For 80 percent protection, the operating point's impedance is 
Zp =  0.8ZL = 0 .08 + jO.24 pu 

An ohm relay based on magnitude comparison has the characteristics 
VI = kVL 
Vz = - kVL + ZIL 

For a resistance-distance characteristic, the angle tf = 0, and we have a 
characteristic as shown in Figure 9-61(a). To protect 80 percent of the line 

x 

0 . 24 

0 . 0 8  
(8)  

R 

Figure 9-61 . Relay X - R Diagrams for Problem 9-A-2. (a) Resistance Distance. 
(b) Reactance Distance. 
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we thus have Z = R, with 

R 

2k = 0 .08 

For reactance distance, the angle ", = 90° , and the characteristic is as shown 
in Figure 9-61(b). Thus Z = jX, with 

X 
2k = 0 .24 

Assuming k = 1 in each case gives 

Problem 9-A-3 

R = 0.16 p .u .  for resistance-distance relay 

X = 0.48 p.u .  for reactance-distance relay 

Consider the radial system of Example 9-6. It is required to construct 
the relay response time-distance characteristics on the basis of the design 
obtained as follows: 

A. Assuming the line's impedance is purely reactive, calculate the 
source reactance and the reactances between bus bars 3 and 2, and 
2 and 1 .  

B.  Find the current on a short circuit midway between buses 3 and 2 
and between 2 and 1 .  

C .  Calculate the relay response times for faults identified i n  Example 
9-6 and part (b) above and sketch the relay response time-distance 
characteristics. 

Solution 

A. The equivalent circuit of the system is shown in Figure 9-62. 
Assume 

E = 
ll ia103 

= 6350 .85 V 

For a short circuit at bus 3, we have 

Thus the source reactance is 

3200 = 
6350 .85 

Xs 

Xs = 1 .9846 ohms 

For a short circuit at bus 2, we have 

3000 = 
6350 .85 
Xs + X32 



E X s 3 X 32 2 

0 'YVY' I 'YVY' I 

1 
Figure 9-62. Equivalent Circuit for Problem 9-A-3. 

Thus the reactance between buses 3 and 2 is 

X32 = 0.1323 ohms 

For a short a circuit at bus 1, we have 

2500 = 
6350 .85 

Xs 
+ X32 + X21 

Thus the reactance between buses 2 and 1 is 

X21 = 0.4234 ohms 
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X 2 1 
'YVY' 

B. For a short circuit midway between buses 3 and 2 labeled A in Figure 
9-63 we have 

6350.85 
IscA = Xs + 0.5X32 

= 3096.77 A 

For a short circuit midway between buses 2 and 1 labeled B in Figure 9-63, 
we have 

6350.85 
IscB = X + X + 0 5X = 2727 .27 A 

s 32 • 21 

C. Consider the relay at 3, the current transformer ratio is 400/5, the 
current tap setting is 10 A, and the time dial setting is 2.5. The following 
list shows the steps to obtain the points on the time-distance curve desired : 

Step 1 -For a fault at 3: 
. 3200 

A l relay = 
400 

= 40 

5 irelay 
= 

40 
= 4 A 

C.T.S . 10 

From the characteristic of CO-7 :' 

T33 = 0.8 s 



616 System Protection 

Ti me 

1 2 f- - -
- -

1 . 0 f-

0 . 6 f-

0 . 4 f-

0 . 2  f-

0 
3 A 

0) � 

- - - - -

2 

� 

'* -- -- --- -------

I I 
B 

- -

Figure 9-63. Time-Distance Curves for System of Problem 9-A-3. 

Step 2 -For a fault at A :  
. 3096 .77 
l relay = 400 = 38 .71 A 

5 

i relay = 38 .71 = 3 871 A C.T.S . 10 
. 

From the characteristic of CO-7 : 
T3A = 0 .85 s 

Step 3 -For a fault at 2, we found in Example 9-6 that 

T32 = 0 .9 s 

Step 4 -For a fault at B; we get by a similar procedure, 
T3B = 1 .05 s 

"1 
Di stance 
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Step 5 -For a fault at 1 ,  we get 

T3 = 1 .2 s 1 

Consider the relay at 2, the C.T. ratio is 200/5, C.T.S. = 10 A, and 
T.D.S. = 2. The following operating times are obtained : 

T22 = 0.5 S 
T2B =  0.53 S 
T21 = 0.55 s 

The relay operating time-variation with location of fault is shown in Figure 
9-63. 

Problem 9-A-4 
It was pointed out in the text that motor starting and transformer 

inrush currents should be accounted for. It is required in this problem to 
treat the system of Example 9-6 assuming that the design is for starting 
currents 300 percent as much as the normal load currents. Assume that the 
same type of relay is used. However, current transformer ratios are still 
negotiable. 

A. Calculate the new current transformer ratios. 

B. Set the relays for this more realistic condition. 

Solution 

A. We will find the starting currents by simply multiplying the normal 
current by 3. Thus, 

121 = 629 .85 A 

132 = 1023 .48 A 

Is = 2086.32 A 

Using the C.T. ratios specified in Example 9-6, we have 

i21 = 15 .75 A 

i32 = 25 .59 A 
is = 26 .07 A 

For relay CO-7, the starting currents are all higher than the available 
current tap settings. We thus have to specify different current transformers. 

Using C.T. at 1 with 400/5 ratio results in a relay current at starting 
of 

i21 = 7 .88 A 

We take a current tap setting of 

C .T.S . l  = 8  
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Using a C.T. at 2 with 400/5 ratio results in a relay current at starting, 
which is higher than the available current tap setting. We thus take a C.T. 
at 2 with 600/5 ratio. Thus, 

. 1023.48 
'32 = 

600/5 
= 8 .53 A 

The current tap setting is thus taken as 
C .T.S . 2 = 10 A 

Taking a C.T. at 3 with 1200/5 ratio gives 

. 2086 .36 
ls = 

1200 
5 

= 8 .69 A 
We thus take a current tap setting of 10: 

C .T.S. 3 = 10 A 

B. To select the T.D.S., we have for relay 1 on a short circuit at 1 .  

. 2500 
'SCI = 

400 
5 = 31 .25 A 

Expressed as a multiple of C.T.S. value, we have 

iSCI = 
31 .25 = 3 91 

C .T.S . I 8 . 

We choose the lowest T.D.S., as 

(T.D .S . ) 1  = 0 .5 

From the relay characteristic we get 
Tn = 0.15 s 

To set the relay at 2, we allow the O.4-second margin to get 
T21 = 0 .55 s 

The short-circuit current for a fault at 1 as a multiple of the C.T.S. at 2 is 

[SCI 2500 
= 2 .08 

(C .T.h(C .T.S ·)2  
10 ( � )  

For 0.55-second operating time with 2.08 current as a mUltiple of the tap 
setting, we get 

(T.D.S .)2  = 0 .75 
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To set the relay at 3, we consider the fault at bus 2, the short-circuit 
current is 3000 A, to which relay 2 responds in time T22 • Thus, 

isc 2 _ 

C.T,S · 2 

For T.D,S' 2 = 0.75, we get 

3000 ( � ) 1O 
2 .5 

T22 = 0 .4 s 

Allowing the 0.4-second margin, we thus have 

T32 = 0.4 + 0.4 = 0.8 s 

The short-circuit current at 2 as seen by the relay at 3 is 

12sc = 
3000 

= 1 25 
(C .T·h(C .T,S ·)3 ( 12

5
00 ) 10 

. 

For T32 = 0.8, we get from the relay's characteristic, 

T.D.S · 3 = 0 .5 

Note that we needed to extrapolate the given characteristics. This com
pletes the relay settings. 

Problem 9-A-5 
For the 13.8-kV system shown in Figure 9-64, determine the relay 

settings and the current transformer ratios to protect the system from 
faults. Assume the following data: 

L }  = 9 MVA 

L2 = 4 MVA 

PF} = 0.9 lagging 

PF2 = 0.85 lagging 

B1 1 B2 GI---tDt---+-�---tD L ,  

Figure 9-64. System for Problem 9-A-S. 
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The maximum fault currents are 

Iscmax} = 3200 A 

Isc 2 = 2800 A max 
Assume type CO-8 relays are used and that the available current tap 
settings are the same as that for the CO-7 type. 

Solution 
The normal load currents are calculated as 

_ 9 X 106 _ }  I} - r;:; / - cos 0 .9 
13 .8 X 103y 3  '-----

= 376 .53/ - 25 .84° 

_ 4 X 106 _ } 12 - r;:; / - cos 0 .85 
13 .8 X 103V3  L--___ _ 

= 167 .35/ - 31 .79° 

The normal source current is thus 
Is = I} + 12 

= 543 .26/ - 27 .67° A 

The normal current through the line is thus 167 .35 A, and we can 
choose a current transformer ratio of 

C .T.R. 2  = 200/5 
The normal source current is 543.26 A, and we choose a current transformer 
ratio of 

C .T.R. }  = 400/5 

As a result, the normal relay currents are 
· 

= 
167 .35 

= 4 18 A l2 200/5 . 

· 
= 

543 .26 
= 6 79 A ls 400/5 

. 

Therefore the current tap settings are 
C .T.S · z = 5  
C .T.S . }  = 7 

On a short circuit at 2, the relay current is 

· 2800 70 A  lSC2 = 200/5 = 



Choosing the lowest time dial setting, 

T.D.S . z  = 0 .5 
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The short-circuit current at 2 expressed as a multiple of the current tap 
setting is thus 

iscz 
= 

70 
= 14 C .T.S . z  5 

From the relay characteristics, we get 
Tzz = 0.05 s 

To set the relay at 1 ,  we allow a O.4-second margin to respond to the 
fault at 2. Thus 

TIZ = 0 .45 s 

The short-circuit current at 2 seen at relay 1 is 

. 2800 
35 A lSC12 = 

400/5 
= 

This current is expressed as a mUltiple of the current tap setting, we get 

iSC12 = 
35 

= 5 A C .T .S . I 7 

Corresponding to 5 A and 0.45 seconds, we obtain from the relay's char
acteristic, 

T.D.S . I = 1 .2 

This completes the relay settings . .  
The relay at 1 will respond to a short circuit at 1 as follows: 

3200 ( 4� ) 7 
= 5 .71 A 

Thus from the relay's characteristic, 

Tl l = 0 .4 s 

This is naturally lower than TIZ • 

PROBLEMS 

Problem 9-8-1 

Use the relations between phase and sequence currents to prove that 
Eq. (9.1) leads to Eq. (9.3). Show that the choice 

Xm = RI//3 



622 System Protection 

leads to an output voltage containing only negative and zero sequence 
quantities. 

Problem 9-8-2 

A three-phase, 85-MVA, 13.8-kV generator is provided with negative 
sequence protection employing a 5-A overcurrent relay and a negative 
sequence filter. Assume that the maximum allowable negative sequence 
current is 10 percent of rated generator current and that the relay current is 
related to the filter's input current by 

i relay = 0 .5L 

Find the most acceptable current transformer ratio from the standard ratios 
given in Problem 9-A-1 .  

Problem 9-8-3 

Consider the system of Example 9-2. Assume that the load is reduced 
to 

Sr = 1 + jO.4 p .u .  

Find Zr ' Zs ' and the angle 8 for this condition. 

Problem 9-8-4 

The line of Example 9-2 is to be provided with 80 percent distance 
protection using an ohm relay with ", = 45° . Find the relay's impedance Z 
assuming k = 1 and that magnitude comparison is used. 

Problem 9-8-5 

Repeat Example 9-3, for a transformer rating of 12-MV A. 

Problem 9-8-6 

Consider the radial system shown in Figure 9-44. Calculate the fault 
currents for faults FA' FB, Fe, FD and FE' Propose relay settings on the basis 
of current grading. Assume that 

Problem 9-8-7 

Xs = 0.45 ohm 
X43 = 0 .20 ohm 
X32 = 0.l ohm 
Xr = 2 .1 ohms 

Suppose that for the system of Problem 9-B-6, source level variations 
result in changing Xs from 0.45 ohms to 0.9 ohms. Find the resulting fault 
currents. 
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Problem 9-8-8 

Consider the system of Example 9-6. Assume now that the load at the 
far end of the system is increased to 

L}  = 6 MVA 

Determine the relay settings to protect the system using relay type CO-7. 

Problem 9-8-9 

Repeat Problem 9-B-S, assuming that the design is for starting cur
rents of 250 percent as much as the normal load currents (Refer to Problem 
9-A-4). 

Problem 9-8-1 0 
Repeat Problem 9-A-5, for 

L2 = 6 MVA 

with all other information given in the problem statement unchanged. 



CHAPTER X 

Power System Stability 

10.1 INTRODUCTION 

In this chapter we are concerned with the implications of a major 
network disturbance such as a short circuit on a transmission line, the 
opening of a line, or the switching on of a major load. We are mainly 
interested in the analysis of the behavior of the system immediately 
following such a disturbance. Studies of this nature are called transient 
stability analysis. The term stability is used here to denote the ability of the 
system machines to recover from small random perturbing forces and still 
maintain synchronism. 

Stability considerations have been recognized to be among the essen
tial tools in electric power system planning. The possible consequences of 
instability in an electric power system were dramatized by the Northeast 
power failure of 1965. This is an example of a situation that arises when a 
severe disturbance is not cleared away fast enough. This blackout began 
with a loss of a transmission corridor, which isolated a significant amount of 
generation from its load. More recently, a transmission tower in the Con
solidated Edison system was hit by a severe lightning stroke in July 1977. 

625 
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The events that followed this led" to the shutdown of New York's power. 
Both events dramatized the consequences of an instability in an intercon
nected electric power system. 

In the present chapter our intention is to give an introduction to the 
important topic of transient stability in electric power systems. We treat 
the case of a single machine operating to supply an infinite bus. The 
analysis of the more complex problem of large electric power networks with 
the interconnections taken into consideration is not treated in the present 
work. This requires methods of study that are beyond the scope of this 
book. 

10.2 THE SWING EQUATION 

In the power system engineer's terminology, the dynamic equation 
relating the inertial torque to the net accelerating torque of the synchro
nous machine rotor is called the swing equation. This simply states 

J - =TN'm ( d2(J ) 
dt2 a (10.1) 

The left-hand side is the inertial torque, which is the product of the inertia 
(in kg. m2 ) of all rotating masses attached to the rotor shaft and the 
angular acceleration. The accelerating torque Ta is in newton meters and 
can be expressed as 

�=�-� (1O� 
In the above, Tm is the driving mechanical torque, and Te is the retarding or 
load electrical torque. 

The angular position of the rotor (J may be expressed as the following 
sum of angles: 

(10.3) 

The angle a is a constant that is needed if the angle 8 is measured from an 
axis different from the angular reference. The angle wRt is the result of the 
rotor angular motion at rated speed. The angle 8 is time-varying and 
represents deviations from the rated angular displacements. This gives the 
basis for our new relation 

(10.4) 

We find it more convenient to make the following substitution of the dot 
notation : 
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Therefore we have 

(10.5) 

Some Alternate Forms 
Some alternative useful forms of Eq. (10.5) have been developed. The 

first is the power form that is obtained by multiplying both sides of Eq. 
(10.5) by '" and recalling that the product of the torque T and angular 
velocity is the shaft power. This results in 

J",8· = Pm -Pe 
The quantity J", is called the inertia constant and is truly an angular 
momentum denoted by M (Jsjrad). Thus, 

Thus the power form is 
M=J", (10.6) 

(10.7) 

A normalized form of the swing equation can be obtained by dividing 
Eq. (10.5) by the rated torque TR to obtain the dimensionless equation: 

( � ) 8· = �: - �: 
The left-hand side of the above equation can be further manipulated to 
yield a form frequently used. Recall the definition of the kinetic energy of a 
rotating body. This gives the kinetic energy at rated speed as 

Then 

Wk = ( � ) J",� 
J _ 2Wk 

TR - ",�TR 
We know further that the rated power is 

PR= "'RTR 
Thus, 

Consequently, we have 

J _ 2Wk - --
TR "'R PR 
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A constant that has proved very useful is denoted by H which is equal 
to the kinetic energy at rated speed divided by the rated power PRo Thus, 

(10 .8) 

The units of H are in seconds. As a result, we write the per unit or 
nonnalized swing equation as 

Observing that Tpu = Ppu' we can then write 

( 2H ) 8'=P _p wR m e 

where the equation is in the per unit system. 

Machine Inertia Constants 

(10 .9) 

(10 .10) 

The angular momentum inertia constant M as defined by Eq. (10.6) 
can be obtained from manufacturer-supplied machine data. The machine 
kinetic energy in megajoules N may be written in tenns of M as follows: 

(10 . 1 1 ) 

where We i s  the angular speed in  electrical degrees per second. This in  turn is 
related to the frequency by 

We can therefore conclude that 

N M= 1801 MJ/elec. deg. (10.12) 

The value of N is obtained from the moment of inertia of the machine 
usually denoted by WR2 and traditionally given in lb-ft2• The conversion 
fonnula is derived now. 

We have 

N = (.!.) ( lVR2 ) 
2 ft-lb 2 32.2 W 

In tenns of the speed in r Imin, 

N= (.!.) ( WR2 ) ( 2?T n )2 
ft-lb 2 32.2 60 
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To convert to megajoules, we get ( 1 ) ( WR2 ) ( 2'1Tn ) 2 ( 1 ) N= 2" 32 .2 60 550 (746) ( 10-6) 

This reduces to our final desired fonnula: 

N = 2 .3097 X 1O-!O(WR2 )n2 ( 10 .13) 
The relation between Hand M can be simply obtained using Eq. 

(10.8), which is rewritten as 

H=
N 
G ( 10 .14) 

Here G is the machine rating. Combining this with Eq. (10.12), we obtain 
GH M = 1801 MJs/elec . deg ( 10 .15) 

The quantity H does not vary greatly with the rated power and speed 
of the machine but instead has a characteristic value or set of values for 
each class of machine . In the absence of definite infonnation, typical values 
of H may be used. The curves in Figures 10-1 , 1 0-2, and 10-3 give the 
general characteristic variations of H for existing and future large turbo
generators. 

In system studies where several machines with different ratings are 
used, the H constant for each machine, given to a base of the machine 
rating, must be converted to the common system base by multiplying H in 
Eq. (10.14) by the ratio (machine base MVA/system base MVA). 

10 

H 
MW-SEC 5 MVA 

� 
HIGH PRESSURE ,...! �------------

O�------�------��------'-------�r--------r 
o 100 200 300 400 500 

GENERATOR RATING - MVA 

Figure 1 0-1 . Inertia Constants for Large Turbogenerators Rated 500 MVA and 
Below. 
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Example 10-1 
Given a 6O-Hz, four-pole turbo generator rated 10 MVA, 13.2 kV, with 

an inertia constant of H = 6.5 kWsjkVA: 

A. Calculate the kinetic energy stored in the rotor at synchronous 
speed. 

B. Find the acceleration if the net mechanical input is 13,400 hp and 
the electric power developed is 8 MW. 

C.  Assume that the acceleration in part B is constant for a period of 
10 cycles . Find the change in 8 in that period. 

D. If this generator is delivering rated MV A at 0.8 PF lag when a 
fault reduces the electric power output by 50 percent, determine 
the accelerating torque at the fault time. 

Solution 

A. Using the definition of Eq. (10.14), we obtain 

N= ( 10) (6 .5) = 65 MJ 

B. The accelerating power Pa is calculated as 

Pa=Pm-Pe 
= ( 13 ,400)(0 .746) - 8000 
= 1996 .400 kW 

To calculate the acceleration, we need to calculate M. Thus, 
N M= 1801 

Therefore, 

65 6 .0185 X 10-3 MJsjelec . deg ( 180) (60) 

d28 _ Pa _ 1996.400 X 10-3 
dt2 - M - 6 .0185 X 10-3 

= 331 .71 elec . degjs2 

C. Using the assumption of constant acceleration and zero initial 
conditions, we have 

8(t) = ( � ) at2 

For ten cycles to elaPse, 
1 0  t= 60 = 0.167 s 
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Therefore the required angle is 

13= (�)(331 .71) (0.167)2 
= 4 .63 elec. deg 

D. The mechanical power input is equal to the electrical power output 
at equilibrium. Hence, 

Pm = 0.8 X 10 = 8 MW 

On fault, we have 

Pe = (0 .5) (8) = 4 MW 

Therefore the accelerating power is 

Pa=8-4=4MW 
But we are required to find the accelerating torque. Therefore, 

T =Pa a W 

2'1T(120) X 60 
4X60 

= 21,220 .66 N· m 

10.3 ELECTRIC POWER RELATIONS 

We have seen in Chapter 3 that an infinite bus is a node with fixed 
voltage and frequency. In practice, a major bus in an electric network of a 
large capacity compared to the machine under consideration is treated as an 
infinite bus. 

Consider a simple system consisting of a machine connected to an 
infinite bus through a network represented by the ABeD parameters. 
Figure 10-4 shows a schematic representation of the system. 

EL!... A B VUL d 
- - r It Io 

C "5 

Figure 10-4. One Machine Connected to an Infinite Bus Through a Two-Port 
Network. 
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We will assume that the parameters of the network are given in polar 
form as 

A= A� 

B= BiJ!. 

D= D� 

The sending-end and receiving-end voltages are assumed as 

E= E� 

V= V� 

We have the following expression for the receiving-end voltage (based on 
the inverse transmission form discussed earlier): 

V= DE-Ble 
Using the definitions of the various quantities involved, we have 

DE V 
Ie = /3 16. +13 -fJ- B/-fJ 

The complex power at the machine (sending) side is thus 

Be = EI; 
Consequently, we write 

Be = D! 2 IfJ -6. - EJ IfJ + l3 

The real part gives 

Now define 

DE2 EV Pe=� cos(fJ- 6.) -73 cos(fJ+l3) 

1'=i-fJ 
Then the electric power output of the machine is 

DE2 EV . 
Pe = lJ cos(fJ- 6.) +/3 sm(l3 -1') 

This can further simplify to 

Pe = Pc + PMsin( l3 -1' ) 
where 

( 10 . 16) 

( 10 .17) 

( 10 .18) 

( 10 .19) 

( 10 .20) 

( 10 .21) 

( 10 .22) 
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Pc+Pm 

Pc 

Pe 

I 

I 
I 
I 
I 
I 

____ J ___ _ 
I 
I �----;--+-++-----�-----------+8 

(f + Y) 

Figure 10-5. Power Angle Curve of a Synchronous Machine Connected to an 
Infinite Bus. 

The relationship between Pe and � in Eq. (10.20) is shown in Figure 
10-5. We note that the power angle curve of a synchronous machine 
connected to an infinite bus is a sine curve displaced from the origin by an 
amount Pc vertically and by the angle y horizontally. Since usually f3 < 'IT /2, 
and in view of Eq. (10.18), we see that y > O. 

The maximum value of the electric power delivered by the generator is 
achieved for 

This results in requiring 

PMcos( � - y) = 0 

The angle � at which this occurs is 
'IT 

Sm. =2'+ y 

The maximum electric power is thus 

Pern .. =Pc +PM 

(10.23) 

(10.24) 

It is of interest to consider the corresponding expressions for the 
electric power received at the infinite bus. For this we have 

E=AV+Blo 
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which results in 

1 =E _ AV o B B 
The output apparent power is again given by 

So= VI; 

or 

Thus, 

VE* AV2 So = 7i* -----n-

VE A*V2 So=If jf3-8-Jj* jf3-a 

The real part of the above gives 

VE AV2 
Po = If cos( f3 -8) - ----n- cos( f3 -a) (10.25) 

Using the definitions of Eqs. ( 10.18), (10.21), and ( 10.22), we get 

Po= PMsin(8 + y) - (�r Pc 

Here we assume a symmetrical network with A = D. The maximum output 
power is obtained for 

p 
------------ �- i--�� 

--------71\ II i \ 
I I I 
I I I 

""'- 1. 

(10.26) 

��--------��---L--��--------_. 8 1L 2 

Figure 1 0-6. illustrating the Relative Locations of Maximum Angular Shifts for 
Input and Output Powers for the System Shown In Figure 1 0-4. 
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The maximum output power is given by 

pom •• = PM - ( �) 2 Pc (10.27) 

Let us observe that 

from which we conclude that the maximum allowable output power is 
attained well before the maximum allowable generated power. The separa
tion of the two angles is 21 as shown in Figure 10-6. We can conclude that a 
design on the basis of the output power will be more conservative. Note 
that for 1 = 0, the two angle limits are the same. 

Example 10·2 

Assume that the voltages at the sending and receiving terminals of a 
line are fixed at 110 kV. The ABeD parameters of the line are 

A = D = 0.980/0.30 

B = 82.5/76.0° 

What are the steady-state power limits and the angles at which these occur? 

Solution 

The angle 1 is obtained as 
'IT 1 ="2 -fJ = 90 - 76.0 = 14° 

Consequently, the angles for maximum power are 

Here we have 

Thus we calculate 

I) =90+14=104° me 

I) =90-14=76° mo 

E = V = 110 kv (line-to-line) 

DE2 
Pc = B cos(fJ - a) 

= (0.9:���1O)2 cos{76 - 0 .3) 

= 35.5MW 
p _ EV 

M- B 
_ (110)2 

82.5 
= 146.67MW 
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As a result, the maximum generator side power limit is 

Pe =Pc+ PM max 

= 182.17 MW 
For the output side we have 

pOrno. =PM- ( �rpc 
= 111 .16 MW 

An alternate but equivalent formulation of the problem discussed 
above utilizes the admittance matrix representation of two-port networks. 
Here we have [ Ie ] = [ Yll Y12 ] [ E ] 

10 Y12 Y22 V 
where clearly node (1) is the source bus and node (2) is the infinite bus. 
From our previous discussions of the load-flow problem, we can show that 
the power at the sending (generator) end is 

Pe = E2yl lcos OIl + EVY12COS( 012 - 8) 
The driving point admittance at node 1 is 

Yll= Yll& 
and the negative transfer admittance is 

Y12 = Y12/012 

Y,o 

(10 .28) 

Figure 1 0-7. Equivalent Circuit for a System of One Machine against Infinite 
Bus. 
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Equation (10.28) is clearly of the fonn 

Here we have 
Pe = Pc + PMsin( 8 - 'Y ) 

1T 'Y = 812 -"2 
011 = ¥llCOS 811 
Pc = E20ll 
PM= EVY12 

(10.29) 

(10.30) 
(10.31) 
(10.32) 

Let us observe that for a network of the configuration shown in Figure 10-7 
we have 

Example 10-3 

Yll = Y12 + YlO 
Y12 = -Y12 

A synchronous machine is connected to an infinite bus through a 
transfonner having a reactance of 0.1 pu and a double-circuit transmission 
line with 0.45 pu reactance for each circuit. The system is shown in Figure 
10-8. All reactances are given to a base of the machine rating. The direct-axis 
transient reactance of the machine is 0.15 pu. Detennine the variation of 
the electrical power with angle 8. Assume V = 1.0 pu. 

Solution 
An equivalent circuit of the above system is shown in Figure 10-9. 

From this we have the following equations: 

Y12 = jO.�75 = -j2.1053 

YlO= 0 
Y12 = j2.1053 
Yll = -j2.1053 

1T 
811 = -"2 

1T 
812 ="2 

C j
o
.
45 

� Q5f-----}j�>---. I ---I 1------:--�-aI j
o

.
45 Figure 10-8. System for Example 10-3. 
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Therefore, 

and 1' = 0 
The electrical power is given by 

Pe = EVY12sin( B - l' ) 
Therefore, 

Pe = 2 .1053E sin B 

Changes in the network configuration between the two sides (sending 
and receiving) will alter the value of Y12 and hence the expression for the 
electric power transfer. The following example illustrates this point. 

Example 10-4 

Assume for the system of Example 10-3 that only one circuit of the 
transmission line is available. Obtain the relation between the transmitted 
electrical power and the angle B. Assume other variables to remain un
changed. 

Solution 

The network configuration presently offers an equivalent circuit as 
shown in Figure 10-10. For the present we have 

Y12 = j�.7 = -j1 .43 

As a result, 
Y12 = }1.43 
Pe = 1 .43EsinB 

Observe that the maximum value of the new curve is lower than the one 
corresponding to the previous example. 

10.4 CONCEPTS IN TRANSIENT 

STABILITY 

In order to gain an understanding of the concepts involved in transient 
stability prediction, we will concentrate on the simplified network consist
ing of a series reactance X connecting the machine and the infinite bus. 
Under these conditions our power expression given by Eq. (10.28), reduces 
to 

P EV . � = -SInu e X (10.33) 
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E � 
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9�_ -_ -_ -_ -_rvvvvv"I_x 
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Figure 10-11. A Schematic Representation of a Single Machine Infinite Bus 
System. 

EV/X ---------

-o�----------+-----------�-+ 8 �/2 � 

Figure 10-12. Power Angle Curve Corresponding to Eq. (10.33). 

p 

�------�----��---+8 
.". 

Figure 10-13. Stable and Unstable Equilibrium Points. 
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The situation is shown in Figure 10-11, and the corresponding power angle 
curve is shown in Figure 10-12. 

An important assumption that we adopt is that the electric changes 
involved are much faster than the resulting mechanical changes produced 
by the generator/turbine speed control. Thus we assume that the mechani
cal power is a constant for the purpose of transient stability calculations. 
The functions Pm and Pe are plotted in Figure 10-13. The intersection of 
these two functions defines two values for �. The lower value is denoted �o; 
consequently, the higher is 'ff - �o according to the symmetry of the curve. 
At both points Pm = Pe; that is, d2� / dt2 = 0, and we say that the system is 
in equilibrium. 

Assume that a change in the operation of the system occurs such that 
� is increased by a small amount /).�. Now for operation near �o, Pe> Pm and 
d2�/dt2 becomes negative according to the swing equation, Eq. (10.7). Thus 
� is decreased, and the system responds by returning to �o. We refer to this 
as a stable equilibrium point. On the other hand, operating at 'ff - �o results 
in a system response that will increase � and moving further from 'ff - �o. 
For this reason, we call 'ff - �o an unstable equilibrium point. 

If the system is operating in an equilibrium state supplying an electric 
power Peo with the corresponding mechanical power input Pmo' then 

Pmo =Peo 
and the corresponding rotor angle is �

o
. Suppose the mechanical power Pm is 

changed to Pm, at a fast rate, which the angle � cannot follow as shown in 
Figure 10-14. In this case Pm> Pe, and acceleration occurs so that � 
increases. This goes on until the point �l where Pm = Pe, and the accelera
tion is zero. The speed, however, is not zero at that point, and � continues to 
increase beyond �l. In this region, Pm < Pe and rotor retardation takes place . 

p 

Figure 10-14. System Reaction to Sudden Change. 
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The rotor will stop at 82 where the speed is zero and retardation will bring 8 down. This process continues on as oscillations around the new eqUilibrium 
point 81 , This serves to illustrate what happens when the system is sub
jected to a sudden change in the power balance of the right-hand side of the 
swing equation. 

The situation described above will occur for sudden changes in Pe as 
well. The system discussed in Examples 10-3 and 10-4 serves to illustrate 
this point, which we discuss further in the next example. 

Example 1 0-5 

The system of Example 10-3 is delivering an apparent power of 1 . 1 pu 
at 0.85 PF lagging with two circuits of the line in service. Obtain the source 
voltage (excitation voltage) E and the angle 80 under these conditions. With 
the second circuit open as in Example 10-4, a new equilibrium angle 8 1 can 
be reached. Sketch the power angle curves for the two conditions. Find the 
angle 80 and the electric power that can be transferred immediately follow
ing the circuit opening, as well as 8 1 , Assume that the excitation voltage 
remains unchanged. 

Solution 
The power delivered is 

Po = 1 .1 X 0 .85 = 0 .94 p .u . 
The current in the circuit is 

1= 1/ j -cos- 10 .85 

We can thus write 
E/.!.= V LQ+ lUX) 

Therefore, 

= ( 1  + jO) + (1 .1/ - 31 .790 )(0 .475/900) 
= 1 + 0 .28 + j0 .44 
= 1 .35/19 .200 

E= 1 .35 
80 = 19 .200 

The power angle curve for the line with two circuits according to Example 
10-3 is 

Peo = (2 .1053) ( 1 .35)sin8 
= 2 .84 sin 8 



� 

p 

2.841- - - - - - - - - - .....,=--�--

1.93 

0.94 

80 8, 

Figure 10-15. Illustrating the Power Curves for Example 10-5. 

8 
A- With two Circuits Available. 
B - With only one Circuit. 
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With one circuit open, the new power angle curve is obtained as given 
in Example 10-4. Thus, 

Pel = {1.43){1.35)sin8 

= 1.93 sin 8 
The two power angle curves are shown in Figure 10-15. 

From inspection of the curves, we can deduce that the angle 81 can be 
obtained using the power relation 

0.94 = 1.93 sin 81 
81 = 29.15° 

We can obtain the value of electric power corresponding to 80 with one line 
open as 

Pe = 1.93 sin 19.2° 10 
=0.63 p.u. 

10.5 A METHOD FOR STABILITY 
ASSESSMENT 

In order to predict whether a particular system is stable after a 
disturbance it is necessary to solve the dynamic equation describing the 
behavior of the angle 8 immediately following an imbalance or disturbance 
to the system. The system is said to be unstable if the angle between any 
two machines tends to increase without limit. On the other hand, if under 
disturbance effects, the angles between every possible pair reach maximum 
value and decrease thereafter, the system is deemed stable. 

Assuming as we have already done that the input is constant, with 
negligible damping and constant source voltage behind the transient reac
tance, the angle between two machines either increases indefinitely or 
oscillates after all disturbances have occurred. In the case of two machines, 
therefore, the two machines either fall out of step on the first swing or 
never. Here the observation that the machines' angular differences stay 
constant can be taken as an indication of system stability. A simple method 
for determining stability known as the equal-area method is available. This 
we discuss here. 

The Equal-Area Method 
The swing equation for a machine connected to an infinite bus can be 

written as 

dw_ Pa 
dt M (10.34) 



10.5 A Method for Stability Assessment 641 

where w = d£l/dt and Pa is the accelerating power. We would like to obtain 
an expression for the variation of the angular speed w with Pa. We observe 
that Eq. (10.34) can be written in the alternate fonn 

Pa (d£l) d dw= M d£l t 
or 

Integrating, we obtain 

Note that we may assume Wo = 0; consequently, 

or 

w2 = ! i8 Pa ( d£l) 80 

d£l = � (8p (d£l' dt M JR a ) [ 
]1/2 

80 
(10.35) 

The above equation gives the relative speed of the machine with respect to 
a reference frame moving at a constant speed (by the definition of the angle £l). 

If the system is stable, then the speed must be zero when the 
acceleration is either zero or is opposing the rotor motion. Thus for a rotor 
that is accelerating, the condition for stability is that a value of £ls exists 
such that 

and 

This condition is applied graphically in Figure 10-16 where the net area 
under the Pa - £l curve reaches zero at the angle £ls as shown. Observe that 
at £lB, Pa is negative, and consequently the system is stable. Also observe 
that area Al equals A2 as indicated. 

The accelerating power need not be plotted to assess stability. Instead, 
the same infonnation can be obtained from a plot of electrical and mechani
cal powers. The fonner is the power angle curve, and the latter is assumed 
constant. In this case, the integral may be interpreted as the area between 
the Pe curve and the curve of Pm' both plotted versus £l. The area to be equal 
to zero must consist of a positive portion AI' for which Pm> Pe' and an 
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Figure 10-16. The Equal-Area Criterion for Stability for a Stable System. 

equal and opposite negative portion A2, for which Pm < Pe. This explains the 
tenn equal-area criterion for transient stability. This situation is shown in 
Figure 10-17. 

If the accelerating power reverses sign before the two areas Al and A2 
are equal, synchronism is lost. This situation is illustrated in Figure 10-18. 
The area A2 is smaller than AI' and as" increases beyond the value where 
Pa reverses sign again, the area A3 is added to AI. 

Example 10-6 

Consider the system of the previous three examples. Detennine whether 
the system is stable for the fault of an open circuit on the second line. If the 
system is stable, detennine "s' 

p 

Figure 10-17. The Equal-Area Criterion for Stability. 
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Figure 1 0-1 8. The Equal-Area Criterion for an Unstable System. 

Solution 

From the examples given above, we have 

� o  = 19.2° 
� I = 29.15° 

The geometry of the problem is shown in Figure 10-19. We can calculate the 
area Al immediately: 

7T j29.150 • 

Al =0.94(29.15-19.2) 180- 19.20 1 .93 sm�(d�) 

Observe that the angles � I and � o are substituted for in radians. The result 
IS 

Al = 0.0262 

The angle � I is 

If the area enclosed by the power angle curve for one circuit and the 
fixed Pm = 0.94 line between � 1  and � I denoted by A2 , is larger than AI' then 
the system is stable. To ascertain this, we have 

/ 

f.�/2 . 7T A2, = 2 81 1.93 sm� (d�) - (0.94)(2)[90 - �I] 180 
= 1.3745 

This clearly gives 

and the system is stable. 



� 
p 

2.84 

1.93 

0.94 

80 81 85 
Figure 1 0-19. Application of the Equal-Area Method to Example 1 0-6. 

8 
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The angle 6s is obtained by solving for A2 = AI' Here we get 

0.0262 = 1BS1.93 sin 6 ( d6) - 0.94( 6s -61) ( 1;0 ) Bl 

This gives 

0.0262 = 1.93(cos 29.15° - cos6s) - 0.94( 6s - 29.150) ( 1;0 ) 
Further manipulations yield the following relation in 6s (in degrees): 

1.93cos6s + 0.016468 = 2.1376 

The equation is nonlinear; we resort to iterative methods for its solution. 
The result is 

8s = 39.39° 

The above example shows the application of the equal-area method to 
the case of a generator supplying power to an infinite bus over two parallel 
transmission lines. For the loading indicated above, the system is stable. 
The opening of one of the lines may cause the generator to lose synchronism 
even though the load could be supplied over a single line. The following 
example illustrates this point. 

Example 10-7 

Assume that the system in Example 10-5 is delivering an active pow.er 
of 1.8 p.u. with the same source voltage E as before. Determine whether the 
system will remain stable after one circuit of the line is opened. 

Solution 
We have for the initial angle 60, 

1.8 = 2.84 sin 80 
Therefore, 

The angle 81 is obtained from 

The area Al is thus 

1.8 = 1.93 sin 81 
81 = 68.85 

Al = 1.8(68.85 - 39.33) 
1;0 - 1.931B1 sin 8( d8) 

Bo 
= 0.93 + 1.93 [cos(68.85°) - cos(39.33°)] 
=0.13 
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The area A2f is obtained as 
A2f = 3.86 �"'/2 sinl5( dl5) -1 .8( 15, - 15 1 ) ( 1;0 ) 1 

= 3 .86cos(68.85° ) - 1 .8( 1 1 1 .15° - 68 .85°) ( 1;0 ) 
=0.06 

We note that Al > A2 and the system is therefore unstable. 
If a three-phase �hort circuit took place at a point on the extreme end 

of the line, there is some impedance between the generator bus and the load 
(infinite) bus. Therefore, some power is transmitted while the fault is still 
on. The situation is similar to the ones analyzed above, and we use the 
following example to illustrate our point. 

Example 10-8 

A generator is delivering 0.25 of Pmax to an infinite bus through a 
transmission line. A fault occurs such that the reactance between the 
generator and the bus is increased to two times its prefault value. 

A. Find the angle 150 before the fault. 
H. Show graphically what happens when the fault is sustained. 
C. Find the maximum value of the 15 swing in the case of a sustained 

fault. 

Solution 
A. Figure 10-20 illustrates the situation for this example. The ampli

tude of the power angle curve with the fault sustained is one-half of the 
original value. 

Before the fault we have 
0.25 = (l)sinl5o 

Hence 

B. At the fault instant, we get 

Thus, 
0.25 = 0 .5 sin 151 

15 1 = 30° 
Al = 0 .25(15 1 - 150 )  -1810 .5 sinl5( dl5) 

80 

= (30 - 1\��'IT(0.25) + 0 .5( cos 30° - cos 14 .480) 
= 0.0677 - 0.0511 = 0.0166 



p 

1.00 I :::;::00=< .......:::: 

0.51 /-- ---

0.25 I ,L=:r1,,----' '< \ 

80 8, 8s 

Q) � Figure 10-20. Power Angle Curves for Example 10-8. 

A- Prefault 
8- During Fau It 

8 
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c. As before, the condition for stability is 
A2=AI 

Therefore, 

Hence 

0. 0166 = tSO .5 sin 1)( dl») - 0.25( I)s -1)1) ( 1;0 ) 6, 

I)s 0 .5473 = 0 .5 cos I)s + 72 0 'IT 

By trial and error, we obtain 
I)s = 46 .3° 

The following example illustrates the effects of short circuits on the 
network from a stability point of view. 

Example 10-9 

The system of Examples 1 0-3 to 1 0- 7  is delivering a power of 1 pu 
when it is subjected to a three-phase short circuit in the middle of one of 
the transmission circuits. This fault is cleared by opening the breakers at 
both ends of the faulted circuit. ··If the fault is cleared for I)c = 5 0° , de
tennine whether the system will be stable or not. Assume the same source 
voltage E is maintained as before. If the system is stable, find the maximum 
swing angle. 

Solution 

The power angle curves have been detennined for the prefault net
work in Example 1 0-3 and for the postfault network in Example 1 0-4. In 

10.15 jo.1 jo.45 

jo.225 jo.225 

Figure 1 0-21 . Equivalent Circuit for System of Example 1 0-3 with a Short 
Circuit in the Middle of One Transmission Circuit. 
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---- ---- -----
� � / jo.25 jo.45 � 

/ 
/ 

/ jo.225 

Figure 10-22. Reduced Equivalent Circuit for System of Example 10-9. 

Example 10-5, we obtained 

Therefore, 
E = 1.35 

Prefault: p= 2.B4sin«5 
Postfault: P= 1.93 sin «5 

During the fault, the network offers a different configuration, which is 
shown in Figure 10-21. We will need to reduce the network in such a way as 
to obtain a clear path from the source to the infinite bus. We do this by 
using a Y - A transformation as indicated in Figure 10-22. Consequently, 

jX=j [0.45+0.25+ 
(0.�.;��25) ] =j1.2 

and the fault power angle curve is given by 
P= 1.13 sin «5 

The three power angle curves are shown in Figure 10-23. 
The initial angle «50 is given by the equation 

1 = 2.B4 sin «50 

Therefore we have 

The clearing angle is 

«5c = 50° 

The area Al can thus be calculated as ('IT) 1500 
AI=1(50-20.62) 

1BO 
-1.13 sin «5(d«5) 

20.620 
= 0.51 + 1.13[cos 50° -cos 20.62°] 
=O.lB 
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p 

A- Prefoult 
B - Post - fout' 
C - During fault 

Figure 10-23. Power Angle Curves for Example 10-9. 

The maximum area A2, is obtained using the angle �f' Thus, 
1 = 1.93 sin �; 

�; = 31.21 

Consequently 

Now 

�I = 180 - �; = 148.79° 

A2, = [1.93 fs�' sin�( d�) ] - (1)( �/-�J ( 1;0 ) 
= 1.93[cos 50° - cos 148.79°] - (148.79 - 50) ( 1;0 ) 
= 1.17 

Since A2 > AI' the system is stable .. 
To 'calculate the angle of maximum swing, we have 

A2=A] 

8 
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Thus, 

0.18=[�>.93sin8( d8) ] - (1)(8s-8c) ( 1;0 ) 
= 1.93( cos 50 -cos 8s) - (8s - 50) ( 1;0 ) 

1.93cos8s + 1.7453 X 10-288 = 1.93324 

Using iterations, we obtain 

10.6 IMPROVING SYSTEM STABILITY 

The stability of the electric power system can be affected by changes 
in the network or changes in the mechanical (steam or hydraulic) system. 
Network changes that adversely affect system stability can either decrease 
the amplitude of the power curve or raise the load line. Examples of events 
that decrease the amplitude of the power curve are: short circuits on tie 
lines, connecting a shunt reactor, disconnecting a shunt capacitor, or open
ing a tie line. Events that raise the load line include: disconnecting a 
resistive load in a sending area, connecting a resistive load in a receiving 
area, the sudden loss of a large load in a sending area, or the sudden loss of 
a generator in a receiving area. Changes in a steam or hydraulic system that 
can affect stability include raising the load line by either closing valves or 
gates in receiving areas or opening valves or gates in sending areas. 

There are several corrective actions that can be taken in order to 
enhance the stability of the system following a disturbance. These measures 
can be classified according to the type of disturbance-depending on 
whether it is a loss of generation or a loss of load. 

In the case of a loss of load, the system will have an excess power 
supply. Among the measures that can be taken are: 

1. Resistor braking. 
2. Generator dropping. 
3. Initiation along with braking, of fast steam valve closures, bypass-

ing of steam, or reduction of water acceptance for hydro units. 

In the case of a loss of generation, countermeasures are: 

1. Load shedding. 

2. Fast control of valve opening in steam electric plants; and in the 
case of hydro, increasing the water acceptance. 

The measures mentioned above are taken at either the generation or 
the load sides in the system. Measures that involve the interties (the lines) 
can be taken to enhance the stability of the system. Among these we have 



658 Power System Stability 

the switching of series capacitors into the lines, the switching of shunt 
capacitors or reactors, or the boosting of power on HVDe lines. 

Resistor braking relies on the connection of a bank of resistors in 
shunt with the three-phase bus in a generating plant in a sending area 
through a suitable switch. This switch is normally open and will be closed 
only upon the activation of a control device that detects the increase in 
kinetic energy exceeding a certain threshold. Resistive brakes have short 
time ratings to make the cost much less than that of a continuous-duty 
resistor of the same rating. If the clearing of the short circuit is delayed for 
more than the normal time (about three cycles), the brakes should be 
disconnected and some generation should be dropped. 

Generator dropping is used to counteract the loss of a large load in a 
sending area. This is sometimes used as a cheap substitute for resistor 
braking to counteract short circuits in sending systems. It should be noted 
that better control is achieved with resistor braking than with generator 
dropping. 

To counteract the loss of generation, load shedding is employed. In 
this instance, a rapid opening of selected feeder circuit breakers in selected 
load areas is arranged. This disconnects the customer's premises with 
interruptible loads such as heating, air conditioning, air compressors, pumps 
where storage is provided in tanks, or reservoirs. Aluminum reduction 
plants are among loads that can be interrupted with only minor inconve
nience. Load shedding by temporary depression of voltage can also be 
employed. This reduction of voltage can be achieved either by an inten
tional short circuit or by the connection of a shunt reactor. 

The insertion of switched series capacitors can counteract fault..'! on ac 
interties or permanent faults on dc interties in parallel with ac lines. In 
either case, the insertion of the switched series capacitor decreases the 
transfer reactance between the sending and receiving ends of the intercon
nection and consequently increases the amplitude of the sine curve and 
therefore enhances the stability of the system. It should be noted that the 
effect of a shunt capacitor inserted in the middle of the intertie or the 
switching off of a shunt reactor in the middle of the intertie is equivalent to 
the insertion of a series capacitor (this can be verified by means of a Y - tJ. 
transformation). 

To relieve ac lines of some of the overload and therefore provide a 
larger margin of stability, the power transfer on a dc line may be boosted. 
This is one of the major advantages of HVDe transmission. 

SOME SOLVED PROBLEMS 

Problem 10-A-1 

A 60-Hz alternator rated at 20 MVA is developing electric power at 0.8 
PF lagging with net mechanical input of 18 MW. Assume that acceleration 
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is constant for a period of 15 cycles, in which lj attains a value of 15° 
electrical from zero initial conditions. Calculate the inertia constant H for 
the machine. 

Solution 

For 15 cycles to elapse, 
15 

t =  60 = 0.25 s 

With the assumption of constant acceleration and zero initial condi
tions, we have 

1 lj = -at2 
2 

But for t = 0.25 s, we have lj = 15° electrical degrees. Therefore the accelera
tion is 

2 X  15 
a = ---(0.25)2 

= 480° elec.js2 

The accelerating power Pa is 
Pa = Pm-Pe 

But 

Thus 

We now use 

This yields 

Problem 10-A-2 

= 18 - (20)(0.8) 
= 2 MW 

p a = -'! M 
2 

480 = M 

1 M = 240 

OH M = 1801 
1 _ (20)H 

240 - (180) (60) 

H = 2 .25 kWsjkVA 

Show that the speed of a generator subject to a constant decelerating 
power of 1 pu will be reduced from rated value to zero in 2H seconds. 
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Solution 

The swing equation is 

Integrating, we get 

With initial speed of 

accelerating power of 

and final speed of 

we obtain 

From the above, 

Problem 10-A-3 

- 8=P ( 2H ) .. 
w a R 

The sending-end and receiving-end voltages of a short transmission 
link are fixed at 132 kV each. The line impedance is 100 ohms. The 
difference between the maximum power transfer at the generator side and 
the maximum power transfer at the receiving side at the receiving side of 
the link is 40 MW. Calculate the maximum power transfer at the generator 
side and the corresponding angle. 

Solution 

The difference in maximum power transfer is 

Pe -Po =Pe+PM- [PM- (E
V ) 2

Pe] max mllx 

=Pe [ l + (�r] 
Using the information given, we get 

40 = Pe[ 1 + ( ��; r] 



Thus, 
Pc=20 MW 

Now for a short line, B = Z. Thus, 

P =
EV 

M B 

_ ( 132)2 

100 
= 174 .24 MW 

As a result, the maximum power at the generator side is 
Pe =Pc+PM 

max 

= 20 + 174 .24 = 194 .24 MW 
We use 

For this line, 

Therefore, 

Thus, 

As a result, the angle 8m• is 

Problem 10-A-4 

D= l 
� = O.O 
E = 132 kV 
B =  100 ohms 

20- ( 1)( 132)2 a 
- 100 cosp 

cosfj = 0 .11  
{3 = 83.41 ° 

8m = 180 - 83 .41 
. 

= 96.59° 
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The series impedance and shunt admittance of a transmission line are 

Z = 189 .23/78 .2° 

Y = 1 .152 X 10-3/90° 

Calculate the maximum power transfer and the corresponding rotor angles 
when the sending-end and receiving-end voltages are 230 and 200 kV 
respectively. Assume that the line i s  long. 
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Solution 

From given data, 

Given 

Z = 189.23/78.20 

Y = 1.152 X 10-3/90° 

E=230kV 
V=200kV 

We calculate for the long line assumption: 

Thus, 

And 

Problem 1 0-A-5 

A = 0.895/1.38° 

B = 181.85/78.60 

p _ E V 
M- B 

_ (230) (  2(0) 
181.85 

=252.96MW 
DE2 Pc=TCOS({3-A ) 

= (0.895)(230) 2 
(786 -138) 181.85 cos . . 

=57.59MW 

Pe =Pc+PM max 

=31O.55MW 

POm •• =PM- ( � rpc 
= 209.41 

y=90-{3=11.4° 
8m = 90 + 11.4 = 101.4° . 

Find the error involved in estimating the maximum power transfer for 
the line of Problem 10-A-4 if the short line assumption is used. Comment on 
the results. 



Solution 
For the short line assumption: 

Thus, 

And 

A= D= IL!! 

B = Z = 189.23/78 .20 

p, = E V 
M B 

_ (230)(200) 
- 189.23 
= 243.09 MW 

DE2 
PC= BcOS{P-fl) 

_ (230)2 
- 189 .23 

cos{78 .2) 

= 57 .17 MW 

Pe = Pc+PM rna. 
= 300.26MW 

POrn .. = PM- (�)2 Pc 
= 199 .86 MW 

Therefore, the error in sending-end estimate is 

310.55 - 300.26 = 10 .29 MW 
and the error in receiving-end estimate is 

209 .41 - 199 .86 = 9 .55 MW 
Thus the short line assumption gives conservative estimates. 

Problem 1 0-A-6 
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Calculate the minimum value of sending-end voltage necessary to 
enable transmission of 320 MW for the line of Problem 10-A-4. 

Solution 

EV DE2 
Perna. =B"+Bcos(P-fl) 

200E 0 .895E2 
320 = 181 .85 + 181 .85 

cos{78 .6 - 1 .38) 

= 1 .10E + 1.0887 X 1O-3E2 
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(0) 

-jX jXL 

F(

c

i 

.."... 

( b) 

Figure 10-24. Systems for Problem 1 0-A-7. 

Solving, we get 

E = 235 .88 kV 

Problem 10-A-7 

-jXc 

17-

o 

j
X, 

Obtain the maximum power transfer capacity of the two compensated 
systems shown in Figure 10-24. 

Solution 

For the system of Figure 10-24(a), we perfonn a � - Y transfonnation 
to obtain the configuration shown in Figure 10-25. 
A further transfonnation yields a 7T network with series reactance 
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. XL Xs . XL Xs 
-jXc J XL + 2 XS J XL + 2XS -j Xc 

�r-���--��--�(�---

Figure 1 0-25. Reduced System of Figure 1 0-24(a) for Problem 1 0-A-7. 

Thus the maximum power is given by 
p 

=
EV 

emaXa X12 

For the system of Figure 10-24(b), we have 
p = EV 

ema' b XL - 2Xc 

Problem 1 0-A-8 

Compare the maximum power transfer capacities for the two schemes 
of Problem 1O-A-7 for 

Solution 

XL = 1 p.u. 
Xc = 0.2 p .u .  
Xs=O.l p.u. 

For the scheme of Figure 10-24(a), we get 

Thus, 

( 0.1 _ 0 2) 2 
X = 2 [ ( 1) (0 .1) _ 0.2] + 1 + 0.2 

. 
12 1 + 2(0 .1) (0 .1)2 

1 + 0.2 
= 1 .4 p.u. 

Pe = 0.71 (E)( V) 
mOX a 
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For the scheme of Figure 1O-24(b), we get 

p 
= 

( E ) ( V)  
= 1 .6 ( E ) ( V )  em8xb 1 - 0.4 

Thus the system for Figure 1O-24(b) clearly has a higher transfer capacity. 

Problem 1 0-A-9 

A 760-kV, 50-Hz, 600-km, three-phase transmission line has the follow
ing parameters: 

r = 0.0122 ohms/km 
x = 0 .282 ohms/km 

g = 19 X 10-9 siemens/km 
b = 4 .04 X 10-6 siemens/km 

A. Obtain the 7T equivalent circuit parameters of the line. 
B. Calculate the sending-end power as a function of J) for equal 

sending-end and receiving-end voltages of 760 kV. 

Solution 

z = r + jx = 0 .0122 + jO.282 

= 0.2823/87 .5230 {l/km 

y = g +  jb =  19 X 10-9 + j4 .04 X 10-6 

= 4 .04004 X 10-6/89 .730 s/km 

y = VzY = 1 .0679 X 10- 3/88 .62670 

yl = 1 .0679 X 10- 3  X 600/88.62670 

= 0 .64073/88.62670 

= 0.015356 + jO .64054 

Zc = If = 264 .34/ - 1 .10 

cosh( yl ) = 0.80187 + j9 .1775 X 10- 3  = 0 .80192/0 .655730 

sinh( yl) = 1 .2313 X 10-2 + jO.5977 = 0.59783/88 .820 
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The 'IT equivalent circuit parameters are thus 

i = Z
sinh{ yl ) = 

(0.2823/87 .523° ) (0 .59783/88.82° )  
yl l .0679 X 10-3/88 .6267° 

= 158.04/87 .720 
= 6.29 + J157 .91 ohms 

y _ cosh( yl ) - 1 
2 - Zcsinh( yl ) 

0.80187 + j9 .1775 X 10-3 - 1 
(264 .34/ - 1 .1 0 ) ( 0.59783/88 .82° )  

= l .2551 X 10-3/89.63° 
The admittances Yll and Y12 are obtained as follows: 

Y 1 Yll = 2 + i 
= 5.0741 X 10-3/ - 87 .065° 

Y12 = -.1 = 6 .3275 X 10-3/92 .28° 
Z 

Consequently, we get 

Pe = (760)2(5.0741 X 1O-3 )cos( - 87 .065°) 
+ (760)2(6.3275 X 1O-3 )cos(92 .28 - 8) 

= 150.07 + 3654 .76 sin{ 8 - 2.28°)  MW 

Problem 1 0·A·1 0 

Series and shunt compensation of the line of Problem 10-A-9 are 
employed as shown in Figure 10-26. The degree of series compensation Ks is 
defined as 

K =
Xc 

s Ix 
where Xc is the total reactance of installed series capacitor bank, x is the 
line series reactance per unit length, and 1 is the line length. For shunt 
compensation, the degree of compensation Kd is 

K Br d = lb 
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Xc 1 2  X c  12 
(�I-------+I-I)�f--T.l .  

Figure 10-26. Compensation Scheme for System of Problem 10-A-10. 

where Br is the susceptance of shunt reactors connected, and b is the shunt 
susceptance per unit length of the line. Calculate the maximum sending-end 
power of the system with 

Solution 

Figure 1O-27(a) shows the scheme using the 7T equivalent of Problem 
1O-A-9. We have 

Xc = -0 .8 X 0 .282 X 600 = - 135 .36 

Br = - 0.8 x 4 .04 x 10-6 X 600 = - 1 .9392 X 10-3 

A t!1 - Y transformation gives 

Zr = 

158 .04/87 .72° 

______ 
I
_
.2
_
55
_
1
_
X 
__ 

I0
_
-
�
3/=8=9=.6=3�

0 
____ 

_ 

158.04/87.72° + 2 

1 .2551 X 10-3/89 .63° 

= 87 .708/87 .43° 

= 3 .9353 + j87 .62 ohms 

( 1 .2551 X 10- 3 /89 .63° ) -2 
Z - �------�==�M - 1 .4356 X 103/- 89 .34° 

= 442 .19/ - 89.92 ohms 

= 0.62 -j442.19 ohms 

The reduced circuit is shown in Figure 10-27(b). A series combination gives 



(a) 

(b) 

1 58.04 187.7 2 .0.  

- 4 - j 9.696x IO S 1 .255Ix I0- 3 189.63 S  

-j 67 68 .o.  ZT 

- j 9 .696x I0- 4 S  

Z '  Z '  T T 

- j 9.69 6 x  10-4 S  
1 .2551 x 10-3189.63s 

-j 67. 6 8 .o.  

- j 9.6 96 x I 0- 4 S 

- j 9 .69 6 x I0-4 S - j 9 .696x I0- 4 S 

�) Z� 

(d) Z '".  

(e) 

y ' R 

Figure 1 0-27. Reduction Steps for Problem 1 G-A-1 0. 

- j 9 .696 x 10- 4 S 

669 



670 Power System Stability 

the circuit of Figure 1O-27(c) with 

Zr = Zr -j67 .68 
= 3.9353 + j19.94 

= 20 .325/78 .840 

A Y - !l  transfonnation gives the circuit of Figure 1O-27(d) with 

( )2 20.325 78.840 
Zn = 2(3.9353 + jI9.94) + / 

= 39 .733/79 .0980 

Y' _ 

1 n - Z;-n 

442 .19/ -89 .920 

= 0 .02517 / - 79.0980 

ZR = 2(0.62 -j442 .19) + 3 .9353 + j19 .94 

= 864 .46/ -89.660 

YR = 1 .1568 X 10- 3/89.660 

= 6.9308 X 10-6 + j1 . 1568 X 10-3  

A parallel combination gives 

Yn = YR -j9.696 X 10-4 
= 6.9308 X 10-6 + j1 .8718 X 10-4 

= 1 .873 X 10- 4/87 .8790 siemens 

The final reduced network is shown in Fig. 10-27(e). 
We now have 

We thus have 

Yll  = YR + Yo 
= 2 .4988 X 10-2/ -79.0000 

Y12 = - Yo 

= 0.02517 /100.9020 

Pe = (760)2(2 .4988 X 1O-2 )cos( - 79 .0000) 

+ (760)2(0 .02517)cos(I00.902 - il) 
= 2753.96 + 14538.2 sin( il - 1O.90) MW 
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Problem 1 0-A-1 1 

Obtain the expression for sending-end electric power for a scheme 
composed of two parallel lines. Each of the lines is similar to that of 
Problem 1O-A-1O. Transmission voltage is 760 kV. 

Solution 

It is clear that the power transmitted will be double that of the 
system given in Problem 1O-A-IO. Figure 10-28 shows the equivalent circuit 

l. z ' 2 .". 

z'.". 

2Y ' R 

Figure 1 0-28. Equivalent Circuits for Problem 1 0-A-1 1 .  

y' R 
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of the system. The reduced circuit gives 

Yl l == 2YR + J 
n 

2 
�

2 == - Z' n 
The numerical values are thus 

Thus, 

Yl l = 4 .9976 X 10 - 2/ - 79 .000° 

Y12 
= 0 .05034 /100.902 0 

Pe = (760)2(4 .9976 X 1 O - 2 )cos( - 79 .000° )  

+ ( 760)2(0 .05034)sin( 8 - 10 .90° ) 
= 5507 .9 + 29076 .4 sin( 8 - 10.90° ) 

Problem 10-A-12 

A 760-kV, 1200-km, double-circuit transmission line is composed of 
two 600-km sections in tandem. The line parameters are identical to those 
of the line of Problem 1O-A-9. Series and shunt compensations identical to 
that employed in Problem 1O-A-1O are utilized. The scheme is shown in 
Figure 10-29. Obtain the expression for the sending-end electric power. 

Solution 

Each of the two sections is identical to the line in Problem lO-A-l 1 .  
The equivalent circuit o f  the system as well as the reduction steps are 
shown in Figure 10-30. The notation employed is that of Problem 10-A-10. 

( I ( I 

( I ( I 

Figure 10-29. Transmission System tor Problem 1 0-A-1 2. 



2Y'  R 

2Y� 

Z '.". /2 

Z '.". /2 

, [  " J  Z eq = Z .".  I + Z ""YR 

Z '.".1 2 

Z'.". /2 

- , [ 1 ] __ -- Yeq - 2YR 1 +  " 
I + Z ""YR 

Figure 1 0-30. Reduction Steps for Problem 1 0-A-1 2. 

2Y' R 

2Y'  R 

2Y' R 

613 
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We have 

Thus, 

Zn = 39.733/79.098° n 
YR = 1 .8731 X 10-4/87 .879° S 

1 + ZnYR = 1 + 7 .442 X 10-3/166 .90° 
= 0.99275/0.09680 

Zeq = Zn{1  + ZnYR ) 

= 39.45/79 .190 

Yeq = 2YR ( 1 + 1 + �nYR ) 
= 7 .52 X 10-4/87 .83° 

- 1  1';.2 = 
Zeq 

= 0.02535/100.81 ° 
1 

Yl1 = Yeq+Z-eq 
= 2 .462 X 10- 2/ - 78.802° 

The electric power is then 
Pe = (760)2(2 .462 X 1O-2 )cos{78 .802° ) 

+ (760)2(0.02535)sin{ 8 - 10.81 ° )  
= 2761 .66 + 14642 .16 sin{ 8 - 10.81 °)  

Problem 1 0-A·1 3 

A three-phase short circuit to ground takes place in the middle of one 
of the lines close to the load in the system of Problem 10-A-12. Evaluate the 
power formula in this case. 

Solution 

The equivalent circuit and the steps for its reduction are shown in 
Figure 10-31 . Again we retain the same notation: 

Zeq = 2 .5( 39.733/79 .098° )  [1  +0.8(39 .733/79 .098° ) 

X ( 1 .8731 X 10-4/87 .879° ) ]  
= 98.756/79.175° ohms 



(0 ) 

(b) 

(c) 

2Y� 

(d ) 

Z'-rr/2 Z'.". 

Zeq = 2 .5 Z'-rr [ I + O.8Z'.".Y� ] 

Z = 1Jr [ I +  3 ] 
e 2 2 +4Z'''''YR 

Figure 1 0-31 . Step. In the Reduction of the Circuit for Problem 1 0-A-1 3. 616 
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- 1 
Y12 = Zeq 

= 10.126 X 10-3/100.83° 
1 � = Z = 0 .01996/ -78 .98° 

e 

Yll = 2Yn +  � +; eq 
= 0.02972/ - 78 .88° 

We thus have 

Pe =  (760)2(0 .02972)cos(78 .88° ) 
+ (760)2( 10 .126 X 1O-3 )sin{ 8 - 10.83° ) 

= 3310.0 + 5848 .77 sin( 8 - 10.83° ) 

Problem 1 0-A-14 

The short circuit in the line of Problem 10-A-13 is cleared by removing 
the affected section. Evaluate the power formula in this case. 

Solution 

Figure 10-32 shows the equivalent circuit for this case. We have from 
the previous problems: 

1 + ZnYn = 0 .99275/0 .0968° 
Zeq = 1 .5 (39.733/79.098° ) (  0 .99275/0 .0968° ) 

= 59 .17 /79 .195° 
- 1  

Y12 =-Zeq 

= 1 .69 X 10- 2 /100.8° 

_ 
( - 4  0 ) ( 1/ - 0.0968° ) 

Yll - 2 1 .8731 X 10 /87 .879 1 + 0.99275 

+ 1 .69 X 10- 2 / - 79 .195° 

= 0 .01617 / - 78 .596° 
The electric power at the sending end is 

Pe = (760)2 [0 .01617 cos(78 .596° )  
+ 1 .69 X 1O- 2sin{ 8 - 10.8° ) ]  



Z'-rr/2 z'-rr 

(0 ) 
zo." 12 

( b )  

2Y� 

(c )  

2Y� [ 1 + I + Z�YR ] 
(d ) 

Figure 1 0-32. Equivalent Circuits for Problem 1 G-A-1 4. 

This gives 

Pe = 1846 .65 + 9761 .44 sin{ 8 - 10.8°) MW 
Problem 10-A-1S 

Some Solved Problems 611 

Derive an equivalent swing equation for an interconnection of two 
finite machines with inertia constants Ml and M2 and which have angles 81 
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and 1)2 . Show that the equations for such a case are exactly equivalent to 
that of a single finite machine of inertia ( M = M} M2/ MI + M2 ) with angle 
1)}2 = I)} - 1)2 connected to an infinite bus. 

Solution 

The swing equations of the two finite machines are 
d21)} _ Pml - Pel 

The relative angle is 

dt2 Ml 
d 21)2 _ Pm2 - Pe2 
dt2 M2 

Subtracting the second swing equation from the first, we get 
d 21)} d 21)2 _ Pml Pm2 ( Pel Pe2 ) 
dt2 -

dt2 - Ml 
- M2 

-
Ml 

- M2 
d 21)12 _ Pml Pm2 ( Pel Pe2 ) 
dt2 - Ml 

-
M2 

- Ml 
-

M2 

Multiply each side by MIM2/Ml + M2 = M. Hence 

M
d21)12 = ( M2 Pml - M1 Pm2 ) _ ( M2 Pel - M1Pe2 ) 
dt2 Ml + M2 Ml + M2 

Let us define the equivalent input: 

and equivalent output: 

_ M2 Pml - M1 Pm2 Pm - M + M 1 2 

Hence the equivalent swing equation is 

M 
d21)12 = P. - P. 
dt2 m e 

And the equivalent inertia constant is 

M = MIM2 
Ml + M2 
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Problem 1 0-A-1 6 

Show that the equivalent power angle curve of two interconnected 
finite machines is given by 

where 

Solution 

Pe = Pc + PMsin( 6 - y) 

p 
= M2 EfYn cos 9n - M1Eil;2 cos 922 

c 
M1 + M2 

E1E2Y12VMf + Mi - 2M1M2 cos 2912 
PM = M + M  1 2 

y = - tan- 1 ( M1 + M2 tan 9 ) - 900 
M1 - M2 12 

The equatioI).s of a two-machine system are as follows: 

Pel = EfYn cos 9n + E1E2l;2 COS( 8 12 - 61 + 62 ) 
Pe2 = E2 E1l;1 COS( 921 - 62 + 61 ) + Eil;2 cos 922 

Substituting these values of Pel and Pe2 into the expression for equivalent 
output and let 6 = 61 - 62 " The result is 

p = M2 EfYn cos 9n - M1Eil;2 cos 922 e M1 + M2 
E1E2Y12 [M2 COS( 6 - 812 ) - M1 cos( 6 + 912 ) ] + �������������--�� 

M1 + M2 
The two cosine terms involving 6 may be combined into a single cosine term 
as follows: 

A = M2 cos( 6 - 912 ) - M1 cos{ 6 + 912 ) 
= ( M2 - M1 )COS 6 cos 912 + ( M1 + M2 )sin 6 sin 912 

For simplicity, put 

Then 

a = ( M1 - M2 )cos 912 
b =  ( M1 + M2 )sin 812 
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Now put 

Then 

We have 

Thus, 

b cos y = -;:::== va 2 + b2 

. a sm y = -;:::== va 2 + b2 

A = Va 2 + b2 ( cos y sin c5 - sin y cos c5 ) 
= va2 + b2 sin( c5 - y)  

a2 + b2 = ( M1 - M2 )
2
COS2 812 + ( MI + M2 )

2sin2 812 
= MI2 + Mi - 2M1M2 ( cos2 812 - sin2 812 ) 
= M[ + Mi - 2M1M2cos(2812 ) 

A = VM12 + Mi - 2M1M2cos2812 siri( c5 - y)  

From the above, we  have 

Let 

Then 

p = M2 E[Yllcos 811  - MIEiY22cos 822 
e Ml + M2 

E1E2Y12VM[ + Mi - 2M1M2cos 2812 
+ sin( c5 - y) M1 + M2 

p = M2 E[Yllcos 811 - MIEiY;2cos 822 
c Ml + M2 

E1E2Yr2VMI2 + Mi - 2M1M2cos(2812 ) 
PM = -------::--::-----::--::-------M1 + M2 

Problem 1 0·A·1 7 

High-voltage direct-current transmission systems have been used for 
long-distance high-power links or where bodies of water or other obstacles 
preclude the use of overhead alternating current lines. In addition to the 
main purpose of transporting large blocks of power, dc transmission systems 



� 

BUS I ( VI ) Inverter 
BUS 2 ( V2 ) 

Rectifier 

Figure 10-33. Single-Line Diagram of a Parallel ac-dc System. 
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have some fringe benefits. One of these is the possibility that a properly 
controlled dc transmission link in parallel with ac links may considerably 
increase the transient stability limit of the total system. Figure 10·33 shows 
such a scheme. Derive an equivalent swing equation for this system. 

Solution 

With 

In the case of two machines, the single equivalent is 

M
d 28 = p - p 

dt2 moo eoo 

we have 

MI Pe - M2 Pe p 
= 

2 1 
eoo MI + M2 

The electric power delivered by machine number 1 is 

p = p _
P

: _ I VI I I ":! 1 sin e el L DC X eq 

and by machine number 2 is 

As a result, 

p = p + I Vr l l ":! l sin e e2 DC X eq 

_ p _ M2 ( p ) _ p _ I VI I I ":! I . a 
eeq - MI + M2 L DC Xeq sm u 

Thus the required swing equation is 

d28 M2 ( )  I Vd l ":! l  . ( ) 
M 

d
t2 

= Pmoo + M1 + M2 
PL - PDC - Xeq sm 8 - 0'2 + 0'1 

Problem 1 0-A-1 8 

Consider the case of an electric machine connected to an infinite bus 
through a reactive electric network such that the magnitude of the power 
angle curve is unity. A change in the network results in a new power angle 
curve with magnitude x. Suppose the machine is delivering a power p before 
the change occurs. Show that the maximum value of p such that the system 
remains stable satisfies 
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Verify that for x = 0.5, the maximum value of prefault power p is approxi
mately 0.4245. 

Solution 

With reference to Figure 10-34, for a critically stable system the 
shaded areas Ai and A2 should be equal. From the geometry of the problem, 

The area Ai is given by 

This reduces to 

p = x sin 8i 

p = sin 8o 

Original networ k 

Figure 1 0-34. Swing Curves for Problem 1 0-A-1 8. 

8 
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The area A2 is 

This reduces to 

A2 = 2x cos «5 1 - 1TP 
+ 2«5 1 P 

= 2XJl - ( � r  - 1Tp+2p sin- l� 
Equating Al to A2 yields 

p [ - sin - ' ( � ) - sin - 'Pj + x [ j 1 - ( � ) '  - !1=P' 1 
= 2XJ 1 - ( � ) 2 - 1Tp 

Rearranging, we get the required relation : 

� [ - sin -
1 ( � ) - sin - lp + 11'] = J 1 - ( � r + It -p2 

The left-hand side of the derived expression for x = 0.5 and p = 0.4245 is 

0.4245 ( 0.4245 . ) 1T 0.5 -sin- 1  � - sm- 10.4245 + 180 180 = 
1 .434 

The right-hand side is 

[ 1 - ( 0·��545 ) 2] 1/2 + /I - (0.4245)2 = 1 .434 

For this accuracy the two sides are identical; hence p = 0.4245 is the 
maximum initial power for stability with x = 0.5. 

Problem 1 0-A-1 9 

A generator is delivering 0.6 of Pmax to an infinite bus through a 
transmission line. A fault occurs such that the reactance between the 
generator and the bus is increased to three times its prefault value. When 
the fault is cleared, the maximum power that can be delivered is 0.80 of the 
original maximum value. Determine the critical clearing angle using the 
equal-area criterion. 

Solution 

The initial angle «50 is obtained from 

0 .6Pmax = Pmaxsin 80 



Thus 
80 = 36 .87° 

The angle 8m on the postfault curve is obtained from 

0.80Pmaxsin 8m = 0.6Pmax 

Thus 

8m = 131 .41 or 2 .294 rad 

Al = Pmax [ 0.6( 8c - 80 ) - 0 .33 �:c sin 8 (  d8 ) ] 
= Pmax (0.68c + 0 .33 cos 8c - 0.65) 

A2  = Pmax [ 0 .8 ��m sin 8( d8 ) - 0 .6(2 .294 - 8J ] 
= Pmax( 0 .8 cos 8c + 0 .6 8c - 0 .847 ) 
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With reference to Figure 10-35, the following areas are obtained: 

0 . 8  

o . 6 1------,h-7lh7-rr.,r-r-r.,.f..LLLL..L.L,<'-LL.LL.L.,. 

0 . 3 3  - -

Figure 10-35. Power Angle Curve for Problem 10-A-19. 
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For the critical angle, 

We thus get 

Problem 1 0-A-20 

A generator is delivering 0.5 of Pmax to an infinite bus through a 
transmission line. A fault occurs such that the new maximum power is 0.3 of 
the original. When the fault is cleared, the maximum power that can be 
delivered is 0.8 of the original maximum value. 

A. Determine the critical clearing angle. 
B . If the fault is cleared at II = 75° , find the maximum value of II for 

which the machine swings around its new equilibrium position. 

Solution 

A. We start by finding the angle So that satisfies 
0.5 = ( l )sin So 

Thus, 
So = 30° 

The angle SA is on the postfault curve for a power of 0.5 Pmax ;  thus, 
0 .5 = 0 .8 sin SA 

Therefore, 

The angle Sm ' which is the maximum angle permissible, is a complement of 
llA ' Thus, 

Sm = 1800 - 38 .68° 
= 141 .32° 

We now find expressions for the areas AI and A2 as indicated in Figure 10-36. We have 

Also 



Figure 1 0-36. Swing Curves for Problem 1 0-A-20. 
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During 

For critically stable operation, we have the condition Al = A2 • This gives 

which reduces to 

Using the numerical values for the given angles, we have 

'TT 

360 ( 1 1 1 .32) = 0.3 cos 30 - 0.8 cos( 141 .32° ) + 0.5 cos 8c 

which gives the desired critical clearing angle: 

8c = 79 .97° 
c 

B. For fault clearing at 75° ,  we have 

8 = 75° c, 
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The area Al is given by 
Al = 0.5( 6c - 60 ) - 0.318c, sin 6 ( d6 ) , 80 

This gives 

Al = 0.5(75 - 30) ( 1� )  - 0.3 (cos 30° - cos 75° ) 
Hence, 

Al = 0.21054 
The area A2 is given by 

A2 = 0 .8( cos 750 - cos 6m, ) - 0.5( 6m , - 6c, ) 
This reduces to 

A2 = 0 .862 - 0.8 cos 6m - O.Mm , , 
For Al =A2 ' we obtain 

0 .8 cos 6m + O.Mm - 0.651 = 0 , , 

We solve iteratively to get the required angle 6mJ given by 
6mJ � 1 18 .890 

Problem 1 0-A·21 

The power angle curves for a single machine against an infinite bus 
system is 

p =  2 .8 sin 6 
Under fault conditions, the curve is described by 

p =  1 .2 sin 6 
Assume that the system is delivering a power of 1 pu prior to the fault and 
that fault clearing results in the system returning to the prefault conditions. 
If the fault is cleared at 6c = 600 , would the system be stable? Find the 
maximum angle of swing 68 if the system is stable. 

Solution 

The angle 60 is given by 
1 = 2 .8 sin 60 

Thus, 
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Also, we have 

1 = 1 .2 sin �1 

Therefore, 

�I = 56 .443° 

The area Al is thus 

= 0.16237 

The area A2 is made of two parts as shown in Figure 10-37 . The first 
is the area betw�n the fault curve and the input line; this extends from �I 
to �c. The second extends from �c to �/ '  enclosed by the prefault curve and 
the input power line. Thus, 

2.8 

1 .2 

�/ =  180 - �o 
= 159 .08° 

Figure 1 0-37. Swing Curves for Problem 1 0-A-21 . 
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Therefore we have 

AZf == ��C1 .2 Sin �( d� ) + {f2 .8 sin � ( d� ) - ( �f - �1 ) 1;0 
== 1 .2(COS �1 - cos �c ) + 2 .8(cos �c - cos �f ) - ( �f - �1 )  1;0 
== 2 .2886 

Clearly the system is stable. 
To find 88 , we have to check the area between 81 and 8c' Thus, 

Azc == �lJc1 .2 sin �( d� ) - ( 8c - �1 ) 1;0 I 
== 0.0012 

Clearly Az < AI; hence the system will continue swinging beyond �c to �s , at 
which angle Al == Az. Thus, 

And, 

Az == Azc + t·2 .8 sin �( d� ) - ( �8 - �J 1;0 
c 

7T 0.16237 == 0.0012 + 2 .8( cos �c - cos �8 ) - 180 ( �s - �c ) 

2 .2861 - 2 .8 cos 88 - 0 .017588 = 0 

Solving, we get 88 = 66° . 
Problem 1 0-A-22 

If the fault of Problem 1O-A-21 is not cleared, would the system be 
stable? If so, what is the angle of maximum swing? 

Solution 

The area Al from the previous problem is 

Al == 0.16237 
The area Az is as shown in Figure 10-38. f 

With 

AZf = 2 �900 1 .2 sin �( d� ) - 2(90° - �1 ) 1;0 I 
7T == 2 .4 cos �1 - (90 - 81 ) 90 



2 . 8  - - - - - - - - - - -�--__ 

1 . 2  
I .  0 r--Ir77'7�'72II'�:un.l..U.l.ulJ'_n,.�-�.___--

Figure 1 0-38. Swing Curves for Problem 1 0·A·22. 

we get 

Since 

therefore the system is unstable. 

Problem 1 0-A-23 

Some Solved Problems 691 

Find the critical clearing angle for the conditions of Problem 1O-A-21 . 

Solution 

We have from Problem 10-A-21, 

Al = 0.16237 

For critical stability, 
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Figure 10-39. Swing Curves for Problem 10-A-23. 

Thus with reference to Figure 10-39, we have 

0 .16237 = 1 .2 S1O u 8 + 2 .8 sin 8 d8 /.liee • 1' (  d ) /'(l80-lio) ( ) 

Thus, 

As a result 

PROBLEMS 

Problem 1 0-8-1 

li, Bee 
- ( 180 - 80 - 8} ) 1;0 

1 .3251 + 1 .6 cos 8cc = 0 

The speed of the rotor of a 60-Hz, l00-MVA generator subject to a 
constant decelerating power of 1 p.u. is reduced from rated value to zero in 
12 seconds. If the net accelerating power is 20 MW, find the resulting 
acceleration. 
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Problem 10-8-2 

The kinetic energy stored in the rotor of a GO-Hz, 20-MVA generator 
at synchronous speed is 100 megajoules. Assume that the rotor's accelera
tion is 400 elec. degree/s2 when the machine is delivering rated MVA at 
0.85 PF. Find the net mechanical hp input for this condition. 

Problem 1 0-8-3 

A four-pole, GO-Hz, 15-MVA generator develops an accelerating torque 
of 25,000 newton meters with a net mechanical power input of 16 MW while 
developing rated MV A. Calculate the unit's power factor. 

Problem 10-8-4 

A 60-Hz, three-phase transmission line has a total series impedance of 
lGOi7�o and a shunt admittance of 10-3/900 • Determine the maximum 
recelvlOg-end power transfer if the voltage IS maintained at 220 kV at both 
ends of the line. Use: 

A. The short line approximation. 
B. The nominal 'IT approximation. 

Problem 10-8-5 

Using the short line approximation only, determine whether or not a 
generated power of 400 MW can be transmitted over the line of Problem 
1O-B-4. 

Problem 1 0-8-6 

Find the minimum value of the voltage necessary to transmit 420 MW 
over the line of Problem 10-B-4. Assume equal sending-end and receiving-end 
voltages. Use the short line approximation. 

Problem 10-8-7 

Compare the maximum power transfer capacities of the two systems 
shown in Figure 10-40. 

Problem 10-8-8 

Compare the maximum power transfer capacities for the systems of 
Problem IO-A-7 for 

XL = 1 .0 p .u .  
Xo = O.1  p .u .  
Xs = 0.2 p .u .  



694 Power System Stability 

- jXc  
+-11--��"'"'"'---+-

( 0 )  

Figure 10-40. Systems for Problem 10-8-7. 

Problem 1 0-8-9 

( b )  

Verify the results of Problem lO-A-9 using the ABeD parameter 
method. 

Problem 1 0-8-10 

Repeat Problem lO-A-lO for 

Problem 1 0-8-11 

Ks = 0.8 
Kd = 1 .0 

A 760-kV transmission line is modeled using an all-reactive, equivalent 
1T circuit with series reactance Xl = 160 U, and shunt susceptance BI/2 = 

1 .25 X 10 - 3  S. Series and shunt compensations of degrees Ks and Kd 
respectively are used as shown in Figure 10-41 .  

A. Obtain the sending-end electric power expression in terms of K d 
and Ks ' What effect does the degree of compensation have on 
power transfer for this all-reactive line? 

B. If series compensation with K s = 0.5 is used, calculate the steady
state angle 8 for a load power of 3000 MW. 

C. Find the degree of series compensation K s required so that a power 
of 3000 MW is transmitted with an angle 8 = 15° .  

Problem 10-8-1 2 

A transmission line is composed of two identical sections in tandem. 
Each section consists of two identical parallel circuits with particulars 
similar to the line of Problem lO-B-D. 



-j k d ( 1 . 2 5  X 10-

3 ) S  

7 
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1 I 1 , 1 2 5 X 10 S 1 

7 7 

Figure 10-41. System for Problem 10-8- 1 1. 
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A. Find the expression for the electric power in tenns of Ks and K d '  

Does Kd have any effect on the power transmission capability? 
B. Find the maximum power with Ks = 0.5 for 

(i) Kd = O. 
(ii) Kd = 1 .  

Problem 10-8-1 3 

Repeat Problem lO-B-12 with a three-phase short circuit in the middle 
of one line on the load side. 

Problem 1 0-8-1 4 

Repeat Problem lO-B-13 with the fault cleared by removing the 
shorted line. 

Problem 1 0-8-1 5 

The system shown in Figure 10-42 has two finite synchronous ma
chines, each represented by a constant voltage behind reactance, connected 
by a pure reactance. The reactance X includes the transmission line and the 
machine reactances. Write the swing equation for each machine and show 
that this system can be reduced to a single equivalent machine against an 
infinite bus. Find the inertia constant for the equivalent machine, the 
mechanical input power, and the amplitude of its power angle curve. The 
inertia constants of the two machines are HI and H2 seconds. 

Problem 1 0-8-1 6 

Utilize the results of Problems 1O-A-15 and 1O-A-16 to reduce the two 
machine systems whose particulars are given below to a single equivalent 

x 

Figure 1 0-42. Circuit for Problem 1 0-8-1 5. 
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Figure 1 0-43. Network for Problem 1 0-8-1 7. 
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(b) Compensated circuit  
(c) C i rcuit  with one section removed 
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machine against an infinite bus: 
MI = 2 .92 X 10-4 
M2 = 26 .9 X 10-4 
EI = 1 . 17 
E2 = 1 .01 
l)l = 23 .0 
l)2 = 10.30 

Pm, = 0.8 
Pm = 3 .2 2 

Yll = 1 .84 / - 900 
1';2 = 13 .5/ - 88 . 1 0 
Yl2 = 0. 172/86 .40 

All quantities are in per unit. 

Problem 1 0-8-1 7 

Figure 1O-43(a) shows a simplified diagram of a 360-mile, two-circuit, 
two-section, 525-kV ac transmission link interconnecting two regional power 
systems, each of which is represented by its Th€wenin's equivalent circuit 
(EMF and impedance in series.) 

A. Find the amplitude of the power angle curve for the circuit as 
indicated. 

B. Series compensation of 50 percent is provided by capacitors in the 
individual line circuits as shown in Figure 1O-43(b). Find the 
amplitude of the power angle curve for the circuit with the capaci
tors in. 

C. A section of one circuit is removed for fault clearing as shown in 
Figure 1O-43(c). Find the amplitude of the power angle curve. 

D. Show that the transient stability limit for the circuit under the 
fault condition in part (c) is 2.215 Giga Watts. 

Problem 1 0-8-1 8 

The Gordon M. Shrum (G.M.S.) generating station is situated in the 
north central part of B.C. on the Peace River. It.o; power output is trans
mitted approximately 500 miles through two 500-kV transmission lines to 
the load centers in southern B.C. A schematic of the 500-kV system and its 
series capacitor banks is shown in Figure 10-44. 
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Figure 1 0-44. Schematic diagram for Problem 1 0-8-18. 

A. Draw a labeled equivalent circuit of the system as given. (Do not 
reduce the circuit in so doing.) 

B. Find the equivalent impedance ZA between the G.M.S. generating 
station and the Ingledow substation prior to installing the capaci
tor banks at The Kennedy, McLeese, Chapmans, and Creekside 
stations. 

C. Find the equivalent impedance ZB in part (b) with capacitor banks 
installed. Neglecting resistances, find the ratio XA/XB• 
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D. Find the maximum power transfer Pmax in each case given that 
both the G.M.S. station's and the Ingledow station 's bus bars are 
kept at 500 kV. 

E. If the maximum pennissible design value for the angle difference 5 
is 30° , find the corresponding power transfer wi th and without the 
capacitor banks. 

F. It turns out that an alternative that is $40 million more expensive 
than the capacitor option is a third 500-kV parallel line from the 
G.M.S. station to Ingledow with the three lines uncompensated. 
Assume the proposed line is 575.3 miles long with the same imped
ance per mile as the existing lines. Repeat part (e). As a systems 
planner would you choose this alternative? Why? 

Problem 10-8-19 

For the conditions of part (b) in Problem 1O-B- 1 1 ,  a fault at the 
middle of the line occurs and is removed at angle 5 = 70° . Will the system 
be stable under these conditions? 

Problem 10-8-20 

Repeat Problem 1 0-B- 1 9  for the conditions of part (c) of Problem 
1O-B- 1 1 .  

Problem 10-8-21 

A generator is delivering 0.55 of Pmax to an infinite bus through a 
transmission line. A fault occurs such that the reactance between the 
generator and the bus is increased to three times its prefault value. When 
the fault is cleared, the maximum power that can be delivered is 0.75 of the 
original maximum value. Detennine the critical clearing angle using the 
equal-area criterion. 

Problem 10-8-22 

Repeat Problem 1O-A-21 ,  with the power angle curve given by 

P = 2 .7 sin 5 

All other infonnation remains unchanged. 

Problem 10-8-23 

Repeat Problem 1O-A-22 for �he system described in Problem 1O-B-22. 



CHAPTER XI 

Optimal Operation of Electric Power 
Systems 

11.1 INTRODUCTION 

A main objective in the operation of any of today's complex electric 
power systems is to meet the demand for power at the lowest possible cost, 
while maintaining safe, clean standards of environmental impact. Reliabil
ity and continuity of service are essential goals that the electric power 
systems engineer strives to meet at all times. Ordering these objectives and 
priorities is a very difficult task to perform since these generally change 
with the times and socioeconomic and political considerations. 

It is our intent in this chapter to discuss a few relatively simple 
problems in the optimal economic operation of systems. The problems can 
be considered part of production scheduling activities. These activities are 
concerned with economic hourly scheduling of the available energy re
sources so that the lowest total production cost is achieved while meeting 
system loads within other system constraints. The activities require the 

'101 
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availability of information regarding a forecast of load and resource availa
bility, interchange possibilities, and current system limitations as well as 
energy resource limitations. We will begin by treating the case of systems 
with only thermal resources, followed by the case involving hydro and 
thermal resources in the system. 

As a basic requirement we discuss certain aspects of modeling pertain
ing to thermal resources. It is emphasized that various models can be used 
to represent the same physical device or group of devices, depending on the 
purpose of the analysis. Our treatment is mainly concerned with models in 
general use for economic operation purposes. 

11.2 MODELING OF FUEL COSTS 

FOR THERMAL GENERATION 

Our purpose in this section is to briefly outline models for thermal 
generation for economic operational purposes. This is essentially a discus
sion of modeling the fuel cost variations with the active power generation 
for thermal generating plants. 

Electric power is generated as a result of mechanical rotational energy 
produced by either steam or combustion turbines. Steam produced in the 
boiler or nuclear reactor is the medium of heat energy transfer to the 
turbines. Combustion turbines bum liquid or gaseous fuels, mostly light 
distillate oil or natural gas. No intermediate steps are needed in the latter 
case. 

In fossil fuel-fired steam units, fuel is burnt and energy is released in 
the form of heat in the boiler, producing high temperature and pressure 
steam. The steam is led via the drum to the turbines where part of the 
thermal energy is transformed into mechanical form. The steam turbine 
drives the electric generator (alternator). The exhaust of the turbine is 
cooled in the condenser, and the resulting water is pumped back to the 
boiler. For the purpose of economic operation studies, our interest is in an 
input-output type of model. The input in this case is the fuel cost, and the 
output is the active power generation of the unit. 

The input to the thermal plant is generally measured in MJ /h or in SI 
units (traditionally MBtu/h or kcaljh), and the output is measured in 
megawatts (MW). Although initially prepared on the basis of input versus 
main unit output, the input-output relationship must be converted to input 
versus net unit sendout. The total cost of operation includes the fuel cost 
and the cost of labor, supplies, and maintenance. The most common method 
to express these is to assume the cost of labor, supplies, and maintenance to 
be a fixed percentage of the incoming fuel costs. 
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Figure 1 1 -1 .  Typical Input-Output Curve for a Thermal Unit. 

Figure 11-1 shows a typical thennal input-output curve (F - P). The 
incremental heat rate characteristic is simply a plot of aF lap versus P, and 
a typical curve is shown in Figure 11-2. Heat rate units are MJ Ik Wh. 

Typical heat rate data for sample unit sizes for steam units using coal, 
oil, and gas as primary sources of energy are given in Table 11-1. 

Loading (output) levels at which a new steam admission valve is 
opened are called valve points. At these levels, discontinuities in the cost 
curves and in the incremental heat rate curves occur as a result of the sharp 
increases in throttle losses. As the valve is gradually lifted, the losses 
decrease until the valve is completely open. The shape of the input-output 
curve in the neighborhood of the valve points is difficult to detennine by 
actual testing. Most utility systems find it satisfactory to represent the 
input-output characteristic by a smooth curve that can be defined by a 
polynomial. 
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Figure 1 1 -2. Typical Incremental Heat Curve. 

TABLE 11-1 
Typical Fossil Generation Unit Net Heat Rates 

100% 80% 60% 40% 25% 
FossiL Unit Output Output Output Output Output 
FueL Rating MJ/kWh MJ/kWh MJ/kWh MJ/kWh MJ/kWh 
Coal 50 11.59 11.69 12.05 12.82 14.13 
Oil 50 12.12 12.22 12.59 13.41 14.78 
Gas 50 12.33 12.43 12.81 13.64 15.03 
Coal 200 lO.oI 10.09 10.41 11.07 12.21 
Oil 200 10.43 10.52 10.84 11.54 12.72 
Gas 200 10.59 10.68 11.01 11.72 12.91 
Coal 400 9.49 9.53 9.75 10.31 11.25 
Oil 400 9.91 9.96 10.18 10.77 11.75 
Gas 400 10.01 10.06 10.29 10.88 11.88 
Coal 600 9.38 9.47 9.77 10.37 11.40 
Oil 600 9.80 9.90 10.20 10.84 11.91 
Gas 600 9.91 10.01 10.31 10.96 12.04 
Coal 800/1200 9.22 9.28 9.54 10.14 
Oil 800/1200 9.59 9.65 9.92 10.55 
Gas 800/1200 9.70 9.75 10.03 10.67 

Note: For conversion: 1 Btu = 1054 joules. 

104 
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For economy operation problems treated here, the fuel cost curve is 
modeled as a quadratic in the active power generation. This we express as 

F{P) =a + /3P+ yP2 ( 1 1 . 1 )  
The determination of  the parameters a, /3, and y requires the availabil

ity of data relating the cost F(� ) to the generation level� .  We may then 
use a simple least-square estimation algorithm to do so. 

Given n points where the cost F(� ) and the power � are known, the 
parameters are determined such that a least square error is involved. The 
problem is then to minimize J with respect to a, /3, and y, where J is given 
by 

n 
J= � [a+/3�+y�2-F{�)Y 

i=1 
The solution is obtained by setting the derivatives of J with respect to a, /3, 
and y to zero. The resulting relations are as follows: 

3J n 
3a = . � 2[a+/3�+y�2_F(�)] = 0 

1=1 
3J n 

3/3 = i�1
2�[a+/3�+y�2_F(�)] =0 

3J 
_ � 2[ a 2 ( )] _ a:y- i�1

2 �  a+I-'�+y� -F � -0 

Rearranging, we have 

(n)a + L�1 � )/3+ L�1 �2 )y = i�1 F(�) 

( i�1 � ) a + ( i�1 �2 ) /3 + ( i�1 �3 ) Y = i�1 �F( �) 

(i�1 �2 ) a + ( i�1 �3 ) /3 + (i�1 �4 ) Y = i�1 �2F(�) 

(11.2) 

( 1 1 .3) 

( 1 1 .4) 

Solving the above linear set of equations in a, /3, and y yields the desired 
estimates. The following example illustrates the procedure. 

Example 1 1 -1 

The data for the expected heat rate curve for a unit in a thermal 
station are shown below: 

MW 
Btu/kWh 

70 
8200 

75 
8150 

112.5 
7965 

150 
7955 
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A. Obtain the corresponding points on the input-output curve (input 
in Btu/h). 

B. Obtain the parameters a, p and y of the cost equation, Eq. ( 1 1 . 1). 

Solution 

A. We obtain the inputs F( PJ for various loadings � from the table 
by multiplying the heat rate value by the power output. Therefore, 
for PI = 70 MW, we have 

FI = 8200 X 70 X 103 = 574 X 106 Btu/h 

The other three points are similarly obtained: 

For P2 = 75 MW, F;. = 61 1 X 106 Btu/h 

For P3 = 1 12.5 MW, F3 = 896 X 106 Btu/h 

For P4 = 150 MW, � = 1 190 X 106 Btu/h 

B. The following quantities are calculated 

n = 4 
I� = 407.50 MW 

I�2 = 45.68125 X 103 

I�3 = 5.5637 X 106 
I�4 = 7 .22 X 108 
IF; = 3 .271 X 103 

I�F; = 3 .65305 X 105 
I�2F; = 4 .43645 X 107 

We thus have to solve 

l 4 
(407 .5) 

(45 .68125 X 103) 

(407 .5) 
(45 .68125 X 103 ) 
(5 .5637 X 106) 

(45 .68125 X 103) 1 [a 1 
(5 .5637 X 106) P 
(7 .22 X 108) Y 

for a, p, and y. The solution is 

a = 69 .23 
p = 6 .98 
y = 3 .2828 X 10- 3 

[ 3 .271 X 103 1 
= 3 .65305 X 105 

4 .43645 X 107 

Therefore the fuel cost expression required is given by 

F( P) = 69 .23 + 6 .98P + 3 .2828 X 1O-3p2 MBtu/h 
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We observe that the elements of the relations leading to finding a, p, 
and y are different by orders of magnitude. Certain numerical difficulties 
may arise due to this ill-conditioning. We speculate that normalizing the 
variables (which leads to the per unit system) can help in this regard. 

As before, we need a base quantity for the power that we choose as the 
unit rating. Thus, 

Pbase = 150 MW 
We also need a base for the fuel cost. Let us take this as the cost 
corresponding to the unit rating. Therefore, 

Fbase = 1 190 MBtu/h 

Consequently, we have in p.u. values, 

We therefore have 

Thus we have to solve 

PI = 0.4667 
P2 = 0.5 
P3 = 0.75 

P4 = 1.00 

n = 4  

FI = 0.4824 
� = 0.5134 

Fa = 0.753 
F4 = 1.00 

�P; = 2.7167 
�P;2 = 2.0303 
�P;3 = 1 .6485 
�P;4 = 1 .4263 
�Jii = 2.7488 

�P;Jii = 2.0466 
�P;2 Jii = 1 .657 

[ 2.7�67 
2.0303 

2.7167 
2.0303 
1 .6485 

2.0303 ] [al [ 2.7488 ] 
1 .6485 P = 2.0466 
1.4263 y 1 .657 

Clearly a marked improvement in the orders of magnitude is observed. The 
solution is a = 0.058 

p = 0.880675 
y = 6.14534 X 10-2 

The cost expression is therefore 

F =  0.058 + 0.880675Ppu + 6.14534 X 1O- 2P;u 
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where both F and P are in p.u. values. To transform back to MW and 
MBtu/h, we have 

F= 1 190 [0 .058 + 0 .880675 ( �;) 
+6.14534 X 1O-2 ( ��; r] 

or 

F =  69 .02 + 6.987P+ 3.2502 X 1O-2p2 

11.3 OPTIMAL OPERATION OF 

AN ALL-THERMAL SYSTEM: 

EQUAL INCREMENTAL COST LOADING 

A simple yet extremely useful problem in optimum economic operation 
is treated here. Consider the operation of m thermal generating units on the 
same bus as shown in Figure 1 1-3. Assume that the variation of the fuel cost 
of each generator (F;) with the active power output (�) is given by a 
quadratic polynomial. The total fuel cost of the plant is the sum of the 
individual unit cost converted to $/h: 

m 
F= � a.+p.P.+y.P.2 4J t I. I. t I i=i 

where ai' Pi and Yi are assumed available. 

(11.5) 

If one is interested in obtaining the power outputs so that F is a 
minimum, the first partial derivatives of F with respect to � are set to zero. 

1 2 m 

__ ...a... ___ � ____________ _ 

Figure 1 1 -3. Units on the Same Bus. 
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Thus, 

aF 
= 0 a� ( i = l, ... , m ) ( 1 1 .6) 

This should hold for all m units in the system. For the example expression 
adopted for F, we obtain the optimal values for power generations as 

p = - Pi ( 1 1 .7) 
IE 2Yi 

This expression for the optimal active power is guaranteed to result in 
minimizing F if the second partial derivative is positive. This condition for 
our case requires 

Yi>O 
Observe that Eq. (11.7) requires negative power generations as both Pi and 

Yi are positive for practical systems. 
Optimization problems in practice are seldom unconstrained. The 

usual situation is one where the cost is to be minimized subject to satisfying 
certain equations, which we refer to as constraints. One such case is when 
we wish to determine generation levels such that F is minimized while 
simultaneously satisfying an active power balance equation. This utilizes 
the principle of power flow continuity. Here the network is viewed as a 
medium of active power transfer from the generating nodes to the load 
node. Only one equation is needed. 

The first active power balance equation model neglects transmission 
losses, and hence we can write 

m 
( 1 1 .8) 

with PD being a given active power demand for the system. 
The demand PD is the sum of all demands at load nodes in the system. 

The model is useful in the treatment of parallel generating units at the 
same plant since in this case the negligible transmission losses assumption is 
valid. 

We observe here that the results of the unconstrained minimization 
cited earlier in Eq. (11 .7) lead to the sum 

The above sum is not equal to the power demand PD as a general case. A 
popular method for solving constrained minimization problems uses the 
Lagrange mUltiplier technique. Here we write the constraint equation, Eq. 
(11.8), as m 

PD- � (�) =0 (11.9) 
i=l 
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The technique is based on including Eq. (11.9) in the original cost function 
by use of a Lagrange multiplier, say A ,  which is unknown at the outset. 
Thus, 

(11.10) 

where 
m 

FT= � (li(�)] 
i=l 

Note that A is to be obtained such that Eq. (11.9) is satisfied. The idea here 
is to penalize any violation of the constraint by adding a term correspond
ing to the resulting error. The Lagrange multiplier is in effect a conversion 
factor that accounts for the dimensional incompatibilities of the cost 
function ($ /h) and constraints (MW). The resulting problem is an uncon
strained one, and we have increased the number of unknowns by one. 

The optimality conditions are obtained by setting the partial deriva
tives of P with respect to � to o. Thus, 

ali -A=O a� (ll.ll) 

Note that each unit's cost is independent of the generations of other units. 
The expression obtained in Eq. (11.11) leads to the conclusion that 

A 
- aFl 

_ 
aF2_ 

- aPl - a� _ 
. . .  

(11.12) 

The implication of this result is that for optimality, individual units should 
share the load such that their incremental costs are equal. We can see that 
the A is simply the optimal value of incremental costs at the operating 
point. Equation (ll.B) is frequently referred to as the equal incremental 
cost-loading principle. A graphical interpretation of the principle is shown 
in Figure B-4. 

Implementing the optimal solution is straightforward for the quadratic 
cost case where we have 

Our optimality conditions from Eq. (B.ll) reduce to 

(ll.13) 

The value of A is determined such that Eq. (ll.9) is satisfied. This turns out 
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to give 

2PD+ � (Pi) 
A = i=1 Y. 

m 

� Yi-1 
i=1 

Finally the optimal generations are obtained using Eq. (11.13) as 

(11.14) 

p. = A -Pi (11.15) • 2y; 
We illustrate the use of the obtained results using the following example. 

Example 1 1 ·2 

The fuel-cost models for a two-unit plant are given by 

Fl = 462.28 + 8.28P1 + O.OO053PI2 GJ /h 
F2 = 483.44 + 8.65P2 + 0.OOO56Pi GJ /h 

where PI and P2 are in MW. 
The plant supplies a load of 1000 MW. Obtain the most economical 

loading of each unit and the incremental cost of power. Neglect losses. 

Solution 

Using the optimal equations-Eqs. (11.13) and (11.9)-we obtain 

8.28 + 2(0.00053) PI - A = 0 
8.65 + 2(O.00056)P2 - A = 0 

PI +P2= 1000 
Solving the above, we obtain the optimal unit loadings: 

Pl = 683.49 MW 

P2 = 316.51 MW 

The incremental cost of power is calculated as 
A =9.00 

The optimality conditions given in Eqs. (11.14) and (11.15) are 
straightforward to apply as can be judged from the preceding example. We 
find it instructive, however, to introduce a computer program written for 
this purpose. 

Figure 11-5(a) shows the listing of a C language computer program 
designed to calculate the optimum power generation in a thermal system 
according to Eqs. (11.14) and (11.15). The dimension statements assume 
that up to five units are being scheduled. The program accepts the number 



� 
Co; 

#include <stdio.h> 

#include <stdlib.h> 
#include <math.h> 

int M,N,TI[24],ij,k,l; 
float P9[24],A[5],G4[5],G[5],G5[5],Pl[5],T,B; 

mainO 

{ 
printf\"\n Please enter the number of units "); 
scanf\""/od",&M); 

scanf\"o/od" ,&N); 

for(i=l; i<=N; i++) 

{ 

printf("\n Please enter the number of time intervals "); 

printf("\n Please enter the power demand for time interval %d ",i); scanf\"%f' ,&P9[i)); 

} 
printf("\n Please input \n"); 
T=O; 
B=O; 

/* At this point we input the elements to the equations and 
find the summations to calculate lambda */ 

Figure 11-5(a). A C Language Computer Program for Loss-Free All-Thermal Economic Operation Schedule. 



� 
.... 

for (j= 1; j<=M; j++) 

{ 
print1{"\n Elements to equation %d \n", j); 

} 

print1{''\n Alpba "); 

scan1{"%f' ,&AUJ); 
printft''\n Beta H); 

scan1{"%f' ,&G4(jJ); 
printft"\n 

scan1{"%f' ,&G[j)); 
T=G4[j)/G[j]+ T; 
B=(lIG[j))+B; 

Gamma"); 

for (k=l; k<=N; k++) 

{ 
G5(k)=(2*P9(k)+ TYB; 

printft''\n For Time Period %d ", k); print1{"\n 
Lambda = %f", mlk)); 

/* calculate optimal power for each unit * / 

Figure 11-S( a) (Cont.) 

for(l=l; 1<=N; 1++) 
{ 

Pl[\]=(G5(k)-G4[1))/(2*G(l]); printft"\n Pstar %d = 

%f\n",I,Plll)); 



Please enter the number of units 2 

Please enter the number of time intervals 2 

Please enter the power demand for time interval I 500 

Please enter the power demand for time interval 2 300 

Please input 

Elements to equation I 

Alpha 312.35 

Beta 8.52 

Gamma .00150 

Elements to equation 2 

Alpha 483.44 

Beta 8.65 

Gamma .00056 

For Time Period 1 

Lambda = 9.022428 

Pstar 1 = 167.475693 

Pstar 2 = 332.524933 

For Time Period 2 

Lambda = 8.859321 

Pstar 1 = 113.106728 

Figure 11-5(b). Sample Output of Program Listed in Figure 11-5(a). 

115 
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of units (M) as well as the number of times for which the schedules are to 
be obtained (N). This is followed by a request to input the power demand 
for each time instant. The fuel cost coefficients ai' Pi' and Yi are designated 
A, B, and G respectively and are entered next for each of the M units. 
Within the same loop the sums indicated in Eq. (1 1 . 14) are fonned. 

With the input data available, the program calculates the incremental 
cost of power A denoted by D for each time instant, according to Eq. (11.14). 
The optimal power generations for each of the units is calculated using Eq. 
( 11 . 15) as P1( J) in the program. 

A sample run of the program for a two-unit system is shown in Figure 
1 1-5(b). Here we have three different levels of power demand and hence the 
number of time intervals is entered as 3. The optimal generations as well as 
the A are obtained as shown. 

11.4 ACCOUNTING FOR 

TRANSMISSION LOSSES 

The problem of optimal operation considered in the preceding section 
utilized a power balance equation that neglects transmission losses in the 
interconnecting network. Although the problem is highly simplistic, it 
proves useful in the twin purposes of finding the optimum allocation of 
generation as well as obtaining single-unit equivalents for units on the same 
bus at a given power plant. A solution to the problem is also useful as a first 
approximation to more sophisticated problems as will become clear in the 
sequel. 

Our intent presently is to outline an approach to modeling of the 
transmission losses in the system for economic operation purposes. To 
understand some of the basic principles involved, let us consider the single 
radial line system shown in Figure 1 1-6. Our purpose is to detennine the 
dependence of the transmission losses PL on the power generated PG' From 
the equivalent circuit shown in Figure 1 1 -7, we can deduce that 

PL = 31112R 

Load 

� __ rl ______________ T_._L_. ____________ -+_c_e.�tre 
Po -

Figure 11-6. A Radial System. 
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R 
-

I 

Figure 11-7. An Equivalent Circuit. 

jX 

where R is the resistance of the line in ohms per phase. The current I II is 
obtained from 

In the above, Po is the generated power, I Va I is the magnitude of the 
generated voltage (line-to-line), and cos <Po is the generator's power factor. 
Combining the above two relations, we conclude that 

PL;= 2R (pJ) IVai cos2<po 

Assuming fixed generator voltage and power factor, we can write 

PL=BPJ 
where in this case 

B = R 
IVai 2 cos2<po 

(11.16) 

This shows that the losses may be approximated by a second-order function 
of the power generation. 

Let us consider the case where a second generating plant is present
this time with the generation source very close to the power demand bus as 
shown in Figure 11-8. It is clear that the losses in this case are given by the 
following equation, which is identical to Eq. (11-16): 

PL = Bl lPl 
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T.L. 

11 
jX 

Figure 11-8. A Radial System with One Generation Source Close to the De
mand Bus. 

where 

Here PF1 denotes the power factor at bus 1. 
As our second example we consider the system shown in Figure 11-9 

where both generations are linked to the demand bus through lines of 
resistances RID and R2D respectively. The following development is self-evi
dent: 

VI V2 OHII---Z-I ----, ....-__ Z2_--+--1 0 
.............. �I V 

r Po 3 
-

Figure 11-9. Two Radial Lines Feeding a Load. 

-
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ZI 

VI 

Figure 1 1 -1 0. A Three-Line System. 

This results in 

Z2 

PD 

(11 .17) 
We observe here that in Eqs. ( 1 1 .16) and (1 1.17), no cross multiplica

tion terms are present. This arises in cases such as for the system shown in 
Figure 1 1-10 where a third line of resistance R3D feeds the demand bus. In 
this case, we have 

PL = BllP12 + 2B12Pl� + B22Pi 
We now derive Eq. ( 11 . 18) as follows: 

PL = 3( I;RlD + IiR2D + IiR3D) 

(11 .18) 

where we understand that all currents in the above expressions are magni
tudes only. Thus, 

Now we may approximately set 

PD�Pl +P2 
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Therefore, 

I == PI + P2 1 31 [a1V31(PF)a 

Substituting in the loss expression, we obtain 

P _ RW (p2) + R2D (R2) L-
IVI12(PF)i' 1 1�12(PF)� 2 

+ R3D (p+R)2 
1 �112{ PF)� ) 2 

Expanding and comparing with Eq. (1.1 8), we have 

B == Rw + R3D 
11 IVI12(PF)i IVaI2(PF)� 

B == R2D + R3D 22 
1�12{ PF); IVaI2(PF); 

B - R3D 
12 -

1 Va 12 ( PF)� 

(11.1 9) 

(11 .20) 

(11. 21) 

To illustrate the development of loss formulae from basic principles, 
we consider the following simple example. 

Example 1 1 -3 

Consider a three-line, two-plant system such as the one shown in 
Figure 11-1 0. The following data are given in the per unit system: 

1 V11== 1 .05 
1 �I == 1. 03 
1 Va 1 == 1. 00 

{ PF)l == 0 .95 
{ PF)2== 0. 95 
(PF)3 == 0. 85 

Rw== 0. 04 
R2D== 0. 05 
R 3D== 0. 03 
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Solution 

Using eq. (1 1 . 19)-(1 1 .21), we have 

B = 0.04 + 0 .03 
= 0.0817 1 1  ( 1 .05)2(0.95)2 ( 1 ) 2(0 .85)2 

B22 = 0.05 + 0 .03 = 0.0937 
( 1 .03) 2(0 .95)2 ( 1 ) 2(0 .85)2 

B 0 .03 
12 = 2 2 = 0.0415 

( 1 ) (0 .85) 
Thus in per unit we have the loss fonnula given by 

The General Loss Formula 

Ideally, the exact power flow equations should be used to account for 
the active power transmission losses in the power system. However, it is 
common practice to express the system losses in terms of active power 
generations only. This approach is commonly referred to as the loss for
mula, or B-coefficient method. The simplest fonn of the equation is called 
George's formula and is given by 

m m 
PL = � � (�Bij�) 

i=lj=l 

The coefficients Bij are commonly referred to as the loss coefficients. A 
more general fonnula is 

m m m 
PL = KLO + � BiO� + � � �Bij� 

i=1 i=1 j=1 
( 1 1 .22) 

Here a linear tenn and a constant have been added to the original quadratic 
expression. This expression is frequently called Kron ' s loss formula. Amaz
ingly enough, this loss fonnula can be obtained by simply using the first 
three tenns of the Taylor expansion of a function of several variables. This 
of course assumes dependence of the losses on the active power generations 
only. 

When it is necessary to transmit electric energy over large distances or 
in the case of a relatively low load density over a vast area, the transmission 
losses are a major factor to be considered. The active power transmission 
losses may amount to 20 to 30 percent of the total load demand. 
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The ease of computation possible with the use of the loss formula is 
highly advantageous, especially if the complexity of calculating these coeffi
cients can be reduced without loss of accuracy. It is emphasized that a 
number of approximations are involved in the loss formula, as noted below: 

1 . Assume a linear generator reactive characteristic such that 

2. Assume constant generator angular positions, 8i• 
3. Assume constant generator-bus voltage magnitudes. 

4. Assume a fixed demand pattern. 

Thus it is valid only for a certain range of loadings. In practice, however, 
the formula produces close answers with errors up to only a few percent. 
Very sophisticated methods for calculating the B-constants exist and are 
being used by utilities in connection with economic dispatch. 

We will consider next the inclusion of loss in optimal operation studies 
for all-thermal systems. 

11.5 OPTIMAL OPERATION OF AN 
ALL-THERMAL SYSTEM, 

INCLUDING LOSSES 

The preceding section outlined how transmission losses are modeled 
for optimal operation studies. Including the losses in the active power 
balance equation leads to some modifications of the optimal solution ob
tained in Section 11.3. These are discussed here. 

We are interested in minimizing the total cost given by Eq. (1 1 .5), 
while satisfying the active power balance equation including losses. Thus, 

m 

PD= � (�) - PL (11.23 ) 
i=1 

Here PL is the active power loss considered as a function of the active power 
generation alone as outlined in the previous section. 

Following our treatment for the loss-free case, we form the augmented 
cost function: 

(1 1 .24) 

The optimality conditions are obtained using the same arguments as before 
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and tum out to be 

aF; ( aPL ) 
ap; + A ap; -1 = 0 ( 1 1 .25) 

Note that with negligible transmission losses, the above expression reduces 
to Eq. (11 . 11 )  obtained in Section 1 1 .3 .  

It is  convenient to transform the obtained optimality expression into 
an equivalent form. This is done by defining the factors Li: ( ap ) -I 

Li = 1 - a� 
We can thus write Eq. ( 1 1 .25) as 

L. 
aF; 

= A  'ap Bj 
( i = I ,  . . .  ,m )  

( 1 1 .26) 

( 1 1 .27) 

This is of the form of Eq. (11.12) except for the introduction of the new 
factors Li, which account for the modifications necessitated by including 
the transmission loss. These are traditionally called the penalty factors to 
indicate that plant costs (F;) are penalized by the corresponding incremen
tal transmission losses (aPdap;). 

Examination of Eq. (11.27) reveals that the optimal generations are 
obtained when each plant is operated such that the penalized incremental 
costs are equal. Let us consider an example that is primarily an extension of 
Example 11-2 to illustrate our new results. 

Example 1 1 -4 

Consider the system of Example 11-2. Assume that losses are accounted 
for and are expressed as 

with 

Bll = 1 .5 X 10-4 MW- 1 

Compute the optimal power generations in this case. 

Solution 

To start, we find the penalty factors Ll and L2• We have the 
incremental transmission losses evaluated as 

aPL _ _ -4 ap -2BllPI -3X 10 PI 1 
aPL 
ap. = 0 

2 
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Therefore, 

L�I = (1- 3 X 1O-4P\) 
L2= 1 

The optimal operation conditions of Eq. (11. 27) are thus given by 

8. 28 + 0. 001 06PI = A(1- 3 X 1O-4P\) 
8. 65 + 0. 0011 2P2 = A 

We can eliminate A between the above two equations to obtain 

( 8. 28 + 0 .001 06P\) = (1- 3 X 1O-4P\)( 8. 65 + 0. 0011 2P2) 
We also have the power balance equation 

PI + P2 = 1 000 + (1. 5 X 1 0-4 )P? 
Care must be taken not to overlook the last term of the right-hand side 
representing the transmission losses. The last two equations can be com
bined to eliminate P2• As a result, we have 

8. 28 + 0 .00106P 
----4--=-1 = 8. 65 + 0. 0011 2(1. 5 X 1O-4P\2 -PI + 1(0 0) 1- 3 X 1 0- PI 

Simplifying, the following third-order equation results: 

x3 -1 0x2 + 1 01. 4x - 29. 56 = 0 
where 

x = 1O-3P1 
The solution of this equation gives 

x = 0. 3001 4  
or 

PI = 300.1 4 MW 

The optimal value of P2 is calculated according to the power balance 
equation: 

P2 = 1000 - 300.1 4 + 1. 5 X 1 0-4( 300.1 4)2 
= 71 3. 37 26 MW 

The corresponding loss is 

PL = 1 3. 51 26 MW 

The incremental cost of power delivered is obtained using the first optimal
ity condition as 

A = 8. 28 + ( 0. 001 06)( 300.1 4) 
1 - 3 X 1 0-4(3 00.1 4) 

= 9. 44895 
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To check the validity of our results, we use the second optimality condition 
to calculate P2• This results in 

P. = 9 .44895 - 8 .65 
2 0 .00112 
= 713 .34896 MW 

This is close enough to the value computed earlier. 
We make some observations on the results of the example. First, the 

optimal generation of the first plant is considerably less in the case account
ing for losses than that for Example 1 1 -2 neglecting losses. This is to be 
expected since the losses for the given model increase as the loading on 
plant 1 increases. It is natural to expect that more loading on plant 2 is 
advantageous. Indeed loss considerations seem to offset the cost ones! Our 
second observation is that the incremental cost of power delivered is higher 
in the present example than the corresponding value in the loss-free case of 
Example 1 1 -3. One final observation is that even though our loss expression 
was a very simplistic one, we had to solve a cubic equation in Pl' This is no 
easy task and motivates us to consider use of a general iterative method for 
the solution. 

A Computer Implementation 

We assume that fuel costs are quadratic expressions as given in Eq. 
(11.5). Moreover the transmission losses are expressed by the general expres
sion 

m m m 
PL = KLo + � ( BiO�) + � � (�Bij�) 

i=l i=lj=l 
In this case, our incremental loss expressions turn out to be 

ap m 

a; = BiO + 2 � (Bij�) 
I j=l 

We can conclude then that Eq. ( 11 .27) requires that 

( 1 1 .28) 

( 1 1 .29) 

fi = Pi + 2Yi� + >" [BiO-l + 2
.
� (Bij�) l = 0  ( i = 1 , ... , m ) 

J=l 
( 1 1 .30) 

The multiplier>.. is obtained such that the active power balance equation is 
satisfied. In our present case, this is given by 

m m m 

g = PD + KLO + � ( Bio-l)� + � � �Bij� = O  
i=l i=l j=l 

( 1 1 .31 ) 

Equations (1 1 .30) and ( 11 .31 )  completely specify our desired optimal solu
tion. 
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The Newton-Raphson method has proven successful in solving sets of 
algebraic equations. We evaluate the derivatives of the equations with 
respect to the unknowns. These turn out to be 

Finally, 

at ap = 2( Yi + >-,BiJ (i =l, . .. , m ) 
I at ap. = 2>-,Bij J 

( i, j= 1, ... , m ) 

at [ m 1 a�= BiO-l+2.� (Bij�) 
J=l 

ag [ m 1 ap = BiO - 1 + 2 .� (Bij�) 
I J=l 

( i = l, ... , m ) 

( i = 1 ,  . . . , m ) 

( 1 1 .32) 

( 1 1 .33) 

( 1 1 .34) 

( 1 1 .35) 

( 1 1 .36) 

Starting with estimates P;(O) and >-,(0) for the unknowns, new improved 
estimates are obtained according to 

>-,k+1 = >-,k + �>-, ( 1 1 .37) 
( 1 1 .38) 

As the iterations progress, the solution to the problem is obtained to the 
desired degree of accuracy. It should be noted that the initial estimates for 
the solution are best obtained by assuming negligible losses. 

We now discuss a computer program whose listing is given in Figure 
ll-ll(a). The program obtains the optimum economic allocation of genera
tion in an all-thermal system including losses. The fuel-cost model may be 
second-order to third-order. The second-order problem is denoted "IL2." 
The Newton-Raphson method is used. The Jacobian matrix is formed and 
inverted as needed to form the correction components D. The initial guess 



#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "nrutil.h" 
#include "matutil.h" 
#define TINY 1.0e-20 
#define NR _ END 1 
#define FREE ARG char * 
void nrerror(char error_text[J) ; 
void ludcmp(float **a, int n, int *indx. float *d); 
void lubksb(float **a, int n, int *indx. float b[J) ; 
void zermat(float **mat, int n, int m); 
void zervec(float *vec, int n); 

void gaussj(float **a, int n, float **b, int m); 
int M,N,O,p,ij,k,I,C; 
float *P, *G I, *G2, *B, *S I, T; 
fleat *G8,*PI,**DI,nI; 
float **BI,**D,**F,**G3,L,E,X.K; 
float S3,S2,P2,P3,Z,Ll,AI; 
float **a,d., *col, **mat, *vec; 
int m,n,order, *indx; 

mainO 

{ 
C=O; 

printf(''\n Please enter the number of units \nil); 
scanf("o/od",&N); 

M==N+1; 
O==N-l; 
p==M+1; 

/* need to call subroutine to allocate vectors and matrices */ 

P=vector(M); 
G I ==vector(M); 
G2==vector(M); 
B==vector(M); 
S I ==vector(M); 
PI ==vector(M); 
G8==vector(M); 
indx==ivector(M); 

Figure 11-11(a). Computer Program listing for Economic Operation of AII-
Thermal Including Losses. 727 



Bl =matrix(M,M); 
D=matrix(p,p); 
D 1 =matrix(p,p); 
F=matrix(p,N); 
G3=matrix(p,N); 

printf("\n Please enter the power demand \nil); 
scanf("%f' ,&T); 

printf("\n Please enter the order of the fuel cost model \nil); 
printf("\n either second (2) or third order (3) \n"); 
scanf("o/od" ,&order); 

'* initial guess for optimal power generation *1 

for (i=l; i<=N; i++) 
{ 

P[iJ=T/(float)N; 
} 

printf("\n Please input approximate Lambda \nUl; 
scanf("%f' ,&L); 

printf("\n Please input Tolerance \nil); 
scanf("O/of' ,&E); 

printf("\n Please enter number of iterations \nUl; 

scanf("O/of' ,&X); 

for (i=l; i<=N; i++) 

{ 
printf("\n For unit %d enter \n",i); 

printf("\n Beta \nil); 
scanf("o/of' ,&Gl [i]); 
printf("\n Gamma \nil); 
scanf("O/of' ,&G2[i)); 

if (order = 3) 

{ 
printf("\o Delta \0"); 

scanf("o/of',&G8[i)); 

} 
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} 
printfC'\n Enter Loss coefficients \n"); 

printf("\n KLO \nil); 
scanf("o/of' ,&K); 

for (i=I; i<=N; i++) 
{ 
1* enter B[i,O) elements *1; 

printf("\n B(%d,O) \n",i) ; 
scanf("%f' ,&B[i)) 

1* enter B[ij) elements *1; 

for (j=I; j<=N; j++) 

{ 
if (i>j) 
{ 

} 
else 
{ 

B l[i)[j]=B 1 [j][i); 

printf("\n B(%d, %d) \n",ij); 
scanf{"o/of' ,&B 1 [iJ[j)); 

} 
} 

B I [iJ[j)=B 1 [j][i); 
} 

1* this is the start of the iterative loop *1 
AI=E+I; 
while (C<X && AI>E) 
{ 

C=C+I; 1* Build the 0 (Jacobian) Matrix *' 
S3=O;S2=O;P2=O; 

for (i=l; i<=N; i++) 
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} 

{ 

} 

for (j=I; j<=N; j++) 

{ 

} 

if (i j & order==2) 

D[i) [jJ=2*(G2[i)+(B 1 [iJ[jJ*L»; 
else if (i==j & order!=2) 

D[i) [jJ=2*(G2[i)+(B I [i) [jJ*L )+(3 *(G8[i ])*(P[i)))); 
else 

D[i)[jJ=2*(B I [i)[j)*L); 

for (i=l;i<=N;i++) 

{ 
SI[i)=O; 

} 

for (i=l; i<=N; i++) 

for (j=I; j<=N; j++) 

{ 
S 1 [i)=B 1 (i) [jJ*P[jJ+S 1 (i); 

} 

for(i= I ;i<=N;++i) 
{ 

j=N+I; 
D[i)[jJ=(B[iJ-I )+(2*SI [i)); 

DUHi]=D[iJUJ; /* this gives us all other terms in 0*/ 

} 
for (i=l;i<=M;i++) 

{ 

} 

for (j=lj<==Mj++) 
{ 
01 [iJUJ=D[iJU); 1* make a copy of the original D matrix for future use *1 

} 
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1* matrix inversion loop ·1 

gaussj(DI,M,BI,O); 1* call the gaussian-jordan elimination routine *1 
1* BI is a matrix that determines inversion or solution of *1 
1* system of equations , D 1 returns the inverse in any case *1 

1* matrix inversion loop end *1 

for(i= l;i<=N;++i) 
1* Here we create the "cost function" terms *1 

{ 

} 

j=N+I; 
if (order!= 2) 

F[iJ[IJ=(Gl[iJ+(2*(G2[i))*(P[i)))+(3*(G8[i))*(P[i))*(P[i))))+(L*(D[iJU))); 
else 
F[iJ( I J=(G I [iJ+(2*G2[iJ*P[iJ)+(L *(D[iIU»»; 

for(i= I ;i<=N ;i++) 
{ 

P2=P[iJ+P2; 
} 
for(i= I ;i<=N;++i) 
{ 

} 

S3=B[i]*P[i]+S3 ; 
for(j=I;j<=N;++j) 
{ 

S2=P(iJ*BI(iIU]*PUI+S2; 
} 

P3=K +S3+S2; 
i=N+l; 
F(i][IJ=-P2+T+P3; 
Z=F[i][I) ; 

1* perform matrix multiplication here *1 

zermat(G3,M,M); 1* zero the matrix first *1 

for(j= 1 j<=Mj++) 
{ 

for(i= 1 ;i<=M;i++) 
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} 

{ 
G3[j][ 1 ]=G3[jJ[ 1 ]+01 [j][i)*F[i][ 1 ); 
} 

/* end matrix mult */ 

for(i= I ;i<=N;++i) 
{ 

P I  [i]=G3[i][ I ]; 
} 

j=N+l; 
Ll=G3[j](l]; 
if (C > X){ /* If we exceed number of iterations then stop program */ 

printf("\n Does not converge in o/od iterations \n",C); 

else 
{ 

} 
L=L-Ll; 

goto outside; 
} 

A I =fabs(Z); /* check iftolerence has been met */ 
if (A I <= E) 
{ 
goto outside; /* if so then end program and print results */ 
} 
else 
for(i=l;i<=N;++i) 
{ 
P[i]=P[i]-Pl(i]; /* otherwise reevaluate lambda and continue iterations */ 
} 

'**. goto statement •• */ 

outside: 
printf("\n Lambda = %f',L); 
for (i= I ;i<=N;++i){ 

printf("\n P[o/od]=%f',i,P[iJ); 

} 
printf("\n Power Demand = %6.3f',T); 
printf("\n Tolerance Was %.5f',Al); 
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printf("\n Number ofIterations Was o/Gd \n",C); 

} 
return; 
} ,. this is the end of the main function ., 

, .....................•............................................... , 
,. what follows here are utility routines needed in the main program ., 
, ..................................................................... , 

void nrerror( char error _ text[]) 
,. Numerical Recipes standard error handler ., 
{ 

printf("Numerical Recipes run-time error . .. \n"); 
printf("%s\n" ,error_text); 
printf(" ... now exiting to system ... \n"); 
exit(l); 
return; 

} 

void zervec(float ·vec, int n) 

,. Zeros an input vector ., 
{ 
int i; 

for(i=O;i<n;++i) 
{ 
vec[i]=O; 
} 
return; 
} 
void zermat(float ··mat, int n, int m) 

,. Zeros an input matrix ., 
{ 
int ij; 

for(i=l;i<=n;i++) 
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{ 

} 
return; 
} 

for(j= 1 j<=mj++) 
{ 

mat[i)[jJ=O; 
} 

734 Figure 11-11(8). (Cont.) 
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Please enter the number of units 
2 

Please enter the power demand 
1000 

Please enter the order of the fuel cost model 
either second (2) or third order (3) 

2 

Please input approximate Lambda 
10 

Please input Tolerance 
.00005 

Please enter number of iterations 
20 

For unit I enter 
Beta 

7.74 

Oamma 
.00107 

For unit 2 enter 

Beta 
7.72 

Gamma 
00072 

Enter Loss coefficients 
KLO 

o 

B{1,0) 
o 

8(1,1) 
0005 

13(1,2) 
o 

8(2,0) 
o 

13(2,2) 
0002 

Figure 11-11(c). Sample Interactive Session Using Program In Figure 11-11(a). 



Lambda = 12.869102 
PI 1 J=304.328796 
PI2)=84J.044495 
Power Demand = 1000.000 
Tolerance Was 175.00000 
Number oflterations Was I 
Lambda = 13.432348 
P[I)=367.839294 
PI2)=838.3673 10  
Power Demand = 1000.000 
Tolerance Was 42.40588Tolerance Was 42.40588 
Number oflterations Was 2 

Lambda = 13.470045 
PI 1)=367.072357 
PI2J=842.133362 
Power Demand = 1000.000 
Tolerance Was 2.01828 
Number oflterations Was 3 

Lambda = 13.4701 27 
PI 1 ]=367.077545 
P[2]=842.133057 
Power Demand = 1000.000 
Tolerance Was 0.00308 
Number oflterations Was 4 

Lambda = 13.470 127 
PI 1 ]=367.077545 
P(2]=842.133057 
Power Demand = 1000.000 
Tolerance Was 0.00000 
Number oflterations Was 5 

FIgure 11-11(c). (Cont.) 737 
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values are taken as the outcome of the division of the given demand among 
the available units. The approximate value of lambda is needed, however, as 
a user input. Figure l1-l1(b) shows a flow chart of the program, and Figure 
l1-l1(c) gives a sample output of an interactive session using the program. 
The student is encouraged to try this program in connection with problems 
such as the ones given at the end of this chapter. 

11.6 OPTIMAL OPERATION OF 
HYDROTHERMAL SYSTEMS 

The systems treated so far have included only thermal generation 
sources. In this section we intend to introduce a problem in optimal 
operation of systems with hydro as well as thermal generation. It is 
important to realize that in the case of a hydro unit, no variation in 
operating cost can be attributed to variations in output power. Conse
quently the criterion of minimum operating costs for thermal plants cannot 
be used for the hydro plants in the system. Instead it is usual to specify an 
allowable volume of water for release over a certain interval of time. This 
for the short range can vary from one day to a week. 

Hydro-resource modeling is an important aspect of hydrothermal 
scheduling. We will now discuss the simplest models used for optimal 
operation studies purposes. As shown in Figure 11-12, a hydro unit's output 
(represented by its active power generation level) is a function of the rate of 
water discharge through the turbine q and the effective water head h. The 
conventional formula is given by 

p = f/hq h C 
In the above, c is a dimensional conversion coefficient, and f/ is the 
efficiency that is dependent on h and q. We can thus state that 

Ph=Ph(q,h) (11.39) 

Effective hydraulic 
Head (h) ,...---------. 

Rate of Water 

Discharge (q) 

Hydro - Plant 

Figure 11·12. Input.()utput Relationship for a Hydro Plant. 

P 



11.6 Optimal Operation 0/ Hydrothermal Systems 789 

to denote the dependence of Ph on h and q. An assumption commonly made 
is that the power output is the product of two functions 1/1 and cpo In this 
case, 1/1 is a function of h only, and cp is a function of q only. Mathematically 
this states 

An important case is when the hydro plant has large storage reservoirs, for 
which, head variation is negligible. A popular model relating the active 
power generation to rate of water discharge is given by 

( 1 1 .40) 

The reason for its popularity is probably its similarity to the fuel-cost 
expression. 

The Coordination Equations 

Consider a system with hydro plants operating at constant head 
during the optimization interval (0, T, ). It is desired to minimize the total 
fuel cost. Thus, 

m 
J = 11', � (}j )  dt o i = l 

( 1 1 .41) 

under the following conditions: 

1 .  The total system generation matches the power demand PD( t) and 
the transmission losses PL( t). Thus, 

n 
� �( t)  =PD( t )  + PL( t) ( 1 1 .42) 

i = l 
We have m thermal plants and ( n  - m) hydro plants in this system. 

2. The volume of water available for generation at each hydro plant is 
a specified amount bj ' Thus, 

fol',qj ( t ) dt = bj ( i = m + 1 ,  . . .  , n )  ( 1 1 .43) 

The optimality conditions are obtained in a way similar to the 
methods of the previous sections. Presently we include the power balance 
given by, Eq. (1 1 .42), in the cost expression using the multiplier functions 
�( t). The volume of water relation in Eq. (11 .43) is accounted for using a 
new constant multiplier "i' Observe that the problem now is time-depen
dent, and consequently our incremental cost of power delivered � is taken as 
a function of time. The yet unknown but constant multipliers "j are called 
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water conversion coefficients. Our modified cost is thus 

j = t7fL�1 ( .fi )  + A( t ) [ PD( t ) + PL( t ) - i;1 (�)l 
+ i=�+ l  ( PiqJ} dt ( 1 1 .44) 

Taking derivatives with respect to the thermal generations, we have 

� + A( t ) ( � - 1 ) = O( i =  1 , . . .  , m )  ( 1 1 .45) 

This is identical with the all-thermal equation, Eq. ( 1 1 .25). 
Next we take derivatives with respect to the hydro generation : 

( 1 1 .46) 

This is new. 
We can now introduce the penalty factors L; as defined by Eq. ( 1 1 .26). 

As a result, we now write Eqs. ( 1 1 .45) and ( 1 1 .46) as 

( dF ) L; d� = A( t ) (i =l , . . .  , m )  ( 1 1 .47) 

LiJli ( �� ) = A( t) ( i = m + 1 , . . . , n ) ( 1 1 .48) 

It appears from Eq. ( 1 1 .48) that an equivalent fuel cost Fe may be assigned 
to the hydro generation. This can be defined by 

aFei � ( aqi ) ( . _ ) a� - Pi a� t - m + 1 ,  . . . , n  ( 1 1 .49) 

Caution is advised here since the Pi are unknown at the outset. Equations 
(1 1 .47) and ( 1 1 .48) are commonly referred to as the coordination equations. 
We will consider a number of examples to illustrate the application of the 
above results. 

Example 1 1 -5 

Consider a hydrothermal electric power system with one thermal and 
one hydro plant. Assume that the thermal fuel cost expression is given by 
the usual quadratic: 

FI = al + PIPI + YIP; 
The hydro-discharge characteristic is assumed as 

q2 = a2 + P2P2 + Y2Pl 
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The transmission losses are expressed as 

PL = BI IPt + 2B12Pl� + B22Pi 
Write down the coordination equations for this system. 

Solution 

In the present case, m = 1 and n = 2. Our penalty factors are obtained 
as 

Ll = ( 1 - 2BllPl - 2B12P2 ) -
1 

L2 = ( 1 - 2B12P1 - 2 B22 P2 ) -
1 

The optimality conditions (coordination equations) are thus 

PI + 2y1P1 ( t )  = A( t ) [ 1 - 2Bl lP1( t )  - 2B12P2( t ) ]  
"2 [132 + 2Y2P2( t ) ] = A( t ) [1 - 2B12P1( t ) - 2B22P2( t ) ]  

( 1 1 .50) 
( 1 1 .51 ) 

P1( t ) + P2( t ) - PD( t )  - BllPt( t ) - B22Pi( t ) - 2B12P1 ( t )P2( t ) = 0 
( 1 1 .52) 

( 1 1 .53) 

Observe that the result of Example 1 1-5 is quite complex. Under very 
restricted conditions we can solve directly for the powers P1( t) and P2( t ) 
using Eq. ( 1 1 .50)-(1 1 .53). An example illustrates this concept. 

Example 1 1 -6 

The system described in Example 1 1-5 has negligible losses. For 
PI = 132 = 0, write down the optimality conditions. 

Solution 

With negligible losses and zero linear coefficients, our equations 
( 1 1 .50)-(1 1 .53) reduce to 

2y1P1( t ) = A( t ) 
"2 [2Y2P2 ( t ) ]  = A( t) 

P1( t )  + P2( t )  = PD( t )  

fo7i[ 02 + Y2P;( t ) ] dt = b2 

We can now consider a numerical example. 

Example 1 1 -7 

( 1 1 .54) 
( 1 1 .55) 
( 1 1 .56) 

( 1 1 .57) 

Obtain the optimal power generations P1( t ), P2( t ), the incremental 
cost of power delivered A( t), and the water conversion coefficient "2 for a 
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Po ( t )  
M W  

800 - - - - ------

500 I I 
I , 
I I I 
,- I t 

D 8 1 6  24 ( hrs) 

Figure 1 1 -1 3. Power Demand Variation for System In Example 1 1 -7. 

system such as the one described in Example 11-6. The following data are 
available: 

"II = 0.003 "(2 = 0.0024 
"2 = 28 b2 = 3500 Million Cubic Feet (MCF) 

The power demand is as shown in Figure 11-13. 

Solution 
With reference to the above example, we can obtain PI in tenns of "2 

and P2 from Eqs. (11 .54) and (11.55). This is given by 

PI( t) = "2 ( �: ) P2( t)  ( 1 1 .58) 

Substituting in Eq. (11 .56), we obtain 

( ) 
PD( t) 

P2 t = -..=.;�-

1 + "2 ( �: ) 
Using the given data, we obtain 

PD( t ) 
P2( t) = 1 + 0.8"2 

( 11 .59) 
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Equation (11 .57) gives 

124p22 ( t)  dt = 3500 - (28) (24) 
o 0.0024 

= 1 .1783 X 106 
Using the expression for P2( t) in tenns of PD( t), we attain 

124 PJ( t )  dt 
2 = 1 .1783 X 106 

o ( 1 + 0.8112 ) 
Using the given power demand data, we get 

(500)2( 16) + (�)2(8) = 1 .1783 X 106 
( 1 + 0 .8112 ) 

Simplifying, we get 
112 = 2 .2275 

Thus we have 
PD( t) P2( t )  = 

1 + (0 .8) (2 .2275) 
or 

P2( t)  = 0.35945PD( t)  
Thus the optimal hydro generation is as follows: 

P2( t )  = 179 .73 MW for PD( t) = 500 MW 
P2( t) = 287 .56 MW for PD( t)  = 800 MW 

The thermal generation is given by Eq. (11 .58), which gives 

P1( t )  = (2 .2275) ( �:4 )P2( t) 
= 1 .7820P2( t)  

This results in the following values: 
P1( t )  = 320.27 MW for PD( t) = 500 MW 
P1( t) = 512 .44 MW for PD( t) = 800 MW 

The incremental cost of power delivered >.( t) is obtained using Eq. (1 1 .54). 
This gives 

Thus, 

>.( t ) = (2) (O.003)Pl( t ) 
= 0.OO6P1( t) 

>.( t) = 1 .92 for PD( t) = 500 MW 
>.( t) = 3 .07 for PD( t) = 800 MW 
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The solution of problems including transmission losses involves the use 
of iterative techniques such as the Newton-Raphson method. 

SOME SOLVED PROBLEMS 

Problem 1 1 -A-1 

The fuel-cost models for a three-unit plant are given by 

Fl = 173 .61 + 8 .67Pl + 0 .OO23P12 
F; = 180 .68 + 9 .039P2 + 0.00238Pi 
Fa = 182 .62 + 9 .19P3 + 0 .00235�'l2 

The daily load curve for the plant is as shown in Figure 11 - 14. Obtain and 
sketch the optimal power generated by each unit and the plant's incremen
tal cost of power delivered ( A ). 

Solution 

From our given data we have 

/31 = 8 .67 /12 = 9 .039 /3a = 9 .19 
)'1 = 0 .0023 )'2 = 0 .00238 )'3 = 0 .00235 

500 

300 

200 I 
I 
l 
10 20 24 

Figure 1 1 -1 4. Load Curve for Probl�m 1 1 -A-1 . 

t (hrs) 
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We therefore form the summations 

� Pi = 
8 .67 + 9 .039 + 9 .19 = 1 .1478 X 104 Yi 0 .0023 0 .00238 0 .00235 

� 1 _ 1 1 1 _ a 
� Yi - 0.0023 + 0 .00238 + 0.00235 - 1 .2805 X 10 

Using the formula for A( t) given by Eq. (11 .14), we have 

2Pn( t ) + � ( � ) 
A{ l )  = 

I 
( �.l 

We thus have, using the given data, 

A( t ) = 
2Pn( t )  + 1 .1478 X 104 

1 .2805 X lOa 
For Pn = 200 MW (O < t < lO h) 

A( t ) = 9 .2763 
For Pn( t ) = 500 MW ( 10 < t <  20 h) 

A( t ) = 9 .7448 
For Pn( t ) = 300 MW (20 < t < 24 h) 

A( t) = 9 .4325 

Using the above, we get for 0 < t < 10 h, 

Pl = 13 1 .80 MW 
P2 = 49.885 MW 
Pa = 18.35 MW 

Similarly for 10 < t < 20 h, we get 

PI = 233 .66 MW 
P2 = 148 .29 MW 
Pa = 118 .05 MW 

Finally for 20 < t < 24 h, we get 

PI = 165 .75 MW 
P2 = 82 .66 MW 
P3 = 51 .59 MW 

Figure 1 1-15 shows sketches of A, PI ' P2 , and Pa time variations. 
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Figure 1 1 -1 5. System A and Optimal Generations for System of Problem 1 1 -A-1 . 
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Problem 1 1 -A-2 
Two oil-fired 400-MW thennal units are on the same bus. The unit 

cost models are given by 
F} = 180 + 9P} + 0.002P}2 

� = 180 + PP2 + yPl 
A. For a power demand of 550 MW, the incremental cost of power A is 

10. Find the loading on both units assuming optimal operation. 
B. For a power demand of 700 MW, the incremental cost of power A is 

10.25. Find the loading on both units assuming optimal operation. 
C. Using data in parts A. and B. above, obtain P and y, the coeffi

cients of the second unit model. 

Solution 
A. For optimal operation we require that 

Given A = 10, 
9 + O.OO4P} = A 

10 - 9  p} = 0.004 
= 250 MW 

But p} + P2 = 550. Therefore, 
P2 = 300 MW 

B. This is similar to part A: 

9 + O.OO4P} = 10.25 
Thus 

p} = 312 .5 MW 
P2 = 700 - 312 .5 

= 387 .5 MW 
C. The second unit's loading satisfies 

P + 2yP2 = A 
From parts A and B we have 

P + 600y = 10 
P + 775y = 10.25 

Solving for P and y, we get 
P = 9.143 
y = 1 .4286 X 10-3 
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Problem A-1 1 -3 
A. Assume that for two thermal generating units on the same bus, the 

cost models are given by 

FI = al + f31P1 + y1Pl 
F2 = a2 + f32P2 + Y2Pi 

State the conditions for achieving minimum total cost when the 
two units supply a power demand PD' Use the stated conditions to 
show that the minimum cost Froin is related to the incremental cost 
of power delivered A by 

with 

Fnrin = Fo + ( i r ( �l + � J  
Fo = ( al -:� ) + ( a2 - :� ) 

B. Two identical oil-fired 300-MW thermal units on the same bus 
have the following cost models : 

FI = 180 .68 + 9 .039P1 + 0 .OO238Pl GJ /h 

At a certain load level, the minimum total cost for the overall plant 
is 

Fnrin = 4205 . 16 
Obtain the incremental cost of power delivered A and the power 
demand PD' 

Solution 

A. For optimal operation we have 

The cost function F is 

where 

f31 + 2y1P1 = A 
f32 + 2Y2 P2 = A 

FI = a1 + f3IPI + ylPl 
F2 = a2 + f32P2 + Y2Pi 

The optimal cost in terms of A is 

FI = al + f31 ( A ;/1 ) + YI ( A ;y;l ) 2 
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Expanding, we have 

FI == al - /3J + /3/1. + /3J _ 
/3IA + ( � )\ Yl r - I  

2 �  2 �  4 �  2 �  2 

This results in 

with 

Po, = al - ( :�l ) 
Fz can be treated in a similar way, which results in the 

required answer. 

B. We have two identical units. Therefore, 

al = az = 180 .68 
/31 == /32 = 9 .039 
YI = Y2 ::::: 0 .00238 

We also have 

Now 

Using 

Then 

F ·  
F = -..!!!!!!. = 2102 .58 Imjn 2 

- [ (9 .039)2 1 Po, - 180 .68 - 4 X 0.00238 
= -8401 .62 

2102 .58 = - 8401 .62 + ( i ) 2 ( 0 .�238 ) 
( i  r = 25 

A = 1O 
For optimality 

9 .039 + 0 .00476PI = 10 
Therefore, 

PI = 201 .89 
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But 

Hence, 
PD = 2P1 = 403 .78 MW 

Problem 1 1 -A-4 
Assume that m thennal units in a plant are operating in parallel to 

supply a power demand PD' We are interested in obtaining the cost 
parameters aE. PE , and YE of the single equivalent unit with cost function 
defined by: 

This equivalent representation is to be based on the assumption that the 
units share the load optimally assuming quadratic cost models. Show that 
the equivalent parameters are given by 

Solution 

- 1  _ � ( 1 ) YE - � -i = 1 Yi 
PE = � ( Pi ) YE i = 1 Yi 

m [ ( p2 ) 1  
p2 aE = .� (Xi - � + 4 E 

1 = 1 Y, YE 

( 11.60) 

( 1 1 .61) 

( 11 .62) 

For any loading of the plant. the total cost is given by Eq. (11 .5) as 
m 

FT = � ( ai + Pi� + y)"�2 )  
i = 1  

Our optimality conditions are given by Eqs. ( 11 . 14) and (11 .15). Utilizing 
the definitions of PE and YE t  we can write Eq. (11 .14) as 

A = PE + 2YEPD 
The total fuel cost can thus be written as 

FT = 2 [ ai + Pi ( PE - Pi +
.
2YEPD ) 

i=1 2y, 
. ( PE - Pi + 2YEPD ) 2] +y, 2 Yi 

It is clear that the total cost is a quadratic in the power demand. Expanding 



tenns and rearranging, we have 

FT= U. ( 0. > + ( PE )  ,�. (:;.l 
- 2 ( Pl ) + 2 ( PE - Pi )2 } i= 1 2'Yi i = 1 4'Yi 
+ { ,2 ( 'YE�i ) + [ ( PE - �J'YE ] }PD 1 = 1 'YI 'YI 
+ [ i�1 ( � ) 1 PJ 
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Using the definitions of PE and 'YE ' we see that the above reduces to 

[ 
m ( P2 ) m ( P,2 ) 

FT= ,I ( ai )  + 
2y

E - ,I 2:, 1 = 1 E 1 = 1 I I  
+ ( Pi ) + 2 ( Pl ) ( Pi ) 1 4'YE i = 1  4'Yi 2YE 
+ PEPD + 'YEPJ 

It is thus evident that the equivalent parameter expressions result in 
FT = aE + PEPD + 'YEPJ 

An alternate method can be used to find YE and PEo For optimal 
operation, the incremental cost is given by 

This is also given by 

aFT 
). = ap = PE + 2'YEPD 

D 

).= 

Equating the two expressions, we get 
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The coefficients of PD should be identical on both sides. Therefore, 

YE = � -
[ m ( I ) ] -- l  

i = l Yi 
The absolute coefficient on both sides gives 

The above gives 

Problem 1 1 -A-5 

The fuel cost function for each of the two units at a thermal plant is 
given by F( P) = 82.68 + 6.69P +  4.7675 X 1O- 3p 2 MBtu/h where P is given 
in MW. Find the single unit equivalent of the plant. Assume that the two 
units are identical. 

Suppose that the two units are not identical. In particular, the model 
given above applies to unit 1 ,  and unit 2 has model parameters such that 

F2 = xFl 

with x = 1 .1 .  Find the loss in economy if the units are a..<;sumed identical for 
a system load of 1000 MW. 

Solution 

Assuming the two units are identical, we can use results from Problem 
ll -A-4 to obtain 

- Y YE - 2  
f3E = f3 
aE = 2a 

Using the given data, we obtain the following single unit equivalent: 

FTa ( PD ) = 165 .36 + 6 .69PD + 2 .38375 X 1O- 3PJ 

With unidentical units, 

a2 = 1 . 1al 
/32 = 1 . 1/31 
Y2 = 1 . 1YI 



the equivalent single unit parameters are 

Thus 

Hence we have 

_ 1 _ � + _1_ = 1 .9091 
YE - Yl 1 . 1Yl 4.7675 X 10-3 

YEb = 2 .4973 X 10- 3 

( 2f31 ) f3E = YE - = 7 .0087 b Yl 

( ) 
f3; 

( ) 
f3ib aE = al 1 + 1 .1 - -4 1 + 1 .1 + -4-b Yl YEb 

= 2. 1 82.68 ------[ (6 .69)2 1 
4 x4.7675 X 10-3 

+ (7 .0087)2 

4 X 2 .4973 X 10-3 
= 162 .5271 
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FT( PD) = 162 .5271  + 7 .008PD + 2 .4973 X 1O-3PJ 
The total cost for the unidentical units operating optimally is 

FT = 162 .5271 + (7 .0087) ( 1000) + 2 .4973 X 10-3( 1000)2 

= 9668 .53 
If one erroneously assumes identical units, then loading will be equal. 
Therefore for 

PI = P2 = 500 MW 
the total operating cost in this case is 

FT = (82 .68) (2 .1 ) + 6 .69(2 .1 ) (500) 
+4 .7675 X 10-3(2 . 1 ) (500)2 

= 9701 .07 
Loss of economy is thus 

Problem 1 1 -A-6 

e = 9701 .07 - 9668 .53 
= 32 .54 MBtu/h 

The fuel costs of two coal-fired units are expressed in terms of 
third-order models as shown below: 

FIe = 119 .7 + 1O .33Pl - 0 .012P12 + 0 .039 X 1O-3Pf $/h 
�c = 213 .87 + 9 .48P2 - O .0044Pi + 0 .0079 X 1O-3p; $/h 
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where P is in MW as usual in this type of problem. At a certain power 
demand, the incremental cost of power delivered is found to be A c = 10, for 
optimal economic operation of the plant. 

A. Find the corresponding optimal power output of each of the two 
units and hence the power demand. 

B. To reduce the computational complexity, we use quadratic cost 
models. For the two units of this problem, the corresponding 
models are 

FIB = 173 .61 + 8.67P1 + 0.0023P12 $/h 

F2s = 300.84 + 8 .14P2 + 0.0015P22 $/h 

For the power demand of part A., find the incremental cost of 
power delivered As ' assuming quadratic models are used. Compute 
the optimal power output of each unit in this case. 

C. The actual test cost figures for each of the two units in the 
neighborhood of the optimal solution are 

FI( I60) = 1614 .4 
FI(200) = 2002 .00 
F2(320) = 3049 .597 
F2( 400) = 3796.00 

Construct linear models of the cost of the form 

.If; = aj + fJi� 
for each of the two units in the ranges given. 

D. Use the models obtained in part C. to compare the operating costs 
corresponding to the schedules of parts A. and B. What conclusions 
can you draw from this comparison? 

Solution 
A. For optimal operation we have the following conditions: 

��c = 10.33 - 0.024PI + 0.117 X 1O-3P12 = A = 10 
I 

�;'c = 9.48 - 0.OO88P2 + 0.0237 X 1O-3p; = A = 10 
2 

Solving the quadratic equations in PI and P2 , we obtain 

PI = 190.31 or 14 .82 
P2 = 423 .16 or - 51 .85 

We choose the first roots, and hence the power demand is obtained 



as 
PD=PI +P2 

= 613 .47 MW 
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B. Following the same lines of reasoning as above, we have 
aJ?IS � 

ap 
= 8.67 + 0.0046PI = 1\ 

1 

a.It;s _ _ � 

aP2 
- 8.14 + 0 .003P2 - 1\ 

We do not have the value of A available, but the demand is given. 
Hence we appeal to the following: 

This gives 

2PD + � ( Pi ) 
A = i = 1 y, 

s 
m ( 1 ) 

i�l Yi 

2 3 ( 8 .67 8 .14 ) 
A = 

X 61 .4 + 0:0023 + o:ooi5 
8 ( 1 1 ) 0.0023 + 0.0015 

From the optimality conditions, we thus get 
PI = 172 .39 MW 
P2 = 441 .01 MW 

C. For the first unit, we have 
J?l = al + PIPI 

Substituting the given data, we get 

Therefore, 

1614.4 = al + 100PI 
2002.0 = al + 200PI 

PI = 9 .69 
al =64 

Similarly for the second unit, we have 
.It; = a2 + P2P2 

Substituting the given data, we get 
3049.557 = a2 + 320P2 
3796.00 = a2 + 400P2 

9.463 
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Thus, 

1J2 = 9 .33 
0:2 = 63 .99 

The required linear models are then 

Fl = 64 + 9 .69P1 
F; = 63 .99 + 9 .33P2 

D. We use the models given above to calculate the cost of the schedule 
obtained in part (a) : 

Fl = 64 + (9 .69) ( 190 .31 )  = 1908 . 1  
F2 = 63 .99 + (9 .33) (423 .16) = 4012 .07 

The total cost is thus 

Fr =  5920 .18 $/h 

For the schedule of part (b), we have 

Fl = 64 + (9 .69) { 172 .39) = 1734 .46 
F2 = 63 .99 + (9 .33) ( 441 .01) = 4178 .61 
Fr = 5913 .07 

We may conclude that the difference in cost between the two 
alternatives does not warrant the effort required for scheduling 
using the cubic model. 

Problem 1 1 -A-7 

Consider a simple power system consisting of two generating plants 
and one load as shown in Figure 1 1- 16. 

A. Derive from basic principles the loss formula expression 

PL = BnPf + B22 Pl 

VI V2 
O�,--_Z l �  � _____ Z_2 _____ �I O 

��I V r Po 3 

-

Figure 1 1 -1 6. System for Problem 1 1 -A-7. 

-
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with loss fonnula coefficients given by 

B. Calculate the p.u. loss coefficients Bl l  and B22 for this system, 
given that 

Zl = 0 .04 + jO .16 p.u. 
Z2 = 0 .03 + jO .12 p .u .  
VI = 1 p .u .  
l-i = 1 .03 p .u .  

PF1 = 0.85 
PF; = 0 .8 

C. Given that the base MVA for this system is 100 MVA, write the 
active power balance equation for this system in terms of genera
tions in MW. 

Solution 

A. For the given system we can write the transmission losses as 

where the current magnitudes are given by 

Note that PI and P2 are three-phase powers. As a result, we obtain 
the loss expression: 

The loss expression stipulated is 

PL = Bl lPl + B22Pi 
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By comparison of the two expressions, we conclude that 

B = RI 
, 1 1  1 VI 12 ( PFI )2 

B - R2 22 - I  � 12 ( P� )2 
B. Substituting the given parameters in the above expressions, we 

obtain 

Bu = � .04 2 = 0.0554 p.u. ( I )  (0.85) 

B 0 .03 22 = 2 2 = 0.0442 p.u. 
( 1 .03) (0.8) 

C. We consider first the conversion from the p.u. system to MW units. 
We have the conversion formula applied to losses : 

PLMW = ( PLpJ ( Pbase) ( 1 l .63) 
In the per unit system, we have 

But 

Therefore, 

PLpu = BpuP;u 

P, p. = MW pu Pbase 

( PMW ) 2 PLpu = Bpu Pbase 
Substituting in Eq. (11 .63), we thus have 

PLMW =  (::�  ) ( P�W) 
We wish to have 

PLMW = BMW-1P�W 
A simple comparison results in the conversion formula: 

Bpu BMW-l = pbase ( 1 1 .64) 
Application of the above formula to results of part (b), given that 

Pbase = 100 MVA 



results in 

Problem 1 1 ·A·8 

B = 
0.0554 

= 0 554 X 10-3MW-1 11 100 . 

B22 = 
0.:2 

= 0.442 X lO-3MW-1 
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A simple power system consists of two generating plants and a load 
center. The power loss in the system is given by 

PL = 0.554 X lO-3P! + 0 .442 X 1O-3Pl 

A. Obtain the penalty factors L1 and L2 for the two plants in terms of 
the generated powers. 

B. Given a certain demand, plant 1 generates 100 MW for optimal 
operation. Find the incremental cost of power delivered � ,  power 
generated by plant 2, power losses, and power demand. Assume the 
following cost coefficients: 

Solution 

P1 = B.21 'Y1 = 0.00225 
P2 = B.56 'Y2 = 0.00235 

A. The penalty factors Li are defined by 

L-:- 1 = 1 -
aPL 

, a� 
We have 

aPL _ ( -3 ) ap - 2  0.554 X 10 P1 1 

�� = 2(0.442 X 10-3 )P2 2 
Therefore we have 

Li 1 = 1 - 1 .108 X lO-3P1 
L; l = 1 - 0.884 X 10-3P2 

B. The optimality condition for plant 1 is 

We have 

P1 + 2'Y1P1 � 
1 - 1 .108 X lO-3P1 

P1 = B.21 and 'Y1 = 0.00225 
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Also 

Therefore, 

This gives 

PI = 100 MW 

A = 8 .21 + 2(0 .00225) (100) 
1 - 1 . 108 X 10- 1  

A = 9.7391 

For plant 2, we have 

/12 + 2Y2� --'--'=----'-=---==--- = A 
1 - 0.884 X 1O- 3P2 

Substituting 

f32 = 8 .56 and Y2 = 0.00235 
we obtain 

P2 = 88.59 18 
The power loss is calculated as 

PL = 0 .554 X 10- 3(100)2 + (0 .442 X 10- 3 ) (88.5918)2 
= 9.0090 

Consequently, the power demand is 

Pn = PI + P2 - PL 
Numerically we then have 

Problem 1 1 -A-9 

PD = 100 + 88.5918 - 9.0090 
= 179.58 

Two identical thermal plants have the following cost model parame
ters : 

f3 = 6 .7 
Y = 4.8 X 10- 3  

The transmission network has the following B-coefficients: 

Bll  = 0 .5 X 10-3 
B22 = 0.2 X 10- 3 

Find the optimal values of PI and � for a power demand of 500 MW. 



Solution 

The optimality conditions for this case give 
{1 + 2yPI {1 + 2yP2 

1 - 2Bl lPI 1 - 2B22P2 
Cross-multiplication and further manipUlations yield 
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( y + {1Bll )PI - ( y + {1B22 )P2 - 2y( B22 - Bll )PIP2 = 0 
Substituting numerical values, we then have 

[4 .8 X 10- 3 + (6 .7) (0 .5 X 10- 3 ) ]  PI 
- [4 .8 X 10-3 + (6 .7) (0 .2 X 1O- 3 ) ] P2 

+ 9.6 X 10- 3 [0 .3 X 10-3] PI� = 0 
This reduces further to 

or 

8.15PI - 6.14P2 t. 2 .88 X 1O-3PIP2 = 0 

R - 8.15PI 2 - 6 . 14 - 2 .88 X 1O-3PI 
The power balance equation for this system is 

PI + P2 - BuPf - B22P22 - PD = 0 
Using the numerical values given and substituting for P2 in terms of PI ' we 
obtain 

p + ( 8.15PI ) _ 0.5 X 1O- 3p2 I 6 .14 - 2 .88 X 1O- 3PI I 

- 0.2 X I0-3  I - 500 = 0 ( 8.15P ) 2 6 .14 - 2 .88 X 1O-3PI 
Further manipulations yield 

1 .8850 X 104 - 105 .424PI + 9 .512 X 1O- 2pf 
- 2 .5978 X 1O- 5P: + 4 .1472 X 1O- 9P14 = 0 

The solution to the above equation is 

PI = 219 .903 MW 
Consequently, we obtain 

P2 = 325 .461 MW 
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Po 

Figure 1 1 -1 7. System for Problem 1 1 -A-1 0. 

Problem 1 1 ·A·1 0 

Calculate the loss coefficients Bu,  B12 , and B22 for the system shown 
in Figure 11 -17. Assume a flat voltage profile. 

VI = V2 = Va = 1 p.u . 
R1 = 0 .0025 p .u . 
R2 = 0.02 p.u. 
Ra = 0 .03 p .u .  

PF1 = 0 .85 
PF2 = 0.8 
PFa = 0.75 

The MW base for the system is 100 MW. Calculate the penalty factors Ll 
and L2 and the corresponding power loss for the two plants for an optimum 
loading of 

PI = 120 MW 
P2 = I00 MW 

Assume that the fuel-cost models for the two plants are given by 

Fl = a + 6 .69P + 4 .7675 X 1O- ap2 $/h 
F2 = a + 6 .69P + yp

2 $/h 

If P is in MW, find the incremental cost of power delivered A and the 
parameter y. 
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Solution 

B = R1 + R3 1 1  
( It; )2( PF)� ( Va)2( PF): 

= OJ)(}25 + 0.03 
(1)2(0 .85)2 (1 )2(0.75)2 

= 0.0568 p .u.  

B R2 + R3 22 ( V2 )2( PF ): ( Va )2( PF): 

= 0.02 + 0.03 
(1 )2(0 .8)2 ( 1 )2(0 .75)2 

= 0.0846 p.u. 

B12 = 2
R3 2 = 2

°
·
03 

2 = 0.0533 p.u .  
( Va ) ( PF h  (1 )  (0 .75) 

In tenns of MW units, we have 

For 

we have 

Bll = 5 .679 X 10-4 
B22 = 8.4583 X 10-4 
B12 = 5 .333 X 10-4 

P1 = 120 MW 
P2 = I00 MW 

apL _ 
ap - 2BuP1 + 2B12� 1 

= (2) (5 .679 X 10-2 ) (1 .2) + (2) (5 .333 X 1O-2 } ( I) 
= 0.24296 

apL _  1 - ap - 0.75704 1 
L1 = (0.75704) - 1 = 1 .3209 

aPL _ 
ap2 -

2B12P1 + 2B22P2 

= (2) (5 .333 X 10-2 ) ( 1 .2) + (2) (8 .4583 X 1O-2 } ( I )  
= 0.29716 

aPL 1 - aPt = 0.70284 
2 

L2 = (0.70284) - 1 = 1 .4228 
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The optimality condition for the first unit is 
aFI A = L 1  ap I 

Substituting numerical values, 

A = ( 1 .3209) [6 .69 + ( 2) (4 .7675 X 10- 3 ) ( 120) ]  
= 10 .348 

For the second unit, ( aF2 ) A = L2 lap2 
10 .348 = ( 1 .4228) [6 .69 + 2y ( I00) ] 

Solving for y, we obtain 

y = 2 .9149 X 10- 3  

Problem 1 1 -A-1 1 

A two-plant thermal system has the following loss coefficients: 

Bl l  = 0 .4 X 10- 3 MW- 1  

B22 = 0 .3 X 10- 3  MW- 1 

B12 = 0 
A. For a power demand of 600 MW, the transmission losses are 80 

MW. Find the power generated by each plant under these condi
tions. 

B. There are two solutions to the problem. Given that each plant is 
rated at 400 MW, which solution is feasible? 

C. The two plants have fuel-cost expressions given by 

Fl = 2P1 + 2 X 1O-3Pr $/h 

F2 = 2P2 + Y2Pi $/h 

Assuming that the feasible solution of part B. is optimal, calculate 
Y2 and the incremental cost of power A .  

D.  Compare the total costs for the feasible and the nonfeasible sched
ules. 

Solution 

A. The power losses are given by the expression 

PL = Bl lP12 + B22Pi 
We use the given data to get 

80 = 0 .4 X 1O- 3P12 + 0 .3 X 1O- 3Pi 
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The total generated power is 
PI + P2 = Pn + PL 

Therefore, 
680 = PI + P2 

We can thus eliminate P2 from the loss expression to get 

0.4 X lO- 3Pf + 0 .3 X lO-3{680 - P1 )2 - 80 = 0 
Simplifying, we have 

0.7 X lO-3pf - 0 .4IP1 + 58 .72 = 0 
The solution is obtained as 

The two roots are thus 

P = 582 .86 ± 64 .65 1 2 

PI = 323 .75 or 259 .10 MW 
The corresponding values of P2 are 

P2 = 356 .25 or 420.90 MW 
B. The second solution is not feasible since in this case P2 > 400 MW. 
C. For optimality, we have for the first plant, 

PI + 211P1 = A{I - 2Bl lP1 )  
Using the given data, 

2 + (2) (2 X lO- 3 ) (323 .75) = A [  1 - (0 .8 X lO- 3 ) (323 .75) ]  
Thus, 

A =  3 .295 0 .741 
= 4 .4467 

For the second plant we have 

2 + 212{356 .25) = (4 .4467) [ 1 - (0 .6 X lO-3 ) (356 .25) ]  
This results in 

12 = 2 .lO X lO- 3 
D. The cost corresponding to the feasible solution is calculated as 

follows: 

F{ P1 ) = (2) (323 .75) + (2 X lO-3 ) (323 .75)2 = 857 .13 
F{ P2 ) = (2) (356 .25) + (2 .1 X lO- 3 ) (356 .25)2 = 979 .02 

Thus the total cost is 

FTA = 857 .13 + 979 .02 = 1836 .15 $/h 
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For the non feasible solution, we have 

F( P1 ) = (2) (259 . 10) + (2 X 10- 3 ) ( 259 . 10)2 = 652 .47 

F( P2 )  = 2(420.9) + (2 . 1  X 10- 3 ) (420 .9)2 = 1213 .83 
Thus the total cost is 

FrB = 652 .47 + 1213 .83 = 1866.29 $/h 

The nonfeasible solution is more expensive than the feasible solu
tion. 

Problem 1 1 -A-1 2 

A hydrothermal electric power system consists of one hydro unit and a 
thermal unit. The daily load cycle is divided into three periods where the 
optimal water discharge q is found to be as shown in Figure 1 1 -18 .  Assume 
that the thermal plant's cost model is given by 

F} = 3 .385P1 + 0.007P,! 

The hydro plant's discharge model is 

q = 1 .8 + 0.14P2 + 2 .2 X 1O- 4Pl 
where q is in MCF /h and P2 is in MW. 

A. Compute the active power generated by the hydro plant for each 
time interval. What is the available volume of water for the 
24-hour period? 

B. Assume that transmission losses are negligible and that the opti
mal water conversion coefficient is 21 .00. Compute the incremental 

q (MCF/ hr) 
9 3  

l 63 .6 I 
I 

38 . 6  I 
I , 
, I 
I I 

0 6 1 6  24 

Figure 1 1 -1 8. Variation of Discharge with Time for Problem 1 1 -A-1 2. 

t 
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cost of power delivered and the thennal power generation as well 
as the power demand for each of the time intervals. 

Solution 

A. Since we are given q over the three time intervals, we can solve the 
following quadratic in P2 : 

q = 1 .8 + 0. 14P2 + 2 .2 X 1O- 4Pl 
For 0 < t E; 6, q = 38.6 MCF Ih. Therefore we have 

2 .2 X 1O- 4Pl + 0 .14P2 + 1 .8 = 38 .6 
-0.14 ± V(0.14)2 + (4) (36 .8) {2 .2 X 10- 4 ) 

P2 =

--------------

2 X 2 .2 X 10- 4  
= 200 MW 

For 6 < t E; 16, q = 93 MCF Ih, we have 

2 .2 X 1O- 4Pl + 0 .14P2 + 1 .8 = 93 
Thus 

-0.14 ± V(0.14) 2 + (4) (91 .2) (2 .2 X 10-4 ) 
P2 =

--------------

2 X 2 .2 X 10- 4  
= 400 MW 

For 16 < t E;  24, q = 63.6 MCF Ih, we have 

2 .2 X 1O- 4Pl + 0 .14P2 + 1 .8 = 63.6 
-0.14 ± V(0.14)2 + (4) (61 .8) (2 .2 X 10- 4 ) 

P2 = --------------2 X 2 .2 X 10- 4  
= 300 MW 

The total volume of water is obtained as 
b = Iq( i ) ( tJ 

where ti is the duration of discharge q( i ). Thus we have 
b =  (38 .6) (6) + (63.6) (8) + (93) ( 10) 

= 1670.40 MCF 
B. For optimality we write for the hydro plant: 

,, [ P2 + 2Y2P2 ] = ,\ 
Thus we have 

21(  0 .14 + 4 .4 X 1O- 4P2 ) = ,\  
This yields for each time interval the incremental cost of power 



768 Optimal Operation of Electric Power Systems 

delivered A as follows: 
For P2 = 200 MW , 
For P2 = 300 MW, 

For P2 = 400 MW, 

A = 4 .788 
A = 5 .712 
A = 6.636 

The optimality condition for the thermal plant is 
PI + 2y1P1 = A 

3 .385 + 0.014P1 = A 
This results in 

p = A - 3 .385 
I 0 .014 

Consequently we obtain 
PI = 100.21 MW 

PI = 166 .21  MW 

PI = 232 .21 MW 

A = 4 .788 , 
A = 5 .712 ,  
A = 6.636, 

The power demands can be calculated now using 
PD = P1 + P2 

Thus we get 

Problem 1 1 -A-1 3 

PD = 300 .21 MW 

PD = 632 .21 MW 

PD = 466 .21 MW 

(0 < t .;;; 6) 
(6 < t ';;; 16) 
( 16 < t .;;; 24) 

Losses are negligible in a hydrothermal system with characteristics as 
follows: 

A. Fuel-cost model of the thermal plant is 

F = 2P1 + O .OOIPr $/h 

B. The rate of water discharge as a function of active power generated 
is 

where P is in MW. 
C. The optimal water conversion coefficient is found to be 12.01 

$/MCF. 
D. The load on the system is 

Duration PD 
(h) (MW,) 

9 700 
15 350 
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Compute the optimal active thermal and hydro power generations as well as 
the system's incremental cost of power delivered and the allowable volume 
of water. 

Solution 

The optimality equations for the thermal and hydro units are ob
tained as follows: 

[2 + 0.002P1( t ) ]  = A( t )  
( 12 .01 ) (3600 X 10-6 ) [50 + 0.02P2( t ) ]  = A( t ) 

Observe that q is substituted in cfjh and that " is substituted for in ($jcf). 
Eliminating A( t), we obtain 

0 .002P1( t) - 8 .6472 X 1O- 4P2( t) = 0.1618 
or 

P1( t )  - 0.43236P2( t )  = 80.900 
Now the power balance equation gives 

P1( t )  + P2( t )  = Pn( t )  
Upon combining the above two equations, we get 

1 .43236P2( t ) = Pn( t )  - SO .900 
This gives P2 for the specified demand as follows: 

For Pn( t1 )  = 700, P2( t1 ) = 432 .22 MW 
The power balance equation is now used to obtain 

P1( t ) = 700 - 432 .22 
= 267 .78 MW 

From the thermal plant's optimal equation: 

A( t1 ) = 2 .536 
Similarly, for Pn( t2 ) = 350 MW, 

P2( t2 ) = 187 .87 MW 
P1 ( t2 ) = 162 .13 MW 
A( t2 ) = 2 .324 

The volume of water is obtained as the sum 

b = (9) (3600) [(50) ( 432 .22) + 0.01 ( 432 .22)2] 
+ ( 15) (3600) [(50) ( 187 .87) + 0.01 ( 187 .87)2] 
= 1 .287 X 109 cf 
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Problem 1 1 -A-1 4  

A two-plant hydrothermal system has the following characteristics: 

A. Fuel cost as a function of active power generated at the thermal 
plant is 

F= 2 .7P1 + 0 .003P12 $/h 

B. The transmission losses are given by 

PL = 1 .43 X 1O-- 4Pl 
C. The rate of water discharge as a function of active power generated 

at the hydro plant is 
q2 = 2380 + 60P2 cfs 

D. The following table gives the system's power demand and optimal 
incremental costs. 

Duration 
(h) 
14 
10 

PD 
(MW) 

700 
450 

3.911 
3.627 

It is required to calculate the optimal active power generated by each of 
the plants in each of the subintervals, the system power losses, the water 
conversion coefficient P, and the allowable volume of water discharged at 
the hydro plant. 

Solution 

The optimality equations for the thermal plant are used to obtain 
2 .7 + 0 .OO6P1( t) = A( t )  

Note that we have used the fact that 

Therefore we have 

'dPL 
'dP = 0 1 

P ( ) = A( t )  - 2 .7 1 t 0.006 
Since A is given for each time interval, we calculate the following: For 
A( t1 ) = 3.911 

P1( t} ) = 201 .83 MW 
and for A( t2 ) = 3.627 



The power balance equation is 

PD( t) + 1 .43 X 1O- 4Pi (  t) - P1( t )  - P2( t) = 0 
For t = tp 

1 .43 X 1O- 4P22( t2 ) - P2( t2 ) + 450 - 154 .50 = 0 
Solving for P2 , we get 

�( tl )  = 539.84 MW 
P2( t2 ) = 309 .17 MW 

Problems 771 

The power losses are thus computed using the given loss expression as 
PL( t1 ) = 41 .67 MW 
PL( t2 )  = 13 .67 MW 

The optimality condition for the hydro plant is 

JI(60) (3600) = A( t ) [l - 2 .86 X 1O-4P2( t ) ] 
Using values at t = tl ' we obtain 

JI = 1 .531 1  X 10 - 5 $/cf 

The volume of water available is obtained as 

b =  T1q2( t1 ) + 7;q2( t2 )  
This turns out to be 

Problem 1 1 ·A·1 5 

b = 14(3600) [2380 + (60) (539 .84) ]  
+ 10(3600) [2380 + (60) (309.17) ]  

= 2 .506 X 109 cf 

A three-plant hydrothermal system has the following assumed char
acteristics: 

Fl = 47 .84 + 9 .50P1 + 0.01P12 $/h 
p; = 50.01 + 9 .94P2 + O.OlP22 $/h 

The loss formula coefficients are given by 

Bll = 1 .6 X 10- 4 
B22 = 1 .2 X 10- 4 
Baa = 2 .2 X 10-4 
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The rate of water discharge at the hydroplant is given by 

q3 = 0.5087 + 0 .101 1P3 + 1 .0 X 1O- 4Pi Mcf/h 

The optimal schedule is given by 
PI = 100 .29 MW 
P2 = 85.21 MW 
P3 = 68.oo MW 

Calculate the volume of water available over a 24-hour period, the system 
incremental cost of power delivered X , the system power demand, and the 
water conversion coefficient. 

Solution 

Given that 
P3 = 68 MW 

then using the discharge-power characteristic, we have 

q3 = 0 .5087 + (0 .1011) (68) + (1 X 10- 4  ) (68)2 

= 7 .85 Mcf/h 
b = (T X Q3 )  

= (24) (7 .85) = 188 .30 Mcf 
The first thennal plant's optimality equation is 

[9 .50 + 0 .02P1{ t ) ]  = X( t ) [ 1 - 3 .2 X 10- 4P\( t ) ]  
Using P1( t) = 100.29 MW, we obtain 

A{ t )  = 1 1 .89 
The second thennal plant's optimality equation is 

[9 .94 + 0 .02P2{ t ) ] = X( t)[ 1 - 2 .4 X 10- 4P2( t)] 
Using P2( t) = 85.21 , we obtain the same value of A( t) . The optimality 
equation for the hydroplant is 

11 [0.1011 + 2 X 1O- 4�.l t ) ] = A( t ) [  1 - 4 .4 X 10- 4P3( t)] 

This results in 
II = 100.56 $/MCF 

The system power demand is 

PD = 100 .29 + 85 .21 + 68 - (1.6 X 10- 4 ) (100 .29)
2 

- ( 1 .2 X 10-4 ) (85 .21)2 - (2 .2 X 10- 4 ) (68) 2 

= 250 MW 



Problems 773 

Problem 1 1 ·A·1 6 

A hydrothennal electric power system with three plants has the 
following transmission loss coefficients: 

Bll = 1 .6 X 10-4 
B22 = 1 .2 X 10-4 
Baa = 2 .2 X 10-4 

Plants 1 and 2 utilize thennal generation, and plant 3 is hydraulic. The 
fuel-cost expressions for the thennal plants are 

FI = 47 .84 + 9.5P1 + ylP{l $/h 
F; = 50 .00 + P2P2 + 0.01P22 $/h 

The values of YI and P2 are to be detennined using available infonnation 
specifying that for a given constant power demand, the optimal values are: 

A =  1 1 .89 
PI = 100 .29 MW 
P2 = 85 .21 MW 
Pa = 68.00 MW 

The hydro plant has discharge characteristics 

qa = 0.5087 + O.101 1Pa + 1 X 1O-4Pi Mcf/h 

A. Find YI and P2 . 
B. Compute the power loss and the power demand for the given data. 
C. Compute the available volume of water over a 24-hour period. 
D. Compute the water conversion coefficient $ /Mcf. 

Solution 

A. Optimality conditions at the two thennal plants require 

aFI 
= A ( 1 _ aPL ) 

apt aPl 

aF; = A ( 1 _ aPL ) 
aP2 aP2 

For the present data we have 

9 .5 + 2Yt{ I00.29) = 1 1 .89 [  1 - (2) { 1 .6 X 10- 4 ) ( 100.29) ] 
This results in 

Yl = 1 .0013 X 10- 2 
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Moreover, 

P2 + 0 .02(85 .21) = 1 1 .89 [  1 - (2) ( 1 .2 X 10-4 ) (85 .21 ) ]  

which gives 

P2 = 9 .9426 

B. The power losses are obtained using 

PL = Bl lP12 + B22P2
2 + B33Pi 

With the given numerical values, we get 

PL = 3 .50 MW 

As a result, we obtain the power demand using 

PD = P1 + P2 + Pa - PL 

This turns out to be 
PD = 250 MW 

c. Since we know the hydro power, we obtain the rate of water 
discharge using the given characteristic 

q3 = 0.5087 + 0 .101 1 (68) + ( 1  X 10- 4 ) (68)
2 

This turns out to be 
q3 = 7 .85 Mcfjh 

Over 24 hours we have 

b = (7 .85) (24) = 188 .3 Mcf 

D. The optimality condition for the hydroplant is 

3q3 = i\. ( _ 3PL ) 
p 
3P 1 

3P 3 3 

With the given data we obtain 

( 1 1 .89) [1 - (2) (2 .2 X 10- 4 ) (68) ] 
p = 

[0.1011 + (2) ( 1  X 10- 4 ) (68) ] 

Hence the water conversion coefficient is obtained as 

p = 100 .56 
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PROBLEMS 

Problem 1 1 -8-1 

Two thennal units at the same station have the following cost models: 

Fl = 793 .22 + 7 .74Pl + 0.00107Pf 
F; = 1 194 .6 + 7 .72P2 + 0.00072Pl 

Find the optimal power generated PI and P2 and the incremental cost of 
power delivered for power demands of 400, 600, and 1000 MW respectively. 

Problem 1 1 -8-2 

Two thennal units have the following cost model parameters: 
Ql = 312.35 Q2 = 483.44 

PI = 8.52 P2 = 8.65 

Yl = 0.0015 Y2 = 0.00056 

Evaluate the parameters of the expression for A in tenns of PD given by Eq. 
( 1 1 .14). Sketch this variation and use it to obtain the incremental cost of 
power delivered and optimal generations for power demands of 300 and 500 
MW. 

Problem 1 1 -8-3 

Show that for the system given in Problem 11 -B-2 positive power 
demand exists for which the optimal generations are negative. 

Problem 1 1 -8-4 

The incremental fuel cost of two thennal units is given by 
aFl 
ap = 2 + 0 .012Pl 

1 

aF2 
ap. = 1 .5 + 0 .015P2 2 

The variation of the power demand is as shown in Figure 1 1-19. 

A. Express the power demand as a function of time. 
B. For optimal economic operation, find the incremental cost of power 

delivered .A.( t), Pl( t), and P2( t). 
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Figure 1 1 -1 9. Power Demand for Problem 1 1 -8-4. 

Problem 1 1 -8-5 

The following data are available for the 
three-unit thermal system: 

PD � PI P2 
200 9.27627 131.798 ? 
300 9.43246 ? ? 
500 ? 233.662 ? 

24 t 
( hrs )  

optimal operation of a 

P3 
18.3556 

51 .5877 

? 

Complete the table assuming optimal operation neglecting losses. Evaluate 
the coefficients Pi and Yi of the quadratic cost models. 

. 

Problem 1 1 -8-6 

Two thermal units have the following cost models: 

Fl = 366 .0 + 9 .85P1 - 0 .OO3P12 + 3 .6 X 1O-- 6Pj1 
F2 = 398 + 10 . 12P2 - 0.OO34P22 + 2 .7 X 1O-6Pl 

Assume that losses are negligible. The optimal power generation by unit 1 is 
359.266 MW. Calculate the incremental cost of power delivered and the 
power demand under these conditions. 



Problem 1 1 -8-7 

Two thennal units have the following cost models: 

Fl = 128 + lO.65P1 - 0 .012P12 + 0 .OOOO38P� 
F; = 232 + 9 .77P2 - 0.004Pi + 0.0000073Pi 

Problems 777 

For a power demand of 500 MW, find the optimal power generations PI and 
P2 • 

Problem 1 1 -8-8 

The third-order polynomial cost model coefficients for three steam 
units are given as shown below: 

PI = 9.85 

Yl = -0.003 
81 = 0.0000036 

P2 = lO. 12 

Y2 = - 0.0034 
82 = 0.0000027 

P3 = 9.85 

Y3 = - 0.003 
83 = 0.0000036 

If the incremental cost of power delivered is 9.01826, obtain the optimal 
power generations and the corresponding power demand. 

Problem 1 1 -8-9 

An all-thennal two-unit system operates optimally with an incremen
tal cost of power delivered of 9.8 for a power demand of 500 MW with unit 1 
supplying 200 MW. The cost model for unit 1 is quadratic with 

Yl = 3 X lO-3 

Cost of unit 2 is modeled using a cubic with coefficients 

Y2 = - 0 .0002 
82 = 2 X lO-6 

Calculate the linear tenn coefficients PI and P2 • 

Problem 1 1 -8-1 0 

The optimal power generation by unit 1 in a two-thennal unit system 
is 100 MW for a power demand of 250 MW. The cost model for the first 
unit is given by the quadratic. 

Fl = at + 12 .ooPt + 3 X lO-3Pr 
The second unit is modeled using a cubic: 

F; = a2 + lO .0011 - 1 .5 X lO-3P22 + 82 pi 
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Calculate the incremental cost of power delivered and the cubic coefficient 
l}2 · 

Problem 1 1 ·8·1 1 

A demand of 1000 MW is supplied by two thermal units that have the 
following cost models: 

FI = 8.5P1 + 0 .0015P[ 
F; = 9 .00P2 - 0.OO4Pi + 9 X 1O- 6Pl 

Obtain the optimal share of power generation by each unit to meet the 
demand. Calculate the incremental cost of power delivered A .  

Problem 1 1 ·8·1 2 

The transmission loss equation for a two-plant thermal system is given 
by 

PL = 0.08P2 
The fuel-cost models are given by 

FI = 9P1 + 0 .002P[ 
F2 = 8 .7P2 + 0 .0018Pi 

Calculate the optimal generations and incremental cost of power delivered A 
for a power demand of 600 MW. 

Problem 1 1 ·8·1 3 

Repeat Problem l l-B-12 for a transmission loss equation given by 
PL = 10 + 0 .02P1 + 0.03P2 

All other data are unchanged. 

Problem 1 1 ·8·1 4 

An electric power system with two plants has the following transmis
sion loss equation: 

PL = 0 .5 X 1O- 3P[ + 0 .2 X 1O- 3P; 

The fuel-cost models are given by 

FI = 8 .52P1 + 0 .OO15P[ 
F; = 8 .65P2 + 0 .OOO56Pi 
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Given that the incremental cost of power delivered is 10.9, obtain the 
optimal power generations and the corresponding power demand. 

Problem 1 1 -8-1 5 

Use the Newton-Raphson method to find the optimal power genera
tions and incremental power cost for the system of Problem ll-B-14 for a 
power demand of 500 MW. 

Problem 1 1 -8-1 6 

The fuel-cost models for the two thermal units are as follows: 

FI = 7 .74PI + 0.OO107P12 

Fz = 7 .72P2 + 0 .00072Pl 

The loss expression is given by 

PL = 0 .5 X 1O-3Pt + 0.2 X 1O-3P22 

The optimal generation by plant # 1 is 370 MW. Calculate the incremental 
cost of power delivered, the optimal generation by the second plant, the 
power loss, and the power demand. 

Problem 1 1 -8-1 7 

Use the Newton-Raphson method to find the optimal power genera
tions and incremental power cost for the system of Problem ll-B-16 for a 
power demand of 1000 MW. 

Problem 1 1 -8-1 8 

A two-plant thermal system has transmission losses expressed as 
PL = 0 .5 X 1O-3P12 + 0 .2 X 1O-3Pl 

The cost models are given by 

FI = 1O.12PI - 0.OO34Pt + 0.OOOOO27Pt 
Fz = /32P2 - 0.0016P22 + o.OOOOOO9Pl 

For a certain power demand, the power generations for minimum cost are 
found to be 

PI = 350 MW 
P2 = 870 MW 

Calculate the value of A, /32 ' and the power demand. 
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Problem 1 1 -8-1 9 

The cost models for two plants are given by cubic models with 
coefficients given by 

/31 = 10.12 

Yl = - 0.0034 
81 = 0.0000027 

/32 = 9.58 

Y2 = -0.0016 
82 = 0.0000009 

The transmission loss expression is 

PL = Bl lP12 + B22Pl 
Determine Bl l  and B22 given that for a given power demand the optimal 
power generations are 

PI = 300 MW 
P2 = 700 MW 

The corresponding incremental cost of power delivered is 13 .5. 

Problem 1 1 -8-20 

Assume that the transmission loss coefficients for the system described 
in Problem ll -B-19 are given by 

Bl l  = 0.5 X 10 - 3 
B22 = 0.2 X 10- 3 

Obtain the optimal generating schedule for a power demand of 1000 MW. 

Problem 1 1 -8-21 

The following data pertain to a system similar to the one described in 
Problem ll -B-20: 

/31 = 10.12 

Yl = -0.0034 
81 = 0.0000027 

The transmission loss expression again is 

/32 = 9.85 

Y2 = - 0.003 
82 = 0.0000036 

PL = 0 .5 X 1O- 3P; + 0.2 X 1O- 3P22 

Given that the incremental cost of power delivered is 16.4291 ,  calculate the 
corresponding power demand. 

Problem 1 1 -8-22 

Plant # 1  in the system of Problem l l-B-21 is modeled differently 
such that 

/31 = 9 .77 and 81 = 0 .0000073 



Problems 781 

Note 11 is yet to be determined. Given that the incremental cost of power 
delivered is 17.5289 for a power demand of 1000 MW, determine PI ' P2 , and 
11 " 

Problem 1 1 ·8·23 

The power demand for a 24-hour period on a hydrothermal system is 
assumed constant at 120 MW. Assume that the thermal unit cost model is 

Fl = 50 + 9 .5Pl + 0.01P1
2 

The discharge power relationship for the hydro unit is 
q2 = 0.5 + 0.IP2 + 1O-4P22 Mcf/h 

Assume that the available volume of water is 200 Mcf for the 24-hour 
period. Calculate the optimal generations PI and P2 , the incremental cost of 
power A ,  and the water conversion coefficient p. Neglect losses. 

Problem 1 1 ·8·24 

The fuel-cost model for the thermal unit in a hydrothermal system is 
given by 

Fl = 3Pl + 0.01P12 
The hydro-performance model is 

q2 = 0.03P2 + 0 .ooo5Pl Mcf/h 
The power demand curve is given by 

PD( t )  = 200 MW 
= 3OO MW 

(0 ,..; t "'; 12 h) 
( 12 ,..; t ,..; 24 h) 

Assuming the water conversion coefficient is 90, obtain the optimal power 
generations, the volume of water available, and the incremental cost of 
power delivered. Neglect losses. 

Problem 1 1 ·8·25 

A hydrothermal system with two plants and negligible losses has the 
following performance models: 

Fl = 1 .5Pl + 0 .002 p[ 
q2 = 1 .8 + 0 .12P2 + 0 .0003Pi Mcf/h 

The power demand over the first 12-hour period of the day is 600 MW, and 
the corresponding hydro plant's optimal output is 300 MW. The volume of 
water available over the 24-hour period is 2700 Mcf. Obtain the optimal 
generation by the hydro plant and the demand in the second 12 hours of the 
day assuming that the demand is constant over that interval. Find the 
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incremental cost of power delivered over the two intervals as well as 
the water conversion coefficient. Neglect losses. 

Problem 1 1 ·8·26 

The following data pertain to models of performance of the thermal 
and hydro plants in a power system: 

Fl = 4Pl + 0 .OOO7Pl2 

q2 = 0 .6P2 + 0 .OOO35P22 

The water conversion coefficient is found to be 5. The power demand on the 
system has two values. The optimal incremental cost of power delivered for 
each of the two time intervals is found to be 

;\( 1 )  = 4 .5 
;\(2) = 4 .7 

Obtain the corresponding power demand values. 

Problem 1 1 ·8·27 

A two-plant hydrothermal system has the following optimal values: 

Pl(l) = 350 MW P1(2) = 500 MW 
P2(1) = 400 MW P2(2) = 500 MW 
>'(1) = 4.4 >'(2) = 4.8 

The water conversion coefficient is 5.5. Find the parameters of the cost 
model of the thermal plant as well as of the hydroperformance model. 
Neglect losses. 

Problem 1 1 ·8·28 

A hydrothermal electric power system with three plants has the 
following transmission loss coefficients : 

Bl l = 1 .6 X 10-4 
B22 = 1 .2 X 10- 4 
B33 = 2 .2 X 10-4 

Plants 1 and 2 utilize thermal generation and plant 3 i s  hydraulic. The fuel 
cost expressions for the thermal plants are 

Fl = 47 .84 + 9 .5Pl +YlP! $/h 

F2 = 50.00 + /32P2 + o .olPi $/h 
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The values of 11 and 132 are to be determined using available information 
specifying that for a given constant power demand, the optimal values are 

A =  11 .89 
P1 = 100.29 MW 
P2 = 85 .21 MW 
P3 = 68 .00 MW 

The hydro plant has discharge characteristics 

q3 = 0.5087 + O .lOUPa + 1 X 1O- 4Pi Mcf/h 

A. Find 11 and 132 • 
B. Compute the power loss and the power demand for the given data. 
C. Compute the available volume of water over a 24-hour period. 
D. Compute the water conversion coefficient $ /Md. 

Problem 1 1 ·8·29 

A two-plant hydrothermal system has the following characteristics: 

A. Fuel cost as a function of active power generated at the thermal 
plant is 

B. The transmission losses are given by 

C. The rate of water discharge as a function of active power generated 
at the hydro plant is 

D. The following table gives the system's power demand and the 
optimal incremental cost: 

Duration 
(h) 
14 
10 

PD 
(MW) 

700 
450 

14.50 
13.43 

It is required to calculate the optimal active power generated by each of 
the plants in each of the subintervals, the system power losses, the water 
conversion coefficient P, and the allowable volume of water discharge at 
the hydro plant. 
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Problem 1 1 -8-30 

A three-plant hydrothennal system has the following assumed char
acteristics: 

F} = 28 .50P} + 0 .03P{ 
1'; = 29 .82 P2 + 0 .03Pi 

The loss fonnula coefficients are given by 

Bl I = 1 .6 X 10- 4  
B22 = 1 .2 X 10- 4 
B33 = 2 .2 X 10- 4  

The rate of water discharge at the hydroplant is given by 

q3 = 1 .0174 + 0 .2022P3 + 2 .0 X 1O- 4�.f Mcfjh 

The optimal schedule is given by 
PI = 100 .29 MW 
P2 = 85 .21 MW 
Pa = 68 .00 MW 

Calculate the volume of water available over a 24-hour period, the system 
incremental cost of power delivered A ,  the system power demand, and the 
water conversion coefficients. 
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Incremental Cost of Power, 710 

Incremental Transmission Losses, 723 

Induction Disc Relays, 547 

Induction Motors, 256 

Induction Motor Classes, 265 

Induction Motor, Maximum Torque, 

263 

Induction Motor, Rotor Current, 259 

Induction Motor, Torque, 262 

Inductive Reactance Spacing Factor, 

100 

Inductive Voltage Drop, 98 

Inductorium, 2 

Inertial Constant, 627 
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Infinite Bus, 64, 632 

Instantaneous Power, 12 

Interconnections, 2 

Interphase Short Circuit, 568 

Interconnected System Reduction, 
284 

International Electrotechnical 
Commission, 31 

Interturn Faults, 568, 576 

Inverse-Time Overcurrent Relaying, 
591 

Inversion, 398 

Kinetic Energy, 627 

Lagrange Multipliers, 710 

Lamm, U., 7 

Lamme, B. G., 43 

Linear Coupler, 584 

Line Capacitance, 129 

Line-Charging Current, 129 

Line Inductance, 96 

Line-to-Ground Fault, 495 

Line-to-Line Fault, 512 

Line Voltage: 

in Y connection, 22 
in t:J. connection, 24 

L-Network, 162 

Load Bus, 310 

Load Flow Equations, 304 

Load Flow, Nonlinearity of, 312 

Loss Formula, 721 

Loss Load Factor, 432 

Lumped Parameter Models for 

Transmission Lines, 173 

Magnetizing Inrush Current, 577 

Magnetizing Reactance, 52 

Magnetomotive Force, 48 

Maximum Efficiency of Transformer, 
231 

Maximum Power Transfer, 634 

Maximum Torque in Induction Motor, 
263 

Mechanical Power Output of 
Induction Motor, 258 

Mercury Arc Rectifier, 361 

Mercury Arc Valve, 355,361 

Mho Relay, 561,567 

Mils, 93 

Minimum Reactance Relays, 573 

Monopolar Links, 363 

Multiconductor Configuration: 

Capacitance of, 134 

Inductance of, 101 

Multiconductor Three-Phase Systems, 
119 

Mutual Geometric Mean Distance, 
105 

Negative Sequence Current, 481 

Negative Sequence Networks, 484 

Negative Sequence Relays, 573 

Negative Sequence Voltage. 476 

Neutral Point, 22 

Newton-Raphson Method for Optimal 
Operation, 726 

Newton-Raphson Method, 318 

Niagara Falls, 189 

Nodal Admittance, 299 

Nominal 'IT-Model of a Line, 175 

Offset Mho-relaying, 603 

Ohm Relay, 561. 565 

On-off Relay, 544 

Ontario Hydro, 3 

Open Circuit Characteristics, 55 

Operational Objectives, 701 

Overexcited Machines, 66 

Overlap Angle, 402 

Overlap, Voltage Drop Due to, 406 

Parallel Connected Transformers, 235 

Parallel Lines, Reduction, 285 



Parallel-Series Connected 
Transformers, 233 

Parameter Estimation, 705 

P-pole Machines, 45 

Peak Inverse Voltage, 378 

Peak-to-Peak Ripple, 379 

Pearl Street Station, 2 

Penalty Factors, 723 

Percentage Voltage Regulation, 227 

Per Unit System, 296, 707 

Phase Comparison, 563 

Phase Comparison Protection, 605 

Phase Sequence, 20 

Phase Shift in Y / t1 Transformers, 244 

Phase Voltage in t1 Connection, 24 

Phase Voltage in Y Connection, 22 

Pick-up Current, 591 

Pilot Wire Protection, 598 

Plunger Type Relay, 545 

Polar Form of Load Flow Equations, 

305 

Polar Unit Relays, 547 

Pole Faces, 44 

Positive Sequence Current, 481 

Positive Sequence Networks, 483 

Positive Sequence Voltage; 476 

Potential Transformers, 542 

Power, 11 

Power Angle Characteristics, 63 

Power Angle Curves, 641 

Power Factor, 12 

Power Factor Correction, 18 

Power Factor in HVDC Converters, 

408 

Power Line Carrier Protection, 604 

Power Relays, 545 

Power, Symmetrical Components, 482 

Power Transformer, 217 

Power Triangle, 15 

Production Scheduling, 701 

Propagation Constant, 166 

Protective System Requirements, 542 

Proximity Effect, 95 

Pull-out Power, 65 

Pulse Number, 381 

Quadrature Axis, 71 

Quadrature Axis Magnetizing 
Reactance, 73 

Reactive Capability Curves, 61 

Reactive Power, 13 

Rectangular Form of Loadflow 
Equations, 305 

Reference Values, 296 

Regulating Transformers, 252 

Relays, 544 

Relay Comparators, 559 

Resistor Braking, 657 

Root-Mean-Square Value, 12 

Rotor Earth Faults, 568 

Saliency, 71 

Salient Pole Machine, 47 

Analysis, 71 

Power Angle Characteristics, 
75 

Self Geometric Mean Distance, i05 

Sequence Filters, 550 

Series Connected Transformers, 232 

Series-parallel connected transformers, 
234 

Sequence Impedance for Synchronous 

Machines, 490 

Shell-type Transformer Construction, 

219 

Short-circuits, See Faults. 

Short-circuit Characteristics, 55 

Silicon-controlled Rectifiers, 362 

Simultaneous Faults, 524 

Single-line Diagrams, 31 

Single-phase Circuit, Power in, 14 
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Single-phase Full Wave Rectifier, 376 

Single-phase Two Wire Lines: 

Capacitance of, 130 
Capacitance Considering Earth, 

136 

Inductance of, 96 

Six-phase Diametrical Circuit, 395 

Skin Effect, 95 

Slack Bus, 310 

Slip, 256 

Slip Frequency, 256 

Solid State Relays, 555 

Speed Control of Induction Motors, 

272 

Squirrel Cage Rotor, 256 

Stable Equilibrium Point, 643 

Standard Symbols, 31 

Stanley, W., 2 

Star Point, 22 

Stator Earth Fault, 568 

Steady State Stability Limit, 65 

Steel Conductors, 94 

Stranded Conductor, 92 

Subtransient Reactance, 474 

Summation Rule for Power, 15 

Swedish State Power Board, 91 

Swing Equation, 626 

Symmetrical Components, 474 

Symmetrical Networks, 158 

Symmetrical T-networks, 159 

Synchronous Impedance, 53 

Synchronous Machine, 43 

Construction, 44 
Fields in, 48 

Simple Equivalent Circuit, 52 

Synchronous Reactance, 47,53 

Synchronous Reactance, Determination 
of, 55 

Synchronous Speed, 256 

T-network, 156 

Tap-Changing Under Load (TCUL), 
252 

Temperature Coefficients, 95 

Temperature Relays, 545 

Thermal Relays, 572 

Three-phase Faults, 515 

Three-phase Power, 26 

Three-phase Systems, 18 

Three-phase One Way Circuit, 381 

Three-phase Single Circuit Line: 

Capacitance of, 139 
Inductance of, 113 

Three-phase Transformer Connections, 
242 

Three-Phase Two-way Circuit, 388 

Three Winding Transformers, 236 

Thyristors, 362 

Time Dial, 593 

Time-Distance Protection, 601 

Time Grading, 587 

Torque in Induction Motor, 258 

Transfer Admittance, 157 

Transfer Problems, 155 

Transformer Equivalent Circuit, 221 

Transformer Protection, 575 

Transformer Symbols, 33 

Transformer, Three-winding, 236 

Transformer, Single-phase Symbols, 
33 

Transformer, Three-phase Symbols, 
34 

Transformer Zero Sequence 

Equivalents, 485 

Transient Stability, 625 

Transient Reactance, 474 

Transmission Line Models, 164 

Transmission Line Protection, 587 

Transmission Lines: 

Equivalent 'IT Models, 175 
Model Approximation Errors, 

178 
Nominal 'IT Models, 175 
Sequence Impedances, 493 
Short Line Model, 176 

Transmission Losses, 716 



Transmission Problems, 157 

Transposition of Line Conductors, 
116 

Turns, Ratio, 218 

Two-Port Networks, 154 

Unconstrained Minimization, 709 

Under-excited Machine, 66 

Underground Distribution, 2 

Unstable Equilibrium Points, 643 

V Networks, 156 

Valve Points, 703 

Variable Percentage Differential 
Relay, 585 

Voltage Angle Approximation, 315 

Voltage Magnitude Approximation, 
316 

Voltage Relays, 545 

Water Conversion Coefficients, 740 

Water Discharge, 738 

Water Head, 738 

Wye Connection, 19 

x -R Diagrams, 555 

Zero Sequence Current, 481 

Zero Sequence Networks, 484 

Zero Sequence Voltage, 477 

Zones of Protection, 542 
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